
Multiprocessor API Specification

Prepared by Apple Computer and DayStar Digital, Inc.

August 1995

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 1

Introduction

This specification defines an application programming interface (API) for
multiprocessors on Macintosh. The goals are

• to support a limited class of simple, compute-only tasks that do not require
Toolbox services

• to run on all current and planned generations of the PowerPC-based Mac OS—
namely, System 7, Copland, and Gershwin—as well as on future versions capable
of symmetric multiprocessing (SMP)

• to be simple yet powerful

Code written to this API should run without modification on Copland, and will
automatically take advantage of SMP-capable systems once they are available.

For the initial implementation, only one CPU, referred to as the main CPU, will run
the entire Mac OS and all applications. For this version, all I/O interrupts are handled
by the main CPU. Additional CPUs, referred to as attached CPUs, will run only tasks
created by this API. These tasks are known as MP tasks. Memory used by MP tasks is
mapped into the same logical addresses on the main and attached CPUs. The attached
CPUs will run a very simple operating system (not the Mac OS) that does nothing but
implement this API. On SMP systems this model will be extended, but the API will
stay the same. The API is intended for use on both on uni- and multiprocessor
systems. On uniprocessor systems MP tasks are treated as preemptive threads.

The CPUs are cache-coherent with respect to each other. This API does not address
the case of non-cache-coherent attached processors.

In the initial implementation, MP tasks may not call routines in the Mac OS or
Toolbox, and VM must be turned off. The only calls an MP task will be able to make
safely, other than to its own subroutines and functions, are to this API. (There may be
a limited set of callable Toolbox routines and other utilities, but this set has not been
specified yet.) These limitations will be relaxed in Copland. The target applications
for the initial MP implementation are CPU-intensive domains such as image
processing.

The API can support any number of CPUs, and attached CPUs need not have access
to external interrupts, I/O devices, or timers. The only requirements are that all RAM
be addressable by all CPUs (not necessarily at the same physical address), that the
processors be cache- coherent with respect to each other, and that the CPUs be able to
interrupt each other.

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 2

Areas Not Specified

Certain aspects of the multiprocessing facility are not specified here. Some must be
specified before the product ships, and others have intentionally been left undefined.
Although it is possible that third parties may extend this API, developers must
understand that extensions to the API may not be supported by Apple in future
products. The following areas have not been defined:

• The debugging interface. The debugging interface is implementation defined and
may vary. Application code must not contain assumptions about a particular
debugging facility.

• The exact set of Toolbox, OS, and nanokernel services that may be called from an
MP task. This set is not yet determined but will be explicitly enumerated before
the product ships. To ensure compatibility with future versions of the Mac OS and
multiprocessing API, routines not in the list must not be called from MP tasks.

• Task execution states and scheduling. Task execution states and scheduling have
been intentionally left unspecified. Application code must not contain
assumptions about task states, execution priorities, or scheduling algorithms.
Code written to this API should be capable of being executed on a variety of
configurations, including uniprocessors, multiprocessors, and preemptively
scheduled SMP systems.

• Support for virtual memory (VM). VM support is implementation defined and
may vary. Ideally, the CPUs would coordinate and synchronize their memory
management units (MMUs) so that VM can be used to demand-page MP tasks.
Because accomplishing this coordination can be quite complex, the initial
implementation on System 7 will probably require that VM be off when there is
more than one CPU.

• Environmental inquiries. The multiprocessor API provides no way of determining
the type or speed of the CPUs, or to bind particular MP tasks to particular CPUs
or sets of CPUs. Applications written to this API should not depend on a
particular configuration, except possibly to adapt at runtime to the number of
CPUs.

• Complete enumeration of error returns. The only OSStatus codes that an
application should use programmatically are documented in the sections that
follow. Additional error codes may occur and will be enumerated in later
documentation.

• Task and resource cleanup. This version of the API does not attempt to define the
state of resources owned by an MP task when that task terminates. For example,
if a task has a critical region locked when it terminates, the critical region may or
may not be left in the locked state. To ensure correct operation with all
implementations, MP resources such as queues should be explicitly deleted by the
same task that allocated them, and tasks should not be asynchronously terminated
unless it is known that they do not hold MP resources (other than their stack).
Future implementations will provide more robust, and more precisely defined,
semantics.

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 3

• Version control. Testing for the availability of API extensions is presently
undefined but will be required before the first extension to the API ships.

Synchronization

The programming model consists of cache-coherent shared memory, with
preemptively scheduled tasks running on one or more processors. The API provides a
number of facilities to allow MP tasks to synchronize execution with themselves and
with the main process, including semaphores, critical regions, and primitive message
queues. Ad hoc synchronization methods should be avoided, because they may work
on some implementations but not on others.

Typically, an application will create one or more MP tasks, and then eventually wait
for those tasks to complete. When the main application thread blocks waiting for an
MP event, the blocking application will not get back to its event loop until the MP
event finally occurs. This delay may be unacceptable for long-running tasks.
Therefore, it will often be necessary for the application to poll for MP events from its
event loop, rather than block waiting for them. An MP queue is ideal for this
purpose.

MP Object Identifiers

Tasks, semaphores, critical regions, and queues are abstract types represented by 32-
bit IDs. Do not try to directly access the underlying data structures associated with an
ID. Because it is possible that an ID may be reused soon after deletion, care should
be taken to properly synchronize MP calls in order to avoid using a valid but out-of-
date ID.

Durations

typedef SInt32 Duration;
enum {

kDurationForever = 0x7FFFFFFF,
kDurationImmediate = 0

};

Several routines in this API take Duration as a parameter to limit the time spent
blocked waiting for an event to occur. In future implementations, this type will allow
specification of the delay in microseconds or milliseconds, much as the Time
Manager does. At present, however, only two values are allowed:

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 4

kDurationForever waits "forever"—either until the event occurs or until the
object being waited on (for example, the message queue) is deleted.

kDurationImmediate returns immediately, whether or not the event has
occurred. The return status will be "kMPTimeoutErr" if the event has not
occurred (and there are no other errors).

As noted above in the section “Synchronization,” using kDurationForever from the
main application thread may be inappropriate.

Testing for Availability of the MP API

The multiprocessor API is implemented as one or more PowerPC shared libraries. To
test for availability of the API at runtime, applications should weak-link to the
imported symbols and use the following method to determine whether or not the
library was found:

#include "MP.h"

if (MPLibraryIsLoaded())
<OK to use the MP API>

else
<MP API not found>

MPLibraryIsLoaded is a macro that compares the address of an API entry point to
kUnresolvedCFragSymbolAddress. Testing for the availability of possible optional
extensions is not defined in this version of the API.

Determining the Number of Processors

UInt32 MPProcessors(void);

The function MPProcessors returns the number of processors in the system,
including the main processor.

Creating a Task

typedef OSStatus (* TaskProc) (void *p);
typedef UInt32 MPTaskOptions;

OSStatus MPCreateTask(
TaskProc taskEntryPoint,
void* taskParameter,
ByteCount stackSize,
MPQueueID notifyQ,
void* notifyParameter1,

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 5

void* notifyParameter2,
MPTaskOptions options,
MPTaskID* newTask);

The function MPCreateTask creates an MP task. The initial implementation may not
permit this call to be made from an MP task.

The task is immediately scheduled for execution, and it executes until one of three
events occur: the task terminates by returning from its entry point, the task is
terminated by MPTerminateTask, or the task involuntarily terminates because of a
fault or programming exception. The task is a child of the creating application
process, in the sense that all extant tasks are terminated when the process terminates
and in that the task address space is the process address space.

taskEntryPoint specifies the entry point for the task. This parameter should be the
address of a subroutine that takes a single 32-bit parameter and returns an
OSStatus value.

taskParameter is the parameter passed to the task entry point when it is called. The
parameter is not interpreted by the system.

stackSize defines the length of the task’s stack. It is the responsibility of the
programmer to ensure that the task does not exceed the bounds of the stack. Stack
overflows are not necessarily detected. If stackSize is 0, then a default size is
used.

notifyQ names a message queue to which the system will send a message when the
task terminates. The first two words of the message are specified when the task is
created (notifyParameter1 and 2), and the third (an OSStatus) will be the
return value if the task returns from its entry point, kMPTaskAbortedErr if the
task aborts, or is supplied as a parameter to MPTerminateTask if the task is
explicitly terminated. If notifyQ is kMPNoID, no notification of task termination
will occur.

options specifies optional attributes of the MP task. No options are currently
defined; this parameter must be 0.

newTask is set to the ID of the newly created task.

This function returns the following result codes that have defined semantics
(additional errors may also be returned):

noErr
kMPInsufficientResourcesErr

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 6

Terminating a Task

OSStatus MPTerminateTask(
MPTaskID task,

 OSStatus terminationStatus);

The function MPTerminateTask causes the MP task to be involuntarily terminated.
The terminationStatus parameter is passed as the third word of the optional
termination message (refer to MPCreateTask). Do not assume that the task has
completed termination when this call returns; the proper way to synchronize with task
termination is to wait for the termination message. The state of MP resources owned
by the task, such as locked critical regions, is undefined in the initial implementation.
It is currently an error to attempt to terminate a non-MP task.

This function returns the following result codes which have defined semantics
(additional errors may also be returned):

noErr
kMPInvalidIDErr

Self Termination

void MPExit(
OSStatus terminationStatus);

The current MP task is terminated with a status of terminationStatus, just as if it
had returned from its initial entry point. It is an error to call this routine from a
context other than an MP task. MPExit is equivalent to the following:

(void) MPTerminateTask(MPCurrentTaskID(), terminationStatus);

Explicitly Yielding the CPU

void MPYield(void);

This is a hint to the scheduler, suggesting that another MP task be run. Other than
possibly yielding the CPU to another task or application, the call has no effect. Note
that since MP tasks are preemptively scheduled, an implicit yield may occur at any
point, whether or not this function is called.

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 7

Obtaining the ID of a Task

MPTaskID MPCurrentTaskID(void);

The function MPTaskID returns the task ID of the current MP task. When called in
execution contexts that are not MP tasks, this routine returns an ID that is unspecified
but different from the ID of any MP task. Contexts that are not MP tasks may or may
not have different task IDs, and future implementations of this API may behave
differently in this regard. Note that ownership of a critical region is defined by task ID;
therefore if multiple applications or Thread Manager threads attempt to synchronize
using critical regions, the resulting behavior is currently undefined.

Task Synchronization

This API provides the following facilities for task synchronization:
• message queues
• counting semaphores
• binary semaphores
• critical regions

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 8

MP Message Queues

OSStatus MPCreateQueue(
MPQueueID* theQueue);

The function MPCreateQueue creates an MP queue, which can be used to notify
(send) and wait for (receive) messages consisting of three 32-bit words, in an MP-safe
manner.

OSStatus MPDeleteQueue(
MPQueueID theQueue);

The function MPDeleteQueue deletes the given queue. The queue ID becomes invalid,
and all system resources associated with the queue, including queued messages, are
reclaimed. Tasks that are blocked on the queue waiting for a message receive an
kMPDeletedErr status.

OSStatus MPNotifyQueue(
MPQueueID theQueue,
void* param1,
void* param2,
void* param3);

The function MPNotifyQueue performs a send operation on the named queue. The
system reserves an unspecified amount of memory for each queue, to buffer queued
messages. If the queue is full and cannot accept any messages, then
kMPInsufficientResourcesErr will be returned. The system does not interpret the
three words that make up the text of the message.

OSStatus MPWaitOnQueue(
MPQueueID theQueue,
void** param1,
void** param2,
void** param3,
Duration timeout);

The function MPWaitOnQueue performs a receive operation on the named queue. The
parameter timeout specifies how long to wait for a message if none is queued when
the call is made.

The four functions just described return the following result codes that have defined
semantics (additional errors may also be returned):

noErr
kMPTimeoutErr
kMPDeletedErr
kMPInsufficientResourcesErr

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 9

Semaphore Services

OSStatus MPCreateSemaphore(
MPSemaphoreCount maxVal,
MPSemaphoreCount initVal,
MPSemaphoreID *semaphore);

The function MPCreateSemaphore creates a counting semaphore with a maximum
value of maxVal and a starting value of initVal.

OSStatus MPCreateBinarySemaphore(
MPSemaphoreID *semaphore);

The function MPCreateBinarySemaphore creates a binary semaphore whose initial
value is 1. This is simply an alias for MPCreateSemaphore(1,1,...).

OSStatus MPWaitOnSemaphore (
MPSemaphoreID semaphore,
Duration timeout);

The function MPWaitOnSemaphore performs a wait operation on the semaphore: if the
value of the semaphore is 0, then the task is blocked (according to the parameter
timeout) and is placed on a queue associated with the semaphore. If the value of the
semaphore is greater than 0, then the semaphore is decremented and the task
proceeds.

OSStatus MPSignalSempahore(
MPSemaphoreID semaphore);

The function MPSignalSemaphore performs a signal operation on the semaphore: if a
task is waiting on the semaphore, then it is taken off the semaphore's internal queue
and made ready to run. Otherwise, if the value of the semaphore is not already equal
to its maximum value, it is incremented by one.

OSStatus MPDeleteSemaphore(MPSemaphoreID semaphore);

The function MPDeleteSemaphore deletes the semaphore. All tasks waiting on the
semaphore are unblocked, and MPWaitOnSemaphore returns kMPDeletedErr.

The four functions just described return the following result codes that have defined
semantics (additional errors may also be returned):

noErr
kMPTimeoutErr
kMPDeletedErr
kMPInsufficientResourcesErr

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 10

Critical Region Services

OSStatus MPCreateCriticalRegion(
MPCriticalRegionID *theRegion);

The function MPCreateCriticalRegion creates a critical region object.

OSStatus MPEnterCriticalRegion(
MPCriticalRegionID theRegion,
Duration timeout);

The function MPEnterCriticalRegion attempts to acquire, or enter, the critical
region. If the critical region is being used by another task, the current task is blocked
(according to the parameter timeout) until the critical region is released. Once a
critical region has been entered, a task can then make further calls to
MPEnterCriticalRegion without blocking. However, each call to
MPEnterCriticalRegion must be balanced by a call to MPExitCriticalRegion.
For the purposes of critical region ownership, contexts that are not MP tasks behave
as defined by MPCurrentTaskID.

OSStatus MPExitCriticalRegion(
MPCriticalRegionID theRegion);

The function MPExitCriticalRegion releases the critical region object. It is an error
to release an already free critical region or one that has been entered by another task.

OSStatus MPDeleteCriticalRegion(
MPCriticalRegionID theRegion);

The function MPDeleteCriticalRegion deletes the critical region object. For tasks
blocked waiting to enter a critical region, MPEnterCriticalRegion will return
kMPDeletedErr.

The four functions just described return the following result codes that have defined
semantics (additional errors may also be returned):

noErr
kMPTimeoutErr
kMPDeletedErr
kMPInsufficientResourcesErr

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 11

 Additional Routines Callable From MP Tasks

LogicalAddress MPAllocate(
ByteCount size);

void MPFree(
 LogicalAddress block);

MPAllocate and MPFree allocate and free non-relocatable blocks of memory in heap
storage. The allocated memory will be aligned and padded in order to provide safe
and efficient access in an MP system, for example by avoiding cache thrashing due to
coherence granularity. The memory is guaranteed accessible, using the returned
address, by the main application and all MP tasks that it creates, but not by other
applications or their MP tasks. Extant heap blocks are freed when the application
terminates. As with all shared memory, access to allocated heap blocks must be
explicitly synchronized. If MPAllocate is unable to allocate the requested amount of
memory, it returns a null pointer.

void MPBlockCopy(
LogicalAddress sourcePtr,
LogicalAddress destPtr,
ByteCount bytes);

This routine copies possibly-overlapping blocks of memory. It is similar in function
to BlockMoveData.

Note that, in general, no MacOS Toolbox or library routines other than those defined
in this ERS may be safely called from an MP task. Even if it appears that some
Toolbox (or other) routine works today when called from an MP task, unless
explicitly stated otherwise there is no guarantee that subsequent versions of the same
routine will continue to work. For System 7 implementations of the MP API, the only
exceptions to this rule are the atomic memory operations (such as AddAtomic) in
Synchronization.h. In Copland, more MacOS functionality will be available from MP
tasks.

Copyright © 1995, Apple Computer Inc.
Copyright © 1995, DayStar Digital, Inc. page 12

