



Apple Computer, Inc.
Technical Publications
April, 1999



Programmer’s Guide

For OpenGL For Macintosh, Version 1.0



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Finder and MPW are trademarks of
Apple Computer, Inc.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.

IRIS and Silicon Graphics are
registered trademarks of Silicon
Graphics, Inc.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

OpenGL and the OpenGL logo are
registered trademarks of Silicon
Graphics, Inc., used under license.

Java is a trademark of Sun
Microsystems, Inc.

OS/2 is a registered trademark of
IBM.

ATI RAGE-2, RAGE Pro, and RAGE
128 are trademarks of ATI
Technologies, Inc.

UNIX is a registered trademark in
the U.S. and other countries, licensed
exclusively through X/Open
Company Limited.

Windows and Windows NT are
registered trademarks of Microsoft
Corporation.

X/Window System is a trademark of
Massachusetts Institute of
Technology.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS

MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Setting Up Your Project 9
Creating a New Project 9
Adding OpenGL Libraries 9
Setting Heap and Stack Size 10

Writing an OpenGL Application 10
Selecting a Pixel Format 10
Creating a Rendering Context 11
Destroying a Pixel Format 12
Preparing and Using a Drawable 12
Setting the Current Rendering Context 13
Initiating Drawing 13
Destroying a Rendering Context 14
 AGL Color Index Strategies 14

Direct Color Index Mode 15
Translated Color Index Mode 15
3

4

P R E F A C E

About This Book

This book is designed and written for Mac OS developers who are working
with or building applications using OpenGL. This guide provides some basic
programming tips for writing an application that uses the features of the
OpenGL API provided by OpenGL for Macintosh, version 1.0. (This release of
the software corresponds to version 1.1 of OpenGL from Silicon Graphics, Inc.)

This book is intended for use in conjunction with the following documents:

■ OpenGL for Macintosh Introduction, which provides a conceptual overview of
OpenGL features. This document is included as part of the OpenGL for
Macintosh Software Developer Kit (SDK).

■ OpenGL for Macintosh AGL Reference, which describes AGL, Apple’s
implementation of the main OpenGL library. This document is included as
part of the OpenGL for Macintosh Software Developer Kit (SDK).

■ OpenGL Reference, which describes GL, the main OpenGL library. This
document is available at www.opengl.org.

■ OpenGL GLU Reference, which describes the OpenGL Utility Library,
containing graphical extensions based entirely on GL functions. This
document is available at www.opengl.org.

■ OpenGL GLUT Reference, which describes the OpenGL Utility Toolkit, a
standard API for performing operations associated with a windowing
environment. This document is available at www.opengl.org.

Conventions Used in This Book 0

This book provides various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain types of
information, such as parameter blocks, use special fonts so that you can scan
them quickly.
5

http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/

P R E F A C E

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and functions are shown in Letter Gothic (this is
Letter Gothic).

Words that appear in boldface are key terms or concepts that are defined in the
glossary.

Types of Notes 0

There are several types of notes used in this book.

Note
A note like this contains information that is interesting but
not essential to an understanding of the main text. ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. ▲

▲ W AR N I N G

A warning like this indicates potential problems that you
should be aware of as you design your software. Failure to
heed these warnings could result in system crashes or loss
of data. ▲

Development Environment 0

OpenGL for Macintosh is implemented as a set of shared libraries. As such, it
can be used by any compiler for PowerPC that is compatible with Mac OS.

Code listings in this book are shown in ANSI C. They suggest methods of using
various functions and illustrate techniques for accomplishing particular tasks.
Although most code listings have been compiled and tested, Apple Computer
Inc., does not intend for you to use these code samples unmodified or untested
in your application.
6

P R E F A C E

System Requirements 0

OpenGL for Macintosh supports the ATI RAGE-2, RAGE Pro, and RAGE 128
graphics cards shipped in iMac computers and 1999 Power Macintosh G3
minitower computers. At this release no other computers or graphics cards are
supported

Software Development Kit (SDK) 0

The OpenGL for Macintosh Software Development Kit (SDK) includes the
OpenGL libraries, API documentation, and example source code. It is available
for download from http://developer.apple.com/opengl/ and provided on
CD-ROM in the Apple Developer Connection monthly mailing program (see
http://www.apple.com/developer/programs/ for membership information).
7

http://developer.apple.com/opengl/
http://www.apple.com/developer/programs/

P R E F A C E
8

I n t r o d u c t i o n

Figure 1-0
Listing 1-0
Table 1-0

OpenGL Overview 1
Setting Up Your Project 1

OpenGL for Mac OS supports any Mac OS-compatible compiler that can link to
shared libraries, such as those from CodeWarrior, MPW, or Symantec. The
programming concepts are the same for all three development environments.

As delivered, OpenGL comes with CodeWarrior-compatible libraries for TK,
AUX, GLUT and MUI. If you are not using CodeWarrior, it may be necessary to
recompile the TK, AUX, GLUT and MUI static libraries.

Creating a New Project 1

To get started, you must first create a new project. You will need at least 20Mb
of free disk space to save the project files.

Adding OpenGL Libraries 1

Add the following OpenGL libraries:

■ OpenGLLibrary

■ OpenGLUtility

The following libraries are optional:

■ OpenGLMemory

■ tk.lib

■ aux.lib
Setting Up Your Project 9

OpenGL Overview

■ glut.lib

The OpenGLMemory library is needed for modifying the memory functionality
of the OpenGL system. Add the tk.lib, aux.lib, or glut.lib library if your
application uses TK, AUX, or GLUT, respectively.

Setting Heap and Stack Size 1

Set the heap size and stack size as appropriate. It is important that you set these
sizes large enough initially to run the application. A minimum 3500KB heap
and 256KB stack are required for running with hardware acceleration. You can
tune the memory size later by running the application and checking the
memory usage from the Finder.

Writing an OpenGL Application 1

When you have completed all the setup steps, you are ready to begin writing
your OpenGL application. This section provides some information about how
you might want to structure your source files.

Selecting a Pixel Format 1

When writing an OpenGL application, the first thing to do is select a pixel
format. The aglChoosePixelFormat selection function queries a set of installed
OpenGL renderers for available buffer configurations and hardware
capabilities. The results of these queries are scored, and the highest-scoring
pixel format for each hardware accelerator and display device is returned. If a
renderer is unable to support the requested display device, no pixel format will
be returned. A renderer may support more than one display device, but is not
required to do so.

You can pass a display device list to aglChoosePixelFormat to restrict the devices
required to be managed by a pixel format. The default is all devices. A pixel
format may specify more than one renderer to attach, depending on the input
attributes and display devices to be used. Pixel formats are cached for fast
repeated requests. You can adjust cache size by calling aglConfigure
(AGL_FORMAT_CACHE_SIZE, size). The default value for AGL_FORMAT_CACHE_SIZE is 5.
10 Writing an OpenGL Application

OpenGL Overview

Creating a Rendering Context 1

With a pixel format selected, you can call aglCreateContext to create a rendering
context based on the selected pixel format. During the context creation process,
one or more renderers are loaded and linked to an OpenGL procedure dispatch
table. Once a renderer is loaded, all subsequent load requests reference that
loaded copy. When all contexts referencing a rendering are destroyed, the
renderer is unloaded. Renderer caching can be achieved by calling
aglConfigure (AGL_RETAIN_RENDERERS, GL_TRUE). This allows for fast context
creation when accessing a previously used renderer. You can specify a shared
context to allow two contexts to share display lists and texture maps. For
aglCreateContext to succeed in creating shared contexts, both contexts must be
created with an identical set of renderers.

Listing 1-1 shows a useful function for creating a double-buffered RGBA
context with a z-buffer. The function will create a context that is capable of
managing all display devices. Additional attributes could be added for more
precise control over the selected renderer. The AGL_ACCELERATED attribute could
be added to specify that only hardware accelerated renderers be chosen.
AGL_OFFSCREEN or AGL_FULLSCREEN could be added to specify a drawable type
other than a window.

Listing 1-1 Creating a rendering context

AGLContext CreateOpenGLContext(void)
{

GLint attrib[5] = {AGL_RGBA,
AGL_DOUBLEBUFFER,
AGL_DEPTH_SIZE, 16,
AGL_NONE };

AGLPixelFormat fmt;
AGLContext ctx;

/* Choose pixel format */
fmt = aglChoosePixelFormat(NULL, 0, attrib);
if(fmt == NULL) return NULL;

/* Create an AGL context */
ctx = aglCreateContext(fmt, NULL);
Writing an OpenGL Application 11

OpenGL Overview

/* Destroy pixel format */
aglDestroyPixelFormat(fmt);

return ctx;
}

Destroying a Pixel Format 1

After you have created the rendering context, you can retain the pixel format
for creating additional contexts, or you can destroy it by calling
aglDestroyPixelFormat.

Preparing and Using a Drawable 1

To prepare a rendering context for drawing, you must first attach a drawable to
the context by calling aglSetDrawable. The attached drawable is evaluated for
screen ownership information and a renderer capable of managing the current
drawable display devices is selected. Once you have attached a drawable to the
context, you must call either aglUpdateContext or aglSetDrawable each time
before starting to render if any of the following events affecting the drawable
have occurred since the last drawing sequence, thereby invalidating the
window contents:

■ window drag

■ window grow

■ window zoom

■ Color table modification (only for 256 color RGB mode)

If the drawable is a full-screen or off-screen buffer, or if the window
sub-rectangle is not occluded by other windows, the ownership area will be a
simple rectangle. OpenGL buffers are created when aglSetDrawable is called
with a valid drawable. If aglSetDrawable returns GL_FALSE, the renderer has
failed to allocate the drawing buffers. Passing NULL for the drawable frees the
buffers allocated to the context. This approach increases memory use efficiency,
but is not recommended if performance is a priority.
12 Writing an OpenGL Application

OpenGL Overview

Setting the Current Rendering Context 1

All OpenGL API commands are dependent on the current context. You call
aglSetCurrentContext to set the current context—or to switch between contexts ,
if the application has more than one. Commands are dispatched to a renderer
based on the display list mode, compile and/or execute. Although you can call
aglSetCurrentContext with a valid context before or after a drawable has been
attached, commands point to a non-operational function and will not be linked
to the renderer dispatch table until a current context with an attached drawable
is established.

Listing 1-2 shows a useful function for preparing the OpenGL context for
drawing. This function should be called when an event has invalidated the
window.

Listing 1-2 Preparing a context for drawing

GLboolean StartOpenGLDrawing(AGLContext ctx, CWindowPtr win)
{

/* Attach the context to the window */
no_err = aglSetDrawable(ctx, (AGLDrawable) win);
if(!no_err) return GL_FALSE;

/* Make context current */
no_err = aglSetCurrentContext(ctx);
if(!no_err) return GL_FALSE;

return GL_TRUE;

Initiating Drawing 1

You initiate drawing by issuing the buffer swapping command aglSwapBuffers.
Buffer swapping commands are dispatched to the context. It is left to the
renderer to update the screen area based on attached drawable. The buffer
rectangle or the swap rectangle can be specified by calling aglSetInteger and
aglEnable with AGL_BUFFER_RECT or AGL_SWAP_RECT. The buffer rectangle and
swap rectangle are both specified in OpenGL coordinates and default to the
window size.
Writing an OpenGL Application 13

OpenGL Overview

Listing 1-3 Drawing

void Draw(void)
{

/* Clear buffers */
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* Draw */
glColor3f(1.0, 0.0, 0.0);

glBegin(GL_POLYGON);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);
glVertex2f(-0.5, -0.5);

glEnd();

/* Swap buffer to window */
aglSwapBuffers(ctx);

}

Destroying a Rendering Context 1

When a context is no longer needed, you should destroy it. Listing 1-4 shows an
example of destroying a context.

Listing 1-4 Destroying a context

void DestroyOpenGLContext(AGLContext ctx)
{

/* Destroy context */
aglDestroyContext(ctx);

 AGL Color Index Strategies 1

There are two basic strategies that you can use to control the RGB colors
assigned to each color index when using AGL in color index mode: direct color
14 Writing an OpenGL Application

OpenGL Overview

index mode and translated color index mode . This section describes the
benefits of each mode.

Direct Color Index Mode 1

When the monitor is in 256-color mode, you can use direct color index mode
(the default mode). This mode yields the highest performance because it
requires no color translation, but it has two disadvantages:

■ The monitor must be set to 256 colors—other color depths do not have an
appropriate color table.

■ Changes to the color table affect the entire monitor; other windows can be
adversely affected.

When a window is attached to a color index rendering context with
aglSetDrawable, the color table seed of the back buffer is matched to that of the
window. With matching color table seeds, color index data is copied directly
from the back buffer to the window by aglSwapBuffers or glFlush with no color
translation. To change the RGB values associated with each index, simply alter
the color table for the window and call aglUpdateContext.

Translated Color Index Mode 1

If the color table seeds of the back and front buffers are not matched, the color
of each pixel is translated as the color indices are copied from the back buffer to
the window. To control the color translation, the matching of color table seeds
must be disabled and the desired RGB values for each index must be assigned
to the color table of the back buffer with aglSetInteger. This approach is called
translated color index mode.

This approach yields lower performance than direct color mode because each
pixel is mapped from a color index to an RGB color with each call to
aglSwapBuffers, glFlush, or glFinish, but it can be used without regard for the
current monitor depth, and without affecting the contents of other windows.

For example, given three arrays containing the red, green, and blue values to be
assigned to each color index, the following function could be used to prepare
the color table:
Writing an OpenGL Application 15

OpenGL Overview

Listing 1-5 Preparing the color table for translated color index mode

void setColorMap(GLushort red[256], GLushort green[256], GLushort
blue[256])
{

GLint i, color[4];

aglDisable(aglGetCurrentContext(), AGL_COLORMAP_TRACKING);
for(i = 0; i < 256; i++)
{

color[0] = i;
color[1] = red[i];
color[2] = green[i];
color[3] = blue[i];
aglSetInteger(aglGetCurrentContext(),

AGL_COLORMAP_ENTRY, color);
}

}

Each component in a colormap entry is given as an unsigned 16-bit integer,
with 0 representing minimum intensity and 65535 representing maximum
intensity.

This technique offers lower performance than direct color mode because each
pixel is mapped from a color index to an RGB color with each call to
aglSwapBuffers, glFlush, or glFinish, but it can be used without regard for the
current monitor depth, and without affecting the contents of other windows.
16 Writing an OpenGL Application

Glossary
2D Two-dimensional. See also planar.

3D Three-dimensional. See also spatial.

accelerator See graphics accelerator.

accumulation buffer A buffer in which
multiple rendered frames can be composited
to produce a single image.

aliasing The jagged edges (or staircasing)
that result from drawing an image on a
raster device such as a computer screen.
Compare antialiasing.

alpha blending A process fo using alpha
information to create transparent objects.

alpha channel A color component in some
color spaces whose value represents the
opacity of the color defined in the other
components. Compare ARGB color
structure.

antialiasing The smoothing of jagged edges
on a displayed shape by modifying the
transparencies of individual pixels along the
shape’s edge. Compare aliasing.

API See application programming
interface.

application programming interface (API)
The total set of constants, data structures,
routines, and other programming elements
that allow developers to use some part of
the system software.

Architecture Review Board (ARB) An
independent consortium that controls the
evolution of OpenGL. Member s currently
include Digital Equipment Corporation,
Evans and Sutherlin, Hewlett-Packard, IBM,
Integraph, Intel, Microsoft, and Silicon
Graphics.

B-spline curve A curve that passes
smoothly through a series of control points.

bitmap A two-dimensional array of values,
each of which represents the state of one
pixel.

constant shading A method of shading
surfaces in which the incident light color
and intensity are calculated for a single
point on a polygon and then applied to the
entire polygon. Compare Gouraud
shading, Phong shading.

culling Ignoring hidden image datato
reduce the amount of time required to
render a model.

depth buffer TBD.

display list A named list of OpenGL
commands that can be precompiled for
faster execution and possible reuse.

double buffering Building an image in an
off-screen buffer prior to display. Used to
provide smooth animation of objects.
19

G L O S S A R Y
feedback mode A mode in which OpenGL
returns the processed geometric information
(colors, pixel positions, and so on) to the
application instead of rendering them into
the frame buffer.

drawable An entity into which pixel data
can be drawn, such as a window, a
full-screen buffer, or an off-screen buffer.

frame buffer The buffer in which the final
image is prepared and staged for display.

geometric primitive Any of the basic
geometric objects defined by OpenGL in the
GL library.

Gouraud shading A method of shading
surfaces in which the incident light color
and intensity are calculated for each vertex
of a polygon and then interpolated linearly
across the entire polygon. Compare
constant shading, Phong shading.

graphics accelerator Any hardware device
used to increase rendering speed.

image The two-dimensional product of
rendering.

material lighting A process by which the
color of a point on a surface is computed
using the properties of the surface material.

modeling The process of creating a
representation of real or abstract objects.

nonuniform rational B-spline (NURB or
NURBS) A curve defined by nonuniform
parametric ratios of B-spline polynomials.
NURB curves can be used to define very
complex curves and surfaces, as well as very
common geometric objects (for instance, the
conic sections).

NURB See nonuniform rational B-spline.

NURB curve A three-dimensional curve
represented by a NURB equation.

Phong shading A method of shading
surfaces in which the incident light color
and intensity are calculated for a series of
points along each edge of a polygon and
then interpolated across the entire polygon.
Compare constant shading, Gouraud
shading.

planar Contained completely in two
dimensions (as, for example, a circle). See
also spatial.

polygon A closed plane figure. See general
polygon, simple polygon.

projection A method of mapping
three-dimensional objects into two
dimensions.

rasterization The process of determining
values for the pixels in a rendered image.
Also called scan conversion.

render To create an image (on the screen or
some other medium) of a model.

renderer Software or firmware used to
create an image from a view and a model.

rendering The process of creating an image
(on the screen or some other medium) of a
model. See also rasterization.

scale To reposition and resize an object by
multiplying the x, y, and z coordinates of
each of its points by values dx, dy, and dz.

simple polygon A closed plane figure
defined by a list of vertices (that is, defined
by a single contour).

stencil buffer A buffer used to mask
individual pixels.
20

G L O S S A R Y
tessellate To decompose a curve or surface
into polygonal faces.

texture mapping A technique wherein a
predefined image (the texture) is mapped
onto the surface of an object in a model.

transparency The ability of an object to
allow light to pass through it.

vertex A dimensionless position in three- or
four-dimensional space at which two or
more lines (for instance, edges) intersect,
with an optional set of vertex attributes.
21

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS
Robert Beretta, Michael Hinkson, John
Stauffer

ILLUSTRATOR
Dave Arrigoni

PRODUCTION EDITOR
Lorraine Findlay

	About This Book
	Conventions Used in This Book
	Special Fonts
	Types of Notes

	Development Environment
	System Requirements
	Software Development Kit (SDK)

	OpenGL Overview
	Setting Up Your Project
	Creating a New Project
	Adding OpenGL Libraries
	Setting Heap and Stack Size

	Writing an OpenGL Application
	Selecting a Pixel Format
	Creating a Rendering Context
	Destroying a Pixel Format
	Preparing and Using a Drawable
	Setting the Current Rendering Context
	Initiating Drawing
	Destroying a Rendering Context
	AGL Color Index Strategies
	Direct Color Index Mode
	Translated Color Index Mode

	Glossary

