



Technical Publications
© Apple Computer, Inc. 1998



A p p l e S h a r e I P 6 . 0
D e v e l o p e r ’ s K i t

User Authentication Modules



Apple Computer, Inc.
© 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Tables and Listings 5

Preface About This Manual vii

Conventions Used in This Manual vii
For more information viii

Chapter 1 User Authentication Module Interface 9

Constants and Data Types 10
UAMArgs Structure 10
ClientUAMCallbackRec Structure 12
UAMChgPassBlk Structure 13
UAMVSDlogBlk Structure 14
UAMAuthBlk Structure 14
UAMPWDlogBlk Structure 15
UAMOpenBlk Structure 15
ClientInfo Structure 15
AFPClientInfo Structure 16
VolListElem Structure 17
UAMMessage Structure 17

Client UAM Routines 19
UAMCall Routine 19

UAMOpen Command 20
UAMPWDlog Command 21
UAMLogin Command 22
UAMChgPassDlg Command 22
UAMChgPass Command 22
UAMVSDlog Command 23
UAMGetInfoSize Command 23
UAMGetInfo Command 24
UAMClose Command 25
3

Callback Routines 25
EventProc Callback 25
GetClientInfo Callback 25
OpenSession Callback 26
SendRequest Callback 27
CloseSession Callback 27
SetMic Callback 28

Completion Routine 28
Resources 29

The 'uamg' Resource 29
The 'uamc' Resource 30
The 'uamn' Resource 30

Sample UAM Client 31

Index 37
4

Tables and Listings

Table 1-1 Typcial client UAM command sequence 20
Table 1-2 Bit values of configInfo 21

Listing 1-1 Sample client UAM 31
5

P R E F A C E

About This Manual

This document describes version 2.0 of the application programming interface
for client user authentication modules (UAMs). UAMs allow AppleTalk Filing
Protocol (AFP) clients to be authenticated with an AppleShare IP server using
an alternate authorization scheme, such as Kerberos, Network Information
Service (NIS), Windows NT domains, or Novell Directory Services (NDS). For
example, an NIS UAM could authenticate a user for a connection to an
AppleShare IP file server, mail server, or web server by accessing a central
database of user names and passwords stored on an NIS server running on a
Sun workstation. Such centralized authentication information would
substantially reduced the effort that would otherwise be required to maintain
multiple repositories of authentication information.

A UAM implementation consists of a client UAM and a server UAM. This
manual describes the method by which a client UAM communicates with a
server UAM to authenticate AFP clients. Segments of sample code are included
to help developers understand how to use the various calls.

Conventions Used in This Manual 0

The Courier font is used to indicate server control calls, code, and text that you
type. Terms that are defined in the glossary appear in boldface at first mention
in the text. This guide includes special text elements to highlight important or
supplemental information:

Note
Text set off in this manner presents sidelights or interesting
points of information. ◆

IMPORTANT

Text set off in this manner—with the word Important—
presents important information or instructions. ▲
7

P R E F A C E

▲ W AR N I N G

Text set off in this manner—with the word Warning—
indicates potentially serious problems. ▲

For more information 0

The following books provide information that is important for all AppleShare
developers:

■ AppleShare IP Administrator’s Manual. Apple Computer, Inc.

■ Inside Macintosh. Apple Computer, Inc.

For information on the programming interface for managing users and groups,
see the following publication:

■ AppleShare IP 6.0 Developer’s Kit: AppleShare Registry Library.
Apple Computer, Inc.

For information on the AppleTalk Filing Protocol (AFP), see the following
publications:

■ AppleShare IP 6.0 Developer’s Kit: AppleTalk Filing Protocol. Apple Computer,
Inc.

■ AppleShare IP 6.0 Developer’s Kit: AppleTalk Filing Protocol Version 2.1 and
2.2. Apple Computer, Inc.

■ Inside AppleTalk, Second Edition. Apple Computer, Inc.

For information on controlling an AppleShare file server and handling server
events, see the following publication:

■ AppleShare IP 6.0 Developer’s Kit: Server Control Calls and Server Event
Handlng. Apple Computer, Inc.

For information on using an AppleShare IP 6.0 file server and Macintosh File
Sharing, see the following manuals:

■ AppleShare Client User’s Manual. Apple Computer, Inc.

■ Macintosh Networking Reference. Apple Computer, Inc.
8

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

User Authentication Module
Interface 1
User authentication modules (UAMs) are used by AppleTalk Filing Protocol
(AFP) clients to implement custom user authentication methods for connecting
to and authenticating with an AFP server.

Currently, a UAM is called when the following actions occur:

■ The user uses the Chooser to log on to an AFP server that supports the UAM
that the user has selected.

■ The user is already connected to an AFP server and is using the Chooser to
connect to another volume made available by that AFP server.

■ A program calls PBVolumeMount and specifies that a particular UAM is to be
used.

Client UAMs must implement a UAMCall routine that can be called by an AFP
client or by any other application that needs to authenticate a user. The UAMCall
routine must implement the following commands:

■ UAMOpen, to open a session with an AFP server

■ UAMLogin, to log on to an AFP server

■ UAMClose, to close a session with an AFP server

Client UAMs can optionally implement the following additional commands:

■ UAMPWDlog, to display a dialog box that allows the user to enter his or her
password

■ UAMVSDlog, to display a dialog box that allows the user to select the volumes
he or she wants to connect to

■ UAMChgPassDlg, to display a dialog box that allows the user to enter a new
password

■ UAMChgPass, to send a command to the server UAM to change the user’s
password
9

C H A P T E R 1

User Authentication Module Interface

■ UAMGetInfoSize, to get the size of persistent authentication information

■ UAMGetInfo, to get the persistent authentication information for a connection
to a particular AFP server

IMPORTANT

The UAMCall routine is always called at system task time. ▲

Client UAMs use callback routines to communicate with an AFP client. The
AFP client makes following callback routines available:

■ GetClientInfo, to obtain information about what the client, such as the
versions of AFP the client supports, Gestalt values, and the default user
name

■ OpenSession, to open a session with a server

■ SendMessage, to send a message to a server once a session has been opened
with that server

■ CloseSession, to close a session with a server

■ SetMic, to set the message integrity code key

■ EventProc, to handle events that the client UAM does not handle

UAM files reside in the AppleShare Folder inside the System Folder and have a
type code of 'uams'.

Setting bit 12 (gestaltAFPClientUAMv2) of the high word of the 'afps' Gestalt
response indicates that an AFP client supports the UAM interface described in
this chapter.

Constants and Data Types 1

UAMArgs Structure 1

The UAMArgs structure is the only parameter to the UAMCall function. The fields
of the UAMArgs structure define the command type and provide all of the
information necessary for UAMCall to complete the command successfully.
10 Constants and Data Types

C H A P T E R 1

User Authentication Module Interface

struct UAMArgs {
short command;
short sessionRefNum;
long result;
void *uamInfo;
long uamInfoSize;
ClientUAMCallbackRec *callbacks;
union {

struct UAMChgPassBlk chgPass;
struct UAMVSDlogBlk vsDlog;
struct UAMAuthBlk auth;
struct UAMPWDlogBlk pwDlg;
struct UAMOpenBlk open;

};
};

Field descriptions
command On input, the UAM command code, which must be one of

the following values:
enum {
 kUAMOpen = 0,
 kUAMPWDlog,
 kUAMLogin,
 kUAMVSDlog,
 kUAMChgPassDlg,
 kUAMChgPass,
 kUAMGetInfoSize,
 kUAMGetInfo,
 kUAMClose,
 kUAMPrOpen,
 kUAMPrAuthDlog,
 kUAMPrAuth
};

sessionRefNum An AFP session reference number. If an AFP session is not
already in progress, an AFP session reference number is
returned by the client UAM during the UAMLogin call. If an
AFP session is in progress, the AFP session reference
number is passed during the UAMOpen call and all
subsequent calls for a particular session.
Constants and Data Types 11

C H A P T E R 1

User Authentication Module Interface

result On output, an OSStatus reflecting the result of calling
UAMCall with a particular UAM command code. Typical
values are noErr, userCancelledError, afpUserNotAuthErr,
afpPwdTooShortErr, afpPwdExpiredErr, and
afpPwdNeedsChangeErr.

uamInfo On input, a pointer to the buffer (allocated by the AFP
client in the system heap) in which the GetUAMInfo call
(page 1-24) is to store persistent authentication information.
When logging in via the Chooser, the uamInfo field is nil
until the AFP client calls UAMCall with a command of
GetUAMInfo. All other UAM commands should treat this
field as a read-only field. The AFP client is responsible for
disposing of the buffer pointed to by uamInfo.

uamInfoSize On input, the size in bytes of uamInfo. On output, UAMCall
sets uamInfoSize to reflect the current size of uamInfo.

callbacks On input, a pointer to the ClientUAMCallbackRec structure
(page 1-12) for this session.

union If the value of command is kUAMChgPass or kUAMChgPassDlg, on
input,union is a UAMChgPassBlck structure (page 1-13).
If the value of command is kUAMVSDlog, on input,union is a
UAMVSDlogBlk structure (page 1-14).
If the value of command is kUAMLogin, on input.union is a
UAMAuthBlk structure (page 1-14).
If the value of command is kUAMPWDlog, on input,union is a
UAMPWDlogBlk structure (page 1-14).
If the value of command is kUAMOpen, on input,union is a
UAMOpenBlk structure (page 1-15).

ClientUAMCallbackRec Structure 1

The ClientUAMCallbackRec structure is a field in the UAMArgs structure used to
store pointers to callback routines. UAMs written for PowerPC-based
Macintosh computers must use the CallUniversalProc routine to call the UAM
callback routines; UAMs written for 68K -based Macintosh computers jump to
the callback routines as if they were function pointers.
12 Constants and Data Types

C H A P T E R 1

User Authentication Module Interface
struct ClientUAMCallbackRec {
UniversalProcPtr OpenSessionUPP;
UniversalProcPtr SendRequestUPP;
UniversalProcPtr CloseSessionUPP;
UniversalProcPtr GetClientInfoUPP;
UniversalProcPtr SetMicUPP;
UniversalProcPtr EventProcUPP;

};

Field descriptions
OpenSessionUPP A pointer to an AFP client’s OpenSession callback routine

(page 1-26).
SendRequestUPP A pointer to an AFP client’s SendRequest callback routine

(page 1-27).
CloseSessionUPP A pointer to an AFP client’s CloseSession callback routine

(page 1-27).
GetClientInfoUPP A pointer to an AFP client’s GetClientInfo call back routine

(page 1-25).
SetMicUPP A pointer to an AFP client’s SetMic callback routine

(page 1-28).
EventProcUpp A pointer to an AFP client’s EventProc callback routine

(page 1-28).

UAMChgPassBlk Structure 1

The UAMChgPassBlk structure is passed as a field in a UAMArgs structure when the
value of UAMArgs.command is kUAMChgPass or kUAMChgPassDlg.

struct UAMChgPassBlk {
StringPtr userName;
StringPtr oldPass;
StringPtr newPass;

};

Field descriptions
userName On input, a pointer to a string that contains the user name.
oldPass On input, a pointer to a string that contains the password

being changed.
Constants and Data Types 13

C H A P T E R 1

User Authentication Module Interface
newPass On input, a pointer to a string that contains the new
password.

UAMVSDlogBlk Structure 1

The UAMVSDlogBlk structure is passed as a field in a UAMArgs structure when the
value of UAMArgs.command is kUAMVSDlog.

struct UAMVSDlogBlk {
short numVolumes;
VolListElem *volumes;

};

Field descriptions
numVolumes On input, the number of volumes in volumes.
volumes On input, a VolListElem structure (page 1-17) that lists the

volumes the server makes available for mounting.

UAMAuthBlk Structure 1

The UAMAuthBlk structure is passed as a field in a UAMArgs structure when the
value of UAMArgs.command is kUAMLogin.

struct UAMAuthBlk {
StringPtr userName;
UInt8 * password;
OTAddress *srvrAddress;

};

Field descriptions
userName On input, a pointer to a 64-byte Pascal string that contains

the name of the user who is to be authenticated.
password On input, a pointer to a 64-byte value that contains the

user’s password.
OTAddress On input, a pointer to an OTAddress that contains the

address of the server.
14 Constants and Data Types

C H A P T E R 1

User Authentication Module Interface
UAMPWDlogBlk Structure 1

The UAMPWDlogBlk structure is passed as a field in a UAMArgs structure when the
value of UAMArgs.command is kUAMPWDlog.

struct UAMPWDlogBlk{
StringPtr userName;
UInt8 * password;

};

Field descriptions
userName A pointer to a 64-byte Pascal string that contains the name

of the user who is to be authenticated.
password A pointer to a 64-byte vale that contains the password.

UAMOpenBlk Structure 1

The UAMOpenBlk structure is passed as a parameter to UAMCall when UAMCall is
called with a command code of UAMOpen.

struct UAMOpenBlk {
StringPtr objectName;
StringPtr zoneName;
OTAddress *srvrAddress;
SrvrInfoBuffer *srvrInfo;

};

Field descriptions
objectName On input, the name of the server that is to be opened.
zoneName On input, the name of the zone in which the server, or nil if

there is no zone.
srvrAddress On input, the Open Transport address of the server.
srvrInfo On input, information returned by calling GetStatus.

ClientInfo Structure 1

The ClientInfo structure is used to return information about the AFP client to
the UAM.
Constants and Data Types 15

C H A P T E R 1

User Authentication Module Interface
struct ClientInfo {
short fInfoType;
StringPtr fDefaultUserName;

};

Field descriptions
fInfoType On input, the type of client information. The value of

fInfoType must be one of the following values:
enum {
 kAFPClientInfo = 0, // Information about the client
of
 // an AFP server
 kPrClientInfo = 1 // Reserved.
};

fDefaultUserName On input, a pointer to a string that contains the default user
name.

AFPClientInfo Structure 1

The AFPClientInfo structure is used to return information about the version of
AFP that an AFP client supports.

struct AFPClientInfo {
short fInfoType;
StringPtr fDefaultUserName;
short fConfigFlags;
short fVersion;
short fNumAFPVersions;
char **fAFPVersionStrs;

};

Field descriptions
fInfoType On input, the type of client information. For an

AFPClientInfo structure, the value of fInfoType must be
kAFPClientInfo.

fDefaultUserName On input, a pointer to a string that contains the default user
name.

fConfigFlags On input, the high 16 bits of the 'afps' Gestalt response.
fVersion On input, the low 16 bits of the 'afps' Gestalt response.
16 Constants and Data Types

C H A P T E R 1

User Authentication Module Interface
fNumAFPVersions On input, the number of AFP versions that this client
supports.

fAFPVersionStrs On input, a handle to an array of strings, each of which
describes a version of AFP that this client supports.

VolListElem Structure 1

The VolListElem structure is used in the UAMVSDlogBlk structure (page 1-17) to
store status information about volumes.

struct VolListElem {
byte flags;
Str32 volName;

};

Field descriptions
flags A bit field (obtained by calling GetSrvrParms) whose values

are interpreted by the following enumeration:

enum {
kMountFlag = 0, // On output, the UAM sets this bit to

// indicate that this volume is to be mounted
kAlreadyMounted = 1, // On input, a bit telling the UAM that this

// volume is currently mounted
kHasVolPw = 7 // On input, a bit telling the UAM that the

// volume has a volume password
};

volName The name of a volume.

UAMMessage Structure 1

The UAMMessage structure is used by the client UAM to pass information back to
the AFP client when the client UAM calls the AFP client’s OpenRequest and
SendRequest callback routines. A UAMMessage structure is also passed as a
parameter to the client UAM’s completion routine.
Constants and Data Types 17

C H A P T E R 1

User Authentication Module Interface
struct UAMMessage {
short commandCode;
short sessionRefNum;
unsigned char *cmdBuffer;
unsigned long cmdBufferSize;
unsigned char *replyBuffer;
unsigned long replyBufferSize;
CompletionPtr *completion;
void *contextPtr;

};
typedef struct UAMMessage UAMMessage, *UAMMessagePtr;

Field descriptions
commandCode A command code. The value of commandCode must be one of

the following:
enum {
 kOpenSession = 'UAOS'
 kSendRequest = 'UASR'
};

sessionRefNum The session reference number for this session, returned
when the value of commandCode is kOpenSession and passed
back in subsequent messages sent via the OpenSession
callback.

cmdBuffer A pointer to a buffer containing an AFP command, such as
afpLogin or afpContLogin, and the command parameters for
that command. For a complete list of AFP commands, see
Inside Macintosh: Networking.

cmdBufferSize The length of the command in cmdBuffer.
replyBuffer A pointer to a buffer that is used to return a reply.
replyBufferSize The length of the reply in replyBuffer.
completion A pointer to a completion routine.
contextPtr A pointer to a value that identifies this session. If

contextPtr is not nil, it is passed to a completion routine
when completion routine is called.
18 Constants and Data Types

C H A P T E R 1

User Authentication Module Interface
Client UAM Routines 1

UAMCall Routine 1

Send a command to a server UAM.

pascal OSErr UAMCall(UAMArgs *);

UAMArgs A UAMArgs structure whose fields define the command type and
provide the information required to complete the call
successfully.

If a fatal error occurs for which a client UAM puts up a dialog box, the client
UAM should return userCancelledErr to back out of the UAM call.

DISCUSSION

If you are implementing a client UAM, you must implement a UAMCall routine.
The AFP client must call UAMCall from it’s main event loop so the client UAM
can make A5-dependent calls, such as calls to QuickDraw and the Resource
Manager.

Table 1-1 shows the typical sequence of commands for three scenarios:
Client UAM Routines 19

C H A P T E R 1

User Authentication Module Interface
Table 1-1 Typcial client UAM command sequence

1This sequence is typical of any program that calls PBVolumeMount specifying the protocol name of the UAM
as a parameter.
2Optional commands.

As noted in Table 1-1, some client UAM commands are optional. The value
returned to the AFP client by your UAM’s UAMOpen entry point indicates the
optional commands that your UAM supports and determines whether the AFP
client will call any optional commands supported by your UAM. The
mechanism for indicating support for optional commands is described in the
section “UAMOpen Command” (page 20).

UAMOpen Command 1

Your UAM’s UAMCall routine is called with a command of UAMOpen after the
AppleShare client loads the clietn UAM’s code resource. The object name, object
zone (if available), Open Transport address, and the server information are
passed in. If the connection is already established the sessionRefNum field is
filled in; otherwise the value of the sessionRefNum field is 0.

Your UAM must return a 32-bit value named configInfo, which the AFP client
interprets as an OSStatus if its value is less than zero. Otherwise, set the bits in

Chooser login Chooser already connected Alias resolution 1

1. UAMOpen 1. UAMOpen 1. UAMOpen
1a. UAMPWDlog2 1a. UAMChgPassDlg2 1a. UAMPWDlog2

2. UAMLogin 1b. UAMChgPass2 2. UAMLogin
2a. UAMChgPassDlg2 1c. UAMVSDlog2 2a. UAMChgPassDlg2

2b. UAMChgPass2 1d. UAMGetInfoSize2 2b. UAMChgPass2

2c. UAMVSDlog2 1e. UAMGetInfo2 2c. UAMGetInfoSize2

2d. UAMGetInfoSize2 2. UAMClose 2d. UAMGetInfo2

2e. UAMGetInfo2 3. UAMClose
3. UAMClose
20 Client UAM Routines

C H A P T E R 1

User Authentication Module Interface
configInfo as described in Table 1-2 to indicate the UAM commands that your
UAM supports.

Note
If your UAM does not return information in the UAMInfo
field of the UAMArgs structure, the UAMInfo pointer is nil and
the AFP client cannot call your UAMCall routine with a
command of UAMGetInfo or UAMGetInfoSize, ◆

UAMPWDlog Command 1

When your UAM’s UAMCall routine is called with a command of UAMPWDlog, you
should display the standard password dialog box for obtaining the user’s name
and password. A UAMPWDlogBlk structure is used to store the user’s name and
password.

If you already have enough information to authenticate the user, you don’t
need to display the dialog box.

Table 1-2 Bit values of configInfo

Bit Meaning

0 Your UAM provides its own password dialog box

1 Your UAM provides its own volume selection dialog box.

2 Your UAM supports change password

3 Your UAM provides its own change password dialog box

4 Your UAM returns information in the UAMInfo field of the UAMArgs
structure. Please see the note that follows.

5 Reserved and must not be set.

6 Reserved and must not be set.

7 Reserved and must not be set.
Client UAM Routines 21

C H A P T E R 1

User Authentication Module Interface
Note
Your UAM’s UAMCall routine is called with a command of
UAMPWDlog only if bit 0 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

UAMLogin Command 1

Your UAM’s UAMCall routine is called with a command of UAMLogin to connect to
the server. The values of the userName and password fields of the UAMAuthBlk
structure are the same as the userName and password fields of the UAMPWDlogBlk
structure.

Note
Before your UAM’s UAMLogin routine returns, it must store
the session reference number for the session in the
sessionRefNum field of the UAMArgs structure. ◆

UAMChgPassDlg Command 1

Your UAM’s UAMCall routine is called with a command of UAMChgPassDlg when
the user clicks the Change Password button in the standard password dialog
box or in the “Already connected” dialog box.

Note
Your UAM’s UAMCall routine is called with a command of
UAMChgPassDlg only if bit 3 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

If you implement UAMChgPassDlg, you should also implement UAMChgPass.

UAMChgPass Command 1

Your UAM’s UAMCall routine is called with a command of UAMChgPass after
calling UAMCall with a command of UAMChgPassDlg to change the password.
22 Client UAM Routines

C H A P T E R 1

User Authentication Module Interface
Note
Your UAM’s UAMCall routine is called with a command of
UAMChgPass only if bit 2 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

UAMVSDlog Command 1

Your UAM’s UAMCall routine is called with a command of UAMVSDlog to display
the volume selection list. The list does not contain volumes that are already
mounted from this server. The bits in the volume flags byte are set from the
GetSrvrParms reply. To specify that a volume should be mounted, the kMountFlag
bit in the volume flags must be set.

Note
Your UAM’s UAMCall routine is called with a command of
UAMVSDlog only if bit 1 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

Under certain circumstances, the UAMVSDlog is not used, such as when
Navigation Services builds a volume list. Do not depend on UAMVSDlog being
used for every volume mount.

UAMGetInfoSize Command 1

After a successful call to UAMCall with a command of UAMLogin, your UAM’s
UAMCall routine is called with a command of UAMGetInfoSize to obtain the size of
the persisitent authentication information for this session.

Your implementation of the UAMGetInfoSize command should store the size in
bytes of the persisent authentication information in the uamInfoSize field of the
UAMArgs structure.

Note
Your UAM’s UAMCall routine is called with a command of
UAMGetInfoSize only if bit 4 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆
Client UAM Routines 23

C H A P T E R 1

User Authentication Module Interface
UAMGetInfo Command 1

Your UAM’s UAMCall routine is called with a command of UAMGetInfo to get
persistent authentication information.

Note
Your UAM’s UAMCall routine is called with a command of
UAMGetInfo only if bit 4 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

Before the AFP client calls UAMCall with a command of UAMGetInfo, it calls
UAMCall with a command of UAMGetInfoSize to get the size of the persistent
authentication information. Then the AFP client allocates a buffer of the
appropriate size in the system heap and sets UAMArgs.uamInfo to point to it.

Your implementation of the UAMGetInfo command should copy the persistent
authentication information into the buffer pointed to by UAMArgs.uamInfo. The
UAM info is part of the VolMountInfoBlk returned by the GetVolMountInfo call
and passed as a parameter to the PBMountVol call.

When the client UAM is called by code that implements the PBVolumeMount call,
UAMArgs.uamInfo points to the UAMInfo field in the VolMountInfoBlock (if that
field is present).

In the case of the PBVolumeMount call or when the AFP client already has a
connection to the server, UAMArgs.uamInfo points to a buffer that is of the size
returned by GetVolInfoSize.

Note
Your implementation of the UAMGetInfo command should
only copy persistent authentication information—it should
not copy volume information. ◆

The persistent authentication information returned by the client UAM is
read-only and should not be changed. Its persists until the AFP client calls the
client UAM’s UAMClose command.

The AFP client is responsible for disposing of the buffer that it allocated for
storing persistent authentication information.
24 Client UAM Routines

C H A P T E R 1

User Authentication Module Interface
UAMClose Command 1

Your UAM’s UAMCall routine is called with a command of UAMClose to close the
UAM. Your UAM should deallocate any memory that it has allocated and
unload any shared libraries that it may have loaded.

Callback Routines 1

Client UAMs use callback routines to communicate with an AFP client. The
AppleShare Client 3.7 makes available the callback routines described in this
section.

EventProc Callback 1

Passes an event record to an AFP client.

(void EventCallbackPtr) (EventRecord *theEvent);

DISCUSSION

The EventProc callback routine passes an event record to the AFP client. The
client UAM should call the EventProc callback whenever it receives an event
record for an event that does not belong to the client UAM.

GetClientInfo Callback 1

Returns information about an AFP client.

pascal ClientInfo *GetClientInfo(short infoType);

infoType A value the defines the type of information that is being
requested. The value of infoType must be one of the following:

enum {
 kAFPClientInfo = 0, // Information about the client of
 // an AFP server
 kPrClientInfo = 1 // Reserved
};
Callback Routines 25

C H A P T E R 1

User Authentication Module Interface
DISCUSSION

The GetClientInfo callback routine returns information about an AFP client,
such as the versions of AFP that it supports, Gestalt values, and the default user
name. If the AFP client does not support the UAMInfo type, GetClientInfo
returns nil.

OpenSession Callback 1

Opens a session at the specified address.

pascal OSStatus OpenSession(OTAddress *,
const char* endpointString,
UAMMessagePtr message);

OTAddress Address of the server.

endpointString
The endpoint string for the connection. To specify the default
endpoint string, set endpointString to nil. The endpoint string
provides a way to specify streams configuration information on
a per-connection basis. It is only used for TCP/IP connections
and is ignored for AppleTalk connections.

message Pointer to a UAMMessage structure (page 1-17).

DISCUSSION

The OpenSession callback routine opens a session at the address specified by
OTAddress. The value of the commandCode field in the UAMMessage structure must
be kOpenRequest. The session reference number for the opened session is
returned in the sessionRefNum the UAMMessage structure.

For sessions over AppleTalk, the size of cmdBuffer is limited to kMaxAFPCommand
(576 bytes), cmdBuffer must be afplogin , and the endpointString parameter is
ignored.

For synchronous operation, set the completion and contextPtr fields of the
UAMMessage structure to nil. For asynchronous operation, set the completion
field of the UAMMessage structure to point to your completion routine and set the
contextPtr field to a value that identifies this request.
26 Callback Routines

C H A P T E R 1

User Authentication Module Interface
SendRequest Callback 1

Sends a message to a server.

pascal OSStatus SendRequest(UAMMessagePtr message);

message Pointer to a UAMMessage structure (page 1-17).

DISCUSSION

The SendRequest callback routine sends a command to the server. The value of
UAMMessage.commandCode must be kSendRequest.

For AFP connections, the size of cmdBuffer is limited to kMaxAFPCommand (576
bytes) and cmdBuffer must contain an AFP command.

For synchronous operation, set UAMMessage.completion and
UAMMessage.contextPtr to nil. For asynchronous operation, set
UAMMessage.completion to point to your completion routine and set
UAMMessage.contextPtr to a value that identifies this request.

The value of UAMMessage.sessionRefNum is the session reference number
returned by previously calling the AFP client’s OpenSession callback routine.

CloseSession Callback 1

Closes a session with an AFP server.

pascal OSStatus CloseSession(short sessRefNum);

sessRefNum Identifies the session that is to be closed.

DISCUSSION

The CloseSession callback routine closes a session with an AFP server.
Callback Routines 27

C H A P T E R 1

User Authentication Module Interface
SetMic Callback 1

Sets the message integrity code key.

pascal OSStatus SetMic(short sizeInBytes,
Ptr micValue);

sizeInBytes The size of micValue.

micValue The message integrity code key.

DISCUSSION

If the connection supports using keyed HMAC-SHA1 for message integrity, the
client UAM can pass a key to the network layer using this call.

Note
This callback is still in development.

Completion Routine 1

This completion routine is called at interrupt time with the contextPtr passed in
to the OpenSession and SendRequest calls, when one of these calls completes. The
result parameter contains the AFP result. You cannot call any of the callback
routines from this completion routine, so you can’t do chained completion
routines.

typedef pascal void (*CompletionPtr)(
UAMMessagePtr message,
void* contextPtr,
OSStatus result);

CompletionPtr A pointer to the completion routine.

message A pointer to a UAMMessage structure.

contextPtr A value returned by the previous execution of the AFP client’s
OpenSession or SendRequest callback routine.
28 Completion Routine

C H A P T E R 1

User Authentication Module Interface
result An AFP result code indicating the status of the completion
routine. See the AppleTalk Filing Protocol document in the
AppleShare IP 6.0 Developer’s Kit for the list of result codes.

Resources 1

For system software versions 7 and 8, a client UAM is a safe fat code resource
that allows for 68k and PowerPC UAM implementations.

The 'uamg' Resource 1

All UAM files have a 'uamg' resource whose ID is 0. The 'uamg' resource is the
UAM Info resource and it contains the following information:

type 'uamg'
{

integer VersionNumber;
integer UAMClass;
integer PasswordLength;
byte PassDlogFlag;
byte VolDlogFlag;
byte UAMType;
byte UReserved;

};

Field descriptions
VersionNumber Denotes the version of the UAM API that this UAM

conforms to. For version 2.0 of the AFP client UAM
interface, VersionNumber must be 2.

UAMClass Denotes the class of the UAM. The value of UAMClass must
be one of the following values:
0 indicates that this UAM uses Apple Computer’s current
UAM support, which consists of no user authentication,
cleartext password, random number exchange, and
two-way random number exchange. They cannot be
replaced.
Resources 29

C H A P T E R 1

User Authentication Module Interface
1 indicates that this class supports cleartext passwords
longer than 8 characters. If you use this class, you don’t
need a 'uamc' resource because support for this class is
built into the client—you only need to implement a
server-side UAM.
2 indicates that this class supports encrypted passwords
longer than 8 characters. If you use this class, you don’t
need a 'uamc' resource because support for this class is
built into the client—you only need to implement a
server-side UAM.
3 indicates that this UAM uses a UAM-defined
authentication method. Use this class if you want to
provide your own user interface and write code that
handles the login sequence. Code that implements class 3
UAMs is stored as packed ' uamc' ID 0 resource.

PasswordLength Specifies the maximum password length that the UAM
supports. The value of PasswordLength can be from 0 to 64.

PassDlogFlag Obsolete. Replaced by the configInfo flags returned by
UAMOpen (page 1-20).

VolDlogFlag Obsolete. Replaced by the configInfo flags returned by
UAMOpen (page 1-20).

UAMType A user-defined ID in the range of 128 to 255. It is returned
by the GetVolParams call as well as other calls. The AFP
client does not depend on the value of UAMType to identify a
particular UAM; instead, the AFP client uses a UAM’s
protocol name, as described in “The 'uamn' Resource”
(page 30), to distinguish one UAM from another.

UReserved Reserved. The value of UReserved is always zero.

The ' uamc' Resource 1

Class 3 UAMs store the code that implements their user interface and logon
handling sequence in a packed ' uamc' resource whose ID is 0.

The ' uamn' Resource 1

The 'uamn' resource is used to store strings.
30 Resources

C H A P T E R 1

User Authentication Module Interface
type 'uamn' as 'STR '; // UAM string resources
resource 'uamn' (0, "UAM name") // Name shown in UAM select dialog
{

"Type 2 Class 3 UAM"
};

resource 'uamn' (1, "AFP UAM name") // Protocol name of UAM
{

"Cleartxt Passwrd"
};

resource 'uamn' (2, "UAM Description string") // Description shown in
// password dialog

{
"(Sample UAM)"

};

Sample UAM Client 1

The sample code shown in Listing 3-1 opens a session with an AFP server and
logs the user on.

Listing 1-1 Sample client UAM

#include <Types.h>
#include "ClientUAM.h"
#include <String.h>
#include <Resources.h>
#include <A4Stuff.h>
#include "SampleUAM.h"
#include "AFPPackets.h"

enum {
kSampleCfg = (1 << kUseVolDlog),// The value returned by UAMOpen

};
Sample UAM Client 31

C H A P T E R 1

User Authentication Module Interface
Boolean FindStringInBuf(StringPtr,Ptr,UInt32);
long SampleOpen(UAMArgs *theArgs);
OSStatusSampleLogin(UAMArgs *theArgs);

unsigned char commandBuffer[200];
unsigned char replyBuffer[512];
StringPtr gAFPVersion;

StringPtr FigureAFPVersion(AFPSrvrInfo *,ClientUAMCallbackRec *theCallbacks);

pascal OSErr main(UAMArgs *theArgs)
{

EnterCodeResource();
OSErr error;
switch(theArgs->command)
{

case UAMOpen:
error = SampleOpen(theArgs);
break;

case kUAMPWDlog:
error = kNotForUs;
break;

case kUAMLogin:
error = SampleLogin(theArgs);
break;

case kUAMVSDlog:
DebugStr("\pPut up a Volume Select dialog");
error = noErr;
break;

case kUAMChgPassDlg:
error = kNotForUs;
break;

case kUAMChgPass:
error = kNotForUs;
break;
32 Sample UAM Client

C H A P T E R 1

User Authentication Module Interface
case kUAMGetInfoSize:
error = kNotForUs;
break;

case kUAMGetInfo:
error = kNotForUs;
break;

case kUAMClose:
error = NoErr;
break;

default:
error = kNotForUs;
break;

}

ExitCodeResource();
return error;

}

longSampleOpen(UAMArgs *theArgs)
{

gAFPVersion = FigureAFPVersion(theArgs->Opt.open.srvrInfo,theArgs->callbacks);
theArgs->result = kSampleCfg;
return noErr;

}

OSStatus SampleLogin(UAMArgs *theArgs){
OSStatus theError = kUAMError
Ptr cmd;
unsigned long cmdSize;
Handle theUAMName;
UAMMessag message;
StringPtr user = theArgs->Opt.auth.userName;
StringPtr password = theArgs->Opt.auth.password;
Sample UAM Client 33

C H A P T E R 1

User Authentication Module Interface
if(!gAFPVersion){
// Put up an alert and return userCanceled error
DebugStr("\pno AFP version");
return userCanceledErr;

}

if(theArgs->callbacks)
{

commandBuffer[0] = kFPLogin;
cmd = (Ptr) &commandBuffer[1];
memcpy(cmd,(const char *)&gAFPVersion[0],gAFPVersion[0]+1);
cmd += gAFPVersion[0] + 1;

// Get the UAMString from the resource
theUAMName = Get1Resource(kUAMStr,kUAMProtoName);
if(!theUAMName)

return ResError();// Depends on ResLoad being TRUE

// Put the UAMString into the command buffer
HLock(theUAMName);
memcpy(cmd,(const char *)&((*theUAMName)[0]),(*theUAMName)[0]+1);
cmd += (*theUAMName)[0]+1;
HUnlock(theUAMName);
ReleaseResource(theUAMName);

// Copy in the username
memcpy(cmd,(const char *)&user[0],user[0]+1);
cmd += user[0]+1;

// Test for an odd boundary
if(((UInt32)cmd - (UInt32)commandBuffer) & 0x01)
{

*cmd++ = 0x00;// If an odd boundary, put in some padding
}

// Copy in the password (a maximum of 8 bytes)
memcpy(cmd,(const char *)&password[0],8);
cmd += 8;

// Get the size of the command buffer
cmdSize = (unsigned long)((unsigned long)cmd - (unsigned long)commandBuffer);
34 Sample UAM Client

C H A P T E R 1

User Authentication Module Interface
message.commandCode = kOpenSession;
message.cmdBuffer = commandBuffer;
message.cmdBufferSize = cmdSize;
message.replyBuffer = nil;
message.replyBufferSize = 0;
message.completion = nil;
message.contextPtr = nil;

//Make the login call.);

theError =
theArgs->callbacks->OpenSessionUPP(theArgs->Opt.auth.srvrAddress,nil,&message);
if(!theError){

theArgs->sessionRefNum = message.sessionRefNum;
}
theError = message.result;

}
return theError;

}

StringPtr FigureAFPVersion(AFPSrvrInfo *info,ClientUAMCallbackRec *callbacks);
{

struct AFPClientInfo *theClientInfo = nil;
short index;
Ptr versBuf;
UInt32 versBufsize;
GetClientInfoPtr *fcn;

callbacks->GetClientInfoUPP(kAFPClientInfo,(ClientInfo **)&theClientInfo);

if(theClientInfo){
// Go through the list of supported AFP versions and try to find them
// in the SrvrInfoBuffer. The first match is accepted,

versBuf = (Ptr)((UInt32)info + info->fVerCountOffset+1);
versBufsize = kMaxAFPCommand - info->fVerCountOffset;// The largest size

for(index = 0; index < theClientInfo->fNumAFPVersions; index++){
if(FindStringInBuf

(theClientInfo->fAFPVersionStrs[index],versBuf,versBufsize)){
Sample UAM Client 35

C H A P T E R 1

User Authentication Module Interface
return theClientInfo->fAFPVersionStrs[index];
}

}
}
return nil;

}

Boolean FindStringInBuf(StringPtr string, Ptr buf, UInt32 bufSize)
{

Ptr end = buf + bufSize;
Byte len = string[0] + 1;
short index;

while((buf < end) && (*buf++ != string[0])) ; // Scan for the proper length.

if(!(buf < end)){
return false;

}
for(index = 1; (index < len) && (buf > end); index++){

if(*buf++ != string[index])
return false;

}

if(!(buf < end)){
return false;

}
return true;

}

36 Sample UAM Client

Index
A, B

actions for invoking UAM 9
AFPClientInfo structure 16

C, D

callback routines
CloseSession 27
EventProc 25
GetClientInfo 25–26
OpenSession 26
SendRequest 27
SetMic 28

ClientInfo structure 15–16
ClientUAMCallbackRec structure 12–13
CloseSession callback 27
commands
UAMChgDlog 9
UAMChgPass 9, 10, 22
UAMChgPassDlg 22
UAMClose 9, 25
UAMGetInfo 10, 24
UAMGetInfoSize 23
UAMLogin 9, 22
UAMOpen 9, 20
UAMPWDlog 9, 21
UAMVSDlog 9, 23

completion routine 28–29

E, F

EventProc callback 25

G–N

GetClientInfo callback 10, 25, 26

O

OpenSession callback 10, 26

P, Q

PBVolumeMount call 9

R

resources
'uamc' 30
'uamg' 29–30
'uamn' 30

routines
completion 28–29
UAMCall 19–20

S, T

sample code 31–36
SendRequest callback 27
SetMic callback 28
37

I N D E X
structures
AFPClientInfo 16
ClientInfo 15–16
ClientUAMCallbackRec 12–13
UAMArgs 10–12
UAMAuthBlk 14
UAMChgPassBlk 13
UAMMessage 17–18
UAMOpenBlk 15
UAMPWDlogBlk 15
UAMVSDlogBlk 14
VolListElem 17

U

UAMArgs structure 10–12
UAMAuthBlk structure 14
UAMCallroutine 19–20
UAMChgDlog command 9
UAMChgPassBlk structure 13
UAMChgPass command 9, 10, 22
UAMChgPassDlg command 22
UAMClose command 9, 25
'uamc' resource 30
UAMGetInfo command 10, 24
UAMGetInfoSize command 23
'uamg' resource 29–30
UAMLogin command 9, 22
UAMMessage structure 17–18
'uamn' resource 30
UAMOpenBlk structure 15
UAMOpen command 9, 20
UAMPWDlogBlk structure 15
UAMPWDlog command 9, 21
UAMs

invoking 9
optional commands 9
required commands 9

UAMVSDlogBlk structure 14
UAMVSDlog command 9, 23

V–Z

VolListElem structure 17
38

	User Authentication Modules
	Contents
	Tables and Listings
	About This Manual
	Conventions Used in This Manual
	For more information

	User Authentication Module Interface
	Constants and Data Types
	UAMArgs Structure
	ClientUAMCallbackRec Structure
	UAMChgPassBlk Structure
	UAMVSDlogBlk Structure
	UAMAuthBlk Structure
	UAMPWDlogBlk Structure
	UAMOpenBlk Structure
	ClientInfo Structure
	AFPClientInfo Structure
	VolListElem Structure
	UAMMessage Structure

	Client UAM Routines
	UAMCall Routine
	UAMOpen Command
	UAMPWDlog Command
	UAMLogin Command
	UAMChgPassDlg Command
	UAMChgPass Command
	UAMVSDlog Command
	UAMGetInfoSize Command
	UAMGetInfo Command
	UAMClose Command

	Callback Routines
	EventProc Callback
	GetClientInfo Callback
	OpenSession Callback
	SendRequest Callback
	CloseSession Callback
	SetMic Callback

	Completion Routine
	Resources
	The 'uamg' Resource
	The 'uamc' Resource
	The 'uamn' Resource

	Sample UAM Client

	Index

