find 1 =

Technote 1117
Open Transport STREAMS FAQ

By Quinn " The Eskimo!"
Apple Developer Technical Support
devsupport@apple.com

CONTENTS T

Getting Started his Technote contains collected lore on writing
STREAMS modules and drivers for use with Open

STREAMS Modules and Drivers Transport.

Messages and Memory Allocation It is structured as a series of question and answer pairs,

. that answer Frequently Asked Questions about Open
Transport Provider Interface (TPY) Transport STREAMS. However, thisisn'tjusta

Data Link Provider Interface (DLP!) ﬁglI Iuerc(;uon of Q& As,; alot of the material istutorial in
Summary ) o .
This Technote is directed at devel opers who are writing
OT kernel level plug-ins, such as protocol stacks,
networking device drivers, and filtering and encryption
software.

Getting Started

Q What is STREAMS?

A When writtenin upper case, STREAM S refers to a standard environment for loadable networking
modules. This environment was first introduced as part of AT& T UNIX [UNIX isaregistered trademark of
UNIX Systems Laboratory, Inc., in the U.S. and other countries], but has since been ported to many
platforms.

Q So what is Open Transport?

A Open Transport isan implementation of STREAMS on the Mac OS. OT contains a number of
enhancements vis-a-vis atraditional STREAMS environment, but STREAMS lives at its core.




Q What is Mentat Portable Streams?

A Mentat Portable Streams (MPS) isafast, portable implementation of STREAMS that islicensed to
system vendors by (http://www.mentat.com) Mentat. While MPS is compliant with the AT& T UNIX
STREAMS at the AP levdl, it contains many enhancements, both internal and external. Open Transport's
STREAMS environment is based on MPS.

Q I'mjust getting started with STREAMS. What should | read?

A Therearea couple of very important references:

e Programmer's Guide: STREAMS, UNIX SystemV Release 4 , UNIX Press, ISBN 0-13-02-0660-1
e STREAMS Modules and Drivers, UNIX SystemV Release 4.2, UNIX Press, ISBN 0-13-066879-6

Y ou should also get the "Open Transport Module Devel oper Note" (part of the OT Module SDK), which
describes the differences between a standard UNIX STREAMS implementation and the one provided by Open
Transport. In general, the OT implementation is very close to UNIX, soif you're an experienced UNIX
STREAMS programmer you will be in familiar territory.

Another reference | find useful is UNIX man pages. If you have access to a UNIX machine that supports
STREAMS, you might find that the STREAMS "man" pages are installed. To test this out, try typing man
put msg on the UNIX command line.

Y ou should a so keep on eye on the Open Transport web page, which contains news and information for Open
Transport developers. In addition, there are a number of non-Apple STREAMS-related sites on the Internet,
including:

e the Mentat home page.

e Sun Microsystems' (http://docs.sun.com/ab2/coll.156.1/STREAMS@Ab2TocView?) STREAMS
Programming Guide.

e DennisRitchie's origina (http://cm.bell-1abs.com/cm/cs/who/dmr/st.html) STREAMS paper.

e The (http://www.partner.digital.com/www-swdev/pages’Home/ TECH/documents/
Digita_UNIX/V4.0/AA-PS2WD-TET1_html/netprog6.htmli#STREAMS) Digital UNIX STREAMS
Programmer's Guide.

Finally, you should join the OT mailing list, which isamailing list dedicated to solving Open Transport
programming questions, at all levels of experience. See the OT web page for instructions on how to join.

Q Wheat's the rel ationship between STREAMS and XTI?

A XTI isastandard API for access ng network services. STREAMS is a standard way of implementing
networking services. Traditionally machines running STREAMS support an XTIl AP, although it is possible
to support other types of APIs. For example, Open Transport supports a standard XTI interface, an
asynchronous XTI interface, and classic networking backward compatibility, all on top of STREAMS. Also,
UNIX STREAMS implementations commonly support a Berkeley Sockets API on top of STREAMS.




Q Isn't STREAMS slow?

A A poorly implemented STREAMS framework can slow down STREAM S-based protocol stacks. Thisis
not true of MPS. Actual detailed performance measurements of MPS on multiple platforms have shown MPS's
overhead to be negligible, and have shown that Mentat's STREAM S-based TCP outperforms various
BSD-based TCP implementations.

STREAMS Modules and Drivers

Q I'm reading the STREAMS Modules and Drivers book described above and | can't make head or tail of it.
Any suggestions?

A | must admit that it wasn't until my third attempt at reading that book that | made any sense out of it. My

secret? | found that if you print out a copy of theni st r eam h header file and have it at hand while you're
reading, it helpsalot.

Q What isa"stream™?

A Inthe most genera definition, astream (in lower case) is a connection oriented sequence of bytes sent
between two processes. However, in the STREAMS environment, a stream normally refers to a connection
between a client process and a network provider. For example, when you open a URL in aweb browser, it
creates a stream to the TCP module to transport connection information and data.

A stream carries the implication of instance. For example, thereis only one Ethernet driver but it can support
many different streams. One stream might be used by AppleTalk, one by TCP, and yet another by a network
sniffing program.

Finally, a stream aso implies a chain of modules, starting at the stream head and terminated at adriver. For
example, if you open an endpoint "adsp,ddp,enet0", the system creates a new stream that ooks like the one
shown below.

F |

Stream Head

Module, eq “adsp™

Module, eg “ddp™

Driver, eq “enetd™

Y
Wirite Side Fead Side




Any datathat you write to that endpoint starts at the stream head and proceeds first to the "adsp” module. That
module can pass the data downstream (in this case towards the "ddp™) with or without modifying it, or
swallow the data completely, or reply to the data with a message sent upstream.

Q Wheat is the stream head?

A Thestream head is part of the STREAMS kernel. It isresponsible for managing all interaction between

the client and the modules. It works in concert with client side libraries that implement the actual networking
APls.

There are two keys areas of interaction: signals and memory copying.

Signal s are amechanism whereby the kernel can inform client code of certain events. Typically thisis used
for events like the arrival of data, but it is possible for modules to generate signals directly by sending the
M_SI G message upstream. Obvioudly there is a connection between signals and OT's API-level notifiers.

Memory copying is the other main duty of the stream head. When you call an APl routine (such as orsnd),
you're actually calling the Open Transport client-side libraries. These libraries take the contents of your call
(i.e. the data you want to send, or the address you want to connect to, etc) and package it up into an
STREAMS message. The client then calls the kernel to pass this messages to the stream head, and the
stream head passes it down the stream. Once the datais packaged up into messages, no further data copying
is done as these messages are passed around inside the kernel.

Because all datais transmitted between client and kernel using messages, there is only one point of entry
between the client and the kernel. This means that STREAM S modules are not required to deal with client
address spaces. This central location where the kernel accesses client memory decreasesthe risk of a
protection violation on a protected memory system, and allows STREAMS modules to run in response to an
interrupt without requiring a context switch.

Of course, there are some complications. For example, some API routines (especially OTl oct | ) pass client
addresses in message blocks. Modules can only gain access to the memory pointed to by these addresses by
sending specia messages up to the stream head. Remember, it's the stream head that does all of the
interaction between client and kerndl.

Q What's the difference between amodule and adriver?

| asked this question when | was learning STREAMS and got the answer "A module can only be pushed, and
adriver can only be opened.” This answer isfundamentally correct, but it didn't help alot at the time.

Thereal answer isthat thereisn't alot of difference between the two; modules and drivers have avery similar
structure. In most cases, STREAM S documentation says "module” when it mean "module or driver".

The big difference between amodule and adriver isthat adriver isthe base of a stream. Streams pass
through modules, but terminate at drivers. Thus modules must be pushed on top of an existing stream
(because they need someone downstream of them), whereas drivers are always opened directly.

The following picture shows multiple AppleTak streams all based on top of one Ethernet driver.



Stream Head

—H M

Module, eq “adsp™

Module, eq “ddp™

w

Driver, eg “enet0™

Thisis complicated by the existence of multiplexing drivers. Multiplexing drivers have both upper and
lower interfaces. The upper interface looks like adriver, that is, it can be opened multiple times for multiple
streams and appears to be the end of those streams. However you can also send aspecia i oct | cdl to the
driver (I _LI NK) to connect streamsto the lower interface. At the lower interface, the multiplexing driver
appears to be the stream head for those connected streams.

For example, you might implement the |P module as a multiplexing driver. P has multiple upper streams
(i.e. client processes using 1P) and multiple lower streams (i.e. hardware interfaces over which IPis running)
but there is no one-to-one correspondence between these streams. | P uses one algorithm (routing) to
determine the interface on which to forward outgoing packets. I P uses a second algorithm (protocol types) to
determine which upper stream should receive incoming | P packets.

The following picture shows three TCP streams connected to a | P multiplexing driver, which isin turn
connected to link layer ports, one run directly through an Ethernet driver, and the other through another
stream that connects a SLIP module to a serial port.



Stream Head

Module, eg “tcpm™

w

Driver, eq “ip™

—

Module, eg “slip™

Y

Driver, eg “seriald™ Driver, eq “enetd™

NOTE:

In Open Transport, IPis not structured as a multiplexing driver, primarily for efficiency reasons. The
above isjust an example of how to think about multiplexing drivers. The next question explains how |P
isreally done.

Q I've noticed Open Transport hasan "ip" driver and an "ipm" module. Why do some modules also appear
asdrivers?

A Thisisan implementation decision on the part of the module writer. In some cases, it's convenient to
access amodule as amodule, and in other cases it's convenient to accessit asadriver.

In this specific case, the MPS | P module behaves differently depending on whether it is opened as amodule
or adriver. When OT is bringing up the TCP/IP networking stack, it first opensthe "ip" driver. |P recognises
that thisfirst connection, known asthe control stream, is special, and respondsto it in a special way.
Later, when OT is bringing up interfaces under |P (e.g. an Ethernet card and a PPP link), it first opens the
link-layer driver and then pushes the "ipm" module on top of it. Each time OT does this, the IP module
recognises this special case and preparesitself to handle this new interface. Finally, when a client process
actually wants to access |P services, OT opensthe"ip" driver to create anew stream to it for the client.

STREAMS givesyou alot of flexibility, and the designers of MPS IP choseto useit.

Q What isthis q parameter that's passed into each of my routines?

A Theq parameter (which pointsto aqueue_t datastructure) is the fundamental data structure within
STREAMS. Each time astream is opened, STREAMS allocates a pair of queues (aqueue pair) for each
module in the stream. It then hangs all the stream-specific information off the queue pair.



One queueis designated thewrite-side queue. Data that the client sendsto the stream is handled on the
write-side queue. The other queueisther ead-side queue. Datathat the stream generates and sendsto the
client is handled on the read-side queue.

Each queue hasaput routine, which is called whenever a message is sent to the module. The put routine
has the choice of sending the message on to the next module (with or without modification), temporarily
gueuing the message on the queue for processing later, replying to the message by queuing the reply on the
other queue in the queue pair, or freeing the message.

Each queue a so has an optional service routine that is called when there is queued data to be processed.
The service routine is optional because the modul€'s put routine may be written in such away that it never
gueues messages for later processing.

Because these routines are specific to a queue, modules tend to contain two routines of each type, one for the
read side and one for the write side. These routines are known asthe read put routine, read service
routine, write put routine, and write service routine.

In addition, multiplexing drivers can have both upper and lower queue pairs, implying atotal of eight entry
points.

When called, each of these routinesis passed aq parameter. The read-side routines are aways passed the
read queue and the write side routines are always passed the write queue. It'simportant to remember that each
gueue denotes a specific connection to your module and that queues are always created in pairs. So theq
parameter passed to your moduleisreally just away of distinguishing stream instances.

Q I'm executing in aread-side routine (either a put or service routine) and | need accessto the write-side
gueue. How do | find it?

A Queue structures are actually allocated in memory as pairs, butted up right next to each other, with the
read queue immediately preceding the write queue. Given that q is a pointer to the read queue, you can derive
the write queue using the C construct &q[ 1] . However an even better solution is to use the macros RD, WR and
OTHERQ defined in "mistream.h".

Q How do | store global datain my module?

The best way to store globals in your module is just to declare global variables. Because modules are shared
libraries, you don't need to do anything special to access these globals. Note that these globals are shared
across al instances of your module, i.e. all streams that run through your module.

NOTE:

There is one exception to the above statement. If you have two PCI (or PC Card 3.0) cardsinstalled,
OT will create a separate instance of the CFM-based driver for each card. So the driver will have a copy
of it'sglobal variablesfor each installed card. The driver distinguishes which card its driving by
RegEnt ryl D, passed as a parameter to itS| ni t St r eanivbdul e routine.

If you want to store globals on a per-stream basis, you have to do alittle more. The following snippet
demonstrates the recommended technique.

// First declare a data structure that holds all of the
/] data you need on a per-stream basis.

struct MyLocal Dat a



OSType magi c; /1 " ESK1' for debugging
| ong current St at e; /1 TS_UNBND etc
[...]

b

typedef struct MyLocal Data MyLocal Data, *MyLocal DataPtr;

/1 Then declare a global variable that acts as the head of
/'l the list of all open streans.

static char* gMdul eList = nil;

/1 In your open routine, call m _open_commto create
/1 a copy of the global data for this new stream

static int MyQpen(queue_t* rdq,
dev_t* dev, int flag,
int sflag, cred_t* creds)

MyLocal Dat aPtr | ocal s;

[...]
err = m _open_com{ &Modul eLi st
si zeof (MyLocal Dat a) ,
rdq,
dev, flag,
sflag, creds);
if (err == noErr ) {

/1 m _open_comm has put a pointer to our per-stream
/1 data in the g_ptr field of both the read-side
/1 and wite-side queue.

|l ocal s = (MyLocal DataPtr) rdqg->q_ptr;
| ocal s->magi c = ' ESK1';

| ocal s->currentState = TS_UNBND;
[...]

}
[...]

/1 In your close routine, use m _close commto destroy
/'l the per-streamglobals. Note that, if you have

/1 any pointers in your data, you nust nake sure to

/'l dispose of those before calling m _close_conm

/1 As an alternative to m _close_conm you night want to
/1 use m _detach and m _cl ose_det ached.

static int Mydose(queue t* rdq, int flags, cred_t* credP)
{
[...] _ _
(void) m _cl ose_com( &Mddul eLi st, rdq);
[...]

/1 If you find that you need to | oop through all the
/] streans open through your nodul e, use the m _next_ptr
/'l routine as shown bel ow.

static void MyForEachStrean( [...] )



MyLocal Dat aPtr aStreaniocal s;

aStreaniocal s = (MyLocal DataPtr) ghodul eLi st;
while (aStreanmiocals !'= nil) {

[...]
aStreaniLocal s = (MyLocal DataPtr) m _next _ptr( (char *) aStreaniocals );

The Open Transport Module Developer Note has afull description of the routines used in the above snippet.

Q How do | synchronize access to my global data?

A MPs provides support for synchronizing access to global or per-stream data. When you install your
module, you must fill out thei nst al | _i nf o structure. One of the fieldsin thisstructureisi nstal | _sql vl ,
which you set to control your modul€'s reentrancy.

NOTE:

When reading this description, it's important to keep the following abbreviations in mind. In the context
of MPS, "SQ" stands for synchronization queue, which isthe key data structure that MPS usesto
guard against reentrancy. Also, "SQLVL" stands for synchronization queue level, which isthe
degree of mutual exclusion needed by amodule.

Thelegal valuesfor the sync queue level are:

SQLVL_QUEUE
Y our module can be entered once per read or write queue. This means that you must guard your
global data from access by multiple threads running in you module, and you must guard your
per-stream data from access by threads running on the read and write sides of the stream
simultaneously.

SQLVL_QUEUEPAI R
Y our module can be entered once per queue pair. You must still guard your global datafrom access
by multiple threads running in your module, but your per-stream datais safe from simultaneous
access by the read and write sides.

SQLVL_SPLI TMODULE
[This sync queue level isnot yet supported in Open Transport, and is documented here for
completeness only.] Y our module can be entered once from an upper queue and once from alower
queue. With this sync queue level, the nps_become_wri t er functionisrelatively cheap, and thisis
the recommended sync queue level for network and link-layer drivers.

SQLVL_MODULE
Y our module can only be entered once, no matter which instance of the module is entered.

SQLVL_GLOBAL
Between all modulesthat use SQLVL_GLOBAL, only one will be entered at atime.

In the above list, sync queue levels are given from least exclusive (SQLVL_QUEUE) to most exclusive
(SQLVL_GLOBAL). In generd, the least exclusive sync queue level aso yields the best system performance,
while the most exclusive value leads to the worst system performance. However thisis not guaranteed. If, by
Setting your sync queue level to SQLVL_QUEUE, you are forced to make a significant number of callsto
nmps_becone_wri t er, you may find better performance with a more exclusive sync queue level.



NOTE:

If your moduleis using sync queue levels SQLVL_QUEUE, SQLVL_QUEUEPAI R, OF SQLVL_SPLI TMODULE,
you can usethenps_become_wri t er function to ensure that only one thread of execution isinside a
particular part of your module at any given time. See the Open Transport Module Developer Note for a
description of mps_becone_writer.

So, what does this mean in practical terms? Before OT calls your module (either the put routine or the service
routine), it checks to see whether there is athread of execution already running in your module. If thereis, it
checks the sync queue level of the module to see whether calling your module would be valid at thistime. It
uses these two factors to decide whether to call your module immediately, or queue the call for some later task
to execute.

The sync queue levelsfall into two categories:

1. Queue-based sync queue levels (i.e. SQLVL_QUEUE and SQLVL_QUEUEPAI R ) are centred around the
gueue pairs associated with each stream that's opened to your module. If you use SQLVL_QUEUE,
your module can be reentered as long as the put or service routine for that queue isn't already
running. If you use SQLVL_QUEUEPAI R, your module can be reentered aslong as a put or service
routine for that queue pair (i.e. the stream) isn't already running

2. Module-based sync queue levels (SQLVL_SPLI TMODULE, SQLVL_MODULE and SQLVL_GLOBAL) work
on a module-by-module basis. For the moment, you can ignore SQLVL_SPLI TMODULE. With
SQLVL_MODULE, your module cannot be reentered at all. With SQLVL_GLOBAL, your moduleis
mutually excluded against all other module that are marked as SQLVL_GLOBAL. [This can be useful if
you're trying to bring up a suite of modules that talk to each other.]

Of course, these mutual exclusion guarantees are for when STREAMS calls you, i.e. your open, close, put
and service routines. If you are called by other sources (such as a hardware interrupts), you have to take
additional measures to ensure data coherency. Of course, OT provides support for thistoo. See the Open
Transport Module Developer Note for a description of the routines you can call from your hardware interrupt
handler.

In general, | recommend that you first use SQLVL_MODULE in order to get your module working. Then, once
you understand the data coherence issuesin the final code, analyze the code to see if you can use a better sync
gueue level.

IMPORTANT:

If your are pushing your module into an existing protocol stack, you should be sure to check the sync
gueue level of the other modulesin the stack. If the existing modules have a very exclusive sync queue
level, there is nothing to gain by engineering your module to have a non-exclusive level. Conversdly, if
the existing modules have a non-exclusive sync queue level, you could affect the performance of the
entire protocol stack by adopting avery exclusive level.

Q I'm confused by the gi ni t structures. | need to have two qi ni t structures, one for the read side and one
for the write side, but that implies two open and close routines. Two open routines seems like a recipe for
confusion. What the full story?

A For the open and close routines, STREAMS only looks at the read-side gi ni t structure.

Q How should | structure my STREAMS module?

STREAMS modules have two primary entry points, the put routine and the service routine. In general, you



should try to do all the work you can in your put routine. Thisis contradictory to most of the STREAMS
documentation, and is an important factor in making your modules fast.

Every time you use put q to put a message on your queue, STREAMS must schedule a task to run your
service routine in order to service that message. While OT'sinternal task scheduler isfast, it still takestime.

The alternative isto process the message in your put routine and then immediately send the message on to the
next module (using put next ) or reply to the message (using qr ep! y). This can make your put routine
complicated. If you find that your put routine is getting too complicated, smply break it up into subroutines.
The cost a subroutine call is much less than the cost of scheduling your service routine.

Of course you can still use put g in flow control conditions because, if you're flow controlled, you don't
really care about speed.

Q How does flow control work?
STREAMS flow control is quite hard to understand. The basic tenets of STREAMS flow control are:

e Your module either takes part in flow control, or it doesn't. If it doesn't take part in flow control (i.e.
it'sasimplefilter module), you should let STREAMS know by having no service routine. Y ou can
then ignore the other rules given below.

e High priority messages are not subject to flow control. It's important that your module avoid
engueuing them because of flow control because this can cause a deadlock situations (i.e. you can't
flush the messages out of a stream because the stream is flow controlled).

e Flow control isgoverned by two values in the queue, the high and low water marks. If the number
of bytes of messages stored on a queue is greater than the high water mark, the queue is flow
controlled. The queue stays flow controlled until the number of bytes of messages enqueued falls
below thelow water mark.

e Bytesgo onto your queue when you call put g. This has the side effect of scheduling your service
routine. ['Y ou can aso schedule your service routine directly using genabl e.] Your service routine
only gets run once regardless of how many times you schedule it.

e Bytes come off your queue when you call get g in your service routine. When you get a message like
this, you should call canput next to seeif it's possible to put the data on the next queue that has a
service procedure. If it is, call put next to put it on the next queue. If it isn't, cal put bg ("put back
on queue") to return the message to your queue. Calling put bq puts the data back on to your queue
without rescheduling your service routine.

e Because your service routine can only be scheduled once, it iscritical that your service routine finish
either by calling put bg or by completely draining the queue (i.e. get g returnsnil). A sample service
routine is shown below.



/'l A standard read service routine that foll ows the
/'l above guidel i nes.

static int MyReadService(queue_t* q)
nbl k_t *np;

while ( (np = getq(q)) !'=nil ) {
/'l Never putbq a high-priority nessage.

if ((np->b_datap->db_type < QPCTL) && !canputnext(q)) {

putbg(q, np);
return (0);

}

/1 Handl e the nmessage then put it on the next queue

[...]

put next (g, np);
}

return (0);

e When your queue is flow controlled, the previous modul€e's read service routine will stop being able
to put messages on your queue (because its callsto canput next will return false). This causes that
module to call put bg, which puts the data on their queue without scheduling their read service
routine. Eventually this causes the number of bytesin their queue to exceed their high water mark,
which causes them to be flow controlled as well. This process proceeds up the stream until you get to
the stream head or the driver.

o When the stream head gets flow controlled, it stops accepting data from the client, and the client
blocks waiting for data to be sent.

o When the driver gets flow controlled, it either
a) starts dropping packets (for unreliable services, such as Ethernet), or
b) it raises the link-layer flow control (for reliable services, such as serial).

e When flow control islifted (this happens when the number of bytesin the flow controlled queue
drops below the low water mark -- for the read side, thisis because the client reads some data; for the
write side, it happens when the driver transmits some data), STREAM S automatically reschedules
the service procedure of the previous queue that has a service routine. Like the propagation of flow
control, thisback enabling continues until it reaches the beginning of the stream.

Finally, thereis oneimportant hint for using flow control. In certain specia case situations, such as
constructing a sequence of messages, it may be extremely inconvenient to deal with flow control. At times
like this, you always have the option of ignoring it. While not strictly legal, thiswill work and is unlikely to
get you into trouble. But it isimportant that you deal with flow control in the genera case, otherwise
messages will pile up on queues, and STREAMS will run out of memory.

Q Which should | use, canput next oOr put next (- >q_next) ?

A STREAMS Modules and Drivers contains a number of code samples that look like:



#i f def MP

if ( canputnext(qg, np) ) {
#el se

if ( putqg(g->q_next, np) ) {
#endi f

Thisis an anachronism from UNIX STREAMS's support of multi-processor (MP) systems. MPS
STREAMS has full support for MP built-in, so canput next isaways available. In addition, MPS
automatically handles synchronization across multiple processors using sync queues (see the question How
do | synchronize access to my global data?), so you do not have to worry about MP issuesin your OT
modules.

Q I've notice that some STREAMS routinesreturni nt even though there is no defined returned value.
When | check the returned values, | find that they are random. What's going on?

A The STREAMS internal routines were imported wholesale from UNIX and, in some cases, the prototypes
do not match the semantics. In these cases, you should make sure to ignore the returned value.

Q STREAMS Modules and Driverstalks alot about bands. Is this of any use?

A Not real ly. Some protocol modules (such as TCP and ADSP) have the concept of expedited data and

typically these are supported using band O (normal data) and band 1 (expedited data). No one has ever found
ausefor all 255 bands!

Also, note the band structuresinside STREAMS are alocated as an array, so if you use more than one band,
make sure you allocate them sequentially from 0. Otherwise you might find yourself using alot more memory
than you expect.

Finally, you should remember that bands only affect the order in which messages are queued, and hence the
order in which they are returned by get g to the service routine. As an efficient STREAMS protocol stack will
rarely queue messages, bands are rarely useful. One case where they have a significant effect is on the stream
head, where the band affects the order in which datais delivered to the client. However, this effect may not
be the effect you are looking for!

Q What fields of the queue_t structure can | modify?

A There are anumber of rulesrelated to thefieldsin a gueue:

e You should only modify your own queues. Y ou should not modify the queue of another module.

e Theq_ptr fieldisspecifically reserved for the modul€'s own use. The module can read or write that
value at any time. Note, however, that if you use ni _open_conm(which | strongly recommend), the
q_pt r field of both queuesin the queue pair contains a pointer to your per-stream data, and you
should not use if for anything else.

e Althoughitisnormaly OK to just read the queue's fields directly, you really should read them using
st rqget . This avoids some possible synchronization issues.

e You must modify any fields (other than g_pt r) using st r gset .

strqget andstrqgset aredefined with the following prototypesin "mistream.h":



extern int strqget(queue t*, qgfields_t what, uchar_p pri, long* valp);
extern int strqgset(queue t*, qgfields_t what, uchar_p pri, long val);

strqgget isused to read afield, putting the value in the long pointed to by val p. strgset isused to set a
field. Thefield that is modified is determined by thewhat parameter, whose value can be:

gfields _t field in queue_t read-only?
QHIWAT g_hiwat no
QLOWAT g_lowat no
QMAXPSZ 0_Mmaxpsz no
QMINPSZ g_minpsz no
QCOUNT g_count yes
QFIRST q first yes
QLAST g last yes
QFLAG g _flag yes

Thepri parameter determines which priority band isused. A band of O indicates the value held in the queue
itself, ahigher value refersto the band data structure referenced by the queue.

The functions can return the following errors:

e ENCENT if aninvaidwhat is specified
e EI NVAL if the specified band is not currently defined
e EPERMIf you are not allowed to modify the specified field

IMPORTANT:

Y ou should not modify fields that are marked as read-only in the above table. While it may seem likea
convenient shortcut, it will cause you problems in the long run. This warning applies specificaly to the
q_fl ag field.

Q The standard UNIX STREAMS books do not contain any information about the routines that begin with
the prefix mi _, for exampleni _open_comm Where are these documented?

A These are utilities routines provided by Mentat to make STREAMS programming easier. They are
documented in the Open Transport Module Developer Note. | strongly recommend that you use these routines
because they help cut down on silly programming errors.

M essages and Memory Allocation

Q Can | modify the message blocks that are passed to my module?

A Yes, aslong asyou are careful. To start with, you must distinguish between message blocks (nbl k_t )
and data blocks (dbl k_t ). Message blocks are always wholely owned by you. STREAMS passes you the
message block, and you are expected to remember it, freeit, or passit on. No one else has areference to that
message block. For this reason, you are aways allowed to modify the fields in the message block, even if
you aren't allowed to modify the data block.



Thefollowing fields of the bl k_t are commonly modified: b_cont, b_rptr, b_wpt r. You should not
directly change the other fieldsin the bl k_t ; there are STREAMS routines that let you change them
indirectly.

Datablocks are dightly different. A single data block can be referenced by multiple message blocks, so you
are only allowed to modify the fields in the data block (or indeed its contents) if you are the sole owner of the
block. Y ou determine this by looking at thedb_r ef field of the data block. If it isset to 1, you are free to
modify the data block and its contents. If it is greater than one, some other message block has areference to
this data block, and you should avoid modifying the data block or its contents.

If you wish to write to aread-only data block, you should copy the block using one of the alocation
functions described below.

Theonly field of thedbl k_t that iscommonly modified isdb_t ype. You should not directly change the other
fieldsinthedbl k_t , although there are STREAM S routines that let you change them indirectly.

Q How do | alocate new messages within my module?

A Thereare alot of techni gues. If you just want to allocate araw message along with its data block, use the
STREAMSfunctional | ocb. Given asize, al | ocb will create amessage that pointers to a data buffer of at
least that size.

copyb returns anew message block that's identical to the input message block. The data block that the
message block pointsto is also copied.

copymsg returns a new message that'sidentical to the input message. Like copyb, it aso copies the data that
the message block pointsto. In addition, it copies all of the message blocks linked to this message through
theb_cont field, and all their data blocks.

dupb duplicates the message block you passed into it without copying the data block that the message points
to. The new message continues to reference the old data block. The function al'so incrementsthedb_r ef field
of the data block to record the new copy.

dupnsg duplicates the message block you passed into it without copying the data block that the message
pointsto. In addition, it duplicates all of the message blocks linked to this message through the b_cont field.

esbal | oc creates amessage block that references a data block which you provide. You also passina
function that will be called when the message is freed. This alows DM A-based network driversto implement
no-copy receives by passing their real DMA buffers upstream. See Open Transport Module Developer Note
for more hints and tips on esbal | oc.



There are al'so anumber of utilities routines for allocating TPl messages that you might find useful. These
include:

m _tpi_conn_con m _tpi_uderror_ind
nm _tpi_conn_ind m _tpi _unitdata_ind
m _tpi_conn_req m _tpi_unitdata_req
m tpi_data_ ind m _tpi_exdata_ind

m _tpi_data_ req m _tpi_exdata_req

m _tpi_discon_ind m _tpi_ordrel _ind

m _tpi_discon_req m _tpi_ordrel _req

nm _tpi_info_req

See the Open Transport Module Devel oper Note for more details on these routines.

Q Why do | get alink error when | try touseni _t pi _dat a_i nd from my module?

A it appears that someone forgot to export that routine. Fortunately, it's very easy to write you own version:

static nmblk_t* qm _tpi_data_ind(nblk _t* trailer_np, int flags, long type)
{

nbl k_t* np;
np = m tpi_data req(trailer_np, flags, type);
it () |
((struct T_data_ind *)nmp->b_rptr)->PRIMtype = T_DATA | NG
return np;

Q How do | reuse an existing message?

A Inwriti ng amodule, you often find yourself in the situation where you want to free a message and then
allocate a new message in reply to the original message. In these cases, it's much better to reuse the first
message rather than suffer the overhead of the freeing one message and allocating another.

Y ou can reuse a message block as long as both of the following conditions are true:

e You are the sole owner of the message, i.e. the messages's data block field db_r ef is 1.
e The message is big enough for your needs.

STREAMS guarantees that al control messages generated by put nsg (typically M_PROTO and M_PCPROTO)
reference data blocks that are at |east 64 bytes long.

OT provides utility routines for reusing messages. The most general purpose oneis:



nmbl k t* m _reuse_proto(nblk t* toReuse,
size_ t sizeDesired
bool ean_p keepOnError);

This routine attempts to reuse the message pointed to by t oReuse, making sure that the message can contain
si zeDesi r ed bytes. It return a pointer to the new message, or nil if it fails. If keepOnError isfalse,
t oReuse isfreed regardless of whether we fail or not. Otherwise, t oReuse is preserved if we fail.

There are also a number of utilities routines specific to TPI that you might find useful including:

m _tpi_ack_alloc m _tpi_err_ack alloc
m _tpi_ok ack alloc

See the Open Transport Module Devel oper Note for more details on these routines.

WARNING:

All of these reuse routines can return nil if you run out of memory. The reason isthat the message
you're trying to reuse may be read-only, in which case the routine is required to create a copy of the
message. This copy can fail if you run out of memory. Y ou must be prepare for these routines to fail.

Q How much dataiis in a message?

A if you just want to know how much data there is in a single message block, you can simply calculate
b_wptr - b_rptr.If youwant tofind the total size of all the messagesin achain, usethe STREAMS
functionnsgdsi ze. Note that this function returns the number of data bytesin the message, and does not take
into account M_PROTO and M_PCPROTO message blocks.

Q How much space is there in amessage?

A if you just want to know how much space is available in a single message block, you can smply calculate
db_lim- db_base. Asfar as| know, thereis no way to calculate thisfor al the messagesin achain.

Q Arethere any invariantsthat | can use to keep my message blocks straight?

A Yes Theinvariants are that:

np- >b_dat ap- >db_base < np->b_datap->db_|im

np- >b_dat ap- >db_base <= np->b_rptr < np->b_datap->db_Iim
np- >b_dat ap- >db_base <= mp->b_wptr <= np->b_datap->db_|im
np->b_rptr <= np->b_wptr

These invariantsimply that:
e thereisaways at least one byte of space in amessage

e theread and write pointers always point within the data
e the amount of valid datain the message is always non-negative




Q A lot of STREAMS dlocation functions (e.g. al | ocb) take a buffer allocation priority value. What should
| use?

A At the moment, STREAMS is defined to ignore these values. There are two reasonable approaches.

1. Ignore priorities and always pass the unspecified priority, i.e. 0.

2. Anayze your buffer needs and set your priorities appropriately on the assumption that one day
someone will pay attention to them. For example, most data messages would default to BPRI _VED,
but high priority control messages like TPl ACKs should use BPRI _HI .

I recommend the first approach.

Q What do | do when an allocation fails?

A The approach you take depends on the type of module you are writing. If you are writing a module that
provides an unreliable service (such asa DLPI device driver), the best thing to do when you run out of
memory isto just drop the current packet on the floor. Because you are providing an unreliable service, the
upper-layer protocol is required to implement some error correction anyway, so there's no point complicating
your module with intricate error handling.

If you're writing areliable service, you must be prepared to deal with running out of memory. Y our primary
weapon should betheni _buf cal I routine. This routine allows you to stop your current operation and
schedule your queue's service routine to be called when a certain amount of memory is available. Y ou then
have aflag in your per-stream data that allows your service routine to pick up the stalled operation before
continue on with its normal duties.

See the Open Transport Module Developer Note for more detailson mi _buf cal | .

IMPORTANT:
Y ou should useni _buf cal I in preference to the more traditiona buf cal | . See the developer note for
the reasons why.

Transport Provider Interface (TPI)

Q I'm writing a STREAMS TPl module or driver. Where should | start?

A The best book to read is STREAMS Modules and Drivers. In terms of sample code, there are anumber of
samplesto look at:

e TPIFile-- Available on the Developer CDs, this sampleisa TPl device driver that allows you to read
aMac OSfileasif it wasan OT serid port.

e StreamNOP -- Available on the Developer CDs, thisisacut down version of TPIFile that serves as
good starting point for new module development.

e tilisten -- Part of the OT Module SDK, this sample contains the full source to the "tilisten™ module (a
helper module used to simplify the listen/accept process for clients).

None of these samples are perfect, but they do give aflavour of what STREAMS programming is like.




Q I'm receiving a TPl message. Can | reuse that message to send the ACK?

A Seethe question How do | reuse an existing message?

Q I'm writing a TPl module and | successfully respond to a T_CONN_REQmessage by sending aT_OK_ACK
message upstream, but my client code never leaves OTConnect . What did | do wrong?

A The short answer isthat you need to send a connection confirmation message (T_CONN_CON) upstream to
indicate that the connection isin place.

The long answer isthat you need to study the TPI specification more closely, paying special attention to the
state diagrams. When your moduleisinsta_3 (i dl e) andreceilvesaconn_r eq event, it should proceed to
sta_5 (w_ack_c_req) . When your module replieswith the ok_ack1, it proceedstost a_6
(w_con_c_req) . At thispoint the client is still waiting for a connection confirmation message. To complete
the connection sequence, you need to issue aconn_con event and proceedtosta_9 (data_t).

| find it useful to think of the T_OK_ACK as simply saying that the primitive being acked was correctly formed:;
it says nothing about whether the request worked. If aresponse is needed, TPI typically has a different
message (e.g., T_BI ND_ACK or T_I NFO_ACK). In the case where something needs to be done, like connection
setup, adistinct message T_CONN_CON is used to "confirm' the connection is established.

Q The TPI specification says that the address to connect to is pointed to by the DEST_of f set and
DEST_I engt h fields of the T_CONN_REQ message. | know how to find the address of thisinformation (using
m _of f set _par anc) but what isitsformat?

A Thereare two aspectsto this question. First, how do Open Transport clients provide address information.
Second, how does Open Transport trandate that client representation into a TPl message.

Open Transport uses a standard format for address information that's based on the OTAddr ess type. This
typeisan abstract record that contains only one interesting field:

struct OTAddress

OTAddr essType f AddressType;
unt8 f Addr ess[ 1] ;

Thef Addr essType field isatwo-byte quantity that determines the format of the remaining fields. All Open
Transport addresses are derived from this basic structure. For example, in the TCP/IP world, OT has two
different address formats, namely | net Addr ess and DNSAddr ess.



struct | net Address

OTAddr essType fAddressType; [/ always AF_|I NET

| net Port fPort; /1 port nunber
| net Host f Host ; /1 host address in net byte order
unt8 f Unused] 8] ; /1 traditional unused bytes

b
struct DNSAddress

OTAddr essType fAddressType; [/ always AF_DNS
| net Donmai nNane f Narre; /1 ASCI| DNS nane

These are distinguished by the first two bytes. An | net Addr ess starts with AF_I NET, while a DNSAddr ess
starts with AF_DNS. These type bytes are followed by an address-format specific number of bytes of data.
This genera layout is common to all address formats under OT.

When you call an OT API routine and pass in an address like this, OT simply copiesthe entire addressinto a
message block without interpreting it. When the message reaches the appropriate TPl module, that module is
responsible for interpreting the specified address. It can determine that the addressis in the appropriate format
simply by looking at the first two bytes of the address buffer. The snippet of code in the next Q& A shows
how to do this.

Q TPl messages often contain "offset" and "count” parametersto reference variable length data. Every time
access these, | find myself dying the 'death of athousand pointers. Is there a better way?

Aim glad you asked. MPS provides two useful utility routines that you can call to access these variable
length structures. There prototypes are:

Unt8* m _offset paran(nblk t* np, long offset, long len);
Unt8* m offset paranc(nblk t* np, long offset, long |len);

If you have asimple TPl message (one with a single message block), you can call ni _of f set _par amto get a
pointer to the structure whose sizeis| en at the given of f set into the message data. The routine returns nil if
of f set and| en areinconsistent with the size of the message.

If there's a possibility that the data you're looking for is not in the first message block of the TPl message,
you can useni _of f set _par ant to look for it in the entire message chain.

The following snippet shows how you can useni _of f set _par ant to find the addressin aT_CONN_REQ
message.



static void DoConnect Request (queue_t* q, nblk t* np)
{

T_conn_req *connReq;
OTAddr ess *connAddr;

[...]

connReq = (T_conn_req *) np->b_rptr;

[...]

connAddr = (OTAddress *) mi _offset_paranc(np,
connReq- >DEST of f set,
connReq- >DEST | engt h) ;
if (connAddr == nil || connReq->DEST |ength < sizeof (OTAddress)) {
Repl yW t hError Ack(g, np, TBADADDR, 0);
return;

}

switch ( connAddr->f AddressType ) {
[...]

}

[...]

Q In my TPI module | send data messages but they never arrive on the wire/at the client. Any ideas?

A You have most probably forgotten to set the b_wpt r field of the message that you are sending. If you
allocate anew message block, theb_rptr and b_wpt r both default to pointing at the start of the data block
(i.e. db_base). Given that the amount of valid datain the message isdefinedtobeb_wptr - b_rptr,if you
forget to set the b_wpt r on messages you will find that the receiver ignores them.

Data Link Provider Interface (DLPI)

Q I'm writing a STREAMS DLPI driver. Where should | start?

A The best book to read is STREAM S Modules and Drivers. The best sample codeto look at isthe DLPI
Template that ships as part of the OT Module SDK.

The DLPI template is targetted at people writing Ethernet-style device drivers. If you're writing an
Ethernet-style device driver (such as Ethernet, Token Ring, FDDI, Fibre Channel, etc), you should definitely
base your driver on this sample. It significantly reduces the amount of work you have to do.

If you're writing something other than a Ethernet-style driver (such as PPP, SLIP, etc), the DLPI Templateis
still useful, but it is dightly less appropriate. If you're actively developing an OT native PPP or SLIP, you
should contact DevSupport because we have some (currently unfinished) documents that you will need.




Q What's this stuff about connection-oriented DLPI drivers?

A | havenoideal Asfar asthe OT mainstream isconcerned, all DLPI drivers are connection-less
(DL_cLDLS). In fact, when OT needs a connection-oriented device driver (e.g. serid), it uses TPI instead of
DLPI. However, connection-oriented DLPI drivers may be useful in some environments, such as X.25 or
ATM.

Q I'm writing the code to fill out the DL_I NFO_ACK message, and | can't decide what to put in the
dl _provider_styl e field. I'd liketo use DL_STYLE1 (because then | don't have to mess with Physical
Points of Attachment (PPAS)) but it seems | should be using the later DL_STYLE2. What do you recommend?

A Unless you have an overriding reason to use PPAS, you should return DL_STYLE1 in your DL_I NFO_ACK
message. Thiswill make your life easier and there's little need for PPAs on the Mac OS.

Q What is this stuff about major and minor device numbers?

A The short answer is: an anachronism from UNIX. M gjor device numbers represent the device driver
controlling adevice. Thisistraditionally an index into atable of drivers maintained internally by STREAMS.
Under Open Transport, drivers are loaded into this table on demand, so there's no way you can know what
major device number your driver is going to get.

Minor device numbers are used to distinguish between multiple functions controlled by asingle device driver,
for example, multiple seria ports controlled by the seria port driver. However, this definition breaks down in
the face of networking, even on UNIX systems.

It turns out that minor device numbers are used to distinguish between different streams connected to adriver.
Each stream is given a unique minor device number by the driver's open routine. Thisis accomplished by
means of the sf | ag parameter. The three possible cases are:

e 0 -- Thisvaueindicates that the moduleis being opened as adriver. A specific minor device number
-- specified by the devp parameter -- is being opened.

® CLONEOPEN -- Thisvaue indicates that the driver is being cloned, i.e. the driver should return a
unique minor device number. Y ou can do this simply by calling mi _open_conm which does this

automagically.
® MODOPEN -- This value indicates that the module is being pushed; there is no minor device number in
this case.

So how does this affect you? It doesn't! If you call mi _open_conmin your modul€'s open routine, it takes
care of all these details. Y our open routine might also want to check that you are being opened as a module
(i.e. sflag == MODOPEN) or asadriver (sfl ag ! = MODOPEN), just to be paranoid. But, otherwise, you
should not worry about device numbers and distinguish your streams using the g parameter.



Summary

Open Transport is based on an industry standard STREAMS networking kernel. Open Transport
STREAMS is documented in a number of UNIX books. and in the Open Transport Module Developer
Note . This Note answers some Frequently Asked Questions about issues that are not adequately
covered in the other documentation.

Further References

Programmer's Guide: STREAMS, UNIX SystemV Release 4 , UNIX Press, ISBN
0-13-02-0660-1

STREAMS Modules and Drivers, UNIX SystemV Release 4.2, UNIX Press, |ISBN
0-13-066879-6

"Open Transport Module Developer Note" (part of the OT Module SDK)

UNIX "man" pages for "putmsg", "getmsg", etc

Open Transport web page

Open Transport programmers mailing list

Acknowledgments

Thanksto Jim Krupp, Rich Kubota, and Vinnie Moscaritolo.

Send feedback to devsupport@apple.com
Updated: 8-December-97

Tech Support
Technotes
Previous Technote | Contents

maln sectlon what's mew ‘ flmel it feedback help

Main | Page One | What's New | Apple Computer, Inc. | Find It | Contact Us | Help



	Technote 1117
	Getting Started
	STREAMS Modules and Drivers
	Messages and Memory Allocation
	Transport Provider Interface (TPI)
	Data Link Provider Interface (DLPI)
	Summary
	Further References
	Acknowledgments

