
Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 1

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Technote 1141

Extending and Controlling

and the Find by Content Libraries

being a description of the Find facilities in Mac OS 8.5

By John Montbriand
Apple Worldwide Developer Technical Support

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 2

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

CONTENTS

Overview

Internet Search Plug-ins

Search Plug-in Files
An Example
Internet Search and XML Search
Results
Tips for Search Site Administrators
Internet Search Interface Language
BNF

AppleScript Support

Searching the Internet
Searching Files
Indexing Volumes

The Optional kAEOpenDocuments Apple Event
Parameter

Find By Content

Determining if Find By Content is
Available
Working with Search Sessions
Setting up a Search Session
Performing Searches
Retrieving Information from a Search
Session
Find By Content Reference

Data Types
Allocation and Initialization of
Search Sessions
Configuring Search Sessions
Executing a Search
Getting Information About Hits
Summarizing Text
Getting Information About
Volumes
Reserving Heap Space
Application-Defined Routine

Find By Content C Summary

Acknowledgments

Mac OS 8.5 includes several enhanced

searching capabilities, known collectively as
Sherlock. Previously, the Mac OS Find
application allowed users to search mounted
disk volumes for files based on information
such as name, modification date, and file type.
Sherlock retains this functionality, but also
extends the user's search options to include both
the content of files and the Internet.

Overview

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 3

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

To perform an Internet search, the Sherlock application sends query information to one or more Internet
search sites. The information returned by the search sites is interpreted by the Sherlock application and
then displayed for perusal. As each Internet search site has its own particular format for query and
response information, the Sherlock application uses plug-ins that describe data formats expected and
provided by individual Internet search sites for formatting queries and parsing response data. Internet
search site providers interested in building their own Internet search site plug-ins will find directions for
doing so in the Internet Search Plug-ins section.

AppleScript commands for accessing the new content-based search and Internet search facilities
provided by the Sherlock application are available. These include commands for searching by content, a
command for indexing volumes, and commands for performing Internet searches. These commands are
discussed in greater detail in the AppleScript Support section.

The Sherlock application, when asked to open a file that was found by way of a content-oriented search,
attaches information about the search and why the file was selected to the 'odoc' Apple event it passes to
the Finder. The Finder passes this information along to applications as a property associated with the
'odoc' Apple event. Applications can access this information and use it to perform further search and
display actions when it is found in the 'odoc' event. More information can be found in the
kAEOpenDocuments section.

Find By Content is a new system-level facility implemented as a Code Fragment Manager library. The
Sherlock application is a client of Find By Content and utilizes its search facilities for performing
content-based searches. Developers interested in using the Find By Content services from within their
applications may do so by linking against the PowerPC Code Fragment Manager library named "Find
By Content" (without the quotes). Routine descriptions and examples are provided in the Find By
Content section below.

Internet Search Plug-ins
The "Search Internet" feature in the Sherlock application allows users to perform Internet searches using
one or more Internet search engines. The Sherlock application itself contains no information about the
exact data formats expected or generated by individual Internet search engines; when accessing any
particular Internet search site, the Sherlock application uses a search plug-in file that describes the data
formats both expected by the site for queries and produced by the site in its responses to queries.
Internet Search Interface Language (ISIL) is the language used in search plug-in files so that Internet
search site administrators may provide their own search plug-in files.

ASCII text describing the search site is contained in a search plug-in's data fork. The resource fork may
be used for custom icons, Finder strings, et cetera. Search plug-in files have the creator code 'fndf'
and the file type 'issp' and will be only recognized by the Sherlock application when they reside in the
"Internet Search Sites" Folder (FindFolder type = 'issf'). When dropped onto the System Folder's
(closed) icon, files of type 'issp' are auto-routed to the "Internet Search Sites" folder.

ISIL is modeled closely after the HTML it is used to describe, so HTML authors familiar with the syntax
should have little or no trouble creating their own search plug-in files. An exact specification of the
language can be found in the Internet Search Interface Language BNF section, and the sections that
follow discuss the language in greater detail.

To create a search plug-in file, you will need a text editor program -- Simple Text will do -- and a utility
that will allow you to change the plug-in's file type. The basic steps for editing a search plug-in file are:

1. Open or create and then edit the file using your text editor program.
2. Save any changes you make and close the file.
3. Change the file type of the file from 'TEXT' to 'issp'.
4. Test your file (now a Sherlock plug-in) using the Sherlock application.

If satisfied, you're done: stop.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 4

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

5. Change the fil e type of the search plug-in from 'issp' to 'TEXT'.
6. Go to the first step in this list.

If your text editor edits any file regardless of type and does not change the types of the files it edits, you
can skip steps 3 and 5.

The Sherlock application scans the "Internet Search Sites" only once when it is starting up. You should
restart the Sherlock application each time you would like to test your search site file.

Search Plug-in Files

Search plug-in files contain ASCII text formatted similarly to the HTML text used to define web pages.
Accordingly, terminology used to describe HTML is used in this document's description of ISIL syntax.
Information describing an Internet search site is contained in a block labeled with the SEARCH tag. This
block is used to describe how the Sherlock application sends queries to an Internet search site, and it
includes information such as the site's URL, the HTTP command used to send a query, and query
parameters. Listing 1 illustrates the typical layout for a SEARCH block.

Listing 1. Typical layout for a SEARCH block in a search plug-in file:

<SEARCH
 name = "<search engine name>"
 method = ["get" | "post"]
 action = "<url to address>"
 [update = "<url containing update file>"]
 [updateCheckDays = "<days between update pings>"]
 [description = "<human-readable-description">]
 [bannerImage = "<url containing banner image>"]
 [bannerLink = "<url to load when banner clicked>"]>

....

<INPUT
 name = "<input name>"
 value = "<value>"
 [mode = "results"]>
<INPUT
 name = "<input name>"
 value = "<value>"
 [mode = "browser"] >

....

<INPUT
 name = "<input name>"
 user>

....

<INTERPRET
 [bannerStart = "<text>"]
 [bannerEnd = "<text>"]

 [relevanceStart = "<text>"]
 [relevanceEnd = "<text>"]

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 5

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

 [resultListStart = "<text>"]
 [resultListEnd = "<text>"]
 [resultItemStart = "<text>"]
 [resultItemEnd = "<text>"]
 [skipLocal=true]

 [charset = "<text>"]
 [resultEncoding = <integer>]
 [resultTranslationEncoding = <integer>]
 [resultTranslationFont = "<text>"]>

....

</SEARCH>

Search blocks begin with the <SEARCH> tag (containing a number of attributes, as described in
Table 1) and end with a </SEARCH> tag. Within a typical search block describing an Internet search
site, there will be one or more INPUT tags and an INTERPRET tag. The SEARCH block attributes
describe the search site, how it is to be accessed, and where updates to the search plug-in file can be
found.

Table 1. SEARCH block attributes

Attribute Name Description

name This is a human-readable name for the search plug-in.

method The method attribute specifies the type of HTTP command that should
be used for communications with the HTTP server. Currently, either
"GET" or "POST" can be specified as the communications method.

action Specifies the full URL to access the search server. Any relative links in
the result list will be localized using this URL.

update This is an optional attribute specifying where the most recent version of
the search plug-in file is kept. If provided, the Sherlock application will
periodically check this URL for changes. If the file at this URL is found
to be more recent than the one that is currently installed, the Sherlock
application will prompt the user to download the new file and
automatically install it. The file located at this URL should be in BinHex
format (but not otherwise compressed or encoded).

dateCheckDays This is an optional attribute specifying the number of days between times
when the update URL is checked for more recent versions of the search
plug-in file. If this attribute is not present, the default value of 30 days is
used.

description This is an optional attribute containing text describing the search engine,
its capabilities, and the content type of the search results. This text may
be used for display in user interface facilities.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 6

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

bannerImage This is an optional attribute specifying an URL for an image that will be
displayed in the details pane when any result from a query using this
search plug-in is selected. Note: the banner properties of the INTERPRET
tag will override this setting when there is a conflict.

bannerLink This is an optional attribute specifying an URL that will be loaded when
the banner image is clicked. Note: the banner properties of the
INTERPRET tag will override this setting when there is a conflict.

The INPUT tags are used to construct the data field used in the GET or POST command sent to the HTTP
server. The data field is constructed using the HTTP syntax and the method field determines the method
that is used to query the server. A search block may contain one or more INPUT tags, but only one of the
INPUT tags can be a USER INPUT tag.

INPUT tags may specify an optional mode attribute. The Sherlock application will send two types of
queries: one when it is retrieving results and another when it sends a query URL to a browser. INPUT
tags specifying the "results" mode (the default) are used by the Sherlock application when it sends
queries to search sites that will be displayed in the list of search results in the Sherlock application's
window. INPUT tags specifying "browser" will be included in query URLs sent to browser applications
for display. For example, the following two INPUT tags may be present in a search plug-in file:

<input name="sv" value="AP" mode = "results">
<input name="sv" value="IS" mode = "browser">

Here, &sv=AP will be sent to the server when the Sherlock application will be used to display the
results, and &sv=IS will be sent to the server when a web browser will be used to display the results.

The INTERPRET tag describes the format of the information returned from search queries sent to the site.
This information allows the Sherlock application to extract individual search results from a query and
format them into a list. Table 2 describes the various attributes that may be specified for an INTERPRET
tag. Each attribute specified in the INTERPRET tag specifies a text pattern occurring in the result page
delimiting some specific part of the results. When available, the Sherlock application will use these text
patterns to extract search result information from the result pages returned by Internet search sites and
build lists of items for display.

Table 2. INTERPRET tag attributes

Attribute Name Description

resultListStart Specifies the text pattern present at the beginning of the list
of search results in the result page returned by the server.
If resultListStart is not specified, then the Sherlock
application will assume the result list begins at the top of
the result page.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 7

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

resultListEnd Specifies the text pattern present at the end of the list of
search results in the result page returned by the server. If
resultListEnd is not specified, then the Sherlock
application will assume the result list ends at the bottom of
the result page. The resultListStart and
resultListEnd attributes are used to define text patterns
delimiting the list of results.

resultItemStart Specifies a text pattern present at the beginning of each
individual item in the list of results. When the text specified
is matched in the result page, only links immediately
following the text pattern will be included in the list of
results displayed for the user.

resultItemEnd Specifies a text pattern present at the end of the text used to
describe an item in the list of results. Text between a
result's link and this text pattern will be presented in the
details pane. The resultItemStart and resultItemEnd
attributes are used to define text patterns delimiting
individual items in the list of results returned by the server.

bannerStart Specifies a text pattern used to locate the banner image to
be displayed for the search results. The first link following
the text pattern will be used as the bannerLink and the
first image following the text pattern will be used as the
bannerImage . If the bannerStart attribute is specified
and the text pattern is matched, then the bannerLink and
bannerImage will override those attributes specified in the
SEARCH tag.

bannerEnd Specifies a text pattern marking the end of the banner
information. The search for a bannerImage and
bannerLink will not proceed beyond this text pattern in
the result page. The text patterns defined in the
bannerStart and bannerEnd attributes are used to delimit
the banner information that may be present in the result
page. If banner information is found in the result page,
then it will will be used instead of any banner information
specified in the SEARCH tag; otherwise, if no banner
information is found, then the default banner information
specified in the SEARCH tag will be used.

relevanceStart Specifies a text pattern marking the beginning of the
relevance information provided for each item in the list of
results. When present, the first numeric text found after the
pattern will be interpreted as the relevance of the item.
Note: the numbers used to represent relevance scores
should be between 0 and 100.

relevanceEnd Specifies a text pattern marking the end of the relevance
information. The search for relevance information will not
proceed beyond this text pattern. The text patterns defined
in the relevanceStart and relevanceEnd attributes are
used to delimit the relevance score for each individual
search result. Note: the numbers used to represent
relevance scores should be between 0 and 100.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 8

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

skipLocal skipLocal is a boolean attribute. If skipLocal is true,
then the Sherlock application will ignore links that refer to
the same host as specified in the ACTION attribute in the
SEARCH tag.

charset The expected encoding of the HTML results. This attribute
may be set to any value appropriate for the charset
HTML meta tag.

resultEncoding The encoding that the HTML results are in. This may be
any integer constant defined in <TextCommon.h> .

resultTranslationEncoding The encoding that the HTML results should be translated
to. This may be any integer constant defined in
<TextCommon.h> .

resultTranslationFont the preferred font for the translated text

The attributes charset , resultEncoding , resultTranslationEncoding , and
resultTranslationFont are for interpreting results returned with different character encodings. If the
result page contains the HTML meta tag "charset", then the Sherlock application will use the Text
Encoding Converter to translate the document into a Macintosh encoding.

It is possible, though, that the Sherlock application will not be able to recognize a text encoding by
name. For these cases, search plug-in creators can explicitly specify the character encoding that will be
used in responses to queries by using the resultEncoding attribute. The value specified for the
resultEncoding attribute can be any integer constant defined in the file <TextCommon.h> . Similarly,
resultTranslationEncoding is used to specify the text encoding that the document should be
translated into before processing continues. The value used for this attribute is also an integer constant
from <TextCommon.h> .

For example, if a result page returned from a search site was encoded using the "euc-jp" character set (in
<TextCommon.h> "euc-jp" is defined as kTextEncodingEUC_JP = 2336) and we would prefer that it be
translated to Mac Japanese (defined as kTextEncodingMacJapanese = 1 in <TextCommon.h>) and
displayed using the "Osaka" font, then the following character translation values would be specified:

<interpret
resultEncoding = 2336
resultTranslationEncoding = 1
resultTranslationFont = "Osaka"
>

INTERPRET tags are optional, and all of the attributes within an INTERPRET tag are optional as well. If a
SEARCH block does not contain an INTERPRET tag, then every link found in the result page will be treated
as a result and the Sherlock application will present the entire list to the user as the results of her query

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 9

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

An Example

In this hypothetical example, we assume the Internet search site that we are writing the search plug-in
file for is located at the URL <http://clarus.apple.com>. (As of this writing, this site does not exist,
although the following text is written as if the site does exist. If the site did exist, it would presumably
enable visitors to search for information regarding Clarus the Dogcow. An explanation of how visitors
other than dogcattle would make use of the search results is beyond the scope of this document and is
left as an exercise for the reader.)

Step 1: Describe the site in the opening SEARCH tag.

Using your web browser, go to the search site and view the HTML source for the web page. Somewhere in
the HTML, you should find a FORM tag as follows:

<form action="http://clarus.apple.com/Titles" method="get" name="Search">

Or, it is possible that the action may be specified as a local string as follows:

<form action="/Titles" method="get" name="Search">

If the action is specified as a local string, then prefix it with the address in the SEARCH tag's action attribute.
Using the information found here, we can construct the opening SEARCH tag for the search block:

<search
 name="Clarus"
 description = "The Clarus Search Site"
 action="http://clarus.apple.com/Titles/"
 method=get>

From the HTML source, we were able to determine that the action is http://clarus.apple.com/Titles/
and the method appropriate for communicating with the site is get . The name of the site and the description
are values we set ourselves.

Step 2: Define the INPUT tags.

There are two ways to determine what inputs are expected by an Internet search site. The first method is
to manually perform a query and look at the URL that is sent to the server. The second is to pick through
the HTML to discover the information.

The Query Method. Looking at the query information is the simplest method. For example, if we go
to the search site in our web browser and type the query string "coffee" and start a search, then we may
observe a URL that looks like this:

http://clarus.apple.com/Titles?qt=coffee&nh=10

From which, we can locate the inputs. The inputs come after the "?" and are separated by ampersand
characters [&]. In this query, the inputs are as follows:

qt=coffee
nh=10

Using this information, we can construct the following two INPUT tags:

<input name="qt" user>

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 10

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

<input name="nh" value="10">

There may be some optional parameters available on a search site, so trying different options and queries
may yield more useful information.

The HTML Method . If the inputs are not present in the URL then they must be determined by
looking at the HTML source. Here, we look for the INPUT tags present in the search site's web page to
determine what will be used to describe the inputs. For example, suppose the first few lines of the
HTML for a search site were formatted as follows:

<form action="/Titles" method="get" name="Search">
<table width="100%" cellspacing=0 cellpadding=3 border=0>
<tr><td colspan=4>
Search</td>
<td align=center>Tips
</td></tr>
<tr><td colspan=5>
<input type="text" name="qt" value="" size="25" MAXLENGTH=255>
</td></tr>
<INPUT TYPE=hidden NAME="nh" VALUE="10">
</table>
</form>

Between the <form> and </form> tags, there are the two inputs relevant to accessing this search engine:

<input type="text" name="qt" value="" size="25" MAXLENGTH=255>
<INPUT TYPE=hidden NAME="nh" VALUE="10">

Again, this information can be used to construct the following two INPUT tags:

<input name="qt" user>
<input name="nh" value="10">

Experimenting with these input parameters and writing different types of query URLs can provide useful
information about their meaning and use. For instance, after writing several variations of the query
URL, we discovered that nh specifies the number of hits that should be returned in a response to a
query. Rather than 10 hits at a time, we would prefer to see 25 hits, so we change the inputs as follows:

<input name="qt" user>
<input name="nh" value="25">

Now that the inputs have been determined, there is enough information to put together a complete search
plug-in file:

<search
 name="Clarus Test"
 description = "The Clarus Search Site"
 action="http://clarus.apple.com/Titles/"
 method=get>
<input name="qt" user>
<input name="nh" value="25">
</search>

However, in this form, although it will be possible for queries to be sent and results to be displayed, the
lack of an INTERPRET tag means that the results may not be displayed correctly. To ensure that they are,
an INTERPRET tag should be added.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 11

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Step 3: Describe the results in the INTERPRET tag.

Determining the text delimiters located in the responses returned by Internet search engines requires
examination of the HTML source returned as the response to one or more queries. From this data, we
can determine text patterns delimiting interesting parts of the response information. For example,
suppose the following were returned as a response to a query:

Listing 2. A sample HTML response to a query:

<HTML>
<HEAD><TITLE>Sample Results</TITLE></HEAD>
<BODY>

<IMG SRC="http://www.apple.com/main/elements/apple.gif"
 ALT="Apple Computer"

<P>
<SMALL>90%</SMALL>
Hot News
Apple Hot News - http://www.apple.com/hotnews

Apple Computer
</P>
<P>
<SMALL>85%</SMALL>
Apple Products

Apple - Products - http://www.apple.com/products

Apple Computer
</P>
</BODY>
</HTML>

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 12

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

From this information, we can see that the banner section is delimited by the text patterns "<BODY>"
and "<P>" as follows:

bannerStart="<BODY>"
bannerEnd="<P>"

The List of results are delimited by the text patterns "" and "</BODY>":

resultListStart=""
resultListEnd="</BODY>"

Each item in the list of results is bracketed by the text patterns "<P>" and "</P>":

resultItemStart="<P>"
resultItemEnd="</P>"

And, the relevance score for each item is bracketed by the text patterns "<SMALL>" and "</SMALL>":

relevanceStart="<SMALL>"
relevanceEnd="</SMALL>"

Putting this all together, the complete search plug-in file would have the following contents:

<search
 name="Clarus Test"
 description = "The Clarus Search Site"
 action="http://clarus.apple.com/Titles/"
 method=get>
<input name="qt" user>
<input name="nh" value="25">
<interpret
 bannerStart="<BODY>"
 bannerEnd="<P>"
 resultListStart=""
 resultListEnd="</BODY>"
 resultItemStart="<P>"
 resultItemEnd="</P>"
 relevanceStart="<SMALL>"
 relevanceEnd="</SMALL>">
</search>

Internet Search and XML Search Results

It is possible that a search engine may provide a separate machine-readable interface such as Extensible
Markup Language (XML).

Listing 3. A sample XML document:

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 13

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

<searchResponse>
 <advertisement>

 </advertisement>

 <searchResults>
 <resultItem>
 <relevance>67%</relevance>
 <link>Title</link>

 <summary>Summary</summary>
 </resultItem>
 </searchResults>
</searchResponse>

At the time of this document's creation, the XML specification is still under development; however,
using the current state of the standard, the Internet Search Interface can be easily configured to interpret
XML result lists. For example, the INTERPRET tag shown below illustrates how a search plug-in could
be set up to interpret the XML document shown in Listing 3.

<interpret
 bannerStart = "<advertisement>"
 bannerEnd = "</advertisement>"
 resultListStart = "<searchResults>"
 resultListEnd = "</searchResults>"
 resultItemStart = "<resultItem>"
 resultItemEnd = "</resultItem>"
 relevanceStart = "<relevance>"
 relevanceEnd = "</relevance>">

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 14

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Tips for Search Site Administrators

Comment-style Delimiters

The Sherlock application uses information provided by search plug-in files to extract information from
HTML results returned from Internet search sites. Specifically, information in search plug-in files is
used to find delimiters in the response information for the banner information and the search results. The
question of the Sherlock application being able to find and display results consistently depends entirely
on the search site remaining in sync with the formats specified in the search plug-in file. When the
formats specified in the search plug-in file are based on anecdotal properties found in one or two search
results files as in the example above, this sort of desynchronization can occur quite easily whenever
small formatting changes are made in the result pages generated by a search site.

To avoid this problem, it is suggested that search site administrators include comments delimiting the
interesting parts of response pages. By doing so, search plug-in files can be built to use the comment
text as delimiters, and HTML formatting information included in result pages can be modified without
risk of invalidating search plug-in files that have been built to access the search site. For example, the
INTERPRET tags given below could be used to interpret the HTML response information shown in
listing 4.

bannerStart="<!-- BANNER START -->"
bannerEnd="<!-- BANNER END -->"
resultListStart="<!-- RESULT LIST START -->"
resultListEnd="<!-- RESULT LIST END -->"
resultItemStart="<!-- RESULT ITEM START -->"
resultItemEnd="<!-- RESULT ITEM END -->"
relevanceStart="<!-- RELEVANCE START -->"
relevanceEnd="<!-- RELEVANCE END -->"

Using these text delimiters, the search provider can freely add additional formatting information to their
response pages without being concerned about invalidating any search plug-in files currently in use.
This approach is strongly recommended for all search site providers creating search plug-in files.

Listing 4. A simple HTML response to a query that includes delimiting comments:

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 15

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

<HTML>
<HEAD><TITLE>Sample Results</TITLE></HEAD>
<BODY>

<!-- BANNER START -->

<IMG SRC="http://www.apple.com/main/elements/apple.gif"
 ALT="Apple Computer"

<!-- BANNER END -->

<!-- RESULT LIST START -->

<!-- RESULT ITEM START -->
<P>
<SMALL>
<!-- RELEVANCE START -->
90%
<!-- RELEVANCE END -->
</SMALL>
Hot News
Apple Hot News - http://www.apple.com/hotnews

Apple Computer
</P>
<!-- RESULT ITEM END -->

<!-- RESULT ITEM START -->
<P>
<SMALL>
<!-- RELEVANCE START -->
85%
<!-- RELEVANCE END -->
</SMALL>
Apple Products

Apple - Products - http://www.apple.com/products

Apple Computer
</P>
<!-- RESULT ITEM END -->

<!-- RESULT LIST END -->

</BODY>
</HTML>

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 16

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Banner Advertisements

The Sherlock application uses the first HTML anchor (that includes a hypertext jump and an image)
found in the banner section as the banner image. For best results, banner advertisements should be
enclosed in an HTML anchor that includes both an hypertext jump (HREF attribute) and an IMG tag that
includes a SRC attribute and, preferably, an ALT attribute. For example, the HTML anchor shown
below illustrates the suggested format for banner advertisements:

<IMG SRC="http://www.apple.com/main/elements/apple.gif"
ALT="Apple Computer"

Result Lists

When interpreting search results, the Sherlock application identifies results by looking for HTML
anchors containing hypertext jump attributes. At least one anchor including an hypertext jump (HREF
attribute) should occur between the text patterns specified in resultItemStart and resultItemEnd or
resultItemStart . The Sherlock application will attempt to interpret HTML results between these text
patterns and expects to find at least one such anchor.

Internet Search Interface Language BNF

All tags are case-insensitive and white space is ignored.

<search-interface> ::= <search-start> <input-interp-list> <search-end>

<search-start> ::= "<search " (<search-attribute> <req-S>)* ">"
<search-attribute> ::= <name> | <method> | <action> | <update> |
 <updateCheckDays> | <description> |
 <banner-link> | <banner-image>
<name> ::= "name" <attrib-assign>
<method> ::= "method" <attrib-assign>
<action> ::= "action" <attrib-assign>
<update> ::= "update" <attrib-assign>
<updateCheckDays> ::= "updateCheckDays" <attrib-assign>
<description> ::= "description" <attrib-assign>
<banner-link> ::= "bannerlink" <attrib-assign>
<banner-image> ::= "bannerimage" <attrib-assign>

<input-interp-list> ::= <input>* <interpret>? <input>*
<input> ::= "<input " (<input-attribute> <req-S>)* ">"
<input-attribute> ::= <name> | <value> | <user-select>
<value> ::= "value" <attrib-assign>
<user-select> ::= "user"

<interpret> ::= <interpret " (<interpret-attribute> <req-S>)* ">"
<interpret-attribute>::= <rl-start> | <rl-end> | <ri-start> | <ri-end>
 <banner-start> | <banner-end> | <rel-start> |
 <rel-end> | <skip-local>
<rl-start> ::= "resultListStart" <attrib-assign>
<rl-end> ::= "resultListEnd" <attrib-assign>
<ri-start> ::= "resultItemStart" <attrib-assign>
<ri-end> ::= "resultItemEnd" <attrib-assign>
<banner-start> ::= "bannerStart" <attrib-assign>
<banner-end> ::= "bannerEnd" <attrib-assign>
<rel-start> ::= "relevanceStart" <attrib-assign>
<rel-end> ::= "relevanceEnd" <attrib-assign>
<skip-local> ::= "skipLocal"

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 17

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

<attrib-assign> ::= <opt-S> "=" <opt-S> <attrib>
<attrib> ::= <quotestr> | <doublequotestr> | <noquotestr>
<quotestr> ::= '\'' [̂ ']* '\''
<doublequotestr> ::= '"' [̂ "]* '"'
<noquotestr> ::= [̂]*
<req-S> ::= (#x20 | #x09 | #x0D | #x0A)+
<opt-S> ::= (#x20 | #x09 | #x0D | #x0A)*

AppleScript Support
The new search facilities provided by the Sherlock application can be accessed from AppleScript scripts.
AppleScript scripts can ask the Sherlock application to perform an Internet search using one or more
Internet Search Sites or search for files with specific content on local or remote volumes. Each of these
commands returns the results of the search as a string that can be used elsewhere in your script.
Optionally, AppleScript scripts can ask the Sherlock application to display the results of the search.

Searching the Internet

Internet based searches use the "search Internet" command. The "search Internet" command allows
AppleScript scripts to specify the Internet search sites that will be used in the search along with query
information. The query information can be provided as either a string or as a reference to a file
containing the query information (but not both). Results of the search are returned as a string, and it is
possible to specify that the Sherlock application display the results. Definition 1 includes the "search
Internet" entry from the Sherlock application's AppleScript dictionary.

Definition 1. The "search Internet" dictionary entry from the Sherlock application

search Internet: Search the Internet

search Internet string -- the Internet sites to search, optional

[for string] -- the text to look for...
[using alias] -- ...or a saved Find file containing the query
[display boolean] -- Specifies whether or not to display
the result (default is without display)

Result: string -- the URLs that match the query

It is important to remember that the "for" and "using" parameters are mutually exclusive and cannot be
used together in one command. Either the query information is provided as a string or it is provided in a
file. If the display parameter is true, then the Sherlock application will display the results of the search.

The "using" parameter allows query information stored in a file to be used rather than a query string. To
create such a file, use the "Save Search Criteria" command in the Sherlock application's File menu.

The direct object to this command is a list of Internet search site names. If the list of Internet search site
names is not specified and the " for string" parameter is used, then the same sites that were used in the
last Internet search will be used in the search. The list of Internet sites is ignored when the "using alias"
parameter is specified.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 18

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Searching Files

Two AppleScript commands are provided for access to the Find by Content facilities in the Sherlock
application. The first command allows AppleScript scripts to perform searches based on contents of files
and the second allows AppleScript scripts to create or update index files on particular volumes that are
used by Find By Content. The AppleScript dictionary entry for the "search" command is shown in
Definition 2 and the "index volumes" command is shown in Definition 3. The "search" command allows
AppleScript scripts to perform searches based on file contents.

Definition 2. The "search" dictionary entry from the Sherlock application

search: Search disks or servers

search alias -- the volumes or folders to search, optional

[for string] -- the text to look for...
[similar to alias] -- ...or file(s) containing text for Find
by Content...
[using alias] -- ...or a saved Find file containing the query
[display boolean] -- (default is without display) Specifies
whether or not to display the result

Result: alias -- the files that match the query

In the "search" command, the parameters "for", "similar to", and "using" are mutually exclusive
parameters and may not be used together in the same command.

As in the Internet search command, the "using" parameter allows query information stored in a file to be
used rather than a query string. To create such a file, use the "Save Search Criteria" command in the
Sherlock application's File menu.

The direct object to the "search" command is a list of volumes or folders to search. If no list of volumes
is provided and either the "search for" or the "search similar to" parameter is used, then the "search"
command will search all local, indexed volumes. When the "using" parameter is specified, the list of
volumes is ignored.

Indexing Volumes

Before the Find By Content facilities can be used to search a volume, the volume must contain an index.
Index files are stored in an invisible folder called "TheFindByContentFolder" located in a volume's root
directory and they contain necessary information for performing content-based searches. A volume
cannot be searched by the Find By Content facilities unless it contains an index. AppleScript scripts can
ask the Sherlock application to either update or create an index file for one or more volumes.

Definition 3. The "index volumes" dictionary entry from the Sherlock application.

index volumes: Create or update the index(es) of the specified volume(s)

index volumes alias -- list of volumes

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 19

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

The Optional kAEOpenDocuments Apple Event Parameter
To provide applications with information useful in selecting and displaying parts of documents that users
may be interested in, when the user opens a file that was located by way of a content-based search from
within one of the Sherlock application's windows, the Sherlock application will insert information about
the search that led to the file into the kAEOpenDocuments ('odoc') Apple event that is used to open the
file. The Sherlock application opens files by sending kAEOpenDocuments Apple events to the Finder.
The Finder, when receiving the kAEOpenDocuments Apple event, launches the application owning the
document and passes the event to the application.

This type of kAEOpenDocuments Apple event contains an additional keyAEPropData (defined in
AERegistry.h) parameter. Among the properties in the keyAEPropData parameter there is one
identified using the keyword 'srwd' that contains the original query string used to locate the file. The
'srwd' property's data is formatted as a C-style string.

Listing 5. Retrieving the search words from and 'odoc' Apple event:

OSErr GetSearchWordsFromAppleEvent(AppleEvent* inAppleEvent,
 char* theText, long *maxLength)
{
 OSErr err;
 AERecord propData;
 DescType outType;

 /* set up our variables */
 AECreateDesc(typeNull, NULL, 0, &propData);
 if (maxLength == NULL || theText == NULL) return paramErr;
 if (*maxLength < 255) return paramErr;

 /* get the property data from the Apple event */
 err = AEGetParamDesc(inAppleEvent,
 keyAEPropData, typeAERecord, &propData);

 /* extract the search words information */
 if (err == noErr)
 err = AEGetKeyPtr(&propData, 'srwd', typeChar,
 &outType, theText, *maxLength, maxLength);

 /* clean up and return */
 AEDisposeDesc(&propData);
 return err;
}

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 20

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

The Example shown in Listing 5 illustrates how an application may extract the query information from
an kAEOpenDocuments Apple event. Here, the routine attempts to retrieve the keyAEPropData
parameter and then it attempts to extract the 'srwd' information from the property data. If no problems
occur and the 'srwd' data is present, then the original query text will be returned in the buffer pointed to
by theText, *maxLength will be set to the length of the string (including the trailing zero byte), and the
function will return noErr .

The presence of this additional parameter will not affect the behavior of existing applications built
according to the guidelines set forth in the "Responding to Apple Events" chapter of Inside Macintosh:
Interapplication Communication. However, developers may choose to take advantage of this new
information when it is present in an Apple event as a clue pointing to the part of the document that the
user would like to see first. (The presence of the 'srwd' information in an kAEOpenDocuments Apple
event implies that the user conducted a search by content and then selected and opened the document
from within the list of files that were found in the search.) For example, an application may choose to
highlight all occurrences of the words in the string, view the first occurrence of a word from the string,
or open its find window with one or more of the query terms.

In some cases, however, it is possible that some or all of the words in the query string may not appear in
the document being opened. In a normal search based on a query phrase, Find By Content will locate
files that contain one or more of the words in the query. But, when a user selects one or more
documents found in a previous search and requests "similar" documents, then it is possible that some of
the documents found may not contain any of the words from the query string specified in the original
search. Developers accessing the 'srwd' property should plan for the possibility that some or all of the
keys in the query string may not be present in the document being opened.

Find By Content
The Find By Content (FBC) facilities provided in Mac OS 8.5 are implemented in a PowerPC Code
Fragment Manager library that resides in the "Extensions" folder. The Sherlock application is a client of
FBC, accessing FBC services through this shared library. Developer applications can also access the
search facilities provided by this library. This section describes how developers can create products that
access the new FBC facilities through this shared library.

Compiler interfaces to FBC are found in the C header file <FindByContent.h> . And, for linking
purposes, the Code Fragment Manager library implementing FBC is named "Find By Content" (without
the quotes). Developers using the FBC routines described herein should weak-link against this library,
and then check the Gestalt selectors from within their application before calling any of these routines.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 21

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Determining if Find By Content is Available

FBC defines two Gestalt selectors. Clients of FBC must verify that correct version of the
implementation is available before making any of these calls, and will want to check the FBC indexing
state before performing any searches.

enum
{
 gestaltFBCVersion = 'fbcv',
 gestaltFBCCurrentVersion = 0x0011
};

The gestaltFBCVersion selector returns the version of FBC that is installed on the computer.
Developers can compare this version with the version of the interface with which they have compiled
their programs using the gestaltFBCCurrentVersion to determine if it is safe to make any calls to
FBC. If gestaltFBCVersion produces some version other than the version of the interface your
application has been compiled to run with, then your application should not make any calls to FBC.

enum
{
 gestaltFBCIndexingState = 'fbci',
 gestaltFBCindexingSafe = 0,
 gestaltFBCindexingCritical = 1
};

The gestaltFBCIndexingState selector returns information about the current indexing status of FBC.
At any given time, the indexing status will be either gestaltFBCindexingSafe or
gestaltFBCindexingCritical . If the status is gestaltFBCindexingCritical , then any search will
result in a synchronous wait until the state returns to gestaltFBCindexingSafe . When the FBC
indexing state returned is gestaltFBCindexingSafe , then all searches will execute immediately. To
avoid synchronous waits, developers should check the gestaltFBCIndexingState selector and only
make calls to FBC when the indexing state returned is gestaltFBCindexingSafe .

Working with Search Sessions

FBC allows client applications to open and close a "search session". A search session contains all of the
information about a search, including the list of matched files after the search is complete. Clients of
FBC can obtain references to search sessions, modify them, and query their state using the routines
defined in this section. References to search sessions are defined as an opaque pointer type owned by
the FBC library.

typedef struct OpaqueFBCSearchSession* FBCSearchSession;

Developers should only access the search session structure using the routines defined herein. This
includes using the appropriate FBC routines for duplicating and disposing of search sessions. Search
sessions are complex memory structures that contain pointers to other data that may need to be copied
when a search session is duplicated or disposed of when a search session is deallocated.

The normal sequence of actions one takes when using the FBC library is to create a search session,
configure the search session to target specific volumes, perform the search, query the search results, and
dispose of the search. Other possibilities for searches include the ability to reinitialize a search session
and use it over again for another search, to provide backtracking by cloning search sessions and
performing additional searches using the clones, or to limit search results to files found in particular
directories.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 22

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Setting up a Search Session

Creating a new session and preparing it for a search, as shown in Listing 6, requires at least two calls to
the FBC library. In this example, a new search session is created and it is configured to search all local
volumes that contain index files. The call to FBCAddAllVolumesToSession automatically configures the
search session to search all indexed volumes.

Listing 6. Setting up a search session to search all local, indexed volumes:

/* SimpleSetUpSession allocates a new search session and
 returns a FBCSearchSession value in the *session
 parameter. if an error occurs, *session is left
 untouched. */

OSErr SimpleSetUpSession(FBCSearchSession* session)
{
 OSErr err;
 FBCSearchSession newsession;

 /* set up our local variables */
 err = noErr;
 newsession = NULL;
 if (session == NULL) return paramErr;

 /* create the new session */
 err = FBCCreateSearchSession(&newsession);
 if (err != noErr) goto bail;

 /* search all available local volumes */
 err = FBCAddAllVolumesToSession(newsession, false);
 if (err != noErr) goto bail;

 /* store our result and leave */
 *session = newsession;
 return noErr;

bail:
 if (newsession != NULL)
 FBCDestroySearchSession(newsession);
 return err;
}

FBC provides a complete set of routines for developers wanting more control over what volumes will be
searched by the search session. Listing 7 illustrates how a new search session could be configured to
search a particular set of volumes.

Listing 7. Setting up a session to search a particular set of volumes:

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 23

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

/* SetUpVolumeSession allocates a new search session and
 returns a FBCSearchSession value in the *session parameter.
 if vCount is not zero, then vRefNums points to an array of
 volume reference numbers for volumes that are to be searched.
 if any of the vRefNums refer to a volume without an index,
 paramErr is returned. */

OSErr SetUpVolumeSession (FBCSearchSession* session,
 UInt16 vCount, SInt16 *vRefNums)
{
 OSErr err;
 UInt16 i;
 FBCSearchSession newsession;

 /* set up our local variables */
 err = noErr;
 newsession = NULL;
 if (vCount == 0) return paramErr;
 if (session == NULL) return paramErr;
 if (vRefNums == NULL) return paramErr;

 /* create the new session */
 err = FBCCreateSearchSession(&newsession);
 if (err != noErr) goto bail;

 /* search the volumes specified in vRefNums */

 for (i=0; i<vCount; i++) {
 if (!FBCVolumeIsIndexed(vRefNums[i])) {
 err = paramErr;
 goto bail;
 } else {
 err = FBCAddVolumeToSession(newsession,
 vRefNums[i]);
 if (err != noErr) goto bail;
 }
 }

 /* store our result and leave */
 *session = newsession;
 return noErr;

bail:
 if (newsession != NULL)
 FBCDestroySearchSession(newsession);
 return err;
}

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 24

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

In this example, the FBCAddVolumeToSession routine is used to add volumes to the search session.
Other routines for querying what volumes are currently targeted by a search session and removing
volumes from that list are provided.

Once a search session has been configured to search a number of volumes, it can be used again after a
search has been conducted without having to reconfigure its target volumes. After performing a search
and examining the results, the search session can be prepared for another search by calling the routine
FBCReleaseSessionHits . This routine releases all of the search results from the last search while
leaving the list of target volumes intact.

Making a copy of a search session using the routine FBCCloneSearchSession will copy the list of
target volumes to the duplicate search session.

Performing Searches

When FBC performs a search, it will generate a list of files that were matched. This list is referred to as
the "hits", and it is stored inside of the search session. FBC can be asked to perform a content-based
search using a query string containing a list of words, a similarity search based on one or more hits
obtained in a previous search, or a similarity search based on a list of example files. Listing 8 illustrates
how a query-based search can be performed. Here, the query is used to search for matching files on all
local indexed volumes.

Listing 8. A Query based search of all local, indexed volumes:

OSErr SimpleFindByQuery (char *query, FBCSearchSession *session)
{
 OSErr err;
 FBCSearchSession newsession;

 /* set up locals, check parameters... */
 if (query[0] == 0) return paramErr;
 if (session == NULL) return paramErr;
 newsession = NULL;

 /* allocate a new search session */
 err = SimpleSetUpSession(&newsession);
 if (err != noErr) goto bail;

 /* Here is the call that does the actual search,
 storing the results in the search session. */
 err = FBCDoQuerySearch(newsession, query,
 NULL, 0, 100, 100);
 if (err != noErr) goto bail;

 /* save the results and return */
 *session = newsession;
 return noErr;

bail:
 if (newsession != NULL)
 FBCDestroySearchSession(newsession);
 return err;
}

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 25

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Searches conducted using either the routine FBCDoExampleSearch or the routine
FBCBlindExampleSearch can be used to locate files that are similar to other files. Similarity searches
will locate files with similar content to the files specified as examples. Examples can be specified as
indexes referring to hits obtained from previous searches, or as a list of FSSpec records referring to files
on disk.

All three of the search routines-- FBCDoExampleSearch , FBCBlindExampleSearch , and
FBCDoQuerySearch --provide support for limiting the search results to files residing in one or more
directories. To do this, clients provide a list of FSSpec records referring to target directories. The
example in Listing 9 illustrates how to limit the results of a search to a particular set of directories.

Listing 9. Searching a particular set of directories:

enum {
 kMaxVols = 20,
 maxHits = 10,
 maxHitTerms = 10
};

OSErr RestrictedFindByQuery (char *query, UInt16 dirCount,
 FSSpec* dirList,
 FBCSearchSession* session)
{
 UInt16 vCount, i;
 SInt16 vRefNums[kMaxVols], normalVol;
 FBCSearchSession newsession;

 vCount = 0;
 newsession = NULL;
 if (dirList == NULL || dirCount == 0) return paramErr;
 if (query == NULL) return paramErr;
 if (*query == 0) return paramErr;
 if (session == NULL) return paramErr;

 /* collect all of the unique volume reference numbers
 from the list of FSSpecs provided in the parameters. */
 for (i=0; i<dirCount; i++) {
 Boolean found;
 HParamBlockRec pb;

 /* ensure the vRefNum is a volume
 reference number */
 pb.volumeParam.ioVRefNum = dirList[i].vRefNum;
 pb.volumeParam.ioNamePtr = NULL;
 pb.volumeParam.ioVolIndex = 0;
 if ((err = PBHGetVInfoSync(&pb)) != noErr) goto bail;
 normalVol = pb.volumeParam.ioVRefNum;

 /* make sure it's not already in the list */
 for (found = false, j=0; j<vCount; j++)
 if (vRefNums[j] == normalVol) {
 found = true;
 break;
 }

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 26

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

 /* add the volume to the list */
 if (!found && vCount < kMaxVols)
 vRefNums[vCount++] = normalVol;
 }

 /* set up a session to use the volumes we found */
 err = SetUpVolumeSession(&newsession, vCount, vRefNums);
 if (err != noErr) goto bail;

 /* Here is the call that does the actual search,
 storing the results in the search session. */
 err = FBCDoQuerySearch(newsession, (char*)queryTxt,
 dirList, dirCount, maxHits, maxHitTerms);
 if (err != noErr) goto bail;

 /* save the result and return */
 *session = newsession;
 return noErr;

bail:
 if (newsession != NULL)
 FBCDestroySearchSession(newsession);
 return err;
}

Here, volume reference numbers extracted from the array of FSSpec records referring to target
directories provided as a parameter are used to configure the volumes that will be searched by the search
session. Then, the list of target directories is passed to the FBCDoQuerySearch .

Retrieving Information from a Search Session

After a search is conducted using a search session, the search session may contain information about one
or more matching files. Clients can access information about individual hits including the file's FSSpec
record, the words that were matched in the file, the "score" assigned to the file during the last search
operation, and additional information about the file. Listing 10 illustrates how one could obtain
information about each hit returned by a search.

Listing 10. Enumerating all of the files found in a search session:

 typedef OSErr (*HitProc) (FSSpec theDoc,
 float score,
 UInt32 nTerms,
 FBCWordList hitTerms);

/* SampleHandleHits can be called after a search to enumerate
 the search results. For each search hit, the hitFileProc
 function parameter is called with information describing
 the target. */
OSErr SampleHandleHits (FBCSearchSession session,
 HitProc hitFileProc)
{
 OSErr err;

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 27

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

 UInt32 hitCount, i;
 FSSpec targetDoc;
 float targetScore;
 FBCWordList targetTerms;
 UInt32 numTerms;

 /* set up locals, check parameters */
 targetTerms = NULL;
 if (hitFileProc == NULL) return paramErr;
 if (session == NULL) return paramErr;

 /* count the number of hits in this session */
 err = FBCGetHitCount(session, &hitCount);
 if (err != noErr) goto bail;

 /* iterate through the hits */
 for (i = 0; i < hitCount; i++) {

 /* get the target document's FSSpec */
 err = FBCGetHitDocument(session, i, &targetDoc);
 if (err != noErr) goto bail;

 /* get the score for this document */
 err = FBCGetHitScore(session, i, &targetScore);
 if (err != noErr) goto bail;

 /* get a list of the words matched in
 this document */
 numTerms = maxHitTerms;
 err = FBCGetMatchedWords(session, i, &numTerms,
 &targetTerms);
 if (err != noErr) goto bail;

 /* call the call back routine provided as a
 parameter to do something with the information. */
 err = hitFileProc(&targetDoc, score, numTerms,
 targetTerms);
 if (err != noErr) goto bail;

 /* clean up before moving to the next iteration. */
 FBCDestroyWordList(targetTerms, numTerms);
 targetTerms = NULL;

 }

 return noErr;

bail:
 if (targetTerms != NULL)
 FBCDestroyWordList(targetTerms, numTerms);
 return err;
}

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 28

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Find By Content Reference
This section provides a description of the CFM-based interfaces to the PowerPC FBC library. PowerPC
applications using these routines link against the library named "Find By Content" (without the quotes).

Data Types

FBC provides the following data types. Storage management for these types is provided by the FBC
library. Clients should not attempt to allocate or deallocate these structures using calls to the Memory
Manager.

FBCSearchSession

typedef struct OpaqueFBCSearchSession* FBCSearchSession;

Search sessions created by FBC are referenced through pointer variables of this type. The internal
format of the data referred to by this pointer is internal to the FBC library. Clients should not attempt to
access or modify this data directly.

FBCWordI tem

typedef char* FBCWordItem;

An ordinary C string. This type is used when retrieving information about hits from a search session.

FBCWordLis t

typedef FBCWordItem* FBCWordList;

An array of WordItems . This type is used when retrieving information about hits from a search session.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 29

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Allocation and Initialization of Search Sessions

The following routines can be used to allocate and dispose of search sessions. Storage occupied by
search sessions is owned by the FBC library, and these are the only routines that should be used to
allocate, copy, and dispose of search sessions.

FBCCreateSearchSession

OSErr FBCCreateSearchSession(
 FBCSearchSession* searchSession);

searchSession points to a variable of type FBCSearchSession .

FBCCreateSearchSession allocates a new search session and returns a reference to it in the variable
pointed to by searchSession .

FBCDestroySearchSession

OSErr FBCDestroySearchSession(
 FBCSearchSession theSession);

theSession is a pointer to a search session.

FBCDestroySearchSession reclaims the storage occupied by a search session. This will include any
volume configuration information and hits associated with the search session.

FBCCloneSearchSession

OSErr FBCCloneSearchSession(
 FBCSearchSession original,
 FBCSearchSession* clone);

original is a pointer to a search session.

clone points to a variable of type FBCSearchSession.

FBCCloneSearchSession creates a new search session and stores a pointer to it in the variable pointed
to by the clone parameter. Information from the original search session that is copied to the new session
includes the volumes targeted by the search session and all of the hits that may have been found in
previous searches.

Configuring Search Sessions

Search sessions can be configured to limit searches to a particular set of volumes. These routines allow
clients access to the set of volumes that will be searched by FBC.

FBCAddAl lVolumesToSession

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 30

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

OSErr FBCAddAllVolumesToSession(
 FBCSearchSession theSession,
 Boolean includeRemote);

theSession is a pointer to a search session.

includeRemote is a Boolean value.

FBCAddAllVolumesToSession configures a search session to search all mounted volumes that have
been indexed. If includeRemote is true, then remote volumes will be included in the search session's
list of target volumes. Volumes that are not indexed are not added to search session's list of target
volumes.

FBCSetSessionVolumes

OSErr FBCSetSessionVolumes(
 FBCSearchSession theSession,
 const SInt16 vRefNums[],
 UInt16 numVolumes);

theSession is a pointer to a search session.

vRefNums is an array of volume reference numbers (16-bit integers).

numVolumes is an integer value containing the number of volume reference numbers in
the array vRefNums .

FBCSetSessionVolumes allows clients to add several volumes to the list of volumes targeted by a
search session in a single call.

FBCAddVolumeToSession

OSErr FBCAddVolumeToSession(
 FBCSearchSession theSession,
 SInt16 vRefNum);

theSession is a pointer to a search session.

vRefNum is a volume reference number.

FBCAddVolumeToSession adds a volume to the list of volumes that will be searched by the search
session. If the volume is not indexed, it will not be added to the list.

FBCRemoveVolumeFromSession

OSErr FBCRemoveVolumeFromSession(
 FBCSearchSession theSession,
 SInt16 vRefNum);

theSession is a pointer to a search session.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 31

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

vRefNum is a volume reference number.

FBCRemoveVolumeFromSession removes the specified volume from the list of volumes that will be
searched by the search session.

FBCGetSessionVolumeCount

OSErr FBCGetSessionVolumeCount(
 FBCSearchSession theSession,
 UInt16* count);

theSession is a pointer to a search session.

count is a pointer to a 16-bit integer where the result is to be stored.

FBCGetSessionVolumeCount returns, in *count , the number of volumes in the list of volumes that will
be searched by the search session.

FBCGetSessionVolumes

OSErr FBCGetSessionVolumes(
 FBCSearchSession theSession,
 SInt16 vRefNums[],
 UInt16* numVolumes);

theSession is a pointer to a search session.

vRefNums is an array of volume reference numbers (16-bit integers).

*numVolumes is a pointer to a 16-bit integer. On input, this will be the number of
elements that can be stored in vRefNums , and on output it will be the number of
elements actually stored in vRefNums .

FBCGetSessionVolumes returns the list of volumes that will be searched by the search session in the
array pointed to by vRefNums . *numVolumes is set to the number of volume reference numbers returned
in the array.

Executing a Search

FBC provides three different routines for conducting searches that are described in this section.

FBCDoQuerySearch

OSErr FBCDoQuerySearch(
 FBCSearchSession theSession,
 char* queryText,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords);

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 32

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

theSession is a pointer to a search session.

queryText refers to a C-style string containing the search terms.

targetDirs points to an array of FSSpec records that refer to directories. If
numTargets is zero, then this parameter can be set to NULL.

numTargets contains the number FSSpec records in the array pointed to by
targetDirs .

maxHits the maximum number of hits that should be returned.

maxHitWords the maximum number of hit words that will be reported.

FBCDoQuerySearch performs a search based on the search terms found in queryText . If the
targetDirs parameter is present (numTargets is not zero), then only files residing in the directories
specified in targetDirs will be included in the hits found by the search.

FBCDoExampleSearch

OSErr FBCDoExampleSearch(
 FBCSearchSession theSession,
 const UInt32* exampleHitNums,
 UInt32 numExamples,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords);

theSession contains a pointer to a search session. This session must contain a hit list
generated by a previous search.

exampleHitNums points to an array of 32 bit integers.

numExamples contains the number of integers in the array pointed to by
exampleHitNums .

targetDirs points to an array of FSSpec records that refer to directories. If
numTargets is zero, then this parameter can be set to NULL.

numTargets contains the number FSSpec records in the array pointed to by
targetDirs .

maxHits the maximum number of hits that should be returned.

maxHitWords the maximum number of hit words that will be reported.

FBCDoExampleSearch performs an example-based or "similarity" search using hits found in a previous
search as examples. exampleHitNums points to an array of long integers containing the indexes of one
or more of the hits that are to be used as example files. If the targetDirs parameter is present
(numTargets is not zero), then only files residing in the directories specified in targetDirs will be
included in the hits found by the search.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 33

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

FBCBl indExampleSearch

OSErr FBCBlindExampleSearch(
 FSSpec examples[],
 UInt32 numExamples,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords,
 Boolean allIndexes,
 Boolean includeRemote,
 FBCSearchSession* theSession);

examples is a pointer to an array of FSSpec records that refer to files. FBC will search
for files that are similar to these files.

numExamples contains the number of FSSpec records in the array pointed to by
examples.

targetDirs points to an array of FSSpec records referring to directories. If
targetDirs is not NULL and numTargets is not zero, then only files residing in these
directories will be included in the hit list returned by the search.

targetDirs points to an array of FSSpec records that refer to directories. If
numTargets is zero, then this parameter can be set to NULL.

numTargets contains the number FSSpec records in the array pointed to by
targetDirs .

maxHits the maximum number of hits that should be returned.

maxHitWords the maximum number of hit words that will be reported.

includeRemote is a Boolean value.

theSession points to a variable of type FBCSearchSession that will be created by this
routine.

FBCBlindExampleSearch creates a new search session and conducts a similarity search using the files
referred to in the array of FSSpec records provided in the examples parameter. If the targetDirs
parameter is present (numTargets is not zero), then only files residing in the directories specified in
targetDirs will be included in the hits found by the search. If includeRemote is true, then remote
volumes will be included in the search session's list of target volumes.

If any of the example files are not indexed, then the search will proceed with the remainder of the files,
and the error code kFBCsomeFilesNotIndexed will be returned. In this case, the search session will be
created and a reference to it will be returned in *theSession .

Getting Information About Hits

Once a search is complete, a search session will contain a list of hits that were found during the search.
The routines described in this section allow clients to access information about hits stored in a search
session. Hit records are indexed 0 through count-1.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 34

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

FBCGetHi tCount

OSErr FBCGetHitCount(
 FBCSearchSession theSession,
 UInt32* count);

theSession is a pointer to a search session.

count is a pointer to a 32-bit integer.

FBCGetHitCount sets the variable pointed to by count to the number of hits in the search session. Hit
records are indexed 0 through count-1.

FBCGetHi tDocument

OSErr FBCGetHitDocument(
 FBCSearchSession theSession,
 UInt32 hitNumber,
 FSSpec* theDocument);

theSession is a pointer to a search session.

hitNumber is an index value referring to a hit record in the search session.

theDocument is a pointer to a FSSpec record.

FBCGetHitDocument returns the FSSpec record for the hit in the search session whose index is
hitNumber .

FBCGetHi tScore

OSErr FBCGetHitScore(
 FBCSearchSession theSession,
 UInt32 hitNumber,
 float* score);

theSession is a pointer to a search session.

hitNumber is an index value referring to a hit record in the search session.

score is a pointer to a variable of type float .

FBCGetHitScore returns relevance score assigned to the hit in the search session whose index is
hitNumber . The score is a direct measure of the document's relevance to the search criteria in the
context of this particular search. Scores are normalized to the range 0.0 - 1.0, and the most relevant hit
from every search always has a score of 1.0.

FBCGetMatchedWords

OSErr FBCGetMatchedWords(
 FBCSearchSession theSession,

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 35

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

 UInt32 hitNumber,
 UInt32* wordCount,
 FBCWordList* list);

theSession is a pointer to a search session.

hitNumber is an index value referring to a hit record in the search session.

wordCount is a pointer to a 32-bit integer.

list is a pointer to a variable of type FBCWordList .

FBCGetMatchedWords returns a list of matched words for the hit in the search session whose index is
hitNumber . This list of words illustrates why the hit was returned. On return, *list will contain a
pointer to a word list structure and *wordCount will be set to the number of entries in that structure. Be
sure to call FBCDestroyWordList to dispose of the structure when you are done with it.

The matched words for a hit are stored in the hit itself, so retrieving them is fast.

FBCGetTopicWords

OSErr FBCGetTopicWords(
 FBCSearchSession theSession,
 UInt32 hitNumber,
 UInt32* wordCount,
 FBCWordList* list);

theSession is a pointer to a search session.

hitNumber is an index value referring to a hit record in the search session.

wordCount is a pointer to a 32-bit integer.

list is a pointer to a variable of type FBCWordList .

FBCGetTopicWords returns a list of topical words for the hit in the search session whose index is
hitNumber . This list of words provides a clue about "what the document is about." On return, *list
will contain a pointer to a word list structure and *wordCount will be set to the number of entries in that
structure. Be sure to call FBCDestroyWordList to dispose of the structure when you are done with it.

The list of topical words for a particular hit must be generated through the index file, so this call is
significantly slower than FBCGetMatchedWords .

FBCDestroyWordList

OSErr FBCDestroyWordList(
 FBCWordList theList,
 UInt32 wordCount);

theList is a pointer to a word list.

wordCount is the number of words in the list.

FBCDestroyWordList disposes of a word list allocated by either FBCGetMatchedWords or

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 36

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

FBCGetTopicWords .

FBCReleaseSessionHi ts

OSErr FBCReleaseSessionHits(
 FBCSearchSession theSession);

theSession is a pointer to a search session. This session may contain hits generated
by a search.

FBCReleaseSessionHits deallocates any information stored regarding hits from the last search from
the search session. Volume configuration information is retained and once this call completes, the search
session is ready to perform another search.

Summarizing Text

This call produces a summary containing the "most relevant" sentences found in the input text.

FBCSummar ize

OSErr FBCSummarize(
 void* inBuf,
 UInt32 inLength,
 void* outBuf,
 UInt32* outLength,
 UInt32* numSentences);

inBuf points to the text to be summarized.

inLength is the length of the text pointed to by inBuf .

outBuf points to a buffer where the summary should be stored.

outLength is a pointer to a 32-bit integer. On input, this value is set to the size of the
buffer pointed to by outBuf . On output, it is set to the actual length of the data stored in
the buffer pointed to by outBuf .

numSentences is a pointer to a 32-bit integer. On input, this value is the maximum
number of sentences desired in the summary. On output, it is set to the actual number
of sentences generated. If numSentences is 0 on input, FBC takes the number of
sentences in the input buffer and divides by 10. If the result is 0, then the value 1 is
used as the maximum; otherwise, if the result is greater than 10, then the value 10 is
used as the maximum.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 37

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Getting Information About Volumes

FBC provides the following utility routines for accessing information about volumes.

FBCVolumeIsIndexed

Boolean FBCVolumeIsIndexed (SInt16 theVRefNum);

theVRefNum is a volume reference number.

FBCVolumeIsIndexed returns true if the indicated volume has been indexed.

FBCVolumeIsRemote

Boolean FBCVolumeIsRemote(SInt16 theVRefNum);

theVRefNum is a volume reference number.

FBCVolumeIsRemote returns true if the indicated volume is located on a remote server. Clients may
want to exclude networked volumes from searches to avoid network delays.

FBCVolumeIndexTimeStamp

OSErr FBCVolumeIndexTimeStamp(SInt16 theVRefNum,
 UInt32* timeStamp);

theVRefNum is a volume reference number .

timeStamp is a pointer to an unsigned 32 bit integer.

FBCVolumeIndexTimeStamp will return the time when the volume's index was last updated. The value
returned in timeStamp is the same format as values returned by GetDateTime .

FBCVolumeIndexPhysicalSize

OSErr FBCVolumeIndexPhysicalSize(SInt16 theVRefNum,
 UInt32* size);

theVRefNum is a volume reference number .

timeStamp is a pointer to an unsigned 32 bit integer.

FBCVolumeIndexPhysicalSize returns the size of the volume's index file in bytes.

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 38

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Reserving Heap Space

Clients of FBC can reserve space in their heap zone for their callback routine before conducting a search.

FBCSetHeapReservat ion

void FBCSetHeapReservation(UInt32 bytes);

bytes is an integer value containing the number of bytes that should be reserved.

FBCSetHeapReservation sets the number of bytes FBC should guarantee are available in the client
application's heap whenever the client's call back routine is called during searches. If you do not
explicitly reserve heap space by calling this routine, then 200K will be reserved for you.

Application-Defined Routine

Clients can provide a routine that will be called periodically during searches. This routine will provide
clients with both information about the status of a search, and opportunity to cancel a search before it is
complete.

Call back routines are defined as follows:

FBCCal lbackProcPtr

typedef Boolean (*FBCCallbackProcPtr)(
 UInt16 phase,
 float percentDone,
 void *data);

phase is a 16-bit integer containing one of the following constants indicating the
current status of the search:

enum
{
 kFBCphSearching = 6,
 kFBCphMakingAccessAccessor = 7,
 kFBCphAccessWaiting = 8,
 kFBCphSummarizing = 9,
 kFBCphIdle = 10,
 kFBCphCanceling = 11
};

percentDone is a progress value in the range 0.0 - 1.0

data contains the same value provided to FBCSetCallback in the data parameter.

To avoid locking up the system while a search is in progress, the callback should either directly or
indirectly call WaitNextEvent .

An ongoing search will be canceled if the call back function returns true .

FBCSetCal lback

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 39

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

void FBCSetCallback(FBCCallbackProcPtr fn, void* data);

fn is a pointer to your call back function.

data is a value passed through to your call back function.

FBCSetCallback sets the call back function that will be called during searches. If a client does not
define a call back function, then the default callback function is used. The default call back function calls
WaitNextEvent and returns false .

Find By Content C Summary

Constants

enum
{
 gestaltFBCIndexingState = 'fbci',
 gestaltFBCindexingSafe = 0,
 gestaltFBCindexingCritical = 1
};

enum
{
 gestaltFBCVersion = 'fbcv',
 gestaltFBCCurrentVersion = 0x0011
};

enum /* error codes */
{
 kFBCvTwinExceptionErr = -30500,
 /* miscellaneous error */
 kFBCnoIndexesFound = -30501,
 kFBCallocFailed = -30502,
 /*probably low memory*/
 kFBCbadParam = -30503,
 kFBCfileNotIndexed = -30504,
 kFBCbadIndexFile = -30505,
 /*bad FSSpec, or bad data in file*/
 kFBCtokenizationFailed = -30512,
 /*couldn't read from document or query*/
 kFBCindexNotFound = -30518,
 kFBCnoSearchSession = -30519,
 kFBCaccessCanceled = -30521,
 kFBCindexNotAvailable = -30523,
 kFBCsearchFailed = -30524,
 kFBCsomeFilesNotIndexed = -30525,
 kFBCillegalSessionChange = -30526,
 /*tried to add/remove vols */
 /*to a session that has hits*/
 kFBCanalysisNotAvailable = -30527,
 kFBCbadIndexFileVersion = -30528,
 kFBCsummarizationCanceled = -30529,
 kFBCbadSearchSession = -30531,
 kFBCnoSuchHit = -30532

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 40

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

};

enum /* codes sent to the callback routine */
{
 kFBCphSearching = 6,
 kFBCphMakingAccessAccessor = 7,
 kFBCphAccessWaiting = 8,
 kFBCphSummarizing = 9,
 kFBCphIdle = 10,
 kFBCphCanceling = 11
};

Data Types

 /* A collection of state information for searching*/
typedef struct OpaqueFBCSearchSession* FBCSearchSession;

 /* An ordinary C string (used for hit/doc terms)*/
typedef char* FBCWordItem;

 /* An array of WordItems*/
typedef FBCWordItem* FBCWordList;

Allocation and Initialization of Search Sessions

OSErr FBCCreateSearchSession(
 FBCSearchSession* searchSession);
OSErr FBCDestroySearchSession(
 FBCSearchSession theSession);
OSErr FBCCloneSearchSession(
 FBCSearchSession original,
 FBCSearchSession* clone);

Configuring Search Sessions

OSErr FBCAddAllVolumesToSession(
 FBCSearchSession theSession,
 Boolean includeRemote);
OSErr FBCSetSessionVolumes(
 FBCSearchSession theSession,
 const SInt16 vRefNums[],
 UInt16 numVolumes);
OSErr FBCAddVolumeToSession(
 FBCSearchSession theSession,
 SInt16 vRefNum);
OSErr FBCRemoveVolumeFromSession(
 FBCSearchSession theSession,
 SInt16 vRefNum);
OSErr FBCGetSessionVolumeCount(
 FBCSearchSession theSession,
 UInt16* count);
OSErr FBCGetSessionVolumes(
 FBCSearchSession theSession,
 SInt16 vRefNums[],
 UInt16* numVolumes);

Executing a Search

OSErr FBCDoQuerySearch(
 FBCSearchSession theSession,
 char* queryText,

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 41

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords);
OSErr FBCDoExampleSearch(
 FBCSearchSession theSession,
 const UInt32* exampleHitNums,
 UInt32 numExamples,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords);
OSErr FBCBlindExampleSearch(
 FSSpec examples[],
 UInt32 numExamples,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords,
 Boolean allIndexes,
 Boolean includeRemote,
 FBCSearchSession* theSession);

Getting Information About Hits

OSErr FBCGetHitCount(
 FBCSearchSession theSession,
 UInt32* count);
OSErr FBCGetHitDocument(
 FBCSearchSession theSession,
 UInt32 hitNumber,
 FSSpec* theDocument);
OSErr FBCGetHitScore(
 FBCSearchSession theSession,
 UInt32 hitNumber,
 float* score);
OSErr FBCGetMatchedWords(
 FBCSearchSession theSession,
 UInt32 hitNumber,
 UInt32* wordCount,
 FBCWordList* list);
OSErr FBCGetTopicWords(
 FBCSearchSession theSession,
 UInt32 hitNumber,
 UInt32* wordCount,
 FBCWordList* list);
OSErr FBCDestroyWordList(
 FBCWordList theList,
 UInt32 wordCount);
OSErr FBCReleaseSessionHits(
 FBCSearchSession theSession);

Summarizing Text

OSErr FBCSummarize(
 void* inBuf,
 UInt32 inLength,
 void* outBuf,
 UInt32* outLength,
 UInt32* numSentences);

Monday, October 19, 1998 TN1141: Extending and Controlling
Sherlock

Page: 42

f i le: / / /Monster500/Apple/
TN%201141/tn1141.html

Getting I nformation About Volumes

Boolean FBCVolumeIsIndexed (SInt16 theVRefNum);
Boolean FBCVolumeIsRemote(SInt16 theVRefNum);
OSErr FBCVolumeIndexTimeStamp(SInt16 theVRefNum,
 UInt32* timeStamp);
OSErr FBCVolumeIndexPhysicalSize(SInt16 theVRefNum,
 UInt32* size);

Reserving Heap Space

void FBCSetHeapReservation(UInt32 bytes);

Application-Defined Routine

typedef Boolean (*FBCCallbackProcPtr)(
 UInt16 phase,
 float percentDone,
 void *data);
void FBCSetCallback(FBCCallbackProcPtr fn, void* data);

Downloadables

 Acrobat version of this Technote (129K).

Acknowledgments
Special thanks to David Casseres, Pete Gontier, Tim Holmes, Ingrid Kelly, Michael J. Kobb, Eric
Koebler, Alice Li, and Wayne Loofbourrow.

To contact us, please use the Contact Us page.

Updated: 19-October-98

Technotes
Previous Technote | Contents

