
Saturday, May 30, 1998 Introducing PuppetTime™ Page: 1

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

Technote 1130

Introducing PuppetTime™:
Adding New Media Types to QuickTime

By deeje cooley
Apple Worldwide Developer Technical Support

CONTENTS

Defining PuppetTime

Basic PuppetTime Architecture

Goals of PuppetTime

Technology Map

Events

Puppets

Conductor

QuickTime Integration

Sample Code

Future Directions

Downloads

This Technote describes how to add new media types

to QuickTime, and uses the concept of digital actors as an
example.

3D media is very exciting to use, but it is beyond the
ability of nmost users to create. I definitely believe that
3D is the medium of the future, yet I am constantly
frustrated by the learning curve associated with high-end
3D modeling and animation tools. For professionals,
these tools are the cream of the crop; however, I want
something a little more progressive. I want to manipulate
3D objects that know how to animate themselves, and can
interact with each other. Drag a dog onto a stage, then tell
it to wag its tail. Drag a cat onto a stage, then tell it to
walk around. Put the two together, and tell the dog to
chase the cat. In short, I don't want to make 3D objects; I
want to use 3D objects to create other things. That's why
I've created the PuppetTime™ architecture.

Defining PuppetTime

PuppetTime is an open architecture for digital actors, built on top of QuickTime. What, you may ask, is a
digital actor? You may have heard the term before. In its most basic definition, a digital actor is a graphic
representation on the computer screen that can accept messages to animate itself. I use the term puppet to mean
digital actor, because I want to emphasize the metaphor of virtual strings controlling a shape's appearance and
implied behavior.

Here's an example: on my computer screen I have a humanoid-shaped puppet and a list of commands. When I
clickon a command, it is sent to the puppet, which then responds with some kind of activity. If I click on
"walk" and thenclick on a new location on the screen, the puppet will"walk" to that new location. If I click
"wave", the puppet will wave to say "hello." Different puppets might animate themselves in different ways to
represent "walk" or "wave"; the power lies in the fact that "walk" and "wave" are now abstracted out, and any

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 2

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

number of puppets can understand these commands while presenting a unique visual appearance for each.

There are many companies now developing digital actors for use in movies and games, but as of yet there is
no proposed standard framework which might make the commercial acceptance and distribution of digital
actors feasible. The PuppetTime architecture attempts to address this need.

PuppetTime uses the Component Manager and QTAtoms, defines a new component interface called puppets,
and includes both a derived media handler and a movie import component. The PuppetTime framework is
designed with a philosophy similar to QuickTime: it contains a set of toolbox routines for manipulating the
PuppetTime media data, as well as a number of extensible components and component interfaces. Much like
Sprites and QuickTime Music Architecture in QuickTime, PuppetTime can be used by itself in your
applications, and it can also be contained in QuickTime movies alongside other media types like music, text,
sound, and video.

You are highly encouraged to have a copy of the PuppetTime Sample Code on hand while reading this
document, since I'll refer to its contents often. You can obtain sample code from PuppetTime.com. A
royalty-free license is available for the PuppetTime runtime, and third-party and co-development is highly
encouraged.

Basic PuppetTime Architecture
The PuppetTime architecture is implemented using several QTML technologies, and defines three key
elements: puppets, events, and the conductor .

Puppets

Puppet components are defined and implemented using the Component Manager 3.0 and display
themselves using QuickDraw 3D 1.5.x. The puppet component interface and several of the built-in
puppets are discussed in detail below.

Events

A PuppetTime event is a QTAtom data structure that contains information about a command or action that
a puppet should perform. When a puppet receives an event, it pulls out the relevant information and
(often) performs some form of animation. A stream of events can come from numerous sources, such as
a network connection, or a QuickTime movie track. The standard PuppetTime event format, toolbox
routines, and some basic event vocabularies are discussed below.

Conductor

The PuppetTime conductor component acts as the gluebetween events and puppets. At its basic level, the
conductor creates the QuickDraw 3D environment, instantiates a number of puppets into the
environment, and then receives a stream of events from an external source and re-directs them to the
individual puppets. Again, the PuppetTime conductor is discussed below.

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 3

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

Goals of PuppetTime
There are several key design goals for PuppetTime to ensure its acceptability and future growth:

Open Architecture

PuppetTime is designed to be an open architecture. The format for PuppetTime events structures allows
for a variable number of bits of information, so that new events can be defined and existing events
augmented. The puppet component interface allows new puppets to be added seamlessly to existing
PuppetTime-savvy applications.

Compact Data Format

The PuppetTime event format is crafted to allow for the widest range of event vocabularies possible,
while keeping an eye towards compactness. PuppetTime uses events as meta-data to recreate a scene at
runtime, and as such, events are much smaller than pre-rendered, compressed image samples.

Internet-ready

PuppetTime is designed with web- and internet-savvy applications in mind. For example, on-line 3D
comic strips would be possible by downloading a set of puppets once, then delivering new episodes on
web pages as QuickTime movies. Each episode movie can be significantly smaller than a pre-rendered
3D scene because it only contains a sequence of events. The puppets themselves can be designed and
implemented such that they can update themselves with new capabilities on the fly.

Scalable Performance

PuppetTime performance scales with improvements in CPU speed and internet bandwidth. Because
puppets animate themselves in real-time, their visual displays can improve with faster computer systems.
In addition, faster Internet connections allow for richer, higher-fidelity event streams.

QuickTime Integration

PuppetTime is designed to work as a new media type within QuickTime. To start, PuppetTime includes
a MIDI file importer and a media handler, which allows PuppetTime event streams to be stored and
played back within a QuickTime movie, alongside other media types (e.g., music and text).

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 4

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

Technology Map
Figure 1 shows the basic QuickTime architecture with the integrated PuppetTime media type and its
related components.

Figure 1. PuppetTime inside QuickTime.

Events
Let's begin our detailed discussion of PuppetTime with events. As mentioned above, a PuppetTime
event is a QTAtom structure which contains bits of information that describes an action or command to a
puppet.

QTAtoms

QTAtoms are structures that store a variable number of name-data pairs. QTAtoms are similar in concept to
AppleEvent records, except that QTAtoms do not store data-type information, and the API is available for
all platforms that QuickTime supports. The QuickTime 3.0 developers guide describes QTAtoms in
detail, and can be found at <http://quicktime.apple.com/>. As shown in Figure 2, QTAtoms can be nested
inside one another to create hierarchical data structures.

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 5

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

Figure 2. A typical QTAtom structure

Listing 1 shows how to create the QTAtom structure shown in Figure 2. Note that proper error checking
is not included in the listings below, and you should always check for programmatic and runtime errors
in your code.

QTAtomContainer aContainer = nil;
QTAtom anAtom = nil;
long aLong = 0;

 // create the QTAtomContainer
anError = QTNewAtomContainer(&aContainer);

 // add some name-data pairs to the root
aLong = 7;
anError = QTInsertChild(
 aContainer, // the container
 0, // the atom, zero = root
 'data', // the name
 1, // the ID
 0, // the index of name-ID pairs
 sizeof(aLong), // the size of the data
 &aLong, // the pointer to the data
 nil); // returns a ref to the new QTAtom

aLong = 3;
anError = QTInsertChild(aContainer,
 0,
 'data',
 2,
 0,
 sizeof(aLong),
 &aLong,
 nil);

 // create an empty atom
anError = QTInsertChild(aContainer,

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 6

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

 0,
 'more',
 1,
 0,
 0,
 nil,
 &anAtom);

 // add some atoms to it
aLong = 2;
anError = QTInsertChild(aContainer,
 anAtom,
 'stff',
 1,
 0,
 sizeof(aLong),
 &aLong,
 nil);

aLong = 14;
anError = QTInsertChild(aContainer,
 anAtom,
 'xtra',
 1,
 0,
 sizeof(aLong),
 &aLong,
 nil);

 // make sure to dispose of it when you're done
anError = QTDisposeAtomContainer(aContainer);

Listing 1

Basic Structure

Thus, a PuppetTime event is a QTAtom structure with a well-defined set of name-data hierarchy, shown
in Figure 3 (QTAtom IDs are not used by the PuppetTime toolbox routines, and will be omitted from the
following figures).

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 7

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

Figure 3. The PuppetTime event structure

A PuppetTime event includes the following atoms:

• Target - this atom contains an ID of the target puppet for this event. Puppet IDs are assigned to
puppets at runtime, so any puppet can be used, and the event always goes to the puppet with the
given ID.

• Time - this atom contains the time that this event should occur. This time value will be relative either
to the start time of a movie or to the system clock. The puppet is responsible for queuing this event
until the given time has arrived. A queuing method is provided to any puppet that wants it
(explained below).

• Messages - each event contains one or more messages. Each message contains a message class/code
combination and zero or more parameters. In this way, a number of messages can be sent to a
puppet with only one event.

• Class - contains the message class being invoked (e.g., 'core' or 'musi').

• Code - contains the message code, (e.g., 'walk' or 'wave').

• Data - each message can contain a number of parameters, as defined by the creator of the event
suite. The parameters can augment the resulting behavior and/or animation (e.g., speed of walk, or
exaggeration of wave).

There are constants defined in the header file PuppetTimeEvents.h for the event and message names
used to build a PuppetTime event, to ensure that all events have the same structure.

PuppetTime Toolbox Routines

As noted above, you can use QuickTime toolbox routines to build QTAtoms as PuppetTime events, as
long as you structure the QTAtoms in the basic format described. Because the format is so specific, there
are a number of PuppetTime toolbox routines that make creating and parsing PuppetTime events easy.
Look at the file PuppetTimeEvents.h for a complete list of available APIs.

Music Events

As an example, let's describe a class of events that represent music. Figure 4 shows a typical music
event structure:

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 8

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

Figure 4. A typical music event

Listing 2 shows how to use the PuppetTime toolbox routines to build the event shown in Figure 4.
Notice the PuppetTime toolbox streamlines the hierarchical nature of the event for you.

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 9

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

QTAtomContainer MakeAMusicEvent()
{
 SInt32 instrument = 1;
 SInt32 eventTime = 15;
 UInt16 noteNumber;
 UInt16 noteVelocity;
 QTAtomContainer anEvent = nil;
 QTAtomContainer aMessage = nil;
 OSStatus anError = noErr;

 // create a new message
 aMessage = PTNewMessage(kPTInstrumentClass, kPTNoteEvent);

 // insert the parameters
 noteNumber = 60;
 noteVelocity = 0
 anError = PTSetProperty(aMessage,
 kNoteNumber,
 sizeof(noteNumber),
 ¬eNumber);
 anError = PTSetProperty(aMessage,
 kNoteVelocity,
 sizeof(noteVelocity),
 ¬eVelocity);

 // create the event
 anEvent = PTNewEvent(instrument, eventTime, aMessage);

 // add the second message
 noteNumber = 62;
 noteVelocity = 90;
 anError = PTSetProperty(aMessage,
 kNoteNumber,
 sizeof(noteNumber),
 ¬eNumber);
 anError = PTSetProperty(aMessage,
 kNoteVelocity,
 sizeof(noteVelocity),
 ¬eVelocity);

 anError = PTSetNthMessage(anEvent, 0, aMessage);
 anError = PTReleaseMessage(aMessage);

 // do something with the event, like add it to a track

 anError = PTReleaseEvent(anEvent);

 return anEvent;
}

Listing 2

Optimizations

To minimize the size of PuppetTime event streams, there are a number of optimizations that can be made
when storing or transmitting events.

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 10

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

The first optimization is the concept of default values. When an event is defined by an author in a header
file, certain parameters will be defined to have default values. When a developer creates an event, she
can omit certain parameters to save space. When the recipient of an event goes to read those parameters
and finds none, she can assume a default value. So for the music event example above, the default value
for the velocity is zero, and that "note off" messages can contain one less parameter. The savings can
add up quickly in a PuppetTime track that represents a song visually. Default value optimizations should
be done by the creator of the events.

The second optimization is the concept of event flattening. Oftentimes an event will contain only one
message, so the contents of the message atom (class, code, and parameters) are moved into the event
atom, and the message atom is removed. The PuppetTime toolbox routine PTOptimizeEventList
performs event flattening.

Puppets
Now we turn our attention to PuppetTime puppets. PuppetTime defines a puppet component interface in
the file PuppetTimeComponents.h , and also includes a number of puppet components that are used
throughout the PuppetTime environment.

The Puppet Component Interface

Listing 3 shows the component interface for puppet components:

pascal ComponentResult PuppetInitialize
 (PuppetComponent puppet,
 ConductorComponent aConductor);

pascal ComponentResult PuppetSetTimeFormat
 (PuppetComponent puppet,
 UInt32 eventTimeFormat);

pascal ComponentResult PuppetIdle
 (PuppetComponent puppet,
 UInt32 atMediaTime);

 // message routines
pascal ComponentResult PuppetProcessActionEvent
 (PuppetComponent puppet,
 QTAtomContainer anEvent);

pascal ComponentResult PuppetProcessMessage
 (PuppetComponent puppet,
 UInt32 atMediaTime,
 QTAtomContainer aMessage);

 // QD3D routines
pascal ComponentResult PuppetSubmit
 (PuppetComponent puppet,
 TQ3ViewObject theView);

pascal ComponentResult PuppetGetGroupObject
 (PuppetComponent puppet,
 TQ3GroupObject* aGroup);

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 11

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

pascal ComponentResult PuppetGetTranslateObject
 (PuppetComponent puppet,
 TQ3TransformObject* aTransform);

pascal ComponentResult PuppetGetCameraObject
 (PuppetComponent puppet,
 Rect* graphicsBox,
 TQ3CameraObject* aCamera);

Listing 3

The key routines are described below.

• PuppetInitialize - this routine is called when an instance of the puppet is created. The puppet
should initialize its internal structures, which usually includes creating some geometries in
QuickDraw 3D that serve as the puppet's basic visual representation.

• PuppetProcessActionEvent - this routine is called when an event is dispatched to a puppet. The
puppet should check the time of the event, and queue the event if the current time is less than the
event time.

• PuppetProcessMessage - when a puppet decides to execute an event, it should send all messages
to this routine. This abstraction between processing an event and a message will become clear below
when we talk about the base puppet component.

• PuppetIdle - this routine is called repeatedly while the puppet is active, and the puppet should do
whatever processing is necessary. Often times, in response to an event, the puppet will animate
itself, and this is the routine that should handle the next "frame" of the animation sequence. It is up
to the puppet to decide how to implement its animation. Most puppets perform their animations by
adding, changing, and removing geometries in the QD3D environment.

• PuppetSubmit - this routine is called for each puppet when the 3D environment is being drawn. The
puppet is responsible for submitting its QuickDraw 3D geometries.

Base Puppet

As you can see, there are a number of routines in a puppet component, and every puppet should
implement all of them. But most puppets need the same internal organizations, like a queue for events
that aren't quite ready for processing. Moreover, processing events and pulling out messages is the same
for most puppets.

To make the process of creating a new puppet for PuppetTime easier, most developers can create a
derived puppet component. A derived puppet uses the services of a base puppet component as a delegate
to its own code. Similar in concept to a base media handler or a base image decompressor, the base
puppet component implements the basics of a puppet, and leaves the specifics of the geometries and
animations to the developer.

To create a derived puppet component, a developer must implement the following puppet component
routines: PuppetOpen , PuppetClose , PuppetInitialize , PuppetIdle , and
PuppetProcessMessage .

The PuppetOpen routine should make an instance of the base puppet component and set derived puppet
component to be the target. Listing 4 shows a simple derived PuppetOpen routine:

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 12

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

pascal ComponentResult PTBlockyPuppetOpen(ComponentInstance self)
{
 ComponentResult result = noErr;
 PTBLPrivateGlobals** storage = NULL;

 storage = (PTBLPrivateGlobals**)
 NewHandleClear(sizeof(PTBLPrivateGlobals));
 if (storage != NULL)
 {
 // store our globals in the component instance
 SetComponentInstanceStorage(self, (Handle) storage);
 (**storage).self = self;

 // get the Blocky media handler component
 (**storage).delegate =
 OpenDefaultComponent(PuppetComponentType,
 BasePuppetComponentType);
 ComponentSetTarget((**storage).delegate, self);

 // initially we target ourselves
 (**storage).target = self;
 }

 return (result);
}

Listing 4

In PuppetClose , make sure to release your instance of the base puppet.

In PuppetInitialize , your puppet component must call through to the base component, and then
create some geometries. Listing 5 shows a simple derived PuppetInitialize routine. Notice that the
base puppet creates the QD3D group object, and that the derived puppet asks for it using the puppet
component routine PuppetGetGroupObject .

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 13

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

pascal ComponentResult
PTBlockyPuppetInitialize(PTBLPrivateGlobals** storage,
 ComponentInstance aConductor)
{
 TQ3GroupObject aGroup = nil;
 TQ3GeometryObject myBox;
 TQ3BoxData myBoxData;
 TQ3SetObject faces[6];
 short face;
 TQ3ColorRGB faceColor;
 TQ3ColorRGB faceSeeThru;
 ComponentResult anError;

 anError = PuppetInitialize((**storage).delegate, aConductor);
 anError = PuppetGetGroupObject((**storage).target, &aGroup);

 // set up the colored faces for the box data
 myBoxData.faceAttributeSet = faces;
 myBoxData.boxAttributeSet = nil;
 // set up some color information
 faceColor.r = faceColor.g = faceColor.b = 0.8;
 faceSeeThru.r = kNoteTransparency;
 faceSeeThru.g = kNoteTransparency;
 faceSeeThru.b = kNoteTransparency;
 for (face = 0; face < 6; face++)
 {
 myBoxData.faceAttributeSet[face] = Q3AttributeSet_New();
 ::Q3AttributeSet_Add(myBoxData.faceAttributeSet[face],
 kQ3AttributeTypeDiffuseColor,
 &faceColor);
 ::Q3AttributeSet_Add(myBoxData.faceAttributeSet[face],
 kQ3AttributeTypeTransparencyColor,
 &faceSeeThru);
 }
 // set up te basic properties of the box
 ::Q3Point3D_Set(&myBoxData.origin, 0, -(6 * kNoteSize), 0);
 ::Q3Vector3D_Set(&myBoxData.orientation, 0, 12 * kNoteSize, 0);
 ::Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, kNoteLength);
 ::Q3Vector3D_Set(&myBoxData.minorAxis, kNoteWidth, 0, 0);

 // create the box itself
 myBox = ::Q3Box_New(&myBoxData);
 ::Q3Group_AddObject(aGroup, myBox);
 ::Q3Object_Dispose(myBox);

 // dispose of the objects we created here
 for(face = 0; face < 6; face++)
 {
 if (myBoxData.faceAttributeSet[face] != nil)
 ::Q3Object_Dispose(myBoxData.faceAttributeSet[face]);
 }

 return anError;
}

Listing 5

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 14

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

In the routine PuppetIdle , you can do whatever idle time processing you like. Just make sure to give
the base puppet some idle time as well. Listing 6 shows how:

pascal ComponentResult
PTBlockyPuppetIdle(PTBLPrivateGlobals** storage,
 UInt32 atMediaTime)
{
 ComponentResult anError;
 anError = PuppetIdle((**storage).delegate, atMediaTime);
 for (short i = 0; i < kNumberOfNotes; i++)
 {
 if ((**storage).fNotes[i] != nil)
 {
 anError = (**storage).fNotes[i]->Idle(atMediaTime);
 }
 }
 return anError;
}

Listing 6

When the base puppet decides to pull an event from its queue, it reads each of the messages inside it and
sends them to PuppetProcessMessage . This is where your puppet can receive its messages and
perform its animations. Notice that the switch statement defaults to calling back into the base puppet,
which can handle certain basic messages on its own (e.g., "locate at"). Listing 7 shows an example:

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 15

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

pascal ComponentResult
PTBlockyPuppetProcessMessage(PTBLPrivateGlobals** storage,
 UInt32 atMediaTime,
 QTAtomContainer aMessage)
{
 ComponentResult anError = noErr;
 OSType messageCode;

 ::PTGetMessageCode(aMessage, &messageCode);
 switch (messageCode)
 {
 case kPTNoteEvent:
 {
 anError = ProcessNoteMessage(storage, aMessage);
 break;
 }

 default:
 anError = PuppetProcessMessage((**storage).delegate,
 atMediaTime,
 aMessage);
 break;
 }

 return anError;
}

Listing 7

As you can see, a base puppet handles a lot of th details for you, allowing you to concentrate on
implementing your puppet's visual appearance and animations. Note also the object-oriented nature (i.e.
inheritance and overriding) of using a base puppet inside your puppet. The Component Manager was
designed specifically for this kind of use.

Camera Puppet

Another important puppet in PuppetTime is the camera puppet. This is a derived puppet which provides
a view of the PuppetTime world to the user. Any puppet can have a camera view associated with it,
although it's not required. The camera puppet is special in that it has no geometry associated with it, and
simply provides a view.

The file PuppetTimeCameraEvents.h defines a vocabulary for camera control, and the file
PuppetTimeEvents.h includes the core vocabulary for basic movement. This means that the view can
be changed by sending "move" events to the camera puppet. Just like all other PuppetTime events, these
"move" events can be generated at runtime based on user input devices (e.g., a joystick), or can be
stored along with otherevents in an event stream (e.g., panning during playback of a movie). At this
time, there is only one camera puppet allowed: future versions of PuppetTime will expand the role and
use of camera-enabled puppets.

Creating your own puppets

There are several puppets with sample code available in the SDK, which demonstrate the proper way to
use the base puppet component. Use these example projects as the basis for your puppet development.

Make sure that you edit the 'thng' resource, and choose mixed- or upper-case constants for the subtype

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 16

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

and manufacturer fields. At this time, there are no flags defined for puppets, so zero them out for now.

When implementing puppets, you'll have to decide what vocabularies to support. There are several sets
of vocabularies already defined in PuppetTime, such as core and music. The base puppet handles a
number of the core events for you.

You're also free to create your own vocabularies, but you should use your manufacturer code as the
message class; you'll also have to generate PuppetTime tracks using your vocabularies.

Music Puppets

For music puppets, the file PuppetTimeMusicEvents.h contains all the constants for the music
vocabulary. The file PuppetTimeMusicEvents.c includes several utility routines to easily build music
events.

The PuppetTime MIDI import component, discussed below, creates PuppetTime tracks using the music
vocabulary. This allows a user to quickly generate PuppetTime content by simply importing MIDI files
into QuickTime movies using applications like MoviePlayer.

Conductor
Next we examine the heart of PuppetTime, the conductor. It is the central object that binds the puppets to
the drawing environment and to the incoming event stream.

3D Environment

When an instance of the conductor component is created, it in turn instantiates a number of QuickDraw
3D objects to set up a drawing environment, including a renderer, viewer, context, etc.

Each puppet is responsible for its own geometries, yet this information needs to be communicated to the
conductor at some point. This is done when the conductor is instructed to draw: each puppet gets a
chance to submit its geometries (and other objects) to the QuickDraw 3D rendering loop maintained by
the conductor.

Event Dispatching

Besides being responsible for the overall display, the conductor is also responsible for dispatching
events from an incoming events stream to the puppet instances.

There is a class of events specific to the conductor, like the 'cast' event. Events targeted to the conductor
have a target ID of zero. A cast event has the structure shown in Figure 5:

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 17

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

Figure 5. A cast event structure

The cast message contains the following fields:

• kPuppetSubType - this field contains the subtype of the puppet component to instantiate, or cast.
This field corresponds to the subtype field in the 'thng' resource that defines your puppets. When
casting a puppet, the conductor will search for a component where the type is 'PTpt' and the
subtype is the value in this field.

• kPuppetMaker - this optional field allows you to further identify your puppet component, which
matches the manufacturer field in your 'thng' resource. When casting your puppets, you should use
this field to avoid name collisions, which can result in the wrong puppet being cast.

• kPuppetName - this field is also optional, but if it's present, it will be used in future version of
PuppetTime for things like onscreen identification and event targeting via name.

When the conductor receives cast events, it examines the contents of the event to determine which
puppet to instantiate, then creates and stores a puppet instance in its internal array.

Cast events are among the first events passed to a conductor. Without them, there would be no puppets
visible and nothing to dispatch further events to. You can use the routine PTAddCastingEventToList
to easily add a cast event to an event list. Note that a cast event doesn't tell the puppet where it should be
when it is created; therefore, you should also add a locate event to the event stream using the routine
PTAddLocateEventToList .

We'll talk about cast events as they pertain to QuickTime movies below.

Current Camera

The conductor has the concept of a current camera, which is itself a puppet. When a conductor first
initializes, and after it has created the QuickDraw 3D drawing environment, it casts a camera puppet and
assigns it a special ID kPTDefaultCamera . This gives the conductor an initial view in which to draw.

Events can be targeted to the default camera by using an ID of kPTDefaultCamera . Because the camera
object uses the base puppet, it understands many of the core vocabulary, like "move to" and "turn." The
first version of PuppetTime supports only one camera, but future versions will expand on this.

QuickTime integration

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 18

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

The first part of this article described how PuppetTime is structured around QTAtoms and puppet components. Now
on how PuppetTime is integrated with QuickTime. The initial release of PuppetTime allows for basic creation and p
QuickTime movies containing PuppetTime tracks.

PuppetTime Tracks

A PuppetTime track in a QuickTime movie has the type 'PTmh'. Each sample in a PuppetTime track is a QTAtomCo
structure containing a list of PuppetTime events. The events in this list represents at minimum 2-3 seconds worth of
the duration of each sample can be much larger. This ensures that disk access is minimized for better playback perf

Playing PuppetTime Tracks

In QuickTime, each track type has a corresponding media handler component which handles the playback of the tra
contents. Thus, a video track is managed by an instance of the video media handler, and a sound track is managed b
instance of the sound media handler.

The PuppetTime media type is no different: a PuppetTime track is managed by the PuppetTime media handler, whic
derived media handler. When QuickTime opens a movie and finds a PuppetTime track, it searches for the correspon
PuppetTime media handler (by finding a component of type 'mhlr' and a subtype equal to the track type, in this ca
and creates an instance.

Being a derived media handler, many of the functions are handled by the base media handler component. The Pupp
media handler does handle certain routines itself, and the most notable are MediaInitialize and MediaIdle .

MediaInitialize function

During movie initialization, QuickTime calls the media handler routine MediaInitialize . Here, the PuppetTime m
handler creates an instance of the PuppetTime conductor and tells it about the visual dimensions of the track.

Next, it looks for some cast data associated with the track. The cast data is stored separately so that the cast of the m
be easily changed. For example, in a PuppetTime track that contains music events, the actual puppets used during p
can be changed by modifying the cast data. The resulting visual representation will be different while the underlying
stream remains valid. Use the routines PTGetCast and PTSetCast to get and set the cast data for the track.

MediaIdle function

If the conductor is the heart of PuppetTime, then the MediaIdle function is the heartbeat of a PuppetTime track. Th
is responsible for reading in samples from the underlying media and passing them off to the conductor for dispatch
gives idle time to the conductor so that it can draw.

Creating PuppetTime Tracks

Of course, playing a PuppetTime track is only useful if you have a PuppetTime track. Creating a PuppetTime track
QuickTime movie is simple. As explained above, each sample is a list of events; in this way, the samples are spaced
that the disk isn't accessed too often. Listing 8 shows the sample description record, which is rather uncomplicated
demonstrates the concepts behind adding a PuppetTime media to a movie.

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 19

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

typedef struct PTMHDescription {
 long size; // Total size of struct
 long type; // kPTMediaType
 long resvd1;
 short resvd2;
 short dataRefIndex;
 long version;
} PTMHDescription, *PTMHDescriptionPtr, **PTMHDescriptionHandle;

Listing 8

Track myTrack;
Media myMedia;
QTAtomContainer anEventList;
PTMHDescriptionHandle aDesc = nil;
TimeValue sampleTime;

myTrack = NewMovieTrack(theMovie,
 (long) myWidth << 16,
 (long) myHeight << 16,
 0);

 // create the media for the
myMedia = NewTrackMedia(myTrack, // the track
 kPTMediaType, // the type of media
 aTimeScale, // time scale
 nil, // data ref
 (OSType) nil); // type of data ref

anEventList = PTNewEventList();
anError = PTAddLocateEventToList(anEventList,
 1, // target
 0, // time
 0, // x
 0, // y
 0); // z
anError = PTAddNoteEventToList(anEventList,
 1, // target
 5, // time
 60, // note
 95, // velocity
 0); // duration (0=forever)
anError = PTAddNoteEventToList(anEventList,
 1, // target
 65, // time
 60, // note
 0, // velocity (0=off)
 0); // duration (0=forever)

aDesc = (PTMHDescriptionHandle) NewHandleClear(sizeof(PTMHDescription));
(**aDesc).size = sizeof(PTMHDescription);
(**aDesc).type = kPTMediaType;
(**aDesc).version = kPTMediaVersion;

 // Start editing se s

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 20

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

anError = BeginMediaEdits(theMedia);

 // add the data to
anError = AddMediaSample(theMedia,
 (Handle) anEventList, // the sample
 0L, // offset
 GetHandleSize((Handle) anEventList),
 65, // duration of samp
 (SampleDescriptionHandle) aDesc,
 1, // number of sample s
 0, // sample flags
 &sampleTime); // returned time

 // end editing sess
anError = EndMediaEdits(theMedia);

 // append to the tr a
anError = InsertMediaIntoTrack(theTrack, // the track
 -1, // where to insert
 0, // where in the me d
 65, // how much media t o
 1L << 16); // the media rate

Listing 9

Of course, there are routines in the PuppetTime toolbox that make creating PuppetTime tracks even easier, like
PTAddPuppetTimeSample and PTSetEventListForTrack .

PuppetTime movie import component

Users should have an easy way to create PuppetTime tracks from abundant existing content. The initial release of P
focuses on music visualization, and includes a movie import component that converts MIDI files into PuppetTime t

QuickTime already includes a movie import component for MIDI files. The trick is to hook into the QuickTime imp
component in such a way that while it is creating a music track, PuppetTime gets a chance to create a PuppetTime tr
alongside it.

This can be done by capturing the MIDI import component and replacing it with the PuppetTime import component
step beyond just delegating to a component. Capturing means that the PuppetTime import component gets exclusive
MIDI import component, and takes the latter out of the Component Manger's current registry.

In addition, PuppetTime wants to capture the MIDI import component at startup time, so that whenever QuickTime
import a MIDI file--regardless of which application is calling QuickTime--the PuppetTime MIDI import component
its magic.

Capturing a component at runtime takes a bit of finesse. First, the thng resource must be properly configured: the t
subtype of the PuppetTime import component must match the component being capturing (in this case 'eat ' and 'M
the cmpWantsRegisterMessage flag is set to true , which tells the Component Manager that the PuppetTime impo
component wants its Register routine called at startup. The rest of the component flags should be the same as the co
being capturing. Finally, the PuppetTime movie import component is a PPC-native component, so the component
HasMultiplePlatforms flag is set to true . This tells the component manager to find the component in the extend
structure.

Now that the component successfully captures the MIDI import component, it needs to override the
MovieExchangeImportFile function. This routine calls throughto the captured and delegated MIDI import compo

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 21

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

proceeds to create the music track from the MIDI fil e. Af ter that routine returns, the PuppetTime import component
re-reads the MIDI file and creates a PuppetTime track, converting MIDI data structures into PuppetTime events usin
music vocabulary. The code could have just as easily read the newly created music track. Either way, without any e
on the user's part, a new movie is created that contains both a music track and a PuppetTime track.

To make the user experience complete, the PuppetTime import component also overrides the MovieExchangeDoUs
routine. In this case, however, it doesn't call through to the MIDI import component, but puts up its own Options d
instead.

Sample Code
In the PuppetTime Sample Code, I've included slightly altered versions of the PuppetTime media
handler and the PuppetTime movie import component for your review. You'll note that I've changed all
occurrences of the subtype and manufacturer fields to 'XXXX' and 'YYYY'. If you choose to use these
samples for the basis of your own projects, please change the constants to something more suitable.
Also, please don't re-use my constants for the various PuppetTime components, particularly 'PTmh' for
my media handler and media type; this will allow me to continue developing PuppetTime without
external complications.

Future Direction
Much like the QuickTime architecture, PuppetTime is designed with future growth squarely in mind.

More QuickTime integration

With the initial release of the PuppetTime engine, only two QuickTime-related components are included:
a media handler and a movie import component. As PuppetTime continues to develop and mature, more
QuickTime components will be added.

• Sequence grabber channel - A PuppetTime sequence grabber channel will work with the sequence
grabber component to capture PuppetTime tracks in real-time from a number of input devices, like
keyboards and joysticks. It could also be used to capture a network event stream, such as in a
multi-user game environment.

• Movie Controller - PuppetTime is well integrated with other QuickTime media types, but the
existing user experience doesn't allow the user/viewer to move around and among the puppets
currently being displayed. A PuppetTime movie controller will add a trackpad-like control alongside
the other QuickTime movie controller controls that allows the user to move the camera puppet while
the movie is playing.

• Movie Info Panel - While not necessarily a formal part of the QuickTime framework, a PuppetTime
movie info panel will allow users to change the puppets in the cast for a PuppetTime track.

Cross-platform

Of course, creating a new media type, especially for web and internet applications, isn't as compelling
unless it works on both Macintosh and Windows platforms. Near-term future development will focus on
bringing the core toolbox and component functionality to both platforms under QuickTime 3.0.

Consumer Applications

Of course, the PuppetTime architecture exists so that developers can create applications that create and
edit the PuppetTime media type. A couple of consumer-level applications that I'd like to see happen are
the Puppet Builder and the Puppet Scene Maker.

Saturday, May 30, 1998 Introducing PuppetTime™ Page: 22

fi le:// /Monster500/Apple_Web/
Week%20of%205%3A25/

The Puppet Builder application would allow a user to create new puppets, giving them shapes and
simple animations, and matching animations to events.

The Puppet Scene Maker would allow a user to create a scene with dialog in 3D. For example, you
could drag puppets from a cast window onto a stage window, then enter dialog in the script window.
You might also drag actions from a vocabulary window onto the script window to add movement,
nuances, etc.

Bibliography and References

Wang, John. "Somewhere in QuickTime: Derived Media Handlers" develop, The Apple Technical Journal,
issue 14 (June 1993), pp. 87-92.

Guschwan, Bill. "Somewhere in QuickTime: Dynamic Customization of Components" develop, The Apple
Technical Journal, issue 15 (September 1993), pp.84-88.

Inside Macintosh: QuickTime, by Apple Computer, Inc. (Addison-Wesley, 1993).

Inside Macintosh: QuickTime Components, by Apple Computer, Inc. (Addison-Wesley, 1993).

3D Graphics Programming With QuickDraw 3D, by Apple Computer, Inc. (Addison-Wesley, 1995).

Additional Resources:

The QuickTime homepage is at <http://www.apple.com/quicktime/> and the QuickTime developer homepage
is at <http://www.apple.com/quicktime/developers/>.

The PuppetTime homepage is at <http://www.puppettime.com/>, where you can download the latest docs,
runtime, and SDK.

Downloadables

 Acrobat version of this Note (how many K?)

Acknowledgments

Thanks to Joel Cannon, Scott Kuechle, Gregg Williams, Kathryn Donahue, Steve Cooley, Tony Gentile, and
Jason Downs.

To contact us, please use the Contact Us page.
Updated: 25-May-98

Technotes
Previous Technote | Contents

