QuickDraw 3D RAVE 1.6

New Feature Specification

3/5/1999
WARNING: This document is not yet final.

QuickDraw 3D
Apple Computer
Stephen Luce (sluce@apple.com)

Robert Dierkes (dierkes.r@apple.com)
Brian Greenstone

RAVE 1.6

TABLE OF CONTENTS

INTRODUGCTION ...eeettteeiiiit ettt ettt e e s e e et e e e s 4 e E e ettt e a4 e e e e et e e e e e s s b e e et e e e e e s nn b e e e e e e e e e sanrrnneenenas 3
PAGE FLIPPING VS. BLITTING ...ttt ettt ettt e et e e e e e e e e e s s s e e e e e s 4
NEW OPTIONAL FEATURE BITS ..ottt ettt ettt e e e e e e e e s e s e e e e e e as 5
NEW GE ST ALT S ittt ettt e e skt e e e e e o e st e ettt e e e e R b e e et e e e e e san b e e e e e e e e e s e s b be e e e e e e e s nnnnneneeeeeas 7
NEW TAGS ...ttt e e e oottt e e s oo et e e e e e o e s R E e ettt e e e e e R R e e e et e e e e e s aE e e et e e e e e s e s nbe e et e e e e e nnnrrneeeee s 9
NEW PIXEL TYPES. ...ttt ettt ettt e e ettt e e e 4 e et e e e 4 e s bbb et e e e s e ssb b e e e e e e e e snnrnneeeeeenans 12
TEXTURE/BITMAP PRIORITY ..ttt s e s nne e nnneennneennnee s 15
MULTIPLE MONITORS, ONE RAVE ENGINE ..ottt 17
L PSP RPPPRTPI 19
SINGLE PASS TEXTURE COMPOSITINGcciitiiiiiiiiie it 24
TEXTURE MIPMAP SELECTION BIAS ...ttt ettt e e nnne e e s nennee e e 32
TEXTURE ANIMATION L..oiiiiiiiit ittt a e s e e r e e s s e e e e e e s naees 33
BITMAP ANIMATION. ...ttt e e r e e e s s e e e e e s s b e e e e e e e 36
OFFSCREEN DRAW CONTEXTS ...ttt e e e 37
TEXTURE / BITMAP DRAW CONTEXT ..oeiiiitiitieitiie ettt st e e nne e senee e e nnneeesnnnneeenans 39
MISC DRAW CONTEXT ADDITIONS ...ttt 42
ACCESS TO THE DRAWING BUFFER........coiiiiiiiiiiii et 47
CHANNEL & Z-BUFFER MASKSo 49
BUFFER CLEARINGttt e e ettt e e e s s e e e e e s e s raeeeee s 50
Z-SORTED GESTALT VALUESt e a e s e e 51
CHROMAKEY ..ttt et e e e s e et e e e e e s e E e e et e e e e s e b a et e e e e s s aasrnre e e e e e s sannreees 52
F Y e o N I PP PO PPTPURPPR 53
SCALED BITMAP DRAWING ...ttt ettt e e st e e e s s e s e e e e s e saernree s 54
NAME CHANGES ... e e e et e e e e e sttt e e s s e e e e e e e e s e nanreneeeee s 55

2

RAVE 1.6

INTRODUCTION

This document assumes familiarity with RAVE 1.5 (see the RAVE 1.5 ERS),
and the intended audience of this document includes RAVE engine
developers and RAVE application developers. Some sections may be more

relevant to one group or the other.

The feature list for RAVE 1.6 reflects the feedback from hardware
developers and software developers who write engines for RAVE and
program with RAVE. Note that all APl additions are 100% backwards
compatible and do not require current hardware engines to be revised to
be compatible with RAVE 1.6. All API's that require new engine support
have been made optional. You should note, however, that a few name
changes have taken place that will require source code changes unless the

C preprocessor macro RAVE_OBSOLETE is defined to be 1.

It is expected that most engines will be revised to support these new
features. However, care should be taken by application developers to
ensure backward compatibility with 1.5 engines that are currently
shipping with most 3D hardware. For each of the new features in RAVE
1.6, a gestalt option has been added so that you will be able to determine

if a RAVE engine supports any of the various 1.6 features.

IMPORTANT : Always test your code with the debug version of the RAVE
manager. This will help to quickly reveal performance issues and other

more serious problems.

RAVE 1.6

PAGE FLIPPING VS. BLITTING

This section is a clarification of an issue from RAVE 1.5 and is not RAVE
1.6 specific.

Most of the time RAVE engines copy (or blit) the back buffer to the screen
at the end of the rendering loop, however, this is not always the case. If a
RAVE engine supports full screen page flipping and a full screen draw
context is created page flipping may be enabled. This is an advantage
because page flipping is (usually) faster than blitting. Some RAVE engines
may have specialized hardware that allows them to do page flipping

within a window.

This is an important issue to consider because after a blit the back buffer
will have the same contents as the front buffer (screen). After a page flip
the back buffer has the contents of the previous frame. The application
should not make any assumptions about the contents of the back buffer at

the beginning of the rendering loop.

RAVE 1.6

NEW OPTIONAL FEATURE BITS

So many new features were added to RAVE 1.6 that we ran out of bits in
the kQAcestalt_OptionalFeatures enum list, therefore, a new Gestalt has been
created called kQaGestalt_optionalFeatures2. This gestalt is used exactly like
kQAGestalt_OptionalFeatures except that you must be careful to only ask for
options of the form “kQaoptional2_xxx”. If you pass one of the kQaoptional_xxx
flags instead of kQaoptional2_xxx, you will get a meaningless result from the

Gestalt.

The Optional2 values are described where needed in this document, but

the following list summarizes these new values:

enum {
kQAOptional2_None =0,
kQAOptional2_TextureDrawContexts = (1 << 1),
kQAOptional2_BitmapDrawContexts = (1 << 2),
kQAOptional2_Busy = (1 << 3),
kQAOptional2_SwapBuffers = (1 << 4),
kQAOptional2_Chromakey = (1 << 5),
kQAOptional2_NonRelocatable = (1 << 6),
kQAOptional2_NoCopy = << 7)),
kQAOptional2_PriorityBits = (1 << 8),
kQAOptional2_ FlipOrigin = (1 << 9),
kQAOptional2_ BitmapScale = (1 << 10),
kQAOptional2_ DrawContextScale = (1 << 11),
kQAOptional2_ DrawContextNonRelocatable = (1 << 12)

}:

Note that these are not the only new optional flags in RAVE 1.6. Before
we ran out of bits in the old kQAoptional_xxx list, we added several new
option bits into the old list. The new version of the kQAoptional_xxx list is as

follows, and the meanings of the new flags are described throughout this

RAVE 1.6

document:

enum {

kQAOptional_None
kQAOptional_DeepZ
kQAOptional_Texture
kQAOptional_TextureHQ
kQAOptional_TextureColor
kQAOptional_Blend
kQAOptional_BlendAlpha
kQAOptional_Antialias
kQAOptional_ZSorted
kQAOptional_PerspectiveZ
kQAOptional_OpenGL
kQAOptional_NoClear
kQAOptional _CSG
kQAOptional_BoundToDevice
kQAOptional_CL4
kQAOptional_CLS8
kQAOptional_BufferComposite
kQAOptional_NoDither
kQAOptional_FogAlpha
kQAOptional_FogDepth
kQAOptional_MultiTextures
kQAOptional_MipmapBias
kQAOptional_ChannelMask
kQAOptional_ZBufferMask
kQAOptional_AlphaTest
kQAOptional_AccessTexture
kQAOptional_AccessBitmap
kQAOptional_AccessDrawBuffer
kQAOptional_AccessZBuffer
kQAOptional_ClearDrawBuffer
kQAOptional_ClearzZBuffer
kQAOptional_OffscreenDrawContexts

RAVE 1.6

= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
= (]_
=@

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

0,
D,
2),
3,
4,
5),
6),
7,
8),
9,
10),
11),
12),
13),
14),
15),
16),
17),
18),
19),
20),
21),
22),
23),
24),
25),
26),
27),
28),
29),
30)

NEW GESTALTS

In addition to the new Optional Gestalt bits, some new Gestalts have also

been added. You saw above that the new Gestalt kQAGestalt OptionalFeatures?
was added to support the new Optional2 bits, but here is a listing of all of
the Gestalts in RAVE 1.6. The meanings of the new Gestalts are described

throughout this document.

enum TQAGestaltSelector {

kQAGestalt_OptionalFeatures =0,
kQAGestalt_FastFeatures =1,
kQAGestalt_VendorlID 2,
kQAGestalt_EnginelD 3,
kQAGestalt_Revision 4,
kQAGestalt_ASCIINameLength 5,
kQAGestalt_ASCI IName 6,
kQAGestalt_TextureMemory 7,
kQAGestalt_FastTextureMemory 8,
kQAGestalt_DrawContextPixelTypesAllowed 9,
kQAGestalt_DrawContextPixelTypesPreferred 10,
kQAGestalt_TexturePixelTypesAllowed = 11,
kQAGestalt_TexturePixelTypesPreferred =12,
kQAGestalt_BitmapPixelTypesAllowed = 13,
kQAGestalt_BitmapPixelTypesPreferred = 14,
kQAGestalt_OptionalFeatures?2 = 15,
kQAGestalt_MultiTextureMax = 16,
kQAGestalt_NumSelectors = 17,
kQAGestalt_EngineSpecific_Minimum = 1000

};

typedef enum TQAGestaltSelector TQAGestaltSelector;

Note that an Engine Specific Minimum Gestalt value has been added. This
Is so RAVE Engines can safely implement their own custom Gestalt values
for their own purposes in the same way that the Tags allow this for

custom Tag values.

RAVE 1.6

One other important thing to be aware of when using these Gestalts is that
not all RAVE engines may recognize all of these Gestalts. Engines which
have not been updated to RAVE 1.6 will obviously be unaware of the new
Gestalts which have been added. Your code should always check if
QAENgineGestalt returns kQANotSupported which indicates that the RAVE

engine has no idea what that Gestalt value is asking for.

RAVE 1.6

NEW TAGS

A whole bunch of new Tags have been added to RAVE 1.6 to support the
new features. The following lists all of the Tags that exist in RAVE 1.6 and
the new tags are described throughout this document. Those tags shown

in blue are new in 1.6.

Integer Tags

enum TQATaglnt

{

kQATag_ZFunction =0,

kQATag_Antialias = 8,

kQATag_Blend =9,

kQATag_PerspectiveZ = 10,
kQATag_TextureFilter = 11,
kQATag_TextureOp =12,
kQATag_CSGTag = 14,
kQATag_CSGEquation = 15,
kQATag_BufferComposite = 16,
kQATag_FogMode = 17,
kQATag_ChannelMask = 27,
kQATag_ZBufferMask = 28,
kQATag_ZSortedHint = 29,
kQATag_ChromakeyEnable = 30,
kQATag_AlphaTestFunc = 31,
kQATag_DontSwap = 32,
kQATag_MultiTextureEnable = 33,
kQATag_MultiTextureCurrent = 34,
kQATag_MultiTextureOp = 35,
kQATag_MultiTextureFilter = 36,
kQATag_MultiTextureWrapU = 37,
kQATag_MultiTextureWrapV = 38,
kQATag_MultiTextureMagFilter = 39,
kQATag_MultiTextureMinFilter = 40,
kQATag_BitmapFilter = 54,
kQATag_DrawContextFilter = 55,
kQATagGL_DrawBuffer = 100,
kQATagGL_TextureWrapU = 101,
kQATagGL_TextureWrapV = 102,
kQATagGL_TextureMagFilter = 103,
kQATagGL_TextureMinFilter = 104,
kQATagGL_ScissorxXMin = 105,

RAVE 1.6

kQATagGL_ScissorYMin = 106,

kQATagGL_ScissorXMax = 107,
kQATagGL_ScissorYMax = 108,
kQATagGL_BlendSrc = 109,
kQATagGL_BlendDst = 110,
kQATagGL_LinePattern = 111,
kQATagGL_AreaPattern0 = 117,
/* ...KQATagGL_AreaPatternl-30 */

kQATagGL_AreaPattern3l = 148,
kQATagGL_LinePatternFactor = 149,
kQATag_EngineSpecific_Minimum = 1000

}:
typedef enum TQATaglnt TQATaglnt;

Pointer Tags

enum TQATagPtr
{
kQATag_Texture = 13,
kQATag_MultiTexture = 26
}:
typedef enum TQATagPtr TQATagPtr;

Float Tags

enum TQATagFloat

{
kQATag_ColorBG_a =1
kQATag_ColorBG_r =2
kQATag_ColorBG_g =3
kQATag_ColorBG_b =4,
kQATag_Width =5
kQATag_ZMinOffset 6
kQATag_ZMinScale =7,

kQATag_FogColor_a = 18,

kQATag_FogColor_r = 19,
kQATag_FogColor_g = 20,
kQATag_FogColor_b =21,
kQATag_FogStart = 22,
kQATag_FogEnd = 23,
kQATag_FogDensity = 24,
kQATag_FogMaxDepth = 25,
kQATag_MipmapBias = 41,
kQATag_MultiTextureMipmapBias = 42,
kQATag_Chromakey_r = 43,
kQATag_Chromakey_g = 44,

RAVE 1.6

kQATag_Chromakey_b = 45,

kQATag_AlphaTestReT = 46,
kQATag_MultiTextureBorder_a = 47,
kQATag_MultiTextureBorder_r = 48,
kQATag_MultiTextureBorder_g = 49,
kQATag_MultiTextureBorder_b = 50,
kQATag_MultiTextureFactor = 51,
kQATag_BitmapScale_x = 52,
kQATag_BitmapScale_y = 53,
kQATagGL_DepthBG = 112,
kQATagGL_TextureBorder_a = 113,
kQATagGL_TextureBorder_r = 114,
kQATagGL_TextureBorder_g = 115,
kQATagGL_TextureBorder_b = 116

}:
typedef enum TQATagFloat TQATagFloat;

About “GL” Tags

In an earlier version of RAVE we added some Tags and called them
kQATagGL_xxx. You will note that in RAVE 1.6, new Tags like the ones for
Texture Compositing do not have “GL” in their tag name even though
their older counterparts still do. For example, the old texture Tag
kQATagGL_TextureBorder_a has a Multi-Texture equivalent called

kQATag_MultiTextureBorder a. Note that we took the GL out of the name.

It was determined that there were not only too many “GL” Tags, but most
of these GL Tags were not really OpenGL compliant or even close to their
OpenGL counterpart. Therefore, the decision was made to stop using the

kQAGLTag_xxx haming and to simply name all further Tags as kQATag_xxxx.

11

RAVE 1.6

NEW PIXEL TYPES

Several new pixel types have been added to RAVE in order to ease porting
of existing games to RAVE. In addition, some pixel types allow lighting

effects when used with texture compositing.

The Pixel Types

kQAPixel RGB8_332 8 bits/pixel, R=7:5, G=4:2, B=1:0
KQAPixel ARGB16_4444 16 bits/pixel, A=15:12, R=11:8, G=7:4, B=3:0
KQAPixel _ACL16_88 16 bits/pixel, A=15:8, CL=7:0, 8 bit alpha + 8 bit

color lookup
kQAPixel_18 8 bits/pixel, 1=7:0, intensity map (grayscale)
kQAPixel Al16_88 16 bits/pixel, A=15:8, I=7:0, intensity map
(grayscale)

kQAPixel_YUVS 16 bits/pixel, QD's kYUVSPixelFormat (4:2:2, YUYV
ordering, signed UV)

KQAPixel YUVU 16 bits/pixel, QD's kYUVUPixelFormat (4:2:2, YUYV
ordering, unsigned UV)

kQAPixel YVYU422 16 bits/pixel, QD's kYVYU422PixelFormat (4:2:2,
YVYU ordering, unsigned UV)

kQAPixel UYVY422 16 bits/pixel, QD's kUYVY422PixelFormat (4:2:2,

UYVY ordering, unsigned UV)

The term "YUV 4:2:2" is a term that is used by the video industry and
does not refer to a bit depth for a pixel format. This has the potential to

cause great confusion.

12

RAVE 1.6

New Gestalts

New gestalt selectors have been added to allow an application to know
what pixel types the RAVE engine supports. The value returned by these
gestalt selectors is a bit field where each bit corresponds to the respective
pixel type. For instance, if a RAVE engine only supported the pixel types
kQAPixel RGB16 and kQAPixel ArRcB16 then the value it would return would be (1L

<< kQAPixel RGB16) | (1L << kQAPixel ARGB16).

kQAGestalt_DrawContextPixelTypesAl lowed Calling QAEngineGestalt With this
selector will return all the draw context pixel

types that are supported by the RAVE engine.

kQAGestalt_DrawContextPixelTypesPrefered Calling QAEngineGestalt With this
selector will return all the draw context pixel
types that are preferred by the RAVE engine.
This list will not contain any pixel types that

cause a serious rendering slow down.

kQAGestalt_TexturePixelTypesAl lowed Calling QAEngineGestalt With this
selector will return all the texture pixel types

that are supported by the RAVE engine.

kQAGestalt_TexturePixelTypesPrefered Calling QAEngineGestalt with this
selector will return all the texture pixel types
that are preferred by the RAVE engine. This

list will not contain any pixel types that cause

RAVE 1.6

13

a serious rendering slow down or any pixel
types that are internally expanded by the
RAVE engine (using more memory) or any
pixel types that must be truncated by the

RAVE engine (causing a loss of quality).

kQAGestalt_BitmapPixelTypesAl lowed Calling QAEngineGestalt with this
selector will return all the bitmap pixel types

that are supported by the RAVE engine.

kQAGestalt_BitmapPixelTypesPrefered Calling QAEngineGestalt With this
selector will return all the bitmap pixel types
that are preferred by the RAVE engine. This
list will not contain any pixel types that cause
a serious rendering slow down or any pixel
types that are internally expanded by the
RAVE engine (using more memaory) or any
pixel types that must be truncated by the

RAVE engine (causing a loss of quality).

If QaTextureNew Or QABitmapNew are called with a pixel type that is unsupported

by the RAVE engine the error kQanotsupported Will be returned.

14

RAVE 1.6

TEXTURE/BITMAP PRIORITY

The flags value passed to QATextureNew OF QABitmapNew NOW uses the upper 4
bits as a 4-bit value signifying texture priority. Setting this priority value
helps hardware drivers determine where to upload textures when AGP is
present on the user’s computer. AGP memory is a section of your regular
system RAM that the 3D-accelerator card can access much more quickly
than going through the PCI bus. This allows 3D accelerators cards to

essentially have more VRAM than is present on the card itself.

Since AGP RAM is not as fast as true VRAM (but much faster than non-AGP
system RAM), it is still preferable to have textures resident on the card’s
own VRAM. However, when true VRAM runs low, it may be necessary for
the driver to load some textures into AGP RAM. By prioritizing your
textures, you can help the driver determine which textures should go into
VRAM and which into AGP RAM. Textures which are used often should be
given high priority so that they will attempt to be loaded into VRAM, and
textures which are not used often should be given lower priorities so that

they will be the first to get moved to AGP RAM if VRAM runs low.

There is a macro in the rave.h header file to assist you in easily setting the

priority bits with the flags parameter:

flags |= QACalculatePriorityBits (priority);

You use this macro in the following way:

RAVE 1.6

15

unsigned long flags = kQATexture_Mipmap; // Initialize Tflags

flags |= QACalculatePriorityBits (4); // Set medium-high priority
QATextureNew(myEngine, flags, pixelType, image, &raveTexture);

or like this:

unsigned long flags = kQATexture_NoCompression; // Initialize flags
// Set high priority
QATextureNew(myEngine,
flags | QACalculatePriorityBits (8), pixelType, image, &raveTexture);

The valid range for the priority values is O to 15. O is top priority (or

“ranking”) and 15 is the lowest priority.

Note that since O is top priority, it is not actually necessary to set the
priority value since the default will always be “top priority” of O as long

as all 4 bits of the flags field are O.

RAVE 1.6

16

MULTIPLE MONITORS, ONE RAVE ENGINE

This section pertains to RAVE engine developers only. In RAVE prior to
version 1.6 there had been a problem when a user had a machine with
two or more monitors using the same 3D hardware on each monitor. In
this case there was just one RAVE engine and multiple 3D accelerators.
This caused a problem when, for instance, a RAVE application called
QaTextureNew. The RAVE engine did not know which 3D accelerator to create
the texture on. This problem also applied to bitmaps, color tables, and

gestalt calls.

The solution to this problem is for the RAVE engine to register with the
RAVE manager once for each accelerator. Two new RAVE manager

functions have been added for this purpose:

TQAError QARegisterEngineWithRefCon(TQAEngineGetMethod engineGetMethod,
long refCon);

long QAGetCurrentEngineRefCon(void)

During your library initialization routine if you detect more than one
accelerator card on the system call QARregisterenginewithRefcon once for each
accelerator. Pass a different refcon value for each accelerator. This will
create one RAVE engine (TQAeEngine) for each accelerator. When any of your
engine methods are called you may determine which accelerator the call

Is intended for by calling QAGetCurrentEngineRefCon.

17

RAVE 1.6

Note: QARegisterEngine(engineGetMethod) is equivalent to
QARegisterEngineWithRefCon(engineGetMethod, 0).

RAVE 1.6

18

FOG

Fog is used in many 3D applications as a cool visual effect and as a
method for hiding the ugly clipping that occurs at the far edge of the
rendered scene. It can be used to simulate not only fog but also darkness

or other environments such as underwater.

Using fog is very easy to do, but a few things to keep in mind are:

- Fog in RAVE is controlled via state variables.

- Fog is applied after any texture lookup, after alpha test, and

before alpha blend.

- Fog is applied using the following equation:

output color = input color * fog value + fog color * (1.0 - fog value)

A fog value of 1.0 indicates no fog. A fog value of O indicates full fog.

The fog value is calculated differently depending upon the fog mode.

There are five modes for fog at this time.

none: fog value = 1

alpha: fog value = vertex alpha

linear: fog value = (fog end - depth) / (fog end - fog start)

exponential: fog value = exp(-fog density * depth)

exponential squared: fog value = exp(-fog density * depth * fog density *
depth)

19

RAVE 1.6

Please note that in these equations depth is defined as 1.0 7 inww.

After the fog value is computed it is then clamped to the range 0.0 to 1.0

inclusive.

Fog State Variables & Flags

These are the new fog state variables.

kQATag_FogMode (int) One of kQAFogMode_xxxx
kQATag_FogColor_a (f1oat) Fog color alpha
kQATag_FogColor_r (f1oat) Fog color red

kQATag_FogColor_g (f1oat) Fog color green

kQATag_FogColor_b (f1oat) Fog color blue

kQATag_FogStart (f1oat) Fog start *

kQATag_FogEnd (f1oat) Fog end *

kQATag_FogDensity (f1oat) Fog density

kQATag_FogMaxDepth (float) Maximum value for 1.0 / invW

These are the values for the state variable kQATag_FogMode.

kQAFogMode_None
kQAFogMode_Alpha
kQAFogMode_Linear
kQAFogMode_Exponential

kQAFogMode_ExponentialSquared

no fog

fog value is alpha

fog = (end - z) / (end - start)
fog = exp(-density * z)

A W N +» O

RAVE 1.6

fog = exp(-density * z * density * z)

20

* Fog start and fog end are only used with fog mode linear. Fog density is

only used for fog mode exponential and exponential squared.

The reason for the state variable kQATag_FogMaxDepth is that some 3D
hardware cards use an internal fog table. Without knowing the range of
depth values to expect, it would be hard to know how to build the fog
table. For instance, QuickDraw 3D scales depth values to the range 0.0 to
1.0 before sending them to RAVE. This behavior is not required. Some
RAVE applications use depth values scaled to their world space, i.e. the
range 0.0 to yon (the far clipping plane). The yon value can be any
positive number. Therefore the kQATag_FogMaxDepth vValue is purely
informational. It is provided to the RAVE engine to aid in the creation of

an internal fog table.
Here are the engine gestalt values for fog.

kQAOptional_FogAlpha This bit is set if the engine supports fog mode alpha.

kQAOptional FogDepth This bit is set if the engine supports fog mode

linear, exponential and exponential squared.

KQAFast_FogAlpha This bit is set if the engine accelerates fog

mode alpha.

kQAFast_FogDepth This bit is set if the engine accelerates fog
mode linear, exponential and exponential

squared.

21

RAVE 1.6

Special Considerations

When the fog mode is set to kQAaFogMode_Alpha the alpha values of the vertices
are used for fog and thus are not used for alpha. To be more specific,
when using kQAFogMode_Alpha, alpha blending based upon vertex alpha is
disabled. Alpha blending based upon texture alpha is not disabled by

using kQAFogMode_Alpha.

When the fog mode is not set to kQAFogMode_Alpha the alpha values of the
vertices are not used for fog and thus are used for alpha. To be more
specific, when using any of the depth based fog modes, alpha blending

based upon vertex alpha is enabled as it normally would be.

If you wish to use fog and alpha blending you cannot use kQAFogMode_Alpha.

Fog Example

The following function shows how to set linear yellow fog that starts
halfway to the yon plane and achieves full density at the yon plane. It
assumes that w ranges from 0.0 to 1.0.

R S R S e FAEAAXAAAXAAAAAXAAAAAAAAAAAdhAXxhAdi
/ SETRAVE FOG /

void SetMyFog(TQADrawContext *drawContext)

{
QASetInt(drawContext, kQATag_FogMode, kQAFogMode_Linear);

QASetFloat(drawContext, kQATag_FogColor_r, 1.0);

QASetFloat(drawContext, kQATag_FogColor_g, 1.0);
QASetFloat(drawContext, kQATag_FogColor_b, 0);

RAVE 1.6

22

QASetFloat(drawContext,
QASetFloat(drawContext,
QASetFloat(drawContext,

QASetFloat(drawContext,

kQATag_FogStart, .5);
kQATag_FogEnd, 1.0);
kQATag_FogMaxDepth, 1.0);

kQATag_FogDensity, 1.0);

RAVE 1.6

23

SINGLE PASS TEXTURE COMPOSITING

Single pass texture compositing allows two or more different textures to
be applied to the same object. Texture compositing can be used to blend
a regular texture mapped object with an environment map, reflection
map, projected map, or detail maps. Additionally it can be used to
achieve very flexible lighting effects. New texture map formats, including

kQAPixel_18 have been added for use as an intensity map.
For the purpose of clarity, a few terms need to be defined:

Multi-Texturing : In RAVE and OpenGL, texture compositing is

generally referred to as Multi-Texturing.

Base Texture: This is the texture, which is applied to an object in
the usual way. This is the single texture that has

always existed in RAVE.

Multi-Texture : A multi-texture refers to one of the additional
composited textures you wish to apply to an object.
When you apply one multi-texture to an object,
this means that you are applying the Base Texture

plus one additional multi-texture.

Layer: Since you can have multiple multi-textures applied
to an object, the layer simply refers to a particular

multi-texture.

RAVE 1.6

24

A

Multi-Texture #1
Multi-Texture #0

A

/ Base Texture

Diagram showing 3 composited textures: 1 base and 2 multi-textures

RAVE allows an unlimited number of multi-textures to be assigned to an
object. The maximum number of textures that can be applied to an object
Is limited only by the technical restraints of the hardware being used. For
example, the ATI Rage Il cards do not support single pass texture
compositing at all, therefore, no multi-textures can be used. The ATI Rage
Pro and Rage 128 cards, however, support one multi-texture. Future
hardware may support more multi-texture layers, therefore, RAVE 1.6 has

been designed to account for this possibility.

Determining The Engine Capabilities

The first thing you will want to do before using multi-textures is to
determine how many multi-textures your drawing engine supports. This

information is acquired with a new gestalt:

kQAGestalt_MultiTextureMax

This gestalt will return the number of multi-textures that the current

engine supports. A value of O indicates that this engine cannot do multi-

RAVE 1.6

25

texturing (the Rage Il will return this), thus, at best only a single base
texture can be applied to an object. A value of 1 indicates that one multi-
texture is supported, so that you can blend the main texture with one
multi-texture. A value of 5 would indicate that you could combine your

main texture with 5 additional multi-texture layers.

Working With Multi-Texture Layers

SETTING THE NUMBER OF LAYERS TO USE

Since RAVE supports an unlimited number of texture layers, you need to
tell the drawing engine how many layers you are currently using for the
current object. A new Tag has been added so that you can tell the

drawing engine how many texture layers to apply to this object:

kQATag_MultiTextureEnable

If you set this value to O, then this effectively disables texture compositing
and only the base texture will be used when rendering the object. A value
of 1 or more indicates how many multi-texture layers to composite with
the base texture. So, if you want to composite a total of 3 textures, you

would do:

QASetiInt(context, kQATag_MultiTextureEnable, 2);

This tells the RAVE drawing engine to use the base texture plus 2 multi-

RAVE 1.6

textures.

26

THE CURRENT LAYER

Each multi-texture layer needs its own texture pointer, u/v’s, blending
mode, etc. There are new Tags and functions in RAVE 1.6 for working
with multi-texture layers, and the most important new Tag is the one

which lets you specify which layer you are currently working with:

kQATag_MultiTextureCurrent

If your drawing engine only supports one multi-texture layer, then you

should set this value to O since you will always be working with layer #0.

If, however, your engine supports more than one layer, you will have to
change this value from 0...(n-1) to set which layer you are currently

working with.

Remember that to work with the Base texture, you use the old functions
and Tags as has always been done with RAVE. These new functions and

Tags are only for working with the additional multi-texture layers.

TEXTURE LAYER PARAMETERS

Once you have set the current texture layer with kQATag_MultiTextureCurrent,
you need to set the texture’s parameters. Several new Tags exist which

parallel Tags for the base texture that has always existed in RAVE:

kQATag_MultiTextureOp

RAVE 1.6

27

kQATag_MultiTextureFilter
kQATag_MultiTextureWrapU
kQATag_MultiTextureWrapV
kQATag_MultiTextureMagFilter
kQATag_MultiTextureMinFilter

There is also a new kind of TQaTagPtr for multi-textures which is used to set

the pointer to the current texture to use for the current texture layer:

kQATag_MultiTexture

Use this Tag Pointer the same way as you used kQATag_Texture except that

this applies to the current multi-texture layer instead of the base texture.

When using texture compositing, additional parameters must be supplied
to the RAVE engine for each of the textures. These include uoverw, voverw,

and invw parameters:

typedef struct TQAVMultiTexture
{

float iInvW;

float uOverW;

float vOverW;
} TQAVMultiTexture;

This information is passed to RAVE by calling a new function:

void QASubmitMultiTextureParams (

const TQADrawContext *drawContext, /* Draw context */
unsigned long nParams, /* Number of params */
const TQAVMultiTexture *params) ; /* params */

You call gasubmitmultiTextureParams before calling QabrawTriTexture,

QADrawTriMeshTexture, OF QADrawVTexture. The params array is an array of

RAVE 1.6

28

TQAVMultiTexture, One element for each vertex you are about to Draw. If you

are passing a triangle to RAVE via QAbrawTriTexture, then nparams will always

be 3. If, however, you are passing a TriMesh or other array of vertices to

RAVE, then the number of parameters will depend on the quantity of

vertices being passed to RAVE for drawing.

If you are applying more than one multi-texture layer to your object, then

you will have to call QasubmitMultiTextureParams multiple times, once for each

texture layer. For example, to draw a triangle with a total of 3 textures

(one base, and 2 multi-textures), you would do something like this:

QASetInt(context,

QASetInt(context,
QASetPtr(context,
QASetInt(context,

kQATag_MultiTextureEnable, 2);

kQATag_MultiTextureCurrent, 0);
kQATag_MultiTexture, texture0);
kQATag_MultiTextureOp,

kQAMul tiTexture_Add);

QASubmitMultiTextureParams(context, 3, ¶ms);

QASetInt(context,
QASetPtr(context,
QASetInt(context,

kQATag_MultiTextureCurrent, 1);
kQATag_MultiTexture, texturel);
kQATag_MultiTextureOp,

kQAMul tiTexture_Modulate);

QASubmitMultiTextureParams(context, 3, ¶ms);

QADrawTriTexture(context, vl1, v2, v3, flags);

RAVE 1.6

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

use 2 extra layers */

edit layer 0 */

point to texture 0 */
blend mode */

submit uv’s for layer 0 */
edit layer 1 */

point to texture 1 */
blend mode */

submit uv’s for layer 1 */

draw the triangle */

29

New State Variables & Flags

The method in which the multiple textures are combined to compute the

final pixel color is defined by:

kQATag_MultiTextureOp

This state variable may take on the following values:

kQAMultiTexture_Add

kQAMultiTexture_Modulate

kQAMul tiTexture_BlendAlpha

kQAMul tiTexture_Fixed

This specifies that the 2 texels are added
to form the final pixel color. This can be

used to simulate effects such as spotlights.

This specifies that the 2 texels are
multiplied to form the final pixel color.
This can be used to simulate effects such

as shadows and bumpmaps.

This specifies that the 2 texels are blended
according to the second texels alpha. This
can be used to simulate effects such as

decals.

This specifies that the 2 texels are blended
by a fixed factor. The floating point state
variable kQATag_MultiTextureFactor iS used to

determine the blending factor.

RAVE 1.6

30

kQATag_MultiTextureFilter
kQATag_MultiTextureOp
kQATag_MultiTextureWrapU
kQATag_MultiTextureWrapV

New Tags

kQATag_MultiTextureMagFilter
kQATag_MultiTextureMinFilter

kQATag_MultiTextureBorder_a
kQATag_MultiTextureBorder_r
kQATag_MultiTextureBorder_g
kQATag_MultiTextureBorder_b
kQATag_SecondaryMipmapBias
kQATag_MultiTextureFactor

New Gestalts

kQAOptional_CompositeTextures This bit is set if the engine supports texture

compositing.

kQAFast_MultiTextures

compositing.

RAVE 1.6

This bit is set if the engine accelerates texture

31

TEXTURE MIPMAP SELECTION BIAS

An application may wish to effect when a transition to a new mipmap
page occurs. This can allow certain textures to look crisper at the cost of
aliasing. For example, textures that contain text need to be crisp so that
the text can be easily read. The state variable kQaTag_MipmapBias IS a hint to
the engine as to when a transition should occur. The range is from 0.0 to
1.0. The greater the bias the more the transition from a larger map to a
smaller map is delayed. This in effect means that values closer to 1 are
crisper and values closer to O have less aliasing. The default value should

be 0.5.

New Tags
kQATag_MipmapBias The mipmap page bias factor.
kQATag_MultiTextureMipmapBias Same, but for multi-texture layer.

New Gestalts

kQAOptional_MipmapBias This bit is set if the engine supports mipmap

selection bias.

32

RAVE 1.6

TEXTURE ANIMATION

Some RAVE applications may wish to animate textures. To be more
specific, they need to change the contents of a texture frequently. Prior
to RAVE 1.6 the only way to do this was to call QaTexturebelete and
QATextureNew. Due to the overhead of these calls this is not the most
efficient way to perform texture animation, therefore, two new functions

have been added to provide for texture animation in a more efficient

manner:

TQAError QAAccessTexture(const TQAENngine *engine,
TQATexture *texture,
long mipmapLevel,
long flags,
TQAPixelBuffer *buffer);

The application calls this function when it wishes to have access to the
texture's buffer. If possible the RAVE engine should return (in buffer) the

location and format of the texture in texture memory.

Depending on the hardware, this may not always be possible. The texture
may be stored in a proprietary format. The texture may be in a memory
area that is not addressable by the application (perhaps some sort of
texture cache). If this is the case, the RAVE engine should create a buffer

in main memory, copy the texture into it, and return this location.

33

RAVE 1.6

ITf the flag kQANocopyNeeded IS specified this indicates that the application
plans to update the entire texture (or a rectangular portion of it) and a

copy of the original texture is not needed.

TQAError QAAccessTextureEnd(const TQAEngine *engine
TQATexture *texture,
const TQARect *dirtyRect);

After the application has finished accessing the texture is must call
QAAccessTextureEnd. It should pass in dirtyrect the area of the texture that it
has modified. Passing nuLL indicates that the whole texture has been

modified.

WARNING: No attempt should be made to access the buffer after
QAAccessTextureend IS called. The buffer may not be in the same location or
may no longer be valid. If further access to the buffer is needed

QAAccessTexture must be called again.

Special Considerations

If the texture was created with the flag kQATexture_NoCompression the buffer
returned by qaaccessTexture should have the same pixel type as the original

texture.

If the texture was created without the flag kQATexture_NoCompression Oor with
the flag kQATexture_HighCompression then buffer returned by QaAccessTexture may

have a different pixel type than the original texture.

RAVE 1.6

34

In most cases if the application wishes to use this feature it should create

the texture with the kQATexture_NoCompression flag.

The duration between QAAccessTexture and QAAccessTextureEnd should be kept as
short as possible. This is due to the possibility that some other process
(such as rendering or memory compaction) may be blocked while waiting

for the buffer access to finish.

Due to the possibility that the RAVE engine may have to allocate a
working buffer to provide texture access, only one texture should be

accessed at a time.

35

RAVE 1.6

BITMAP ANIMATION

Bitmap updating is accomplished in the same fashion as texture
animation. All of the same warnings and considerations apply.

The functions used to access bitmap buffers are QaAccessBitmap and
QAAccessBitmapEnd.

TQAError QAAccessBitmap(const TQAEngine *engine
TQABitmap *bitmap,
long flags,
TQAPixelBuffer *buffer);

TQAError QAAccessBitmapEnd(const TQAEngine *engine
TQABitmap *bitmap,
const TQARect *dirtyRect);

36

RAVE 1.6

OFFSCREEN DRAW CONTEXTS

In order to create an offscreen draw context, a new device type has been

added:

typedef struct TQADeviceOffscreen

{
TQAImagePixelType pixelType;
} TQADeviceOffscreen;

This is intended to be used as an offscreen drawing context. The RAVE

engine will allocate the buffer for this draw context.
Creating An Offscreen Draw Context

To create an offscreen draw context the application creates a TQADevice with
a device type of kapevice_Offscreen. The application specifies the desired
pixel type in the TQADeviceoffscreen structure. The application then calls
QADrawContextNew IN the normal fashion. Application access to this buffer is

provided by qaaccessbrawBuffer or through the use of notice methods.

A cache draw context is intended to be used to initialize a draw context.
When a cache draw context is created it has the same pixel type as the

screen that it is associated with.

When an offscreen draw context is created the pixel type is specified by

the application.

37

RAVE 1.6

New Gestalt Value

kQAOptional_OffscreenDrawContexts

An offscreen draw context is similar to
a cache draw context. There are some

iImportant differences.

38

RAVE 1.6

TEXTURE / BITMAP DRAW CONTEXT

There are times when an application may wish to render into a texture or
a bitmap. This technique may be used to simulate a video screen, a rear

view mirror, dynamic 3D sprites or other effects.

Creating A Texture Draw Context

To create a texture draw context, first create an offscreen draw context
then create a texture using QATextureNewFromDrawContext. This will create a
texture that shares its pixel buffer with the offscreen draw context. Under
circumstances where the actual pixel buffer cannot be shared, the
contents will be copied between buffers whenever changes are made to

achieve the same net effect.

If supported by the RAVE engine, an offscreen draw context may be used

as a texture.

TQAError QATextureNewFromDrawContext(const TQADrawContext *drawContext,
unsigned long flags,
TQATexture **newTexture);

The offscreen draw context must have a valid height, width and pixel type

to be used as a texture.

If supported by the RAVE engine, an offscreen draw context may be used

RAVE 1.6

as a bitmap:

39

TQAError QABitmapNewFromDrawContext(TQADrawContext *drawContext,
unsigned long flags,
TQABitmap **newBitmap) ;

The offscreen draw context must have a pixel type to be used as a bitmap.
Note To Rave Engine Developers

Note to RAVE engine developers: Whenever possible the texture and
the offscreen draw context should share the same buffer. If this is not
possible (due to hardware restrictions) any changes made to one buffer
should be copied to the other buffer. At this time there is no direct way

to create a mipmapped texture from an offscreen draw context.

Note to RAVE engine developers: Whenever possible the bitmap and
the offscreen draw context should share the same buffer. If this is not
possible (due to hardware restrictions) any changes made to one buffer

should be copied to the other buffer.

Special Considerations

After the texture has been rendered, the draw context may be deleted
with QabrawcContextbDelete. The texture and its contents will remain. Also, if
the texture is no longer needed but the draw context is still needed, then

the texture may be deleted with QATextureDelete. TO be more specific, the

RAVE 1.6

40

texture and the draw context may be deleted in either order. Deleting

one will leave the other intact. The behavior with bitmaps is the same.

Only one texture or bitmap may be attached to any one draw context in

this fashion.

New Gestalt Values

KQAOptional2_TextureDrawContexts
KQAOptional2_BitmapDrawContexts

RAVE 1.6

41

MISC DRAW CONTEXT ADDITIONS

New Functions

TQABoolean QABusy(const TQADrawContext *drawContext);

This function returns kQATrue If the draw context is busy, kQAralse if the

draw context is idle. This function does not wait for drawing to finish.

TQAError QASwapBuffers(const TQADrawContext *drawContext,

const TQARect *dirtyRect);
This causes the front buffer to be updated. The dirtyrect parameter
indicates how much of the draw context needs to be copied to the front
buffer. If page flipping is enabled this function causes the front buffer

and the back buffer to be flipped.

New State Variable Tag
kQATag_DontSwap
Setting this variable to true indicates to the RAVE engine that is should

NOT swap buffers automatically during (or after) QArRenderend() unless

specifically instructed to do so by QAswapBuffers().

New Gestalt Values

kQAOptional2_Busy
kQAOptional2_SwapBuffers
kQAOptional2_DrawContextScale
kQAOptional2_DrawContextNonRelocatable

42

RAVE 1.6

New Flags For Context Creation

Two new flags have been added for the creation of draw contexts.
kQAContext_Scale

This flag is used to create a scaled draw context. It is described below.
kQAContext_NonRelocatable

This flag is used to create a draw context with non-movable buffers. That
Is to say that the back buffer and the z-buffer will not move in memory
while the draw context is in existence. Be sure to check for the optional2
gestalt bit kQaoptional2_DrawContextNonRelocatable before attempting to use this

feature.

Scaled Draw Contexts

It is now possible for a RAVE engine to support scaled draw contexts. A
scaled draw context may be used for full scene anti-aliasing or for pixel-
doubling or other related effects. Put simply, a scaled draw context is a
draw context in which the front buffer is a different size than the back
buffer. At the end of a rendering loop when the back buffer is copied to
the front buffer scaling is applied to resize the image to fit the front
buffer.

If the front buffer is smaller than the back buffer then the image is scaled
down. Full scene anti-aliasing can be performed in this way. This can
iImprove the quality of the scene. The drawbacks are that the back buffer
and z-buffer are larger, thus taking more memory from the accelerator

and possibly requiring more time to render the scene.

43

RAVE 1.6

If the front buffer is larger than the back buffer then the image is scaled
up. Pixel-doubling can be performed in this way. This can reduce the
amount of memory used by the back buffer and the z-buffer. This can
also improve render times. A drawback is that the quality of the scene is

reduced.

A common drawback of either method is that the scaled blit (or copy) to
the front buffer may be slower than the standard non-scaled blit on some

accelerators. Although, this is not always the case.

For obvious reasons scaled draw contexts must also be double buffered.
Creating A Scaled Draw Context

Before you attempt to create a scaled draw context, first determine that
the drawing engine can support this feature. This can be done by

checking the engine’s “optional2” gestalt value for

kQAOptional2_DrawContextScale.

To create a scaled draw context you call QabrawContextNew With the
kQAContext_Scale flag. You must also pass a pointer to an array of two
TQARects IN the second parameter. The first element of this array contains
the size of the back buffer. The second element of this array contains the

size and location of the front buffer.

The following code snippet shows an example of creating a scaled draw

context.

44

RAVE 1.6

TQAError error;
TQARect drawContextRects[2];

unsigned long optionalFeatures?2;

error = QAEngineGestalt(
theEngine,
kQAGestalt_OptionalFeatures2,

&optionalFeatures?);

if(error !'= KQANOErr) {
// this engine does not support kQAGestalt OptionalFeatures2
// handle the error
// be aware that kQAGestalt_OptionalFeatures2 is a new gestalt selector

// it is likely to return an error code of kQANotSupported

if(1(optionalFeatures2 & kQAOptional2_DrawContextScale)){
// this engine does not support scaled draw contexts

// handle the error

// the size of the back buffer is in element 0 of the array
drawContextRects [0] = backBufferRect;
// the size and location of the front buffer is in element 1 of the array

drawContextRects [1] = frontBufferRect;

// create the draw context with the kQAContext_Scale flag
error = QADrawContextNew(
&theDevice,
&drawContextRects, // pass the address of the array of two TQARects
&theClip,
&theEngine,
kQAContext_DoubleBuffer | kQAContext_Scale,
&theDrawContext) ;

RAVE 1.6

45

Be aware that all drawing to the scaled draw context is done using the size
of the back buffer, not the size of the front buffer. For example, if the
front buffer is 640 pixels wide and the back buffer is 320 pixels wide,
then an object drawn at column 305 would appear at column 610 of the

front buffer.

The filtering of this scaled blit can be controlled by the new integer state
variable kQATag DrawcontextFilter. Valid values for this variable are

kQAFi Iter_Fast, kQAFilter_Mid and kQAFilter_Best.

46

RAVE 1.6

ACCESS TO THE DRAWING BUFFER

Some applications may wish to have direct access to the draw buffer of a

draw context. This can be used for (but is not limited to) the following

reasons:

- Clearing the draw context to a specific image at the beginning of the

rendering loop.

- Performing antialiasing, motion blur, depth of focus or other special
effects.
- Copying the rendered image.

New Functions

TQAError QAAccessDrawBuffer(const TQADrawContext *drawContext,
TQAPixelBuffer *buffer);
The application calls this function when it wishes to have access to the

draw context's pixels. Upon return buffer will contain a description of the

drawing buffer.

TQAError QAAccessDrawBufferEnd(const TQADrawContext *drawContext,
const TQARect *dirtyRect);

The application calls this function when it is finished accessing the pixels
of the draw context. The application should set dirtyrect to indicate how
much of the draw context it has changed. Passing nuLL indicates the entire

draw context may have changed.

RAVE 1.6

47

The duration between QAAccessDrawBuffer and QAAccessDrawBufferend should be
kept as short as possible. This is due to the possibility that some other
process (such as rendering or memory compaction) may be blocked while

waiting for the buffer access to finish.

Cautions

To insure that all drawing has finished the application should call gasync

before accessing the draw buffer.

No attempt should be made to access the buffer after QaAccessDrawBufferEnd IS
called. The buffer may not be in the same location. If further access to

the buffer is needed qaAccessbrawBuffer must be called again.

48

RAVE 1.6

CHANNEL & Z-BUFFER MASKS

Channel masks and the z buffer mask control the writing of data to the
draw buffer channels and the z-buffer. Possible uses include anaglyph

(red/blue glasses) 3D rendering. These masks control both drawing and

clearing.
New Tags & Gestalts
kQATag_ChanneIMask Valid values are any combination of the following:
kQAChanne IMask_r 1<<0
kQAChannelMask_g 1<<1
kQAChanne IMask_b 1<<2
kQAChannelMask_a 1<<3

A value of 1 in any bit position indicates that writing is enabled for that

channel.

kQATag_ZzBufferMask
kQAZBufferMask Disable 0
kQAZBufferMask_Enable 1

kQAOptional_ChannelMask
kQAOptional_ZBufferMask

49

RAVE 1.6

BUFFER CLEARING

There are times when you may wish to have the draw buffer and/or z-

buffer of your Draw Context cleared.

TQAError QAClearDrawBuffer(drawContext, rect, initialContext);

Clears the specified area of the draw buffer of the specified draw context
to the value contained in the state variables kQATag _ColorBG_a,
kQATag_ColorBG_r, kQATag_ColorBG_g, kQATag ColorBG_b UNIess initialContext iS NOt
NULL. If initialcontext IS a valid Draw Context, then the drawcontext is cleared
to initialContext. This works the same as QArenderstart(). When

initialContext is nuLL, the clear color can be masked using kQATag_ChannelMask.

TQAError QAClearZBuffer(drawContext, rect, initialContext);

Clears the specified area of the z buffer of the specified draw context to
the value contained in the state variable kQATagGL_depthBG when initialContext

is nuLL. Can be masked using kQATag_zBufferMask.

New Gestalt Values

kQAOptional_ClearDrawBuffer
kQAOptional_ClearzBuffer

50

RAVE 1.6

Z-SORTED GESTALT VALUES

Since some RAVE engines can sort the triangles submitted to RAVE and
some cannot, an optional flag was added, kQAoptional_zSorted, that indicates
whether the engine can depth sort triangles or not. An additional flag,
kQAFast_zSorted indicates that z-sorting is specifically accelerated. If this flag
IS not set then it may be faster for the application to sort the triangles

itself.

For engines that can depth sort triangles the application may set a hint
indicating whether or not triangles are being submitted in a depth sorted

order. This is done via the state variable, kQATag_zSortedHint.

For compatibility with QuickDraw 3D application which use semi-
transparent materials, all RAVE engines should support z-sorting since
QuickDraw 3D applications have no way of sorting the triangles

themselves and QuickDraw 3D itself has no mechanism for this either.

To clarify, a RAVE engine should return true for the kQaoptional_zSorted
gestalt if and only if the RAVE engine has the ability to cache and sort
transparent triangles such that transparency will appear correct no
matter what order the transparent triangles are submitted in. The user

can disable or enable this sorting ability with the kQATag_zSortedHint tag.

51

RAVE 1.6

CHROMAKEY

Chromakey is used to apply transparency to a shape based upon a

reference color instead of (or in conjunction with) an alpha channel.

kQATag_Chromakey_r
kQATag_Chromakey g
kQATag_Chromakey b
kQATag_ChromakeyEnable

New Gestalt Values

KQAOptional2_Chromakey This bit is set if the engine supports Chroma key.

52

RAVE 1.6

ALPHA TEST

Allows you to set up an alpha compare function (e.g. never, always, equal,
greater than, etc.) and reference value to test incoming alpha values. If
the test fails, the value is rejected, otherwise, it is accepted. Can be used

to create see-through decal transparency effects, among other things.

kQATag_AlphaTestFunc One of the following values:

kQAAlphaTest_None
kQAAlphaTest_LT
kQAAlphaTest_EQ
kQAAlphaTest_LE
kQAAlphaTest_GT
kQAAlphaTest_NE
kQAAlphaTest_GE
kQAAlphaTest_True

kQATag_AlphaTestRef A floating point value from 0.0 to 1.0

New Gestalt Values

kQAOptional_AlphaTest This bit is set if the engine supports alpha test.

53

RAVE 1.6

SCALED BITMAP DRAWING

RAVE engines may now support scaled drawing of bitmaps.

To draw scaled bitmaps use the following new state variables.

kQATag_BitmapScale x horizontal bitmap scale factor, default value is 1.0
kQATag_BitmapScale_y vertical bitmap scale factor, default value is 1.0

kQATag_BitmapFilter One of the following values:
kQAFilter_Fast

kQAFi I'ter_Mid

kQAFi Il ter_Best

New Gestalt Values

kQAOptional2_BitmapScale This bit is set if the engine supports scaled
bitmap drawing.
KQAFast_BitmapScale This bit is set if the engine accelerates scaled

bitmap drawing.

54

RAVE 1.6

NAME CHANGES

A few name changes have taken place to clarify the API. The old names

are still available to help backward compatibility when the macro

RAVE_OBSOLETE is defined to be 1.

Two notification methods have been renamed to more accurately reflect

their intended use:

kQAMethod_Bufferinitialize has changed to kQAMethod_ImageBufferinitialize.

kQAMethod_BufferComposite has changed to kQAMethod_ImageBuffer2DComposi te.

55

RAVE 1.6

