



Apple Computer, Inc.
Technical Publications
April, 1999



Introduction

For OpenGL For Macintosh, Version 1.0



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Finder and MPW are trademarks of
Apple Computer, Inc.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.

IRIS and Silicon Graphics are
registered trademarks of Silicon
Graphics, Inc.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

OpenGL and the OpenGL logo are
registered trademarks of Silicon
Graphics, Inc., used under license.

Java is a trademark of Sun
Microsystems, Inc.

OS/2 is a registered trademark of
IBM.

ATI RAGE-2, RAGE Pro, and RAGE
128 are trademarks of ATI
Technologies, Inc.

UNIX is a registered trademark in
the U.S. and other countries, licensed
exclusively through X/Open
Company Limited.

Windows and Windows NT are
registered trademarks of Microsoft
Corporation.

X/Window System is a trademark of
Massachusetts Institute of
Technology.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS

MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Preface About This Book 5

Conventions Used in This Book 5
Special Fonts 6
Types of Notes 6

Development Environment 6
System Requirements 7
Software Development Kit (SDK) 7

OpenGL Overview 9

The OpenGL Model 10
OpenGL for Macintosh 12
OpenGL Operation 12

Architecture of the Runtime Engine 14
Window System Layer 15

Rendering Environment Support 16
Multiple Monitor Support 16

Renderer Layer 17
Driver Layer 17

Glossary 19
3

4

P R E F A C E

About This Book

This reference book is designed and written for Mac OS developers who are
working with or building applications using OpenGL. This guide introduces
the features of OpenGL for Macintosh, version 1.0. This release of the software
corresponds to version 1.1 of OpenGL from Silicon Graphics, Inc. (SGI).

This book is intended for use in conjunction with the following documents:

■ OpenGL for Macintosh AGL Reference, which describes AGL, Apple’s
implementation of the main OpenGL library. This document is included as
part of the OpenGL for Macintosh Software Developer Kit (SDK).

■ OpenGL for Macintosh Programmer’s Guide, which provides an overview of
how to set up an OpenGL programming project. This document is included
as part of the OpenGL for Macintosh Software Developer Kit (SDK).

■ OpenGL Reference, which describes GL, the main OpenGL library. This
document is available at www.opengl.org.

■ OpenGL GLU Reference, which describes the OpenGL Utility Library,
containing graphical extensions based entirely on GL functions. This
document is available at www.opengl.org.

■ OpenGL GLUT Reference, which describes the OpenGL Utility Toolkit, a
standard API for performing operations associated with a windowing
environment. This document is available at www.opengl.org.

Conventions Used in This Book 0

This book provides various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain types of
information, such as parameter blocks, use special fonts so that you can scan
them quickly.
5

http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/

P R E F A C E

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and functions are shown in Letter Gothic (this is
Letter Gothic).

Words that appear in boldface are key terms or concepts that are defined in the
glossary.

Types of Notes 0

There are several types of notes used in this book.

Note
A note like this contains information that is interesting but
not essential to an understanding of the main text. ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. ▲

▲ W AR N I N G

A warning like this indicates potential problems that you
should be aware of as you design your software. Failure to
heed these warnings could result in system crashes or loss
of data. ▲

Development Environment 0

OpenGL for Macintosh is implemented as a set of shared libraries. As such, it
can be used by any compiler for PowerPC that is compatible with Mac OS.

Code listings in this book are shown in ANSI C. They suggest methods of using
various functions and illustrate techniques for accomplishing particular tasks.
Although most code listings have been compiled and tested, Apple Computer
Inc., does not intend for you to use these code samples unmodified or untested
in your application.
6

P R E F A C E

System Requirements 0

OpenGL for Macintosh supports the ATI RAGE-2, RAGE Pro, and RAGE 128
graphics cards shipped in iMac computers and 1999 Power Macintosh G3
minitower computers. At this release no other computers or graphics cards are
supported

Software Development Kit (SDK) 0

The OpenGL for Macintosh Software Development Kit (SDK) includes the
OpenGL libraries, API documentation, and example source code. It is available
for download from http://developer.apple.com/opengl/ and provided on
CD-ROM in the Apple Developer Connection monthly mailing program (see
http://www.apple.com/developer/programs/ for membership information).
7

http://developer.apple.com/opengl/
http://www.apple.com/developer/programs/

P R E F A C E
8

I n t r o d u c t i o n

Figure 1-0
Listing 1-0
Table 1-0

OpenGL Overview 1
OpenGL is an open, cross-platform three-dimensional (3D) graphics standard
with broad industry support. OpenGL was developed by Silicon Graphics, Inc.
(SGI), based on SGI’s IRIS GL (Graphics Library), first released in 1992. As an
open standard, it is now controlled by the OpenGL Architecture Review Board
(ARB), a consortium whose members represent many of the significant
companies in the computer graphics industry.

OpenGL has a number of benefits for you as a developer:

■ True standard: Each implementation of OpenGL must adhere to the OpenGL
specification and pass a set of conformance tests.

■ Platform independence: It is a cross-platform system, allowing you to
leverage your Mac OS development efforts for other platforms. OpenGL
drivers free you from designing for specific hardware features and ensure
consistent presentation on any compliant hardware/software configuration.

■ Industry acceptance: In addition to OpenGL for Macintosh, there’s already
an OpenGL implementation for OS/2, Windows 95, Windows NT, Linux,
OPENStep, and BeOS.

■ Controlled evolution: The OpenGL GLU extension mechanism allows you to
take advantage of hardware innovations early. Successful innovations are
then incorporated into the core OpenGL API as appropriate. And the
standard enforces backward compatibility to extend the usable life of your
application.

■ Performance: OpenGL uses available 3D acceleration hardware features
effectively to improve rendering speeds.

■ Full feature set: The OpenGL API includes over 250 graphics routines,
providing geometric and raster primitives, RGBA or color index mode,
display list or immediate mode rendering, and viewing and modeling
transformations. In addition, it provides capabilities like lighting and
shading, hidden surface removal (for depth buffering), alpha blending (for
9

OpenGL Overview

translucency), anti-aliasing, texture mapping, atmospheric effects (for
example, fog, smoke, and haze), feedback and selection, stencil planes and
accumulation buffering.

■ Efficiency: OpenGL routines help to keep your application small.

The OpenGL Model 1

The block diagram in Figure 1-1 shows the basic components of OpenGL and
their relation to your application and to each other.

Figure 1-1 OpenGL Architecture

Pixel
processing

Vertex
processing

Frame Buffer

Display

Rasterizing

Pixel-defined
objects

Vertex-defined
objects

Display list
10 The OpenGL Model

OpenGL Overview

Your application will typically interface directly with the OpenGL library (GL),
the OpenGL Utility Library (GLU), and the OpenGL Utility Toolkit (GLUT).

The GL is a low-level modular API that allows you to define graphical objects.
It includes the core functions that are common to all OpenGL implementations,
as mandated by the OpenGL specification. It provides support for two
fundamental types of graphics primitives: objects defined by a set of vertices,
such as line segments and simple polygons, and objects that are pixel-based
images, such as filled rectangles and bitmaps. Support for complex custom
graphical objects is not provided by GL.

Here are some of the features provided by the GL:

■ 3D transformation

■ accumulation buffering

■ alpha blending

■ antialiasing

■ atmospheric effects (haze, fog, and smoke)

■ clipping and culling (hidden surface removal)

■ color index mode

■ edge flags

■ geometric (vertex-defined) and raster (pixel-defined) primitives

■ Gouraud shading

■ material lighting

■ Phong lighting

■ RGBA and color index modes

■ stencil planes

■ texture mapping

■ viewing and modeling transformations

The OpenGL Utility Library (GLU) provides advanced features by combining
functions in the GL library. Consequently, you can be sure that the GLU
functions are supported on all conforming implementations of OpenGL. Some
GLU features are complex polygon (including quartics) creation and handling,
b-spline curve (NURBS) processing, image scaling, and tesselation.
The OpenGL Model 11

OpenGL Overview

The Graphics Library Utility Toolkit (GLUT) provides a standard API for
performing operations associated with a windowing environment such as
display, redraw, and event handling.

In addition to the GL, GLU, and GLUT libraries, the OpenGL graphics
processing system consists of the run-time engine and the rendering (or
rasterizing) software and firmware required to create high-quality display
images of the 3-dimensional objects you define.

OpenGL for Macintosh 1

The OpenGL for Macintosh runtime engine is implemented in a set of shared
libraries that reside in the Extensions folder. These libraries include the
rendering software for Mac OS computers. You can also license the runtime
engine to install with your application. Rendering firmware is specific to the
target acceleration hardware.

OpenGL Operation 1

The main purpose of OpenGL is to accept objects defined as three-dimensional
and process them for realistic display in two dimensions, typically on a
computer screen. To display an object with OpenGL, your application first
creates a drawable (an entity into which objects can be drawn, such as a
window or a screen image buffer). The application then establishes a rendering
context and associates the context with the drawable. Upon confirming that
association, OpenGL sets up required graphics buffers (depth buffer, alpha
buffer, stencil buffer, and accumulation buffer). The application can then issue
OpenGL commands to be interpreted and drawn into the drawable.

To maximize performance, OpenGL processes each graphical object in an
ordered sequence of operations much like a Unix pipeline. Figure 1-2 illustrates
this processing pipeline.
12 The OpenGL Model

OpenGL Overview

Figure 1-2 OpenGL graphics processing pipeline

Graphic objects and any operations you have specified can be processed
immediately upon entering the pipeline or added to a display list for later use.
You might think of a display list as an OpenGL macro or subroutine; it stores a
set of operations that can be run at any time, can be reused, and can be
combined with other display lists to create complex graphical objects not
provided in the core library. Display list operations are precompiled so that they
are ready for use when needed; consequently, they are stored as pixel data.

Operations not destined for a display list undergo processing immediately.
Vertex processing starts with modeling objects from their 3D vertices and
applying transformations such as scaling, positioning, and orientation to those

Software
renderer

Hardware
renderer

Hardware

OpenGL library

OpenGL
Utility
Toolkit

Your
application

OpenGL
Utility

Library

OpenGL Runtime Engine
The OpenGL Model 13

OpenGL Overview

objects. The effects of color, lighting, camera angle, and texture are also
included in processing at this stage. Another part of the vertex processing is
projection—the process by which a 3D object is mapped onto a 2D display
space.

The rasterizing process converts the 2D image data (including objects originally
pixel-defined) into an image fragment: a set of values in a format capable of
being loaded into the frame buffer. Prior to being placed into the frame buffer,
however, image fragments can be modified by a variety of logical operations
such as masking and color blending.

Finally, loading an image fragment into the frame buffer initiates a series of
tests and processes to ensure that the fragment is presented appropriately
relative to the other data already in the frame buffer. For example, a fragment
may represent a translucent object, and would thus be adjusted so that objects
behind it are visible. When all the tests and data conversions are performed, the
pixel data is loaded into the frame buffer and is ready for display.

Architecture of the Runtime Engine 1

OpenGL for Macintosh is a set of shared libraries (installed in the Extensions
folder) that implement the OpenGL runtime engine.

The Mac OS display model is more complicated than most, in that it supports a
display space that can consist of multiple dissimilar monitors. Furthermore,
those monitors can be driven by different graphics cards with different
capabilities. Adding to this complexity is the possibility of multiple rendering
libraries that can drive the same graphics cards.

To accommodate this complexity, OpenGL for Macintosh is segmented into
three well-defined layers: a window system layer, a renderer layer, and a driver
layer (as shown in Figure 1-3). This segmentation allows for plug-in interfaces
to both the window system level and the renderer level. These plugin interfaces
offer flexibility in software and hardware configuration while adhering to the
OpenGL standard.
14 Architecture of the Runtime Engine

OpenGL Overview

Figure 1-3 OpenGL for Macintosh layers

Window System Layer 1

Most applications will need to interact with only the window system layer. This
layer includes GL (the main OpenGL library) and the Apple GL library (AGL),

Driver
layer

Renderer
layer

Apple GLI plugin Other GLI plugins

Hardware

OpenGL libraries
(GL, GLU, GLUT)AGL

GLI plugin Interface

Window
system
layer

GLD plugin Interface

Software
GLD

plugin

RAVE
GLD

plugin

Other
GLD

plugins

Firmware
rasterizer

RAVE
plugin

Software
rasterizer

Apple
RAVE

Your
application
Architecture of the Runtime Engine 15

OpenGL Overview

which contains the implementation of OpenGL functions and commands
specific to the Mac OS windowing system. Operations performed in this layer
include pixel format selection, context creation/destruction, and drawable and
buffer swapping operations.

Rendering Environment Support 1

As described above, the Mac OS supports a variety of graphics accelerator cards
with varying capabilities, while on some Mac OS systems there is no graphics
acceleration hardware. It is also possible for multiple renderers, each with
different capabilities or features, to be used to drive the same graphics
hardware. The GLI plugin interface is provided to manage these complications.
It allows easy installation and removal of multiple rendering libraries (without
extensive system rebuilding) by moving them (respectively) into and out of the
Extensions folder.

For peak performance, the GLI plugin interface enables AGL to dynamically
select the best rendering library for the current rendering task—transparently to
your application.

When your application starts, AGL registers all OpenGL-compliant rendering
libraries it finds in the Extensions folder. Then, when the application specifies a
pixel format, AGL loads the best renderer for that format and passes to it all
OpenGL rendering commands issued by the application. If the application then
specifies a different pixel format for another window, AGL will repeat the
selection process and use the most capable renderer for the new window. In
this way, your application may benefit from the use of multiple OpenGL
renderers without even being aware that more than one renderer is available.

If your application requires more control of renderer selection, AGL helps in
several ways. Your application can specify preferences as to which capabilities
are most important, forcing selection of renderers with those capabilities.

To ensure use of a specific renderer, your application can request that renderer
by its unique renderer ID. Moreover, applications with very specific rendering
requirements can use the AGL mechanism for feeding back detailed
information about the full capabilities of all renderers on the system.

Multiple Monitor Support 1

AGL also transparently manages renderers across multiple monitors. As
mentioned above, the Mac OS windowing system supports a large virtual
screen comprising multiple monitors. For example, a user can drag a window
16 Architecture of the Runtime Engine

OpenGL Overview

from one monitor to another despite the fact that their display capabilities may
be entirely different and that they may be driven by dissimilar graphics cards
with dissimilar resolutions and color depths.

When an application chooses a pixel format on a multi-monitor system, AGL
attempts to find for each monitor a renderer that provides the requested pixel
format at the highest performance on that monitor. A particular renderer may
be able to drive multiple monitors with a single OpenGL rendering context, or
it may have to create separate contexts to support separate graphics cards. AGL
queries each renderer about its capabilities and attempts to use it as efficiently
as possible. If necessary, AGL then creates a multiple-monitor pixel format that
defines the relationship between the renderer and the monitor it will drive.
Your application uses only this one pixel format. AGL dynamically switches
between renderers when part of an OpenGL window crosses the screen
boundary between one monitor and another. There is no performance impact
from multiple monitor support while the entire graphics window is displayed
on one monitor.

Renderer Layer 1

The renderer layer implements the OpenGL command compilation and
execution mechanism as well as the renderer control commands for pixel
format selection, context creation/destruction, and drawable and buffer
swapping operations. This layer consists of the GLI plugin interface and one or
more GLI plugin renderers (which may have different software and hardware
support capabilities). The GLI plugin interface supports third party plugin
renderers, potentially easing the task of porting existing drivers (for example,
Windows 98/NT OpenGL ICD drivers) to the Power Macintosh platform. Other
possible plug-in renderers include ray tracers, file IO managers, debuggers, and
print drivers.

GLI plugins should be installed in the Extensions folder.

Driver Layer 1

The OpenGL driver layer implements the hardware-specific functions for
performing pixel format selection, context creation/destruction, drawable,
buffer access, texture management and buffer swapping operations. This layer
consists of the GLD plugin interface and one or more GLD plugin drivers
(which may have different software and hardware support capabilities). The
Architecture of the Runtime Engine 17

OpenGL Overview

GLD plugin interface supports third party plugin drivers, allowing third party
hardware vendors to take advantage of current driver technology.
18 Architecture of the Runtime Engine

Glossary
2D Two-dimensional. See also planar.

3D Three-dimensional. See also spatial.

accelerator See graphics accelerator.

accumulation buffer A buffer in which
multiple rendered frames can be composited
to produce a single image.

aliasing The jagged edges (or staircasing)
that result from drawing an image on a
raster device such as a computer screen.
Compare antialiasing.

alpha blending A process fo using alpha
information to create transparent objects.

alpha channel A color component in some
color spaces whose value represents the
opacity of the color defined in the other
components. Compare ARGB color
structure.

antialiasing The smoothing of jagged edges
on a displayed shape by modifying the
transparencies of individual pixels along the
shape’s edge. Compare aliasing.

API See application programming
interface.

application programming interface (API)
The total set of constants, data structures,
routines, and other programming elements
that allow developers to use some part of
the system software.

Architecture Review Board (ARB) An
independent consortium that controls the
evolution of OpenGL. Member s currently
include Digital Equipment Corporation,
Evans and Sutherlin, Hewlett-Packard, IBM,
Integraph, Intel, Microsoft, and Silicon
Graphics.

B-spline curve A curve that passes
smoothly through a series of control points.

bitmap A two-dimensional array of values,
each of which represents the state of one
pixel.

constant shading A method of shading
surfaces in which the incident light color
and intensity are calculated for a single
point on a polygon and then applied to the
entire polygon. Compare Gouraud
shading, Phong shading.

culling Ignoring hidden image datato
reduce the amount of time required to
render a model.

depth buffer TBD.

display list A named list of OpenGL
commands that can be precompiled for
faster execution and possible reuse.

double buffering Building an image in an
off-screen buffer prior to display. Used to
provide smooth animation of objects.
19

G L O S S A R Y

feedback mode A mode in which OpenGL
returns the processed geometric information
(colors, pixel positions, and so on) to the
application instead of rendering them into
the frame buffer.

drawable An entity into which pixel data
can be drawn, such as a window, a
full-screen buffer, or an off-screen buffer.

frame buffer The buffer in which the final
image is prepared and staged for display.

geometric primitive Any of the basic
geometric objects defined by OpenGL in the
GL library.

Gouraud shading A method of shading
surfaces in which the incident light color
and intensity are calculated for each vertex
of a polygon and then interpolated linearly
across the entire polygon. Compare
constant shading, Phong shading.

graphics accelerator Any hardware device
used to increase rendering speed.

image The two-dimensional product of
rendering.

material lighting A process by which the
color of a point on a surface is computed
using the properties of the surface material.

modeling The process of creating a
representation of real or abstract objects.

nonuniform rational B-spline (NURB or
NURBS) A curve defined by nonuniform
parametric ratios of B-spline polynomials.
NURB curves can be used to define very
complex curves and surfaces, as well as very
common geometric objects (for instance, the
conic sections).

NURB See nonuniform rational B-spline.

NURB curve A three-dimensional curve
represented by a NURB equation.

Phong shading A method of shading
surfaces in which the incident light color
and intensity are calculated for a series of
points along each edge of a polygon and
then interpolated across the entire polygon.
Compare constant shading, Gouraud
shading.

planar Contained completely in two
dimensions (as, for example, a circle). See
also spatial.

polygon A closed plane figure. See general
polygon, simple polygon.

projection A method of mapping
three-dimensional objects into two
dimensions.

rasterization The process of determining
values for the pixels in a rendered image.
Also called scan conversion.

render To create an image (on the screen or
some other medium) of a model.

renderer Software or firmware used to
create an image from a view and a model.

rendering The process of creating an image
(on the screen or some other medium) of a
model. See also rasterization.

scale To reposition and resize an object by
multiplying the x, y, and z coordinates of
each of its points by values dx, dy, and dz.

simple polygon A closed plane figure
defined by a list of vertices (that is, defined
by a single contour).

stencil buffer A buffer used to mask
individual pixels.
20

G L O S S A R Y

tessellate To decompose a curve or surface
into polygonal faces.

texture mapping A technique wherein a
predefined image (the texture) is mapped
onto the surface of an object in a model.

transparency The ability of an object to
allow light to pass through it.

vertex A dimensionless position in three- or
four-dimensional space at which two or
more lines (for instance, edges) intersect,
with an optional set of vertex attributes.
21

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe

™

 Illustrator and
Adobe Photoshop.

Text type is Palatino

®

 and display type is
Helvetica

®

. Bullets are ITC Zapf
Dingbats

®

. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS

Robert Beretta, Michael Hinkson, John
Stauffer

ILLUSTRATOR

Dave Arrigoni

PRODUCTION EDITOR

Lorraine Findlay

	About This Book
	Conventions Used in This Book
	Special Fonts
	Types of Notes

	Development Environment
	System Requirements
	Software Development Kit (SDK)

	OpenGL Overview
	The OpenGL Model
	OpenGL for Macintosh
	OpenGL Operation

	Architecture of the Runtime Engine
	Window System Layer
	Rendering Environment Support
	Multiple Monitor Support

	Renderer Layer
	Driver Layer

	Glossary

