Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 1
LaserWriter 8.6

Technote 1144

Writing Custom Hoses For LaserWriter 8.6

by Richard Blanchard and Ingrid Kelly
Apple Worldwide Developer Technical Support

CONTENTS L
aserWriter 8.6 supports printing to a variety of
desktop printer types, including PAP, LPR, and IrDA.

Identifying aDTP's Type

Adding Hose Plug-ins Each desktop printer can have its own method of
o communicating with its associated physical printer, RIP,
Hose Type Regisirations or other post-printing processor. LaserWriter 8.6,

Summar through the invention of custom "hoses’, adds the ability
SImmery for shared libraries to implement various communication
Downloadables methods and for these libraries to be loaded dynamically
- based upon a DTP'stype. This Technote gives an
overview of the custom hose specification for devel opers.

|dentifyinga DTP's Type

Associated with each LaserWriter 8 desktop printer isa' PAPA' resource that identifiesthe DTP'stype, as
well as the printer's name and other associated communications parameters. The DTP type takes the form
of afour-byte constant. All DTP types, with the exception of the' PAP ' type, must bein the form
"=XXX' (e.g.'=H d' or'=Fil"'). Thisisdueto how theold' PAPA" resource was expanded with the
release of the LaserWriter 8.5.1 driver. The new DTP type signature replaces the zone string in the old
103-byte' PAPA' resource and maps to the appropriatetag’ TYPE' inthe' PAPA' resource. Technote
1115: The Extended 'PAPA' Resource contains detailed information about the contents of the' PAPA'
resource.

LaserWriter 8.6 DTP Types
ThePri ntingLi b that shipswith LaserWriter 8.6 supports the following DTP types:

'PAP'

Communication with the printer is performed using AppleTalk's Printer Access Protocol (PAP). The
printer's AppleTak name, type, and zone are stored in the compatibility portion of the' PAPA' resource as
described in Technote 1115: The Extended 'PAPA' Resource.

'=HId'

The hold desktop printer is unique in that there is no associated communications module for it. A hold
desktop printer never converts the desktop spool file to PostScript, but instead simply queues the spool
files. To print aspool file queued to a hold desktop printer, the user must move the spool fileinto the
gueue of another type of desktop printer.

"=Fil'
A trandator desktop printer writes its PostScript, EPS, or PDF output to afile.

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 2
LaserWriter 8.6
Note:
The ability to output PDF is dependent upon the user having Adobe's Acrobat Digtiller installed.

'=LPR'

An LPR desktop printer uses the Unix LPD protocol to communicate over TCP/IP with a print server.
For more information on this protocol, please see RFC 1179 at
<http://ds.internic.net/ds/dspglintdoc.html>.

'=Cst'

The custom application desktop printer writes its PostScript to disk and then launches an application to
post-process the PostScript job. See Technote 1113: Customizing the Desktop Printer Utility for
additional information on custom DTPs.

'=Ird'
The PostScript job is transmitted using an infrared link to an IrDA-capable printer. LaserWriter 8 uses the
IrDA specification as outlined at http://www.irda.org.

Note:
Future releases of the LaserWriter 8 driver may add built-in support for USB and FireWire.

Adding Hose Plug-ins

When printing ajob to a desktop printer, LaserWriter 8.6 obtains the four-byte DTP type and then looks
for ashared library containing the matching hose. LaserWriter 8.6 searches for the library in the
following order:

1. In the System's "Printing Plug-ins' folder (in the Extensions folder)
2.Inthe Printi ngLi b file

A desktop printer'stypeis obtained using the Set t i ngsLi b cal psGet DTPType(), asdescribed in
Technote 1129: The Settings Library. The Printing Plug-in Manager (as described in an upcoming
Technote) is then used to find a printing plug-in of type 'hose’ with a subtype matching the DTP type.

Plug-in files managed by the Printing Plug-ins Manager, such as custom hoses, are required to have a
resource of type' PLGN' with ID -8192 that contains information about the plug-ins contained in agiven
file. If they do not, they cannot be used and are ignored by the LaserWriter 8.6 driver. The plug-ins are
also required to have astandard' cf rg' resource describing the code fragmentsin the data fork of the
file.

The' PLGN' resource contains information about how many shared libraries are contained in thisfile, and
for each shared library, the type of plug-in that it is, the subtype that library handles, and the library
name.

The' PLGN resourceis asfollows:

short num /!l the nunber of shared libraries
Pl ugi nLi bl nfo 1i bl nfo[ nuny;

The Pl uginLiblnfo structure is as foll ows:
typedef struct Pl uginLi bl nf o
Setti ngsDat aType type;
Set ti ngsDat aSubType subtype;
unsi gned char libraryNane[]; // pascal string
/1 word aligned
} Pl ugi nLi bl nf o;

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 3
LaserWriter 8.6
type: the type of plug-in that is described by the PluginLiblnfo
subt ype: the subtype of data that can be handl ed by the plug-in
descri bed by the PluginLiblnfo
libraryName: the library nanme of the code fragment in the plug-in
file described by this PluginLiblnfo

A ResEdit' TvPL' for editing the' PLGN resourceis provided in PrintingLib 8.6. The type field should
be' hose' and the subtype should be' =xxx' , where XXX isthe custom-registered type of DTP being

supported. See the Hose Type Registrations section for more details on registration. Thel i br ar yName

should match the name of the code fragment in the data fork which implements the hose.

The Hose Interface

hoseOpen

Hose fragments are required to export asingle entry point. This entry point, hoseOpen() hasthe
following signature:

OSStatus hoseOpen(Hosel nfo * hosel nfo, const BufCallbacks * callbacks, Collection hints, Handle papaH);

The hoseOpen routine's primary job isto fill out the structure pointed to by hoselnfo.

[* The Hoselnfo structureisfilled out by ahoseOpen procedure. The

structure describes the buffer requirements of the hose as well as
the function pointers for reading, writing, and closing the hose.

* [

typedef struct{

HoseCQut Proc out; // Called to wite a buffer.

Hosel nProc i n; // Called to read a buffer.

Hosel dl eProc idl e; /1 Called periodically.

HoseCd oseProc cl ose; // Called to shut down the connecti on.

HoseConnProc connState; // This procedure returns the state of the
/] current connection.
HoseSt at usProc status; // Return the hose's current status string.
HoseDi sposeProc di spose;// The hose should free up all of its nmenory.
Si ze buf Si ze; /1 The size of each allocated data buffer.
| ong mi nBufs; /1l The hose requires this many buffers. If
/1 there isn't enough nmenory to allocate them
I/l the client will return nenful | Err.
| ong maxBufs; /1 We'll never allocate nore buffers than this.
void *refcon; /1 A pointer that will be passed to the hose
/1 routines.
} Hosel nf o;

First, the hose needstofill intheout , i n, i dl e, cl ose, connSt at e, st at us, and di spose fieldswith
native function pointers to routines in the hose that implement the hose's functionality (i.e., the PPC code
provides PPC function pointers while the 68K CFM code provides 68K CFM function pointers. No
classic 68K function pointers are supported). In addition to filling in the hose's function pointers, the
hose mugt fill inthe buf Si ze, mi nBuf s, and maxBuf s fieldsto describe the hose's buffer requirements.
Lastly, the hose needsto fill in ther ef con field with a pointer to its own storage.

Before calling the hose to transmit data, the hose client provides buffering to improve performance.
Because of this buffering, the hose must deal with only one transmit buffer and one receive buffer at a
time. The hose client is responsible for allocating the buffersthat it uses for providing the buffering. The
hose indicates the size of the buffersits client should allocate by filling in the buf Si ze field during
hosepen. Some typical buffer sizesinclude 4096 bytesfor the' PAP ' hose and 16384 bytes for the

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 4
LaserWriter 8.6
"=Fi | ' hose. The hose specifies the minimum number of buffersit needsin ni nBuf s. It IS recommended
that the ni nBuf s field be set to at least four for bidirectional hoses and to at least two for unidirectional
hoses. The maximum number of buffersto be allocated is set by the hose in the maxBuf s field. The
current rule of thumb for thisfield isthat it should not specify more than 256K worth of memory. In
other words, it should be (262144 / buf Si ze). Thisisjust agenera rule of thumb; some hoses may
require alarger maxBuf s setting, while others will use a smaller number.

The callbacks parameter to hoseQpen isapointer to aBuf Cal | backs structure filled in by the hose client.

typedef void (*FinishedWiteProc)(MemQE enPtr nenkEl em OSStatus err);
typedef void (*Fi ni shedReadProc) (MentEl enPtr nenkEl em OSStatus err);

typedef struct{
Fi ni shedWiteProc finishedWite;
Fi ni shedReadProc fi ni shedRead;

} Buf Cal | backs;

The hose's client places two pointers to native functions in this structure. These functions are to be called
by the hose when aread or write is completed. For more information on these function pointers, see the
detailed description of HoseQut Pr oc and Hosel nPr oc below. The hose should store a copy of this
structure in its private data.

Aspart of thehoseOpen call, the hose is handed a Collection Manager collection containing hints for
configuring the job that will be transmitted through the hose. The hintsin this collection are used by the
QuickDraw to PostScript converter hose client to configure the byte codes that are available for its
generation of PostScript language output. In particular, the kHi nt Ei ght hBi t Tag and

kHi nt Tr anspar ent Channel Tag hints, as defined by LaserWriter 8.6, configure the hose client asto
whether it can generate its data using byte values outside the standard PostScript language printable
ASCII character set. These hints are defined as follows:

/* When generating PostScript for the output stream the PostScript converter
will by default use, if needed, characters in the range 0x80- OxFF
inclusive. Use the "kHintEighthBitTag' with a value of 'false' to
prevent the converter fromentting bytes with the high
bit set.
*/
#defi ne kHi nt Ei ght hBit Tag "bit8
#define kH ntEi ghthBitld 1
#defi ne kH ntEi ght hBi t Vari abl eType Bool ean
#define kH ntEi ghthBitDefault true

/* \When generating PostScript for the output stream the PostScript converter
will by default use, if needed, characters in the range 0x00-O0x1F
i nclusive. Use the 'kH ntTransparent Channel Tag' with a val ue of
"false' to prevent the converter fromenitting bytes | ess than 0x20.

*/

#defi ne kHi nt Transparent Channel Tag 'trns'

#defi ne kHi nt Transpar ent Channel I d 1

#def i ne kHi nt Transpar ent Channel Vari abl eType Bool ean

#def i ne kHi nt Transpar ent Channel Default true

Typicaly, the hints collection passed to hoseOpen does not contain the collection items corresponding to
thesetag/id pairs. Thisis equivalent to the kHi nt Ei ght hBi t Tag and kHi nt Tr anspar ent Channel Tag
hints both set to true, i.e. bytes 0x00- OxFF are dl available.

For hoses which communicate through a channel that has attributes more restrictive than these defaults,
the hose must add the appropriate collection item(s) to the hints collection to ensure that the hose client

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For
LaserWriter 8.6

only writes bytes in the supported range. Note that only hints which are more restrictive than the defaults
need to be added. If a hose supports full 8-bit communications, it need not add these hints to the hints
collection passed in.

In some cases, the hints collection passed to hosepen aready contains either or both of the

kHi nt Ei ght hBi t Tag and kHi nt Tr anspar ent Channel Tag collection items and the collection item may
be locked. If the hose client requires a more restrictive setting than that present, it must  add the hint to
the collection, regardless of whether the hint is already locked.

CSErr err;

/'l e.g. this hose cannot transnit the high 8 bit
kHi nt Ei ght hBi t Vari abl eType eightBit = fal se;

/1 unlock the hint if it is already there

/1l thisis OKif the hint is already unl ocked

err = SetCollectionltem nfo(hints, kHi ntEi ght hBitTag,
kHi nt Ei ghthBitl1d, collectionLockMask,

0);
/] if the hint isn't already there that's fine
if(err == collectionltenNot FoundErr)

err = noErr;
if(lerr){

err = AddCol | ectionlten(hints, kHintEi ghthBitTag,
kHi nt Ei ghthBitld, sizeof(eightBit),
&eightBit);
if(lerr)
err = SetCol lectionltem nfo(hints,
kH nt Ei ght hBi t Tag, kHintEi ghthBitld,
col I ecti onLockMask, collectionLockMask);

See Inside Macintosh : QuickDraw GX Environment and Utilities for more information on the Collection
Manager.

The last parameter to hoseOpen, papa, isthe handle to an extended ' PAPA' structure. Please see
Technote 1115: The Extended 'PAPA' Resource for afull description of this structure and Technote
1129: The Settings Library for the' PAPA' accessor routines, psPapaToCol | ecti on and

psCol | ect i onToPapa. Each type of hose has different communications parameters that specify the target
output device and how the communications channel isto be configured. The' PAPA' handle provides
those communications settings for the hose and are set by the creator of the desktop printer.

In itshoseQpen routine, the hose should allocate any needed memory and begin opening the connection
with the printer. The hose need not -- and for most connection types should not -- complete the
connection in the hosepen call. Because of the lengthy connect times of most communications
techniques, the opening of the printer connection should take place asynchronoudly. The hose starts the
connection process and then returns noEr r from hoseOpen. The client will periodically cal the
hoseConnPr oc regquesting the current state of the connection. The hoseConnPr oc looks like this:

typedef enuni
kConnClosed = 0, // Start in this state.

kConnQpeni ng, /1l This is the state while we wait for the
/1 printer to accept the connection.

kConnQOpen, /1l This is the state while we do reads and
/Il wites to the printer.

kConnd osi ng /1 This is the state while we wait for the

file:///Monster500/Apple/
Week%200f%2010%3A26/

Page: 5



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 6
LaserWriter 8.6
/1 connection to close.
} ConnsSt at e;

typedef ConnState (*HoseConnProc)(void *refcon);

The hose's connection procedure should return the constant k ConnCpeni ng while the connection is being
established. Once the open completes successfully, callsto the hose's connection procedure should return
kConnQpen. If instead an error occurs while opening the hose, the hose's connection procedure should
return kConnd osed. At that point, the hose client will call the hose's Hosed osePr oc and

Hosed osePr oc needs to return the appropriate error code indicating why the hose couldn't be opened.

HoseOutProc
The primary purpose of a hose isto transmit data. Thisis accomplished by the hose's client through calls
to HoseQut Pr oc. HoseQut Proc lookslike this:

typedef OSStatus (* HoseOutProc)(void *refcon, MemQElem * memElem);

and thus the hose's function is:

OSStatus hoseOut(void * refcon, MemQElem * memElem);

Ther ef con parameter passed to HoseQut Pr oc istaken from the refcon field of the Hosel nf o structure
filled out by the hosepen routine. This value should be a pointer or a handle to the hose's private data.

The second parameter to HoseCQut Pr oc, menEl em isapointer to avenQEl emstructure describing the data
to be written.

typedef struct MenQEl en{

CEl enPtr qLi nk; /'l Used by Enqueue and Dequeue- private.

short qType; /1 Qur constant (kMemQueueType) to identify our
/'l queues- private.

struct Buf O *bufl G // So we can recover buffer informtion-

/] private.
Byte *buf; /1 Pointer to the allocated buffer.
Sl nt 32 naxByt es; /1l The size of the block pointed to by 'buf'
Sl nt 32 nByt es; /1 Nunber of valid bytes in 'buf'.
Bool ean eoj ; /'l true if the data is followed by an end of
/1 job.
Bool ean i nQOnl y; /1 This buffer should be used only for the input

/1 routines- private.
}MenEl em *MentEl enPtr;

Note:
Many of the fields of the MenQEl emstructure are private and are used by the hose client. Thesefields are
marked private and must not be used by the hose.

The hoseclient usesthe' eoj ' field of the MenQEI emstructure to signal to the hose when it needs to
transmit a PostScript end of job to the printer. If the' eoj ' field of the MenQEl emstructureistrue, a
PostScript end of job indication must be sent after or along with the buffer of data (if any) in this
menEl em For some communications channels, this' eoj ' isadata byte sent after the data, such as
control-D for seria connections. For other communications channels, such as PAP, the end of job
indicator isout of band with the data itself.

Again, it is highly recommended that hoses perform their writes and reads in an asynchronous manner. In

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 7
LaserWriter 8.6
this case, HoseQut Pr oc beginsto write the nByt es pointed to by buf and then returns to the caller. When
the write completes, the hose signals the caller by calling the finishedWrite function pointer passed in the
Buf Cal | backs structureto hoseOpen.

typedef void (* FinishedWriteProc)(MemQElem * memElem, OSStatus err);

When making the Fi ni shedW i t ePr oc call, the hose passes in the MenQEl empointer passed to hoseQut
along with an error code. If the write finished successfully, the error code should be noEr r . If there was
an error in the write, passthat codeto Fi ni shedW i t eProc.

Thecall toFi ni shedW i t ePr oc isan indication from the hose to the client that the hose is done with the
MenQEl emstructure and is ready for another hosecut call. In fact, the routine called through the

Fi ni shedW it ePr oc may immediately make another hoseCut call before returning to the hose. Because
of this, the hose must be prepared for the hoseQut routine to be invoked while still in an asynchronous
completion routine. Furthermore, once the MenQEl empointer is passed to Fi ni shedW i t ePr oc, the hose
should no longer referenceit. Any datathat might have been copied from the structure before calling

Fi ni shedW it eProc isnolonger vaid (particularly ' buf' ). So, not only isthe structure itself no longer
valid, any data contained in the structure that was previously in use is also no longer valid.

HoselnProc

If ahose is managing aunidirectional communications channel, the hose need not have aroutine for
reading data. In this case, the hosepen routine should fill inthe' i n' field of the Hosel nf o structure
with NULL during hoseQpen.

If the hose can read data from the printer, it fillsthe in field of the Hosel nf o Sstructure with a pointer to its
routine that reads data.

typedef OSStatus (* Hosel nProc)(void * refcon, MemQElem memElem);

Aswith HoseOutProc, Hosel nPr oc should execute asynchronously. When invoked, Hosel nPr oc should
start aread. When data is avail able and the hose's asynchronous completion routine is invoked, the hose
invokes the client'sFi ni shedReadPr oc, passing back the MenQEl empointer passed to Hosel nProc and
an error code. The hose cannot read more than memElem->maxBytes bytes. In addition, the hose must
fill in memElem->nBytes with the number of bytes read into memElem->buf.

typedef void (* FinishedReadProc)(MemQElem memElem, OSStatus err);

Aswith datawrites, once the Fi ni shedReadPr oc is called, the hose must be prepared for another call to
Hosel nPr oc beforeFi ni shedReadPr oc returns. Similar toFi ni shedW i t ePr oc, the datain the
MenQEl emshould be considered invalid after the Fi ni shedReadPr oc is called by the hose.

Hosel dleProc

Not all hoses are able to use asynchronous completion routines to note the end of aread or write. To help

these hoses, a Hosel dl ePr oc can be specified in the Hosel nf o structure returned from hoseQpen. If the

idle field of the Hosel nf o structureis not NULL, the hose's client will periodically call the Hosel dI eProc.
Thisidle procedure can check the status of pending reads and writes and call Fi ni shedw i t ePr oc and

Fi ni shedReadPr oc as needed. Most hoses do not need aHosel dl ePr oc, but, if oneis needed, it has the
following signature:

typedef OSStatus (* Hosel dleProc)(void * refcon);

HoseStatusProc

While a hose is open, the hose's client may periodically request that the hose query the printer for status.
When the call is made the hose should copy a Pascal string describing the printer's last known status into
the buffer pointed to by st at usSt r . The hose should also start an asyncronous status request to the
printer. When the asyncronous status request returns the hose must hold that status until the next call to its
status procedure.

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 8
LaserWriter 8.6

typedef OSStatus (* HoseStatusProc)(void *refcon, StringPtr statusStr);

Note:
Make surethat the st ri ngPt r always pointsto avalid Pascal string (i.e., leave the length byte O until the
whole string is written so that your client does not display garbage charactersif the timing iswrong).

For some communications channels, such as serial channels, the status from a printer is returned on the
back channel read by the Hosel nPr oc. In such a case, the hose's client pulls the status out of the back
channel and the hose does not need to do anything other than transmit a status request to the output
device.

HoseCloseProc

When the client is done with the hose, it calls the hose's HoseC osePr oc to shut down the connection.
The hose should terminate any pending reads and writes and begin to shut down the connection. If this
shut down procedure isimmediate, it can be completed before this routine returns. If the shut down
procedure takes an extended amount of time, this routine can begin the process and return.

typedef OSStatus (* HoseCloseProc)(void * refcon);

HoseDisposeProc

After Hosed osePr oc isinvoked, the HoseConnPr oc is called repeatedly until kConnCl osed is returned.
When the hose signals that the connection has been shut down, HoseDi sposePr oc iscalled to alow the
hose to release any memory it still holds.

typedef OSStatus (*HoseDisposeProc)(void *refcon);

If there was an error during an asynchronous close, the HoseDi sposePr oc should return a non-zero error
value.

Hose Type Registrations

In order to ensure that we do not have conflicting hose types, we ask that you register your custom hose
4-byte type by sending an email to devprograms@apple.com. Please send the following information to
register your custom hose type:

Contact Name

Company Name

Mailing Address

Phone Number

Email Address

Make and Model of device

Description of communications method
4-byte type (in the form '=XXX")

ONogAWNE

Summary

Asoutlined in this document, creating a custom hose for LaserWriter 8.6 isfairly straightforward and
clean. Make sure that you are familiar with the other documents mentioned in this Technote before you
begin on your journey to create a custom hose!

References

Technote 1113: Customizing the Desktop Printer Utility

file:///Monster500/Apple/
Week%200f%2010%3A26/




Friday, October 30, 1998 TN 1144: Writing Custom Hoses For

LaserWriter 8.6

Technote 1115: The Extended 'PAPA' Resource

Technote 1129: The Settings Library

Technote 11X X: Printing Plug-ins Manager Specification (coming soon)
Inside Macintosh : QuickDraw GX Environment and Utilities

Page: 9

Downloadables

pd

Acrobat version of this Note (K).

Binhexed Routine Descriptor Lib (9K).

Acknowledgments

Thanks to John Blanchard, David Gelphman, and Dave Polaschek.

To contact us, please use the Contact Us page.
Updated: 2-November-98

Technotes
Previous Technote | Contents | Next Technote

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 10
LaserWriter 8.6

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 11
LaserWriter 8.6

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 12
LaserWriter 8.6

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 13
LaserWriter 8.6

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 14
LaserWriter 8.6

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 15
LaserWriter 8.6

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 16
LaserWriter 8.6

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 17
LaserWriter 8.6

file:///Monster500/Apple/
Week%200f%2010%3A26/



Friday, October 30, 1998 TN 1144: Writing Custom Hoses For Page: 18
LaserWriter 8.6

file:///Monster500/Apple/
Week%200f%2010%3A26/



