
ð

T E C H N O T E :
Working With Apple’s
Multiprocessing API

By Chris Cooksey
ccooksey@daystar.com
DayStar Digital

This Technote describes the basic steps required to use the Apple Multiprocessing API and attempts
to clarify the things that can and cannot be done from tasks created using that API.

This Technote is directed primarily at developers working with, or preparing to work with the Multi-
processing API. Although the examples given are aimed at application writers it contains information
useful for system level engineers also.

About the Apple Multiprocessing API

The Apple Multiprocessing API provides a set of calls that allow an application to create separate
threads of execution called tasks. Tasks are preemptively scheduled on the available processors in
the system, even if there is only one. Tasks have the same view of system memory as the application.

An application creates tasks that are used to perform work on the application’s behalf. Since the
work can be performed simultaneously by the tasks in a multiprocessor system, the work throughput
of the application can be increased.

For example, an image-processing application can create tasks that transform arbitrary blocks of
image data. When the user chooses to transform an image, the application splits the data into smaller
pieces and then asks each of the tasks to transform one of the pieces. This process is repeated until
all of the pieces have been transformed. Since the pieces are processed simultaneously, the time
required to transform the entire image is greatly reduced.

Another example is development environments. An environment could use tasks to compile different
files. In this way multiple files could be compiled simultaneously, reducing the time it takes to build
a project.

Using Multiprocessing

Using The Library

To use multiprocessing, the Multiprocessing API Library should be added and weak-linked into your
project. To weak link to the library in Metrowerks, use the pull down menu next to the library name



in the project window and select 'weak link'. This will ensure that if the library is not present your
application will still be launched.

Near the beginning of the application you should test for the presence of the Multiprocessing API
Library. In the file in which you want to do this include the file MP.h. To test for the presence of the
library, call MPLibraryIsLoaded. MPLibraryIsLoaded is a macro that tests for the presence of one of
the library entry points. If MPLibraryIsLoaded returns true, then the library is present and its ser-
vices are available. Otherwise, your application should run without invoking any multiprocessing
services.

Deciding How Many Tasks To Create

Use MPProcessors to count the number of processors in the system. If there is only one, you may
wish to proceed as though the multiprocessing services are not available. However, you can still
create preemptive tasks in a single processor environment if you want to.

The count returned by MPProcessors is usually used as an indication of how many tasks to create.
There are a number of factors that should go into this decision.

First and foremost, your application should strive to keep all the processors busy. The simplest way
to do this is to create at least as many tasks as there are processors. The application then splits the
work to be done into that many pieces and asks each task to work on a piece. The application waits
on the tasks to finish before proceeding. If your tasks take more than one tenth of a second to finish
their pieces, then the application should test for events while it is waiting for the tasks to complete.

An alternative and frequently-adopted technique is to create one less task than there are processors.
In this case, the application still breaks the work into a number of pieces equivalent to the number of
processors. Each task is asked to work on a piece and then the main application works directly on the
remaining piece. When the application is finished, it then waits on the tasks to finish. If the work was
split reasonably evenly, then the tasks should be finished or just about finished when the application
starts to wait. This approach is very popular because it allows for easy generalization of the single
processor case: the number of tasks created is zero and the application naturally ends up doing all the
work. It is also a convenient path to follow when the Multiprocessing API Library is not available
for some reason. Note that since the application is now involved in performing work, it is important
to limit the time required to perform the work to less than one tenth of a second, so that events can
be checked frequently enough and the application’s responsiveness can be preserved.

The above cases assume that the tasks are all doing pretty much the same thing. If your application
creates tasks that do very different types of work, then how many tasks you create will more likely
depend on what different kinds of work need to get done. The important thing to bear in mind is that
the processors should be kept as busy as possible. To do this, make sure that at least as many tasks as
there are processors will have something to do during the times when you wish to maximize
throughput. Don’t forget that four processor systems are not at all uncommon and more powerful
systems should be expected in the future.



Communicating With Tasks

Communication between the application and tasks occurs in two basic ways:shared memory, and
synchronization methods. Since all memory is shared, anything the application writes into memory
is available to a task and vice-versa. However, before a task tries to access memory that has been
prepared by the application, the task MUST synchronize with the application using one of the three
methods available in the Multiprocessing API Library. This is extremely important. The PowerPC
architecture allows for writes to memory to be deferred. This is a resource management feature that
helps the PowerPC achieve its tremendous speed. In order for another processor to see the correct
values in memory, certain hardware dependent instructions need to be executed. When a task uses a
synchronization method these instructions are executed, thus ensuring that the processors involved
have a consistent view of memory from that point on. It is also important to use synchronization
methods so that when one of the communicants is not yet ready to synchronize for some reason, the
other one can yield the processor it is on. This makes the processor immediately available to some
other task that may be able to make more productive use of it.

The synchronization methods available in the Multiprocessing API Library are queues, semaphores
and critical regions.

Queues are first-in-first-out queues of 96-bit messages. Inserting and extracting elements is an
atomic operation -many tasks can try to extract the next message from a given queue but only one
will successfully obtain it.

Semaphores represent a single 32-bit value that can be atomically incremented up to a predetermined
maximum and atomically decremented to a minimum of zero.

Critical regions prevent sections of code that they encompass from being executed by more than one
task or the application at once.

Before creating tasks it is usually a good idea to create the means by which to synchronize with
them. Queues and semaphores are the two most common methods used. People starting out with
multiprocessing generally use queues since they provide the most flexibility and are relatively easy
to understand. Semaphores are quicker and less memory intensive but do not offer the same degree
of flexibility. Queues and semaphores are usually created in pairs:one by which to signal a request,
the other by which to signal results. A classic mistake often made by beginners (the author is speak-
ing from experience here) is to create only one synchronization object and to try to use it for both
purposes. This does not work. After a request is posted, the application will at some point start
waiting for results. If it waits at the same place the request was posted, the request itself may appear
to be the result. Since the application clears the request in the mistaken belief that it was a result, no
work at ALL gets done. This is why it is important to use two distinct entities for two-way communi-
cation.



Creating Tasks

Creating a task is done by calling MPCreateTask. The first parameter to this call is a pointer to a
function that will become the running task. The task function must have the following prototype:

OSStatus fTask( void *parameter );

The task receives a 32-bit parameter when it starts up and should return a 32-bit result when it
finishes. The parameter received at startup is specified as the second parameter to the MPCreateTask
call. It is through this parameter that all the initial information that the task will need is communi-
cated to it. It can be anything at all, a message queue id, a pointer to a C++ object, etc. It is not
uncommon for it to be a pointer to a task specific block of memory through which the application
will communicate various information throughout the task’s lifetime.

Everything up to this point, from calling MPLibraryIsLoaded to calling MPCreateTask can be done
when your application starts up. Leaving tasks running for the lifetime of an application is usually a
more efficient strategy than creating and destroying them as needed. If you find yourself creating a
lot of different tasks that do different types of things you should consider creating a task that can call
many different types of functions through a selector based scheme, or through a variable function
pointer.

The following code illustrates how an application could establish its multiprocessing capabilities
soon after it begins running. It uses the technique of creating one less task than there are processors.

typedef struct {
long firstThing;
long totalThings;
}sWorkParams, *sWorkParamsPtr;

typedef struct {
MPTaskID taskID;
MPQueueID requestQueue;
MPQueueID resultQueue;
sWorkParams params;
}sTaskData, *sTaskDataPtr;

long gNumProcessors;
sTaskDataPtr gTaskData;
MPQueueID gNotificationQueue;

void fStartMP( void ) {

OSErr theErr;
long i;

theErr = noErr;



/* Assume single processor mode */
gNumProcessors = 1;

/* Initialize remaining globals */
gTaskData = NULL;
gNotificationQueue = NULL;

/* If the library is present create the tasks (no tasks on a */
/* single CPU system) */
if( MPLibraryIsLoaded() ) {

gNumProcessors = MPProcessors();
gTaskData = (sTaskDataPtr)NewPtrClear( (gNumProcessors - 1) *

sizeof( sTaskData ) );
theErr = MemError();
if( theErr == noErr  )

theErr = MPCreateQueue( &gNotificationQueue );
for( i = 0; i < gNumProcessors - 1 && theErr == noErr; i++ ) {

if( theErr == noErr )
theErr = MPCreateQueue( &gTaskData[i].requestQueue );

if( theErr == noErr )
theErr = MPCreateQueue( &gTaskData[i].resultQueue );

if( theErr == noErr )
theErr = MPCreateTask( fTask, &gTaskData[i],

kMPUseDefaultStackSize, gNotificationQueue,
NULL, NULL, kMPNormalTaskOptions,
&gTaskData[i].taskID );

}
}

/* If something went wrong, just go back to single processor */
/* mode */
if( theErr != noErr ) {

fStopMP();
gNumProcessors = 1;
}

}

The structure sWorkParams defines the parameters that will be passed into the function called by the
task. The content of this block is specific to the type of work being performed. Among other things,
the parameters should define the specific data that the function is to process.

The structure sTaskData defines the block of data that the application will use to communicate a
variety of different information to a task. The two main things being communicated are the queue
IDs and work function parameters.

The global gNumProcessors stores a count of the number of processors found in the system. This



variable is set to one if the Multiprocessing API Library is not loaded or if task or queue creation
fails for any reason. The rest of the application code is fashioned in such a way that if
gNumProcessors is one then the application will do all the work itself and never make any Multipro-
cessing API calls.

The global gTaskData points to a dynamically allocated array of sTaskData blocks. There is one
entry for each task to be created.

The global gNotificationQueue is used to receive notification messages from terminating tasks. All
the tasks share one notification queue in this example.

A number of tasks equal to the number of processors minus one are created. Each task has its own
pair of message queues by which the application can communicate with it. The IDs of the queues are
stored in the gTaskData entry for the task. The task is then created using MPCreateTask. The first
parameter is a pointer to the function that will become the running task. In this example all the tasks
share the same function:fTask. If a function can be correctly executed by multiple processors at once
it is called 'reentrant'. Note that 'interrupt-safe' does not necessarily imply 'reentrant'. Interrupts
generally are not interruptable in the Mac environment and engineers sometimes take advantage of
this. However, in an MP environment you must anticipate that there could be tasks simultaneously
executing at any point at any time within your task code.

The second parameter is a pointer to the task’s gTaskData entry. The task will be able to extract the
IDs of the request and result queues it should use from this block. Note that two queues per task is
often unnecessary. In many cases it is possible to use two queues total. All requests are posted to one
queue and all results are returned on another queue. This works when it is irrelevant which task
processes which request, as is often the case. Note, however, that the parameters for each task must
be either completely contained within the message, or preestablished for every task prior to submit-
ting the first request.

The third parameter is the desired stack size for the task. Each task has its own stack. If you are
going to be creating more than a handful of tasks, you should consider limiting the size of the stack
each one will receive. The default size is 64K, which can seriously impact the amount of memory
available to the Multiprocessing API Library if large numbers of tasks are going to be created. If you
do specify the stack size, be sure to allocate at least as much space as your task’s deepest call chain
will require.

The fourth parameter is for an optional notification queue. This queue is very important during task
termination sequences. In fact, it really isn’t optional unless you tightly coordinate task termination
with the task itself. If you terminate a task without warning, you will definitely need a notification
queue. The reason for this will be given later.

The fifth and sixth parameters are returned on the notification queue when the task is terminated.

The seventh parameter is for modifying the nature of task creation. There are no options available at
this time.



The eighth parameter is filled in by MPCreateTask. It will be the ID of the newly created task. For
convenience it is stored in the task’s gTaskData entry. Note that tasks rarely have a need to know
what ID they are.

If anything goes wrong during task creation, fStopMP is called. It will delete and terminate every-
thing that has already been created. The variable gNumProcessors is then reset to 1, which will cause
the application to proceed as though there were only one processor available. The function fStopMP
is described later.

The following is an example task. The first thing it does is establish a pointer to its gTaskData entry
which was specified in MPCreateTask. It obtains the request and result queue from this block. The
task then waits for a request on the request queue. It uses the message it receives to select a function
to call. The parameters for the function are extracted from the task’s gTaskData entry which will
have been set up by the application prior to posting the request message. The application must be
very careful to preserve the validity of all the parameters passed to the task until the task sends its
result message. It would, for example, be catastrophic for an application to move or delete memory
being written to by a currently running task.

#define kMyRequestOne 1
#define kMyRequestTwo 2

#define kMyResultException -1

OSStatus fTask( void *parameter ) {

OSErr theErr;
sTaskDataPtr p;
Boolean finished;
long message;

theErr = noErr;

/* Get a pointer to this task's unique data */
p = (sTaskDataPtr)parameter ;

/* Process each request handed to the task and return a result */
finished = false;
while( !finished ) {

theErr = MPWaitOnQueue( p->requestQueue, (void **)&message,
NULL, NULL, kDurationForever );

if( theErr == noErr ) {
/* Pick a function to call and pass in the parameters. */
/* The parameters should be set up prior to sending the */
/* message just received. Note that we could also just */
/* pass in a pointer to the desired function instead of*/
/* using a selector. */
switch( message ) {



case kMyRequestOne:
theErr = fMyTaskFunctionOne( &p->params );
break;

case kMyRequestTwo:
theErr = fMyTaskFunctionTwo( &p->params );
break;

default:
finished = true;
theErr = kMyResultException;

}
MPNotifyQueue( p->resultQueue, (void *)theErr, NULL, NULL );
}

else
finished = true;

}

/* Task is finished now */
return( theErr );
}

Using Tasks To Perform Work

When your application needs to perform some work, it should make sure everything the tasks are
going to need is in memory. For each task, the application will establish the parameters of the work
that it wants the task to perform and then it will signal the task through either a queue or a sema-
phore to begin performing that work. The specific work that the task should perform can be com-
pletely defined within a message, or possibly in a block of memory reserved for that task as de-
scribed above. Both methods are in common use. Some applications also pass in a pointer to the
function that the task should call to perform the work. That way one task can perform many different
types of chores.

Once the task has been signaled, the application can help out with the work, or it could return to its
event loop and just check in on the tasks from time to time using kDurationImmediate waits.

When kDurationImmediate is specified to either MPWaitOnQueue , MPWaitOnSemaphore or
MPEnterCriticalRegion the function always returns immediately. If the return value is
kMPTimeoutErr then whatever was being waited on could not be obtained. That is, no message was
available, the semaphore was zero, or the critical region was being executed by another processor.

Therefore, if the application is checking for task results in its event loop, use kDurationImmediate
waits and check the return value. If it is noErr, a result was present and obtained by the call. If it is
kMPTimeoutErr, then the tasks have generated no new results since the last time the application
checked. Don't forget that other kinds of errors could be returned also.

As described above, when a task finishes handling the request, it should post a result to let the
application know that the work has been performed.



An example of an application using tasks to perform work follows. In this case the application is
going to perform part of the work also. Note that events are not being handled, so it is assumed that
fMyTaskFunctionOne will not take more than a tenth of a second to perform the work.

OSErr fDoMP( long realFirstThing, long realTotalThings ) {

long i;
OSErr theErr;
long thingsPerTask;
long message;
sWorkParams appData;

theErr = noErr;

thingsPerTask = realTotalThings / gNumProcessors;

/* Start each task working on a unique piece of the total data */
for( i = 0; i < gNumProcessors - 1; i++ ) {

gTaskData[i].params.firstThing = realFirstThing + thingsPerTask * i;
gTaskData[i].params.totalThings = thingsPerTask;
message = kMyRequestOne;
MPNotifyQueue( gTaskData[i].requestQueue, (void *)message,

NULL, NULL );
}

/* Let the application do whatever is left over. Note that if */
/* gNumProcessors is one, then the application will do everything */
/* and the Multiprocessing API Library will not be called. */
appData.firstThing = realFirstThing + thingsPerTask * i;
appData.totalThings = realTotalThings - thingsPerTask * i;
fMyTaskFunctionOne( &appData );

/* Now wait for the tasks to finish */
for( i = 0; i < gNumProcessors - 1; i++ )

MPWaitOnQueue( gTaskData[i].resultQueue, (void **)&message,
NULL, NULL, kDurationForever );

return( theErr );
}

This particular approach is used in a lot of real world applications. It is best suited to applications
that transform large blocks of data. Data is split into even pieces for the tasks, they are started, and
the remaining potentially uneven piece is processed by the application. Once the application has
processed its piece, it then waits for the tasks to finish. A common mistake, even for experienced
engineers, is to assume that the data will be perfectly divisible by the number of processors.



Applications that work on large uneven pieces, such as a development environment trying to compile
multiple files simultaneously, need to approach the problem differently. The application should sit in
its event loop and as each task finishes the work it was assigned, new work, if any, should be as-
signed to the task.

Terminating Tasks

When your application finishes it should call MPTerminateTask. Note that MPTerminateTask does
not kill a running task immediately. It only flags it to be killed at some convenient time in the future.
Therefore it is very important not to delete any of the resources the task was using until the task is
truly terminated. To be sure that this is the case you should wait on a notification queue that was
provided to the MPCreateTask call. Every time MPTerminateTask is called you should immediately
wait on the notification queue for a message. Once you receive one you can be sure that the task is
no longer running and that it is safe to delete any shared resources.

The function fStopMP below is an example of what could be done when the application is about to
terminate. The one important thing to note about fStopMP is that as soon as a task has been termi-
nated using MPTerminateTask the function halts until a message on the notification queue arrives.

void fStopMP( void ) {

long i;

if( gTaskData != NULL ) {
for( i = 0; i < gNumProcessors - 1; i++ ) {

if( gTaskData[i].taskID != NULL ) {
MPTerminateTask( gTaskData[i].taskID, noErr );
MPWaitOnQueue( gNotificationQueue, NULL,

NULL, NULL, kDurationForever  );
}

if( gTaskData[i].requestQueue != NULL )
MPDeleteQueue( gTaskData[i].requestQueue );

if( gTaskData[i].resultQueue != NULL )
MPDeleteQueue( gTaskData[i].resultQueue );

}

if( gNotificationQueue != NULL ) {
MPDeleteQueue( gNotificationQueue );
gNotificationQueue = NULL;
}

DisposePtr( (Ptr)gTaskData  );
gTaskData = NULL;
}

}

Multiprocessing Do’s and Don’ts



Do

If you get a message at startup telling you that the MPLibrary could not load because it was out of
memory, then you should open your copy of Metronub, which resides in the extension folder, using
ResEdit or Resourcer. Change the 'sysz' resource to read 2500000. If you still get the problem, keep
increasing the 'sysz' value by 1 MB at a time until you don’t.

Tasks should call functions that perform faceless processing. Calculation intensive code is really the
only type of code that should be considered for MP tasks. This rule will be substantially relaxed
under Mac OS 8, but even so, throughput will really only be improved by using MP for calculation
intensive code. Under Mac OS 8 responsiveness will be the main thing improved by multitasking
other types of code.

The work performed by a task between request and result signals should be 'substantial'. It can take
several hundred machine cycles to send or receive a signal via one of the synchronization methods.
If your task only takes a few cycles to complete the work that is requested, your application’s perfor-
mance is going to be dramatically worse with multiprocessing. Tasks should try to consume at least a
million cycles per request. That’s 5 milliseconds on a 200MHz processor and 20 times faster than
necessary to maintain the tenth of a second response time quoted throughout this document.

If your task needs to allocate memory you will have to either allocate the memory prior to signaling
the task, or use the function MPAllocate. The function MPAllocate will return a block of memory
allocated from the application’s heap. Unfortunately MPAllocate is very slow. It suspends the task,
asks the application to fulfill the request, and then resumes the task. If it is used a lot it will signifi-
cantly reduce a task’s throughput. The best solution to obtaining memory is to preallocate all of it. If
you cannot, then use MPAllocate to allocate one large page of memory at a time and draw smaller
blocks from the page as needed.

Don’t

Don’t attempt to call 68K code. There is no emulator on the secondary processors and they will fault
if they attempt to perform a mixed mode switch.

Do not call the Toolbox. The Toolbox still contains large amounts of 68K code but even worse it is
largely non-reentrant. For example if one task is calling NewPtr and another task also decides to call
NewPtr, both will be manipulating the same global heap structure at the exact same time and they
will almost certainly corrupt it. In Mac OS 8, a number of Toolbox routines will be callable from an
MP task.  These
routines will be conditionalized by the flag FOR_SYSTEM8_PREEMPTIVE in the MacOS 8
interface files.

Do not call into unknown code. If you provide a means by which a third party can specify a callback
then do not attempt to call that function from a task. There is no telling what the callback is going to
do. This rule will never be relaxed. Unless you specifically require that the callback be reentrant,
then there is always going to be the possibility that it is not.



Avoid globals. The main cause of non-reentrancy is the manipulation of globals. Tasks that manipu-
late globals, global state, or buffers pointed to by globals must use synchronization techniques to
prevent other tasks from attempting to do so at the same time. Globals that are read only are fine.

Do not call any MP API routines at interrupt time. The Multiprocessing API Library is not, strictly
speaking, reentrant. While you can call any Multiprocessing API routine from a multiprocessing task
any time, you may not call them from a deferred task, a time manager task or any other system
interrupt handler. Workarounds exist but they are inefficient and generally discouraged. Contact
Apple DTS or DayStar for more information.

Summary

After reading this Technote, you should be comfortable with the basic steps involved in producing a
multiprocessing-aware application. In short, you need to make sure the Multiprocessing API Library
is available, you need to count the number of processors, you need to create the means by which to
synchronize with tasks, and you need to create a sufficient number of tasks that will keep all the
processors busy. Unique information can be communicated to a task when it is created that will
allow a task to coordinate with the application when work needs to be performed. When your appli-
cation quits, it should delete the synchronization objects and terminate the tasks.

You should be familiar with the types of things a task can do and you should know what a task
cannot do.

Further References

Multiprocessing SDK.

Acknowledgments
Thanks to Phil Koch, Irvan Krantzler, David Sowell, Jason Wallace, and Dan Wilk.

Change History

Originally written in July, 1996 by Chris Cooksey


