



May 7, 1999
Technical Publications
© 1999 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Apple Type Services for Unicode
Imaging Reference

For ATSUI 1.1



 Apple Computer, Inc. 5/7/99



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Chapter 1 Introduction 9

Chapter 2 ATSUI Reference 11

Gestalt Selectors 12
Functions for Manipulating Style Objects 14

Creating, Clearing, and Disposing of Style Objects 15
Copying Style Contents 22
Flattening and Unflattening Style Objects 26
Manipulating Style Run Attributes 29
Manipulating Font Features 36
Manipulating Font Variations in a Style Object 42

Functions for Obtaining Font Data 47
Identifying and Finding ATSUI-Compatible Fonts 47
Finding Font Names 52
Converting Between Font IDs and Family Numbers 59
Obtaining Font Tracking Data 61
Obtaining Font Feature Data 64
Otaining Font Variation Data 70
Obtaining Font Instance Data 74

Functions for Manipulating Text Layout Objects 78
Creating and Disposing of Text Layout Objects 78
Manipulating Text Layout Attributes 90
Manipulating Line Attributes 98
Determining and Updating Text Memory Location 106
Updating and Determining Style Runs 114
Providing Font Substitutions 118

Functions for Responding to User Actions 126
Hit-Testing 126
Obtaining Cursor Offsets 134
Deleting and Inserting Text 141
Measuring Typographic and Image Bounds 145
5
5/7/99  Apple Computer, Inc.

Manipulating Line Breaks 156
Drawing Text 162
Highlighting and Unhighlighting Text 165
Performing Background Processing 173

Functions for Manipulating Memory Settings 174
Application-Defined Functions for Controlling Memory Allocation 178
Data Types 182
Resource 199

Flattened Text Layout Data 201
Flattened Style Run Data 202
Flattened Style List Data 202

Constants 203
Baseline Type Constants 204
Clear All Constant 206
Current Pen Location Constant 206
Cursor Movement Constants 207
Font Fallback Constants 208
Font Name Language Code Constants 209
Font Name Code Constants 213
Font Name Platform Code Constants 216
Font Name Script Code Constants 217
Glyph Bounds Constants 222
Glyph Direction Constants 223
Glyph Orientation Constants 223
Heap Specification Constants 224
Invalid Font ID Constant 226
Justification Override Mask Constants 226
Justification Priority Constants 228
Line Alignment Constants 229
Line Height Constant 230
Line Justification Constants 230
Line Layout Option Mask Constants 231
Line Layout Width Constant 233
Miscellaneous Constants 234
No Font Name Platform, Language, or Script Constants 235
Style Comparison Constants 236
Style Run Attribute Tags 237
Text Layout and Line Attribute Tags 250
6
5/7/99  Apple Computer, Inc.

Text Length Constant 255
Text Offset Constant 256

Result Codes 256

Appendix A Document Revision History 261

Appendix B Functions New to ATSUI 1.1 and Changed From
ATSUI 1.0 263

Appendix C ATSUI Implementation of the Unicode Specification 265

Character Size 266
Control Characters 266
Combining Characters 267
Surrogates 268
Character Properties 269

Appendix D Font Feature Types and Selectors 271

Contextual Font Features 275
Ligatures 276
Cursive Connection 277
Letter Case 277
Vertical Substitution 279
Linguistic Rearrangement 279
Swashes and Smart Swashes 280
Diacritical Marks 281
Vertical Position 282
Fractions 282
Prevention of Glyph Overlap 283

Noncontextual Font Features 284
Character Shape 284
Number Width 285
7
5/7/99  Apple Computer, Inc.

Number Case 286
Text Width 286
Annotation 287
Transliteration 288
Kana Spacing 289
Ideographic Spacing 290
CJK Roman Width 290
Style Options 291
Typographic Extras 292
Mathematical Extras 293
Ornament Sets 294
Character Alternates 295
Design Complexity 295
Unicode Decomposition 296

Glossary 297

Index 305
8
5/7/99  Apple Computer, Inc.

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

Introduction 1
Apple Type Services for Unicode Imaging (ATSUI) provides you with the
ability to render Unicode-encoded text using many of the advanced typography
features provided with QuickDraw GX. It automatically handles many of the
complexities inherent in text layout, including how to correctly render text in
bidirectional and vertical script systems.

This preliminary document describes the ATSUI programming interface
through ATSUI 1.1. New features in ATSUI 1.1 include the ability to track fonts,
control memory allocation, specify fallback fonts, obtain typographic glyph
bounds, clear the layout cache of a line or entire text layout object, and
manipulate line attributes.

This document should be useful to anyone who wants to write a new text editor
or word processing application that renders Unicode-encoded text. You can also
use it to modify existing applications to support the rendering of
Unicode-encoded text.

If you want more information on how ATSUI interacts with fonts, you can see
the Apple font web site:

<http://fonts.apple.com/>

This document describes the ATSUI API in the following chapters:

■ “ATSUI Reference” (page 11) describes the complete API through ATSUI 1.1,
including functions, data types, constants, and result codes.

■ “Document Revision History” (page 261) provides a history of changes to
this document.

■ “Functions New to ATSUI 1.1 and Changed From ATSUI 1.0” (page 263)
alphabetically lists all ATSUI 1.1 functions and any ATSUI 1.0 functions
whose implementation has changed with ATSUI 1.1.

■ “Glossary” (page 297) provides an alphabetical listing of typographic and
ATSUI-specific terms.
9
5/7/99  Apple Computer, Inc.

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0

ATSUI Reference 2
This chapter describes the ATSUI programming interface through ATSUI 1.1. It
is broken down into the following sections:

■ “Gestalt Selectors” (page 12) describes the selectors you can use to determine
ATSUI’s availability.

■ “Functions for Manipulating Style Objects” (page 14) describes the functions
you can use to manipulate a style object and its contents.

■ “Functions for Obtaining Font Data” (page 47) describes the functions you
can use to obtain font data.

■ “Functions for Manipulating Text Layout Objects” (page 78) describes the
functions you can use to manipulate a text layout object and its contents.

■ “Functions for Responding to User Actions” (page 126) describes the
functions you can use to respond to actions like text insertion and deletion,
cursor movement, line breaking, and highlighting.

■ “Functions for Manipulating Memory Settings” (page 174) describes the
functions you can use to manipulate memory settings in ATSUI.

■ “Application-Defined Functions for Controlling Memory Allocation”
(page 178) describes the functions you can provide if you wish to exercise
complete control over memory allocation operations in ATSUI.

■ “Data Types” (page 182) describes the data types and structures you use with
ATSUI functions.

■ “Resource” (page 199) describes the 'ustl' clipboard data block format that
you can use to describe styled text in the clipboard.

■ “Constants” (page 203) describes the constants defined by ATSUI for your
application’s use.

■ “Result Codes” (page 256) describes the result codes returned by ATSUI
functions.
11
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference

Gestalt Selectors 2

Before calling any functions dependent upon ATSUI, your application should
pass the gestaltATSUVersion selector to the Gestalt function to determine the
version of ATSUI installed on the user’s system. You can also determine version
information by testing for the feature bits described below.

enum {
gestaltATSUVersion = 'uisv',

};

Constant descriptions

gestaltATSUVersion The Gestalt selector you pass to determine the version of
ATSUI installed on the user’s system. For a description of
the currently-defined bits, see below.

If you pass the gestaltATSUVersion selector, on return the Gestalt function
passes back a Fixed value that represents the version of ATSUI installed on the
user’s system.

enum {
gestaltOriginalATSUVersion = 1.0,
gestaltATSUUpdate1 = 2.0

};

Constant descriptions

gestaltOriginalATSUVersion
A Fixed value that indicates that version 1.0 of ATSUI is
installed on the user’s system.

gestaltATSUUpdate1
A Fixed value that indicates that version 1.1 of ATSUI is
installed on the user’s system.

You pass the following Gestalt selector to determine which features of ATSUI
are available.

enum {
 gestaltATSUFeatures = 'uisf',

};
12 Gestalt Selectors

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference

Constant descriptions

gestaltATSUFeatures
A Gestalt selector. For a description of the
currently-defined bits, see the discussion below.

On return, the Gestalt function passes back a 32-bit value which you can use to
test to determine the available features.

If ATSUI 1.1 is installed on the user’s system, the bits specified by the constants
gestaltATSUTrackingFeature, gestaltATSUMemoryFeature,
gestaltATSUFallbacksFeature, gestaltATSUGlyphBoundsFeature,
gestaltATSULineControlFeature, gestaltATSULayoutCacheClearFeature, and
gestaltATSULayoutCreateAndCopyFeature will be set.

enum {
gestaltATSUTrackingFeature = 0x00000001,
gestaltATSUMemoryFeature = 0x00000001,
gestaltATSUFallbacksFeature = 0x00000001,
gestaltATSUGlyphBoundsFeature = 0x00000001,
gestaltATSULineControlFeature = 0x00000001,
gestaltATSULayoutCacheClearFeature = 0x00000001,
gestaltATSULayoutCreateAndCopyFeature = 0x00000001

};

Constant descriptions

gestaltATSUTrackingFeature
If this bit is set, you can obtain a font tracking setting and
name code using the functions ATSUCountFontTracking
(page 61) and ATSUGetIndFontTracking (page 62).

gestaltATSUMemoryFeature
If this bit is set, you can control ATSUI’s memory allocation
using the functions ATSUCreateMemorySetting (page 174),
ATSUSetCurrentMemorySetting (page 176),
ATSUGetCurrentMemorySetting (page 176), and
ATSUDisposeMemorySetting (page 177).

gestaltATSUFallbacksFeature
If this bit is set, you can set and obtain fallback font search
methods using the functions ATSUSetFontFallbacks
(page 119) and ATSUGetFontFallbacks (page 120).
Gestalt Selectors 13
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference

gestaltATSUGlyphBoundsFeature
If this bit is set, you can obtain typographic glyph bounds
using the function ATSUGetGlyphBounds (page 145).

gestaltATSULineControlFeature
If this bit is set, you can manipulate line attributes using the
functions ATSUCopyLineControls (page 98),
ATSUSetLineControls (page 100), ATSUGetLineControl
(page 102), ATSUGetAllLineControls (page 104), and
ATSUClearLineControls (page 105).

gestaltATSULayoutCacheClearFeature
If this bit is set, you can flush the layout cache of a line or
entire text layout object using the function
ATSUClearLayoutCache (page 88).

gestaltATSULayoutCreateAndCopyFeature
If this bit is set, you can create a copy of a text layout object
using the function ATSUCreateAndCopyTextLayout (page 85).

VERSION NOTES

The selector constants gestaltATSUUpdate1, gestaltATSUTrackingFeature,
gestaltATSUMemoryFeature, gestaltATSUFallbacksFeature,
gestaltATSUGlyphBoundsFeature, gestaltATSULineControlFeature,
gestaltATSULayoutCacheClearFeature, and gestaltATSULayoutCreateAndCopy are
available with ATSUI 1.1. All other selector constants are available with ATSUI
1.0.

Functions for Manipulating Style Objects 2

This section describes the functions you can use to to manipulate a style object
and its contents:

■ “Creating, Clearing, and Disposing of Style Objects” (page 15)

■ “Copying Style Contents” (page 22)

■ “Flattening and Unflattening Style Objects” (page 26)

■ “Manipulating Style Run Attributes” (page 29)

■ “Manipulating Font Features” (page 36)
14 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference

■ “Manipulating Font Variations in a Style Object” (page 42)

Creating, Clearing, and Disposing of Style Objects 2
ATSUI provides the following functions for creating, clearing, and disposing of
style objects:

■ ATSUCreateStyle (page 15) creates a style object.

■ ATSUCreateAndCopyStyle (page 16) creates a copy of a style object.

■ ATSUCompareStyles (page 18) compares the contents of two style objects.

■ ATSUSetStyleRefCon (page 19) sets application-specific style data.

■ ATSUGetStyleRefCon (page 19) obtains application-specific style data.

■ ATSUStyleIsEmpty (page 20) indicates whether a style object contains any
previously set style run attribute, font feature, or font variation values.

■ ATSUClearStyle (page 21) removes all previously set style run attribute, font
feature, and font variation values from a style object.

■ ATSUDisposeStyle (page 22) disposes of the memory associated with a style
object.

ATSUCreateStyle 2
Creates a style object.

OSStatus ATSUCreateStyle (ATSUStyle *oStyle);

oStyle A pointer to a reference of type ATSUStyle (page 195). On return,
oStyle refers to the newly-created style object. You cannot pass
NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The newly-created style object contains the default font feature and variation
values defined by the font and the default style attribute values listed in Table
2-1 (page 237).
Functions for Manipulating Style Objects 15
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
You can set style run attribute, font feature, and font variations, respectively, in
this style object by calling the functions ATSUSetAttributes (page 29),
ATSUSetFontFeatures (page 37), and ATSUSetVariations (page 42).

Once you have set these values, you can can create a copy of this style object
(essentially, create a clone) by calling the function ATSUCreateAndCopyStyle
(page 16). You can also copy some portion of the contents of this style object
into another style object by calling the functions ATSUCopyAttributes (page 23),
ATSUOverwriteAttributes (page 24), and ATSUUnderwriteAttributes (page 25).

SPECIAL CONSIDERATIONS

ATSUCreateStyle allocates memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUCreateAndCopyStyle (page 16)

ATSUCreateAndCopyStyle 2
Creates a copy of a style object.

OSStatus ATSUCreateAndCopyStyle (
ATSUStyle iStyle,
ATSUStyle *oStyle);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose contents you want to copy. You cannot
pass NULL for this parameter.
16 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oStyle A pointer to a reference of type ATSUStyle (page 195). On return,
the reference points to a style object containing the same style
run attribute, font feature, and font variation values as the style
object you passed in the iStyle parameter. You cannot pass NULL
for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUCreateAndCopyStyle function creates a clone of a style object containing
the same style run attribute, font feature, and font variation values.
ATSUCreateAndCopyStyle does not copy reference constants.

If you wish to copy the entire contents of a style object into an existing style
object, you should call the function ATSUCopyAttributes (page 23). To copy the
previously set values from a style object into an existing style object, you should
call the function ATSUOverwriteAttributes (page 24). If you instead wish to copy
values previously set in the source and unset in the destination style object into
the destination style object, you should call the function
ATSUUnderwriteAttributes (page 25).

SPECIAL CONSIDERATIONS

ATSUCreateAndCopyStyle allocates memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUCreateStyle (page 15)
Functions for Manipulating Style Objects 17
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUCompareStyles 2
Compares the contents of two style objects.

OSStatus ATSUCompareStyles (
ATSUStyle iFirstStyle,
ATSUStyle iSecondStyle,
ATSUStyleComparison *oComparison);

iFirstStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose contents you want to compare. You
cannot pass NULL for this parameter.

iSecondStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose contents you want to compare. You
cannot pass NULL for this parameter.

oComparison A pointer to a value of type ATSUStyleComparison. See “Style
Comparison Constants” (page 236) for a description of possible
values. On return, the value indicates whether the contents of
the two style objects are the same, different, or a subset of
eachother. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUCompareStyles function determines whether the style run attribute, font
feature, and font variation values set in two style objects are the same, different,
or a subset of eachother. ATSUCompareStyles does not consider reference
constants or application-defined style run attributes in the comparison.

You should call ATSUCompareStyles to implement style sheets and tables of style
runs.

VERSION NOTES

Available with ATSUI 1.0.
18 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUSetStyleRefCon 2
Sets application-specific style data.

OSStatus ATSUSetStyleRefCon (
ATSUStyle iStyle,
UInt32 iRefCon);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose application-specific data you want to
set. You cannot pass NULL for this parameter.

iRefCon A 32-bit value, pointer, or handle to application-specific style
data.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

Note that when you copy or clear a style object that contains a reference
constant, the reference constant will not be copied or removed. When you
dispose of a style object that contains a reference constant, you are resposible for
freeing any memory allocated for the reference constant. Calling
ATSUDisposeStyle (page 22) will not do so.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetStyleRefCon (page 19)

ATSUGetStyleRefCon 2
Obtains application-specific style data.

OSStatus ATSUGetStyleRefCon (
ATSUStyle iStyle,
UInt32 *oRefCon);
Functions for Manipulating Style Objects 19
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose application-specific data you want to
obtain. You cannot pass NULL for this parameter.

oRefCon A pointer to a 32-bit value, pointer, or handle to
application-specific style data.You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetStyleRefCon (page 19)

ATSUStyleIsEmpty 2
Indicates whether a style object contains any previously set style run attribute,
font feature, or font variation values.

OSStatus ATSUStyleIsEmpty (
ATSUStyle iStyle,
Boolean *oIsClear);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose settings status you want to determine.
You cannot pass NULL for this parameter.

oIsClear A pointer to a value of type Boolean. On return, the value
indicates whether the style contains any previously set style run
attribute, font feature, or font variation values. If true, the style
object contains only default values. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).
20 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUStyleIsEmpty function does not consider reference constants when
evaluting the contents of a style object.

VERSION NOTES

Available with ATSUI 1.0.

ATSUClearStyle 2
Removes all previously set style run attribute, font feature, and font variation
values from a style object.

OSStatus ATSUClearStyle (ATSUStyle iStyle);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose contents you want to clear. You cannot
pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUClearStyle removes all previously set style run attribute, font feature,
and font variation values from a style object, including application-defined
attribute values. It does not remove reference constants.

If you want to remove selected style run attribute, font feature, or font variation
values from a style object, call the functions ATSUClearAttributes (page 34),
ATSUClearFontFeatures (page 41), and ATSUClearFontVariations (page 46),
respectively.

VERSION NOTES

Available with ATSUI 1.0.
Functions for Manipulating Style Objects 21
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUDisposeStyle 2
Disposes of the memory associated with a style object.

OSStatus ATSUDisposeStyle (ATSUStyle iStyle);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to the
style object whose memory you want to dispose. You cannot
pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

Your application may use the ATSUDisposeStyle function to dispose of the
memory associated with a style object, including style run attribute settings.
ATSUDisposeStyle only frees memory associated with the style object and its
internal structures. It does not dispose of the memory pointed to by custom
style run attributes and reference constants. You are ultimately responsible for
doing so.

VERSION NOTES

Available with ATSUI 1.0.

Copying Style Contents 2
ATSUI provides the following functions for copying style contents:

■ ATSUCopyAttributes (page 23) copies both set and unset values from the
source into the destination style object.

■ ATSUOverwriteAttributes (page 24) copies previously set values from the
source into the destination style object.

■ ATSUUnderwriteAttributes (page 25) copies values previously set in the
source and unset in the destination style object into the destination style
object.
22 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUCopyAttributes 2
Copies both set and unset values from the source into the destination style
object.

OSStatus ATSUCopyAttributes (
ATSUStyle iSourceStyle,
ATSUStyle iDestinationStyle);

iSourceStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose set and unset style run attribute, font
feature, and font variation values you want to copy. You cannot
pass NULL for this parameter.

iDestinationStyle
A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose style run attribute, font feature, and
font variation values you want to replace. You cannot pass NULL
for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUCopyAttributes function differs from the ATSUOverwriteAttributes
function in that it copies both previously set and unset style run attribute, font
feature, and font variation values from the source into the destination style
object.

ATSUCopyAttributes will not copy the contents of memory referenced by
pointers or handles within custom style run attributes or within reference
constants. It is your responsibility to ensure that this memory remains valid
until the source style object is disposed of.

SPECIAL CONSIDERATIONS

ATSUCopyAttributes may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.
Functions for Manipulating Style Objects 23
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUOverwriteAttributes (page 24)

ATSUUnderwriteAttributes (page 25)

ATSUOverwriteAttributes 2
Copies previously set values from the source into the destination style object.

OSStatus ATSUOverwriteAttributes (
ATSUStyle iSourceStyle,
ATSUStyle iDestinationStyle);

iSourceStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose previously set style run attribute, font
feature, and font variation values you want to copy. You cannot
pass NULL for this parameter.

iDestinationStyle
A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose corresponding values you want to
replace. Only the previously set style run attribute, font feature,
and font variation values in the source style object will be
copied into this style object. All other quantities in the
destination style object are left unchanged. You cannot pass NULL
for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUOverwriteAttributes function differs from the ATSUCopyAttributes
function in that it only copies previuosly set style run attribute, font feature,
and font variation values in a style object. Unlike ATSUCopyAttributes, it does
not copy unset (or default) values.

ATSUOverwriteAttributes will not copy the contents of memory referenced by
pointers or handles within custom style run attributes or within reference
constants. It is your responsibility to ensure that this memory remains valid
until the source style object is disposed of.
24 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

ATSUOverwriteAttributes may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUCopyAttributes (page 23)

ATSUUnderwriteAttributes (page 25)

ATSUUnderwriteAttributes 2
Copies values previously set in the source and unset in the destination style
object into the destination style object.

OSStatus ATSUUnderwriteAttributes (
ATSUStyle iSourceStyle,
ATSUStyle iDestinationStyle);

iSourceStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose previously set values that are not set in
the destination style object you want to copy. You cannot pass
NULL for this parameter.

iDestinationStyle
A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose corresponding unset values you want to
replace. Only those style run attribute, font feature, and font
variation values that were previously set in the source style
object and unset in this style object will be copied into this style
object. All other quantities in the destination style object are left
unchanged. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).
Functions for Manipulating Style Objects 25
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUUnderwriteAttributes function differs from the
ATSUOverwriteAttributes function in that it only copies those style run
attribute, font feature, and font variation values that were previously set in the
source style object but unset in the destination style object. If a style run
attribute, font feature, or font variation value is set in both the source and
destination style object, its value in the destination style object will remain
unchanged.

ATSUUnderwriteAttributes will not copy the contents of memory referenced by
pointers or handles within custom style run attributes or within reference
constants. It is your responsibility to ensure that this memory remains valid
until the source style object is disposed of.

SPECIAL CONSIDERATIONS

ATSUUnderwriteAttributes may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUCopyAttributes (page 23)

ATSUOverwriteAttributes (page 24)

Flattening and Unflattening Style Objects 2
NOT RECOMMENDED 2

ATSUI provides the following functions for flattening and unflattening style
objects:

■ ATSUCopyToHandle (page 27) copies styled Unicode text data from a style
object to a handle.
26 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ ATSUPasteFromHandle (page 28) pastes styled Unicode text data from a handle
to a style object.

ATSUCopyToHandle 2
NOT RECOMMENDED 2

Copies styled Unicode text data from a style object to a handle.

OSStatus ATSUCopyToHandle (
ATSUStyle iStyle,
Handle oStyleHandle);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose style information you want to copy. If
the style object contains pointers or handles within custom style
run attributes or reference constants, the contents of this
memory will not be copied into the handle. You cannot pass
NULL for this parameter.

oStyleHandle A value of type Handle. On return, the handle contains the
address of the flattened style information. It does not include
the contents of memory pointed to by pointers or handles
within custom style run attributes or reference constants. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUCopyToHandle function does not produce the correct data format for
displaying ATSUI style data. You should instead use the clipboard data block
format described in ustl (page 199) when you want to provide clipboard
support or copy and paste styled text between applications or within an
application.
Functions for Manipulating Style Objects 27
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

ATSUCopyToHandle may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ustl (page 199)

ATSUPasteFromHandle 2
NOT RECOMMENDED 2

Pastes styled Unicode text data from a handle into a style object.

OSStatus ATSUPasteFromHandle (
ATSUStyle iStyle,
Handle iStyleHandle);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose style information is to be copied.

iStyleHandle A handle of type Handle. Pass a handle containing the address of
style information that was produced by calling
ATSUCopyToHandle (page 27).

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUPasteFromHandle function does not produce the correct data format for
displaying ATSUI style data. You should instead use the clipboard data block
format described in ustl (page 199) when you want to provide clipboard
support or copy and paste styled text between applications or within an
application.
28 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

ATSUPasteFromHandle may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ustl (page 199)

Manipulating Style Run Attributes 2
ATSUI provides the following functions for manipulating style run attributes:

■ ATSUSetAttributes (page 29) sets style run attribute values for a style object.

■ ATSUGetAttribute (page 31) obtains a style run attribute value from a style
object.

■ ATSUGetAllAttributes (page 33) obtains all the style run attribute values from
a style object.

■ ATSUClearAttributes (page 34) removes previously set style run attribute
values from a style object.

■ ATSUCalculateBaselineDeltas (page 35) calculates the distances from the
baseline with a y-delta of 0 to each of the other baseline types in a style
object.

ATSUSetAttributes 2
Sets style run attribute values for a style object.

OSStatus ATSUSetAttributes (
ATSUStyle iStyle,
ItemCount iAttributeCount,
Functions for Manipulating Style Objects 29
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUAttributeTag iTag[],
ByteCount iValueSize[],
ATSUAttributeValuePtr iValue[]);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose style run attribute values you want to
set. You cannot pass NULL for this parameter.

iAttributeCount
A value of type ItemCount that represents the number of style
run attributes you want to set.

iTag An array of values of type ATSUAttributeTag. See “Style Run
Attribute Tags” (page 237) for a description of Apple-defined tag
values. Each element in the array must contain a valid tag that
corresponds to a style run attribute. Note that if you pass a text
layout attribute or an ATSUI-reserved tag value in this
parameter, ATSUSetAttributes returns the result code
kATSUInvalidAttributeTagErr. You cannot pass NULL for this
parameter.

iValueSize An array of values of type ByteCount. This array contains the
sizes (in bytes) of the style run attribute values being set. Note
that if you pass an attribute value size that is less than required,
ATSUSetAttributes returns the result code
kATSUInvalidAttributeSizeErr. You cannot pass NULL for this
parameter.

iValue An array of pointers of type ATSUAttributeValuePtr (page 187).
Each pointer in the array must reference a style run attribute
value that corresponds to a tag in the iTag array, and the value
referenced by the pointer must be legal for that tag. Note that if
you pass an invalid or undefined value, ATSUSetAttributes
returns the result code kATSUInvalidAttributeValueErr. You
cannot pass NULL for this parameter.

function result A result code. If there is a function error, ATSUSetAttributes will
not set any style run attributes. The result code
kATSUNoFontCmapAvailableErr indicates that no'CMAP' table can
be accessed or synthesized for the font. The result code
kATSUNoFontScalerAvailableErr indicates that there is no font
scaler available for the font.For a list of other ATSUI-specific
result codes, see “Result Codes” (page 256).
30 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUSetAttributes function sets multiple style run attribute values
simultaneously. Unset attributes retain their default values listed in Table 2-1
(page 237).

SPECIAL CONSIDERATIONS

ATSUSetAttributes may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetAttribute (page 31)

ATSUGetAllAttributes (page 33)

ATSUGetAttribute 2
Obtains a style run attribute value from a style object.

OSStatus ATSUGetAttribute (
ATSUStyle iStyle,
ATSUAttributeTag iTag,
ByteCount iMaximumValueSize,
ATSUAttributeValuePtr oValue,
ByteCount *oActualValueSize);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose style run attribute value you want to
obtain. You cannot pass NULL for this parameter.

iTag A style run attribute tag of type ATSUAttributeTag. Pass a valid
tag that corresponds to the style run attribute whose value you
want to determine. See “Style Run Attribute Tags” (page 237) for
a description of Apple-defined tag values. Note that if you pass
Functions for Manipulating Style Objects 31
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
a text layout attribute or an ATSUI-reserved tag value in this
parameter, ATSUGetAttribute returns the result code
kATSUInvalidAttributeTagErr.

iMaximumValueSize
A value of type ByteCount that represents the amount of
memory allocated for the style run attribute value. You can
predetermine this value by first calling ATSUGetAttribute
(iStyle, 0, 0, NULL, &oTagValuePairCount). Note that if you
pass an attribute value size that is less than required,
ATSUGetAttribute returns the result code
kATSUInvalidAttributeSizeErr.

oValue A pointer of type ATSUAttributeValuePtr (page 187). Before
calling ATSUGetAttribute, pass a pointer to memory you have
allocated for the attribute value or NULL if you don’t know how
big the attribute value will be (as in the case of custom style run
attributes). If you pass NULL, on return, ATSUGetAttribute passes
back the attribute value size in the oActualVariationCount
parameter. If you instead pass a pointer to memory you have
allocated for the value, on return, oValue points to the style run
attribute value. Note that if you did not previously set the
attribute value, ATSUGetAttribute passes back its default value
in this parameter and returns the result code kATSUNotSetErr.

oActualValueSize
A pointer to a value of type ByteCount. On return,
oActualValueSize points to the actual size (in bytes) of the
attribute value. You should examine this parameter if you are
unsure of the size of the attribute value you wish to obtain, as in
the case of custom style run attributes.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetAttributes (page 29)

ATSUGetAllAttributes (page 33)
32 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetAllAttributes 2
Obtains all the style run attribute values from a style object.

OSStatus ATSUGetAllAttributes (
ATSUStyle iStyle,
ATSUAttributeInfo oAttributeInfoArray[],
ItemCount iTagValuePairArraySize,
ItemCount *oTagValuePairCount);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose style run attribute tags and value sizes
you want to obtain. You cannot pass NULL for this parameter.

oAttributeInfoArray
An array of structures of type ATSUAttributeInfo (page 186). On
return, each structure in the array contains a tag/value-size pair
that corresponds to a particular style run attribute value in the
style object. You can predetermine how much memory to
allocate for this array by first calling ATSUGetAllAttributes
(iStyle, NULL, 0, &oTagValuePairCount).

iTagValuePairArraySize
A value of type ItemCount. This value represents the maximum
number of ATSUAttributeInfo (page 186) structures that you
want passed back in the oAttributeInfoArray array. You can
predetermine this value by first calling ATSUGetAllAttributes
(iStyle, NULL, 0, &oTagValuePairCount).

oTagValuePairCount
A pointer to a value of type ItemCount. On return, the value
represents the actual number of ATSUAttributeInfo structures set
in the style object. This may be greater than the value passed in
the iTagValuePairArraySize parameter. You cannot pass NULL for
this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

You can pass the tag and value size data passed back in the
oAttributeInfoArray parameter to the ATSUGetAttribute (page 31) function to
obtain the value of a particular style run attribute.
Functions for Manipulating Style Objects 33
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetAttribute (page 31)

ATSUClearAttributes 2
Removes previously set style run attribute values from a style object.

OSStatus ATSUClearAttributes (
ATSUStyle iStyle,
ItemCount iTagCount,
ATSUAttributeTag iTag[]);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose previously set style run attributes you
want to remove. You cannot pass NULL for this parameter.

iTagCount A value of type ItemCount that represents the number of
previously set style run attribute values you want to remove. To
remove all previously set style run attribute values, pass the
constant kATSUClearAll.

iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that identifies a style run
attribute you want to remove. See “Style Run Attribute Tags”
(page 237) for a description of Apple-defined tag values. Note
that if you pass a text layout attribute or an ATSUI-reserved tag
value in this parameter, ATSUClearAttributes returns the result
code kATSUInvalidAttributeTagErr. If you pass the
kATSUClearAll constant in the iTagCount parameter, the value in
this parameter will be ignored.

function result A result code. See “Result Codes” (page 256).
34 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUClearLineControls function removes those previously set text layout
attribute values that are identified by the tags in the iTag array. It sets these
values to the default values listed in Table 2-2 (page 251).

To remove all the previously set style run attribute values from a style object,
pass the constant kATSUClearAll in the iTagCount parameter. You can remove
unset attribute values from a style object without a function error.

If you want to remove all previously set style run attribute, font feature, and
font variation values from a style object, call the ATSUClearStyle (page 21)
function.

VERSION NOTES

Available with ATSUI 1.0.

ATSUCalculateBaselineDeltas 2
Calculates the default baseline deltas in a particular style run.

OSStatus ATSUCalculateBaselineDeltas (
ATSUStyle iStyle,
BslnBaselineClass iBaselineClass,
BslnBaselineRecord oBaselineDeltas);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose baseline positions you want to control
placement of all the glyphs in a single line or in each line of a
text layout object. You cannot pass NULL for this parameter.

iBaselineClass
A value of type BslnBaselineClass. Pass the primary baseline
from which to calculate the distance to each of the other baseline
types. See “Baseline Type Constants” (page 204) for a
description of possible values. Pass the constant
kBSLNNoBaselineOverride if you want to use the standard
baseline value from the current font.
Functions for Manipulating Style Objects 35
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oBaselineDeltas
An array of type BslnBaselineRecord (page 196). On return, the
array contains the baseline deltas (that is, the distance from a
specified baseline to each of the other baseline types in the style
object). You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The function ATSUCalculateBaselineDeltas (page 35) determines the default
baseline deltas (that is, the distances from a specified baseline to each of other
baselines) for a specific style object. These deltas are in turn applied to the
cross-stream shifting of glyphs in the style run. The deltas are determined by
various style run attributes, including font and text size.

You can use these positions to set the default baseline positions for all glyphs in
a text layout object or a single line. In order to determine the deltas that you
want to use to control placement of all the glyphs on the line, pass in the style
object of the dominant style run in the line.

To set these values in a line or text layout object, pass these deltas and the
kATSULineBaselineValuesTag tag constant to the functions ATSUSetLineControls
(page 100) and ATSUSetLayoutControls (page 92).

VERSION NOTES

Available with ATSUI 1.0.

Manipulating Font Features 2
ATSUI provides the following functions for manipulating font features:

■ ATSUSetFontFeatures (page 37) sets font feature values in a style object.

■ ATSUGetFontFeature (page 38) obtains a font feature value from a style object.

■ ATSUGetAllFontFeatures (page 39) obtains all the font feature values from a
style object.

■ ATSUClearFontFeatures (page 41) removes previously set font feature values
from a style object.
36 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUSetFontFeatures 2
Sets font feature values in a style object.

OSStatus ATSUSetFontFeatures (
ATSUStyle iStyle,
ItemCount iFeatureCount,
ATSUFontFeatureType iType[],
ATSUFontFeatureSelector iSelector[]);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose font feature type and selector values
you want to set. You cannot pass NULL for this parameter.

iFeatureCount A value of type ItemCount that represents the number of font
feature type and selector values you want to set.

iType An array of values of type ATSUFontFeatureType (page 191) or
one of the feature selectors described in “Font Feature Types and
Selectors” (page 271). Each element in the array must contain a
valid feature type that corresponds to a feature selector in the
iSelector parameter. You cannot pass NULL for this parameter.

iSelector An array of values of type ATSUFontFeatureSelector (page 191)
or one of the feature selectors described in “Font Feature Types
and Selectors” (page 271). Each element in the array must
contain a feature selector that corresponds to a feature type in
the iType parameter. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUSetFontFeatures function sets multiple font feature type and selector
values simultaneously. Unset features retain their font-defined default values.

To set a font feature in a style object, you must specify both the feature type
(that is, the type of font feature to employ) and the feature selector (that is, the
level or style of employment).

If you set contradictory font features, ATSUI will not remove a feature when a
contradictory feature is set. You are responsible for maintaining the list of font
feature settings and removing contradictory settings when they occur.
Functions for Manipulating Style Objects 37
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
The order that ATSUSetFontFeatures actually sets font features depends on the
font-defined order, not the chronological order in which you set them calling
ATSUSetFontFeatures.

SPECIAL CONSIDERATIONS

ATSUSetFontFeatures may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetFontFeature (page 38)

ATSUGetFontFeature 2
Obtains a font feature value from a style object.

OSStatus ATSUGetFontFeature (
ATSUStyle iStyle,
ItemCount iFeatureIndex,
ATSUFontFeatureType *oFeatureType,
ATSUFontFeatureSelector *oFeatureSelector);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose font feature type and selector you want
to obtain. You cannot pass NULL for this parameter.

iFeatureIndex A value of type ItemCount that represents the 0-based index of
the font feature type and selector whose value you want to
obtain. To predetermine the maximum valid value for this
index, subtract one from the value passed back from
ATSUGetAllFontFeatures (iStyle, 0, NULL, NULL,
&oActualFeatureCount).
38 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oFeatureType A pointer to a value of type ATSUFontFeatureType (page 191) or
to one of the feature types described in “Font Feature Types and
Selectors” (page 271). On return, the value represents the
indexed feature type value. Note that if the feature type value
has not been set, ATSUGetFontFeature passes back the
font-specified default value and returns the result code
kATSUNotSetErr.

oFeatureSelector
A pointer to a value of type ATSUFontFeatureSelector (page 191)
or to one of the feature selectors described in “Font Feature
Types and Selectors” (page 271). On return, the value represents
the indexed feature selector value. Note that if the feature
selector value has not been set, ATSUGetFontFeature passes back
the font-specified default value and returns the result code
kATSUNotSetErr.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetFontFeatures (page 37)

ATSUGetAllFontFeatures 2
Obtains all the font feature values from a style object.

OSStatus ATSUGetAllFontFeatures (
ATSUStyle iStyle,
ItemCount iMaximumFeatureCount,
ATSUFontFeatureType oFeatureType[],
ATSUFontFeatureSelector oFeatureSelector[],
ItemCount *oActualFeatureCount);
Functions for Manipulating Style Objects 39
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose font features you want to obtain. You
cannot pass NULL for this parameter.

iMaximumFeatureCount
A value of type ItemCount. This value represents the number of
font feature types and selectors you want passed back in the
oFeatureType and oFeatureSelector arrays, respectively. You can
predetermine this value by first calling
ATSUGetAllFontFeatures(iStyle, 0, NULL, NULL,
&oActualFeatureCount).

oFeatureType An array of values of type ATSUFontFeatureType (page 191) or
one of the feature type constants described in “Font Feature
Types and Selectors” (page 271). On return, the array contains
the font feature types in the style object. You can predetermine
how much memory to allocate for this array by first calling
ATSUGetAllFontFeatures(iStyle, 0, NULL, NULL,
&oActualFeatureCount).

oFeatureSelector
An array of values of type ATSUFontFeatureSelector (page 191)
or one of the feature selector constants described in “Font
Feature Types and Selectors” (page 271). On return, the array
contains the font feature selectors in the style object. You can
predetermine how much memory to allocate for this array by
first calling ATSUGetAllFontFeatures(iStyle, 0, NULL, NULL,
&oActualFeatureCount).

oActualFeatureCount
A pointer to a value of type ItemCount. On return, the value
represents the actual number of font feature types and selectors
set in the style object. This may be greater than the value passed
in the iMaximumFeatureCount parameter. You cannot pass NULL
for this parameter.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.
40 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUClearFontFeatures 2
Removes previously set font feature values from a style object.

OSStatus ATSUClearFontFeatures (
ATSUStyle iStyle,
ItemCount iFeatureCount,
ATSUFontFeatureType iType[],
ATSUFontFeatureSelector iSelector[]);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose previously set font features you want to
remove. You cannot pass NULL for this parameter.

iFeatureCount A value of type ItemCount that represents the number of
previously set font feature values you want to remove. To
remove all the previously set font feature values from a style
object, pass the constant kATSUClearAll.

iType An array of values of type ATSUFontFeatureType (page 191) or
one of the feature type constants described in “Font Feature
Types and Selectors” (page 271). Each element in the array must
contain a valid feature selector that identifies a font feature
attribute you want to remove. If you pass the kATSUClearAll
constant in the iFeatureCount parameter, the value in this
parameter will be ignored.

iSelector An array of values of type ATSUFontFeatureSelector (page 191)
or one of the feature selector constants described in “Font
Feature Types and Selectors” (page 271). Each element in the
array must contain a valid feature selector that identifies a font
feature attribute you want to remove. If you pass the
kATSUClearAll constant in the iFeatureCount parameter, the
value in this parameter will be ignored.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUClearFontFeatures function removes those previously set font feature
values that are identified by the feature types and selectors in the iType and
iSelector arrays. It sets these values to their font-defined default values.
Functions for Manipulating Style Objects 41
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
To remove all the previously set font feature values from a style object, pass the
constant kATSUClearAll in the iFeatureCount parameter. You can remove unset
font feature values from a style object without a function error.

If you want to remove all previously set style run attribute, font feature, and
font variation values from a style object, call the ATSUClearStyle (page 21)
function.

VERSION NOTES

Available with ATSUI 1.0.

Manipulating Font Variations in a Style Object 2
ATSUI provides the following functions for manipulating font variations in a
style object:

■ ATSUSetVariations (page 42) sets font variation values for a style object.

■ ATSUGetFontVariationValue (page 44) obtains a font variation value from a
style object.

■ ATSUGetAllFontVariations (page 45) obtains all the font variation values from
a style object.

■ ATSUClearFontVariations (page 46) removes previously set font variation
values from a style object.

ATSUSetVariations 2
Sets font variation values for a style object.

OSStatus ATSUSetVariations (
ATSUStyle iStyle,
ItemCount iVariationCount,
ATSUFontVariationAxis iAxes[],
ATSUFontVariationValue iValue[]);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose font variations you want to set. You
cannot pass NULL for this parameter.
42 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iVariationCount
A value of type ItemCount that represents the number of font
variations being set. This should correspond to the number of
elements in the iAxes and iValue arrays.

iAxes An array of values of type ATSUFontVariationAxis (page 192).
Each element in the array must contain a valid variation axis
that corresponds to a variation value in the iValue parameter.
You cannot pass NULL for this parameter.

iValue An array of values of type ATSUFontVariationValue (page 193).
Each element in the array must contain a valid variation value
that corresponds to a variation axis in the iAxes parameter. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUSetVariations function sets multiple font variation axes and values
simultaneously. Unset font variations retain their default values. If the font does
not support the passed in variation axes, the variations will have no visual
effect.

SPECIAL CONSIDERATIONS

ATSUSetVariations may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetFontVariationValue (page 44)
Functions for Manipulating Style Objects 43
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetFontVariationValue 2
Obtains a font variation value from a style object.

OSStatus ATSUGetFontVariationValue (
ATSUStyle iStyle,
ATSUFontVariationAxis iATSUFontVariationAxis,
ATSUFontVariationValue *oATSUFontVariationValue);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose font variation axis value you want to
obtain. You cannot pass NULL for this parameter.

iATSUFontVariationAxis
A value of type ATSUFontVariationAxis (page 192). This value
represents the font variation axis whose value you want to
obtain.

oATSUFontVariationValue
A pointer to a value of type ATSUFontVariationValue (page 193).
On return, the value represents the value of the specified font
variation axis. Note that if the feature selector value has not
been set, ATSUGetFontFeature passes back the font-specified
default value and returns the result code kATSUNotSetErr. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetVariations (page 42)

ATSUGetAllFontVariations (page 45)
44 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetAllFontVariations 2
Obtains all the font variation values from a style object.

OSStatus ATSUGetAllFontVariations (
ATSUStyle iStyle,
ItemCount iVariationCount,
ATSUFontVariationAxis oVariationAxes[],
ATSUFontVariationValue oATSUFontVariationValues[],
ItemCount *oActualVariationCount);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose font variations you want to obtain. You
cannot pass NULL for this parameter.

iVariationCount
A value of type ItemCount. This value represents the number of
font variation axes and values that you want passed back in the
oVariationAxes and oATSUFontVariationValues arrays. You can
predetermine this value by first calling
ATSUGetAllFontVariations (iStyle, 0, NULL, NULL,
&oActualVariationCount).

oVariationAxes
An array of values of type ATSUFontVariationAxis (page 192). On
return, the array contains the font variation axes for the
specified font instance. You can predetermine how much
memory to allocate for this array by first calling
ATSUGetAllFontVariations (iStyle, 0, NULL, NULL,
&oActualVariationCount).

oATSUFontVariationValues
An array of values of type ATSUFontVariationValue (page 193).
On return, the array contains the values of the font variation
axes passed back in the oVariationAxes array. You can
predetermine how much memory to allocate for this array by
first calling ATSUGetAllFontVariations (iStyle, 0, NULL, NULL,
&oActualVariationCount).

oActualVariationCount
A pointer to a value of type ItemCount. On return, the value
represents the actual number of font variations set in the style
Functions for Manipulating Style Objects 45
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
object. This may be greater than the value passed in the
iVariationCount parameter. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

ATSUClearFontVariations 2
Removes previously set font variation from a style object.

OSStatus ATSUClearFontVariations (
ATSUStyle iStyle,
ItemCount iAxisCount,
ATSUFontVariationAxis iAxes[]);

iStyle A reference of type ATSUStyle (page 195). Pass a reference to a
valid style object whose previously set font variations you want
to remove. You cannot pass NULL for this parameter.

iAxisCount A value of type ItemCount that represents the number of
previously set font variation values you want to remove. To
remove all the previously set font variation values from a style
object, pass the constant kATSUClearAll.

iAxes An array of values of type ATSUFontVariationAxis (page 192).
Each element in the array must contain a valid font variation
axis that corresponds to a font variation attribute value you
want to remove. If you pass the kATSUClearAll constant in the
iAxisCount parameter, the value in this parameter will be
ignored.

function result A result code. See “Result Codes” (page 256).
46 Functions for Manipulating Style Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUClearFontVariations function removes those previously set font
variation values that are identified by the font variation axes in the iAxes array.
It sets these values to their font-defined default values.

To remove all previously set font variation values from a style object, pass the
constant kATSUClearAll in the iAxisCount parameter. You can remove unset
font variation values from a style object without a function error.

If you want to remove all previously set style run attribute, font feature, and
font variation values from a style object, call the ATSUClearStyle (page 21)
function.

VERSION NOTES

Available with ATSUI 1.0.

Functions for Obtaining Font Data 2

This section describes the ATSUI functions you can use to obtain data from a
font.

■ “Identifying and Finding ATSUI-Compatible Fonts” (page 47)

■ “Finding Font Names” (page 52)

■ “Converting Between Font IDs and Family Numbers” (page 59)

■ “Obtaining Font Tracking Data” (page 61)

■ “Obtaining Font Feature Data” (page 64)

■ “Otaining Font Variation Data” (page 70)

■ “Obtaining Font Instance Data” (page 74)

Identifying and Finding ATSUI-Compatible Fonts 2
ATSUI provides the following functions for identifying and finding the
installed fonts that are ATSUI-compatible:
Functions for Obtaining Font Data 47
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ ATSUFontCount (page 48) counts the number of installed fonts that are
ATSUI-compatible.

■ ATSUGetFontIDs (page 49) obtains the font IDs of all the installed fonts that are
ATSUI-compatible.

■ ATSUFindFontFromName (page 50) finds the first installed ATSUI-compatible
font with a specified font name, name code, language, platform, and script.

ATSUFontCount 2
Counts the number of installed fonts that are ATSUI-compatible.

OSStatus ATSUFontCount(
ItemCount *oFontCount)

oFontCount A pointer to a value of type ItemCount. On return, the value
represents the number of ATSUI-compatible fonts that are
installed on the user’s system. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUFontCount function counts only those installed fonts that are
compatible with ATSUI. Fonts that are incompatible with ATSUI include fonts
that cannot be used to represent Unicode, the last resort font, and fonts whose
names begin with a period or a percent sign. After calling ATSUFontCount, pass
the number of fonts into the iArraySize parameter of the ATSUGetFontIDs
(page 49) function to get the font IDs of all installed, ATSUI-compatible fonts.

Note that the number of available fonts may change while your application is
running. Althought fonts cannot be removed from the Fonts folder while an
application other than the Finder is running, they can be removed from other
locations, resulting in a decrease in the font number. It is also possible for one to
be added and another removed between two successive calls of ATSUFontCount,
leaving this number unchanged. However, ATSUGetFontIDs (page 49) would
return different results.

You should call ATSUFontCount and ATSUGetFontIDs whenever your application
is brought to the foreground to rebuild your font menu, if necessary.
48 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUGetFontIDs (page 49)

ATSUGetFontIDs 2
Obtains the font IDs of all the installed fonts that are ATSUI-compatible.

OSStatus ATSUGetFontIDs (
ATSUFontID oFontIDs[],
ItemCount iArraySize,
ItemCount *oFontCount);

oFontIDs An array of values of type ATSUFontID (page 192). On return, the
array contains the IDs of all ATSUI-compatible installed fonts.
You can predetermine how much memory to allocate for this
array by first calling ATSUGetFontIDs (&oFontIDs, 0,
&oFontCount). You cannot pass NULL for this parameter.

iArraySize A value of type ItemCount. This value represents the number of
IDs you want passed back in the oFontIDs parameter. You can
predetermine this value by first calling ATSUGetFontIDs
(&oFontIDs, 0, &oFontCount).

oFontCount A pointer to a value of type ItemCount. On return, the value
represents the actual number of installed fonts on the system.
This may be greater than the iArraySize parameter. You cannot
pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUGetFontIDs function obtains the font IDs of those installed fonts that
are compatible with ATSUI. Fonts that are incompatible with ATSUI include
fonts that cannot be used to represent Unicode, the last resort font, and fonts
whose names begin with a period or a percent sign.

You should call ATSUFontCount before calling ATSUGetFontIDs to obtain the
number of ATSUI-compatible fonts installed on the user’s system. You can pass
this value in the iArraySize parameter of ATSUGetFontIDs to get the font IDs of
all installed, ATSUI-compatible fonts.
Functions for Obtaining Font Data 49
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Note that the number of available fonts may change while your application is
running. Althought fonts cannot be removed from the Fonts folder while an
application other than the Finder is running, they can be removed from other
locations, resulting in a decrease in the font number. It is also possible for one to
be added and another removed between two successive calls of ATSUFontCount,
leaving this number unchanged. However, ATSUGetFontIDs would return
different results.

You should call ATSUFontCount and ATSUGetFontIDs whenever your application
is brought to the foreground to rebuild your font menu, if necessary.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUFontCount (page 48)

ATSUFindFontFromName 2
Finds the first installed font with the indicated name given the name’s code,
platform, script, and language.

OSStatus ATSUFindFontFromName (
Ptr iName,
ByteCount iNameLength,
FontNameCode iFontNameCode,
FontPlatformCode iFontNamePlatform,
FontScriptCode iFontNameScript,
FontLanguageCode iFontNameLanguage,
ATSUFontID *oFontID);

iName A pointer to the buffer that contains the name of the font whose
ID you want to obtain.

iNameLength A value of type ByteCount that represents the length (in bytes)
of the font name.
50 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iFontNamePlatform
A value of type FontPlatformCode. The value identifies the type
of platform that constitutes a match during a search for a font
using other specific criteria. See “Font Name Platform Code
Constants” (page 216) for a description of possible values. If any
type of platform will constitute a match, pass the constant
kFontNoPlatform, described in “No Font Name Platform,
Language, or Script Constants” (page 235).

iFontNameScript
A value of type FontScriptCode. The value identifies the type of
language that constitutes a match during a search for a font
using other specific criteria. See “Font Name Script Code
Constants” (page 217) for a description of possible values. If any
type of script will constitute a match, pass the constant
kFontNoScript, described in “No Font Name Platform,
Language, or Script Constants” (page 235).

iFontNameLanguage
A value of type FontLanguageCode. The value identifies the type
of language that constitutes a match during a search for a font
using other specific criteria. See “Font Name Language Code
Constants” (page 209) for a description of possible values. If any
type of language will constitute a match, pass the constant
kFontNoLanguage, described in “No Font Name Platform,
Language, or Script Constants” (page 235).

oFontID A pointer to a value of type ATSUFontID (page 192). On return,
the value represents the ID of the first installed font with the
specified name code, platform, script, and language. Note that if
no installed font corresponds to these parameters,
ATSUFindFontFromName passes back the constant
kATSUInvalidFontID in this parameter and returns the result code
kATSUInvalidFontErr.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUFindFontFromName function finds the first font name in the name table
with the specified name code, platform, language, and script. Because ATSUI
cannot guarantee the uniqueness of names among installed fonts,
Functions for Obtaining Font Data 51
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUFindFontFromName finds the first (but not necessarily the only) font with the
specified parameters.

ATSUFindFontFromName is provided for convenience only. You may wish to
replicate its functionality if you wish create a more sophisticated
name-matching algorithm or better guarantee the uniqueness of names among
installed fonts.

SPECIAL CONSIDERATIONS

ATSUFindFontFromName may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetIndFontName (page 54)

ATSUFindFontName (page 56)

Finding Font Names 2
ATSUI provides the following functions for finding font names:

■ ATSUCountFontNames (page 53) counts the number of font name strings
defined in a font name table.

■ ATSUGetIndFontName (page 54) obtains the indicated name from a font’s name
table.

■ ATSUFindFontName (page 56) finds the first font name in a font name table with
a specified name, platform, script, and language code.
52 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUCountFontNames 2
Counts the number of font name strings defined in a font name table.

OSStatus ATSUCountFontNames(
ATSUFontID iFontID,
ItemCount *oFontNameCount);

iFont A value of type ATSUFontID (page 192) that identifies the font
whose font names you want to count.

oFontNameCountA pointer to a value of type ItemCount. On return,
oFontNameCount points to the total number of entries in the font
name table. This includes the names of font features, variations,
tracking settings,and instances, as well as the types of font
names identified by the pre-defined name constants described in
“Font Name Code Constants” (page 213). You cannot pass a
NULL pointer for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to an installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

DISCUSSION

The ATSUCountFontNames function passes back the total number of entries in a
specified font’s name table. This includes repetitions of the same name in
different platforms, languages, and scripts, as well as other strings such as the
names of font features, variations, tracking settings,and instances. You can use
this count with the function ATSUGetIndFontName (page 54) to iterate through the
entries of a font name table.

VERSION NOTES

Available with ATSUI 1.0.
Functions for Obtaining Font Data 53
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetIndFontName 2
Obtains the name, platform, script, and language codes and the font name
string corresponding to an indexed font name.

OSStatus ATSUGetIndFontName (
ATSUFontID iFontID,
ItemCount iFontNameIndex,
ByteCount iMaximumNameLength,
Ptr oName,
ByteCount *oActualNameLength,
FontNameCode *oFontNameCode,
FontPlatformCode *oFontNamePlatform,
FontScriptCode *oFontNameScript,
FontLanguageCode *oFontNameLanguage);

iFontID A value of type ATSUFontID (page 192) that represents the font
whose font name you want to obtain.

iFontNameIndexA value of type ByteCount. Pass the 0-based index of the font
name you wish to find. The index should not exceed the value
passed back by the function ATSUCountFontNames (page 53).

iMaximumNameLength
The number of bytes you have allocated to contain the font
name in the buffer pointed to by oName. If you do not allocate
enough space, ATSUGetIndFontName will pass back a partial
string in the oName parameter. You can predetermine this value
by first calling ATSUGetIndFontName (iFontID, iFontNameIndex,
0, NULL, NULL, &oActualNameLength, NULL, NULL, NULL).

oName A pointer to the buffer that contains the font name string. On
return, the buffer contains the name of the specified font. If the
buffer you allocated is not large enough, ATSUGetIndFontName
passes back a partial string. You can predetermine how much
memory to allocate for this array by first calling
ATSUGetIndFontName (iFontID, iFontNameIndex, 0, NULL, NULL,
&oActualNameLength, NULL, NULL, NULL). You cannot pass NULL
for this parameter.
54 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oActualNameLength
A pointer to a value of type ByteCount. On return, the value
represents the actual length of the font name string. This may be
larger than the value passed in the iMaximumNameLength
parameter. You cannot pass NULL for this parameter.

oFontNameCode A value of type FontNameCode. On return, the value indicates the
type of font name. See “Font Name Code Constants” (page 213)
for a description of possible values.

oFontNamePlatform
A pointer to a value of type FontPlatformCode. On return, the
value represents the type of platform. See “Font Name Platform
Code Constants” (page 216) for a description of possible values.

oFontNameScript
A pointer to a value of type FontScriptCode. On return, the
value represents the type of script. See “Font Name Script Code
Constants” (page 217) for a description of possible values.

oFontNameLanguage
A pointer to a value of type FontLanguageCode. On return, the
value represents the type of language. See “Font Name
Language Code Constants” (page 209) for a description of
possible values.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

DISCUSSION

The ATSUGetIndFontName function passes back the font name and information
about the name (that is, its type, platform, script, and language) given an index
in the list of font names for a particular font.

You can pass the count obtained by the function ATSUCountFontNames (page 53)
into the iFontNameIndex parameter to iterate through the entries of a font name
table.
Functions for Obtaining Font Data 55
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

ATSUGetIndFontName may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUFindFontFromName (page 50)

ATSUFindFontName (page 56)

ATSUFindFontName 2
Finds the first font name in a font name table with a specified name, platform,
script, and language code.

OSStatus ATSUFindFontName (
ATSUFontID iFontID,
FontNameCode iFontNameCode,
FontPlatformCode iFontNamePlatform,
FontScriptCode iFontNameScript,
FontLanguageCode iFontNameLanguage,
ByteCount iMaximumNameLength,
Ptr oName,
ByteCount *oActualNameLength,
ItemCount *oFontNameIndex);

iFontID A value of type ATSUFontID (page 192) that identifies the font
whose font name table you want to search.

iFontNameCode A value of type FontNameCode. Pass the type of font name you
want to find. You must past a valid value in this parameter. See
“Font Name Code Constants” (page 213) for a description of
possible values.
56 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iFontNamePlatform
A value of type FontPlatformCode. Pass the encoding of the font
name you want to find. See “Font Name Platform Code
Constants” (page 216) for a description of possible values. You
can pass the constant kFontNoPlatform, described in “No Font
Name Platform, Language, or Script Constants” (page 235), to
indicate that you don’t care about the encoding of the font name
string. See the discussion for a description of this case.

iFontNameScript
A value of type FontScriptCode. Pass the platform-specific ID of
the font name you want to find. See “Font Name Script Code
Constants” (page 217) for a description of possible values. You
can pass the constant kFontNoScript, described in “No Font
Name Platform, Language, or Script Constants” (page 235), to
indicate that you don’t care about the platform-specific ID of the
font name string. See the discussion for a description of this
case.

iFontNameLanguage
A value of type FontLanguageCode. Pass the language of the font
name you want to find. See “Font Name Language Code
Constants” (page 209) for a description of possible values. You
can pass the constant kFontNoLanguage, described in “No Font
Name Platform, Language, or Script Constants” (page 235), to
indicate that you don’t care about the language of the font name
string. See the discussion for a description of this case.

iMaximumNameLength
A value of type ByteCount. Pass the number of bytes that you
expect for the font name string or 0 if you don’t know the
length. For more information, see the discussion. If the value is
less than the actual string length, ATSUFindFontName will pass
back a truncated string in the oName parameter and the actual
length in the oActualNameLength parameter. In this case, you
should call ATSUFindFontName again with the actual length
passed back from the previous call in this parameter.

oName A pointer to a buffer containing the font name string. Before
calling ATSUFindFontName, pass a pointer to memory you have
allocated for the buffer or NULL if you do not know the size of
the font name string. If you have allocated enough memory for
the buffer, on return, oName points to the font name string. If the
Functions for Obtaining Font Data 57
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
buffer is not large enough, ATSUFindFontName passes back a
partial string. If you passed NULL, on return, ATSUFindFontName
passes back the actual string length in the oActualNameLength
parameter.

oActualNameLength
A pointer to a value of type ByteCount. On return, the value
represents the actual length of the font name string. You should
check this value to make sure that you allocated enough
memory for the buffer. For more information, see the discussion.

oFontNameIndex
A pointer to a value of type ItemCount. On return, the value
represents the index of the font name in the font’s list of font
names.

function result A result code. The result code kATSUNotSetErr indicates that the
font has no name in its name table matching the given
parameters. The result code kATSUInvalidFontErr indicates that
the specified font does not correspond to any installed font. For
a list of other ATSUI-specific result codes, see “Result Codes”
(page 256).

DISCUSSION

The ATSUFindFontName function searches the specified font’s name table for a
font name with the specified name, platform, script, and language codes. If it
finds a font name, ATSUFindFontName passes back font name in the oName
parameter and its index in the font’s list of font names in the oFontNameIndex
parameter.

You can predetermine this value by first calling ATSUFindFontName (iFontID,
iFontNameCode, iFontNamePlatform, iFontNameScript, iFontNameLanguage, 0,
NULL, &oActualNameLength, NULL).

If it is larger than the value you passed in the iMaximumNameLength parameter,
you should call ATSUFindFontName again and use this value in
iMaximumNameLength and to allocate memory for the buffer in oName.

VERSION NOTES

Available with ATSUI 1.0.
58 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUFindFontFromName (page 50)

ATSUGetIndFontName (page 54)

Converting Between Font IDs and Family Numbers 2
ATSUI provides the following functions for converting between font IDs and
family numbers:

■ ATSUFONDtoFontID (page 59) obtains the ID of a font with a specified font
family number (and style, if it exists).

■ ATSUFontIDtoFOND (page 60) obtains the font family number (and style, if it
exists) of a font with a specified ID.

ATSUFONDtoFontID 2
Obtains the ID of a font with a specified font family number (and style, if it
exists).

OSStatus ATSUFONDtoFontID (
short iFONDNumber,
Style iFONDStyle,
ATSUFontID *oFontID);

iFONDNumber A value of type short. The value represents the font family
number of the font whose ID you want to obtain.

iFONDStyle A value of type Style. The unsigned char represents the font
family style, if it exists, of the font whose ID you want to obtain.
Font family styles exist in fonts that split a font family into
several font family numbers.

oFontID A pointer to a value of type ATSUFontID (page 192). On return,
the value represents the ID of the font with the specified font
family number and style. Note that if there are no installed fonts
with the specified parameters, ATSUFONDtoFontID passes back the
constant kATSUInvalidFontID and returns the result code
kATSUInvalidFontErr. If a font exists with the specified font
family number and style, but that font isn’t compatible with
ATSUI, ATSUFONDtoFontID passes back the constant
Functions for Obtaining Font Data 59
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUInvalidFontID and returns the result code
kATSUNoCorrespondingFontErr. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUFONDtoFontID function obtains the ID of a font with a specified font
family number if it is compatible with ATSUI. Fonts that are incompatible with
ATSUI do not have font IDs. Incompatible fonts include fonts that cannot be
used to represent Unicode, the last resort font, and fonts whose names begin
with a period or a percent sign.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUFontIDtoFOND (page 60)

ATSUFontIDtoFOND 2
Obtains the font family number (and style, if it exists) of a font with a specified
ID.

OSStatus ATSUFontIDtoFOND (
ATSUFontID iFontID,
short *oFONDNumber,
Style *oFONDStyle);

iFontID A value of type ATSUFontID (page 192). The value represents the
ID of the font whose font family number you want to obtain.

oFONDNumber A pointer to a value that represents the font family number of
the specified font. Note that if there are no installed fonts with
the specified ID, ATSUFontIDtoFOND passes back the constant
kATSUInvalidFontID and returns the result code
kATSUInvalidFontErr. If the specified ID correspond to an
60 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
existing font, but that font isn’t compatible with ATSUI,
ATSUFONDtoFontID passes back the constant kATSUInvalidFontID
and returns the result code kATSUNoCorrespondingFontErr.You
cannot pass NULL for this parameter.

oFONDStyle A pointer to a value of type Style. On return, the unsigned char
represents the font family style, if it exists, of the specified font.
Font family styles exist in fonts that split a font family into
several font family numbers. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUFONDtoFontID (page 59)

Obtaining Font Tracking Data 2
ATSUI provides the following functions for obtaining font tracking data:

■ ATSUCountFontTracking (page 61) counts the number of font tracking settings
in a font.

■ ATSUGetIndFontTracking (page 62) obtains an indexed font tracking value and
its name code.

ATSUCountFontTracking 2
Counts the number of font tracking settings in a font.

OSStatus ATSUCountFontTracking (
ATSUFontID iFontID,
ATSUVerticalCharacterType iCharacterOrientation,
ItemCount * oTrackingCount);
Functions for Obtaining Font Data 61
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iFontID A value of type ATSUFontID (page 192) that represents the ID of
the font whose tracking settings you want to count.

iCharacterOrientation
A value of type ATSUVerticalCharacterType. This value
represents the glyph orientation for the font tracking values that
you want to count. See “Glyph Orientation Constants”
(page 223) for a description of possible values. It is necessary to
specify this value because font tracking settings differ
depending upon glyph orientation.

oTrackingCountA pointer to a value of type ItemCount. On return, the value
represents the number of font tracking settings in the font. You
cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUGetIndFontTracking (page 62)

ATSUGetIndFontTracking 2
Obtains an indexed font tracking value and its name code.

OSStatus ATSUGetIndFontTracking (
ATSUFontID iFontID,
ATSUVerticalCharacterType iCharacterOrientation,
ItemCount iTrackIndex,
Fixed * oFontTrackingValue,
FontNameCode * oNameCode);
62 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iFontID A value of type ATSUFontID (page 192) that represents the ID of
the font whose font tracking value and name code you want to
obtain.

iCharacterOrientation
A value of type ATSUVerticalCharacterType. This value
represents the glyph orientation for the font tracking setting and
name code you want to obtain. See “Glyph Orientation
Constants” (page 223) for a description of possible values. It is
necessary to specify this value because there are different font
tracking values for different glyph orientations.

iTrackIndex The index of the font tracking value whose name code you want
to obtain. To predetermine the maximum valid index, call
ATSUCountFontTracking (iFontID, iCharacterOrientation,
&oTrackingCount) and subtract one from the value passed back
in the oTrackingCount parameter.

oFontTrackingValue
A pointer to a Fixed value. On return, oFontTrackingValue
points to the font tracking value corresponding to the specified
index and character orientation.

oNameCode A pointer to a value of type FontNameCode. On return, oNameCode
points to the name code of the font tracking value. See “Font
Name Code Constants” (page 213) for a description of possible
values. You can pass this value to the ATSUFindFontName
(page 56) function to find the font tracking name identified by
this name code. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

DISCUSSION

The ATSUGetIndFontTracking function passes back the name code and value of
the indexed font tracking setting passed in the iTrackIndex parameter, given the
specified character orientation. You can pass the name code value into the
iFontNameCode parameter of the ATSUFindFontName (page 56) function to find the
font tracking name identified by this name code.
Functions for Obtaining Font Data 63
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUCountFontTracking (page 61)

Obtaining Font Feature Data 2
ATSUI provides the following functions for obtaining font feature data:

■ ATSUCountFontFeatureTypes (page 64) counts the number of available font
feature in a font.

■ ATSUGetFontFeatureTypes (page 65) obtains all the feature types from a font
feature.

■ ATSUCountFontFeatureSelectors (page 66) counts the number of feature
selectors in a specified font feature and feature type.

■ ATSUGetFontFeatureSelectors (page 67) obtains all the font feature selectors
from a font feature.

■ ATSUGetFontFeatureNameCode (page 69) obtains a feature selector or feature
type name code.

ATSUCountFontFeatureTypes 2
Counts the number of available font feature in a font.

OSStatus ATSUCountFontFeatureTypes (
ATSUFontID iFont,
ItemCount *oTypeCount);

iFontID A value of type ATSUFontID (page 192) that represents the ID of
the font whose font features you want to count.

oTypeCount A pointer to a value of type ItemCount. On return, the value
represents the number of font features available in the font. You
cannot pass NULL for this parameter.
64 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetFontFeatureTypes (page 65)

ATSUGetFontFeatureTypes 2
Obtains all the feature types from a font feature.

OSStatus ATSUGetFontFeatureTypes (
ATSUFontID iFont,
ItemCount iMaximumTypes,
ATSUFontFeatureType oTypes[],
ItemCount *oActualTypeCount);

iFont A value of type ATSUFontID (page 192). This value represents the
ID of the font whose feature types you want to obtain.

iMaximumTypes A value of type ItemCount. This value represents the number of
feature types you want passed back in the oTypes array. You can
predetermine this value by first calling ATSUGetFontFeatureTypes
(iFont, 0, NULL, &oActualTypeCount).

oTypes An array of values of type ATSUFontFeatureType (page 191). On
return, the array contains the font feature types that are in the
font. You can predetermine how much memory to allocate for
this array by first calling ATSUGetFontFeatureTypes (iFont, 0,
NULL, &oActualTypeCount). You cannot pass NULL for this
parameter.
Functions for Obtaining Font Data 65
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oActualTypeCount
A pointer to a value of type ItemCount. On return, the value
represents the actual number of font feature types set in the font.
This may be greater than the value passed in the iMaximumTypes
parameter. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUCountFontFeatureTypes (page 64)

ATSUCountFontFeatureSelectors 2
Counts the number of feature selectors in a specified font feature and feature
type.

OSStatus ATSUCountFontFeatureSelectors (
ATSUFontID iFont,
ATSUFontFeatureType iType,
ItemCount *oSelectorCount);

iFont A value of type ATSUFontID (page 192). This value represents the
ID of the font whose defined feature selectors you want to
count.

iType A value of type ATSUFontFeatureType (page 191). This value
represents a valid feature type whose feature selectors you want
to count.

oSelectorCountA pointer to a value of type ItemCount. On return, the value
represents the number of feature selectors defined in the
specified feature type. You cannot pass NULL for this parameter.
66 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetFontFeatureSelectors (page 67)

ATSUGetFontFeatureSelectors 2
Obtains all the font feature selectors from a font feature.

OSStatus ATSUGetFontFeatureSelectors (
ATSUFontID iFont,
ATSUFontFeatureType iType,
ItemCount iMaximumSelectors,
ATSUFontFeatureSelector oSelectors[],
Boolean oSelectorIsOnByDefault[],
ItemCount *oActualSelectorCount,
Boolean *oIsMutuallyExclusive);

iFont A value of type ATSUFontID (page 192) that represents the ID of
the font whose feature type you want to determine the defined
feature selectors for.

iType A value of type ATSUFontFeatureType (page 191) that represents a
valid font feature type whose defined font selectors you want to
obtain.

iMaximumSelectors
A value of type ItemCount. This value represents the number of
font feature selectors you want passed back in the oSelectors
array. You can predetermine this value by first calling
ATSUGetFontFeatureSelectors (iFont, iType, 0, NULL, NULL,
&oActualSelectorCount).
Functions for Obtaining Font Data 67
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oSelectors An array of values of type ATSUFontFeatureSelector (page 191).
On return, the array contains the font feature selectors defined
for the specified font feature type. You can predetermine how
much memory to allocate for this array by first calling
ATSUGetFontFeatureSelectors (iFont, iType, 0, NULL, NULL,
&oActualSelectorCount). You cannot pass NULL for this
parameter.

oSelectorIsOnByDefault
An array of values of type Boolean. On return, each element in
the array contains a value that indicates whether the
corresponding font feature selector is on. If true, the font feature
selector is on by default. You can predetermine how much
memory to allocate for this array by first calling
ATSUGetFontFeatureSelectors (iFont, iType, 0, NULL, NULL,
&oActualSelectorCount). You cannot pass NULL for this
parameter.

oActualSelectorCount
A pointer to a value of type ItemCount. On return, the value
represents the actual number of font feature selectors defined for
the font. This may be greater than the value passed in the
iMaximumSelectors parameter. You cannot pass NULL for this
parameter.

oIsMutuallyExclusive
A pointer to a value of type Boolean. On return, the value
indicates whether the font feature selectors can be on
simultaneously in the feature type. If true, only one selector can
be used at a time. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

VERSION NOTES

Available with ATSUI 1.0.
68 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUCountFontFeatureSelectors (page 66)

ATSUGetFontFeatureNameCode 2
Obtains a feature selector or feature type name code.

OSStatus ATSUGetFontFeatureNameCode (
ATSUFontID iFont,
ATSUFontFeatureType iType,
ATSUFontFeatureSelector iSelector,
FontNameCode *oNameCode);

iFont A value of type ATSUFontID (page 192). This value represents the
ID of the font whose feature type or selector name code you
want to obtain.

iType A value of type ATSUFontFeatureType (page 191). This value
represents the feature type whose name code you want to
obtain.

iSelector A value of type ATSUFontFeatureSelector (page 191). Pass the
feature selector whose name code you want to obtain.

oNameCode A pointer to a value of type FontNameCode. On return, the value
represents the name code of the feature type or selector. See
“Font Name Code Constants” (page 213) for a description of
possible values. If you pass the constant kATSUNoSelector in the
iSelector parameter, the value passed back represents the
feature type name code. You can pass this value to the
ATSUFindFontName (page 56) function to find the font feature type
or selector name identified by this name code. You cannot pass
NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. The result
code kATSUNotSetErr indicates that the font has no name in its
name table for the indicated font feature. For a list of other
ATSUI-specific result codes, see “Result Codes” (page 256).
Functions for Obtaining Font Data 69
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUGetFontFeatureNameCode function passes back the name code of the
feature selector unless you pass the kATSUNoSelector constant in the iSelector
parameter. In this case, it passes back the name code of the feature type.

You can pass this value in the iFontNameCode parameter of the ATSUFindFontName
(page 56) function to find the font feature type or selector name identified by
this name code.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetFontFeatureSelectors (page 67)

Otaining Font Variation Data 2
ATSUI provides the following functions for obtaining font variation data:

■ ATSUCountFontVariations (page 70) counts the number of font variations for a
specified font.

■ ATSUGetIndFontVariation (page 71) obtains the axis and values from a font
variation.

■ ATSUGetFontVariationNameCode (page 73) obtains a font variation name code.

ATSUCountFontVariations 2
Counts the number of font variations defined for a specified font.

OSStatus ATSUCountFontVariations (
ATSUFontID iFont,
ItemCount *oVariationCount);

iFont A value of type ATSUFontID (page 192) that represents the ID of
the font whose font variations you want to count.
70 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oVariationCount
A pointer to a value of type ItemCount. On return, the value
represents the number of font variations defined for the
specified font. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetIndFontVariation (page 71)

ATSUGetIndFontVariation 2
Obtains the axis and values from a font variation.

OSStatus ATSUGetIndFontVariation (
ATSUFontID iFont,
ItemCount iVariationIndex,
ATSUFontVariationAxis *oATSUFontVariationAxis,
ATSUFontVariationValue *oMinimumValue,
ATSUFontVariationValue *oMaximumValue,
ATSUFontVariationValue *oDefaultValue);

iFont A value of type ATSUFontID (page 192) that represents the ID of
the font whose specific font variation values you want to obtain.

iVariationIndex
A value of type ItemCount. This value represents the index of the
font variation whose axis and values you want to obtain. To
predetermine the maximum valid value for this index, call
ATSUCountFontVariations (iFont, &oVariationCount) and
subtract one from the value passed back in the oVariationCount
parameter.
Functions for Obtaining Font Data 71
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oATSUFontVariationAxis
A pointer to a value of type ATSUFontVariationAxis (page 192).
On return, the value represents the variation axis for the
specified font variation. You cannot pass NULL for this parameter.

oMinimumValue
A pointer to a value of type ATSUFontVariationValue (page 193).
On return, the value represents the minimum value for the
specified font variation. You cannot pass NULL for this parameter.

oMaximumValue
A pointer to a value of type ATSUFontVariationValue (page 193).
On return, the value represents the maximum value for the
specified font variation. You cannot pass NULL for this parameter.

oDefaultValue A pointer to a value of type ATSUFontVariationValue (page 193).
On return, the value represents the default value for the
specified font variation. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

DISCUSSION

Your application may use the ATSUGetIndFontVariation function to determine
the font variation axis and the minimum, maximum, and default values for a
specified font variation.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUCountFontVariations (page 70)
72 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetFontVariationNameCode 2
Obtains a font variation name code.

OSStatus ATSUGetFontVariationNameCode (
ATSUFontID iFont,
ATSUFontVariationAxis iAxis,
FontNameCode *oNameCode);

iFont A value of type ATSUFontID (page 192) that represents the ID of
the font whose variation name code you want to obtain.

iAxis A value of type ATSUFontVariationAxis (page 192). This value
represents the font variation whose name code you want to
obtain.

oNameCode A pointer to a value of type FontNameCode. On return, the value
represents the name code of the font variation. See “Font Name
Code Constants” (page 213) for a description of possible values.
You can pass this value to the ATSUFindFontName (page 56)
function to find the font variation name identified by this name
code. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. The result
code kATSUNotSetErr indicates that the font has no name in its
name table for the indicated font variation. For a list of other
ATSUI-specific result codes, see “Result Codes” (page 256).

DISCUSSION

The ATSUGetIndFontVariation function passes back the name code of the
specified font variation. You can pass this value in the iFontNameCode parameter
of the ATSUFindFontName (page 56) function to find the font variation name
identified by this name code.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetIndFontVariation (page 71)
Functions for Obtaining Font Data 73
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Obtaining Font Instance Data 2
ATSUI provides the following functions for obtaining font instance data:

■ ATSUCountFontInstances (page 74) counts the number of font instances
available in a font.

■ ATSUGetFontInstance (page 75) obtains the indicated name from a font’s name
table.

■ ATSUGetFontInstanceNameCode (page 77) obtains a font instance name code.

ATSUCountFontInstances 2
Counts the number of font instances available in a font.

OSStatus ATSUCountFontInstances (
ATSUFontID iFont,
ItemCount *oInstances);

iFont A value of type ATSUFontID (page 192) that represents the ID of
the font whose font instances you want to count.

oInstances A pointer to a value of type ItemCount. You cannot pass a NULL
pointer for this parameter. On return, the value represents the
number of font instances in the font.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetFontInstance (page 75)
74 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetFontInstance 2
Obtains the font name for a font instance you specify by index.

OSStatus ATSUGetFontInstance (
ATSUFontID iFont,
ItemCount iFontInstanceIndex,
ItemCount iMaximumVariations,
ATSUFontVariationAxis oAxes[],
ATSUFontVariationValue oValues[],
ItemCount *oActualVariationCount);

iFont A value of type ATSUFontID (page 192) that identifies the font
whose instance name you want to obtain.

iFontInstanceIndex
A value of type ItemCount. Pass the 0-based index of the font
instance whose name you want to find. The number of font
instances is returned by the ATSUCountFontInstances (page 74)
function.

iMaximumVariations
A value of type ItemCount. Pass the number of axes and values
you want passed back in the oAxes and oValues arrays. To
predetermine this value, see the discussion below.

oAxes An array of values of type ATSUFontVariationAxis (page 192). If
you pass NULL, on return, ATSUGetFontInstance passes back the
size of this array in the oActualVariationCount parameter. If you
instead pass a pointer to memory you have allocated for the
array, on return, this array contains the font variation axes of the
indexed font instance. You cannot pass NULL for this parameter.

oValues An array of values of type ATSUFontVariationValue (page 193). If
you pass NULL, on return, ATSUGetFontInstance passes back the
size of this array in the oActualVariationCount parameter. If you
instead pass a pointer to memory you have allocated for the
array, on return, this array contains the values of the axes in the
oAxes parameter. You cannot pass NULL for this parameter.

oActualVariationCount
A pointer to a value of type ItemCount. On return, this value
represents the actual number of font variations defined for the
Functions for Obtaining Font Data 75
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
font. This may be greater than the value passed in the
iMaximumVariations parameter. You cannot pass NULL for this
parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

DISCUSSION

The ATSUGetFontInstance function passes back the font name for the font
instance specified by the value of the iFontInstanceIndex parameter. Then
ATSUGetFontInstance copies the font variation settings for that instance into the
ATSUFontVariationAxis and ATSUFontVariationValue parameters, if they are not
set to NULL.

Each instance is always identified by a complete set of font variations. A font
instance contains a value for each font variation available, even if that value is
only the default font variation setting.

Your application must allocate enough memory in the ATSUFontVariationAxis
and ATSUFontVariationValue parameters to store as many font variations as are
available. You can predetermine this number by calling the
ATSUCountFontInstances (page 74) function.

The best way to use ATSUGetFontInstance is to call it twice:

1. Pass the font ID and index in the iFont and iFontInstanceIndex parameters
and NULL for the iMaximumVariations, ATSUFontVariationAxis, and
ATSUFontVariationValue parameters. ATSUGetFontInstance returns the actual
number of font variations in the oActualVariationCount parameter.

2. Allocate enough space for arrays of the returned size, then call the function
again, passing a pointer in the ATSUFontVariationAxis and
ATSUFontVariationValue parameters. On return, the arrays contain the font
variations axes and values.

VERSION NOTES

Available with ATSUI 1.0.
76 Functions for Obtaining Font Data

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUCountFontInstances (page 74)

ATSUGetFontInstanceNameCode 2
Obtains a font instance name code.

OSStatus ATSUGetFontInstanceNameCode (
ATSUFontID iFont,
ItemCount iInstanceIndex,
FontNameCode *oNameCode);

iFont A value of type ATSUFontID (page 192) that represents the ID of
the font whose instance name code you wish to obtain.

iInstanceIndex
The index of the font instance value whose name code you want
to obtain. To predetermine the maximum valid value for this
index, call ATSUCountFontInstance (iFont, &oInstances) and
subtract one from the value passed back in the oInstances
parameter.

oNameCode A pointer to a value of type FontNameCode. On return, oNameCode
points to the name code of the font instance setting. See “Font
Name Code Constants” (page 213) for a description of possible
values. You can pass this value to the ATSUFindFontName
(page 56) function to find the font instance setting name
identified by this name code. You cannot pass NULL for this
parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. The result
code kATSUNotSetErr indicates that the font has no name in its
name table for the indicated font variation. For a list of other
ATSUI-specific result codes, see “Result Codes” (page 256).

DISCUSSION

The ATSUGetFontInstanceNameCode function passes back the name code of the
indexed font instance setting passed in the iInstanceIndex parameter. You can
pass the name code value into the iFontNameCode parameter of the
Functions for Obtaining Font Data 77
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUFindFontName (page 56) function to find the font variation name identified
by this name code.

VERSION NOTES

Available with ATSUI 1.0.

Functions for Manipulating Text Layout Objects 2

This section describes the you can use to manipulate a text layout object and its
contents:

■ “Creating and Disposing of Text Layout Objects” (page 78)

■ “Manipulating Text Layout Attributes” (page 90)

■ “Manipulating Line Attributes” (page 98)

■ “Determining and Updating Text Memory Location” (page 106)

■ “Updating and Determining Style Runs” (page 114)

■ “Providing Font Substitutions” (page 118)

Creating and Disposing of Text Layout Objects 2
ATSUI provides the following functions for creating and disposing of text
layout objects:

■ ATSUCreateTextLayout (page 79) creates a text layout object.

■ ATSUCreateTextLayoutWithTextPtr (page 80) creates a text layout object
containing a pointer to a Unicode text buffer.

■ ATSUCreateTextLayoutWithTextHandle (page 83) creates a text layout object
containing a handle to a Unicode text buffer.

■ ATSUCreateAndCopyTextLayout (page 85) creates a copy of a text layout object.

■ ATSUSetTextLayoutRefCon (page 87) sets application-specific text layout data.

■ ATSUGetTextLayoutRefCon (page 88) obtains application-specific text layout
data.
78 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ ATSUClearLayoutCache (page 88) clears the entire layout cache, or if specified,
a single line’s layout cache.

■ ATSUDisposeTextLayout (page 90) disposes of the memory associated with a
text layout object.

ATSUCreateTextLayout 2
Creates a text layout object.

OSStatus ATSUCreateTextLayout (ATSUTextLayout *oTextlLayout);

oTextLayout A pointer to a reference of type ATSUTextLayout (page 195). On
return, the reference points to the newly created text layout
object.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUCreateTextLayout function creates a text layout object contains the
default text layout attribute values listed in Table 2-2 (page 251). To set the text
layout attributes to non-default values, call the function ATSUSetLayoutControls
(page 92).

The newly-created text layout object is uninitialized (that is, it does not contain
a pointer or handle to a text buffer or style runs). Many ATSUI functions require
that you initialize a text layout object before passing it to these functions. To
determine whether or not a particular function requires an initialized text
layout object, you should check the function’s iTextLayout parameter
description.

To initialize a text layout object, you should call the following functions:

■ ATSUSetRunStyle (page 114) to assign style runs

■ ATSUSetTextPointerLocation (page 107) or ATSUSetTextHandleLocation
(page 109) to set a pointer or handle to a Unicode text buffer

■ ATSUSetSoftLineBreak (page 159) or ATSUBreakLine (page 156) to set soft line
breaks
Functions for Manipulating Text Layout Objects 79
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
You can also create an initialized text layout object by instead calling the
function ATSUCreateTextLayoutWithTextHandle (page 83) or
ATSUCreateTextLayoutWithTextPtr (page 80).

SPECIAL CONSIDERATIONS

ATSUCreateTextLayout allocates memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.

ATSUCreateTextLayoutWithTextPtr 2
Creates a text layout object containing a pointer to a Unicode text buffer.

OSStatus ATSUCreateTextLayoutWithTextPtr (
ConstUniCharArrayPtr iText,
UniCharArrayOffset iTextOffset,
UniCharCount iTextLength,
UniCharCount iTotalTextLength,
ItemCount iNumberOfRuns,
UniCharCount iRunLengths[],
ATSUStyle iStyles[],
ATSUTextLayout *oTextLayout);

iText A pointer of type ConstUniCharArrayPtr (page 197). Pass a
pointer to the Unicode text buffer that you want to assign to the
text layout object. You must supply this buffer with a block of
Unicode text. You are responsible for making sure there is
always text in this buffer as long as the text layout object exists.
You are also responsible for allocating the memory associated
with this pointer.

iTextOffset A value of type UniCharArrayOffset (page 198). Pass the edge
offset of the beginning of the range of text that you want to
perform layout operations on. You can pass the constant
80 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 256), if you want the range of text to start at the beginning
of the text buffer.

iTextLength A value of type UniCharCount (page 198). Pass the length of the
range of text you want to perform layout operations on. You can
pass the constant kATSUTexttoEnd, described in “Text Length
Constant” (page 255), if you want the range of text to extend to
the end of the text buffer. Note that if the range of text is outside
the text buffer, ATSUCreateTextLayoutWithTextPtr returns the
result code kATSUInvalidTextRangeErr.

iTextTotalLength
A value of type UniCharCount (page 198). Pass the the length of
the text buffer. This value should be greater than the range of
text you passed in the iTextOffset and iTextLength parameters,
unless you want to perform layout operations on the entire text
buffer.

iNumberOfRuns A value of type ItemCount. Pass the number of style runs you
want to assign to the text layout object.

iRunLengths An array of values of type UniCharCount (page 198). Pass an
array of style run lengths. Each element in the array must
correspond to a style object in the iStyles array. You can pass
the constant kATSUToTextEnd, described in “Text Length
Constant” (page 255), for the last style run length if you wish it
to extend to end of the text buffer. If the sum of the style run
lengths is less than the value you passed in the iTextLength
parameter, the remaining characters in the range of text are
automatically assigned to the last style run.

iStyles An array of references of type ATSUStyle (page 195). Pass an
array of style objects. Each element in the array must reference a
valid style object and correspond to a style run length in the
iRunLengths array.

oTextLayout A pointer to a reference of type ATSUTextLayout (page 195). On
return, oTextLayout points to the newly-created text layout
object. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).
Functions for Manipulating Text Layout Objects 81
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUCreateTextLayoutWithTextPtr function creates a text layout object
containing a pointer to a Unicode text buffer and the default text layout
attribute values listed in Table 2-2 (page 251). To set the text layout attributes to
non-default values, call the function ATSUSetLayoutControls (page 92). To set the
attributes of a single line in the text layout object, call the function
ATSUSetLineControls (page 100).

The newly-created text layout object is initialized (that is, it contains a pointer to
a Unicode text buffer and at least one style run). You can also create an
initialized text layout object by calling the function
ATSUCreateTextLayoutWithTextHandle (page 83).

You must specify the range of text you want to perform layout operations on in
the iTextOffset and iTextLength parameters. To include the entire text buffer,
pass the constants kATSUFromTextBeginning and kATSUTexttoEnd, respectively.

If you pass in a range of text that is a subset of the text buffer, the text layout
object will scan the remaining text to get the full context for such things as
bidirectional processing.

You must supply the text buffer with a block of Unicode text. You are also
responsible for updating the memory location of the text buffer whenever the
user inserts, deletes, or moves text. To obtain the current memory location of the
text buffer, call the function ATSUSetTextPointerLocation (page 107).

If you want to create a copy (essentially, a clone) of this text layout object, call
the function ATSUCreateAndCopyTextLayout (page 85). You can copy the attributes
of this text layout object into another text layout object by calling the function
ATSUCopyLayoutControls (page 91). You can also copy the attributes of a line of
this text layout object into another line in the same or different text layout object
by calling the function ATSUCopyLineControls (page 98).

SPECIAL CONSIDERATIONS

ATSUCreateTextLayoutWithTextPtr allocates memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.
82 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUCreateTextLayoutWithTextHandle 2
Creates a text layout object containing a handle to a Unicode text buffer.

OSStatus ATSUCreateTextLayoutWithTextHandle (
UniCharArrayHandle iText,
UniCharArrayOffset iTextOffset,
UniCharCount iTextLength,
UniCharCount iTextTotalLength,
ItemCount iNumberOfRuns,
UniCharCount iRunLengths[],
ATSUStyle iStyles[],
ATSUTextLayout *oTextLayout);

iText A handle of type UniCharArrayHandle (page 197). Pass handle
that refers to the Unicode text buffer that you want to assign to
the text layout object. You must supply this buffer with a block
of Unicode text. You are responsible for making sure there is
always text in this buffer as long as the text layout object exists.
You are also responsible for allocating the memory associated
with this handle. ATSUI functions will dereference the handle
before accessing the text, but will leave the handle’s state
unchanged.

iTextOffset A value of type UniCharArrayOffset (page 198). Pass the edge
offset of the beginning of the range of text that you want to
perform layout operations on. You can pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 256), if you want the range of text to start at the beginning
of the text buffer.

iTextLength A value of type UniCharCount (page 198). Pass the length of the
range of text you want to perform layout operations on. You can
pass the constant kATSUTexttoEnd, described in “Text Length
Constant” (page 255), if you want the range of text to extend to
the end of the text buffer. Note that if the range of text is outside
the text buffer, ATSUCreateTextLayoutWithTextPtr returns the
result code kATSUInvalidTextRangeErr.

iTextTotalLength
A value of type UniCharCount (page 198). Pass the the length of
the text buffer. This value should be greater than the range of
Functions for Manipulating Text Layout Objects 83
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
text you passed in the iTextOffset and iTextLength parameters,
unless you want to perform layout operations on the entire text
buffer.

iNumberOfRuns A value of type ItemCount. Pass the number of style runs you
want to assign to the text layout object.

iRunLengths An array of values of type UniCharCount (page 198). Pass an
array of style run lengths. Each element in the array must
correspond to a style object in the iStyles array. You can pass
the constant kATSUToTextEnd, described in “Text Length
Constant” (page 255), for the last style run length if you wish it
to extend to end of the text buffer. If the sum of the style run
lengths is less than the value you passed in the iTextLength
parameter, the remaining characters in the range of text are
automatically assigned to the last style run.

iStyles An array of references of type ATSUStyle (page 195). Pass an
array of style objects. Each element in the array must reference a
valid style object and correspond to a style run length in the
iRunLengths array.

oTextLayout A pointer to a reference of type ATSUTextLayout (page 195). On
return, oTextLayout points to the newly-created text layout
object. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUCreateTextLayoutWithTextHandle function creates a text layout object
containing a handle to a Unicode text buffer and the default text layout
attribute values listed in Table 2-2 (page 251). To set the text layout attributes to
non-default values, call the function ATSUSetLayoutControls (page 92). To set the
attributes of a single line in the text layout object, call the function
ATSUSetLineControls (page 100).

The newly-created text layout object is initialized (that is, it contains a pointer to
a Unicode text buffer and at least one style run). You can also create an
initialized text layout object by calling the function
ATSUCreateTextLayoutWithTextPtr (page 80).
84 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
You must specify the range of text you want to perform layout operations on in
the iTextOffset and iTextLength parameters. To include the entire text buffer,
pass the constants kATSUFromTextBeginning and kATSUTexttoEnd, respectively.

If you pass in a range of text that is a subset of the text buffer, the text layout
object will scan the remaining text to get the full context for such things as
bidirectional processing.

You must supply the text buffer with a block of Unicode text. You are also
responsible for updating the memory location of the text buffer whenever the
user inserts, deletes, or moves text. To obtain the current memory location of the
text buffer, call the function ATSUSetTextHandleLocation (page 109).

If you want to create a copy (essentially, a clone) of this text layout object, call
the function ATSUCreateAndCopyTextLayout (page 85). You can copy the attributes
of this text layout object into another text layout object by calling the function
ATSUCopyLayoutControls (page 91). You can also copy the attributes of a line of
this text layout object into another line in the same or different text layout object
by calling the function ATSUCopyLineControls (page 98).

SPECIAL CONSIDERATIONS

ATSUCreateTextLayoutWithTextHandle allocates memory in your application
heap, unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

ATSUCreateAndCopyTextLayout 2
Creates a copy of a text layout object.

OSStatus ATSUCreateAndCopyTextLayout (
ATSUTextLayout iTextLayout,
ATSUTextLayout *oTextLayout);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose contents you want to
copy. You cannot pass NULL for this parameter.
Functions for Manipulating Text Layout Objects 85
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oTextLayout A pointer to a reference of type ATSUTextLayout (page 195). On
return, the reference points to a text layout object containing the
same text layout attribute values, style runs, and soft line breaks
as the text layout object you passed in the iTextLayout
parameter. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUCreateAndCopyTextLayout function creates a clone of a text layout object
that contains the same text layout attribute values, style runs, and soft line
breaks. ATSUCreateAndCopyTextLayout does not copy reference constants or
layout caches.

In order to duplicate the functionality of ATSUCreateAndCopyTextLayout, you
would have to call the following functions:

■ ATSUGetRunStyle (page 115) to obtain the style runs from iTextLayout and
ATSUSetRunStyle (page 114) to set these style runs in oTextLayout

■ ATSUGetTextLocation (page 112) to obtain the pointer or handle to a Unicode
text buffer from iTextLayout and ATSUSetTextPointerLocation (page 107) or
ATSUSetTextHandleLocation (page 109) to set this pointer or handle in
oTextLayout

■ ATSUGetLayoutControl (page 94) to obtain the previously set text layout
attributes from iTextLayout and ATSUSetLayoutControls (page 92) to set these
text layout attributes in oTextLayout

■ ATSUGetLineControl (page 102) to obtain the previously set line attributes
from iTextLayout and ATSUSetLineControls (page 100) to set these line
attributes in oTextLayout

■ ATSUGetSoftLineBreaks (page 160) to obtain the previously set soft line breaks
in iTextLayout and ATSUSetSoftLineBreak (page 159) or ATSUBreakLine
(page 156) to set these soft line breaks

SPECIAL CONSIDERATIONS

ATSUCreateAndCopyTextLayout allocates memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).
86 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.1.

ATSUSetTextLayoutRefCon 2
Sets application-specific text layout data.

OSStatus ATSUSetTextLayoutRefCon (
ATSUTextLayout iTextLayout,
UInt32 iRefCon);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose application-specific
data you want to set. You cannot pass NULL for this parameter.

iRefCon A 32-bit value, pointer, or handle to application-specific text
layout data.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

Note that when you copy a text layout object that contains a reference constant,
the reference constant will not be copied. When you dispose of a text layout
object that contains a reference constant, you are resposible for freeing any
memory allocated for the reference constant. Calling ATSUDisposeTextLayout
(page 90) will not do so.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetTextLayoutRefCon (page 88)
Functions for Manipulating Text Layout Objects 87
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetTextLayoutRefCon 2
Obtains application-specific text layout data.

OSStatus ATSUGetTextLayoutRefCon (
ATSUTextLayout iTextLayout,
UInt32 *oRefCon);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose application-specific
data you want to obtain. You cannot pass NULL for this
parameter.

oRefCon A pointer to a 32-bit value, pointer, or handle to
application-specific text layout data.You cannot pass NULL for
this parameter.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetTextLayoutRefCon (page 87)

ATSUClearLayoutCache 2
Flushes the layout cache of a single line or an entire text layout object.

OSStatus ATSUClearLayoutCache (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose layout cache you want
to clear. You cannot pass NULL for this parameter.

iLineStart A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the beginning of the line whose
layout cache you want to discard. To clear the entire layout
88 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
cache of the text layout object, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 256).

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUClearLayoutCache function flushes the layout cache of a single line or
an entire text layout object but does not alter previously set text layout attribute
values, soft line break positions, or text memory location. Individual lines may
be redrawn as before.

You can call ATSUClearLayoutCache to free memory associated with the layout
results of a text layout object.

The layout cache contains all the layout information ATSUI needs to draw a
range of text in a text layout object. This includes caret positions, the memory
locations of glyphs, and other information needed to lay out the glyphs. This
information is used when ATSUI redraws text that was recently drawn. It uses
information in the layout cache to quickly lay out the text.

You should call ATSUClearLayoutCache when a text layout attribute that affects
text layout is changed or line breaks are altered (for example, if line justification
is set to full justification).

When you flush the cache, you retain the soft line breaks, text layout attribute
values, and style runs that were previously set. If you do not care about
retaining these values, you should dispose of the text layout object by calling
the ATSUDisposeTextLayout (page 90) function.

It is not an error if some or all of the lines do not already have layout caches.
ATSUClearLayoutCache only clears the layout caches it can find.

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUDisposeTextLayout (page 90)
Functions for Manipulating Text Layout Objects 89
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUDisposeTextLayout 2
Disposes of the memory associated with a text layout object.

OSStatus ATSUDisposeTextLayout (ATSUTextLayout iTextLayout);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to the text layout whose memory you want to dispose. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

Your application may use the ATSUDisposeTextLayout function to dispose of the
memory associated with a text layout object, including text layout attribute
settings and style runs. ATSUDisposeTextLayout only frees memory associated
with the text layout object and its internal structures. It does not dispose of the
memory pointed to by custom text layout attributes and reference constants.
You are ultimately responsible for doing so.

VERSION NOTES

Available with ATSUI 1.0.

Manipulating Text Layout Attributes 2
ATSUI provides the following functions for manipulating text layout attributes:

■ ATSUCopyLayoutControls (page 91) copies both set and unset attribute values
from the source into the destination text layout object.

■ ATSUSetLayoutControls (page 92) sets attribute values of a text layout object.

■ ATSUGetLayoutControl (page 94) obtains an attribute value from a text layout
object.

■ ATSUGetAllLayoutControls (page 95) obtains attribute values from a text
layout object.

■ ATSUClearLayoutControls (page 97) removes previously set attribute values
from a text layout object.
90 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUCopyLayoutControls 2
Copies both set and unset attribute values from the source into the destination
text layout object.

OSStatus ATSUCopyLayoutControls (
ATSUTextLayout iSource,
ATSUTextLayout iDest);

iSource A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose set and unset text
layout attribute values you want to copy. You cannot pass NULL
for this parameter.

iDest A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose text layout attribute
values you want to replace. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUCopyLayoutControls function copies both previously set and unset (that
is, default) text layout attribute values from the source into the destination style
object.

ATSUCopyLayoutControls will not copy the contents of memory referenced by
pointers or handles within reference constants. It is your responsibility to
ensure that this memory remains valid until the source text layout object is
disposed of.

SPECIAL CONSIDERATIONS

ATSUCopyLayoutControls may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available with ATSUI 1.0.
Functions for Manipulating Text Layout Objects 91
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUCopyLineControls (page 98)

ATSUSetLayoutControls 2
Sets attribute values of a text layout object.

OSStatus ATSUSetLayoutControls (
ATSUTextLayout iTextLayout,
ItemCount iAttributeCount,
ATSUAttributeTag iTag[],
ByteCount iValueSize[],
ATSUAttributeValuePtr iValue[]);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to a text layout object whose text layout attribute values you
want to set. The text layout object can be uninitialized. You
cannot pass NULL for this parameter.

iAttributeCount
A value of type ItemCount that represents the number of text
layout attributes being set.

iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that corresponds to a text
layout attribute. See “Text Layout and Line Attribute Tags”
(page 250) for a description of Apple-defined tag values. Note
that if you pass a style run attribute or an ATSUI-reserved tag
value in this parameter, ATSUSetLayoutControls returns the
result code kATSUInvalidAttributeTagErr. You cannot pass NULL
for this parameter.

iValueSize An array of values of type ByteCount that represents the size (in
bytes) of each text layout attribute value being set. You cannot
pass NULL for this parameter. Note that if you pass an attribute
value size that is less than required, ATSUSetLayoutControls
returns the result code kATSUInvalidAttributeSizeErr.

iValue An array of pointers of type ATSUAttributeValuePtr (page 187).
Each pointer in the array must reference a text layout attribute
value that corresponds to a tag in the iTag array, and the value
referenced by the pointer must be legal for that tag. Note that if
92 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
you pass a value that is invalid or undefined in this parameter,
ATSUSetLayoutControls returns the result code
kATSUInvalidAttributeValueErr. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

Your application may use the ATSUSetLayoutControls function to set text layout
attributes for a text layout object. Unset text layout attributes are assigned their
default values listed in Table 2-2 (page 251).

Note that text layout attributes set for a particular line override those set for the
entire text layout object, regardless of the order in which these attributes were
set. For example, if you call the function ATSUSetLineControls (page 100) to set
the line width of a particular line in a text layout object and then call
ATSUSetLayoutControls to set the line width for the entire text layout object, the
width of the particular line will have the value set in the call to
ATSUSetLineControls.

ATSUI functions that operate on a line of text like ATSUDrawText (page 163),
ATSUMeasureText (page 148), ATSUMeasureTextImage (page 153), and
ATSUGetGlyphBounds (page 145) use text layout attributes set for the specified line
of text. If no attributes have been set for the line, they use the text layout
attributes set for the entire text layout object. If attributes values are not set in a
line, ATSUI assigns the attribute values from the text layout object that the line
is contained within.

If there is an error, ATSUSetLayoutControls will not set any text layout attributes
in the line.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUSetLayoutControls may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.
Functions for Manipulating Text Layout Objects 93
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUGetLayoutControl (page 94)

ATSUClearLayoutControls (page 97)

ATSUSetLineControls (page 100)

ATSUGetLayoutControl 2
Obtains an attribute value from a text layout object.

OSStatus ATSUGetLayoutControl (
ATSUTextLayout iTextLayout,
ATSUAttributeTag iTag,
ByteCount iMaximumValueSize,
ATSUAttributeValuePtr oValue,
ByteCount *oActualValueSize);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to a text layout object whose text layout attribute value you
want to obtain. The text layout object can be uninitialized. You
cannot pass NULL for this parameter.

iTag A value of type ATSUAttributeTag. Pass a valid tag that
corresponds to the text layout attribute whose value you want
to determine. See “Text Layout and Line Attribute Tags”
(page 250) for a description of Apple-defined tag values. Note
that if you pass a style run attribute or an ATSUI-reserved tag
value in this parameter, ATSUSetLayoutControls returns the
result code kATSUInvalidAttributeTagErr.

iMaximumValueSize
The size (in bytes) of the memory that you have allocated for the
text layout attribute value. You can predetermine this value by
first calling ATSUGetLayoutControl (iTextLayout, iTag, 0,
NULL, &oActualValueSize). Note that if you pass an attribute
value size that is less than required, ATSUSetLayoutControls
returns the result code kATSUInvalidAttributeSizeErr.

oValue A pointer of type ATSUAttributeValuePtr (page 187). On return,
oValue points to the desired text layout attribute value. You can
predetermine how much memory to allocate for this array by
94 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
first calling ATSUGetLayoutControl (iTextLayout, iTag, 0,
NULL, &oActualValueSize). Note that if the attribute value has
not set, ATSUGetLayoutControl passes back its default value in
this parameter and returns the result code kATSUNotSetErr.

oActualValueSize
A pointer to a value of type ByteCount. On return, the value
represents the size (in bytes) of memory actually required for
the attribute’s value. This is useful if you are dealing with a
custom attribute and don’t know how much memory to allocate.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetLayoutControls (page 92)

ATSUGetAllLayoutControls (page 95)

ATSUGetLineControl (page 102)

ATSUGetAllLayoutControls 2
Obtains all attribute values from a text layout object.

OSStatus ATSUGetAllLayoutControls (
ATSUTextLayout iTextLayout,
ATSUAttributeInfo oAttributeInfoArray[],
ItemCount iTagValuePairArraySize,
ItemCount *oTagValuePairCount);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to a text layout object whose text layout attribute values you
want to obtain. The text layout object can be uninitialized. You
cannot pass NULL for this parameter.
Functions for Manipulating Text Layout Objects 95
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oAttributeInfoArray
An array of structures of type ATSUAttributeInfo (page 186). On
return, each structure in the array contains a tag/value-size pair
that corresponds to a particular text layout attribute value in the
text layout object. You can predetermine how much memory to
allocate for this array by first calling ATSUGetAllLayoutControls
(iTextLayout, NULL, 0, &oTagValuePairCount).

iTagValuePairArraySize
A value of type ItemCount that represents the number of
ATSUAttributeInfo structures you want passed back in the
oAttributeInfoArray array. You can predetermine this value by
first calling ATSUGetAllLayoutControls (iTextLayout, NULL, 0,
&oTagValuePairCount).

oTagValuePairCount
A pointer to a value of type ItemCount. On return, the value
represents the actual number of ATSUAttributeInfo structures
corresponding to the number of text layout attributes set in the
text layout object. This may be greater than the value passed in
the iTagValuePairArraySize parameter. You cannot pass NULL for
this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

You can pass the tag and value size data passed back in the
oAttributeInfoArray parameter to the ATSUGetLayoutControl (page 94) function
to obtain the value of a particular text layout attribute.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetLayoutControl (page 94)

ATSUGetAllLineControls (page 104)
96 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUClearLayoutControls 2
Removes previously set attribute values from a text layout object.

OSStatus ATSUClearLayoutControls (
ATSUTextLayout iTextLayout,
ItemCount iTagCount,
ATSUAttributeTag iTag[]);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to a text layout object whose previously set text layout attribute
values you want to remove. The text layout object can be
uninitialized. You cannot pass NULL for this parameter.

iTagCount A value of type ItemCount that represents the number of
previously set text layout attribute values you want to remove.
To remove all previously set text layout attribute values, pass
the constant kATSUClearAll.

iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that identifies a text layout
attribute value you want to remove. See “Text Layout and Line
Attribute Tags” (page 250) for a description of Apple-defined tag
values. Note that if you pass a style run attribute or an
ATSUI-reserved tag value in this parameter,
ATSUClearLayoutControls returns the result code
kATSUInvalidAttributeTagErr. If you pass the kATSUClearAll
constant in the iTagCount parameter, the value in this parameter
will be ignored.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUClearLayoutControls function removes those previously set text layout
attribute values from an entire text layout object that are identified by the tags
in the iTag array. ATSUClearLayoutControls sets these values to the default
values listed in Table 2-2 (page 251).

To remove all the previously set text layout attribute values from a text layout
object, pass the constant kATSUClearAll in the iTagCount parameter. You can
remove unset attribute values from a text layout object without a function error.
Functions for Manipulating Text Layout Objects 97
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUClearLineControls (page 105)

Manipulating Line Attributes 2
ATSUI provides the following functions for manipulating line attributes:

■ ATSUCopyLineControls (page 98) copies both set and unset attribute values
from one line to another within the same or different text layout object.

■ ATSUSetLineControls (page 100) sets attribute values of a line within a text
layout object.

■ ATSUGetLineControl (page 102) obtains an attribute value from a line within a
text layout object.

■ ATSUGetAllLineControls (page 104) obtains all attribute values from a line
within a text layout object.

■ ATSUClearLineControls (page 105) removes previously set attribute values
from a line within a text layout object.

ATSUCopyLineControls 2
Copies both set and unset attribute values from one line to another within the
same or different text layout object.

OSStatus ATSUCopyLineControls (
ATSUTextLayout iSourceTextLayout,
UniCharArrayOffset iSourceLineStart,
ATSUTextLayout iDestTextLayout,
UniCharArrayOffset iDestLineStart);
98 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iSourceTextLayout
A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the line whose
attribute values you want to copy. You cannot pass NULL for this
parameter.

iSourceLineStart
A value of type UniCharArrayOffset (page 198). Pass the edge
offset of the beginning of the line whose attribute values you
want to copy.

iDestTextLayout
A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the line whose
attribute values you want to replace. This can be the same text
layout object passed in the iSourceTextLayout parameter if you
want to copy the attributes from a line into another line in the
same text layout object. You cannot pass NULL for this parameter.

iDestLineStart
A value of type UniCharArrayOffset (page 198). Pass the edge
offset of the beginning of the line whose attribute values you
want to replace.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUCopyLineControls function copies both previously set and unset
attribute values from one line to another in the same or different text layout
object, depending upon what you pass in the iDestTextLayout parameter.

ATSUCopyLineControls will not copy the contents of memory referenced by
pointers or handles within reference constants. It is your responsibility to
ensure that this memory remains valid until the source text layout object is
disposed of.

SPECIAL CONSIDERATIONS

ATSUCopyLineControls may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).
Functions for Manipulating Text Layout Objects 99
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUCopyLayoutControls (page 91)

ATSUSetLineControls 2
Sets attribute values of a line within a text layout object.

OSStatus ATSUSetLineControls (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
ItemCount iAttributeCount,
ATSUAttributeTag iTag[],
ByteCount iValueSize[],
ATSUAttributeValuePtr iValue[]);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object containing the line whose
attribute values you want to set. You cannot pass NULL for this
parameter.

iLineStart A value of type UniCharArrayOffset (page 198). Pass the edge
offset of the beginning of the line whose attributes you want to
set.

iAttributeCount
A value of type ItemCount. Pass the number of attributes you
want to set for the line. This value should equal the number of
tags passed in the iTag array.

iTag An array of values of type ATSUAttributeTag. Pass an array of
tags that identify the attribute values you wish to set. Each
element in the array must contain a valid tag that corresponds to
a text layout attribute. See “Text Layout and Line Attribute
Tags” (page 250) for a description of Apple-defined tag values.
Note that if you pass a style run attribute or an ATSUI-reserved
100 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
tag value in this parameter, ATSUSetLineControls returns the
result code kATSUInvalidAttributeTagErr. You cannot pass NULL
for this parameter.

iValueSize An array of values of type ByteCount. Pass an array of the
number of bytes that represent the size of each attribute you
wish to set. Note that if you pass a size that is less than required,
ATSUSetLineControls returns the result code
kATSUInvalidAttributeSizeErr. You cannot pass NULL for this
parameter.

iValue An array of pointers of type ATSUAttributeValuePtr (page 187).
Pass an array of pointers that point to the attribute values you
wish to set. Each pointer in the array must reference an attribute
value that corresponds to a tag in the iTag array, and the value
referenced by the pointer must be legal for that tag. Note that if
you pass a value that is invalid or undefined in this parameter,
ATSUSetLineControls returns the result code
kATSUInvalidAttributeValueErr. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUSetLineControls function sets attribute values for a single line within a
text layout object. When you set the attributes of a line, these override those set
in the text layout object the line is contained within. This is true regardless of
the order in which these attributes were set. For example, if you first set the line
width attribute value of a particular line to .768 and then set the line width of
the text layout object containing the line to .34, the line width of the particular
line would be .768.

If you do not set an attribute value in a line, it will be set to the value of the
corresponding attribute in the text layout object, whether it was previously set
or is the default value listed in Table 2-2 (page 251).

The functions ATSUDrawText (page 163), ATSUMeasureText (page 148),
ATSUMeasureTextImage (page 153), and ATSUGetGlyphBounds (page 145) use the
text layout attributes set in the line they are operating on.

If there is an error, ATSUSetLineControls will not set any attributes in the line.
Functions for Manipulating Text Layout Objects 101
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUSetLineControls may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUGetLineControl (page 102)

ATSUGetAllLineControls (page 104)

ATSUSetLayoutControls (page 92)

ATSUGetLineControl 2
Obtains an attribute value from a line within a text layout object.

OSStatus ATSUGetLineControl (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
ATSUAttributeTag iTag,
ByteCount iExpectedValueSize,
ATSUAttributeValuePtr oValue,
ByteCount *oActualValueSize);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
points to an initialized text layout object that contains the line
whose attribute values you want to obtain. You cannot pass NULL
for this parameter.

iLineStart A value of type UniCharArrayOffset (page 198). Pass the edge
offset of the beginning of the line whose attribute value you
want to obtain.

iTag A value of type ATSUAttributeTag. Pass a valid tag that
corresponds to the attribute value you want to obtain. See “Text
Layout and Line Attribute Tags” (page 250) for a description of
102 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Apple-defined tag values. Note that if you pass a style run
attribute or an ATSUI-reserved tag value in this parameter,
ATSUGetLineControl returns the result code
kATSUInvalidAttributeTagErr.

iExpectedValueSize
A value of type ByteCount. Pass the expected size (in bytes) of
the attribute value. Attribute value sizes are listed in Note that if
you pass a size that is less than required, ATSUGetLineControl
returns the result code kATSUInvalidAttributeSizeErr.

oValue A pointer of type ATSUAttributeValuePtr (page 187). Before
calling ATSUGetLineControl, pass a pointer to memory you have
allocated for the attribute value or NULL if you don’t know how
big the attribute value will be. If you pass NULL, on return, oValue
points to the desired text layout attribute value. Note that if you
did not previously set the attribute value, ATSUGetLineControl
passes back its default value in this parameter and returns the
result code kATSUNotSetErr.

oActualValueSize
A pointer to a value of type ByteCount. On return,
oActualValueSize points to actual size (in bytes) of the attribute
value.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

You can use the tag and value size data passed back in the oAttributeInfoArray
parameter of the function ATSUGetAllLineControls (page 104) in the
ATSUGetLineControl function to obtain the value of the corresponding line
attribute.

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUSetLineControls (page 100)

ATSUGetLayoutControl (page 94)
Functions for Manipulating Text Layout Objects 103
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetAllLineControls 2
Obtains all the text layout attribute values from a line in a text layout object.

OSStatus ATSUGetAllLineControls (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
ATSUAttributeInfo oAttributeInfoArray[],
ItemCount iTagValuePairArraySize,
ItemCount *oTagValuePairCount);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
points to an initialized text layout object that contains the line
whose text layout attribute value you want to obtain. You
cannot pass NULL for this parameter.

iLineStart A value of type UniCharArrayOffset (page 198) that represents
the offset to the beginning of the line whose attribute values you
want to obtain.

oAttributeInfoArray
An array of structures of type ATSUAttributeInfo (page 186). On
return, each structure in the array contains a tag/value-size pair
that corresponds to a text layout attribute value for a particular
line in a text layout object. You can predetermine how much
memory to allocate for this array by first calling
ATSUGetAllLineControls (iStyle, iLineStart, NULL, 0,
&oTagValuePairCount).

iTagValuePairArraySize
A value of type ItemCount that represents the number of
ATSUAttributeInfo structures you want passed back in the
oAttributeInfoArray array. You can predetermine this value by
first calling ATSUGetAllLineControls (iStyle, iLineStart,
NULL, 0, &oTagValuePairCount).

oTagValuePairCount
A pointer to a value of type ItemCount. On return, the value
represents the actual number of ATSUAttributeInfo structures
corresponding to the number of text layout attributes set in a
single line of a text layout object. This may be greater than the
value passed in the iTagValuePairArraySize parameter. You
cannot pass NULL for this parameter.
104 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. See “Result Codes” (page 256).

DISCUSSION

You can pass the tag and value size data passed back in the
oAttributeInfoArray parameter to the ATSUGetLineControl (page 102) function
to obtain the value of a particular text layout attribute.

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUGetAllLayoutControls (page 95)

ATSUClearLineControls 2
Removes previously set text layout attribute values from a line in a text layout
object.

OSStatus ATSUClearLayoutControls (
ATSUTextLayout iTextLayout,
ItemCount iTagCount,
ATSUAttributeTag iTag[]);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the line whose
previously set text layout attribute values you want to remove.
You cannot pass NULL for this parameter.

iTagCount A value of type ItemCount that represents the number of
previously set text layout attributes you want to remove in the
line. To remove all previously set text layout attribute values in
the line, pass the constant kATSUClearAll.

iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that identifies a text layout
attribute value you want to remove. See “Text Layout and Line
Attribute Tags” (page 250) for a description of Apple-defined tag
Functions for Manipulating Text Layout Objects 105
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
values. Note that if you pass a style run attribute or an
ATSUI-reserved tag value in this parameter,
ATSUClearLineControls returns the result code
kATSUInvalidAttributeTagErr. If you pass the kATSUClearAll
constant in the iTagCount parameter, the value in this parameter
will be ignored.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUClearLineControls function removes those previously set text layout
attribute values from a single line in a text layout object that are identified by
the tags in the iTag array. ATSUClearLineControls sets these values to the values
set for the text layout object that the line is in. If these values were not set in the
text layout object, ATSUClearLayoutControls sets them to the default values
listed in Table 2-2 (page 251).

To remove all the previously set text layout attribute values from a line, pass the
constant kATSUClearAll in the iTagCount parameter. You can remove unset
attribute values from a line without a function error.

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUClearLayoutControls (page 97)

Determining and Updating Text Memory Location 2
ATSUI provides the following functions for determining and updating text
memory location:

■ ATSUSetTextPointerLocation (page 107) updates text accessed with a pointer
in a text layout object.

■ ATSUSetTextHandleLocation (page 109) updates text accessed with a handle in
a text layout object.
106 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ ATSUGetTextLocation (page 112) calculates the memory location of a text
layout object’s text buffer, how it is accessed, and the range of text to be
operated on.

■ ATSUTextMoved (page 113) updates text accessed with a handle in a text layout
object.

ATSUSetTextPointerLocation 2
Updates text accessed with a pointer in a text layout object.

OSStatus ATSUSetTextPointerLocation (
ATSUTextLayout iTextLayout,
ConstUniCharArrayPtr iText,
UniCharArrayOffset iTextOffset,
UniCharCount iTextLength,
UniCharCount iTextTotalLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to a valid text layout object in which the user has moved,
deleted, or inserted text. If the text layout object is uninitialized,
ATSUSetTextPointerLocation will initialize it by assigning it the
text pointed to by the iText parameter.

iText A pointer of type ConstUniCharArrayPtr (page 197). The pointer
contains a text buffer. If the text layout object is uninitialized,
ATSUSetTextPointerLocation assigns it to the text layout object. If
the text layout object already has associated text,
ATSUSetTextPointerLocation updates the text. Your application
is responsible for allocating the memory associated with this
pointer.

iTextOffset A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the beginning of the range of text
that you want ATSUI to perform subsequent lay out operations
on. You can pass the constant kATSUFromTextBeginning, described
in “Text Offset Constant” (page 256), to represent the edge offset
of the beginning of the text layout object’s text buffer.

iTextLength A value of type UniCharCount (page 198). The value represents
the length of the range of text that you want to perform layout
operations on. You can pass the constant kATSUTexttoEnd,
Functions for Manipulating Text Layout Objects 107
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
described in “Text Length Constant” (page 255), to represent the
end of the text layout object’s text buffer. Note that if the
specified text range extends beyond the text layout object’s text
buffer, ATSUSetTextPointerLocation returns the result code
kATSUInvalidTextRangeErr.

iTextTotalLength
A value of type UniCharCount (page 198). The value represents
the length of the entire text buffer. Generally, this is greater than
the range of text specified in the iTextOffset and iTextLength
parameters, unless you want to perform layout operations on
the entire text buffer. In this case, the value in this parameter
should equal iTextOffset + iTextLength.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

You should call the ATSUSetTextPointerLocation function to update text before
displaying it when

■ the range of text specified in your text layout object spans the entire text
buffer and

■ you make changes to text in response to the user moving, deleting, or
inserting text

Once you call ATSUSetTextPointerLocation, you can call the ATSUDrawText
(page 163) function to display the updated text.

If the text layout object is uninitialized, the ATSUSetTextPointerLocation
function assigns it the text buffer pointed to in iText the parameter. If the text
layout object already has an assigned text buffer, ATSUSetTextPointerLocation
updates it.

Note that the ATSUSetTextPointerLocation function clears drawing caches.

You specify the range of text you want to perform layout operations on in the
iTextOffset and iTextLength parameters. To indicate the entire text buffer, pass
the kATSUFromTextBeginning constant in the iTextOffset parameter and the
kATSUToTextEnd constant in the iTextLength parameter.

If the range of text is a subset of the text buffer, the text layout object will scan
the remaining text before and after the range of text in the text buffer to get the
full context for bidirectional processing and other information about the text.
108 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
If you need to determine the memory location of the text layout object’s text
buffer, call the ATSUGetTextLocation (page 112) function. To update the memory
location of the text layout object’s text buffer, call the ATSUTextMoved (page 113)
function.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUSetTextPointerLocation may allocate
memory in your application heap. If you want more control over ATSUI's
memory allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetTextHandleLocation (page 109)

ATSUSetTextHandleLocation 2
Updates text accessed with a handle in a text layout object.

OSStatus ATSUSetTextHandleLocation (
ATSUTextLayout iTextLayout,
UniCharArrayHandle iText,
UniCharArrayOffset iTextOffset,
UniCharCount iTextLength,
UniCharCount iTextTotalLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to a valid text layout object in which the user has moved,
deleted, or inserted text. If the text layout object is uninitialized,
ATSUSetTextHandleLocation will initialize it by assigning it the
text pointed to by the iText parameter.

iText A handle of type UniCharArrayHandle (page 197). The handle
contains the address of a text layout object’s text buffer. The text
layout object expects the buffer to contain a block of Unicode
text. Your application is responsible for allocating the handle.
Functions for Manipulating Text Layout Objects 109
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUI functions will dereference the handle before accessing
the text, but will leave the handle’s state unchanged. If the text
layout object is uninitialized, ATSUSetTextPointerLocation
assigns it to the text layout object. If the text layout object
already has associated text, ATSUSetTextPointerLocation updates
the text.

iTextOffset A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the beginning of the range of text
that you want to perform layout operations on. You can pass the
constant kATSUFromTextBeginning, described in “Text Offset
Constant” (page 256), to represent the edge offset of the
beginning of the text layout object’s text buffer.

iTextLength A value of type UniCharCount (page 198). The value represents
the length of the range of text that you want to perform layout
operations on. You can pass the constant kATSUTexttoEnd,
described in “Text Length Constant” (page 255), to represent the
end of the text layout object’s text buffer. Note that if the
specified text range extends beyond the text layout object’s text
buffer, ATSUSetTextHandleLocation returns the result code
kATSUInvalidTextRangeErr.

iTextTotalLength
A value of type UniCharCount (page 198). The value represents
the length of the entire text buffer. Generally, this is greater than
the range of text specified in the iTextOffset and iTextLength
parameters, unless you want to perform layout operations on
the entire text buffer. In this case, the value in this parameter
should equal iTextOffset + iTextLength.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

You should call the ATSUSetTextHandleLocation function to update text before
displaying it when

■ the range of text specified in your text layout object spans the entire text
buffer and

■ you make changes to text in response to the user moving, deleting, or
inserting text
110 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Once you call ATSUSetTextHandleLocation, you can call the ATSUDrawText
(page 163) function to display the updated text.

If the text layout object is uninitialized, the ATSUSetTextHandleLocation function
assigns it the text buffer pointed to in iText the parameter. If the text layout
object already has an assigned text buffer, ATSUSetTextHandleLocation updates
it.

Note that the ATSUSetTextHandleLocation function clears drawing caches.

You specify the range of text you want to perform layout operations on in the
iTextOffset and iTextLength parameters. To indicate the entire text buffer, pass
the kATSUFromTextBeginning constant in the iTextOffset parameter and the
kATSUToTextEnd constant in the iTextLength parameter.

If the range of text is a subset of the text buffer, the text layout object will scan
the remaining text before and after the range of text in the text buffer to get the
full context for bidirectional processing and other information about the text.

If you need to determine the memory location of the text layout object’s text
buffer, call the ATSUGetTextLocation (page 112) function. To update the memory
location of the text layout object’s text buffer, call the ATSUTextMoved (page 113)
function.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUSetTextHandleLocation may allocate
memory in your application heap. If you want more control over ATSUI's
memory allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetTextPointerLocation (page 107)
Functions for Manipulating Text Layout Objects 111
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetTextLocation 2
Calculates the memory location of a text layout object’s text buffer, how it is
accessed, and the range of text to be operated on.

OSStatus ATSUGetTextLocation (
ATSUTextLayout iTextLayout,
void **oText,
Boolean *oTextIsStoredInHandle,
UniCharArrayOffset *oOffset,
UniCharCount *oTextLength,
UniCharCount *oTextTotalLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose text you want to
determine.

oText A pointer of type ConstUniCharArrayPtr (page 197) or a handle
of type UniCharArrayHandle (page 197). If the value passed back
in the oTextIsStoredInHandle parameter is true, on return the
handle contains the address of the text buffer that you want to
assign to the text layout object. If the value passed back in the
oTextIsStoredInHandle parameter is false, on return the pointer
contains the text buffer that you want to assign to the text layout
object.

oTextIsStoredInHandle
A pointer to a value of type Boolean. On return, the value
indicates whether the text buffer in the oText parameter is
accessed by handle or a pointer. If true, the text buffer is
accessed by handle; if false, the text buffer is accessed by
pointer.

oOffset A pointer to a value of type UniCharArrayOffset (page 198). On
return, the value represents the edge offset of the beginning of
the range of text to be laid out.

oTextLength A pointer to a value of type UniCharCount (page 198). On return,
the value represents the length of the range of text to be laid out.

oTextTotalLength
A pointer to a value of type UniCharCount (page 198). On return,
the value represents the length of the entire text buffer.

function result A result code. See “Result Codes” (page 256).
112 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

ATSUTextMoved 2
Updates the location of text in physical memory.

OSStatus ATSUTextMoved (
ATSUTextLayout iTextLayout,
ConstUniCharArrayPtr iNewLocation);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose text memory location
you have moved. You cannot pass NULL for this parameter.

iNewLocation A pointer of type ConstUniCharArrayPtr (page 197). The pointer
contains the new base location for the text buffer in memory.
The text layout object expects the buffer to contain a block of
Unicode text. Your application is responsible for allocating the
memory associated with this pointer.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUTextMoved function updates the memory location of the text buffer
associated with a text layout object to the location pointed to by the
iNewLocation parameter. This parameter reflects the physical location in
memory where you moved the text buffer to. Note that the text buffer should be
otherwise unchanged. If, for example, the user has moved, deleted, or inserted
text in the text layout object, you should instead call the
ATSUSetTextPointerLocation (page 107) and ATSUSetTextHandleLocation
(page 109) functions to update the text before displaying it. You are responsible
for moving the text.

VERSION NOTES

Available with ATSUI 1.0.
Functions for Manipulating Text Layout Objects 113
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Updating and Determining Style Runs 2
ATSUI provides the following functions for updating and determining style
runs:

■ ATSUSetRunStyle (page 114) overwrites style run information in a specified
range of text.

■ ATSUGetRunStyle (page 115) determines, for a specified edge offset, the
previously set style run information and range of text that shares this
information.

■ ATSUGetContinuousAttributes (page 117) determines the style run
information that is continuous for a specified range of text.

ATSUSetRunStyle 2
Overwrites style run information in a specified range of text.

OSStatus ATSUSetRunStyle (
ATSUTextLayout iTextLayout,
ATSUStyle iStyle,
UniCharArrayOffset iRunStart,
UniCharCount iRunLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to a valid text layout object whose style run information you
want to update. If the text layout object is uninitialized,
ATSUSetRunStyle will initialize it with the style runs pointed by
the iStyle parameter.

iStyle A reference of type ATSUStyle (page 195). Pass a reference to the
initialized style object whose style run information you want to
copy. You cannot pass NULL for this parameter.

iRunStart A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the beginning of the range of text
whose style run information you want to replace. You can pass
the constant kATSUFromTextBeginning, described in “Text Offset
Constant” (page 256), to represent the edge offset of the
beginning of the text layout object’s text buffer.
114 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iRunLength A value of type UniCharCount (page 198). The value represents
the length of the range of text whose style run information you
want to replace. You can pass the constant kATSUTexttoEnd,
described in “Text Length Constant” (page 255), to represent the
end of the text layout object’s text buffer. Note that if the
specified text range extends beyond the text layout object’s text
buffer, ATSUSetRunStyle returns the result code
kATSUInvalidTextRangeErr.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUSetRunStyle function completely overwrites the style run attribute, font
feature, and font variation values of a specified range of text with those of the
passed in style object. This includes values that are set in the specified range of
text but not in the passed in style object. In this case, these values are set to their
default values. After this call, ATSUI automatically adjusts the lengths of the
style runs in the unaffected ranges of text.

You are responsible for disposing of the memory allocated for the new style run
when you are done with the style run.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUSetRunStyle may allocate memory in your
application heap. If you want more control over ATSUI's memory allocation, see
the function ATSUCreateMemorySetting (page 174).

ATSUGetRunStyle 2
Determines, for a specified edge offset, the previously set style run information
the range of text that shares this information.

OSStatus ATSUGetRunStyle (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOffset,
ATSUStyle *oStyle,
UniCharArrayOffset *oRunStart,
UniCharCount *oRunLength);
Functions for Manipulating Text Layout Objects 115
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose style run information
over a specific range of text you want to determine. You cannot
pass NULL for this parameter.

iOffset A value of type UniCharArrayOffset (page 198). The value
represents the edge offset whose continuous style run
information you want to determine. You can pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 256), to represent the edge offset of the beginning of the
text layout object’s text buffer. Note that if the offset is outside
the text layout object’s text buffer, ATSUGetRunStyle returns the
result code kATSUInvalidTextRangeErr.

oStyle A pointer to a reference of type ATSUStyle (page 195). On return,
oStyle points to the previously set style run information at the
location specified in the iOffset parameter. If no style runs have
been set, this value will be NULL.

oRunStart A pointer to a value of type UniCharArrayOffset (page 198). On
return, the value represents the edge offset of the beginning of
the range of text that shares the style run information specified
in the oStyle parameter.

oRunLength A pointer to a value of type UniCharCount (page 198). On return,
the value represents the length of the range of text that shares
the style run information specified in the oStyle parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUGetRunStyle function passes back the previously set style run
information for a specific text location, and the range of text that shares this
information. Unlike ATSUGetContinuousAttributes (page 117), ATSUGetRunStyle
returns style information for a specific text location, not for a range of text.

If there is only one style run in the specified text layout object, ATSUGetRunStyle
passes back both set and unset style run information for the specified location,
and sets the entire text layout object’s style information to that of the specified
location.

The value passed back in the oRunStart parameter represents the edge offset of
the beginning of the style run. You can use this value to determine whether you
116 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
are at a style run boundary. At a style run boundary, ATSUGetRunStyle passes
back the style run that follows the boundary.

If you want to determine the style run information that is continuous for a
specified range of text, call the ATSUGetContinuousAttributes (page 117)
function.

ATSUGetContinuousAttributes 2
Determines the style run information that is continuous for a specified range of
text.

OSStatus ATSUGetContinuousAttributes (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOffset,
UniCharCount iLength,
ATSUStyle oStyle);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose continuous style run
information over a specific range of text you want to obtain. You
cannot pass NULL for this parameter.

iOffset A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the beginning of the range of text
whose continuous style run information you want to determine.
You can pass the constant kATSUFromTextBeginning, described in
“Text Offset Constant” (page 256), to represent the edge offset of
the beginning of the text layout object’s text buffer.

iRunLength A value of type UniCharCount (page 198). The value represents
the length of the range of text whose continuous style run
information you want to determine. You can pass the constant
kATSUTexttoEnd, described in “Text Length Constant” (page 255),
to represent the end of the text layout object’s text buffer. Note
that if the specified text range extends beyond the text layout
object’s text buffer, ATSUGetContinuousAttributes returns the
result code kATSUInvalidTextRangeErr.

oStyle A reference of type ATSUStyle (page 195). Before calling
ATSUGetContinuousAttributes, allocate enough memory to
contain the continuous style information for the range of text.
Functions for Manipulating Text Layout Objects 117
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
On return, oStyle points to the continuous style run
information that is shared by the specified text range. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUGetContinuousAttributes function passes back the previously set style
run attribute, font feature, and font variation values for a specific range of text.
Any unset style run attribute, font feature, or font variation values that are
continuous over the text range are set to their default values and passed back to
indicate that these values were continuous.

Unlike ATSUGetRunStyle (page 115), ATSUGetContinuousAttributes returns style
information for a range of text, not for a specific text location.

The value passed back in the oRunStart parameter represents the edge offset of
the beginning of the style run. You can use this value to determine whether you
are at a style run boundary. At a style run boundary, ATSUGetRunStyle passes
back the style run that follows the boundary.

You should call ATSUGetContinuousAttributes to determine the style run
information that remains constant over text that has been selected by the user.
For example, the user might select the entire text block associated with a text
layout object or a portion of it, then choose a different font family from your
menu to render the text. ATSUGetContinuousAttributes will determine whether
the style is plain, boldfaced, italicized, underlined, condensed, or extended.

If you want to determine the previously set style run information and range of
text that shares this information for a specific location in the text, call the
ATSUGetRunStyle (page 115) function.

Providing Font Substitutions 2
ATSUI provides the following functions for providing font substitutions in a
text layout object:

■ ATSUSetFontFallbacks (page 119) establishes the search options and the fonts
to search when a font does not have all the glyphs for the characters it is
trying to draw.
118 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ ATSUGetFontFallbacks (page 120) obtains the previously set search order and
the fonts to search when a font does not have all the glyphs for the characters
it is trying to draw.

■ ATSUMatchFontsToText (page 122) sequentially scans the valid fonts on a
user’s system to find the best substitute font.

■ ATSUSetTransientFontMatching (page 124) enables automatic font substitution
in a text layout object.

■ ATSUGetTransientFontMatching (page 125) determines whether automatic font
substitution has been enabled in a text layout object.

ATSUSetFontFallbacks 2
Establishes the search options and the fonts to search when a font does not have
all the glyphs for the characters it is trying to draw.

OSStatus ATSUSetFontFallbacks (
ItemCount iFontFallbacksCount,
ATSUFontID iFontIDs[],
ATSUFontFallbackMethod iFontFallbackMethod);

iFontFallbacksCount
A value of type ItemCount that represents the number of fonts in
the iFontIDs array.

iFontIDs An array of values of type ATSUFontID (page 192). The array
contains a list of the fonts to be sequentially searched using the
search options specifeied in the iFontFallbackMethod parameter.
The first valid font in the list that can perform the substitution
will be used.

iFontFallbackMethod
A value of type ATSUFontFallbackMethod. The value represents
the search options to employ when a font does not have all the
glyphs for the characters it is trying to draw. See “Font Fallback
Constants” (page 208) for a description of possible values. To
specify the default search behavior, pass the constant
kATSUDefaultFontFallbacks.
Functions for Manipulating Text Layout Objects 119
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. The result code kATSUInvalidFontErr indicates
that the font does not correspond to any installed font. For a list
of other ATSUI-specific result codes, see “Result Codes”
(page 256).

DISCUSSION

The ATSUSetFontFallbacks function enables you to customize the search options
and the fonts to search when a font does not have all the glyphs for the
characters it is trying to draw. If you do not call ATSUSetFontFallbacks, all valid
fonts on the user’s system will be searched when a substitute font is needed.
You can change back to this default search behavior by passing the
kATSUDefaultFontFallbacks constant in the iFontFallbackMethod parameter.
Specifying the default search behavior is equivalent to calling the
ATSUMatchFontsToText (page 122) function.

ATSUSetFontFallbacks enables you to specify the fonts that ATSUI should use
for fallback fonts. By judiciously ordering the chosen fallbacks, the amount of
time needed by ATSUI to find a suitable fallback for specific text can be
significantly reduced.

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUGetFontFallbacks (page 120)

ATSUGetFontFallbacks 2
Obtains the previously set search options and the fonts to search when a font
does not have all the glyphs for the characters it is trying to draw.

OSStatus ATSUGetFontFallbacks (
ItemCount iMaxFontFallbacksCount,
ATSUFontID oFontIDs[],
ATSUFontFallbackMethod *oFontFallbackMethod,
ItemCount *oActualFallbacksCount);
120 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iMaxFontFallbacksCount
A value of type ItemCount. This value represents the number of
fonts that you want passed back in the iFontIDs array. You can
predetermine this value by first calling ATSUGetFontFallbacks
(0, NULL, NULL, &oActualFallbacksCount).

oFontIDs An array of values of type ATSUFontID (page 192). On return, the
array contains the previously set list of the fonts to be
sequentially searched using the search options specified in the
oFontFallbackMethod parameter. You set this value by calling
ATSUSetTransientFontMatching (page 124).You can predetermine
how much memory to allocate for this array by first calling
ATSUGetFontFallbacks (0, NULL, NULL,
&oActualFallbacksCount).

oFontFallbackMethod
A pointer to a value of type ATSUFontFallbackMethod. On return,
the value represents the previously set search options to employ
when a font does not have all the glyphs for the characters it is
trying to draw. You set this value by calling
ATSUSetTransientFontMatching (page 124). See “Font Fallback
Constants” (page 208) for a description of possible values.

oActualFallbacksCount
A pointer to a value of type ItemCount. On return, the value
represents the actual number of fallback fonts set in the text
layout object. This may be greater than the value passed in the
iMaxFontFallbacksCount parameter. You cannot pass NULL for
this parameter.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

ATSUSetFontFallbacks (page 119)
Functions for Manipulating Text Layout Objects 121
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUMatchFontsToText 2
Sequentially scans the valid fonts on a user’s system to find the best substitute
font.

OSStatus ATSUMatchFontsToText (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iTextStart,
UniCharCount iTextLength,
ATSUFontID *oFont,
UniCharArrayOffset *oChangedOffset,
UniCharCount *oChangedLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains for which you
want to find a substitute font. You cannot pass NULL for this
parameter.

iTextStart A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the beginning of the range of text
for which you want to find a substitute font. You can pass the
constant kATSUFromTextBeginning, described in “Text Offset
Constant” (page 256), to represent the edge offset of the
beginning of the text buffer.

iTextLength A value of type UniCharCount (page 198). This value represents
the length of the range of text for which you want to find a
substitute font. You can pass the constant kATSUToTextEnd,
described in “Text Length Constant” (page 255), to represent the
end of the text buffer. Note that if any part of the specified text
range is outside the text layout object, ATSUMatchFontsToText
returns the result code kATSUInvalidTextRangeErr.

oFont A pointer to a value of type ATSUFontID (page 192). On return,
oFont points to the ID of the suggested font to use for the first
character that could not be drawn.

oChangedOffsetA pointer to a value of type UniCharArrayOffset (page 198). On
return, the value represents the first edge offset containing a
character whose font does not have all the glyphs to draw it.
122 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oChangedLengthA pointer to a value of type UniCharCount (page 198). On return,
the value represents the length of the first range of text
containing a character whose font does not have all the glyphs
to draw it.

function result A result code. The result code noErr indicates that all the
characters can be rendered with their currently assigned fonts.
The result code kATSUFontsMatched indicates that at least one
character could not be rendered with its currently assigned font.
In this case, all the characters in the specified text range cannot
be drawn with their currently assigned font, but can be drawn
with the font passed back in the oFont parameter. The result
code kATSUFontsNotMatched indicates that at least one character
could not be rendered with its currently assigned font or with
any currently active font. In this case, all the characters in the
specified text range can only be rendered by the last resort font,
and the value of oFont is set to kATSUInvalidFontID. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 256).

DISCUSSION

The ATSUMatchFontsToText function scans all valid fonts on the user’s system to
find the best substitute font. Unlike ATSUSetTransientFontMatching (page 124),
however, it does not perform the actual font substitution, but simply passes
back the recommended font and the first subrange of text whose character(s)
could not be drawn with the assigned font.

If you wish to specify the fonts that ATSUI should use for fallback fonts, and the
order in which to search these fonts, you should instead call the
ATSUSetFontFallbacks (page 119) function.

ATSUMatchFontsToText looks for characters in a specified range of text that
cannot be drawn with the fonts in the style run. It passes back an offset to the
first range of text that could not be drawn and suggests an alternative font to
use. For example, if the subrange of text for which you wanted to perform font
substitution was the text “abcde”, and the characters ‘c’ and ‘d’ could not be
drawn with the current font (that is, the font in the styles for this text layout
object) but could be drawn with font F, and the character ‘e’ could either be
drawn with the current font or could not be drawn with font F, then
ATSUMatchFontsToText will pass back the ATSUIFontID of font F in the oFont
parameter and will set oChangedOffset to 2 and oChangedLength to 2.
Functions for Manipulating Text Layout Objects 123
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
If the function returns the result codes kATSUFontsMatched or
kATSUFontsNotMatched, you should update the input range and call
ATSUMatchFontsToText again to make sure that all the characters in the range can
be drawn.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUMatchFontsToText may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetTransientFontMatching (page 124)

ATSUGetTransientFontMatching (page 125)

ATSUSetTransientFontMatching 2
Enables automatic font substitution in a text layout object.

OSStatus ATSUSetTransientFontMatching (
ATSUTextLayout iTextLayout,
Boolean iTransientFontMatching);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object for which you want to enable
automatic font substitution. You cannot pass NULL for this
parameter.

iTransientFontMatching
A value of type Boolean that indicates whether you want ATSUI
to perform automatic font substitution. Pass true if you want
automatic font substitution.

function result A result code. See “Result Codes” (page 256).
124 Functions for Manipulating Text Layout Objects

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUSetTransientFontMatching function tells ATSUI to automatically
substitute the best font it finds for a particular character. Upon substitution,
ATSUSetTransientFontMatching does not change the font style run attribute
value in the style object. As a result, if you plan to redraw a text layout object,
you should instead call the ATSUSetFontFallbacks (page 119) or
ATSUMatchFontsToText (page 122) function.

If you want to ensure that the last resort font will be used if no other fonts are
found, you can either call ATSUSetTransientFontMatching or pass the
kATSUSequentialFallbacksExclusive constant in the iFontFallbackMethod
parameter of ATSUSetFontFallbacks. If you do not set the last resort font, glyphs
will be denoted by black boxes when a font is not installed on the user’s system.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUMatchFontsToText (page 122)

ATSUGetTransientFontMatching (page 125)

ATSUGetTransientFontMatching 2
Determines whether automatic font substitution has been enabled in a text
layout object.

OSStatus ATSUGetTransientFontMatching (
ATSUTextLayout iTextLayout,
Boolean *oTransientFontMatching);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object for which you want to
determine whether automatic font substitution has been
enabled. You cannot pass NULL for this parameter.
Functions for Manipulating Text Layout Objects 125
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oTransientFontMatching
A pointer to a value of type Boolean. On return, the value
indicates whether automatic font substitution is enabled in the
specified text layout object. If true, it is enabled.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUMatchFontsToText (page 122)

ATSUSetTransientFontMatching (page 124)

Functions for Responding to User Actions 2

This section describes the functions you can use to respond to actions like text
insertion and deletion, cursor movement, line breaking, and highlighting:

■ “Hit-Testing” (page 126)

■ “Obtaining Cursor Offsets” (page 134)

■ “Deleting and Inserting Text” (page 141)

■ “Measuring Typographic and Image Bounds” (page 145)

■ “Manipulating Line Breaks” (page 156)

■ “Drawing Text” (page 162)

■ “Highlighting and Unhighlighting Text” (page 165)

■ “Performing Background Processing” (page 173)

Hit-Testing 2
ATSUI provides the following functions for hit-testing:
126 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ ATSUPositionToOffset (page 127) obtains the surrounding edge offset(s) of
the character whose onscreen glyph or graphic character is nearest a
mouse-down event.

■ ATSUOffsetToPosition (page 131) obtains the caret position(s) corresponding
to an edge offset.

ATSUPositionToOffset 2
Obtains the surrounding edge offset(s) and text direction of the character whose
onscreen glyph or graphic character is nearest a mouse-down event.

OSStatus ATSUPositionToOffset (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iLocationX,
ATSUTextMeasurement iLocationY,
UniCharArrayOffset *ioPrimaryOffset,
Boolean *oIsLeading,
UniCharArrayOffset *oSecondaryOffset);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the character
whose onscreen glyph or graphic character is nearest the
mouse-down event. You cannot pass NULL for this parameter.

iLocationX A value of type ATSUTextMeasurement (page 196) that represents
the x-coordinate of the position of the hit point relative to the
position of the origin of the line in the current graphics port in
which the hit occurred. To determine the position of the hit
point relative to the graphics port position of the origin of the
line in which the hit occurred, see the discussion below. If you
want the position of the hit relative to the current pen location in
the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).

iLocationY A value of type ATSUTextMeasurement (page 196) that represents
the y-coordinate of the position of the hit point relative to the
position of the origin of the line in the current graphics port in
which the hit occurred. To determine the position of the hit
point relative to the graphics port position of the origin of the
line in which the hit occurred, see the discussion below. If you
Functions for Responding to User Actions 127
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
want the position of the hit relative to the current pen location in
the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).

ioPrimaryOffset
A pointer to a value of type UniCharArrayOffset (page 198). Pass
a pointer to the edge offset of the beginning of the line that
contains the character whose onscreen glyph or graphic
character is nearest the mouse-down event. If the line direction
is right-to-left, the offset of the beginning of the line corresponds
to the lowest edge offset. On return, the value represents the
primary edge offset relative to the origin of the line in which the
hit occurred that corresponds to the closest edge of the glyph
beneath the hit point on the screen. See the discussion below for
more information. You cannot pass NULL for this parameter.

oIsLeading A pointer to a value of type Boolean. On return, the value
indicates whether the edge offset passed back in the
ioPrimaryOffset parameter is leading or trailing. If true, the
primary offset is more closely associated with the following
character in the backing-store memory. If false, the primary
offset is more closely associated with the previous character in
the backing-store memory. See the discussion below for more
information.

oSecondaryOffset
A pointer to a value of type UniCharArrayOffset (page 198). On
return, if the hit point occurs on a line direction boundary, the
value represents the edge offset relative to the origin of the line
in which the hit occurred that corresponds to the furthest edge
of the glyph beneath the hit point. See the discussion below for
more information.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).
128 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUPositionToOffset function determines the edge offset(s) in
backing-store memory and the text direction of the character whose onscreen
glyph or graphics character is nearest a mouse-down event. If the hit occurred
on a line direction boundary, it passes back a second edge offset in the
oSecondaryOffset parameter. A line direction boundary can occur on the trailing
edges of two glyphs, the leading edges of two glyphs, or at the beginning or
end of a text segment. The primary offset (also known as the high caret offset)
corresponds to the closest edge of the glyph beneath the hit point. The
secondary offset (also known as the low caret offset) corresponds to the furthest
edge of the glyph beneath the hit point.

The user expects that pressing the mouse button correlates to particular actions
in an application. You can use the offset(s) passed back in ATSUPositionToOffset
for providing feedback or performing any actions in response to the user.

For example, if the user presses the mouse button in text, your application
should pass the resulting edge offset to ATSUOffsetToPosition (page 131) to
determine the caret position(s) corresponding to this offset. If the user presses
the mouse button while the cursor is on a glyph and drags the cursor across a
range of text, then releases the mouse, your application might want to respond
by highlighting the text between the mouse-down and mouse-up events. To do
this, you would pass the edge offset (s) passed back from ATSUPositionToOffset
that correspond to the mouse-up and mouse-down event positions to the
ATSUHighlightText (page 165) function.

If the user then presses the mouse button outside the highlighted area, your
application should pass the same edge offsets to the ATSUUnhighlightText
(page 168) function. If the user double clicks (word selection) or triple clicks
(paragraph selection), You can pass the resulting primary edge offset to
ATSUOffsetToPosition (page 131) to determine the caret position(s)
corresponding to this offset.

ATSUI does not keep actual line positions. As a result, the coordinates passed in
the iLocationX and iLocationY parameters are relative to the position in the
current graphics port of the origin of the line in which the mouse-down
occurred. The passed back back edge offset(s) are thus offsets from the
beginning of the line in which the hit occurred, not from the beginning of the
text layout object’s buffer.

To tranform the hit point’s position, you must first call the GlobalToLocal
function, described in “Basic QuickDraw” in Inside Macintosh: Imaging with
QuickDraw, to translate the global coordinates passed back in the where field of
Functions for Responding to User Actions 129
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
the event record to local coordinates. For more information about responding to
mouse-down events, see the “The Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials. You then subtract the hit point (in local coordinates)
from the position of the line’s origin in the current graphics port.

For example, if you have a mouse-down event whose position in local
coordinates is (75,50), you would subtract this value from the position of the
origin of the line in the current graphics port. If the position of the origin of the
line in the current graphics port is (50,50), then the relative position of the hit
that you would pass in the iLocationX and iLocationY parameters would be
(25,0).

ATSUPositionToOffset passes back a Boolean value in the oIsLeading parameter
to tell you the text direction of the primary edge offset. This directionality is
determined by the Unicode directionality of the original character in
backing-store memory. If it passes back true, the primary edge offset is more
closely associated with the following character in the backing-store memory. If
it passes back false, the primary offset is more closely associated with the
previous character in the backing-store memory.

The following summarizes the possible outcomes of calling
ATSUPositionToOffset:

■ When the input pixel location (that is, the location of the hit point on the
screen) is on the leading edge of the glyph, ATSUPositionToOffset passes
back primary and secondary offsets corresponding to that glyph and an
oIsLeading flag of true. If the glyph represents multiple characters and the
style run attribute corresponding to the kATSUNoLigatureSplitTag has been
set for them, ATSUPositionToOffset passes back an edge offset representing
the beginning of this group of characters in memory.

■ When the input pixel location is on the trailing edge of the glyph,
ATSUPositionToOffset passes back primary and secondary offsets
representing the ending of this group of characters in memory following the
character or characters represented by the glyph and an oIsLeading flag of
false.

■ When the input pixel location is beyond the leftmost or rightmost caret
positions (not taking into account line rotation) such that no glyph
corresponds to the location of the hit, ATSUPositionToOffset passes back the
primary edge offset of the closest edge of the line to the input location. The
oIsLeading flag depends on the directionality of the closest glyph and the
side of the line the input location is closest to. In this case, the secondary
offset is equal to the primary offset, since no glyph was hit.
130 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUPositionToOffset may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

ATSUOffsetToPosition 2
Obtains the caret position(s) corresponding to a specific edge offset.

OSStatus ATSUOffsetToPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOffset,
Boolean iIsLeading,
ATSUCaret *oMainCaret,
ATSUCaret *oSecondCaret,
Boolean *oCaretIsSplit);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the text range
whose caret position you want to determine. You cannot pass
NULL for this parameter.

iOffset A pointer to a value of type UniCharArrayOffset (page 198) that
represents the edge offset whose caret position(s) you wish to
determine. To visually respond to a mouse-down event, pass the
offset passed back in the ioPrimaryOffset parameter of
ATSUPositionToOffset (page 127).

iIsLeading A Boolean value that is only relevant if the specific edge offset
occurs at a line direction boundary. To determine whether the
offset occurs at a line direction boundary, evaluate the Boolean
value passed back in the oCaretIsSplit parameter. If true, the
edge offset is on a line direction boundary. Pass true in this
parameter if the edge offset corresponds to the first offset of the
line. Pass false if the edge offset is the last offset of the line. In
this case, the last offset has a value equal to the sum of the
starting edge offset and line length.
Functions for Responding to User Actions 131
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oMainCaret A pointer to a structure of type ATSUCaret (page 188). On return,
if the value passed back from oCaretIsSplit is true, the
structure contains the starting and ending pen locations of the
high caret. If the passed back value is false, the structure
contains the starting and ending pen locations of the main caret.

oSecondCaret A pointer to a structure of type ATSUCaret (page 188). On return,
if the value passed back from oCaretIsSplit is true, the
structure contains the starting and ending pen locations of the
low caret. If the passed back value is false, the structure
contains the starting and ending pen locations of the main caret
contained in the oMainCaret parameter.

oCaretIsSplit A pointer to a value of type Boolean. On return, the value
indicates whether the specific edge offset occurs at a line
direction boundary. If true, the offset occurs at a line direction
boundary. In this case, the oSecondCaret parameter contains the
starting and ending locations of the low caret. If false, the offset
does not occur at a line direction boundary. In this case, the
oSecondCaret parameter contains the starting and ending pen
locations of the high caret contained in the oMainCaret
parameter.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).

DISCUSSION

The user expects that pressing the mouse button correlates to the display of a
caret in text. Your application should call the ATSUOffsetToPosition function to
find the caret position(s) corresponding to a mouse-down event. To determine
caret position(s), you must first pass the hit point relative to the graphics port
position of the origin of the line in which the hit occurred to the
ATSUPositionToOffset (page 127) function. ATSUPositionToOffset passes back
the edge offset (or offsets, if it falls on a line direction boundary), from the
beginning of the line that contains the character whose onscreen glyph or
132 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
graphic character is nearest the mouse-down event. Note that the passed back
offset is relative to the beginning of the line in which the hit occurred, not from
the beginning of the text layout object’s buffer.

You should pass the edge offset passed back in the ioPrimaryOffset parameter
of ATSUPositionToOffset into the iOffset parameter of ATSUOffsetToPosition.

ATSUPositionToOffset passes back a Boolean value in the oCaretIsSplit
parameter that indicates whether the edge offset occurs at a line direction
boundary. If true, the offset occurs at a line direction boundary. In this case,
pass a Boolean value in the iIsLeading parameter indicating whether the edge
offset corresponds to the first offset (true) or last offset (false) of the line. The
oSecondCaret parameter will contain the starting and ending locations of the
low caret.

If false, the edge offset does not occur at a line direction boundary. In this case,
the oSecondCaret parameter contains the starting and ending pen locations of
the caret contained in the oMainCaret parameter.

Because the edge offset passed back from ATSUPositionToOffset is relative to the
beginning of the line in which the hit occurred, you must transform the starting
and ending pen locations associated with the caret passed back from
ATSUOffsetToPosition to their actual coordinates in the current graphics port.
To do this, you must add the value of the passed back coordinates to the
coordinates of the position of the line’s origin in the current graphics port.

For example, if you have a straight caret whose starting and ending location
(relative to the line origin) is (25,0), you would add this value to the position of
the origin of the line in the current graphics port. If the position of the origin of
the line in the current graphics port is (50,50), then the actual position that you
would draw the caret in the current graphics port would be (75,50).

To draw the caret, you could call MoveTo(fX, fY) and LineTo(fDeltaX, fDeltaY),
or equivalent functions. The MoveTo and LineTo functions are described in “Basic
QuickDraw” in Inside Macintosh: Imaging with QuickDraw. Note that the passed
back caret structure(s) contain the positions needed to draw the carets on
angled lines and reflect angled carets and leading/trailing split caret
appearances.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUOffsetToPosition may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).
Functions for Responding to User Actions 133
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

Obtaining Cursor Offsets 2
ATSUI provides the following functions for obtaining cursor offsets:

■ ATSUNextCursorPosition (page 134) obtains the previous edge offset for a
specified offset based on cursor movement.

■ ATSUPreviousCursorPosition (page 136) obtains the previous edge offset for a
specified offset based on cursor movement.

■ ATSURightwardCursorPosition (page 138) obtains the edge offset to the right
of the high caret position for a specified offset based on cursor movement.

■ ATSULeftwardCursorPosition (page 140) obtains the edge offset to the left of
the high caret position for a specified offset based on cursor movement.

ATSUNextCursorPosition 2
Obtains the next edge offset for a specified offset based on cursor movement.

OSStatus ATSUNextCursorPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOldOffset,
ATSUCursorMovementType iMovementType,
UniCharArrayOffset *oNewOffset);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the cursor whose
offset you want to obtain. You cannot pass NULL for this
parameter.

iOldOffset A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the initial cursor position. You can
pass the constant kATSUFromTextBeginning, described in “Text
Offset Constant” (page 256), to represent the edge offset of the
beginning of the text layout object’s text buffer. Note that if the
offset is outside the text layout object’s range of text,
ATSUNextCursorPosition returns the result code
kATSUInvalidTextRangeErr.
134 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iMovementType A value of type ATSUCursorMovementType that represents the unit
distance that the cursor has moved. See “Cursor Movement
Constants” (page 207) for a description of possible values.

oNewOffset A pointer to a value of type UniCharArrayOffset (page 198). On
return, the value represents the edge offset corresponding to the
new cursor position. This can be outside the text layout object’s
specified range of text.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).

DISCUSSION

The ATSUNextCursorPosition function obtains the next edge offset depending
upon the type of cursor movement (by character, cluster, or word). The
distances corresponding to these movement types are described in “Cursor
Movement Constants” (page 207). Note that because of surrogate pairs, you can
not always move the cursor by one character, since doing so might place the
cursor in the middle of a surrogate pair. For more information on surrogate
pairs, see “ATSUI Implementation of the Unicode Specification” (page 265).

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUNextCursorPosition may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUPreviousCursorPosition (page 136)
Functions for Responding to User Actions 135
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSURightwardCursorPosition (page 138)

ATSULeftwardCursorPosition (page 140)

ATSUPreviousCursorPosition 2
Obtains the previous edge offset for a specified offset based on cursor
movement.

OSStatus ATSUPreviousCursorPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOldOffset,
ATSUCursorMovementType iMovementType,
UniCharArrayOffset *oNewOffset);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the cursor whose
offset you want to obtain. You cannot pass NULL for this
parameter.

iOldOffset A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the initial cursor position. You can
pass the constant kATSUFromTextBeginning, described in “Text
Offset Constant” (page 256), to represent the edge offset of the
beginning of the text layout object’s text buffer. Note that if the
offset is outside the text layout object’s range of text,
ATSUPreviousCursorPosition returns the result code
kATSUInvalidTextRangeErr.

iMovementType A value of type ATSUCursorMovementType that represents the unit
distance that the cursor has moved. See “Cursor Movement
Constants” (page 207) for a description of possible values.
Values must be at least one character (2 bytes) and no more than
a word in length.

oNewOffset A pointer to a value of type UniCharArrayOffset (page 198). On
return, the value represents the edge offset corresponding to the
new cursor position. This can be outside the text layout object’s
specified range of text.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
136 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).

DISCUSSION

You can call the ATSUPreviousCursorPosition function to obtain the next edge
offset when the cursor is moved one character, cluster, or word. The distances
corresponding to these movement types are described in “Cursor Movement
Constants” (page 207). Note that because of surrogate pairs, you can not always
move the cursor by one character, since doing so might place the cursor in the
middle of a surrogate pair. For more information on surrogate pairs, see “ATSUI
Implementation of the Unicode Specification” (page 265).

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUPreviousCursorPosition may allocate
memory in your application heap. If you want more control over ATSUI's
memory allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUNextCursorPosition (page 134)

ATSURightwardCursorPosition (page 138)

ATSULeftwardCursorPosition (page 140)
Functions for Responding to User Actions 137
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSURightwardCursorPosition 2
Obtains the edge offset to the right of the high caret position for a specified
offset based on cursor movement.

OSStatus ATSURightwardCursorPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOldOffset,
ATSUCursorMovementType iMovementType,
UniCharArrayOffset *oNewOffset);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the cursor whose
offset you want to obtain. You cannot pass NULL for this
parameter.

iOldOffset A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the initial cursor position. You can
pass the constant kATSUFromTextBeginning, described in “Text
Offset Constant” (page 256), to represent the edge offset of the
beginning of the text layout object’s text buffer. Note that if the
offset is outside the text layout object’s range of text,
ATSURightwardCursorPosition returns the result code
kATSUInvalidTextRangeErr.

iMovementType A value of type ATSUCursorMovementType that represents the unit
distance that the cursor has moved. See “Cursor Movement
Constants” (page 207) for a description of possible values.
Values must be at least one character (2 bytes) and no more than
a word in length.

oNewOffset A pointer to a value of type UniCharArrayOffset (page 198). On
return, the value represents the edge offset corresponding to the
new cursor position. This can be outside the text layout object’s
specified range of text.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).
138 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

You can call the ATSURightwardCursorPosition function to the edge offset to the
right of the high caret position for a specific offset when the use moves the
cursor rightward on the screen by one character, cluster, or word. The distances
corresponding to these movement types are described in “Cursor Movement
Constants” (page 207). Note that because of surrogate pairs, you can not always
move the cursor by one character, since doing so might place the cursor in the
middle of a surrogate pair. For more information on surrogate pairs, see “ATSUI
Implementation of the Unicode Specification” (page 265).

Except in the case of Indic text (and other cases where the font rearranges the
glyphs), for left-to-right text, ATSURightwardCursorPosition has the same effect
as calling ATSUNextCursorPosition (page 134). For right-to-left text,
ATSURightwardCursorPosition has the same effect as calling
ATSUPreviousCursorPosition (page 136).

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSURightwardCursorPosition may allocate
memory in your application heap. If you want more control over ATSUI's
memory allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUNextCursorPosition (page 134)

ATSUPreviousCursorPosition (page 136)

ATSULeftwardCursorPosition (page 140)
Functions for Responding to User Actions 139
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSULeftwardCursorPosition 2
Obtains the edge offset to the left of the high caret position for a specified offset
based on cursor movement.

OSStatus ATSULeftwardCursorPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOldOffset,
ATSUCursorMovementType iMovementType,
UniCharArrayOffset *oNewOffset);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the cursor whose
offset you want to obtain. You cannot pass NULL for this
parameter.

iOldOffset A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the initial cursor position. You can
pass the constant kATSUFromTextBeginning, described in “Text
Offset Constant” (page 256), to represent the edge offset of the
beginning of the text layout object’s text buffer. Note that if the
offset is outside the text layout object’s range of text,
ATSULeftwardCursorPosition returns the result code
kATSUInvalidTextRangeErr.

iMovementType A value of type ATSUCursorMovementType that represents the unit
distance that the cursor has moved. See “Cursor Movement
Constants” (page 207) for a description of possible values.
Values must be at least one character (2 bytes) and no more than
a word in length.

oNewOffset A pointer to a value of type UniCharArrayOffset (page 198). On
return, the value represents the edge offset corresponding to the
new cursor position. This can be outside the text layout object’s
specified range of text.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).
140 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

You can call the ATSULeftwardCursorPosition function to the edge offset to the
right of the high caret position for a specific offset when the use moves the
cursor leftward on the screen by one character, cluster, or word. The distances
corresponding to these movement types are described in “Cursor Movement
Constants” (page 207). Note that because of surrogate pairs, you can not always
move the cursor by one character, since doing so might place the cursor in the
middle of a surrogate pair. For more information on surrogate pairs, see “ATSUI
Implementation of the Unicode Specification” (page 265).

Except in the case of Indic text (and other cases where the font rearranges
glyphs), for left-to-right text, ATSULeftwardCursorPosition has the same effect as
calling ATSUPreviousCursorPosition (page 136). For right-to-left text,
ATSULeftwardCursorPosition has the same effect as calling
ATSUNextCursorPosition (page 134).

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSULeftwardCursorPosition may allocate
memory in your application heap. If you want more control over ATSUI's
memory allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUNextCursorPosition (page 134)

ATSUPreviousCursorPosition (page 136)

ATSURightwardCursorPosition (page 138)

Deleting and Inserting Text 2
ATSUI provides the following functions for deleting and inserting text:

■ ATSUTextDeleted (page 142) indicates to a text layout object that text has been
deleted.
Functions for Responding to User Actions 141
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ ATSUTextInserted (page 143) indicates to a text layout object that text has
been inserted.

ATSUTextDeleted 2
Indicates to a text layout object that text has been deleted.

OSStatus ATSUTextDeleted (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iDeletedRangeStart,
UniCharCount iDeletedRangeLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object in which text has been
deleted. You cannot pass NULL for this parameter.

iDeletedRangeStart
A value of type UniCharArrayOffset (page 198) that represents
the beginning location in the text layout object where text has
been deleted. This can be an offset outside the text layout
object’s text range, since you will want to alert the text layout
object of deletions that occur before or after this subrange. Text
preceding the deleted text will be shifted by the appropriate
offset (iDeletedRangeStart +iDeletedRangeLength). You can pass
the constant kATSUFromTextBeginning, described in “Text Offset
Constant” (page 256), to represent the edge offset of the
beginning of the text layout object’s text buffer.

iDeletedRangeLength
A value of type UniCharCount (page 198) that represents the
length of the deleted text. This range can extend beyond the text
layout object’s own range of text, since you will want to alert the
text layout object of deletions that occur before or after this
subrange. Text preceding the deleted text will be shifted by the
appropriate offset (iDeletedRangeStart +iDeletedRangeLength).
You can pass the constant kATSUTexttoEnd, described in “Text
Length Constant” (page 255), to represent the end of the text
layout object’s text buffer. Note that if the specified text range
extends beyond the text layout object’s text buffer,
ATSUTextDeleted returns the result code
kATSUInvalidTextRangeErr.
142 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. See “Result Codes” (page 256).

DISCUSSION

Your application may use the ATSUTextDeleted function to indicate to a text
layout object that text has been deleted. ATSUTextDeleted removes any style runs
or soft line breaks in the text layout object’s text range that have been specified
to be deleted.

When you call ATSUTextDeleted, drawing caches are updated and style runs are
removed as appropriate. You are responsible for making sure that the
corresponding text is also removed from the text buffer. ATSUTextDeleted does
not dispose of the memory used by the removed style objects. You are
responsible for doing so.

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUTextInserted (page 143)

ATSUTextInserted 2
Indicates to a text layout object that text has been inserted.

OSStatus ATSUTextInserted (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iInsertionLocation,
UniCharCount iInsertionLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object within which text has been
inserted. You cannot pass NULL for this parameter.

iInsertionLocation
A value of type UniCharArrayOffset (page 198) that represents
the beginning location of inserted text. This can be an offset
outside the text layout object’s text range, since you will want to
Functions for Responding to User Actions 143
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
alert the text layout object of insertions that occur before or after
this subrange. Text preceding the inserted text will be shifted by
the appropriate offset (iInsertionLocation
+iInsertionLocation). You can pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 256), to represent the edge offset of the beginning of the
text layout object’s text buffer.

iInsertionLength
A value of type UniCharCount (page 198) that represents the
length of inserted text. This can be a range outside the text
layout object’s text range, since you will want to alert the text
layout object of insertions that occur before or after this
subrange. Text preceding the inserted text will be shifted by the
appropriate offset (iInsertionLocation +iInsertionLocation).
You can pass the constant kATSUTexttoEnd, described in “Text
Length Constant” (page 255), to represent the end of the text
layout object’s text buffer. Note that if the specified text range
extends beyond the text layout object’s text buffer,
ATSUTextInserted returns the result code
kATSUInvalidTextRangeErr.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

Your application may use the ATSUTextInserted function to indicate to a text
layout object that text has been inserted.

When you call ATSUTextInserted, drawing caches are updated and text is
inserted where specified. ATSUTextInserted does not insert style runs or line
breaks. To insert these, call the functions ATSUSetRunStyle (page 114) and
ATSUSetSoftLineBreak (page 159), respectively.

When you call ATSUTextInserted, the memory location and offset of the text in
the text layout object is unchanged, but the total length of the text is extended
by the specified amount. The style run containing the insertion point is
extended. If the insertion point is the border between two style runs, the first is
extended to include the new text. You are responsible for making sure that the
corresponding text is inserted into the text buffer.
144 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUTextDeleted (page 142)

Measuring Typographic and Image Bounds 2

■ ATSUGetGlyphBounds (page 145) obtains the typographic glyph bounds of a
range of text.

■ ATSUMeasureText (page 148) obtains the typographic bounds of a range of .

■ ATSUMeasureTextImage (page 153) obtains the image bounds.

ATSUGetGlyphBounds 2
Obtains the typographic glyph bounds of a range of text.

OSStatus ATSUGetGlyphBounds (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iTextBasePointX,
ATSUTextMeasurement iTextBasePointY,
UniCharArrayOffset iBoundsCharStart,
UniCharCount iBoundsCharLength,
UInt16 iTypeOfBounds,
ItemCount iMaxNumberOfBounds,
ATSTrapezoid oGlyphBounds[],
ItemCount *oActualNumberOfBounds);

iTextLayout A reference of type ATSUTextLayout (page 195). The reference
points to an initialized text layout object that contains the range
of text whose image bounds you want to obtain. You cannot
pass NULL for this parameter.

iTextBasePointX
A value of type ATSUTextMeasurement (page 196). This value
represents the x-coordinate of the position of the origin of the
line in the current graphics port containing the range of text
Functions for Responding to User Actions 145
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
whose typographic glyph bounds you want to calculate. This
enables you to match up the passed back trapezoids to the
image so you can draw the bounds. If you just want the length
of the bounds but not its onscreen position, pass 0. If you want
to calculate the glyph bounds relative to the current pen location
in the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).

iTextBasePointY
A value of type ATSUTextMeasurement (page 196). This value
represents the y-coordinate of the position of the origin of the
line in the current graphics port containing the range of text
whose typographic glyph bounds you want to calculate. This
enables you to match up the passed back trapezoids to the
image so you can draw the bounds. If you just want the length
of the bounds but not its onscreen position, pass 0. If you want
to calculate the glyph bounds relative to the current pen location
in the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).

iBoundsCharStart
A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the beginning of the range of text
whose onscreen typographic glyph bounds you want to obtain.
You can pass the constant kATSUFromTextBeginning, described in
“Text Offset Constant” (page 256), to represent the edge offset of
the beginning of the text layout object’s text buffer.

iBoundsCharLength
A value of type UniCharCount (page 198). The value represents
the length of the range of text whose onscreen typographic
glyph bounds you want to obtain.You can pass the constant
kATSUTexttoEnd, described in “Text Length Constant” (page 255),
to represent the end of the text layout object’s text buffer. Note
that if the specified text range extends beyond the text layout
object’s text buffer, ATSUGetGlyphBounds returns the result code
kATSUInvalidTextRangeErr.
146 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTypeOfBounds A value of type UInt16. The value specifies whether the width of
the resulting typographic glyph bounds will be determined
using the caret origin, glyph origin in device space, or glyph
origin in fractional absolute positions. See “Glyph Bounds
Constants” (page 222) for a description of possible values.

iMaxNumberOfBounds
A value of type ItemCount. This value represents the number of
glyph bounds you want passed back in the oGlyphBounds array.
You can predetermine this value by first calling
ATSUGetGlyphBounds (iTextLayout, iTextBasePointX,
iTextBasePointY, iBoundsCharStart, iBoundsCharLength,
iTypeOfBounds, NULL, &oActualNumberOfBounds).

oGlyphBounds An array of structures of type ATSTrapezoid (page 185) that
represents the typographic glyph bounds. For information You
can predetermine how much memory to allocate for this array
by first calling ATSUGetGlyphBounds (iTextLayout,
iTextBasePointX, iTextBasePointY, iBoundsCharStart,
iBoundsCharLength, iTypeOfBounds, NULL,
&oActualNumberOfBounds). You cannot pass NULL for this
parameter.

oActualNumberOfBounds
A pointer to a value of type ItemCount. On return, this value
represents the actual number of typographic bounding
trapezoids of the specified character(s). This may be greater than
the value passed in the iMaxNumberOfBounds parameter. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUGetGlyphBounds function passes back an array of structures of type
ATSTrapezoid (page 185) that represent the final laid out line bounding
trapezoids. You might want to call ATSUGetGlyphBounds to do your own text
highlighting using the fractional origin instead of the device origin for the
width of the highlight.

Before calculating the typographic glyph bounds of a range of text,
ATSUGetGlyphBounds examines the text layout object to make sure that the style
runs cover the entire range of text.
Functions for Responding to User Actions 147
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
If there are gaps between style runs, ATSUGetGlyphBounds assigns the characters
in the gap to the style run following the gap. If there is no style run at the
beginning of the range of text, ATSUGetGlyphBounds assigns these characters to
the first style run it can find. If there no style run at the end of the range of text,
ATSUGetGlyphBounds assigns the remaining characters to the last style run it can
find.

Each ATSTrapezoid structure contains the coordinates of a typographic
bounding trapezoid. The maximum number of trapezoids is 31, corresponding
to 16 bi-directional levels. The coordinates of each trapezoid are offset by the
amount you specify in the iTextBasePointX and iTextBasePointY parameters. If
you want to draw the typographic bounds on the screen, pass the position of
the origin of the line in current graphics port in these parameters. This enables
ATSUGetGlyphBounds to match the trapezoids to their onscreen image.

The height of the trapezoid(s) is determined by the line ascent and descent
attribute values you previously set for the line. If you have not set these values
for the line, ATSUGetGlyphBounds will use the values set for the text layout object
containing the line. If neither have been set, ATSUGetGlyphBounds will use the
natural line ascent and descent calculated for the line.

The width of the trapezoid(s) is determined using the caret origin, glyph origin
in device space, or glyph origin in fractional absolute positions, depending
upon the value you pass in the iTypeOfBounds parameter.

VERSION NOTES

Available with ATSUI 1.1.

ATSUMeasureText 2
Obtains the typographic bounding rectangle of a range of text.

OSStatus ATSUMeasureText (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
UniCharCount iLineLength,
ATSUTextMeasurement *oTextBefore,
ATSUTextMeasurement *oTextAfter,
ATSUTextMeasurement *oAscent,
ATSUTextMeasurement *oDescent);
148 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLayout A reference of type ATSUTextLayout (page 195). The reference
points to an initialized text layout object that contains the range
of text whose typographic bounds you want to obtain. You
cannot pass NULL for this parameter.

iLineStart A value of type UniCharArrayOffset (page 198). The value
represents the edge offset in backing-store of the beginning of
line of text you want to measure. You can pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 256), to represent the edge offset of the beginning of the
text buffer.

iLineLength A value of type UniCharCount (page 198). The value represents
the length of the range of text you want to measure. You can
pass the constant kATSUToTextEnd, described in “Text Length
Constant” (page 255), to represent the end of the text buffer.
Note that if the range of text extends beyond the text buffer,
ATSUMeasureText returns the result code
kATSUInvalidTextRangeErr.

oTextBefore A pointer to a value of type ATSUTextMeasurement (page 196). On
return, the value represents the starting position of the
typographic bounding rectangle relative to the origin of the line
in the current graphics port.

oTextAfter A pointer to a value of type ATSUTextMeasurement (page 196). On
return, the value represents the ending location of the
typographic bounding rectangle relative to the origin of the line.
The value reflects text with no line rotation, justification, or
flushness and is independent of the rendering device used to
display the text.

oAscent A pointer to a value of type ATSUTextMeasurement (page 196). On
return, the value represents the ascent for the entire line relative
to the origin of the line, including cross-stream or baseline shifts.
The value reflects text with no line rotation, justification, or
flushness and is independent of the rendering device used to
display the text.

oDescent A pointer to a value of type ATSUTextMeasurement (page 196). On
return, the value represents the descent for the entire line
relative to the origin of the line, including cross-stream or
Functions for Responding to User Actions 149
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
baseline shifts. The value reflects text with no line rotation,
justification, or flushness and is independent of the rendering
device used to display the text.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).

DISCUSSION

The ATSUMeasureText function obtains the typographic bounds of a set of
glyphs. Your application should call the ATSUMeasureText function to determine
where to place the origin of the lines and leading spaces between lines.

Before calculating the typographic glyph bounds of a range of text,
ATSUMeasureText examines the text layout object to make sure that the style runs
cover the entire range of text.

If there are gaps between style runs, ATSUMeasureText assigns the characters in
the gap to the style run following the gap. If there is no style run at the
beginning of the range of text, ATSUMeasureText assigns these characters to the
first style run it can find. If there no style run at the end of the range of text,
ATSUMeasureText assigns the remaining characters to the last style run it can
find.

The typographic bounding rectangle does not reflect line rotation, justification,
or alignment text layout attributes set for the line or text layout object. The
coordinates are independent of the rendering device used to display the text.

The height of the typographic bounding rectangle is determined by the line
ascent and line descent text layout attribute values set for the line or text layout
object. If these attribute values have been set for the line, ATSUMeasureText will
use them. Otherwise, it will check to see whether these values have been set in
the text layout object. If neither have been set, it will use the natural line ascent
and descent calculated for the line.

Figure 2-1 illustrates the difference between the standard and typographic
bounding rectangles. The typographic bounding rectangle is the smallest
rectangle that encloses the full span of the glyphs from the ascent line to the
150 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
descent line, regardless of whether any glyphs extend to those lines. The width
of the rectangle extends from the origin of the first glyph through the advance
width of the last glyph, including any hanging punctuation and accounting for
shifts due to optical alignment.

Figure 2-1 Standard and typographic bounding rectangles

You should call ATSUMeasureTextImage (page 153) when you want to calculate
the standard bounding rectangle for a block of text. The standard bounding
rectangle is the smallest rectangle that completely encloses the filled or framed
parts of the line. While the typographic bounding rectangle takes into account
the ascent and descent lines for the displayed glyphs, the standard bounding
rectangle just encloses the “inked parts” of the displayed glyphs. However,
because of the height differences between glyphs—for example, between a
small glyph, such as a lowercase “e”, and a taller, larger glyph, such an
uppercase “M”, or even between glyphs of different fonts and point sizes—the
standard bounding rectangle may not be sufficient for your application’s
purposes.

Before measuring the text, ATSUMeasureText turns off justification, rotation, and
flushness in the text layout object and treats the text as a single line starting at
the offset specified in the iLineStart parameter.

If text layout attributes have been set for range of text which ATSUMeasureText is
measuring, it uses these text layout attributes to determine character layout. If
no attributes have been set for the line, ATSUMeasureText uses the text layout
attributes set for the entire text layout object to determine character layout.

Standard bounding rectangle

Typographic bounding rectangle
Functions for Responding to User Actions 151
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUMeasureText will not change or invalidate existing laid-out lines. Its main
purpose is to give you feedback on the typographical extrema of a range of
characters so you can position lines determine line breaks.

If the line of text is rotated, the sides of the standard bounding rectangle passed
back by ATSUMeasureTextImage (page 153) are parallel to the coordinate axes and
encompass the rotated line, while the typographic bounding rectangle passed
back by ATSUMeasureText reflects an unrotated line of text. You should pass the
standard bounding rectangle of a line of text to the function EraseRect to ensure
erase all the text.

If the range of text is less than a line, ATSUMeasureText treats the text as a line
and ignores the text layout attributes in the text layout object. Note that it
doesn’t make sense to specify a range of text that is less than a line because of
bi-directional text. If the range matches an existing line, ATSUMeasureText still
performs post-compensation actions on it. If the range of text goes beyond the
line boundary, ATSUMeasureText ignores soft line breaks (that is, it treats the text
as a line).

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUMeasureText may allocate memory in your
application heap. If you want more control over ATSUI's memory allocation, see
the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUMeasureTextImage (page 153)

ATSUDrawText (page 163)
152 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUMeasureTextImage 2
Obtains the standard bounding rectangle (that is, image bounds) of a range of
text.

OSStatus ATSUMeasureTextImage (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineOffset,
UniCharCount iLineLength,
ATSUTextMeasurement iLocationX,
ATSUTextMeasurement iLocationY,
Rect *oTextImageRect);

iTextLayout A reference of type ATSUTextLayout (page 195). The reference
points to an initialized text layout object that contains the range
of text whose image bounds you want to obtain. You cannot
pass NULL for this parameter.

iLineOffset A value of type UniCharArrayOffset (page 198). The value
represents the edge offset in backing-store of the beginning of
line of text you want to measure. You can pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 256), to represent the edge offset of the beginning of the
text buffer.

iLineLength A value of type UniCharCount (page 198). The value represents
the length of the range of text you want to measure. You can
pass the constant kATSUToTextEnd, described in “Text Length
Constant” (page 255), to represent the end of the text buffer.
Note that if the range of text extends beyond the text buffer,
ATSUMeasureText returns the result code
kATSUInvalidTextRangeErr.

iLineLength A value of type UniCharCount (page 198) that represents the
length of the text to measure. You can pass the constant
kATSUToTextEnd, described in “Text Length Constant” (page 255),
to represent the length of an application-specified range of text.
Note that if the text range extends beyond the text layout
object’s text range, ATSUMeasureTextImage returns the result code
kATSUInvalidTextRangeErr.

iLocationX A value of type ATSUTextMeasurement (page 196). This value
represents the x-coordinate of the position of the origin of the
line in the current graphics port containing the range of text
Functions for Responding to User Actions 153
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
whose image bounds you want to calculate. If you want to
measure the image bounds relative to the current pen location in
the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).

iLocationY A value of type ATSUTextMeasurement (page 196). This value
represents the y-coordinate of the position of the origin of the
line in the current graphics port containing the range of text
whose image bounds you want to calculate. If you want to
measure the image bounds relative to the current pen location in
the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).

oTextImageRectA pointer to a structure of type Rect. On return, the structure
contains the enclosing rectangle of the image bounds of the text
offset by the iLocationX and iLocationY parameters. If the line is
rotated, the rectangle’s sides are parallel to the coordinate axis.
You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).

DISCUSSION

Your application may use the ATSUMeasureTextImage function to calculate the
standard bounding rectangle for a range of text. You should call
ATSUMeasureTextImage when you want to obtain the standard bounding
rectangle of the final line (that is, a line that has been justified, aligned, etc.) to
determine the distance of a specific character within the line from the start of
line. It reflects the final laid-out line and includes the effects of all text layout
attributes that have been set, including hanging punctuation. The rectangle
passed back in the oTextImageRect parameter is the same rectangle used by
ATSUDrawText (page 163).
154 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
The height of the typographic bounding rectangle is determined by the natural
line ascent and descent calculated for the line. ATSUMeasureTextImage ignores
line ascent and descent text layout attributes set for the line or text layout
attribute in which it is measuring typographic bounds.

You should call ATSUMeasureText (page 148) when you want to calculate the
typographic bounding rectangle for a block of text. This is important for editing
and word processing applications, since it enables them to ascertain where to
place the origin of the lines and leading spaces between lines. Before measuring
the text, ATSUMeasureText turns off justification, rotation, and flushness in the
text layout object and treats the text as a single line starting at iLineStart. For
more information on typographic and standard bounding rectangles, see
ATSUMeasureText (page 148).

If text layout attributes have been set for range of text which
ATSUMeasureTextImage is measuring, it uses these text layout attributes to
determine character layout. If no attributes have been set for the line,
ATSUMeasureTextImage uses the text layout attributes set for the entire text
layout object to determine character layout.

If the line of text is rotated, the sides of the standard bounding rectangle passed
back by ATSUMeasureTextImage are parallel to the coordinate axes and
encompass the rotated line, while the typographic bounding rectangle passed
back by ATSUMeasureText reflects an unrotated line of text. You should pass the
standard bounding rectangle of a line of text to the function EraseRect to ensure
erase all the text.

The coordinates you pass in the iLocationX and iLocationY parameters
represent the specified location of the line’s origin of the text you want to
measure. Usually, these are the same values used by ATSUDrawText (page 163) for
the line of text to be measured.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUMeasureTextImage may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.
Functions for Responding to User Actions 155
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUMeasureText (page 148)

ATSUDrawText (page 163)

Manipulating Line Breaks 2
ATSUI provides the following functions for manipulating line breaks:

■ ATSUBreakLine (page 156) calculates the best location for a soft line break in a
line and optionally performs the line break.

■ ATSUSetSoftLineBreak (page 159) sets the position of a specified soft line
break in a range of text.

■ ATSUGetSoftLineBreaks (page 160) obtains the positions of all the set soft line
breaks from a range of text.

■ ATSUClearSoftLineBreaks (page 162) removes all set soft line breaks from a
range of text.

ATSUBreakLine 2
Calculates the best location for a soft line break in a line and optionally
performs the line break.

OSStatus ATSUBreakLine (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
ATSUTextMeasurement iLineWidth,
Boolean iUseAsSoftLineBreak,
UniCharArrayOffset *oLineBreak);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object whose soft line breaks you
wish ATSUBreakLine to calculate and optionally set. You cannot
pass NULL for this parameter.

iLineStart A value of type UniCharArrayOffset (page 198). The first time
you call ATSUBreakLine, pass the edge offset of the beginning of
the line whose soft line breaks you wish to calculate. On
subsequent calls, pass the soft line break ATSUBreakLine
156 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
calculated for the previous line. You can pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 256), to represent the edge offset of the beginning of the
buffer of the text layout object.

iLineWidth A value of type ATSUTextMeasurement (page 196). Pass the line
width that you want ATSUBreakLine to use to determine how
many characters can fit on the line. You must pass a value must
be greater than 0, otherwise ATSUBreakLine will pass back the
same value in the oLineBreak parameter that you passed in the
iLineStart parameter. You can pass the constant
kATSUUseLineControlWidth, described in “Line Layout Width
Constant” (page 233), if you want ATSUBreakLine to use the line
width attribute previously set for the text layout object. Note
that if the line is outside the text buffer of the text layout object,
ATSUBreakLine returns the result code
kATSUInvalidTextRangeErr.

iUseAsSoftLineBreak
A value of type Boolean. Pass true if you want ATSUBreakLine to
set the line break it calculates. Pass false if you want
ATSUBreakLine to suggest a soft line break but not actually set it.

oLineBreak A pointer to a value of type UniCharArrayOffset (page 198). On
return, oLineBreak points to either the suggested or the actual
soft line break, depending on the value you passed in the
iUseAsSoftLineBreak parameter. If this value is the same as that
passed in the iLineStart parameter, ATSUBreakLine did not
perform a line break because the iLineWidth parameter is not
wide enough to fit any characters.

function result A result code. The result code kATSULineBreakInWord indicates
that ATSUBreakLine performed a line break within a word. In
this case, ATSUBreakLine passes back the location of the soft line
break in the oLineBreak parameter. Note that this is a status
message, not an error code. The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encounters an error rendering or measuring a line of
ATSUI text. For a list of other ATSUI-specific result codes, see
“Result Codes” (page 256).
Functions for Responding to User Actions 157
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUBreakLine function calculates the best location for a soft line break
within a specified line width and optionally performs the line break. You
should call ATSUBreakLine when the user inserts or deletes text or changes text
layout attributes that affect how glyphs are laid out. If the user changes
attributes that don’t affect how glyphs are laid out, it passes back the previously
set soft line breaks.

You specify the desired behavior of this function by passing the appropriate
value in the iUseAsSoftLineBreak parameter. If you want ATSUBreakLine to
calculate but not set soft line breaks, you should pass false in the
iUseAsSoftLineBreak parameter. You should do this if you want to implement
word break hyphenation. To set the soft line break, call the function
ATSUSetSoftLineBreak (page 159). If you want ATSUBreakLine to perform line
breaking, pass true in iUseAsSoftLineBreak.

Before calculating soft line break positions, ATSUBreakLine turns off any line
justification, line rotation, and line alignment attribute values that you
previously set in the text layout object and treats the text as a single line.
ATSUBreakLine then examines the text layout object to make sure that the style
runs cover the entire range of text.

If there are gaps between style runs, ATSUBreakLine assigns the characters in the
gap to the style run following the gap. If there is no style run at the beginning of
the range of text, ATSUBreakLine assigns these characters to the first style run it
can find. If there no style run at the end of the range of text, ATSUBreakLine
assigns the remaining characters to the last style run it can find.

If text layout attribute values have been set for the line for which ATSUBreakLine
is calculating a soft line break position, ATSUBreakLine uses these text layout
attributes to determine where to break the line. If no text layout attribute values
have been set for the line, ATSUBreakLine uses the values set for the text layout
object containing the line.

You should repeatedly call ATSUBreakLine until it does not find any more soft
line breaks.

ATSUBreakLine suggests a soft line break each time it encounters a hard line
break character. Examples include carriage returns, line feeds, form feeds, and
line separators. However ATSUBreakLine does not suggest a soft line break when
it encounters a paragraph separator.

If ATSUBreakLine does not encounter a hard line break, it uses the line width
you specify to determine how many characters can fit on the line. It uses the
158 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
calculated soft line break to perform line layout on the characters.
ATSUBreakLine then determines whether the characters still fit within the line.
This is necessary due to end-of-line effects like swashes. When ATSUBreakLine
sets a soft line break, it clear previously set soft line breaks in the line.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUBreakLine may allocate memory in your
application heap. If you want more control over ATSUI's memory allocation, see
the function ATSUCreateMemorySetting (page 174).

ATSUSetSoftLineBreak 2
Sets the position of a specified soft line break in a range of text.

OSStatus ATSUSetSoftLineBreak (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineBreak);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the range of text
whose soft line breaks you wish to set. You cannot pass NULL for
this parameter.

iLineBreak A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the soft line break you want to set.
You can pass the constant kATSUFromTextBeginning, described in
“Text Offset Constant” (page 256), to represent the edge offset of
the beginning of the text layout object’s text buffer. Note that if
the range of text extends beyond the text buffer,
ATSUSetSoftLineBreak returns the result code
kATSUInvalidTextRangeErr.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

The ATSUSetSoftLineBreak function enables you to use your own line-breaking
algorithm to set soft line break positions in a range of text. You can call the
ATSUBreakLine (page 156) function if you wish to use its default line-breaking
Functions for Responding to User Actions 159
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
algorithm to calculate and set line breaks. You should call ATSUSetSoftLineBreak
to implement word break hyphenation.

Before calculating soft line break positions, ATSUSetSoftLineBreak turns off the
previously-set line justification, rotation, and alignment text layout attribute
values in the line or text layout object. It treats the text as a single line beginning
at the offset specified in the iLineStart parameter. You must then call the
ATSUMeasureText (page 148) function to measure the text.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUSetSoftLineBreak may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUGetSoftLineBreaks (page 160)

ATSUGetSoftLineBreaks 2
Obtains the positions of all the set soft line breaks from a range of text.

OSStatus ATSUGetSoftLineBreaks (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iRangeStart,
UniCharCount iRangeLength,
ItemCount iMaximumBreaks,
UniCharArrayOffset oBreaks[],
ItemCount *oBreakCount);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the range of text
whose soft line breaks you wish to obtain. You cannot pass NULL
for this parameter.
160 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iRangeStart A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the beginning of the range of text
whose soft line break positions you want to obtain. You can pass
the constant kATSUFromTextBeginning, described in “Text Offset
Constant” (page 256), to represent the edge offset of the
beginning of the text buffer.

iRangeLength A value of type UniCharCount (page 198). The value represents
the length of the range of text whose soft line break locations
you want to determine. You can pass the constant
kATSUToTextEnd, described in “Text Length Constant” (page 255),
to represent the end of the text buffer. Note that if the range of
text extends beyond the text buffer, ATSUGetSoftLineBreaks
returns the result code kATSUInvalidTextRangeErr.

iMaximumBreaksA value of type ItemCount that represents the number of soft
line breaks you want passed back in the oBreaks array.

oBreaks An array of values of type UniCharArrayOffset (page 198). On
return, the array contains the positions of all the soft line breaks
set in the specified range of text. You can predetermine how
much memory to allocate for this array by first calling
ATSUGetSoftLineBreaks (iTextLayout, 0, 0, 0, NULL,
&oBreakCount).

oBreakCount A pointer to a value of type ItemCount. On return, oBreakCount
points to the actual number of soft line breaks set in the
specified range of text. This may be greater than the value
passed in the iMaximumBreaks parameter. You cannot pass NULL
for this parameter.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUSetSoftLineBreak (page 159)
Functions for Responding to User Actions 161
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUClearSoftLineBreaks 2
Removes all set soft line breaks from a range of text.

OSStatus ATSUClearSoftLineBreaks (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iRangeStart,
UniCharCount iRangeLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the range of text
whose soft line breaks you wish to remove. You cannot pass
NULL for this parameter.

iRangeStart A value of type UniCharArrayOffset (page 198). The value
represents the edge offset of the beginning of the range of text
whose soft line breaks you want to remove. You can pass the
constant kATSUFromTextBeginning, described in “Text Offset
Constant” (page 256), to represent the edge offset of the
beginning of the text buffer.

iRangeLength A value of type UniCharCount (page 198). The value represents
the length of the range of text whose soft line break locations
you want to remove. You can pass the constant kATSUToTextEnd,
described in “Text Length Constant” (page 255), to represent the
end of the text buffer. Note that if the range of text extends
beyond the text buffer, ATSUGetSoftLineBreaks returns the result
code kATSUInvalidTextRangeErr.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.0.

Drawing Text 2
ATSUI provides the following function for drawing text:

■ ATSUDrawText (page 163) draws a range of text at a specified location.
162 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUDrawText 2
Draws a range of text at a specified location.

OSStatus ATSUDrawText (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineOffset,
UniCharCount iLineLength,
ATSUTextMeasurement iLocationX,
ATSUTextMeasurement iLocationY);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the range of text
you want to draw. You cannot pass NULL for this parameter.

iLineOffset A value of type UniCharArrayOffset (page 198). This value
represents the edge offset of the beginning of the line you want
to draw. You can pass the constant kATSUFromTextBeginning,
described in “Text Offset Constant” (page 256), to represent the
edge offset of the beginning of the text layout object’s text buffer.

iLineLength A value of type UniCharCount (page 198). This value represents
the length of the line you want to draw. You can pass the
constant kATSUTexttoEnd, described in “Text Length Constant”
(page 255), to represent the end of the text layout object’s text
buffer. Note that if the specified text range extends beyond the
text layout object’s text buffer, ATSUDrawText returns the result
code kATSUInvalidTextRangeErr.

iLocationX A value of type ATSUTextMeasurement (page 196). This value
represents the x-coordinate of the position of the origin of the
line in the current graphics port containing the range of text that
you want to draw. If you want to draw relative to the current
pen location in the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).

iLocationY A value of type ATSUTextMeasurement (page 196). This value
represents the y-coordinate of the position of the origin of the
line in the current graphics port containing the range of text that
you want to draw. If you want to draw relative to the current
pen location in the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).
Functions for Responding to User Actions 163
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while rendering a line of text. For
a list of other ATSUI-specific result codes, see “Result Codes”
(page 256).

DISCUSSION

Your application may use the ATSUDrawText function to draw a range of text at
a specified location. Before drawing the text, ATSUDrawText turns off
justification, rotation, and flushness in the text layout object and treats the text
as a single line starting at iLineOffset.

If text layout attributes have been set for the specific line in which ATSUDrawText
is drawing, it uses these text layout attributes to determine character layout. If
no attributes have been set for the line, ATSUDrawText uses the text layout
attributes set for the entire text layout object to determine character layout.

To draw a range of text that spans multiple lines, you should call ATSUDrawText
for each line of text that is being drawn, even if all the lines are in the same text
layout object and adjust the value in the iLineOffset parameter for each new
line being drawn.

The transfer mode and resolution used by ATSUDrawText are the same values as
those set in the graphics port. Text color is taken from the style object and
whatever the value is in the graphics port is ignored. If you did not set text
color in the style object, you will get the style object’s default value for text color
(that is, black), regardless of what was set in the graphics port.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUDrawText may allocate memory in your
application heap. If you want more control over ATSUI's memory allocation, see
the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.
164 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUMeasureTextImage (page 153)

ATSUMeasureText (page 148)

Highlighting and Unhighlighting Text 2
ATSUI provides the following functions for highlighting and unhighlighting in
a text layout object:

■ ATSUHighlightText (page 165) highlights a range of text using the highlight
information in the graphics port.

■ ATSUUnhighlightText (page 168) removes highlighting from a specified range
of text using the highlight information in the graphics port.

■ ATSUGetTextHighlight (page 170) determines the highlight region for a range
of text but doesn’t actually highlight the text.

ATSUHighlightText 2
Highlights a specified range of text using the highlight information in the
graphics port.

OSStatus ATSUHighlightText (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iTextBasePointX,
ATSUTextMeasurement iTextBasePointY,
UniCharArrayOffset iHighlightStart,
UniCharCount iHighlightLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the text range to
be highlighted. You cannot pass NULL for this parameter.

iTextBasePointX
A value of type ATSUTextMeasurement (page 196). This value
represents the x-coordinate of the position of the origin of the
line in the current graphics port containing the range of text that
you want to highlight. If you want to highlight relative to the
Functions for Responding to User Actions 165
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
current pen location in the current graphics port, pass the
constant kATSUUseGrafPortPenLoc, described in “Current Pen
Location Constant” (page 206).

iTextBasePointY
A value of type ATSUTextMeasurement (page 196). This value
represents the y-coordinate of the position of the origin of the
line in the current graphics port containing the range of text that
you want to highlight. If you want to highlight relative to the
current pen location in the current graphics port, pass the
constant kATSUUseGrafPortPenLoc, described in “Current Pen
Location Constant” (page 206).

iHighlightStart
A value of type UniCharArrayOffset (page 198) that represents
the beginning of the text range to highlight. You can pass the
constant kATSUFromTextBeginning, described in “Text Offset
Constant” (page 256), to represent the edge offset of the
beginning of the text layout object’s text buffer.

iHighlightLength
A value of type UniCharCount (page 198) that specifies the length
of the text range to highlight. You can pass the constant
kATSUTexttoEnd, described in “Text Length Constant” (page 255),
to represent the end of the text layout object’s text buffer. Note
that if the specified text range extends beyond the text layout
object’s text buffer, ATSUHighlightText returns the result code
kATSUInvalidTextRangeErr.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).

DISCUSSION

To highlight a range of text that spans multiple lines, you must call
ATSUHighlightText for each line being highlighted (even if all the lines are in the
166 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
same text layout object) and adjust the value in the iHighlightStart parameter
for each new line being highlighted.

To highlight a range of text that spans multiple lines, you must call
ATSUHighlightText for each line being highlighted (even if all the lines are in the
same text layout object) and adjust the value in the iHighlightStart parameter
for each new line being highlighted. Note that if the offset is outside the text
layout object’s text range, ATSUHighlightText returns the result code
kATSUInvalidTextRangeErr.

The coordinates you pass in the iLocationX and iLocationY parameters
represent the specified location of the line’s origin of the text you want to
highlight. Usually, these are the same values used by ATSUDrawText (page 163)
for the line of text to be highlighted.

The ascent and descent of the resulting highlighted region are the same values
passed back in the oAscent and oDescent parameters of the function
ATSUMeasureText (page 148) unless the ascent or descent attributes were set for
the line or the entire text layout object by calling ATSUSetLineControls
(page 100) or ATSUSetLayoutControls (page 92), respectively.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUHighlightText may allocate memory in your
application heap. If you want more control over ATSUI's memory allocation, see
the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUUnhighlightText (page 168)

ATSUGetTextHighlight (page 170)
Functions for Responding to User Actions 167
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUUnhighlightText 2
Removes highlighting from a specified range of text using the highlight
information in the graphics port.

OSStatus ATSUUnhighlightText (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iTextBasePointX,
ATSUTextMeasurement iTextBasePointY,
UniCharArrayOffset iHighlightStart,
UniCharCount iHighlightLength);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the text range
whose highlighting is to be removed. You cannot pass NULL for
this parameter.

iTextBasePointX
A value of type ATSUTextMeasurement (page 196). This value
represents the x-coordinate of the position of the origin of the
line in the current graphics port containing the range of text that
you want to remove highlighting from. If you want to highlight
relative to the current pen location in the current graphics port,
pass the constant kATSUUseGrafPortPenLoc, described in “Current
Pen Location Constant” (page 206).

iTextBasePointY
A value of type ATSUTextMeasurement (page 196). This value
represents the y-coordinate of the position of the origin of the
line in the current graphics port containing the range of text that
you want to remove highlighting from. If you want to highlight
relative to the current pen location in the current graphics port,
pass the constant kATSUUseGrafPortPenLoc, described in “Current
Pen Location Constant” (page 206).

iHighlightStart
A value of type UniCharArrayOffset (page 198) that represents
the beginning of the text range to remove highlighting from. You
can pass the constant kATSUFromTextBeginning, described in
“Text Offset Constant” (page 256), to represent the edge offset of
the beginning of the text layout object’s text buffer.
168 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iHighlightLength
A value of type UniCharCount (page 198) that represents the
length of the text range to remove highlighting from. You can
pass the constant kATSUTexttoEnd, described in “Text Length
Constant” (page 255), to represent the end of the text layout
object’s text buffer. Note that if the specified text range extends
beyond the text layout object’s text buffer, ATSUBreakLine
returns the result code kATSUInvalidTextRangeErr.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).

DISCUSSION

Your application may use the ATSUUnhighlightText function to remove
highlighting from a specified range of text using the highlight information in
the graphics port.

Note that if the text range does not overlap highlighting performed by a
previous highlight call, the results are undefined. It can, however, be longer
than the highlight region passed back in a previous call to ATSUHighlightText
(page 165).

If the text range specified in the iHighlightStart and iHighlightEnd parameters
does not overlap highlighting performed by a previous highlight call, the
results are undefined. However, the range can be longer than a
previously-highlighted region.

The coordinates you pass in the iLocationX and iLocationY parameters
represent the specified location of the line’s origin of the text you want to
remove highlighting. Usually, these are the same values used by ATSUDrawText
(page 163) for the line of text whose highlighting is to be removed.

The ascent and descent of the resulting highlighted region are the same values
passed back in the oAscent and oDescent parameters of the function
ATSUMeasureText (page 148) unless the ascent or descent attributes were set for
Functions for Responding to User Actions 169
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
the line or the entire text layout object by calling ATSUSetLineControls
(page 100) or ATSUSetLayoutControls (page 92), respectively.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUUnhighlightText may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUHighlightText (page 165)

ATSUGetTextHighlight 2
Determines the highlight region for a range of text.

OSStatus ATSUGetTextHighlight (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iTextBasePointX,
ATSUTextMeasurement iTextBasePointY,
UniCharArrayOffset iHighlightStart,
UniCharCount iHighlightLength,
RgnHandle oHighlightRegion);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object that contains the text range
whose highlight region you want to determine. You cannot pass
NULL for this parameter.

iTextBasePointX
A value of type ATSUTextMeasurement (page 196). This value
represents the x-coordinate of the position of the origin of the
line in the current graphics port containing the range of text
whose highlight region you want to determine. If you want to
determine the highlight region relative to the current pen
170 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
location in the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).

iTextBasePointY
A value of type ATSUTextMeasurement (page 196). This value
represents the y-coordinate of the position of the origin of the
line in the current graphics port containing the range of text
whose highlight region you want to determine. If you want to
determine the highlight region relative to the current pen
location in the current graphics port, pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 206).

iHighlightStart
A value of type UniCharArrayOffset (page 198) that represents
the beginning of the text range whose highlight region you want
to determine. You can pass the constant kATSUFromTextBeginning,
described in “Text Offset Constant” (page 256), to represent the
edge offset of the beginning of the text layout object’s text buffer.

iHighlightLength
A value of type UniCharCount (page 198) that represents the
length of the text range whose highlight region you want to
determine. You can pass the constant kATSUTexttoEnd, described
in “Text Length Constant” (page 255), to represent the end of the
text layout object’s text buffer. Note that if the specified text
range extends beyond the text layout object’s text buffer,
ATSUHighlightText returns the result code
kATSUInvalidTextRangeErr.

oHighlightRegion
A handle of type RgnHandle. Before calling
ATSUGetTextHighlight, create a region handle by calling the
function NewRgn. On return, RgnHandle points to a RgnPtr which
points to a Region structure. The Region structure has two fields,
rgnSize and rgnBBox, that represent the highlight region for the
text. In the case of discontiguous highlighting, the region
consists of multiple components, with the rgnBBox field
specifying the bounding box around the entire area of
discontiguous highlighting. You cannot pass NULL for this
parameter.
Functions for Responding to User Actions 171
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. The result code kATSUCoordinateOverflowErr
indicate that the coordinates passed in the iTextBasePointX and
iTextBasePointY parameters caused a coordinate overflow. The
result code kATSUInvalidCacheErr indicates that an attempt was
made to read in style data from an invalid cache (that is, the
format of the cached data does not match that used by ATSUI or
the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 256).

DISCUSSION

The ATSUHighlightText function simply determines the highlight region for a
range of text. It does not highlight the text.

When there are discontiguous highlighting regions, the structure passed back in
the oHighlightRegion parameter is made up of multiple components. The
maximum number of components is 31, based on The rgnBBox field of the
structure represents the bounding box around the entire area of discontiguous
highlighting.

The coordinates you pass in the iLocationX and iLocationY parameters
represent the specified location of the line’s origin of the text you want to
highlight. Typically, these are the same values used by ATSUDrawText (page 163)
to draw a line of text.

The ascent and descent of the highlighted region is the same as the values
passed back in the oAscent and oDescent parameters of the function
ATSUMeasureText (page 148) unless the ascent or descent attributes were set for
the line or the entire text layout object by calling ATSUSetLineControls
(page 100) or ATSUSetLayoutControls (page 92), respectively.

SPECIAL CONSIDERATIONS

Unless you specify otherwise, ATSUGetTextHighlight may allocate memory in
your application heap. If you want more control over ATSUI's memory
allocation, see the function ATSUCreateMemorySetting (page 174).
172 Functions for Responding to User Actions

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

SEE ALSO

ATSUHighlightText (page 165)

Performing Background Processing 2
ATSUI provides the following function for performing background processing:

■ ATSUIdle (page 173) enable ATSUI to perform background processing for a
text layout object.

ATSUIdle 2
Enable ATSUI to perform background processing for a text layout object.

OSStatus ATSUIdle (ATSUTextLayout iTextLayout);

iTextLayout A reference of type ATSUTextLayout (page 195). Pass a reference
to an initialized text layout object in which you want ATSUI to
perform background processing. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

Although versions 1.0 and 1.1 of ATSUI do not implement background
processing for text layout objects, you should call ATSUIdle at least once in your
main event loop to support the implementation of background processing in
future versions of ATSUI.

VERSION NOTES

Available with ATSUI 1.0.
Functions for Responding to User Actions 173
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Functions for Manipulating Memory Settings 2

This section describes the functions you can use to manipulate memory settings
in ATSUI:

■ ATSUCreateMemorySetting (page 174) creates a memory allocation setting that
specifies either the specific heap or the application-defined callback functions
that ATSUI should use when allocating memory.

■ ATSUSetCurrentMemorySetting (page 176) establishes a current memory
allocation setting.

■ ATSUGetCurrentMemorySetting (page 176) returns the current memory
allocation setting.

■ ATSUDisposeMemorySetting (page 177) disposes of a specific memory
allocation setting.

ATSUCreateMemorySetting 2
Creates a memory allocation setting that specifies either the specific heap or the
application-defined callback functions that ATSUI should use when allocating
memory.

OSStatus ATSUCreateMemorySetting (
ATSUHeapSpec iHeapSpec,
ATSUMemoryCallbacks *iMemoryCallbacks,
ATSUMemorySetting *oMemorySetting);

iHeapSpec A value of type ATSUHeapSpec. This value represents either the
heap or the application-defined functions that you want ATSUI
to use when allocating memory. See “Heap Specification
Constants” (page 224) for a description of possible values. You
must pass a valid value for this parameter.

iMemoryCallbacks
A pointer to a union of type ATSUMemoryCallbacks (page 193) that
contains either the heap or the application-defined functions
that ATSUI should use when allocating memory. If you pass the
174 Functions for Manipulating Memory Settings

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUUseSpecificHeap constant in the iHeapSpec parameter, you
must pass a pointer to a union that contains the
correctly-prepared heap in the heapToUse field. If you pass the
kATSUUseCallbacks constant in the iHeapSpec parameter, you
must pass a pointer to a ATSUMemoryCallbacks union that
contains pointers to your application-defined functions. If you
pass the kATSUUseCurrentHeap or kATSUUseAppHeap constant in the
iHeapSpec parameter, you should pass a NULL pointer.

oMemorySetting
A pointer to a reference of type ATSUMemorySetting (page 194).
On return, the reference points to the new memory allocation
setting. If you want this setting to be used in subsequenet
Memory Manager calls, pass it to the
ATSUSetCurrentMemorySetting (page 176) function. You cannot
pass NULL for this parameter.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

You must pass the memory setting created by the ATSUCreateMemorySetting
function to the ATSUSetCurrentMemorySetting (page 176) function to ensure that
it will be used in subsequent Memory Manager calls.

You might want to create different memory settings for different memory
allocation operations. For example, you might create two different settings
designating different heaps to use for allocating the memory associated wtih
style and text layout object creation. Before creating a style or text layout object,
you would then make the appropriate setting current by calling
ATSUSetCurrentMemorySetting.

If you want the most control possible over memory allocation in ATSUI, you
should write your own memory allocation callback functions. In this case, you
should pass the kATSUUseCallbacks constant in the iHeapSpec parameter and a
pointer to a ATSUMemoryCallbacks union that contains pointers to your callback
functions in the iMemoryCallbacks parameter.

VERSION NOTES

Available with ATSUI 1.1.
Functions for Manipulating Memory Settings 175
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUSetCurrentMemorySetting (page 176)

ATSUSetCurrentMemorySetting 2
Establishes a current memory allocation setting.

OSStatus ATSUSetCurrentMemorySetting (ATSUMemorySetting iMemorySetting);

iMemorySetting
A reference of type ATSUMemorySetting (page 194). Pass a
reference to a memory setting created by calling
ATSUCreateMemorySetting (page 174) that you want to make
current. Until another setting is made current, this setting will
be used in subsequent Memory Manager calls made within
ATSUI.

function result A result code. See “Result Codes” (page 256).

VERSION NOTES

Available with ATSUI 1.1.

ATSUGetCurrentMemorySetting 2
Returns the current memory allocation setting.

ATSUMemorySetting ATSUGetCurrentMemorySetting (
void);

function result A reference of type ATSUMemorySetting (page 194) to the current
memory setting. If there is no current memory setting,
ATSUGetCurrentMemorySetting returns NULL.

VERSION NOTES

Available with ATSUI 1.1.
176 Functions for Manipulating Memory Settings

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SEE ALSO

ATSUSetCurrentMemorySetting (page 176)

ATSUDisposeMemorySetting 2
Disposes of a specific memory allocation setting.

OSStatus ATSUDisposeMemorySetting (
ATSUMemorySetting iMemorySetting);

iMemorySetting
A reference of type ATSUMemorySetting (page 194). Pass a
reference to the memory setting you want to dispose. If you
want to dispose of the current memory setting, ATSUI’s memory
setting will be set to the default setting. The default setting uses
the current heap and internal callbacks to perform memory
allocation operations.

function result A result code. See “Result Codes” (page 256).

DISCUSSION

Before disposing of a memory setting using the ATSUDisposeMemorySetting
function, you should dispose of the memory associated with style and text
layout objects that were allocated using that memory setting. For example, if
you want to dispose of a memory setting that uses your application-defined
callback functions to allocate memory, you should dispose of any memory that
ATSUI allocated as a result of these callbacks before disposing of the setting.
Note that is is an advanced technique and should be used with caution.

VERSION NOTES

Available with ATSUI 1.1.
Functions for Manipulating Memory Settings 177
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Application-Defined Functions for Controlling Memory
Allocation 2

This section describes the functions you can provide if you wish to exercise
complete control over memory allocation operations in ATSUI:

■ MyATSUCustomAllocFunc (page 178) manages memory allocation operations
typically handled by ATSUI.

■ MyATSUCustomGrowFunc (page 179) manages memory reallocation typically
handled by ATSUI.

■ MyATSUCustomFreeFunc (page 181) manages memory deallocation operations
typically handled by ATSUI.

MyATSUCustomAllocFunc 2
Manages memory allocation operations typically handled by ATSUI.

This is how you would declare your own memory allocation callback function if
you were to name the function MyATSUCustomAllocFunc:

void * MyATSUCustomAllocFunc (
void *refCon,
ByteCount howMuch);

refCon A pointer to arbitrary data for use in your application-defined
callback function. ATSUI passes a pointer to data previously
supplied by your application in the memoryRefCon field of the
ATSUMemoryCallbacks (page 193) union for your own use.

howMuch The number of bytes of memory that ATSUI wants you to
allocate.

function result An untyped pointer to the beginning of the block of memory
allocated by your MyATSUCustomAllocFunc function.
178 Application-Defined Functions for Controlling Memory Allocation

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

If you want total control over memory allocation in ATSUI, including specifying
the heap to use and how memory allocation should occur, you should write an
application-defined callback function like MyATSUCustomAllocFunc.

You can register your application-defined memory allocation function by
calling the ATSUCreateMemorySetting (page 174) function and passing the
kATSUUseCallbacks constant in the iHeapSpec parameter and a pointer to a
ATSUMemoryCallbacks (page 193) union in the iMemoryCallbacks parameter. You
should supply a pointer of type ATSUCustomAllocFunc (page 189) to your
MyATSUCustomAllocFunc function in the Alloc field in the callbacks structure of
the memory callback union.

Note that your MyATSUCustomAllocFunc function is expected to return a pointer
to the start of the allocated memory, unless it terminates in an application.

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

MyATSUCustomAllocFunc (page 178)

MyATSUCustomGrowFunc (page 179)

MyATSUCustomGrowFunc 2
Manages memory reallocation operations typically handled by ATSUI.

This is how you would declare your own memory reallocation callback function
if you were to name the function MyATSUCustomGrowFunc:

void * MyATSUCustomGrowFunc (
void *refCon,
void *oldBlock,
ByteCount oldSize,
ByteCount newSize);
Application-Defined Functions for Controlling Memory Allocation 179
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
refCon A pointer to arbitrary data previously supplied by your
application in the memoryRefCon field of the ATSUMemoryCallbacks
(page 193) union.

oldBlock An untyped pointer to the beginning of the block to be
reallocated. ATSUI passes your application this value.

oldSize The size (in bytes) of the old block (that is, before the
reallocation operation). ATSUI passes this value so your callback
function knows how many bytes to copy if you need to allocate
memory for the grown block.

newSize The size (in bytes) of the new block (that is, after the reallocation
operation).

function result An untyped pointer to the beginning address of the block of
memory reallocated by your MyATSUCustomGrowFunc function.

DISCUSSION

If you want total control over memory reallocation in ATSUI, including
specifying the heap to use and how memory reallocation should occur, you
should write an application-defined callback function like
MyATSUCustomGrowFunc.

You can register your application-defined memory reallocation function by
calling the ATSUCreateMemorySetting (page 174) function and passing the
kATSUUseCallbacks constant in the iHeapSpec parameter and a pointer to a
ATSUMemoryCallbacks (page 193) union in the iMemoryCallbacks parameter. The
ATSUMemoryCallbacks should contain a should supply a pointer of type
ATSUCustomGrowFunc (page 190) to your MyATSUCustomGrowFunc function in the
Grow field in the callbacks structure of the memory callback union.

Note that your MyATSUCustomGrowFunc function is expected to return a pointer to
the start of the reallocated memory, unless it terminates in an application.

VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

MyATSUCustomAllocFunc (page 178)
180 Application-Defined Functions for Controlling Memory Allocation

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
MyATSUCustomFreeFunc (page 181)

MyATSUCustomFreeFunc 2
Manages memory deallocation operations typically handled by ATSUI.

This is how you would declare your own memory deallocation callback
function if you were to name the function MyATSUCustomFreeFunc:

void * MyATSUCustomFreeFunc (
void *refCon,
void *doomedBlock);

refCon A pointer to arbitrary data for use in your application-defined
callback function. ATSUI passes a pointer to data previously
supplied by your application in the memoryRefCon field of the
ATSUMemoryCallbacks (page 193) union for your own use.

doomedBlock An untyped pointer to the beginning of the block to dispose.

function result An untyped pointer to the beginning address of the block of
memory freed by your MyATSUCustomFreeFunc function.

DISCUSSION

If you want total control over memory deallocation in ATSUI, including
specifying the heap to use and how memory deallocation should occur, you
should write an application-defined callback function like
MyATSUCustomFreeFunc.

You can register your application-defined memory deallocation function by
calling the ATSUCreateMemorySetting (page 174) function and passing the
kATSUUseCallbacks constant in the iHeapSpec parameter and a pointer to a
ATSUMemoryCallbacks (page 193) union in the iMemoryCallbacks parameter. You
should supply a pointer of type ATSUCustomFreeFunc (page 190) to your
MyATSUCustomFreeFunc function in the Free field in the callbacks structure of
the memory callback union.

Note that your MyATSUCustomFreeFunc function is expected to return a pointer to
the start of the deallocated memory, unless it terminates in an application.
Application-Defined Functions for Controlling Memory Allocation 181
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.1.

SEE ALSO

MyATSUCustomAllocFunc (page 178)

MyATSUCustomGrowFunc (page 179)

Data Types 2

This section describes the data types that are defined by ATSUI for your
application’s use:

■ ATSJustPriorityWidthDeltaOverrides (page 183)

■ ATSTrapezoid (page 185)

■ ATSUAttributeInfo (page 186)

■ ATSUAttributeValuePtr (page 187)

■ ATSUCaret (page 188)

■ ATSUCustomAllocFunc (page 189)

■ ATSUCustomGrowFunc (page 190)

■ ATSUCustomFreeFunc (page 190)

■ ATSUFontFeatureType (page 191)

■ ATSUFontFeatureSelector (page 191)

■ ATSUFontID (page 192)

■ ATSUFontVariationAxis (page 192)

■ ATSUFontVariationValue (page 193)

■ ATSUMemoryCallbacks (page 193)

■ ATSUMemorySetting (page 194)

■ ATSUStyle (page 195)

■ ATSUTextLayout (page 195)
182 Data Types

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ ATSUTextMeasurement (page 196)

■ BslnBaselineRecord (page 196)

■ ConstUniCharArrayPtr (page 197)

■ UniChar (page 197)

■ UniCharArrayHandle (page 197)

■ UniCharArrayOffset (page 198)

■ UniCharArrayPtr (page 198)

■ UniCharCount (page 198)

ATSJustPriorityWidthDeltaOverrides 2
Your application can use an array of type ATSJustPriorityWidthDeltaOverrides
to override the distribution behavior of a glyph or set of glyphs during
justification in a style run. A priority justification override array contains four
width delta structures of type ATSJustPriorityWidthDeltaOverrides, one for
each justification priority.

To set the priority justification override in a style run, pass a value of type
ATSJustPriorityWidthDeltaOverrides and the kATSUPriorityJustOverrideTag
tag constant to the ATSUSetAttributes (page 29) function.

A width delta structure contains all the information needed to override the
distribution behavior of a glyph or set of glyphs during justification. It is used
in both the priority justification override structure and the glyph justification
override structure. In each case the width delta structure can specify both a
change in priority and a change in distribution behavior.

Each width delta structure in the priority justification override structure
specifies overrides for all glyphs of a given justification priority. Thus, for each
priority, you can

■ Change the priority: assign all glyphs of one priority to another priority.

■ Change the behavior: leave the priority the same, but change the priority
behavior of all glyphs of that priority.

■ Change both: assign all glyphs of one priority to another priority, and change
their justification behavior from the defaults of either priority.
Data Types 183
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Note that if you change one priority to another and change the default behavior
of all glyphs of that priority, the behavior of other glyphs already having that
priority is not changed. For example, if you change all glyphs with a priority of
kJUSTLetterPriority to kJUSTSpacePriority and give them special behavior,
glyphs that already have a priority of kJUSTSpacePriority retain their default
behavior. Only kJUSTLetterPriority glyphs are overridden, and so the
overriding behavior applies to only those glyphs.

Unlimited gap absorption is a special case in that it applies across an entire line
instead of just to a single style run. If both the kJUSTOverrideUnlimited bit and
the kJUSTUnlimited flag, described in “Justification Override Mask Constants”
(page 226), are set in any width delta structure for the glyph justification
override structure of any style run on a line, ATSUI distributes the current
justification gap among all instances of that glyph in all style runs on the line.

struct ATSJustWidthDeltaEntryOverride {
Fixed beforeGrowLimit;
Fixed beforeShrinkLimit;
Fixed afterGrowLimit;
Fixed afterShrinkLimit;
JustificationFlags growFlags;
JustificationFlags shrinkFlags;

};
typedef struct ATSJustWidthDeltaEntryOverride
ATSJustWidthDeltaEntryOverride;
typedef ATSJustWidthDeltaEntryOverride
ATSJustPriorityWidthDeltaOverrides[4];

Field descriptions

beforeGrowLimit The number of points by which a 1-point glyph can expand
on the left side (top side for vertical text). For example, a
value of 0.2 means that a 24-point glyph can have by no
more than 4.8 points of extra space added on the left side
(top side for vertical text).

beforeShrinkLimit The number of points by which a 1-point glyph can shrink
on the left side (top side for vertical text). If specified, this
value should be negative.

afterGrowLimit The number of points by which a 1-point glyph can expand
on the right side (bottom side for vertical text).
184 Data Types

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
afterShrinkLimit The number of points by which a 1-point glyph can shrink
on the right side (bottom side for vertical text). If specified,
this value should be negative.

growFlags Mask values you can use to check whether bits are set to
override which aspects of the normal, font-specified
justification behavior for a particular set of glyphs to
override. See “Justification Override Mask Constants”
(page 226) for a description of possible values. You can use
these flags to selectively override the grow case only, while
retaining default behavior for other cases.

shrinkFlags Controls which aspects of the normal, font-specified
justification behavior for a particular set of glyphs to
override. See “Justification Override Mask Constants”
(page 226) for a description of possible values. You can use
these flags to selectively override the shrink case only,
while retaining default behavior for other cases.

VERSION NOTES

Available with ATSUI 1.0.

ATSTrapezoid 2
The function ATSUGetGlyphBounds (page 145) passes back an array of structures
of type ATSTrapezoid in the oGlyphBounds parameter to represent the
typographic glyph bounds for a range of text. The maximum number of
typographic bounding trapezoids that can be passed back is 31, corresponding
to 16 bi-directional levels.

Each ATSTrapezoid structure contains the coordinates of the corners of a
typographic bounding trapezoid offset by the amount specified in the
iTextBasePointX and iTextBasePointY parameters. If you want the corners to
match their image, pass the coordinates of the position of the origin of the line
in the current graphics port. If you do not care about the position of the
typographic glyph bounds in the current graphics port, pass (0,0) for these
parameters.

Depending on the value passed in the iTypeOfBounds parameter, the width of
the glyph bounds will be determined using the caret origin, glyph origin in
device space, or glyph origin in fractional absolute positions.
Data Types 185
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
The height of the glyph bounds are determined by the line ascent and line
descent text layout attribute values set for the line or text layout object. If these
attribute values have been set for the line, ATSUGetGlyphBounds will use them.
Otherwise, it will check to see whether these values have been set in the text
layout object. If neither have been set, it will use the natural line ascent and
descent calculated for the line.

struct ATSTrapezoid {
FixedPoint upperLeft;
FixedPoint upperRight;
FixedPoint lowerRight;
FixedPoint lowerLeft;

};

Field descriptions

upperLeft A FixedPoint structure that contains the upper left
coordinates (assuming a horizontal line of text) of the
typographic glyph bounds.

upperRight A FixedPoint structure that contains the upper right
coordinates (assuming a horizontal line of text) of the
typographic glyph bounds.

lowerRight A FixedPoint structure that identifies the lower right
coordinates (for a horizontal line of text) of the typographic
glyph bounds.

lowerLeft A FixedPoint structure that identifies the lower left
coordinates(for a horizontal line of text) of the typographic
glyph bounds.

VERSION NOTES

Available with ATSUI 1.1.

ATSUAttributeInfo 2
The ATSUGetAllAttributes (page 33), ATSUGetAllLayoutControls (page 95), and
ATSUGetAllLineControls (page 104) functions pass back an array of structures of
type ATSUAttributeInfo. Each structure contains a tag that identifies a particular
style run or text layout attribute value, depending on the function called, and
the size (in bytes) of the attribute value. You can use this information to query
186 Data Types

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
the ATSUGetAttribute (page 31), ATSUGetLayoutControl (page 94), and
ATSUGetLineControl (page 102) functions for the corresponding attribute value
in a style object, text layout object, or line in a text layout object, respectively.

typedef struct {
ATSUAttributeTag fTag;
ByteCount fValueSize

}ATSUAttributeInfo;

Field descriptions

fTag A value of type ATSUAttributeTag that identifies a
particular style run or text attribute value. See “Style Run
Attribute Tags” (page 237) and “Text Layout and Line
Attribute Tags” (page 250), respectively, for a description of
possible tag values.

fValueSize The size (in bytes) of the attribute value corresponding to
the attribute tag in the fTag parameter.

VERSION NOTES

Available with ATSUI 1.0.

ATSUAttributeValuePtr 2
Your application passes an array of pointers of type ATSUAttributeValuePtr to
the ATSUSetAttributes (page 29), ATSUSetLayoutControls (page 92), and
ATSUSetLineControls (page 100) functions. Each pointer references a previously
set style run or text layout object attribute value, depending upon the function
you called. set the pointer refers to a style run or text layout attribute access to
style run and text layout attribute values, which vary in size.

The functions ATSUGetAttribute (page 31), ATSUGetLayoutControl (page 94), and
ATSUGetLineControl (page 102) pass back a pointer of type
ATSUAttributeValuePtr that references an attribute value corresponding to a
particular tag and value-size. You should cast this to the appropriate data type
and dereference it to obtain the actual attribute value.

typedef void * ATSUAttributeValuePtr;
Data Types 187
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

ATSUCaret 2
The ATSUOffsetToPosition (page 131) function passes back two structures of
type ATSUCaret that contain the caret position(s) corresponding to a specified
edge offset. If the caret is not split, both structures contain the starting and
ending pen locations of the main caret. If the caret is split, the structure passed
back in the oMainCaret parameter contains the starting and ending pen locations
of the high caret, while that in the oSecondCaret parameter contains the starting
and ending pen locations of the low caret.

Note that the passed back caret locations are relative to the position of the
origin of the line of interest in the graphics port. You can use these positions to
draw angled carets, split carets, and carets on angled lines.

In order to draw caret(s) on the screen, you must transform these locations by
adding them to the position of the origin of the line in the graphics port in
which the hit occurred. For example, if ATSUOffsettoPosition passed back the
starting and ending pen locations of (25,0), (25,25) in the oMainCaret parameter
(and the oSecondCaret parameter contained the same coordinates, meaning that
the caret was not split), you would add these to the position of the origin of the
line in the graphics port. If the position of the line origin was at (50,50), then the
starting and ending pen locations of the caret on the screen would be (75,50),
(75,75).

typedef struct {
Fixed fX;
Fixed fY;
Fixed fDeltaX;
Fixed fDeltaY;

}ATSUCaret;

Field descriptions

fX Represents the x-coordinate of the caret’s starting pen
position relative to the position of the origin of the line in
the current graphics port in which the hit occurred.
188 Data Types

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
fY Represents the y-coordinate of the caret’s starting pen
position relative to the position of the origin of the line in
the current graphics port in which the hit occurred.

fDeltaX Represents the x-coordinate of the caret’s ending pen
position relative to the position of the origin of the line in
the current graphics port in which the hit occurred. This
position takes into account line rotation. You do not have to
rotate it yourself.

fDeltaX Represents the y-coordinate of the caret’s ending pen
position relative to the position of the origin of the line in
the current graphics port in which the hit occurred. This
position takes into account line rotation. You do not have to
rotate it yourself.

VERSION NOTES

Available with ATSUI 1.0.

ATSUCustomAllocFunc 2
If you want total control over memory allocation in ATSUI, including specifying
the heap to use and how memory allocation should occur, you should write an
application-defined callback function like MyATSUCustomAllocFunc (page 178).

You can register your callback function by calling the function
ATSUCreateMemorySetting (page 174) and passing the kATSUUseCallbacks
constant in the iHeapSpec parameter and a pointer to a ATSUMemoryCallbacks
(page 193) union in the iMemoryCallbacks parameter. The union should contain
a pointer of type ATSUCustomAllocFunc in the Alloc field of the callbacks
structure.

Your memory allocation callback function should have the following type
definition:

typedef void * (*ATSUCustomAllocFunc)(void *refCon, ByteCount howMuch);

See the function MyATSUCustomAllocFunc (page 178) for a prototype of this
callback function.
Data Types 189
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.1.

ATSUCustomFreeFunc 2
If you want total control over memory allocation in ATSUI, including specifying
the heap to use and how memory allocation should occur, you should write an
application-defined callback function like MyATSUCustomFreeFunc (page 181).

You can register your callback function by calling the function
ATSUCreateMemorySetting (page 174) and passing the kATSUUseCallbacks
constant in the iHeapSpec parameter and a pointer to a ATSUMemoryCallbacks
(page 193) union in the iMemoryCallbacks parameter. The union should contain
a pointer of type ATSUCustomFreeFunc in the Free field of the callbacks
structure.

Your memory allocation callback function should have the following type
definition:

typedef void * (*ATSUCustomFreeFunc)(void *refCon, void *doomedBlock);

See the function MyATSUCustomFreeFunc (page 181) for a prototype of this
callback function.

VERSION NOTES

Available with ATSUI 1.1.

ATSUCustomGrowFunc 2
If you want total control over memory allocation in ATSUI, including specifying
the heap to use and how memory allocation should occur, you should write an
application-defined callback function like MyATSUCustomGrowFunc (page 179).

You can register your callback function by calling the function
ATSUCreateMemorySetting (page 174) and passing the kATSUUseCallbacks
constant in the iHeapSpec parameter and a pointer to a ATSUMemoryCallbacks
(page 193) union in the iMemoryCallbacks parameter. The union should contain
a pointer of type ATSUCustomGrowFunc in the Grow field of the callbacks
structure.
190 Data Types

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Your memory allocation callback function should have the following type
definition:

typedef void * (*ATSUCustomGrowFunc)(void *refCon, void *oldBlock,
ByteCount oldSize, ByteCount newSize);

See the function MyATSUCustomGrowFunc (page 179) for a prototype of this
callback function.

VERSION NOTES

Available with ATSUI 1.1.

ATSUFontFeatureType 2
Your application passes a value of type ATSUFontFeatureType to ATSUI
functions that manipulate a style object’s font features to specify type of feature
to employ.

Each feature type has multiple feature selectors that specify the level or style of
its employment. For example, the kLigaturesType feature type has on/off pairs
of feature selectors, including feature selectors kRequiredLigaturesOnSelector
and kRequiredLigaturesOffSelector. For a description of font feature type and
selector constants, see “Font Feature Types and Selectors” (page 271).

typedef Uint16 ATSUFontFeatureType;

VERSION NOTES

Available with ATSUI 1.0.

ATSUFontFeatureSelector 2
Your application passes a value of type ATSUFontFeatureSelector to ATSUI
functions that manipulate a style object’s font features to specify the level or
style of a feature type.

Each feature type has multiple feature selectors that specify the level or style of
its employment. For example, the kLigaturesType feature type has on/off pairs
Data Types 191
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
of feature selectors, including feature selectors kRequiredLigaturesOnSelector
and kRequiredLigaturesOffSelector. For a description of font feature type and
selector constants, see “Font Feature Types and Selectors” (page 271).

typedef Uint16 ATSUFontFeatureSelector;

VERSION NOTES

Available with ATSUI 1.0.

ATSUFontID 2
Your application passes a value of type ATSUFontID to ATSUI functions that
obtain font information to uniquely identify a font to the font management
system in ATSUI.

You can use a value of type ATSUFontID to set the font ID of all the glyphs in a
style run. To set the font ID of all the glyphs in a style run, pass a value of type
ATSUFontID and the kATSUFontIDTag tag constant to the function
ATSUSetAttributes (page 29).

typedef UInt32 ATSUFontID;

VERSION NOTES

Available with ATSUI 1.0.

ATSUFontVariationAxis 2
Your application passes a value of type ATSUFontVariationAxis to ATSUI
functions that manipulate a style object’s font variations to represent the axis for
a particular font variation. Fonts that can generate a wide range of stylistic
change contain multiple font variation axes. A font variation axis describes a
particular stylistic attribute and the range of values that the font can use.

typedef FourCharCode ATSUFontVariationAxis;
192 Data Types

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

ATSUFontVariationValue 2
Your application passes a value of type ATSUFontVariationValue to ATSUI
functions that manipulate a style object’s font variations to represent the
minimum, maximum, and default values of a font variation axis. These values
represent the range of values that the font can use.

typedef Fixed ATSUFontVariationValue;

VERSION NOTES

Available with ATSUI 1.0.

ATSUMemoryCallbacks 2
Your application passes a union of type ATSUMemoryCallbacks to the function
ATSUCreateMemorySetting (page 174). The memory callbacks union should either
contain pointers to your application-defined callback functions or pointers to
the correctly-prepared memory heap that ATSUI should use when allocating
memory.

If you want ATSUI to use your application-defined callback functions for
allocating memory, supply pointers to your functions in the callbacks structure
of this union. If you want ATSUI to use a specific heap (other than the current or
application heap) and its own internal callback functions for memory allocation,
supply a pointer to the correctly-prepared memory heap in the heapToUse field
of this union.

union ATSUMemoryCallbacks {
struct {

ATSUCustomAllocFunc Alloc;
ATSUCustomFreeFunc Free;
ATSUCustomGrowFunc Grow;
void * memoryRefCon;

} callbacks;
Data Types 193
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
THz heapToUse;
};
typedef union ATSUMemoryCallbacksATSUMemoryCallbacks;

Field descriptions

callbacks A structure containing the Alloc, Free, Grow, and
memoryRefCon fields. These fields contain pointers to your
memory allocation callback functions and arbitrary data for
use in your callback functions.
The Alloc field contains a pointer of type
ATSUCustomAllocFunc (page 189) that refers to your
application-defined memory allocation callback function.
See MyATSUCustomAllocFunc (page 178) for the prototype of a
memory allocation callback function.
The Free field contains a pointer of type
ATSUCustomFreeFunc (page 190) that refers to your
application-defined memory deallocation callback function.
See MyATSUCustomFreeFunc (page 181) for the prototype of a
memory deallocation callback function.
The Grow field contains a pointer of type
ATSUCustomFreeFunc (page 190) that refers to your
application-defined memory reallocation callback function.
See MyATSUCustomGrowFunc (page 179) for the prototype of a
memory reallocation callback function.
The memoryRefCon field contains a pointer to arbitrary data
for use in your application-defined callback functions.

heapToUse A pointer of type THz that refers to a structure of type Zone.
Set the structure to the correctly-prepared memory heap for
ATSUI to use for simple Memory Manager calls.

VERSION NOTES

Available with ATSUI 1.1.

ATSUMemorySetting 2
Your application passes a reference of type ATSUMemorySetting to the functions
ATSUSetCurrentMemorySetting (page 176) and ATSUDisposeMemorySetting
194 Data Types

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
(page 177) to represent the memory setting you want to make current or
dispose of, respectively. The function ATSUGetCurrentMemorySetting (page 176)
passes back a memory setting reference to represent the current memory setting
you want to obtain. A memory setting reference is a pointer to a private
structure of type OpaqueATSUMemorySetting that contains the memory settings
you created in a call to the function ATSUCreateMemorySetting (page 174).

typedef struct OpaqueATSUMemorySetting* ATSUMemorySetting;

VERSION NOTES

Available with ATSUI 1.1.

ATSUStyle 2
Your application passes a reference of type ATSUStyle to ATSUI functions that
manipulate style objects. A style object reference is a pointer to a private
structure of type OpaqueATSUStyle that contains the style run attributes, font
features, and font variations that are set in a particular style run. ATSUI
functions that create style objects pass back a style object reference that
represents the newly-created style object.

typedef struct OpaqueATSUStyle* ATSUStyle;

VERSION NOTES

Available with ATSUI 1.0.

ATSUTextLayout 2
Your application passes a reference of type ATSUTextLayout to ATSUI functions
that manipulate text layout objects. A text layout object reference is a pointer to
a private structure of type OpaqueATSUTextLayout that contains the text layout
attributes, soft line breaks, and style runs that are set in a particular text layout.
ATSUI functions that create text layout objects pass back a text layout object
reference that represents the newly-created text layout object.

typedef struct OpaqueATSUTextLayout* ATSUTextLayout;
Data Types 195
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUTextMeasurement 2
Your application passes a value of type ATSUTextMeasurement to ATSUI functions
that draw, measure, hit-test, and get the glyph bounds of onscreen glyphs to
represent exact outline metrics and line specifications.

You can use a value of type ATSUTextMeasurement to set the imposed width of all
glyphs in a style run and to set the line width, ascent, and descent of each line
(or a single line) in a text layout object. To set the imposed width of glyphs in a
style run, pass a value of type ATSUTextMeasurement and the
kATSUImposeWidthTag tag constant to the function ATSUSetAttributes (page 29).

To set the line width, line ascent, and line descent of each line (or a single line)
in a text layout object, pass a value of type ATSUTextMeasurement and the
kATSULineWidthTag, kATSULineAscentTag, and kATSULineDescentTag tag constants
to the functions ATSUSetLayoutControls (page 92) and ATSUSetLineControls
(page 100), respectively.

typedef Fixed ATSUTextMeasurement;

VERSION NOTES

Available with ATSUI 1.0.

BslnBaselineRecord 2
The function ATSUCalculateBaselineDeltas (page 35) obtains an array of type
BslnBaselineRecord. The array contains the distances from a specified baseline
to each of other baselines in a style object. If you pass in the style object of the
dominant style run in a line, the array represents the optimum baseline
positions to control placement of all the glyphs on the line.

You can use the obtained values to set the optimum baseline positions for all
glyphs in a single line or in each line of a text layout object. To do this, pass the
array and the kATSULineBaselineValuesTag tag constant to the functions
ATSUSetLineControls (page 100) and ATSUSetLayoutControls (page 92).

typedef Fixed BslnBaselineRecord[32];

VERSION NOTES

Available with ATSUI 1.0.
196 Data Types

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ConstUniCharArrayPtr 2
Your application passes a pointer of type ConstUniCharArrayPtr to the functions
ATSUCreateTextLayoutWithTextPtr (page 80), ATSUSetTextPointerLocation
(page 107), and ATSUTextMoved (page 113). The pointer contains the text layout
object’s text buffer. The text layout object expects the buffer to contain a block of
Unicode text. Your application is responsible for allocating the memory
associated with this pointer.

typedef const UniChar *ConstUniCharArrayPtr;

VERSION NOTES

Available with ATSUI 1.0.

UniChar 2
The UniChar value represents a 2-byte Unicode character.

typedef UInt16 UniChar;

VERSION NOTES

Available with ATSUI 1.0.

UniCharArrayHandle 2
Your application passes a handle of type UniCharArrayHandle to the functions
ATSUCreateTextLayoutWithTextHandle (page 83) and ATSUSetTextHandleLocation
(page 109). The handle contains the address of a text layout object’s text buffer.
The text layout object expects the buffer to contain a block of Unicode text. Your
application is responsible for allocating and locking this handle. ATSUI
functions will dereference the handle before accessing the text, but will leave
the handle’s state unchanged.

typedef UniCharArrayPtr * UniCharArrayHandle;
Data Types 197
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

UniCharArrayOffset 2
Your application can use a value of type UniCharArrayOffset to indicate an
offset into the buffer of a text layout object. This location is an edge offset in
backing-store memory that corresponds to the screen position where text is
being drawn, highlighted, measured, deleted, inserted, etc.

You use a value of this type with functions that operate on a range of text in a
text layout object.

typedef UInt32 UniCharArrayOffset;

VERSION NOTES

Available with ATSUI 1.0.

UniCharArrayPtr 2
Your application passes a pointer of type UniCharArrayPtr to ATSUI functions
that operate on a range of text in a text layout object. This pointer refers to the
address of the beginning of a text layout object’s text buffer.

typedef UniChar * UniCharArrayPtr;

VERSION NOTES

Available with ATSUI 1.0.

UniCharCount 2
Your application passes a value of type UniCharCount to ATSUI functions that
operate on a range of text in a text layout object. This value represents the
length of the range of text.

typedef UInt32 UniCharCount;
198 Data Types

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

Resource 2

This section describes the 'ustl' clipboard data block format that you can use
to describe styled text in the clipboard:

■ ustl (page 199)

ustl 2
You can use a clipboard data block format of type 'ustl' to provide clipboard
support and to copy and paste styled text between applications or within an
application. You should use this format instead of calling the functions
ATSUCopyToHandle (page 27) and ATSUPasteFromHandle (page 28), because they do
not produce the correct data format for displaying ATSUI styled text.

You can store styled text information as a resource of type 'ustl' or in another
data format of type 'ustl'. However, for the purposes of this document, the
clipboard data block format will be described as a resource of type 'ustl'.

You should use the version of this resource described in this section. Version 0,
which was described in previous documentation, should not be used.

Note that all the following fields are 4 bytes except where specified (in
parenthesis).

As shown in Figure 2-2, the 'ustl' resource is composed of four basic elements:

■ the resource header

■ flattened text layout data

■ flattened style run data

■ flattened style list data
Resource 199
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Figure 2-2 Overview of a 'ustl' resource

The header section of a 'ustl' resource contains version and size information
for this resource as well as offsets to flattened text layout, style run, and style
list data. See Figure 2-3 for an illustration of this section.

Figure 2-3 Header section of a 'ustl' resource

The elements in the header section of a 'ustl' resource are

■ the version of the data in this resource

■ the size of the data in this resource

Overview of a ’ustl’ resource

Flattened style run data

Flattened style list data

Resource header

Flattened text layout data

4

4

Header section of a ’ustl’ resource Bytes

Offset to flattened text layout data

Offset to flattened style run data

Offset to flattened style list data

Resource data version

Size of resource data

4

4

4

200 Resource

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ an offset to your flattened text layout data

■ an offset to your flattened style run data

■ an offset to your flattened style list data

After the header section, you must specify either your flattened text layout,
style run, or style list data. The order in which you supply these three sets of
data is unimportant, although you must follow the order described below
within each set.

Flattened Text Layout Data 2
The elements of the flattened text layout data is

■ the number of text layout objects covering the characters that you wish to
display on the clipboard

■ an array of text layout data.

Each element of the text layout data array should contain the following
information:

■ the size of the line and text layout attribute data
■ the number of characters covered by the text layout object
■ an offset to text layout attribute data
■ an offset to line attribute data
■ an array of text layout attribute data
■ an array of line attribute data

Each element of the text layout attribute data array should contain the
following information:

■ the number of previously set text layout attributes
(for each previously set text layout attribute, including line direction whether or
not it has been set):

■ the attribute tag
■ the size of the attribute value
■ the actual attribute value (variable in length)

Each element of the line attribute data array should contain the following
information:

■ the number of lines in the text layout object
Resource 201
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
(for each line):

■ the line length
■ the number of previously set line attributes

(for each previously set line attribute):

■ the attribute tag
■ the size of the attribute value
■ the actual attribute value (variable in length)

Flattened Style Run Data 2
The elements of the flattened style run data is

■ the number of style runs

■ an array of style run data

Each element of the style run data array should contain the following
information:

■ the style run length
■ the index of the corresponding style object in the style list

Flattened Style List Data 2
The elements of the flattened style list data is

■ the number of style object

■ an array of style run attribute, font feature, and font variation data

Each element of the style run attribute, font feature, and font variation data
array should contain:

■ the version of the data in this flattened style list
■ the size of the style run attribute, font feature, and font variation data
■ the number of of previously set style run attributes
■ the number of previously set font features
■ the number of previously set font variations
■ the unique name of font
■ the length of font name string
202 Resource

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ the font name (variable in length)
(for each previously set style run attribute, and font, text size, and language,
even if unset):

■ the attribute tag
■ the size of the attribute value
■ the actual attribute value (variable in length)

(for each previously set font feature):

■ the feature type
■ the feature selector

(for each previously set font variation):

■ the variation axis
■ the variation value

VERSION NOTES

Version 0 of this format is available with ATSUI 1.0. Version 1 is available with
ATSUI 1.1.

Constants 2

This section describes the constants defined by ATSUI for your application’s
use. The constants are organized into the following categories:

■ “Baseline Type Constants” (page 204)

■ “Clear All Constant” (page 206)

■ “Current Pen Location Constant” (page 206)

■ “Cursor Movement Constants” (page 207)

■ “Font Fallback Constants” (page 208)

■ “Font Name Code Constants” (page 213)

■ “Font Name Platform Code Constants” (page 216)

■ “Font Name Script Code Constants” (page 217)
Constants 203
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
■ “Glyph Bounds Constants” (page 222)

■ “Glyph Direction Constants” (page 223)

■ “Glyph Orientation Constants” (page 223)

■ “Heap Specification Constants” (page 224)

■ “Invalid Font ID Constant” (page 226)

■ “Justification Override Mask Constants” (page 226)

■ “Justification Priority Constants” (page 228)

■ “Line Alignment Constants” (page 229)

■ “Line Justification Constants” (page 230)

■ “Line Layout Option Mask Constants” (page 231)

■ “Line Layout Width Constant” (page 233)

■ “Miscellaneous Constants” (page 234)

■ “No Font Name Platform, Language, or Script Constants” (page 235)

■ “Style Comparison Constants” (page 236)

■ “Style Run Attribute Tags” (page 237)

■ “Text Layout and Line Attribute Tags” (page 250)

■ “Text Length Constant” (page 255)

■ “Text Offset Constant” (page 256)

Baseline Type Constants 2
Your application passes a constant of type kATSUBaselineClassTag in the
iBaselineClass parameter of the function ATSUCalculateBaselineDeltas
(page 35). This value represents the baseline that you want
ATSUCalculateBaselineDeltas to use in calculating the distances to each of the
other baseline types in the style run. If you want to specify that
ATSUCalculateBaselineDeltas use the standard baseline value from the current
font, pass the constant kBSLNNoBaselineOverride.

You can also use a constant of this type to set the primary baseline in a style
run. To do this, pass the desired baseline value and the kATSUBaselineClassTag
tag constant to the function ATSUSetAttributes (page 29).
204 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
enum {
kBSLNRomanBaseline = 0,
kBSLNIdeographicCenterBaseline = 1,
kBSLNIdeographicLowBaseline = 2,
kBSLNHangingBaseline = 3,
kBSLNMathBaseline = 4,
kBSLNLastBaseline = 31,
kBSLNNumBaselineClasses = kBSLNLastBaseline + 1,
kBSLNNoBaselineOverride = 255

};
typedef UInt32 BslnBaselineClass;

Constant description

kBSLNRomanBaseline Represents the baseline used by most Roman script
languages, and in Arabic and Hebrew. This is the default
value.

kBSLNIdeographicCenterBaseline
Represents the baseline used by Chinese, Japanese, and
Korean ideographic scripts, in which ideographs are
centered halfway on the line height.

kBSLNIdeographicLowBaseline
Represents the baseline used by Chinese, Japanese, and
Korean scripts. Similar to kBSLNIdeographicCenterBaseline,
but with the glyphs lowered. This baseline is most
commonly used to align Roman glyphs within ideographic
fonts to Roman glyphs in Roman fonts.

kBSLNHangingBaseline
Represents the baseline used by Devanagari and related
scripts, in which the bulk of most glyphs is below the
baseline. This baseline type is also used for drop capitals in
Roman scripts.

kBSLNMathBaseline Represents the baseline used for setting mathematics. It is
centered on symbols such as the minus sign (at half the
x-height).

kBSLNLastBaseline No baseline type may exceed this value.
Application-defined baseline values between
kBSLNMathBaseline and kBSLNLastBaseline are reserved.
Constants 205
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kBSLNNumBaselineClasses
Represents the total number of baseline types
(kBSLNLastBaseline + 1).

kBSLNNoBaselineOverride
Instructs ATSUI to use the standard baseline value from the
current font.

VERSION NOTES

Available with ATSUI 1.0.

Clear All Constant 2
Your application can pass this constant to several different functions to remove
previously set values from a style object: to ATSUClearAttributes (page 34) to
remove style run attributes, to ATSUClearFontFeatures (page 41) to remove font
features, and to ATSUClearFontVariations (page 46) to remove font variations.

You can also use this constant to remove previously set values from a line or
text layout object: to ATSUClearLineControls (page 105), to remove text layout
attributes from a single line, and to ATSUClearLayoutControls (page 97) to
remove .

enum {
kATSUClearAll = (long)0xFFFFFFFF

};

Constant description

kATSUClearAll Removes all previously set values from a style object, a
single line, or a text layout object.

VERSION NOTES

Available with ATSUI 1.0.

Current Pen Location Constant 2
Your application can pass the kATSUUseGrafPortPenLoc constant to ATSUI
functions that operate on text layout objects to indicate that drawing,
206 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
measuring, or hit-testing should be done relative to the current pen location in
the current graphics port.

enum {
kATSUUseGrafPortPenLoc = (long)0xFFFFFFFF,

};

Constant description

kATSUUseGrafPortPenLoc
Indicates that drawing, measuring, or hit-testing should be
done relative to the current pen location in the current
graphics port. ATSUI looks at the current graphics port
location (it knows the last draw location from moves and
lineto calls) and uses that.

VERSION NOTES

Available with ATSUI 1.0.

Cursor Movement Constants 2
Your application can a constant of type ATSUCursorMovementType to several
different functions to represent the distance the cursor has moved: to
ATSUNextCursorPosition (page 134) to determine the next cursor position in
ATSUPreviousCursorPosition (page 136), ATSURightwardCursorPosition
(page 138), and ATSULeftwardCursorPosition (page 140). This value represents
the distance that the cursor has moved.

enum {
kATSUByCharacter = 0,
kATSUByCluster = 1,
kATSUByWord = 2

};
typedef int ATSUCursorMovementType;

Constant descriptions

kATSUByCharacter Indicates that the cursorhas moved one Unicode character
(that is, 2 bytes). Note that because of surrogate pairs, you
can not always move the cursor by one character, since
Constants 207
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
doing so might place the cursor in the middle of a
surrogate pair rahter than between two logical characters.
For more information on surrogate pairs, see “ATSUI
Implementation of the Unicode Specification” (page 265).

kATSUByCluster Indicates that the cursorhas moved one cluster, as defined
by Unicode. A group of characters is a cluster based both
on the static properties of the characters involved (defined
by the Unicode consortium) and the behavior of the specific
font you are using with those characters.

kATSUByWord Indicates to ATSUI to move the cursor by one word, as
defined by Unicode. In Unicode, a word does not include
trailing punctuation or white space.

VERSION NOTES

Available with ATSUI 1.0.

Font Fallback Constants 2
Your application passes a constant of type ATSUFontFallbackMethod in the
iFontFallbackMethod parameter of the function ATSUSetFontFallbacks (page 119)
the search options to employ when a font does not have all the glyphs for the
characters it is trying to draw. The function ATSUGetFontFallbacks (page 120)
passes back one of these constants to indicate the previously-set search order. To
specify the default search behavior, pass the constant
kATSUDefaultFontFallbacks.

enum {
kATSUDefaultFontFallbacks = 0,
kATSULastResortOnlyFallback = 1,
kATSUSequentialFallbacksPreferred = 2,
kATSUSequentialFallbacksExclusive = 3

};
typedef UInt16 ATSUFontFallbackMethod;

Constant descriptions

kATSUDefaultFontFallbacks
Tells ATSUI to sequentially scan the font list and then
search all valid fonts in the user’s system. This is the
208 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
default value and the search order used by the functions
ATSUMatchFontsToText (page 122) and
ATSUSetTransientFontMatching (page 124).

kATSULastResortOnlyFallback
Tells ATSUI not to scan the font list and instead use the last
resort font.

kATSUSequentialFallbacksPreferred
Tells ATSUI to sequentially scan the font list, then search
the remaining valid fonts on the user’s system, and finally
use the fallback font if a useful fallback font is not found in
either location.

kATSUSequentialFallbacksExclusive
Tells ATSUI to sequentially scan the font list, then use the
last resort font.

VERSION NOTES

Available with ATSUI 1.1.

Font Name Language Code Constants 2
The FontLanguageCode enumeration defines constants your application can use
to identify or obtain the language of a font name string in a font name table.
You can use a constant of this type with the functions ATSUFindFontName
(page 56) and ATSUFindFontFromName (page 50) to identify the language of the
font name string you want to find in a font name table. You get a platform code
constant passed back from the function ATSUGetIndFontName (page 54) to
represent the language of the font name string corresponding to a passed in font
name index.

The font name language code identifies the language of the name string.
Specifying the language of a font name string is optional. If you do not care
about its language, pass the kFontNoLanguage constant, described in “No Font
Name Platform, Language, or Script Constants” (page 235). In this case,
ATSUFindFontName and ATSUFindFontFromName will pass back the first name string
in the name table that matches the name code and other parameters that you
specified.
Constants 209
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
enum {
kFontEnglishLanguage = 0,
kFontFrenchLanguage = 1,
kFontGermanLanguage = 2,
kFontItalianLanguage = 3,
kFontDutchLanguage = 4,
kFontSwedishLanguage = 5,
kFontSpanishLanguage = 6,
kFontDanishLanguage = 7,
kFontPortugueseLanguage = 8,
kFontNorwegianLanguage = 9,
kFontHebrewLanguage = 10,
kFontJapaneseLanguage = 11,
kFontArabicLanguage = 12,
kFontFinnishLanguage = 13,
kFontGreekLanguage = 14,
kFontIcelandicLanguage = 15,
kFontMalteseLanguage = 16,
kFontTurkishLanguage = 17,
kFontCroatianLanguage = 18,
kFontTradChineseLanguage = 19,
kFontUrduLanguage = 20,
kFontHindiLanguage = 21,
kFontThaiLanguage = 22,
kFontKoreanLanguage = 23,
kFontLithuanianLanguage = 24,
kFontPolishLanguage = 25,
kFontHungarianLanguage = 26,
kFontEstonianLanguage = 27,
kFontLettishLanguage = 28,
kFontLatvianLanguage = kFontLettishLanguage,
kFontSaamiskLanguage = 29,
kFontLappishLanguage = kFontSaamiskLanguage,
kFontFaeroeseLanguage = 30,
kFontFarsiLanguage = 31,
kFontPersianLanguage = kFontFarsiLanguage,
kFontRussianLanguage = 32,
kFontSimpChineseLanguage = 33,
kFontFlemishLanguage = 34,
kFontIrishLanguage = 35,
kFontAlbanianLanguage = 36,
210 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kFontRomanianLanguage = 37,
kFontCzechLanguage = 38,
kFontSlovakLanguage = 39,
kFontSlovenianLanguage = 40,
kFontYiddishLanguage = 41,
kFontSerbianLanguage = 42,
kFontMacedonianLanguage = 43,
kFontBulgarianLanguage = 44,
kFontUkrainianLanguage = 45,
kFontByelorussianLanguage = 46,
kFontUzbekLanguage = 47,
kFontKazakhLanguage = 48,
kFontAzerbaijaniLanguage = 49,
kFontAzerbaijanArLanguage = 50,
kFontArmenianLanguage = 51,
kFontGeorgianLanguage = 52,
kFontMoldavianLanguage = 53,
kFontKirghizLanguage = 54,
kFontTajikiLanguage = 55,
kFontTurkmenLanguage = 56,
kFontMongolianLanguage = 57,
kFontMongolianCyrLanguage = 58,
kFontPashtoLanguage = 59,
kFontKurdishLanguage = 60,
kFontKashmiriLanguage = 61,
kFontSindhiLanguage = 62,
kFontTibetanLanguage = 63,
kFontNepaliLanguage = 64,
kFontSanskritLanguage = 65,
kFontMarathiLanguage = 66,
kFontBengaliLanguage = 67,
kFontAssameseLanguage = 68,
kFontGujaratiLanguage = 69,
kFontPunjabiLanguage = 70,
kFontOriyaLanguage = 71,
kFontMalayalamLanguage = 72,
kFontKannadaLanguage = 73,
kFontTamilLanguage = 74,
kFontTeluguLanguage = 75,
kFontSinhaleseLanguage = 76,
kFontBurmeseLanguage = 77,
Constants 211
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kFontKhmerLanguage = 78,
kFontLaoLanguage = 79,
kFontVietnameseLanguage = 80,
kFontIndonesianLanguage = 81,
kFontTagalogLanguage = 82,
kFontMalayRomanLanguage = 83,
kFontMalayArabicLanguage = 84,
kFontAmharicLanguage = 85,
kFontTigrinyaLanguage = 86,
kFontGallaLanguage = 87,
kFontOromoLanguage = kFontGallaLanguage,
kFontSomaliLanguage = 88,
kFontSwahiliLanguage = 89,
kFontRuandaLanguage = 90,
kFontRundiLanguage = 91,
kFontChewaLanguage = 92,
kFontMalagasyLanguage = 93,
kFontEsperantoLanguage = 94,
kFontWelshLanguage = 128,
kFontBasqueLanguage = 129,
kFontCatalanLanguage = 130,
kFontLatinLanguage = 131,
kFontQuechuaLanguage = 132,
kFontGuaraniLanguage = 133,
kFontAymaraLanguage = 134,
kFontTatarLanguage = 135,
kFontUighurLanguage = 136,
kFontDzongkhaLanguage = 137,
kFontJavaneseRomLanguage = 138,
kFontSundaneseRomLanguage = 139

};
typedef UInt32 FontLanguageCode;

VERSION NOTES

Available with ATSUI 1.1.
212 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Font Name Code Constants 2
The FontNameCode enumeration defines constants your application can use to
identify or obtain the type of font name string in a font name table. You can use
a constant of this type with the functions ATSUFindFontName (page 56) and
ATSUFindFontFromName (page 50) to identify the type of font name string you
want to find in a font name table. You get a name code constant passed back
from the function ATSUGetIndFontName (page 54) to represent the type of the font
name string corresponding to a passed in font name index.

The font name code identifies a name string that provides various kinds of
information about the font, including its unique name, font family name, style,
version number, and Postscript-legible name. You can specify values between
kFontLicenseInfoURLName and kFontLastReservedName to find other types of
information about the font, including the name of a particular font variation
axis, feature, tracking setting, or instance.

You must always specify a constant of this type when you are searching for a
font name string in a font name table. Optionally, you can also specify the
platform, script, and language of the font name string. You should pass these
values if you want to find a localized string. This is not the case with the unique
name and Postscript-legible name of a font, which only have one font name
string regardless of the platform, script, and language you specify.

For all other font names, the actual font name string identified by a name code
constant will vary based on the platform, script, and language of the font name.
For example, the name code constant kFontCopyrightName might identify three
different strings of the font manufacturer’s copyright notice name, one in
Unicode French, one in Macintosh English, and one in Microsoft German.

enum {
kFontCopyrightName = 0,
kFontFamilyName = 1,
kFontStyleName = 2,
kFontUniqueName = 3,
kFontFullName = 4,
kFontVersionName = 5,
kFontPostscriptName = 6,
kFontTrademarkName = 7,
kFontManufacturerName = 8,
kFontDesignerName = 9,
kFontDescriptionName = 10,
kFontVendorURLName = 11,
Constants 213
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kFontDesignerURLName = 12,
kFontLicenseDescriptionName = 13,
kFontLicenseInfoURLName = 14,
kFontLastReservedName = 255

};
typedef UInt32 FontNameCode;

Constant descriptions

kFontCopyrightName Identifies the font manufacturer’s copyright notice name.
An example of a font name string that might be accessed by
this name code for Mac Roman English is “© Apple
Computer, Inc. 1993”.

kFontFamilyName Identifies the font family name, which is shared by all
styles in a font family. An example of a font name string
that might be accessed by this name code for Mac Roman
English is “Times”.

kFontStyleName Identifies the font style. An example of a font name string
that might be accessed by this name code for Mac Roman
English is “Regular”, “Italic”, “Bold”, or “Black”.

kFontUniqueName Identifies the manufacturer’s name for the font. Because the
name identified by this constant can be used to uniquely
identify the font, you should use it in stored documents
and in program interchange to identify fonts. The unique
name is used in the standard clipboard format. An example
of a font name string that might be accessed by this name
code for Mac Roman English is “Apple Computer Times
Black 3.0 8/10/92”.

kFontFullName Identifies the full font name. An example of a font name
string that might be accessed by this name code for Mac
Roman English is “Times Black”.

kFontVersionName Identifies the font manufacturer’s version number for the
font. An example of a font name string that might be
accessed by this name code for Mac Roman English is
“3.0.” (The name does not need to include the word
“version”).

kFontPostscriptName
Identifies the PostScript-legible name of the font. This type
of font name can be used to uniquely identify the font. An
214 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
example of a font name string that might be accessed by
this name code for Mac Roman English is “Times-Black”.

kFontTrademarkName
Identifies the font trademark name. An example of a font
name string that might be accessed by this name code for
Mac Roman English is “Palatino is a registered trademark
of Linotype AG”.

kFontManufacturerName
Identifies the font manufacturer’s name. An example of a
font name string that might be accessed by this name code
for Mac Roman English is “Apple Computer, Inc.”

kFontDesignerName Identifies the font family designer’s name.
kFontDescriptionName

Identifies the description of the font family.
kFontVendorURLName Identifies the uniform resource locator of the font vendor. If

a unique serial number is embedded in the URL, it can be
used to register the font.

kFontDesignerURLName
Identifies the uniform resource locator of the font family
designer.

kFontLicenseDescriptionName
Identifies the uniform resource locator of the font vendor. If
a unique serial number is embedded in the URL, it can be
used to register the font.

kFontLicenseInfoURLName
Identifies the uniform resource locator of the font vendor. If
a unique serial number is embedded in the URL, it can be
used to register the font.

kFontLastReservedName
No font name code may exceed this value. Name code
values between kFontLicenseInfoURLName and
kFontLastReservedName are reserved.

VERSION NOTES

Available with ATSUI 1.0.
Constants 215
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Font Name Platform Code Constants 2
The FontPlatformCode enumeration defines constants your application can use
to identify or obtain the encoding of a font name string in a font name table.
You can use a constant of this type with the functions ATSUFindFontName
(page 56) and ATSUFindFontFromName (page 50) to identify the encoding of the
font name string you want to find in a font name table. You get a platform code
constant passed back from the function ATSUGetIndFontName (page 54) to
represent the encoding of the font name string corresponding to a passed in
font name index.

The font name platform code identifies the encoding of the name string, which
ATSUI uses to determine whether or not it can render the string. A font can
support multiple encodings. If the encoding of the name string is not Unicode,
you will have to translate it into Unicode using the Text Encoding Converter.

Specifying the encoding of a font name string is optional. If you do not care
about its encoding, pass the kFontNoPlatform constant, described in “No Font
Name Platform, Language, or Script Constants” (page 235). In this case,
ATSUFindFontName and ATSUFindFontFromName will pass back the first name string
in the name table that matches the name code and other parameters that you
specified. If you pass kFontNoPlatform, you should pass kFontNoScript in the
script code parameter, since a script code makes no sense without a platform.

IMPORTANT

Due to an error on the part of font developers,
Unicode-encoded font name entries have 8-bit instead of
the expected 16-bit names. As a result, if you wish to find a
Unicode-encoded font name string, you should pass the
font platform code constant kFontMacintoshPlatform and a
script code constant the represents the platform-specific ID
of Unicode encoding you wish to find. See “Font Name
Script Code Constants” (page 217) for a description of the
script codes corresponding to the Unicode platform. ▲

enum {
kFontUnicodePlatform = 0,
kFontMacintoshPlatform = 1,
kFontReservedPlatform = 2,
kFontMicrosoftPlatform = 3,
kFontCustomPlatform = 4

};
typedef UInt32 FontPlatformCode;
216 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Constant descriptions

kFontUnicodePlatform
The platform uses the Unicode character code
specifications. For more information about the Unicode
encodings, see The Unicode Standard: Worldwide Character
Encoding, volumes 1 and 2, available from Addison-Wesley.

kFontMacintoshPlatform
The platform uses one of the Macintosh character code
sets.

kFontReservedPlatform
The platform is reserved for future use.

kFontMicrosoftPlatform
The platform uses one of the Microsoft character code sets.

kFontCustomPlatform
This is a nonstandard platform, specific to the font, in
which the encoding of a font does not correspond to a
specific standard.

VERSION NOTES

Available with ATSUI 1.0.

Font Name Script Code Constants 2
The FontScriptCode enumeration defines constants your application can use to
identify or obtain the platform-specific ID of a font name string in a font name
table. You can use a constant of this type with the functions ATSUFindFontName
(page 56) and ATSUFindFontFromName (page 50) to identify the platform-specific
ID of the font name string you want to find in a font name table. You get a
platform code constant passed back from the function ATSUGetIndFontName
(page 54) to represent the platform-specific ID of the font name string
corresponding to a passed in font name index.

The font name script code identifies the platform version, or in the case of the
Macintosh platform, the script ID of the font name. The script ID identifies the
writing system being used (for example, MacRoman). A font can support
multiple encodings. If the encoding of the name string is not Unicode, you will
have to translate it into Unicode using the Text Encoding Converter.
Constants 217
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Specifying the version of the platform (or script ID) of a font name string is
optional. If you do not care about this value, pass the kFontNoScript constant,
described in “No Font Name Platform, Language, or Script Constants”
(page 235). In this case, ATSUFindFontName and ATSUFindFontFromName will pass
back the first name string in the name table that matches the name code and
other parameters that you specified.

enum {
kFontUnicodeDefaultSemantics = 0,
kFontUnicodeV1_1Semantics = 1,
kFontISO10646_1993Semantics = 2,
kFontUnicodeV2BasedSemantics = 3

Constant descriptions

kFontUnicodeDefaultSemantics
The platform uses the default Unicode character code
specifications.

kFontUnicodeV1_1Semantics
The platform uses version 1.1 of the Unicode character code
specifications.

kFontISO10646_1993Semantics
The platform uses the ISO/IEC 10646-1993 specifications.

kFontUnicodeV2BasedSemantics
The platform uses version 2.0 or later of the Unicode
character code specifications.

enum {
kFontRomanScript = 0,
kFontJapaneseScript = 1,
kFontTraditionalChineseScript = 2,
kFontChineseScript = kFontTraditionalChineseScript,
kFontKoreanScript = 3,
kFontArabicScript = 4,
kFontHebrewScript = 5,
kFontGreekScript = 6,
kFontCyrillicScript = 7,
kFontRussian = kFontCyrillicScript,
kFontRSymbolScript = 8,
kFontDevanagariScript = 9,
kFontGurmukhiScript = 10,
218 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kFontGujaratiScript = 11,
kFontOriyaScript = 12,
kFontBengaliScript = 13,
kFontTamilScript = 14,
kFontTeluguScript = 15,
kFontKannadaScript = 16,
kFontMalayalamScript = 17,
kFontSinhaleseScript = 18,
kFontBurmeseScript = 19,
kFontKhmerScript = 20,
kFontThaiScript = 21,
kFontLaotianScript = 22,
kFontGeorgianScript = 23,
kFontArmenianScript = 24,
kFontSimpleChineseScript = 25,
kFontTibetanScript = 26,
kFontMongolianScript = 27,
kFontGeezScript = 28,
kFontEthiopicScript = kFontGeezScript,
kFontAmharicScript = kFontGeezScript,
kFontSlavicScript = 29,
kFontEastEuropeanRomanScript = kFontSlavicScript,
kFontVietnameseScript = 30,
kFontExtendedArabicScript = 31,
kFontSindhiScript = kFontExtendedArabicScript,
kFontUninterpretedScript = 32

};

Constant descriptions

kFontRomanScript Represents the Roman script on the Macintosh platform.
kFontJapaneseScriptRepresents the Japanese script on the Macintosh platform.
kFontTraditionalChineseScript

Represents the traditional Chinese script on the Macintosh
platform.

kFontChineseScript Represents the Chinese script on the Macintosh platform.
kFontKoreanScript Represents the Korean script on the Macintosh platform.
kFontArabicScript Represents the Arabic script on the Macintosh platform.
kFontHebrewScript Represents the Hebrew script on the Macintosh platform.
kFontGreekScript Represents the Greek script on the Macintosh platform.
Constants 219
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kFontCyrillicScriptRepresents the Cyrillic script on the Macintosh platform.
kFontRussian Represents the Russian script on the Macintosh platform.
kFontRSymbolScript Represents the right-to-left symbol script on the Macintosh

platform.
kFontDevanagariScript

Represents the Devanagari script on the Macintosh
platform.

kFontGurmukhiScriptRepresents the Gurmukhi script on the Macintosh
platform.

kFontGujaratiScriptRepresents the Gujarati script on the Macintosh platform.
kFontOriyaScript Represents the Oriya font script on the Macintosh platform.
kFontBengaliScript Represents the Benagli script on the Macintosh platform.
kFontTamilScript Represents the Tamil script on the Macintosh platform.
kFontTeluguScript Represents the Telugu script on the Macintosh platform.
kFontKannadaScript Represents the Kannada script on the Macintosh platform.
kFontMalayalamScript

Represents the Malayalam script on the Macintosh
platform.

kFontSinhaleseScript
Represents the Sinhalese script on the Macintosh platform.

kFontBurmeseScript Represents the Burmese script on the Macintosh platform.
kFontKhmerScript Represents the Khmer script on the Macintosh platform.
kFontThaiScript Represents the Thai script on the Macintosh platform.
kFontLaotianScript Represents the Laotian script on the Macintosh platform.
kFontGeorgianScriptRepresents the Georgian script on the Macintosh platform.
kFontArmenianScriptRepresents the Armenian script on the Macintosh platform.
kFontSimpleChineseScript

Represents the simplified Chinese script on the Macintosh
platform.

kFontTibetanScript
Represents the Tibetan script on the Macintosh platform.

kFontMongolianScript
Represents the Mongolian script on the Macintosh
platform.

kFontGeezScript Represents the Ge’ez script on the Macintosh platform.
220 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kFontEthiopicScript
Represents the Ethiopic script on the Macintosh platform.

kFontAmharicScript Represents the Amharic script on the Macintosh platform.
kFontSlavicScript Represents the Slavic script on the Macintosh platform.
kFontEastEuropeanRomanScript

Represents the East European script on the Macintosh
platform.

kFontVietnameseScript
Represents the Vietnamese script on the Macintosh
platform.

kFontExtendedArabicScript
Represents the extended Arabic script on the Macintosh
platform.

kFontSindhiScript Represents the Sindhi script on the Macintosh platform.
kFontUninterpretedScript

Represents an uninterpreted script on the Macintosh
platform.

enum {
kFontMicrosoftSymbolScript = 0,
kFontMicrosoftStandardScript = 1

};

Constant descriptions

kFontMicrosoftSymbolScript
Represents the symbol version of the Microsoft platform.

kFontMicrosoftStandardScript
Represents the standard version of the Microsoft platform.

enum {
kFontCustom8BitScript = 0,
kFontCustom816BitScript = 1,
kFontCustom16BitScript = 2

};

Constant descriptions

kFontCustom8BitScript
Represents custom 8-bit encoding.
Constants 221
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kFontCustom816BitScript
Represents custom mixed 8-/16-bit encoding.

kFontCustom16BitScript
Represents custom 16-bit encoding.

Glyph Bounds Constants 2
Your application passes a glyph bounds constant in the iTypeOfBounds
parameter of the functionATSUGetGlyphBounds (page 145) to indicate whether the
width of the resulting typographic glyph bounds will be determined using the
caret origin, glyph origin in device space, or glyph origin in fractional absolute
positions.

enum {
kATSUseCaretOrigins = 0,
kATSUseDeviceOrigins = 1,
kATSUseFractionalOrigins = 2

};

Constant descriptions

kATSUseCaretOrigins
Specifies that the width of the typographic glyph bounds
will be determined using the caret origin. The caret origin
is halfway between two characters.

kATSUseDeviceOrigins
Specifies that the width of the typographic glyph bounds
will be determined using the glyph origin in device space.
This is useful for adjusting text on the screen.

kATSUseFractionalOrigins
Specifies that the width of the typographic glyph bounds
will be determined using the glyph origin in fractional
absolute positions, which are uncorrected for device
display. This provides the ideal position of laid-out text and
is useful for scaling text on the screen. This origin is also
used to get the width of the typographic bounding
rectangle when you call ATSUMeasureText (page 148).
222 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.1.

Glyph Direction Constants 2
Your application can use a glyph direction constant to set the direction of
glyphs in a text layout object, regardless of their natural direction as specified in
the font. To set a glyph direction in a single line or entire text layout object, pass
the kATSULineDirectionTag tag and a constant of this type to the functions
ATSUSetLineControls (page 100) and ATSUSetLayoutControls (page 92).

enum {
kATSULeftToRightBaseDirection = 0,
kATSURightToLeftBaseDirection = 1

};

Constant descriptions

kATSULeftToRightBaseDirection
Imposes left-to-right direction on glyphs in a line or in an
entire text layout object regardless of their natural direction
as specified in the font. For vertical text, imposes
top-to-bottom direction onto the glyphs.

kATSURightToLeftBaseDirection
Imposes right-to-left direction on glyphs in a line or in an
entire text layout object regardless of their natural direction
as specified in the font. For vertical text, imposes
bottom-to-top direction onto the glyphs.

VERSION NOTES

Available with ATSUI 1.0.

Glyph Orientation Constants 2
Your application can pass a constant of type ATSUVerticalCharacterType to the
functions ATSUCountFontTracking (page 61) and ATSUGetIndFontTracking
(page 62) to represent the glyph orientation for the font tracking settings you
want to count, and for the tracking setting and name code you want to obtain. It
Constants 223
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
is necessary to specify this value because there are different font tracking
settings for different glyph orientations.

You can also use a constant of type ATSUVerticalCharacterType to set the glyph
orientation in a style run. To set a style run’s glyph orientation, pass the
kATSUVerticalCharacterTag tag and a constant of this type to the function
ATSUSetAttributes (page 29).

enum {
kATSUStronglyHorizontal = 0,
kATSUStronglyVertical = 1

};
typdef UInt16 ATSUVerticalCharacterType

Constant descriptions

kATSUStronglyHorizontal
Specifies non-rotated glyphs that are drawn with
horizontal metrics.

kATSUStronglyVertical
Specifies that glyphs are rotated 90 degrees and are drawn
with vertical metrics.

VERSION NOTES

Available with ATSUI 1.0.

Heap Specification Constants 2
Your application passes a constant of type ATSUHeapSpec to the function
ATSUCreateMemorySetting (page 174) to specify either the desired heap to use or
the callback functions ATSUI should use in performing memory allocation
operations.

If you pass the kATSUUseSpecificHeap constant in the iHeapSpec parameter, you
must specify the correctly-prepared heap in the heapToUse field of the
ATSUMemoryCallbacks (page 193) union. If you pass the kATSUUseCallbacks
constant in the iHeapSpec parameter, you must supply pointers to your
application in the callback structure of the ATSUMemoryCallbacks (page 193)
union. If you pass the kATSUUseCurrentHeap or kATSUUseAppHeap constant in the
224 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iHeapSpec parameter, pass a NULL pointer to the ATSUMemoryCallbacks (page 193)
union.

enum {
kATSUUseCurrentHeap = 0,
kATSUUseAppHeap = 1,
kATSUUseSpecificHeap = 2,
kATSUUseCallbacks = 3

};
typedef UInt32 ATSUHeapSpec;

Constant descriptions

kATSUUseCurrentHeap
Indicates to ATSUI to perform memory allocation
operations on the heap that is current at the time you call
ATSUCreateMemorySetting. If you pass this constant in the
iHeapSpec parameter, you must pass a pointer to a
ATSUMemoryCallbacks (page 193) union that contains the
correctly-prepared heap in the heapToUse field in the
parameter. This is the default value if you do not call
ATSUCreateMemorySetting.

kATSUUseAppHeap Indicates to ATSUI to perform memory allocation
operations only on the application heap, whether or not it
is the current heap.

kATSUUseSpecificHeap
Indicates to ATSUI to perform memory allocation
operations on the heap identified in the heapToUse field of
the ATSUMemoryCallbacks (page 193) union.

kATSUUseCallbacks Indicates to ATSUI to use your application-defined
memory callback functions pointed to in the Alloc, Grow,
and Free fields of the callbacks structure in the
ATSUMemoryCallbacks (page 193) union.

VERSION NOTES

Available with ATSUI 1.1.
Constants 225
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Invalid Font ID Constant 2
The functions ATSUFONDtoFontID (page 59), ATSUFindFontFromName (page 50), and
ATSUMatchFontsToText (page 122) pass back this constant to indicate that the
passed in font ID is invalid.

enum {
kATSUInvalidFontID = 0

};

Constant description

kATSUInvalidFontID Indicates that the font ID is invalid.

VERSION NOTES

Available with ATSUI 1.0.

Justification Override Mask Constants 2
Your application supplies a mask of type JustificationFlags in the growFlags
and shrinkFlags fields of a ATSJustPriorityWidthDeltaOverrides (page 183)
delta structure, described in ATSJustPriorityWidthDeltaOverrides (page 183).
control which aspects of the normal, font-specified justification behavior for a
particular set of glyphs you want to override. This mask applies only to the
glyphs of the style run that the width delta structure applies to. You specify this
mask in the growFlags and shrinkFlags fields of a width delta structure,
described in ATSJustPriorityWidthDeltaOverrides (page 183).

Note that these flags are a specialized override. You should not use them unless
you know the details of what is occurring in the font.

enum {
kJUSTOverridePriority = 0x8000,
kJUSTOverrideLimits = 0x4000,
kJUSTOverrideUnlimited = 0x2000,
kJUSTUnlimited = 0x1000,
kJUSTPriorityMask = 0x0003

};
typedef UInt16 JustificationFlags;
226 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Constant descriptions

kJUSTOverridePriority
Determines whether ATSUI should use or override the
default priority. If this flag is set, ATSUI uses the
justification priority set in the kJUSTPriorityMask mask. If
this flag is cleared, ATSUI uses the default justification
priority for those glyphs. In this case, the
kJUSTPriorityMask mask bits must also be set to 0.

kJUSTOverrideLimits
Determines whether ATSUI should use or override the
default shrink and grow limits. If this flag is set, ATSUI
uses the grow and shrink limit values set in the
ATSJustPriorityWidthDeltaOverrides (page 183) structure.
If this flag is cleared, ATSUI uses the default grow and
shrink limits for those glyphs. In this case, the limits values
in the width delta structure must also be set to 0.

kJUSTOverrideUnlimited
Determines whether ATSUI should apply the
kJUSTUnlimited flag. If this flag is set, ATSUI takes into
account the state of the kJUSTUnlimited flag. If this flag is
cleared, the kJUSTUnlimited flag must also be set to 0.

kJUSTUnlimited Determines whether ATSUI should distribute all remaining
justification gap to the glyphs specified in the
ATSJustPriorityWidthDeltaOverrides (page 183) structure.
If this flag is set, ATSUI distributes all remaining
justification gap, even if it violates the grow or shrink limits
specified in the structure. If this flag is not zero, you must
also set the kJUSTOverrideUnlimited bit.

kJUSTPriorityMask Identifies the new justification priority for the glyphs this
width delta structure applies to. See “Justification Priority
Constants” (page 228) for a description of possible values.
Only a single valid justification priority value is permitted.
If this flag is set, the kJUSTOverrideLimits bit must also be
set. To make the justification priority of white space glyphs
the same as intercharacter priority, set this bit to
ATSUInterCharPriority.

VERSION NOTES

Available with ATSUI 1.0.
Constants 227
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Justification Priority Constants 2
Glyphs in a font can be assigned justification priorities by the font designer. In
general, ATSUI applies justification to glyphs on a line in order of glyph
priority, from highes to lowest. You can set a new justification priority for the
glyphs a particular width delta structure applies to by setting the
kJUSTPriorityMask flag of the justification flags.

The justification priorities have names that describe the types of glyphs that
typically have those priorities, but you can assign any priority to any glyph.
The actual kind of justification that ATSUI applies—for example, kashida or
whitespace—is defined for each glyph by the font. The priority specifies only
the order in which glyphs participate in justification.

enum {
kJUSTKashidaPriority = 0,
kJUSTSpacePriority = 1,
kJUSTLetterPriority = 2,
kJUSTNullPriority = 3,
kJUSTPriorityCount = 4

};
typedef UInt16 JustPCActionType;

Constant descriptions

kJUSTKashidaPriority
The highest priority. Typically used for kashidas (extension
bars) in Arabic. Glyphs with this priority are extended or
compressed before all other glyphs in the line.

kJUSTSpacePriority Typically assigned to whitespace (interword) glyphs.
Glyphs with this priority are extended or compressed,
usually by the addition or removal of white space, after all
glyphs on the line with priority kJUSTKashidaPriority have
been extended or compressed to the maximum amount
permitted.

kJUSTLetterPriorityAssigned to all glyphs that do not have
kJUSTKashidaPriority or kJUSTSpacePriority. Glyphs with
this priority are extended or compressed, typically by the
addition or removal of white space, after all glyphs on the
line with priority kJUSTSpacePriority have been extended
or compressed to the maximum amount permitted.
228 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kJUSTNullPriority Available as a priority for glyphs that you want to
participate in justification last of all.

kJUSTPriorityCount The number of defined justification priorities. You can use
this value for range-checking, size allocation, or loop
control.

Line Alignment Constants 2
You use these constants to specify the alignment of text relative to the text
margins within a single line or an entire text layout object. You can set the
alignment text layout attribute for a line or an entire text layout object by
passing the kATSULineFlushFactorTag tag to the functions ATSUSetLineControls
(page 100) and ATSUSetLayoutControls (page 92), respectively.

enum {
kATSUStartAlignment = 0,
kATSUEndAlignment = fract1,
kATSUCenterAlignment = fract1 / 2

};

Constant descriptions

kATSUStartAlignment
Specifies that horizontal text should be drawn to the right
of the left margin (that is, its left edge coincides with the
text layout object’s position plus text width). Vertical text
should be drawn below the top margin.

kATSUEndAlignment Specifies that horizontal text should be drawn to the left of
the right margin. Vertical text should be drawn above the
bottom margin.

kATSUCenterAlignment
Specifies that horizontal text should be drawn between the
left and right margins with an equal amount of space on
either side. Vertical text should be drawn between the top
and bottom margins with an equal amount of space on
either side.

VERSION NOTES

Available with ATSUI 1.0.
Constants 229
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Line Height Constant 2
You use this constant to specify that ATSUI use the natural line ascent and
descent values dictated by the font and pixel size to determine line ascent and
descent. You can set the line ascent text layout attribute for a line or an entire
text layout object by passing the kATSULineAscentTag tag to the functions
ATSUSetLineControls (page 100) and ATSUSetLayoutControls (page 92),
respectively. You can set the line descent text layout attribute for a line or an
entire text layout object by passing the kATSULineDescentTag tag to the
functions ATSUSetLineControls (page 100) and ATSUSetLayoutControls (page 92),
respectively.

enum {
kATSUseLineHeight= 0x7FFFFFFF,

};

Constant description

kATSUseLineHeight Specifies that ATSUI use the natural line ascent and descent
values dictated by the font and pixel size to determine line
ascent and descent in a line or entire text layout object.

VERSION NOTES

Available with ATSUI 1.0.

Line Justification Constants 2
You use these constants to specify the degree of line justification for a single line
or an entire text layout object. You can set the line justification text layout
attribute for a line or an entire text layout object by passing the
kATSULineJustificationFactorTag tag the functions ATSUSetLineControls
(page 100) and ATSUSetLayoutControls (page 92), respectively.

enum {
kATSUNoJustification = 0x00000000L,
kATSUFullJustification = 0x40000000L

};
230 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Constant descriptions

kATSUNoJustification
Indicates no justification.

kATSUFullJustification
Full justification between the text margins. White space is
“stretched” to make the line extend to both text margins.

VERSION NOTES

Available with ATSUI 1.0.

Line Layout Option Mask Constants 2
Your application should use one or more of these mask constants to to set or
obtain the various line layout options in a line or text layout object. To set the
line layout options text layout attribute in a line or text layout object, pass this
32-bit flag and the kATSULineLayoutOptionsTag tag to the functions
ATSUSetLineControls (page 100) and ATSUSetLayoutControls (page 92),
respectively.

enum {
kATSLineNoLayoutOptions = 0x00000000,
kATSLineIsDisplayOnly = 0x00000001,
kATSLineHasNoHangers = 0x00000002,
kATSLineHasNoOpticalAlignment = 0x00000004,
kATSLineKeepSpacesOutOfMargin = 0x00000008,
kATSLineNoSpecialJustification = 0x00000010,
kATSLineLastNoJustification = 0x00000020,
kATSLineFractDisable = 0x00000040,
kATSLineImposeNoAngleForEnds = 0x00000080,
kATSLineFillOutToWidth = 0x00000100,
kATSLineAppleReserved = (long)0xFFFFFE00

};
typedef UInt32 ATSLineLayoutOptions

Constant descriptions

kATSLineNoLayoutOptions
Indicates that no bits are set.
Constants 231
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSLineIsDisplayOnly
If the bit specified by this mask is set, ATSUI creates the
text layout object without the internal information needed
for editing the text layout; it is for display purposes only.
This allows ATSUI to display the text layout faster and
make the text layout object smaller. When the user edits the
text layout object, you must clear this flag.

kATSLineHasNoHangers
If the bit specified by this mask is set, the automatic
hanging punctuation in the text layout object is overridden.
The value in this bit overrides any adjustment to hanging
punctuation set for a style run inside the text layout object
using the style run attribute tags kATSUForceHangingTag or
kATSUHangingInhibitFactorTag.

kATSLineHasNoOpticalAlignment
If the bit specified by this mask is set, the optical alignment
of characters at the text margin of the text layout object will
not occur. Optical alignment adjusts characters at the text
margin so that they appear to be properly aligned; strict
alignment can often cause the illusion of a ragged edge.
The value in this bit overrides any adjustment to optical
alignment set for a style run inside the text layout object
using the style run attribute tag
kATSUNoOpticalAlignmentTag.

kATSLineKeepSpacesOutOfMargin
If the bit specified by this mask is set, the trailing white
spaces at the end of a line of justified text are placed
outside the margin.

kATSLineNoSpecialJustification
If the bit specified by this mask is set, postcompensation
actions will not be taken, even if necessary. This flag cannot
be set for a single line of a text layout object. The value in
this bit overrides any adjustment to the postcompensation
actions set for a style run using the style run attribute tag
kATSUNoSpecialJustificationTag.

kATSLineLastNoJustification
If this flag is set, the last line of a justified text layout object
will not be justified. This flag is meaningless when setting a
line’s text layout attributes.
232 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSLineFractDisable
If the bit specified by this mask is set, the position of the
text in the line or text layout object will be relative to
fractional absolute positions, which are uncorrected for
device display. This provides the ideal position of laid-out
text and is useful for scaling text on the screen. This origin
is also used to get the width of the typographic bounding
rectangle when you call ATSUMeasureText (page 148).

kATSLineImposeNoAngleForEnds
If the bit specified by this mask is set, carets on the far right
and left sides of an unrotated line will always be vertical,
no matter what the angle of text.

kATSLineFillOutToWidth
If the bit specified by this mask is set, highlighting extends
to either ends of the line, regardless of caret locations. It
does not change caret locations. You must set this bit to
ensure that highlighting is done correctly, particularly
across tab stops. In this case, you should also set the bit
specified by the kATSLineImposeNoAngleForEnds mask
constant.

kATSLineAppleReserved
If the bit specified by this mask is set, line layout mask
values (and the bits they specify) between
kATSLineNoLayoutOptions and kATSLineAppleReserved are
reserved. In this case, ATSUI will return the
kATSUInvalidAttributeValueErr result code if you set a
reserved bit.

VERSION NOTES

The mask constants kATSLineFractDisable, kATSLineImposeNoAngleForEnds,
kATSLineFillOutToWidth, and kATSLineAppleReserved are available with ATSUI
1.1. All other mask constants are available with ATSUI 1.0.

Line Layout Width Constant 2
Your application can pass this constant in the iLineWidth parameter of the
function ATSUBreakLine (page 156) to indicate that ATSUBreakLine should use the
Constants 233
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
previously set line width attribute for the current line to determine how many
characters can fit on the line.

enum {
kATSUUseLineControlWidth = 0x7FFFFFFFL

};

Constant description

kATSUUseLineControlWidth
Indicates ATSUBreakLine should use the previously set line
width attribute for the current line to determine how many
characters can fit on the line. If none has been set, this value
will be ignored.

VERSION NOTES

Available with ATSUI 1.0.

Miscellaneous Constants 2
The following constants are provided for convenience.

enum {
kATSItalicQDSkew = (1 << 16) / 4,
kATSRadiansFactor = 1144.
kATSUseLineHeight = 0x7FFFFFFF,
kATSNoTracking = (long)0x80000000,

};

Constant descriptions

kATSItalicQDSkew A Fixed value of 0.25.
kATSRadiansFactor A Fixed value of approximately pi/180 (0.0174560546875).
kATSUseLineHeight A value that represents the natural ascent or descent of a

line.
kATSNoTracking A value of type negativeInfinity that indicates that font

tracking should be off.
234 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

No Font Name Platform, Language, or Script Constants 2
This enumeration defines constants your application can use to indicate that
you don’t care about the platform, language, or script of a font name string. You
can use one of these constants with the functions ATSUFindFontName (page 56)
and ATSUFindFontFromName (page 50) if you want the first name string in the
name table that matches a given name code and other parameters that you
specify. For example, if you passed the constants kFontMacintoshPlatform,
kFontRomanScript, and kFontNoLanguage, you would get the name string of the
first MacRoman font name in the font name table.

Note that if you pass kFontNoPlatform, you should also pass kFontNoScript,
since the script code is meaningless without a platform.

enum {
kFontNoPlatform = -1,
kFontNoScript = -1,
kFontNoLanguage = -1

};

Constant descriptions

kFontNoPlatform Indicates that you don’t care about the encoding of the font
name string. In this case, ATSUFindFontName and
ATSUFindFontFromName will pass back the first name string in
the name table that matches the name code and other
parameters that you specified.

kFontNoScript Indicates that you don’t care about the platform version (or
script ID, if the platform is Macintosh) of the font name
string. In this case, ATSUFindFontName and
ATSUFindFontFromName will pass back the first name string in
the name table that matches the name code and other
parameters that you specified.

kFontNoLanguage Indicates that you don’t care about the language of the font
name string. In this case, ATSUFindFontName and
ATSUFindFontFromName will pass back the first name string in
the name table that matches the name code and other
parameters that you specified.
Constants 235
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available with ATSUI 1.0.

Style Comparison Constants 2
The function ATSUCompareStyles (page 18) passes back a constant of type
ATSUStyleComparison to indicate how the contents of two style objects compare.

enum {
kATUStyleUnequal = 0,
ATSUStyleContains = 1,
kATSUStyleEquals = 2,
kATSUStyleContainedBy = 3

};
typedef Uint16 ATSUStyleComparison;

Constant descriptions

kATUStyleUnequal Indicates that the contents of the second style object are not
equivalent to, contained by, or containing those of the first.

ATSUStyleContains Indicates that the contents of the second style object are
contained by those of the first (excluding pointers and
handles to reference constants and custom style run
attribute tags).

kATSUStyleEquals Indicates that the contents of the second style object are
equivalent to those of the first (excluding pointers and
handles to reference constants and custom style run
attribute tags).

kATSUStyleContainedBy
Indicates that the contents of the second style object are
contained by those of the first (excluding pointers and
handles to reference constants and custom style run
attribute tags).

VERSION NOTES

Available with ATSUI 1.0.
236 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Style Run Attribute Tags 2
Your application uses tags of this type with ATSUI functions that manipulate
and obtain attribue values that control layout in a style run: to
ATSUSetAttributes (page 29) to set these values, to ATSUGetAttribute (page 31)
and ATSUGetAllAttributes (page 33) to obtain these values, and to
ATSUClearAttributes (page 34) to remove these values.

Examples of style attributes include text style, text size, text color, font, kerning,
tracking, with- and cross-stream shifting, optical alignment, hanging glyph
behavior, and control of postcompensation actions.

If you do not set a style run attribute value, it will be set to the default value
listed in Table 2-1. Table 2-1 presents the Apple-defined style run attribute tags
and the size, data type, and default value of the attributes they identify.

Table 2-1 Apple-defined style run attribute tags and the size, data type, and
default value of the attributes they identify

Style run attribute tag

Data type and size (in
bytes) of corresponding
attribute

Default value of
attribute

kATSUQDBoldfaceTag Boolean 1 false; plain text

kATSUQDItalicTag Boolean 1 false; plain text

 kATSUQDUnderlineTag Boolean 1 false; plain text

 kATSUQDCondensedTag Boolean 1 false; plain text

kATSUQDExtendedTag Boolean 1 false; plain text
Constants 237
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUFontTag ATSUFontID
(page 192)

4 the application font
for the current script
system; you can
determine this value
by calling
GetScriptVariable(smS
ystemScript,smScriptA
ppFond). If the
application font
cannot be rendered
with ATSUI, the
default font is
Helvetica.

kATSUSizeTag Fixed 4 the size of the
application font for
the current script
system; you can
determine this value
by calling
GetScriptVariable(smS
ystemScript,smScriptA
ppFondSize) and
examining the low
word of the return
value

kATSUColorTag RGBColor 6 (0, 0, 0); black text

kATSULanguageTag RegionCode 2 the RegionCode of the
system script; you can
determine this value
by calling
GetScriptVariable(smS
ystemScript,smScriptL
ang)

Table 2-1 Apple-defined style run attribute tags and the size, data type, and
default value of the attributes they identify

Style run attribute tag

Data type and size (in
bytes) of corresponding
attribute

Default value of
attribute
238 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUVerticalCharacterTag ATSUVerticalChara
cterType

2 kATSUStronglyHorizont
al;
horizontally-oriented
glyphs

kATSUImposeWidthTag ATSUTextMeasureme
nt (page 196)

4 kATSUNoImposedWidth; ;
use font-defined
character width
default value

kATSUBeforeWithStreamShiftTag Fixed 4 0; use the font-defined
with-stream shift
default value before
glyphs

kATSUAfterWithStreamShiftTag Fixed 4 0; use the font-defined
with-stream shift
default value after
glyphs

kATSUCrossStreamShiftTag Fixed 4 0; use the font-defined
cross-stream shift
default value

kATSUTrackingTag Fixed 4 0; use the font-defined
tracking default value

kATSUHangingInhibitFactorTag Fract 4 0; use the font-defined
hanging glyph default
value

kATSUKerningInhibitFactorTag Fract 4 0; use the font-defined
default kerning value

kATSUDecompositionFactorTag Fixed 4 0; use the font-defined
ligature
decomposition default
value

kATSUBaselineClassTag ATSUFontID
(page 192)

4 kBSLNRomanBaseline;
Roman baseline

Table 2-1 Apple-defined style run attribute tags and the size, data type, and
default value of the attributes they identify

Style run attribute tag

Data type and size (in
bytes) of corresponding
attribute

Default value of
attribute
Constants 239
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUPriorityJustOverrideTag ATSJustWidthDelta
EntryOverride
structure

20 0’s in all fields; apply
the font-defined
justification priority
behavior default
values

kATSUNoLigatureSplitTag Boolean 1 false; treat ligatures
as divisible

kATSUNoCaretAngleTag Boolean 1 false; use inherent
angle of text to draw
caret and highlighting

kATSUSuppressCrossKerningTag Boolean 1 false; use the
font-defined cross
kerning default value

kATSUNoOpticalAlignmentTag Boolean 1 false; use the
font-defined optical
alignment default
value

kATSUForceHangingTag Boolean 1 false; glyphs will not
extend into the
margin, even if they
would normally do so

Table 2-1 Apple-defined style run attribute tags and the size, data type, and
default value of the attributes they identify

Style run attribute tag

Data type and size (in
bytes) of corresponding
attribute

Default value of
attribute
240 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
IMPORTANT

The following descriptions assume horizontal text. If you
are setting or getting the style run attributes of vertical text,
you should interpret these accordingly. ▲

enum {
kATSUQDBoldfaceTag = 256L,
kATSUQDItalicTag = 257L,
kATSUQDUnderlineTag = 258L,
kATSUQDCondensedTag = 259L,
kATSUQDExtendedTag = 260L,
kATSUFontTag = 261L,
kATSUSizeTag = 262L,
kATSUColorTag = 263L,
kATSULanguageTag = 264L,
kATSUVerticalCharacterTag = 265L,

kATSUNoSpecialJustificationTag Boolean 1 false;
postcompensation
actions will occur if
they are needed

kATSUMaxStyleTag the maximum
Apple-defined style
run attribute tag value

kATSUMaxATSUITagValue No Apple-defined tags
may exceed this value.
Apple-defined values
between
kATSUMaxStyleTag and
kATSUMaxATSUITagValue
are reserved. You can
create you own
attribute tags with any
greater value.

Table 2-1 Apple-defined style run attribute tags and the size, data type, and
default value of the attributes they identify

Style run attribute tag

Data type and size (in
bytes) of corresponding
attribute

Default value of
attribute
Constants 241
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUImposeWidthTag = 266L,
kATSUBeforeWithStreamShiftTag = 267L,
kATSUAfterWithStreamShiftTag = 268L,
kATSUCrossStreamShiftTag = 269L,
kATSUTrackingTag = 270L,
kATSUHangingInhibitFactorTag = 271L,
kATSUKerningInhibitFactorTag = 272L,
kATSUDecompositionInhibitFactorTag = 273L,
kATSUBaselineClassTag = 274L,
kATSUPriorityJustOverrideTag = 275L,
kATSUNoLigatureSplitTag = 276L,
kATSUNoCaretAngleTag = 277L,
kATSUSuppressCrossKerningTag = 278L,
kATSUNoOpticalAlignmentTag = 279L,
kATSUForceHangingTag = 280L,
kATSUNoSpecialJustificationTag = 281L,
kATSUMaxStyleTag = 282L,
kATSUMaxATSUITagValue = 65535L

};
typedef UInt32 ATSUAttributeTag;

Constant descriptions

kATSUQDBoldfaceTag You use this tag to set or get a value of type Boolean that
indicates whether the text style of the glyphs in a style run
is boldfaced. If true, text is boldfaced; if false, text is plain
style. Making text boldfaced causes each glyph to be
repeatedly drawn one bit to the right for extra thickness.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, text in the style
object will be plain style.

kATSUQDItalicTag You use this tag to set or get a value of type Boolean that
indicates whether the text style of the glyphs in a style run
is italicized. If true, text is italicized; if false, text is plain
style. Making text italicized skews glyph bits above the
baseline to the right, bits below the baseline to the left.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, text in the style
object will be plain style.

kATSUQDUnderlineTag
You use this tag to set or get a value of type Boolean that
242 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
indicates whether the text style of the glyphs in a style run
is underlined. If true, text is underlined; if false, text is
plain style. Making text underlined draws the underline
through the entire text line, from the pen starting position
through the ending position, plus any offsets from the font
or italic kerning. If part of a glyph descends below the base
line, generally, the underline isn’t drawn through the pixel
on either side of the descending part.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, text in the style
object will be plain style.

kATSUQDCondensedTag
You use this tag to set or get a value of type Boolean that
indicates whether the text style of the glyphs in a style run
is condensed. If true, text is condensed; if false, text is
plain style. Making text condensed decreases the horizontal
distance between all glyphs, including spaces, by the
amount that the Font Manager determines is appropriate.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, text in the style
object will be plain style.

kATSUQDExtendedTag You use this tag to set or get a value of type Boolean that
indicates whether the text style of the glyphs in a style run
is extended. If true, text is extended; if false, text is plain
style. Making text extended increases the horizontal
distance between all glyphs, including spaces, by the
amount that the Font Manager determines is appropriate.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, text in the style
object will be plain style.

kATSUFontTag You use this tag to set or get a value of type ATSUFontID
(page 192) that uniquely identifies the font in the style run
to the font management system in ATSUI.
If you do not set the attribute value corresponding to this
tag, the default value is the ID corresponding to the font
family number of the application font for the current script
system. To determine this value, evaluate the result of the
call GetScriptVariable (smSystemScript,smScriptAppFond).
Constants 243
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
If the application font does not have a corresponding ID,
the default value is Helvetica.

kATSUSizeTag You use this tag to set or get a value of type Fixed that
represents the size, in typographic points (72 per inch), of
the text in the style run.
If you do not set the attribute value corresponding to this
tag, the default value is the application font size for the
current script system. To determine this value, evaluate the
low word result of the call
GetScriptVariable(smSystemScript,smScriptAppFondSize).

kATSUColorTag You use this tag to set or get a value of type RGBColor that
represents the color of the text in the style run.
If you do not set the attribute value corresponding to this
tag, the default value is (0, 0, 0). In this case, the color of
text will be black.

kATSULanguageTag You use this tag to set or get a value of type RegionCode
that represents the regional language and other
region-dependent characteristics for glyphs in the style run.
If you do not set the attribute value corresponding to this
tag, the default value is the region code of the system
script. To determine this value, evaluate the result of
GetScriptVariable (smSystemScript,smScriptLang).

kATSUVerticalCharacterTag
You use this tag to set or get a value of type
ATSUVerticalCharacterType that represents glyph
orientation in the style run.
See “Glyph Orientation Constants” (page 223) for a
description of possible values. To produce vertical text, you
must set the corresponding value to the
kATSUStronglyVertical constant and the text layout
attribute value corresponding to the kATSULineRotationTag
tag to -90 degrees.
 If you do not set the attribute value corresponding to this
tag, the default value is kATSUStronglyHorizontal. In this
case, glyph orientation will be horizontal.

kATSUImposeWidthTag

You use this tag to set or get a value of type
ATSUTextMeasurement (page 196) that represents the
244 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
imposed width on glyph in the style run. This width is
imposed regardless of the value of other style run
attributes. Note that ATSUI ignores negative values.
If you do not set the attribute value corresponding to this
tag, the default value is kATSUNoImposedWidth. In this case,
ATSUI applies the default imposed width value defined for
the font.

kATSUBeforeWithStreamShiftTag
You use this tag to set or get a value of type Fixed that
represents the with-stream shift to apply equally before all
glyphs in the style run. Positive values increase space
before each glyph, while negative values decrease space
before each glyph.
If you do not set the attribute value corresponding to this
tag, the default value is 0. In this case, ATSUI applies the
default with-stream shift value defined for the font to the
space before each glyph.

kATSUAfterWithStreamShiftTag
You use this tag to set or get a value of type Fixed that
represents the with-stream shift to apply equally after all
glyphs in the style run. Positive values increase space after
each glyph, while negative values decrease space after each
glyph.
If you do not set the attribute value corresponding to this
tag, the default value is 0. In this case, ATSUI applies the
default with-stream shift value defined for the font to the
space after each glyph.

kATSUCrossStreamShiftTag
You use this tag to set or get a value of type Fixed that
represents the cross-stream shift to apply to all glyphs in
the style run. This positional shift raises or lowers each
glyph in the style run. Positive values shift glyphs upward,
while negative values shift glyphs downwards.
If you do not set the attribute value corresponding to this
tag, the default value is 0. In this case, ATSUI uses the
default cross-stream shift value defined for the font.

kATSUTrackingTag You use this tag to set or get a value of type Fixed that
represents the tracking to apply to all glyphs in the style
run. Tracking is kerning between all glyphs in the style run,
Constants 245
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
not just the kerning pairs already defined by the font.
Positive values loosen tracking, while negative numbers
tighten tracking. If you do not want tracking to occur,
specify the constant kATSUNoTracking.
 If you do not set the attribute value corresponding to this
tag, the default value is kATSUNoTracking. In this case,
ATSUI uses the default tracking value defined for the font.

kATSUHangingInhibitFactorTag
You use this tag to set or get a value of type Fract that
represents the amount to inhibit font-defined hanging of
glyphs that typically extend beyond the text margins and
are not counted when line length is measured. Values can
range between 0 and 1. A value of 0 means you want to use
font-defined glyph hanging, while a value of 1 indicates no
hanging (that is, total inhibition of font-defined hanging
glyphs).
If you do not set the attribute value corresponding to this
tag, the default value is 0. In this case, ATSUI uses the
default hanging glyph value defined for the font.

kATSUKerningInhibitFactorTag
You use this tag to set or get a value of type Fract that
represents the amount to inhibit font-defined kerning.
Kerning is an adjustment to the normal spacing that occurs
between two or more specifically-named glyphs, also
known as a kerning pair.
A value of 0 means you want to use font-defined kerning,
while a value of 1 indicates no kerning (that is, total
inhibition of font-defined kerning).
If you do not set the attribute value corresponding to this
tag, the default value is 0. In this case, ATSUI uses the
default kerning value defined for the font.

kATSUDecompositionInhibitFactorTag
You use this tag to set or get a value of type Fixed that
represents the amount to inhibit font-defined ligature
decomposition during justification. A ligature is two or
more glyphs connected to form a single new glyph.
Ligature decomposition is the replacement of ligatures with
the glyphs for their component characters during
justification.
246 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Values can range from -1.0 to 1.0. Positive values increase
the font-defined threshold, while negative values lessen it.
For example, a value of 0.5 adds 50 percent to the
font-specified threshold, while a value of -0.25 subtracts 25
percent from that threshold.
If you do not set the attribute value corresponding to this
tag, the default value is 0. In this case, ATSUI uses the
default ligature decomposition value defined for the font.

kATSUBaselineClassTag
You use this tag to set or get a value of type
BslnBaselineClass that represents the baseline that you
want ATSUCalculateBaselineDeltas to use in calculating the
distances to each of the other baseline types in the style
run.
See “Baseline Type Constants” (page 204) for a description
of possible values. Values can range from 0
(kBSLNRomanBaseline) to 31 (kBSLNLastBaseline). Typically,
the values 0 through 4 are used; the remaining are
application-defined. If you want to use the standard
baseline value defined by the font, set the attribute value to
kBSLNLastBaseline.
If you do not set the attribute value corresponding to this
tag, the default value is kBSLNRomanBaseline. In this case,
ATSUI uses the Roman baseline for the style run.

kATSUPriorityJustOverrideTag
You use this tag to set or get an array of type
ATSJustPriorityWidthDeltaOverrides (page 183) that
represents the overriding behavior to use in justifying
glyphs in a style run. The array contains four structures of
type ATSJustPriorityWidthDeltaOverrides, one for each
justification priority.
If you do not set the attribute value corresponding to this
tag, the default value is 0’s in the fields of all four
structures. In this case, ATSUI applies the default
justification prioritity behavior defined for the font.

kATSUNoLigatureSplitTag
You use this tag to set or get an array of type Boolean that
indicates whether ligatures should be treated as their
Constants 247
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
component glyphs or as an indivisible unit for the purpose
of caret positioning.
A value of true indicates that ligatures will not be split into
their component glyphs. In this case, when the caret
position is adjacent to one, ATSUI considers the next valid
caret position to be across the entire ligature rather than at
any point within it.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, ATSUI treats the
ligature as divisible (unless the characters are a surrogate
pair or a pre-coded Unicode ligature).

kATSUNoCaretAngleTag
You use this tag to set or get an array of type Boolean that
indicates whether the angle of the caret and the highlight
region should be parallel to the inherent angle of the text or
perpendicular to the baseline.
A value of true indicates that the caret and highlight angles
will be perpendicular to the baseline.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, the caret and
highlight angles will reflect the inherent angle of the text.

kATSUSuppressCrossKerningTag

You use this tag to set or get an array of type Boolean that
indicates whether to inhibit font-defined cross-stream
kerning. Setting this value has no impact on manual
cross-stream kerning.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, ATSUI applies
font-defined cross-stream kerning to the glyphs in the style
run.

kATSUNoOpticalAlignmentTag
You use this tag to set or get an array of type Boolean that
indicates whether to inhibit font-specified optical
alignment. Optical alignment is the automatical adjustment
of glyph position at the ends of lines to give a more even
visual appearance to margins.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, ATSUI applies
248 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
font-defined optical alignment to the glyphs in the style
run.

kATSUForceHangingTag
You use this tag to set or get an array of type Boolean that
indicates whether glyphs should extend into the margins.
If you set the attribute value identified by this tag to false,
glyphs will not extend into the text margins, even if they
are hanging glyphs that would normally do so as defined
by the font or you (if you set the attribute identified by the
kATSUHangingInhibitFactorTag).
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, glyphs will not
extend into the margin.

kATSUNoSpecialJustificationTag
You use this tag to set or get an array of type Boolean that
indicates whether postcompensation actions should occur
occur after glyph positions have been calculated.
If you set the attribute value identified by this tag to true,
postcompensation actions will not be occur, even if they are
needed.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case,
postcompensation actions will occur if they are needed.

kATSUMaxStyleTag Represents the maximum Apple-defined style run attribute
tag value.

kATSUMaxATSUITagValue

No Apple-defined tags may exceed this value.
Apple-defined values between kATSUMaxStyleTag and
kATSUMaxATSUITagValue are reserved. You can create you
own attribute tags with any greater value.

VERSION NOTES

The tag constants kATSUMaxStyleTag and kATSUMaxATSUITagValue are available
with ATSUI 1.1. All other tag constants are available with ATSUI 1.0.
Constants 249
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Text Layout and Line Attribute Tags 2
Your application uses tags of this type with ATSUI functions that manipulate
and obtain the attribute values that control line layout in a text layout object: to
ATSUSetLayoutControls (page 92) to set these values, to ATSUGetLayoutControl
(page 94) and ATSUGetAllLayoutControls (page 95) to obtain these values, and to
ATSUClearLayoutControls (page 97) to remove these values.

You can also use these tags with the function ATSUSetLineControls (page 100) to
override attributes that were previously set in a text layout object in a single
line of the text layout object. When you set a line attribute value, it overrides the
corresponding attribute value in the text layout attribute containing the line.
This is true regardless of the order in which you set these values. You can also
use these tags with the functions ATSUGetLineControl (page 102),
ATSUGetAllLineControls (page 104), and ATSUClearLineControls (page 105) to
obtain and remove attribute values from a line in a text layout object.

Examples of text layout and line attributes include line width, line rotation, line
direction, line justification, line alignment, line ascent, line descent, baseline
offsets, and special layout options.

If you do not set a text layout or line value, it will be set to the default value
listed in Table 2-2. Table 2-2 presents the Apple-defined text layout and line
attribute tags and the size, data type, and default values of the attributes they
identify.
250 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Table 2-2 Apple-defined text layout and line attribute tags and the size, data type,
and default value of the attributes they identify

Text layout and line attribute tag
Data type and size (in bytes)
of corresponding attribute

Default value of
attribute

kATSULineWidthTag ATSUTextMeasurement
(page 196)

4 0; no imposed line
width

kATSULineRotationTag Fixed 4 0; no line rotation

 kATSULineDirectionTag Boolean 1 derived from the
system script; you
can determine this
value by calling the
function
GetSysDirection

kATSULineJustificationFactorTag Fract 4 kATSUNoJustificatio
n; no line
justification

kATSULineFlushFactorTag Fract 4 kATSUStartAlignment;
text is drawn to the
right of the left
margin

kATSULineBaselineValuesTag BslnBaselineRecord
(page 196)

4 all 0’s; no baseline
deltas are applied to
the cross-stream
shifting of glyphs
Constants 251
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
IMPORTANT

The following descriptions assume horizontal text. If you
are setting or getting the style run attributes of vertical text,
you should interpret these accordingly. ▲

enum {
kATSULineWidthTag = 1L,
kATSULineRotationTag = 2L,
kATSULineDirectionTag = 3L,
kATSULineJustificationFactorTag = 4L,
kATSULineFlushFactorTag = 5L,
kATSULineBaselineValuesTag = 6L,
kATSULineLayoutOptionsTag = 7L,
kATSULineAscentTag = 8L,
kATSULineDescentTag = 9L

};
typedef UInt32 ATSUAttributeTag;

Constant descriptions

kATSULineWidthTag You use this tag to set or get a value of type
ATSUTextMeasurement (page 196) that represents the line
width to impose on a single line or on each line of a text

kATSULineLayoutOptionsTag UInt32 4 kATSUNoLayoutOption
s; no special line
layout options are
set

kATSULineAscentTag ATSUTextMeasurement
(page 196)

4 kATSUseLineHeight;
use the maximum
line ascent of all the
style runs in a line

kATSULineDescentTag ATSUTextMeasurement
(page 196)

4 kATSUseLineHeight;
use the maximum
line descent of all the
style runs in a line

Text layout and line attribute tag
Data type and size (in bytes)
of corresponding attribute

Default value of
attribute
252 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
layout object. Note that if you set this value to 0, ATSUI
will act as if you have not set the line width.
If you do not set the attribute value corresponding to this
tag, the default value is 0. In this case, ATSUI does not
impose a line width.

kATSULineRotationTag
You use this tag to set or get a value of type Fixed value
that represents the angle of line rotation (in units of
degrees) for a single line or for each line in a text layout
object. Values can range from -1.0 to 1 . Negative values
rotate the line clockwise. Positive values rotate the line
counter-clockwise.
If you do not set the attribute value corresponding to this
tag, the default value is 0. In this case, ATSUI does not
impose line rotation.

kATSULineDirectionTag
You use this tag to set or get a value of type Boolean value
that indicates the direction of text in each line of a text
layout object. See “Glyph Direction Constants” (page 223)
for a description of possible values. You cannot set line
direction for a single line.
If you do not set the attribute value corresponding to this
tag, the default value is false. In this case, text direction is
derived from the system script, which you can determine
by calling the GetSysDirection function.

kATSULineJustificationFactorTag
You use this tag to set or get a value of type Fract value
that represents the justification to impose on a single line or
on each line of a text layout object. See “Line Justification
Constants” (page 230) for a description of possible values.
Values can range from 0 to 1. A value of 0 represents no
justification. A value of 1 represents full justification.
If you do not set the attribute value corresponding to this
tag, the default value is kATSUNoJustification. In this case,
no justification is imposed.

kATSULineFlushFactorTag

You use this tag to set or get a value of type Fract value
that represents the alignment of text in a single line or in
each line of a text layout object. See “Line Alignment
Constants 253
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Constants” (page 229) for a description of possible values.
Intermediate values position the text proportional distances
from the left and right margins. If you specify the constants
kATSUEndAlignment or kATSUCenterAlignment, you must also
set the line width of the corresponding line(s) of the text
layout object.
If you set text alignment, you must also set line justification
for the corresponding line(s).
If you do not set the attribute value corresponding to this
tag, the default value is kATSUStartAlignment. In this case,
text is aligned to the right of the left margin.

kATSULineBaselineValuesTag
You use this tag to set or get an array of type
BslnBaselineRecord (page 196) that represents the optimal
baseline positions to use in controlling glyph placement in
a single line or in each line of a text layout object.
To determine this value, call the function
ATSUCalculateBaselineDeltas (page 35) and pass the style
object of the dominant style run in the line.
If you do not set the attribute value corresponding to this
tag, the default value is 0 for each element of the array. In
this case, ATSUI applies the font-defined cross-stream shift
to each glyph.

kATSULineLayoutOptionsTag
You use this tag to set or get a mask value of type
ATSLineLayoutOptions that controls layout options for a
single line or for each line in a text layout object. See “Line
Layout Option Mask Constants” (page 231) for a
description of possible values.
If you do not set the attribute value corresponding to this
tag, the default value is the mask value
kATSUNoLayoutOptions. In this case, no special layout
options are set.

kATSULineAscentTag You use this tag to set or get a value of type
ATSUTextMeasurement (page 196) that represents line ascent.
You can specify any nonnegative value to reflect the
distance above the line’s baseline. Note that if you set this
value to 0, ATSUI will act as if you have not set the line
ascent.
254 Constants

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Line ascent is only taken into consideration by the
functions ATSUHighlightText (page 165) and
ATSUUnhighlightText (page 168) in order to calculate the
ascent of the highlight region.
If you do not set the attribute value corresponding to this
tag, the default value is kATSUseLineHeight. In this case,
ATSUI uses the calculated line ascent from the maximum
ascent along the line of all the style runs.

kATSULineDescentTag
You use this tag to set or get a value of type
ATSUTextMeasurement (page 196) that represents line
descent. You can specify any nonnegative value to reflect
the distance below the line’s baseline. Note that if you set
this value to 0, ATSUI will act as if you have not set the line
descent.
Line descent is only taken into consideration by the
functions ATSUHighlightText (page 165) and
ATSUUnhighlightText (page 168) in order to calculate the
descent of the highlight region.
If you do not set the attribute value corresponding to this
tag, the default value is kATSUseLineHeight. In this case,
ATSUI uses the calculated line descent from the maximum
descent along the line of all the style runs.

VERSION NOTES

The tag constants kATSULineAscentTag and kATSULineDescentTag are available
with ATSUI 1.1. All other tag constants are available with ATSUI 1.0.

Text Length Constant 2
Your application can pass a kATSUToTextEnd constant to ATSUI functions that
operate on a range of text in a text layout object to represent the end of a text
layout object’s text buffer. If you want to specify the entire text text buffer, pass
this constant in conjunction with the constant kATSUFromTextBeginning,
described in “Text Offset Constant” (page 256).
Constants 255
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
enum {
kATSUToTextEnd = (long)0xFFFFFFFF

};

Constant descriptions

kATSUToTextEnd Represents the end of the text layout object’s text buffer.

VERSION NOTES

Available with ATSUI 1.0.

Text Offset Constant 2
Your application can pass a kATSUFromTextBeginning constant to ATSUI
functions that operate on a range of text in a text layout object to represent the
edge offset of the beginning of a text layout object’s text buffer. If you want to
specify the entire text text buffer, pass this constant in conjunction with the
constant kATSUToTextEnd, described in “Text Length Constant” (page 255).

enum {
kATSUFromTextBeginning = (long)0xFFFFFFFF,

};

Constant descriptions

kATSUFromTextBeginning
Represents the edge offset of the beginning of the text
layout object’s text buffer.

VERSION NOTES

Available with ATSUI 1.0.

Result Codes 2

All ATSUI functions return result codes of type OSStatus. This includes general
result codes such as noErr (function completed successfully) and paramErr (one
or more of the input parameters has an invalid value). In addition, ATSUI
256 Result Codes

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
functions that allocate memory may return memFullErr if there is not enough
memory in the designatedheap.

The result codes specific to ATSUI are listed below in Table 2-3 (page 258). In
some cases, the function result section for a particular function provides more
detail about the meaning of the result code specific to that function.
Result Codes 257
5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Table 2-3 ATSUI-specific result codes

Result code constant Value Description
kATSUInvalidTextLayoutErr -8790 Text layout object not previously

initialized or in an otherwise
invalid state

kATSUInvalidStyleErr -8791 Style object not previously
initialized or in an otherwise
invalid state

kATSUInvalidTextRangeErr -8792 Text range extends beyond the
limits of the text layout object’s
text range

kATSUFontsMatched -8793 Character could not be rendered
with its assigned font

kATSUFontsNotMatched -8794 Character could not be rendered
with its assigned font or any
currently active font

kATSUNoCorrespondingFontErr -8795 Font ID corresponds to an
existing font that isn’t available
to ATSUI

kATSUInvalidFontErr -8796 Font ID does not correspond to
any installed font

kATSUInvalidAttributeValueErr -8797 Invalid or undefined attribute
value

kATSUInvalidAttributeSizeErr -8798 Allocated attribute value size is
less than required

kATSUInvalidAttributeTagErr -8799 ATSUI-reserved tag value or
wrong type of attribute tag (that
is, style run attribute tag instead
of text layout attribute tag and
vice versa)

kATSUInvalidCacheErr -8800 Attempt to read in style data
from an invalid cache (that is,
the format of the cached data
does not match that used by
ATSUI or the cached data is
corrupt)

kATSUNotSetErr -8801 Style object’s attribute, font
feature, font variation not set;
text layout object or single line’s
attribute not set; or font name
not set

kATSUNoStyleRunsAssignedErr -8802 No style runs assigned to text
layout object
258 Result Codes

5/7/99  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

The result code constants kATSUNoStyleRunsAssignedErr, kATSUQuickDrawTextErr,
kATSULowLevelErr, kATSUNoFontCmapAvailableErr,
kATSUNoFontScalerAvailableErr, and kATSUCoordinateOverflowErr are available
with ATSUI 1.1. All other result code constants are available with ATSUI 1.0.

kATSUQuickDrawTextErr -8803 QuickDraw function DrawText
encountered an error rendering
or measuring a line of text

kATSULowLevelErr -8804 Error encountered in Apple Type
Solution (ATS) while performing
an operation requested by
ATSUI

kATSUNoFontCmapAvailableErr -8805 'CMAP' table cannot be accessed
or synthesized for a font set by
the function ATSUSetAttributes
(page 29)

kATSUNoFontScalerAvailableErr -8806 No font scaler available for a
font set by the function
ATSUSetAttributes (page 29)

kATSUCoordinateOverflowErr -8807 Input coordinates caused
coordinate overflow

kATSULineBreakInWord -8808 Returned by ATSUBreakLine
(page 156) to indicate that
ATSUBreakLine performed a line
break within a word.

kATSULastErr -8809 No ATSUI-specific result code
may exceed this value. Result
code values between
kATSUInvalidTextLayoutErr and
kATSULastErr are reserved.
Result Codes 259
5/7/99  Apple Computer, Inc.

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Document Revision History A

This document has had the following releases:

Table A-1 Apple Type Services for Unicode Imaging Reference revision history

Version Notes

May 7, 1999 Updated document to cover ATSUI 1.1. For a listing of all new 1.1 functions,
as well as any ATSUI 1.0 functions whose implementation has changed with
ATSUI 1.1, see “Functions New to ATSUI 1.1 and Changed From ATSUI 1.0”
(page 263).

Updated, expanded, and corrected descriptions of ATSUI 1.0 API.

Mar. 12, 1999 Initial public release of Apple Type Services for Unicode Imaging Reference
covering ATSUI 1.0.

Sep. 23, 1998 First seed draft release of ATSUI 1.0 API documentation. Document title:
Rendering Apple Type Services for Unicode Imaging (ATSUI).
261
5/7/99  Apple Computer, Inc.

A P P E N D I X B

Figure B-0
Listing B-0
Table B-0
Functions New to ATSUI 1.1 and
Changed From ATSUI 1.0 B

Table B-1 alphabetically lists all ATSUI 1.1 functions.

Table B-1 Functions new to ATSUI 1.1

Function name

ATSUClearLayoutCache (page 88)

ATSUClearLineControls (page 105)

ATSUCopyLineControls (page 98)

ATSUCountFontTracking (page 61)

ATSUCreateAndCopyTextLayout (page 85)

ATSUCreateMemorySetting (page 174)

ATSUDisposeMemorySetting (page 177)

ATSUGetAllLineControls (page 104)

ATSUGetCurrentMemorySetting (page 176)

ATSUGetFontFallbacks (page 120)

ATSUGetIndFontTracking (page 62)

ATSUGetLineControl (page 102)

ATSUSetCurrentMemorySetting (page 176)

ATSUSetFontFallbacks (page 119)

ATSUSetLineControls (page 100)

MyATSUCustomAllocFunc (page 178)

MyATSUCustomFreeFunc (page 181)

MyATSUCustomGrowFunc (page 179)
263
5/7/99  Apple Computer, Inc.

A P P E N D I X B

Functions New to ATSUI 1.1 and Changed From ATSUI 1.0
Table B-2 alphabetically lists any ATSUI 1.0 functions whose implementation
has changed with ATSUI 1.1.

Table B-2 Functions whose implementaion has changed in ATSUI 1.1

Function name Changed from 1.0

ATSUBreakLine (page 156) Now returns the result code
kATSULineBreakInWord to indicate that
ATSUBreakLine performed a line break
within a word. Note that this is a status
message, not an error code.

ATSUCopyToHandle (page 27) No longer used. Instead, use the 'ustl'
resource, described in ustl (page 199), to
format styled text in the clipboard.

ATSUHighlightText (page 165) Now can extend highlighting across tab
stops using the mask constants
kATSLineFillOutToWidth and
kATSLineImposeNoAngleForEnds, described
in “Line Layout Option Mask Constants”
(page 231).

ATSUPasteFromHandle (page 28) No longer used. Instead, use the 'ustl'
resource, described in ustl (page 199), to
format styled text in the clipboard.

ATSUSetAttributes (page 29) New style run attribute tag constants
now available. See “Style Run Attribute
Tags” (page 237) for details.

ATSUSetLayoutControls (page 92) New text layout and line attribute tag
constants now available. See “Text Layout
and Line Attribute Tags” (page 250) for
details.

ATSUUnhighlightText (page 168) Now can erase highlighting across tab
stops using the mask constants
kATSLineFillOutToWidth and
kATSLineImposeNoAngleForEnds, described
in “Line Layout Option Mask Constants”
(page 231).
264
5/7/99  Apple Computer, Inc.

A P P E N D I X C

Figure C-0
Listing C-0
Table C-0
ATSUI Implementation of the Unicode
Specification C

This Appendix describes ATSUI’s implementation of the Unicode specification.
ATSUI provides support for all the text-drawing features required by scripts
included with version 2.1 of the Unicode Standard or later. It does not provide
other Unicode-related text processing services such as date and time formatting,
collation, or string matching. The ability of ATSUI to render Unicode text is only
limited by the available fonts the user has installed.

With ATSUI, Unicode text rendering includes support for accents and ligatures,
bidirectional text, contextual forms and vowel reordering, vertical text, and
surrogates. These capabilities are described and illustrated in subsequent
sections of this document.

The Unicode Standard is a 2-byte character encoding system designed to
support the interchange, processing, and display of all the written texts of the
diverse languages of the modern world. It provides a single model for
text-related activities, including text display and editing. Unicode simplifies the
handling of bidirectional text and characters that change according to their
position in the sentence.

Unicode is fully defined in The Unicode Standard, Version 2.0, published by
Addison-Wesley (1996) and the Unicode 2.1 addendum available from the
Unicode Consortium. For more complete information, see the Unicode web site
at <http://www.unicode.org/>. You should use Unicode text conforming to
the current version of the Unicode Standard.

The correct handling of many Unicode characters requires that the current font
supports those characters properly. For example, correct ligature formation
requires that the font supports those features using Apple Advanced
Typography (AAT) tables. If there is more than one equivalent combining
character sequence for a given glyph, the font is responsible for mapping all
such sequences to the correct glyph. For example, ATSUI will not automatically
support conjoining jamos in a Korean font that specifies pre-composed glyphs
only. For more details on the required AAT font tables and tools for creating
them, see the description of Apple Advanced Typography at <http://
fonts.apple.com>.
265
5/7/99  Apple Computer, Inc.

A P P E N D I X

ATSUI Implementation of the Unicode Specification
Character Size C

All characters in Unicode are 16 bits in size. In this, it differs from other
character encodings such as those used in East Asia, where some characters are
8-bits in size and others 16-bits.

Moreover, the interpretation of any character in Unicode is not dependent on
the character or characters surrounding it. The meaning of a character doesn’t
change depending on its context (although its visual appearance might). Again,
this is not true in general of the character sets used in East Asia. Surrogates,
described below, are a partial exception to these rules.

As a result, ATSUI functions that are intended only for Unicode take arrays of
UniChars (data type UInt16) as arguments. There is no need to use a void * or
char * to hide the size of individual characters.

Control Characters C

ATSUI 1.1 does not support the following control characters:

■ U+00AD (soft hyphen)

■ U+206A (inhibit symmetric swapping)

■ U+206B (activate symmetric swapping)

■ U+206C (inhibit symmetric swapping)

■ U+206C (inhibit symmetric swapping)

■ INHIBIT ARABIC FORM SHAPING

■ U+206D, ACTIVATE ARABIC FORM SHAPING

■ U+206E, NATIONAL DIGIT SHAPES; U+206F

■ NORMAL DIGIT SHAPES

■ the underline character

You can, however, achieve similar effects achieved by these control characters
by setting certain style run attributes, described in “Style Run Attribute Tag
266 Character Size

5/7/99  Apple Computer, Inc.

A P P E N D I X C

ATSUI Implementation of the Unicode Specification
Constants”. In addition, ATSUI currently treats the following characters as hard
line breaks: U+000A, LINE FEED; U+000C, FORM FEED; U+000D, CARRIAGE
RETURN; U+2028, LINE SEPARATOR; and U+2029, PARAGRAPH
SEPARATOR.

ATSUI fully renders non-spacing marks, though correct font tables are required
to render and process non-spacing marks correctly. To locate text element
boundaries, ATSUI defines a cluster as a run consisting of a base character plus
zero or more non-base characters, where a base character is defined as one
whose combining class is 0 and whose glyph is not deleted. Whether or not a
set of characters is a cluster is also dependent upon the behavior of the specific
font you are using with those characters. See “Cursor Movement Constants”
(page 400) for more information about clusters.

ATSUI fully supports the Unicode bidirectional algorithm, including the
bidirectional ordering codes. Correct bidirectional processing requires that the
font have the correct glyph properties set (for example, mirrored punctuation).
Other characters that require font support for correct processing include
invisible characters such as U+FEFF, ZERO WIDTH NO-BREAK SPACE. There
are some characters that ATSUI will map to either a zero-width glyph or a
non-marking return.

Combining Characters C

Unicode has a number of characters defined to be combining characters.
Combining characters are two glyphs that can be treated as either one or two
text elements, depending upon user preference. For example, in Dutch, the
characters “ij” are typically considered a single letter and yet can be viewed as
two separate text elements.

Rather than encode all the possible combinations of letter and accent that users
might want or limit the user to only those pre-defined and approved letter/
accent combinations in the standard, Unicode allows users to create new
letter-accent combinations on the fly, as they may need them.

Support for combining characters is necessary for computer implementation of
certain scripts, like Arabic or the various south Asian scripts. Combining
characters are used to represent indivisible letter-with-accent in various
Latin-derived writing systems.
Combining Characters 267
5/7/99  Apple Computer, Inc.

A P P E N D I X

ATSUI Implementation of the Unicode Specification
Whether a particular symbol is an accented letter or an indivisible
letter-with-accent will vary from culture to culture and from user to user. For
example, English-speakers would generally consider “é” to be a letter with an
accent on it, whereas French-speakers would generally consider it a
letter-with-accent. An English-speaker is more likely to want to delete an “é”
with two presses of the delete key (one to remove the accent and the other the
base character), and a French-speaker with one.

The interpretation of the combining character does not change. Even if a “´” is a
part of “é” in one instance and part of “á” in another, it is always an “´”. Your
application might need to vary how it handles the character depending on
character context and user preferences, but the interpretation of the character
does not vary.

The functions ATSUNextCursorPosition, ATSUPreviousCursorPosition,
ATSURightwardCursorPosition, and ATSULeftwardCursorPosition can treat
individual combining characters either as part of an indivisible larger unit (that
is, a cluster) or as characters in their own right, depending on the user’s
preference. You can use the style run attribute tag kATSUNoLigatureSplitTag to
make combining characters that are due to ligature formation one or two text
elements.

Surrogates C

To accommodate the encoding of more characters than there were code points
in Unicode, surrogates were added to version 2.0 of the Unicode Standard.
Currently, there are no characters formally encoded using surrogates, though
six scripts have been approved for encoding with surrogates (namely, the
Deseret Alphabet, Shavian, Etruscan, Gothic, Linear B, and Cypriot).

In addition, a large number of scripts, including Egyptian hieroglyphics,
cuneiform, and rare Han ideographs, are earmarked for encoding with
surrogates if they are ever encoded in Unicode. Apple intends to provide full
support for surrogates as it becomes required. the Like font features, surrogates
cannot be implemented without font support.

Surrogates break some of the assumptions about Unicode characters. In a sense,
U+D800 is only half a character and not a whole character, and the exact
meaning of the character (and its character properties) depend on what follows
it. In text insertion, deletion, selection, hit-testing, and cursor movement, you
268 Surrogates

5/7/99  Apple Computer, Inc.

A P P E N D I X C

ATSUI Implementation of the Unicode Specification
should treat surrogate pairs as single entities. In other areas like ligatures or
accented letters, you may treat them as a single or multiple entities.

There are two sets of surrogates: U+D800 through U+DBFF are “high
surrogates” and D+DC00 through U+DFFF are “low surrogates.” A valid
surrogate pair is a high surrogate followed by a low surrogate. Each valid
surrogate pair indicates a different character. Thus, a total of 1024 x 1024
characters (over one million) can be represented by surrogates.

Character Properties C

The definition of character properties used by ATSUI is derived from version
2.1.2 of the Unicode character properties database, definitions for Apple
characters from the corporate private use zone, and changes for certain
characters to make implementation easier. ATSUI uses the bidirectional
character properties associated with version 2.1 of the Unicode Standard.

Specifically, ATSUI requires that whitespace and symmetric swapping-related
properties be correctly set in the font. Characters not defined in the standard are
assumed to be directionally neutral.
Character Properties 269
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Figure D-0
Listing D-0
Table D-0
Font Feature Types and Selectors D

This Appendix describes the Apple-defined font feature type and selector
constants. Font features are grouped into categories called feature types, within
which individual feature selectors are used to define particular feature settings
or selections. You can use these feature types and selectors with the functions
ATSUSetFontFeatures (page 37), ATSUGetFontFeature (page 38),
ATSUGetAllFontFeatures (page 39), and ATSUClearFontFeatures (page 41) to set,
obtain, or clear the font features of a style object.

Font vendors create tables that implement a set of font features from which
your application can pick and choose. The architecture of font features is
open-ended; as font vendors create new kinds of features, ATSUI automatically
takes advantage of them. The initially-defined standard set of features is
described in this chapter; as new fonts add new features, the defined set of font
features will be expanded to accommodate them. For the most current list of
Apple-defined font feature type and selector constants, you can see the Font
Feature Registry at the Apple font web site:

<http://fonts.apple.com/Registry>

Table D-1 (page 272) lists examples of some of the feature types that a font can
support and that your application can choose among when laying out text.
271
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Note that unless the feature is defaulted differently in different fonts, the zero
value for the selectors represents the default value.

Table D-1 Examples of feature types

Constant Explanation

kAllTypographicFeaturesType Specifies whether or not any font features are to be applied
at all. Table D-2 (page 275) lists the feature selectors related
to this feature type.

kLigaturesType Specifies the use of required ligatures and other categories
of optional ligatures. Table D-3 (page 276) lists the feature
selectors related to this feature type.

kCursiveConnectionType Specifies whether or not cursive connections are to be used
between glyphs. Table D-4 (page 278) lists the feature
selectors related to this feature type.

kLetterCaseType Specifies case changes, such as all uppercase, all lowercase,
and small caps, for scripts in which case has meaning. Table
D-5 (page 278) lists the feature selectors related to this
feature type.

kVerticalSubstitutionType Allows substitution of vertical forms of particular glyphs
(such as parentheses) in vertical runs of text. Table D-6
(page 279) lists the feature selectors related to this feature
type.

kLinguisticRearrangementType Either permits or inhibits linguistic (Indic-style)
rearrangement of glyphs. Table D-7 (page 280) lists the
feature selectors related to this feature type.

kNumberSpacingType Specifies whether to use fixed-width or proportional-width
glyphs for numerals. Table D-14 (page 286) lists the feature
selectors related to this feature type.

kSmartSwashType Controls whether swash variants of glyphs are to be
substituted in specific places in the text, such as at the
beginnings or ends of words or lines. Table D-8 (page 280)
lists the feature selectors related to this feature type.

kDiacriticsType Controls whether diacritical marks are shown or hidden.
Table D-9 (page 281) lists the feature selectors related to this
feature type.
272
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
kVerticalPositionType Controls the selection of superscript and subscript glyph
sets. Table D-10 (page 282) lists the feature selectors related
to this feature type.

kFractionsType Controls automatic substitution or formation of fractions.
Table D-11 (page 283) lists the feature selectors related to
this feature type.

kOverlappingCharactersType Controls whether long tails on glyphs are permitted to
collide with other glyphs. Table D-12 (page 284) lists the
feature selectors related to this feature type.

kTypographicExtrasType Controls several effects, such as substitution of en dashes
for hyphens, that are associated with sophisticated
typography. Table D-23 (page 292) lists the feature selectors
related to this feature type.

kMathematicalExtrasType Controls several features, such as changing asterisks to
multiplication symbols, used for typesetting mathematical
expressions. Table D-24 (page 293) lists the feature selectors
related to this feature type.

kOrnamentSetsType Specifies certain sets of non-alphanumeric glyphs, such as
decorative borders or musical symbols. Table D-25
(page 294) lists the feature selectors related to this feature
type.

kCharacterAlternativesType Specifies, by number, any font-specific set of alternate
glyph forms. Table D-26 (page 295) lists the feature selector
related to this feature type.

kDesignComplexityType Specifies an overall complexity of appearance, as defined
by the font. Table D-27 (page 295) lists the feature selectors
related to this feature type.

kStyleOptionsType Specifies any of several named alternative forms that may
be available in the font, such as engraved or cursive. Table
D-22 (page 291) lists the feature selectors related to this
feature type.

kCharacterShapeType Specifies for languages such as Chinese that have both sets
whether traditional or simplified characters are to be used.
Table D-13 (page 285) lists the feature selectors related to
this feature type.

Table D-1 Examples of feature types (continued)

Constant Explanation
273
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Within some feature types, you can choose only one of the available feature
selectors, such as whether numbers are to be proportional or fixed-width. With
other feature types you can turn “on” or “off” any number of feature selectors

kNumberCaseType Specifies whether to use numerals that do, or do not,
extend below the baseline. Table D-15 (page 286) lists the
feature selectors related to this feature type.

kTextSpacingType Specifies whether to use proportional, monospaced and
half-width forms of characters in a font. Table D-16
(page 287) lists the feature selectors related to this feature
type.

kTransliterationType Allows text in one format to be displayed using another
format. Table D-18 (page 288) lists the feature selectors
related to this feature type.

kAnnotationType Specifies annotations (or adornments) to basic lettershapes.
For instance, most Japanese fonts include versions of
numbers that are circled, parenthesized, have periods after
them, and so on. Table D-17 (page 287) lists the feature
selectors related to this feature type.

kKanaSpacingType Specifies widths for Japanese Hiragana and Katakana
characters. Table D-19 (page 289) lists the feature selectors
related to this feature type.

kIdeographicSpacingType Specifies whether to use proportional or full-width forms of
ideographs (that is, Han-derived characters). Table D-20
(page 290) lists the feature selectors related to this feature
type.

kCJKRomanSpacingType Specifies whether to use proportional or half-width forms
of Roman characters in a CJK (that is, Chinese, Japanse, and
Korean) font. Table D-21 (page 290) lists the feature
selectors related to this feature type.

kUnicodeDecompositionType Table D-28 (page 296) lists the feature selectors related to
this feature type.

kLastFeatureType Represents the last Apple-reserved font feature type value.

Table D-1 Examples of feature types (continued)

Constant Explanation
274
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
at once; for example, under ligatures you can choose any combination of the
available classes of ligatures that the font supports.

Your application can select a group of features, place selectors for them in a
style object’s font features array, and assign that array to a text layout object’s
style object. ATSUI will then use those features, plus any font-specified features
not overridden by your feature selections, when it draws the text layout object.

You can also turn font features on or off. Table D-2 lists the feature selectors for
the kAllTypographicFeaturesType feature type; by specifying the selector
kAllTypeFeaturesOnSelector or kAllTypeFeaturesOffSelector for that feature
type, you can turn the entire set of features on or off. Note that if you turn all
font features off this way, you turn off all font features, including all the
font-specified defaults. (That may result in linguistically incorrect display.) If
you turn font features on, you turn on the font-specified defaults, modified by
whatever feature settings you have specified in the run-features array.

The rest of this section gives examples of the kinds of feature selectors that may
be available for some of the feature types listed in Table D-1 (page 272). Please
consult the font feature registry for more up-to-date information.

Contextual Font Features D

One class of font features is contextual, meaning that how (or if) the feature is
applied to a given glyph depends on the glyph’s position compared to adjacent

Table D-2 Feature selectors for the kAllTypographicFeaturesType font feature
type

Constant Explanation

kAllTypeFeaturesOnSelector Tells ATSUI to use the font features specified
in this style run’s run-features array and the
defaults specified by the font.

kAllTypeFeaturesOffSelector Tells ATSUI to ignore all font features
specified either by the font or in this style
run’s run-features array.
Contextual Font Features 275
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
glyphs. Much of ATSUI’s text layout power results from its ability to apply
sophisticated contextual processing.

ATSUI’s ability to automatically substitute one or more glyphs for one or more
other glyphs is called automatic form substitution. ATSUI supports several
kinds of automatic form substitution, including ligatures, cursive contextual
forms, contextual case substitution, vertical substitution, rearrangement,
automatic fraction generation, and others.

A ligature is a rendering form that represents a combination of two or more
individual characters. Examples include the “fi” ligature in English and the
miim-miim ligature in Arabic.

A contextual form is an alternate appearance of a glyph that is used in certain
contexts. Arabic, for example, has different contextual forms of characters,
depending on whether they are at the beginning, the middle, or the end of a
word. The same character code is used in each case; ATSUI chooses the correct
glyph when laying out the text.

Ligatures D

If the font supports the ligatures feature type, you can select features related to
ligature formation, such as those shown in Table D-3.

Table D-3 Feature selectors for the kLigaturesType feature type

Constant Explanation

kRequiredLigaturesOnSelector
kRequiredLigaturesOffSelector

Allows or prevents the use of ligatures
that the font designates as required by
the language (such as certain Arabic
ligatures).

kCommonLigaturesOnSelector
kCommonLigaturesOffSelector

Allows or prevents the use of ligatures
that the font designates as “common,”
or normally used (such as the “fi”
ligature in Roman text).

kRareLigaturesOnSelector
kRareLigaturesOffSelector

Allows or prevents the use of ligatures
that the font designates as “rare” (such
as “ct” or “ss” ligatures).
276 Contextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Cursive Connection D

All Arabic fonts use cursive connection, and some Roman fonts may also
support cursive connection. If a font supports the cursive connection feature
type, you may be able to select features that either disable cursive connection
completely, enable letterforms that connect in a noncontextual manner, or
enable completely contextual, cursively connected letterforms (as in Arabic).
Table D-4 lists the feature selectors for cursive connection.

Letter Case D

In fonts for languages in which case is significant, ATSUI allows you to specify
certain automatic case changes. If the font supports the letter case feature type,

kLogosOnSelector
kLogosOffSelector

Allows or prevents the use of ligatures
that the font designates as logotypes
(typically used for trademarks or
other special display text).

kRebusPicturesOnSelector
kRebusPicturesOffSelector

Allows or prevents the use of rebuses
(pictures that represent words or
syllables).

kDiphthongLigaturesOnSelector
kDiphthongLigaturesOffSelector

Specifies whether or not to replace
diphthong sequences, such as “AE”
and “oe”, with their equivalent
ligatures (“Æ” and “œ” in this case).

kSquaredLigaturesOnSelector
kSquaredLigaturesOffSelector

Allows or prevents the use of ligatures
where the component letters are
arranged in a lattice, such that the
ligature fits into the space of a single
letter. For examples, see Unicode
characters U+3300 through U+3357 and
U+337B through U+337F.

kAbbrevSquaredLigaturesOnSelector
kAbbrevSquaredLigaturesOffSelector

Allows or prevents the use of ligatures
similar to the previously described
ligatures, but in abbreviated form.

Table D-3 Feature selectors for the kLigaturesType feature type

Constant Explanation
Contextual Font Features 277
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
you can select features that specify case changes such as those shown in Table
D-5.

Table D-4 Feature selectors for the kCursiveConnectionType feature type

Constant Explanation

kUnconnectedSelector Disables cursive connection.

kPartiallyConnectedSelector Specifies noncontextual cursive connection.

kCursiveSelector Specifies fully contextual cursive connection.
For Arabic fonts, this selector is set by
default.

Table D-5 Feature selectors for the kLetterCaseType feature type

Constant Explanation

kUpperAndLowerCaseSelector Specifies no case conversion.

kAllCapsSelector Specifies conversion of all letters to uppercase. (This
feature is noncontextual.)

kAllLowerCaseSelector Specifies conversion of all letters to lowercase. (This
feature is noncontextual.)

kSmallCapsSelector Specifies conversion of all lowercase letters to small
caps. (This feature is noncontextual.)

kInitialCapsSelector Specifies conversion of all lowercase letters at the
beginnings of words to uppercase. (This feature is
contextual.)

kInitialCapsAndSmallCapsSelector Specifies conversion of all lowercase letters at the
beginnings of words to uppercase, and all other
lowercase letters to small caps. (This feature is
contextual.)
278 Contextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Note
Contrary to common perception, the small caps style is not
simply the use of capital letters in a smaller point size. If
the font contains true small caps glyphs, you can specify
them with a letter case feature selector, and ATSUI will use
them. ◆

Vertical Substitution D

Vertical substitution is a glyph substitution in which the glyph for a given glyph
code is replaced by an alternate form in a vertical line. (This is not the same as
rotating the glyph.) Table D-6 shows the feature selectors for vertical
substitution.

For vertical substitution to happen, the vertically rotated forms must exist in the
font and must be indicated as such in the font’s tables; otherwise, no characters
are substituted. If the font supports the vertical substitution feature type, its
default behavior is to perform such substitutions; you may either prevent the
substitution or allow it to occur.

Linguistic Rearrangement D

Linguistic (Indic-style) rearrangement is a standard feature of Devanagari and
other South Asian scripts. However, users may not always want it to occur,
preferring instead to enter characters in an “already reversed” order. If a font
supports the rearrangement feature type, you can either allow the default

Table D-6 Feature selectors for the kVerticalSubstitutionType feature type

Constant Explanation

kSubstituteVerticalFormsOnSelector
kSubstituteVerticalFormsOffSelector

Allows or prevents the substitution
of alternate glyph forms in vertical
lines.
Contextual Font Features 279
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
behavior (which is to perform rearrangement) or you can prevent it. Table D-7
shows the feature selectors for rearrangement.

Swashes and Smart Swashes D

A swash is a variation, often ornamental, of an existing glyph. Using font
tables, ATSUI can identify and automatically substitute swashes for existing
glyphs. Alternatively, your application can allow the user to choose swash
forms at the time the text layout object is created.

Collections of swash forms called smart swashes can be designated by the font
designer and put in swash tables. Smart swashes are contextual and swashes
are not. If the font supports the smart swashes feature type, you can select
features that allow you to specify sets of swashes, such as shown in Table D-8.

Table D-7 Feature selectors for the kLinguisticRearrangementType feature type

Constant Explanation

kLinguisticRearrangementOnSelector
kLinguisticRearrangementOffSelector

Allows or prevents the automatic
rearrangement of certain glyphs as
required by language rules.

Table D-8 Feature selectors for the kSmartSwashType feature type

Constant Explanation

kWordInitialSwashesOnSelector
kWordInitialSwashesOffSelector

Allows or prevents the substitution of
swash variants that begin words.

kWordFinalSwashesOnSelector
kWordFinalSwashesOffSelector

Allows or prevents the substitution of
swash variants that end words.
280 Contextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Note
If you want your application to define its own set of
swashes, it can use glyph substitutions to replace the
ATSUI glyph choices with its own. ◆

Diacritical Marks D

A glyph with a diacritical mark is a form of ligature. For fonts whose glyphs can
take diacritical marks, ATSUI allows you several display options. If the font
supports the diacritical marks feature type, you can specify that ATSUI should
show, hide, or decompose diacritical marks, as shown in Table D-9.

kLineInitialSwashesOnSelector
kLineInitialSwashesOffSelector

Allows or prevents the substitution of
swash variants that begin lines.

kLineFinalSwashesOnSelector
kLineFinalSwashesOffSelector

Allows or prevents the substitution of
swash variants that end lines.

kNonFinalSwashesOnSelector
kNonFinalSwashesOffSelector

Allows or prevents the substitution of
swash variants that can occur at the
beginnings or interiors of words

Table D-9 Feature selectors for the kDiacriticsType feature type

Constant Explanation

kShowDiacriticsSelector Specifies that ATSUI is to form accent
ligatures on the glyphs they apply to.

kHideDiacriticsSelector Specifies that ATSUI is not to form any
accent ligatures.

kDecomposeDiacriticsSelector Specifies that ATSUI is to display marked
glyphs as unmarked, followed by the accent
ligatures as stand-alone glyphs.

Table D-8 Feature selectors for the kSmartSwashType feature type

Constant Explanation
Contextual Font Features 281
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
For Roman fonts the default setting is to show diacritical marks. In text for
scripts in which vowel marks are not normally shown, you can specify that
marks be visible in certain instances, such as for children’s text, or for
pronunciation guides on rare words.

Vertical Position D

For fonts that support the vertical position feature type, you can select features
that allow you to specify glyph variants related to vertical position, as shown in
Table D-10.

Fractions D

There are several ways to generate fractions with ATSUI. For a font that
supports the fractions feature type, you may be able to select between two
different types of automatic fraction generation, as shown in Table D-11.

Table D-10 Feature selectors for the kVerticalPositionType feature type

Constant Explanation

kNormalPositionSelector Specifies use of normally positioned glyph set.

kSuperiorsSelector Specifies use of superiors: glyph variants that are
positioned above the baseline, used typically for
superscripts.

kInferiorsSelector Specifies use of inferiors: glyph variants that are
positioned below the baseline, used typically for
subscripts.

kOrdinalsSelector Specifies contextual substitution of glyphs that
replace ordinal designations attached to numerals
(such as “1st” substituting for “1st”).
282 Contextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Note
To use the automatic fraction-generation capability, make
sure that the slash separating the numerator and
denominator is the fraction slash (character code 0xDA in
the Standard Roman character set), not the normal slash
character (0x2F). Automatic fraction generation does not
occur unless the slash is a fraction slash. ◆

Prevention of Glyph Overlap D

Some glyphs, especially certain initial swashes, have parts that extend well
beyond their advance widths. An initial “Q”, for example, may have a tail that
extends underneath the following “u”.

For fonts that support the glyph overlap feature type, you can specify that no
glyph may overlap the outline of the following glyph. If it does, a

Table D-11 Feature selectors for the kFractionsType feature type

Constant Explanation

kNoFractionsSelector Specifies no substitution or construction of
fractions.

kVerticalFractionsSelector Specifies replacement of slash-separated
numeric sequences with pre-drawn fraction
glyphs, if present in the font.

kDiagonalFractionsSelector Specifies replacement of slash-separated
numeric sequences with pre-drawn fraction
glyphs, or else construction of fractions with
numerators and denominators, or superiors
and inferiors.
Contextual Font Features 283
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
non-overlapping form of the glyph is substituted. Table D-12 lists the selectors
for this feature.

Noncontextual Font Features D

Noncontextual font features include the selection of alternate glyph sets to give
text a different appearance, and glyph substitution for purposes of
mathematical typesetting or enhancing typographic sophistication.

Character Shape D

The Chinese language can be represented with both a traditional and a
simplified character set. Chinese fonts that support the character shape feature
type allow you to select either set.

Note
Historically on the Macintosh, the difference has been
handled by having separate script systems for traditional
Chinese and simplified Chinese; while that is still the case,
this font feature makes it possible to have both glyph
repertoires present in a single font. ◆

Table D-12 Feature selectors for the kOverlappingCharactersType feature type

Constant Explanation

kPreventOverlapOnSelector
kPreventOverlapOffSelector

Prevents or allows the collision of an extended
part of one glyph with an adjacent glyph.
284 Noncontextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Table D-13 lists the selectors for this feature.

Number Width D

Many fonts support both proportional-width and fixed-width numeral. In
proportional-width numerals the “1” is narrower than the “0”, whereas in

Table D-13 Feature selectors for the kCharacterShapeType feature type

Constant Explanation

kTraditionalCharactersSelector Specifies the use of traditional characters.

kSimplifiedCharactersSelector Specifies the use of simplified characters.

kJIS1978CharactersSelector Use character shapes for Japanese
characters as defined by the JIS (Japanese
Industrial Standard) C 6226-1978
document.

kJIS1983CharactersSelector Use character shapes for Japanese
characters as defined by the JIS X
0208-1983 document.

kJIS1990CharactersSelector Use character shapes for Japanese
characters as defined by the JIS X
0208-1990 document.

kTraditionalAltOneSelector Use alternate set 1 of traditional forms for
characters.

kTraditionalAltTwoSelector Use alternate set 2 of traditional forms for
characters.

kTraditionalAltThreeSelector Use alternate set 3 of traditional forms for
characters.

kTraditionalAltFourSelector Use alternate set 4 of traditional forms for
characters.

kTraditionalAltFiveSelector Use alternate set 5 of traditional forms for
characters.

kExpertCharactersSelector Use "expert" forms of
ideographs, such as are defined in the
Fujitsu FMR character set.
Noncontextual Font Features 285
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
fixed-width numerals they (and all the other numerals) have identical widths.
Fixed-width numerals are also called columnating because they align well in
text that consists of columns of numerical data. For fonts that support the
number spacing feature type, you can select either fixed-width or
proportional-width numerals. Table D-14 lists the selectors for this feature.

Number Case D

Some fonts support both lowercase (also called traditional or old-style)
numerals, in which some glyphs extend below the baseline, and uppercase (also
called lining) numerals, in which no glyphs extend below the baseline. For
fonts that support the number case feature type, you can select either kind of
numeral. Table D-15 lists the selectors for this feature.

Text Width D

The text spacing feature type is used to select between the proportional,
monospaced and half-width forms of characters in a font. Use of this feature
type is optional; for more precise control see “Kana Spacing” (page 289) and

Table D-14 Feature selectors for the kNumberSpacingType feature type

Constant Explanation

kMonospacedNumbersSelector Specifies the use of fixed-width
(columnating) numerals.

kProportionalNumbersSelector Specifies the use of proportional-width
numerals.

Table D-15 Feature selectors for the kNumberCaseType feature type

Constant Explanation

kLowerCaseNumbersSelector Specifies the use of lowercase (old-style)
numerals.

kUpperCaseNumbersSelector Specifies the use of uppercase (lining)
numerals.
286 Noncontextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
“Ideographic Spacing” (page 290). This is an exclusive feature type. Table D-16
lists the selectors for this feature.

Annotation D

The annotation feature type specifies annotations (or adornments) to basic
lettershapes. For instance, most Japanese fonts include versions of numbers that
are circled, parenthesized, have periods after them, and so on. This is an
exclusive feature type. Table D-17 lists the selectors for this feature.

Table D-16 Feature selectors for the kTextSpacingType feature type

Constant Explanation

kProportionalTextSelector Selects the proportional forms of letters.

kMonospacedTextSelector Selects the monospace forms of letters.

kHalfWidthTextSelector Selects the half-width forms of letters.

kNormallySpacedTextSelector Selects the default forms of letters.

Table D-17 Feature selectors for the kAnnotationType feature type

Constant Explanation

kNoAnnotationSelector Indicates that characters should appear
without annotation.

kBoxAnnotationSelector Use the forms of characters surrounded
by a box cartouche.

kRoundedBoxAnnotationSelector Use the forms of characters surrounded
by a box cartouche with rounded
corners.

kCircleAnnotationSelector Use the forms of characters surrounded
by a circle. For instance, see Unicode
characters U+3260 through U+326F.
Noncontextual Font Features 287
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Transliteration D

The transliteration feature types allows text in one format to be displayed using
another format. An example is taking a Hiragana string and displaying it as
Katakana. Table D-18 lists the selectors for this feature.

kInvertedCircleAnnotationSelector Same as circle annotation, but with
white and black reversed. For instance,
see Unicode characters U+2776 through
U+277F.

kParenthesisAnnotationSelector Use the forms of characters surrounded
by parentheses. For instance, see
Unicode characters U+2474 through
U+2487.

kPeriodAnnotationSelector Use the forms of characters followed by
a period. For instance, see Unicode
characters U+2488 through U+249B.

kRomanNumeralAnnotationSelector Display characters in their Roman
numeral form.

kDiamondAnnotationSelector Display the text surrounded by a
diamond.

Table D-18 Feature selectors for the kTransliterationType feature type

Constant Explanation

kNoTransliterationSelector Allows no transliteration.

kHanjaToHangulSelector Allows text in Hanja to be displayed
using Hangul.

kHiraganaToKatakanaSelector Allows text in Hiragana to be displayed
using Katakana.

kKatakanaToHiraganaSelector Allows text in Katakana to be displayed
using Hiragana.

Table D-17 Feature selectors for the kAnnotationType feature type

Constant Explanation
288 Noncontextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Kana Spacing D

The Kana Spacing feature type is used to select widths specifically for Japanese
Hiragana and Katakana characters. Table D-19 lists the selectors for this feature.

kKanaToRomanizationSelector Allows text in Kana to be displayed using
Romanization.

kRomanizationToHiraganaSelector Allows text in Romanization to be
displayed using Hiragana.

kHanjaToHangulAltOneSelector Allows text in Hanja to be displayed
using Hangul, Alternative Set 1.

kHanjaToHangulAltTwoSelector Allows text in Hanja to be displayed
using Hangul, Alternative Set 2.

kHanjaToHangulAltThreeSelector Allows text in Hanja to be displayed
using Hangul, Alternative Set 3.

Table D-19 Feature selectors for the kKanaSpacingType feature type

Constant Explanation

kFullWidthKanaSelector Selects the full width forms of kana.

kProportionalKanaSelector Selects the proportional forms of kana.

Table D-18 Feature selectors for the kTransliterationType feature type

Constant Explanation
Noncontextual Font Features 289
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Ideographic Spacing D

The ideographic spacing feature type is used to select between full-width and
proportional forms of ideographs (that is, Han-derived characters). Table D-20
lists the selectors for this feature.

CJK Roman Width D

The CJK Roman spacing feature type is used to select between the proportional
and half-width forms of Roman characters in a CJK (that is, Chinese, Japanese,
Korean) font. Table D-21 lists the selectors for this feature.

Table D-20 Feature selectors for the kIdeographicSpacingType feature type

Constant Explanation

kFullWidthIdeographsSelector Selects the full width forms of
ideographs.

kProportionalIdeographsSelector Selects the proportional forms of
ideographs.

Table D-21 Feature selectors for the kCJKRomanSpacingType feature type

Constant Explanation

kHalfWidthCJKRomanSelector Selects the half-width forms of letters.

kProportionalCJKRomanSelector Selects the proportional forms of letters.

kDefaultCJKRomanSelector Selects the default Roman forms of
letters.

kFullWidthCJKRomanSelector Selects the full-width Roman forms of
letters.
290 Noncontextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Style Options D

An ATSUI-compatible font may offer named sets of noncontextual glyph
substitutions that give the text a specific style or appearance. You can select
among sets, using selectors such as those listed in Table D-22.

You may be able to select more than one feature at a time from the list of
alternate forms. For example, a font may offer display, engraved, and
engraved-display style options.

Table D-22 Feature selectors for the kStyleOptionsType feature type

Constant Explanation

kNoStyleOptionsSelector Specifies the use of the standard glyph set.

kDisplayTextSelector Specifies the use of a glyph set that is designed
for best display at large sizes (over 24 point).

kEngravedTextSelector Specifies the use of a glyph set that has
contrasting strokes parallel to the main stroke,
giving an engraved effect.

kIlluminatedCapsSelector Specifies the use of a glyph set with complex
decoration surrounding the glyphs of capital
letters.

kTitlingCapsSelector Specifies the use of a glyph set in which capital
letters have a special form for display in titles.

kTallCapsSelector Specifies the use of a glyph set in which capital
letters have a taller form than is typical.
Noncontextual Font Features 291
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Typographic Extras D

Fonts that support the typographic extras feature type allow you to specify
certain small-scale typographic conventions, using selectors such as those
shown in Table D-23.

Table D-23 Feature selectors for the kTypographicExtrasType feature type

Constant Explanation

kHyphensToEmDashOnSelector
kHyphensToEmDashOffSelector

Allows or prevents the automatic
replacement of two adjacent hyphens with
an em dash.

kHyphenToEnDashOnSelector
kHyphenToEnDashOffSelector

Allows or prevents the automatic
replacement of the sequence
space-hyphen-space (or the hyphen in the
sequence numeral-hyphen- numeral) with
an en-dash.

kSlashedZeroOnSelector
kSlashedZeroOffSelector

Allows or prevents the forced use of the
un-slashed zero glyph, regardless of
whether the font specifies the slashed zero
as the default.

kFormInterrobangOnSelector
kFormInterrobangOffSelector

Allows or prevents the automatic
replacement of the sequence “?!” or “!?”
with the font’s interrobang glyph.

kSmartQuotesOnSelector
kSmartQuotesOffSelector

Allows or prevents the automatic
contextual replacement of straight
quotation marks with curly ones.

kPeriodsToEllipsisOnSelector
kPeriodsToEllipsisOffSelector

Allows or prevents the automatic
replacement of two adjacent periods with
an ellipsis.
292 Noncontextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Mathematical Extras D

Fonts that support the mathematical extras feature type allow you to specify
certain math-formatting conventions, using selectors such as those shown in
Table D-24.

Table D-24 Feature selectors for the kMathematicalExtrasType feature type

Constant Explanation

kHyphenToMinusOnSelector
kHyphenToMinusOffSelector

Allows or prevents the automatic
replacement of the sequence
space-hyphen-space (or the hyphen in
the sequence numeral-hyphen-numeral)
with a minus sign glyph (–).

kAsteriskToMultiplyOnSelector
kAsteriskToMultiplyOffSelector

Allows or prevents the automatic
replacement of the sequence
space-asterisk-space (or the asterisk in
the sequence numeral-asterisk-numeral)
with a multiplication sign glyph (×).

kSlashToDivideOnSelector
kSlashToDivideOffSelector

Allows or prevents the automatic
replacement of the sequence
space-slash-space (or the slash in the
sequence numeral-slash- numeral) with
a division sign glyph (÷).

kInequalityLigaturesOnSelector
kInequalityLigaturesOffSelector

Allows or prevents the automatic
replacement of sequences such as “>=”
and “<=” with equivalent ligatures “≥”
and “≤”.

kExponentsOnSelector
kExponentsOffSelector

Allows or prevents the automatic
replacement of the sequence
exponentiation glyph—numerals with the
superior forms of the numerals. An
example of an exponentiation glyph is
“^”.
Noncontextual Font Features 293
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Note
By convention, specifying the kHyphenToMinusOnSelector in
the mathematical extras feature type overrides specifying
the kHyphenToEnDashOnSelector in the typographic extras
feature type. ◆

Ornament Sets D

Fonts may include ornamental, nonalphabetic glyph sets used for various
purposes. With a font that supports the ornament set feature type, you may be
able to select among those glyph sets, using selectors such as those shown in
Table D-25.

Table D-25 Feature selectors for the kOrnamentSetsType feature type

Constant Explanation

kNoOrnamentsSelector Specifies the use of no ornamental glyph
sets.

kDingbatsSelector Specifies the use of dingbats: arrows, stars,
bullets, and so on.

kPiCharactersSelector Specifies the use of pi characters: related
nonalphabetic symbols, such as musical
notation glyphs.

kFleuronsSelector Specifies the use of fleurons: ornaments
such as flowers, vines, and leaves.

kDecorativeBordersSelector Specifies the use of decorative borders:
glyphs used in interlocking patterns to
form text borders.

kInternationalSymbolsSelector Specifies the use of international symbols,
such as the barred circle representing “no”.

kMathSymbolsSelector Specifies the use of mathematical symbols.
294 Noncontextual Font Features

5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Character Alternates D

This feature type gives a font a very general way to provide different sets of
glyphs. Sets are numbered sequentially. For a font that supports the character
alternates feature type, you can select by number any of the sets it provides.

For example, a font with 20 ampersands could place them in 20 selectors under
this feature type. In general, however, named glyph sets provided through the
kCharacterAlternativesType feature type are preferable. Table D-26 lists the
only defined selector for this feature.

Design Complexity D

Some fonts may have several glyph sets that represent different designs from
the same font-family, such as “plain” or “fancy.” For a font that supports the
design complexity feature type, design levels are numbered, and you can select
any available level by number or by selectors such as those shown in Table
D-27.

Table D-26 Feature selectors for the kCharacterAlternativesType feature type

Constant Explanation

kNoAlternatesSelector Specifies the use of no character alternatives. This is
the first (default) setting for this feature type; others
are specified by number only.

Table D-27 Feature selectors for the kDesignComplexityType feature type

Constant Explanation

kDesignLevel1Selector Specifies the basic glyph set.

kDesignLevel2Selector Specifies an alternate glyph set.

kDesignLevel3Selector Specifies an alternate glyph set.

kDesignLevel4Selector Specifies an alternate glyph set.

kDesignLevel5Selector Specifies an alternate glyph set.
Noncontextual Font Features 295
5/7/99  Apple Computer, Inc.

A P P E N D I X D

Font Feature Types and Selectors
Unicode Decomposition D

For a font that supports the unicode decomposition type, you can select any
available level by number or by selectors such as those shown in Table D-28.

Table D-28 Feature selectors for the kUnicodeDecompositionType feature type

Constant

kCanonicalDecompositionOnSelector

kCanonicalDecompositionOffSelector

kCompatibilityDecompositionOnSelector

kCompatibilityDecompositionOffSelector

kTranscodingDecompositionOnSelector

kTranscodingDecompositionOffSelector
296 Noncontextual Font Features

5/7/99  Apple Computer, Inc.

Glossary
advance height The distance from the top
of a glyph to the bottom of the glyph,
including the top-side bearing and
bottom-side bearing.

advance width The full horizontal width
of a glyph as measured from its origin to the
origin of the next glyph on the line,
including the side bearings on both sides.

alignment The process of placing text in
relation to one or both margins.

alphabetic writing system The glyphs
that symbolize discrete phonemic elements
in a language. Compare syllabic writing
system and ideographic writing system.

angled caret A caret whose angle in
relation to the baseline of the display text is
equivalent to the slant of the glyphs making
up the text. Compare straight caret.

ascent line An imaginary horizontal line
that corresponds approximately to the tops
of the uppercase letters in the font.
Uppercase letters are chosen because,
among the regularly used glyphs in a font,
these are generally the tallest.

automatic form substitution The process
of automatically substituting one or more
glyphs for one or more other glyphs.

baseline An imaginary line used to align
glyphs in a line of text.

baseline delta An offset (in points)
between the various baseline types and y =
0. See baseline type.

baseline type The classification of
baseline used with a particular kind of text.
See, for example, Roman baseline.

bidirectional script system A script
system where text is generally right-aligned
with most characters written from right to
left, but with some left-to-right text as well.
Arabic and Hebrew are bidirectional script
systems.

bottom-side bearing The white space
between the bottom of the glyph and the
visible ending of the glyph.

bounding box The smallest rectangle that
entirely encloses the pixels or outline of a
glyph.

caret A vertical or slanted blinking bar,
appearing at a caret position in the display
text, that marks the point at which text is to
be inserted or deleted. Compare split caret.

caret angle The angle of a caret or the
edges of a highlight. The caret angle can be
perpendicular to the baseline or parallel to
the angle of the style run’s text.

caret position A location on screen,
typically between glyphs, that relates
directly to the offset (in memory) of the
current text insertion point in the source
text. At the boundary between a right-to-left
and left-to-right direction run on a line, one
297
5/7/99  Apple Computer, Inc.

G L O S S A R Y
character offset may correspond to two caret
positions, and one caret position may
correspond to two offsets.

caret type A designation of the behavior
of the caret at direction boundaries in text.
See split caret.

character A symbol standing for a sound,
syllable, or notion used in writing; one of
the simple elements of a written language,
for example, the lowercase letter “a” or the
number “1”. Compare character code,
glyph.

character cluster A collection of characters
treated as individual components of a
whole, including a principal character plus
attachments in memory. For example, in
Hebrew, a cluster may be composed of a
consonant, a vowel, a dot to soften the
pronunciation of the consonant, and a
cantillation mark.

character code In ATSUI, a 16-bit value
representing a Unicode text character. Text is
stored in memory as character codes. Each
script system’s keyboard-layout ('KCHR')
resource converts the virtual key codes
generated by the keyboard or keypad into
character codes; each script system’s fonts
convert the character codes into glyphs for
display or printing.

character encoding An internal conversion
table for interpreting a specific character set.

character offset The indexed position of a
2-byte Unicode character in a text buffer,
starting at zero for the first character.
Sequential values for character offset
correspond to the storage order of the
characters. (2) The horizontal separation

between a character rectangle and a font
rectangle—that is, the position of a given
character within the font’s bit image.

contextual form An alternate form of a
glyph whose use depends on the glyph’s
placement in a word.

counter The oval in glyphs such as “p” or
“d”.

cross-stream kerning The automatic
movement of glyphs perpendicular to the
line orientation of the text. Compare
with-stream kerning.

cross-stream shift A type of positional
shift that applies equally to all glyphs in a
style run by raising or lowering the entire
style run (or shifts it sideways if it’s vertical
text). Compare with-stream shift.

cursor A small icon, often an arrow or an
I-beam shape, that moves with the mouse or
other pointing device. Compare caret.

descent line An imaginary horizontal line
that usually corresponds with the bottoms
of the descenders in a font. The descent line
is the same distance from the baseline for all
glyphs in the font, whether or not they have
descenders.

direction See dominant direction, glyph
direction, line direction, text direction.

direction boundary A point between
offsets in memory or glyphs in a display, at
which the direction of stored or displayed
text changes.

direction level A hierarchical ranking of
dominant direction in a line. Direction levels
can be nested so that complex
mixed-direction formatting is preserved.
298
5/7/99  Apple Computer, Inc.

G L O S S A R Y
direction-level run A sequence of
contiguous glyphs that share the same text
direction.

direction override A means of overriding
the directional behavior of glyphs, on a
style-run basis, for special effects.

discontiguous highlighting Highlighting
that exactly matches the selection range it
corresponds to. It may consist of
discontiguous areas when the selection
range crosses direction boundaries.
Compare contiguous highlighting.

display order The left-to-right order in
which ATSUI displays glyphs. Display order
determines the glyph index of each glyph in
a line and may differ from the input order of
the text. See glyph index; compare input
order and source text.

display text The visual representation of
the text of a text layout object. Display text
consists of a sequence of glyphs, arranged in
display order. Compare source text.

dominant direction The direction in which
successive groups of glyphs are read.
Dominant direction is independent of glyph
direction. See also glyph direction, line
direction.

drop capital A large uppercase letter that
drops below the main line of text for
aesthetic reasons.

dual caret See split caret.

dynamic highlighting The process of
continually drawing and redrawing the
highlighted area as the user moves the
cursor through the text while holding down
the mouse button.

edge offset A byte offset into the source
text of a layout shape that specifies a
position between byte values. Edge offsets
in source text are related to caret positions in
display text. Compare caret position and
byte offset.

feature selectors A means of defining
particular font features in a feature type. See
also feature type.

feature type A group of font features in a
style object that are applied to each style run
based on font defaults. See also feature
selectors.

font A collection of glyphs that usually
have some element of design consistency
such as the shapes of the counters, the
design of the stem, stroke thickness, or the
use of serifs.

font attributes A group of flags that
modify the behavior or identity of a font.

font embedding The technique of storing
a font object’s binary data in a document so
that the text in the document always
displays the correct font.

font family A group of fonts that share
certain characteristics and a common family
name.

font features The set of typographic and
layout capabilities that create a specific
appearance for a layout shape.

font instance A setting identified by the
font’s designer that matches specific values
along the available variation axes and gives
those values a name.
299
5/7/99  Apple Computer, Inc.

G L O S S A R Y
font name A set of specific information in
a font object about a font, such as its family
name, style, copyright date, version, and
manufacturer. Some font names are used to
build menus in an application, whereas
other names are used to identify the font
uniquely.

font object An object type that hides the
complexity of font data from your
application.

font variation An algorithmic way to
produce a range of typestyles along a
particular variation axis.

font variation suite A complete listing of
every axis supported in a font in the order
specified by the font. Each axis is given a
value in the listing.

glyph The distinct visual representation of
a character in a form that a screen or printer
can display. A glyph may represent one
character (the lowercase a), more than one
character (the fi ligature), part of a character
(the dot over an i), or a nonprinting
character (the space character). See also
character.

glyph code A number that specifies a
particular glyph in a font. Fonts map
character codes to glyph codes using
Unicode 'cmap' tables, which in turn
specify individual glyphs. If a font does not
have a Unicode 'cmap' table, it is generated
automatically.

glyph direction The direction in which
successive glyphs are read. Compare
dominant direction.

glyph ductility The ability to stretch the
actual form of a glyph during justification.

glyph index The order of a glyph in a line
of display text. The leftmost glyph in a line
of text has a glyph index of 1; each
succeeding glyph to the right has an index
one greater than the previous glyph.
Compare glyph code, edge offset.

glyph origin The point that ATSUI uses to
position a glyph when drawing.

grow limit The maximum amount by
which glyphs of a given priority can be
extended during justification, before
processing passes to glyphs of lower
priority. Compare shrink limit.

hanging baseline The baseline used by
Devanagari and similar scripts, where most
of the glyph is below the baseline.

hanging glyphs A set of glyphs, usually
punctuation, that typically extend beyond
the left and right margins of the text area
and whose widths are not counted when
line length is measured.

highlighting The display of text in inverse
video or with a colored background.
Highlighting in display text corresponds to
a selection range in source text.

highlight type The angular character of
carets and edges of highlighting areas.
Highlighting and carets are either straight or
angled; see angled caret, straight caret.

hit-testing The process of converting a
location within a line of display text into a
caret offset in the source text of that line.

ideographic centered baseline The
baseline used by Chinese, Japanese, and
Korean ideographic scripts, in which glyphs
are centered halfway on the line height.
300
5/7/99  Apple Computer, Inc.

G L O S S A R Y
ideographic writing system The glyphs
that symbolize component meanings of
words in a language. Compare syllabic
writing system and alphabetic writing
system.

imposed width A run control feature that
forces a specific width onto the glyphs of a
style run, regardless of its text content or
other style properties.

index See glyph index.

input order The order in which characters
are written or entered from a keyboard. The
input order of a line of text can differ from
its display order. Compare display order.

insertion point The point in the source
text at which text is to be inserted or deleted.
An insertion point is specified by a single
caret position. Compare caret; see also caret
position.

justification The process of
typographically expanding or compressing a
line of text to fit a text width.

justification gap The difference in the
length of a line before and after justification.

justification priority The priority order in
which classes of glyphs are processed
during justification.

kashida An extension-bar glyph that is
added to certain Arabic glyphs during
justification.

kerning An adjustment to the normal
spacing that occurs between two or more
specifically named glyphs, known as the
kerning pair.

kerning adjustments array An array in the
style object that overrides the normal
kerning for individual pairs of glyphs by
specifying a point-size factor and scaling
factor.

kerning pair Two specifically named
glyphs that are kerned together by a set
amount. See also kerning.

language The written and spoken
methods of combining words to create
meaning used by a particular group of
people.

leading edge The edge of a glyph that is
encountered first when reading text of that
glyph’s language. For glyphs of left-to-right
text, the leading edge is the left edge; for
glyphs of right-to-left text, the leading edge
is the right edge.

left-side bearing The white space between
the glyph origin and the visible beginning
of the glyph.

ligature Two or more glyphs connected to
form a single new glyph.

ligature decomposition The replacement
of ligatures with the glyphs for their
component characters during justification.

ligature splitting The process of
separating a ligature into its component
glyphs.

line breaking The process of determining
the proper location at which to truncate a
line of text so that it fits within a given text
width.
301
5/7/99  Apple Computer, Inc.

G L O S S A R Y
line direction The overall direction in
which a line of text is read. Line direction is
the lowest nested level of dominant
direction on a line.

line length The distance, in points, from
the origin of the first glyph on a line through
the advance width of the last glyph.

line span The distance, in points, from the
lowest descender on a line to the highest
ascender.

margins The left, right, top, and bottom
sides of the text area.

math baseline The baseline used for
setting mathematical expressions; it is
centered on operators such as the minus
sign.

mixed-direction text The combination of
text with both left-to-right and right-to-left
directions within a single line of text.

neutral type A glyph directionality in
which the glyph direction is always that of
the surrounding glyphs. Compare strong
type, weak type.

point size The size of a font’s glyphs as
measured from the baseline of one line of
text to the baseline of the next line of
single-spaced text. In the United States,
point size is measured in typographic
points.

postcompensation action The extra
processing, such as addition of kashidas and
ligature decomposition, that occurs after
glyphs have been repositioned during
justification.

priority justification override array An
array that alters the standard justification
behavior for all glyphs of a given
justification priority.

right-side bearing The white space on the
right side of the glyph; this value may or
may not be equal to the value of the left-side
bearing.

Roman baseline The baseline used in most
Roman scripts and in Arabic and Hebrew.

run A sequence of glyphs that are
contiguous in memory and share a set of
common attributes.

script A method for depicting words
visually.

selection range The contiguous sequence
of characters in the source text that mark
where the next editing operation is to occur.
The glyphs corresponding to those
characters are commonly highlighted on
screen.

serif The fine lines stemming from and at
an angle to the upper and lower ends of the
main strokes of a letter—for example, the
little “feet” on the bottom of the vertical
strokes in the upper-case letter “M” in Times
Roman typeface.

style run text attributes The set of flags that
allow you to specify how ATSUI alters glyph
outlines or chooses the proper metrics for
horizontal or vertical text.

shrink limit The maximum amount by
which glyphs of a given priority may be
compressed during justification, before
processing passes to glyphs of lower
priority. Compare grow limit.
302
5/7/99  Apple Computer, Inc.

G L O S S A R Y
smart swash A variation of an existing
glyph (often ornamental) that is contextual.
Compare swash.

soft line break Line breaks within a text
layout object. If you call ATSUBreakLine
(page156), it will determine the best location
for line breaks. You can set your own line
breaks by calling ATSUSetSoftLineBreak
(page159).

source text A stored sequence of character
codes that represents a line of text.
Characters in source text are stored in input
order. Compare display order, display text;
see also input order.

split caret A type of caret that, at the
boundary between text of opposite
directions, divides into two parts: a high
caret and a low caret, each measuring half
the line’s height. The two separate
half-carets merge into one in unidirectional
text.

storage order See input order, display
order, source text.

straight caret A caret that is perpendicular
to the baseline of the display text, regardless
of the angle of the glyphs making up the
text. Compare angled caret.

strong type A glyph directionality that is
always left to right or right to left. Compare
weak type, neutral type.

style run A sequence of memory backing
store contiguous glyphs that share the same
style.

swash A variation of an existing glyph
(often ornamental) that is noncontextual.
Compare smart swash.

syllabic writing system The glyphs that
symbolize syllables in a language. Compare
alphabetic writing system and ideographic
writing system.

text A set of specific symbols that, when
displayed in a meaningful order, conveys
information.

text area The space on the display device
within which the text should fit.

text direction The direction in which
reading proceeds. Roman text has a
left-to-right direction; Hebrew and Arabic
have a (predominantly) right-to-left
direction; Chinese and Japanese can have a
vertical direction.

text run A complete unit of text, made up
of character codes or glyph codes.

text width The area between the margins;
it is the length available for displaying a line
of text.

tiled highlighting A highlighting
mechanism whereby the highlighted area
corresponding to every character in a line of
text is unique, without gaps or overlaps.

top-side bearing The white space between
the top of the glyph and the visible
beginning of the glyph.

tracking Kerning between all glyphs in the
shape, not just the kerning pairs already
defined by the font. You can increase or
decrease interglyph spacing by using a track
number. See kerning.

track setting A value that specifies the
relative tightness or looseness of interglyph
spacing.
303
5/7/99  Apple Computer, Inc.

G L O S S A R Y
trailing edge The edge of a glyph that is
encountered last when reading text of that
glyph’s language. For glyphs of left-to-right
text, the trailing edge is the right edge; for
glyphs of right-to-left text, the trailing edge
is the left edge.

typestyle A variant version of glyphs in
the same font family. Typical typestyles
available on the Macintosh computer
include bold, italic, underline, outline,
shadow, condensed, and extended.

typographic bounding rectangle The
smallest rectangle that encloses the full span
of the glyphs from the ascent line to the
descent line.

typographic point A unit of measurement
describing the size of glyphs in a font. There
are 72.27 typographic points per inch, as
opposed to 72 points per inch in ATSUI.

unidirectional text A sequence of text that
has a single direction. Compare
mixed-direction text.

unlimited gap absorption The assignment
of all justification gap to an individual glyph
or priority of glyphs, regardless of the
specified grow or shrink limits for that
glyph or glyphs.

variation axis A range included in a font
by the font designer that allows a font to
produce different typestyles.

weak type A glyph directionality that
depends on context to determine whether it
is left to right or right to left. Compare
strong type, neutral type.

with-stream kerning The automatic
movement of glyphs parallel to the line
orientation of the text. Compare
cross-stream kerning.

with-stream shift A positional shift that
applies equally to all glyphs in a style run
by adding or removing space before or after
each glyph in the run. Compare
cross-stream shift.

WorldScript A group of Macintosh system
software managers, extensions, and
resources that facilitate multilanguage text
processing.

x-height The position where the top of the
lowercase “x” in the font lies; this
measurement usually marks the height of
the body of all lowercase glyphs, excluding
ascenders and descenders, in the font.
304
5/7/99  Apple Computer, Inc.

Index
A

ATSJustPriorityWidthDeltaOverrides type
183, 184

ATSJustWidthDeltaEntryOverride type 184
ATSLineLayoutOptions type 231
ATSTrapezoid type 186
ATSUAttributeInfo type 187
ATSUAttributeTag type 242, 252
ATSUAttributeValuePtr type 187
ATSUBreakLine function 156
ATSUCalculateBaselineDeltas function 35
ATSUCaret type 188
ATSUClearAttributes function 34
ATSUClearFontFeatures function 41
ATSUClearFontVariations function 46
ATSUClearLayoutCache function 88
ATSUClearLayoutControls function 97, 105
ATSUClearLineControls function 105
ATSUClearSoftLineBreaks function 162
ATSUClearStyle function 21
ATSUCompareStyles function 18
ATSUCopyAttributes function 23
ATSUCopyLayoutControls function 91
ATSUCopyLineControls function 98
ATSUCountFontFeatureSelectors function 66
ATSUCountFontFeatureTypes function 64
ATSUCountFontInstances function 74
ATSUCountFontNames function 53
ATSUCountFontTracking function 61
ATSUCountFontVariations function 70
ATSUCreateAndCopyStyle function 16
ATSUCreateAndCopyTextLayout function 85
ATSUCreateMemorySetting function 174
ATSUCreateStyle function 15
ATSUCreateTextLayout function 79
ATSUCreateTextLayoutWithTextHandle

function 83
ATSUCreateTextLayoutWithTextPtr function 80

ATSUCursorMovementType type 207
ATSUCustomAllocFunc type 189
ATSUCustomFreeFunc type 190
ATSUCustomGrowFunc type 191
ATSUDisposeMemorySetting function 177
ATSUDisposeStyle function 22
ATSUDisposeTextLayout function 90
ATSUDrawText function 163
ATSUFindFontFromName function 50
ATSUFindFontName function 56
ATSUFONDtoFontID function 59
ATSUFontCount function 48
ATSUFontFallbackMethod type 208
ATSUFontFeatureSelector type 192
ATSUFontFeatureType type 191
ATSUFontID type 192
ATSUFontIDtoFOND function 60
ATSUFontVariationAxis type 192
ATSUFontVariationValue type 193
ATSUGetAllAttributes function 33
ATSUGetAllFontFeatures function 39
ATSUGetAllFontVariations function 45
ATSUGetAllLayoutControls function 95
ATSUGetAllLineControls function 104
ATSUGetAttribute function 31
ATSUGetContinuousAttributes function 117
ATSUGetCurrentMemorySetting function 176
ATSUGetFontFallbacks function 120
ATSUGetFontFeature function 38
ATSUGetFontFeatureNameCode function 69
ATSUGetFontFeatureSelectors function 67
ATSUGetFontFeatureTypes function 65
ATSUGetFontIDs function 49
ATSUGetFontInstance function 75
ATSUGetFontInstanceNameCode function 77
ATSUGetFontVariationNameCode function 73
ATSUGetFontVariationValue function 44
ATSUGetGlyphBounds function 145
ATSUGetIndFontName function 54
305
5/7/99  Apple Computer, Inc.

I N D E X
ATSUGetIndFontTracking function 62
ATSUGetIndFontVariation function 71
ATSUGetLayoutControl function 94
ATSUGetLineControl function 102
ATSUGetRunStyle function 115
ATSUGetSoftLineBreaks function 160
ATSUGetStyleRefCon function 19
ATSUGetTextHighlight function 170
ATSUGetTextLayoutRefCon function 88
ATSUGetTextLocation function 112
ATSUGetTransientFontMatching function 125
ATSUHeapSpec type 225
ATSUHighlightText function 165
ATSUIdle function 173
ATSULeftwardCursorPosition function 140
ATSUMatchFontsToText function 122
ATSUMeasureText function 148
ATSUMeasureTextImage function 153
ATSUMemoryCallbacks type 194
ATSUNextCursorPosition function 134
ATSUOffsetToPosition function 131
ATSUOverwriteAttributes function 24
ATSUPositionToOffset function 127
ATSUPreviousCursorPosition function 136
ATSURightwardCursorPosition function 138
ATSUSetAttributes function 29
ATSUSetCurrentMemorySetting function 176
ATSUSetFontFallbacks function 119
ATSUSetFontFeatures function 37
ATSUSetLayoutControls function 92
ATSUSetLineControls function 100
ATSUSetRunStyle function 114
ATSUSetSoftLineBreak function 159
ATSUSetStyleRefCon function 19
ATSUSetTextHandleLocation function 109
ATSUSetTextLayoutRefCon function 87
ATSUSetTextPointerLocation type 107
ATSUSetTransientFontMatching function 124
ATSUSetVariations function 42
ATSUStyle type 195
ATSUStyleComparison type 236
ATSUStyleContains constant 236
ATSUStyleIsEmpty function 20
ATSUTextDeleted function 142
ATSUTextInserted function 143

ATSUTextLayout type 195
ATSUTextMeasurement type 196
ATSUTextMoved function 113
ATSUUnderwriteAttributes function 25
ATSUUnhighlightText function 168
ATSUVerticalCharacterType type 224

B

BslnBaselineClass type 205
BslnBaselineRecord type 196

C, D, E

ConstUniCharArrayPtr type 197

F

FontNameCode type 212, 214, 216

G, H, I

gestaltATSUFallbacksFeature constant 13
gestaltATSUFeatures constant 13
gestaltATSUGlyphBoundsFeature constant 14
gestaltATSULayoutCacheClearFeature

constant 14
gestaltATSULayoutCreateAndCopyFeature

constant 14
gestaltATSULineControlFeature constant 14
gestaltATSUMemoryFeature constant 13
gestaltATSUTrackingFeature constant 13
gestaltATSUUpdate1 constant 12
gestaltATSUVersion constant 12
gestaltOriginalATSUVersion constant 12
306
5/7/99  Apple Computer, Inc.

I N D E X
J

JustificationFlags type 226
JustPCActionType type 228

K, L

kAbbrevSquaredLigaturesOffSelector
constant 277

kAbbrevSquaredLigaturesOnSelector constant
277

kAllCapsSelector constant 278
kAllLowerCaseSelector constant 278
kAllTypeFeaturesOffSelector constant 275
kAllTypeFeaturesOnSelector constant 275
kAllTypographicFeaturesType constant 272
kAnnotationType constant 274
kAsteriskToMultiplyOffSelector constant 293
kAsteriskToMultiplyOnSelector constant 293
kATSItalicQDSkew constant 234
kATSLineAppleReserved constant 233
kATSLineFillOutToWidth constant 233
kATSLineFractDisable constant 233
kATSLineHasNoHangers constant 232
kATSLineHasNoOpticalAlignment constant 232
kATSLineImposeNoAngleForEnds constant 233
kATSLineIsDisplayOnly constant 232
kATSLineKeepSpacesOutOfMargin constant 232
kATSLineLastNoJustification constant 232
kATSLineNoLayoutOptions constant 231
kATSLineNoSpecialJustification constant 232
kATSNoTracking constant 234
kATSRadiansFactor constant 234
kATSUAfterWithStreamShiftTag constant 245
kATSUBaselineClassTag constant 247
kATSUBeforeWithStreamShiftTag constant 245
kATSUByCharacter constant 207
kATSUByCluster constant 208
kATSUByWord constant 208
kATSUCenterAlignment constant 229
kATSUClearAll constant 206
kATSUColorTag constant 244
kATSUCoordinateOverflowErr result code 259

kATSUCrossStreamShiftTag constant 245
kATSUDecompositionInhibitFactorTag

constant 246
kATSUDefaultFontFallbacks constant 208
kATSUEndAlignment constant 229
kATSUFontsMatched result code 258
kATSUFontsNotMatched result code 258
kATSUFontTag constant 243
kATSUForceHangingTag constant 249
kATSUFromTextBeginning constant 256
kATSUFullJustification constant 231
kATSUHangingInhibitFactorTag constant 246
kATSUImposeWidthTag constant 244
kATSUInvalidAttributeSizeErr result code 258
kATSUInvalidAttributeTagErr result code 258
kATSUInvalidAttributeValueErr result code

258
kATSUInvalidCacheErr result code 258
kATSUInvalidFontErr result code 258
kATSUInvalidFontID constant 226
kATSUInvalidStyleErr result code 258
kATSUInvalidTextLayoutErr result code 258
kATSUInvalidTextRangeErr result code 258
kATSUKerningInhibitFactorTag constant 246
kATSULanguageTag constant 244
kATSULastErr result code 259
kATSULastResortOnlyFallback constant 209
kATSULeftToRightBaseDirection constant 223
kATSULineAscentTag constant 254
kATSULineBaselineValuesTag constant 254
kATSULineBreakInWord result code 259
kATSULineDescentTag constant 255
kATSULineDirectionTag constant 253
kATSULineFlushFactorTag constant 253
kATSULineJustificationFactorTag constant

253
kATSULineLayoutOptionsTag constant 254
kATSULineRotationTag constant 253
kATSULineWidthTag constant 252
kATSULowLevelErr result code 259
kATSUMaxATSUITagValue constant 249
kATSUMaxStyleTag constant 249
kATSUNoCaretAngleTag constant 248
kATSUNoCorrespondingFontErr result code 258
kATSUNoFontCmapAvailableErr result code 259
307
5/7/99  Apple Computer, Inc.

I N D E X
kATSUNoFontScalerAvailableErr result code
259

kATSUNoJustification constant 231
kATSUNoLigatureSplitTag constant 247
kATSUNoOpticalAlignmentTag constant 248
kATSUNoSpecialJustificationTag constant 249
kATSUNoStyleRunsAssignedErr result code 258
kATSUNotSetErr result code 258
kATSUPriorityJustOverrideTag constant 247
kATSUQDBoldfaceTag constant 242
kATSUQDCondensedTag constant 243
kATSUQDExtendedTag constant 243
kATSUQDItalicTag constant 242
kATSUQDUnderlineTag constant 242
kATSUQuickDrawTextErr result code 259
kATSURightToLeftBaseDirection constant 223
kATSUseCaretOrigins constant 222
kATSUseDeviceOrigins constant 222
kATSUseFractionalOrigins constant 222
kATSUseLineHeight constant 230, 234
kATSUSequentialFallbacksExclusive constant

209
kATSUSequentialFallbacksPreferred constant

209
kATSUSizeTag constant 244
kATSUStartAlignment constant 229
kATSUStronglyHorizontal constant 224
kATSUStronglyVertical constant 224
kATSUStyleContainedBy constant 236
kATSUStyleEquals constant 236
kATSUSuppressCrossKerningTag constant 248
kATSUToTextEnd constant 256
kATSUTrackingTag constant 245
kATSUUseAppHeap constant 225
kATSUUseCallbacks constant 225
kATSUUseCurrentHeap constant 225
kATSUUseGrafPortPenLoc constant 207
kATSUUseLineControlWidth constant 234
kATSUUseSpecificHeap constant 225
kATSUVerticalCharacterTag constant 244
kATUStyleUnequal constant 236
kBoxAnnotationSelector constant 287
kBSLNHangingBaseline constant 205
kBSLNIdeographicCenterBaseline constant 205
kBSLNIdeographicLowBaseline constant 205

kBSLNLastBaseline constant 205
kBSLNMathBaseline constant 205
kBSLNNoBaselineOverride constant 206
kBSLNNumBaselineClasses constant 206
kBSLNRomanBaseline constant 205
kCharacterAlternativesType constant 273
kCharacterShapeType constant 273
kCircleAnnotationSelector constant 287
kCJKRomanSpacingType constant 274
kCommonLigaturesOffSelector constant 276
kCommonLigaturesOnSelector constant 276
kCursiveConnectionType constant 272
kCursiveSelector constant 278
kDecomposeDiacriticsSelector constant 281
kDecorativeBordersSelector constant 294
kDesignComplexityType constant 273
kDesignLevel1Selector constant 295
kDesignLevel2Selector constant 295
kDesignLevel3Selector constant 295
kDesignLevel4Selector constant 295
kDesignLevel5Selector constant 295
kDiacriticsType constant 272
kDiagonalFractionsSelector constant 283
kDiamondAnnotationSelector constant 288
kDingbatsSelector constant 294
kDiphthongLigaturesOffSelector constant 277
kDiphthongLigaturesOnSelector constant 277
kDisplayTextSelector constant 291
kEngravedTextSelector constant 291
kExpertCharactersSelector constant 285
kExponentsOffSelector constant 293
kExponentsOnSelector constant 293
kFleuronsSelector constant 294
kFontAmharicScript constant 221
kFontArabicScript constant 219
kFontArmenianScript constant 220
kFontBengaliScript constant 220
kFontBurmeseScript constant 220
kFontChineseScript constant 219
kFontCopyrightName constant 214
kFontCustom16BitScript constant 222
kFontCustom816BitScript constant 222
kFontCustom8BitScript constant 221
kFontCustomPlatform constant 217
kFontCyrillicScript constant 220
308
5/7/99  Apple Computer, Inc.

I N D E X
kFontDescriptionName constant 215
kFontDesignerName constant 215
kFontDesignerURLName constant 215
kFontDevanagariScript constant 220
kFontEastEuropeanRomanScript constant 221
kFontEthiopicScript constant 221
kFontExtendedArabicScript constant 221
kFontFamilyName constant 214
kFontFullName constant 214
kFontGeezScript constant 220
kFontGeorgianScript constant 220
kFontGreekScript constant 219
kFontGujaratiScript constant 220
kFontGurmukhiScript constant 220
kFontHebrewScript constant 219
kFontISO10646_1993Semantics constant 218
kFontJapaneseScript constant 219
kFontKannadaScript constant 220
kFontKhmerScript constant 220
kFontKoreanScript constant 219
kFontLaotianScript constant 220
kFontLastReservedName constant 215
kFontLicenseDescriptionName constant 215
kFontLicenseInfoURLName constant 215
kFontMacintoshPlatform constant 217
kFontMalayalamScript constant 220
kFontManufacturerName constant 215
kFontMicrosoftPlatform constant 217
kFontMicrosoftStandardScript constant 221
kFontMicrosoftSymbolScript constant 221
kFontMongolianScript constant 220
kFontNoLanguage constant 235
kFontNoPlatform constant 235
kFontNoScript constant 235
kFontOriyaScript constant 220
kFontPostscriptName constant 214
kFontReservedPlatform constant 217
kFontRomanScript constant 219
kFontRSymbolScript constant 220
kFontRussian constant 220
kFontSimpleChineseScript constant 220
kFontSindhiScript constant 221
kFontSinhaleseScript constant 220
kFontSlavicScript constant 221
kFontStyleName constant 214

kFontTamilScript constant 220
kFontTeluguScript constant 220
kFontThaiScript constant 220
kFontTibetanScript constant 220
kFontTrademarkName constant 215
kFontTraditionalChineseScript constant 219
kFontUnicodeDefaultSemantics constant 218
kFontUnicodePlatform constant 217
kFontUnicodeV1_1Semantics constant 218
kFontUnicodeV2BasedSemantics constant 218
kFontUninterpretedScript constant 221
kFontUniqueName constant 214
kFontVendorURLName constant 215
kFontVersionName constant 214
kFontVietnameseScript constant 221
kFormInterrobangOffSelector constant 292
kFormInterrobangOnSelector constant 292
kFractionsType constant 273
kFullWidthIdeographsSelector constant 290
kFullWidthKanaSelector constant 289
kHalfWidthTextSelector constant 287
kHanjaToHangulAltOneSelector constant 289
kHanjaToHangulAltThreeSelector constant 289
kHanjaToHangulAltTwoSelector constant 289
kHanjaToHangulSelector constant 288
kHideDiacriticsSelector constant 281
kHiraganaToKatakanaSelector constant 288
kHyphensToEmDashOffSelector constant 292
kHyphensToEmDashOnSelector constant 292
kHyphenToEnDashOffSelector constant 292
kHyphenToEnDashOnSelector constant 292
kHyphenToMinusOffSelector constant 293
kHyphenToMinusOnSelector constant 293
kIdeographicSpacingType constant 274
kIlluminatedCapsSelector constant 291
kInequalityLigaturesOffSelector constant

293
kInequalityLigaturesOnSelector constant 293
kInferiorsSelector constant 282
kInitialCapsAndSmallCapsSelector constant

278
kInitialCapsSelector constant 278
kInternationalSymbolsSelector constant 294
kInvertedCircleAnnotationSelector constant

288
309
5/7/99  Apple Computer, Inc.

I N D E X
kJIS1978CharactersSelector constant 285
kJIS1983CharactersSelector constant 285
kJIS1990CharactersSelector constant 285
kJUSTKashidaPriority constant 228
kJUSTLetterPriority constant 228
kJUSTNullPriority constant 229
kJUSTOverrideLimits constant 227
kJUSTOverridePriority constant 227
kJUSTOverrideUnlimited constant 227
kJUSTPriorityCount constant 229
kJUSTPriorityMask constant 227
kJUSTSpacePriority constant 228
kJUSTUnlimited constant 227
kKanaSpacingType constant 274
kKanaToRomanizationSelector constant 289
kKatakanaToHiraganaSelector constant 288
kLastFeatureType constant 274
kLetterCaseType constant 272
kLigaturesType constant 272
kLineFinalSwashesOffSelector constant 281
kLineFinalSwashesOnSelector constant 281
kLineInitialSwashesOffSelector constant 281
kLineInitialSwashesOnSelector constant 281
kLinguisticRearrangementOffSelector

constant 280
kLinguisticRearrangementOnSelector

constant 280
kLinguisticRearrangementType constant 272
kLogosOffSelector constant 277
kLogosOnSelector constant 277
kLowerCaseNumbersSelector constant 286
kMathematicalExtrasType constant 273
kMathSymbolsSelector constant 294
kMonospacedNumbersSelector constant 286
kMonospacedTextSelector constant 287
kNoAlternatesSelector constant 295
kNoAnnotationSelector constant 287
kNoFractionsSelector constant 283
kNonFinalSwashesOffSelector constant 281
kNonFinalSwashesOnSelector constant 281
kNoOrnamentsSelector constant 294
kNormallySpacedTextSelector constant 287
kNormalPositionSelector constant 282
kNoStyleOptionsSelector constant 291
kNoTransliterationSelector constant 288

kNumberCaseType constant 274
kNumberSpacingType constant 272
kOrdinalsSelector constant 282
kOrnamentSetsType constant 273
kOverlappingCharactersType constant 273
kParenthesisAnnotationSelector constant 288
kPartiallyConnectedSelector constant 278
kPeriodAnnotationSelector constant 288
kPeriodsToEllipsisOffSelector constant 292
kPeriodsToEllipsisOnSelector constant 292
kPiCharactersSelector constant 294
kPreventOverlapOffSelector constant 284
kPreventOverlapOnSelector constant 284
kProportionalIdeographsSelector constant

290
kProportionalKanaSelector constant 289
kProportionalNumbersSelector constant 286
kProportionalTextSelector constant 287
kRareLigaturesOffSelector constant 276
kRareLigaturesOnSelector constant 276
kRebusPicturesOffSelector constant 277
kRebusPicturesOnSelector constant 277
kRequiredLigaturesOffSelector constant 276
kRequiredLigaturesOnSelector constant 276
kRomanizationToHiraganaSelector constant

289
kRomanNumeralAnnotationSelector constant

288
kRoundedBoxAnnotationSelector constant 287
kShowDiacriticsSelector constant 281
kSimplifiedCharactersSelector constant 285
kSlashedZeroOffSelector constant 292
kSlashedZeroOnSelector constant 292
kSlashToDivideOffSelector constant 293
kSlashToDivideOnSelector constant 293
kSmallCapsSelector constant 278
kSmartQuotesOffSelector constant 292
kSmartQuotesOnSelector constant 292
kSmartSwashType constant 272
kSquaredLigaturesOffSelector constant 277
kSquaredLigaturesOnSelector constant 277
kStyleOptionsType constant 273
kSubstituteVerticalFormsOffSelector

constant 279
310
5/7/99  Apple Computer, Inc.

I N D E X
kSubstituteVerticalFormsOnSelector
constant 279

kSuperiorsSelector constant 282
kTallCapsSelector constant 291
kTextSpacingType constant 274
kTitlingCapsSelector constant 291
kTraditionalAltFiveSelector constant 285
kTraditionalAltFourSelector constant 285
kTraditionalAltOneSelector constant 285
kTraditionalAltThreeSelector constant 285
kTraditionalAltTwoSelector constant 285
kTraditionalCharactersSelector constant 285
kTransliterationType constant 274
kTypographicExtrasType constant 273
kUnconnectedSelector constant 278
kUnicodeDecompositionType type 274
kUpperAndLowerCaseSelector constant 278
kUpperCaseNumbersSelector constant 286
kVerticalFractionsSelector constant 283
kVerticalPositionType constant 273
kVerticalSubstitutionType constant 272
kWordFinalSwashesOffSelector constant 280
kWordFinalSwashesOnSelector constant 280
kWordInitialSwashesOffSelector constant 280
kWordInitialSwashesOnSelector constant 280

M–T

MyATSUCustomAllocFunc function 178
MyATSUCustomFreeFunc function 181
MyATSUCustomGrowFunc function 179

U–Z

UniChar type 197
UniCharArrayHandle type 197
UniCharArrayOffset type 198
UniCharArrayPtr type 198
UniCharCount type 198
311
5/7/99  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

5/7/99  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Lisa Karpinski

TECHNICAL CONSULTANT
Jun Suzuki

PROJECT LEAD WRITER
Donna Lee

WRITING MANAGER
Tony Francis

ILLUSTRATOR
Ruth Anderson

PRODUCTION EDITOR
Gerri Gray

Special thanks to Andy Daniels, Dan
Fenwick, Dave Opstad

	Apple Type Services for Unicode Imaging Reference
	Contents
	Introduction
	ATSUI Reference
	Gestalt Selectors
	Functions for Manipulating Style Objects
	Creating, Clearing, and Disposing of Style Objects
	ATSUCreateStyle
	ATSUCreateAndCopyStyle
	ATSUCompareStyles
	ATSUSetStyleRefCon
	ATSUGetStyleRefCon
	ATSUStyleIsEmpty
	ATSUClearStyle
	ATSUDisposeStyle

	Copying Style Contents
	ATSUCopyAttributes
	ATSUOverwriteAttributes
	ATSUUnderwriteAttributes

	Flattening and Unflattening Style Objects
	ATSUCopyToHandle
	ATSUPasteFromHandle

	Manipulating Style Run Attributes
	ATSUSetAttributes
	ATSUGetAttribute
	ATSUGetAllAttributes
	ATSUClearAttributes
	ATSUCalculateBaselineDeltas

	Manipulating Font Features
	ATSUSetFontFeatures
	ATSUGetFontFeature
	ATSUGetAllFontFeatures
	ATSUClearFontFeatures

	Manipulating Font Variations in a Style Object
	ATSUSetVariations
	ATSUGetFontVariationValue
	ATSUGetAllFontVariations
	ATSUClearFontVariations

	Functions for Obtaining Font Data
	Identifying and Finding ATSUI-Compatible Fonts
	ATSUFontCount
	ATSUGetFontIDs
	ATSUFindFontFromName

	Finding Font Names
	ATSUCountFontNames
	ATSUGetIndFontName
	ATSUFindFontName

	Converting Between Font IDs and Family Numbers
	ATSUFONDtoFontID
	ATSUFontIDtoFOND

	Obtaining Font Tracking Data
	ATSUCountFontTracking
	ATSUGetIndFontTracking

	Obtaining Font Feature Data
	ATSUCountFontFeatureTypes
	ATSUGetFontFeatureTypes
	ATSUCountFontFeatureSelectors
	ATSUGetFontFeatureSelectors
	ATSUGetFontFeatureNameCode

	Otaining Font Variation Data
	ATSUCountFontVariations
	ATSUGetIndFontVariation
	ATSUGetFontVariationNameCode

	Obtaining Font Instance Data
	ATSUCountFontInstances
	ATSUGetFontInstance
	ATSUGetFontInstanceNameCode

	Functions for Manipulating Text Layout Objects
	Creating and Disposing of Text Layout Objects
	ATSUCreateTextLayout
	ATSUCreateTextLayoutWithTextPtr
	ATSUCreateTextLayoutWithTextHandle
	ATSUCreateAndCopyTextLayout
	ATSUSetTextLayoutRefCon
	ATSUGetTextLayoutRefCon
	ATSUClearLayoutCache
	ATSUDisposeTextLayout

	Manipulating Text Layout Attributes
	ATSUCopyLayoutControls
	ATSUSetLayoutControls
	ATSUGetLayoutControl
	ATSUGetAllLayoutControls
	ATSUClearLayoutControls

	Manipulating Line Attributes
	ATSUCopyLineControls
	ATSUSetLineControls
	ATSUGetLineControl
	ATSUGetAllLineControls
	ATSUClearLineControls

	Determining and Updating Text Memory Location
	ATSUSetTextPointerLocation
	ATSUSetTextHandleLocation
	ATSUGetTextLocation
	ATSUTextMoved

	Updating and Determining Style Runs
	ATSUSetRunStyle
	ATSUGetRunStyle
	ATSUGetContinuousAttributes

	Providing Font Substitutions
	ATSUSetFontFallbacks
	ATSUGetFontFallbacks
	ATSUMatchFontsToText
	ATSUSetTransientFontMatching
	ATSUGetTransientFontMatching

	Functions for Responding to User Actions
	Hit-Testing
	ATSUPositionToOffset
	ATSUOffsetToPosition

	Obtaining Cursor Offsets
	ATSUNextCursorPosition
	ATSUPreviousCursorPosition
	ATSURightwardCursorPosition
	ATSULeftwardCursorPosition

	Deleting and Inserting Text
	ATSUTextDeleted
	ATSUTextInserted

	Measuring Typographic and Image Bounds
	ATSUGetGlyphBounds
	ATSUMeasureText
	ATSUMeasureTextImage

	Manipulating Line Breaks
	ATSUBreakLine
	ATSUSetSoftLineBreak
	ATSUGetSoftLineBreaks
	ATSUClearSoftLineBreaks

	Drawing Text
	ATSUDrawText

	Highlighting and Unhighlighting Text
	ATSUHighlightText
	ATSUUnhighlightText
	ATSUGetTextHighlight

	Performing Background Processing
	ATSUIdle

	Functions for Manipulating Memory Settings
	ATSUCreateMemorySetting
	ATSUSetCurrentMemorySetting
	ATSUGetCurrentMemorySetting
	ATSUDisposeMemorySetting

	Application-Defined Functions for Controlling Memory Allocation
	MyATSUCustomAllocFunc
	MyATSUCustomGrowFunc
	MyATSUCustomFreeFunc

	Data Types
	ATSJustPriorityWidthDeltaOverrides
	ATSTrapezoid
	ATSUAttributeInfo
	ATSUAttributeValuePtr
	ATSUCaret
	ATSUCustomAllocFunc
	ATSUCustomFreeFunc
	ATSUCustomGrowFunc
	ATSUFontFeatureType
	ATSUFontFeatureSelector
	ATSUFontID
	ATSUFontVariationAxis
	ATSUFontVariationValue
	ATSUMemoryCallbacks
	ATSUMemorySetting
	ATSUStyle
	ATSUTextLayout
	ATSUTextMeasurement
	BslnBaselineRecord
	ConstUniCharArrayPtr
	UniChar
	UniCharArrayHandle
	UniCharArrayOffset
	UniCharArrayPtr
	UniCharCount

	Resource
	ustl
	Flattened Text Layout Data
	Flattened Style Run Data
	Flattened Style List Data

	Constants
	Baseline Type Constants
	Clear All Constant
	Current Pen Location Constant
	Cursor Movement Constants
	Font Fallback Constants
	Font Name Language Code Constants
	Font Name Code Constants
	Font Name Platform Code Constants
	Font Name Script Code Constants
	Glyph Bounds Constants
	Glyph Direction Constants
	Glyph Orientation Constants
	Heap Specification Constants
	Invalid Font ID Constant
	Justification Override Mask Constants
	Justification Priority Constants
	Line Alignment Constants
	Line Height Constant
	Line Justification Constants
	Line Layout Option Mask Constants
	Line Layout Width Constant
	Miscellaneous Constants
	No Font Name Platform, Language, or Script Constants
	Style Comparison Constants
	Style Run Attribute Tags
	Text Layout and Line Attribute Tags
	Text Length Constant
	Text Offset Constant

	Result Codes

	Document Revision History
	Functions New to ATSUI 1.1 and Changed From ATSUI 1.0
	ATSUI Implementation of the Unicode Specification
	Character Size
	Control Characters
	Combining Characters
	Surrogates
	Character Properties

	Font Feature Types and Selectors
	Contextual Font Features
	Ligatures
	Cursive Connection
	Letter Case
	Vertical Substitution
	Linguistic Rearrangement
	Swashes and Smart Swashes
	Diacritical Marks
	Vertical Position
	Fractions
	Prevention of Glyph Overlap

	Noncontextual Font Features
	Character Shape
	Number Width
	Number Case
	Text Width
	Annotation
	Transliteration
	Kana Spacing
	Ideographic Spacing
	CJK Roman Width
	Style Options
	Typographic Extras
	Mathematical Extras
	Ornament Sets
	Character Alternates
	Design Complexity
	Unicode Decomposition

	Glossary
	Index

