QuickDraw 3D1.6

New API Features and
Improvements

V5.3.99

QuickDraw 3D

Apple Computer, Inc.

Robert Dierkes (dierkes.r@apple.com)
Stephen L uce (sluce@apple.com)

Brian Greenstone

QD3D 1.6

TABLE OF CONTENTS

FOG STYLES. ..ottt et sttt st e st esee st e s ee s st e be s s eeteeneeseemeenseemseaseeneeaneeneesaeenaesneeneesneensenneensennsensenns 5
WORKING WITH FOG STYLES.....cce ettt sttt st st b s sb e e e sae e e sneennesmeesrennnens 6
NEW APl CALLS FOR FOG......oooiiiiciiste ettt seeseeseeste e stesseestesseestesssesseessesseasesseensssseessesseessesseessesssessesssessenns 7

(051 o1 1S, LT NN =. O 7
QBFOGIYIE SUDMIT ...ttt ettt bbbt b e s e b e s e b s bbb e bt s b bt s bbb et et et nb e 8
(@51 al0 S 4 [T = | - 1SS 9
QBFOGYIE SEEDALA ... veuerteueeteeete ettt sttt ettt et e et e et b et bt b et b e st b se e b e s e e b e s e e bt e e e bt e e bt e b et bt b et bt b 9
FOG SAMPLE CODE ...ttt ettt b e bt s h e bt b s et ee e b s e e e e e e e e e et ebeeae e st ebenbeseeeneanes 10

WORLD RAY PICKING ...ttt sttt st a e st ae st sae s ae e s b e s ae e b e eae e e b e eaeeebeeaseebe e s e saeensesaeeneesanas 11
CREATING A WORLD RAY PICK OBUJECTctiiiiieieieieiiseeesie sttt sre s s e s s snesne s s snesnessenes 12
THE PROCESS OF RAY PICKING ...ttt ettt st b et sasesbe et e sbe e s e sneesnesaeeseesanas 13
MORE ABOUT TOLERANG ES.........oootiierieiereeree st s see st e e st ete st etesseesesseesssssessseanessseensesseesesseensesseensesneensennes 14
OTHER RAY PICKING GUIDELINES. ...ttt s s e e e n e b nesreens 15
DATA STRUCTURES & APl FUNCTIONSottt e s ee s s naesseetesseebesseensesneenseenes 16

Q3WOITARAYPICK INBW........oeiieie sttt ettt ettt e e st te st et e e te et e eseensesaeeseeaeesaeeneeseeeneesaeensessannsensenns 16
QIWOTTARAYPICK_GELRAYcvieeviietiieiirieiesteeste sttt bbb bbbt bbb et st e b e 17
Q3WOrTARAYPICK SELRAYccueieeeiieieeetiee s sttt st et e e e e e e e e e sestesbesaestesbesaestetesaesensessenseseesessesnestessesrens 17
Q3WOr T ARAYPICK GEIDALA ... eeeueeueeierieeiestesie st ste e seesteste e e ese st st esesbessesaesbesbeseesseseseeneenseneeneesessessessestesenseans 18
Q3WOrIARAYPICK SEIDALA. ... cveeeeerieeieeeseseseste e seestestesaeseesee e s e esessessesaestestesaessesteseeeenseseeneasensessessensessessnns 19
WORLD RAY PICKING SAMPLE CODE ..ottt st sbe s b ss e sae e saeesaesaeas 20
RELATED APE Sttt ettt s e e ea et h e e b e e b e e R e E e b e 1Rt eR e R e s e e ne e s et e e e neeReeae e st ebenbenaeenennes 22

DISPLAY GROUP CULLING ...ttt she bt sae s s et e sae e e e saeseesae e e e sae e besae et e sneabeannanseeans 23

APl CALLSFOR DISPLAY GROUP CULLINGociiiteeieeese ettt nee e saesneenennnees 24
Q3DisplayGroupSetANAUSEBOUNAINGBOXcitirieieiieierieieeieeee ettt sbe s st see e e e e s saessesaesbesaeseeas 24

QD3D 1.6

Q3DisplayGroup_CalcANAUSEBOUNAINGBOXccuiitiiiieierieeeiie ettt s sna 25

Q3DisplayGroup_GetBOUNGINGBOX........c.ciuiiriiiriiiriierieieiesieie sttt s et b et st sb et ne b e 26
Q3DisplayGroup RemOVEBOUNAINGBOX........ccciiitirieiiisiesiesieseeeeieeeeestessesrestestesressestesaesesssesesssssessessessessessessens 27
Q3VIieW_AlOWAITGIOUPCUITING. ...c.eeetiieeirieierierte ettt sttt 27
DISPLAY GROUP CULLING SAMPLE CODEoociiiiieiieeseeeseesre st 29
COMPRESSED PIXMARP ..ttt ettt ettt ae st ae s h e be s a e e b e e a e e eb e e ae e ebe e s e eae e bt saeeseeeaeeseeensesbeentesbeans 31
COMPRESSED PIXMARP SAMPLES........o ottt sn e ene s 31
STRUCTURES AND AP FUNCTIONS.......oe ettt sttt st s e sae e sae e e sae e sbessnesbesnnesreens 34
Q3CompressedPixmapTexture COMPrESSIMAGE.uiiierereereeeeeeeereseseseste e e seesteseeseeeeseseesessessessessessessens 35
COMPRESSED PIXMAP EXAMPLE. ...ttt e st e e b e sbe b sreen 37
COMPRESSED PIXMAPS IN BDME FILES........o oottt sre e e see e seesnaesneensenreens 39
GETTING THE RAVE DRAW CONTEXT S oottt s e s s e e seesnnesresnnenrens 41
LT I O O I N 1 SRS 41
Q3lInteractiveRenderer COUNtRAVEDTI AWCONLEXISccverveeeieeeeeresesessestesiesressesseseesesssesessessessessessessessessens 41
Q3lInteractiveRenderer_ GEtRAVEDIAWCONIEXESccoirvruirieirieiirieesieesieesiesesse et sne s 42
NEW VIEWER FUNGCTIONS. ...ttt sse e nme e sae e se s e sh e e e e sm e e e sne e s e nneenneennenneenes 48
FLY -THRU MODE ... ottt sttt b et bbbt e b eae e s et e et e she e aeesaeeeeshe e besb e e beeaeenbesaeanseeans 48
THE OPTIONS BUTTON ...ttt ettt sttt e s e e ae et ssesb e st sheebe s b se e s e e se e e e e e e eaeeseebenneaneebesbesnens 48
RESIZING THE VIEWER PANE INSIDE THE WINDOW.........cooiiiiiieee e 50
NEW API FUNGCTIONS ...ttt se et b bt s e b b se e es e e seese e s e e e e e e enenae e st arenbeseeenennes 51
QY EWES SEERENAEN € TYPE ... ettt ettt sttt et et ae et eheebe bt saesbesbese et e bese e e enee e eneeseenesnesbesbesaeseen 51
QBV I AW GEIRENAET B TYPE ...ttt bbbt b bbbt bbb et et 52
Q3ViIieWer ChangEBI TONINESSc.eeeeireee ettt ettt bbbt ae b e b e et et e se e e e e e e e e ereeaesaesbesbesaeseen 52

Q3Viewer SEtREMOVEBACKIACESc.eeeee et te et e ettt te e seestentesee e enee e e e eseesessesaessesansnens 53
Q3Viewer GEtREMOVEBACKIACESc.cceiieicice ettt e se e e e e e ereeaesaesresteseesrens 54
Q3VIeWEr SEEPhONGSNAAING ...ttt bbbt b et b et bt b ettt 54

Q3Viewer GEtPRONGSNAING.cveeeieireeeee st e ettt saesbe s besaestetesae e essesseneeseesessesnesressesrens 55
Q3Viewer St WINAOWRESI ZECAIIDACKooueieiieiiire e e e see e 55

QD3D 1.6

Q3Viewer SetPaneResi ZENOI FYCAlIDACKcooiiii e 56

Q3Viewer SetDrawiNgCal IDACKMELNOMcoueiiiiiii bbb 58
IMISCELLANEA ...ttt e bbbt e E bR R Rt e e bbb ne bR et bbbt e s bt s 59
INTERACTIVE RENDERER MODIFICATIONS......coiiitetieierie sttt 59
QUICKDRAW 3D MODIFICATIONS......ccoititeitirerieieitsesseresese sttt sse et s st n e snenens 61

@ 4

QD3D 1.6

FOG STYLES

QuickDraw 3D 1.6 now has aFog Style Objects which will alow you to do atmospheric effects
in your 3D applications. Most 3D accelerator cards will work with the new Fog Style once they

update their driversfor RAVE 1.6, and even the RAVE 1.6 software rasterizer can now render

fogged scenes.

Model Display ="0——————H

A single textured triangle rendered with white fog

& |

WORKING WITH FOG STYLES

Fog Style Objects are created like any other Style Object, but they take the TQ3FogStyleData as

input. The new fog types and structures can be found in Qp3pstyle.h.

struct TQ3FogStyleData

{
TQ3Switch state;
TQ3FogMode mode;
float fogStart;
float fogEnd;
float density;
TQ3ColorARGB color;
}
enum TQ3FogMode
{
kQ3FogModeL inear =0,
kQ3FogModeExponential =1,
kQ3FogModeExponentialSquared =2,
kQ3FogModeAlpha =3
}:

The state field indicates whether the fog is on or off. The mode field indicates how the fog

increases in density as you look into the distance.

kQ3FogModeL inear fog = (end —2z) / (end — start)
kQ3FogModeExponential fog = exp(- density * z)
kQ3FogModeExponentialSquared fog = exp(- density * z* density * z)
kQ3FogModeAlpha fog = vertex apha

kQ3FogModeL inear

The fogstart and fogend values determine the starting and ending points for the fog. Normally,
you will want to set fogEnd to your camera s yon value, but the fogstart value can be any
distance depending on the effect you want to achieve. Most applications will start the fog from

1/3 to 1/2 the distance between the camera and the yon plane. Most applications do not ook

too good if you set the fogstart to your hither value. This causes too much fog and gives a

“smoky room” appearance.

kQ3FogModeExponential and kQ3FogModeExponentialSquared
The density field determines how dense the fog will get at the fogend distance for these fog
modes. To make a scene go completely to fog, you should set thisto 1.0. But if you only want a

partial fog for amisty effect, then set it to something lower like 0.5 or 0.8.

kQ3FogModeAlpha

Thisfog modeisalittle different. Normally, the “fog” to apply to a particular vertex of a

triangle is determined by how far away that vertex isfrom the camera. With kQ3FogModeAlpha
the amount of fog to apply to the vertex is determined by the vertex’s aphavalue. So fog and
alpha blending cannot be used with the alphafog mode. Thisis mainly used to achieve special

effects and not necessarily “fog’”.

In general, you will want to set your fog color to your clear color. Remember that the fog only
affects drawn triangles, therefore, any pixels on the screen that are not occupied by triangles will
still show the background color. If, for example, your clear color is black yet your fog is white,
then your triangles will fog to white in the distance, but all the “blank” space around the triangles

will still be black —not a desirable effect.

NEW API CALLS FOR FOG

Q3FogStyle New

TQ3StyleObject Q3FogStyle_New (const TQ3FogStyleData*data);

& |

Input: data A pointer to a structure containing the fog

parameters.
output: TQ3StyleObject A fog style object.
Info: This function returns a reference to a new fog style object based on the

input parameters.

Q3FogStyle Submit

TQ3Status Q3FogStyle_Submit (
const TQ3FogStyleData *data
TQ3ViewObject view);

Input: data A pointer to a structure containing the fog
parameters.
view A view Object to submit to.
output: TQ3Status kQ3Success If submit was successful.
Info: This function submits Fog Style data to the input view.

Q3FogStyle GetData

TQ3Status Q3FogStyle_ GetData (
TQ3StyleObject styleObject
TQ3FogStyleData *data);

Input: styleObject The Fog Style Object whose data you wish to get.
data A pointer to a structure to get the fog
parameters.
output: TQ3Status kQ3Success If data was retrieved.
Info: This function gets the data from a Fog Style Object.

Q3FogStyle SetData

TQ3Status Q3FogStyle_SetData (
TQ3StyleObject styleObject
const TQ3FogStyleData *data);

Input: styleObject The Fog Style Object whose data you wish to set.
data A pointer to a structure containing the fog
data.
output: TQ3Status kQ3Success If data was set successfully.

Info: This function sets the data in a Fog Style Object.

FOG SAMPLE CODE

TQ3ColorARGB gClearColor = {1,1,1,1}; // clear color is white

TQ3StyleObject CreateMyFogStyleObject(void)

{
TQ3FogStyleData fogData;
TQ3StyleObject fogObj ;
/* SET MY PARAMETERS */
fogData.state = kQ30n; // fog is on
fogData.mode = kQ3FogModeLinear; // fog is linear
fogData.fogStart = MY_HITHER; // start in front
fogData. fogEnd = MY_YON; // end in back
fogData.density = 1.0; // goes totally foggy at yon
fogData.color = gClearColor; // fog color = clear color
/* MAKE NEW OBJECT */
fogObj = Q3FogStyle_New(&fogData);
return(fogObj);
}

10

WORLD RAY PICKING

World ray picking is anew pick object type introduced with QuickDraw 3D 1.6 which helps
applications detect which geometric objects are close to each other in world-space with respect to

aray vector.

To demonstrate a common use of world ray picking, imagine an interactive 3D application where
an object, perhaps a character, moves through a scene amongst a number of other objects. Here
we need to know what objects are in the character’ s path so they can be avoided or just
determine if something is close enough to be selected. Not all of these other neighboring objects
may be visible from the camera’ s point of view, which precludes us from using the familiar
window point pick type in this scenario. To address this a new kind of geometric entity is
needed that can be placed anywhere in the scene, not just positioned at the camera’s location.
World ray picking provides this and allows us to locate aray anywhere in world-space, like at
key points on the character’ s extremities, pointing in any direction. When the ray pick object is
submitted with the scene QuickDraw 3D computes which geometries intersect with the ray.

With this information the application can then decide how to reposition the character or have it

interact with other surrounding objects.

As you make notice world ray picking differs from window point and window rectangle picking
in that it does not perform hit testing from the camera’ s point of view. Rather it usesan
application controlled arbitrary ray that makes it a more generalized means of interacting with

objectsin a scene.

@)

World ray picking supports the following geometry types.

Linear: Point, Line, PolyLine, and Ellipse
Polygonal: Triangle, Box, Polygon, General Polygon, Polyhedron, Mesh, trimmest,
and TriGrid

Quadricg/Conics: Cone, Cylinder, Disk, Ellipsoid, and Torus

Parametric: NURB Curve and NURB Patch
Unsupported: Marker, Pixmap Marker (ray picking doesn’t make sense for these
geometries)

CREATING AWORLD RAY PICK OBJECT

The TQ3worlIdrayPickData data structure is defined as:

struct TQ3WorldRayPickData

{
TQ3PickData data;
TQ3Ray3D ray;
float vertexTolerance;
float edgeTolerance;
}:
typedef struct TQ3WorldRayPickData TQ3WorldRayPickData;

The data field contains general picking information common to all pick types. Essentidly it
describes in what order hits should be sorted, the kinds of information to be calculated when an
intersection is found (known as the “ pick detail”), and the maximum number of hitsto be

accumulated and returned in a pick object’s hit list.

‘[::;])

The ray field holds the pick’ s ray origin point in world-space coordinates and a direction vector.
An important thing to note about this ray direction vector isthat it must be normalized beforeit’s
passed into the Qawor 1drayPick_New and Q3awor IdRayPick_SetRay functions. The debug library
will post awarning if theray isn’t normalized and return afailure status. Note however the
optimized library will accept the ray but possible undesirable hits or erroneous hits may result. It
isthe responsibility of the application to ensure the ray is normalized before passing it to

QuickDraw 3D.
The last fields, vertexTolerance and edgeTolerance, specify the maximum distance allowed

between the projected pick ray and where it intersects the geometry. These tolerance values are

specified in world-space coordinates.

THE PROCESS OF RAY PICKING

The process of ray picking isvery similar to that of the other two pick types. During this process
scene objects are submitted in a picking loop to find those geometries which intersect the world
ray. Theworld ray is extended from its origin in the direction of the unit vector and geometries

are tested to see if they fall with the given tolerance values or directly intersect the ray.

After submitting the scene an application gets the number of hits with Q3rick_GetNumHits, USeS
Q3Pick_GetPickDetailvalidvask to find which kinds of pick detail information are available for
an individual hit, and then calls Q3rick_GetPickDetai IData tO retrieve the pick detail data that

was requested and is relevant for agiven hit.

A special note: asisthe case with all pick types requesting some kinds of pick detail hit

information from Q3rPick_GetPickDetai IData are objects that should be disposed by the

@)

application to avoid leaked objects. Specifically, this applies to the hit path, the geometry object,

and the shape part object.

TQ3PickDetailM asks

kQ3PickDetai IMaskPath
kQ3PickDetaiIMask Object
kQ3PickDetai IMask ShapePart

M eans of disposing object

Q3HitPath_EmptyData
Q30bject_Dispose
Q30bject_Dispose

MORE ABOUT TOLERANCES

As mentioned earlier, edge and vertex tolerance values for world ray picking are specified in
positive world-space. This coordinate space differs from window point picking and window

rectangle picking, where vertex and edge tolerance values are measured in window space and

correspond to screen pixelsinstead.

Vertex and edge tolerances apply to the geometry types shown below. With mesh geometries

these tolerances are only enabled when the mesh is submitted together with a pick part style, i.e.

when the kQ3PickPartsMaskVertex and/or kQ3rPickPartsMaskEdge parts settings are used. Ray

picking for al other geometries not shown in this table is done on a polygonal face basis.

14

Tolerance Used
Geometry Vertex Edge Face
Point .
Line . .
Ellipse . .
NURB Curve . .
Poly Line . .
Mesh . .
All other types .

OTHER RAY PICKING GUIDELINES

When the TQ3PickDetai I mask kQ3PickDetai IMaskDistance iS Specified the distance returned is

measured from the ray origin to the actual intersection on the geometry.

Generally the vertex tolerance should be larger than the edge tolerance if you wish hits on
vertices to have precedence over edge hits. Too many multiple hits may be returned if the pick
tolerances are too large and the numHi tsToReturn Setting is equal to O (return all hits) or greater

than 1. Thistypically happens when:

. 2 or more geometries are close together and the tolerance(s) values are large

enough to include several of these geometries.

. 2 or more separate line segments of the same geometry are close together or

@)

adjacent segments and the tolerance value(s) are large. Thisis possible with

polylines, ellipses, or NURB curves.

Therefore, it may be necessary for an application to use tolerance values appropriate for the size

of amodel’s scale.

DATA STRUCTURES & API FUNCTIONS

TQ3WorldRayPickData

struct TQ3WorldRayPickData

{
TQ3PickData data;
TQ3Ray3D ray;
float vertexTolerance;
float edgeTolerance;
};

typedef struct TQ3WorldRayPickData TQ3WorldRayPickData;

Q3WorldRayPick New

TQ3PickObject Q3WorldRayPick New (

const TQ3WorldRayPickData *data);

Input: data A pointer to a structure containing general pick

data to be calculated, the ray’s origin and
direction vector, and world vertex and edge
tolerances.

Output: TQ3PickObject A world ray pick object is created and returned

if the input data was valid.

|:i:;])

Info: This function returns a reference to a new world pick ray object created

from the given pick data, ray vector, and vertex and edge tolerances. The
passed ray origin is in world-space coordinates and the direction vector
must be normalized. The vertex and edge tolerance values are measured
in world-space coordinates and should be positive values. See the earlier
section on tolerance values for more details.

Q3WorldRayPick GetRay

TQ3Status Q3WorldRayPick _GetRay (

TQ3PickObject pick,

TQ3Ray3D *ray);
Input: pick A reference to a world ray pick object.
Output: TQ3Status Returns k@BSucccess if the ray was copied

from the pick object.

ray A pointer for the returned ray data.

Info: This function copies and returns the ray’s origin point and direction

vector into the passed TQ3ray3D structure from the pick object.

Q3WorldRayPick SetRay

TQ3Status Q3WorldRayPick_SetRay (
TQ3PickObject pick,
const TQ3Ray3D *ray);

‘[::;])

Input: pick A reference to a world ray pick object.

ray A pointer for the new ray data to be set on the
pick object.
Output: TQ3Status Returns kQBSucccess if the passed ray was

copied from the pick object. With the debug

library installed, kQBFai | ur e is returned if

the ray passed in isn't normalized.

Info: This function replaces the ray’s origin point and direction vector of the

pick object with the given ray. The ray origin is assumed to be in world-
space coordinates and the direction must be normalized.

Q3WorldRayPick GetData

TQ3Status Q3WorldRayPick GetData (
TQ3PickObject pick,
TQ3WorldRayPickData *rayPickData);

Input: pick A reference to a world ray pick object.

Output: TQ3Status Returns kQBSucccess if the ray pick data was
retrieved the pick object.

rayPickData A pointer for the returned world ray pick data.

@)

Info: This function copies all world ray pick data into the passed

TQ3Wor IdRayPickData Structure from the pick object.

Q3WorldRayPick SetData

TQ3Status Q3WorldRayPick_SetData (
TQ3PickObject pick,
const TQ3WorldRayPickData *rayPickData);

Input: pick A reference to a world ray pick object.
rayPickData A pointer to world ray pick data.
Output: TQ3Status Returns k@BSucccess if the ray pick data was

valid and set on the pick object.

Info: This function replaces the data in the world ray pick object with the data

from passed TQ3worldrayPickData Structure. The passed ray origin is
specified in world-space coordinates. The data contained in the structure
must be valid and the ray’s direction must be normalized.

@)

WORLD RAY PICKING SAMPLE CODE

The following example shows how to create aray pick object and change the ray to move it
through a scene. Using the view and model group passed to the main function it repositions the
ray pick at various locations along acircle to find objects that fall in thiscircular path. Inthe
HandleHit call the application could check if the object hit is at an acceptable distance by using

the pick detail mask kQ3PickDetai IMask Distance.

TQ3Status RayPickingSample(
TQ3ViewObject view,
TQ3GroupObject model)

TQ3Status status = kQ3Failure;
TQ3Ray3D wor ldRay ;
TQ3PickObject pick = NULL;
unsigned long numHits = 0;

float angle = 0.0;

#define kRadius 10.0
#define kStep 15.0

/* Set initial ray origin and direction */
Q3Point3D_Set(&worldRay.origin, 0.0, 0.0, 0.0);
Q3Vector3D_Set(&worldRay.direction, 1.0, 0.0, 0.0);

pick = CreateWorldRayPick(&worldRay);
if (pick == NULL) {
return kQ3Failure;

}

/*
* Move the ray"s origin in a circular path in the XZ-plane
* keeping the direction vector tangent to this circle.
*/
for (angle = 0.0;
angle <= Q3Math_DegreesToRadians(360.0);
angle += Q3Math_DegreesToRadians(kStep)) {

/* Position ray"s origin */
Q3Point3D_Set(&worldRay.origin,
cos(angle) * kRadius,
0.0,
sin(angle) * kRadius);

/* Set a new ray direction as a tanget to the circle */
worlldRay.direction.x = -sin(angle);
worldRay.direction.z = cos(angle);

|:i:;] i

/*
* Sets up and create a world ray pick object
*/

/* Change ray in pick */
Q3Vector3D_Normalize(&worldRay.direction, &worldRay.direction);
status = Q3WorldRayPick_SetRay(pick, &worldRay);

/* Test if any scene objects intersect the ray */
status = Pick Model(view, model, pick, &numHits);
if ((status == kQ3Success) && (numHits > 1)) {
HandleHit(pick, model);
3
}

if (pick = NULL) {
Q30bject Dispose(pick);
pick = NULL;

}

return kQ3Success;

TQ3PickObject CreateWorldRayPick(

{

TQ3Ray3D *pWor 1dRay)

TQ3WorldRayPickData rayPickData;
TQ3PickObject pickObject = NULL;

rayPickData.data.sort kQ3PickSortNearToFar;

rayPickData.data.mask = kQ3PickDetai IMaskObject |
kQ3PickDetai IMaskXYZ |
kQ3PickDetai IMaskDistance |
kQ3PickDetai IMaskNormal ;

rayPickData.data.numHitsToReturn = 1;

/* Make sure ray is normalized */
Q3Vector3D_Normalize(&pWorldRay->direction, &pWorldRay->direction);
rayPickData.ray = *pWorldRay;

/* Tolerance values are measured in world space. */
rayPickData.vertexTolerance = 0.01;

rayPickData.edgeTolerance = 0.005;

/* Create the new world ray pick object */
pickObject = Q3WorldRayPick New(&rayPickData);

return pickObject;

21

/*
* A basic picking submit loop

*/

TQ3Status Pick Model(
TQ3ViewObject viewObj,
TQ3GroupObject modelObj,
TQ3PickObject pickObj,
unsigned long *pNumHits)

{
TQ3Status status = kQ3Failure;

TQ3ViewStatus viewStatus = kQ3ViewStatusError;
if (Q3View_StartPicking(viewObj, pickObj) == kQ3Success) {

do {
Q3DisplayGroup_Submit(modelObj, viewObj);
viewStatus = Q3View_EndPicking(viewObj);

3} while (viewStatus == kQ3ViewStatusRetraverse);

if (viewStatus == kQ3ViewStatusDone) {
status = Q3Pick_GetNumHits(pickObj, pNumHits);

}
}

return status;

}

RELATED API'S

Q3Pick_GetType
Q3Pick_GetData
Q3Pick_SetData

Q3Pick _GetNumHits
Q3Pick_GetPickDetai lval idMask
Q3Pick_GetPickDetai lData
Q3HitPath_EmptyData
Q3Pick_GetVertexTolerance
Q3Pick_SetVertexTolerance
Q3Pick_GetEdgeTolerance
Q3Pick_SetVertexTolerance

DISPLAY GROUP CULLING

One performance bottleneck with QuickDraw 3D has always been that it culls geometry on an
object by object basis, and complex geometries such as Conics get culled very late in the pipeline
which results in atremendous amount of computation going into building a conic which might
not even be visible. Even ssimple geometries such as TriMeshes take a speed hit. In the case of a
model of a Jumbo Jet, which is made up of 20 different TriMeshes, 20 different culling tests are

performed on this single model.

So, the solution has always been for coders to write their own model culling function. Thisis not
avery friendly thing to ask a programmer to do when they’re using a high level API like QD3D.
Therefore, new in QD3D 1.6 isthe ability to assign a Bounding Box to a Display Group. When
the group is submitted for rendering, it will be cull tested and if it fails, then none of the
geometry or other objects inside the group will be submitted for rendering. The speed boost

from this ranges from 30% to 3500% or even higher for some conditions.

Using Group culling is avery powerful feature, but it must be used carefully. If you correctly
assign a Bounding Box to a Group but then the geometry inside of the Group changes, the Group
has no way to know that the Bounding Box may not be the right size anymore. The worst thing
that can happen is that Groups will be culled prematurely. This happens when a Group’s
Bounding Box is smaller than it should be to encompass all of the geometry contained within the
Group. If the Bounding Box istoo large, then the Group may not get culled when it should and
the contained geometries will get processed. Don’t worry, however, because these geometries
will then be cull-tested later down the pipeline when they would have been cull-tested anyway.

No crashes or other serious problems will result from an incorrect Bounding Box, but you need

@ i

to be careful to avoid visual glitches.

API CALLS FOR DISPLAY GROUP CULLING

Q3DisplayGroup_SetAndUseBoundingBox

TQ3Status Q3DisplayGroup_SetAndUseBoundingBox (

Input:

Output:

I nfo:

TQ3GroupObject group,
TQ3BoundingBox *bBox)

group The Display Group to which you wish to assign a

bounding box.

bBox A pointer to the Bounding Box you want to assign to
the group.
TQ3Status kQ3Success if the input bounding box was assigned
to the group.

This function will assign the input Bounding Box to the input Display Group. If
the isempty field of the bounding box is kQ3True, then this function will return
kQ3Failure. Only non-empty bounding boxes may be assigned to the Display

Group.

In addition to assigning the bounding box to the Display Group, this function also
sets the Group’ s kQ3DisplayGroupStateMaskUseBoundingBox State flag which
indicates that QuickDraw 3D should use the assigned bounding box to perform

culling. You can use Q3pisplayGroup_SetState to clear the

@ i

kQ3DisplayGroupStateMaskUseBoundingBox State flag which will cause QuickDraw

3D to ignore the assigned bounding box.

Note: in previous versions of QuickDraw 3D, the

kQ3DisplayGroupStateMaskUseBoundingBox flag was aways set by default on

every new Group even though the flag did nothing. Thisisno longer the casein

1.6. Now, theflagisclear by default.

Q3DisplayGroup_CalcAndUseBoundingBox

TQ3Status Q3DisplayGroup_CalcAndUse (

Input:

Output:

group

computeBounds

TQ3Status

TQ3GroupObject group,
TQ3ComputeBounds computeBounds,

TQ3ViewObject view)

The Display Group who's Bounding Box you wish

to calculate and use.

Determines how accurate you would like your
bounding box to be. Use kQ3computeBoundsExact Of

kQ3ComputeBoundsApproximate.

The view to associate with cal culating the bounding

box.

kQ3Success if the bounding box was successfully

calculated and assigned to the group.

@ i

I nfo:

This function takes the input Display Group and cal culates the Bounding Box,
which encloses all of the Group’s geometries. The bounding box is then assigned
to the group and the group’ s kQ3bi splayGroupStateMaskUseBoundingBox State flag

iS set.

This function may not be called inside of a Submit loop. It will correctly
calculate the Bounding Box for the group in its current state, however, the
programmer will still need to be aware that changes to the Group’ s contained
objects may cause the bounding box to no longer be the correct size and thus

Group culling may not function properly.

Q3DisplayGroup_GetBoundingBox

TQ3Status Q3DisplayGroup_GetBoundingBox (

Input:

Output:

TQ3GroupObject group,
TQ3BoundingBox *bBox)

group The Display Group who's Bounding Box you wish
to get.
bBox A pointer to a Bounding Box structure to receive the

groups bounding box data.

TQ3Status kQ3Success if the bounding box was successfully

retrieved from the group.

@ i

Info: This function will return the Group’s currently assigned Bounding Box. 1f no

Bounding Box is assigned to the Group, then the function returns kQ3rai lure.

Q3DisplayGroup_RemoveBoundingBox

TQ3Status Q3DisplayGroup_RemoveBoundingBox (TQ3GroupObject group)

Input: group The Display Group who's Bounding Box you wish
to remove.
Output: TQ3Status kQ3Success if the bounding box was successfully

removed from the group.

Info: This function removed any assigned Bounding Box from the input Group. 1f
there was no assigned Bounding Box, then the function does nothing and returns
kQ3Success. However, if there was a Bounding Box, then it is removed from the
Group and the Group’ s kQ3DisplayGroupStateMaskUseBoundingBox state flag is

cleared.

Q3View_AllowAllGroupCulling

TQ3Status Q3View_AllowAllGroupCulling (
TQ3ViewObject view,

TQ3Boolean allowCulling)

‘[::;] .

Input: view A View Object.

allowCulling A flag to turn group culling on or off. kQ3True will
allow Group culling, kQ3False will turn it off for all

Groups rendered by the view.
Output: TQ3Status kQ3Success if the flag was set.

Info: This function allows the application to deactivate Group Culling in the input
View. By default, Group Culling is active in aView, but passing kQ3False to this
function will disableit for all Groups being submitted. Passing kQ3True will re-

enable Group culling.

In addition to adding the above function calls, there are also changes to the SDMF output files.
When a Display Group that has an assigned Bounding Box is written to a SDMF file, additional

data is written to the BeginGroup() definition:

BeginGroup (
DisplayGroup ()
DisplayGroupState (Inline

)
DisplayGroupBBox (
-91.52821 -135.8437 -77.85556 91.52821 135.8437 77.85556)

Previously, only the DisplayGroupState() data was written if any of the state flags were set.

‘[::;] i

If you are creating a Culling Display Group and it only contains geometry data (no transforms or
attribute objects), then you should set the Group’ s kQ3DisplayGroupStateMaskisinline state flag
so that processing of the Group will be much more efficient. Any Group which is being used
solely to contain data and not to define some hierarchical system should always have theinline

state flag set.

DISPLAY GROUP CULLING SAMPLE CODE

The following code takes alist of Geometry Objects, puts them into a new Display Group, and
then calculates and assigns a bounding box to the Display Group. When this Group is submitted,
all of the enclosed geometries will be cull-tested up front which results in a huge performance

boost.

//

// INPUT: numModels = # models to put into culling group
// models = array of models

//

TQ3DisplayGroupObject OptimizeSomeModels(long numModels, TQ3GeometryObject *models)
{

long i;
TQ3DisplayGroupObject theGroup;
TQ3DisplayGroupState state;

/* MAKE A NEW DISPLAY GROUP TO PUT MODELS INTO */
theGroup = Q3DisplayGroup_New();
if (theGroup == nil)
return(nil);
/* PUT EACH MODEL INTO THE GROUP */
for (i = 0; i < numModels; i++)
Q3Group_AddObject(theGroup , models[i]);

/* CALCULATE AND ACTIVATE THE BBOX */

Q3DisplayGroup_CalcAndUseBoundingBox(theGroup,

@ i

kQ3ComputeBoundsExact,
gMyViewObject);

/* MAKE GROUP INLINE SINCE IT DOENST CONTAIN ATTRIBUTES OR TRANSFORMS */
Q3DisplayGroup_GetState(theGroup ,&state);

state |= kQ3DisplayGroupStateMasklsinline;
Q3DisplayGroup_SetState(theGroup ,state);

return(theGroup);

30

COMPRESSED PIXMAP

New for 1.6 is the TQ3compressedrPixmap texture type. Thistexture type worksjust like the
Pixmap and Mipmap types except that the texture pixel datais compressed with QuickTime. This
new texture was designed to be easy to use, and it gives the user the flexibility of supplying their
own QuickTime compressed image data or if they desire, QD3D will do the compression for

them.

COMPRESSED PIXMAP SAMPLES

The following images show various types of compression applied to a texturemapped triangle.
Notice how good the compression ratio is for JPEG and Sorenson, yet the degradation of the
quality of the texture is almost unnoticeable. Sorenson compresses the texture to 2% of its

original size, but you can barely tell any difference.

@ §

Compression % = 1.0

Model Display

#Bytes = 262144

No Compression

32

Model Display

Compression % = 0.0366 #Bytes = 89610

JPEG Low Quality

33

Model Display =———— 8

Compression % = 0.0203 #Bytes = 5324

Sorenson Least Quality

STRUCTURES AND API FUNCTIONS

typedef struct TQ3CompressedPixmap
{

TQ3StorageObject compressedlmage; /*
TQ3Endian imageDescByteOrder; /*
TQ3StorageObject imageDesc; /*
TQ3Boolean makeMipmaps; /*
unsigned long width; /*
unsigned long height; /*
unsigned long pixelSize; /*
TQ3PixelType pixelType; /*

} TQ3CompressedPixmap;

contains compressed image data */
endianness of data in the imageDesc */
contains QT image description */
kQ3True = will render with mipmaps */
width of texture */

height of texture */

pixel size 16 or 32 bits */

pixel type */

34

Note that this structure does not contain much of the information (such as rowBytes) that the
normal Pixmap structure has. Since the data is compressed, many parameters are simply not
needed. QuickTime storesall of the information it needs to decode the image in the image
description handle. The imageDesc record is not an Image Description handle, but rather a
QuickDraw 3D container object, which contains the QuickTime Image Description Handle's
data. Inorder to use thisdatain a QuickTime function call, you will need to convert this data
into areal Handle to pass the QuickTime functions. Faking it with fake handles (i.e. & buffer)

will not work — QuickTime will probably return an error.

The function calls for working with Compressed Pixmaps are identical to those for the other
texture types. However, thereis one new function designed to assist in creating the compressed

data:

Q3CompressedPixmapTexture Compressimage

TQ3Status Q3CompressedPixmapTexture_Compresslimage(

TQ3CompressedPixmap *compressedPixmap,

PixMapHandle sourcePixMap,
CodecQ codecQuality,
CodecType codecType,
CodecComponent codecComponent)
I nput: compressedPixmap Pointer to the TQ3CompressedPixmap structure to

receive the compressed image.

SourcePixMap PixMapHandle that contains the uncompressed image

that you want to be compressed.

‘[::;])

Output:

Info:

CodecQuality The QuickTime quality value to use to compress the

image.

CodecType The QuickTime codec type to use to compress the
image.

CodecComponent The QuickTime codec component to use to compress
the image.

TQ3Status kQ3Success if compression was successful.

CompressedPixmap The compressedimage and imageDesc fields will

contain references to storage objects if compression

was successful.

Thisisautility function for creating a Compressed Pixmap texture. Given
various QuickTime parameters and a PixMapHandle containing the uncompressed
source image, this function will use QuickTime to compress the image and then
create two new storage objects that contain the compressed image data and the

QuickTime image description data.

If the function succeeds in compressing the texture image, it saves the reference to
the storage objects in the compressedimage and imageDesc fields of the
TQ3CompressedPixmap Structure. You still need to fill out the other fields of this

since this function will not do it for you.

@)

The QuickTime constants for the various compression parameters are found in the
header file 1mageCompression.h. Note that not all compressor CODECs can be
used to compress atexture. Some compressors only decompress data. |f you
attempt to use a CODEC that cannot do compression,
Q3CompressedPixmapTexture_Compressimage Will return kQ3railure. Your
application may want to let the user select the compression parameters with the

QuickTime function scRequestSequenceSettings.

The other new functions for the CompressedPixmap texture type should look very familiar:

TQ3TextureObject Q3CompressedPixmapTexture_New(

const TQ3CompressedPixmap *compressedPixmap)

TQ3Status Q3CompressedPixmapTexture_GetCompressedPixmap(
TQ3TextureObject texture,

TQ3CompressedPixmap *compressedPixmap)
TQ3Status Q3CompressedPixmapTexture_SetCompressedPixmap(

TQ3TextureObject texture,

const TQ3CompressedPixmap *compressedPixmap)

COMPRESSED PIXMAP EXAMPLE

TQ3TextureObject GworldToCompressedPixmap(GworldPtr theGWorld)

{

PixMapHandle hPixMap;

unsigned long pictMapAddr;

unsigned long pictRowBytes;

TQ3CompressedPixmap pixmap; 37

TQ3TextureObject texture;
TQ3Status status;

/* GET GWORLD ADDR & ROWBYTES */
hPixMap = GetGWorldPixMap(theGWorld);

pictMapAddr = (unsigned long)GetPixBaseAddr(hPixMap);
pictRowBytes = (unsigned long) (**hPixMap).rowBytes & Ox3fff;

/* FILL OUT COMPRESSED PIXMAP STRUCTURE */

pixmap.compressedlimage = nil;
pixmap. imageDesc = nil;
pixmap.makeMipmaps = kQ3True;
pixmap.width = width;
pixmap.height = height;

if (gCodecDepth == 32)

{
pixmap.pixelSize = 32;
pixmap.pixelType = kQ3PixelTypeRGB32;
}
else
{
pixmap.pixelSize = 16;
pixmap.pixelType = kQ3PixelTypeRGB16;
}
/* COMPRESS IMAGE AND FILL OUT REMAINING RECORDS IN STRUCTURE */
//
// Note: (gCodecType, gCodecComponent, gCodecDepth, and
// gCodecQuality are global variables we got from a
// previous call to SCRequestlmageSettings() and
// SCGetInfo().
//

status = Q3CompressedPixmapTexture_Compresslmage(&pixmap,
hPixMap,
gCodecType,
gCodecComponent,
gCodecDepth,
gCodecQuality);

if (status == kQ3Failure)

DoError(""\pQ3CompressedPixmapTexture_Compressimage Failed!™);

/* MAKE NEW COMPRESSED PIXMAP TEXTUE OBJECT */
texture = Q3CompressedPixmapTexture New (&pixmap);

if (texture == nil)
DoError (""\pQ3CompressedPixmapTexture New failed!');

|:i:;])

return(texture);

COMPRESSED PIXMAPS IN 3DMEFE FILES

Compressed Pixmaps get written out to 3DMF filesjust like other texture types. However,
unlike other texture types who' s texture data can be edited in atext 3DMF file, the Compressed
Pixmap writes out compressed data to the 3DMF file and thus may appear as random patternsin
the text 3BDMF files. Do not attempt to edit the compressed datain a3DMF file. Thiswill likely
lead to decompression corruption and possibly a crash in the QuickDraw 3D application

attempting to view thefile.

The Texture Shader for the above Jelly Bean texture which was compressed with Sorenson L east

Quality looks like this:

Container (

TextureShader ()

compressedpixmaptexture5:

CompressedPixmapTexture (
86 BigEndian 4996 False 256 256 16 RGB16
0x00000056535651310000000000000000
0x00020002535669730000000000000000
0x01000100004800000048000000001384
0x00010E536F72656E736F6E2056696465
0x6F000000000000000000000000000000
0x00000018FFFF
0x00008000171001003E0500000C6D528A
Ox0A7BA210DE56AC87FE79D48CBC267317
OxFD148F92354B02AA37A0A11755909163
0x9903E8282A7AF37B8E2E31A0C33A681D
OxCC88A83F5A126CF430CF947E4A7C5532
OXE50740E468FA17DCE801CE465A5F4CB6
0xA84972F0D42479AA02D9EOB183F28B99

Let’'s see what all of this means;

@ ?

The“86" isthe size of the QuickTime Image Description Data. The next item “BigEndian”
indicates the endianness of the Image Description Data. Following that is the number “4996”
which indicates the size of the compressed texture data. “False” indicates no mipmapping. If
thiswere set to “True” then that would indicate that this texture should be mipmapped. The next
two numbers “256” and “256” are the width and height of the texture, and “16” and “RGB16”

indicate the pixel size and type of the texture.

The next block of binary datais the actual QuickTime Image Description. Noticeit is 86 bytes
long as indicated above. Immediately following this datais the actual compressed texture itself.
Thisdatais actually 4996 bytes long, but we' ve truncated it above in an effort to save the

rainforests.

@ i

GETTING THE RAVE DRAW CONTEXTS

There is now away to get access to the Interactive Renderer’s RAVE Draw Contexts from
QuickDraw 3D. Thisgivesyou the ability to make RAVE calls directly to the 3D hardware or

software rendering engine.

NEW API FUNCTIONS

Q3InteractiveRenderer_CountRAVEDrawContexts

TQ3Status Q3InteractiveRenderer_CountRAVEDrawContexts(
TQ3RendererObject renderer,

unsigned long *numRAVEContexts)

Input: renderer areferenceto a QD3D Renderer Object

Output: numRAVEContext the number of RAVE Draw Contexts owned by renderer.

Info: This function returnsin numRAVEContexts the total number of RAVE Draw
Contexts that the input renderer object currently owns. QuickDraw 3D’s
Interactive Renderer does not automatically create the RAVE Draw Contexts
when the Renderer object is created or assigned to a View Object. The RAVE
Draw Contexts are created when Q3view_StartRendering iS called.the first time.
Each time Qaview_StartRendering is called, QuickDraw 3D checksto seeif the
View has changed and if so, it deletes all of the RAVE Draw Contexts and

recreates new ones.

‘[::;] ’

To use this function before you have done any rendering, do the following:

Q3View_StartRendering(viewObject);
Q3InteractiveRenderer_CountRAVEDrawContexts(rendererObject,&num);

Q3View_Cancel(viewObject);

Q3InteractiveRenderer_GetRAVEDrawContexts

TQ3Status Q3InteractiveRenderer_GetRAVEDrawContexts(

Input:

Output:

I nfo:

TQ3RendererObjectrenderer,
TQADrawContext **raveDrawContextList,

TQAEngine **raveDrawEnginelList,

unsigned long *numRAVEContexts,

void (*raveDestroyCallback) (TQ3RendererObject))

renderer areference to aQD3D Renderer Object.

raveDestroyCal Iback the callback function to call when the RAVE

Draw Contexts become invalid.

raveDrawContextList pointer to array of RAVE Draw Context pointers.
RaveDrawEngineList pointer to array of RAVE Draw Engines.
numRAVEContexts the number of RAVE Draw Contexts owned by

renderer.
This function returns a pointer to each RAVE Draw Context and Drawing Engine

associated with the input Renderer Object. It also indicates the number of RAVE

Draw Contexts returned.

|:i:;] i

Aswith Q3InteractiveRenderer_CountRAVEDrawContexts, thisfunction will
return O draw contexts if Qaview_StartRendering was not called earlier.
QuickDraw 3D only creates the new RAVE Draw Contexts for the Renderer

when Q3view_StartRendering iS called.

Changing any parameters of the View associated with the renderer may result in
the RAVE Draw Contexts being destroyed and recreated. Because of this, itis
very important to be careful when using the returned TQADrawContext pointers.
Some actions that will cause the RAVE Draw Contexts to be deleted and

recreated are:

* Moving or resizing the View
» Changing the View’s Clear Method
» Changing z-buffer depth.

» Changing the screen’s color depth or resolution.

If you are simply creating a“ static” View and never changing any View
parameters, then you can be assured that the RAVE Draw Context pointers would

remain valid.

The raveDestroyCal Iback parameter lets you assign a callback function to be
called whenever the RAVE Draw Contexts become invalid. Thisway you do not
need to guess when QuickDraw 3D may have disposed of them. The minimal

callback function takes the following form:

void MyRavelnvalidateCallback(TQ3RendererObject rendererRef)

{
@)

** Note that your callback function must not dispose of the reference to the

Renderer Object!

Y our callback function can immediately call
Q3InteractiveRenderer_GetRAVEDrawContexts t0 get the new RAVE Draw
Contextsif any have been created. A callback function which does this should

look likethis:

void MyRavelnvalidateCallback(TQ3RendererObject rendererRef)

{
TQ3Status status;

status = Q3View_StartRendering(gMyView);

gNumContexts = Q3InteractiveRenderer_GetRAVEDrawContexts (
rendererRef,
gContextList,
gEnginelList);

if (status == kQ3Success)

Q3View_Cancel (gMyView);

This code does something alittle different. Since

Q3InteractiveRenderer GetRAVEDrawContexts needsto becalled inside a
rendering loop to be certain that the Contexts are up to date, we call
Q3view_StartRendering. But remember that our callback function might have
been called from within arender loop in which case Q3view_StartRendering
would have aready been called and active. Therefore, calling

Q3View_StartRendering in our callback will return kQ3rai lure because the View

&)

isaready in arendering loop. We do not want to call Qaview_cancel if thisisthe

case, therefore, if Qaview_StartRendering fails, we do not call Q3view_cancel.

Be aware that there are cases when your callback will be invoked to notify you
that the Draw Contexts have been invalidated, but there might not necessarily be
any new RAVE Draw Contexts assigned to the Renderer yet. Therefore,
Q3InteractiveRenderer_ GetRAVEDrawContexts Will return acount of 0. Thiswill
occur when you dispose of the View or Renderer Objects entirely since the RAVE
Draw Contexts will be invalidated and obviously no new ones will be created to

replace them since you have nuked the View and/or Renderer.

If you do not wish to use a callback function to notify you when the RAVE Draw

Contexts have become invalid, simply passNuLL for raveDestroyCal Iback -

As noted above, this function also returns the TQAEngine associated with each
Draw Context. Note that multiple Draw Contexts may share the same Drawing
Engine. Therefore, if you are going to make RAVE calls that take the TQAEngine
as input such as QABi tmapNew, be careful not to upload the bitmap to the same
Drawing Engine multiple times. You may get two Draw Contexts which use the
save Drawing Engine and the bitmap only needs to be uploaded to the Drawing

Engine once for both Draw Context to useit.

If you are using the RAVE Draw Context to simply set “global” RAVE state
variables like blending modes or whatever, then you should have no problems.
However, if you are planning on making RAVE calls which normally require you

to be inside a RenderStart / RenderEnd function such as drawing triangles or

@)

textures, then you need to be very careful about something:

If your QD3D View has multiple RAVE Draw Contexts (because it crosses
multiple monitors), then you need to know which Draw Context is the currently
active context when you are inside the Q3renderstart / Q3rRenderend l00p. Y ou
will loop through your “ Submit” loop once for each monitor that the View
touches. When you call Q3InteractiveRenderer GetRAV EDrawContexts, it
returns the RAVE Draw Contexts in the order that QuickDraw 3D processes them

during rendering.

Therefore, if your View crosses 2 monitors then you will loop through your
rendering loop two times. The first time through the loop, the active RAVE Draw
Context will be the first context returned by
Q3InteractiveRenderer_GetRAVEDrawContexts. The second time through the loop,
the active RAVE Draw Context will be the second context returned by

Q3InteractiveRenderer_GetRAVEDrawContexts.

Y ou need to be careful to manage this correctly in your application because
drawing atriangle with a RAVE Draw Context that is not currently active will

cause an error to occur.

On asimilar note, be careful not to submit textures, bitmaps, or triangles that are
not clipped to the Draw Context’s bounds. For example, suppose you have a
View that is 100 pixels wide but crosses two monitors and only 20 pixels are on
the left monitor. The other 80 pixels are on the right monitor. If you then call

QADrawBitmap Using a bitmap which is 30 pixels wide into the left Draw Context,

@)

the RAVE Software Renderer will trash memory as it draws off the right side of
that monitor. Unlike QuickDraw 3D which internally handles clipping for you,
RAVE does not and it is very easy to trash memory if you are not careful about

these kinds of situations.

In general, if you don’'t really know much about RAVE or you just plain don’t
know what you are doing, then only use these RAVE Draw Contexts you acquired
from QuickDraw 3D to set RAVE State Variables. Do not use it to upload
textures or draw triangles. Only seasoned veterans of RAVE should attempt to do

this.

@ '

NEW VIEWER FUNCTIONS

The new Viewer in QuickDraw 3D 1.6 is much improved over the old Viewer. User interaction
of the 3D models is much more intuitive and has much better feedback. The visual appearance
of the modelsis also greatly improved. Note that the default lighting in the Viewer is a standard

studio lighting setup: 1 key light, 1 fill light, and 1 backlight.

FLY-THRU MODE

In the new Viewer’'s Camera menu, the first item now says Enter Fly-Thru Mode. When in this
mode, the user’s control of the camera changes. Moving the mouse up and down will move the

cameraforward and backward. Moving the mouse horizontally moves the camera sideways.

THE OPTIONS BUTTON

A new Options control strip button has been added to the Viewer which allows the user to

modify the appearance of the rendered image in the Viewer.

@)

The icon on the far right is the new Options button

The Options button will pop open a sub-menu containing the following selections:

* Renderer The user can select from any of the installed Interactive Renderers for
displaying the model.
* Brightness The user can change the brightness of the scene.

» Background Color The user can change the background color of the Viewer.

* Remove Backfaces Toggles backface removal on and off for better looking images and
faster rendering.

* Phong Shading Toggles phong shading on and off to alter the appearance of the
model.

)

RESIZING THE VIEWER PANE INSIDE THE
WINDOW

Prior to QuickDraw 3D 1.6 it was only possible to have awindow with a grow box that resized
the Viewer’ s dimensions and always fill the entire window. Thiswas done by setting the
Viewer's kQaviewerDrawGrowBox flag. Some applications still need aresizable window and a
resizable Viewer but wish to resize them independently. A new flag kQaviewerPaneGrowBox has
been added so the Viewer can be resized in it'sown pane. Setting this flag draws a grow box
inside the Viewer’s control strip which accepts mouse clicks and resized the Viewer when the

user click init. The diagram below shows the appearance of the Viewer with this new flag.

[MN"SDSD)————Viewtr———=—0H

Viewer with kQ3aviewerPaneGrowBox flag setting

&)

NEW API FUNCTIONS

In addition to giving the user access to the rendering options listed above, the application using

the Viewer also has access to the same things via new function calls:

Q3ViewerSetRendererType

OSErr Q3ViewerSetRendererType(
TQ3ViewerObject theViewer,
TQ30bjectType rendererType)
Input: theViewer the viewer object who's renderer type you wish to
change.
rendererType the renderer type you want the Viewer to use.
Info: Use this function to set the Renderer Type you want the Viewer to use when

rendering an image. Y ou should only pass in Interactive Renderer types since
other types of renderers may impede the user’ s ability to work with the Viewer.
The two types of Interactive Renderers built into QuickDraw 3D are

kQ3RendererTypelnteractive and kQ3RendererTypeWireFrame.

@ §

Q3ViewerGetRendererType

OSErr Q3ViewerGetRendererType(

TQ3ViewerObject theViewer,
TQ30bjectType *rendererType)

I nput: theViewer the viewer object who's renderer type you wish to
Set.

Output: rendererType apointer to a TQ3objectType that will contain the
current Renderer Type assigned to the Viewer when
the function compl etes.

Info: Use this function to get the Renderer Type currently being used by the Viewer to

render images.
Q3ViewerChangeBrightness
OSErr Q3ViewerChangeBrightness(
TQ3ViewerObject theViewer,
float brightness)
I nput: theViewer aviewer object.
brightness the percentage of light dimming to apply. The

vaue Owill dimall lightsto 0%. A valueof 1.0
will set all lightsto their original values. A value of
2.0 will brighten al lights by 200%.

@ i

I nfo:

This function lets you change the brightness of a scene by atering the brightness
values of each light in the scene. The brightnessvalueisascaling value that is
multiplied against each light in the scene. There is no upper limit to the
brightness value, but it must be >= 0.0. Any value over 1.0 may cause some
lights to oversaturate, but that might be the effect you want. For example, if your
View contains alight that already has a brightness of 0.9 and you apply a
brightness value of 1.2, then the brightened light will have a brightness of 1.08

which is slightly oversaturated.

Q3ViewerSetRemoveBackfaces

OSErr

Input:

I nfo:

Q3ViewerSetRemoveBackfaces(

TQ3ViewerObject theViewer,

TQ3Boolean remove)
theViewer aviewer object.
remove a boolean where kQ3True indicates to remove

backfaces, kQ3False indicates keep backfaces.

Calling this function will allow you to turn backface removal in the Viewer on
and off. By default, backfaces are shown in the Viewer. This may have
detrimental effects on the appearance and rendering speed of many kinds of

models, therefore, you may wish to turn backface removal on in your application.

‘[::;])

Q3ViewerGetRemoveBackfaces

OSErr Q3ViewerGetRemoveBackfaces(

TQ3ViewerObject theViewer,

TQ3Boolean *remove)
Input: theViewer aviewer object.
Output: remove apointer to aTQ3Boolean Will contain kQ3True if

backface removal is currently turned on.

Info: This function returns kQ3True if backface removal is currently activein the

viewer. Otherwise, it returns kQ3rFalse.

Q3ViewerSetPhongShading

OSErr Q3ViewerSetPhongShading(

TQ3ViewerObject theViewer,

TQ3Boolean phong)
Input: theViewer aviewer object.
phong aboolean where kQ3True tellsthe Viewer to use

phong shading, kQ3False tells the Viewer not to use

phong shading.

Info: This function alows you to set Phong or Lambert shading in the Viewer. Passing
INn kQ3True activates the Phong shader, or passing in kQ3False tells the Viewer to

use Lambert shading instead.

& ’

Q3ViewerGetPhongShading

OSErr Q3ViewerGetPhongShading(

TQ3ViewerObject theViewer,

TQ3Boolean *phong)
Input: theViewer aviewer object.
Output: phong apointer to a TQ3Boolean Which will contain

kQ3True if Phong shading is currently turned on.

Info: This function returns kQ3True if Phong shading is currently being used by the
Viewer to render scenes. Otherwise, avaue of kQ3rFalse indicates that the

Lambert shader is being used.

Phong shading is turned on by default in the Viewer, however, some models do
not ook very good with Phong’s specular highlight. The Lambert shader does

not render with a specular highlight and usually renders faster.

Q3ViewerSetWindowResizeCallback

OSErr Q3ViewerSetWindowResizeCallback (

TQ3ViewerObject theViewer,
TQ3ViewerWindowResizeCal lbackMethod cal lbackMethod,
const void *data)

|:i:;])

Input: theViewer aviewer object.

cal IbackMethod apointer to an application defined window resize
method.
data an optional pointer to any application specific data

which is passed to the callback function.

Output: TQ3Status kQ3Success if method was installed successfully.

Info: This function installs a callback method that gets invoked when the user clicks
and drags in the window’ s grow box. Use this function if your application needs
to resize the Viewer window differently than the default resizing functionality
provided by the Viewer when the kQ3ViewerDrawGrowBox flag is set. The
callback should handle al mouse tracking and resizing and invalidating of the

window. The Viewer will redraw itself after the callback finishes.

The optional data parameter is used if an application needs to reference other
information that can’'t be obtained from the Viewer object passed in the callback.

If no extra data needed this parameter can be set to NULL.

To disable and remove the window resize callback function from your Viewer

application, call QaviewersetwindowResizeCal Iback, With a value of NULL.

Q3ViewerSetPaneResizeNotifyCallback

OSErr Q3ViewerSetPaneResizeNotifyCallback (

TQ3ViewerObject theViewer,
TQ3ViewerPaneResizeNotifyCal IbackMethod cal lbackMethod,
const void *data)

@)

Input:

Output:

Info:

theViewer aviewer object.

cal lbackMethod apointer to an application defined method for
resizing the Viewer as a pane independently from it
enclosing window.

data an optional pointer to any application specific data
which is passed to the callback function.

TQ3Status kQ3success if method was installed successfully.

Calling this function installs a callback method that gets invoked when the user
clicks and dragsin the Viewer’ s pane grow box to resize the Viewer. Usethis
function if your application needs to resize the Viewer’ s pane dimensions

independently of the window.

This callback is only invoked when the kQ3viewerPaneGrowsox flag is set and
overrides the window resizing functionality of the kQ3viewerdbrawGrowBox flag.
After the user clicks in the pane grow box and the Viewer handles resizing the
callback function should then erase and update any affected areas of the window
and call Q3ViewerDraw to redraw the Viewer. Use the Q3ViewerGetBounds call

to find the Viewer’s new pane dimensions.
The optional data parameter is used if an application needs to reference other
information that can’t be obtained from the Viewer object passed in the callback.

If no extra data needed this parameter can be set to NULL.

To disable and remove the Viewer pane resize callback function in your Viewer

@ K

application, call QaviewersetWindowResizeCal Iback, With avalue of NULL.

Q3ViewerSetDrawingCallbackMethod

OSErr

Input:

Output:

I nfo:

Q3ViewerSetDrawingCal IbackMethod (

TQ3ViewerObject theViewer,
TQ3ViewerDrawingCal IbackMethod callbackMethod,
const void *data)
theViewer aviewer object.
cal IbackMethod a pointer to an application defined function.
data an optional pointer to any application specific data.
TQ3Status kQ3Success if method was installed successfully.

This function sets a callback method called after the Viewer finishes rendering the
model and drawing the control strip. The callback function is called when the
Viewer window is updated or when Q3viewerDraw IS called. The callback can so
other things like draw over the rendered model or perform some other post
operation. (ThisAPI isn't actually new for 1.6 but it is documented here for

comparison with the other new Viewer callback API’s.)

The optional data parameter isused if an application needs to reference other
information that can’t be obtained from the Viewer object passed in the callback.

If no extra data needed this parameter can be set to NULL.

To disable and remove the drawing callback function from your Viewer

application, call QaviewersetDrawingCal IbackMethod, With avalue of NULL.

‘[::;])

MISCELLANEA

INTERACTIVE RENDERER MODIFICATIONS

1 TriMesh culling isfaster. TriMeshes of any number of vertices will be cull-tested now.
Previoudly, only TriMeshes of 40 or more vertices were cull tested which resulted in

small models being transformed in a slower pipeline.
2. The Interactive Renderer’ s memory management has been optimized.

3. PowerMac’ s with the extended PowerPC floating point opcodes (the 603, 604, and G3

chips) now do some calculations faster. Vector Normalizations are significantly faster.

4. TriMesh transformation loops now specifically check for the Identity Matrix and if it
exists, then no unnecessary transformation are calculated. Instead, datais simply copied
from local space to world space. Therefore, it is more efficient to build your static
geometries in world-space than to build them in local-space and use a transform to move
them into world space. Building them in world-space allows QuickDraw 3D to avoid the

local to world transform.
5. Many general optimizations to the transformation, lighting, and clipping code.

6. Changed the NULL Illumination model to always include vertex colors for shading

@ ;

8.

triangles. It makes sense that the NULL shader would use vertex colors since it has no
way of calculating it’s own vertex color values. Textured models can now also have
vertex colors so you can essentially pre-light geometry for better performance. The
RAVE Software rasterizer has also been updated to be able to render these textured-

colored triangles.

Transparency now works correctly with the NULL shader using TriMeshes.

Model Display ——+——H

A single textured triangle with red, green, and blue diffuse colors
applied to the vertices.

Fixed a bug that prevented a change in the View’s Clear Method from working.

60

QUICKDRAW 3D MODIFICATIONS

1

Improved performance of Matrix Inversion code.
Improved performance of lots of low-level floating point math code.

Improved performance of most geometries. Conic decomposition isfaster. Mesh

decomposition is also faster.
Fixed Q31InteractiveRenderer_SetRAVETextureFilter SO it actually works now.

The default diffuse color isnow 1,1,1 instead of .5,.5,.5. Since 1.6 now blends diffuse
colors with textures when the NULL shader is used (see #6 above), this default color
needed to be changed to white instead of gray, otherwise textures would be 50% dimmed
when the NULL shader isused.. If you are not using the NULL shader in your app and
you want the default diffuse to be gray instead of white, then you can use the
Q3View_GetDefaul tAttributeGet and Q3view_GetDefaultAttributeSet callsto change the

default diffuse RGB values.
Performance for window point picking has been improved for all geometries, notably

trimesh, mesh, and trigrid. Initial test show improvements are 20-50%, 10-25% and 30-

85% respectively, depending on the triangle count.

@ i

62

