
 



 

December 10, 1997
Technical Publications
© 1997 Apple Computer, Inc. 

 



 

I N S I D E  M A C I N T O S H

 

Mac OS 8 Toolbox Reference

 

Updated for Appearance 1.0.1



 

12/10/97 

 



 

 Apple Computer, Inc.

 



 

Apple Computer, Inc.
© 1997 Apple Computer, Inc.
All rights reserved. 
No part of this publication may be 
reproduced, stored in a retrieval 
system, or transmitted, in any form 
or by any means, mechanical, 
electronic, photocopying, recording, 
or otherwise, without prior written 
permission of Apple Computer, Inc., 
except to make a backup copy of 
any documentation provided on 
CD-ROM. 
The Apple logo is a trademark of 
Apple Computer, Inc. 
Use of the ÒkeyboardÓ Apple logo 
(Option-Shift-K) for commercial 
purposes without the prior written 
consent of Apple may constitute 
trademark infringement and unfair 
competition in violation of federal 
and state laws. 
No licenses, express or implied, are 
granted with respect to any of the 
technology described in this book. 
Apple retains all intellectual 
property rights associated with the 
technology described in this book. 
This book is intended to assist 
application developers to develop 
applications only for Apple-labeled 
or Apple-licensed computers.
Every effort has been made to 
ensure that the information in this 
manual is accurate. Apple is not 
responsible for typographical errors.
Apple Computer, Inc.
1 InÞnite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and 
Macintosh are trademarks of Apple 
Computer, Inc., registered in the 
United States and other countries.
Adobe, Acrobat, and PostScript are 
trademarks of Adobe Systems 
Incorporated or its subsidiaries and 
may be registered in certain 
jurisdictions.
Helvetica and Palatino are 
registered trademarks of 

Linotype-Hell AG and/or its 
subsidiaries.
ITC Zapf Dingbats is a registered 
trademark of International Typeface 
Corporation.

Simultaneously published in the 
United States and Canada.

 

Even though Apple has reviewed this 
manual, APPLE MAKES NO 
WARRANTY OR REPRESENTATION, 
EITHER EXPRESS OR IMPLIED, WITH 
RESPECT TO THIS MANUAL, ITS 
QUALITY, ACCURACY, 
MERCHANTABILITY, OR FITNESS 
FOR A PARTICULAR PURPOSE. AS A 
RESULT, THIS MANUAL IS SOLD ÒAS 
IS,Ó AND YOU, THE PURCHASER, 
ARE ASSUMING THE ENTIRE RISK 
AS TO ITS QUALITY AND 
ACCURACY.

IN NO EVENT WILL APPLE BE 
LIABLE FOR DIRECT, INDIRECT, 
SPECIAL, INCIDENTAL, OR 
CONSEQUENTIAL DAMAGES 
RESULTING FROM ANY DEFECT OR 
INACCURACY IN THIS MANUAL, 
even if advised of the possibility of such 
damages.

THE WARRANTY AND REMEDIES 
SET FORTH ABOVE ARE EXCLUSIVE 
AND IN LIEU OF ALL OTHERS, ORAL 
OR WRITTEN, EXPRESS OR IMPLIED. 
No Apple dealer, agent, or employee is 
authorized to make any modiÞcation, 
extension, or addition to this warranty.

Some states do not allow the exclusion 
or limitation of implied warranties or 
liability for incidental or consequential 
damages, so the above limitation or 
exclusion may not apply to you. This 
warranty gives you speciÞc legal rights, 
and you may also have other rights 
which vary from state to state.



     

Contents

       
Figures, Tables, and Listings 9

Preface Introduction to the Mac OS 8 Toolbox Reference 11

About This Document 12
Format of a Typical Chapter 12
Development Environment 13

For More Information 13
Conventions Used 13

Quick Reference Tags 13
Special Fonts 14
Empty Strings 15
Types of Notes 15

Chapter 1 Appearance Manager Reference 17

Introduction to the Appearance Manager 19
Appearance Manager Types and Constants 21

Appearance Manager Gestalt Selector Constants 21
Appearance Manager Apple Event Constants 23
Appearance-Compliant Brush Type Constants 23
Appearance-Compliant Text Color Constants 25
Appearance-Compliant Draw State Constants 29
Appearance-Compliant Menu Bar Draw State Constants 30
Appearance-Compliant Menu Draw State Constants 31
Appearance-Compliant Menu Type Constants 31
Appearance-Compliant Menu Item Type Constants 32
Result Codes 33

Appearance Manager Functions 34
Initializing the Appearance Manager 34
Drawing Appearance-Compliant Controls 35
Drawing Appearance-Compliant Menus 45
Coordinating Colors and Patterns With the Current Theme 56
3
12/10/97   Apple Computer, Inc.



        
DeÞning Your Own Menu Drawing Callback Functions 61

Chapter 2 Control Manager Reference 67

Control Manager Types and Constants 71
Control DeÞnition IDs 71
Settings Values for Standard Controls 78
Control Data Tag Constants 83
Checkbox Value Constants 90
Radio Button Value Constants 91
Bevel Button Behavior Constants 92
Bevel Button Menu Constants 93
Bevel Button and Image Well Content Type Constants 94
Bevel Button Graphic Alignment Constants 95
Bevel Button Text Alignment Constants 97
Bevel Button Text Placement Constants 97
Clock Value Flag Constants 98
Control Part Code Constants 99
Part IdentiÞer Constants 102
Meta Font Constants 103
The Control Font Style Structure 103

Control Font Style Flag Constants 105
The Bevel Button and Image Well Content Structure 107
The Editable Text Selection Structure 108
The Tab Information Structure 109
The Auxiliary Control Structure 109
The Pop-Up Menu Private Structure 110
The Control Color Table Structure 110
Result Codes 110

Control Manager Resources 111
The Control Resource 111
The Control DeÞnition Function Resource 113
The Control Color Table Resource 113
The List Box Description Resource 114
The Tab Information Resource 115

Control Manager Functions 118
Creating and Removing Controls 118
4
12/10/97   Apple Computer, Inc.



        
Embedding Controls 123
Manipulating Controls 133
Displaying Controls 139
Handling Events in Controls 141
Handling Keyboard Focus 147
Accessing and Changing Control Settings and Data 152
DeÞning Your Own Control DeÞnition Function 162
DeÞning Your Own Action Functions 184
DeÞning Your Own Key Filter Function 187
DeÞning Your Own User Pane Functions 189

Chapter 3 Window Manager Reference 201

Window Manager Types and Constants 203
Window DeÞnition IDs 203

Window Resource IDs 212
Window DeÞnition Function Variation Codes 214

Window Region Constants 215
Part IdentiÞer Constants 216
FindWindow Result Code Constants 217
The Window Structure 219
The Window State Data Structure 219
The Window Color Table Structure 219
The Auxiliary Window Structure 219
Result Codes 220

Window Manager Resources 220
The Window Resource 220
The Window Color Table Resource 222
The Window DeÞnition Function Resource 223

Window Manager Functions 223
Creating and Closing Windows 223
Retrieving Window Information 224
Displaying Windows 227
Collapsing Windows 228
Setting and Getting Window Characteristics 230
DeÞning Your Own Window DeÞnition Function 231
5
12/10/97   Apple Computer, Inc.



          
Chapter 4 Dialog Manager Reference 241

Dialog Manager Types and Constants 243
Alert Type Constants 243
Dialog Feature Flag Constants 244
Alert Feature Flag Constants 245
The Standard Alert Structure 246

Alert Button Constants 247
Alert Default Text Constants 248

Result Codes 249
Dialog Manager Resources 249

The Dialog Resource 249
The Extended Dialog Resource 252
The Extended Alert Resource 253
The Dialog Control Font Table Resource 254

Dialog Font Flag Constants 258
The Dialog Color Table Resource 259
The Alert Color Table Resource 260
The Item Color Table Resource 260

Dialog Manager Functions 261
Creating Alerts 261
Creating Dialog Boxes 268
Manipulating Items in Dialog and Alert Boxes 272
Handling Text in Alert and Dialog Boxes 280
Handling Events in Dialog Boxes 281
DeÞning Your Own Dialog Item Function 284

Chapter 5 Menu Manager Reference 285

Menu Manager Types and Constants 287
Contextual Menu Gestalt Selector Constants 287
Menu DeÞnition IDs 288
Contextual Menu Help Type Constants 289
Contextual Menu Selection Type Constants 290
ModiÞer Key Mask Constants 291
Menu Icon Handle Constants 292
The Menu Color Information Table Structure 292
Result Codes 293
6
12/10/97   Apple Computer, Inc.



                
Menu Manager Resources 293
The Menu Resource 293
The Extended Menu Resource 298
The Menu Color Information Table Resource 304

Menu Manager Functions 304
Initializing the Menu Manager 304
Creating Menus 307
Responding to the UserÕs Choice of a Menu Command 308
Manipulating and Accessing Menu Item Characteristics 313
DeÞning Your Own Contextual Menu Plug-In 329

Chapter 6 Event Manager Reference 337

Chapter 7 Finder Interface Reference 341

Finder Interface Types and Constants 343
Folder Manager Gestalt Selector 343
Folder Type Constants 344
The Folder Descriptor Structure 350

Folder Descriptor Flag Constants 351
Folder Descriptor Class Constants 352
Folder Descriptor Location Constants 352

The Folder Routing Structure 353
Result Codes 354

Finder Interface Functions 355
Finding Directories 355
Manipulating Folder Descriptors 357
Routing Files 365

Appendix A Version History 369

Glossary 371
7
12/10/97   Apple Computer, Inc.



      
Index 389
8
12/10/97   Apple Computer, Inc.



                                                                  
Figures, Tables, and Listings

Preface Introduction to the Mac OS 8 Toolbox Reference 11

Chapter 1 Appearance Manager Reference 17

Figure 1-1 Mapping of standard definition functions 20

Chapter 2 Control Manager Reference 67

Figure 2-1 Structure of a compiled control ('CNTL') resource 112
Figure 2-2 Structure of a compiled list box description ('ldes') 

resource 114
Figure 2-3 Structure of a compiled tab information ('tab#') resource 116
Figure 2-4 Structure of a tab information entry 117

Table 2-1 Control definition IDs and resource IDs for standard controls 72

Chapter 3 Window Manager Reference 201

Figure 3-1 Window regions 216
Figure 3-2 Structure of a compiled window ('WIND') resource 221

Table 3-1 Pre-Appearance and Appearance-compliant window definition 
IDs 205

Chapter 4 Dialog Manager Reference 241

Figure 4-1 Structure of a compiled dialog ('DLOG') resource 250
Figure 4-2 Structure of a compiled extended dialog ('dlgx') resource 252
Figure 4-3 Structure of a compiled extended alert ('alrx') resource 253
Figure 4-4 Structure of a compiled dialog control font table ('dftb') 

resource 255
Figure 4-5 Structure of dialog control font entry in a 'dftb' resource 256
9
12/10/97   Apple Computer, Inc.



                                   
Chapter 5 Menu Manager Reference 285

Figure 5-1 Structure of a compiled menu ('MENU') resource 294
Figure 5-2 The variable-length data that describes menu items as defined by 

the standard menu definition function 296
Figure 5-3 Structure of a compiled extended menu ('xmnu') resource 298
Figure 5-4 Structure of an extended menu item entry 299
Figure 5-5 A menu command list in the AEDescList array 333
Figure 5-6 A menu record showing submenus 334

Table 5-1 Keyboard font character codes 302

Listing 5-1 Registering a contextual menu plug-in 330

Appendix A Version History 369

Table A-1 Mac OS 8 Toolbox Reference Revision History 369
10
12/10/97   Apple Computer, Inc.



     

P R E F A C E

           
Introduction to the
Mac OS 8 Toolbox Reference

Mac OS 8 Toolbox Reference describes the elements of the Mac OS Toolbox that 
are new as of Mac OS 8 or Appearance 1.0.1, as well as those earlier parts of the 
Toolbox that have been affected by Mac OS 8 or Appearance 1.0.1.

In cases where Mac OS 8Õs features, particularly the Appearance Manager and 
contextual menus, have altered the use of preexisting elements of the Toolbox, 
a discussion of their prior implementation and functionality (going back to 
System 7) is also included. This document does not provide preÐSystem 7 
Toolbox support. 

IMPORTANT

This document only includes types, constants, resources, 
and functions that are new as of Mac OS 8, changed (in 
implementation or form) as of Mac OS 8, or not 
recommended as of Mac OS 8. Unaffected information has 
not been included in this document; therefore, if a 
function, for example, is not presented here, its use can be 
assumed to be unchanged.

The following categories of reference material are included in this document:

■ For those Toolbox elements that have changed with Mac OS 8, you will Þnd 
the new information, as well as that portion of the System 7 description 
which is still valid as of Mac OS 8. This will be followed by the information 
that is no longer applicable as of Mac OS 8, but which may still be useful for 
those developers who must maintain System 7 code or develop for systems 
lacking the Appearance Manager.

■ For Toolbox elements that are no longer recommended as of Mac OS 8, you 
will see the conditions under which the item is superseded as well as the 
recommended alternatives to the itemÕs use.

■ For new Toolbox elements, you will simply be provided with their 
implementation and use as of Mac OS 8.
11
12/10/97   Apple Computer, Inc.



      

P R E F A C E

     
About This Document 0

This document contains the following seven chapters and an index:

■ Chapter 1, ÒAppearance Manager Reference,Ó describes the Appearance 
Manager and its functions, resources, types, and constants.

■ Chapter 2, ÒControl Manager Reference,Ó presents the usage of the new 
Mac OS 8 controls as well as describes how older controls have changed 
with the Appearance Manager.

■ Chapter 3, ÒWindow Manager Reference,Ó discusses how the creation and 
manipulation of windows has changed as of Mac OS 8 due to the 
Appearance Manager.

■ Chapter 4, ÒDialog Manager Reference,Ó explains how Mac OS 8 and the 
Appearance Manager have changed the handling of dialog and alert boxes.

■ Chapter 5, ÒMenu Manager Reference,Ó shows how your applicationÕs 
handling of menus and menu bars has been modiÞed by Mac OS 8, the 
Appearance Manager, and contextual menus.

■ Chapter 6, ÒEvent Manager Reference,Ó is unchanged by Mac OS 8 from its 
earlier form in Macintosh Toolbox Essentials, and it is therefore not presented 
in this delta document.

■ Chapter 7, ÒFinder Interface Reference,Ó describes how Mac OS 8Õs new 
Folder Manager features have affected how your application works with the 
Finder.

Format of a Typical Chapter 0

A typical chapter will follow this structure:

■ ÒTypes and Constants.Ó This section describes the types, constants, 
structures, and result codes for the functions described later in the chapter. 

■ ÒResources.Ó The resource descriptions contain complete listings of their 
elements, provided in Rez format or as a Þgure.

■ ÒFunctions.Ó This section presents function declarations, descriptions of 
parameters and function results, and discussions of function use.
12 

12/10/97   Apple Computer, Inc.



P R E F A C E
Development Environment 0

All constants, type deÞnitions, and function declarations in this book are 
written in C or C++ and are Power PCÐcompliant. 

The system software functions described in this book are available using C, 
Pascal, or assembly-language interfaces. How you access these functions 
depends on the development environment you are using. When showing 
system software functions, this book uses the C interface available with 
Universal Interfaces 3.0. 

For More Information 0

For a full description of the System 7 Toolbox elements that are unchanged as 
of Mac OS 8, as well as assembly-language and preÐSystem 7 Mac OS Toolbox 
information, see Inside Macintosh: Macintosh Toolbox Essentials and More 
Macintosh Toolbox, available at your local bookseller.

For information on the Mac OS 8 human interface, see Mac OS 8 Human 
Interface Guidelines, available at the Apple Developer World web site. Apple 
Developer World is the best source for Þnding the most up-to-date technical 
and marketing information speciÞcally for developers of Macintosh-compatible 
software and hardware products. Developer World can be found at:

<http://www.devworld.apple.com>

Conventions Used 0

This document uses the following conventions to alert you to especially 
important categories of information.

Quick Reference Tags 0

The following tags appear underneath section headings in this document. They 
are provided to alert you to how a given function, type, resource, or constant 
has been affected by Mac OS 8, Appearance, or contextual menus. 
13
12/10/97   Apple Computer, Inc.



P R E F A C E
NEW WITH . . . 0

Functions, resources, types, and constants that have been introduced with 
Mac OS 8, Appearance, or contextual menus. 

IMPORTANT

Many of the Toolbox functions discussed are dependent 
upon the presence of the Appearance Manager. Unless 
otherwise speciÞed, it is assumed that any function 
described as ÒNew With the Appearance ManagerÓ 
depends upon the availability of the Appearance Manager 
and that you should check for the presence of the 
Appearance Manager before calling that function. See the 
chapter ÒAppearance Manager ReferenceÓ for details on 
using Gestalt selector constants to determine whether the 
Appearance Manager is present and its version, if so.

CHANGED WITH . . . 0

Functions, resources, types, and constants that have been changed, but are still 
used. The changes will be discussed in the main body of the text, and the 
functionality on systems lacking Mac OS 8, Appearance, or contextual menus 
will be summarized at the end of the description.

NOT RECOMMENDED WITH . . . 0

Functions, resources, types, and constants that are not recommended to be 
used with Mac OS 8, Appearance, or contextual menus. Alternate 
recommendations are presented in lieu of the description.

Special Fonts 0

All code listings, reserved words, and names of actual data structures, Þelds, 
constants, parameters, and functions are shown in Letter Gothic (this is 
Letter Gothic).
14 

12/10/97   Apple Computer, Inc.



P R E F A C E
Empty Strings 0

This book occasionally instructs you to provide an empty string in function 
parameters and resources. How you specify an empty string depends on what 
language and development environment you are using. In Rez input Þles and 
in C, for example, you specify an empty string by two double quotation marks 
("").

Types of Notes 0

There are several types of notes used in this document.

Note
A note like this contains information that is interesting but 
possibly not essential to an understanding of the main text.

IMPORTANT

A note like this contains information that is essential for an 
understanding of the main text.

▲ W A R N I N G

Warnings like this indicate potential problems that you 
should be aware of as you design your application. Failure 
to heed these warnings could result in system crashes or 
loss of data. 
15
12/10/97   Apple Computer, Inc.



P R E F A C E
16 

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Contents

12/10/97   Apple Computer, Inc.

Contents
Figure 1-0
Listing 1-0
Table 1-0
1 Appearance Manager Reference
Introduction to the Appearance Manager 19
Appearance Manager Types and Constants 21

Appearance Manager Gestalt Selector Constants 21
Appearance Manager Apple Event Constants 23
Appearance-Compliant Brush Type Constants 23
Appearance-Compliant Text Color Constants 25
Appearance-Compliant Draw State Constants 29
Appearance-Compliant Menu Bar Draw State Constants 30
Appearance-Compliant Menu Draw State Constants 31
Appearance-Compliant Menu Type Constants 31
Appearance-Compliant Menu Item Type Constants 32
Result Codes 33

Appearance Manager Functions 34
Initializing the Appearance Manager 34

RegisterAppearanceClient 34
UnregisterAppearanceClient 35

Drawing Appearance-Compliant Controls 35
DrawThemePrimaryGroup 35
DrawThemeSecondaryGroup 36
DrawThemeSeparator 37
DrawThemeWindowHeader 38
DrawThemeWindowListViewHeader 38
DrawThemePlacard 39
DrawThemeModelessDialogFrame 40
DrawThemeEditTextFrame 41
DrawThemeListBoxFrame 42
DrawThemeGenericWell 42
17



C H A P T E R  1  
DrawThemeFocusRect 43
DrawThemeFocusRegion 44

Drawing Appearance-Compliant Menus 45
DrawThemeMenuBarBackground 45
DrawThemeMenuTitle 46
DrawThemeMenuBackground 48
DrawThemeMenuItem 48
DrawThemeMenuSeparator 51
GetThemeMenuBackgroundRegion 51
GetThemeMenuBarHeight 52
GetThemeMenuSeparatorHeight 53
GetThemeMenuItemExtra 54
GetThemeMenuTitleExtra 55

Coordinating Colors and Patterns With the Current Theme 56
SetThemeBackground 56
SetThemePen 57
SetThemeTextColor 58
SetThemeWindowBackground 59
IsThemeInColor 60
GetThemeAccentColors 60

DeÞning Your Own Menu Drawing Callback Functions 61
MyMenuTitleDrawingProc 61
MyMenuItemDrawingProc 63
18 Contents

12/10/97   Apple Computer, Inc.



C H A P T E R  1
Appearance Manager Reference 1

This chapter discusses the Appearance Manager, versions 1.0 and 1.0.1.

■ ÒAppearance Manager Types and ConstantsÓ (page 21) describes the 
Appearance Manager types and constants. Result codes are included at the 
end of this section.

■ ÒAppearance Manager FunctionsÓ (page 34) describes Appearance Manager 
functions that you can call to initialize the Appearance Manager, draw 
Appearance-compliant menus and other human interface elements, and 
coordinate the colors and patterns of human interface elements.

Introduction to the Appearance Manager 1

The Appearance Manager 

■ coordinates the look of the Mac OS human interface into a single theme

■ introduces new human interface elements to the Mac OS environment

■ allows for the adaptation of preÐAppearance Manager human interface 
elements, both standard and custom, to the new, coordinated look and 
behaviors

The Appearance Manager provides the underlying support for themes and 
theme switching. Themes unify the appearance and behavior of human 
interface objects in your application, including alert icons, controls, 
background colors, dialog boxes, menus, windows, and state transitions. The 
only theme supported under Appearance 1.0 and 1.0.1 is the platinum 
appearance.

IMPORTANT

Appearance 1.0 ships with and supports Mac OS 8 only. It 
should not normally be used with earlier Mac OS versions. 
Appearance 1.0.1 is an extension that is designed to work 
with versions of the Mac OS platform from System 7.1 on, 
so it supersedes Appearance 1.0.

To provide a systemwide coordination of look and behavior, the Appearance 
Manager includes new standard human interface objects that were developed 
to replace the many custom solutions that have been implemented. These new 
Introduction to the Appearance Manager 19
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
elements, such as focus rings and group boxes, obviate the need for developers 
to create and maintain their own.

Another way the Appearance Manager achieves a uniÞed look and behavior is 
by mapping standard pre-Appearance deÞnition functions (the 'MBDF'0, 
'MDEF'0, 'WDEF'0, 'WDEF'124, 'CDEF'0, 'CDEF'1, and 'CDEF'63 resources) to their 
Appearance-compliant equivalents. This occurs either on a systemwide basis (if 
the user hasnÕt turned off systemwide appearance) or on a per-application 
basis, if you call RegisterAppearanceClient (page 34) from within your 
application. Figure 1-1 shows the ways by which it is determined how, and 
whether, mapping will occur for standard deÞnition functions.

Figure 1-1 Mapping of standard definition functions

Some mapped deÞnition functions will have a slightly different look and 
behavior than if they were speciÞed directly. For example, since a standard 
pre-Appearance window deÞnition function canÕt specify the inclusion of a 
horizontal zoom box, when the old resource is mapped to a new one, the 

Register-
AppearanceClient

called?

Systemwide
appearance

on?

Application requests
'MDEF'0

Application requests
'MDEF'63

No No

Yes Yes

'MDEF'63 is used
(via mapping)

'MDEF'0 is used
(no mapping)

'MDEF'63 is used
(directly, no mapping)
20 Introduction to the Appearance Manager

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
resulting window still wonÕt have a horizontal zoom box. For this reason (and 
to eliminate the time spent going through the mapping layer), itÕs 
recommended that you specify the Appearance-compliant deÞnition function 
IDs directly.

Custom deÞnition functions cannot be automatically mapped to 
Appearance-compliant equivalents. However, the Appearance Manager does 
provide ways to coordinate custom elements with themes. For example, using 
DrawThemeListBoxFrame (page 42) creates a theme-compliant frame for a custom 
list box.

Appearance Manager Types and Constants 1

Appearance Manager Gestalt Selector Constants 1
NEW WITH THE APPEARANCE MANAGER 1

Before calling any functions dependent upon the Appearance ManagerÕs 
presence, your application should pass the selector gestaltAppearanceAttr to 
the Gestalt function to determine whether the Appearance Manager is present. 

enum {
gestaltAppearanceAttr = 'appr'

};

Constant description

gestaltAppearanceAttr
The Gestalt selector passed to determine whether the 
Appearance Manager is present. Produces a 32-bit value 
whose bits you should test to determine which 
Appearance Manager features are available.

The following values are the bit numbers with which you can test for the 
presence of each feature:
Appearance Manager Types and Constants 21
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
enum {
gestaltAppearanceExists = 0,
gestaltAppearanceCompatMode = 1

};

Constant descriptions

gestaltAppearanceExists
If this bit (bit 0) is set, Appearance Manager functions are 
available. To determine which version of the Appearance 
Manager is installed, check for the presence of the Gestalt 
selector gestaltAppearanceVersion (see below). If this bit is 
not set, Appearance Manager functions are not available. 

gestaltAppearanceCompatMode
If this bit (bit 1) is set, systemwide platinum appearance is 
off, turning off auto-mapping of standard System 7 
deÞnition functions to their Mac OS 8 equivalents (for 
those applications that have not called 
RegisterAppearanceClient). If this bit is not set, 
systemwide platinum appearance is on, causing 
auto-mapping of standard System 7 deÞnition functions to 
their Mac OS 8 equivalents for all applications.

To determine which version of the Appearance Manager is installed, your 
application should check for the presence of the Gestalt selector 
gestaltAppearanceVersion. 

enum{
gestaltAppearanceVersion = 'apvr'

};

Constant description

gestaltAppearanceVersion
The Gestalt selector passed to determine which version of 
the Appearance Manager is installed. If this selector exists, 
Appearance Manager 1.0.1 (or later) is installed; the 
version number of the currently installed Appearance 
Manager is returned in the low-order word of the result in 
BCD format (for example, version 1.0.1 would be 0x0101). 
If this selector does not exist but gestaltAppearanceAttr 
does, Appearance Manager 1.0 is installed.
22 Appearance Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
Appearance Manager Apple Event Constants 1
NEW WITH THE APPEARANCE MANAGER 1

The following Apple event constants have been deÞned under Appearance 
1.0.1, but apply to Appearance versions 1.1 and later. They are provided here 
for informational purposes only.

enum {
kAppearanceEventClass = 'appr',
kAEThemeSwitch =' thme'

};

Constant descriptions

kAppearanceEventClass
The event class of Appearance Manager Apple events.

kAEThemeSwitch The Apple event constant kAEThemeSwitch allows you to 
prepare for Appearance Manager 1.1. Under Appearance 
1.1, when the theme is changed in the Appearance control 
panel, kAEThemeSwitch will be sent to all running 
foreground applications that are high-level event aware. 
Applications can handle the switch as appropriate. 

Appearance-Compliant Brush Type Constants 1
NEW WITH THE APPEARANCE MANAGER 1

The Appearance Manager provides the underlying support for RGB color data 
and overrides System 7 color tables such as 'cctb' and 'mctb' with a more 
abstract mechanism that allows colors and patterns to be coordinated with the 
current theme. You can pass constants of type ThemeBrush in the inBrush 
parameter of SetThemeBackground (page 56), SetThemePen (page 57), and 
SetThemeWindowBackground (page 59) to specify Appearance-compliant colors or 
patterns for standard human interface elements.

enum {
kThemeActiveDialogBackgroundBrush  = 1,  
kThemeInactiveDialogBackgroundBrush = 2,  
kThemeActiveAlertBackgroundBrush = 3,
kThemeInactiveAlertBackgroundBrush = 4,
Appearance Manager Types and Constants 23
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
kThemeActiveModelessDialogBackgroundBrush = 5,
kThemeInactiveModelessDialogBackgroundBrush = 6,
kThemeActiveUtilityWindowBackgroundBrush = 7,
kThemeInactiveUtilityWindowBackgroundBrush = 8,
kThemeListViewSortColumnBackgroundBrush = 9,
kThemeListViewBackgroundBrush = 10,  
kThemeIconLabelBackgroundBrush = 11,  
kThemeListViewSeparatorBrush = 12,  
kThemeChasingArrowsBrush = 13,  
kThemeDragHiliteBrush = 14,
kThemeDocumentWindowBackgroundBrush = 15,
kThemeFinderWindowBackgroundBrush = 16

};
typedef SInt16 ThemeBrush;

Constant descriptions

kThemeActiveDialogBackgroundBrush
An active dialog boxÕs background color or pattern. 

kThemeInactiveDialogBackgroundBrush
An inactive dialog boxÕs background color or pattern. 

kThemeActiveAlertBackgroundBrush
An active alert boxÕs background color or pattern. 

kThemeInactiveAlertBackgroundBrush
An inactive alert boxÕs background color or pattern. 

kThemeActiveModelessDialogBackgroundBrush
An active modeless dialog boxÕs background color or 
pattern. 

kThemeInactiveModelessDialogBackgroundBrush
An inactive modeless dialog boxÕs background color or 
pattern. 

kThemeActiveUtilityWindowBackgroundBrush 
An active utility windowÕs background color or pattern. 

kThemeInactiveUtilityWindowBackgroundBrush
An inactive utility windowÕs background color or pattern. 

kThemeListViewSortColumnBackgroundBrush
The background color or pattern of the column upon 
which a list view is sorted.
24 Appearance Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
kThemeListViewBackgroundBrush
The background color or pattern of a list view column that 
is not being sorted upon. 

kThemeIconLabelBackgroundBrush
An icon labelÕs color or pattern. 

kThemeListViewSeparatorBrush
A list view separatorÕs color or pattern. 

kThemeChasingArrowsBrush
Asynchronous arrowsÕ color or pattern.

kThemeDragHiliteBrush
The background color or pattern of an element responding 
to a drag and drop, indicating that the element is a valid 
recipient. 

kThemeDocumentWindowBackgroundBrush
A document windowÕs background color or pattern. 

kThemeFinderWindowBackgroundBrush
A Finder windowÕs background color or pattern. 
Generally, you should not use this constant unless you are 
trying to create a window that matches the Finder window.

Appearance-Compliant Text Color Constants 1
NEW WITH THE APPEARANCE MANAGER 1

You can pass constants of type ThemeTextColor in the inColor parameter of 
SetThemeTextColor (page 58) to specify Appearance-compliant text colors for 
many standard human interface elements in their active, inactive, and 
highlighted states.

enum{
kThemeActiveDialogTextColor = 1,  
kThemeInactiveDialogTextColor = 2,  
kThemeActiveAlertTextColor = 3,  
kThemeInactiveAlertTextColor = 4,  
kThemeActiveModelessDialogTextColor = 5,  
kThemeInactiveModelessDialogTextColor = 6,
kThemeActiveWindowHeaderTextColor = 7,  
kThemeInactiveWindowHeaderTextColor = 8,
kThemeActivePlacardTextColor = 9,  
Appearance Manager Types and Constants 25
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
kThemeInactivePlacardTextColor = 10,  
kThemePressedPlacardTextColor = 11,  
kThemeActivePushButtonTextColor = 12,  
kThemeInactivePushButtonTextColor = 13,  
kThemePressedPushButtonTextColor = 14,  
kThemeActiveBevelButtonTextColor = 15,  
kThemeInactiveBevelButtonTextColor = 16,  
kThemePressedBevelButtonTextColor = 17,  
kThemeActivePopupButtonTextColor = 18,  
kThemeInactivePopupButtonTextColor = 19,  
kThemePressedPopupButtonTextColor = 20,  
kThemeIconLabelTextColor = 21, 
kThemeListViewTextColor = 22, 
kThemeActiveDocumentWindowTitleTextColor = 23,
kThemeInactiveDocumentWindowTitleTextColor = 24,
kThemeActiveMovableModalWindowTitleTextColor = 25,
kThemeInactiveMovableModalWindowTitleTextColor = 26,
kThemeActiveUtilityWindowTitleTextColor = 27,
kThemeInactiveUtilityWindowTitleTextColor = 28,
kThemeActivePopupWindowTitleColor = 29,
kThemeInactivePopupWindowTitleColor = 30,
kThemeActiveRootMenuTextColor = 31,
kThemeSelectedRootMenuTextColor = 32,
kThemeDisabledRootMenuTextColor = 33,
kThemeActiveMenuItemTextColor = 34,
kThemeSelectedMenuItemTextColor = 35,
kThemeDisabledMenuItemTextColor = 36,
kThemeActivePopupLabelTextColor = 37,
kThemeInactivePopupLabelTextColor = 38

};
typedef SInt16 ThemeTextColor;

Constant descriptions

kThemeActiveDialogTextColor
Text color for active dialog box.

kThemeInactiveDialogTextColor
Text color for inactive dialog box.

kThemeActiveAlertTextColor
Text color for active alert box. The text color for alert boxes 
may differ from dialog box text color. 
26 Appearance Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
kThemeInactiveAlertTextColor
Text color for inactive alert box. The text color for alert 
boxes may differ from dialog box text color. 

kThemeActiveModelessDialogTextColor
Text color for active modeless dialog box.

kThemeInactiveModelessDialogTextColor
Text color for inactive modeless dialog box.

kThemeActiveWindowHeaderTextColor
Text color for active window header.

kThemeInactiveWindowHeaderTextColor
Text color for inactive window header.

kThemeActivePlacardTextColor
Text color for active placard. 

kThemeInactivePlacardTextColor
Text color for inactive placard. 

kThemePressedPlacardTextColor
Text color for highlighted placard. 

kThemeActivePushButtonTextColor
Text color for active push button. 

kThemeInactivePushButtonTextColor 
Text color for inactive push button. 

kThemePressedPushButtonTextColor 
Text color for highlighted push button. 

kThemeActiveBevelButtonTextColor
Text color for active bevel button. 

kThemeInactiveBevelButtonTextColor 
Text color for inactive bevel button. 

kThemePressedBevelButtonTextColor 
Text color for highlighted bevel button. 

kThemeActivePopupButtonTextColor
Text color for active pop-up menu button. 

kThemeInactivePopupButtonTextColor
Text color for inactive pop-up menu button. 

kThemePressedPopupButtonTextColor
Text color for highlighted pop-up menu button. 

kThemeIconLabelTextColor
Text color for icon label. 
Appearance Manager Types and Constants 27
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
kThemeListViewTextColor
Text color for list view. 

kThemeActiveDocumentWindowTitleTextColor
Text color for active document window title. Available 
with Appearance 1.0.1 and later. 

kThemeInactiveDocumentWindowTitleTextColor 
Text color for inactive document window title. Available 
with Appearance 1.0.1 and later.

kThemeActiveMovableModalWindowTitleTextColor 
Text color for active movable modal window title. 
Available with Appearance 1.0.1 and later.

kThemeInactiveMovableModalWindowTitleTextColor 
Text color for inactive movable modal window title. 
Available with Appearance 1.0.1 and later.

kThemeActiveUtilityWindowTitleTextColor 
Text color for active utility (ßoating) window title. 
Available with Appearance 1.0.1 and later.

kThemeInactiveUtilityWindowTitleTextColor
Text color for inactive utility (ßoating) window title. 
Available with Appearance 1.0.1 and later.

kThemeActivePopupWindowTitleColor
Text color for active pop-up window title. Available with 
Appearance 1.0.1 and later.

kThemeInactivePopupWindowTitleColor
Text color for inactive pop-up window title. Available with 
Appearance 1.0.1 and later.

kThemeActiveRootMenuTextColor
Text color for active root menu. Available with Appearance 
1.0.1 and later.

kThemeSelectedRootMenuTextColor
Text color for selected root menu. Available with 
Appearance 1.0.1 and later.

kThemeDisabledRootMenuTextColor
Text color for disabled root menu. Available with 
Appearance 1.0.1 and later.

kThemeActiveMenuItemTextColor
Text color for active menu item. Available with 
Appearance 1.0.1 and later.
28 Appearance Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
kThemeSelectedMenuItemTextColor
Text color for inactive menu item. Available with 
Appearance 1.0.1 and later.

kThemeDisabledMenuItemTextColor
Text color for disabled menu item. Available with 
Appearance 1.0.1 and later.

kThemeActivePopupLabelTextColor
Text color for active pop-up menu label. Available with 
Appearance 1.0.1 and later.

kThemeInactivePopupLabelTextColor
Text color for inactive pop-up menu label. Available with 
Appearance 1.0.1 and later.

Appearance-Compliant Draw State Constants 1
NEW WITH THE APPEARANCE MANAGER 1

You can pass constants of type ThemeDrawState in the inState parameter of 
functions used for drawing human interface elements to specify whether they 
are drawn as active (normal), selected (pressed), or inactive (disabled). For 
descriptions of the functions that use these constants, see ÒDrawing 
Appearance-Compliant ControlsÓ (page 35).

enum {
kThemeStateDisabled = 0,
kThemeStateActive = 1,
kThemeStatePressed = 2

};
typedef UInt32 ThemeDrawState;

Constant descriptions

kThemeStateDisabled
Element is drawn in its disabled, inactive state. 

kThemeStateActive
Element is drawn in its normal, active state. 

kThemeStatePressed
Element is drawn in its selected, pressed state. 
Appearance Manager Types and Constants 29
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
Appearance-Compliant Menu Bar Draw State Constants 1
NEW WITH THE APPEARANCE MANAGER 1

You can pass one of the following constants in the inState parameter of 
DrawThemeMenuBarBackground (page 45) to specify whether 
Appearance-compliant menu bars are drawn as normal or selected. 

enum{
kThemeMenuBarNormal = 0,
kThemeMenuBarSelected = 1

};
typedef SInt16 ThemeMenuBarState;

Constant descriptions

kThemeMenuBarNormal
Menu bar is drawn in its normal state. 

kThemeMenuBarSelected
Menu bar is drawn in its selected state.

If you wish the menu bar to be drawn with square upper corners (as for a 
laptop system) instead of rounded ones (as for a desktop system), your 
application should set the bit for the attribute kThemeMenuSquareMenuBar. 

enum {
kThemeMenuSquareMenuBar= (1 << 0)

};

Constant descriptions

kThemeMenuSquareMenuBar
Menu bar is drawn with square corners. 

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before using the 
ThemeMenuBarState type or the Appearance-compliant menu bar draw state 
constants. See ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21) for 
details on how to determine if the Appearance Manager is present and what its 
version is, if so.
30 Appearance Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
Appearance-Compliant Menu Draw State Constants 1
NEW WITH THE APPEARANCE MANAGER 1

You can pass one of the following constants in the inState parameter of 
DrawThemeMenuItem (page 48) and DrawThemeMenuTitle (page 46) to specify the 
state in which Appearance-compliant menus are drawn. 

enum{
kThemeMenuActive = 0,
kThemeMenuSelected = 1,
kThemeMenuDisabled = 2

};
typedef SInt16 ThemeMenuState;

Constant descriptions

kThemeMenuActive Menu is drawn in its active state. 
kThemeMenuSelected Menu is drawn in its selected state.
kThemeMenuDisabled Menu is drawn in its disabled state.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before using the 
ThemeMenuState type or the Appearance-compliant menu draw state constants. 
See ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21) for details on 
how to determine if the Appearance Manager is present and what its version is, 
if so.

Appearance-Compliant Menu Type Constants 1
NEW WITH THE APPEARANCE MANAGER 1

You can pass one of the following constants in the inMenuType parameter of 
GetThemeMenuBackgroundRegion (page 51) and DrawThemeMenuBackground 
(page 48) to specify menu type. 

enum {
kThemeMenuTypePullDown = 0,
kThemeMenuTypePopUp = 1,
Appearance Manager Types and Constants 31
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
kThemeMenuTypeHierarchical = 2
};
typedef SInt16 ThemeMenuType;

Constant descriptions

kThemeMenuTypePullDown
A pull-down menu.

kThemeMenuTypePopUp
A pop-up menu.

kThemeMenuTypeHierarchical
A hierarchical menu.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before using the ThemeMenuType 
type or the Appearance-compliant menu type constants. See ÒAppearance 
Manager Gestalt Selector ConstantsÓ (page 21) for details on how to determine 
if the Appearance Manager is present and what its version is, if so.

Appearance-Compliant Menu Item Type Constants 1
NEW WITH THE APPEARANCE MANAGER 1

You can pass one of the following constants in the inItemType parameters of 
DrawThemeMenuItem (page 48) and GetThemeMenuItemExtra (page 54) to specify 
menu item type. 

enum {
kThemeMenuItemPlain = 0,
kThemeMenuItemHierarchical = 1,
kThemeMenuItemScrollUpArrow = 2,
kThemeMenuItemScrollDownArrow = 3

};
typedef SInt16 ThemeMenuItemType;

Constant descriptions

kThemeMenuItemPlain
A plain menu item.
32 Appearance Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
kThemeMenuItemHierarchical
A hierarchical menu item.

kThemeMenuItemScrollUpArrow
A scroll-up arrow.

kThemeMenuItemScrollDownArrow
A scroll-down arrow.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before using the 
ThemeMenuItemType type or the Appearance-compliant menu item type 
constants. See ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21) for 
details on how to determine if the Appearance Manager is present and what its 
version is, if so.

Result Codes 1
The most common result codes that can be returned by Appearance Manager 
functions are listed below.

noErr 0 No error
paramErr Ð50 Error in parameter list
memFullErr Ð108 Not enough memory
appearanceBadBrushIndexErr Ð30560 Invalid brush color constant
appearanceProcessRegisteredErr Ð30561 Application already 

registered as Appearance 
Manager client

appearanceProcessNotRegisteredErr Ð30562 Application not registered 
as Appearance Manager 
client

appearanceBadTextColorIndexErr Ð30563 Invalid text color constant
appearanceThemeHasNoAccents Ð30564 Theme does not support 

accent colors
Appearance Manager Types and Constants 33
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
Appearance Manager Functions 1

Initializing the Appearance Manager 1

RegisterAppearanceClient 1
NEW WITH THE APPEARANCE MANAGER 1

Makes your application Appearance-compliant and enables the mapping of 
standard pre-Appearance deÞnition functions to their Appearance-compliant 
equivalents.

pascal OSStatus RegisterAppearanceClient (void);

function result A result code. The result code appearanceProcessRegisteredErr 
indicates that your process was already registered when you 
called the RegisterAppearanceClient function. For a list of other 
result codes, see ÒResult CodesÓ (page 33).

DISCUSSION 

The RegisterAppearanceClient function must be called at the beginning of 
your application, prior to initializing or drawing any onscreen elements or 
invoking any deÞnition functions, such as the menu bar. Under Appearance 1.0 
and 1.0.1, applications that call RegisterAppearanceClient will continue to have 
a platinum look when systemwide appearance is off. 

RegisterAppearanceClient automatically maps standard pre-Appearance 
deÞnition functions to their Appearance-compliant equivalents, whether or not 
the user has turned on systemwide appearance; see ÒIntroduction to the 
Appearance ManagerÓ (page 19) for more details on this process. Although 
they will not make use of mapping, applications that specify 
Appearance-compliant deÞnition function IDs directly should also call 
RegisterAppearanceClient.
34 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
UnregisterAppearanceClient 1
NEW WITH THE APPEARANCE MANAGER 1

Makes your application non-Appearance-compliant and turns off the mapping 
of standard pre-Appearance deÞnition functions to their 
Appearance-compliant equivalents.

pascal OSStatus UnregisterAppearanceClient (void);

function result A result code. The result code 
appearanceProcessNotRegisteredErr indicates that your process 
was not registered when you called the 
UnregisterAppearanceClient function. For a list of other result 
codes, see ÒResult CodesÓ (page 33).

DISCUSSION

The UnregisterAppearanceClient function is automatically called for you when 
your application terminates. Normally this function does not need to be called. 
You might want to call this function if you are running a plug-in architecture, 
and you know that a given plug-in isnÕt Appearance compliant. In this case 
you would bracket your use of the plug-in with calls to 
UnregisterAppearanceClient (before the plug-in is used) and 
RegisterAppearanceClient (after the plug-in is used), so that Appearance is 
turned off for the duration of the plug-inÕs usage.

Drawing Appearance-Compliant Controls 1

DrawThemePrimaryGroup 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a primary group box frame consistent with the current theme.

pascal OSStatus DrawThemePrimaryGroup (
const Rect *inRect,
ThemeDrawState inState);
Appearance Manager Functions 35
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
inRect On input, a pointer to a rectangle.

inState A value specifying the state in which the primary group box 
frame is to be drawn; see ÒAppearance-Compliant Draw State 
ConstantsÓ (page 29). The frame can only be drawn as active or 
inactive; passing kThemeStatePressed will result in an error 
being returned.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The primary group box frame is drawn inside the rectangle that is passed and 
is a maximum of 2 pixels thick.

SEE ALSO

ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines.

DrawThemeSecondaryGroup 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a secondary group box frame consistent with the current theme.

pascal OSStatus DrawThemeSecondaryGroup (
const Rect *inRect,
ThemeDrawState inState);

inRect On input, a pointer to a rectangle.

inState A value specifying the state in which the secondary group box 
frame is to be drawn; see ÒAppearance-Compliant Draw State 
ConstantsÓ (page 29). The frame can only be drawn as active or 
inactive; passing kThemeStatePressed will result in an error 
being returned.

function result A result code; see ÒResult CodesÓ (page 33).
36 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
DISCUSSION

The DrawThemeSecondaryGroup function allow you to nest a secondary group 
box frame within the primary group box frame. The secondary group box 
frame is drawn inside the rectangle that is passed and is a maximum of 2 pixels 
thick.

SEE ALSO

ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 

DrawThemeSeparator 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a separator line consistent with the current theme. 

pascal OSStatus DrawThemeSeparator (
const Rect *inRect,
ThemeDrawState inState);

inRect On input, a pointer to a rectangle. 

inState A value specifying the state in which the separator line is to be 
drawn; see ÒAppearance-Compliant Draw State ConstantsÓ 
(page 29). The separator line can only be drawn as active or 
inactive; passing kThemeStatePressed will result in an error 
being returned.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeSeparator function draws a separator line inside the rectangle 
passed in, which is a maximum of 2 pixels thick. The orientation of the 
rectangle determines where the separator line is drawn. If the rectangle is 
wider than it is tall, the separator line is horizontal; otherwise it is vertical.

SEE ALSO

ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 
Appearance Manager Functions 37
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
DrawThemeWindowHeader 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a window header consistent with the current theme.

pascal OSStatus DrawThemeWindowHeader (
const Rect *inRect,
ThemeDrawState inState);

inRect On input, a pointer to a rectangle. 

inState A value specifying the state in which the window header is to 
be drawn; see ÒAppearance-Compliant Draw State ConstantsÓ 
(page 29). The header can only be drawn as active or inactive; 
passing kThemeStatePressed will result in an error being 
returned.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeWindowHeader function draws a window header such as that used 
by the Finder. The window header is drawn inside the rectangle that is passed.

SEE ALSO

ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 

DrawThemeWindowListViewHeader 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a window list view header consistent with the current theme.

pascal OSStatus DrawThemeWindowListViewHeader (
const Rect *inRect,
ThemeDrawState inState);

inRect On input, a pointer to a rectangle. 
38 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
inState A value specifying the state in which the window list view 
header is to be drawn; see ÒAppearance-Compliant Draw State 
ConstantsÓ (page 29). The header can only be drawn as active 
or inactive; passing kThemeStatePressed will result in an error 
being returned.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeWindowListViewHeader function draws a window list view header, 
such as that used by the Finder, inside the rectangle that is passed in. A 
window list view header is drawn without a line on its bottom edge, so that 
bevel buttons can be placed against it without overlapping.

SEE ALSO

ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 

DrawThemePlacard 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a placard consistent with the current theme.

pascal OSStatus DrawThemePlacard (
const Rect *inRect,
ThemeDrawState inState);

inRect On input, a pointer to a rectangle. 

inState A value specifying the state in which the placard is to be 
drawn; see ÒAppearance-Compliant Draw State ConstantsÓ 
(page 29). The placard can only be drawn as active or inactive; 
passing kThemeStatePressed will result in an error being 
returned.

function result A result code; see ÒResult CodesÓ (page 33).
Appearance Manager Functions 39
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
DISCUSSION

The DrawThemePlacard function draws a placard inside the rectangle that is 
passed.

SEE ALSO

ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 

DrawThemeModelessDialogFrame 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a modeless dialog box frame consistent with the current theme.

pascal OSStatus DrawThemeModelessDialogFrame (
const Rect *inRect, 
ThemeDrawState inState);

inRect On input, a pointer to a rectangle. 

inState A value specifying the state in which the modeless dialog box 
frame is to be drawn; see ÒAppearance-Compliant Draw State 
ConstantsÓ (page 29). The frame can only be drawn as active or 
inactive; passing kThemeStatePressed will result in an error 
being returned.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeModelessDialogFrame function draws a modeless dialog box 
frame, like the one drawn by the Dialog Manager. This function may be used to 
make a custom modeless dialog box Appearance-compliant.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
DrawThemeModelessDialogFrame function. See ÒAppearance Manager Gestalt 
Selector ConstantsÓ (page 21) for details on how to determine if the 
Appearance Manager is present and what its version is, if so.
40 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
SEE ALSO

ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 

DrawThemeEditTextFrame 1
NEW WITH THE APPEARANCE MANAGER 1

Draws an editable text frame consistent with the current theme.

pascal OSStatus DrawThemeEditTextFrame (
const Rect *inRect, 
ThemeDrawState inState);

inRect On input, a pointer to a rectangle. 

inState A value specifying the state in which the editable text frame is 
to be drawn; see ÒAppearance-Compliant Draw State 
ConstantsÓ (page 29). The frame can only be drawn as active or 
inactive; passing kThemeStatePressed will result in an error 
being returned.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeEditTextFrame function draws an editable text frame (a 
maximum of 2 pixels thick) outside the rectangle passed in. The rectangle 
should be the same as the one passed in the function DrawThemeFocusRect 
(page 43), so you can get the correct focus look for your editable text control. 
You should not use these frames for items other than editable text Þelds.

SEE ALSO

ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 
Appearance Manager Functions 41
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
DrawThemeListBoxFrame 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a list box frame consistent with the current theme.

pascal OSStatus DrawThemeListBoxFrame (
const Rect *inRect, 
ThemeDrawState inState);

inRect On input, a pointer to a rectangle. 

inState A value specifying the state in which the list box frame is to be 
drawn; see ÒAppearance-Compliant Draw State ConstantsÓ 
(page 29). The frame can only be drawn as active or inactive; 
passing kThemeStatePressed will result in an error being 
returned.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeListBoxFrame function draws a list box frame (a maximum of 2 
pixels thick) outside the rectangle passed in. The rectangle should be the same 
as the one passed into the function DrawThemeFocusRect (page 43) so you can get 
the correct focus look for your list box control.

SEE ALSO

ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 

DrawThemeGenericWell 1
NEW WITH THE APPEARANCE MANAGER 1

Draws an image well frame consistent with the current theme.

pascal OSStatus DrawThemeGenericWell (
const Rect *inRect,
ThemeDrawState inState,
Boolean inFillCenter);
42 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
inRect On input, a pointer to a rectangle. 

inState A value specifying the state in which the image well frame is to 
be drawn; see ÒAppearance-Compliant Draw State ConstantsÓ 
(page 29). The well can only be drawn as active or inactive; 
passing kThemeStatePressed will result in an error being 
returned.

inFillCenter A Boolean value indicating whether the image well frame is to 
be Þlled in with white. 

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeGenericWell function draws an image well frame, for use with 
custom image well controls. You can specify that the center of the well be Þlled 
in with white. 

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
DrawThemeGenericWell function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

DrawThemeFocusRect 1
NEW WITH THE APPEARANCE MANAGER 1

Draws or erases a focus ring around a speciÞed rectangle consistent with the 
current theme.

pascal OSStatus DrawThemeFocusRect (
const Rect *inRect,
Boolean inHasFocus);

inRect On input, a pointer to a rectangle. 

inHasFocus A Boolean value. If true, the focus ring should be drawn. If 
false, the focus ring should be erased.
Appearance Manager Functions 43
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeFocusRect function should be used to indicate that an item has 
keyboard focus. The focus ring is drawn outside the rectangle that is passed in 
and can be outset a maximum of 3 pixels. 

SPECIAL CONSIDERATIONS

To achieve the right look, you should Þrst call DrawThemeEditTextFrame 
(page 41) or DrawThemeListBoxFrame (page 42) and then call DrawThemeFocusRect, 
passing the same rectangle in the inRect parameter. If you use 
DrawThemeFocusRect to erase the focus ring around an editable text frame or list 
box frame, you will have to redraw the editable text frame or list box frame 
because there is typically an overlap.

SEE ALSO

ÒDialog Box GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 

DrawThemeFocusRegion 1
NEW WITH THE APPEARANCE MANAGER 1

Draws or erases an Appearance-compliant focus ring around a speciÞed region.

pascal OSStatus DrawThemeFocusRegion (
RgnHandle inRegion,
Boolean inHasFocus);

inRegion On input, a handle to a region.

inHasFocus A Boolean value. If true, the focus region should be drawn. If 
false, the focus region should be erased.

function result A result code; see ÒResult CodesÓ (page 33).
44 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
DISCUSSION

The DrawThemeFocusRegion function draws or erases a region to receive 
keyboard focus.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
DrawThemeFocusRegion function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

Drawing Appearance-Compliant Menus 1

DrawThemeMenuBarBackground 1
NEW WITH THE APPEARANCE MANAGER 1

Draws an Appearance-compliant menu bar background.

pascal OSStatus DrawThemeMenuBarBackground (
const Rect *inBounds,
ThemeMenuBarState inState,
UInt32 inAttributes);

inBounds On input, a pointer to a rectangle providing global coordinates 
that specify the menu barÕs initial size and location.

inState A value specifying the state (active or selected) in which the 
menu bar is to be drawn; see ÒAppearance-Compliant Menu 
Bar Draw State ConstantsÓ (page 30). 

inAttributes  Reserved. Pass 0. 

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

Use the DrawThemeMenuBarBackground function if you are writing a custom 
menu bar deÞnition function and wish to coordinate with the current theme. 
Appearance Manager Functions 45
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
An Appearance-compliant menu bar background is drawn in the rectangle 
passed in the inBounds parameter.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
DrawThemeMenuBarBackground function. See ÒAppearance Manager Gestalt 
Selector ConstantsÓ (page 21) for details on how to determine if the 
Appearance Manager is present and what its version is, if so.

DrawThemeMenuTitle 1
NEW WITH THE APPEARANCE MANAGER 1

Draws an Appearance-compliant menu title.

pascal OSStatus DrawThemeMenuTitle (
const Rect *inMenuBarRect,
const Rect *inTitleRect,
ThemeMenuState inState,
UInt32 inAttributes,
MenuTitleDrawingUPP inTitleProc,
UInt32 inTitleData);

inMenuBarRect On input, a pointer to a rectangle, which should contain the 
entire menu bar that the title is being drawn into. The menu bar 
background is drawn in the rectangle passed in the 
inMenuBarRect parameter. Call GetThemeMenuBarHeight (page 52) 
to get the height of the menu bar.

inTitleRect On input, a pointer to a rectangle, which should contain the 
entire title. The title background is drawn in the rectangle 
passed in the inTitleRect parameter. The width of this 
rectangle is determined by calculating the width of the menu 
titleÕs content and then calling GetThemeMenuTitleExtra 
(page 55) to get the amount of padding between menu titles in 
the current theme; these two values are added together and 
added to the left edge of where the title should be drawn. The 
top and bottom coordinates of this rectangle should be the same 
as those of the inMenuBarRect parameter.
46 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
inState A value specifying the state (active, selected, or disabled) in 
which the menu title is to be drawn; see 
ÒAppearance-Compliant Menu Draw State ConstantsÓ 
(page 31).

inAttributes  Reserved. Pass 0. 

inTitleProc On input, a pointer to a menu title drawing function such as 
MyMenuTitleDrawingProc (page 61), deÞning how to draw the 
contents of the menu title. The value of the inTitleProc 
parameter can be a valid universal procedure pointer or nil. 

inTitleData Data to be passed in to the inUserData parameter of 
MyMenuTitleDrawingProc (page 61). This data is usually a pointer 
to information needed to draw the titleÕs contents, such as a 
pointer to a string.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeMenuTitle function should be called when you are writing your 
own custom menu bar deÞnition function and wish to coordinate with the 
current theme. Your menu title drawing function will be called clipped to the 
rectangle in which the menu title content is drawn; do not draw outside this 
region. At the time your menu title drawing function is called, the foreground 
text color and mode is already set to draw text in the speciÞed state (enabled, 
selected, or disabled) and correct color for the theme. You do not need to set the 
color unless you have special drawing needs.

IMPORTANT

You should not depend on the background color for your 
menu title, so you should not call the EraseRect function 
from your menu title drawing function.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
DrawThemeMenuTitle function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.
Appearance Manager Functions 47
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
DrawThemeMenuBackground 1
NEW WITH THE APPEARANCE MANAGER 1

Draws an Appearance-compliant menu background.

pascal OSStatus DrawThemeMenuBackground (
const Rect *inMenuRect,
ThemeMenuType inMenuType);

inMenuRect On input, a pointer to a rectangle, which should contain the 
entire menu.

inMenuType A value specifying the type of menu (pull-down, pop-up, or 
hierarchical) for which a background is being drawn; see 
ÒAppearance-Compliant Menu Type ConstantsÓ (page 31).

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeMenuBackground function draws a menu background in the 
rectangle speciÞed; it should be called when you are writing a custom menu 
bar deÞnition function and wish to coordinate with the current theme.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
DrawThemeMenuBackground function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

DrawThemeMenuItem 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a menu item that coordinates with the current theme.

pascal OSStatus DrawThemeMenuItem (
const Rect *inMenuRect,
const Rect *inItemRect,
48 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
SInt16 inVirtualMenuTop,
SInt16 inVirtualMenuBottom,
ThemeMenuState inState,
ThemeMenuItemType inItemType,
MenuItemDrawingUPP inDrawProc,
UInt32 inUserData);

inMenuRect On input, a pointer to a rectangle that should contain the area 
of the entire menu; this is the actual menu rectangle as used in 
your menu deÞnition function. 

inItemRect On input, a pointer to a rectangle, which should contain the 
area of the entire menu item. The menu itemÕs background will 
be drawn in the rectangle passed in the inItemRect parameter. 
You should calculate the size of the menu itemÕs content and 
then call GetThemeMenuItemExtra (page 54) to get the amount of 
padding surrounding menu items in the current theme; the 
width and height of the menu item rectangle are determined by 
adding these values together.

inVirtualMenuTop
An integer representing the true top of the menu. Normally this 
value is the top coordinate of the rectangle supplied in the 
inMenuRect parameter. This value could be different, however, if 
a menu is scrolled or bigger than can be displayed in the menu 
rectangle. You would normally pass the value of the global 
variable TopMenuItem into this parameter if you are writing a 
custom menu deÞnition function.

inVirtualMenuBottom
An integer representing the true bottom of the menu. Normally 
this value is the bottom coordinate of the rectangle supplied in 
the inMenuRect parameter. This value could be different, 
however, if a menu is scrolled or bigger than can be displayed 
in the menu rectangle. You would normally pass the value of 
the global variable AtMenuBottom into this parameter if you are 
writing a custom menu deÞnition function.

inState A value specifying the state (active, selected, or disabled) in 
which the menu item is to be drawn; see 
ÒAppearance-Compliant Menu Draw State ConstantsÓ 
(page 31).
Appearance Manager Functions 49
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
inItemType A constant of type ThemeMenuItemType. If you pass 
kThemeMenuItemScrollUpArrow or 
kThemeMenuItemScrollDownArrow, then pass nil for the 
inDrawProc parameter, since thereÕs no content to be drawn. If 
you pass kThemeMenuItemHierarchical, the hierarchical arrow is 
drawn for you. See ÒAppearance-Compliant Menu Item Type 
ConstantsÓ (page 32).

inDrawProc On input, a pointer to your menu item drawing function. The 
value of the inDrawProc parameter can be a valid universal 
procedure pointer or nil; see MyMenuItemDrawingProc (page 63). 

inUserData Data to be passed in to the inUserData parameter of 
MyMenuItemDrawingProc (page 63). This data is usually a pointer 
to information needed to draw the itemÕs contents, such as a 
pointer to a string.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeMenuItem function should be called when you are writing your 
own custom menu deÞnition function and wish to coordinate menu items with 
the current theme. Your menu drawing function will be called clipped to the 
rectangle in which you are allowed to draw your content; do not draw outside 
this region. At the time your menu drawing function is called, the foreground 
text color and mode are already set to draw text in the speciÞed state (enabled, 
selected, disabled) and correct color for the theme. You do not need to set the 
color unless you have special drawing needs.

IMPORTANT

You should not depend on the background color for your 
menu item, so you should not call the EraseRect function 
from your menu item drawing function.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
DrawThemeMenuItem function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.
50 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
DrawThemeMenuSeparator 1
NEW WITH THE APPEARANCE MANAGER 1

Draws an Appearance-compliant menu item separator line.

pascal OSStatus DrawThemeMenuSeparator (const Rect *inItemRect);

inItemRect On input, a pointer to the rectangle in which the menu item 
separator should be drawn. The rectangle passed should be the 
same height as the height returned by the function 
GetThemeMenuSeparatorHeight (page 53).

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The DrawThemeMenuSeparator function should be called when you are writing 
your own menu bar deÞnition function and wish to coordinate a menu item 
separator line with the current theme.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
DrawThemeMenuSeparator function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

GetThemeMenuBackgroundRegion 1
NEW WITH THE APPEARANCE MANAGER 1

Gets the background region a menu occupies. 

pascal OSStatus GetThemeMenuBackgroundRegion (
const Rect *inMenuRect,
ThemeMenuType inMenuType,
RgnHandle Region);

inMenuRect On input, a pointer to a rectangle.
Appearance Manager Functions 51
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
inMenuType A value specifying the type of menu (pull-down, pop-up, or 
hierarchical) whose background you wish to obtain; see 
ÒAppearance-Compliant Menu Type ConstantsÓ (page 31).

Region On input, a handle to a window region created by the 
application. On output, a handle to the region of the speciÞed 
rectangle. 

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The GetThemeMenuBackgroundRegion function should be called when you are 
writing an Appearance-compliant menu bar deÞnition function. It gets the 
menu background region for the rectangle speciÞed. This rectangle should be 
the entire menu. The region handle passed is set to the region.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
GetThemeMenuBackgroundRegion function. See ÒAppearance Manager Gestalt 
Selector ConstantsÓ (page 21) for details on how to determine if the 
Appearance Manager is present and what its version is, if so.

GetThemeMenuBarHeight 1
NEW WITH THE APPEARANCE MANAGER 1

Gets the optimal height of a menu bar for the current theme.

pascal OSStatus GetThemeMenuBarHeight (SInt16 *outHeight);

outHeight On output, the height (in pixels) of the menu bar.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

Call the GetThemeMenuBarHeight function if you are implementing a custom 
menu bar deÞnition function and want to correctly calculate the height of a 
menu bar for the current theme. GetThemeMenuBarHeight will provide the ideal 
52 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
height of a menu bar in the current theme and for this reason should be used 
instead of the GetMBarHeight function, which provides only the actual menu bar 
height. GetMBarHeight can provide misleading information if, for example, the 
menu bar is hidden; in that case GetMBarHeight would return 0 for the menu 
barÕs height, while GetThemeMenuBarHeight would return the preferred height of 
the menu bar, whether or not it was currently drawn.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
GetThemeMenuBarHeight function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

GetThemeMenuSeparatorHeight 1
NEW WITH THE APPEARANCE MANAGER 1

Gets the height of a menu separator line for the current theme.

pascal OSStatus GetThemeMenuSeparatorHeight (SInt16 *outHeight);

outHeight On output, the height (in pixels) of the menu separator line.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The GetThemeMenuSeparatorHeight function should be called when you are 
writing your own menu deÞnition function and wish to calculate a menu 
rectangle for a separator to match the current theme.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
GetThemeMenuSeparatorHeight function. See ÒAppearance Manager Gestalt 
Selector ConstantsÓ (page 21) for details on how to determine if the 
Appearance Manager is present and what its version is, if so.
Appearance Manager Functions 53
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
GetThemeMenuItemExtra 1
NEW WITH THE APPEARANCE MANAGER 1

Gets of measurement of the space (in pixels) surrounding a menu item in the 
current theme.

pascal OSStatus GetThemeMenuItemExtra (
ThemeMenuItemType inItemType,
SInt16 *outHeight,
SInt16 *outWidth);

inItemType A constant of type ThemeMenuItemType, identifying the type of 
menu item for which you are interested in getting a 
measurement. See ÒAppearance-Compliant Menu Item Type 
ConstantsÓ (page 32).

outHeight On output, the value (in pixels) of the total amount of padding 
between the content of the menu item and the top and bottom 
of its frame. Your contentÕs height plus the measurement 
provided by the outHeight parameter equals the total item 
height.

outWidth On output, the value (in pixels) of the total amount of padding 
between the content of the menu item and the left and right 
limits of the menu. Your contentÕs width plus the measurement 
provided by the outWidth parameter equals the total item width.

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The GetThemeMenuItemExtra function should be called when you are writing 
your own menu deÞnition function and wish to be Appearance-compliant. 
Once you have determined the height and width of the content of a menu item, 
call GetThemeMenuItemExtra to get a measurement in pixels of the space 
surrounding a menu item, including any necessary inter-item spacing, for the 
current theme. By combining the values for your menu itemÕs content and the 
extra padding needed by the theme, you can derive the size of the rectangle 
needed to encompass both the content and the theme element together.
54 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
GetThemeMenuItemExtra function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

GetThemeMenuTitleExtra 1
NEW WITH THE APPEARANCE MANAGER 1

Gets a measurement of the space (in pixels) surrounding a menu title in a given 
theme.

pascal OSStatus GetThemeMenuTitleExtra (
SInt16 *outWidth,
Boolean inIsSquished);

outWidth On output, the distance (in pixels) between the width of the 
menu title and its frame.

inIsSquished A Boolean value. If all the titles do not Þt in the menu bar and 
you wish to condense the menu titleÕs spacing to Þt, set to true; 
if set to false, the menu title will not be condensed. 

function result A result code; see ÒResult CodesÓ (page 33).

DISCUSSION

The GetThemeMenuTitleExtra function should be called when you are writing 
your own menu deÞnition function and wish to be Appearance-compliant. 
Once you have determined the height and width of the content of a menu title, 
call GetThemeMenuTitleExtra to get the distance (in pixels) surrounding the 
menu title in the current theme. This includes space on either side of the menu 
title.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
GetThemeMenuTitleExtra function. See ÒAppearance Manager Gestalt Selector 
Appearance Manager Functions 55
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

Coordinating Colors and Patterns With the Current Theme 1

SetThemeBackground 1
NEW WITH THE APPEARANCE MANAGER 1

Sets an elementÕs background color or pattern to comply with the current 
theme.

pascal OSStatus SetThemeBackground (
ThemeBrush inBrush,
SInt16 inDepth,
Boolean inIsColorDevice);

inBrush A value representing the pattern or color to which the 
background is to be set; see ÒAppearance-Compliant Brush 
Type ConstantsÓ (page 23).

inDepth The bit depth (in pixels) of the current graphics port. 

inIsColorDevice
A Boolean value. Set to true to indicate that you are drawing on 
a color device. Set to false for a monochrome device.

function result A result code. The result code appearanceBadBrushIndexErr 
indicates that the brush constant passed was not valid. For a list 
of other result codes, see ÒResult CodesÓ (page 33).

DISCUSSION

The SetThemeBackground function should be called each time you wish to draw 
an element in a speciÞed brush constant using Appearance Manager draw 
functions.

The constant in the inBrush parameter can represent a color or pattern, 
depending on the current theme. Because it could specify a pattern, remember 
to save and restore the pnPixPat and bkPixPat Þelds of your graphics port when 
56 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
saving the text and background colors. Because patterns in the bkPixPat Þeld 
override the background color of the window, call the Window Manager 
function BackPat to set your background pattern to a normal white pattern. 
This will ensure that you can use RGBBackColor to set your background color to 
white, call the Window Manager function EraseRect, and get the expected 
results.

SetThemePen 1
NEW WITH THE APPEARANCE MANAGER 1

Sets an elementÕs pen pattern or color to comply with the current theme.

pascal OSStatus SetThemePen (
ThemeBrush inBrush,
SInt16 inDepth,
Boolean inIsColorDevice);

inBrush A value representing the pattern or color to which the pen is to 
be set; see ÒAppearance-Compliant Brush Type ConstantsÓ 
(page 23).

inDepth The bit depth (in pixels) of the current graphics port. 

inIsColorDevice
A Boolean value. Set to true to indicate that you are drawing on 
a color device. Set to false for a monochrome device.

function result A result code. The result code appearanceBadBrushIndexErr 
indicates that the brush constant passed in was not valid. For a 
list of other result codes, see ÒResult CodesÓ (page 33).

DISCUSSION

The SetThemePen function should be called each time you wish to draw an 
element in a speciÞed brush constant using Appearance Manager draw 
functions. 

The constant in the inBrush parameter can represent a color or pattern, 
depending on the current theme. Because it could specify a pattern, remember 
to save and restore the pnPixPat and bkPixPat Þelds of your graphics port when 
saving the text and background colors. Because patterns in the pnPixPat Þeld 
Appearance Manager Functions 57
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
override the foreground color of the window, call the Window Manager 
function PenPat to set your foreground pattern to a normal white pattern. This 
will ensure that you can use RGBForeColor to set your foreground color to 
white, call the Window Manager function PaintRect, and get the expected 
results.

SetThemeTextColor 1
NEW WITH THE APPEARANCE MANAGER 1

Sets an elementÕs foreground color for drawing text to comply with the current 
theme.

pascal OSStatus SetThemeTextColor (
ThemeTextColor inColor,
SInt16 inDepth,
Boolean inIsColorDevice);

inColor A value representing the color to which the foreground text is 
to be set; see ÒAppearance-Compliant Text Color ConstantsÓ 
(page 25).

inDepth The bit depth (in pixels) of the current graphics port. 

inIsColorDevice
A Boolean value. Set to true to indicate that you are drawing on 
a color device. Set to false for a monochrome device.

function result A result code. The result code appearanceBadTextColorIndexErr 
indicates that the text color index passed was not valid. For a 
list of other result codes, see ÒResult CodesÓ (page 33).

DISCUSSION

The SetThemeTextColor function is typically used inside a DeviceLoop drawing 
procedure to set the foreground color for drawing text in order to coordinate 
with the current theme.
58 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
SetThemeWindowBackground 1
NEW WITH THE APPEARANCE MANAGER 1

Sets the Appearance-compliant color or pattern that the window background 
will be repainted to when PaintOne is called.

pascal OSStatus SetThemeWindowBackground (
WindowPtr inWindow,
ThemeBrush inBrush,
Boolean inUpdate);

inWindow On input, a pointer to a window.

inBrush A value representing the pattern or color to which the window 
background will be set; see ÒAppearance-Compliant Brush 
Type ConstantsÓ (page 23).

inUpdate A Boolean value. If true, the content region of the window is to 
be invalidated and the window erased. If false, the window 
background is to be set but no drawing will occur on screen. 

function result A result code. The result code appearanceBadBrushIndexErr 
indicates that the brush constant passed was not valid. For a list 
of other result codes, see ÒResult CodesÓ (page 33).

DISCUSSION

The SetThemeWindowBackground function sets the color or pattern to which the 
Window Manager will erase the window background.

The constant in the inBrush parameter can represent a color or pattern, 
depending on the current theme. Because it could specify a pattern, remember 
to save and restore the pnPixPat and bkPixPat Þelds of your graphics port when 
saving the text and background colors. Because patterns in the bkPixPat Þeld 
override the background color of the window, call the Window Manager 
function BackPat to set your background pattern to a normal white pattern. 
This will ensure that you can use RGBBackColor to set your background color to 
white, call the Window Manager function EraseRect, and get the expected 
results.
Appearance Manager Functions 59
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
IsThemeInColor 1
NEW WITH THE APPEARANCE MANAGER 1

Checks to see whether the current theme would draw in color in the given 
environment. 

pascal Boolean IsThemeInColor (
SInt16 inDepth,
Boolean inIsColorDevice);

inDepth The bit depth (in pixels) of the current graphics port. 

inIsColorDevice
A Boolean value. Set to true to indicate that you are drawing on 
a color device. Set to false for a monochrome device.

function result Returns true if, given the depth and color device information, 
the theme would draw in color; returns false, if not.

DISCUSSION

The IsThemeInColor function is useful when you are drawing elements to match 
the current theme and need to determine whether or not the theme would be 
drawn in color or black and white. If the function returns true, you can draw in 
color; if it returns false, you should draw in black and white.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
IsThemeInColor function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

GetThemeAccentColors 1
NEW WITH THE APPEARANCE MANAGER 1

Gets a copy of the accent colors for the platinum theme. 

pascal OSStatus GetThemeAccentColors (CTabHandle *outColors);
60 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
outColors On output, a handle to the accent colors 

function result A result code; see ÒResult CodesÓ (page 33). The result 
appearanceThemeHasNoAccents is returned if the current theme 
has no accent colors. 

DESCRIPTION

The GetThemeAccentColors function returns a copy of an elementÕs accent 
colors, but only for the platinum theme. If GetThemeAccentColors is called when 
another theme is current, it returns an error.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling the 
GetThemeAccentColors function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

DeÞning Your Own Menu Drawing Callback Functions 1
This section describes application-deÞned callback functions supplied by the 
Appearance Manager for the creation of Appearance-compliant custom menu 
titles and menu items. 

MyMenuTitleDrawingProc 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a custom menu title that coordinates with the current theme. 

The Appearance Manager declares the type for an application-deÞned menu 
title drawing function as follows:

typedef pascal void (*MenuTitleDrawingProcPtr)(const Rect *inBounds, 
SInt16 inDepth, Boolean inIsColorDevice, SInt32 inUserData);
Appearance Manager Functions 61
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
The Appearance Manager deÞnes the data type MenuTitleDrawingUPP to identify 
the universal procedure pointer for an application-deÞned menu title drawing 
function:

typedef UniversalProcPtr MenuTitleDrawingUPP;

You typically use the NewMenuTitleDrawingProc macro like this:

MenuTitleDrawingUPP myMenuTitleDrawingUPP;
myMenuTitleDrawingUPP = NewMenuTitleDrawingProc(MyMenuTitleDrawingProc);

You typically use the CallMenuTitleDrawingProc macro like this:

CallMenuTitleDrawingProc(myMenuTitleDrawingUPP, inBounds, inDepth, 
inIsColorDevice, inUserData);

HereÕs how to declare a custom menu title drawing function, if you were to 
name the function MyMenuTitleDrawingProc:

pascal void (MyMenuTitleDrawingProc)
(const Rect *inBounds,
SInt16 inDepth,
Boolean inIsColorDevice,
SInt32 inUserData);

inBounds On input, a pointer to a rectangle in which you should draw 
your menu title content.

inDepth The bit depth (in pixels) of the current graphics port. 

inIsColorDevice
A Boolean value. Set to true to indicate that you are drawing on 
a color device. Set to false for a monochrome device.

inUserData User data specifying how to draw the menu title content, 
passed in from the inTitleData parameter of 
DrawThemeMenuTitle (page 46).

DISCUSSION

Your menu title drawing function will be called clipped to the rectangle in 
which you are allowed to draw your content; do not draw outside this region. 
You should center your content vertically inside the content rectangle.

At the time your menu title drawing function is called, the foreground text 
color and mode is already set to draw in the speciÞed state (enabled, selected, 
62 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
disabled) and correct color for the theme. You do not need to set the color 
unless you have special drawing needs.

IMPORTANT

You should not depend on the background color for your 
menu title, so you should not call the EraseRect function 
from your menu title drawing function.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling your 
MyMenuTitleDrawingProc function. See ÒAppearance Manager Gestalt Selector 
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.

MyMenuItemDrawingProc 1
NEW WITH THE APPEARANCE MANAGER 1

Draws a custom menu item that coordinates with the current theme. 

The Appearance Manager declares the type for an application-deÞned menu 
item drawing function as follows:

typedef pascal void (*MenuItemDrawingProcPtr)(const Rect *inBounds, 
SInt16 inDepth, Boolean inIsColorDevice, SInt32 inUserData);

The Appearance Manager deÞnes the data type MenuItemDrawingUPP to identify 
the universal procedure pointer for an application-deÞned menu item drawing 
function:

typedef UniversalProcPtr MenuItemDrawingUPP;

You typically use the NewMenuItemDrawingProc macro like this:

MenuItemDrawingUPP myMenuItemDrawingUPP;
myMenuItemDrawingUPP = NewMenuItemDrawingProc(MyMenuItemDrawingProc);

You typically use the CallMenuItemDrawingProc macro like this:

CallMenuItemDrawingProc(myMenuItemDrawingUPP, inBounds, inDepth, 
inIsColorDevice, inUserData);
Appearance Manager Functions 63
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
HereÕs how to declare a custom menu item drawing function, if you were to 
name the function MyMenuItemDrawingProc:

pascal void (MyMenuItemDrawingProc)
(const Rect *inBounds,
SInt16 inDepth,
Boolean inIsColorDevice,
SInt32 inUserData);

inBounds On input, a pointer to a rectangle in which you should draw 
your menu item content.

inDepth The bit depth (in pixels) of the current graphics port. 

inIsColorDevice
A Boolean value. Set to true to indicate that you are drawing on 
a color device. Set to false for a monochrome device.

inUserData User data specifying how to draw the menu item content, 
passed in from the inUserData parameter of DrawThemeMenuItem 
(page 48).

DISCUSSION

Your menu item drawing function will be called clipped to the rectangle in 
which you are allowed to draw your content; do not draw outside this region. 
You should center your content vertically inside the content rectangle.

At the time your menu item drawing function is called, the foreground text 
color and mode is already set to draw in the speciÞed state (enabled, selected, 
disabled) and correct color for the theme. You do not need to set the color 
unless you have special drawing needs.

IMPORTANT

You should not depend on the background color for your 
menu item, so you should not call the EraseRect function 
from your menu item drawing function.

SPECIAL CONSIDERATIONS

Make sure Appearance Manager 1.0.1 is present before calling your 
MyMenuItemDrawingProc function. See ÒAppearance Manager Gestalt Selector 
64 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  1

Appearance Manager Reference
ConstantsÓ (page 21) for details on how to determine if the Appearance 
Manager is present and what its version is, if so.
Appearance Manager Functions 65
12/10/97   Apple Computer, Inc.



C H A P T E R  1  

Appearance Manager Reference
66 Appearance Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Contents

12/10/97   Apple Computer, Inc.

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Control Manager Reference
Control Manager Types and Constants 71
Control DeÞnition IDs 71
Settings Values for Standard Controls 78
Control Data Tag Constants 83
Checkbox Value Constants 90
Radio Button Value Constants 91
Bevel Button Behavior Constants 92
Bevel Button Menu Constants 93
Bevel Button and Image Well Content Type Constants 94
Bevel Button Graphic Alignment Constants 95
Bevel Button Text Alignment Constants 97
Bevel Button Text Placement Constants 97
Clock Value Flag Constants 98
Control Part Code Constants 99
Part IdentiÞer Constants 102
Meta Font Constants 103
The Control Font Style Structure 103

Control Font Style Flag Constants 105
The Bevel Button and Image Well Content Structure 107
The Editable Text Selection Structure 108
The Tab Information Structure 109
The Auxiliary Control Structure 109
The Pop-Up Menu Private Structure 110
The Control Color Table Structure 110
Result Codes 110

Control Manager Resources 111
The Control Resource 111
67



C H A P T E R  2  
The Control DeÞnition Function Resource 113
The Control Color Table Resource 113
The List Box Description Resource 114
The Tab Information Resource 115

Control Manager Functions 118
Creating and Removing Controls 118

GetNewControl 118
NewControl 119
DisposeControl 121
KillControls 122

Embedding Controls 123
CreateRootControl 125
GetRootControl 126
EmbedControl 127
AutoEmbedControl 128
CountSubControls 129
GetIndexedSubControl 130
GetSuperControl 131
SetControlSupervisor 131
DumpControlHierarchy 132

Manipulating Controls 133
ShowControl 134
HideControl 135
ActivateControl 135
DeactivateControl 136
IsControlActive 137
HiliteControl 138
SendControlMessage 138

Displaying Controls 139
DrawOneControl 139
DrawControlInCurrentPort 140

Handling Events in Controls 141
FindControlUnderMouse 141
FindControl 142
HandleControlKey 142
IdleControls 143
HandleControlClick 144
TrackControl 146
68 Contents

12/10/97   Apple Computer, Inc.



C H A P T E R  2
Handling Keyboard Focus 147
SetKeyboardFocus 147
GetKeyboardFocus 148
AdvanceKeyboardFocus 149
ReverseKeyboardFocus 150
ClearKeyboardFocus 151

Accessing and Changing Control Settings and Data 152
GetBestControlRect 152
SetControlAction 153
SetControlColor 154
SetControlData 154
GetControlData 156
GetControlDataSize 157
GetControlFeatures 158
SetControlFontStyle 159
SetControlVisibility 160
IsControlVisible 161
SetUpControlBackground 161

DeÞning Your Own Control DeÞnition Function 162
MyControlDefProc 163

DeÞning Your Own Action Functions 184
MyActionProc 185
MyIndicatorActionProc 186

DeÞning Your Own Key Filter Function 187
MyControlKeyFilterProc 187

DeÞning Your Own User Pane Functions 189
MyUserPaneDrawProc 189
MyUserPaneHitTestProc 190
MyUserPaneTrackingProc 191
MyUserPaneIdleProc 193
MyUserPaneKeyDownProc 194
MyUserPaneActivateProc 195
MyUserPaneFocusProc 197
MyUserPaneBackgroundProc 198
Contents 69
12/10/97   Apple Computer, Inc.



C H A P T E R  2  
70 Contents

12/10/97   Apple Computer, Inc.



C H A P T E R  2
Control Manager Reference 2

This chapter describes the Control Manager types and constants, resources, and 
functions that are affected by Mac OS 8 or the Appearance Manager.

■ ÒControl Manager Types and ConstantsÓ (page 71) describes Control 
Manager types and constants, including structures. Result codes are 
included at the end of this section.

■ ÒControl Manager ResourcesÓ (page 111) describes the control ('CNTL') 
resource, the control color table ('cctb') resource, the list description 
('ldes') resource, the tab information ('tab#') resource, and the control 
deÞnition function ('CDEF') resource.

■ ÒControl Manager FunctionsÓ (page 118) describes both Control Manager 
functions and application-deÞned callback functions.

Control Manager Types and Constants 2

Control DeÞnition IDs 2
When creating a control, your application supplies a control deÞnition ID to the 
control resource (page 111) or to one of the Control Manager control-creation 
functions. The control deÞnition ID indicates the type of control to create. A 
control deÞnition ID is an integer that contains the resource ID of a control 
deÞnition function in its upper 12 bits and a variation code in its lower 4 bits. A 
control deÞnition ID is derived as follows:

control deÞnition ID = 16 * ('CDEF' resource ID) + variation code

A control deÞnition function determines how a control generally looks and 
behaves. Control deÞnition functions are stored as resources of type 'CDEF'. 
Various Control Manager functions call a control deÞnition function whenever 
they need to perform some control-dependent action, such as drawing the 
control on the screen. For more information on how to create a control 
deÞnition function, see ÒDeÞning Your Own Control DeÞnition FunctionÓ 
(page 162).

A control deÞnition function, in turn, can use a variation code to describe 
variations of the same basic control. For example, all pop-up arrows share the 
same basic control deÞnition function, which is stored in a resource of type 
Control Manager Types and Constants 71
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and 
points to the right; it has a control deÞnition ID of 192. A variation of this is a 
large, left-pointing arrow, which has a control deÞnition ID of 193. Still another 
variation, in which the arrow points up, has a control deÞnition ID of 194.

Your application can use the constants listed in Table 2-1 in place of control 
deÞnition IDs. Most of these constants, and their associated IDs, are new with 
the Appearance Manager and are not supported unless the Appearance 
Manager is available. A control deÞnition ID that is new is identiÞed with an 
asterisk (*) in its description in Table 2-1. For illustrations of these new controls, 
see ÒControl GuidelinesÓ in Mac OS 8 Human Interface Guidelines. 

If your application contains code that uses the older, pre-Appearance control 
deÞnition IDs or their constants, your application can use the Appearance 
Manager to map the old IDs to those for the new, updated controls introduced 
by the Appearance Manager. In particular, the control deÞnition IDs for 
pre-Appearance checkboxes, buttons, scroll bars, radio buttons, and pop-up 
menus will be automatically mapped to Appearance-compliant equivalents. 
For more information about this mapping, see ÒIntroduction to the Appearance 
ManagerÓ (page 19).

Table 2-1 Control definition IDs and resource IDs for standard controls 

Constant (and Value) for Control Definition ID Description 
Resource
ID

pushButProc (0) Pre-Appearance push button. 0

pushButProc + 
kControlUsesOwningWindowsFontVariant (8)

Pre-Appearance push button with its 
text in the window font.

0

kControlPushButtonProc (368) Appearance-compliant push button.* 23

kControlPushButLeftIconProc (374) Appearance-compliant push button 
with a color icon to the left of the 
control title.* (This direction is reversed 
when the system justiÞcation is right to 
left). The contrlMax Þeld of the control 
structure for this control contains the 
resource ID of the 'cicn' resource 
drawn in the pushbutton.

23
72 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlPushButRightIconProc (375) Appearance-compliant push button 
with a color icon to right of control 
title.* (This direction is reversed when 
the system justiÞcation is right to left). 
The contrlMax Þeld of the control 
structure for this control contains the 
resource ID of the 'cicn' resource 
drawn in the pushbutton.

23

checkBoxProc (1) Pre-Appearance checkbox. 0

checkBoxProc + 
kControlUsesOwningWindowsFontVariant (8)

Pre-Appearance checkbox with a 
control title in the window font.

0

kControlCheckBoxProc (369) Appearance-compliant checkbox.* 23

radioButProc (2) Pre-Appearance radio button. 0

radioButProc + 
kControlUsesOwningWindowsFontVariant (8)

Pre-Appearance radio button with a 
title in the window font.

0

kControlRadioButtonProc (370) Appearance-compliant radio button.* 23

scrollBarProc (16) Pre-Appearance scroll bar. 1

kControlScrollBarProc (384) Appearance-compliant scroll bar.* 24

kControlScrollBarLiveProc (386) Appearance-compliant scroll bar with 
live feedback.* 

24

kControlBevelButtonSmallBevelProc (32) Bevel button with a small bevel.* 2

kControlBevelButtonNormalBevelProc (33) Bevel button with a normal bevel.* 2

kControlBevelButtonLargeBevelProc (34) Bevel button with a large bevel.* 2

kControlBevelButtonSmallBevelProc + 
kControlBevelButtonMenuOnRight (4)

Small bevel button with a pop-up 
menu.*

2

kControlSliderProc (48) Slider.* Your application calls the 
function SetControlAction (page 153) 
to set the last value for the control.

3

Table 2-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description 
Resource
ID
Control Manager Types and Constants 73
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlSliderProc + 
kControlSliderLiveFeedback (1)

Slider with live feedback.* The value of 
the control is updated automatically by 
the Control Manager before your 
action function is called. If no 
application-deÞned action function is 
supplied, the slider draws an outline of 
the indicator as the user moves it.

3

kControlSliderProc + 
kControlSliderHasTickMarks (2)

Slider with tick marks.* The control 
rectangle must be large enough to 
include the tick marks.

3

kControlSliderProc + 
kControlSliderReverseDirection (4)

Slider with a directional indicator.* The 
indicator is positioned perpendicularly 
to the slider; that is, if the slider is 
horizontal, the indicator points up, and 
if the slider is vertical, the indicator 
points left.

3

kControlSliderProc + 
kControlSliderNonDirectional (8)

Slider with a rectangular, 
non-directional indicator.* This variant 
overrides the kSliderReverseDirection 
and kSliderHasTickMarks variants.

3

kControlTriangleProc (64) Disclosure triangle.* 4

kControlTriangleLeftFacingProc (65) Left-facing disclosure triangle.* 4

kControlTriangleAutoToggleProc (66) Auto-tracking disclosure triangle.* 4

kControlTriangleLeftFacingAutoToggleProc (67)

Left-facing, auto-tracking disclosure 
triangle.*

4

kControlProgressBarProc (80) Progress indicator.* To make the 
control determinate or indeterminate, 
set the 
kControlProgressBarIndeterminateTag 
constant; see ÒControl Data Tag 
ConstantsÓ (page 83). Progress 
indicators are only horizontal in 
orientation; vertical progress indicators 
are not currently supported.

5

Table 2-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description 
Resource
ID
74 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlLittleArrowsProc (96) Little arrows.* 6

kControlChasingArrowsProc (11) Asynchronous arrows.* 7

kControlTabLargeProc (128) Normal tab control.* 8

kControlTabSmallProc (129) Small tab control.*

kControlSeparatorLineProc (144) Separator line. 9

kControlGroupBoxTextTitleProc (160) Primary group box with text title.* 10

kControlGroupBoxCheckBoxProc (161) Primary group box with checkbox title.* 10

kControlGroupBoxPopupButtonProc (162) Primary group box with pop-up button 
title.*

10

kControlGroupBoxSecondaryTextTitleProc (164)

Secondary group box with text title.* 10

kControlGroupBoxSecondaryCheckBoxProc (165)

Secondary group box with checkbox 
title.*

10

kControlGroupBoxSecondaryPopupButtonProc (166)

Secondary group box with pop-up 
button title.*

10

kControlImageWellProc (176) Image well.* This control behaves as a 
palette-type object: it can be selected by 
clicking, and clicking on another object 
should change the keyboard focus. If 
the keyboard focus is removed, your 
application should then set the value to 
0 to remove the checked border.

11

kControlImageWellAutoTrackProc (177) Image well with autotracking.* This 
variant sets the value itself so the 
control remains highlighted. 

11

kControlPopupArrowEastProc (192) Large, right-facing pop-up arrow.* 12

kControlPopupArrowWestProc (193) Large, left-facing pop-up arrow.* 12

Table 2-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description 
Resource
ID
Control Manager Types and Constants 75
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlPopupArrowNorthProc (194) Large, up-facing pop-up arrow.* 12

kControlPopupArrowSouthProc (195) Large, down-facing pop-up arrow.* 12

kControlPopupArrowSmallEastProc (196) Small, right-facing pop-up arrow.* 12

kControlPopupArrowSmallWestProc (197) Small, left-facing pop-up arrow.* 12

kControlPopupArrowSmallNorthProc (198) Small, up-facing pop-up arrow.* 12

kControlPopupArrowSmallSouthProc (199) Small, down-facing pop-up arrow.* 12

kControlPlacardProc (224) Placard.* 14

kControlClockTimeProc (240) Clock control displaying hour/
minutes.*

15

kControlClockTimeSecondsProc (241) Clock control displaying hours/
minutes/seconds.* 

15

kControlClockDateProc (242) Clock control displaying date/month/
year.* 

15

kControlClockMonthYearProc (243) Clock control displaying month/year.* 15

kControlUserPaneProc (256) User pane.* 16

kControlEditTextProc (272) Editable text Þeld for windows.* This 
control maintains its own text handle 
(TEHandle).

17

kControlEditTextDialogProc (273) Editable text Þeld for dialog boxes.* 
This control uses the dialog box 
common text handle.

17

kControlEditTextPasswordProc (274) Editable text Þeld for passwords.* This 
control is supported by the Script 
Manager. Password text can be 
accessed via the kEditTextPasswordTag 
constant; see ÒControl Data Tag 
ConstantsÓ (page 83).

17

kControlStaticTextProc (288) Static text Þeld.* 18

kControlPictureProc (304) Picture control.* 19

Table 2-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description 
Resource
ID
76 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlPictureNoTrackProc (305) Non-tracking picture.* Immediately 
returns kControlPicturePart as the part 
code hit without tracking.

19

kControlIconProc (320) Icon control.* 20

kControlIconNoTrackProc (321) Non-tracking icon.* 20

kControlIconSuiteProc (322) Icon suite.* 20

kControlIconSuiteNoTrackProc (323) Non-tracking icon suite.* 20

kControlWindowHeaderProc (336) Window header.* 21

kControlWindowListViewHeaderProc (337) Window list view header.* 21

kControlListBoxProc (352) List box.* 21

kControlListBoxAutoSizeProc (353) Autosizing list box.* 21

popupMenuProc (1008) Pre-Appearance standard pop-up 
menu.

63

popupMenuProc + popupFixedWidth (1009) Pre-Appearance, Þxed-width pop-up 
menu.

63

popupMenuProc +
popupVariableWidth (1010)

Pre-Appearance, variable-width 
pop-up menu.

63

popupMenuProc + popupUseAddResMenu 
(1012)

Pre-Appearance pop-up menu with a 
value of type ResType in the 
contrlRfCon field of the control 
structure. The Menu Manager adds 
resources of this type to the menu.

63

popupMenuProc + popupUseWFont (1016) Pre-Appearance pop-up menu with a 
control title in the window font.

63

kControlPopupButtonProc (400) Appearance-compliant standard 
pop-up menu.*

25

kControlPopupButtonProc + 
kControlPopupFixedWidthVariant (1)

Appearance-compliant Þxed-width 
pop-up menu.*

25

kControlPopupButtonProc + 
kControlPopupVariableWidthVariant (2)

Appearance-compliant variable-width 
pop-up menu.*

25

Table 2-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description 
Resource
ID
Control Manager Types and Constants 77
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Only the following control deÞnition IDs are supported:

enum {
pushButProc = 0,
checkBoxProc = 1,
radioButProc = 2,
useWFont = 8,
scrollBarProc = 16, 
popupMenuProc = 1008,

/*pop-up menu CDEF variation codes*/
popupFixedWidth = 1 << 0,
popupVariableWidth = 1 << 1,
popupUseAddResMenu = 1 << 2,
popupUseWFont = 1 << 3 

};

Settings Values for Standard Controls 2
This section lists the initial, minimum, and maximum settings for all standard 
controls. You should set these values in the control ('CNTL') resource (page 111) 

* This control deÞnition is new with the Appearance Manager and is not supported unless the Appearance 
Manager is available.

kControlPopupButtonProc + 
kControlPopupUseAddResMenuVariant (4)

Appearance-compliant pop-up menu 
with a value of type ResType in the 
contrlRfCon field of the control 
structure.* The Menu Manager adds 
resources of this type to the menu.

25

kControlPopupButtonProc + 
kControlPopupUseWFontVariant (8)

Appearance-compliant pop-up menu 
with control title in window font.*

25

kControlRadioGroupProc (416) Radio group.* Embedder control for 
controls that have set the feature bit 
kControlHasRadioBehavior. 

26

Table 2-1 Control definition IDs and resource IDs for standard controls (continued)

Constant (and Value) for Control Definition ID Description 
Resource
ID
78 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
when creating a new control from a resource or pass these values in the 
minimumValue, maximumValue, and initialValue parameters of NewControl 
(page 119).

Some controls specify other information besides their range in their minimum 
and maximum settings. For example, bevel buttons use the high byte of their 
minimum value to indicate their behavior.

Control Values

Push button (pre-Appearance)
Initial: 0
Minimum: 0
Maximum: 1

Push button (Appearance-compliant)
Initial: 0
Minimum: 0
Maximum: 1

Checkbox (pre-Appearance)
Initial: kControlCheckboxUncheckedValue
Minimum: kControlCheckboxUncheckedValue
Maximum: kControlCheckboxCheckedValue

Checkbox (Appearance-compliant)
Initial: kControlCheckboxUncheckedValue
Minimum: kControlCheckboxUncheckedValue
Maximum: kControlCheckboxCheckedValue or 
kControlCheckboxMixedValue 

Radio button (pre-Appearance)
Initial: kControlRadioButtonUncheckedValue
Minimum: kControlRadioButtonUncheckedValue
Maximum: kControlRadioButtonCheckedValue

Radio button (Appearance-compliant)
Initial: kControlRadioButtonUncheckedValue
Minimum: kControlRadioButtonUncheckedValue
Maximum: kControlRadioButtonCheckedValue or 
kControlRadioButtonMixedValue

Scroll bar (pre-Appearance and Appearance-compliant versions)
Initial: Appropriate value between Ð32768 and 32768.
Minimum: Ð32768 to 32768
Control Manager Types and Constants 79
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Maximum: Ð32768 to 32768; when the maximum setting is 
equal to the minimum setting, the scroll bar is inactive.

Bevel button Initial: If you wish to attach a menu, the menu ID; if no 
menu is attached, 0.
Minimum: High byte speciÞes behaviorÑsee ÒBevel 
Button Behavior ConstantsÓ (page 92). Low byte speciÞes 
content typeÑsee ÒBevel Button and Image Well Content 
Type ConstantsÓ (page 94).
Maximum: Resource ID of bevel buttonÕs content if 
resource-basedÑsee ÒBevel Button and Image Well 
Content Type ConstantsÓ (page 94).

Slider Initial: Appropriate value between Ð32768 and 32768; for 
tick mark variant, the number of ticks; reset to the 
minimum setting after creation.
Minimum: Ð32768 to 32768
Maximum: Ð32768 to 32768; when the maximum setting is 
equal to the minimum setting, the slider is inactive.

Disclosure triangle Initial: 0 (collapsed) or 1 (expanded)
Minimum: 0 (collapsed)
Maximum: 1 (expanded)

Progress indicator Initial: Appropriate value between Ð32768 and 32768.
Minimum: Ð32768 to 32768
Maximum: Ð32768 to 32768

Little arrows Initial: Appropriate value between Ð32768 and 32768.
Minimum: Ð32768 to 32768
Maximum: Ð32768 to 32768

Asynchronous arrows
Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Tab control Initial: Resource ID of the 'tab#' resource you are using 
to hold tab information. Reset to the minimum setting after 
creation. Under Appearance 1.0.1 and later, a value of 0 
indicates not to read a 'tab#' resource; see ÒThe Tab 
Information StructureÓ (page 109).
Minimum: Ignored. Reset to 1 after creation.
Maximum: Ignored. Reset to the number of individual 
tabs in the tab control after creation.
80 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Separator line Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Primary group box and secondary group box
Initial: Ignored if group box has text title. If the group box 
has a checkbox or pop-up button title, same value as the 
checkbox or pop-up button.
Minimum: Ignored if group box has text title. If the group 
box has a checkbox or pop-up button title, same minimum 
setting as the checkbox or pop-up button.
Maximum: Ignored if group box has text title. If the group 
box has a checkbox or pop-up button title, same maximum 
setting as the checkbox or pop-up button.

Image well Initial: If you wish to attach a menu, the menu ID. If no 
menu is attached, 0. Resource ID of bevel buttonÕs content 
if resource-basedÑsee ÒBevel Button and Image Well 
Content Type ConstantsÓ (page 94). Reset to 0 after 
creation.
Minimum: High byte speciÞes behaviorÑsee ÒBevel 
Button Behavior ConstantsÓ (page 92). Low byte speciÞes 
content typeÑsee ÒBevel Button and Image Well Content 
Type ConstantsÓ (page 94). After the image well is created, 
reset to 0.
Maximum: Ignored. Reset to 2 after creation.

Pop-up arrow Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Placard Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Clock Initial: One or more of the clock value ßagsÑsee ÒClock 
Value Flag ConstantsÓ (page 98). Reset to 0 after creation.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

User pane Initial: One or more of the control feature constantsÑsee 
ÒSpecifying Which Appearance-Compliant Messages Are 
SupportedÓ (page 174). Reset to 0 after creation.
Minimum: Ignored. After user pane creation, reset to a 
setting between Ð32768 to 32768.
Control Manager Types and Constants 81
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Maximum: Ignored. Reset to a setting between Ð32768 to 
32768 after creation.

Editable text Þeld Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Static text Þeld Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Picture Initial: Resource ID of the 'pict' resource you wish to 
display; reset to 0 after creation.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Icon Initial: Resource ID of the 'cicn', 'ICON', or icon suite 
resource you wish to display. For icon suite variant, it only 
looks for an icon suite. If not, it looks for a 'cicn' or 
'ICON' resource. Reset to 0 after creation.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Window header Initial: Reserved. Set to 0.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0. 

List box Initial: Resource ID of the 'ldes' resource you are using 
to hold list box information; reset to 0 after creation. An 
initial value of 0 indicates not to read an 'ldes' resource 
under Appearance 1.0.1 and later.
Minimum: Reserved. Set to 0.
Maximum: Reserved. Set to 0.

Pop-up menu (pre-Appearance and Appearance-compliant versions)
Initial: One or more of the pop-up menu title constants.
Minimum: Resource ID of the 'MENU' resource.
Maximum: Width (in pixels) of the pop-up menu title.

Radio group Initial: Set to 0 on creation. Reset to the index of currently 
selected embedded radio control after creation. If currently 
selected control does not support radio behavior, value 
will be set to 0 and the control will be deselected. To 
deselect all controls, set to 0.
Minimum: Set to 0.
Maximum: Set to 0 on creation. Reset to the number of 
embedded controls as controls are added.
82 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Control Data Tag Constants 2
NEW WITH THE APPEARANCE MANAGER 2

The constants described here are passed in the inTagName parameters of 
SetControlData (page 154) and GetControlData (page 156) to specify the piece of 
data in a control that you wish to set or get. You can also pass these constants in 
the inTagName parameter of GetControlDataSize (page 157) if you wish to 
determine the size of variable-length control data (e.g., text in an editable text 
control). These constants can also be used by custom control deÞnition 
functions that return the feature bit kControlSupportsDataAccess in response to 
a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The list 
below shows the data types for the information that you can set in the inData 
parameter to the SetControlData function and that you can get in the inBuffer 
parameter to the GetControlData function.

enum {
kControlPushButtonDefaultTag = ('dflt'),
kControlBevelButtonContentTag = ('cont'),
kControlBevelButtonTransformTag = ('tran'),
kControlBevelButtonTextAlignTag = ('tali'),
kControlBevelButtonTextOffsetTag = ('toff'),
kControlBevelButtonGraphicAlignTag = ('gali'),
kControlBevelButtonGraphicOffsetTag = ('goff'),
kControlBevelButtonTextPlaceTag = ('tplc'),
kControlBevelButtonMenuValueTag = ('mval'),
kControlBevelButtonMenuHandleTag = ('mhnd'),
kControlBevelButtonCenterPopupGlyphTag = ('pglc'), 
kControlTriangleLastValueTag = ('last'),
kControlProgressBarIndeterminateTag = ('inde'),
kControlTabContentRectTag = ('rect'),
kControlTabEnabledFlagTag = ('enab'),
kControlTabInfoTag = ('tabi'),
kControlGroupBoxMenuHandleTag = ('mhan'),
kControlImageWellContentTag = ('cont'),
kControlImageWellTransformTag = ('tran'),
kControlClockLongDateTag = ('date'),
kControlUserItemDrawProcTag = ('uidp'),
Control Manager Types and Constants 83
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlUserPaneDrawProcTag = ('draw'),
kControlUserPaneHitTestProcTag = ('hitt'),
kControlUserPaneTrackingProcTag = ('trak'),
kControlUserPaneIdleProcTag = ('idle'),
kControlUserPaneKeyDownProcTag = ('keyd'),
kControlUserPaneActivateProcTag = ('acti'),
kControlUserPaneFocusProcTag = ('foci'),
kControlUserPaneBackgroundProcTag = ('back'),
kControlEditTextTextTag = ('text'),
kControlEditTextTEHandleTag = ('than'),
kControlEditTextSelectionTag = ('sele'),
kControlEditTextPasswordTag = ('pass'),
kControlStaticTextTextTag = ('text'),
kControlStaticTextTextHeightTag = ('thei'),
kControlIconTransformTag = ('trfm'),
kControlIconAlignmentTag = ('algn'),
kControlListBoxListHandleTag = ('lhan'),
kControlFontStyleTag = ('font'),
kControlKeyFilterTag = ('fltr'),
kControlBevelButtonLastMenuTag = ('lmnu'),
kControlBevelButtonMenuDelayTag = ('mdly'),
kControlPopupButtonMenuHandleTag = ('mhan'),
kControlPopupButtonMenuIDTag = ('mnid'),
kControlListBoxDoubleClickTag = ('dblc'),
kControlListBoxLDEFTag = ('ldef')

};

Constant descriptions

kControlPushButtonDefaultTag
Tells Appearance-compliant button whether to draw a 
default ring, or returns whether the Appearance Manager 
draws a default ring for the button.
Data type returned or set: Boolean

kControlBevelButtonContentTag
Gets or sets a bevel buttonÕs content type for drawing; see 
ÒBevel Button and Image Well Content Type ConstantsÓ 
(page 94).
Data type returned or set: ControlButtonContentInfo 
structure
84 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlBevelButtonCenterPopUpGlyphTag
Gets or sets the position of the pop-up arrow in a bevel 
button when a pop-up menu is attached.
Data type returned or set: Boolean; if true, glyph is 
vertically centered on the right; if false, glyph is on the 
bottom right.

kControlBevelButtonTransformTag
Gets or sets a transform that is added to the standard 
transform of a bevel button; see ÒIcon UtilitiesÓ in More 
Macintosh Toolbox.
Data type returned or set: IconTransformType

kControlBevelButtonTextAlignTag
Gets or sets the alignment of text in a bevel button; see 
ÒBevel Button Text Alignment ConstantsÓ (page 97).
Data type returned or set: ControlButtonTextAlignment

kControlBevelButtonTextOffsetTag
Gets or sets the number of pixels that text is offset in a 
bevel button from the buttonÕs left or right edge; this is 
used with left, right, or system justiÞcation, but it is 
ignored when the text is center aligned.
Data type returned or set: SInt16

kControlBevelButtonGraphicAlignTag
Gets or sets the alignment of graphics in a bevel button in 
relation to any text the button may contain; see ÒBevel 
Button Graphic Alignment ConstantsÓ (page 95).
Data type returned or set: ControlButtonGraphicAlignment

kControlBevelButtonGraphicOffsetTag
Gets or sets the horizontal and vertical amounts that a 
graphic element contained in a bevel button is offset from 
the buttonÕs edges; this value is ignored when the graphic 
is speciÞed to be centered on the button.
Data type returned or set: point 

kControlBevelButtonTextPlaceTag
Gets or sets the placement of a bevel buttonÕs text; see 
ÒBevel Button Text Placement ConstantsÓ (page 97).
Data type returned or set: ControlButtonTextPlacement
Control Manager Types and Constants 85
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlBevelButtonMenuValueTag
Gets the menu value for a bevel button with an attached 
menu; see ÒBevel Button Menu ConstantsÓ (page 93).
Data type returned: SInt16 

kControlBevelButtonMenuHandleTag
Gets the menu handle for a bevel button with an attached 
menu.
Data type returned: MenuHandle

kControlTriangleLastValueTag
Gets or sets the last value of a disclosure triangle. Used 
primarily for setting up a disclosure triangle properly 
when using the auto-toggle variant.
Data type returned or set: SInt16

kControlProgressBarIndeterminateTag
Gets or sets whether a progress indicator is determinate or 
indeterminate.
Data type returned or set: Boolean; if true, switches to an 
indeterminate progress indicator; if false, switches to an 
determinate progress indicator.

kControlTabContentRectTag
Gets the content rectangle of a tab control.
Data type returned: Rect

kControlTabEnabledFlagTag
Enables or disables a single tab in a tab control.
Data type returned or set: Boolean; if true, enabled; if 
false, disabled.

kControlTabInfoTag
Gets or sets information for a tab in a tab control; see ÒThe 
Tab Information StructureÓ (page 109). Available with 
Appearance 1.0.1 and later.
Data type returned or set: ControlTabInfoRec.

kControlGroupBoxMenuHandleTag
Gets the menu handle of a group box.
Data type returned: MenuHandle

kControlImageWellContentTag
Gets or sets the content for an image well; see ÒThe Bevel 
Button and Image Well Content StructureÓ (page 107).
86 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Data type returned or set: ControlButtonContentInfo 
structure

kControlImageWellTransformTag
Gets or sets a transform that is added to the standard 
transform of an image well; see ÒIcon UtilitiesÓ in More 
Macintosh Toolbox.
Data type returned or set: IconTransformType

kControlClockLongDateTag
Gets or sets the clock controlÕs time or date. 
Data type returned or set: LongDateRec structure

kControlUserItemDrawProcTag
Gets or sets an application-deÞned item drawing function. 
If an embedding hierarchy is established, a user pane 
drawing function should be used instead of an item 
drawing function.
Data type returned or set: UserItemUPP

kControlUserPaneDrawProcTag
Gets or sets a user pane drawing function; see 
MyUserPaneDrawProc (page 189). Indicates that the Control 
Manager needs to draw a control.
Data type returned or set: ControlUserPaneDrawingUPP

kControlUserPaneHitTestProcTag
Gets or sets a user pane hit-testing function. Indicates that 
the Control Manager needs to determine if a control part 
was hit; see MyUserPaneHitTestProc (page 190).
Data type returned or set: ControlUserPaneHitTestUPP

kControlUserPaneTrackingProcTag
Gets or sets a user pane tracking function, which will be 
called when a control deÞnition function returns the 
kControlHandlesTracking feature bit in response to a 
kControlMsgGetFeatures message. Indicates that a user 
pane handles its own tracking; see MyUserPaneTrackingProc 
(page 191).
Data type returned or set: ControlUserPaneTrackingUPP

kControlUserPaneIdleProcTag
Gets or sets a user pane idle function, which will be called 
when a control deÞnition function returns the 
kControlWantsIdle feature bit in response to a 
Control Manager Types and Constants 87
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlMsgGetFeatures message. Indicates that a user 
pane performs idle processing; see MyUserPaneIdleProc 
(page 193).
Data type returned or set: ControlUserPaneIdleUPP

kControlUserPaneKeyDownProcTag
Gets or sets a user pane key down function, which will be 
called when a control deÞnition function returns the 
kControlSupportsFocus feature bit in response to a 
kControlMsgGetFeatures message. Indicates that a user 
pane performs keyboard event processing; see 
MyUserPaneKeyDownProc (page 194).
Data type returned or set: ControlUserPaneKeyDownUPP

kControlUserPaneActivateProcTag
Gets or sets a user pane activate function, which will be 
called when a control deÞnition function returns the 
kControlWantsActivate feature bit in response to a 
kControlMsgGetFeatures message. Indicates that a user 
pane wants to be informed of activate and deactivate 
events; see MyUserPaneActivateProc (page 195).
Data type returned or set: ControlUserPaneActivateUPP

kControlUserPaneFocusProcTag
Gets or sets a user pane keyboard focus function, which 
will be called when a control deÞnition function returns 
the kControlSupportsFocus feature bit in response to a 
kControlMsgGetFeatures message. Indicates that a user 
pane handles keyboard focus; see MyUserPaneFocusProc 
(page 197).
Data type returned or set: ControlUserPaneFocusUPP

kControlUserPaneBackgroundProcTag
Gets or sets a user pane background function, which will 
be called when a control deÞnition function returns the 
kControlHasSpecialBackground and 
kControlSupportsEmbedding feature bits in response to a 
kControlMsgGetFeatures message. Indicates that a user 
pane can set its background color or pattern; see 
MyUserPaneBackgroundProc (page 198).
Data type returned or set: ControlUserPaneBackgroundUPP

kControlEditTextTextTag
Gets or sets text in an editable text control.
Data type returned or set: character buffer 
88 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlEditTextTEHandleTag
Gets a handle to a text edit structure.
Data type returned: TEHandle

kControlEditTextSelectionTag
Gets or sets the selection in an editable text control.
Data type returned or set: ControlEditTextSelectionRec 
structure

kControlEditTextPasswordTag
Gets clear password text from an editable text control, that 
is, the text of the actual password typed, not the bullet text.
Data type returned: character buffer

kControlStaticTextTextTag
Gets or sets text in a static text control.
Data type returned or set: character buffer

kControlStaticTextTextHeightTag
Gets the height of text in a static text control.
Data type returned or set: SInt16

kControlIconTransformTag
Gets or sets a transform that is added to the standard 
transform of an icon; see ÒIcon UtilitiesÓ in More Macintosh 
Toolbox.
Data type returned or set: IconTransformType

kControlIconAlignmentTag
Gets or sets an iconÕs position (centered, left, right); see 
ÒIcon UtilitiesÓ in More Macintosh Toolbox.
Data type returned or set: IconAlignmentType

kControlListBoxListHandleTag
Gets a handle to a list box.
Data type returned: ListHandle

kControlFontStyleTag
Gets or sets the font style for controls that support text 
(includes list box, tab, clock, static and editable text).
Data type returned or set: kControlFontStyleTag

kControlKeyFilterTag
Gets or sets the key Þlter function for controls that handle 
Þltered input (includes editable text and list box).
Data type returned or set: ControlKeyFilterUPP
Control Manager Types and Constants 89
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlBevelButtonLastMenuTag
Gets the menu ID of the last menu selected in the submenu 
or main menu. Available with Appearance 1.0.1 and later.
Data type returned: SInt16

kControlBevelButtonMenuDelayTag
Gets or sets the delay (in number of ticks) before the menu 
is displayed. Available with Appearance 1.0.1 and later.
Data type returned or set: SInt32

kControlPopupButtonMenuHandleTag
Gets or sets the menu handle for a pop-up menu. Available 
with Appearance 1.0.1 and later.
Data type returned or set: MenuHandle

kControlPopupButtonMenuIDTag
Gets or sets the menu ID for a pop-up menu. Available 
with Appearance 1.0.1 and later.
Data type returned or set: SInt16

kControlListBoxDoubleClickTag
Checks to see whether the most recent click in a list box 
was a double click. Available with Appearance 1.0.1 and 
later.
Data type returned: Boolean; if true, the last click was a 
double click; if false, not.

kControlListBoxLDEFTag
Sets the 'LDEF' resource to be used to draw a list boxÕs 
contents; this is useful for creating a list box without an 
'ldes' resource. Available with Appearance 1.0.1 and later.
Data type set: SInt16.

Checkbox Value Constants 2
CHANGED WITH THE APPEARANCE MANAGER 2

These constants specify the value of a standard checkbox control and are 
passed in the newValue parameter of SetControlValue and are returned by 
GetControlValue. 
90 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
enum {
kControlCheckboxUncheckedValue = 0,
kControlCheckboxCheckedValue = 1,
kControlCheckboxMixedValue = 2

};

Constant descriptions

kControlCheckboxUncheckedValue
The checkbox is unchecked.

kControlCheckboxCheckedValue
The checkbox is checked.

kControlCheckboxMixedValue
Mixed value. Indicates that a setting is on for some 
elements in a selection and off for others. This state only 
applies to standard Appearance-compliant checkboxes.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Pre-Appearance checkboxes do not support the mixed state value constant 
kControlCheckboxMixedValue.

Radio Button Value Constants 2
CHANGED WITH THE APPEARANCE MANAGER 2

These constants specify the value of a standard radio button control and are 
passed in the newValue parameter of SetControlValue and are returned by 
GetControlValue. 

enum {
kControlRadioButtonUncheckedValue = 0,
kControlRadioButtonCheckedValue = 1,
kControlRadioButtonMixedValue = 2

};

Constant descriptions

kControlRadioButtonUncheckedValue
The radio button is unselected.
Control Manager Types and Constants 91
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlRadioButtonCheckedValue
The radio button is selected.

kControlRadioButtonMixedValue
Mixed value. Indicates that a setting is on for some 
elements in a selection and off for others. This state only 
applies to standard Appearance-compliant radio buttons. 

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Pre-Appearance radio buttons do not support the mixed state value constant 
kControlRadioButtonMixedValue.

Bevel Button Behavior Constants 2
NEW WITH THE APPEARANCE MANAGER 2

You can pass these constants in the high byte of the minimumValue parameter of 
NewControl (page 119) to create a bevel button with a speciÞc behavior. 

enum {
kControlBehaviorPushbutton = 0,
kControlBehaviorToggles = 0x0100,
kControlBehaviorSticky = 0x0200,
kControlBehaviorOffsetContents = 0x8000

};

Constant descriptions

kControlBehaviorPushbutton
Push button (momentary) behavior. The bevel button pops 
up after being clicked.

kControlBehaviorToggles
Toggle behavior. The bevel button toggles state 
automatically when clicked.

kControlBehaviorSticky
Sticky behavior. Once clicked, the bevel button stays down 
until your application sets the controlÕs value to 0. This 
behavior is useful in tool palettes and radio groups. 
92 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlBehaviorOffsetContents 
Bevel button contents are offset (one pixel down and to the 
right) when button is pressed.

Bevel Button Menu Constants 2
NEW WITH THE APPEARANCE MANAGER 2

You can pass one or more of these constants in the initialValue parameter of 
NewControl (page 119) to create a bevel button with a menu of a certain 
behavior. Bevel buttons with menus have two values: the value of the button 
and the value of the menu. You can specify the direction of the pop-up menu 
arrow (down or right) by using the kControlBevelButtonMenuOnRight bevel 
button variant.

enum{
kControlBehaviorCommandMenu = 0x2000, 
kControlBehaviorMultiValueMenu = 0x4000 

}; 

Constant descriptions

kControlBehaviorCommandMenu
If this bit is set, the menu contains commands, not choices, 
and should not be marked with a checkmark. If this bit is 
set, it overrides the kControlBehaviorMultiValueMenu bit. 
This constant is only available with Appearance 1.0.1 and 
later.

kControlBehaviorMultiValueMenu 
If this bit is set, the menus are multi-valued. The bevel 
button does not maintain the menu value as it normally 
would (requiring that only one item is selected at a time). 
This allows the user to toggle entries in a menu and have 
multiple items checked. In this mode, the menu value 
accessed with the kControlMenuLastValueTag will return the 
value of the last menu item selected.
Control Manager Types and Constants 93
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Bevel Button and Image Well Content Type Constants 2
NEW WITH THE APPEARANCE MANAGER 2

You can use these constants in the contentType Þeld of the bevel button and 
image well content structure (page 107) to display resource or handle-based 
bevel button and image well content, including text, icon suites, color icons, 
and pictures.

The resource IDs for icon suite, color icon, and picture resources are passed in 
the maximumValue parameter of NewControl (page 119) or in a control ('CNTL') 
resource (page 111). The content type is passed in the low byte of the 
minimumValue parameter of NewControl.

Note
Resource-based content is owned by the control, while 
handle-based content is owned by you. The control 
deÞnition function will not dispose of handle-based 
content. If you replace handle-based content with 
resource-based content on the ßy, you must dispose of the 
handle properly to avoid a memory leak. 

enum {
kControlContentTextOnly = 0,
kControlContentIconSuiteRes = 1,
kControlContentCIconRes = 2,
kControlContentPictRes = 3,
kControlContentIconSuiteHandle = 129,
kControlContentCIconHandle = 130,
kControlContentPictHandle = 131,
kControlContentIconRef = 132

};
typedef SInt16 ControlContentType;

Constant descriptions

kControlContentTextOnly
Content type is text only. This constant is passed in the 
contentType field of the bevel button and image well 
content structure if the content is text only. The variation 
code kControlUsesOwningWindowsFontVariant applies when 
text content is used. 
94 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlContentIconSuiteRes
Content type uses an icon suite resource ID. The resource 
ID of the icon suite resource you wish to display should be 
in the resID Þeld of the bevel button and image well 
content structure. 

kControlContentCIconRes
Content type is a color icon resource ID. The resource ID of 
the color icon resource you wish to display should be in 
the resID Þeld of the bevel button and image well content 
structure.

kControlContentPictRes
Content type is a picture resource ID. The resource ID of 
the picture resource you wish to display should be in the 
resID field of the bevel button and image well content 
structure.

kControlContentIconSuiteHandle
Content type is an icon suite handle. The handle of the 
icon suite you wish to display should be in the iconSuite 
Þeld of the bevel button and image well content structure.

kControlContentCIconHandle
Content type uses a color icon handle. The handle of the 
color icon you wish to display should be in the 
cIconHandle field of the bevel button and image well 
content structure.

kControlContentPictHandle
Content type uses a picture handle. The handle of the 
picture you wish to display should be in the picture Þeld 
of the bevel button and image well content structure.

kControlContentIconRef
Reserved. Set to 0.

Bevel Button Graphic Alignment Constants 2
NEW WITH THE APPEARANCE MANAGER 2

These constants can be passed in the inData parameter of SetControlData 
(page 154) and returned by GetControlData (page 156) to specify the placement 
of icon suites, color icons, and pictures in a bevel button. 
Control Manager Types and Constants 95
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
enum {
kControlBevelButtonAlignSysDirection = -1, 
kControlBevelButtonAlignCenter = 0,
kControlBevelButtonAlignLeft = 1,
kControlBevelButtonAlignRight = 2,
kControlBevelButtonAlignTop = 3,
kControlBevelButtonAlignBottom = 4,
kControlBevelButtonAlignTopLeft = 5,
kControlBevelButtonAlignBottomLeft = 6,
kControlBevelButtonAlignTopRight = 7,
kControlBevelButtonAlignBottomRight = 8

};
typedef SInt16 ControlButtonGraphicAlignment;

Constant descriptions 

kControlBevelButtonAlignSysDirection
Bevel button graphic is aligned according to the system 
default script direction (only left or right).

kControlBevelButtonAlignCenter
Bevel button graphic is aligned center.

kControlBevelButtonAlignLeft
Bevel button graphic is aligned left.

kControlBevelButtonAlignRight
Bevel button graphic is aligned right.

kControlBevelButtonAlignTop
Bevel button graphic is aligned top.

kControlBevelButtonAlignBottom
Bevel button graphic is aligned bottom.

kControlBevelButtonAlignTopLeft
Bevel button graphic is aligned top left.

kControlBevelButtonAlignBottomLeft
Bevel button graphic is aligned bottom left.

kControlBevelButtonAlignTopRight
Bevel button graphic is aligned top right.

kControlBevelButtonAlignBottomRight
Bevel button graphic is aligned bottom right.
96 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Bevel Button Text Alignment Constants 2
NEW WITH THE APPEARANCE MANAGER 2

These constants can be passed in the inData parameter of SetControlData 
(page 154) and returned by GetControlData (page 156) to specify the alignment 
of text in a bevel button. 

enum {
kControlBevelButtonAlignTextSysDirection  = teFlushDefault,
kControlBevelButtonAlignTextCenter  = teCenter,
kControlBevelButtonAlignTextFlushRight  = teFlushRight,
kControlBevelButtonAlignTextFlushLeft  = teFlushLeft

};
typedef SInt16 ControlButtonTextAlignment;

Constant descriptions 

kControlBevelButtonAlignTextSysDirection
Bevel button text is aligned according to the current script 
direction (left or right).

kControlBevelButtonAlignTextCenter
Bevel button text is aligned center.

kControlBevelButtonAlignTextFlushRight
Bevel button text is aligned ßush right.

kControlBevelButtonAlignTextFlushLeft
Bevel button text is aligned ßush left.

Bevel Button Text Placement Constants 2
NEW WITH THE APPEARANCE MANAGER 2

These constants can be passed in the inData parameter of SetControlData 
(page 154) and returned by GetControlData (page 156) to specify the placement 
of bevel button text in relation to an icon suite, color icon, or picture. They can 
be used in conjunction with bevel button text and graphic alignment constants 
to create, for example, a button where the graphic and text are left justiÞed 
with the text below the graphic. 
Control Manager Types and Constants 97
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
enum {
kControlBevelButtonPlaceSysDirection = -1,
kControlBevelButtonPlaceNormally  = 0,
kControlBevelButtonPlaceToRightOfGraphic = 1,
kControlBevelButtonPlaceToLeftOfGraphic = 2,
kControlBevelButtonPlaceBelowGraphic = 3,
kControlBevelButtonPlaceAboveGraphic = 4

};
typedef SInt16 ControlButtonTextPlacement;

Constant descriptions

kControlBevelButtonPlaceSysDirection
Bevel button text is placed according to the system default 
script direction.

kControlBevelButtonPlaceNormally
Bevel button text is centered.

kControlBevelButtonPlaceToRightOfGraphic
Bevel button text is placed to the right of the graphic.

kControlBevelButtonPlaceToLeftOfGraphic
Bevel button text is placed to the left of the graphic.

kControlBevelButtonPlaceBelowGraphic
Bevel button text is placed below the graphic.

kControlBevelButtonPlaceAboveGraphic
Bevel button text is placed above the graphic.

Clock Value Flag Constants 2
NEW WITH THE APPEARANCE MANAGER 2

You can pass one or more of these mask constants into the control ('CNTL') 
resource (page 111) or in the initialValue parameter of NewControl (page 119). 
The clock control is editable and supports keyboard focus. The little arrows 
used to allow manipulation of date and time are part of the control, not a 
separate embedded little arrows control. 
98 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
enum {
kControlClockNoFlags = 0,
kControlClockIsDisplayOnly = 1,
kControlClockIsLive = 2

};

Constant descriptions

kControlClockNoFlags 
Indicates that clock is editable but does not display the 
current ÒliveÓ time.

kControlClockIsDisplayOnly 
When only this bit is set, the clock is not editable. When 
this bit and the kControlClockIsLive bit is set, the clock 
automatically updates on idle (clock will have the current 
time).

kControlClockIsLive 
When only this bit is set, the clock automatically updates 
on idle and any changes to the clock affect the system 
clock. When this bit and the kControlClockIsDisplayOnly 
bit is set, the clock automatically updates on idle (clock 
will have the current time), but is not editable. 

Control Part Code Constants 2
CHANGED WITH THE APPEARANCE MANAGER 2

Constants of type ControlPartCode are returned in the parameter of FindControl 
(page 142) to determine whether a mouse-down event occurred in an active 
control and, if so, which control. 

IMPORTANT

FindControl does not usually return the 
kControlDisabledPart or kControlInactivePart part codes 
and never returns them with the standard controls. These 
are used with HiliteControl (page 138).

enum {  
kControlNoPart = 0,
kControlLabelPart = 1,
Control Manager Types and Constants 99
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlMenuPart = 2,
kControlTrianglePart = 4,
kControlEditTextPart = 5,
kControlPicturePart = 6,
kControlIconPart = 7,
kControlClockPart = 8,
kControlButtonPart = 10,
kControlCheckBoxPart = 11,
kControlRadioButtonPart = 12,  
kControlUpButtonPart = 20,
kControlDownButtonPart = 21,
kControlPageUpPart = 22,
kControlPageDownPart = 23,
kControlListBoxPart = 24,
kControlListBoxDoubleClickPart = 25,
kControlImageWellPart = 26.
kControlRadioGroupPart = 27,
kControlIndicatorPart = 129,
kControlDisabledPart = 254,
kControlInactivePart = 255

};
typedef SInt16 ControlPartCode;  

Constant descriptions

kControlNoPart Event did not occur in any control. Also unhighlights any 
highlighted part of the control when passed to the 
HiliteControl (page 138) function. For bevel buttons with 
a menu attached, this part code indicates that either the 
mouse was released outside the bevel button and menu or 
that the button was disabled.

kControlLabelPart Event occurred in the label of a pop-up menu control.
kControlMenuPart Event occurred in the menu of a pop-up menu control. For 

bevel buttons with a menu attached, this part code 
indicates that the event occurred in a menu item of the 
bevel button.

kControlTrianglePart
Event occurred in a disclosure triangle control.

kControlEditTextPart
Event occurred in an editable text control.
100 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlPicturePart
Event occurred in a picture control.

kControlIconPart Event occurred in an icon control.
kControlClockPart Event occurred in a clock control.
kControlButtonPart

Event occurred in either a push button or bevel button 
control. For bevel buttons with a menu attached, this part 
code indicates that the event occurred in the button but not 
in the attached menu.

kControlCheckBoxPart
Event occurred in a checkbox control.

kControlRadioButtonPart
Event occurred in a radio button control.

kControlUpButtonPart
Event occurred in the up button of a scroll bar control (the 
arrow at the top or the left).

kControlDownButtonPart
Event occurred in the down button of a scroll bar control 
(the arrow at the right or the bottom).

kControlPageUpPart
Event occurred in the page-up part of a scroll bar control.

kControlPageDownPart
Event occurred in the page-down part of a scroll bar 
control.

kControlListBoxPart
Event occurred in a list box control.

kControlListBoxDoubleClickPart
Double-click occurred in a list box control.

kControlImageWellPart
Event occurred in an image well control.

kControlRadioGroupPart
Event occurred in a radio group control. This constant is 
only available with Appearance 1.0.1 and later.

kControlIndicatorPart
Event occurred in the scroll box of a scroll bar control.

kControlDisabledPart
Used with HiliteControl (page 138) to disable the control.
Control Manager Types and Constants 101
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlInactivePart
Used with HiliteControl (page 138) to make the control 
inactive.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Only the following part codes are supported: 

kControlNoPart = 0,
kControlLabelPart = 1,
kControlMenuPart = 2,
kControlTrianglePart = 4,
kControlButtonPart = 10,
kControlCheckBoxPart = 11,
kControlRadioButtonPart = 12,  
kControlUpButtonPart = 20,
kControlDownButtonPart = 21,
kControlPageUpPart = 22,
kControlPageDownPart = 23,
kControlIndicatorPart = 129,
kControlDisabledPart = 254,
kControlInactivePart = 255

Part IdentiÞer Constants 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

When the Appearance Manager is available and you are using standard 
controls, part identiÞer constants are ignored and the colors are determined by 
the current theme.

If you are creating your own control deÞnition function, you can still use these 
constants in the partIdentifier Þeld of a control color table structure to draw a 
control using colors other than the system default and to identify the part of a 
control that a color affects.
102 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Meta Font Constants 2
NEW WITH THE APPEARANCE MANAGER 2

You can use these constants in the font Þeld of the control font style structure 
(page 103) and the Font ID Þeld of a dialog font table resource (page 254) to 
specify the style, size, and font family of the control font. You should use these 
meta font constants whenever possible because the system font can change, 
depending upon the current theme. If none of these constants are speciÞed, the 
control uses the system font unless directed to use a window font by a control 
variant. 

enum {
kControlFontBigSystemFont = -1,  
kControlFontSmallSystemFont = -2,  
kControlFontSmallBoldSystemFont = -3  

};

Constant descriptions
kControlFontBigSystemFont

Use the system font. 
kControlFontSmallSystemFont

Use the small system font. 
kControlFontSmallBoldSystemFont

Use the small emphasized system font (emphasis applied 
correctly for locale). 

The Control Font Style Structure 2
NEW WITH THE APPEARANCE MANAGER 2

You can pass a pointer to the control font style structure in the inStyle 
parameter of SetControlFontStyle (page 159) to specify a controlÕs font. If none 
of the ßags in the flags Þeld of the structure are set, the control uses the system 
font unless the control variant kControlUsesOwningWindowsFontVariant has been 
speciÞed, in which case the control uses the window font.

If you wish to specify the font for controls in a dialog box, use a dialog font 
table resource, which is automatically read in by the Dialog Manager; see ÒThe 
Dialog Control Font Table ResourceÓ (page 254). 

A control font style structure is of type ControlFontStyleRec:
Control Manager Types and Constants 103
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
struct ControlFontStyleRec {
SInt16 flags;
SInt16 font;
SInt16 size;
SInt16 style;
SInt16 mode;
SInt16 just;
RGBColor foreColor;
RGBColor backColor;
};
typedef struct ControlFontStyleRec ControlFontStyleRec;
typedef ControlFontStyleRec *ControlFontStylePtr;

Field descriptions

flags A signed 16-bit integer specifying which Þelds of the 
structure should be applied to the control; see ÒControl 
Font Style Flag ConstantsÓ (page 105). If none of the ßags 
in the flags Þeld of the structure are set, the control uses 
the system font unless the control variant 
kControlUsesOwningWindowsFontVariant has been specified, 
in which case the control uses the window font.

font If the kControlUseFontMask bit is set, then this element will 
contain an integer indicating the ID of the font family to 
use. If this bit is not set, then the system default font is 
used. A meta font constant can be speciÞed instead; see 
ÒMeta Font ConstantsÓ (page 103). 

size If the kControlUseSizeMask bit is set, then this element will 
contain an integer representing the point size of the text. If 
the kControlAddSizeMask bit is set, this value will represent 
the size to add to the current point size of the text. A meta 
font constant can be speciÞed instead; see ÒMeta Font 
ConstantsÓ (page 103).

style If the kControlUseStyleMask bit is set, then this element will 
contain an integer specifying which styles to apply to the 
104 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
text. If all bits are clear, the plain font style is used. The bit 
numbers and the styles they represent are 

mode If the kControlUseModeMask bit is set, then this element will 
contain an integer specifying how characters are drawn in 
the bit image. See Inside Macintosh: Imaging With 
QuickDraw for a discussion of transfer modes.

just If the kControlUseJustMask bit is set, then this element will 
contain an integer specifying text justiÞcation (left, right, 
centered, or system script direction). 

foreColor If the kControlUseForeColorMask bit is set, then this element 
will contain an RGB color to use when drawing the text.

backColor If the kControlUseBackColorMask bit is set, then this element 
will contain an RGB color to use when drawing the 
background behind the text. In certain text modes, 
background color is ignored.

Control Font Style Flag Constants 2
NEW WITH THE APPEARANCE MANAGER 2

You can pass one or more of these ßag constants in the flags Þeld of the control 
font style structure (page 103) to specify the Þeld(s) of the structure that should 
be applied to the control. If none of the ßags are set, the control uses the system 
font unless a control variant speciÞes use of a window font. 

enum {
kControlUseFontMask = 0x0001,
kControlUseFaceMask = 0x0002,
kControlUseSizeMask = 0x0004,
kControlUseForeColorMask = 0x0008,
kControlUseBackColorMask = 0x0010,

Bit 
value Style
0 Bold
1 Italic
2 Underline
3 Outline
4 Shadow
5 Condensed
6 Extended
Control Manager Types and Constants 105
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlUseModeMask = 0x0020,
kControlUseJustMask = 0x0040,
kControlUseAllMask = 0x00FF,
kControlAddFontSizeMask = 0x0100

};

Constant descriptions

kControlUseFontMask
If the kControlUseFontMask ßag is set (bit 0), the font Þeld 
of the control font style structure is applied to the control.

kControlUseFaceMask
If the kControlUseFaceMask ßag is set (bit 1), the style Þeld 
of the control font style structure is applied to the control. 
This ßag is ignored if you specify a meta font value; see 
ÒMeta Font ConstantsÓ (page 103). 

kControlUseSizeMask
If the kControlUseSizeMask ßag is set (bit 2), the size Þeld 
of the control font style structure is applied to the control. 
This ßag is ignored if you specify a meta font value; see 
ÒMeta Font ConstantsÓ (page 103).

kControlUseForeColorMask
If the kControlUseForeColorMask ßag is set (bit 3), the 
foreColor field of the control font style structure is applied 
to the control. This ßag only applies to static text controls.

kControlUseBackColorMask
If the kControlUseBackColorMask ßag is set (bit 4), the 
backColor field of the control font style structure is applied 
to the control. This ßag only applies to static text controls.

kControlUseModeMask
If the kControlUseModeMask ßag is set (bit 5), the text mode 
speciÞed in the mode Þeld of the control font style structure 
is applied to the control.

kControlUseJustMask
If the kControlUseJustMask ßag is set (bit 6), the just Þeld 
of the control font style structure is applied to the control.

kControlUseAllMask
If kControlUseAllMask is used, all ßags in this mask will be 
set except kControlUseAddFontSizeMask.
106 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlUseAddFontSizeMask
If the kControlUseAddFontSizeMask ßag is set (bit 8), the 
Dialog Manager will add a speciÞed font size to the size 
Þeld of the control font style structure. This ßag is ignored 
if you specify a meta font value; see ÒMeta Font 
ConstantsÓ (page 103).

The Bevel Button and Image Well Content Structure 2
NEW WITH THE APPEARANCE MANAGER 2

You can pass a pointer to the bevel button and image well content structure of 
type ControlButtonContentInfo in the inBuffer parameter of GetControlData 
(page 156) to get the resource ID (for resource-based content) or handle (for 
handle-based content) of a color icon, picture, or icon suite in a bevel button or 
image well. 

struct ControlButtonContentInfo {
ControlContentType contentType;
union {
SInt16 resID;
CIconHandle cIconHandle;
Handle iconSuite;
Handle iconRef;
PicHandle picture;
} u;

};
typedef struct ControlButtonContentInfo ControlButtonContentInfo;
typedef ControlButtonContentInfo *ControlButtonContentInfoPtr;

Field descriptions
contentType SpeciÞes the bevel button or image well content type and 

whether the content is text-only, resource-based, or 
handle-based; see ÒBevel Button and Image Well Content 
Type ConstantsÓ (page 94). The value speciÞed in the 
contentType field determines which of the other fields in 
the structure are used.

resID If the content type speciÞed in the contentType Þeld is 
kControlContentIconSuiteRes, kControlContentCIconRes, or 
Control Manager Types and Constants 107
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlContentPictRes, this field contains the resource ID 
of a picture, color icon, or icon suite resource. 

cIconHandle If the content type speciÞed in the contentType Þeld is 
kControlContentCIconHandle, this field contains a handle to 
a color icon. 

iconSuite If the content type speciÞed in the contentType Þeld is 
kControlContentIconSuiteHandle, this field contains a 
handle to an icon suite. 

iconRef Reserved.
picture If the content type speciÞed in the contentType Þeld is 

kControlContentPictHandle, this field contains a handle to 
a picture. 

The Editable Text Selection Structure 2
NEW WITH THE APPEARANCE MANAGER 2

You can pass a pointer to the editable text selection structure to GetControlData 
(page 156) and SetControlData (page 154) to access and set the current selection 
range in an editable text control.

An editable text selection structure is of type ControlEditTextSelectionRec:

struct ControlEditTextSelectionRec {
SInt16 selStart;
SInt16 selEnd;

};
typedef struct ControlEditTextSelectionRec ControlEditTextSelectionRec;
typedef ControlEditTextSelectionRec *ControlEditTextSelectionPtr;

Field descriptions
selStart A signed 16-bit integer indicating the beginning of the 

editable text selection. 
selEnd A signed 16-bit integer indicating the end of the editable 

text selection.
108 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
The Tab Information Structure 2
NEW WITH THE APPEARANCE MANAGER 2

If you are not creating a tab control with a 'tab#' resource, you can call 
SetControlMaximum to set the number of tabs in a tab control. Then use 
SetControlData (page 154) with the tab information structure to access and set 
information for an individual tab in a tab control. Available with Appearance 
1.0.1 and later.

A tab information structure is of type ControlTabInfoRec:

struct ControlTabInfoRec {
SInt16 version;
SInt16 iconSuiteID;
Str255 name;

};

Field descriptions
version A signed 16-bit integer indicating the version of the tab 

information structure. The only currently available version 
value is 0.

iconSuiteID A signed 16-bit integer indicating the ID of an icon suite to 
be used for the tab label. Pass 0 for no icon.

name A string specifying the title to be used for the tab label.

The Auxiliary Control Structure 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

When the Appearance Manager is available and you are using standard 
controls, most of the Þelds of the auxiliary control structure are ignored except 
the acCTable and acFlags Þelds. If you are creating your own control deÞnition 
function, the entire auxiliary control structure can be used.
Control Manager Types and Constants 109
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
The Pop-Up Menu Private Structure 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

When the Appearance Manager is available, you should not access the pop-up 
menu private data structure. Instead, you should pass the value 
kControlBevelButtonMenuHandleTag in the tagName parameter of GetControlData 
(page 156) to get the menu handle of a bevel button, and the menu handle and 
the menu ID of the menu associated with a pop-up menu.

The Control Color Table Structure 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

When the Appearance Manager is available and you are using standard 
controls, the control color table structure is ignored and the colors are 
determined by the current theme. If you are creating your own control 
deÞnition function, you can use the control color table structure to draw a 
control using colors other than the system default.

Result Codes 2
The most common result codes returned by Control Manager functions are 
listed below. 

noErr 0 No error
paramErr Ð50 Error in parameter list
memFullErr Ð108 Not enough memory
resNotFound Ð192 Unable to read resource
hmHelpManagerNotInited Ð855 Help menu not set up 
errMessageNotSupported Ð30580 Message not supported
errDataNotSupported Ð30581 Data not supported
errControlDoesntSupportFocus Ð30582 Control does not support focus
errWindowDoesntSupportFocus Ð30583 Window does not support focus
errUnknownControl Ð30584 Unknown control
errCouldntSetFocus Ð30585 Could not set focus
errNoRootControl Ð30586 No root control established
errRootAlreadyExists Ð30587 Root control already exists
errInvalidPartCode Ð30588 Invalid part code
errControlsAlreadyExist Ð30589 Control already exists
errControlIsNotEmbedder Ð30590 Control is not an embedder
errDataSizeMismatch Ð30591 Data size mismatch
110 Control Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Control Manager Resources 2

This section describes resources used by the Control Manager for deÞning and 
displaying controls. The structures of these resources are described after they 
are compiled by the Rez resource compiler. To create these resources, you can 
either specify the resource description in an input Þle and compile the resource 
using a resource compiler, such as Rez, or you can directly create your 
resources in a resource Þle using a tool such as ResEdit. For examples of Rez 
input Þles for these resources, see ÒUsing the Control ManagerÓ in Inside 
Macintosh: Macintosh Toolbox Essentials. 

The Control Resource 2
CHANGED WITH THE APPEARANCE MANAGER 2

You can use a control ('CNTL') resource to deÞne a standard control; many new 
standard controls have been added with the Appearance Manager. All control 
resources must have resource ID numbers greater than 127. Use GetNewControl 
(page 118) to create a control deÞned in a control resource. The Control 
Manager uses the information you specify to create a control structure in 
memory. Figure 2-1 shows the structure of this resource.

errControlHiddenOrDisabled Ð30592 Control hidden or disabled
errWindowRegionCodeInvalid Ð30593 Window region code invalid
errCantEmbedIntoSelf Ð30594 CanÕt embed control in self
errCantEmbedRoot Ð30595 CanÕt embed root control
errItemNotControl Ð30596 Dialog item not a control
Control Manager Resources 111
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Figure 2-1 Structure of a compiled control ('CNTL') resource

The compiled version of a control resource contains the following elements:

■ The rectangle, speciÞed in coordinates local to the window, that encloses the 
control and thus determines its size and location.

■ The initial setting for the control; see ÒSettings Values for Standard ControlsÓ 
(page 78).

■ The visibility of the control. If this element contains the value true, 
GetNewControl draws the control immediately, without using the 
applicationÕs standard updating mechanism for windows. If this element 
contains the value false, the application must use ShowControl (page 134) 
when itÕs prepared to display the control.

■ Fill. Set to 0.

■ The maximum setting for the control; see ÒSettings Values for Standard 
ControlsÓ (page 78).

Rectangle

Initial setting

Visibility

Minimum setting

Control definition ID

Reference value

Title

Maximum setting

8

2

1

2

2

2

4

Variable

'CNTL'  resource type Bytes

Fill 1
112 Control Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
■ The minimum setting for the control; see ÒSettings Values for Standard 
ControlsÓ (page 78).

■ The control deÞnition ID, which the Control Manager uses to determine the 
control deÞnition function for this control; see ÒControl DeÞnition IDsÓ 
(page 71).

■ The controlÕs reference value, which is set and used only by the applicationÑ
except when the application adds the kControlPopupUseAddResMenuVariant 
variation code to the kControlPopupButtonProc control deÞnition ID. 

■ For controls that need a title, the string for that title; for controls that donÕt 
use titles, an empty string.

Note
The titles of all Appearance-compliant standard system 
controls appear in the system font. You should generally 
use the system font or small system font in your controls; 
see Mac OS 8 Human Interface Guidelines for more details. 

The Control DeÞnition Function Resource 2
CHANGED WITH THE APPEARANCE MANAGER 2

In addition to the standard controls, the Control Manager allows you to deÞne 
new, nonstandard controls as appropriate for your application. To deÞne your 
own type of control, write a control deÞnition function which is stored in a 
resource of type 'CDEF'. Provide as the resource data the compiled or 
assembled code of your control deÞnition procedure. The entry point of your 
procedure must be at the beginning of the resource data. See ÒDeÞning Your 
Own Control DeÞnition FunctionÓ (page 162) for more information about 
creating a control deÞnition function.

The Control Color Table Resource 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

When the Appearance Manager is available and you are using standard 
controls, the control color table ('cctb') resource is ignored and the colors are 
determined by the current theme. 
Control Manager Resources 113
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
If you are creating your own control deÞnition function, you can still use the 
control color table structure to draw a control using colors other than the 
system default. 

The List Box Description Resource 2
NEW WITH THE APPEARANCE MANAGER 2

You can use a list box description resource to specify information in a list box. 
A list box description resource is a resource of type 'ldes'. All list box 
description resources must have resource ID numbers greater than 127. The 
Control Manager uses the information you specify to provide additional 
information to the corresponding list box control. Figure 2-2 shows the 
structure of this resource.

Figure 2-2 Structure of a compiled list box description ('ldes') resource

You deÞne a list box description resource by specifying these elements:

■ Version number. An integer specifying the version of the resource format.

Number of columns

Number of rows

Cell width

Cell height

Has vertical scroll
Reserved

Reserved
Has horizontal scroll

List definition resource ID

Has size box
Reserved

'ldes' resource type

2

2Version number

2

2

2

1
1
1

1
1

1

2

Bytes
114 Control Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
■ Number of rows. An integer specifying the number of rows in the list box. 

■ Number of columns. An integer specifying the number of columns in the list 
box.

■ Cell height. An integer specifying the height of a list item. If 0 is speciÞed, 
the list item height is automatically calculated.

■ Cell width. An integer specifying the width of a list item. If 0 is speciÞed, the 
list item width is automatically calculated.

■ Has vertical scroll bar. A Boolean value that indicates whether the list box 
should contain a vertical scroll bar. If true, the list box contains a vertical 
scroll bar; if false, no vertical scroll bar.

■ Reserved. Set to 0.

■ Has horizontal scroll bar. A Boolean value that indicates whether the list 
should contain a horizontal scroll bar. Specify true if your list requires a 
horizontal scroll bar; specify false otherwise. 

■ Reserved. Set to 0.

■ Resource ID. This is the resource ID of the list deÞnition procedure to use for 
the list. To use the default list deÞnition procedure, which supports the 
display of unstyled text, specify a resource ID of 0.

■ Has size box. A Boolean value that indicates whether the List Manager 
should leave room for a size box. If true, a size box will be drawn; if false, a 
size box will not be drawn. 

■ Reserved. Set to 0.

The Tab Information Resource 2
NEW WITH THE APPEARANCE MANAGER 2

You can use a tab information resource to specify the icon suite ID and name of 
each tab in a tab control. A tab information resource is a resource of type 
'tab#'. All tab information resources must have resource ID numbers greater 
than 127. The Control Manager uses the information you specify to provide 
additional information to the corresponding tab control. Figure 2-3 shows the 
structure of this resource.
Control Manager Resources 115
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Figure 2-3 Structure of a compiled tab information ('tab#') resource

A compiled version of a tab information resource contains the following 
elements:

■ Version number. An integer specifying the version of the resource.

■ An integer that speciÞes the number of entries in the resource (that is, the 
number of tab information structures). 

■ A series of tab information structures, each of which consists of a 2-byte icon 
suite identiÞer and a variable-length string indicating the tab name.

Figure 2-4 shows the format of a compiled entry in a 'tab#' resource. A tab 
information entry speciÞes the icon suite ID and the name of a tab control.

Number of entries

First tab information entry

Last tab information entry

'tab#' resource type 

2

Variable

Variable

Bytes

Version number 2
116 Control Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Figure 2-4 Structure of a tab information entry

Each entry in a 'tab#' resource contains the following:

■ Icon suite ID. A value of 0 indicates no icon.

■ Tab name. The title of the tab control.

■ Reserved. Set to 0.

■ Reserved. Set to 0.

Icon suite ID

Tab name

Reserved

Reserved

Tab information  entry 

2

1 to 256

4

2

Bytes
Control Manager Resources 117
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Control Manager Functions 2

Creating and Removing Controls 2

GetNewControl 2
CHANGED WITH THE APPEARANCE MANAGER 2

Creates a control from a description in a control ('CNTL') resource.

pascal ControlHandle GetNewControl (
SInt16 resourceID,
WindowPtr owningWindow);

resourceID The resource ID of a control resource; see Table 2-1 (page 72). 

owningWindow  A pointer to the window in which you want to place the 
control.

function result Returns a handle to the control created from the speciÞed 
control resource. If GetNewControl canÕt read the control 
resource from the resource Þle, it returns nil.

DISCUSSION

The GetNewControl function creates a control structure from the information in 
the speciÞed control resource, adds the control structure to the control list for 
the speciÞed window, and returns as its function result a handle to the control. 
You use this handle when referring to the control in most other Control 
Manager functions. After making a copy of the control resource, GetNewControl 
releases the memory occupied by the original control resource before returning.

The control resource speciÞes the rectangle for the control, its initial setting, its 
visibility state, its maximum and minimum settings, its control deÞnition ID, a 
reference value, and its title (if any). After you use GetNewControl to create the 
118 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
control, you can change the control characteristics with other Control Manager 
functions.

If the control resource speciÞes that the control should be visible, the Control 
Manager draws the control. If the control resource speciÞes that the control 
should initially be invisible, you can use the function ShowControl (page 134) to 
make the control visible.

When an embedding hierarchy is established within a window, GetNewControl 
automatically embeds the newly created control in the root control of the 
owning window. See ÒEmbedding ControlsÓ (page 123).

If you are using standard system controls, default colors are used and the 
control color table resource is ignored. To use colors other than the default 
colors, you must write your own custom control deÞnition function.

SEE ALSO

NewControl (page 119).

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

GetNewControl does not embed the newly created control in the root control of 
the owning window because embedding hierarchies are not supported.

NewControl 2
CHANGED WITH THE APPEARANCE MANAGER 2

Creates a control based on information passed in its parameters that describes 
the control.

pascal ControlHandle NewControl (
WindowPtr owningWindow,
const Rect *boundsRect,
ConstStr255Param controlTitle,
Boolean initiallyVisible,
SInt16 initialValue,
SInt16 minimumValue,
Control Manager Functions 119
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
SInt16 maximumValue,
SInt16 procID,
SInt32 controlReference);

owningWindow On input, a pointer to the window in which you want to place 
the control. All coordinates pertaining to the control are 
interpreted in this windowÕs local coordinate system.

boundsRect On input, a pointer to a rectangle, speciÞed in the given 
windowÕs local coordinates, that encloses the control and thus 
determines its size and location. When specifying this rectangle, 
you should follow the guidelines presented in ÒDialog Box 
LayoutÓ, in Mac OS 8 Human Interface Guidelines, for control 
placement and alignment. 

controlTitle The title string, used for push buttons, checkboxes, radio 
buttons, and pop-up menus. When specifying a multiple-line 
title, separate the lines with the ASCII character code 0x0D 
(carriage return). For controls that donÕt use titles, pass an 
empty string.

initiallyVisible
A Boolean value specifying the visible/invisible state for the 
control. If you pass true in this parameter, NewControl draws the 
control immediately, without using your windowÕs standard 
updating mechanism. If you pass false, you must later use 
ShowControl (page 134) to display the control.

initialValue The initial setting for the control; see ÒSettings Values for 
Standard ControlsÓ (page 78).

minimumValue The minimum setting for the control; see ÒSettings Values for 
Standard ControlsÓ (page 78). 

maximumValue The maximum setting for the control; see ÒSettings Values for 
Standard ControlsÓ (page 78). 

procID The control deÞnition ID; see Table 2-1 (page 72). If the control 
deÞnition function isnÕt in memory, it is read in. 

controlReference
The controlÕs reference value, which is set and used only by 
your application. 

function result Returns a handle to the control described in its parameters. If 
NewControl runs out of memory or fails, it returns nil. 
120 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
DISCUSSION

The NewControl function creates a control structure from the information you 
specify in its parameters, adds the control structure to the control list for the 
speciÞed window, and returns as its function result a handle to the control. You 
can use this handle when referring to the control in most other Control 
Manager functions. Generally, you should use the function GetNewControl 
(page 118) instead of NewControl, because GetNewControl is a resource-based 
control-creation function that allows you to localize your application without 
recompiling. 

When an embedding hierarchy is established within a window, NewControl 
automatically embeds the newly created control in the root control of the 
owning window. See ÒEmbedding ControlsÓ (page 123).

If you are using standard system controls, default colors are used and the 
control color table resource is ignored. To use colors other than the default 
colors, write your own custom control deÞnition function.

SEE ALSO

GetNewControl (page 118).

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

NewControl does not embed the newly created control in the root control of the 
owning window because embedding hierarchies are not supported.

DisposeControl 2
CHANGED WITH THE APPEARANCE MANAGER 2

Removes a particular control and its embedded controls from a window that 
you wish to keep. 

pascal void DisposeControl (ControlHandle theControl);

theControl On input, a handle to the control you wish to remove.
Control Manager Functions 121
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
DISCUSSION

The DisposeControl function removes the speciÞed control (and any embedded 
controls it may possess) from the screen, deletes it from the windowÕs control 
list, and releases the memory occupied by the control structure and any data 
structures associated with the control. Passing the root control to this function 
is the effectively the same as calling KillControls (page 122). If an embedding 
hierarchy is present, DisposeControl disposes of the controls embedded within 
a control before disposing of the container control.

SPECIAL CONSIDERATIONS

The Window Manager functions CloseWindow and DisposeWindow automatically 
dispose of all controls associated with the given window.

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

DisposeControl does not dispose of embedded controls, because embedding 
hierarchies are not supported.

KillControls 2
CHANGED WITH THE APPEARANCE MANAGER 2

Removes all controls in a speciÞed window. 

pascal void KillControls (WindowPtr theWindow);

theWindow On input, a pointer to the window whose controls you wish to 
remove.

DISCUSSION

The KillControls function disposes of all controls associated with the speciÞed 
window. To remove just one control, use DisposeControl (page 121). If an 
122 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
embedding hierarchy is present, KillControls disposes of the controls 
embedded within a control before disposing of the container control.

SPECIAL CONSIDERATIONS

The Window Manager functions CloseWindow and DisposeWindow automatically 
dispose of all controls associated with the given window.

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

KillControls does not dispose of embedded controls, because embedding 
hierarchies are not supported.

Embedding Controls 2
This section provides functions that you can use to establish an embedding 
hierarchy. This can be accomplished in two steps: creating a root control and 
embedding controls within it. 

To embed controls in a window, you must create a root control for that window. 
The root control is the container for all other window controls. You create the 
root control in one of two waysÑby calling the CreateRootControl (page 125) 
function or by setting the appropriate dialog ßag. The root control can be 
retrieved by calling GetRootControl (page 126).

The root control is implemented as a user pane control. You can attach any 
application-deÞned user pane functions to the root control to perform actions 
such as hit testing, drawing, handling keyboard focus, erasing to the correct 
background, and processing idle and keyboard events. For information on how 
to write these functions, see ÒDeÞning Your Own User Pane FunctionsÓ 
(page 189).

Once you have created a root control, newly created controls will automatically 
be embedded in the root control when you call NewControl (page 119) or 
GetNewControl (page 118). You can specify that a speciÞc control be embedded 
into another by calling EmbedControl (page 127).
Control Manager Functions 123
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
By acting on an embedder control, you can move, disable, or hide groups of 
items. For example, you can use a blank user pane control as the embedder 
control for all items in a particular ÒpageÓ of a tab control. After creating as 
many user panes as you have tabs, you can hide one and show the next when a 
tab is clicked. All the controls embedded in the user pane will be hidden and 
shown automatically when the user pane is hidden and shown. 

The Dialog Manager uses AutoEmbedControl (page 128) to position dialog items 
in an embedding hierarchy based on both visual containment and the item list 
resource order. As items are added to a dialog box during creation, controls 
that already exist in the window will be containers for new controls if they both 
visually contain the control and have set the kControlSupportsEmbedding feature 
bit. For this reason, you should place the largest embedder controls at the 
beginning of the item list resource. As an example, the Dialog Manager would 
embed radio buttons in a tab control if they visually ÒÞtÓ inside the tab control, 
as long as the tab control was already created in a 'DITL' resource and 
established as an embedder control.

In addition to calling CreateRootControl, you can establish an embedding 
hierarchy in a dialog box by either setting the feature bit 
kDialogFlagsUseControlHierarchy in the extended dialog resource (page 252) or 
passing it in the inFlags parameter of NewFeaturesDialog (page 270). An 
embedding hierarchy can be created in an alert box by setting the 
kAlertFlagsUseControlHierarchy bit in the extended alert resource (page 253). It 
is important to note that a preexisting alert or dialog item will become a control 
if it is in an alert or dialog box that now uses an embedding hierarchy.

The embedding hierarchy enforces drawing order by drawing the embedding 
control before its embedded controls. Using an embedding hierarchy also 
enforces orderly hit-testing, since it performs an Òinside-outÓ hit test to 
determine the most deeply nested control that is hit by the mouse. An 
embedding hierarchy is also necessary for controls to make use of keyboard 
focus, the default focusing order for which is a linear progression that uses the 
order the controls were added to the window. For more details on keyboard 
focus, see ÒHandling Keyboard FocusÓ (page 147).
124 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
CreateRootControl 2
NEW WITH THE APPEARANCE MANAGER 2

Creates the root control for a speciÞed window.

pascal OSErr CreateRootControl (
WindowPtr inWindow,
ControlHandle* outControl);

inWindow On input, a pointer to the window in which you wish to create 
a root control.

outControl On output, a pointer to a handle to the root control.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errControlsAlreadyExist indicates that other controls were 
already present when CreateRootControl was called. The result 
code errRootAlreadyExists indicates that a root control was 
already created for the window. 

DISCUSSION

The CreateRootControl function creates the root control for a window if no 
other controls are present. If there are any controls in the window prior to 
calling CreateRootControl, an error is returned and the root control is not 
created.

The root control acts as the top-level container for a window and is required for 
embedding to occur. Once the root control is created, you can call EmbedControl 
(page 127) and AutoEmbedControl (page 128) to embed controls in the root 
control.

Note
The minimum, maximum, and initial settings for a root 
control are reserved and should not be changed. 

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
Control Manager Functions 125
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
GetRootControl 2
NEW WITH THE APPEARANCE MANAGER 2

Returns a handle to a windowÕs root control. 

pascal OSErr GetRootControl (
WindowPtr inWindow,
ControlHandle* outControl);

inWindow On input, a pointer to the root controlÕs owning window.

outControl On output, a pointer to a handle to the root control.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errNoRootControl indicates that there is no root control in the 
speciÞed window.

DISCUSSION

You can call GetRootControl to determine whether or not a root control (and 
therefore an embedding hierarchy) exists within a speciÞed window. Once you 
have the root controlÕs handle, you can pass it to functions such as 
DisposeControl (page 121), ActivateControl (page 135), and DeactivateControl 
(page 136) to apply speciÞed actions to the entire embedding hierarchy.

Note
The minimum, maximum, and initial settings for a root 
control are reserved and should not be changed. 

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
126 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
EmbedControl 2
NEW WITH THE APPEARANCE MANAGER 2

Embeds one control inside another.

pascal OSErr EmbedControl (
ControlHandle inControl,
ControlHandle inContainer);

inControl On input, a handle to a control to be embedded.

inContainer On input, a handle to the embedder control.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errNoRootControl indicates that there is no root control in the 
speciÞed window. The result code errControlIsNotEmbedder 
indicates that the speciÞed control does not support 
embedding. The result code errCantEmbedIntoSelf indicates 
that the controls speciÞed in the inControl and inContainer 
parameters are the same control. The result code 
errCantEmbedRoot indicates that you are trying to embed the 
root control. 

DISCUSSION

An embedding hierarchy must be established before your application calls the 
EmbedControl function. If the specified control does not support embedding or 
there is no root control in the owning window, an error is returned. If the 
control you wish to embed is in a different window from the embedder control, 
an error is returned. See ÒEmbedding ControlsÓ (page 123) for more details on 
embedding.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

AutoEmbedControl (page 128).
Control Manager Functions 127
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
AutoEmbedControl 2
NEW WITH THE APPEARANCE MANAGER 2

Automatically embeds a control in the smallest appropriate embedder control.

pascal OSErr AutoEmbedControl (
ControlHandle inControl,
WindowPtr inWindow);

inControl On input, a handle to a control to be embedded.

inWindow On input, a pointer to the window in which you want to embed 
the control.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errControlIsNotEmbedder indicates that embedding is not 
enabled for that window. The result code errItemNotControl 
indicates that the dialog item that you wish to embed is not a 
control (not in an embedding hierarchy). 

DISCUSSION

The Dialog Manager uses AutoEmbedControl (page 128) to position dialog items 
in an embedding hierarchy based on both visual containment and the item list 
resource order. For information on embedding hierarchies in dialog and alert 
boxes, see ÒEmbedding ControlsÓ (page 123).

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

EmbedControl (page 127).
128 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
CountSubControls 2
NEW WITH THE APPEARANCE MANAGER 2

Returns the number of embedded controls within a control.

pascal OSErr CountSubControls (
ControlHandle inControl,
SInt16* outNumChildren);

inControl On input, a handle to a control whose embedded controls you 
wish to count.

outNumChildren
On output, a pointer to an integer representing the number of 
embedded subcontrols.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errControlIsNotEmbedder indicates that the specified control 
does not support embedding. The result errNoRootControl 
indicates that embedding is not enabled for that window.

DISCUSSION

The CountSubControls function is useful for iterating over the control hierarchy. 
You can use the count produced to determine how many subcontrols there are 
and then call GetIndexedSubControl (page 130) to get each.

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
Control Manager Functions 129
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
GetIndexedSubControl 2
NEW WITH THE APPEARANCE MANAGER 2

Returns a handle to a speciÞed embedded control.

pascal OSErr GetIndexedSubControl (
ControlHandle inControl,
SInt16 inIndex,
ControlHandle* outSubControl);

inControl On input, a handle to an embedder control.

inIndex On input, a 1-based indexÑan integer between 1 and the value 
returned in the outNumChildren parameter of CountSubControls 
(page 129)Ñindicating the speciÞc control you wish to access.

outSubControl On output, a pointer to a handle to the embedded control.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errControlIsNotEmbedder indicates that the embedder control 
does not support embedding or that embedding is not enabled 
for that window. If the index passed in is invalid, the paramErr 
result code is returned.

DISCUSSION

The GetIndexedSubControl function is useful for iterating over the control 
hierarchy. Also, the value of a radio group control is the index of its currently 
selected embedded radio button control. So, passing the current value of a 
radio group control into GetIndexedSubControl will give you a handle to the 
currently selected radio button control.

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
130 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
GetSuperControl 2
NEW WITH THE APPEARANCE MANAGER 2

Produces a handle to the embedder control.

pascal OSErr GetSuperControl (
ControlHandle inControl,
ControlHandle* outParent);

inControl On input, a handle to an embedded control. 

outParent On output, a pointer to a handle to the embedder control. 

function result  A result code; see ÒResult CodesÓ (page 110). The result code 
errControlIsNotEmbedder indicates that the specified control 
does not support embedding. The result code errCantEmbedRoot 
indicates that you passed the root control in the inControl 
parameter.

DISCUSSION

The GetSuperControl function gets a handle to the parent control of the control 
passed in.

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetControlSupervisor 2
NEW WITH THE APPEARANCE MANAGER 2

Routes mouse-down events to the embedder control. 

pascal OSErr SetControlSupervisor (
ControlHandle inControl,
ControlHandle inBoss);

inControl On input, a handle to an embedded control.
Control Manager Functions 131
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
inBoss On input, a handle to the embedder control that you wish to 
route mouse-down events to.

function result A result code. The result code errControlIsNotEmbedder 
indicates that the control speciÞed in the inBoss parameter is 
not an embedder control. For a list of other result codes, see 
ÒResult CodesÓ (page 110).

DISCUSSION

The SetControlSupervisor function allows an embedder control to respond to 
mouse-down events occurring in its embedded controls. 

An example of a standard control that uses this function is the radio group 
control. Mouse-down events in the embedded controls of a radio group are 
intercepted by the group control. (The embedded controls in this case must 
support radio behavior; if a mouse-down event occurs in an embedded control 
within a radio group control that does not support radio behavior, the control 
tracks normally and the group is not involved.) The group handles all 
interactions and switches the embedded controlÕs value on and off. If the value 
of the radio group changes, TrackControl (page 146) or HandleControlClick 
(page 144) will return the kControlRadioGroupPart part code. If the user tracks 
off the radio button or clicks the current radio button, kControlNoPart is 
returned.

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

DumpControlHierarchy 2
NEW WITH THE APPEARANCE MANAGER 2

Writes a textual representation of the control hierarchy for a speciÞed window 
into a Þle.

pascal OSErr DumpControlHierarchy (
WindowPtr inWindow,
const FSSpec* inDumpFile);
132 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
inWindow On input, a pointer to the window whose control hierarchy you 
wish to debug.

inDumpFile On input, a pointer to a Þle speciÞcation in which you wish to 
place a text description of the windowÕs control hierarchy.

function result A result code; see ÒResult CodesÓ (page 110).

DISCUSSION

The DumpControlHierarchy function places a text listing of the current control 
hierarchy for the window speciÞed into the speciÞed Þle, overwriting any 
existing Þle. If the speciÞed window does not contain a control hierarchy, 
DumpControlHierarchy notes this in the text file. This function is useful for 
debugging embedding-related problems.

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

Manipulating Controls 2
When showing, hiding, activating, or deactivating groups of controls, the state 
of an embedded control that is hidden or deactivated is preserved so that when 
the embedder control is shown or activated, the embedded control appears in 
the same state as the embedder. An embedded control is considered latent 
when it is deactivated or hidden due to its embedder control being deactivated 
or hidden. If you activate a latent embedded control whose embedder is 
deactivated, the embedded control becomes latent until the embedder is 
activated. However, if you deactivate a latent embedded control, it will not be 
activated when its embedder is activated.

When activating and deactivating controls in an embedding hierarchy, call 
ActivateControl (page 135) and DeactivateControl (page 136) instead of 
HiliteControl (page 138) to ensure that latent embedded controls are displayed 
correctly. 
Control Manager Functions 133
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
ShowControl 2
CHANGED WITH THE APPEARANCE MANAGER 2

Makes an invisible control, and any latent embedded controls, visible.

pascal void ShowControl (ControlHandle theControl);

theControl On input, a handle to the control you want to make visible.

DISCUSSION

If the speciÞed control is invisible, the ShowControl function makes it visible 
and immediately draws the control within its window without using your 
windowÕs standard updating mechanism. If the speciÞed control has 
embedded controls, ShowControl makes the embedded controls visible as well. 
If the control is already visible, ShowControl has no effect. 

If you call ShowControl on a latent embedded control whose embedder is 
disabled, the embedded control will be invisible until its embedder control is 
enabled. For a discussion of latency, see ÒManipulating ControlsÓ (page 133).

You can make a control invisible in several ways:

■ Specifying its invisibility in the control resource.

■ Passing a value of false in the visible parameter of NewControl (page 119).

■ Calling HideControl (page 135).

■ Calling SetControlVisibility (page 160). The setting takes effect the next 
time the control is drawn. 

SPECIAL CONSIDERATIONS

The ShowControl function draws the control in its window, but the control can 
still be completely or partially obscured by overlapping windows or other 
objects. 

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

ShowControl only makes the specified control visible, because embedding 
hierarchies are not supported.
134 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
HideControl 2
CHANGED WITH THE APPEARANCE MANAGER 2

Makes the visible control, and any latent embedded controls, invisible.

pascal void HideControl (ControlHandle theControl);

theControl On input, a handle to the control you want to hide.

DISCUSSION

The HideControl function makes the speciÞed control invisible. This can be 
useful, for example, before adjusting a controlÕs size and location. It also adds 
the controlÕs rectangle to the windowÕs update region, so that anything else 
that was previously obscured by the control will reappear on the screen. If the 
speciÞed control has embedded controls, HideControl makes the embedded 
controls invisible as well. If the control is already invisible, HideControl has no 
effect. 

If you call HideControl on a latent embedded control, it would not be displayed 
the next time ShowControl was called on its embedder control. For a discussion 
of latency, see ÒManipulating ControlsÓ (page 133).

To make the control visible again, you can use the ShowControl function 
(page 134) or SetControlVisibility (page 160). 

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

HideControl only makes the specified control invisible, because embedding 
hierarchies are not supported.

ActivateControl 2
NEW WITH THE APPEARANCE MANAGER 2

Activates a control and any latent embedded controls.

pascal OSErr ActivateControl (ControlHandle inControl);
Control Manager Functions 135
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
inControl On input, a handle to a control that you wish to activate. 
Passing a windowÕs root control will activate all controls in that 
window.

function result A result code; see ÒResult CodesÓ (page 110).

DISCUSSION

The ActivateControl function should be called instead of HiliteControl to 
activate a speciÞed control and its latent embedded controls. For a discussion 
of latency, see ÒManipulating ControlsÓ (page 133). 

You can use ActivateControl to activate all controls in a window by passing the 
windowÕs root control in the inControl parameter.

If a control deÞnition function supports activate events, it will receive a 
kControlMsgActivate message before redrawing itself in its active state.

SEE ALSO

DeactivateControl (page 136).

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

DeactivateControl 2
NEW WITH THE APPEARANCE MANAGER 2

Deactivates a control and any latent embedded controls.

pascal OSErr DeactivateControl (ControlHandle inControl);

inControl On input, a handle to the control that you wish to deactivate. 
Passing a windowÕs root control will deactivate all controls in 
that window. 

function result A result code; see ÒResult CodesÓ (page 110).
136 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
DISCUSSION

The DeactivateControl function should be called instead of HiliteControl to 
deactivate a speciÞed control and its latent embedded controls. For a 
discussion of latency, see ÒManipulating ControlsÓ (page 133). 

You can use DeactivateControl to deactivate all controls in a window by 
passing the windowÕs root control in the inControl parameter. 

If a control deÞnition function supports activate events, it will receive a 
kControlMsgActivate message before redrawing itself in its inactive state. 

SEE ALSO

ActivateControl (page 135).

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

IsControlActive 2
NEW WITH THE APPEARANCE MANAGER 2

Indicates whether a control is active.

pascal Boolean IsControlActive (ControlHandle inControl);

inControl On input, a handle to the control whose activity you wish to 
determine.

function result Returns a Boolean value. If true, the control is active. If false, 
the control is inactive. 

DISCUSSION

If you wish to determine whether a control is active, you should call 
IsControlActive instead of testing the contrlHilite field of the control 
structure.
Control Manager Functions 137
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

HiliteControl 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

Call ActivateControl (page 135) and DeactivateControl (page 136) instead of 
HiliteControl to activate or deactivate a control. This is important if the control 
is in an embedding hierarchy, since calling these functions will ensure that any 
latent embedded controls will be activated and deactivated correctly.

SendControlMessage 2
NEW WITH THE APPEARANCE MANAGER 2

Sends a message to a control deÞnition function. 

pascal SInt32 SendControlMessage (
ControlHandle inControl,
SInt16 inMessage,
SInt32 inParam);

inControl On input, a handle to the control to which you are sending a 
low-level message.

inMessage A bit Þeld representing the message(s) you wish to send; see 
ÒMessagesÓ (page 164).

inParam The message-dependent data passed in the param parameter of 
the control deÞnition function. 

function result Returns a signed 32-bit integer which contains varying data 
depending upon the message sent; see ÒMessagesÓ (page 164).

DISCUSSION

Your application does not normally need to call the SendControlMessage 
function. If you have a special need to call a control deÞnition function directly, 
call SendControlMessage to access and manipulate the controlÕs attributes.
138 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Before calling SendControlMessage, you should determine whether the control 
supports the speciÞc message you wish to send by calling GetControlFeatures 
(page 158) and examining the feature bit Þeld returned. If there are no feature 
bits returned that correspond to the message you wish to send (for messages 0 
through 12), you can assume that all system controls support that message.

SEE ALSO

MyControlDefProc (page 163).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

Displaying Controls 2

DrawOneControl 2
CHANGED WITH THE APPEARANCE MANAGER 2

Draws a single control and any embedded controls that are currently visible in 
the speciÞed window. 

pascal void DrawOneControl (ControlHandle theControl);

theControl On input, a handle to the control you want to draw.

DISCUSSION

Although you should generally use the function UpdateControls to update 
controls, you can use the DrawOneControl function to update a single control. If 
an embedding hierarchy exists and the control passed in has embedded 
controls, DrawOneControl draws the control and embedded controls. If the root 
control for a window is passed in, the result is the same as if DrawControls was 
called.

SEE ALSO

ÒEmbedding ControlsÓ (page 123).
Control Manager Functions 139
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

DrawOneControl does not draw any embedded controls, because embedding 
hierarchies are not supported.

DrawControlInCurrentPort 2
NEW WITH THE APPEARANCE MANAGER 2

Draws a control in the current graphics port. 

pascal void DrawControlInCurrentPort (ControlHandle inControl);

inControl On input, a handle to the control you wish to draw.

DISCUSSION

Normally, controls are automatically drawn in their ownerÕs graphics port with 
DrawControls, DrawOneControl (page 139), and UpdateControls. 
DrawControlInCurrentPort permits easy offscreen control drawing and printing. 
All standard system controls support this function.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
140 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Handling Events in Controls 2

FindControlUnderMouse 2
NEW WITH THE APPEARANCE MANAGER 2

Determines whether a mouse-down event has occurred in a control and, if so, 
in which. 

pascal ControlHandle FindControlUnderMouse (
Point inWhere,
WindowPtr inWindow,
SInt16 *outPart);

inWhere On input, a point, speciÞed in coordinates local to the window, 
where the mouse-down event occurred. Before calling 
FindControlUnderMouse, use the QuickDraw GlobalToLocal 
function to convert the point stored in the where Þeld of the 
event structure (which describes the location of the 
mouse-down event) to coordinates local to the window.

inWindow On input, a pointer to the window in which the mouse-down 
event occurred.

outPart On output, a pointer to the part code of the control part which 
was selected; see ÒControl Part Code ConstantsÓ (page 99).

function result Returns a handle to the control that was selected. If the 
mouse-down event did not occur over a control part, nil is 
returned.

DISCUSSION

You should call the FindControlUnderMouse function instead of FindControl 
(page 142) to determine whether a mouse-down event occurred in a control, 
particularly if an embedding hierarchy is present. FindControlUnderMouse will 
return a handle to the control even if no part was hit and can determine 
whether a mouse-down event has occurred even if the control is deactivated, 
while FindControl does not. 
Control Manager Functions 141
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
When a mouse-down event occurs, your application should call 
FindControlUnderMouse after using the Window Manager function FindWindow to 
ascertain that a mouse-down event has occurred in the content region of a 
window containing controls.

SEE ALSO

ÒEmbedding ControlsÓ (page 123).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

FindControl 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

When the Appearance Manager is available, you should call 
FindControlUnderMouse (page 141) to determine whether a mouse-down event 
occurred in a control. FindControlUnderMouse will return a handle to the control 
even if no part was hit and can determine whether a mouse-down event has 
occurred even if the control is deactivated, while FindControl does not.

HandleControlKey 2
NEW WITH THE APPEARANCE MANAGER 2

Sends a keyboard event to a control with keyboard focus.

pascal SInt16 HandleControlKey (
ControlHandle inControl,
SInt16 inKeyCode,
SInt16 inCharCode,
SInt16 inModifiers);

inControl On input, a handle to the control that currently has keyboard 
focus.
142 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
inKeyCode The virtual key code, derived from the event structure. This 
value represents the key pressed or released by the user. It is 
always the same for a speciÞc physical key on a particular 
keyboard regardless of which modiÞer keys were also pressed.

inCharCode A particular character, derived from the event structure. The 
value that is generated depends on the virtual key code, the 
state of the modiÞer keys, and the current 'KCHR' resource. 

inModifiers A constant from the modifiers Þeld of the event structure 
specifying the state of the modiÞer keys and the mouse button 
at the time the event was posted.

function result  Returns the part code that was hit during the keyboard event; 
see ÒControl Part Code ConstantsÓ (page 99).

DISCUSSION

If you have determined that a keyboard event has occurred in a given window, 
before calling the HandleControlKey function, call GetKeyboardFocus (page 148) 
to get the handle to the control that currently has keyboard focus. The 
HandleControlKey function passes the values specified in its inKeyCode, 
inCharCode, and inModifiers parameters to control definition functions that set 
the kControlSupportsFocus feature bit.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

IdleControls 2
NEW WITH THE APPEARANCE MANAGER 2

Performs idle event processing.

pascal void IdleControls (WindowPtr inWindow);

inWindow On input, a pointer to the window that contains controls which 
support idle events.
Control Manager Functions 143
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
DISCUSSION

Your application should call the IdleControls function to give idle time to any 
controls that want the kControlMsgIdle message. IdleControls calls the control 
with an idle event so the control can do idle-time processing. You should call 
IdleControls at least once in your event loop. See ÒPerforming Idle ProcessingÓ 
(page 181) for more details on how a control deÞnition function should handle 
idle processing.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

HandleControlClick 2
NEW WITH THE APPEARANCE MANAGER 2

Follows and responds to cursor movements in a control while the mouse 
button is down and determines the control part in which the next mouse-up 
event occurs.

pascal ControlPartCode HandleControlClick (
ControlHandle inControl,
Point inWhere,
SInt16 inModifiers,
ControlActionUPP inAction);

inControl On input, a handle to the control in which the mouse-down 
event occurred. Pass the control handle returned by FindControl 
or FindControlUnderMouse.

inWhere A point, speciÞed in local coordinates, where the mouse-down 
event occurred. Supply the same point you passed to 
FindControl or FindControlUnderMouse.

inModifiers Information about the state of the modiÞer keys and the mouse 
button at the time the event was posted. 

inAction On input, a pointer to an action function deÞning what action 
your application takes while the user holds down the mouse 
button. The value of the inAction parameter can be a valid 
procPtr, nil, or -1. A value of -1 indicates that the control 
144 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
should either perform auto tracking, or if it is incapable of 
doing so, do nothing (like nil). For custom controls, what you 
pass in this parameter depends on how you deÞne the control. 
If the part index is greater than 128, the pointer must be of type 
DragGrayRegionUPP unless the control supports live feedback, in 
which case it should be a ControlActionUPP.

function result Returns a value of type ControlPartCode identifying the 
controlÕs part; see ÒControl Part Code ConstantsÓ (page 99).

DISCUSSION

Call the HandleControlClick function after a call to FindControl or 
FindControlUnderMouse. The HandleControlClick function should be called 
instead of TrackControl (page 146) to follow the userÕs cursor movements in a 
control and provide visual feedback until the user releases the mouse button. 
Unlike TrackControl, HandleControlClick allows modiÞer keys to be passed in 
so that the control may use these if the control (such as a list box or editable 
text Þeld) is set up to handle its own tracking.

The visual feedback given by HandleControlClick depends on the control part 
in which the mouse-down event occurs. When highlighting is appropriate, for 
example, HandleControlClick highlights the control part (and removes the 
highlighting when the user releases the mouse button). When the user holds 
down the mouse button while the cursor is in an indicator (such as the scroll 
box of a scroll bar) and moves the mouse, HandleControlClick responds by 
dragging a dotted outline or a ghost image of the indicator. If the user releases 
the mouse button when the cursor is in an indicator such as the scroll box, 
HandleControlClick calls the control definition function to reposition the 
indicator. 

While the user holds down the mouse button with the cursor in one of the 
standard controls, HandleControlClick performs the following actions, 
depending on the value you pass in the parameter inAction.

■ If you pass nil in the inAction parameter, HandleControlClick uses no action 
function and therefore performs no additional actions beyond highlighting 
the control or dragging the indicator. This is appropriate for push buttons, 
checkboxes, radio buttons, and the scroll box of a scroll bar. 

■ If you pass a pointer to an action function in the inAction parameter, it must 
deÞne some action that your application repeats as long as the user holds 
Control Manager Functions 145
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
down the mouse button. This is appropriate for the scroll arrows and gray 
areas of a scroll bar.

■ If you pass (ControlActionUPP)-1L in the inAction parameter, 
HandleControlClick looks in the contrlAction field of the control structure 
for a pointer to the controlÕs action function. This is appropriate when you 
are tracking the cursor in a pop-up menu. You can call GetControlAction to 
determine the value of this Þeld, and you can call SetControlAction 
(page 153) to change this value. If the contrlAction Þeld of the control 
structure contains a function pointer, HandleControlClick uses the action 
function it points to; if the Þeld of the control structure also contains the 
value (ControlActionUPP)-1L, HandleControlClick calls the control deÞnition 
function to perform the necessary action; you may wish to do this if you 
deÞne your own control deÞnition function for a custom control. If the Þeld 
of the control structure contains the value nil, HandleControlClick performs 
no action.

Note
For 'CDEF' resources that implement custom dragging, you 
usually call HandleControlClick, which returns 0 regardless 
of the userÕs changes of the control setting. To avoid this, 
you should use another method to determine whether the 
user has changed the control setting, for instance, 
comparing the controlÕs value before and after your call to 
HandleControlClick.

SEE ALSO

MyActionProc (page 185).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

TrackControl 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

When the Appearance Manager is available, call HandleControlClick (page 144) 
instead of TrackControl to follow the userÕs cursor movements in a control and 
provide visual feedback until the user releases the mouse button. 
146 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
HandleControlClick allows modifier keys to be passed in so that the control 
may use these if the control is set up to handle its own tracking. 

Handling Keyboard Focus 2
A control with keyboard focus receives keyboard events. The Dialog Manager 
tests to see which control has keyboard focus when a keyboard event is 
processed and sends the event to that control. If no control has keyboard focus, 
the keyboard event is discarded. Currently, the list box, clock, and editable text 
controls are the only standard system controls that support keyboard focus. A 
control retains keyboard focus if it is hidden or deactivated.

A focus ring is drawn around the control with keyboard focus. When creating 
your own controls, allow space for the focus ring. For more details on 
designing with focus rings, see Mac OS 8 Human Interface Guidelines.

Keyboard focus is only available if an embedding hierarchy has been 
established in the focusable controlÕs window. The default focusing order is 
based on the order in which controls are added to the window. For more details 
on embedding hierarchies, see ÒEmbedding ControlsÓ (page 123).

SetKeyboardFocus 2
NEW WITH THE APPEARANCE MANAGER 2

Sets the current keyboard focus to a speciÞed control part for a speciÞed 
window.

pascal OSErr SetKeyboardFocus (
WindowPtr inWindow,
ControlHandle inControl,
ControlFocusPart inPart);

inWindow On input, a pointer to the window containing the control that 
you wish to receive keyboard focus.

inControl On input, a handle to the control that you wish to receive 
keyboard focus.
Control Manager Functions 147
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
inPart A part code specifying the part of a control which will receive 
keyboard focus. To clear a controlÕs keyboard focus, pass 
kControlFocusNoPart. See ÒHandling Keyboard FocusÓ 
(page 178).

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errNoRootControl indicates that keyboard focus is unavailable 
because the window does not have an embedding hierarchy 
established. If the speciÞed control doesnÕt support keyboard 
focus, errControlDoesntSupportFocus is returned

DISCUSSION

The SetKeyboardFocus function sets the keyboard focus to a speciÞed control 
part. The control to receive keyboard focus can be deactivated or invisible. This 
permits you to set the focus for an item in a dialog box before the dialog box is 
displayed.

SEE ALSO

GetKeyboardFocus (page 148).

ÒHandling Keyboard FocusÓ (page 147).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetKeyboardFocus 2
NEW WITH THE APPEARANCE MANAGER 2

Gets a handle to the control with the current keyboard focus for a speciÞed 
window.

pascal OSErr GetKeyboardFocus (
WindowPtr inWindow,
ControlHandle* outControl);

inWindow On input, a pointer to the window for which you wish to get 
keyboard focus.
148 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
outControl On output, a pointer to a handle to the control that currently 
has keyboard focus. Produces nil if no control has focus. 

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errNoRootControl indicates that keyboard focus is unavailable 
because the window does not have an embedding hierarchy 
established. 

DISCUSSION

The GetKeyboardFocus function returns the handle of the control with current 
keyboard focus within a speciÞed window. 

SEE ALSO

SetKeyboardFocus (page 147).

ÒHandling Keyboard FocusÓ (page 147).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

AdvanceKeyboardFocus 2
NEW WITH THE APPEARANCE MANAGER 2

Advances the keyboard focus to the next focusable control in the window.

pascal OSErr AdvanceKeyboardFocus (WindowPtr inWindow);

inWindow On input, a pointer to the window for which you wish to 
advance keyboard focus.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errNoRootControl indicates that keyboard focus is unavailable 
because the window does not have an embedding hierarchy 
established. 
Control Manager Functions 149
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
DISCUSSION

The AdvanceKeyboardFocus function skips over deactivated and hidden controls 
until it Þnds the next focusable control in the window. If it does not Þnd a 
focusable item, it simply returns.

When AdvanceKeyboardFocus is called, the Control Manager calls your control 
deÞnition function and passes kControlMsgFocus in its message parameter and 
kControlFocusNextPart in its param parameter. In response to this message, your 
control deÞnition function should change keyboard focus to its next part, the 
entire control, or remove keyboard focus from the control, depending upon the 
circumstances. See ÒHandling Keyboard FocusÓ (page 178) for a discussion of 
possible responses to this message.

SEE ALSO

ReverseKeyboardFocus (page 150).

ÒHandling Keyboard FocusÓ (page 147).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

ReverseKeyboardFocus 2
NEW WITH THE APPEARANCE MANAGER 2

Reverses the progression of keyboard focus, returning focus to the previous 
control to receive keyboard focus in the window.

pascal OSErr ReverseKeyboardFocus (WindowPtr inWindow);

inWindow On input, a pointer to the window for which you wish to 
reverse keyboard focus.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errNoRootControl indicates that keyboard focus is unavailable 
because the window does not have an embedding hierarchy 
established. 
150 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
DISCUSSION

The ReverseKeyboardFocus function skips over deactivated and hidden controls 
until it Þnds the previous control to receive keyboard focus in the window.

When ReverseKeyboardFocus is called, the Control Manager calls your control 
deÞnition function and passes kControlMsgFocus in its message parameter and 
kControlFocusPrevPart in its param parameter. In response to this message, your 
control deÞnition function should change keyboard focus to its previous part, 
the entire control, or remove keyboard focus from the control, depending upon 
the circumstances. See ÒHandling Keyboard FocusÓ (page 178) for a discussion 
of possible responses to this message.

SEE ALSO

AdvanceKeyboardFocus (page 149).

ÒHandling Keyboard FocusÓ (page 147).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

ClearKeyboardFocus 2
NEW WITH THE APPEARANCE MANAGER 2

Clears the keyboard focus for the currently focused control in the speciÞed 
window.

pascal OSErr ClearKeyboardFocus (WindowPtr inWindow);

inWindow On input, a pointer to the window in which you wish to clear 
keyboard focus.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errNoRootControl indicates that keyboard focus is unavailable 
because the window does not have an embedding hierarchy 
established. 

DISCUSSION

When the ClearKeyboardFocus function is called, the Control Manager calls 
your control deÞnition function and passes kControlMsgFocus in its message 
Control Manager Functions 151
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
parameter and kControlFocusNoPart in its param parameter. See ÒHandling 
Keyboard FocusÓ (page 178) for a discussion of possible responses to this 
message.

SEE ALSO

ÒHandling Keyboard FocusÓ (page 147).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

Accessing and Changing Control Settings and Data 2

GetBestControlRect 2
NEW WITH THE APPEARANCE MANAGER 2

Determines a controlÕs optimal size and text placement. 

pascal OSErr GetBestControlRect (
ControlHandle inControl,
Rect *outRect,
SInt16 *outBaseLineOffset);

inControl On input, a handle to the control whose size you wish to 
determine.

outRect On input, a pointer to the control rectangle you wish to modify; 
pass an empty rectangle (0, 0, 0, 0). On output, a pointer to the 
rectangle that the control has determined to be optimal. If the 
control doesnÕt support getting an optimal size rectangle, the 
controlÕs bounding rectangle is passed back. 

outBaseLineOffset
On output, the offset from the bottom of control to the base of 
the text (usually a negative value). If the control doesnÕt 
support optimal sizing or has no text, 0 is passed back.

function result A result code; see ÒResult CodesÓ (page 110).
152 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
DISCUSSION

The GetBestControlRect function should be called to automatically position 
and size controls in accordance with human interface guidelines. This function 
is particularly helpful in determining the correct placement of control text 
whose length is not known until run-time. For example, StandardAlert 
(page 261) uses GetBestControlRect to automatically size and position buttons 
in a newly created alert box.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetControlAction 2
CHANGED WITH THE APPEARANCE MANAGER 2

Sets or changes the action function for the speciÞed controlÕs control structure.

pascal void SetControlAction (
ControlHandle theControl,
ControlActionUPP actionProc);

theControl On input, a handle to the control whose action function you 
wish to change.

actionProc On input, a pointer to an action function deÞning what action 
your application takes while the user holds down the mouse 
button.

DISCUSSION

The SetControlAction function changes the contrlAction Þeld of the control 
structure to point to the action function speciÞed in the actionProc parameter. 
If the cursor is in the speciÞed control, HandleControlClick (page 144) or 
TrackControl (page 146) call this action function when the user holds down the 
mouse button. You must provide the action function, and it must deÞne some 
action to perform repeatedly as long as the user holds down the mouse button. 
HandleControlUnderClick and TrackControl always highlight and drag the 
control as appropriate. 
Control Manager Functions 153
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Note
SetControlAction should be used to set the 
application-deÞned action function for providing live 
feedback for standard system scroll bar controls. 

SEE ALSO

MyActionProc (page 185).

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Live feedback is not supported.

SetControlColor 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

When the Appearance Manager is available and you are using standard 
controls, colors are determined by the current theme. If you are creating your 
own control deÞnition function, you can still set your own colors with the 
SetControlColor function. 

SetControlData 2
NEW WITH THE APPEARANCE MANAGER 2

Sets control-speciÞc data.

pascal OSErr SetControlData (
ControlHandle inControl,
ControlPartCode inPart,
ResType inTagName,
Size inSize,
Ptr inData);

inControl On input, a handle to the control.
154 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
inPart The part code of the control part whose control-speciÞc data 
you wish to set; see ÒControl Part Code ConstantsÓ (page 99). 
Passing kControlEntireControl indicates that either the control 
has no parts or the data is not tied to any speciÞc part of the 
control. 

inTagName A constant representing the control-speciÞc data you wish to 
set; see ÒControl Data Tag ConstantsÓ (page 83).

inSize The size (in bytes) of the data pointed to by the inData 
parameter. For variable-length control data, pass the value 
returned in the outMaxSize parameter of GetControlDataSize 
(page 157) in the inSize parameter. The number of bytes must 
match the actual data size.

inData On input, a pointer to a buffer allocated by your application. 
This buffer contains the data that you are sending to the control. 
After calling SetControlData, your application is responsible for 
disposing of this buffer, if necessary, as information is copied by 
control. 

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errDataNotSupported indicates that the inTagName parameter is 
not valid. 

DISCUSSION

The SetControlData function sets control-speciÞc data represented by the value 
in the inTagName parameter to the data pointed to by the inData parameter. 
SetControlData could be used, for example, to switch a progress indicator from 
a determinate to indeterminate state. For a list of the control attributes that can 
be set, see ÒControl Data Tag ConstantsÓ (page 83).

SEE ALSO

GetControlData (page 156).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
Control Manager Functions 155
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
GetControlData 2
NEW WITH THE APPEARANCE MANAGER 2

Gets control-speciÞc data.

pascal OSErr GetControlData (
ControlHandle inControl,
ControlPartCode inPart,
ResType inTagName,
Size inBufferSize,
Ptr inBuffer,
Size *outActualSize);

inControl On input, a handle to the speciÞed control.

inPart The part code of the control part whose control-speciÞc data 
you wish to set; see ÒControl Part Code ConstantsÓ (page 99). 
Passing kControlEntireControl indicates that either the control 
has no parts or the data is not tied to any speciÞc part of the 
control. 

inTagName A constant representing the control-speciÞc data you wish to 
get; see ÒControl Data Tag ConstantsÓ (page 83). 

inBufferSize The size (in bytes) of the data pointed to by the inBuffer 
parameter. For variable-length control data, pass the value 
returned in the outMaxSize parameter of GetControlDataSize 
(page 157) in the inBufferSize parameter. The number of bytes 
must match the actual data size.

inBuffer On input, a pointer to a buffer allocated by your application. 
On output, a copy of the control-speciÞc data. If you pass nil 
on input, it is equivalent to calling GetControlDataSize 
(page 157). The actual size of the control-speciÞc data will be 
returned in the outActualSize parameter. For variable-length 
data, the number of bytes must match the actual data size.

outActualSize On output, a pointer to the actual size of the data. 

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errDataNotSupported indicates that the inTagName parameter is 
not valid. The result code errDataSizeMismatch indicates that 
the value in the inBufferSize parameter does not match the 
value in the outActualSize parameter. 
156 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
DISCUSSION

The GetControlData function will only copy the amount of data speciÞed in the 
inBufferSize parameter, but will tell you the actual size of the buffer so you 
will know if the data was truncated.

SEE ALSO

SetControlData (page 154).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetControlDataSize 2
NEW WITH THE APPEARANCE MANAGER 2

Returns the size (in bytes) of a controlÕs tagged data.

pascal OSErr GetControlDataSize (
ControlHandle inControl,
ControlPartCode inPart,
ResType inTagName,
Size *outMaxSize);

inControl On input, a handle to the speciÞed control.

inPart The part code of the control part whose control-speciÞc data 
you wish to set; see ÒControl Part Code ConstantsÓ (page 99). 
Passing kControlEntireControl indicates that either the control 
has no parts or the data is not tied to any speciÞc part of the 
control. 

inTagName A constant representing the control-speciÞc data you wish to 
get; see ÒControl Data Tag ConstantsÓ (page 83). 

outMaxSize On output, a pointer to the size of the controlÕs tagged data. 
This value should be passed to SetControlData (page 154) and 
GetControlData (page 156) to allocate a sufÞciently large buffer 
for variable-length data.

function result A result code; see ÒResult CodesÓ (page 110). The result code 
errDataNotSupported indicates that the inTagName parameter is 
not valid. 
Control Manager Functions 157
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
DISCUSSION

Pass the value returned in the outMaxSize parameter of GetControlDataSize in 
the inBufferSize parameter of SetControlData (page 154) and GetControlData 
(page 156) to allocate an adequate buffer for variable-length data. 

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetControlFeatures 2
NEW WITH THE APPEARANCE MANAGER 2

Returns the Appearance-compliant features a control supports. 

pascal OSErr GetControlFeatures (
ControlHandle inControl, 
UInt32 *outFeatures);

inControl On input, a handle to the control whose features you wish to 
determine.

outFeatures On output, a pointer to a bit Þeld specifying the features the 
control supports. For a list of the features a control may 
support, see ÒSpecifying Which Appearance-Compliant 
Messages Are SupportedÓ (page 174). 

function result  A result code; see ÒResult CodesÓ (page 110). The result code 
errMsgNotSupported indicates that the control does not support 
Appearance-compliant features. 

DISCUSSION

The GetControlFeatures function returns the features a control deÞnition 
function supports, in response to a kControlMsgGetFeatures message.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
158 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
SetControlFontStyle 2
NEW WITH THE APPEARANCE MANAGER 2

Sets the font style for the speciÞed control.

pascal OSErr SetControlFontStyle (
ControlHandle inControl,
const ControlFontStyleRec *inStyle);

inControl On input, a handle to the control whose font style you wish to 
set.

inStyle On input, a pointer to a control font style structure (page 103). If 
the flags Þeld is cleared, the control uses the system font unless 
the control variant kControlUsesOwningWindowsFontVariant has 
been speciÞed (control uses window font). 

function result A result code; see ÒResult CodesÓ (page 110).

DISCUSSION

The SetControlFontStyle function sets the font style for a given control. To 
specify the font for controls in a dialog box, it is generally easier to use the 
dialog control font table resource (page 254). SetControlFontStyle allows you 
to override a controlÕs default font (system or window font, depending upon 
whether the control variant kControlUsesOwningWindowsFontVariant has been 
speciÞed). Once you have set a controlÕs font with this function, you can cause 
the control to revert to its default font by passing a control font style structure 
with a cleared flags Þeld in the inStyle parameter.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
Control Manager Functions 159
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
SetControlVisibility 2
NEW WITH THE APPEARANCE MANAGER 2

Sets the visibility of a control, and any embedded controls, and speciÞes 
whether it will be drawn.

pascal OSErr SetControlVisibility (
ControlHandle inControl,
Boolean inIsVisible,
Boolean inDoDraw);

inControl On input, a handle to the control. 

inIsVisible A Boolean value indicating whether the control is visible or 
invisible. If this value is set to true, the control will be visible. If 
false, the control will be invisible. If you wish to show a control 
(and latent embedded subcontrols) but do not want to cause 
screen drawing, pass true for this parameter and false in the 
inDoDraw parameter. 

inDoDraw On input, Boolean value indicating whether the control should 
be drawn or erased. If true, the controlÕs display on the screen 
should be updated (drawn or erased) based on the value passed 
in the inIsVisible parameter. If false, the display will not be 
updated. 

function result A result code; see ÒResult CodesÓ (page 110).

DISCUSSION

You should call the SetControlVisibility function instead of setting the 
contrlVis field of the control structure to set the visibility of a control and 
specify whether it will be drawn. If the control has embedded controls, 
SetControlVisibility allows you to set their visibility and specify whether or 
not they will be drawn. If you wish to show a control but do not want it to be 
drawn onscreen, pass true in the inIsVisible parameter and false in the 
inDoDraw parameter.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
160 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
IsControlVisible 2
NEW WITH THE APPEARANCE MANAGER 2

Indicates whether a control is visible.

pascal Boolean IsControlVisible (ControlHandle inControl);

inControl On input, a handle to the control whose visibility you wish to 
determine.

function result Returns a Boolean value. If true, the control is visible. If false, 
the control is hidden. 

DISCUSSION

If you wish to determine whether a control is visible, call IsControlVisible 
instead of testing the contrlVis Þeld of the control structure.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetUpControlBackground 2
NEW WITH THE APPEARANCE MANAGER 2

Sets the background for a control.

pascal OSErr SetUpControlBackground (
ControlHandle inControl,
SInt16 inDepth,
Boolean inIsColorDevice);

inControl On input, a handle to the control whose background you wish 
to set.

inDepth The bit depth (in pixels) of the current graphics port. 

inIsColorDevice
A Boolean value. Set to true to indicate that you are drawing on 
a color device; set to false for a monochrome device.
Control Manager Functions 161
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
function result A result code; see ÒResult CodesÓ (page 110).

DISCUSSION

The SetUpControlBackground function allows you to set the background of a 
control. This function is typically called by control deÞnition functions that are 
embedded in other controls. You might call SetUpControlBackground in response 
to an application-deÞned function installed in a user pane control; see 
ÒDeÞning Your Own User Pane FunctionsÓ (page 189). SetUpControlBackground 
ensures that the background color is always correct when calling EraseRect and 
EraseRgn. If your control spans multiple monitors, SetUpControlBackground 
should be called for each device that your control is drawing on; see ÒGraphics 
DevicesÓ in Imaging With QuickDraw for more details on handling device loops.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

DeÞning Your Own Control DeÞnition Function 2
A control deÞnition function determines how a control generally looks and 
behaves. Various Control Manager functions call a control deÞnition function 
whenever they need to perform a control-dependent action, such as drawing 
the control on the screen. In addition to standard control deÞnition functions, 
deÞned by the system, you can make your own custom control deÞnition 
functions.

The Control Manager calls the Resource Manager to access a control deÞnition 
function with the given resource ID; for a description of how to derive a control 
deÞnition function ID, see ÒControl DeÞnition IDsÓ (page 71). The Resource 
Manager reads a control deÞnition function into memory and returns a handle 
to it. The Control Manager stores this handle in the contrlDefProc Þeld of the 
control structure.

When various Control Manager functions need to perform a type-dependent 
action on the control, they call the control deÞnition function and pass it the 
variation code for its type as a parameter. You can deÞne your own variation 
codes; this allows you to use one 'CDEF' resource to handle several variations of 
the same general control. See ÒThe Control DeÞnition Function ResourceÓ 
(page 113) and ÒThe Control ResourceÓ (page 111) for further discussion of 
controls, their resources, and their IDs.
162 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
If you choose to provide your own control deÞnition functions, these functions 
should apply the userÕs desktop color choices the same way the standard 
control deÞnition functions do. You can use control color tables of any desired 
size and deÞne their contents in any way you wish, except that part indices and 
messages 0 through 127 are reserved for system deÞnition.

MyControlDefProc 2
CHANGED WITH THE APPEARANCE MANAGER 2

If you wish to deÞne new, nonstandard controls for your application, you must 
write a control deÞnition function and store it in a resource Þle as a resource of 
type 'CDEF'. 

The Control Manager declares the type for an application-deÞned control 
deÞnition function as follows:

typedef pascal SInt32 (*ControlDefProcPtr)
(SInt16 varCode, 
 ControlHandle theControl, 
 ControlDefProcMessage message, 
 SInt32 param);

The Control Manager deÞnes the data type ControlDefUPP to identify the 
universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlDefUPP;

You typically use the NewControlDefProc macro like this:

ControlDefUPP myControlDefUPP;
myControlDefUPP = NewControlDefProc (MyControl);

You typically use the CallControlDefProc macro like this:

CallControlDefProc(myControlDefUPP, varCode, theControl, message, param);
Control Manager Functions 163
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
HereÕs how to declare the function MyControlDefProc:

pascal SInt32 MyControlDefProc (
SInt16 varCode,
ControlHandle theControl,
ControlDefProcMessage message,
SInt32 param);

varCode The controlÕs variation code. 

theControl A handle to the control that the operation will affect.

message A code for the task to be performed. The message parameter 
contains one of the task codes deÞned in ÒMessagesÓ 
(page 164). The subsections that follow explain each of these 
tasks in detail. 

param Data associated with the task speciÞed by the message 
parameter. If the task requires no data, this parameter is 
ignored.

function result The function results that your control deÞnition function 
returns depend on the value that the Control Manager passes in 
the message parameter.

DISCUSSION

The Control Manager calls your control deÞnition function under various 
circumstances; the Control Manager uses the message parameter to inform your 
control deÞnition function what action it must perform. The data that the 
Control Manager passes in the param parameter, the action that your control 
deÞnition function must undertake, and the function results that your control 
deÞnition function returns all depend on the value that the Control Manager 
passes in the message parameter. The rest of this section describes how to 
respond to the various values that the Control Manager passes in the message 
parameter.

Messages 2

The Control Manager passes constants of type ControlDefProcMessage to 
indicate the action your control deÞnition function must perform. 
164 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
enum {
drawCntl = 0,  
testCntl = 1,  
calcCRgns = 2,  
initCntl = 3,  
dispCntl = 4,  
posCntl = 5,  
thumbCntl = 6,  
dragCntl = 7,  
autoTrack = 8,  
calcCntlRgn = 10,  
calcThumbRgn = 11,
kControlMsgDrawGhost = 13, 
kControlMsgCalcBestRect = 14,
kControlMsgHandleTracking = 15,  
kControlMsgFocus = 16,  
kControlMsgKeyDown = 17,  
kControlMsgIdle = 18,
kControlMsgGetFeatures = 19,
kControlMsgSetData = 20,
kControlMsgGetData = 21,
kControlMsgActivate = 22,
kControlMsgSetUpBackground = 23,
kControlMsgSubValueChanged = 25,
kControlMsgCalcValueFromPos = 26,
kControlMsgTestNewMsgSupport= 27,
kControlMsgSubControlAdded = 28,
kControlMsgSubControlRemoved= 29

};
typedef SInt16 ControlDefProcMessage;

Constant descriptions

drawCntl Draw the entire control or part of a control.
testCntl Test where the mouse has been pressed.
calcCRgns Calculate the region for the control or the indicator in 

24-bit systems. This message is obsolete in Mac OS 7.6 and 
later.

initCntl Perform additional control initialization.
dispCntl Perform additional control disposal actions.
Control Manager Functions 165
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
posCntl Move and update the indicator setting.
thumbCntl Calculate the parameters for dragging the indicator.
dragCntl Perform customized dragging (of the control or its 

indicator).
autoTrack Execute the speciÞed action function.
calcCntlRgn Calculate the control region in 32-bit systems.
calcThumbRgn Calculate the indicator region in 32-bit systems.
kControlMsgDrawGhost

Draw a ghost image of the indicator.
kControlMsgCalcBestRect

Calculate the optimal control rectangle. 
kControlMsgHandleTracking

Perform custom tracking. 
kControlMsgFocus Handle keyboard focus. 
kControlMsgKeyDown Handle keyboard events. 
kControlMsgIdle Perform idle processing. 
kControlMsgGetFeatures

Specify which Appearance-compliant messages are 
supported. 

kControlMsgSetData
Set control-speciÞc data. 

kControlMsgGetData
Get control-speciÞc data.

kControlMsgActivate
Handle activate and deactivate events.

kControlMsgSetUpBackground
Set the controlÕs background color or pattern (only 
available if the control supports embedding).

kControlMsgSubValueChanged
Be informed that the value of a subcontrol embedded in 
the control has changed; this message is useful for radio 
groups. Only available with Appearance 1.0.1 and later.

kControlMsgCalcValueFromPos
Support live feedback while dragging the indicator and 
calculate the control value based on the new indicator 
region.
166 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlMsgTestNewMsgSupport
Specify whether Appearance-compliant messages are 
supported. 

kControlMsgSubControlAdded 
Be informed that a subcontrol has been embedded in the 
control. This message is only available with Appearance 
1.0.1 and later.

kControlMsgSubControlRemoved 
Be informed that a subcontrol is about to be removed from 
the control. This message is only available with 
Appearance 1.0.1 and later.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Only the following messages will be sent to your control deÞnition function: 

drawCntl = 0,  
testCntl = 1,  
calcCRgns = 2,  
initCntl = 3,  
dispCntl = 4,  
posCntl = 5,  
thumbCntl = 6,  
dragCntl = 7,  
autoTrack = 8,  
calcCntlRgn = 10,  
calcThumbRgn = 11

Drawing the Control or Its Part 2

When the Control Manager passes the value drawCntl in the message parameter, 
your control deÞnition function should respond by drawing the indicator or 
the entire control. 

The Control Manager passes one of the following drawing constants in the low 
word of the param parameter to specify whether the user is drawing an 
indicator or the whole control. The high-order word of the param parameter 
may contain undeÞned data; therefore, evaluate only the low-order word of 
this parameter. 
Control Manager Functions 167
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
enum {
kDrawControlEntireControl = 0,
kDrawControlIndicatorOnly = 129

};

Constant descriptions

kDrawControlEntireControl
Draw the entire control.

kDrawControlIndicatorOnly
Draw the indicator only.

With the exception of part code 128, which is reserved for future use and 
should not be used, any other value indicates a part code for the control. 

If the speciÞed control is visible, your control deÞnition function should draw 
the control (or the part speciÞed in the param parameter) within the controlÕs 
rectangle. If the control is invisible (that is, if its contrlVis Þeld is set to 0), your 
control deÞnition function does nothing. 

When drawing the control or its part, take into account the current values of its 
contrlHilite and contrlValue fields in the control structure.

If the part code for your controlÕs indicator is passed in param, assume that the 
indicator hasnÕt moved; the Control Manager, for example, may be calling your 
control deÞnition function so that you may simply highlight the indicator. 
However, when your application calls SetControlValue, SetControlMinimum, and 
SetControlMaximum, they in turn may call your control definition function with 
the drawCntl message to redraw the indicator. Since these functions have no 
way of determining what part code you chose for your indicator, they all pass 
129 in param, meaning that you should move your indicator. Your control 
deÞnition function must detect this part code as a special case and remove the 
indicator from its former location before drawing it. If your control has more 
than one indicator, you should interpret 129 to mean all indicators.

When sent the message drawCntl, your control deÞnition function should 
return 0 as its function result.

Testing Where the Mouse-Down Event Occurs 2

When the Control Manager passes the value for the testCntl constant in the 
message parameter, your control definition function should respond by 
determining whether a speciÞed point is in a visible control. 
168 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
The Control Manager passes a point (in local coordinates) in the param 
parameter. The pointÕs vertical coordinate is contained in the high-order word 
of the long integer, and horizontal coordinate is contained in the low-order 
word.

Your control deÞnition function should return the part code of the part that 
contains the speciÞed point; it should return 0 if the point is outside the control 
or if the control is inactive. 

Calculating the Control and Indicator Regions on 24-Bit Systems 2

When the Control Manager passes the value for the calcCRgns constant in the 
message parameter, your control definition function should calculate the region 
passed in the param parameter for the speciÞed control or its indicator. 

The Control Manager passes a QuickDraw region handle in the param 
parameter. If the high-order bit of param is set, the region requested is that of 
the controlÕs indicator; otherwise, the region requested is that of the entire 
control. Your control deÞnition function should clear the high bit of the region 
handle before calculating the region.

When passed this message, your control deÞnition function should always 
return 0, and it should express the region in the local coordinate system of the 
controlÕs window.

IMPORTANT

The calcCRgns message will never be sent to any system 
running on 32-bit mode and is therefore obsolete in 
Mac OS 7.6 and later. The calcCntlRgn and calcThumbRgn 
messages will be sent instead.

Calculating the Control and Indicator Regions on 32-Bit Systems 2

When the Control Manager passes the values for the calcCntlRgn or 
calcThumbRgn constants in the message parameter, your control definition 
function should calculate the region for the speciÞed control or its indicator 
using the QuickDraw region handle passed in the param parameter . 

If the Control Manager passes the value for the calcThumbRgn constant in the 
message parameter, calculate the region occupied by the indicator. If the Control 
Manager passes the value for the calcCntlRgn constant in the message 
parameter, calculate the region for the entire control.
Control Manager Functions 169
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
When passed this message, your control deÞnition function should always 
return 0, and it should express the region in the local coordinate system of the 
controlÕs window.

Performing Additional Control Initialization 2

After initializing Þelds of a control structure as appropriate when creating a 
new control, the Control Manager passes initCntl in the message parameter to 
give your control deÞnition function the opportunity to perform any 
type-speciÞc initialization you may require. For example, the standard control 
deÞnition function for scroll bars allocates space for a region to hold the scroll 
box and stores the region handle in the contrlData Þeld of the new control 
structure.

When passed the value for the initCntl constant in the message parameter, 
your control deÞnition function should ignore the param parameter and return 
0 as a function result.

Performing Additional Control Disposal Actions 2

The function DisposeControl (page 121) passes dispCntl in the message 
parameter to give your control deÞnition function the opportunity to carry out 
any additional actions when disposing of a control. For example, the standard 
deÞnition function for scroll bars releases the memory occupied by the scroll 
box region, whose handle is kept in the contrlData Þeld of the control structure.

When passed the value for the dispCntl constant in the message parameter, 
your control deÞnition function should ignore the param parameter and return 
0 as a function result. 

Dragging the Control or Its Indicator 2

When a mouse-up event occurs in the indicator of a control, the 
HandleControlClick (page 144) or TrackControl (page 146) functions call your 
control deÞnition function and pass posCntl in the message parameter. In this 
case, the Control Manager passes a point (in coordinates local to the controlÕs 
window) in the param parameter that speciÞes the vertical and horizontal offset, 
in pixels, by which your control deÞnition function should move the indicator 
from its current position. Typically, this is the offset between the points where 
the cursor was when the user pressed and released the mouse button while 
dragging the indicator. The pointÕs vertical offset is contained in the high-order 
170 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
word of the param parameter, and its horizontal offset is contained in the 
low-order word.

Your deÞnition function should calculate the controlÕs new setting based on the 
given offset and then, to reßect the new setting, redraw the control and update 
the contrlValue Þeld in the control structure. Your control deÞnition function 
should ignore the param parameter and return 0 as a function result.

Calculating Parameters for Dragging the Indicator 2

When the Control Manager passes the value for thumbCntl in the message 
parameter, your control deÞnition function should respond by calculating 
values analogous to the limitRect, slopRect, and axis parameters of 
DragControl that constrain how the indicator is dragged. On entry, the fields 
param->limitRect.top and param->limitRect.left contain the point where the 
mouse-down event Þrst occurred. 

The Control Manager passes a pointer to a structure of type 
IndicatorDragConstraint in the param parameter:

struct IndicatorDragConstraint {
Rect limitRect;
Rect slopRect;
DragConstraint axis;

};
typedef struct IndicatorDragConstraint IndicatorDragConstraint;
typedef IndicatorDragConstraint *IndicatorDragConstraintPtr;
typedef IndicatorDragConstraintPtr *IndicatorDragConstraintHandle;

Field descriptions
limitRect A pointer to a rectangleÑwhose coordinates should 

normally coincide with or be contained in the windowÕs 
content regionÑdelimiting the area in which the user can 
drag the controlÕs outline.

slopRect A pointer to a rectangle that allows some extra space for 
the user to move the mouse while still constraining the 
control within the rectangle speciÞed in the limitRect 
parameter.

axis The axis along which the user may drag the controlÕs 
outline.
Control Manager Functions 171
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Your deÞnition function should store the appropriate values into the Þelds of 
the structure pointed to by the param parameter; theyÕre analogous to the 
similarly named parameters of the Window Manager function DragGrayRgn . 

Your control deÞnition function should return 0 as function result.

Performing Custom Dragging 2

When the Control Manager passes the value for the dragCntl constant in the 
message parameter, the param parameter typically contains a custom dragging 
constant with one of the following values to specify whether the user is 
dragging an indicator or the whole control:

enum {
kDragControlEntireControl = 0,
kDragControlIndicator = 1

};

Constant descriptions

kDragControlEntireControl
Dragging the entire control.

kDragControlIndicator
Dragging the indicator.

Note
When the Appearance Manager is present, the message 
kControlMsgHandleTracking should be sent instead of 
dragCntl to handle any custom tracking; see ÒPerforming 
Custom TrackingÓ (page 177).

If you want to use the Control ManagerÕs default method of dragging, which is 
to call DragControl to drag the control or the Window Manager function 
DragGrayRgn to drag its indicator, return 0 as the function result for your control 
deÞnition function.

If your control deÞnition function returns a nonzero value, your control 
deÞnition function (not the Control Manager) must drag the speciÞed control 
(or its indicator) to follow the cursor until the user releases the mouse button. If 
the user drags the entire control, your deÞnition function should use the 
function MoveControl to reposition the control to its new location after the user 
releases the mouse button. If the user drags the indicator, your deÞnition 
function must calculate the controlÕs new setting (based on the pixel offset 
172 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
between the points where the cursor was when the user pressed and released 
the mouse button while dragging the indicator) and then, to reßect the new 
setting, redraw the control and update the contrlValue Þeld in the control 
structure. Note that, in this case, the functions HandleControlClick (page 144) 
and TrackControl (page 146) return 0 whether or not the user changes the 
indicatorÕs position. Thus, you must determine whether the user has changed 
the controlÕs setting by another method, for instance, by comparing the 
controlÕs value before and after the call to HandleControlClick.

Executing an Action Function 2

The only way to specify actions in response to all mouse-down events in a 
control or its indicator is to deÞne your own control deÞnition function that 
speciÞes an action function. When you create the control, your control 
deÞnition function must Þrst respond to the initCntl message by storing 
(ControlDefUPP)-1L in the contrlAction field of the control structure. (The 
Control Manager sends the initCntl message to your control deÞnition 
function after initializing the Þelds of a new control structure.) Then, when 
your application passes (ControlActionUPP)-1L in the actionProc parameter of 
HandleControlClick (page 144) or TrackControl (page 146), HandleControlClick 
calls your control deÞnition function with the autoTrack message. The Control 
Manager passes the part code of the part where the mouse-down event occurs 
in the param parameter. Your control deÞnition function should then use this 
information to respond as an action function would.

Note
For the autoTrack message, the high-order word of the 
param parameter may contain undefined data; therefore, 
evaluate only the low-order word of this parameter.

If the mouse-down event occurs in an indicator of a control that supports live 
feedback, your action function should take two parameters (a handle to the 
control and the part code of the control where the mouse-down event Þrst 
occurred). This action function is the same one you would use to deÞne actions 
to be performed in control part codes in response to a mouse-down event; see 
MyActionProc (page 185).

If the mouse-down event occurs in an indicator of a control that does not 
support live feedback, your action function should take no parameters, because 
the user may move the cursor outside the indicator while dragging it; see 
MyIndicatorActionProc (page 186).
Control Manager Functions 173
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Specifying Whether Appearance-Compliant Messages Are Supported 2

If your control deÞnition function supports Appearance-compliant messages, it 
should return kControlSupportsNewMessages as a function result when the 
Control Manager passes kControlMsgTestNewMsgSupport in the message 
parameter.

enum{
kControlSupportsNewMessages = ' ok '

};

Constant description

kControlSupportsNewMessages
The control deÞnition function supports new messages 
introduced with Mac OS 8 and the Appearance Manager. 

Specifying Which Appearance-Compliant Messages Are Supported 2

If your control deÞnition function supports Appearance-compliant messages, it 
should return a bit Þeld of the features it supports in response to the 
kControlMsgGetFeatures message. Your control definition function should 
ignore the param parameter. 

The bit Þeld returned by your control deÞnition function should be composed 
of one or more of the following bits:

enum{
kControlSupportsGhosting = 1 << 0,
kControlSupportsEmbedding = 1 << 1,
kControlSupportsFocus = 1 << 2,
kControlWantsIdle = 1 << 3,
kControlWantsActivate = 1 << 4,
kControlHandlesTracking = 1 << 5,
kControlSupportsDataAccess = 1 << 6,
kControlHasSpecialBackground= 1 << 7,
kControlGetsFocusOnClick = 1 << 8,
kControlSupportsCalcBestRect= 1 << 9,
kControlSupportsLiveFeedback= 1 << 10,
kControlHasRadioBehavior = 1 << 11

};
174 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Constant descriptions

kControlSupportsGhosting
If this bit (bit 0) is set, the control deÞnition function 
supports the kControlMsgDrawGhost message. 

kControlSupportsEmbedding
If this bit (bit 1) is set, the control deÞnition function 
supports the kControlMsgSubControlAdded and 
kControlMsgSubControlRemoved messages.

kControlSupportsFocus
If this bit (bit 2) is set, the control deÞnition function 
supports the kControlMsgKeyDown message. If this bit and 
the kControlGetsFocusOnClick bit are set, the control 
deÞnition function supports the kControlMsgFocus message.

kControlWantsIdle
If this bit (bit 3) is set, the control deÞnition function 
supports the kControlMsgIdle message.

kControlWantsActivate
If this bit (bit 4) is set, the control deÞnition function 
supports the kControlMsgActivate message.

kControlHandlesTracking
If this bit (bit 5) is set, the control deÞnition function 
supports the kControlMsgHandleTracking message. 

kControlSupportsDataAccess
If this bit (bit 6) is set, the control deÞnition function 
supports the kControlMsgGetData and kControlMsgSetData 
messages.

kControlHasSpecialBackground
If this bit (bit 7) is set, the control deÞnition function 
supports the kControlMsgSetUpBackground message. 

kControlGetsFocusOnClick
If this bit (bit 8) and the kControlSupportsFocus bit are set, 
the control deÞnition function supports the 
kControlMsgFocus message.

kControlSupportsCalcBestRect
If this bit (bit 9) is set, the control deÞnition function 
supports the kControlMsgCalcBestRect message. 
Control Manager Functions 175
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
kControlSupportsLiveFeedback
If this bit (bit 10) is set, the control deÞnition function 
supports the kControlMsgCalcValueFromPos message. 

kControlHasRadioBehavior
If this bit (bit 11) is set, the control deÞnition function 
supports radio button behavior and can be embedded in a 
radio group control. This constant is available with 
Appearance 1.0.1 and later. 

Drawing a Ghost Image of the Indicator 2

If your control deÞnition function supports indicator ghosting, it should return 
kControlSupportsGhosting as one of the feature bits in response to a 
kControlMsgGetFeatures message. If this bit is set and the control indicator is 
being tracked, the Control Manager calls your control deÞnition function and 
passes kControlMsgDrawGhost in the message parameter. A handle to the region 
where the ghost should be drawn will be passed in the param parameter. 

Your control deÞnition function should respond by redrawing the control with 
the ghosted indicator at the speciÞed location and should return 0 as its 
function result.

Note
The ghost indicator should always be drawn before the 
actual indicator so that it appears underneath the actual 
indicator. 

Calculating the Optimal Control Rectangle 2

If your control deÞnition function supports calculating the optimal dimensions 
of the control rectangle, it should return kControlSupportsCalcBestRect as one 
of the feature bits in response to the kControlMsgGetFeatures message. If this bit 
is set and GetBestControlRect (page 152) is called, the Control Manager will call 
your control deÞnition function and pass kControlMsgCalcBestRect in the 
message parameter. The Control Manager passes a pointer to a control size 
calculation structure in the param parameter.

Your control deÞnition function should respond by calculating the width and 
height of the optimal control rectangle and adjusting the rectangle by setting 
the height and width Þelds of the control size calculation structure to the 
appropriate values. If your control deÞnition function displays text, it should 
pass in the offset from the bottom of control to the base of the text in the 
176 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
baseLine field of the structure. Your control definition function should return 
the offset value stored in the structureÕs baseLine Þeld.

The control size calculation structure is a structure of type ControlCalcSizeRec:

struct ControlCalcSizeRec {
SInt16 height;
SInt16 width;
SInt16 baseLine;

};
typedef struct ControlCalcSizeRec ControlCalcSizeRec;
typedef ControlCalcSizeRec *ControlCalcSizePtr;

Field descriptions
height The optimal height (in pixels) of the controlÕs bounding 

rectangle. 
width The optimal width (in pixels) of the controlÕs bounding 

rectangle. 
baseLine The offset from the bottom of the control to the base of the 

text. This value is generally negative. 

Performing Custom Tracking 2

If your control deÞnition function supports custom tracking, it should return 
kControlHandlesTracking as one of the feature bits in response to a 
kControlMsgGetFeatures message. If this bit is set and a mouse-down event 
occurs in your control, TrackControl (page 146) or HandleControlClick 
(page 144) calls your control deÞnition function and passes 
kControlMsgHandlesTracking in the message parameter. The Control Manager 
passes a pointer to a control tracking structure in the param parameter. Your 
control deÞnition function should respond appropriately and return the part 
code that was hit, or kControlNoPart if the mouse-down event occurred outside 
the control; see ÒControl Part Code ConstantsÓ (page 99).

The control tracking structure is a structure of type ControlTrackingRec:

struct ControlTrackingRec {
Point startPt;
SInt16 modifiers;
ControlActionUPP action;
Control Manager Functions 177
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
};
typedef struct ControlTrackingRec ControlTrackingRec;
typedef ControlTrackingRec *ControlTrackingPtr;

Field descriptions
startPt The location of the cursor at the time the mouse button 

was Þrst pressed, in local coordinates. Your application 
retrieves this point from the where Þeld of the event 
structure.

modifiers The constant in the modifiers Þeld of the event structure 
specifying the state of the modiÞer keys and the mouse 
button at the time the event was posted. 

action A pointer to an action function deÞning what action your 
application takes while the user holds down the mouse 
button. The value of the actionProc parameter can be a 
valid procPtr, nil, or -1. A value of -1 indicates that the 
control should either perform auto tracking, or if it is 
incapable of doing so, do nothing (like nil).

Handling Keyboard Focus 2

If your control deÞnition function can change its keyboard focus, it should set 
kControlSupportsFocus and kControlGetsFocusOnClick as feature bits in 
response to a kControlMsgGetFeatures message. If these bits are set and the 
AdvanceKeyboardFocus (page 149), ReverseKeyboardFocus (page 150), 
ClearKeyboardFocus (page 151), or SetKeyboardFocus (page 147) function is 
called, the Control Manager calls your control deÞnition function and passes 
kControlMsgFocus in the message parameter.

The Control Manager passes one of the control focus part code constants 
described below or a valid part code in the param parameter. Your control 
deÞnition function should respond by adjusting the focus accordingly.

Your control deÞnition function should return the control focus part code or 
actual control part that was focused on. Return kControlFocusNoPart if your 
control does not accept focus or has just relinquished it. Return a nonzero part 
code to indicate that your control received keyboard focus. Your control 
deÞnition function is responsible for maintaining which part is focused.

enum {
kControlFocusNoPart = 0,
kControlFocusNextPart = -1,
178 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlFocusPrevPart = -2
};
typedef SInt16 ControlFocusPart;

Constant descriptions

kControlFocusNoPart
Your control deÞnition function should relinquish its focus 
and return kControlFocusNoPart. It might respond by 
deactivating its text edit handle and erasing its focus ring. 
If the control is at the end of its subparts, it should return 
kControlFocusNoPart. This tells the focusing mechanism to 
jump to the next control that supports focus.

kControlFocusNextPart
Your control deÞnition function should change keyboard 
focus to its next part, the entire control, or remove 
keyboard focus from the control, depending upon the 
circumstances.
For multiple part controls that already had keyboard focus, 
the next part of the control would receive keyboard focus 
when kControlFocusNextPart was passed in the param 
parameter. For example, a clock control with keyboard 
focus would change its focus to the left-most element of 
the control (the month Þeld).
For single-part controls that did not have keyboard focus 
and are now receiving it, the entire control would receive 
keyboard focus when kControlFocusNextPart was passed 
in the param parameter.
For single-part controls that already had keyboard focus 
and are now losing it, the entire control would lose 
keyboard focus.
If you are passed kControlFocusNextPart and have run out 
of parts, return kControlFocusNoPart to indicate that the 
user tabbed past the control.

kControlFocusPrevPart
Your control deÞnition function should change keyboard 
focus to its previous part, the entire control, or remove 
keyboard focus from the control, depending upon the 
circumstances.
For multiple part controls that already had keyboard focus, 
the previous part of the control would receive keyboard 
Control Manager Functions 179
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
focus when kControlFocusPrevPart was passed in the param 
parameter. For example, a clock control with keyboard 
focus would change its focus to the right-most element of 
the control (the year Þeld).
For single-part controls that did not have keyboard focus 
and are now receiving it, the entire control would receive 
keyboard focus when kControlFocusNextPart was passed 
in the param parameter.
For single-part controls that already had keyboard focus 
and are now losing it, the entire control would lose 
keyboard focus.
If you are passed kControlFocusPrevPart and have run out 
of parts, return kControlFocusNoPart to indicate that the 
user tabbed past the control.

<part code> Your control deÞnition function should focus on the 
speciÞed part code. Your function can interpret this in any 
way it wishes.

Handling Keyboard Events 2

If your control deÞnition function can handle keyboard events, it should return 
kControlSupportsFocusÑevery control that supports keyboard focus must also 
be able to handle keyboard eventsÑas one of the feature bits in response to a 
kControlMsgGetFeatures message. If this bit is set, the Control Manager will 
pass kControlMsgKeyDown in the message parameter. The Control Manager passes 
a pointer to a control key down structure in the param parameter. Your control 
deÞnition function should respond by processing the keyboard event as 
appropriate and return 0 as the function result.

The control key down structure is a structure of type ControlKeyDownRec:

struct ControlKeyDownRec {
SInt16 modifiers;
SInt16 keyCode;
SInt16 charCode;

};
typedef struct ControlKeyDownRec ControlKeyDownRec;
typedef ControlKeyDownRec *ControlKeyDownPtr;
180 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
Field descriptions
modifiers The constant in the modifiers Þeld of the event structure 

specifying the state of the modiÞer keys and the mouse 
button at the time the event was posted. 

keyCode The virtual key code derived from the event structure. This 
value represents the key pressed or released by the user. It 
is always the same for a speciÞc physical key on a 
particular keyboard regardless of which modiÞer keys 
were also pressed.

charCode A particular character derived from the event structure. 
This value depends on the virtual key code, the state of the 
modiÞer keys, and the current 'KCHR' resource. 

Performing Idle Processing 2

If your control deÞnition function can perform idle processing, it should return 
kControlWantsIdle as one of the feature bits in response to a 
kControlMsgGetFeatures message. If this bit is set and IdleControls (page 143) 
is called for the window your control is in, the Control Manager will pass 
kControlMsgIdle in the message parameter. Your control definition function 
should ignore the param parameter and respond appropriately. For example, 
indeterminate progress indicators and asynchronous arrows use idle time to 
perform their animation. 

Your control deÞnition function should return 0 as the function result.

Getting and Setting Control-Specific Data 2

If your control deÞnition function supports getting and setting control-speciÞc 
data, it should return kControlSupportsDataAccess as one of its features bits in 
response to the kControlMsgGetFeatures message. If this bit is set, the Control 
Manager will call your control deÞnition function and pass kControlMsgSetData 
in the message parameter when SetControlData (page 154) is called, and will 
pass kControlMsgGetData in the message parameter when GetControlData 
(page 156) and GetControlDataSize (page 157) are called. The Control Manager 
passes a pointer to a control data access structure in the param parameter. Your 
deÞnition function should respond by Þlling out the structure and returning an 
operating system status message as the function result.

The control data access structure is a structure of type ControlDataAccessRec: 
Control Manager Functions 181
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
struct ControlDataAccessRec{
ResType tag;
ResType part;
Size size;
Ptr dataPtr;

};
typedef struct ControlDataAccessRec ControlDataAccessRec;
typedef ControlDataAccessRec *ControlDataAccessPtr;

Field descriptions
tag A constant representing a piece of data that is passed in (in 

response to a kControlMsgSetData message) or returned (in 
response to a kControlMsgGetData message); see ÒControl 
Data Tag ConstantsÓ (page 83) for a description of these 
constants. The control deÞnition function should return 
errDataNotSupported if the value in the tag parameter is 
unknown or invalid.

part The part of the control that this data should be applied to. 
If the information is not tied to a speciÞc part of the control 
or the control has no parts, pass 0. 

size On entry, the size of the buffer pointed to by the dataPtr 
Þeld. In response to a kControlMsgGetData message, this 
Þeld should be adjusted to reßect the actual size of the data 
that the control is maintaining. If the size of the buffer 
being passed in is smaller than the actual size of the data, 
the control deÞnition function should return 
errDataSizeMismatch.

dataPtr A pointer to a buffer to read or write the information 
requested. In response to a kControlMsgGetData message, 
this Þeld could be nil, indicating that you wish to return 
the size of the data in the size Þeld.

Handling Activate and Deactivate Events 2

If your control deÞnition function wants to be informed whenever it is being 
activated or deactivated, it should return kControlWantsActivate as one of the 
feature bits in response to the kControlMsgGetFeatures message. If this bit is set 
and your control deÞnition function is being activated or deactivated, the 
Control Manager calls it and passes kControlMsgActivate in the message 
parameter. The Control Manager passes a 0 or 1 in the param parameter. A value 
182 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
of 0 indicates that the control is being deactivated; 1 indicates that it is being 
activated. 

Your control deÞnition function should respond by performing any special 
processing before the user pane becomes activated or deactivated, such as 
deactivating its TEHandle or ListHandle if it is about to be deactivated. 

Your control deÞnition function should return 0 as the function result.

Setting a Control’s Background Color or Pattern 2

If your control deÞnition function supports embedding and draws its own 
background, it should return kControlHasSpecialBackground as one of the 
feature bits in response to the kControlMsgGetFeatures message. If this bit is set 
and an embedding hierarchy of controls is being drawn in your control, the 
Control Manager passes kControlMsgSetUpBackground in the message parameter 
of your control deÞnition function. The Control Manager passes a pointer to a 
Þlled-in control background structure in the param parameter. Your control 
deÞnition function should respond by setting its background color or pattern to 
whatever is appropriate given the bit depth and device type passed in. Your 
control deÞnition function should return 0 as the function result. 

The control background structure is a structure of type ControlBackgroundRec:

struct ControlBackgroundRec {
SInt16 depth;
Boolean colorDevice;

};
typedef struct ControlBackgroundRec ControlBackgroundRec;
typedef ControlBackgroundRec *ControlBackgroundPtr;

Field descriptions
depth A signed 16-bit integer indicating the bit depth (in pixels) 

of the current graphics port. 
colorDevice A Boolean value. If true, you are drawing on a color 

device. If false, you are drawing on a monochrome device.

Supporting Live Feedback 2

If your control deÞnition function supports live feedback while tracking the 
indicator, it should return kControlSupportsLiveFeedback as one of the feature 
bits in response to the kControlMsgGetFeatures message. If this bit is set, the 
Control Manager Functions 183
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
Control Manager will call your control deÞnition function when it tracks the 
indicator and pass kControlMsgCalcValueFromPos in the message parameter. The 
Control Manager passes a handle to the indicator region being dragged in the 
param parameter. 

Your control deÞnition function should respond by calculating its value and 
drawing the control based on the new indicator region passed in. Your control 
deÞnition function should not recalculate its indicator position. After the user 
is done dragging the indicator, your control deÞnition function will be called 
with a posCntl message at which time you can recalculate the position of the 
indicator. Not recalculating the indicator position each time your control 
deÞnition function is called creates a smooth dragging experience for the user.

Your control deÞnition function should return 0 as the function result.

Being Informed When Subcontrols Are Added or Removed 2

If your control deÞnition function wishes to be informed when subcontrols are 
added or removed, it should return kControlSupportsEmbedding as one of the 
feature bits in response to the kControlMsgGetFeatures message. If this bit is set, 
the Control Manager passes ControlMsgSubControlAdded in the message 
parameter immediately after a subcontrol is added, or it passes 
kControlMsgSubControlRemoved just before a subcontrol is removed from your 
embedder control. A handle to the control being added or removed from the 
embedding hierarchy is passed in the param parameter. Your control deÞnition 
function should respond appropriately and return 0 as the function result. 

Typically, a control deÞnition function only supports this message if it wants to 
do extra processing in response to changes in its embedded controls. Radio 
groups use these messages to perform necessary processing for handling 
embedded controls. For example, if a currently selected radio button is deleted, 
the group can adjust itself accordingly.

DeÞning Your Own Action Functions 2
When your action function is called for a control part, your action function is 
passed a handle to the control and the controlÕs part code. Your action function 
should then respond as is appropriate. For an example of such an action 
function, see MyActionProc (page 185). The only exception to this is for 
indicators that donÕt support live feedback.
184 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
If the mouse-down event occurs in an indicator of a control that does not 
support live feedback, your action function should take no parameters, because 
the user may move the cursor outside the indicator while dragging it. For an 
example of such an action function, see MyIndicatorActionProc (page 186).

MyActionProc 2
CHANGED WITH THE APPEARANCE MANAGER 2

DeÞnes actions to be performed repeatedly in response to a mouse-down event 
in a control part.

The Control Manager declares the type for an application-deÞned action 
function as follows:

typedef pascal void (*ControlActionProcPtr)(
ControlHandle theControl, 
ControlPartCode partCode);

The Control Manager deÞnes the data type ControlActionUPP to identify the 
universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlActionUPP;

You typically use the NewControlActionProc macro like this:

ControlActionUPP myActionUPP;
myActionUPP = NewControlActionProc(MyAction);

You typically use the CallControlActionProc macro like this:

CallControlActionProc(MyActionUPP, theControl, partCode);

HereÕs how to declare an action function for a control part if you were to name 
the function MyActionProc:

pascal void MyActionProc (
ControlHandle theControl,
ControlPartCode partCode);

theControl A handle to the control in which the mouse-down event 
occurred.
Control Manager Functions 185
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
partCode A control part code; see ÒControl Part Code ConstantsÓ 
(page 99). When the cursor is still in the control part where the 
mouse-down event Þrst occurred, this parameter contains that 
controlÕs part code. When the user drags the cursor outside the 
original control part, this parameter contains 0.

DISCUSSION

When a mouse-down event occurs in a control, HandleControlClick (page 144) 
and TrackControl (page 146) respond as is appropriate by highlighting the 
control or dragging the indicator as long as the user holds down the mouse 
button. You can deÞne other actions to be performed repeatedly during this 
interval. To do so, deÞne your own action function and point to it in the 
actionProc parameter of the TrackControl function or the inAction parameter 
of HandleControlClick. This is the only way to specify actions in response to all 
mouse-down events in a control or indicator.

IMPORTANT

You should use the MyIndicatorActionProc function while 
tracking indicators of controls that donÕt support live 
feedback.

SEE ALSO

SetControlAction (page 153). 

MyIndicatorActionProc 2
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 2

When the Appearance Manager is available, you should use MyActionProc 
(page 185) to deÞne actions to be performed in response to a mouse-down 
event in an indicator of a control that supports live feedback. 

You should only use MyIndicatorActionProc if the control does not support live 
feedback.
186 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
DeÞning Your Own Key Filter Function 2
The key Þlter function allows for the interception and possible changing of 
keystrokes destined for a control. 

MyControlKeyFilterProc 2
NEW WITH THE APPEARANCE MANAGER 2

Controls that support text input (such as editable text and list box controls) can 
attach a key Þlter function to Þlter key strokes and modify them on return. 

The Control Manager declares the type for an application-deÞned key Þlter 
function as follows:

typedef pascal KeyFilterResult (*ControlKeyFilterProcPtr)(
ControlHandle theControl,
SInt16* keyCode,
SInt16* charCode,
SInt16* modifiers);

The Control Manager deÞnes the data type ControlKeyFilterUPP to identify the 
universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlKeyFilterUPP;

You typically use the NewControlKeyFilterProc macro like this:

NewControlKeyFilterUPP myControlKeyFilterUPP;
myControlKeyFilterUPP = NewControlKeyFilterProc(MyKeyFilter);

You typically use the CallControlKeyFilterProc macro like this:

CallControlKeyFilterProc(myControlKeyFilterUPP, theControl, keyCode, 
charCode, modifiers);

HereÕs how to declare a key Þlter function if you were to name the function 
MyControlKeyFilterProc:

pascal ControlKeyFilterResult MyControlKeyFilterProc (
ControlHandle theControl, 
SInt16* keyCode,
SInt16* charCode,
SInt16* modifiers);
Control Manager Functions 187
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
theControl A handle to the control in which the mouse-down event 
occurred.

keyCode The virtual key code derived from the event structure. This 
value represents the key pressed or released by the user. It is 
always the same for a speciÞc physical key on a particular 
keyboard regardless of which modiÞer keys were also pressed.

charCode A particular character derived from the event structure. This 
value depends on the virtual key code, the state of the modiÞer 
keys, and the current 'KCHR' resource. 

modifiers The constant in the modifiers Þeld of the event structure 
specifying the state of the modiÞer keys and the mouse button 
at the time the event was posted. 

function result Returns a value indicating whether or not it allowed or blocked 
keystrokes; see ÒKey Filter Result CodesÓ (page 188).

DISCUSSION

Your key Þlter function can intercept and change keystrokes destined for a 
control. Your key Þlter function can change the keystroke, leave it alone, or 
block your control deÞnition function from receiving it. For example, an 
editable text control can use a key Þlter function to allow only numeric values 
to be input in its Þeld.

Key Filter Result Codes 2

Your key Þlter function returns these constants to specify whether or not a 
keystroke is Þltered or blocked. 

enum {
kControlKeyFilterBlockKey = 0,
kControlKeyFilterPassKey = 1

};
typedef SInt16 ControlKeyFilterResult;

Constant descriptions

kControlKeyFilterBlockKey
The keystroke is blocked and not received by the control.
188 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
kControlKeyFilterPassKey
The keystroke is Þltered and received by the control.

DeÞning Your Own User Pane Functions 2
This section describes the application-deÞned user pane functions that provide 
you with the ability to create a custom Appearance-compliant control without 
writing your own control deÞnition function. A user pane is a general purpose 
stub control; it can be used as the root control for a window, as well as 
providing a way to hook in application-deÞned functions such as those 
described below. When Appearance is available, user panes should be used in 
dialog boxes instead of user items.

Once you have provided a user pane application-deÞned function, pass the tag 
constant representing the user pane function you wish to get or set in the 
tagName parameter of SetControlData (page 154). For a description of the tag 
constants, see ÒControl Data Tag ConstantsÓ (page 83). For example, to set a 
user pane draw function, pass the constant kControlUserPaneDrawProcTag of 
type ControlUserPaneDrawingUPP in the tagName parameter of SetControlData 
(page 154).The Control Manager then draws the control using a universal 
procedure pointer to your user pane draw function. 

MyUserPaneDrawProc 2
NEW WITH THE APPEARANCE MANAGER 2

Draws the content of your user pane control in the rectangle of user pane 
control.

The Control Manager declares the type for an application-deÞned user pane 
draw function as follows:

typedef pascal void (*ControlUserPaneDrawProc)(
ControlHandle control,
SInt16 part);

The Control Manager deÞnes the data type ControlUserPaneDrawUPP to identify 
the universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlUserPaneDrawUPP;
Control Manager Functions 189
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
You typically use the NewControlUserPaneDrawProc macro like this:

ControlUserPaneDrawUPP myControlUserPaneDrawUPP;
myControlUserPaneDrawUPP = NewControlUserPaneDrawProc(MyUserPaneDraw);

You typically use the CallControlUserPaneDrawProc macro like this:

CallControlUserPaneDrawProc(myControlUserPaneDrawUPP, control, part);

HereÕs how to declare the function MyUserPaneDrawProc:

pascal void MyUserPaneDrawProc (
ControlHandle control,
SInt16 part);

control A handle to the user pane control in which you wish drawing 
to occur.

part The part code of the control you should draw. If 0, draw the 
entire control.

DISCUSSION

Once you have created the function MyUserPaneDrawProc, pass 
kControlUserPaneDrawProcTag in the tagName parameter of SetControlData 
(page 154).The Control Manager will draw the user pane control with a 
universal procedure pointer to MyUserPaneDrawProc. 

MyUserPaneHitTestProc 2
NEW WITH THE APPEARANCE MANAGER 2

Returns the part code of the control that the point was in when the 
mouse-down event occurred.

The Control Manager declares the type for an application-deÞned user pane hit 
test function as follows:

typedef pascal ControlPartCode (*ControlUserPaneHitTestProc) (
ControlHandle control,
Point where);
190 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
The Control Manager deÞnes the data type ControlUserPaneHitTestUPP to 
identify the universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlUserPaneHitTestUPP;

You typically use the NewControlUserPaneHitTestProc macro like this:

ControlUserPaneHitTestUPP myControlUserPaneHitTestUPP;
myControlUserPaneHitTestUPP = NewControlUserPaneHitTestProc
(MyUserPaneHitTest);

You typically use the CallControlUserPaneHitTestProc macro like this:

CallControlUserPaneHitTestProc(myControlUserPaneHitTestUPP, control, 
where);

HereÕs how to declare the function MyUserPaneHitTestProc:

pascal ControlPartCode MyUserPaneHitTestProc (
ControlHandle control,
Point where);

control A handle to the control in which the mouse-down event 
occurred.

where The point, in a windowÕs local coordinates, where the 
mouse-down event occurred.

function result Returns the part code of the control where the mouse-down 
event occurred. If the point was not over a control, your 
function should return kControlNoPart.

DISCUSSION

Once you have created the function MyUserPaneHitTestProc, pass 
kControlUserPaneHitTestProcTag in the tagName parameter of SetControlData 
(page 154).

MyUserPaneTrackingProc 2
NEW WITH THE APPEARANCE MANAGER 2

Tracks a control while the user holds down the mouse button.
Control Manager Functions 191
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
The Control Manager declares the type for an application-deÞned user pane 
tracking function as follows:

typedef pascal ControlPartCode (*ControlUserPaneTrackingProc)(
ControlHandle control,
Point startPt,
ControlActionUPP actionProc);

The Control Manager deÞnes the data type ControlUserPaneTrackingUPP to 
identify the universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlUserPaneTrackingUPP;

You typically use the NewControlUserPaneTrackingingProc macro like this:

ControlUserPaneTrackingUPP myControlUserPaneTrackingUPP;
myControlUserPaneTrackingUPP = NewControlUserPaneTrackingProc
(MyUserPaneTracking);

You typically use the CallControlUserPaneTrackingingProc macro like this:

CallControlUserPaneTrackingProc(myControlUserPaneTrackingUPP, control, 
startPt, actionProc);

HereÕs how to declare the function MyUserPaneTrackingProc:

pascal ControlPartCode MyUserPaneTrackingProc (
ControlHandle control,
Point startPt,
ControlActionUPP actionProc);

control A handle to the control in which the mouse-down event 
occurred.

startPt The location of the cursor at the time the mouse button was Þrst 
pressed, in local coordinates. Your application retrieves this 
point from the where Þeld of the event structure.

actionProc A pointer to an action function deÞning what action your 
application takes while the user holds down the mouse button. 
The value of the actionProc parameter can be a valid procPtr, 
nil, or -1. A value of -1 indicates that the control should either 
perform auto tracking, or if it is incapable of doing so, do 
nothing (like nil).
192 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
function result Returns the part code of the control part that was tracked. If 
tracking was unsuccessful, kControlNoPartCode is returned.

DISCUSSION

Your MyUserPaneTrackingProc function should track the control by repeatedly 
calling the action function speciÞed in the actionProc parameter until the 
mouse button is released. When the mouse button is released, your function 
should return the part code of the control part that was tracked.

This function will only get called if youÕve set the kControlHandlesTracking 
feature bit on creation of the user pane control. Once you have created the 
function MyUserPaneTrackingProc, pass kControlUserPaneTrackingProcTag in the 
tagName parameter of SetControlData (page 154). 

MyUserPaneIdleProc 2
NEW WITH THE APPEARANCE MANAGER 2

Performs idle processing.

The Control Manager declares the type for an application-deÞned user pane 
idle function as follows:

typedef pascal void (*ControlUserPaneIdleProc)(ControlHandle control);

The Control Manager deÞnes the data type ControlUserPaneIdleUPP to identify 
the universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlUserPaneIdleUPP;

You typically use the NewControlUserPaneIdleProc macro like this:

ControlUserPaneIdleUPP myControlUserPaneIdleUPP;
myControlUserPaneIdleUPP = NewControlUserPaneIdleProc(MyUserPaneIdle);

You typically use the CallControlUserPaneIdleProc macro like this:

CallControlUserPaneIdleProc(myControlUserPaneIdleUPP, control);

HereÕs how to declare the function MyUserPaneIdleProc:

pascal void MyUserPaneIdleProc (ControlHandle control);
Control Manager Functions 193
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
control A handle to the control for which you wish to perform idle 
processing.

DISCUSSION

This function will only get called if youÕve set the kControlWantsIdle feature bit 
on creation of the user pane control. Once you have created the function 
MyUserPaneIdleProc, pass kControlUserPaneIdleProcTag in the tagName 
parameter of SetControlData (page 154). 

MyUserPaneKeyDownProc 2
NEW WITH THE APPEARANCE MANAGER 2

Handles keyboard event processing.

The Control Manager declares the type for an application-deÞned user pane 
key down function as follows:

typedef pascalControlPartCode(*ControlUserPaneKeyDownProc)(
ControlHandle control
SInt16 keyCode,
SInt16 charCode,
SInt16 modifiers);

The Control Manager deÞnes the data type UserPaneKeyDownUPP to identify the 
universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlUserPaneKeyDownUPP;

You typically use the NewControlUserPaneKeyDownProc macro like this:

ControlUserPaneKeyDownUPP myControlUserPaneKeyDownUPP;
myControlUserPaneKeyDownUPP = NewControlUserPaneKeyDownProc
(MyUserPaneKeyDown);

You typically use the CallControlUserPaneKeyDownProc macro like this:

CallControlUserPaneKeyDownProc(myControlUserPaneKeyDownUPP, control, 
keyCode, charCode, modifiers);

HereÕs how to declare the function MyUserPaneKeyDownProc:
194 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
pascal ControlPartCode MyUserPaneKeyDownProc (
ControlHandle control, 
SInt16 keyCode, 
SInt16 charCode,
SInt16 modifiers);

control A handle to the control in which the keyboard event occurred.

keyCode The virtual key code derived from event structure. This value 
represents the key pressed or released by the user. It is always 
the same for a speciÞc physical key on a particular keyboard 
regardless of which modiÞer keys were also pressed.

charCode A particular character derived from the event structure. This 
value depends on the virtual key code, the state of the modiÞer 
keys, and the current 'KCHR' resource. 

modifiers The constant in the modifiers Þeld of the event structure 
specifying the state of the modiÞer keys and the mouse button 
at the time the event was posted. 

function result Returns the part code of the control where the keyboard event 
occurred. If the keyboard event did not occur in a control, your 
function should return kControlNoPart.

DISCUSSION

Your MyUserPaneKeyDownProc function should handle the key pressed or 
released by the user and return the part code of the control where the keyboard 
event occurred. This function will only get called if youÕve set the 
kControlSupportsFocus feature bit on creation of the user pane control. Once 
you have created the function MyUserPaneKeyDownProc, pass 
kControlUserPaneKeyDownProcTag in the tagName parameter of SetControlData 
(page 154).

MyUserPaneActivateProc 2
NEW WITH THE APPEARANCE MANAGER 2

Handles activate and deactivate event processing.
Control Manager Functions 195
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
The Control Manager declares the type for an application-deÞned user pane 
activate function as follows:

typedef pascal void (*ControlUserPaneActivateProc)(
ControlHandle control,
Boolean activating);

The Control Manager deÞnes the data type UserPaneActivateUPP to identify the 
universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlUserPaneActivateUPP;

You typically use the NewControlUserPaneActivateProc macro like this:

ControlUserPaneActivateUPP myControlUserPaneActivateUPP;
myControlUserPaneActivateUPP = NewControlUserPaneActivateProc 
(MyUserPaneActivate);

You typically use the CallControlUserPaneActivateProc macro like this:

CallControlUserPaneActivateProc(myControlUserPaneActivateUPP, control, 
activating);

HereÕs how to declare the function MyUserPaneActivateProc:

pascal void MyUserPaneActivateProc (
ControlHandle control
Boolean activating);

control A handle to the control in which the activate event occurred.

activating A Boolean value indicating whether or not the control is being 
activated. If true, the control is being activated. If false, the 
control is being deactivated.

DISCUSSION

Your MyUserPaneActivateProc function should perform any special processing 
before the user pane becomes activated or deactivated. For example, it should 
deactivate its TEHandle or ListHandle if the user pane is about to be deactivated.
196 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
This function will only get called if youÕve set the kControlWantsActivate 
feature bit on creation of the user pane control. Once you have created the 
function MyUserPaneActivateProc, pass kControlUserPaneActivateProcTag in the 
tagName parameter of SetControlData (page 154).

MyUserPaneFocusProc 2
NEW WITH THE APPEARANCE MANAGER 2

Handles keyboard focus.

The Control Manager declares the type for an application-deÞned user pane 
focus function as follows:

typedef pascal ControlPartCode (*ControlUserPaneFocusProc)(
ControlHandle control,
ControlFocusPart action);

The Control Manager deÞnes the data type ControlUserPaneFocusUPP to identify 
the universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlUserPaneFocusUPP;

You typically use the NewControlUserPaneFocusProc macro like this:

ControlUserPaneFocusUPP myControlUserPaneFocusUPP;
myControlUserPaneFocusUPP = NewControlUserPaneFocusProc 
(MyUsePaneFocus);

You typically use the CallControlUserPaneFocusProc macro like this:

CallControlUserPaneFocusProc(myControlUserPaneFocusUPP, control, action);

HereÕs how to declare the function MyUserPaneFocusProc:

pascal ControlPartCode MyUserPaneFocusProc (
ControlHandle control
ControlFocusPart action);

control A handle to the control that is to adjust its focus.
Control Manager Functions 197
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
action The part code of the user pane to receive keyboard focus; see 
ÒHandling Keyboard FocusÓ (page 178). 

function result Returns the part of the user pane actually focused. 
kControlFocusNoPart is returned if the user pane has lost the 
focus or cannot be focused.

DISCUSSION

Your MyUserPaneFocusProc function is called in response to a change in 
keyboard focus. It should respond by changing keyboard focus based on the 
part code passed in the action parameter.

This function will only get called if youÕve set the kControlSupportsFocus 
feature bit on creation of the user pane control. Once you have created the 
function MyUserPaneFocusProc, pass kControlUserPaneFocusProcTag in the 
tagName parameter of SetControlData (page 154).

MyUserPaneBackgroundProc 2
NEW WITH THE APPEARANCE MANAGER 2

Sets the background color or pattern (only for user panes that support 
embedding). 

The Control Manager declares the type for an application-deÞned user pane 
focus function as follows:

typedef pascal (*ControlUserPaneBackgroundProcPtr)(
ControlHandle control,
ControlBackgroundPtr info);

The Control Manager deÞnes the data type ControlUserPaneBackgroundUPP to 
identify the universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr ControlUserPaneBackgroundUPP;

You typically use the NewControlUserPaneBackgroundProc macro like this:
198 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  2

Control Manager Reference
ControlUserPaneBackgroundUPP myControlUserPaneBackgroundUPP;
myControlUserPaneBackgroundUPP = NewControlUserPaneBackgroundProc 
(MyUsePaneBackground);

You typically use the CallControlUserPaneBackgroundProc macro like this:

CallControlUserPaneBackgroundProc(myControlUserPaneBackgroundUPP, 
control, info);

HereÕs how to declare the function MyUserPaneBackgroundProc:

pascal void MyUserPaneBackgroundProc (
ControlHandle control
ControlBackgroundPtr info);

control A handle to the control for which the background color or 
pattern is to be set.

info A pointer to information such as the depth and type of the 
drawing device.

DISCUSSION

Your MyUserPaneFocusProc function should set the user pane background color 
or pattern to whatever is appropriate given the bit depth and device type 
passed in.

This function will only get called if youÕve set the 
kControlHasSpecialBackground and kControlSupportsEmbedding feature bits on 
creation of the user pane control. Once you have created the function 
MyUserPaneBackgroundProc, pass kControlUserPaneBackgroundProcTag in the 
tagName parameter of SetControlData (page 154).
Control Manager Functions 199
12/10/97   Apple Computer, Inc.



C H A P T E R  2  

Control Manager Reference
200 Control Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Contents

12/10/97   Apple Computer, Inc.

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Window Manager Reference
Window Manager Types and Constants 203
Window DeÞnition IDs 203

Window Resource IDs 212
Window DeÞnition Function Variation Codes 214

Window Region Constants 215
Part IdentiÞer Constants 216
FindWindow Result Code Constants 217
The Window Structure 219
The Window State Data Structure 219
The Window Color Table Structure 219
The Auxiliary Window Structure 219
Result Codes 220

Window Manager Resources 220
The Window Resource 220
The Window Color Table Resource 222
The Window DeÞnition Function Resource 223

Window Manager Functions 223
Creating and Closing Windows 223

GetNewWindow 223
NewWindow 224

Retrieving Window Information 224
FindWindow 224
GetWindowFeatures 225
GetWindowRegion 226

Displaying Windows 227
DrawGrowIcon 227

Collapsing Windows 228
201



C H A P T E R  3  
CollapseWindow 228
CollapseAllWindows 229
IsWindowCollapsed 229

Setting and Getting Window Characteristics 230
GetAuxWin 230
SetWinColor 230

DeÞning Your Own Window DeÞnition Function 231
MyWindowDefProc 231
202 Contents

12/10/97   Apple Computer, Inc.



C H A P T E R  3
Window Manager Reference 3

This chapter describes the Window Manager types, constants, resources, and 
functions that are affected by Mac OS 8 or the Appearance Manager.

■ ÒWindow Manager Types and ConstantsÓ (page 203) lists Window Manager 
types and constants, including structures. Result codes are included at the 
end of this section.

■ ÒWindow Manager ResourcesÓ (page 220) describes the window ('WIND') 
resource, the window color table ('wctb') resource, and the window 
deÞnition function ('WDEF') resource.

■ ÒWindow Manager FunctionsÓ (page 223) describes both Window Manager 
functions and application-deÞned functions.

Window Manager Types and Constants 3

Window DeÞnition IDs 3
CHANGED WITH THE APPEARANCE MANAGER 3

A window deÞnition ID is supplied to the window resource (page 220) or to a 
window-creation function to specify which window deÞnition function to use 
in creating the window. A variation code may also be used to describe 
variations of the same basic window.

The window deÞnition ID is an integer that contains the resource ID of the 
window deÞnition function in its upper 12 bits and a variation code in its lower 
4 bits. For a given resource ID and variation code, the window deÞnition ID is 
derived as follows:

window deÞnition ID = (16 x resource ID) + variation code

If you wish to create a custom window, you can write your own window 
deÞnition function. For an example, see MyWindowDefProc (page 231). 
Window Manager Types and Constants 203
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
IMPORTANT

The window deÞnition IDs for dialog boxes and utility 
(ßoating) windows pertain to the appearances of these 
windows only, not their behaviors. For example, if you 
want a utility window to have the proper behavior, that is, 
ßoat, your application must provide for it. 

When mapping is enabled, standard pre-Appearance window deÞnition 
function IDs will be mapped to their Appearance-compliant equivalents. For a 
discussion of how to enable mapping, see ÒIntroduction to the Appearance 
ManagerÓ (page 19). Table 3-1 (page 205) lists the standard pre-Appearance and 
Appearance-compliant window deÞnition ID constants.
204 Window Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
Table 3-1 Pre-Appearance and Appearance-compliant window definition IDs

Pre-Appearance 
window Appearance-compliant window Description

dBoxProc kWindowModalDialogProc Modal dialog box

None kWindowAlertProc Modal alert box

movableDBoxProc kWindowMovableModalDialogProc Movable modal 
dialog box

None kWindowMovableAlertProc Movable modal alert 
box

plainDBox kWindowPlainDialogProc Modeless dialog box 

altDBoxProc kWindowShadowDialogProc Modeless dialog box 
with shadow

noGrowDocProc kWindowDocumentProc Movable window 
with no size box

documentProc kWindowGrowDocumentProc Movable window 
with size box

zoomNoGrow kWindowFullZoomDocumentProc Movable window 
with full zoom box 
and no size box

zoomDocProc kWindowFullZoomGrowDocumentProc Movable window 
with full zoom box 
and size box

None kWindowVertZoomDocumentProc Movable window 
with vertical zoom 
box and no size box

None kWindowVertZoomGrowDocumentProc Movable window 
with vertical zoom 
box and size box

None kWindowHorizZoomDocumentProc Movable window 
with horizontal zoom 
box and no size box

None kWindowHorizZoomGrowDocumentProc Movable window 
with horizontal zoom 
box and size box
Window Manager Types and Constants 205
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
rDocProc None (use rDocProc) Round-cornered 
window

floatProc kWindowFloatProc Utility window with 
no size box or zoom 
box

floatGrowProc kWindowFloatGrowProc Utility window with 
size box

floatZoomProc kWindowFloatFullZoomProc Utility window with 
full zoom box

floatZoomGrowProc kWindowFloatFullZoomGrowProc Utility window with 
full zoom box and 
size box

None kWindowFloatVertZoomProc Utility window with 
vertical zoom box

None kWindowFloatVertZoomGrowProc Utility window with 
vertical zoom box 
and size box

None kWindowFloatHorizZoomProc Utility window with 
horizontal zoom box

None kWindowFloatHorizZoomGrowProc Utility window with 
horizontal zoom box 
and size box

floatSideProc kWindowFloatSideProc Utility window with 
side title bar and no 
size box or zoom box

floatSideGrowProc kWindowFloatSideGrowProc Utility window with 
side title bar and size 
box

floatSideZoomProc kWindowFloatSideFullZoomProc Utility window with 
side title bar and full 
zoom box

Pre-Appearance 
window Appearance-compliant window Description
206 Window Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
enum {  
documentProc = 0,
dBoxProc = 1,
plainDBox = 2,
altDBoxProc = 3,
noGrowDocProc = 4,
movableDBoxProc = 5,
zoomDocProc = 8,
zoomNoGrow = 12,
rDocProc = 16,
kWindowDocumentProc = 1024,
kWindowGrowDocumentProc = 1025,
kWindowVertZoomDocumentProc = 1026,
kWindowVertZoomGrowDocumentProc = 1027,
kWindowHorizZoomDocumentProc = 1028,
kWindowHorizZoomGrowDocumentProc = 1029,
kWindowFullZoomDocumentProc = 1030,
kWindowFullZoomGrowDocumentProc = 1031,

floatSideZoomGrowProc kWindowFloatSideFullZoomGrowProc Utility window with 
side title bar, size box, 
and full zoom box 

None kWindowFloatSideVertZoomProc Utility window with 
side title bar and 
vertical zoom box

None kWindowFloatSideVertZoomGrowProc Utility window with 
side title bar, vertical 
zoom box, and size 
box

None kWindowFloatSideHorizZoomProc Utility window with 
side title bar and 
horizontal zoom box

None kWindowFloatSideHorizZoomGrowProc Utility window with 
side title bar, 
horizontal zoom box, 
and size box

Pre-Appearance 
window Appearance-compliant window Description
Window Manager Types and Constants 207
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
kWindowPlainDialogProc = 1040,
kWindowShadowDialogProc = 1041,
kWindowModalDialogProc = 1042,
kWindowMovableModalDialogProc = 1043,
kWindowAlertProc = 1044,
kWindowMovableAlertProc = 1045,
kWindowFloatProc = 1057,
kWindowFloatGrowProc = 1059,
kWindowFloatVertZoomProc = 1061,
kWindowFloatVertZoomGrowProc = 1063,
kWindowFloatHorizZoomProc = 1065,
kWindowFloatHorizZoomGrowProc = 1067,
kWindowFloatFullZoomProc = 1069,
kWindowFloatFullZoomGrowProc = 1071,
kWindowFloatSideProc = 1073,
kWindowFloatSideGrowProc = 1075,
kWindowFloatSideVertZoomProc = 1077,
kWindowFloatSideVertZoomGrowProc = 1079,
kWindowFloatSideHorizZoomProc = 1081,
kWindowFloatSideHorizZoomGrowProc = 1083,
kWindowFloatSideFullZoomProc = 1085,
kWindowFloatSideFullZoomGrowProc = 1087,
floatProc = 1985,
floatGrowProc = 1987,
floatZoomProc = 1989,
floatZoomGrowProc = 1991,
floatSideProc = 1993,
floatSideGrowProc = 1995,
floatSideZoomProc = 1997,
floatSideZoomGrowProc = 1999

};

Constant descriptions 

documentProc Pre-Appearance document window (movable window 
with size box).

dBoxProc Pre-Appearance modal dialog box.
plainDBox Pre-Appearance modeless dialog box.
altDBoxProc Pre-Appearance modeless dialog box with shadow.
noGrowDocProc Pre-Appearance movable window with no size box or 

zoom box.
208 Window Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
movableDBoxProc Pre-Appearance movable modal dialog box.
zoomDocProc Pre-Appearance movable window with size box and full 

zoom box.
zoomNoGrow Pre-Appearance window with full zoom box and no size 

box.
rDocProc Pre-Appearance rounded-corner window. You can control 

the diameter of curvature of a rounded-corner window 
(window type rDocProc) by adding one of these integers to 
the rDocProc constant:

kWindowDocumentProc
Appearance-compliant movable window with no size box 
or zoom box.

kWindowGrowDocumentProc
Appearance-compliant standard document window 
(movable window with size box).

kWindowVertZoomDocumentProc
Appearance-compliant window with vertical zoom box 
and no size box. 

kWindowVertZoomGrowDocumentProc
Appearance-compliant window with vertical zoom box 
and size box. 

kWindowHorizZoomDocumentProc
Appearance-compliant window with horizontal zoom box 
and no size box.

kWindowHorizZoomGrowDocumentProc
Appearance-compliant window with horizontal zoom box 
and size box.

kWindowFullZoomDocumentProc
Appearance-compliant window with full zoom box and no 
size box.

Window definition ID
Diameters 
of curvature

rDocProc 16, 16

rDocProc + 2 4, 4

rDocProc + 4 6, 6

rDocProc + 6 10, 10
Window Manager Types and Constants 209
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
kWindowFullZoomGrowDocumentProc
Appearance-compliant window with full zoom box and 
size box.

kWindowPlainDialogProc 
Appearance-compliant modeless dialog box. 

kWindowShadowDialogProc
Appearance-compliant modeless dialog box with shadow.

kWindowModalDialogProc
Appearance-compliant modal dialog box.

kWindowMovableModalDialogProc
Appearance-compliant movable modal dialog box.

kWindowAlertProc
Appearance-compliant alert box.

kWindowMovableAlertProc
Appearance-compliant movable alert box.

kWindowFloatProc
Appearance-compliant utility (ßoating) window with no 
size box or zoom box.

kWindowFloatGrowProc
Appearance-compliant utility (ßoating) window with a 
size box.

kWindowFloatVertZoomProc
Appearance-compliant utility (ßoating) window with a 
vertical zoom box.

kWindowFloatVertZoomGrowProc
Appearance-compliant utility (ßoating) window with a 
vertical zoom box and size box.

kWindowFloatHorizZoomProc
Appearance-compliant utility (ßoating) window with a 
horizontal zoom box.

kWindowFloatHorizZoomGrowProc
Appearance-compliant utility (ßoating) window with a 
horizontal zoom box and size box.

kWindowFloatFullZoomProc
Appearance-compliant utility (ßoating) window with full 
zoom box.
210 Window Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
kWindowFloatFullZoomGrowProc
Appearance-compliant utility (ßoating) window with full 
zoom box and size box.

kWindowFloatSideProc 
Appearance-compliant utility (ßoating) window with side 
title bar.

kWindowFloatSideGrowProc 
Appearance-compliant utility (ßoating) window with side 
title bar and size box.

kWindowFloatSideVertZoomProc 
Appearance-compliant utility (ßoating) window with side 
title bar and vertical zoom box.

kWindowFloatSideVertZoomGrowProc 
Appearance-compliant utility (ßoating) window with side 
title bar, vertical zoom box, and size box.

kWindowFloatSideHorizZoomProc 
Appearance-compliant utility (ßoating) window with side 
title bar and horizontal zoom box.

kWindowFloatSideHorizZoomGrowProc 
Appearance-compliant utility (ßoating) window with side 
title bar, horizontal zoom box, and size box.

kWindowFloatSideFullZoomProc 
Appearance-compliant utility (ßoating) window with side 
title bar and full zoom box.

kWindowFloatSideFullZoomGrowProc
Appearance-compliant utility (ßoating) window with side 
title bar, full zoom box, and size box.

floatProc Pre-Appearance utility (ßoating) window with no size box 
or zoom box.

floatGrowProc Pre-Appearance utility (ßoating) window with size box.
floatZoomProc Pre-Appearance utility (ßoating) window with zoom box.
floatZoomGrowProc Pre-Appearance utility (ßoating) window with size box 

and zoom box.
floatSideProc Pre-Appearance utility (ßoating) window with side title 

bar and no size or zoom box.
floatSideGrowProc Pre-Appearance utility (ßoating) window with side title 

bar and size box.
Window Manager Types and Constants 211
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
floatSideZoomProc Pre-Appearance utility (ßoating) window with side title 
bar and zoom box.

floatSideZoomGrowProc
Pre-Appearance utility (ßoating) window with side title 
bar, size box, and zoom box.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Only the following window deÞnition ID constants are supported:

documentProc = 0,
dBoxProc = 1,
plainDBox = 2,
altDBoxProc = 3,
noGrowDocProc = 4,
movableDBoxProc = 5,
zoomDocProc = 8,
zoomNoGrow = 12,
rDocProc = 16,
floatProc = 1985,
floatGrowProc = 1987,
floatZoomProc = 1989,
floatZoomGrowProc = 1991,
floatSideProc = 1993,
floatSideGrowProc = 1995,
floatSideZoomProc = 1997,
floatSideZoomGrowProc = 1999

Window Resource IDs 3
CHANGED WITH THE APPEARANCE MANAGER 3

You can use one of these constants to create a window deÞnition ID. The 
standard Appearance-compliant resource ID constants 
kWindowDocumentDefProcResID, kWindowUtilityDefProcResID, and 
kWindowUtilitySideTitleDefProcResID have collapse boxes.

Note
Resource IDs 0 through 127 are reserved for use by the 
system. 
212 Window Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
enum {  
kStandardWindowDefinition = 0,
kRoundWindowDefinition = 1,
kWindowDocumentDefProcResID = 64,
kWindowDialogDefProcResID = 65,
kWindowUtilityDefProcResID = 66,
kWindowUtilitySideTitleDefProcResID = 67,
kFloatingWindowDefinition = 124

};

Constant descriptions

kStandardWindowDefinition
DeÞnes pre-Appearance standard document windows and 
dialog boxes. When mapping is enabled, this resource ID is 
mapped to kWindowDocumentDefProcResID or 
kWindowDialogDefProcResID. When mapped to 
kWindowDocumentDefProcResID, this produces an 
Appearance-compliant standard document window with 
no size box and no vertical or horizontal zoom box. When 
mapped to kWindowDialogDefProcResID, this produces an 
Appearance-compliant dialog box with no size box and a 
3-pixel space between the dialog boxÕs content and 
structure region.

kRoundWindowDefinition
DeÞnes pre-Appearance standard desk-accessory style 
windows. This resource ID is not mapped to any 
Appearance-compliant resource ID when mapping is 
enabled.

kWindowDocumentDefProcResID
DeÞnes Appearance-compliant standard document 
windows with a size box. Standard document windows 
created with this resource ID can use variation codes to 
create windows with vertical and horizontal zoom boxes. 

kWindowDialogDefProcResID
DeÞnes Appearance-compliant dialog and alert boxes. 
Modal and movable modal dialog boxes created with this 
resource ID are displayed with no space between their 
content and structure region. Alert boxes created with this 
resource ID are displayed with a red-tinged border. 
Window Manager Types and Constants 213
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
kWindowUtilityDefProcResID
DeÞnes Appearance-compliant utility (ßoating) windows 
with a top title bar and a size box. 

kWindowUtilitySideTitleDefProcResID
DeÞnes Appearance-compliant utility (ßoating) windows 
with a side title bar and a size box. 

kFloatingWindowDefinition
DeÞnes pre-Appearance utility (ßoating) windows. When 
mapping is enabled, this resource ID is mapped to 
kWindowUtilityDefProcResID or 
kWindowUtilitySideTitleDefProcResID. When mapped to 
kWindowUtilityDefProcResID, this produces an 
Appearance-compliant utility window with no size box 
until DrawGrowIcon (page 227) is called. When mapped to 
kWindowUtilitySideTitleDefProcResID, it produces an 
Appearance-compliant utility window with a side title bar 
and no size box until DrawGrowIcon (page 227) is called.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Only the following window resource ID constants are supported:

kStandardWindowDefinition = 0,
kRoundWindowDefinition = 1,
kFloatingWindowDefinition = 124

Window DeÞnition Function Variation Codes 3
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 3

When the Appearance Manager is available, you should use the 
Appearance-compliant window deÞnition function ID constants described in 
ÒWindow DeÞnition IDsÓ (page 203), rather than variation codes.
214 Window Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
Window Region Constants 3
NEW WITH THE APPEARANCE MANAGER 3

You can pass constants of type WindowRegionCode in the inRegionCode parameter 
of GetWindowRegion (page 226) to obtain a handle to a speciÞc window region. 

Figure 3-1 (page 216) illustrates the location of these regions in a window. 

enum {  
kWindowTitleBarRgn = 0,
kWindowTitleTextRgn = 1,
kWindowCloseBoxRgn = 2,
kWindowZoomBoxRgn = 3,
kWindowDragRgn = 5,
kWindowGrowRgn = 6,
kWindowCollapseBoxRgn = 7,
kWindowStructureRgn = 32,
kWindowContentRgn = 33

};
typedef UInt16 WindowRegionCode;

Constant descriptions

kWindowTitleBarRgn The entire area occupied by a windowÕs title bar, including 
the title text region.

kWindowTitleTextRgn
That portion of a windowÕs title bar that is occupied by the 
name of the window.

kWindowCloseBoxRgn The area occupied by a windowÕs close box.
kWindowZoomBoxRgn The area occupied by a windowÕs zoom box.
kWindowDragRgn The draggable area of the window frame, including the 

title bar and window outline, but excluding the close box, 
zoom box, and collapse box.

kWindowGrowRgn The area occupied by a windowÕs size box.
kWindowCollapseBoxRgn

The area occupied by a windowÕs collapse box. 
kWindowStructureRgn

The entire area occupied by a window, including the frame 
and content region; the window may be partially 
off-screen but its structure region does not change.
Window Manager Types and Constants 215
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
kWindowContentRgn WindowÕs content region (the part of a window in which 
your application displays the contents of the window or 
dialog, including the size box and any controls). 

Figure 3-1 Window regions

Part IdentiÞer Constants 3
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 3

When the Appearance Manager is available and you are using standard 
windows, all the Þelds of the window color table structure are ignored except 
the part identiÞer constant wContentColor in the value Þeld of the ColorSpec 
structure, which produces the background color for the windowÕs content 
region.

If you are creating your own custom windows, the window color table 
structure and all its part identiÞer constants can still be used. 

Drag region

Size box region

Close box region

Title bar region

Collapse box region

Zoom box region

Title text region
216 Window Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
FindWindow Result Code Constants 3
CHANGED WITH THE APPEARANCE MANAGER 3

When your application receives a mouse-down event, you typically call 
FindWindow (page 224). FindWindow returns an integer that speciÞes the location, 
in global coordinates, of the cursor at the time the user pressed the mouse 
button.

enum {  
inDesk = 0,
inMenuBar = 1,
inSysWindow = 2,
inContent = 3,
inDrag = 4,
inGrow = 5,
inGoAway = 6,
inZoomIn = 7,
inZoomOut = 8,
inCollapseBox = 11

};

Constant descriptions

inDesk The cursor is in the desktop region, not in the menu bar, a 
driver window, or any window that belongs to your 
application. When FindWindow returns inDesk, your 
application doesnÕt need to do anything.

inMenuBar The user has pressed the mouse button while the cursor is 
in the menu bar. When FindWindow returns inMenuBar, your 
application typically adjusts its menus and then calls the 
Menu Manager function MenuSelect to let the user choose 
menu items.

inSysWindow The user has pressed the mouse button while the cursor is 
in a window belonging to a driver in your applicationÕs 
partition. If FindWindow returns inSysWindow, your 
application typically calls the function SystemClick. 

inContent The user has pressed the mouse button while the cursor is 
in the content area (excluding the size box in an active 
window) of one of your applicationÕs windows. When 
Window Manager Types and Constants 217
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
FindWindow returns inContent, your application determines 
how to handle clicks in the content region.

inDrag The user has pressed the mouse button while the cursor is 
in the drag region of a window. When FindWindow returns 
inDrag, your application typically calls DragWindow to let 
the user drag the window to a new location. 

narrow The user has pressed the mouse button while the cursor is 
in an active windowÕs size box. When FindWindow returns 
inGrow, your application typically calls GrowWindow .

inGoAway The user has pressed the mouse button while the cursor is 
in an active windowÕs close box. When FindWindow returns 
inGoAway, your application typically calls TrackGoAway to 
track mouse activity while the button is down and then 
calls its own function for closing a window if the user 
releases the button while the cursor is in the close box.

inZoomIn The user has pressed the mouse button while the cursor is 
in the zoom box of an active window that is currently in 
the standard state. When FindWindow returns inZoomIn, 
your application typically calls TrackBox to track mouse 
activity while the button is down and then calls its own 
function for zooming a window if the user releases the 
button while the cursor is in the zoom box.

inZoomOut The user has pressed the mouse button while the cursor is 
in the zoom box of an active window that is currently in 
the user state. When FindWindow returns inZoomOut, your 
application typically calls the function TrackBox to track 
mouse activity while the button is down. Your application 
then calls its own function for zooming a window if the 
user releases the button while the cursor is in the zoom 
box.

inCollapseBox The user has pressed the mouse button while the cursor is 
in an active windowÕs collapse box. When FindWindow 
returns inCollapseBox, your application typically does 
nothing, because the system will collapse your window for 
you.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

The inCollapseBox constant will not be returned by FindWindow.
218 Window Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
The Window Structure 3
NOT RECOMMENDED WITH MAC OS 8 3

In Mac OS 8, you should use the color window structure instead of the window 
structure, since Color QuickDraw is always available with Mac OS 8.

The Window State Data Structure 3
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 3

When the Appearance Manager is available, you should not extend the 
window state data structure. Instead use the refCon Þeld of the color window 
structure or extend the window record structure.

The Window Color Table Structure 3
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 3

When the Appearance Manager is available and you are using standard 
windows, all information in the window color table structure is ignored except 
the part identiÞer constant wContentColor in the value Þeld of the ColorSpec 
structure. This constant produces the background color for the windowÕs 
content region. If your are creating your own custom window deÞnition 
functions, the window color table structure can still be used.

The Auxiliary Window Structure 3
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 3

When the Appearance Manager is available and you are using standard 
windows, most of the Þelds of the auxiliary window structure are ignored. In 
the future, standard system windows may not have entries in the auxiliary 
window list. If you are creating your own window deÞnition function, the 
auxiliary window structure can still be used. 
Window Manager Types and Constants 219
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
Result Codes 3
The most common result codes that can be returned by Window Manager 
functions are listed below. 

Window Manager Resources 3

The Window Resource 3
CHANGED WITH THE APPEARANCE MANAGER 3

You typically deÞne a window ('WIND') resource for each type of window that 
your application creates. Use GetNewWindow (page 223) or GetNewCWindow to 
create a window based on a 'WIND' resource. Both functions create a new 
window structure and Þll it in according to the values speciÞed in the 'WIND' 
resource.

Note
Window resources must have resource ID numbers greater 
than 127. 

Figure 3-2 illustrates a compiled 'WIND' resource.

noErr 0 No error
paramErr Ð50 Error in parameter list
memFullErr Ð108 Not enough memory
resNotFound Ð192 Unable to read resource
220 Window Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
Figure 3-2 Structure of a compiled window ('WIND') resource

A compiled version of a window resource contains the following elements:

■ The upper-left and lower-right corners, in global coordinates, of a rectangle 
that deÞnes the initial size and placement of the windowÕs content region. 
Your application can change this rectangle before displaying the window, 
either programmatically or through an optional positioning code described 
later in this section.

■ The window deÞnition ID. The window deÞnition ID is an integer that 
contains the resource ID of the window deÞnition function in its upper 12 
bits and a variation code in its lower 4 bits; see ÒWindow DeÞnition IDsÓ 
(page 203) for a discussion of standard pre-Appearance and 
Appearance-compliant window deÞnition IDs.

■ A speciÞcation that determines whether the window will be visible or 
invisible. This characteristic controls only whether the Window Manager 
displays the window, not necessarily whether the window can be seen on 
the screen. (A visible window entirely covered by other windows, for 
example, is ÒvisibleÓ even though the user cannot see it.) You typically create 

Initial rectangle

Window definition ID

Visibility status

Presence of close box

Reference constant

Length (n) of window title

Window title

Positioning specfication

'WIND' resource 

8 

2 

2 

2 

4 

1 

n

2 

Bytes
Window Manager Resources 221
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
a new window in an invisible state, build the content area of the window, 
and then display the completed window.

■ A speciÞcation that determines whether or not the window will have a close 
box. The 'WDEF' draws the close box when it draws the window frame. The 
window type speciÞed in the second Þeld determines whether a window 
can support a close box; this Þeld determines whether the close box is 
present.

■ A reference constant, which your application can use for whatever data it 
needs to store. When it builds a new window structure, the Window 
Manager stores, in the refCon Þeld, whatever value you specify in the Þfth 
element of the window resource. You can also put a place-holder value here 
and then set the refCon Þeld programmatically with the SetWRefCon function.

■ A pascal string that speciÞes the window title. 

■ A positioning speciÞcation that overrides the window position established 
by the rectangle in the Þrst Þeld. The existence of this Þeld is optional. The 
positioning constants are convenient when the user is creating new 
documents or when you are handling your own dialog boxes and alert 
boxes. When you are creating a new window to display a previously saved 
document, however, you should display the new window in the same 
rectangle as that in which it was previously displayed.

The Window Color Table Resource 3
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 3

When the Appearance Manager is available and you are using standard 
windows, all information in the window color table ('wctb') resource is 
ignored except the part identiÞer constant wContentColor in the value Þeld of 
the ColorSpec structure. This constant produces the background color for the 
windowÕs content region.

If your are creating your own custom window deÞnition functions, the 
window color table resource can still be used.
222 Window Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
The Window DeÞnition Function Resource 3
CHANGED WITH THE APPEARANCE MANAGER 3

The window deÞnition ('WDEF') resource is the executable code for your 
window deÞnition function. Provide as the resource data the compiled or 
assembled code of your window deÞnition procedure. The entry point of your 
procedure must be at the beginning of the resource data. Under Appearance, 
there are two new values that the Window Manager can pass in the message 
parameter to your 'WDEF', kWindowMsgGetFeatures and kWindowMsgGetRegion.

See MyWindowDefProc (page 231) for more information about creating a window 
deÞnition function.

▲ W A R N I N G

All resources of type 'WDEF' should be nonpurgeable, to 
ensure that the resource is always loaded. If the resource is 
not available when the Window Manager needs to load it, 
a crash will occur.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

The messages kWindowMsgGetFeatures and kWindowMsgGetRegion will not be sent 
to your window deÞnition function. 

Window Manager Functions 3

Creating and Closing Windows 3

GetNewWindow 3
NOT RECOMMENDED WITH MAC OS 8 3

Creates a new monochrome window from a window resource. The 
GetNewWindow function was originally implemented before the advent of Color 
Window Manager Functions 223
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
QuickDraw. In Mac OS 8, you should call the Color QuickDraw function 
GetNewCWindow (see the ÒWindow ManagerÓ chapter in Inside Macintosh: 
Macintosh Toolbox Essentials) instead of GetNewWindow to programmatically create 
a window, because Color QuickDraw is always available in Mac OS 8. 

NewWindow 3
NOT RECOMMENDED WITH MAC OS 8 3

Creates a new monochrome window with the characteristics speciÞed by a list 
of parameters. The NewWindow function was originally implemented before the 
advent of Color QuickDraw. In Mac OS 8, you should call the Color 
QuickDraw function NewCWindow (see the ÒWindow ManagerÓ chapter in Inside 
Macintosh: Macintosh Toolbox Essentials) instead of NewWindow to 
programmatically create a window, because Color QuickDraw is always 
available in Mac OS 8. 

Retrieving Window Information 3

FindWindow 3
CHANGED WITH THE APPEARANCE MANAGER 3

Maps the location of the cursor to a part of the screen or a region of a window 
when your application receives a mouse-down event.

pascal short FindWindow (
Point thePoint,
WindowPtr *theWindow);

thePoint The point, in global coordinates, where the mouse-down event 
occurred. Your application retrieves this information from the 
where field of the event structure.

theWindow A pointer to the window in which the mouse-down event 
occurred. FindWindow produces nil if the mouse-down event 
occurred outside a window.
224 Window Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
function result Returns a short integer that speciÞes where the cursor was 
when the user pressed the mouse button; see ÒFindWindow 
Result Code ConstantsÓ (page 217).

DISCUSSION

You typically call the function FindWindow whenever you receive a mouse-down 
event. The FindWindow function helps you dispatch the event by reporting 
whether the cursor was in the menu bar or in a window when the mouse 
button was pressed. If the cursor was in a window, the function will produce 
both a pointer to the window and a constant that identiÞes the region of the 
window in which the event occurred. If Appearance is available, FindWindow 
may return the inCollapseBox constant as one of the possible window regions.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

The inCollapseBox constant will not be returned by FindWindow.

GetWindowFeatures 3
NEW WITH THE APPEARANCE MANAGER 3

Gets the features a window supports. 

pascal OSStatus GetWindowFeatures (
WindowPtr inWindow,
UInt32* outFeatures);

inWindow On input, a pointer to the window whose features you wish to 
determine.

outFeatures On output, a pointer to a bit Þeld specifying the features the 
window supports; see ÒReporting Window FeaturesÓ (page 239).

function result A result code; see ÒResult CodesÓ (page 220). 

DISCUSSION

The GetWindowFeatures function produces a window deÞnition functionÕs 
features in response to a kWindowMsgGetFeatures message. For a list of the 
Window Manager Functions 225
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
features a window might support, see ÒReporting Window FeaturesÓ 
(page 239).

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetWindowRegion 3
NEW WITH THE APPEARANCE MANAGER 3

Gets a handle to a speciÞc window region. 

pascal OSStatus GetWindowRegion (
WindowPtr inWindow,
WindowRegionCode inRegionCode,
RgnHandle ioWinRgn);

inWindow On input, a pointer to the window whose region you wish to 
receive a handle to.

inRegionCode Pass a constant representing the window region whose handle 
you wish to obtain; see ÒWindow Region ConstantsÓ (page 215).

ioWinRgn On input, a handle to a region created by your application. On 
output, a handle to the speciÞed window region.

function result A result code; see ÒResult CodesÓ (page 220).

DISCUSSION

The GetWindowRegion function produces a handle to a window deÞnition 
functionÕs window region in response to a kWindowMsgGetRegion message. The 
visibility of the window is unimportant for GetWindowRegion to work correctly.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
226 Window Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
Displaying Windows 3

DrawGrowIcon 3
CHANGED WITH THE APPEARANCE MANAGER 3

Draws a windowÕs size box.

pascal void DrawGrowIcon (WindowPtr theWindow);

theWindow On input, a pointer to the window structure. 

DISCUSSION

When you adopt Appearance directly, you never need to call the DrawGrowIcon 
function to get a size box in your window. You can still use DrawGrowIcon to 
draw the delimiting scroll bar lines, if you wish.

If you are going through the mapping layer, however, you do need to call 
DrawGrowIcon, but only once, because under Appearance, once DrawGrowIcon is 
called, the size box is merged into the windowÕs frame.

The DrawGrowIcon function doesnÕt erase the scroll bar areas. If you use 
DrawGrowIcon to draw the size box and scroll bar outline, therefore, you should 
erase those areas yourself when the window size changes, even if the window 
doesnÕt contain scroll bars.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

The DrawGrowIcon function draws a windowÕs size box or, if the window canÕt 
be sized, whatever other image is appropriate. You call DrawGrowIcon when 
drawing the content region of a window that contains a size box.

The exact appearance and location of the image depend on the window type 
and the windowÕs active or inactive state. DrawGrowIcon automatically checks 
the windowÕs type and state and draws the appropriate image.

In an active document window, DrawGrowIcon draws the grow image in the size 
box in the lower-right corner of the windowÕs graphics port rectangle, along 
with the lines delimiting the size box and scroll bar areas. To draw the size box 
Window Manager Functions 227
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
but not the scroll bar outline, set the clipRgn Þeld in the windowÕs graphics 
port to be a 15-by-15 pixel rectangle in the lower-right corner of the window.

In an inactive document window, DrawGrowIcon draws the lines delimiting the 
size box and scroll bar areas and erases the size box.

Collapsing Windows 3

CollapseWindow 3
NEW WITH THE APPEARANCE MANAGER 3

Collapses or expands a window to its title bar .

pascal OSStatus CollapseWindow (
WindowPtr inWindow,
Boolean inCollapseIt);

inWindow On input, a pointer to the window that you want to collapse.

inCollapseIt A Boolean value indicating whether the window should be 
collapsed or expanded.

function result A result code; see ÒResult CodesÓ (page 220). 

DISCUSSION

The CollapseWindow function tells the Window Manager to collapse or expand a 
window depending upon the value passed in the inCollapseIt parameter. Only 
window deÞnition functions that return the feature bit kWindowCanCollapse in 
response to a kWindowGetFeatures message support this function; see 
GetWindowFeatures (page 225). 

SEE ALSO

FindWindow (page 224).

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
228 Window Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
CollapseAllWindows 3
NEW WITH THE APPEARANCE MANAGER 3

Collapses or expands all windows that are collapsable in an application.

pascal OSStatus CollapseAllWindows (Boolean inCollapseEm);

inCollapseEm A Boolean value. Set to true to collapse all windows in the 
application; if false, expands all windows in the application.

function result A result code; see ÒResult CodesÓ (page 220). 

DISCUSSION

Only window deÞnition functions that return the feature bit 
kWindowCanCollapse in response to a kWindowGetFeatures message support the 
CollapseAllWindows function; see GetWindowFeatures (page 225).

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

IsWindowCollapsed 3
NEW WITH THE APPEARANCE MANAGER 3

Determines a windowÕs collapse state.

pascal Boolean IsWindowCollapsed (WindowPtr inWindow);

inWindow On input, a pointer to the window whose collapse state you are 
determining.

function result  A Boolean value. If true, the window is collapsed. If false, the 
window is expanded.

DISCUSSION

Only window deÞnition functions that return the feature bit 
kWindowCanCollapse in response to a kWindowGetFeatures message support this 
Window Manager Functions 229
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
function; see GetWindowFeatures (page 225). Your window deÞnition function 
should call IsWindowCollapsed to determine whether or not a window is 
collapsed, so you can modify its structure and content regions as appropriate. 
Typically, a windowÕs content region is empty in a collapsed state.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

Setting and Getting Window Characteristics 3

GetAuxWin 3
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 3

When the Appearance Manager is available and you are using standard 
windows, most of the Þelds of the auxiliary window structure are ignored and 
the GetAuxWin function is not recommended. In the future, standard system 
windows may not have entries in the auxiliary window list. If you are creating 
your own window deÞnition function, GetAuxWin can still be used.

SetWinColor 3
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 3

When the Appearance Manager is available and your application uses standard 
windows, the SetWinColor function is not recommended. SetWinColor sets a 
window color table structure which is now mostly ignored. Only the part 
identiÞer constant wContentColor in the value Þeld of the ColorSpec structure is 
used. This constant produces the background color for the windowÕs content 
region. Under Appearance, instead of the SetWinColor function, the window 
deÞnition function determines what colors it will use.

If your are creating your own custom window deÞnition functions, SetWinColor 
can still be used.
230 Window Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
DeÞning Your Own Window DeÞnition Function 3
A window deÞnition function determines how a menu generally looks and 
behaves. Various Window Manager functions call a window deÞnition function 
whenever they need to perform a window-dependent action, such as drawing 
the window on the screen.

The Window Manager calls the Resource Manager to access your window 
deÞnition function with the given resource ID; see ÒWindow DeÞnition IDsÓ 
(page 203) for a description of how window deÞnition IDs are derived from 
resource IDs and variation codes. You can deÞne your own window variation 
codes so that you can use one 'WDEF' resource to handle several variations of 
the same general window.

The Resource Manager reads your window deÞnition function into memory 
and returns a handle to it. The Window Manager stores this handle in the 
windowDefProc field of the window structure. Later, when it needs to perform an 
action on the window, the Window Manager calls the window deÞnition 
function and passes it the variation code as a parameter.

MyWindowDefProc 3
CHANGED WITH THE APPEARANCE MANAGER 3

Your window deÞnition function is responsible for

■ drawing the window frame

■ reporting the region where mouse-down events occur

■ calculating the windowÕs structure region and content region

■ drawing the size box

■ resizing the window frame when the user drags the size box

■ reporting the windowÕs features or the location of a speciÞc window region

■ performing any customized initialization or disposal tasks

If you wish to deÞne new, nonstandard windows for your application, you 
must write a window deÞnition function and store it in a resource Þle as a 
resource of type 'WDEF'. 
Window Manager Functions 231
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
The Window Manager declares the type for an application-deÞned window 
deÞnition function as follows:

typedef pascal long (*WindowDefProcPtr)(
short varCode, 
WindowPtr theWindow, 
short message, 
long param);

The Window Manager deÞnes the data type WindowDefUPP to identify the 
universal procedure pointer for this application-deÞned function:

typedef UniversalProcPtr WindowDefUPP;

You typically use the NewWindowDefProc macro like this: 

WindowDefUPP myWindowDefUPP;
myWindowDefUPP = NewWindowDefProc(MyWindow);

You typically use the CallWindowDefProc macro like this: 

CallWindowDefProc(myWindowDefUPP, varCode, theWindow, message, param);

HereÕs how to declare the function MyWindowDefProc:

pascal long MyWindowDef(
short varCode,
WindowPtr theWindow,
short message,
long param);

varCode The windowÕs variation code.

theWindow A pointer to the windowÕs window structure.

message A value indicating the task to be performed. The message 
parameter contains one of the values deÞned in ÒMessagesÓ 
(page 233). The subsections that follow explain each of these 
tasks in detail. 

param Data associated with the task speciÞed by the message 
parameter. If the task requires no data, this parameter is 
ignored.
232 Window Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
function result Your window deÞnition function should perform whatever task 
is speciÞed by the message parameter and return a function 
result, if appropriate. If the task performed requires no result 
code, return 0.

Messages 3

The Window Manager passes a value deÞned by one of these constants in the 
message parameter of your window definition function to specify the action 
your function must perform. Other messages are reserved for internal use by 
the system.

enum {
wDraw = 0, 
wHit = 1, 
wCalcRgns = 2, 
wNew = 3, 
wDispose = 4, 
wGrow = 5, 
wDrawGIcon = 6,
kWindowMsgGetFeatures = 7,
kWindowMsgGetRegion = 8

};

Constant descriptions

wDraw Draw the windowÕs frame.
wHit Report the location of a mouse-down event. 
wCalcRgns Calculate the structure region and the content region.
wNew Perform additional initialization.
wDispose Perform additional disposal.
wGrow Draw the dotted outline of the window that you see 

during a resizing operation.
wDrawGIcon Draw the outlines for the size box and the scroll bar.
kWindowMsgGetFeatures

Report the windowÕs features.
kWindowMsgGetRegion

Report the location of a speciÞc window region.
Window Manager Functions 233
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Only the following messages will be sent to your window deÞnition function: 

enum {
wDraw = 0, 
wHit = 1, 
wCalcRgns = 2, 
wNew = 3, 
wDispose = 4, 
wGrow = 5, 
wDrawGIcon = 6

} ;

Drawing the Window Frame 3

When the Window Manager passes wDraw in the message parameter, your 
window deÞnition function should respond by drawing the window frame in 
the current graphics port (which is the Window Manager port). The window 
part code to be drawn will be passed in the param parameter of your window 
deÞnition function. 

Your window deÞnition function should perform the following steps:

■ Change the current port from the WMgrPort to the WMgrCPort to allow the 
system to draw in the full range of RGB colors.

■ Update the pen attributes, text attributes, and bkPat Þelds in the WMgrCPort to 
the values of the corresponding Þelds in the WMgrPort. The Window Manager 
automatically transfers the vis and clip regions. 

Note
The parallelism of the WMgrPort and the WMgrCPort is 
maintained only by the window deÞnition functions. All 
window deÞnition functions that draw in the WMgrPort 
should follow the steps listed above even if the changed 
Þelds do not affect their operation.

You must make certain checks to determine exactly how to draw the frame. If 
the value of the visible Þeld in the window structure is false, you should do 
nothing; otherwise, you should examine the param parameter and the status 
ßags in the window structure:
234 Window Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
■ If the value of param is 0, draw the entire window frame (including the size 
box, if your window deÞnition function incorporates the size box into the 
frame).

■ If the value of param is 0 and the hilited Þeld in the window structure is 
true, highlight the frame to show that the window is active.

■ If the value of the goAwayFlag Þeld in the window structure is also true, 
draw a close box in the window frame.

■ If the value of the spareFlag Þeld in the window structure is also true, 
draw a zoom box in the window frame.

■ If the value of the param parameter is wInGoAway, add highlighting to, or 
remove it from, the windowÕs close box. 

■ If the value of the param parameter is wInZoom, add highlighting to, or remove 
it from, the windowÕs zoom box. 

■ If the value of the param parameter is wInCollapseBox, add highlighting to, or 
remove it from, the windowÕs collapse box.

You need to maintain your own state ßag to determine whether the close, 
zoom, or collapse box is to be drawn as highlighted. Typically, you clear this 
state ßag whenever you draw the entire frame, and you set it before drawing 
whenever your application is called to draw just the close, zoom, or collapse 
box. If the ßag is set, you draw the box in a highlighted state.

The window frame typically, but not necessarily, includes the windowÕs title, 
which should be displayed in the system font and system font size. The 
Window Manager port is already set to use the system font and system font 
size.

Note
Nothing drawn outside the windowÕs structure region will 
be visible. 

Your window deÞnition function should return 0 as the function result for this 
message. 

Reporting the Region of a Mouse-Down Event 3

When the Window Manager passes wHit in the message parameter, your 
window deÞnition function should respond by reporting the region of the 
speciÞed mouse-down event. The mouse location (in global coordinates) of the 
window frame will be passed into the param parameter of your window 
Window Manager Functions 235
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
deÞnition function. The vertical coordinate is in the high-order word of the 
parameter, and the horizontal coordinate is in the low-order word. 

In response to the wHit message, your window deÞnition function should 
return one of the following constants:

enum {
wNoHit  = 0,
wInContent  = 1,
wInDrag  = 2,
wInGrow  = 3,
wInGoAway  = 4,
wInZoomIn  = 5,
wInZoomOut  = 6,  
wInCollapseBox  = 9

};

Constant descriptions

wNoHit The mouse-down event did not occur in the content region or 
the drag region of any active or inactive window or in the close, 
size, zoom, or collapse box of an active window. The return 
value wNoHit might also mean that the point isnÕt in the 
window. The standard window deÞnition functions, for 
example, return wNoHit if the point is in the window frame but 
not in the title bar.

wInContent The mouse-down event occurred in the content region of an 
active or inactive window (with the exception of the size box).

wInDrag The mouse-down event occurred in the drag region of an active 
or inactive window.

wInGrow The mouse-down occurred in the size box of an active window.

wInGoAway The mouse-down event occurred in the close box of an active 
window.

wInZoomIn The mouse-down event occurred in the zoom box of an active 
window that is currently in the standard state.

wInZoomOut The mouse-down event occurred in the zoom box of an active 
window that is currently in the user state.
236 Window Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
wInCollapseBox
The mouse-down event occurred in the collapse box of an 
active window.

Return the constants wInGrow, wInGoAway, wInZoomIn, wInZoomOut, and 
wInCollapseBox only if the window is activeÑby convention, the size box, close 
box, zoom box, and collapse box arenÕt drawn if the window is inactive. In an 
inactive document window, for example, a mouse-down event in the part of 
the title bar that would contain the close box if the window were active is 
reported as wInDrag.

Calculating Regions 3

When the Window Manager passes wCalcRgns in the message parameter, your 
window deÞnition function should respond by calculating the windowÕs 
structure and content regions based on the current graphics portÕs port 
rectangle. These regions, whose handles are in the strucRgn and contRgn Þelds 
of the window structure, are in global coordinates. The Window Manager 
requests this operation only if the window is visible. The mouse location (in 
global coordinates) of the window frame will be passed into the param 
parameter of your window deÞnition function.

Your window deÞnition function should call IsWindowCollapsed (page 229) to 
determine its collapse state. Then your window deÞnition function can modify 
its structure and content regions as appropriate. Typically, a windowÕs content 
region is empty in a collapsed state.

▲ W A R N I N G

When you calculate regions for your own type of window, 
do not alter the clip region or the visible region of the 
Window Manager port. The Window Manager and 
QuickDraw take care of this for you. Altering the Window 
Manager portÕs clip region or visible region may damage 
other windows.

Your window deÞnition function should return 0 as the function result for this 
message.

Performing Additional Window Initialization 3

When the Window Manager passes wNew in the message parameter, your 
window deÞnition function should respond by performing any initialization 
that it may require. If the content region has an unusual shape, for example, 
Window Manager Functions 237
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
you might allocate memory for the region and store the region handle in the 
dataHandle field of the window structure. The initialization function for a 
standard document window creates the wStateData structure for storing 
zooming data.

Your window deÞnition function should ignore the param parameter and return 
0 as the function result for this message.

Performing Additional Window Disposal Actions 3

When the Window Manager passes wDispose in the message parameter, your 
window deÞnition function should respond by performing any additional 
tasks necessary for disposing of a window. You might, for example, release 
memory that was allocated by the initialization function. The dispose function 
for a standard document window disposes of the wStateData structure.

Your window deÞnition function should ignore the param parameter and return 
0 as the function result for this message.

Drawing the Window’s Grow Image 3

When the Window Manager passes wGrow in the message parameter, your 
window deÞnition function should respond to being resized by drawing a 
dotted outline of the window in the current graphics port in the pen pattern 
and mode. (The pen pattern and mode are set upÑas gray and notPatXorÑto 
conform to Appearance-compliant human interface guidelines.)

A rectangle (in global coordinates) whose upper-left corner is aligned with the 
port rectangle of the windowÕs graphics port is passed into the param parameter 
of your window deÞnition function. Your grow image should be sized 
appropriately for the speciÞed rectangle. As the user drags the mouse, the 
Window Manager sends repeated wGrow messages, so that you can change your 
grow image to match the changing mouse location.

DrawGrowIcon (page 227) draws a dotted (gray) outline of the window and also 
the lines delimiting the title bar, size box, and scroll bar areas.

Your window deÞnition function should return 0 as the function result for this 
message. 

Drawing the Size Box 3

When the Window Manager passes wDrawGIcon in the message parameter, your 
window deÞnition function should respond by drawing the size box in the 
238 Window Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  3

Window Manager Reference
content region if the window is active. If the window is inactive, your window 
deÞnition function should draw whatever is appropriate to show that the 
window cannot currently be sized. Your window deÞnition function may also 
draw scroll bar delimiter lines. Your window deÞnition function should ignore 
the param parameter.

If the size box is located in the window frame, draw the size box in response to 
a wDraw message, not a wDrawGIcon message.

Your window deÞnition function should return 0 as the function result for this 
message. 

Reporting Window Features 3

When the Window Manager passes kWindowMsgGetFeatures in the message 
parameter, your window deÞnition function should respond by setting the 
param parameter to reflect the features that your window supports. The value 
passed back in the param parameter should be comprised of one or more of the 
following values:

enum{
kWindowCanGrow = (1 << 0),
kWindowCanZoom = (1 << 1),
kWindowCanCollapse = (1 << 2),
kWindowIsModal = (1 << 3),
kWindowCanGetWindowRegion = (1 << 4),
kWindowIsAlert = (1 << 5),
kWindowHasTitleBar = (1 << 6),

};

Constant descriptions

kWindowCanGrow If this bit (bit 0) is set, the window has a grow box (may 
not be visible).

kWindowCanZoom If this bit (bit 1) is set, the window has a zoom box (may 
not be visible).

kWindowCanCollapse If this bit (bit 2) is set, the window has a collapse box.
kWindowIsModal If this bit (bit 3) is set, the window should behave as modal.
kWindowCanGetWindowRegion

If this bit (bit 4) is set, the window supports a call to 
GetWindowRegion (page 226). 
Window Manager Functions 239
12/10/97   Apple Computer, Inc.



C H A P T E R  3  

Window Manager Reference
kWindowIsAlert If this bit (bit 5) is set, the window is an alert box (may be 
movable or not). When this constant is added to 
kWindowIsModal, the user should be able to switch out of 
the application and move the alert box.

kWindowHasTitleBar If this bit (bit 6) is set, the window has a title bar. 
Your window deÞnition function should return 1 as the function result for this 
message. 

Returning the Location of Window Regions 3

When the Window Manager passes kWindowMsgGetRegion in the message 
parameter, your window deÞnition function should respond by returning the 
location (in global coordinates) of the speciÞed window region. A pointer to a 
window region structure will be passed in the param parameter. 

The window region structure is a structure of type GetWindowRegionRec. 

struct GetWindowRegionRec {
RgnHandle winRgn;
WindowRegionCode regionCode;

};
typedef struct GetWindowRegionRec GetWindowRegionRec;
typedef GetWindowRegionRec *GetWindowRegionPtr;

Field descriptions
winRgn A handle to a window region based on the value speciÞed 

in the regionCode Þeld. Modify this region.
regionCode A value representing a given window region; see 

ÒWindow Region ConstantsÓ (page 215). 
Your window deÞnition function should return an operating system status 
(OSStatus) message as the function result for this message. The result code 
errWindowRgnInvalid indicates that the window region passed in was not valid.
240 Window Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  4

Contents

12/10/97   Apple Computer, Inc.

Contents
Figure 4-0
Listing 4-0
Table 4-0
4 Dialog Manager Reference
Dialog Manager Types and Constants 243
Alert Type Constants 243
Dialog Feature Flag Constants 244
Alert Feature Flag Constants 245
The Standard Alert Structure 246

Alert Button Constants 247
Alert Default Text Constants 248

Result Codes 249
Dialog Manager Resources 249

The Dialog Resource 249
The Extended Dialog Resource 252
The Extended Alert Resource 253
The Dialog Control Font Table Resource 254

Dialog Font Flag Constants 258
The Dialog Color Table Resource 259
The Alert Color Table Resource 260
The Item Color Table Resource 260

Dialog Manager Functions 261
Creating Alerts 261

StandardAlert 261
Alert 262
StopAlert 264
NoteAlert 265
CautionAlert 267

Creating Dialog Boxes 268
GetNewDialog 268
NewFeaturesDialog 270
241



C H A P T E R  4  
Manipulating Items in Dialog and Alert Boxes 272
GetDialogItemAsControl 272
GetDialogItem 273
SetDialogItem 275
GetDialogKeyboardFocusItem 276
FindDialogItem 276
MoveDialogItem 277
SizeDialogItem 278
AutoSizeDialog 279

Handling Text in Alert and Dialog Boxes 280
SetDialogItemText 280

Handling Events in Dialog Boxes 281
ModalDialog 281

DeÞning Your Own Dialog Item Function 284
242 Contents

12/10/97   Apple Computer, Inc.



C H A P T E R  4
Dialog Manager Reference 4

This chapter describes the Dialog Manager types, constants, resources, and 
functions that are affected by Mac OS 8 or the Appearance Manager. 

■ ÒDialog Manager Types and ConstantsÓ (page 243) lists Dialog Manager 
types and constants, including structures. Result codes are included at the 
end of this section.

■ ÒDialog Manager ResourcesÓ (page 249) describes the new 
Appearance-compliant resources for the Dialog Manager and identiÞes the 
other Dialog Manager resources that are unchanged or no longer 
recommended.

■ ÒDialog Manager FunctionsÓ (page 261) describes Dialog Manager functions 
you can call to invoke alerts, create and dispose of dialog boxes, manipulate 
items in alert and dialog boxes, and handle events in alert and dialog boxes.

Dialog Manager Types and Constants 4

Alert Type Constants 4
NEW WITH THE APPEARANCE MANAGER 4

You can pass constants of type AlertType in the inAlertType parameter of 
StandardAlert (page 261) to specify the type of alert box you wish to create.

enum {  
kAlertStopAlert = 0,
kAlertNoteAlert = 1,
kAlertCautionAlert = 2,
kAlertPlainAlert = 3

};
typedef SInt16 AlertType;

Constant descriptions

kAlertStopAlert Stop alert box. 
kAlertNoteAlert Note alert box. 
kAlertCautionAlert Caution alert box. 
Dialog Manager Types and Constants 243
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
kAlertPlainAlert Alert box with no icon.

Dialog Feature Flag Constants 4
NEW WITH THE APPEARANCE MANAGER 4

You can set the following bits in the dialog ßags Þeld of the extended dialog 
resource (page 249) or pass them in the inFlags parameter of NewFeaturesDialog 
(page 270) to specify the dialog boxÕs Appearance-compliant features.

enum {
kDialogFlagsUseThemeBackground = (1 << 0),
kDialogFlagsUseControlHierarchy = (1 << 1),
kDialogFlagsHandleMovableModal = (1 << 2),
kDialogFlagsUseThemeControls = (1 << 3)

};

Constant descriptions

kDialogFlagsUseThemeBackground
If this bit (bit 0) is set, the Dialog Manager sets the dialog 
boxÕs background color or pattern.

kDialogFlagsUseControlHierarchy
If this bit (bit 1) is set, the Dialog Manager creates a root 
control in the dialog box and establishes an embedding 
hierarchy. Any dialog items become controls once the 
embedding hierarchy is established.

kDialogFlagsHandleMovableModal
If this bit (bit 2) is set, and the dialog box is a movable 
modal (specify the kWindowMovableModalDialogProc 
window deÞnition ID), the Dialog Manager handles 
movable modal behavior such as dragging a dialog box by 
its title bar or switching out of the application by clicking 
in another one.

kDialogFlagsUseThemeControls
If this bit (bit 3) is set, the Dialog Manager creates 
Appearance-compliant controls in the dialog box directly. 
Otherwise, push buttons, checkboxes, and radio buttons 
will be displayed in their pre-Appearance forms when 
systemwide Appearance is off.
244 Dialog Manager Types and Constants

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
Alert Feature Flag Constants 4
NEW WITH THE APPEARANCE MANAGER 4

You can set the following bits in the alert ßags Þeld of the extended alert 
resource (page 253) to specify the alert boxÕs Appearance-compliant features.

enum {
kAlertFlagsUseThemeBackground = (1 << 0),
kAlertFlagsUseControlHierarchy = (1 << 1),
kAlertFlagsAlertIsMovable = (1 << 2),
kAlertFlagsUseThemeControls = (1 << 3)

};

kAlertFlagsUseThemeBackground
If this bit (bit 0) is set, the Dialog Manager sets the alert 
boxÕs background color or pattern.

kAlertFlagsUseControlHierarchy
If this bit (bit 1) is set, the Dialog Manager creates a root 
control in the alert box and establishes an embedding 
hierarchy. Any alert items become controls once the 
embedding hierarchy is established.

kAlertFlagsAlertIsMovable
If this bit (bit 2) is set, the alert box is movable modal. The 
Dialog Manager handles movable modal behavior such as 
dragging the alert box by its title bar or switching out of 
the application by clicking in another one.

kAlertFlagsUseThemeControls
If this bit (bit 3) is set, the Dialog Manager creates 
Appearance-compliant controls in your alert box. 
Otherwise, push buttons, checkboxes, and radio buttons 
will be displayed in their pre-Appearance forms when 
systemwide Appearance is off. 
Dialog Manager Types and Constants 245
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
The Standard Alert Structure 4
NEW WITH THE APPEARANCE MANAGER 4

A standard alert structure of type AlertStdAlertParamRec can be used when 
you call the function StandardAlert (page 261) to customize the alert box.

struct AlertStdAlertParamRec {
Boolean movable;
Boolean helpButton;
ModalFilterUPP filterProc;  
StringPtr defaultText;
StringPtr cancelText;
StringPtr otherText;
SInt16 defaultButton;
SInt16 cancelButton;
UInt16 position;

};
typedef struct AlertStdAlertParamRec AlertStdAlertParamRec;
typedef AlertStdAlertParamRec *AlertStdAlertParamPtr;

Field descriptions
movable A Boolean value indicating whether or not the alert box is 

movable.
helpButton A Boolean value indicating whether or not the alert 

includes a Help button.
filterProc If the value in the movable Þeld is true (alert is movable), 

then specify in this parameter a universal procedure 
pointer to an application-deÞned Þlter function that 
responds to events not handled by ModalDialog (page 281). 
If you do, all events will get routed to your 
application-deÞned event Þlter function for handling, even 
when your alert box window is in the background. If you 
set this parameter to nil, the Dialog Manager uses the 
standard event Þlter function.

defaultText Text for button in OK position; see ÒAlert Default Text 
ConstantsÓ (page 248). The button automatically sizes and 
positions itself in the alert box. To specify that the default 
button names should be used, pass -1. To indicate that no 
button should be displayed, pass nil.
246 Dialog Manager Types and Constants

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
cancelText Text for button in Cancel position; see ÒAlert Default Text 
ConstantsÓ (page 248). The button automatically sizes and 
positions itself in the alert box. To specify that the default 
button names should be used, pass -1. To indicate that no 
button should be displayed, pass nil.

otherText Text for button in leftmost position; see ÒAlert Default Text 
ConstantsÓ (page 248). The button automatically sizes and 
positions itself in the alert box. To specify that the default 
button names should be used, pass -1. To indicate that no 
button should be displayed, pass nil.

defaultButton SpeciÞes which button acts as the default button; see 
ÒAlert Button ConstantsÓ (page 247).

cancelButton SpeciÞes which button acts as the Cancel button (can be 0); 
see ÒAlert Button ConstantsÓ (page 247).

position The alert box position, as deÞned by a window positioning 
constant; see Macintosh Toolbox Essentials (page 4-126) for a 
discussion of these constants. In this structure, the constant 
kWindowDefaultPosition is equivalent to the constant 
kWindowAlertPositionParentWindowScreen.

Alert Button Constants 4
NEW WITH THE APPEARANCE MANAGER 4

You can use these constants in the defaultButton and cancelButton Þelds in the 
standard alert structure (page 246) to specify which buttons act as the default 
and Cancel buttons in the standard alert structure. These constants are also 
returned in the itemHit parameter of StandardAlert (page 261). 

enum {
kAlertStdAlertOKButton = 1,
kAlertStdAlertCancelButton = 2,
kAlertStdAlertOtherButton = 3,
kAlertStdAlertHelpButton = 4

};

Constant descriptions

kAlertStdAlertOKButton
The OK button. The default text for this button is ÒOKÓ.
Dialog Manager Types and Constants 247
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
kAlertStdAlertCancelButton
The Cancel button (optional). The default text for this 
button is ÒCancelÓ.

kAlertStdAlertOtherButton
A third button (optional). The default text for this button is 
ÒDonÕt SaveÓ.

kAlertStdAlertHelpButton
The Help button (optional). 

Alert Default Text Constants 4
NEW WITH THE APPEARANCE MANAGER 4

You can use these constants in the defaultText, cancelText, and otherText 
Þelds of the standard alert structure (page 246) to specify the default text for 
the OK, Cancel, and DonÕt Save buttons.

enum {
kAlertDefaultOKText = -1,  
kAlertDefaultCancelText = -1,  
kAlertDefaultOtherText = -1  

};

Constant descriptions

kAlertDefaultOKText
The default text for the default (right) button is ÒOKÓ on 
an English system. The text will vary depending upon the 
localization of the userÕs system. Use this constant in the 
defaultText field of the standard alert structure (page 246).

kAlertDefaultCancelText
The default text for the Cancel (middle) button is ÒCancelÓ 
on an English system. The text will vary depending upon 
the localization of your system. Use this constant in the 
cancelText field of the standard alert structure (page 246).

kAlertDefaultOtherText
The default text for the third (leftmost) button is ÒDonÕt 
SaveÓ for an English system. The text will vary depending 
upon the localization of the userÕs system. Use this 
248 Dialog Manager Types and Constants

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
constant in the otherText Þeld of the standard alert 
structure.

Result Codes 4
The most common result codes that can be returned by Dialog Manager 
functions are listed below. 

Dialog Manager Resources 4

The Dialog Resource 4
CHANGED WITH THE APPEARANCE MANAGER 4

A dialog resource is a resource of type 'DLOG'. All dialog resources can be 
marked purgeable, and they must have resource ID numbers greater than 127. 

You can use an extended dialog resource (page 252) with the same resource ID 
as your dialog resource to provide additional features for your dialog box, 
including movable modal behavior, Appearance-compliant backgrounds and 
controls, and embedding hierarchies. To specify the items in an dialog box, you 
must provide an item list resource. Use the GetNewDialog (page 268) function to 
create the dialog box deÞned in the dialog resource and extended dialog 
resource.

Figure 4-1 shows the format of a compiled dialog resource.

noErr 0 No error
paramErr Ð50 Error in parameter list
memFullErr Ð108 Not enough memory
resNotFound Ð192 Unable to read resource
hmHelpManagerNotInited Ð855 Help Manager not set up 
Dialog Manager Resources 249
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
Figure 4-1 Structure of a compiled dialog ('DLOG') resource

The compiled version of a dialog resource contains the following elements:

■ Rectangle. This determines the dialog boxÕs dimensions and, possibly, its 
position. (The last element in the dialog resource usually speciÞes a position 
for the dialog box.)

■ Window deÞnition ID. See ÒWindow DeÞnition IDsÓ (page 203) for 
descriptions of the ID constants that can be used in this Þeld to specify 
Appearance-compliant modal, movable modal, or modeless dialog boxes. 

■ Visibility. If this is set to a value of 1 (as speciÞed by the visible constant in 
the Rez input Þle), the Dialog Manager displays this dialog box as soon as 
you call the GetNewDialog function (page 268). If this is set to a value of 0 (as 
speciÞed by the invisible constant in the Rez input Þle), the Dialog 
Manager does not display this dialog box until you call the Window 
Manager function ShowWindow.

'DLOG' resource type

Dialog box position  

Alignment byte

Rectangle

Window definition ID

Visibility 
Reserved

Close box specification
Reserved     

Reference constant

Item list ID

Window title 

8

2

1
1
1
1

4

2

1 to 256

2

0 or 1

Bytes
250 Dialog Manager Resources

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
■ Close box speciÞcation. This speciÞes whether to draw a close box. 
Normally, this is set to a value of 1 (as speciÞed by the goAway constant in the 
Rez input Þle) only for a modeless dialog box to specify a close box in its 
title bar. Otherwise, this is set to a value of 0 (as speciÞed by the noGoAway 
constant in the Rez input Þle).

■ Reference constant. This contains any value that an application stores here. 
For example, an application can store a number here that represents a dialog 
box type, in order to distinguish between a number of similar dialog boxes. 
As this information is stored in a window structure within the dialog 
structure, you can use the Window Manager function SetWRefCon at any time 
to change this value in the dialog structure for a dialog box, and you can use 
the Window Manager function GetWRefCon to determine its current value.

■ Item list resource ID. This ID speciÞes the item list resource and the dialog 
font table resource that will be used with this dialog box.

■ Window title. A string displayed in the dialog boxÕs title bar only when the 
dialog box is modeless or movable modal.

■ Alignment byte. This is an extra byte added if necessary to make the 
previous Pascal string end on a word boundary.

■ Dialog box position. A constant specifying the position of the dialog box on 
the screen; see the discussion of window positioning constants in Macintosh 
Toolbox Essentials (page 4-126). If your application positions dialog boxes on 
its own, you shouldnÕt use these constants, because they may cause conßicts 
with the Dialog Manager.

■ If 0x0000 appears here (as speciÞed by the kWindowDefaultPosition 
constant in the Rez input Þle), the Dialog Manager positions this dialog 
box according to the global coordinates speciÞed in the rectangle element 
of this resource. 

■ If 0xB00A appears here (as speciÞed by the 
kWindowAlertPositionParentWindow constant in the Rez input file), the 
Dialog Manager positions the dialog box over the frontmost window so 
that the windowÕs title bar appears. 

■ If 0x300A appears here (as speciÞed by the 
kWindowAlertPositionMainScreen constant in the Rez input file), the Dialog 
Manager centers the dialog box near the top of the main screen.

■ If 0x700A appears here (as speciÞed in the Rez input Þle by the 
kWindowAlertPositionParentWindowScreen constant), the Dialog Manager 
positions the dialog box on the screen where the user is currently working.
Dialog Manager Resources 251
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
The Extended Dialog Resource 4
NEW WITH THE APPEARANCE MANAGER 4

Use an extended dialog resource with the same resource ID as your dialog 
resource to provide additional features for your dialog box, including movable 
modal behavior, theme-compliant backgrounds and controls, and embedding 
hierarchies. An extended dialog resource is a resource of type 'dlgx'. All 
extended dialog resources can be marked purgeable, and they must have the 
same resource ID and be located in the same Þle as their corresponding dialog 
resource. Use the function GetNewDialog (page 268) to create the dialog box 
deÞned in the dialog resource and extended dialog resource.

Figure 4-2 shows the format of a compiled extended dialog resource. 

Figure 4-2 Structure of a compiled extended dialog ('dlgx') resource

The compiled version of an extended dialog resource contains the following 
elements:

■ Version number. An integer specifying the version of the format of the 
resource.

■ Dialog ßags. Constants that specify the dialog boxÕs Appearance features; 
see ÒDialog Feature Flag ConstantsÓ (page 244).

Version number

Dialog flags

'dlgx' resource type 

2

4

Bytes
252 Dialog Manager Resources

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
The Extended Alert Resource 4
NEW WITH THE APPEARANCE MANAGER 4

You can use an extended alert resource with the same resource ID as your alert 
resource to provide additional features for your alert box, including movable 
modal behavior, Appearance-compliant backgrounds and controls, and 
embedding hierarchies. The resource also gives you the option of creating a 
title for movable alert boxes.

Note
Alert titles are only available with Appearance version 
1.0.1 and later.

An extended alert resource is a resource of type 'alrx'. All extended alert 
resources can be marked purgeable, and they must have the same resource ID 
and resource Þle as their corresponding alert resource. Figure 4-3 shows the 
structure of a compiled extended alert resource.

Figure 4-3 Structure of a compiled extended alert ('alrx') resource

The compiled version of an extended alert resource contains the following 
elements:

Version number

Alert flags

Reference constant

Window type

Reserved

Title (movable alert only)

'alrx' resource type 

2

4

4

1

1

1 to 256

Bytes
Dialog Manager Resources 253
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
■ Version number. An integer specifying the version of the format of the 
resource.

■ Alert ßags. Constants specifying the alert boxÕs Appearance features; see 
ÒAlert Feature Flag ConstantsÓ (page 245).

■ Reference constant. This contains any value that an application wishes to 
store here. For example, an application can store a number here that 
represents an alert box type, in order to distinguish between a number of 
similar alert boxes. As this information is stored in a window structure 
within the dialog structure, you can use GetWRefCon to determine this value.

■ Window type. If this Boolean is set to 1 (true), the Dialog Manager speciÞes 
an Appearance-compliant window deÞnition ID constant directly when 
drawing the alert box window.

■ Reserved. Set to 0.

■ Window title. A string representing the title of a movable alert box.

The Dialog Control Font Table Resource 4
NEW WITH THE APPEARANCE MANAGER 4

Your application can specify the initial font settings for all controls in a dialog 
box or alert box by creating a dialog control font table resource of type 'dftb' 
with the same resource ID as the item list resource ('DITL'). When an 
embedding hierarchy is established in a dialog box, the dialog control font 
table resource should be used instead of the item color table ('ictb') resource, 
since edit and static text dialog items become controls in an embedding 
hierarchy.

The control font style information in the dialog control font table resource is 
automatically read in (along with the 'DITL') by the Dialog Manager. When 
the 'dftb' resource is read in, the control font styles are set, and the resource is 
marked purgeable. Figure 4-4 shows the format of a compiled dialog control 
font table resource. 
254 Dialog Manager Resources

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
Figure 4-4 Structure of a compiled dialog control font table ('dftb') resource

A compiled version of a 'dftb' resource contains the following elements:

■ Version number. An integer specifying the version of the format of the 
resource.

■ Number of entries. An integer that speciÞes the number of entries in the 
resource. Each entry is a dialog control font structure. 

■ Dialog control font entries. A series of dialog control font structures, each of 
which consist of type, dialog font ßags, the font ID, font size, font style, text 
mode, justiÞcation, text color, background color, and font name.

Figure 4-5 shows the format of a compiled dialog control font entry in a 'dftb' 
resource. 

Number of entries

First dialog control font entry

Last dialog control font entry

'dftb' resource type 

2

Version number 2

Variable

Variable

Bytes
Dialog Manager Resources 255
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
Figure 4-5 Structure of dialog control font entry in a 'dftb' resource

Each entry in a 'dftb' resource corresponds to a dialog item and contains the 
following elements:

■ Type. An integer that speciÞes whether there is font information for the 
dialog or alert item in the 'DITL'. If you specify a value of 0, there is no font 
information for the item in the corresponding 'DITL', and no data follows. If 
you specify a value of 1, there is font information for the item, and the rest of 
the structure is read. You can cause entries to be skipped by setting this 
value to 0. 

■ Dialog font ßags. You can use one or more of these ßag constants to specify 
which other Þelds in the dialog font table should be used; see ÒDialog Font 
Flag ConstantsÓ (page 258).

Dialog font flags

Type

Font size

Font ID

Font style

Text mode

Justification

Text color

Background color

Dialog control font entry 

2

2

2

2

2

2

2

6

6

Font name 1 to 256

Bytes
256 Dialog Manager Resources

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
■ Font ID. If the kDialogFontUseFontMask bit is set to 1, then this element will 
contain an integer indicating the ID of the font family to use. See ÒMeta Font 
ConstantsÓ (page 103) for more information about the constants that you can 
specify. If this bit is set to 0, then the system default font is used.

■ Font size. If a constant representing the system font, small system font, or 
small emphasized system font is speciÞed in the Font ID Þeld, this Þeld is 
ignored. If the kDialogFontUseSizeMask bit is set, this Þeld should contain an 
integer representing the point size of the text. If the kDialogFontAddSizeMask 
bit is set, this value will contain the size to add to the current point size of 
the text.

■ Style. If the kDialogFontUseFaceMask bit is set, then this element should 
contain an integer specifying the text style to describe which styles to apply 
to the text. You can use one or more of the following style data type mask 
constants to specify font style: 

■ Text mode. If the kDialogFontUseModeMask bit is set, then this element should 
contain an integer specifying how characters are drawn. See Inside 
Macintosh: Imaging With QuickDraw for a discussion of source transfer modes.

■ JustiÞcation. If the kDialogFontUseJustMask bit is set, then this element 
should contain an integer specifying text justiÞcation (left, right, centered, or 
system-justiÞed). 

■ Text color. If the kDialogUseFontForeColorMask bit is set, then this element 
should contain a color to use when drawing the text. 

■ Background color. If the kDialogFontUseBackColorMask bit is set, then this 
element should contain a color to use when drawing the background behind 
the text. In certain text modes, background color is ignored. 

■ Font name. If the kDialogFontUseFontNameMask bit is set, then this element 
should contain a Pascal string representing the font name to be used. This 
overrides the font ID.

Bit 
value Style
0x00 Normal
0x01 Bold
0x02 Italic
0x04 Underline
0x08 Outline
0x10 Shadow
0x20 Condense
0x40 Extend
Dialog Manager Resources 257
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
Dialog Font Flag Constants 4
NEW WITH THE APPEARANCE MANAGER 4

You can set the following bits in the dialog font table resource (page 254) to 
specify Þelds in the dialog font table that should be used.

enum {
kDialogFontNoFontStyle = 0,
kDialogFontUseFontMask = 0x0001,
kDialogFontUseFaceMask = 0x0002,
kDialogFontUseSizeMask = 0x0004,
kDialogFontUseForeColorMask = 0x0008,
kDialogFontUseBackColorMask = 0x0010,
kDialogFontUseModeMask = 0x0020,
kDialogFontUseJustMask = 0x0040,
kDialogFontUseAllMask = 0x00FF,
kDialogFontAddFontSizeMask = 0x0100,
kDialogFontUseFontNameMask = 0x0200

};

Constant descriptions

kDialogFontNoFontStyle
If the kDialogFontNoFontStyle constant is used, no font 
style information is applied. 

kDialogFontUseFontMask
If the kDialogFontUseFontMask ßag (bit 0) is set, the font ID 
speciÞed in the Font ID Þeld of the dialog font table is 
applied. 

kDialogFontUseFaceMask
If the kDialogFontUseFaceMask ßag (bit 1) is set, the font 
style speciÞed in the Style Þeld of the dialog font table is 
applied. 

kDialogFontUseSizeMask
If the kDialogFontUseSizeMask ßag (bit 2) is set, the font 
size speciÞed in the Font Size Þeld of the dialog font table 
is applied. 

kDialogFontUseForeColorMask
If the kDialogFontUseForeColorMask ßag (bit 3) is set, the 
258 Dialog Manager Resources

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
text color speciÞed in the Text Color Þeld of the dialog font 
table is applied. This ßag only applies to static text controls.

kDialogFontUseBackColorMask
If the kDialogFontUseBackColorMask ßag (bit 4) is set, the 
background color speciÞed in the Background Color Þeld 
of the dialog font table is applied. This ßag only applies to 
static text controls. 

kDialogFontUseModeMask
If the kDialogFontUseModeMask ßag (bit 5) is set, the text 
mode speciÞed in the Text Mode Þeld of the dialog font 
table is applied. 

kDialogFontUseJustMask
If the kDialogFontUseJustMask ßag (bit 6) is set, the text 
justiÞcation speciÞed in the JustiÞcation Þeld of the dialog 
font table is applied. 

kDialogFontUseAllMask
If the kDialogFontUseAllMask constant is used, all ßags in 
this mask will be set except kDialogFontAddFontSizeMask 
and kDialogFontUseFontNameMask.

kDialogFontAddFontSizeMask
If the kDialogFontAddFontSizeMask ßag (bit 8) is set, the 
Dialog Manager will add a speciÞed font size to the 
existing font size indicated in the Font Size Þeld of the 
dialog font table resource. 

kDialogFontUseFontNameMask
If the kDialogFontUseFontNameMask ßag (bit 9) is set, the 
Dialog Manager will use the string in the Font Name Þeld 
for the font name instead of a font ID.

The Dialog Color Table Resource 4
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 4

When the Appearance Manager is available and the 
kDialogFlagsUseThemeBackground feature bit of the extended dialog resource 
(page 249) is set, the entire dialog color table resource ('dctb') is ignored. If the 
Appearance Manager is available, but the above is not true, the wContent Þeld 
of the 'dctb' resource is used, but all other Þelds are still ignored
Dialog Manager Resources 259
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
The Alert Color Table Resource 4
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 4

When the Appearance Manager is available and the 
kAlertFlagsUseThemeBackground feature bit of the extended alert resource is set, 
the entire alert color table resource ('actb') is ignored. If the Appearance 
Manager is available, but the kAlertFlagsUseThemeBackground bit is not set, the 
wContent field of the 'actb' resource is used, but all other fields are still ignored. 

The Item Color Table Resource 4
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 4

When the Appearance Manager is available and an embedding hierarchy is 
established in the dialog box, any item color table ('ictb') resource 
information is ignored. The dialog font table ('dftb') resource should be used 
instead of the item color table resource to specify the font settings for all dialog 
items in an embedding hierarchy. 

If an embedding hierarchy is not established, the item color table resource can 
be used to set the font information for any editable text and static text dialog 
items, but the dialog font table resource will still be used for any controls in the 
dialog box. 
260 Dialog Manager Resources

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
Dialog Manager Functions 4

Creating Alerts 4

StandardAlert 4
NEW WITH THE APPEARANCE MANAGER 4

Displays a standard alert box. 

pascal OSErr StandardAlert (
AlertType inAlertType,
StringPtr inError,
StringPtr inExplanation,
AlertStdAlertParamPtr inAlertParam,
SInt16 *outItemHit);

inAlertType A constant indicating the type of alert box you wish to create; 
see ÒAlert Type ConstantsÓ (page 243).

inError A pointer to a Pascal string containing the primary error text 
you wish to display.

inExplanation A pointer to a Pascal string containing the secondary text you 
wish to display; secondary text is displayed in the small system 
font. Pass nil to indicate no secondary text.

inAlertParam A pointer to the standard alert structure; see ÒThe Standard 
Alert StructureÓ (page 246). Pass nil to specify that you do not 
wish to your alert box to incorporate any of the features that the 
standard alert structure provides. 

outItemHit A pointer to an integer that on output will contain a value 
indicating the alert button pressed; see ÒAlert Button 
ConstantsÓ (page 247).

function result A result code; see ÒResult CodesÓ (page 249).
Dialog Manager Functions 261
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
DISCUSSION

The StandardAlert function displays an alert box based on the values you pass 
it. You can pass the error text you wish displayed in the error and explanation 
parameters, and customize the alert button text by Þlling in the appropriate 
Þelds of the standard alert structure passed in the inAlertParam parameter.

StandardAlert automatically resizes the height of a dialog box to fit all static 
text. It ignores alert stages and therefore provides no corresponding alert 
sounds.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

Alert 4
CHANGED WITH THE APPEARANCE MANAGER 4

Displays an alert box (or, if appropriate for the alert stage, plays an alert sound 
instead of or in addition to displaying the alert box). 

pascal short Alert (short alertID,
ModalFilterUPP modalFilter);

alertID The resource ID of an alert resource and extended alert 
resource. If the alert resource is missing, the Dialog Manager 
returns to your application without creating the requested alert.

modalFilter A universal procedure pointer for a Þlter function that responds 
to events not handled by the ModalDialog (page 281) function. If 
you set this parameter to nil, the Dialog Manager uses the 
standard event Þlter function. 

function result  If no alert box is to be drawn at the current alert stage or the 
'ALRT' resource is not found, Alert returns Ð1; otherwise, it 
creates and displays the alert box and returns the item number 
of the control selected by the user; see ÒAlert Button ConstantsÓ 
(page 247).
262 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
DISCUSSION

The Alert function creates the alert deÞned in the speciÞed alert resource and 
its corresponding extended alert resource. The function calls the current alert 
sound function and passes it the sound number speciÞed in the alert resource 
for the current alert stage. If no alert box is to be drawn at this stage, Alert 
returns Ð1; otherwise, it uses the NewDialog function to create and display the 
alert box. The default system window colors are used unless your application 
provides an alert color table resource with the same resource ID as the alert 
resource. The Alert function uses the ModalDialog (page 281) function to get 
and handle most events for you.

The Alert function does not display a default icon in the upper-left corner of 
the alert box; you can leave this area blank, or you can specify your own icon in 
the alertÕs item list resource, which in turn is speciÞed in the alert resource.

The Alert function continues calling ModalDialog until the user selects an 
enabled control (typically a button), at which time the Alert function removes 
the alert box from the screen and returns the item number of the selected 
control. Your application then responds as appropriate when the user clicks 
this item.

IMPORTANT

Your application should never draw its own default rings. 
Prior to Mac OS 8, the Alert function would only redraw 
the default button ring once and never redraw it on an 
update event. However, when Appearance is available, 
default rings do redraw when you call Alert.

SPECIAL CONSIDERATIONS

If you need to display an alert box while your application is running in the 
background or is otherwise invisible to the user, call AEInteractWithUser; see 
Inside Macintosh: Interapplication Communication. 

The Dialog Manager uses the system alert sound as the error sound unless you 
change it by calling the ErrorSound function .

SEE ALSO

NoteAlert (page 265).

CautionAlert (page 267).
Dialog Manager Functions 263
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
StopAlert (page 264). 

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE 

Alert only reads in the resource ID of an alert resource, not an extended alert 
resource.

StopAlert 4
CHANGED WITH THE APPEARANCE MANAGER 4

Displays an alert box with a stop icon in its upper-left corner (or, if appropriate 
for the alert stage, plays an alert sound instead of or in addition to displaying 
the alert box). 

pascal short StopAlert (short alertID, ModalFilterUPP modalFilter);

alertID The resource ID of an alert resource and extended alert 
resource. The resource ID of both types of resources must be 
identical. If the alert resource is missing, the Dialog Manager 
returns to your application without creating the requested alert. 

modalFilter A universal procedure pointer for a Þlter function that responds 
to events not handled by the ModalDialog (page 281) function. If 
you set this parameter to nil, the Dialog Manager uses the 
standard event Þlter function. 

function result If no stop alert box is to be drawn at the current alert stage, 
StopAlert returns Ð1; otherwise, it creates and displays the alert 
box and returns the item number of the control selected by the 
user; see ÒAlert Button ConstantsÓ (page 247).

DISCUSSION

The StopAlert function is the same as the Alert function (page 262) except that, 
before drawing the items in the alert box, StopAlert draws the stop icon in the 
upper-left corner. The stop icon has resource ID 0, which you can also specify 
with the constant stopIcon . By default, the Dialog Manager uses the standard 
stop icon from the System Þle. You can change this icon by providing your own 
'ICON' resource with resource ID 0.
264 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
Use a stop alert to inform the user that a problem or situation is so serious that 
the action cannot be completed. Stop alerts typically have only a single button 
(OK), because all the user can do is acknowledge that the action cannot be 
completed.

IMPORTANT

Your application should never draw its own default rings 
or alert icons. Prior to Mac OS 8, the StopAlert function 
would only redraw the alert icon and default button ring 
once and never redraw them on an update event. 
However, when Appearance is available, alert icons and 
default rings do redraw when you call StopAlert.

SEE ALSO

NoteAlert (page 265).

CautionAlert (page 267).

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE 

StopAlert only reads in the resource ID of an alert resource, not an extended 
alert resource.

NoteAlert 4
CHANGED WITH THE APPEARANCE MANAGER 4

Displays an alert box with a note icon in its upper-left corner (or, if appropriate 
for the alert stage, plays an alert sound instead of or in addition to displaying 
the alert box). 

pascal short NoteAlert (
short alertID,
ModalFilterUPP modalFilter);

alertID The resource ID of an alert resource and extended alert 
resource. If the alert resource is missing, the Dialog Manager 
returns to your application without creating the requested alert.
Dialog Manager Functions 265
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
modalFilter
A universal procedure pointer for a Þlter function that responds 
to events not handled by the ModalDialog (page 281) function. If 
you set this parameter to nil, the Dialog Manager uses the 
standard event Þlter function.

function result If no alert box is to be drawn at the current alert stage, 
NoteAlert returns Ð1; otherwise, it creates and displays the alert 
box and returns the item number of the control selected by the 
user; see ÒAlert Button ConstantsÓ (page 247).

DISCUSSION

The NoteAlert function is the same as the Alert (page 262) function except that, 
before drawing the items in the alert box, NoteAlert draws the note icon in the 
upper-left corner. The note icon has resource ID 1, which you can also specify 
with the constant noteIcon. By default, the Dialog Manager uses the standard 
note icon from the System Þle. You can change this icon by providing your own 
'ICON' resource with resource ID 1.

Use a note alert to inform users of a minor mistake that wonÕt have any 
disastrous consequences if left as is. Usually this type of alert simply offers 
information, and the user responds by clicking an OK button. Occasionally, a 
note alert may ask a simple question and provide a choice of responses.

IMPORTANT

Your application should never draw its own default rings 
or alert icons. Prior to Mac OS 8, the NoteAlert function 
would only redraw the alert icon and default button ring 
once and never redraw them on an update event. 
However, when Appearance is available, alert icons and 
default rings do redraw when you call NoteAlert.

SEE ALSO

CautionAlert (page 267).

StopAlert (page 264). 
266 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE 

NoteAlert only reads in the resource ID of an alert resource, not an extended 
alert resource.

CautionAlert 4
CHANGED WITH THE APPEARANCE MANAGER 4

Displays an alert box with a caution icon in its upper-left corner (or, if 
appropriate for the alert stage, to play an alert sound instead of or in addition 
to displaying the alert box). 

pascal short CautionAlert (
short alertID,
ModalFilterUPP modalFilter);

alertID The resource ID of an alert resource and extended alert 
resource. If the alert resource is missing, the Dialog Manager 
returns to your application without creating the requested alert.

modalFilter
A universal procedure pointer for a Þlter function that responds 
to events not handled by the ModalDialog function (page 281). If 
you set this parameter to nil, the Dialog Manager uses the 
standard event Þlter function.

function result If no alert box is to be drawn at the current alert stage, 
CautionAlert returns Ð1; otherwise, it uses NewDialog to create 
and display the alert box and returns the item hit; see ÒAlert 
Button ConstantsÓ (page 247).

DISCUSSION

The CautionAlert function is the same as the Alert (page 262) function except 
that, before drawing the items in the alert box, CautionAlert draws the caution 
icon in the upper-left corner. The caution icon has resource ID 2, which you can 
also specify with the constant kCautionIcon. By default, the Dialog Manager 
uses the standard caution icon from the System Þle. You can change this icon 
by providing your own 'ICON' resource with resource ID 2.
Dialog Manager Functions 267
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
Use a caution alert to alert the user of an operation that may have undesirable 
results if itÕs allowed to continue. Give the user the choice of continuing the 
action (by clicking an OK button) or stopping it (by clicking a Cancel button).

IMPORTANT

Your application should never draw its own default rings 
or alert icons. Prior to Mac OS 8, the CautionAlert function 
would only redraw the alert icon and default button ring 
once and never redraw them on an update event. 
However, when Appearance is available, alert icons and 
default rings do redraw when you call CautionAlert.

SEE ALSO

NoteAlert (page 265).

StopAlert (page 264). 

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE 

CautionAlert only reads in the resource ID of an alert resource, not an extended 
alert resource.

Creating Dialog Boxes 4

GetNewDialog 4
CHANGED WITH THE APPEARANCE MANAGER 4

Creates a dialog box from a resource-based description. 

pascal DialogPtr GetNewDialog (
short dialogID,
void *dStorage,
WindowPtr behind);
268 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
dialogID The resource ID of a dialog resource and an extended dialog 
resource. The resource IDs for both resources must be identical. 
If the dialog resource is missing, the Dialog Manager returns to 
your application without creating the requested dialog box.

dStorage A pointer to the memory for the dialog structure. If you set this 
parameter to nil, the Dialog Manager automatically allocates a 
nonrelocatable block in your application heap.

behind A pointer to the window behind which the dialog box is to be 
placed on the desktop. Set this parameter to the window 
pointer (WindowPtr)-1L to bring the dialog box in front of all 
other windows. 

function result Returns a pointer to a dialog box. If none was created, returns 
nil.

DISCUSSION

The GetNewDialog function creates a dialog structure from information in a 
dialog resource and an extended dialog resource (if it exists) and returns a 
pointer to the dialog structure. You can use this pointer with Window Manager 
or QuickDraw functions to manipulate the dialog box. If the dialog resource 
speciÞes that the dialog box should be visible, the dialog box is displayed. If 
the dialog resource speciÞes that the dialog box should initially be invisible, 
use the Window Manager function ShowWindow to display the dialog box.

The dialog resource contains the resource ID of the dialog boxÕs item list 
('DITL') resource and its dialog font table ('dftb') resource. After calling the 
Resource Manager to read these resources into memory (if they are not already 
in memory), GetNewDialog makes a copy of the 'DITL' resource and uses that 
copy; thus you may have several dialog boxes with identical items.

If you supply a dialog color table ('dctb') resource with the same resource ID 
as the dialog resource, GetNewDialog uses NewColorDialog and returns a pointer 
to a color graphics port. If no dialog color table resource is present, 
GetNewDialog uses NewDialog to return a pointer to a black-and-white graphics 
port, although system software draws the window frame using the systemÕs 
default colors. However, if the Appearance Manager is available and the 
kDialogFlagsUseThemeBackground feature bit of the extended dialog resource is 
set, then the 'dctb' resource is ignored and a color graphics port is created.
Dialog Manager Functions 269
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
SPECIAL CONSIDERATIONS

The GetNewDialog function doesnÕt release the memory occupied by the 
resources. Therefore, your application should mark all resources used for a 
dialog box as purgeable or you should release the resources yourself.

If either the dialog resource or the item list resource canÕt be read, the function 
result is nil; your application should test to ensure that nil is not returned 
before performing any more operations with the dialog box or its items.

As with all other windows, dialogs are created with an update region equal to 
their port rectangle. However, if the dialogÕs 'DLOG' resource speciÞes that the 
dialog be made visible upon creation, the Dialog Manager draws the controls 
immediately and calls ValidRgn for each of their bounding rectangles. Other 
items are not drawn until the Þrst update event for the dialog box is serviced.

If you need to display an alert box while your application is running in the 
background or is otherwise invisible to the user, call AEInteractWithUser; see 
Inside Macintosh: Interapplication Communication. 

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE 

GetNewDialog does not read in the resource IDs of extended dialog resources or 
dialog font table resources.

NewFeaturesDialog 4
NEW WITH THE APPEARANCE MANAGER 4

Creates a dialog box from information passed in memory.

pascal DialogPtr NewFeaturesDialog (
void *inStorage,
const Rect *inBoundsRect,
ConstStr255Param inTitle,
Boolean inIsVisible,
SInt16 inProcID,
WindowPtr inBehind,
Boolean inGoAwayFlag,
SInt32 inRefCon,
Handle inItemListHandle,
UInt32 inFlags);
270 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
inStorage A pointer to the memory for the dialog structure. If you set this 
parameter to nil, the Dialog Manager automatically allocates a 
nonrelocatable block in your application heap.

inBoundsRect A pointer to a rectangle, given in global coordinates, that 
determines the size and position of the dialog box; these 
coordinates specify the upper-left and lower-right corners of the 
dialog box.

inTitle A pointer to a text string used for the title of a modeless or 
movable modal dialog box. You can specify an empty string 
(not nil) for a title bar that contains no text.

inIsVisible A ßag that speciÞes whether the dialog box should be drawn on 
the screen immediately. If you set this parameter to false, the 
dialog box is not drawn until your application uses the Window 
Manager function ShowWindow, described in ÒDisplaying 
WindowsÓ (page 227), to display it.

inProcID The window deÞnition ID for the type of dialog box, speciÞed 
with constants deÞned by the Window Manager. Use the 
kWindowModalDialogProc constant to specify modal dialog boxes, 
the kWindowDocumentProc constant to specify modeless dialog 
boxes, and the kWindowMovableModalDialogProc constant to 
specify movable modal dialog boxes.

inBehind A pointer to the window behind which the dialog box is to be 
placed on the desktop. Set this parameter to the window 
pointer (WindowPtr)-1L to bring the dialog box in front of all 
other windows. 

inGoAwayFlag A Boolean value. If true, specifies that an active modeless 
dialog box has a close box in its title bar.

inRefCon A value that the Dialog Manager uses to set the refCon Þeld of 
the dialog boxÕs window structure. Your application may store 
any value here for any purpose. For example, your application 
can store a number that represents a dialog box type, or it can 
store a handle to a structure that maintains state information 
about the dialog box. You can use the Window Manager 
function SetWRefCon at any time to change this value in the 
dialog structure for a dialog box, and you can use the 
GetWRefCon function to determine its current value.
Dialog Manager Functions 271
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
inItemListHandle
A handle to an item list resource for the dialog box. You can get 
the handle by calling the Resource Manager function 
GetResource to read the item list resource into memory.

inFlags An unsigned 32-bit mask specifying the dialog boxÕs 
Appearance-compliant feature ßags; see ÒDialog Feature Flag 
ConstantsÓ (page 244). To establish an embedding hierarchy in 
a dialog box, pass kDialogFlagsUseControlHierarchy in the 
inFlags parameter.

function result Returns a pointer to the new dialog box. If it doesnÕt create a 
new dialog box, returns nil. 

DISCUSSION

The NewFeaturesDialog function creates a dialog box without using 'DLOG' or 
'dlgx' resources. Although the inItemListHandle parameter specifies an item 
list ('DITL') resource for the dialog box, the corresponding dialog font table 
('dftb') resource is not automatically accessed. You must explicitly set the 
dialog boxÕs control font style(s) individually.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

Manipulating Items in Dialog and Alert Boxes 4

GetDialogItemAsControl 4
NEW WITH THE APPEARANCE MANAGER 4

Returns the control handle for a dialog item in an embedding hierarchy. 

pascal OSErr GetDialogItemAsControl (
DialogPtr inDialog,
SInt16 inItemNo,
ControlHandle *outControl);
272 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
inDialog A pointer to a dialog structure.

inItemNo A number corresponding to the position of an item in the dialog 
boxÕs item list.

outControl A pointer to a control handle that, on output, will refer to the 
embedded control.

function result A result code; see ÒResult CodesÓ (page 249). The Control 
Manager result code errItemNotControl indicates that the dialog 
item is not a control. 

DISCUSSION

When an embedding hierarchy is established, GetDialogItemAsControl 
produces a handle to the embedded controls (except Help items). It should be 
used instead of GetDialogItem (page 273) when an embedding hierarchy is 
established.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetDialogItem 4
CHANGED WITH THE APPEARANCE MANAGER 4

Gets a handle to a dialog item. 

pascal void GetDialogItem (
DialogPtr theDialog,
short itemNo,
short *itemType,
Handle *item,
Rect *box);

theDialog A pointer to a dialog structure.

itemNo The item number (a number corresponding to the position of an 
item in the dialog boxÕs item list resource); use FindDialogItem 
(page 276) to determine this value. 
Dialog Manager Functions 273
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
itemType On output, a pointer to a dialog item constant identifying the 
item type of the item requested in the itemNo parameter.

item A pointer to a handle that, on output, will refer to the item 
speciÞed in the itemNo parameter or, for application-deÞned 
draw functions, a pointer (coerced to a handle) to the draw 
function. 

box On output, a pointer to the rectangle that speciÞes the display 
rectangle (described in coordinates local to the dialog box), for 
the item speciÞed in the itemNo parameter.

DISCUSSION

The GetDialogItem function produces the item type, a handle to the item (or, for 
application-deÞned draw functions, the function pointer), and the display 
rectangle for a speciÞed item in an item list resource. When a control hierarchy 
is present in the dialog, GetDialogItem can gets the appropriate information (for 
example, a text handle) from the controls. If you wish to get a control handle 
for a dialog item in an embedding hierarchy, see GetDialogItemAsControl 
(page 272).

You should call GetDialogItem before calling functions such as 
SetDialogItemText (page 280) that need a handle to a dialog item. 

SEE ALSO

SetDialogItem (page 275).

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE 

An embedding hierarchy cannot be established in a dialog box.
274 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
SetDialogItem 4
CHANGED WITH THE APPEARANCE MANAGER 4

Sets or changes information for a dialog item.

pascal void SetDialogItem (
DialogPtr theDialog,
short itemNo,
short itemType,
Handle item,
const Rect *box);

theDialog A pointer to a dialog structure.

itemNo A number corresponding to the position of an item in the dialog 
boxÕs item list resource; see FindDialogItem (page 276).

itemType A dialog item constant identifying the item type of the item 
speciÞed in the itemNo parameter. When an embedding 
hierarchy is established, only the kItemDisableBit constant is 
honored.

item Either a handle to the dialog item speciÞed in the itemNo 
parameter or, for a custom dialog item, a pointer (coerced to a 
handle) to an application-deÞned item drawing function. When 
an embedding hierarchy is established, the item parameter is 
ignored unless you pass a universal procedure pointer to an 
application-deÞned item draw function. 

box On output, the display rectangle (in local coordinates) for the 
item speciÞed in the itemNo parameter. If you set the control 
rectangle on an item when an embedding hierarchy is present, 
SetDialogItem will move and resize the item appropriately for 
you.

DISCUSSION

The SetDialogItem function sets the item speciÞed by the itemNo parameter for 
the speciÞed dialog box. If an embedding hierarchy exists, however, you 
cannot change the type or handle of an item, although application-deÞned item 
drawing functions can still be set.
Dialog Manager Functions 275
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
SEE ALSO

GetDialogItem (page 273).

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE 

An embedding hierarchy cannot be established in a dialog box, so 
SetDialogItem honors all values passed in the item and itemType parameters.

GetDialogKeyboardFocusItem 4
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 4

When the Appearance Manager is available and an embedding hierarchy is 
established, you should call the Control Manager function GetKeyboardFocus 
(page 148) instead of GetDialogKeyboardFocusItem to return the item number of 
the item in a dialog box that has keyboard focus.

FindDialogItem 4
CHANGED WITH THE APPEARANCE MANAGER 4

Determines the item number of an item at a particular location in a dialog box. 

pascal short FindDialogItem (
DialogPtr theDialog,
Point thePt);

theDialog A pointer to a dialog structure.

thePt The point (in local coordinates) where the mouse-down event 
occurred.

function result When an embedding hierarchy is established, the 
FindDialogItem function returns the deepest control selected by 
the user corresponding to the point speciÞed in the thePt 
parameter. When an embedding hierarchy does not exist, 
FindDialogItem performs a linear search of the item list resource 
and returns a number corresponding to the hit itemÕs position 
276 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
in the item list resource. For example, it returns 0 for the Þrst 
item in the item list, 1 for the second, and 2 for the third. If the 
mouse is not over a dialog item, FindDialogItem returns Ð1.

DISCUSSION

The function FindDialogItem is useful for changing the cursor when the user 
moves the cursor over a particular item. 

To get the proper item number before calling the GetDialogItem (page 273) 
function or the SetDialogItem (page 275) function, add 1 to the result of 
FindDialogItem, as shown here:

theItem = FindDialogItem(theDialog, thePoint) + 1;

Note that FindDialogItem returns the item number of disabled items as well as 
enabled items.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE 

The FindDialogItem function always does a linear search, because embedding 
is not available when the Appearance Manager is not available.

MoveDialogItem 4
NEW WITH THE APPEARANCE MANAGER 4

Moves a dialog item to a speciÞed location in a window. 

pascal OSErr MoveDialogItem (
DialogPtr inDialog,
SInt16 inItemNo,
SInt16 inHoriz,
SInt16 inVert);

inDialog A pointer to a dialog structure.

inItemNo A signed 16-bit integer representing the number of the dialog 
item within the item list.
Dialog Manager Functions 277
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
inHoriz A signed 16-bit integer representing the horizontal coordinate 
to which the dialog item should be moved.

inVert A signed 16-bit integer representing the vertical coordinate to 
which the dialog item should be moved.

function result A result code; see ÒResult CodesÓ (page 249).

DISCUSSION

The MoveDialogItem function moves a dialog item to a speciÞed location in a 
window. MoveDialogItem ensures that if the item is a control, the control 
rectangle and the dialog item rectangle (maintained by the Dialog Manager) are 
always the same.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SizeDialogItem 4
NEW WITH THE APPEARANCE MANAGER 4

Sizes a dialog item. 

pascal OSErr SizeDialogItem (
DialogPtr inDialog,
SInt16 inItemNo,
SInt16 inHeight,
SInt16 inWidth);

inDialog A pointer to a dialog structure.

inItemNo A signed 16-bit integer representing the dialog item number 
within the item list. 

inHeight A signed 16-bit integer representing the desired height (in 
pixels) of the dialog itemÕs control rectangle. 

inWidth A signed 16-bit integer representing the desired width (in 
pixels) of the dialog itemÕs control rectangle. 
278 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
function result A result code; see ÒResult CodesÓ (page 249).

DISCUSSION

The SizeDialogItem function resizes a dialog item to a speciÞed size. If the 
dialog item is a control, the control rectangle and the dialog item rectangle 
(maintained by the Dialog Manager) are always the same.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

AutoSizeDialog 4
NEW WITH THE APPEARANCE MANAGER 4

Automatically resizes static text Þelds and their dialog boxes to accommodate 
changed static text.

pascal OSErr AutoSizeDialog (DialogPtr inDialog);

inDialog A pointer to a dialog structure.

function result A result code; see ÒResult CodesÓ (page 249).

DISCUSSION

The AutoSizeDialog function is useful in situations such as localization, where 
the size of a static text Þeld (and the dialog box that contains it) may need to be 
altered to accommodate an alteration in the size of the static text.

For each static text item AutoSizeDialog Þnds in the item list resource, it adjusts 
the static text Þeld and the bottom of the dialog box window to accommodate 
the text. Any items below a static text Þeld are moved down. If the dialog box is 
visible when this function is called, it is hidden, resized, and then shown. If the 
dialog box has enough room to show the text as is, no resizing is done.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).
Dialog Manager Functions 279
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
Handling Text in Alert and Dialog Boxes 4

SetDialogItemText 4
CHANGED WITH THE APPEARANCE MANAGER 4

Sets the text string for static text and editable text Þelds.

pascal void SetDialogItemText (
Handle item,
ConstStr255Param text);

item A handle to an editable text or static text Þeld. When 
embedding is on, you should pass in the control handle 
produced by a call to the function GetDialogItemAsControl 
(page 272). If embedding is not on, pass in the handle produced 
by the GetDialogItem (page 273) function.

text A pointer to a string containing the text to display in the Þeld.

DISCUSSION

The SetDialogItemText function sets and redraws text strings for static text and 
editable text Þelds. SetDialogItemText is useful for supplying a default text 
stringÑsuch as a document nameÑfor an editable text Þeld while your 
application is running.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

An embedding hierarchy cannot be established in a dialog box.
280 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
Handling Events in Dialog Boxes 4

ModalDialog 4
CHANGED WITH THE APPEARANCE MANAGER 4

Handles events while your application displays a modal or movable modal 
dialog box.

pascal void ModalDialog (
ModalFilterUPP modalFilter,
short *itemHit);

modalFilter A universal procedure pointer for an event Þlter function. For 
modal dialog boxes, you can specify nil if you want to use the 
standard event-handling function. For movable modal dialog 
boxes, you should specify your own event Þlter function.

itemHit A pointer to a short integer. After receiving an event involving 
an enabled item, ModalDialog produces a number representing 
the position of the selected item in the active dialog boxÕs item 
list resource.

DISCUSSION

Call the ModalDialog function immediately after displaying a modal or movable 
modal dialog box. Your application should continue calling ModalDialog until 
the user dismisses your dialog.

For modal dialogs, the ModalDialog function repeatedly handles events until an 
event involving an enabled dialog box itemÑsuch as a click in a radio button, 
for exampleÑoccurs. If the event is a mouse-down event outside the content 
region of the dialog box, ModalDialog plays the system alert sound and gets the 
next event.

For movable modal dialogs, if the kDialogFlagsHandleMovableModal feature bit 
in the extended dialog resource is set, the ModalDialog function will handle all 
standard movable modal user interactions, such as dragging a dialog box by its 
title bar and allowing the user to switch into another application. However, a 
difference between the ModalDialog functionÕs behavior with movable modal 
and modal dialogs is that, with movable modal dialogs, your event Þlter 
Dialog Manager Functions 281
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
function receives all events. If you want the Dialog Manager to assist you in 
handling events in movable modal dialog boxes, call GetStdFilterProc and 
StdFilterProc. 

For events inside the dialog box, ModalDialog passes the event to the event Þlter 
function pointed to in the modalFilter parameter before handling the event. 
When the event Þlter returns false, ModalDialog handles the event. If the event 
Þlter function handles the event, returning true, ModalDialog performs no more 
event handling.

If you set the modalFilter parameter to nil, the standard event Þlter function is 
executed. The standard event Þlter function checks whether

■ the user has pressed the Enter or Return key and, if so, returns the item 
number of the default button

■ the user has pressed the Escape key or Command-period and, if so, returns 
the item number of the Cancel button

■ the cursor is over an editable text box, and optionally changes the cursor to 
an I-beam whenever this is the case

If you set the modalFilter parameter to point to your own event Þlter function, 
that function can use the standard Þlter function to accomplish the above tasks. 
(To do so, you can call GetStdFilterProc, and dispatch the event to the 
standard Þlter function yourself, or you can call StdFilterProc , which obtains 
a ModalFilterUPP for the standard Þlter function and then dispatches the 
function.) Additionally, your own event Þlter function should also

■ handle update events, so that background processes can receive processor 
time, and return false 

■ return false for all events that your event Þlter function doesnÕt handle

You can also use your event Þlter function to test for and respond to keyboard 
equivalents and more complex eventsÑfor instance, the user dragging the 
cursor within an application-deÞned item. You can use your same event Þlter 
function in most or all of your alert and modal dialog boxes.

If the event Þlter function does not handle the event (returning false), 
ModalDialog handles the event as follows: 

■ In response to an activate or update event for the dialog box, ModalDialog 
activates or updates its window.

■ If the user presses the mouse button while the cursor is in an editable text 
item, ModalDialog responds to the mouse activity as appropriateÑthat is, 
282 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  4

Dialog Manager Reference
either by displaying an insertion point or by selecting text. If a key-down 
event occurs and thereÕs an editable text item, ModalDialog uses TextEdit to 
handle text entry and editing automatically. If the editable text item is 
enabled, ModalDialog produces its item number after it receives either the 
mouse-down or key-down event. Normally, editable text items are disabled, 
and you use the GetDialogItemText function to read the information in the 
items only after the user clicks the OK button.

■ If the user presses the mouse button while the cursor is in a control, 
ModalDialog calls the Control Manager function TrackControl. If the user 
releases the mouse button while the cursor is in an enabled control, 
ModalDialog produces the controlÕs item number. Your application should 
respond appropriatelyÑfor example, by performing a command after the 
user clicks the OK button.

■ If the user presses the mouse button while the cursor is in any other enabled 
item in the dialog box, ModalDialog produces the itemÕs number, and your 
application should respond appropriately. Generally, only controls should be 
enabled. If your application creates a control more complex than a button, 
radio button, or checkbox, your application must handle events inside that 
item with your event Þlter function.

■ If the user presses the mouse button while the cursor is in a disabled item or 
in no item, or if any other event occurs, ModalDialog does nothing.

SPECIAL CONSIDERATIONS

The ModalDialog function traps all events. This prevents your event loop from 
receiving activate events for your windows. Thus, if one of your applicationÕs 
windows is active when you use GetNewDialog to create a modal dialog box, 
you must explicitly deactivate that window before displaying the modal dialog 
box.

When ModalDialog calls the Control Manager function TrackControl, it does not 
allow you to specify the action function necessary for anything more complex 
than a button, radio button, or checkbox. If you need a more complex control, 
you can create your own control, a picture, or an application-deÞned item that 
draws a control-like object in your dialog box. You must then provide an event 
Þlter function that appropriately handles events in that item. 
Dialog Manager Functions 283
12/10/97   Apple Computer, Inc.



C H A P T E R  4  

Dialog Manager Reference
WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

ModalDialog only handles events for modal dialogs.

DeÞning Your Own Dialog Item Function 4
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 4

When the Appearance Manager is available and an embedding hierarchy is 
established in a dialog box, you should provide the user pane drawing function 
MyUserPaneDrawProc (page 189) instead of the user item drawing function 
MyUserItemProc to draw an application-defined control (a dialog item becomes 
a control in a dialog box with an embedding hierarchy).

You can provide other user pane application-deÞned functions to hit test, track, 
perform idle processing, handle keyboard, activate, and deactivate event 
processing, handle keyboard focus, and set the background color or pattern in 
a user pane control. For examples of how to write these functions, see 
ÒDeÞning Your Own User Pane FunctionsÓ (page 189).
284 Dialog Manager Functions

 12/10/97   Apple Computer, Inc.



C H A P T E R  5

Contents

12/10/97   Apple Computer, Inc.

Contents
Figure 5-0
Listing 5-0
Table 5-0
5 Menu Manager Reference
Menu Manager Types and Constants 287
Contextual Menu Gestalt Selector Constants 287
Menu DeÞnition IDs 288
Contextual Menu Help Type Constants 289
Contextual Menu Selection Type Constants 290
ModiÞer Key Mask Constants 291
Menu Icon Handle Constants 292
The Menu Color Information Table Structure 292
Result Codes 293

Menu Manager Resources 293
The Menu Resource 293
The Extended Menu Resource 298
The Menu Color Information Table Resource 304

Menu Manager Functions 304
Initializing the Menu Manager 304

InitProcMenu 304
InitContextualMenus 305
ProcessIsContextualMenuClient 306

Creating Menus 307
GetMenu 307

Responding to the UserÕs Choice of a Menu Command 308
MenuEvent 308
MenuKey 310
IsShowContextualMenuClick 310
ContextualMenuSelect 311

Manipulating and Accessing Menu Item Characteristics 313
SetItemCmd 313
285



C H A P T E R  5  
SetItemMark 313
SetMenuItemCommandID 314
GetMenuItemCommandID 314
SetMenuItemFontID 315
GetMenuItemFontID 316
SetMenuItemHierarchicalID 317
GetMenuItemHierarchicalID 317
SetMenuItemIconHandle 318
GetMenuItemIconHandle 319
SetMenuItemKeyGlyph 320
GetMenuItemKeyGlyph 321
SetMenuItemModifiers 322
GetMenuItemModifiers 323
SetMenuItemRefCon 324
GetMenuItemRefCon 325
SetMenuItemRefCon2 326
GetMenuItemRefCon2 327
SetMenuItemTextEncoding 328
GetMenuItemTextEncoding 329

DeÞning Your Own Contextual Menu Plug-In 329
Initialize 331
ExamineContext 332
HandleSelection 334
PostMenuCleanup 335
286 Contents

12/10/97   Apple Computer, Inc.



C H A P T E R  5
Menu Manager Reference 5

This chapter describes the Menu Manager types, constants, resources, and 
functions that are affected by Mac OS 8, the Appearance Manager, or 
contextual menus.

■ ÒMenu Manager Types and ConstantsÓ (page 287) describe Menu Manager 
types and constants, including structures. Result codes are included at the 
end of this section.

■ ÒMenu Manager ResourcesÓ (page 293) describes the menu ('MENU') 
resource, the extended menu ('xmnu') resource, and the menu color table 
('mctb') resource.

■ ÒMenu Manager FunctionsÓ (page 304) describes both Menu Manager 
functions and application-deÞned callback functions.

Menu Manager Types and Constants 5

Contextual Menu Gestalt Selector Constants 5
NEW WITH CONTEXTUAL MENUS 5

Before calling any contextual menu functions, your application should pass the 
selector gestaltContextualMenuAttr to the Gestalt function to determine 
whether contextual menu functions are available. 

enum{
gestaltContextualMenuAttr = 'cmnu'

};

Constant description

gestaltContextualMenuAttr
The Gestalt selector passed to the Gestalt function to 
determine whether contextual menu functions are 
available. Produces a value whose bits you should test to 
determine whether the contextual menu functions are 
available.
Menu Manager Types and Constants 287
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
The following values are the bit numbers with which you can test for the 
presence of contextual menu functions:

enum{
gestaltContextualMenuPresent = 0,
gestaltContextualMenuTrapAvailable = 1

};

Constant descriptions

gestaltContextualMenuPresent
If this bit is set, the contextual menu functions are 
available to PowerPC applications. If this bit is not set, 
these functions are not available to PowerPC applications.

gestaltContextualMenuTrapAvailable
If this bit is set, the contextual menu functions are 
available to 68K applications. If this bit is not set, these 
functions are not available to 68K applications.

Menu DeÞnition IDs 5
CHANGED WITH THE APPEARANCE MANAGER 5

A menu deÞnition ID is supplied to the menu resource (page 293) or a 
menu-creation function such as NewMenu to specify which menu deÞnition 
function to use in creating the menu. The menu deÞnition ID contains the 
resource ID of the menu deÞnition function.

When mapping is enabled, the pre-Appearance menu deÞnition ID 
textmenuProc will be mapped to kMenuStdMenuProc, its Appearance-compliant 
equivalent. For a discussion on how to enable mapping, see ÒIntroduction to 
the Appearance ManagerÓ (page 19).

enum {
textmenuProc = 0,
kMenuStdMenuProc = 63,
kMenuStdMenuBarProc = 63

};
288 Menu Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
Constant descriptions

textmenuProc The menu deÞnition ID for menus that are not 
Appearance-compliant.

kMenuStdMenuProc The menu deÞnition ID for Appearance-compliant menus.
kMenuStdMenuBarProc

The menu bar deÞnition ID for Appearance-compliant 
menu bars.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

Only the menu deÞnition ID constant textmenuProc (or the deÞnition ID for a 
custom menu deÞnition function) is supported.

Contextual Menu Help Type Constants 5
NEW WITH CONTEXTUAL MENUS 5

You can pass these constants in the inHelpType parameter of the function 
ContextualMenuSelect (page 311) to specify the kind of help the application 
supports.

enum{
kCMHelpItemNoHelp = 0,
kCMHelpItemAppleGuide = 1,
kCMHelpItemOtherHelp = 2

};

Constant descriptions

kCMHelpItemNoHelp The application does not support any help. The Menu 
Manager will put an appropriate help string into the menu 
and disable it. 

kCMHelpItemAppleGuide
The application supports Apple Guide help. The Menu 
Manager will put the name of the main Guide Þle into the 
menu and enable it.

kCMHelpItemOtherHelp
The application supports some other form of help. In this 
case, the application must also pass a valid string into the 
Menu Manager Types and Constants 289
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
inHelpItemString parameter of ContextualMenuSelect. This 
string will be the text of the help item in the menu, and the 
help item will be enabled.

Contextual Menu Selection Type Constants 5
NEW WITH CONTEXTUAL MENUS 5

These constants are returned in the outUserSelectionType parameter of the 
function ContextualMenuSelect (page 311) to specify what the user selected 
from the contextual menu.

enum{
kCMNothingSelected = 0,
kCMMenuItemSelected = 1,
kCMShowHelpSelected = 3

};

Constant descriptions

kCMNothingSelected The user did not choose an item from the contextual menu 
and the application should do no further processing of the 
event.

kCMMenuItemSelected
The user chose one of the applicationÕs items from the 
menu. The application can examine the outMenuID and 
outMenuItem parameters of ContextualMenuSelect to see 
what the menu selection was, and it should then handle 
the selection appropriately.

kCMShowHelpSelected
The user chose the Help item from the menu. The 
application should open an Apple Guide database to a 
section appropriate for the selection. If the application 
supports some other form of help, it should be presented 
instead.
290 Menu Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
ModiÞer Key Mask Constants 5
NEW WITH THE APPEARANCE MANAGER 5

You can use one or more of these mask constants in the modiÞer keys Þeld of 
the 'xmnu' resource (page 298) to determine which modiÞer key(s) must be 
pressed along with a character key to create a keyboard equivalent for selecting 
a menu item. These constants are also passed in and obtained by 
SetMenuItemModifiers (page 322) and GetMenuItemModifiers (page 323), 
respectively.

enum {
kMenuCommandModifiers = 0,  
kMenuShiftModifier = (1 << 0),  
kMenuOptionModifier = (1 << 1),  
kMenuControlModifier = (1 << 2),  
kMenuNoCommandModifier = (1 << 3)  

};

Constant descriptions

kMenuCommandModifiers
If no bit is set, only the Command key is used in the 
keyboard equivalent.

kMenuShiftModifier If this bit (bit 0) is set, the Shift key is used in the keyboard 
equivalent.

kMenuOptionModifier
If this bit (bit 1) is set, the Option key is used in the 
keyboard equivalent.

kMenuControlModifier
If this bit (bit 2) is set, the Control key is used in the 
keyboard equivalent.

kMenuNoCommandModifier
If this bit (bit 3) is set, the Command key is not used in the 
keyboard equivalent.
Menu Manager Types and Constants 291
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
Menu Icon Handle Constants 5
NEW WITH THE APPEARANCE MANAGER 5

These constants specify the handle of the icon attached to the menu item. They 
are passed in SetMenuItemIconHandle (page 318) and obtained by 
GetMenuItemIconHandle (page 319), respectively. 

enum {
kMenuNoIcon = 0,  
kMenuIconType = 1,  
kMenuShrinkIconType = 2,  
kMenuSmallIconType = 3,  
kMenuColorIconType = 4,  
kMenuIconSuiteType = 5  

};

Constant descriptions

kMenuNoIcon No icon.
kMenuIconType  An 'ICON' handle. 
kMenuShrinkIconType

A 32-by-32 'ICON' handle shrunk (at display time) to 
16-by-16. 

kMenuSmallIconType  A 'SICN' handle. 
kMenuColorIconType  A 'cicn' handle. 
kMenuIconSuiteType  An icon suite handle. 

The Menu Color Information Table Structure 5
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 5

When the Appearance Manager is available and you are using standard menus, 
only the menu title color (RGB1) and menu item text color (RGB2) Þelds of the 
menu color information table resource are used. If you specify 0 in the mctID 
and mctItem Þelds of the menu color entries of the menu bar in the table, the 
other colors will be used for the menus and menu bars. 

If you are creating your own custom menu deÞnition function, all entries in the 
table can be used.
292 Menu Manager Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
Result Codes 5
The most common result codes returned by Menu Manager functions are listed 
below.

Menu Manager Resources 5

The Menu Resource 5
CHANGED WITH THE APPEARANCE MANAGER 5

You can provide descriptions of your menus in 'MENU' resources and use the 
function GetMenu (page 307) or GetNewMBar to read the descriptions of your 
menus. After reading in the resource description, the Menu Manager stores the 
information about speciÞc menus in menu structures. When you use a menu 
resource to deÞne a menu, you should check for the presence of an extended 
menu resource with the same resource ID. 

▲ W A R N I N G

Menus in a resource must not be purgeable nor should 
they have the resource lock bit set. They must have 
resource ID numbers greater than 127. Do not deÞne a 
ÒcircularÓ hierarchical menuÑthat is, a hierarchical menu 
in which a submenu has a submenu whose submenu is a 
hierarchical menu higher in the chain. 

Figure 5-1 shows the format of a compiled 'MENU' resource. 

noErr 0 No error
paramErr Ð50 Error in parameter list
memFullErr Ð108 Not enough memory
resNotFound Ð192 Unable to read resource
hmHelpManagerNotInited Ð855 Help manager not set up 
Menu Manager Resources 293
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
Figure 5-1 Structure of a compiled menu ('MENU') resource

A compiled version of a 'MENU' resource contains the following elements:

■ Menu ID. Each menu in your application should have a unique menu ID 
(this can be the menuÕs resource ID). A negative value indicates that the 
menu (but not a submenu) belongs to a driver such as a desk accessory. A 
menu ID from 1 through 235 indicates a menu (or submenu) of an 
application; a menu ID from 236 through 255 indicates a submenu of a 
driver. Apple reserves the menu ID of 0. 

■ Placeholder (two integers containing 0) for the menuÕs width and height. 
After reading in the resource data, the Menu Manager requests the menu 
deÞnition function to calculate the width and height of the menu and to 
store these values in the menuWidth and menuHeight Þelds of the menu 
structure.

■ Resource ID of the menuÕs menu deÞnition function; see ÒMenu DeÞnition 
IDsÓ (page 288). If the integer 63 appears here, as speciÞed by the 

2

2

2

2

2

'MENU' resource type Bytes

Menu ID

Placeholder for menu width

Placeholder for menu height

Resource ID of menu definition procedure

Placeholder

Initial enabled state of the menu 
and menu items

Variable-length data that 
defines the menu items

4

1

Characters of menu title

Length (n) of title

n 

variable 

1Placeholder
294 Menu Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
kMenuStdMenuProc constant in the Rez input file, the Menu Manager uses the 
standard Appearance-compliant menu deÞnition function to manage the 
menu. If you provide your own menu deÞnition function, its resource ID 
should appear in this Þeld. After reading in the menuÕs resource data, the 
Menu Manager reads in the menu deÞnition function, if necessary. The 
Menu Manager stores a handle to the menu deÞnition function in the 
menuProc field of the menu structure. 

■ Placeholder (an integer containing 0).

■ The initial enabled state of the menu and Þrst 31 menu items. This is a 32-bit 
value, where bits 1Ð31 indicate if the corresponding menu item is disabled or 
enabled, and bit 0 indicates whether the menu as a whole is enabled or 
disabled. The Menu Manager automatically enables menu items greater than 
31 when a menu is created.

■ The length (in bytes) of the menu title.

■ The title of the menu. 

■ Variable-length data that describes the menu items. If you provide your own 
menu deÞnition function you can deÞne and provide this data according to 
the needs of your function. The Menu Manager simply reads in the data for 
each menu item and stores it as variable data at the end of the menu 
structure. The menu deÞnition function is responsible for interpreting the 
contents of the data. For example, the standard menu deÞnition function 
interprets this data according to the description given in the following 
paragraphs.

■ Placeholder (a byte containing 0) to indicate the end of the menu item 
deÞnitions. 

Figure 5-2 shows the variable-length data portion of a compiled 'MENU' 
resource that uses the standard menu deÞnition function.
Menu Manager Resources 295
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
Figure 5-2 The variable-length data that describes menu items as defined by the 
standard menu definition function

The variable-length data portion of a compiled version of a 'MENU' resource that 
uses the standard menu deÞnition function contains the following elements:

■ Length (in bytes) of the menu itemÕs text.

■ Text of the menu item.

■ A 1-byte Þeld containing one of the following:

■ An icon number. The icon number is a number from 1 through 255 (or 
from 1 through 254 for small or reduced icons). The Menu Manager adds 
256 to the icon number to generate the resource ID of the menu itemÕs 
icon. If a menu item has an icon, you should also provide a 'cicn', 
'SICN', or an 'ICON' resource with the resource ID equal to the icon 
number plus 256. If you want the Menu Manager to reduce an 'ICON' 
resource to the size of a small icon, you must also provide the value 0x1D 
in the keyboard equivalent Þeld. If you provide a 'SICN' resource, 
provide 0x1E in the keyboard equivalent Þeld. Otherwise, the Menu 
Manager looks Þrst for a 'cicn' resource with the calculated resource ID 
and uses that icon.

■ A text encoding value. (Not recommended with Appearance.) If you want 
the Menu Manager to draw the itemÕs text in a script other than the 
system script, specify the text encoding here and also provide 0x1C in the 
keyboard equivalent Þeld. If the script system for the speciÞed script is 
installed, the Menu Manager draws the itemÕs text using that script. 

1

Variable-length data in 'MENU' resource
(For each menu item)

Bytes

Text of menu item

 Length (m) of menu item text

Icon number, script code, or 0
Keyboard equivalent, $1B, $1C, $1D, $1E, or 0
Marking character or menu ID of submenu, or 0

Style of the menu item

m 

1
1
1
1

296 Menu Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
■ 0 (as speciÞed by the noicon constant in a Rez input Þle) if the menu item 
doesnÕt contain an icon and uses the system script. 

A menu item can have an icon or be drawn in a script other than the system 
script, but not both.

■ Keyboard equivalent (speciÞed as a 1-byte character). This can be enhanced 
with modiÞer key constants in the modiÞer keys Þeld of the extended menu 
resource; see ÒThe Extended Menu ResourceÓ (page 298). In some cases, this 
Þeld may take on one of the following values instead:

■ 0x1B (as speciÞed by the constant hierarchicalMenu in a Rez input Þle) if 
the item has a submenu. (Not recommended with Appearance.)

■ 0x1C if the item uses a script other than the system script. (Not 
recommended with Appearance.)

■ 0x1D if you want the Menu Manager to reduce an 'ICON' resource to the 
size of a small icon. 

■ 0x1E if you want the Menu Manager to use an 'SICN' resource for the 
itemÕs icon.

■ 0 (as speciÞed by the nokey constant in a Rez input Þle) if the item has 
neither a keyboard equivalent nor a submenu and uses the system script. 

The values 0x01 through 0x1A as well as 0x1F and 0x20 are reserved for use 
by Apple; your application should not use any of these reserved values in 
this Þeld.

■ A 1-byte Þeld containing one of the following:

■ A marking character. Special marking characters are available to indicate 
the marks associated with a menu item.

■ The menu ID of the itemÕs submenu. (Not recommended with 
Appearance.) Submenus of an application should have menu IDs from 1 
through 235; submenus of a driver (such as a desk accessory) should have 
menu IDs from 236 through 255. If you choose a submenu, you must also 
set the keyboard equivalent Þeld to 0x1B.

■ 0 (as speciÞed by the nomark constant in a Rez input Þle) if the item has 
neither a mark nor a submenu. 

A menu item can have a mark or a submenu, but not both. 

■ Font style of the menu item. The constants bold, italic, plain, outline, and 
shadow can be used in a Rez input file to define their corresponding styles. 

If you provide your own menu deÞnition function, you should use the same 
format for your resource descriptions of menus as shown in Figure 5-1. You can 
Menu Manager Resources 297
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
use the same format or one of your choosing to describe menu items. You can 
also use bits 1Ð31 of the enableFlags Þeld of the menu structure as you choose; 
however, bit 0 must still indicate whether the menu is enabled or disabled.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

The menu resource, while identical in format, may take on different values in 
its variable-length data portion, depending on the type of information you 
want to display with your menu item.

The Extended Menu Resource 5
NEW WITH THE APPEARANCE MANAGER 5

After reading in a 'MENU' resource, GetMenu (page 307) looks for an extended 
menu resource of type 'xmnu' with the same resource ID. The extended menu 
resource allows you to create menus with modiÞer key keyboard glyphs and 
icons attached to menu items and Appearance-compliant menu backgrounds. 
The information is set for speciÞed menu items (it is not necessary to create an 
extended menu entry for each item). At this point, the information can be 
purged or released. Figure 5-3 shows the format of a compiled 'xmnu' resource.

Figure 5-3 Structure of a compiled extended menu ('xmnu') resource

Number of entries

Version number

First extended menu entry

Last extended menu entry

'xmnu' resource type 

2

2

46

46

Bytes
298 Menu Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
A compiled version of an 'xmnu' resource contains the following elements:

■ Version number. An integer specifying the version of the resource.

■ Number of entries. An integer that speciÞes the number of entries in the 
resource. Each entry is an extended menu item structure.

■ Extended menu item entries. A series of extended menu item structures, 
each of which consists of a type, command ID, modiÞer keys, text encoding, 
reference constants, menu ID of submenu, font ID, and keyboard glyph.

Figure 5-4 shows the format of an extended menu item entry. 

Figure 5-4 Structure of an extended menu item entry

Type

Command ID

Modifier keys

Reserved

Reserved

Text encoding

Menu ID of submenu

Font ID

Keyboard glyph

Reserved

Reference constant

Reference constant

Extended menu entry 

2

4

1

1

4

4

4

4

2

2

1
1

Bytes
Menu Manager Resources 299
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
Each entry in a 'xmnu' resource corresponds to a menu item and contains the 
following:

■ Type. An integer that speciÞes whether there is menu item information for 
the item in the 'MENU' entry. If this is 0, there is no information for the item in 
the corresponding 'MENU' entry, and the rest of the record is skipped. If this 
is 1, there is information for the item in the corresponding 'MENU' entry, and 
the rest of the record is read. 

■ Command ID. A unique value which you set to identify the menu item 
(instead of referring to it using the menu ID and item number). You can also 
call SetMenuItemCommandID (page 314) to set the command ID of a menu item. 
After a successful call to MenuSelect, MenuEvent (page 308), or MenuKey 
(page 310), you can call GetMenuItemCommandID (page 314) to determine its 
current value.

■ ModiÞer keys. A mask that determines which modiÞer keys are used in a 
keyboard equivalent to select a menu item; see ÒModiÞer Key Mask 
ConstantsÓ (page 291). 

■ Reserved. Set to 0.

■ Reserved. Set to 0.

■ Text encoding. A long integer which indicates the text encoding which your 
item text will use. Use currScript for the default text encoding. To change 
this value, call SetMenuItemTextEncoding (page 328). You can call 
GetMenuItemTextEncoding (page 329) to determine its current value. This 
should be used instead of setting a menu itemÕs modiÞer key to 0x1C and its 
icon ID to the script code. 

■ If you wish the text of the menu item to use the system script, this value 
should be -1. This should be used as the default.

■ If you wish the text of the menu item to use the current script, this value 
should be -2.

■ Reference constant. Any value that an application wishes to store. To change 
this value, call SetMenuItemRefCon (page 324). You can call GetMenuItemRefCon 
(page 325) to determine its current value. 

■ Reference constant. Any additional value that an application wishes to store. 
To change this value, call SetMenuItemRefCon2 (page 326). You can call 
GetMenuItemRefCon2 (page 327) to determine its current value. 

■ Menu ID of submenu. A value between 1 and 235, identifying the 
application submenu. 
300 Menu Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
■ Font ID. An integer representing the ID of the font family. If this value is 0, 
then the system font ID is used. 

■ Keyboard glyph. A symbol representing a menu itemÕs modiÞer key. In 
Appearance 1.0, if the value in this Þeld is zero, the keyboard glyph uses the 
system font. In Appearance 1.0.1, if the value in this Þeld is zero, the 
keyboard glyph uses the keyboard font; see Table 5-1 (page 302). Use of the 
keyboard font (rather than the system font) provides a consistent user 
interface across applications, since a modiÞer keyÕs symbol will not change 
regardless of what system font is running. If the value in this Þeld is 
nonzero, you can override the character code to be displayed with a 
substitute glyph.

■ Reserved. Set to 0. 
Menu Manager Resources 301
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
Table 5-1 Keyboard font character codes

Character code Description

0x00 Null (always glyph 1)

0x01 Unassigned (reserved for 2 bytes)

0x02 Tab to the right key (for left-to-right script systems)

0x03 Tab to the left key (for right-to-left script systems)

0x04 Enter key

0x05 Shift key

0x06 Control key

0x07 Option key

0x08 Null (always glyph 1)

0x09 Space (always glyph 3) key

0x0A Delete to the right key (for right-to-left script 
systems)

0x0B Return key (for left-to-right script systems)

0x0C Return key (for right-to-left script systems)

0x0D Nonmarking return key

0x0E Unassigned

0x0F Pencil key

0x10 Downward dashed arrow key

0x11 Command key

0x12 Checkmark key

0x13 Diamond key

0x14 Apple logo key (Þlled) 

0x15 Unassigned (paragraph in Korean) 

0x16 Unassigned

0x17 Delete to the left key (for left-to-right script 
systems)

0x18 Leftward dashed arrow key

0x19 Upward dashed arrow key

0x1A Rightward dashed arrow key
302 Menu Manager Resources

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
0x1B Escape key

0x1C Clear key

0x1D Unassigned (left double quotes in Japanese)

0x1E Unassigned (right double quotes in Japanese)

0x1F Unassigned (trademark in Japanese)

0x61 Blank key

0x62 Page up key

0x63 Caps lock key

0x64 Left arrow key

0x65 Right arrow key

0x66 Northwest arrow key

0x67 Help key

0x68 Up arrow key

0x69 Southeast arrow key

0x6A Down arrow key

0x6B Page down key

0x6C Apple logo key (outline) 

0x6D Contextual menu key

0x6E Power key

0x6F F1 key

0x70 F2 key

0x71 F3 key

0x72 F4 key

0x73 F5 key

0x74 F6 key

0x75 F7 key

0x76 F8 key

0x77 F9 key

0x78 F10 key

0x79 F11 key

Character code Description
Menu Manager Resources 303
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
The Menu Color Information Table Resource 5
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 5

When the Appearance Manager is available and you are using standard menus, 
only the menu title color (RGB1) and menu item text color (RGB2) Þelds of the 
menu color information table ('mctb') resource are used. If you specify 0 in the 
mctID and mctItem fields in the menu color entries of the menu bar in the table, 
the other colors will be used for the menus and menu bars.

If you are creating your own custom menu deÞnition function, all entries in the 
menu color information table can be used.

Menu Manager Functions 5

Initializing the Menu Manager 5

InitProcMenu 5
CHANGED WITH THE APPEARANCE MANAGER 5

Sets the mbResID Þeld of the current menu list to the resource ID of a custom 
'MBDF' resource.

pascal void InitProcMenu (short resID); 

0x7A F12 key

0x87 F13 key

0x88 F14 key

0x89 F15 key

0x8A Control key (ISO standard)

Character code Description
304 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
resID The resource ID of your applicationÕs menu bar deÞnition 
function in the upper 13 bits of this parameter; the variant in 
the lower 3 bits. You must use a resource ID greater than 0x100. 
Resource IDs 0x000 through 0x100 are reserved for the use of 
Apple Computer, Inc.

DISCUSSION

If your application provides its own menu bar deÞnition function, use the 
InitProcMenu function to associate your custom 'MBDF' resource with the 
current menu list. In general, you should not use a custom menu bar deÞnition 
unless absolutely necessary. InitProcMenu creates the current menu list if it 
hasnÕt already been created by a previous call to InitMenus .

You can also call InitProcMenu to bypass mapping of the pre-Appearance menu 
resource ID constant textmenuProc to its corresponding Appearance-compliant 
menu resource ID constant kMenuStdMenuProc when mapping is enabled. For 
information on mapping, see ÒIntroduction to the Appearance ManagerÓ 
(page 19).

SPECIAL CONSIDERATIONS

The resource ID of your applicationÕs menu bar deÞnition function is 
maintained in the current menu list until your application next calls InitMenus; 
InitMenus initializes the mbResID field with the resource ID of the standard 
menu bar deÞnition function. This can affect applications such as development 
environments that control other applications that may call InitMenus.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE

DeÞnition function mapping is not supported.

InitContextualMenus 5
NEW WITH CONTEXTUAL MENUS 5

Adds the application to the system registry of contextual menu clients. 

pascal OSStatus InitContextualMenus (void);
Menu Manager Functions 305
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
function result A result code; see ÒResult CodesÓ (page 293). 

DISCUSSION

Your application should call the InitContextualMenus function early in your 
startup code to register your application as a contextual menu client. If you do 
not register your application, some system-level functions may respond as 
though your application does not use contextual menus. Not registering your 
application may also cause ProcessIsContextualMenuClient (page 306) to return 
an incorrect value.

If you are a 68K application, you must pass the selector 
gestaltContextualMenuAttr to the Gestalt function before calling the 
InitContextualMenus function. If the Gestalt function returns a bit field with 
the gestaltContextualTrapAvailable bit set, InitContextualMenus can be called; 
see ÒContextual Menu Gestalt Selector ConstantsÓ (page 287).

ProcessIsContextualMenuClient 5
NEW WITH CONTEXTUAL MENUS 5

Determines whether a given application is a contextual menu client. 

pascal Boolean ProcessIsContextualMenuClient(ProcessSerialNumber* inPSN);

inPSN A pointer to the ID of the process containing the application.

function result A Boolean value; true if the application in the process uses 
contextual menus.

DISCUSSION

The ProcessIsContextualMenuClient function checks the system registry of 
contextual menu clients and returns true if the application in the given process 
supports contextual menus. However, the application must have been 
registered as a client using InitContextualMenus (page 305).

SEE ALSO

ÒContextual Menu Gestalt Selector ConstantsÓ (page 287).
306 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
Creating Menus 5

GetMenu 5
CHANGED WITH THE APPEARANCE MANAGER 5

Creates a menu according to the speciÞed menu and extended menu resources.

pascal MenuHandle GetMenu (short resourceID);

resourceID The resource ID of the menu and extended menu that deÞnes 
the characteristics of the menu. (You usually use the same 
number for a menuÕs resource ID as the number that you 
specify for the menu ID in the menu resource.)

function result Returns a handle to the menu structure for the menu. You can 
use the returned menu handle to refer to this menu in most 
Menu Manager functions. If GetMenu is unable to read the menu 
or menu deÞnition function from the resource Þle, GetMenu 
returns nil.

DISCUSSION

In addition to creating a menu, the GetMenu function also creates a menu 
structure for the menu. GetMenu reads the menu deÞnition function into 
memory (if not already present) and stores a handle to the menu deÞnition 
function in the menu structure. GetMenu does not insert the newly created menu 
into the current menu list.

Note
You typically use the GetMenu function only when you 
create submenus; you can create all your pull-down menus 
at once using the function GetNewMBar, and you can create 
pop-up menus using the standard pop-up menu button 
control deÞnition function. 

After reading the 'MENU' resource (page 293), GetMenu searches for an extended 
menu resource and an 'mctb' resource with the same resource ID as the 'MENU' 
resource. If the speciÞed 'mctb' resource exists, GetMenu uses SetMCEntries to 
add the entries deÞned by the resource to the applicationÕs menu color 
Menu Manager Functions 307
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
information table. If the 'mctb' resource does not exist, GetMenu uses the default 
colors speciÞed in the menu bar entry of the applicationÕs menu color 
information. If neither a menu bar entry nor a 'mctb' resource exists, GetMenu 
uses the standard colors for the menu.

Storing the deÞnitions of your menus in resources (especially menu titles and 
menu items) makes your application easier to localize.

▲ W A R N I N G

Menus in a resource must not be purgeable nor should the 
resource lock bit be set. Do not deÞne a ÒcircularÓ 
hierarchical menuÑthat is, a hierarchical menu in which a 
submenu has a submenu whose submenu is a hierarchical 
menu higher in the chain.

SPECIAL CONSIDERATIONS

To release the memory associated with a menu that you created using GetMenu, 
Þrst call DeleteMenu to remove the menu from the current menu list and to 
remove any entries for this menu in your applicationÕs menu color information 
table; then call DisposeMenu to dispose of the menu structure. After disposing of 
a menu, use DrawMenuBar to update the menu bar.

WHEN THE APPEARANCE MANAGER IS NOT AVAILABLE 

The extended menu resource is not available. 

Responding to the UserÕs Choice of a Menu Command 5

MenuEvent 5
NEW WITH THE APPEARANCE MANAGER 5

Maps the keyboard equivalent character contained in the speciÞed event 
structure to its corresponding menu and menu item. 

pascal UInt32 MenuEvent (EventRecord* inEvent);
308 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
inEvent A pointer to the event structure containing the keyboard 
equivalent.

function result Returns a value that indicates the menu ID and menu item that 
the user chose. If the given character does not map to an 
enabled menu item in the current menu list, MenuEvent returns 
0 in its high-order word and the low-order word is undeÞned.

 DISCUSSION

The MenuEvent function does not distinguish between uppercase and lowercase 
letters. This allows a user to invoke a keyboard equivalent command, such as 
the Copy command, by pressing the Command key and ÒcÓ or ÒCÓ. For 
consistency between applications, you should deÞne the keyboard equivalents 
of your commands so that they appear in uppercase in your menus.

If the given character maps to an enabled menu item in the current menu list, 
MenuEvent highlights the menu title of the chosen menu, returns the menu ID in 
the high-order word of its function result, and returns the chosen menu item in 
the low-order word of its function result. After performing the chosen task, 
your application should unhighlight the menu title using the HiliteMenu 
function.

You should not deÞne menu items with identical keyboard equivalents. The 
MenuEvent function scans the menus from right to left and the items from top to 
bottom. If you have deÞned more than one menu item with identical keyboard 
equivalents, MenuEvent returns the Þrst one it Þnds.

The MenuEvent function Þrst searches the regular portion of the current menu 
list for a menu item with a keyboard equivalent matching the given key. If it 
doesnÕt Þnd one there, it searches the submenu portion of the current menu list. 
If the given key maps to a menu item in a submenu, MenuEvent highlights the 
menu title in the menu bar that the user would normally pull down to begin 
traversing to the submenu. Your application should perform the desired 
command and then unhighlight the menu title.

You shouldnÕt assign a CommandÐShiftÐnumber key sequence to a menu item 
as its keyboard equivalent; CommandÐShiftÐnumber key sequences are 
reserved for use as 'FKEY' resources. CommandÐShiftÐnumber key sequences 
are not returned to your application, but instead are processed by the Event 
Manager. The Event Manager invokes the 'FKEY' resource with a resource ID 
that corresponds to the number that activates it.
Menu Manager Functions 309
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

MenuKey 5
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 5

When the Appearance Manager is available, call MenuEvent (page 308) instead 
of MenuKey to map the keyboard equivalent character in the event structure to 
its corresponding menu and menu item.

IsShowContextualMenuClick 5
NEW WITH CONTEXTUAL MENUS 5

Determines whether a particular event could invoke a contextual menu.

pascal Boolean IsShowContextualMenuClick(const EventRecord* inEvent);

inEvent A pointer to the event structure that describes the event to 
examine.

function result Returns a Boolean value indicating whether or not a contextual 
menu should be displayed. If true, the contextual menu should 
be displayed; if false, not.

DISCUSSION

Before calling the IsShowContextualMenuClick function, you should call 
InitContextualMenus (page 305). If no error is returned, you can then call 
IsShowContextualMenuClick.

Applications should call IsShowContextualMenuClick when they receive 
non-null events. If IsShowContextualMenuClick returns true, your application 
should generate its own menu and Apple Event descriptor (AEDesc), and then 
call ContextualMenuSelect (page 311) to display and track the contextual menu, 
and then handle the userÕs choice. 

If the mouse-down event did not invoke a contextual menu, then the 
application should check to see if the event occurred in the menu bar (using the 
310 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
FindWindow function) and, if so, call MenuSelect to allow the user to choose a 
command from the menu bar.

SEE ALSO

ÒContextual Menu Gestalt Selector ConstantsÓ (page 287).

ContextualMenuSelect 5
NEW WITH THE CONTEXTUAL MENUS 5

Displays a contextual menu.

pascal OSStatus ContextualMenuSelect (MenuHandle inMenuRef,
Point inGlobalLocation,
Boolean inReserved,
UInt32 inHelpType,
ConstStr255Param inHelpItemString,
const AEDesc* inSelection,
UInt32* outUserSelectionType,
SInt16* outMenuID,
UInt16* outMenuItem);

inMenuRef On input, a handle to a menu containing application commands 
to display. The caller creates this menu based on the current 
context, the mouse location, and the current selection (if it was 
the target of the mouse). If you pass nil, only system 
commands will be displayed. The menu should be added to the 
menu list as a pop-up menu (using the InsertMenu function).

inGlobalLocation
The location (in global coordinates) of the mouse near which 
the menu is to be displayed. 

inReserved Reserved for future use. Pass false for this parameter. 

inHelpType An identiÞer specifying the type of help to be provided by the 
application; see ÒContextual Menu Help Type ConstantsÓ 
(page 289). 
Menu Manager Functions 311
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
inHelpItemString
The string containing the text to be displayed for the help menu 
item. This string is unused unless you also pass the constant 
kCMOtherHelp in the inHelpType parameter.

inSelection On input, a pointer to an object speciÞer for the current 
selection. This allows the system to examine the selection and 
add special system commands accordingly. Passing a value of 
nil indicates that no selection should be examined, and most 
likely, no special system actions will be included.

outUserSelectionType
On output, a pointer to a value indicating what the user 
selected from the contextual menu; see ÒContextual Menu Help 
Type ConstantsÓ (page 289). 

outMenuID On output, a pointer to the menu ID of the chosen item, if 
outUserSelectionType is set to kCMMenuItemSelected. 

outMenuItem On output, a pointer to the menu item chosen, if 
outUserSelectionType is set to kCMMenuItemSelected. 

function result A result code; see ÒResult CodesÓ (page 293). The result code 
userCanceledErr indicates that the user did not select anything 
from the contextual menu and no further processing is needed; 
outUserSelectionType will be set to kCMNothingSelected. 

DISCUSSION

If the IsShowContextualMenuClick function returns true, you should call the 
ContextualMenuSelect function after generating your own menu and preparing 
an Apple Event descriptor (AEDesc) that describes the item for which your 
application is displaying a contextual menu. This descriptor may contain an 
object speciÞer or raw data and will be passed to all contextual menu plug-ins.

The system will add other items before displaying the contextual menu, and it 
will remove those items before returning, leaving the menu in its original state.

After all the system commands are added, the contextual menu is displayed 
and tracked. If the user selects one of the system items, it is handled by the 
system and the call returns as though the user didnÕt select anything from the 
menu. If the user selects any other item (or no item at all), the Menu Manager 
passes back appropriate values in the parameters outUserSelectionType, 
outMenuID, and outMenuItem.
312 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
Your application should provide visual feedback indicating the item that was 
clicked upon. For example, a click on an icon should highlight the icon, while a 
click on editable text should not eliminate the current selection. 

If the outUserSelectionType parameter contains kCMMenuItemSelected, you 
should look at the outMenuID and outMenuItem parameters to determine what 
menu item the user chose and handle it appropriately. If the user selected 
kCMHelpItemSelected, you should open the proper Apple Guide sequence or 
other form of custom help.

SEE ALSO

ÒContextual Menu Gestalt Selector ConstantsÓ (page 287).

Manipulating and Accessing Menu Item Characteristics 5

SetItemCmd 5
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 5

When the Appearance Manager is available, you should call 
SetMenuItemModifiers (page 322), SetMenuItemHierarchicalID (page 317), and 
SetMenuItemTextEncoding (page 328) instead of SetItemCmd to set a menu itemÕs 
keyboard equivalent and text encoding and to indicate that a menu item has a 
submenu.

SetItemMark 5
NOT RECOMMENDED WITH THE APPEARANCE MANAGER 5

When the Appearance Manager is available, you should call 
SetMenuItemHierarchicalID (page 317) instead of SetItemMark to set the menu 
ID of a menu itemÕs submenu. However, you can still use SetItemMark to set the 
mark of a menu item.
Menu Manager Functions 313
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
SetMenuItemCommandID 5
NEW WITH THE APPEARANCE MANAGER 5

Sets a menu itemÕs command ID. 

pascal OSErr SetMenuItemCommandID (
MenuHandle inMenu,
SInt16 inItem,
UInt32 inCommandID);

inMenu The handle to the menu structure of the menu item for which 
you wish to set a command ID. 

inItem An integer representing the item number of the menu item for 
which you wish to set a command ID.

inCommandID An integer representing the command ID that you wish to set. 

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

You can use a menu itemÕs command ID as a position-independent method of 
signalling a speciÞc action in an application.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetMenuItemCommandID (page 314). 

GetMenuItemCommandID 5
NEW WITH THE APPEARANCE MANAGER 5

Gets a menu itemÕs command ID. 

pascal OSErr GetMenuItemCommandID (
MenuHandle inMenu,
SInt16 inItem,
UInt32* outCommandID);
314 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
inMenu The handle to the menu structure of the menu item for which 
you wish to get a command ID. 

inItem An integer representing the item number of the menu item for 
which you wish to get a command ID.

outCommandID On output, a pointer to an integer representing the value of the 
itemÕs command ID.

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

After a successful call to MenuSelect, MenuEvent (page 308), or MenuKey 
(page 310), call the GetMenuItemCommandID function to get a menu itemÕs 
command ID. You can use a menu itemÕs command ID as a 
position-independent method of signalling a speciÞc action in an application.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetMenuItemCommandID (page 314). 

SetMenuItemFontID 5
NEW WITH THE APPEARANCE MANAGER 5

Sets the font for a menu item.

pascal OSErr SetMenuItemFontID (
MenuHandle inMenu,
SInt16 inItem,
SInt16 inFontID);

inMenu The handle to the menu structure of the menu item for which 
you wish to set the font.

inItem An integer representing the item number of the menu item for 
which you wish to set the font.

inFontID An integer representing the font ID that you wish to set. 
Menu Manager Functions 315
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

The SetMenuItemFontID function enables you to set up a font menu with each 
item being drawn in the actual font.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetMenuItemFontID (page 316). 

GetMenuItemFontID 5
NEW WITH THE APPEARANCE MANAGER 5

Gets a menu itemÕs font ID. 

pascal OSErr GetMenuItemFontID (
MenuHandle inMenu,
SInt16 inItem,
SInt16* outFontID);

inMenu The handle to the menu structure of the menu item for which 
you wish to get a font ID.

inItem An integer representing the item number of the menu item for 
which you wish to get a font ID.

outFontID On output, a pointer to an integer representing the font ID for 
the menu item.

function result A result code; see ÒResult CodesÓ (page 293).

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetMenuItemFontID (page 315).
316 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
SetMenuItemHierarchicalID 5
NEW WITH THE APPEARANCE MANAGER 5

Attaches a submenu to a menu item. 

pascal OSErr SetMenuItemHierarchicalID (
MenuHandle inMenu,
SInt16 inItem,
SInt16 inHierID)

inMenu The handle to the menu structure of the menu item to which 
you wish to attach a submenu.

inItem An integer representing the item number of the menu item to 
which you wish to attach a submenu.

inHierID An integer representing the menu ID of the submenu you wish 
to attach. This menu should be inserted into the menu list by 
calling InsertMenu.

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

The SetMenuItemHierarchicalID function should be called instead of setting the 
keyboard equivalent to 0x1B.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetMenuItemHierarchicalID 5
NEW WITH THE APPEARANCE MANAGER 5

Gets the menu ID of a speciÞed submenu. 

pascal OSErr GetMenuItemHierarchicalID (
MenuHandle inMenu,
SInt16 inItem,
SInt16 *outHierID)
Menu Manager Functions 317
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
inMenu The handle to the menu structure of the menu item for which 
you wish to get the submenuÕs menu ID.

inItem An integer representing the item number of the menu item for 
which you wish to get the submenuÕs menu ID.

outHierID On output, a pointer to an integer representing the menu ID of 
the submenu.

function result A result code; see ÒResult CodesÓ (page 293).

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetMenuItemIconHandle 5
NEW WITH THE APPEARANCE MANAGER 5

Sets a menu itemÕs icon.

pascal OSErr SetMenuItemIconHandle (
MenuHandle inMenu,
SInt16 inItem,
MenuIconType inIconType,
Handle inIconHandle);

inMenu The handle to the menu structure of the menu item for which 
you wish to set an icon.

inItem An integer representing the item number of the menu item for 
which you wish to set an icon.

inIconType The type of icon ('ICON', 'cicn', 'SICN', or icon suite) you wish 
to attach, as speciÞed by a menu icon handle constant 
(page 292).

inIconHandle The handle to the icon you wish to attach to a menu item. 

function result A result code; see ÒResult CodesÓ (page 293).
318 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
DISCUSSION

The SetMenuItemIconHandle function sets the icon of a menu item with an icon 
handle instead of a resource ID. SetMenuItemIconHandle allows you to set icons 
of type 'ICON', 'cicn', 'SICN', as well as icon suites. To set resource-based icons 
for a menu item, call SetItemIcon. 

▲ W A R N I N G

Disposing of the menu will not dispose of the icon handles 
set by this function. To prevent memory leaks, your 
application should dispose of the icons when you dispose 
of the menu.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetMenuItemIconHandle (page 319). 

GetMenuItemIconHandle 5
NEW WITH THE APPEARANCE MANAGER 5

Gets a handle to a menu itemÕs icon.

pascal OSErr GetMenuItemIconHandle (
MenuHandle inMenu,
SInt16 inItem,
MenuIconType outIconType,
Handle* outIconHandle);

inMenu The handle to the menu structure of the menu item with an icon 
for which you wish to get the handle.

inItem An integer representing the item number of the menu item with 
an icon for which you wish to get the handle.

outIconType On output, a menu itemÕs icon type. If the menu item has no 
icon attached, this parameter will contain kMenuNoIcon.
Menu Manager Functions 319
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
outIconHandle On output, a pointer to a handle to the icon that is attached to 
your menu item; see ÒMenu Icon Handle ConstantsÓ (page 292). 
If the menu item has no icon suite attached, this parameter 
contains nil.

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

The GetMenuItemIconHandle function gets the icon handle and type of icon of 
the speciÞed menu item. If you wish to get a resource-based menu item icon, 
call GetItemIcon.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetMenuItemIconHandle (page 318). 

SetMenuItemKeyGlyph 5
NEW WITH THE APPEARANCE MANAGER 5

Substitutes a keyboard glyph for that normally displayed for a menu itemÕs 
keyboard equivalent.

pascal OSErr SetMenuItemKeyGlyph (
MenuHandle inMenu,
SInt16 inItem,
SInt16 inGlyph)

inMenu The handle to the menu structure of the menu item for which 
you wish to substitute a keyboard glyph.

inItem An integer representing the item number of the menu item for 
which you wish to substitute a keyboard glyph.
320 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
inGlyph An integer representing the substitute glyph to display for 
characters that donÕt match their designated character codes. 
Pass 0 if you wish no substitution to occur. For a description of 
keyboard glyphs and a list of the keyboard font character codes, 
see ÒThe Extended Menu ResourceÓ (page 298).

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

The SetMenuItemKeyGlyph function overrides the character that would normally 
be displayed in a menu itemÕs keyboard equivalent with a substitute keyboard 
glyph. This is useful if the keyboard glyph in the font doesnÕt match the actual 
character generated. For example, you might use this function to display 
function keys.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetMenuItemKeyGlyph (page 321).

GetMenuItemKeyGlyph 5
NEW WITH THE APPEARANCE MANAGER 5

Gets the keyboard glyph for a menu itemÕs keyboard equivalent.

pascal OSErr GetMenuItemKeyGlyph (
MenuHandle inMenu,
SInt16 inItem,
SInt16 *outGlyph)

inMenu The handle to the menu structure of the menu item for which 
you wish to get the keyboard glyph.

inItem An integer representing the item number of the menu item for 
which you wish to get the keyboard glyph.
Menu Manager Functions 321
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
outGlyph On output, a pointer to an integer representing the modiÞer key 
glyph. For a description of keyboard glyphs and a list of the 
keyboard font character codes, see ÒThe Extended Menu 
ResourceÓ (page 298).

function result A result code; see ÒResult CodesÓ (page 293).

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetMenuItemIconHandle (page 318).

SetMenuItemModiÞers 5
NEW WITH THE APPEARANCE MANAGER 5

Sets the modiÞer key(s) that must be pressed with a character key to select a 
particular menu item.

pascal OSErr SetMenuItemModifiers (
MenuHandle inMenu,
SInt16 inItem,
SInt16 inModifiers);

inMenu The handle to the menu structure of the menu item for which 
you wish to set the modiÞer key(s).

inItem An integer representing the item number of the menu item for 
which you wish to set the modiÞer key(s).

inModifiers A value representing the modiÞer key(s) to be used in selecting 
the menu item; see ÒModiÞer Key Mask ConstantsÓ (page 291). 

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

You can call the SetMenuItemModifiers function to change the modiÞer key(s) 
you can include with a character key to create your keyboard equivalent. For 
example, you can change Command-x to Command-Option-Shift-x. By default, 
the Command key is always speciÞed; however, you can remove the 
322 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
Command key by setting the kMenuNoCommand ßag in the modiÞer keys Þeld of 
an extended menu item entry in the 'xmnu' resource; see ÒThe Extended Menu 
ResourceÓ (page 298).

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetMenuItemModifiers (page 323). 

GetMenuItemModiÞers 5
NEW WITH THE APPEARANCE MANAGER 5

Gets the modiÞer keys that must be pressed with a character key to select a 
particular menu item.

pascal OSErr GetMenuItemModifiers (
MenuHandle inMenu,
SInt16 inItem,
SInt16* outModifiers);

inMenu The handle to the menu structure of the menu item for which 
you wish to get the modiÞer key(s).

inItem An integer representing the item number of the menu item for 
which you wish to get the modiÞer key(s).

outModifiers On output, a pointer to a mask representing the modiÞer keys 
that can be used in selecting the menu item; see ÒModiÞer Key 
Mask ConstantsÓ (page 291). 

function result A result code; see ÒResult CodesÓ (page 293).

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetMenuItemModifiers (page 322). 
Menu Manager Functions 323
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
SetMenuItemRefCon 5
NEW WITH THE APPEARANCE MANAGER 5

Sets application-speciÞc information for a menu item.

pascal OSErr SetMenuItemRefCon (
MenuHandle inMenu,
SInt16 inItem,
SInt32 inRefCon);

inMenu The handle to the menu structure of the menu item for which 
you wish to set information.

inItem An integer representing the item number of the menu item for 
which you wish to set information.

inRefCon An integer representing a reference constant with which you 
wish to set information.

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

If you have any data you want to associate with a menu item, you can do so 
using the SetMenuItemRefCon function.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetMenuItemRefCon (page 325). 
324 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
GetMenuItemRefCon 5
NEW WITH THE APPEARANCE MANAGER 5

Gets application-speciÞc information for a menu item.

pascal OSErr GetMenuItemRefCon (
MenuHandle inMenu,
SInt16 inItem,
SInt32* outRefCon);

inMenu The handle to the menu structure of the menu item for which 
you wish to get information.

inItem An integer representing the item number of the menu item for 
which you wish to get information.

outRefCon On output, a pointer to an integer representing a reference 
constant. 

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

If you have assigned any data to a given menu item using SetMenuItemRefCon 
function, you can read it using the GetMenuItemRefCon function.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetMenuItemRefCon (page 324). 
Menu Manager Functions 325
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
SetMenuItemRefCon2 5
NEW WITH THE APPEARANCE MANAGER 5

Sets additional application-speciÞc information for a menu item.

pascal OSErr SetMenuItemRefCon2 (
MenuHandle inMenu,
SInt16 inItem,
SInt32 inRefCon);

inMenu The handle to the menu structure of the menu item for which 
you wish to set information.

inItem An integer representing the item number of the menu item for 
which you wish to set information.

inRefCon An integer representing a reference constant with which you 
wish to set information.

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

If you have data you want to associate with a menu item in addition to that set 
with the SetMenuItemRefCon (page 324) function, you can do so using the 
SetMenuItemRefCon2 function.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetMenuItemRefCon2 (page 327). 
326 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
GetMenuItemRefCon2 5
NEW WITH THE APPEARANCE MANAGER 5

Gets application-speciÞc information for a menu item.

pascal OSErr GetMenuItemRefCon2 (
MenuHandle inMenu,
SInt16 inItem,
SInt32* outRefCon);

inMenu The handle to the menu structure of the menu item for which 
you wish to retrieve information.

inItem An integer representing the item number of the menu item for 
which you wish to retrieve information.

outRefCon On output, a pointer to an integer representing a reference 
constant. 

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

If you have assigned any data to a given menu item using SetMenuItemRefCon2 
function, you can read it using the GetMenuItemRefCon function. 

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetMenuItemRefCon2 (page 326).
Menu Manager Functions 327
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
SetMenuItemTextEncoding 5
NEW WITH THE APPEARANCE MANAGER 5

Sets the text encoding for a menu itemÕs text.

pascal OSErr SetMenuItemTextEncoding (
MenuHandle inMenu,
SInt16 inItem,
TextEncoding inScriptID);

inMenu A handle to the menu structure of the menu item whose text 
encoding you wish to set.

inItem An integer representing the item number of the menu item 
whose text encoding you wish to set.

inScriptID The script code that corresponds to the text encoding you wish 
to set.

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

To set the text encoding for a menu itemÕs text, call the 
SetMenuItemTextEncoding function instead of SetItemCmd. If a menu item has a 
command code of 0x1C when SetMenuItemTextEncoding is called, the values in 
the command and icon Þelds of the menu resource are cleared and replaced 
with the value in the inScriptID parameter of SetMenuItemTextEncoding.

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

GetMenuItemTextEncoding (page 329).
328 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
GetMenuItemTextEncoding 5
NEW WITH THE APPEARANCE MANAGER 5

Gets the text encoding used for a menu itemÕs text.

pascal OSErr GetMenuItemTextEncoding (
MenuHandle inMenu,
SInt16 inItem,
TextEncoding* outScriptID);

inMenu The handle to the menu structure of the menu item whose text 
encoding you wish to get.

inItem An integer representing the item number of the menu item 
whose text encoding you wish to get.

outScriptID On output, a pointer to the script code of the text encoding used 
in the menu itemÕs text.

function result A result code; see ÒResult CodesÓ (page 293).

DISCUSSION

If a menu item has a command code of 0x1C when GetMenuItemTextEncoding is 
called, GetMenuItemTextEncoding gets the value in the icon Þeld of the menu 
itemÕs menu resource. 

SEE ALSO

ÒAppearance Manager Gestalt Selector ConstantsÓ (page 21).

SetMenuItemTextEncoding (page 328). 

DeÞning Your Own Contextual Menu Plug-In 5
NEW WITH CONTEXTUAL MENUS 5

A contextual menu plug-in is a subclass of AbstractCMPlugin : SOMObject. It 
consists of four methods: 

■ Initialize, which is called when the Menu Manager creates a list of 
available plug-ins
Menu Manager Functions 329
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
■ ExamineContext, which is called when the user activates a contextual menu

■ HandleSelection, which handles a contextual menu selection chosen by the 
user

■ PostMenuCleanup, which performs any necessary cleanup or deallocation 
after the contextual menu is dismissed.

Note
A contextual menu plug-in is implemented as a 
SOMObject object inside a shared library. (SOMObjects for 
the Mac OS platform is the Mac OS implementation of the 
System Object Model.) Typically your development 
environment can compile directly to a SOMObject object, 
so you do not need to create your own SOM interfaces. 

Each subclass of the AbstractCMPlugin must have an extended 'cfrg' resource, 
through which it identiÞes itself as a SOMObject object which derives from the 
AbstractCMPlugin class. See Mac OS Runtime Architectures for information about 
the extended 'cfrg' resource.

In addition you must register the plug-in class as a SOMObject object so that 
the Menu Manager can instantiate it by name. Typically you can do this in a 
fragmentÕs initialization function.

Listing 5-1 shows a sample initialization function that registers the plug-in. 

Listing 5-1 Registering a contextual menu plug-in 

pascal OSErr MyPluginInitialize(CFragInitBlockPtr init)
{

/* If your compiler creates a default initialization function,*/
/* you should call it here */

/* Now register our class with SOM */
somNewClass(MyPlugIn);

return noErr;
} 

The class declaration for a contextual menu deÞnition plug-in is as follows:
330 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
class AbstractCMPlugin: SOMObject
{

OSStatus Initialize(FSSpec *inFileSpec);
OSStatus ExamineContext(AEDesc* inContextDescriptor, 

SInt32 inTimeOutInTicks
AEDescList* ioCommandPairs,
Boolean* outNeedMoreTime);

OSStatus HandleSelection(AEDesc* inContextDescriptor, SInt32 
inCommandID);

OSStatus PostMenuCleanup(void);
}

When writing your own contextual menu plug-in, you must follow this 
declaration and include the speciÞed methods. The following sections describe 
these methods in detail.

Initialize 5
NEW WITH CONTEXTUAL MENUS 5

Performs any required plug-in initialization. If you write a contextual menu 
plug-in, you may include an Initialize method with the following form:

OSStatus Initialize (FSSpec *inFileSpec);

inFileSpec A pointer to a Þle system speciÞcation record for the Þle that 
contains the plug-in. 

method result A result code. See ÒResult CodesÓ (page 293) for a list of 
possible values. If this value is not noErr then the Menu 
Manager does not use the plug-in. 

DISCUSSION

The Initialize method is called when the Menu Manager builds its registry of 
available plug-ins (typically at system startup). You should use the Initialize 
method to check for available resources before the plug-in is actually required. 
To maintain a small memory footprint, the Initialize method should not 
allocate any memory, buffers, or so on. Instead, you should allocate memory as 
needed when examining the context or acting on the selection.
Menu Manager Functions 331
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
ExamineContext 5
NEW WITH CONTEXTUAL MENUS 5

Examines the context chosen by the user and determines possible menu 
commands appropriate to the context. If you write a contextual menu plug-in, 
it must contain an ExamineContext method with the following form:

OSStatus ExamineContext (AEDesc* inContextDescriptor, 
SInt32 inTimeOutInTicks, 
AEDescList* ioCommandPairs,
Boolean* outNeedMoreTime);

inContextDescriptor
The context chosen by the user. The Menu Manager passes this 
in the form of a pointer to an Apple Event descriptor. See Inside 
Macintosh: Interapplication Communication for information about 
the form of this descriptor. If there is no selection to examine, 
the pointer is NULL.

inTimeOutInTicks
The amount of time the plug-in is allowed to examine the 
context and create menu items.

ioCommandPairs
A pointer to an Apple Event descriptor list containing the 
commands allowed for this context.

outNeedMoreTime
Not currently used.

method result A result code. See ÒResult CodesÓ (page 293) for a list of 
possible values. If this value is not noErr then the Menu 
Manager does not use the plug-in in this case. However, it will 
call ExamineContext again the next time a contextual menu is 
invoked.

DISCUSSION

When a contextual menu is invoked, each module in the registry has its 
ExamineContext method called so it can inspect the context and add menu items 
as appropriate. After examining the context, the plug-in should then Þll the 
AEDescList array with every command that it wants to add to the menu. This 
332 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
AEDescList will be created and disposed of for the plug-in; it will be empty 
when the plug-in receives it.

Each menu command that the plug-in can perform on the selection is described 
in an AERecord with two keyword-speciÞed descriptor records. The structure of 
the AERecord is shown in Figure 5-5.

Figure 5-5 A menu command list in the AEDescList array

The Þrst descriptor (keyAEName) is of typeIntlText and contains the text of the 
menu item to be added to the menu. The second descriptor 
(keyContextualMenuCommandID) is of type typeLongInteger and must contain a 
value speciÞc to the plug-in that uniquely identiÞes this menu item.

If a plug-in wants to display a submenu for a particular menu item, it must use 
a variation of the AERecord used to describe a normal menu item. Figure 5-6 
shows this variation.

AEDescList of plug-in commands

Command AERecord:
 keyAEName:"Check Spelling..."
 keyContextualMenuCommandID: 1

Command AERecord:
 keyAEName:"Define..."
 keyContextualMenuCommandID: 2
Menu Manager Functions 333
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
Figure 5-6 A menu record showing submenus

The Þrst descriptor (keyAEName) is the same, but the second descriptor uses a 
different keyword (keyContextualMenuSubmenu) and is of type typeAEList. It 
must contain an AEDescList with an AERecord for every command to be added 
to the submenu. Submenu items can themselves have submenus by recursively 
using this technique. The depth of the submenus is limited only by the 
constraints of the Menu Manager.

HandleSelection 5
NEW WITH CONTEXTUAL MENUS 5

Executes the contextual menu item chosen by the user. If you write a contextual 
menu plug-in, it must contain a HandleSelection method with the following 
form:

OSStatus HandleSelection(AEDesc* inContextDescriptor, 
SInt32 inCommandID);

AEDescList of Subcommands

Command AERecord:
 keyAEName:"Check Spelling..."
 keyContextualMenuCommandID: 1

Command AERecord:
 keyAEName:"Define..."
 keyContextualMenuCommandID: 2

Command AERecord:
 keyAEName:"Text Commands"
 keyContextualMenuSubmenu:

AEDescList of plug-in commands
334 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  5

Menu Manager Reference
inContextDescriptor
The context chosen by the user. This data is the same as that 
passed in the inContextDescriptor parameter for the 
ExamineContext method. The Menu Manager passes this in the 
form of a pointer to an Apple Event descriptor. See Inside 
Macintosh: Interapplication Communication for information about 
the form of this descriptor.

inCommandID A long integer assigned to the chosen menu item via the 
keyContextualMenuCommandID descriptor, passed in by the Menu 
Manager.

method result A result code. See ÒResult CodesÓ (page 293) for a list of 
possible values. If this value is not noErr then the Menu 
Manager does not use the plug-in in this case. However, it will 
call HandleSelection again the next time an action is selected.

DISCUSSION

If one of the plug-inÕs menu items is chosen, the Menu Manager calls the 
plug-inÕs HandleSelection method to execute the action. The plug-in should 
then perform the appropriate action. 

PostMenuCleanup 5
NEW WITH CONTEXTUAL MENUS 5

Performs any necessary cleanup when the contextual menu is dismissed. If you 
write a contextual menu plug-in, it must contain a PostMenuCleanup method 
with the following form:

OSStatus PostMenuCleanup(void);

method result A result code. See ÒResult CodesÓ (page 293) for a list of 
possible values.

DISCUSSION

When a contextual menu is dismissed (regardless of whether or not the user 
made a selection), the Menu Manager calls each plug-inÕs PostMenuCleanup 
Menu Manager Functions 335
12/10/97   Apple Computer, Inc.



C H A P T E R  5  

Menu Manager Reference
method. The PostMenuCleanup method should do any necessary cleanup or 
memory deallocation. For example, a plug-in that allocated a buffer in the 
ExamineContext method should dispose of that buffer when PostMenuCleanup is 
called.
336 Menu Manager Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  6

Contents

12/10/97   Apple Computer, Inc.

Contents
Figure 6-0
Listing 6-0
Table 6-0
6 Event Manager Reference
337



C H A P T E R  6  
338 Contents

12/10/97   Apple Computer, Inc.



C H A P T E R  6
Event Manager Reference 6

The Event Manager and Operating System Event Manager types and constants, 
resources, and functions in this chapter were not affected by Mac OS 8 or the 
Appearance Manager. 
339
12/10/97   Apple Computer, Inc.



C H A P T E R  6  

Event Manager Reference
340
12/10/97   Apple Computer, Inc.



C H A P T E R  7

Contents

12/10/97   Apple Computer, Inc.

Contents
Figure 7-0
Listing 7-0
Table 7-0
7 Finder Interface Reference
Finder Interface Types and Constants 343
Folder Manager Gestalt Selector 343
Folder Type Constants 344
The Folder Descriptor Structure 350

Folder Descriptor Flag Constants 351
Folder Descriptor Class Constants 352
Folder Descriptor Location Constants 352

The Folder Routing Structure 353
Result Codes 354

Finder Interface Functions 355
Finding Directories 355

FindFolder 355
Manipulating Folder Descriptors 357

AddFolderDescriptor 357
RemoveFolderDescriptor 359
GetFolderDescriptor 360
GetFolderTypes 361
IdentifyFolder 362
GetFolderName 363
InvalidateFolderDescriptorCache 364

Routing Files 365
GetFolderRoutings 365
FindFolderRouting 366
AddFolderRouting 367
RemoveFolderRouting 367
341



C H A P T E R  7  
342 Contents

12/10/97   Apple Computer, Inc.



C H A P T E R  7
Finder Interface Reference 7

This chapter describes the types, constants, and functions speciÞc to the Finder 
Interface that are affected by Mac OS 8.

■ ÒFinder Interface Types and ConstantsÓ (page 343) discusses the Finder 
Interface types and constants, including structures. Result codes are listed at 
the end of this section.

■ ÒFinder Interface FunctionsÓ (page 355) describes functions that you can call 
to Þnd and manipulate system-related folders and to get information on 
how the Finder routes Þles to the System Folder.

The changes to the Finder Interface that follow are related to the introduction 
of new folder management features with Mac OS 8. Folders now can be added 
to the System folder, or nested within other folders, and located via the 
FindFolder function. Previously, FindFolder only found folders that were 
immediately inside of the System Folder, and a few other special folders (such 
as the Trash folder and the System Folder itself). Now, once a folder is 
described in a folder descriptor, it can be contained within any other described 
folder and still be found by FindFolder. New features that allow you to get 
information on how the Finder routes Þles to the System Folder are also 
discussed.

▲ W A R N I N G

All Folder Manager functions may move or purge memory 
and cannot be called at interrupt time.

Finder Interface Types and Constants 7

Folder Manager Gestalt Selector 7
CHANGED WITH MAC OS 8 7

Before calling any Folder Manager functions, your application should pass the 
selector gestaltFindFolderAttr to the Gestalt function to determine which 
Folder Manager functions are available.
Finder Interface Types and Constants 343
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
enum {
gestaltFindFolderAttr ='fold'

};

Constant description

gestaltFindFolderAttr
The Gestalt selector passed to determine whether the 
Folder Manager is available. Produces a value whose bits 
you should test to determine which Folder Manager 
functions are available: 

enum {
gestaltFindFolderPresent = 0, 
gestaltFolderDescSupport = 1  

};

Constant descriptions

gestaltFindFolderPresent
If this bit is set, the FindFolder (page 355) function is 
available. If this bit is clear, FindFolder is not available.

gestaltFolderDescSupport
If this bit is set, the following Folder Manager functions are 
available: AddFolderDescriptor, RemoveFolderDescriptor, 
GetFolderDescriptor, GetFolderTypes, IdentifyFolder, 
InvalidateFolderDescriptorCache, GetFolderName, 
GetFolderRoutings, and FindFolderRouting. If this bit is 
clear, these functions are not available.

Folder Type Constants 7
CHANGED WITH MAC OS 8 7

You can pass these constants in the folderType parameter of the function 
FindFolder (page 355) to specify a folder on a particular volume. 

enum {
kSystemFolderType = 'macs',
kDesktopFolderType = 'desk',
kTrashFolderType = 'trsh',
344 Finder Interface Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
kWhereToEmptyTrashFolderType = 'empt',
kPrintMonitorDocsFolderType = 'prnt',
kStartupFolderType = 'strt',
kShutdownFolderType = 'shdf',
kFontsFolderType = 'font',
kAppleMenuFolderType = 'amnu',
kControlPanelFolderType = 'ctrl',
kExtensionFolderType = 'extn',
kPreferencesFolderType = 'pref',
kTemporaryFolderType = 'temp'
kExtensionDisabledFolderType = 'extD',
kControlPanelDisabledFolderType = 'ctrD',
kSystemExtensionDisabledFolderType = 'macD',  
kStartupItemsDisabledFolderType = 'strD',
kShutdownItemsDisabledFolderType = 'shdD',
kApplicationsFolderType = 'apps',
kDocumentsFolderType  = 'docs'
kVolumeRootFolderType = 'root',
kChewableItemsFolderType = 'flnt',
kApplicationSupportFolderType = 'asup',
kTextEncodingsFolderType = 'ƒtex',
kStationeryFolderType = 'odst',
kOpenDocFolderType = 'odod',
kOpenDocShellPlugInsFolderType = 'odsp',
kEditorsFolderType = 'oded',
kOpenDocEditorsFolderType = 'ƒodf',
kOpenDocLibrariesFolderType = 'odlb',
kGenEditorsFolderType = 'ƒedi',
kHelpFolderType = 'ƒhlp',
kInternetPlugInFolderType = 'ƒnet',
kModemScriptsFolderType = 'ƒmod',
kPrinterDescriptionFolderType = 'ppdf',
kPrinterDriverFolderType = 'ƒprd',
kScriptingAdditionsFolderType = 'ƒscr',
kSharedLibrariesFolderType = 'ƒlib',
kVoicesFolderType = 'fvoc',
kControlStripModulesFolderType = 'sdev',
kAssistantsFolderType = 'astƒ',
kUtilitiesFolderType = 'utiƒ',
kAppleExtrasFolderType = 'aexƒ',
kContextualMenuItemsFolderType = 'cmnu',
Finder Interface Types and Constants 345
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
kMacOSReadMesFolderType = 'morƒ'
};
typedef OSType FolderType;

Constant descriptions

kSystemFolderType
SpeciÞes a System Folder on a particular volume.

kDesktopFolderType
SpeciÞes a Desktop Folder on a particular volume.

kTrashFolderType SpeciÞes a single-user Trash folder on a particular volume.
kWhereToEmptyTrashFolderType

SpeciÞes a shared Trash folder on a particular volume.
kPrintMonitorDocsFolderType

SpeciÞes a Print Monitor Documents folder on a particular 
volume.

kStartupFolderType
SpeciÞes a Startup Items folder on a particular volume.

kShutdownFolderType
SpeciÞes a Shutdown Items folder on a particular volume.

kFontsFolderType SpeciÞes a Fonts folder on a particular volume.
kAppleMenuFolderType

SpeciÞes an Apple Menu Items folder on a particular 
volume.

kControlPanelFolderType
SpeciÞes a Control Panels folder on a particular volume.

kExtensionFolderType
SpeciÞes an Extensions folder on a particular volume.

kPreferencesFolderType
SpeciÞes a Preferences folder on a particular volume.

kTemporaryFolderType
SpeciÞes a Temporary folder on a particular volume.

kExtensionDisabledFolderType

SpeciÞes a Disabled Extensions folder on a particular 
volume.

kControlPanelDisabledFolderType
SpeciÞes a Disabled Control Panels folder on a particular 
volume.
346 Finder Interface Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
kSystemExtensionDisabledFolderType 
SpeciÞes a Disabled System Extension folder on a 
particular volume.

kStartupItemsDisabledFolderType
SpeciÞes a Disabled Startup Items folder on a particular 
volume.

kShutdownItemsDisabledFolderType
SpeciÞes a Disabled Shutdown Items folder on a particular 
volume.

kApplicationsFolderType
SpeciÞes an application folder on a particular volume.

kDocumentsFolderType
SpeciÞes a document folder on a particular volume.

kVolumeRootFolderType 
SpeciÞes a root folder on a particular volume.

kChewableItemsFolderType 
SpeciÞes an invisible folder on the system disk called 
ÒCleanup at StartupÓ whose contents are deleted when the 
system is restarted, instead of merely being moved to the 
Trash. When the FindFolder function indicates this folder is 
available (by returning noErr), developers should usually 
use this folder for their temporary items, in preference to 
the Temporary Items folder.

kApplicationSupportFolderType
This folder contains code and data Þles needed by 
third-party applications. These Þles should usually not be 
written to after they are installed. In general, Þles deleted 
from this folder remove functionality from an application, 
unlike Þles in the Preferences folder, which should be 
non-essential. One type of Þle that could be placed here 
would be plug-ins that the user might want to maintain 
separately from any application, such as for an 
image-processing application that has many 
Òfourth-partyÓ plug-ins that the user might want to 
upgrade separately from the host application. Another 
type of Þle that might belong in this folder would be 
application-speciÞc data Þles that are not preferences, such 
as for a scanner application that needs to read description 
Finder Interface Types and Constants 347
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
Þles for speciÞc scanner models according to which are 
currently available on the SCSI bus or network.

kTextEncodingsFolderType
SpeciÞes the text encoding tables folder on a particular 
volume.

kStationeryFolderType
SpeciÞes OpenDoc stationery folder on a particular 
volume.

kOpenDocFolderType
SpeciÞes an OpenDoc root folder on a particular volume.

kOpenDocShellPlugInsFolderType
SpeciÞes OpenDoc shell plug-ins in an OpenDoc folder on 
a particular volume.

kEditorsFolderType
SpeciÞes an OpenDoc editors subfolder in a Mac OS folder 
on a particular volume.

kOpenDocEditorsFolderType 
SpeciÞes an OpenDoc subfolder in an editors folder on a 
particular volume.

kOpenDocLibrariesFolderType
SpeciÞes an OpenDoc libraries folder on a particular 
volume.

kGenEditorsFolderType
SpeciÞes a general editors folder on a particular volume.

kHelpFolderType SpeciÞes a help folder on a particular volume.
kInternetPlugInFolderType 

SpeciÞes a folder of internet browser plug-ins on a 
particular volume.

kModemScriptsFolderType 
SpeciÞes a modem scripts folder (moved from the 
extensions folder) on a particular volume.

kPrinterDescriptionFolderType 
SpeciÞes a printer descriptions folder on a particular 
volume.

kPrinterDriverFolderType 
SpeciÞes a printer drivers folder on a particular volume.
348 Finder Interface Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
kScriptingAdditionsFolderType
SpeciÞes a text scripting additions folder on a particular 
volume.

kSharedLibrariesFolderType
SpeciÞes a general shared libraries folder on a particular 
volume.

kVoicesFolderType
SpeciÞes a MacinTalk folder on a particular volume.

kControlStripModulesFolderType
SpeciÞes a Control Strip Modules folder on a particular 
volume.

kAssistantsFolderType
SpeciÞes an Assistants folder (e.g., Mac OS Setup 
Assistant) on a particular volume.

kUtilitiesFolderType
SpeciÞes a Utilities folder on a particular volume.

kAppleExtrasFolderType
SpeciÞes an Apple Extras folder on a particular volume.

kContextualMenuItemsFolderType
SpeciÞes a Contextual Menu Items folder on a particular 
volume.

kMacOSReadMesFolderType
SpeciÞes a Mac OS Read MeÕs folder on a particular 
volume.

WHEN MAC OS 8 IS NOT AVAILABLE

Only the following folder types are available on a particular volume:

kSystemFolderType = 'macs',
kDesktopFolderType = 'desk',
kTrashFolderType = 'trsh',
kWhereToEmptyTrashFolderType = 'empt',
kPrintMonitorDocsFolderType = 'prnt',
kStartupFolderType = 'strt',
kShutdownFolderType = 'shdf',
kFontsFolderType = 'font',
kAppleMenuFolderType = 'amnu',
kControlPanelFolderType = 'ctrl',
Finder Interface Types and Constants 349
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
kExtensionFolderType = 'extn',
kPreferencesFolderType = 'pref',
kTemporaryFolderType = 'temp'

The Folder Descriptor Structure 7
NEW WITH MAC OS 8 7

This structure can be used to Þnd existing folder descriptors and create new 
ones. 

struct FolderDesc {
size descSize;
FolderType foldType;
FolderDescFlags flags;
FolderClass foldClass;
FolderType foldLocation;
OSType badgeSignature;
OSType badgeType;
UInt32 reserved;
Str63 name

};
typedef struct FolderDesc FolderDesc;
typedef FolderDesc *FolderDescPtr;

Field descriptions
descSize Size (in bytes) of this structure.
foldType A constant of type FolderType that identiÞes the kind of 

target folder desired. See ÒFolder Type ConstantsÓ 
(page 344) for a list of possible folder types.

flags Flags indicating whether a folder is created during startup, 
if the folder name is locked, and if the folder created is 
invisible; see ÒFolder Descriptor Flag ConstantsÓ 
(page 351).

foldClass The class indicating whether the folder is relative to the 
parent folder or special; see ÒFolder Descriptor Class 
ConstantsÓ (page 352). 

foldLocation For a relative folder, the foldLocation Þeld speciÞes the 
FolderType of the parent folder of the target. For special 
350 Finder Interface Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
folders, the location of the folder. See ÒFolder Descriptor 
Location ConstantsÓ (page 352).

badgeSignature The OSType identifying the icon badge signature. Set to 0.
badgeType The OSType identifying the icon badge type. Set to 0.
reserved Reserved for use by system software.
name A string specifying the name of the desired folder. For 

relative folders, this will be the exact name of the desired 
folder. For special folders, the actual target folder may 
have a different name than the name speciÞed in the folder 
descriptor. For example, the System Folder is often given a 
different name, but it can still be located with FindFolder 
(page 355).

Folder Descriptor Flag Constants 7
NEW WITH MAC OS 8 7

These ßags allow you to specify whether a folder is created during startup, if 
the name of the folder is locked when the folder is created, and if the folder 
created is invisible. Use these in the flags Þeld of the folder descriptor 
structure (page 350). All other ßag bits are reserved for future use by Apple 
Computer, Inc.

Set any combination of the following bits:

enum {
kCreateFolderAtBoot = 0x00000002,
kFolderCreatedInvisible = 0x00000004,
kFolderCreatedNameLocked = 0x00000008

};
typedef UInt32 FolderDescFlags;

Constant descriptions

kCreateFolderAtBoot
Folder created at boot if needed.

kFolderCreatedInvisible
Folder created as invisible.

kFolderCreatedNameLocked
Folder created with a locked name.
Finder Interface Types and Constants 351
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
Folder Descriptor Class Constants 7
NEW WITH MAC OS 8 7

Constants of type FolderClass are used in the foldClass Þeld to specify how 
the foldLocation Þeld of the folder descriptor structure (page 350) should be 
interpreted.

IMPORTANT

Developers can only create new folder descriptors with a 
class of kRelativeFolder.

enum {
kRelativeFolder = 'relf',
kSpecialFolder = 'spcf'

};
typedef OSType FolderClass;

Constant descriptions

kRelativeFolder This constant indicates that the foldLocation Þeld contains 
the folder type of the parent folder, and the name Þeld 
contains the name of the folder. Most folder descriptors are 
for relative folders.

kSpecialFolder Special folders are in locations hardwired into the Folder 
Manager, and can be found using special rules. Examples 
of special folders include a diskÕs root directory and 
System Folder. This constant indicates that the folder is 
located algorithmically, according to the constant supplied 
as the foldLocation Þeld (kBlessedFolder or kRootFolder). 
Developers cannot create new folder descriptors of the 
kSpecialFolder class.

Folder Descriptor Location Constants 7
NEW WITH MAC OS 8 7

Constants of type FolderClass specify how the foldLocation Þeld of the folder 
descriptor structure should be interpreted. There are two special folder 
locations that may be speciÞed in the foldLocation Þeld of the folder descriptor 
structure (page 350).
352 Finder Interface Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
enum {
kBlessedFolder = 'blsf',
kRootFolder = 'rotf'

};
typedef OSType FolderLocation;

Constant descriptions

kBlessedFolder Constant used to locate the folder algorithmically if the 
FolderClass field is kSpecialFolder.

kRootFolder Constant used to locate the folder algorithmically if the 
FolderClass field is kSpecialFolder.

The Folder Routing Structure 7
NEW WITH MAC OS 8 7

The folder routing structure speciÞes the folder that Þles are routed to, based 
on the folder they are routed from.

IMPORTANT

Finder does not currently honor changes to the global 
folder routing list. Descriptions of some folder routing 
features are provided at this time for informational 
purposes only.

struct FolderRouting {
Size descSize;
OSType fileType;
FolderType routeFromFolder;
FolderType routeToFolder;
RoutingFlags flags

};
typedef struct FolderRouting FolderRouting;
typedef FolderRouting *FolderRoutingPtr;

Field descriptions
descSize Size (in bytes) of this structure.
fileType A constant of type OSType that describes the Þle type of the 

item to be routed.
Finder Interface Types and Constants 353
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
routeFromFolder The folder type identifying the folder from which an item 
will be routed. If an item is dropped on the folder speciÞed 
in the routeFromFolder Þeld, it will be routed to the folder 
described in the routeToFolder Þeld. 

routeToFolder The folder type identifying the folder to which an item will 
be routed. 

flags These ßags are reserved for future use by Apple Computer.

Result Codes 7
The most common result codes that can be returned by Finder Interface 
functions are listed below.

noErr 0 No error
nsvErr Ð35 Volume not found
fnfErr Ð43 Folder not found.
dupFNErr Ð48 File found instead of folder 
dirNFErr Ð120 Parent directory not found
badFolderDescErr Ð4270 Invalid folder 
duplicateFolderDescErr Ð4271 Duplicate folders for a particular 

routing
invalidFolderTypeErr Ð4273 Invalid folder name
duplicateRoutingErr Ð4274 Same routing for two folders
routingNotFoundErr Ð4275 No routing set up for folder passed in
badRoutingSizeErr Ð4276 Incorrect descSize Þeld of the folder 

routing structure 
354 Finder Interface Types and Constants

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
Finder Interface Functions 7

Finding Directories 7

FindFolder 7
CHANGED WITH MAC OS 8 7

Gets the location information used to gain access to the system-related 
directories.

pascal OSErr FindFolder (
short vRefNum,
OSType folderType,
Boolean createFolder,
short *foundVRefNum,
long *foundDirID);

vRefNum The volume reference number (or the constant kOnSystemDisk 
for the startup disk) of the volume on which you want to locate 
a directory; see ÒFolder Type ConstantsÓ (page 344).

folderType A four-character folder type, or a constant that represents the 
type, for the folder you want to Þnd; see ÒFolder Type 
ConstantsÓ (page 344). Use the kTrashFolderType constant to 
locate the current userÕs Trash directory for a given volumeÑ
even one located on a Þle server. On a Þle server, you can use 
the kWhereToEmptyTrashFolderType constant to locate the parent 
directory of all logged-on usersÕ Trash subdirectories.

createFolder Pass the constant kCreateFolder to create a directory if it does 
not already exist; otherwise, pass the constant 
kDontCreateFolder. Directories inside the System Folder are 
created only if the System Folder directory exists. The 
FindFolder function will not create a System Folder directory 
even if you specify the kCreateFolder constant in the 
Finder Interface Functions 355
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
createFolder parameter. Passing kCreateFolder will also not 
create a parent folder; if the parent of the target folder does not 
already exist, attempting to create the target will fail.

foundVRefNum On output, a pointer to the volume reference number for the 
volume containing the directory you specify in the folderType 
parameter.

foundDirID On output, a pointer to the directory ID number for the 
directory you specify in the folderType parameter.

function result A result code; see ÒResult CodesÓ (page 354). The result code 
fnfErr indicates that the type has not been found in the 'fld#' 
resource, or the disk doesnÕt have System Folder support, or the 
disk does not have desktop database support for Desktop 
FolderÑin all cases, the folder has not been found. The result 
code dupFNErr indicates that a Þle has been found instead of a 
folder. 

DISCUSSION

The FindFolder function can now be used to locate folders registered using the 
AddFolderDescriptor function.

For the folder type on the particular volume (speciÞed, respectively, in the 
folderType and vRefNum parameters), the FindFolder function returns the 
directoryÕs volume reference number through the foundVRefNum parameter and 
its directory ID through the foundDirID parameter. Each folder that can be 
found with FindFolder is described in a folder descriptor structure; see ÒThe 
Folder Descriptor StructureÓ (page 350).

Those folders youÕre most likely to want to access are Preferences, Temporary 
Items, and Trash. For example, you might wish to check for the existence of a 
userÕs conÞguration Þle in Preferences, create a temporary Þle in Temporary 
Items, or, if your application runs out of disk storage when trying to save a Þle, 
check how much disk storage is taken by items in the Trash directory and 
report this to the user.

The speciÞed folder used for a given volume might be located on a different 
volume in future versions of system software; therefore, do not assume the 
volume that you specify in vRefNum and the volume returned through 
foundVRefNum will be the same.
356 Finder Interface Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
SPECIAL CONSIDERATIONS

Prior to Mac OS 8, the Finder identiÞed the subdirectories of the System Folder, 
and their folder types, in a resource of type 'fld#' located in the System Þle. 
While some backwards compatibility support for 'fld#' remains, it has been 
superseded by the 'nfd#' resource. As with 'fld#', you should not modify or 
rely on the contents of the 'nfd#' resource in the System Þle. Instead, use only 
the FindFolder function to Þnd the appropriate folders, and use the functions 
AddFolderDescriptor (page 357) and RemoveFolderDescriptor (page 359) to 
modify folder descriptors.

WHEN MAC OS 8 IS NOT AVAILABLE

The FindFolder function cannot be used to locate folders registered using the 
AddFolderDescriptor function. Also, prior to Mac OS 8, the Finder identified the 
subdirectories of the System Folder, and their folder types, in a resource of type 
'fld#' located in the System file. Do not modify or rely on the contents of the 
'fld#' resource in the System file; use only the FindFolder function to find the 
appropriate directories.

Manipulating Folder Descriptors 7

AddFolderDescriptor 7
NEW WITH MAC OS 8 7

Copies the supplied information into a new folder descriptor entry in the 
system folder list.

pascal OSErr AddFolderDescriptor (
FolderType foldType,
FolderDescFlags flags,
FolderClass foldClass,
FolderLocation foldLocation,
OSType badgeSignature,
OSType badgeType,
ConstStr63Param name,
Boolean replaceFlag);
Finder Interface Functions 357
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
foldType A constant identifying the type of the folder which you wish 
the Folder Manager to be able to Þnd. See ÒFolder Type 
ConstantsÓ (page 344).

flags Set these ßags to indicate whether a folder is created during 
startup, if the folder name is locked, and if the folder is created 
invisible; see ÒFolder Descriptor Flag ConstantsÓ (page 351).

foldClass The class, indicating whether the folder is relative to the parent 
folder or special, of the folder which you wish the Folder 
Manager to be able to Þnd; see ÒFolder Descriptor Class 
ConstantsÓ (page 352). 

foldLocation For a relative folder, specify the folder type of the parent folder 
of the target. For a special folder, specify the location of the 
folder; see ÒFolder Descriptor Location ConstantsÓ (page 352).

badgeSignature
The OSType identifying the icon badge signature. Set to 0.

badgeType The OSType identifying the icon badge type. Set to 0.

name For a relative folder, specify the name of the target folder. For a 
special folder, the actual target folder may have a different 
name than the name speciÞed in the folder descriptor. For 
example, the System Folder is often given a different name, but 
it can still be located with FindFolder (page 355).

replaceFlag A Boolean value indicating whether you wish to replace a 
folder routing that already exists. This prevents the return code 
duplicateRoutingErr from being returned. If true, it replaces the 
folder to which the item is being routed. If false, it leaves the 
folder to which the item is being routed.

function result A result code; see ÒResult CodesÓ (page 354). The result code 
indicates that a folder descriptor is already installed with the 
speciÞed folder type and replaceFlag is false.

DISCUSSION

The AddFolderDescriptor function copies the supplied information into a new 
descriptor entry in the system folder list. You need to provide folder 
descriptors for each folder you wish the Folder Manager to be able to Þnd. For 
example, a child folder located in a parent folder needs to have a descriptor 
created both for it and its parent folder, so that the child can be found.
358 Finder Interface Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
SPECIAL CONSIDERATIONS

Before calling the AddFolderDescriptor function, you must pass the selector 
gestaltFindFolderAttr to the Gestalt function. If the 
gestaltFolderDescSupport bit is set, AddFolderDescriptor is available.

RemoveFolderDescriptor 7
NEW WITH MAC OS 8 7

Removes the speciÞed folder descriptor entry from the system folder list. 

pascal OSErr RemoveFolderDescriptor (FolderType foldType);

foldType A constant identifying the type of the folder for which you wish 
to remove a descriptor. See ÒFolder Type ConstantsÓ (page 344).

function result A result code; see ÒResult CodesÓ (page 354).

DISCUSSION

Once a folder descriptor has been removed, FindFolder will no longer be able 
to locate the folder type.

SPECIAL CONSIDERATIONS

Before calling the RemoveFolderDescriptor function, you must pass the selector 
gestaltFindFolderAttr to the Gestalt function. If the 
gestaltFolderDescSupport bit is set, RemoveFolderDescriptor is available. 
Finder Interface Functions 359
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
GetFolderDescriptor 7
NEW WITH MAC OS 8 7

Gets the folder descriptor information for the speciÞed folder type from the 
global descriptor list. 

pascal OSErr GetFolderDescriptor (
FolderType foldType,
Size descSize,
FolderDesc *foldDesc);

foldType A constant identifying the type of the folder for which you wish 
to get descriptor information. See ÒFolder Type ConstantsÓ 
(page 344).

descSize Input the size (in bytes) of the folder descriptor structure. 

foldDesc On input, a pointer to the folder descriptor structure. On 
output, a pointer to a Þlled-out folder descriptor structure.

function result A result code; see ÒResult CodesÓ (page 354). 

DISCUSSION

The GetFolderDescriptor function provides a pointer to a Þlled-out folder 
descriptor structure.

SPECIAL CONSIDERATIONS

Before calling the GetFolderDescriptor function, you must pass the selector 
gestaltFindFolderAttr to the Gestalt function. If the gestaltFolderDescSupport 
bit is set, GetFolderDescriptor is available. 
360 Finder Interface Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
GetFolderTypes 7
NEW WITH MAC OS 8 7

Gets the folder types from the global descriptor list. 

pascal OSErr GetFolderTypes (
UInt32 requestedTypeCount,
UInt32 *totalTypeCount,
FolderType *theTypes);

requestedTypeCount
On input, the number of folder types that can Þt in the buffer 
pointed to by the theTypes parameter.

totalTypeCount
On output, a pointer to the total number of folder types in the 
list. The totalTypeCount parameter may produce a value that is 
larger or smaller than that of the requestedTypeCount parameter. 
If totalTypeCount is equal to or smaller than the value passed in 
for requestedTypeCount and the value produced by the theTypes 
parameter is non-nil, then all folder types were returned to the 
caller.

theTypes On output, a pointer to a buffer containing a list of the folder 
types for the installed descriptors. You can step through the list 
and call GetFolderDescriptor for each folder type. You should 
usually pass a non-nil pointer to a buffer; you might pass nil 
only if you wanted to know the number of descriptors installed 
in the systemÕs global list, rather than the actual folder types of 
those descriptors.

function result A result code; see ÒResult CodesÓ (page 354).

SPECIAL CONSIDERATIONS

Before calling the GetFolderType function, you must pass the selector 
gestaltFindFolderAttr to the Gestalt function. If the 
gestaltFolderDescSupport bit is set, GetFolderType is available. 
Finder Interface Functions 361
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
IdentifyFolder 7
NEW WITH MAC OS 8 7

Gets the folder type for the speciÞed folder. 

pascal OSErr IdentifyFolder (
short vRefNum,
long dirID,
FolderType *foldType);

vRefNum The volume reference number (or the constant kOnSystemDisk 
for the startup disk) of the volume containing the folder for 
which you wish the type to be identiÞed.

dirID The directory ID number for the folder for which you wish the 
type to be identiÞed.

foldType On output, a pointer to the folder type of the folder with the 
speciÞed vRefNum and dirID parameters. 

function result A result code; see ÒResult CodesÓ (page 354).

DISCUSSION

The folder type is identiÞed for the folder speciÞed by the vRefNum and dirID 
parameters, if such a folder exists. IdentifyFolder may take several seconds to 
complete. Note that there may be multiple folder descriptors that map to an 
individual folder; IdentifyFolder returns the folder type of one of those 
descriptors.

SPECIAL CONSIDERATIONS

Before calling the IdentifyFolder function, you must pass the selector 
gestaltFindFolderAttr to the Gestalt function. If the 
gestaltFolderDescSupport bit is set, IdentifyFolder is available. 
362 Finder Interface Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
GetFolderName 7
NEW WITH MAC OS 8 7

Gets the name of the speciÞed folder.

pascal OSErr GetFolderName (
short vRefNum,
OSType foldType,
short *foundVRefNum,
Str63 name);

vRefNum The volume reference number (or the constant kOnSystemDisk 
for the startup disk) of the volume containing the folder for 
which you wish the name to be identiÞed.

foldType A constant identifying the type of the folder for which you wish 
the name to be identiÞed. See ÒFolder Type ConstantsÓ 
(page 344).

foundVRefNum On output, a pointer to the volume reference number for the 
volume containing the folder you specify in the foldType 
parameter.

name On output, a string containing the title of the folder speciÞed in 
the foldType and vRefNum parameters.

function result A result code; see ÒResult CodesÓ (page 354).

DISCUSSION

The GetFolderName function gets the name of the folder in the folder descriptor, 
not of the folder on the disk. The names may differ for a few special folders 
such as the System Folder. For relative folders, however, the actual name is 
always returned. You typically do not need to call this function.

SPECIAL CONSIDERATIONS

Before calling the GetFolderName function, you must pass the selector 
gestaltFindFolderAttr to the Gestalt function. If the 
gestaltFolderDescSupport bit is set, GetFolderName is available. 
Finder Interface Functions 363
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
InvalidateFolderDescriptorCache 7
NEW WITH MAC OS 8 7

Invalidates the cache of results from the Folder ManagerÕs previous calls to the 
FindFolder function in order to force the Folder Manager to reexamine the disk 
when FindFolder is called again on the speciÞed directory ID or volume 
reference number.

pascal OSErr InvalidateFolderDescriptorCache (
short vRefNum,
long dirID);

vRefNum The volume reference number (or the constant kOnSystemDisk 
for the startup disk) of the volume containing the folder for 
which you wish the descriptor cache to be invalidated. Pass 0 in 
this parameter to completely invalidate all folder cache 
information.

dirID The directory ID number for the folder for which you wish the 
descriptor cache to be invalidated. Pass 0 to invalidate the cache 
for all folders on the speciÞed disk.

function result A result code; see ÒResult CodesÓ (page 354).

DISCUSSION

The InvalidateFolderDescriptorCache function takes a volume reference 
number and a directory ID and searches to see if it is currently referred to as a 
cached target of folder resolution. If it is found, it is removed as the cached 
value, but the folder descriptor is otherwise left unchanged. You should not 
normally need to call InvalidateFolderDescriptorCache.

SPECIAL CONSIDERATIONS

Before calling the InvalidateFolderDescriptorCache function, you must pass 
the selector gestaltFindFolderAttr to the Gestalt function. If the 
gestaltFolderDescSupport bit is set, InvalidateFolderDescriptorCache is 
available. 
364 Finder Interface Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
Routing Files 7
This section describes functions that can be used to get information on how the 
Finder routes Þles to the System Folder.

IMPORTANT

Finder does not currently honor changes to the global 
folder routing list. Descriptions of some folder routing 
features are provided at this time for informational 
purposes only.

GetFolderRoutings 7
NEW WITH MAC OS 8 7

Gets folder routing information from the global routing list. 

pascal OSErr GetFolderRoutings (
UInt32 requestedRoutingCount,
UInt32 *totalRoutingCount,
Size routingSize,
FolderRouting *theRoutings);

requestedRoutingCount
On input, the number of folder routing structures that can Þt in 
the buffer pointed to by the theRoutings parameter. 

totalRoutingCount
On output, a pointer to the number of folder routing structures 
in the global list. If this value is less than or equal to 
requestedRoutingCount, all folder routing structures were 
returned to the caller. 

routingSize On input, the size (in bytes) of the folder routing structure; see 
ÒThe Folder Routing StructureÓ (page 353).

theRoutings Pass a pointer to a buffer containing one or more folder routing 
structures on output. If nil was passed, then only the total 
count of types will be returned in the totalRoutingCount 
parameter. 

function result A result code; see ÒResult CodesÓ (page 354). 
Finder Interface Functions 365
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
SPECIAL CONSIDERATIONS

Finder does not currently honor changes to the global folder routing list. 
Descriptions of some folder routing features are provided at this time for 
informational purposes only.

FindFolderRouting 7
NEW WITH MAC OS 8 7

Finds the destination folder from a matching folder routing structure for the 
speciÞed Þle. 

pascal OSErr FindFolderRouting (
OSType fileType,
FolderType routeFromFolder,
FolderType *routeToFolder,
RoutingFlags *flags);

fileType The Þle type speciÞed in the appropriate folder routing 
structure for the Þle for which you wish to Þnd a destination 
folder.

routeFromFolder 
The folder type of the ÒfromÓ folder for which you wish to Þnd 
a ÒtoÓ folder. An item dropped on the folder speciÞed in this 
parameter will be routed to the folder speciÞed in the 
routeToFolder parameter. 

routeToFolder On output, a pointer to the folder type of the destination folder. 

flags Pass a pointer to a variable to contain the output produced by 
the flags parameter, or nil for no response. Because no routing 
ßags are currently deÞned, 0 will be returned in this parameter. 
The flags Þeld of the folder routing structure is reserved for 
future use by Apple Computer, Inc.

function result A result code; see ÒResult CodesÓ (page 354). 
366 Finder Interface Functions

12/10/97   Apple Computer, Inc.



C H A P T E R  7

Finder Interface Reference
DISCUSSION

Both the Þle type and the folder type speciÞed must match those of a folder 
routing structure in the global routing list for the FindFolderRouting function to 
succeed.

SPECIAL CONSIDERATIONS

The system initializes the Folder ManagerÕs routing tables with a resource of 
type 'nrt#' located in the System Þle. You should not modify or rely on the 
contents of the 'nrt#' resource in the System Þle; use only the 
FindFolderRouting function to find the appropriate folder routing information.

Finder does not currently honor changes to the global folder routing list. 
Descriptions of some folder routing features are provided at this time for 
informational purposes only.

AddFolderRouting 7
NEW WITH MAC OS 8 7

Adds a folder routing structure to the global routing list.

SPECIAL CONSIDERATIONS

Finder does not currently honor changes to the global routing list.

RemoveFolderRouting 7
NEW WITH MAC OS 8 7

Removes a folder routing structure from the global routing list.

SPECIAL CONSIDERATIONS

Finder does not currently honor changes to the global routing list.
Finder Interface Functions 367
12/10/97   Apple Computer, Inc.



C H A P T E R  7  

Finder Interface Reference
368 Finder Interface Functions

12/10/97   Apple Computer, Inc.



A P P E N D I X  A
Version History A

This document has had the following releases:

Table A-1 Mac OS 8 Toolbox Reference Revision History

Version Notes

Dec. 10, 1997 The following corrections were made:

ÒDrawing Appearance-Compliant ControlsÓ (page 35). 
Noted that an error would be returned by those 
control-drawing functions that may not be passed the 
kThemeStatePressed value.

ÒWindow Region ConstantsÓ (page 215). ClariÞed the 
constant descriptions.

GetNewDialog (page 268). SpeciÞed the creation of a 
color graphics port under Appearance when the 
kDialogFlagsUseThemeBackground feature bit of the 
'dlgx' resource is set.

ÒKeyboard font character codesÓ (page 302). ClariÞed 
the descriptions of those character codes that differ in 
right-to-left and left-to-right script systems.

ÒFolder Type ConstantsÓ (page 344). Expanded the 
description of the kApplicationSupportFolderType 
constant.

ÒGlossaryÓ (page 371). Added missing window region 
deÞnitions. 

Dec. 2, 1997 PDF formatting improved.

Nov. 3, 1997 First document release.
369
12/10/97   Apple Computer, Inc.



A P P E N D I X  

Version History
370
12/10/97   Apple Computer, Inc.



Glossary
action function A function that performs 
an action in response to the user holding 
the mouse button down while the cursor is 
in a control. 

activate event A type of event that 
indicates that a window is becoming active 
or inactive.   Each activate event speciÞes 
the window to be changed and the direction 
of the change (that is, whether itÕs becoming 
active or inactive).

active control A control in which the 
Control Manager responds to a userÕs 
mouse actions by providing visual feedback 
(for example, by switching a button to its 
depressed state). 

active window The frontmost window on 
the desktop, the one in which the user is 
currently working. The active window is 
designated by racing stripes in the title bar, 
active controls, and highlighted selections. 

A5 world On 68K-based computers, an 
area of memory in an applicationÕs partition 
that contains the QuickDraw global 
variables, the application global variables, 
the application parameters, and the jump 
tableÑall of which are accessed through the 
A5 register. 

alert An alert sound, an alert box, or both. 
Alerts warn the user of an unusual or a 
potentially undesirable situation occurring 
within an application. See also alert box 
and alert sound. 

alert box A window that an application 
displays on the screen to warn the user or to 
report an error to the user. An alert box 
typically consists of text describing the 
situation and buttons that require the user 
to acknowledge or rectify the problem. An 
alert box may or may not be accompanied 
by an alert sound. See also caution alert, 
note alert, and stop alert. 

alert color table resource A resource (of 
type 'actb') that lets an application display 
an alert box using colors other than the 
systemÕs default window colors. 

alert resource A resource (of type 'ALRT') 
that speciÞes alert sounds, a display 
rectangle, and an item list for an alert box. 

alert sound An audible signal from the 
Macintosh speaker that warns the user of an 
unusual or a potentially undesirable 
situation occurring within an application. 
An alert sound may or may not be 
accompanied by an alert box. 

alias An object that represents another 
Þle, directory, or volume. 

alias Þle A Þle that contains a record that 
contains a pointer to another Þle, directory, 
or volume. An alias Þle is displayed by the 
Finder as an alias. 

alias record A data structure created by 
the Alias Manager to identify a Þle, 
directory, or volume.
371
12/10/97   Apple Computer, Inc.



G L O S S A R Y
alias target The Þle, directory, or volume 
described by the alias record. 

Appearance Manager The operating 
system service that provides the underlying 
support for themes. The Appearance 
Manager manages all aspects of themes and 
theme switching, including the Appearance 
control panel, support for a variety of color 
data, and support for animation and sound.

Appearance-compliant A feature that 
supports the Appearance Manager. 

Apple event A high-level event whose 
structure and interpretation are determined 
by the Apple Event Interprocess Messaging 
Protocol. 

Apple Menu Items folder A directory 
located in the System Folder for storing 
desk accessories, applications, folders, and 
aliases that the user wants to display in and 
access from the Apple menu. 

application-deÞned Þlter function An 
application-deÞned function to handle 
event Þltering. See also event filter function. 

application heap An area of memory in 
the application heap zone in which memory 
is dynamically allocated and released on 
demand. The heap can contain application 
code, data structures, resource maps, and 
other items as needed. 

application partition A partition of 
memory reserved for use by an application. 
The application partition consists of free 
space, the application heap, the 
applicationÕs stack, and the applicationÕs A5 
world. 

asynchronous arrow  A control which 
indicates through a simple animation that a 
background process is in progress. 
Compare progress indicator.

auto-key event An event indicating that a 
key is still down after a certain amount of 
time has elapsed. 

auxiliary window record A data structure 
that the Window Manager uses to tie 
together a list of windows and their 
corresponding window color information 
tables. 

background process A process that isnÕt 
currently interacting with the user. 
Compare foreground process. 

bevel button A button containing a 
self-descriptive icon, picture, text, or any 
combination of the three, that performs an 
action when pressed.

bundle bit A ßag in a ÞleÕs Finder 
information record that informs the Finder 
that a bundle ('BNDL') resource exists for the 
Þle. A ÞleÕs Finder information record is 
stored in a volumeÕs catalog Þle. The Finder 
uses the information in the bundle resource 
to associate icons with the Þle. 

catalog Þle A special Þle, located on a 
volume, that contains information about the 
hierarchical organization of Þles and folders 
on that volume. 

caution alert An alert box that warns the 
user of an operation that may have 
undesirable results if allowed to continue. A 
caution alert gives the user the choice of 
continuing the action (by clicking the OK 
button) or stopping the action (by clicking 
the Cancel button). A caution alert is 
372
12/10/97   Apple Computer, Inc.



G L O S S A R Y
identiÞed by an icon bearing an 
exclamation point in the upper-left corner 
of the alert box. See also note alert and stop 
alert. 

character code A value that represents a 
particular character. The character code that 
is generated depends on the virtual key 
code and the state of the modiÞer keys. In 
the Roman script system, character codes 
are speciÞed in the extended version of 
ASCII (the American Standard Code for 
Information Interchange). 

checkbox A control that appears onscreen 
as a small square with an accompanying 
title. A checkbox displays one of three 
settings: on (indicated by an X inside the 
box), off, or mixed (indicated by a dash 
inside the box. When the user clicks a 
checkbox, the application reverses its 
setting. See also radio button. 

clock control  A control that combines the 
features of little arrows and an edit text 
Þeld into a control which displays a date 
and/or time.

close box The small white box on the left 
side of the title bar of an active window. 
Clicking it closes the window. 

close region The area occupied by a 
windowÕs close box. See also close box. 

collapse box A square control which 
appears on the far right of a window's title 
bar. Clicking it once hides all of the window 
except the title bar; clicking it again makes 
the window reappear.

collapse region The area occupied by a 
windowÕs collapse box. See also collapse 
box.

Command-key equivalent Refers 
speciÞcally to a keyboard equivalent that 
the user invokes by holding down the 
Command key and pressing another key 
(other than a modiÞer key) at the same 
time. Compare keyboard equivalent. 

content region The part of a window in 
which the contents of a document, the size 
box, and the window controls (including 
the scroll bars) are displayed. 

context The information about a process 
maintained by the Process Manager. This 
information includes the current state of the 
process, the address and size of its partition, 
its type, its creator, a copy of its 
low-memory global variables, information 
about its 'SIZE' resource, and a process 
serial number. 

contextual menu A pop-up menu 
containing useful commands and assistance 
speciÞc to the item being pointed at by the 
cursor.

control An onscreen object that the user 
can manipulate with the mouse. By 
manipulating a control, the user can take an 
immediate action or change a setting to 
modify a future action. 

control color table In an item color table 
resource, a speciÞcation for the colors used 
to draw the various parts of a control. 

control deÞnition function A function 
that deÞnes the appearance and behavior of 
a control. A control deÞnition function, for 
example, draws the control. See also 
standard control deÞnition functions. 
373
12/10/97   Apple Computer, Inc.



G L O S S A R Y
control deÞnition ID A number passed to 
control-creation functions to indicate the 
type of control. It consists of the control 
deÞnition functionÕs resource ID (in the 
upper 12 bits) and a variation code (in the 
lower 4 bits). 

control list A series of entries pointing to 
the descriptions of the controls associated 
with the window. 

Control Manager A collection of 
functions that applications use to create and 
manipulate controls, especially those in 
windows. 

Control Panels folder A directory located 
in the System Folder for storing control 
panels, which allow users to modify the 
work environment of their Macintosh 
computer. 

control record A data structure of type 
ControlRecord, which the Control Manager 
uses to store all the information it needs for 
its operations on a control. 

current menu list A data structure that 
contains handles to the menu records of all 
menus in the current menu bar and the 
menu records of any submenus or pop-up 
menus that an application inserts into the 
list. 

current process The process that is 
currently executing and whose direct data 
area or A5 world is valid; this process can 
be in the background or the foreground. 

cursor Any 256-bit image, deÞned by a 
16-by-16 bit square. The mouse driver 
displays the current cursor and maps the 

movement of the mouse to relative 
locations on the screen as the user moves 
the mouse. 

custom alert box An alert box whose 
upper-left corner contains blank space or 
displays an icon other than those used by 
caution alerts, stop alerts, or note alerts. 

customized icon An icon created by the 
user or by an application and stored with a 
resource ID of Ð16455 in the resource fork of 
a Þle. A Þle with a customized icon has the 
hasCustomIcon bit set in its Finder flags field. 

data fork The part of a Þle that contains 
application code (on PowerPCÐbased 
computers) and data accessed using the File 
Manager. Data stored by the File Manager 
usually corresponds to data entered by the 
user; the application creating a Þle can store 
and interpret the data in the data fork in 
whatever manner is appropriate. 

default button In an alert box or a dialog 
box, the button whose action is invoked 
when the user presses the Return key or the 
Enter key. The Dialog Manager 
automatically draws a bold outline around 
the default button in alert boxes; 
applications should draw a bold outline 
around the default button in dialog boxes. 
The default button should invoke the 
preferred action, which, whenever possible, 
should be a ÒsafeÓ actionÑthat is, one that 
doesnÕt cause loss of data. 

desktop The working environment 
displayed on the Macintosh computer: the 
background area on the screen. 
374
12/10/97   Apple Computer, Inc.



G L O S S A R Y
desktop database A Finder-maintained 
database of icons, Þle types, applications, 
version data, and comments for all volumes 
over 2 MB. Compare Desktop Þle. 

Desktop Þle A resource Þle in which the 
Finder stores icons, Þle types, applications, 
version data, and comments for all volumes 
less than 2 MB. Compare desktop database. 

Desktop Folder A directory, located at the 
root level of each volume, used by the 
Finder for storing information about the 
icons that appear on the desktop area of the 
screen. The Desktop Folder is invisible to 
the user. What the user sees onscreen is the 
union of the contents of Desktop Folders for 
all mounted volumes. 

dial A control, similar to a scroll bar, that 
graphically represents the ranges of values 
that a user can set or that simply displays 
the value, magnitude, or position of 
something, typically in some pseudo-analog 
form. 

dialog box A window that an application 
displays on the screen to solicit information 
from the user before the application carries 
out the userÕs command. See also modal 
dialog box, modeless dialog box, and 
movable modal dialog box. 

dialog color table resource A resource (of 
type 'dctb') that lets an application display 
a dialog box using colors other than the 
systemÕs default window colors. 

Dialog Manager A collection of functions 
that applications use to implement alerts 
and dialog boxes. 

dialog record A data structure of type 
DialogRecord that the Dialog Manager uses 
to create dialog boxes and alerts. 

dialog resource A resource (of type 
'DLOG') that specifies the window type, 
display rectangle, and item list for a dialog 
box. 

disabled item In an alert box or a dialog 
box, an item for which the Dialog Manager 
does not report user events. An example of 
a disabled item is static text, which typically 
does not respond to clicks. 

disclosure triangle A triangular control 
governing how items are displayed in a list. 
The disclosure triangle can point in two 
directions: right and down. When the 
disclosure triangle points to the right, one 
item is displayed in the list. When the 
arrow points downward, the original item 
and its subitems are displayed in the list.

disk-inserted event An event indicating 
that a disk has been inserted into a disk 
drive. 

display rectangle A rectangle that deÞnes 
the size and location of an item in an alert 
box or a dialog box. The display rectangle is 
speciÞed in an item list and uses 
coordinates local to the alert box or dialog 
box. 

divider A line used in menus to separate 
groups of menu items. 

document window A window in which 
the user enters text, draws graphics, or 
otherwise enters or manipulates data. 

drag region The window frame, including 
the title bar and window outline, but 
excluding the close box, zoom box, and 
375
12/10/97   Apple Computer, Inc.



G L O S S A R Y
collapse box. The user can move a window 
on the desktop by dragging the drag region. 
See also frame.

edit text Þeld A control that appears as a 
rectangular box inside a dialog box. The 
user enters text in the edit text Þeld to 
provide information to an application. 
Compare static text Þeld.

edition The data written to an edition 
container by a publisher. A publisher writes 
data to an edition whenever a user saves a 
document that contains a publisher, and 
subscribers in other documents may read 
the data from the edition whenever it is 
updated. 

embedding hierarchy  The hierarchy used 
by the Dialog Manager to indicate the order 
in which controls are embedded. For 
example, a tab control may have a radio 
button control embedded within it. 

enabled item  In an alert box or a dialog 
box, an item for which the Dialog Manager 
reports user events. For example, the Dialog 
Manager reports clicks in an enabled OK 
button. 

event The means by which the Event 
Manager communicates information about 
user actions, changes in the processing 
status of the application, and other 
occurrences that require a response from the 
application. 

event Þlter function An 
application-deÞned function that 
supplements the Dialog ManagerÕs ability 
to handle eventsÑfor example, an event 
Þlter function can test for disk-inserted 
events and can allow background 
applications to receive update events. 

Event Manager The collection of 
functions that an application can use to 
receive information about actions 
performed by the user, to receive notice of 
changes in the processing status of the 
application, and to communicate with other 
applications. 

event mask An integer with one bit 
position for each event type. You specify an 
event mask as a parameter to Event 
Manager functions to specify the event 
types you want your application to receive, 
thereby disabling (or Òmasking outÓ) the 
events you are not interested in receiving. 

event record A data structure of type 
EventRecord that your application uses 
when retrieving information about an 
event. The Event Manager returns, in an 
event record, information about what type 
of event occurred (a mouse click or 
keypress, for example) and additional 
information associated with the event. 

extended menu resource In 
Appearance-compliant applications, a 
resource of type 'xmnu' that contains 
additional menu information not contained 
in the menu resource. For a given menu, 
both the menu resource and extended menu 
resource have the same ID. Compare menu 
resource. 

Extensions folder A directory located in 
the System Folder for storing system 
extension Þles such as printer and network 
drivers and Þles of types 'INIT', 'scri', 
and 'appe'. 

Þle A named, ordered sequence of bytes 
stored on a Mac OS volume, divided into a 
data fork and a resource fork. 
376
12/10/97   Apple Computer, Inc.



G L O S S A R Y
Finder An application that works with the 
system software to keep track of Þles and 
manage the userÕs desktop display. 

focus ring A colored border that 
highlights the currently active edit text Þeld 
or scrolling list in a dialog box in order to 
indicate to user which item has keyboard 
focus. See also keyboard focus. 

folder descriptor A data structure that 
describes a folder and its contents. Folders 
described by a folder descriptor can be 
found using the findFolder function, even if 
nested inside another folder. 

Fonts folder A directory located in the 
System Folder for storing fonts. 

foreground process The process currently 
interacting with the user; it appears to the 
user as the active application. The 
foreground process displays its menu bar, 
and its windows are in front of the 
windows of other applications. Compare 
background process. 

frame The part of a window drawn 
automatically by the Window Manager, 
namely, the title bar, including the close 
box, zoom box, and collapse box, and the 
windowÕs outline. 

global coordinate system The coordinate 
system that represents all potential 
QuickDraw drawing space. The origin of 
the global coordinate systemÑthat is, the 
point (0,0)Ñis at the upper-left corner of the 
main screen. Compare local coordinate 
system. 

graphics port A complete, individual 
drawing environment with an independent 
coordinate system. Each window is drawn 
in a graphics port. 

gray area The area within a scroll bar, 
excluding the scroll arrows and the scroll 
box. When the user clicks the gray area of a 
scroll bar, the application moves the 
displayed area of the document by an entire 
window less one line (or column, row, or 
character). 

gray region A region that represents all 
available desktop areaÑthat is, a collection 
of rounded-corner rectangles representing 
the display areas of all monitors available to 
a computer. 

group box A control that consists of a 
rectangular frame which may or may not 
contain a title. It is used to provide a 
well-deÞned area in a dialog box into which 
text, pictures, icons or other controls can be 
embedded.

grow image An outline of a windowÕs 
new frame, drawn on the screen while the 
user is resizing the window with the size 
box. 

help balloon A rounded-rectangle 
window that contains explanatory 
information for the user. With tips pointing 
at the objects they annotate, help balloons 
look like bubbles used for dialog in comic 
strips. Help balloons are turned on by the 
user from the Help menu; when Balloon 
Help assistance is on, a help balloon 
appears whenever the user moves the 
cursor over an area that is associated with it. 

hierarchical menu A menu to which a 
submenu is attached. 
377
12/10/97   Apple Computer, Inc.



G L O S S A R Y
high-level event An event sent from one 
application to another requesting transfer of 
information or performance of some action. 

high-level event queue A separate queue 
that the Event Manager maintains to store 
high-level events transmitted to an 
application. The Event Manager maintains a 
high-level event queue for each open 
application capable of receiving high-level 
events. 

hot spot A point that the mouse driver 
uses to align the cursor with the mouse 
location. 

human interface objects Execution-time 
structures that encapsulate one or more 
human interface elements, such as 
windows, dialog boxes, or controls. Human 
interface objects support such 
object-oriented programming features as 
inheritance, subclassing, and 
polymorphism.

icon An image that represents an object, a 
concept, or a message. 

icon family The set of icons that represent 
an objectÑsuch as an application or a 
documentÑdisplayed by the Finder. An 
entire icon family consists of large (32-by-32 
pixel) and small (16-by-16 pixel) icons, each 
with a mask, and each available in three 
different versions of color: black and white, 
4 bits of color data per pixel, and 8 bits of 
color data per pixel. 

icon suite One or more handles to icon 
data that represents icons from a single icon 
family. Some Icon Utilities functions accept 
a handle to an icon suite and draw the 

appropriate icon from that suite for the 
destination rectangle and the bit depth of 
the display device. 

image well A control that is used to 
display non-text visual content on a white 
background surrounded by a rectangular 
frame.

inactive control A control that has no 
meaning or effect in the current contextÑ
for example, the scroll bars in an empty 
window. The Control Manager dims 
inactive controls or otherwise visually 
indicates their inactive state. 

inactive window A window in which the 
user is not working. 

indicator A moving part in a dial or slider 
control. A user moves an indicator to set a 
value, and an application moves it to 
indicate the current setting of the control. In 
a scroll bar, the scroll box is the indicator. 

item color table resource A resource (of 
type 'ictb') that an application can use to 
display an alert box or a dialog box with 
items using a typeface, font style, font size, 
or colors other than the systemÕs default 
font and colors. (For an application to use a 
nonstandard typeface, font style, or font 
size, the user must have a color monitor.) 

item list A resource (of type 'DITL') that 
speciÞes the itemsÑsuch as buttons and 
static textÑto display in an alert box or a 
dialog box. 

item number An integer that identiÞes an 
item in either a menu or a dialog box. Menu 
items are assigned item numbers starting 
with 1 for the Þrst menu item in the menu, 2 
for the second menu item in the menu, and 
378
12/10/97   Apple Computer, Inc.



G L O S S A R Y
so on, up to the number of the last menu 
item in the menu. Dialog items are assigned 
numbers that correspond to the itemÕs 
position in its item list. For example, the 
Þrst item listed in a dialog item list is item 
number 1. 

keyboard equivalent A keyboard 
combination of one or more modiÞer keys 
and a character key that invokes a 
corresponding menu command when 
pressed by the user. 

keyboard focus A property that 
determines which control in a dialog will 
receive all keystrokes (keyboard events), as 
selected by keyboard navigation or clicking. 

key-down event An event indicating that 
the user pressed a key on the keyboard. 

key-up event An event indicating that the 
user released a key on the keyboard. 

list box A control that combines a 
rectangular frame, scroll bar(s), and a 
scrolling list.

little arrow Up- and down-arrows 
accompanying a text box that contains a 
value, such as a date. Clicking the up arrow 
increases the value displayed. Clicking the 
down arrow decreases the value displayed. 

local coordinate system The coordinate 
system deÞned by the port rectangle of a 
graphics port. When the Window Manager 
creates a window, it places the origin of the 
local coordinate system at the upper-left 
corner of the windowÕs port rectangle. 
Compare global coordinate system. 

location name An identiÞer for the 
network location of the computer on which 
a Program-to-Program Communications 
(PPC) port resides. A location name consists 
of an object string, a type string, and a zone. 

low-level event The type of event 
returned by the Event Manager to report 
very low level hardware and software 
occurrences. Low-level events report 
actions by the user, changes in windows on 
the screen, and that the Event Manager has 
no other events to report. Compare 
high-level event, operating-system event. 

major switch A change of the foreground 
process. The Process Manager switches the 
context of the foreground process with the 
context of a background process (including 
the A5 worlds and low-memory global 
variables) and brings the background 
process to the front, sending the previous 
foreground process to the background. See 
also context. 

menu A user interface element you can 
use in your application to allow the user to 
view or choose an item from a list of choices 
and commands that your application 
provides. See also hierarchical menu, 
pop-up menu, pull-down menu, and 
submenu. 

menu bar A white rectangle that is tall 
enough to display menu titles in the height 
of the system font and system font size, and 
with a black lower border that is one pixel 
tall. The menu bar extends across the top of 
the startup screen and contains the title of 
each available pull-down menu. 
379
12/10/97   Apple Computer, Inc.



G L O S S A R Y
menu bar deÞnition function A function 
that draws the menu bar and performs 
most of the drawing activities related to the 
display of menus when the user moves the 
cursor between menus. This function, in 
conjunction with the menu deÞnition 
function, deÞnes the general appearance 
and behavior of menus. 

menu bar entry A menu color entry 
record that contains 0 in both the mctID and 
mctItem fields. A menu bar entry defines the 
color for an applicationÕs menu bar and 
deÞnes default colors for its menu titles, 
menu items, and background color of 
menus. 

menu bar resource A resource (of type 
'MBAR') that specifies the order and resource 
ID of each menu in a menu bar. 

menu color entry record A data structure 
of type MCEntry that deÞnes the colors for an 
applicationÕs menu bar, menus, or menu 
items. The Þrst two Þelds of a menu color 
entry record, mctID and mctItem, deÞne 
whether the entry is a menu bar entry, a 
menu title entry, or a menu item entry. 

menu color information table An array of 
menu color entry records, maintained by 
the Menu Manager, that deÞne the standard 
color for the menu bar, titles of menus, text 
and characteristics of menu items, and 
background color of a displayed menu. If 
you do not add any entries to this table, the 
Menu Manager draws your menus using 
the default colors, black on white. 

menu color information table resource A 
resource (of type 'mctb') that speciÞes the 
colors for an applicationÕs menu bar, menus, 
and menu items. 

menu deÞnition function A function that 
performs all the drawing of menu items 
within a speciÞc menu. This function, in 
conjunction with the menu bar deÞnition 
function, deÞnes the general appearance 
and behavior of menus. 

menu ID A number that you assign to a 
menu in your application. Each menu in 
your application must have a unique menu 
ID. 

menu item In a menu, a rectangle with 
text and other characteristics identifying a 
command that the user can choose. 

menu item entry A menu color entry 
record that contains nonzero values in both 
the mctID and mctItem Þelds. A menu item 
entry deÞnes colors for the mark, text, and 
keyboard equivalent of items in a speciÞc 
menu. It also deÞnes the default 
background color of a menu. 

menu title entry A menu color entry 
record that contains nonzero values in both 
the mctID and mctItem Þelds. A menu item 
entry deÞnes colors for the mark, text, and 
keyboard equivalent of items in a speciÞc 
menu. It also deÞnes the default 
background color of a menu.

menu list A data structure that contains 
handles to the menu records of one or more 
menus (although a menu list can be empty). 
Compare current menu list. 

Menu Manager The collection of 
functions that an application can use to 
create, display, and manage its menus. 

menu record A data structure of type 
MenuInfo that the Menu Manager uses to 
maintain information about a menu. 
380
12/10/97   Apple Computer, Inc.



G L O S S A R Y
menu resource A resource (of type 
'MENU') that specifies the menu title and the 
individual characteristics of items in a 
menu. 

menu title entry A menu color entry 
record that contains a nonzero value in the 
mctID field and contains 0 in the mctItem 
Þeld. A menu title entry deÞnes colors for 
the title, items, and background color of a 
speciÞc menu. It also deÞnes the default 
menu bar color. 

minimum partition size The actual 
partition size limit below which an 
application cannot run. 

minor switch A change in the context of a 
process. The Process Manager switches the 
context of a process to give time to a 
background process without bringing the 
background process to the front. 

modal dialog box A dialog box that puts 
the user in the state or ÒmodeÓ of being able 
to work only inside the dialog box. A modal 
dialog box resembles an alert box. The user 
cannot move a modal dialog box and can 
dismiss it only by clicking its buttons. See 
also modeless dialog box and movable 
modal dialog box. 

modeless dialog box A dialog box that 
looks like a document window without a 
collapse box or scroll bars. The user can 
move a modeless dialog box, make it 
inactive and active again, and close it like 
any document window. See also modal 
dialog box and movable modal dialog box. 

modiÞer keys The Shift, Option, 
Command, Control, and Caps Lock keys. 
You can use modiÞer keys in conjunction 
with character keys to form keyboard 
equivalents. See also keyboard equivalents.

mouse-down event An event indicating 
that the user pressed the mouse button. 

mouse location The location of the cursor 
at the time the event occurred. 

mouse-moved event An event indicating 
that the cursor is outside of a speciÞed 
region. 

mouse-up event An event indicating that 
the user released the mouse button. 

movable modal dialog box A modal 
dialog box that has a title bar (with no close 
box) by which the user can drag the dialog 
box. See also dialog box, modal dialog box, 
and modeless dialog box. 

note alert An alert box that informs users 
of a minor mistake that wonÕt have any 
disastrous consequences if left as is. Usually 
a note alert simply offers information, and 
the user responds by clicking the OK 
button. A note alert is identiÞed by an icon 
bearing a face and a cartoonlike dialog 
balloon in the upper-left corner of the alert 
box. See also caution alert and stop alert. 

null event An event indicating that no 
events of the requested types exist in the 
applicationÕs event stream. 

offset point The point in a region whose 
horizontal and vertical offsets from the 
upper-left corner of the regionÕs enclosing 
rectangle are the same as the offsets of a 
speciÞed point. The DragGrayRgn function 
381
12/10/97   Apple Computer, Inc.



G L O S S A R Y
uses an offset point to limit the motion of a 
region and to calculate the distance a region 
has moved. 

operating-system event An event 
returned by the Event Manager to 
communicate information about changes in 
the operating status of applications 
(suspend and resume events) and to report 
that the user has moved the cursor outside 
of an area speciÞed by the application 
(mouse- moved events). Compare low-level 
event, high-level event. 

Operating System Event Manager The 
collection of low-level functions that 
manage the Operating System event queue. 

Operating System event queue A queue 
that the Operating System Event Manager 
creates and maintains. The Operating 
System Event Manager detects and reports 
low-level hardware-related events such as 
mouse clicks, keypresses, and disk 
insertions and places these events in the 
Operating System event queue. 

part code An integer from 1 through 253 
that stands for a particular part of a control. 
The FindControl and TrackControl functions 
return a part code to indicate the location of 
the cursor when the user presses the mouse 
button. 

placard A rectangular control used as an 
information display.

pop-up menu A menu that appears 
elsewhere than the menu bar. The Control 
Manager provides a control deÞnition 
function for applications to use when 
implementing pop-up menus.   

pop-up button A button which, when the 
user presses the mouse and the cursor is 
over the pop-up button, displays associated 
menu items.

port name A unique identiÞer for a 
particular application on a computer, used 
for the purposes of communication between 
applications. A port name consists of a 
name string, a type string, and a script code. 

port rectangle An entry in the graphics 
port data structure, described in Inside 
Macintosh: Imaging With QuickDraw. 
Ordinarily, the port rectangle represents the 
area of a graphics port available for 
drawingÑthat is, the content region of a 
window. 

Preferences folder A directory located in 
the System Folder for holding Þles that 
record usersÕ conÞguration settings for 
applications on a particular Macintosh 
computer. 

preferred partition size The partition size 
at which an application can run most 
effectively. The Operating System attempts 
to secure this partition size upon launch of 
the application. 

PrintMonitor Documents folder A 
directory located in the System Folder for 
storing spooled documents waiting to be 
printed. 

process An open application or, in some 
cases, an open driver. (Only drivers that are 
not opened in the context of another 
application are considered processes.) 
382
12/10/97   Apple Computer, Inc.



G L O S S A R Y
process serial number A number 
assigned by the Process Manager to identify 
a particular instance of an application 
during a single boot of the local machine. 

progress indicator A control indicating 
that a lengthy operation is occurring. Two 
types of progress indicators can be used: an 
indeterminate progress indicator reveals that 
an operation is occurring but does not 
indicate its duration; a determinate progress 
indicator displays how much of the 
operation has been completed. 

pull-down menu A menu that is 
identiÞed by a menu title (a word or an 
icon) in the menu bar. 

push button A control that appears on the 
screen as a rounded rectangle with a title 
centered inside. When the user clicks a push 
button, the application performs the action 
described by the buttonÕs title. Button 
actions are usually performed 
instantaneously. Examples include 
completing operations deÞned by a dialog 
box and acknowledging an error message in 
an alert box. 

query document A Þle of Þle type 'qery' 
containing commands and data in a format 
appropriate for a database or other data 
source. An application uses high-level Data 
Access Manager functions to open a query 
document.   

radio button A control that appears 
onscreen as a small circle. A radio button 
displays one of two settings: on (indicated 
by a black dot inside the circle) or off. A 
radio button is always a part of a group of 
related radio buttons in which only one 
button can be on at a time. When the user 

clicks an unmarked radio button, the 
application turns that button on and turns 
the other buttons in its group off. 

Rescued Items from volume name 
folder A directory located in the Trash 
directory and created by the Finder at 
system startup, restart, or shutdown only 
when it Þnds items in the Temporary Items 
folder, usually after a system crash. The 
Rescued Items from volume name folder is 
named for the volume on which the 
Temporary Items folder exists. When a user 
empties the Trash, all Rescued Items folders 
disappear. 

resource Any data stored according to a 
deÞned structure in a resource fork of a Þle; 
the data in a resource is interpreted 
according to its resource type. 

resource fork The part of a Þle that 
contains the ÞleÕs resources. A resource fork 
consists of a resource map and resources. 

resource ID A number that identiÞes a 
speciÞc resource of a given resource type. 

resource type A sequence of four 
characters that uniquely identiÞes a speciÞc 
type of resource. 

resume event An event indicating that an 
application has been switched back into the 
foreground and can resume interacting with 
the user. 

return receipt A high-level event that 
indicates whether the other application 
accepted the high-level event sent to it by 
your application. 

root control The base control in a window 
hierarchy. To embed controls in a window, 
you must create a root control for that 
383
12/10/97   Apple Computer, Inc.



G L O S S A R Y
window. The root control is the container 
for all other window controls. Once you 
have created a root control, newly-created 
controls will automatically be embedded in 
the root control when you call other 
functions.

scroll arrow An arrow at either end of a 
scroll bar. When the user clicks a scroll 
arrow, the application moves a document or 
list one line (or some similar measure) in 
the direction of the arrow. When the user 
holds the mouse button down while the 
cursor is over a scroll arrow, the application 
moves the document or list continuously in 
the direction of the arrow. 

scroll bar A control with which the user 
can change the portion of a document 
displayed within a window. A scroll bar is a 
light gray rectangle with scroll arrows at 
each end. Windows can have a horizontal 
scroll bar, a vertical scroll bar, or both. A 
vertical scroll bar lies along the right side of 
a window. A horizontal scroll bar runs 
along the bottom of a window. Inside the 
scroll bar is a rectangle called the scroll box. 
The rest of the scroll bar is called the gray 
area. The user can move through a 
document by manipulating the parts of the 
scroll bar. 

scroll box A box that slides up and down 
or back and forth across a scroll bar. The 
position of the scroll box in a scroll bar 
indicates the position of the window 
contents relative to the entire document. 
When the user drags the scroll box, the 
application displays a different portion of 
the document. 

script code A value that deÞnes the script 
to use when displaying text. Scripts (more 
often called text encodings) generally reßect 
differences in characters or languages based 
on geographical location. Script codes are 
sometimes called script IDs. See also text 
encoding, text encoding speciÞcation. 

signature A resource whose type is 
deÞned by a four-character sequence that 
uniquely identiÞes an application to the 
Finder. A signature is located in an 
applicationÕs resource fork. 

size box A box in the lower-right corner 
of windows that can be resized. Dragging 
the size box resizes the window. 

size region The area occupied by a 
windowÕs size box. See also size box. 

size resource A resource (of type 'SIZE') 
that speciÞes the operating characteristics, 
minimum partition size, and preferred 
partition size of an application. 

slider A control that displays a range of 
values, magnitudes, or positions. A 
horizontally- and vertically-mobile 
indicator is used to increase or decrease the 
value.

standard control deÞnition 
functions Three control deÞnition 
functions, stored as 'CDEF' resources in the 
System Þle. The 'CDEF' resource with 
resource ID 0 deÞnes the look and behavior 
of buttons, checkboxes, and radio buttons; 
the 'CDEF' resource with resource ID 1 
deÞnes the look and behavior of scroll bars; 
and the 'CDEF' resource with resource ID 63 
deÞnes the look and behavior of pop-up 
menus. 
384
12/10/97   Apple Computer, Inc.



G L O S S A R Y
standard state The size and location that 
an application deems the most convenient 
for a window. 

Startup Items folder A directory located in 
the System Folder for storing applications 
and desk accessories that the user wants 
started up every time the Finder starts up. 

static text Þeld A control that displays 
static (unchangeable by the user) text labels 
in a window. Compare edit text Þeld.

stationery pad A document that a user 
creates to serve as a template for other 
documents. The Finder tags a document as 
a stationery pad by setting the isStationery 
bit in the Finder ßags Þeld of the ÞleÕs Þle 
information record. An application that is 
asked to open a stationery pad should copy 
the templateÕs contents into a new 
document and open the document in an 
untitled window. 

stop alert An alert box that informs the 
user of a problem or situation so serious 
that the userÕs desired action cannot be 
completed. Stop alerts typically have only a 
single button (OK), because all the user can 
do is acknowledge that the action cannot be 
completed. A stop alert is identiÞed by an 
icon of an upraised hand in the upper-left 
corner of the alert box. See also caution 
alert and note alert. 

structure region The entire area occupied 
by a window, including both the window 
frame and the content region. 

submenu A menu that is attached to 
another menu. 

suspend event An event indicating that 
the execution of your application is about to 
be suspended as the result of a major switch. 
The application is suspended at the 
applicationÕs next call to WaitNextEvent or 
EventAvail. 

system alert sound A sound resource that 
is stored in the System Þle and played 
whenever system software or an application 
uses the Sound Manager function SysBeep. 
With the Sound control panel, the user can 
select which sound to use. 

System Þle A Þle, located in the System 
Folder, that contains the basic system 
software plus some system resources, such 
as sound and keyboard resources.The 
System Þle behaves like a folder in this 
regard: although it looks like a suitcase 
icon, double-clicking it opens a window 
that reveals movable resource Þles (such as 
sounds, keyboard layouts, and script 
system resource collections) stored in the 
System Þle. 

System Folder A directory containing the 
software that Macintosh computers use to 
start up. The System Folder includes a set of 
folders for storing related Þles, such as 
preferences Þles that an application might 
need when starting up. 

tab control  A control that appears as a 
row of folder tabs on top of a pane. It allows 
multiple panes to appear in the same 
window. See also pane.

Temporary Items folder A directory 
located at the root level of a volume for 
storing temporary buffer Þles created by 
applications. The Temporary Items folder is 
invisible to the user. 
385
12/10/97   Apple Computer, Inc.



G L O S S A R Y
text encoding The correspondence 
between numerical character codes and the 
Þnal printable glyphs. For instance, 0x42 is 
the ASCII code for the letter B. Text 
encodings can describe arbitrary character 
sets (such as ASCII or Unicode) or those 
based on geographical differences (for 
example, Japanese Kanji).

text encoding speciÞcation A value of 
type TextEncoding that deÞnes a text 
encoding. 

text style table In an item color table 
resource, a speciÞcation for the typeface, 
font style, font size, and color of text in an 
editable text item or a static text item. 

title bar The bar at the top of a window 
that displays the window name, contains 
the close and zoom boxes, and indicates 
whether the window is active.

title bar region The entire area occupied 
by a windowÕs title bar, including the title 
text region. See also title bar and title text 
region.

title text region That portion of a 
windowÕs title bar that is occupied by the 
name of the window. See also title bar.

Toolbox Event Manager See Event 
Manager. 

Trash folder A directory at the root level 
of a volume for storing Þles that the user 
has moved to the Trash icon. After opening 
the Trash icon, the user sees the collection of 
all items that the user has moved to the 
Trash iconÑthat is, the union of 
appropriate Trash directories from all 
mounted volumes. A Macintosh computer 
set up to share Þles among users in a 

network environment maintains separate 
Trash subdirectories for remote users within 
its shared Trash directory. The Finder 
empties a Trash directory (or, in the case of 
a Þle server, a Trash subdirectory) only 
when the user of that directory chooses the 
Empty Trash command. 

universal procedure pointer A 
generalized procedure pointer that is used 
when there is some ambiguity about the 
calling conventions of the code being called. 
As used by the Mixed Mode Manager, a 
universal procedure pointer can be either a 
68K procedure pointer or the address of a 
routine descriptor.

update event An event indicating that the 
contents of a window need updating. 

update region A region maintained by the 
Window Manager that includes the parts of 
a windowÕs content region that need 
updating. The Event Manager generates 
update events as necessary, based on the 
contents of the update region, telling your 
application to update a window. 

user state The size and location that the 
user has established for a window. 

utility window A type of box that has 
some but not all features of a regular 
window. A utility window has a bar at the 
top by which it can be dragged and a close 
box, but it does not necessarily have a title, 
and is nonscrolling. Utility windows 
typically ßoat above all other windows in 
your application. 

variation code A number that selects 
among variations supported by a single 
window deÞnition function or control 
deÞnition function. The variation code is 
386
12/10/97   Apple Computer, Inc.



G L O S S A R Y
stored in the low-order 4 bits of the window 
deÞnition ID or control deÞnition ID. See 
also control deÞnition function, control 
deÞnition ID, window deÞnition function, 
and window deÞnition ID. 

virtual key code A value that represents 
the key pressed or released by the user; this 
value is always the same for a speciÞc 
physical key on a keyboard. Compare 
character code. 

visible region The part of a windowÕs 
graphics port thatÕs actually visible on the 
screenÑthat is, the part thatÕs not covered 
by other windows. 

visual separator A panel displaying 
horizontal, vertical, or rectangular elements 
used to visually separate other panels in a 
window. Rectangular visual separators can 
contain titles.

window An area on the screen that 
displays information, including user 
documents as well as communications such 
as alert boxes and dialog boxes. The user 
can open or close a window; move it 
around on the desktop; and sometimes 
change its size, scroll through it, and edit its 
contents. 

window color table The data structure in 
which the Window Manager stores the 
colors to be used for drawing a windowÕs 
frame and for highlighting selected text. 

window deÞnition function A function 
that deÞnes the general appearance and 
behavior of a window. The Window 
Manager calls the window deÞnition 
function to draw the windowÕs frame, 
determine what region of the window the 
cursor is in, draw the windowÕs size box, 

draw the windowÕs zoom box, move and 
resize the window, and calculate the 
windowÕs structure and content regions. 

window deÞnition ID An integer that 
speciÞes the resource ID of a window 
deÞnition function in the upper 12 bits and 
an optional variation code in the lower 4 
bits. When creating a new window, your 
application supplies a window deÞnition 
ID either as a Þeld in the 'WIND' resource or 
as a parameter to the NewWindow or 
NewCWindow function. 

window header  A control that runs along 
the top of a window's content region and 
provides information about the window's 
contents.

window list A list maintained by the 
Window Manager of all windows on the 
desktop. The frontmost window is Þrst in 
the window list, and the remaining 
windows appear in the order in which they 
are layered on the desktop. 

Window Manager port A graphics port 
that represents the desktop area on the 
main monitorÑthat is, a rounded-corner 
rectangle that occupies all of the main 
monitor except for the area occupied by the 
title bar. 

window origin The upper-left corner of a 
window. Usually speciÞed as (0,0), the 
window origin is expressed in coordinates 
local to the window.

window record A data structure of type 
WindowRecord (or CWindowRecord) in which 
the Window Manager stores a windowÕs 
characteristics, including the windowÕs 
graphics port, title, visibility status, and 
control list. 
387
12/10/97   Apple Computer, Inc.



G L O S S A R Y
window region Special-purpose region of 
a window. See also close region, collapse 
region, content region, drag region, size 
region, structure region, title bar region, 
title text region, and zoom region. 

window type A collection of 
characteristicsÑsuch as the shape of the 
windowÕs frame and the features of its title 
barÑthat describe a window. 

zoom box A box in the right side of a 
windowÕs title bar that the user can click to 
alternate between two different window 
sizes (the user state and the standard state). 

zoom region The area occupied by a 
windowÕs zoom box. See also zoom box. 
388
12/10/97   Apple Computer, Inc.



Index
A

AbstractCMPlugin class 331
'actb' resource type 260
ActivateControl function 135
AddFolderDescriptor function 357
AddFolderRouting function 367
AdvanceKeyboardFocus function 149
alert button constants 247
alert color table resource 260
alert default text constants 248
alert feature ßag constants 245
Alert function 262
AlertStdAlertParamPtr type 246
AlertStdAlertParamRec type 246
alert type constants 243
AlertType type 243
'alrx' resource type 253
altDBoxPro constant 208
appearanceBadPatternIndexErr result code 33
appearanceThemeHasNoAccents result code 33
appearanceUnknownIDOerr result code 33
Apple event constants, for Appearance 

Manager 23
asynchronous arrows 75, 80
AutoEmbedControl function 128
AutoSizeDialog function 279
autoTrack constant 166
auxiliary control structure 109
auxiliary window structure 219

B

badFolderDescErr result code 354
badRoutingSizeErr result code 354
bevel button 73, 80, 92, 93, 94, 95, 97, 107

bevel button and image well content 
structure 94, 107

bevel button and image well content type 
constants 94

bevel button behavior constants 92
bevel button graphic alignment constants 95
bevel button menu constants 93
bevel button text alignment constants 97
bevel button text placement constants 97
brush type constants 23

C

calcCntlRgn constant 166
calcCRgns constant 165
calcThumbRgn constant 166
CautionAlert function 267
'cctb' resource type 113
'CDEF' resource type 113
checkbox control 73, 79, 90
checkBoxProc constant 73
checkbox value constants 90
ClearKeyboardFocus function 151
clock control 76, 81, 87, 98
clock value ßag constants 98
'CNTL' resource type 78, 111
CollapseAllWindows function 229
CollapseWindow function 228
contextual menu Gestalt selector constants 287
contextual menu help type constants 289
contextual menus, creating new plug-ins 329
ContextualMenuSelect function 311
contextual menu selection type constants 290
control action functions 184
ControlActionProcPtr type 185
ControlActionUPP type 185
ControlBackgroundPtr type 183
389
12/10/97   Apple Computer, Inc.



I N D E X
ControlBackgroundRec type 183
ControlButtonContentInfoPtr type 107
ControlButtonContentInfo type 107
ControlButtonGraphicAlignment type 96
ControlButtonTextAlignment type 97
ControlButtonTextPlacement type 98
ControlCalcSizePtr type 177
ControlCalcSizeRec type 177
control color table resource 113
control color table structure 110
ControlContentType type 94
ControlDataAccessPtr type 182
ControlDataAccessRec type 182
control data tag constants 83
control deÞnition function 71, 162
control deÞnition function resource 113
control deÞnition IDs 71
ControlDefProcMessage type 165
ControlDefProcPtr type 163
ControlDefUPP type 163
ControlEditTextSelectionPtr type 108
ControlEditTextSelectionRec type 108
ControlFocusPart type 179
control font style ßag constants 105
ControlFontStylePtr type 104
ControlFontStyleRec type 104
control font style structure 103, 105
ControlKeyDownPtr type 180
ControlKeyDownRec type 180
ControlKeyFilterProcPtr type 187
ControlKeyFilterResult type 188
ControlKeyFilterUPP type 187
control part code constants 99
ControlPartCode type 100
control resource 111
ControlTrackingPtr type 178
ControlTrackingRec type 178
ControlUserPaneActivateProc type 196
ControlUserPaneActivateUPP type 196
ControlUserPaneBackgroundProcPtr type 198
ControlUserPaneBackgroundUPP type 198
ControlUserPaneDrawProc type 189
ControlUserPaneDrawUPP type 189
ControlUserPaneFocusProc type 197
ControlUserPaneFocusUPP type 197

ControlUserPaneHitTestProc type 190
ControlUserPaneHitTestUPP type 191
ControlUserPaneIdleProc type 193
ControlUserPaneIdleUPP type 193
ControlUserPaneKeyDownProc type 194
ControlUserPaneKeyDownUPP type 194
ControlUserPaneTrackingProc type 192
ControlUserPaneTrackingUPP type 192
control value settings 79
CountSubControls function 129
CreateRootControl function 125

D

dBoxProc constant 208
'dctb' resource type 259
DeactivateControl function 136
default ring 84
'dftb' resource type 254
dialog color table resource 259
dialog control font table resource 254
dialog feature ßag constants 244
dialog font ßag constants 258
dialog font table resource 103, 260
dialog resource 249
dirNFErr result code 354
disclosure triangle 74, 80, 86
dispCntl constant 165
DisposeControl function 121
'dlgx' resource type 252
'DLOG' resource type 249
documentProc function 208
dragCntl constant 166
drawCntl constant 165
DrawControlInCurrentPort function 140
DrawGrowIcon function 227
DrawOneControl function 139
draw state constants 29
DrawThemeDialogFrame function 40
DrawThemeFocusRect function 43
DrawThemeFocusRegion function 44
DrawThemeGenericWell function 42
DrawThemeListBoxFrame function 42
390
12/10/97   Apple Computer, Inc.



I N D E X
DrawThemeMenuBackground function 48
DrawThemeMenuBarBackground function 45
DrawThemeMenuItem function 48
DrawThemeMenuSeparator function 51
DrawThemeMenuTitle function 46
DrawThemePlacard function 39
DrawThemePrimaryGroup function 35
DrawThemeSecondaryGroup function 36
DrawThemeSeparator function 37
DrawThemeTextBoxFrame function 41
DrawThemeWindowHeader function 38
DumpControlHierarchy function 132
dupFNErr result code 354
duplicateFolderDescErr result code 354
duplicateRoutingErr result code 354

E

editable text control 76, 82, 88, 108
editable text selection structure 108
EmbedControl function 127
embedding hierarchy 123, 124, 133, 147
errCantEmbedIntoSelf result code 111
errCantEmbedRoot result code 111
errControlDoesntSupportFocus result code 110
errControlHiddenOrDisabled result code 111
errControlIsNotEmbedder result code 110
errControlsAlreadyExist result code 110
errCouldntSetFocus result code 110
errDataNotSupported result code 110
errDataSizeMismatch result code 110
errInvalidPartCode result code 110
errItemNotControl result code 111
errMessageNotSupported result code 110
errNoRootControl result code 110
errRootAlreadyExists result code 110
errUnknownControl result code 110
errWindowDoesntSupportFocus result code 110
errWindowRegionCodeInvalid result code 111
ExamineContext method 332
extended alert resource 253
extended dialog resource 249, 252
extended menu resource 298Ð301

F

FindControl function 142
FindControlUnderMouse function 141
FindDialogItem function 276
FindFolder function 355
FindFolderRouting function 366
FindWindow function 224
'fld#' resource type 357
floatGrowProc constant 211
floatProc constant 211
floatSideGrowProc type 211
floatSideProc constant 211
floatSideZoomGrowProc type 212
floatSideZoomProc constant 212
floatZoomGrowProc constant 211
floatZoomProc constant 211
fnfErr result code 354
focus rings 147
FolderClass type 352
FolderDescFlags type 351
FolderDescPtr type 350
folder descriptor class constants 352
folder descriptor ßag constants 351
folder descriptor location constants 352
folder descriptors 343, 350
FolderDesc type 350
FolderLocation type 353
Folder Manager 343
folder routing 353, 365
FolderRoutingPtr type 353
FolderRouting type 353
folder type constants 344
FolderType type 346
font 103

G

gestaltAppearanceAttr constant 21
gestaltAppearanceCompatMode constant 22
gestaltAppearanceExists constant 22
gestaltAppearanceVersion constant 22
gestaltContextualMenuAttr constant 287
391
12/10/97   Apple Computer, Inc.



I N D E X
gestaltContextualMenuPresent constant 288
gestaltContextualMenuTrapAvailable 

constant 288
gestaltFindFolderAttr constant 344
gestaltFindFolderPresent constant 344
gestaltFolderDescSupport constant 344
Gestalt selector constants, for Appearance 

Manager 21
GetAuxWin function 230
GetBestControlRect function 152
GetControlData function 156
GetControlDataSize function 157
GetControlFeatures function 158
GetDialogItemAsControl function 272
GetDialogItem function 273
GetFolderDescriptor function 360
GetFolderName function 363
GetFolderRoutings function 365
GetFolderTypes function 361
GetIndexedSubControl function 130
GetKeyboardFocus function 148
GetMenu function 307
GetMenuItemCommandID function 314
GetMenuItemFontID function 316
GetMenuItemHierarchicalID function 317
GetMenuItemIconHandle function 319
GetMenuItemKeyGlyph function 321
GetMenuItemModifiers function 323
GetMenuItemRefCon2 function 327
GetMenuItemRefCon function 325
GetMenuItemTextEncoding function 329
GetNewControl function 118
GetNewDialog function 268
GetNewWindow function 223
GetRootControl function 126
GetSuperControl function 131
GetThemeAccentColors function 60
GetThemeMenuBackgroundRegion function 51
GetThemeMenuBarHeight function 52
GetThemeMenuItemExtra function 54
GetThemeMenuSeparatorHeight function 53
GetThemeMenuTitleExtra function 55
GetWindowFeatures function 225
GetWindowRegion function 226
GetWindowRegionPtr type 240

GetWindowRegionRec type 240
group box 86

H

HandleControlClick function 144
HandleControlKey function 142
HandleSelection method 334
HideControl function 135
HiliteControl function 138
hmHelpManagerNotInited result code 110, 249

I

icon control 77, 82
icon suite 77
'ictb' resource type 260
IdentifyFolder function 362
IdleControls function 143
image well 75, 81, 86, 94, 107
inCollapseBox result code 218
inContent result code 217
inDesk result code 217
IndicatorDragConstraint type 171
inDrag result code 218
inGoAway result code 218
inGrow result code 218
initCntl constant 165
InitContextualMenus function 305
Initialize method 331
InitProcMenu function 304
inMenuBar result code 217
inSysWindow result code 217
InvalidateFolderDescriptorCache 

function 364
invalidFolderTypeErr result code 354
inZoomIn result code 218
inZoomOut result code 218
IsControlActive function 137
IsControlVisible function 161
IsShowContextualMenuClick function 310
392
12/10/97   Apple Computer, Inc.



I N D E X
IsThemeInColor function 60
IsWindowCollapsed function 229
item color table resource 260
item list resource 249

K

kAEThemeSwitch constant 23
kAlertCautionAlert constant 243
kAlertDefaultCancelText constant 248
kAlertDefaultOKText constant 248
kAlertDefaultOtherText constant 248
kAlertFlagsAlertIsMovable constant 245
kAlertFlagsUseControlHierarchy constant 245
kAlertFlagsUseThemeBackground constant 245
kAlertFlagsUseThemeControls constant 245
kAlertNoteAlert constant 243
kAlertPlainAlert constant 244
kAlertStdAlertCancelButton constant 248
kAlertStdAlertHelpButton constant 248
kAlertStdAlertOKButton constant 247
kAlertStdAlertOtherButton constant 248
kAlertStopAlert constant 243
kAppearanceEventClass constant 23
kAppleExtrasFolderType constant 349
kAppleMenuFolderType constant 346
kApplicationsFolderType constant 347
kApplicationSupportFolderType constant 347
kAssistantsFolderType constant 349
kBlessedFolder constant 353
kChewableItemsFolderType constant 347
kCMHelpItemAppleGuide constant 289
kCMHelpItemNoHelp constant 289
kCMHelpItemOtherHelp constant 289
kCMMenuItemSelected constant 290
kCMNothingSelected constant 290
kCMShowHelpSelected constant 290
kContextualMenuItemsFolderType constant 349
kControlBehaviorCommandMenu constant 93
kControlBehaviorCommandMenu function 93
kControlBehaviorMultiValueMenu constant 93
kControlBehaviorOffsetContents constant 93
kControlBehaviorPushbutton constant 92

kControlBehaviorSticky constant 92
kControlBehaviorToggles constant 92
kControlBevelButtonAlignBottom constant 96
kControlBevelButtonAlignBottomLeft 

constant 96
kControlBevelButtonAlignBottomRight 

constant 96
kControlBevelButtonAlignCenter constant 96
kControlBevelButtonAlignLeft constant 96
kControlBevelButtonAlignRight constant 96
kControlBevelButtonAlignSysDirection 

constant 96
kControlBevelButtonAlignTextCenter 

constant 97
kControlBevelButtonAlignTextFlushLeft 

constant 97
kControlBevelButtonAlignTextFlushRight 

constant 97
kControlBevelButtonAlignTextSysDirection 

constant 97
kControlBevelButtonAlignTop constant 96
kControlBevelButtonAlignTopLeft 

constant 96
kControlBevelButtonAlignTopRight 

constant 96
kControlBevelButtonCenterPopUpGlyphTag 

constant 85
kControlBevelButtonContentTag constant 84
kControlBevelButtonGraphicAlignTag 

constant 85
kControlBevelButtonGraphicOffsetTag 

constant 85
kControlBevelButtonLargeBevelProc 

constant 73
kControlBevelButtonLastMenuTag constant 90
kControlBevelButtonMenuDelayTag 

constant 90
kControlBevelButtonMenuHandleTag 

constant 86
kControlBevelButtonMenuOnRight constant 73
kControlBevelButtonMenuValueTag 

constant 86
kControlBevelButtonNormalBevelProc 

constant 73
393
12/10/97   Apple Computer, Inc.



I N D E X
kControlBevelButtonPlaceAboveGraphic 
constant 98

kControlBevelButtonPlaceBelowGraphic 
constant 98

kControlBevelButtonPlaceNormally 
constant 98

kControlBevelButtonPlaceSysDirection 
constant 98

kControlBevelButtonPlaceToLeftOfGraphic 
constant 98

kControlBevelButtonPlaceToRightOfGraphic 
constant 98

kControlBevelButtonSmallBevelProc 
constant 73

kControlBevelButtonTextAlignTag 
constant 85

kControlBevelButtonTextOffsetTag 
constant 85

kControlBevelButtonTextPlaceTag 
constant 85

kControlBevelButtonTransformTag 
constant 85

kControlButtonPart constant 101
kControlChasingArrowsProc constant 75
kControlCheckboxCheckedValue constant 91
kControlCheckboxMixedValue constant 91
kControlCheckBoxPart constant 101
kControlCheckboxUncheckedValue constant 91
kControlClockDateProc constant 76
kControlClockIsDisplayOnly constant 99
kControlClockLongDateTag constant 87
kControlClockMonthYearProc constant 76
kControlClockNoFlags constant 99
kControlClockPart constant 101
kControlClockTimeProc constant 76
kControlClockTimeSecondsProc constant 76, 99
kControlContentCIconHandle constant 95
kControlContentCIconRes constant 95
kControlContentIconRef constant 95
kControlContentIconSuiteHandle constant 95
kControlContentIconSuiteRes constant 95
kControlContentPictHandle constant 95
kControlContentPictRes constant 95
kControlContentTextOnly constant 94
kControlDisabledPart constant 101

kControlDownButtonPart constant 101
kControlEditTextDialogProc constant 76
kControlEditTextPart constant 100
kControlEditTextPasswordProc constant 76, 89
kControlEditTextProc constant 76
kControlEditTextSelectionTag constant 89
kControlEditTextTEHandleTag constant 89
kControlEditTextTextTag constant 88
kControlFocusNextPart constant 179
kControlFocusNoPart constant 179
kControlFocusPrevPart constant 179
kControlFontBigSystemFont constant 103
kControlFontSmallBoldSystemFont 

constant 103
kControlFontSmallSystemFont constant 103
kControlFontStyleTag constant 89
kControlGetsFocusOnClick constant 175
kControlGroupBoxCheckBoxProc constant 75
kControlGroupBoxMenuHandleTag constant 86
kControlGroupBoxPopupButtonProc 

constant 75
kControlGroupBoxSecondaryCheckBoxProc 

constant 75
kControlGroupBoxSecondaryPopupButtonProc 

constant 75
kControlGroupBoxSecondaryTextTitleProc 

constant 75
kControlGroupBoxTextTitleProc constant 75
kControlHandlesTracking constant 175
kControlHasRadioBehavior constant 176
kControlHasSpecialBackground constant 175
kControlIconAlignmentTag constant 89
kControlIconNoTrackProc constant 77
kControlIconPart constant 101
kControlIconProc constant 77
kControlIconSuiteNoTrackProc constant 77
kControlIconSuiteProc constant 77
kControlIconTransformTag constant 89
kControlImageWellAutoTrackProc constant 75
kControlImageWellContentTag constant 86
kControlImageWellPart constant 101
kControlImageWellProc constant 75
kControlImageWellTransformTag constant 87
kControlInactivePart constant 102
kControlIndicatorPart constant 101
394
12/10/97   Apple Computer, Inc.



I N D E X
kControlKeyFilterBlockKey constant 188
kControlKeyFilterPassKey constant 189
kControlKeyFilterTag constant 89
kControlLabelPart constant 100
kControlListBoxAutoSizeProc constant 77
kControlListBoxDoubleClickPart constant 101
kControlListBoxDoubleClickTag constant 90
kControlListBoxListHandleTag constant 89
kControlListBoxPart constant 101
kControlListBoxProc constant 77
kControlLittleArrowsProc constant 75
kControlMenuPart constant 100
kControlMsgActivate constant 166
kControlMsgCalcBestRect constant 166
kControlMsgCalcValueFromPos constant 166
kControlMsgDrawGhost constant 166
kControlMsgFocus constant 166
kControlMsgGetData constant 166
kControlMsgGetFeatures constant 166
kControlMsgHandleTracking constant 166
kControlMsgIdle constant 166
kControlMsgKeyDown constant 166
kControlMsgSetData constant 166
kControlMsgSetUpBackground constant 166
kControlMsgSubControlAdded constant 167
kControlMsgSubControlRemoved constant 167
kControlMsgSubValueChanged constant 166
kControlMsgTestNewMsgSupport constant 167
kControlNoPart constant 100
kControlPageDownPart constant 101
kControlPageUpPart constant 101
kControlPanelDisabledFolderType 

constant 346
kControlPanelFolderType constant 346
kControlPictureNoTrackProc constant 77
kControlPicturePart constant 101
kControlPictureProc constant 76
kControlPlacardProc constant 76
kControlPopupArrowEastProc constant 75
kControlPopupArrowNorthProc constant 76
kControlPopupArrowSmallEastProc 

constant 76
kControlPopupArrowSmallNorthProc 

constant 76

kControlPopupArrowSmallSouthProc 
constant 76

kControlPopupArrowSmallWestProc 
constant 76

kControlPopupArrowSouthProc constant 76
kControlPopupArrowWestProc constant 75
kControlPopupButtonMenuHandleTag 

constant 90
kControlPopupButtonMenuIDTag constant 90
kControlPopupButtonProc constant 77
kControlPopupFixedWidthVariant constant 77
kControlPopupUseAddResMenuVariant 

constant 78
kControlPopupUseWFontVariant constant 78
kControlPopupVariableWidthVariant 

constant 77
kControlProgressBarIndeterminateTag 

constant 86
kControlProgressBarProc constant 74
kControlPushButLeftIconProc constant 72
kControlPushButRightIconProc constant 73
kControlPushButtonDefaultTag constant 84
kControlPushButtonProc constant 72, 73
kControlRadioButtonCheckedValue 

constant 92
kControlRadioButtonMixedValue constant 92
kControlRadioButtonPart constant 101
kControlRadioGroupPart constant 101
kControlRadioGroupProc constant 78
kControlScrollBarLiveProc constant 73
kControlScrollBarProc constant 73
kControlSeparatorLineProc constant 75
kControlSliderHasTickMarks constant 74
kControlSliderLiveFeedback constant 74
kControlSliderNonDirectional constant 74
kControlSliderProc constant 73
kControlSliderReverseDirection constant 74
kControlStaticTextProc constant 76
kControlStaticTextTextHeightTag 

constant 89
kControlStaticTextTextTag constant 89
kControlStripModulesFolderType constant 349
kControlSupportsCalcBestRect constant 175
kControlSupportsDataAccess constant 175
kControlSupportsEmbedding constant 175
395
12/10/97   Apple Computer, Inc.



I N D E X
kControlSupportsFocus constant 175
kControlSupportsGhosting constant 174, 175
kControlSupportsLiveFeedback constant 176
kControlTabContentRectTag constant 86
kControlTabEnabledFlagTag constant 86
kControlTabLargeProc constant 75
kControlTabSmallProc constant 75
kControlTriangleAutoToggleProc constant 74
kControlTriangleLastValueTag constant 86
kControlTriangleLeftFacingAutoToggleProc 

constant 74
kControlTriangleLeftFacingProc constant 74
kControlTrianglePart constant 100
kControlTriangleProc constant 74
kControlUpButtonPart constant 101
kControlUseAddFontSizeMask constant 107
kControlUseAllMask constant 106
kControlUseBackColorMask constant 106
kControlUseFaceMask constant 106
kControlUseFontMask constant 106
kControlUseForeColorMask constant 106
kControlUseJustMask constant 106
kControlUseModeMask constant 106
kControlUserItemDrawProcTag constant 87
kControlUserPaneActivateProcTag 

constant 88
kControlUserPaneBackgroundProcTag 

constant 88
kControlUserPaneDrawProcTag constant 87
kControlUserPaneFocusProcTag constant 88
kControlUserPaneHitTestProcTag constant 87
kControlUserPaneIdleProcTag constant 87
kControlUserPaneKeyDownProcTag constant 88
kControlUserPaneProc constant 76
kControlUserPaneTrackingProcTag 

constant 87
kControlUseSizeMask constant 106
kControlUsesOwningWindowsFontVariant 

constant 72, 73
kControlWantsActivate constant 175
kControlWantsIdle constant 175
kControlWindowHeaderProc constant 77
kControlWindowListViewHeaderProc 

constant 77
kCreateFolderAtBoot constant 351

kDesktopFolderType constant 346
kDialogFlagsHandleMovableModal constant 244
kDialogFlagsUseControlHierarchy 

constant 244
kDialogFlagsUseThemeBackground constant 244
kDialogFlagsUseThemeControls constant 244
kDialogFontAddFontSizeMask constant 259
kDialogFontNoFontStyle constant 258
kDialogFontUseAllMask constant 259
kDialogFontUseBackColorMask constant 259
kDialogFontUseFaceMask constant 258
kDialogFontUseFontMask constant 258
kDialogFontUseFontNameMask constant 259
kDialogFontUseForeColorMask constant 258
kDialogFontUseJustMask constant 259
kDialogFontUseModeMask constant 259
kDialogFontUseSizeMask constant 258
kDocumentsFolderType constant 347
kDragControlEntireControl constant 172
kDragControlIndicator constant 172
kDrawControlEntireControl constant 168
kDrawControlIndicatorOnly constant 168
kEditorsFolderType constant 348
kExtensionDisabledFolderType constant 346
kExtensionFolderType constant 346
keyboard focus 147
keyboard font character codes 302
key Þlter function 187
kFloatingWindowDefinition constant 214
kFolderCreatedInvisible constant 351
kFolderCreatedNameLocked constant 351
kFontsFolderType constant 346
kGenEditorsFolderType constant 348
kHelpFolderType constant 348
KillControls function 122
kInternetPlugInFolderType constant 348
kMacOSReadMesFolderType constant 349
kMenuColorIconType constant 292
kMenuCommandModifiers constant 291
kMenuControlModifier constant 291
kMenuIconSuiteType constant 292
kMenuIconType constant 292
kMenuNoCommandModifier constant 291
kMenuNoIcon constant 292
kMenuOptionModifier constant 291
396
12/10/97   Apple Computer, Inc.



I N D E X
kMenuShiftModifier constant 291
kMenuShrinkIconType constant 292
kMenuSmallIconType constant 292
kMenuStdMenuBarProc constant 289
kMenuStdMenuProc constant 289
kModemScriptsFolderType constant 348
kOpenDocEditorsFolderType constant 348
kOpenDocFolderType constant 348
kOpenDocLibrariesFolderType constant 348
kOpenDocShellPlugInsFolderType constant 348
kPreferencesFolderType constant 346
kPrinterDescriptionFolderType constant 348
kPrinterDriverFolderType constant 348
kPrintMonitorDocsFolderType constant 346
kRelativeFolder constant 352
kRootFolder constant 353
kRoundWindowDefinition constant 213
kScriptingAdditionsFolderType constant 349
kSharedLibrariesFolderType constant 349
kShutdownFolderType constant 346
kShutdownItemsDisabledFolderType 

constant 347
kSpecialFolder constant 352
kStandardWindowDefinition type 213
kStartupFolderType constant 346
kStartupItemsDisabledFolderType 

constant 347
kStationeryFolderType constant 348
kSystemExtensionDisabledFolderType 

constant 347
kSystemFolderType constant 346
kTemporaryFolderType constant 346
kTextEncodingsFolderType constant 348
kThemeActiveAlertBackgroundBrush 

constant 24
kThemeActiveAlertTextColor constant 26
kThemeActiveDialogBackgroundBrush 

constant 24
kThemeActiveDialogTextColor constant 26
kThemeActiveDocumentWindowTitleTextColor 

constant 28
kThemeActiveMenuItemTextColor constant 28
kThemeActiveModelessDialogBackgroundBrush

 constant 24

kThemeActiveModelessDialogTextColor 
constant 27

kThemeActiveMovableModalWindowTitleText-
Color constant 28

kThemeActivePlacardTextColor constant 27
kThemeActivePopUpButtonTextColor 

constant 27
kThemeActivePopupLabelTextColor 

constant 29
kThemeActivePopupLabelTextIColor 

constant 27
kThemeActivePopupWindowTitleColor 

constant 28
kThemeActivePushButtonTextColor 

constant 27
kThemeActiveRootMenuTextColor constant 28
kThemeActiveUtilityWindowBackgroundBrush 

constant 24
kThemeActiveUtilityWindowTitleTextColor 

constant 28
kThemeActiveWindowHeaderTextColor 

constant 27
kThemeChasingArrowsBrush constant 25
kThemeDisabledMenuItemTextColor 

constant 29
kThemeDisabledRootMenuTextColor 

constant 28
kThemeDocumentWindowBackgroundBrush 

constant 25
kThemeDragHiliteBrush constant 25
kThemeFinderListViewTextColor constant 28
kThemeFinderWindowBackgroundBrush 

constant 25
kThemeIconLabelBackgroundBrush constant 25
kThemeIconLabelTextColor constant 27
kThemeInactiveAlertBackgroundBrush 

constant 24
kThemeInActiveAlertTextColor constant 27
kThemeInactiveDialogBackgroundBrush 

constant 24
kThemeInactiveDialogTextColor constant 26
kThemeInactiveDocumentWindowTitleText-

Color constant 28
kThemeInactiveModelessDialogBackground-

Brush constant 24
397
12/10/97   Apple Computer, Inc.



I N D E X
kThemeInactiveModelessDialogTextColor 
constant 27

kThemeInactiveMovableModalWindowTitleText
Color constant 28

kThemeInactivePlacardTextColor constant 27
kThemeInactivePopupButtonTextColor 

constant 27
kThemeInactivePopupLabelTextColor 

constant 29
kThemeInactivePopupWindowTitleColor 

constant 28
kThemeInactivePushbuttonTextColor 

constant 27
kThemeInactiveUtilityWindowBackground-

Brush constant 24
kThemeInactiveUtilityWindowTitleTextColor

 constant 28
kThemeInactiveWindowHeaderTextColor 

constant 27
kThemeListViewBackgroundBrush constant 25
kThemeListViewSeparatorBrush constant 25
kThemeListViewSortColumnBackgroundBrush 

constant 24
kThemeMenuActive constant 31
kThemeMenuBarNormal constant 30
kThemeMenuBarSelected constant 30
kThemeMenuDisabled constant 31
kThemeMenuItemHierarchical constant 33
kThemeMenuItemPlain constant 32
kThemeMenuItemScrollDownArrow constant 33
kThemeMenuItemScrollUpArrow constant 33
kThemeMenuSelected constant 31
kThemeMenuSquareMenuBar constant 30
kThemeMenuTypeHierarchical constant 32
kThemeMenuTypePopUp constant 32
kThemeMenuTypePullDown constant 32
kThemePressedPlacardTextColor constant 27
kThemePressedPopupButtonTextColor 

constant 27
kThemePressedPushbuttonTextColor 

constant 27
kThemeSelectedMenuItemTextColor 

constant 29
kThemeSelectedRootMenuTextColor 

constant 28

kThemeStateActive constant 29
kThemeStateDisabled constant 29
kThemeStatePressed constant 29
kTrashFolderType constant 346
kUtilitiesFolderType constant 349
kVoicesFolderType constant 349
kVolumeRootFolderType constant 347
kWhereToEmptyTrashFolderType constant 346
kWindowAlertProc constant 210
kWindowCanCollapse constant 239
kWindowCanGetWindowRegion constant 239
kWindowCanGrow constant 239
kWindowCanZoom constant 239
kWindowCloseBoxRgn constant 215
kWindowCollapseBoxRgn constant 215
kWindowContentRgn constant 216
kWindowDialogDefProcResID constant 213
kWindowDocumentDefProcResID constant 213
kWindowDocumentProc constant 209
kWindowDragRgn constant 215
kWindowFloatFullZoomGrowProc constant 211
kWindowFloatFullZoomProc constant 210
kWindowFloatGrowProc constant 210
kWindowFloatHorizZoomGrowProc constant 210
kWindowFloatHorizZoomProc constant 210
kWindowFloatProc constant 210
kWindowFloatSideFullZoomGrowProc 

constant 211
kWindowFloatSideFullZoomProc constant 211
kWindowFloatSideGrowProc constant 211
kWindowFloatSideHorizZoomGrowProc 

constant 211
kWindowFloatSideHorizZoomProc constant 211
kWindowFloatSideProc constant 211
kWindowFloatSideVertZoomGrowProc 

constant 211
kWindowFloatSideVertZoomProc constant 211
kWindowFloatVertZoomGrowProc constant 210
kWindowFloatVertZoomProc constant 210
kWindowFullZoomDocumentProc constant 209
kWindowFullZoomGrowDocumentProc 

constant 210
kWindowGrowDocumentProc constant 209
kWindowGrowRgn constant 215
kWindowHasTitleBar constant 240
398
12/10/97   Apple Computer, Inc.



I N D E X
kWindowHorizZoomDocumentProc constant 209
kWindowHorizZoomGrowDocumentProc 

constant 209
kWindowIsAlert constant 240
kWindowIsModal constant 239
kWindowModalDialogProc constant 210
kWindowMovableAlertProc constant 210
kWindowMovableModalDialogProc constant 210
kWindowPlainDialogProc constant 210
kWindowShadowDialogProc constant 210
kWindowStructureRgn constant 215
kWindowTitleBarRgn constant 215
kWindowTitleTextRgn constant 215
kWindowUtilityDefProcResID constant 214
kWindowUtilitySideTitleDefProcResID 

constant 214
kWindowVertZoomDocumentProc constant 209
kWindowVertZoomGrowDocumentProc 

constant 209
kWindowZoomBoxRgn constant 215

L

latency, of embedded controls 133
'ldes' resource type 114
list box 77, 82, 89, 90
list box description resource 114
little arrows 75, 80

M

mapping 20, 34, 35, 204
memFullErr result code 33, 110, 220, 249
menu bar draw state constants 30
menu color information table 304
menu color information table structure 292
menu deÞnition IDs 288
menu draw state constants 31
MenuEvent function 308
menu icon handle constants 292
'MENU' resource type 293

MenuTitleDrawingProcPtr type 61, 63
MenuTitleDrawingUPP type 62, 63
menu type constants, Appearance-compliant 31
meta font constants 103
ModalDialog function 281
modiÞer key mask constants 291
movableDBoxProc constant 209
MoveDialogItem function 277
MyActionProc function 185
MyControlDefProc function 164
MyControlKeyFilterProc function 187
MyIndicatorActionProc function 186
MyMenuItemDrawingProc function 64
MyMenuTitleDrawingProc function 62
MyUserItemProc function 284
MyUserPaneActivateProc function 196
MyUserPaneBackgroundProc function 199
MyUserPaneDrawProc function 190
MyUserPaneFocusProc function 197
MyUserPaneHitTestProc function 191
MyUserPaneIdleProc function 193
MyUserPaneKeyDownProc function 195
MyUserPaneTrackingtProc function 192
MyWindow function 232

N

NewControl function 119
NewFeaturesDialog function 270
NewWindow function 224
'nfd#' resource type 357
noErr result code 33, 110, 220, 249, 354
noGrowDocProc constant 208
NoteAlert function 265
'nrt#' resource type 367
nsvErr result code 354

P

paramErr result code 33, 110, 220, 249
part identiÞer constants 102, 216
399
12/10/97   Apple Computer, Inc.



I N D E X
picture control 76, 82
placard 76, 81
plainDBox constant 208
platinum appearance 19
Plug-In 329
plug-ins, creating for contextual menus 329
pop-up arrow 75, 81
popupFixedWidth constant 77
pop-up menu 77, 82
pop-up menu private structure 110
popupMenuProc constant 77
popupUseAddResMenu constant 77
popupUseWFont constant 77
popupVariableWidth constant 77
posCntl constant 166
PostMenuCleanup method 335
primary group box 75, 81
ProcessIsContextualMenuClient function 306
progress indicator 74, 80, 86
pushButProc constant 72
push button 72, 79

R

radioButProc constant 73
radio buttons 73, 79, 91
radio button value constants 91
radio group 78, 82
rDocProc constant 209
RegisterAppearanceClient function 34
RemoveFolderDescriptor function 359
RemoveFolderRouting function 367
Removes 122
resNotFound result code 110, 220, 249
resources

extended menu 298Ð301
menu color information table 304

resource types
'xmnu' 298Ð301

result codes, Menu Manager 293
ReverseKeyboardFocus function 150
root control 123
routingNotFoundErr result code 354

S

scroll bar 73, 79
scrollBarProc constant 73
secondary group box 75, 81
SendControlMessage function 138
separator line 75, 81
SetControlAction function 153
SetControlColor function 154
SetControlData function 154
SetControlFontStyle function 159
SetControlSupervisor function 131
SetControlVisibility function 160
SetDialogItem function 275
SetDialogItemText function 280
SetKeyboardFocus function 147
SetMenuItemCommandID function 314
SetMenuItemFontID function 315
SetMenuItemHierarchicalID function 317
SetMenuItemIconHandle function 318
SetMenuItemKeyGlyph function 320
SetMenuItemModifiers function 322
SetMenuItemRefCon2 function 326
SetMenuItemRefCon function 324
SetMenuItemTextEncoding function 328
SetThemeBackground function 56
SetThemePen function 57
SetThemeTextColor function 58
SetThemeWindowBackground function 59
settings values for standard controls 78
SetUpControlBackground function 161
SetWinColor function 230
ShowControl function 134
SizeDialogItem function 278
slider 73, 80
StandardAlert function 261
static text control 76, 82, 89
StopAlert function 264
systemwide appearance 20, 34

T

tab control 75, 80, 86
400
12/10/97   Apple Computer, Inc.



I N D E X
tab information resource 115
tab information structure 109
'tab' resource type 115
testCntl constant 165
text color constants 25
textmenuProc constant 289
ThemeBrush type 24
ThemeDrawState type 29
ThemeMenuBarState type 30
ThemeMenuItemType type 32
ThemeMenuState type 31
ThemeMenuType type 32
themes 19
ThemeTextColor type 26
thumbCntl constant 166
TrackControl function 146

U

UnregisterAppearanceClient function 35
user items 284
user pane 76, 81, 123, 189
utility window 204

V

variation codes for controls 71

W

wCalcRgns constant 233
'wctb' resource type 222
'WDEF' resource type 223
wDispose constant 233
wDraw constant 233
wDrawGIcon constant 233
wGrow constant 233
wHit constant 233
wInCollapseBox constant 237
wInContent constant 236

window color table resource 222
window color table structure 219
window deÞnition function 231
window deÞnition function resource 223
window deÞnition function variation codes 214
window deÞnition IDs 203
WindowDefProcPtr type 232
WindowDefUPP type 232
window header 77, 82
window list view header 77
WindowRegionCode type 215
window region constants 215
window resource 220
window resource IDs 212
Window State Data Structure 219
window state data structure 219
window structure 219
wInDrag constant 236
'WIND' resource type 220
wInGoAway constant 236
wInGrow constant 236
wInZoomIn constant 236
wInZoomOut type 236
wNew constant 233
wNoHit constant 236

X

'xmnu' resource type 298

Z

zoomDocPro constant 209
zoomNoGrow constant 209
401
12/10/97   Apple Computer, Inc.



T H E  A P P L E  P U B L I S H I N G  S Y S T E M

12/10/97   Apple Computer, Inc.

This Apple manual was written, edited, 
and composed on a desktop publishing 
system using Apple Macintosh 
computers and FrameMaker software. 
Line art was created using 
Adobeª Illustrator and Adobe Photoshop.

Text type is Palatino¨ and display type is 
Helvetica¨. Bullets are ITC Zapf 
Dingbats¨. Some elements, such as 
program listings, are set in Adobe Letter 
Gothic.

WRITERS
Lisa Karpinski, Donna S. Lee, 
Judith Rosado, and Jun Suzuki

ILLUSTRATORS
David Arrigoni and Karin Stroud

PRODUCTION EDITOR
Glen Frank

PROJECT MANAGER
Tony Francis

Special thanks to Ed Voas and 
Matt Ackeret 

Acknowledgments to Eric Anderson, 
Guy Fullerton, Pete Gontier, C.K. Haun, 
Eric Koebler, Dave Lyons, 
Patrick McClaughry, Matt Mora, 
Greg Robbins, Jeff Shulman, and 
Chris Thomas


	Mac OS 8 Toolbox Reference
	Contents
	Figures, Tables, and Listings
	Preface: Introduction to the Mac OS 8 Toolbox Reference
	About This Document
	Format of a Typical Chapter
	Development Environment

	For More Information
	Conventions Used
	Quick Reference Tags
	Special Fonts
	Empty Strings
	Types of Notes


	Chapter 1: Appearance Manager Reference
	Introduction to the Appearance Manager
	Appearance Manager Types and Constants
	Appearance Manager Gestalt Selector Constants
	Appearance Manager Apple Event Constants
	Appearance-Compliant Brush Type Constants
	Appearance-Compliant Text Color Constants
	Appearance-Compliant Draw State Constants
	Appearance-Compliant Menu Bar Draw State Constants...
	Appearance-Compliant Menu Draw State Constants
	Appearance-Compliant Menu Type Constants
	Appearance-Compliant Menu Item Type Constants
	Result Codes

	Appearance Manager Functions
	Initializing the Appearance Manager
	Drawing Appearance-Compliant Controls
	Drawing Appearance-Compliant Menus
	Coordinating Colors and Patterns With the Current ...
	Defining Your Own Menu Drawing Callback Functions


	Chapter 2: Control Manager Reference
	Control Manager Types and Constants
	Control Definition IDs
	Settings Values for Standard Controls
	Control Data Tag Constants
	Checkbox Value Constants
	Radio Button Value Constants
	Bevel Button Behavior Constants
	Bevel Button Menu Constants
	Bevel Button and Image Well Content Type Constants...
	Bevel Button Graphic Alignment Constants
	Bevel Button Text Alignment Constants
	Bevel Button Text Placement Constants
	Clock Value Flag Constants
	Control Part Code Constants
	Part Identifier Constants
	Meta Font Constants
	The Control Font Style Structure
	Control Font Style Flag Constants

	The Bevel Button and Image Well Content Structure
	The Editable Text Selection Structure
	The Tab Information Structure
	The Auxiliary Control Structure
	The Pop-Up Menu Private Structure
	The Control Color Table Structure
	Result Codes

	Control Manager Resources
	The Control Resource
	The Control Definition Function Resource
	The Control Color Table Resource
	The List Box Description Resource
	The Tab Information Resource

	Control Manager Functions
	Creating and Removing Controls
	Embedding Controls
	Manipulating Controls
	Displaying Controls
	Handling Events in Controls
	Handling Keyboard Focus
	Accessing and Changing Control Settings and Data
	Defining Your Own Control Definition Function
	Defining Your Own Action Functions
	Defining Your Own Key Filter Function
	Defining Your Own User Pane Functions


	Chapter 3: Window Manager Reference
	Window Manager Types and Constants
	Window Definition IDs
	Window Resource IDs
	Window Definition Function Variation Codes

	Window Region Constants
	Part Identifier Constants
	FindWindow Result Code Constants
	The Window Structure
	The Window State Data Structure
	The Window Color Table Structure
	The Auxiliary Window Structure
	Result Codes

	Window Manager Resources
	The Window Resource
	The Window Color Table Resource
	The Window Definition Function Resource

	Window Manager Functions
	Creating and Closing Windows
	Retrieving Window Information
	Displaying Windows
	Collapsing Windows
	Setting and Getting Window Characteristics
	Defining Your Own Window Definition Function


	Chapter 4: Dialog Manager Reference
	Dialog Manager Types and Constants
	Alert Type Constants
	Dialog Feature Flag Constants
	Alert Feature Flag Constants
	The Standard Alert Structure
	Alert Button Constants
	Alert Default Text Constants

	Result Codes

	Dialog Manager Resources
	The Dialog Resource
	The Extended Dialog Resource
	The Extended Alert Resource
	The Dialog Control Font Table Resource
	Dialog Font Flag Constants

	The Dialog Color Table Resource
	The Alert Color Table Resource
	The Item Color Table Resource

	Dialog Manager Functions
	Creating Alerts
	Creating Dialog Boxes
	Manipulating Items in Dialog and Alert Boxes
	Handling Text in Alert and Dialog Boxes
	Handling Events in Dialog Boxes
	Defining Your Own Dialog Item Function


	Chapter 5: Menu Manager Reference
	Menu Manager Types and Constants
	Contextual Menu Gestalt Selector Constants
	Menu Definition IDs
	Contextual Menu Help Type Constants
	Contextual Menu Selection Type Constants
	Modifier Key Mask Constants
	Menu Icon Handle Constants
	The Menu Color Information Table Structure
	Result Codes

	Menu Manager Resources
	The Menu Resource
	The Extended Menu Resource
	The Menu Color Information Table Resource

	Menu Manager Functions
	Initializing the Menu Manager
	Creating Menus
	Responding to the User’s Choice of a Menu Command
	Manipulating and Accessing Menu Item Characteristi...
	Defining Your Own Contextual Menu Plug-In


	Chapter 6: Event Manager Reference
	Chapter 7: Finder Interface Reference
	Finder Interface Types and Constants
	Folder Manager Gestalt Selector
	Folder Type Constants
	The Folder Descriptor Structure
	Folder Descriptor Flag Constants
	Folder Descriptor Class Constants
	Folder Descriptor Location Constants

	The Folder Routing Structure
	Result Codes

	Finder Interface Functions
	Finding Directories
	Manipulating Folder Descriptors
	Routing Files


	Appendix A: Version History
	Glossary
	Index


