



2/19/98
Technical Publications
© Apple Computer, Inc. 1998



Additions to the Apple
Information Access Toolkit

Release notes for AIAT 1.1

2/19/98



 Apple Computer, Inc.



Apple Computer, Inc.
© 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the ÒkeyboardÓ Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 InÞnite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac,
MacinTalk, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD ÒAS
IS,Ó AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modiÞcation,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you speciÞc legal rights,
and you may also have other rights
which vary from state to state.

Contents

Preface About This Document 7

WhatÕs In This Document 7
Conventions Used in This Document 8

Special Fonts 8
Command Syntax 8
Types of Notes 8

Chapter 1 Document Summarization 9

Document Summaries 13
Extent Parsers 14
The Document Abstractor 14
Presenting the Summary 17
The IADocumentAbstractor Class 19

Description 20
Public Methods 20

The IAExtentParser Class 23
Description 23
Public Methods 24
Protected Method 33

The IAANSISentenceParser Class 34
Description 34
Public Methods 34
Protected Method 36

The IAExtentCorpus Class 37
Description 37
Public Methods 37

The IAExtentDoc Class 39
Description 39
Public Methods 39
3
2/19/98  Apple Computer, Inc.

Chapter 2 Document Routing 47

Clusters 49
The Document Router 49
The IARouter Class 53

Description 54
Public Methods 54
Protected Methods 58

The IACluster Class 60
Description 60
Public Methods 60
Protected Method 62

The HFSCluster Class 62
Description 62
Public Methods 62

Chapter 3 Additions and Changes to Existing Classes 65

Additional Information About the IAMutex Class 67
Creating a Subclass of IAMutex 67
Registering Your Mutex With the IAT 69

The TWVector Class 70
Description 70
Public Methods 70

The IAStruct Class 76
Description 76
Public Method 76

The IAAccessor Class 77
Description 77
Public Methods 77

The HFSIterator Class 78
Description 79
Public Methods 79

The HFSTextFolderCorpus Class 80
Description 80
Public Methods 80
4
2/19/98  Apple Computer, Inc.

Glossary 85

Index 87
5
2/19/98  Apple Computer, Inc.

6
2/19/98  Apple Computer, Inc.

P R E F A C E

About This Document

This document describes additions to the Apple Information Access Toolkit
(IAT) since version 1.0. These additions include new or modiÞed methods in
existing IAT classes, as well as new classes to do the following:

■ Isolate a subset of the document for use as a document summary.

■ Specify arbitrary document categories and route (sort) documents among
them.

This document assumes that you have read the Apple Information Access Toolkit
v.1.0 ProgrammerÕs Guide and are familiar with the various components of the
IAT and the terminology used in data searching and information retrieval.

In addition, you should be familiar with C++ and object-oriented programming.

WhatÕs In This Document 0

This document is divided into three chapters:

■ Chapter 1, ÒDocument Summarization,Ódescribes how to summarize a
document using IAT classes.

■ Chapter 2, ÒDocument Routing,Ó describes document routing and how to do
so using IAT classes.

■ Chapter 3, ÒAdditions and Changes to Existing Classes,Ó describes changes
or additions to classes described in the Apple Information Access Toolkit v.1.0
ProgrammerÕs Guide.

A glossary and index are provided at the end of the book as well as an
appendix indicating this documentÕs revision history.
7
2/19/98  Apple Computer, Inc.

P R E F A C E

Conventions Used in This Document 0

This document uses special conventions to present certain types of information.
Words that require special treatment appear in speciÞc fonts or font styles.

Special Fonts 0

All code listings, reserved words, command options, resource types, and the
names of actual libraries are shown in Letter Gothic (this is Letter Gothic).

Command Syntax 0

This document uses the following syntax conventions:

Types of Notes 0

This document uses two types of notes.

Note
A note like this contains information that is useful but that
you do not have to read to understand the main text. ◆

IMPORTANT

A note like this contains information that is crucial to
understanding the main text. ▲

literal Letter Gothic text indicates a word that must appear exactly as
shown.

italics Italics indicate a parameter that you must replace with anything
that matches the parameterÕs deÞnition.
8

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Contents

2/19/98



 Apple Computer, Inc.

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Document Summarization
Document Summaries 9
Extent Parsers 10
The Document Abstractor 10
Presenting the Summary 13
The IADocumentAbstractor Class 15

Description 16
Public Methods 16

IADocumentAbstractor 16
~IADocumentAbstractor 16
Summarize 17
SetAnalysis 17
SetStorage 18
SetParser 18
GetNumberOfExtents 18
GetExtents 18

The IAExtentParser Class 19
Description 19
Public Methods 20

IAExtentParser 20
~IAExtentParser 20
SetBuffer 20
GetBuffer 21
GetBufferLength 21
SetStartOfExtent 21
GetStartOfExtent 22
SetExtentLength 22
GetExtentLength 23
9

C H A P T E R 1

SetStartOfNext 23
GetStartOfNext 24
SetBytesLeft 24
GetBytesLeft 25
SetGroupNumber 25
GetGroupNumber 26
SetOrderNumber 26
GetOrderNumber 27
IsCancelled 27
AreReturnsRemoved 28
GetNextExtent 28

Protected Method 29
GettingNextExtent 29

The IAANSISentenceParser Class 30
Description 30
Public Methods 30

IAANSISentenceParser 30
~IAANSISentenceParser 31
SetRequiredUpper 31
IsRequiredUpper 32

Protected Method 32
GettingNextExtent 32

The IAExtentCorpus Class 33
Description 33
Public Methods 33

IAExtentCorpus 33
~IAExtentCorpus 34
GetProtoDoc 34
GetDocText 34
GetBuffer 35

The IAExtentDoc Class 35
Description 35
Public Methods 35

IAExtentDoc 35
~IAExtentDoc 36
DeepCopy 36
StoreSize 37
Store 37
10 Contents

2/19/98  Apple Computer, Inc.

C H A P T E R 1
Restore 37
LessThan 38
Equal 38
GetText 38
GetLength 39
GetOffset 39
GetExtent 39
SetRank 40
GetRank 40
SetRankedHit 40
GetRankedHit 41
GetExtentNumber 41
GetGroupNumber 41
Contents 11
2/19/98  Apple Computer, Inc.

C H A P T E R 1
12 Contents

2/19/98  Apple Computer, Inc.

C H A P T E R 1
Document Summarization 1

You can use the IAT to provide a brief summary of a document. For example,
when presenting a list of documents as the results of a search, you often want
to include brief descriptions of each one so that the end user can easily
determine which one to choose. This chapter describes the IAT classes and
methods you use to summarize the contents of a given document.

Document Summaries 1

A document summary is a subset of the document that describes its contents.
For example, if a document describes how to build a log cabin using an axe, a
document summary could be a sentence that contains the words Òlog cabin,Ó
ÒaxeÓ and Òconstructing,Ó such as ÒConstructing a log cabin using only your
hands and an axe can be a rewarding experience.Ó You use the IAT to Þnd the
portions of the document that best typiÞes its contents.

To create a document summary, you must Þrst break up the document into an
arbitrary number of portions called text extents, or simply extents. An extent
can be a sentence, or any other grouping of characters (for example, a
paragraph, or even simply a block of 72 characters). Given all the available
extents, the IAT then ranks them in the order that most closely represent the
entire document. You can then use one or more of the most highly ranked
extents to summarize the document.

To create a summary for a given document, you must do the following:

■ Designate an extent parser to divide the document into extents. The type of
extent you wish to use may depend on the type of document.

■ Call the IAT document abstractor with the designated document to receive a
ranked listing of extents.

■ Choose one or more extents to use as the summary.

The following sections describe these steps in more detail.
Document Summaries 13
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
Extent Parsers 1

An extent parser breaks up a document into a group of text extents. The IAT
provides the abstract class IAExtentParser which contains functions you can
use to create an extent parser. Your application can implement an extent parser
by creating a subclass of IAExtentParser and overriding the GettingNextEvent
method. If you want to parse by sentence, you can use the subclass
IAANSISentenceParser included in the IAT instead of writing your own parser.

The Document Abstractor 1

The IAT class IADocumentAbstractor contains methods that let you parse a
document into text extents and then rank them. The higher the ranking, the
more closely the extent resembles the entire document. You can then display
one or more of the highest-ranked extents to summarize the contents of the
document.

Listing 1-1 shows a function that creates a list of ranked extents from a Þle.

Listing 1-1 Breaking up a document into ranked extents

void DemoAbstractor (StringPtr file) {
FSSpec mMacFileSpec;
short mDataForkRefNum;

// Data to use with the abstractor’s Summarize method
uint32 numberOfSentences = 1;
TermIndex* contextIndex = NULL;
clock_t progFrequency = 10000;
void* callerData = NULL;
RankedProgressFn* progressFn = NULL;

// Files used with the EnglishAnalyis object and the sentence parser
char* stopwordFile = "EnglishStopwords";
char* stemDictDoc = "EnglishSubstitutions";
14 Extent Parsers

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
char* abbrevFile = "EnglishAbbreviations";

// Open the file and read into a buffer
// Turn the filename into a Mac OS FSSpec

OSErr iErr = FSMakeFSSpec(0, 0, file, &mMacFileSpec);

// Open file
OSErr err = FSpOpenDF(&mMacFileSpec, fsRdPerm, &mDataForkRefNum);

if (err != noErr) {
return;

}

// Read the file
Handle dataHandle = nil;

long FileLength;
err = GetEOF(mDataForkRefNum, &fileLength);
if (err != noErr) {

return;
}

dataHandle = NewHandle(fileLength + 1);
if (dataHandle == nil) return;

err = SetFPos(mDataForkRefNum, fsFromStart, 0);
if (err != noErr) {

return;
}

HLock(dataHandle);

err = FSRead(mDataForkRefNum, &fileLength, *dataHandle);
if (err != noErr) {

return;
}

// Get pointer to buffer and the buffer length
*((*dataHandle)+fileLength) = '\0';
char* buffer = (char*)(*dataHandle);
uint32 bufferLength = strlen(buffer);

// Create the analysis object to use with the parser
The Document Abstractor 15
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
EnglishAnalysis* myAnalysis = new EnglishAnalysis(stopwordFile,
stemDictDoc);

// Create the storage object
IAStorage* myStorage = MakeHFSStorage(0,0,"\ptemp.index");
IADeleteOnUnwind delStorage(myStorage);

// Designate the extent parser
IAExtentParser* myParser = new IAANSISentenceParser((byte*)buffer,

bufferLength, abbrevFile);

// Create the abstractor and get the extents
IADocumentAbstractor MyAbstractor(myParser, myStorage, myAnalysis);
myAbstractor.Summarize(progressFn, progFrequency, callerData,

numberOfSentences, contextIndex);

// The DumpInformation function uses GetNumberOfSentences
// and GetSentences to get the top ranked sentence

uint32 showThisManySentences = 1;
DumpInformation(myAbstractor, showThisManySentences);

// Cleanup
delete myParser;
HUnlock (dataHandle);

// Close the file

err = FSClose(mDataForkRefNum);

if (err != noErr) {
return;

}
FlushVol(nil, mMacFileSpec.vRefNum);

}

The DemoAbstractor function opens the HFS Þle and reads the contents into a
buffer. It initializes the text parser (myParser) with the buffer and an
abbreviations Þle. The abbreviations Þle EnglishAbbreviations holds
abbreviated words (such as i.e., or e.g.) that would trigger end-of-sentence
conditions if they were not called out.
16 The Document Abstractor

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
After setting up the sentence parser, DemoAbstractor initializes the document
abstractor (myAbstractor), specifying the extent parser, the storage medium,
and the type of analysis to use. This abstractor uses the EnglishAnalysis
subclass of IAAnalysis to analyze the text extents (sentences) and extract the
relevant tokens. The Þlters deÞned in EnglishAnalysis require the text Þles
EnglishSubstitutions and EnglishStopwords for proper operation.

After creating the abstractor, the Summarize function then breaks up the
document into a ranked list of sentence extents. As with many other IAT
components, you can specify a callback during the Summarize call to give time
to your application, if desired. This example has no callback, however, so the
progressFn pointer is set to NULL.

The DemoAbstractor function calls the DumpInformation function, shown in the
next section, to display the highest-ranked sentences.

Presenting the Summary 1

After creating a ranked list of text extents, you can display one or more as the
document summary. The example in Listing 1-1 calls the DumpInformation
method to present the summary. Listing 1-2 shows a possible implementation
for DumpInformation that cycles through the array of ranked sentences and
displays one or more with the highest ranks.

Listing 1-2 Displaying the sentences with the highest rank.

void DumpInformation (const IADocumentAbstractor& abstractor,
uint32 showlevel)

{
uint32 paragraphNumber = 0;
bool firstHasBeenShown = false;
bool showScore = true;
bool showRank = true;
uint32 numberTopWords = 5;
bool showSentences = true;

// Get the number of sentences and the array of pointers to those
// sentences
Presenting the Summary 17
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
uint32 cnt = abstractor.GetNumberOfExtents();
IAExtentDoc** sentences = abstractor.GetExtents();

// Now loop and display the sentences or other information
for(int i=0; i< cnt; i++) {

// Keep looping until you’ve displayed the number of sentences
// requested, or until you run out of sentences.

if(sentences[i] && (sentences[i]->GetRank() < showlevel) &&
(sentences[i]->GetLength() > 0)) {

// Get the sentence from the pointer
IAExtentDoc* doc = sentences[i];

// The sentence parser also groups extents.
// If an extent begins a new group, add a separator.

if(!firstHasBeenShown){
firstHasBeenShown = true;
paragraphNumber = doc->GetGroupNumber();

}

if(doc->GetGroupNumber() > paragraphNumber){
paragraphNumber = doc->GetGroupNumber();
printf ("Paragraph Separator\r\r", 2);

}

// Display the weighted score for the sentence
if(showScore){

printf("(%3.2f) ", doc->GetRankedHit()->GetScore());
}

// Display its rank
if(showRank){

printf("(%d) ", 1 + (int)doc->GetRank());
}

// Display the top-ranked words in the extent
if(numberTopWords >0) {

if(showlevel > 0) {
printf ("[");
}

18 Presenting the Summary

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
uint32 numberToShow = numberTopWords;
if (numberToShow >

doc->GetRankedHit()->GetMatchingTermsLen()) {
numberToShow =

doc->GetRankedHit()->GetMatchingTermsLen();
}

for(int w = 0 ; w< numberToShow; w++) {
printf ("%s ",

doc->GetRankedHit()->GetMatchingTerms()[w]->GetData());
}

if(showlevel >0) {
printf ("]\n");
}

}

// Display the sentence
if(showSentences) {

char* txt = (char*)doc->GetExtent();
printf ("Summary => %s\n", txt);
IAFreeArray(txt);

}
}

}
}

The sections that follow describe the classes and methods used for
summarizing documents using the IAT.

The IADocumentAbstractor Class 1

Ancestors None.

Subclasses None.

Header Þle Abstractor.h
The IADocumentAbstractor Class 19
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
Description 1

The following methods allow you to use the IAT to summarize the contents of
a document.

Public Methods 1

IADocumentAbstractor 1

Constructor for this class.

IADocumentAbstractor (
IAExtentParser* parser,
IAStorage* storage,
IAAnalysis* analysis);

parser A pointer to the parser to use to break up the document into
extents. This parser must instantiated from a subclass of
IAExtentParser.

storage A pointer to the storage instance to use for the summarization.

analysis A pointer to the analysis instance used to rank the extents in the
document.

~IADocumentAbstractor 1

Destructor for this class.

virtual ~IADocumentAbstractor();
20 The IADocumentAbstractor Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
Summarize 1

Summarizes a document as a ranked list of text extents.

virtual void Summarize (
RankedProgressFn* progressFn,
clock_t progFrequency,
void* callerData,
uint32 maxLevel,
TermIndex* contextIndex);

progressFn A pointer to an application-deÞned progress function. If not
NULL, the IAT calls this function periodically to give the client
application control.

progFrequency
The wait time between callbacks, in clock ticks (using the ANSI
clocks_per_sec standard).

callerData A pointer to application-speciÞc data that is passed to the client
application when the callback occurs.

maxLevel The maximum number of extents to include in the summary.

contextIndex A pointer to the context index to use for this summarization.
The context index is used for calculating term scale factors. If
you do not specify a context index, this pointer defaults to NULL.

DISCUSSION

After creating the ranked list of extents, you can use the GetExtents method
(page 22) to retrieve them.

SetAnalysis 1

SpecÞes the analysis instance used to rank the extents.

void SetAnalysis (IAAnalysis* analysis);

analysis A pointer to the analysis object.
The IADocumentAbstractor Class 21
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
SetStorage 1

SpeciÞes the storage instance.

void SetStorage (IAStorage* storage);

storage A pointer to the storage object.

SetParser 1

SpeciÞes the extent parser.

void SetParser (IAExtentParser* parser);

parser A pointer to the extent parser object.

GetNumberOfExtents 1

Returns the number of extents parsed in the document.

uint32 GetNumberOfExtents () const;

DISCUSSION

This method returns the number of text extents. The deÞnition of the extent is
dependent on the extent parser used.

GetExtents 1

Gets the parsed extents that make up the document, in ranked order.

SentenceDoc** GetExtents () const;
22 The IADocumentAbstractor Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
method result A pointer to an array of IAExtentDoc pointers. You can
determine the number of extents in the array by calling the
GetNumberOfExtents method (page 22).

DISCUSSION

This method returns an array of pointers to the parsed text extents. The
deÞnition of the extent is dependent on the extent parser used.

The IAExtentParser Class 1

Ancestors None.

Subclass IAANSISentenceParser

Header Þle Abstractor.h

Description 1

You use this class to create extent parsers to use with document
summarization. Your extent parser must be a subclass of IAExtentParser. If you
want a sentence to be the size of the extent, you can simply use the
IAANSISentenceParser subclass instead of writing your own. See ÒThe
IAANSISentenceParser ClassÓ (page 34) for more information.
The IAExtentParser Class 23
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
Public Methods 1

IAExtentParser 1

Constructor for this class.

IAExtentParser (
byte* buffer,
uint32 bufferLength,
bool removezReturns);

buffer A pointer to a buffer that holds the text to be parsed.

bufferLength The size of the buffer.

removezReturns
If true, the parser removes carriage returns from the parsed
extents. If you do not specify this parameter, the default is to
remove returns.

~IAExtentParser 1

Destructor for this class.

virtual ~IAExtentParser();

SetBuffer 1

Specifes the buffer containing the text to be parsed.

void SetBuffer (
byte* buffer,
uint32 bufferLength);
24 The IAExtentParser Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
buffer A pointer to the buffer containing the text to be parsed.

bufferLength The length of the buffer.

GetBuffer 1

Returns a pointer to the buffer containing the text to be parsed.

byte* GetBuffer ();

method result A pointer to the buffer.

GetBufferLength 1

Returns the length of the buffer containing the text to be parsed.

uint32 GetBufferLength ();

method result The length of the buffer.

SetStartOfExtent 1

Sets the beginning of a text extent.

void SetStartOfExtent (byte* start);

start A pointer to the beginning of a text extent.

DISCUSSION

In most cases, you need to use this method only if you are creating a subclass of
IAExtentParser.
The IAExtentParser Class 25
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
SEE ALSO

The GetStartOfExtent method (page 26).

GetStartOfExtent 1

Returns the beginning of a text extent.

byte* GetStartOfExtent ();

method result A pointer to the beginning of a text extent.

DISCUSSION

In most cases, you need to use this method only if you are creating a subclass of
IAExtentParser.

SEE ALSO

The SetStartOfExtent method (page 25).

SetExtentLength 1

Sets the length of a text extent.

void SetExtentLength (uint32 length);

length The length of a text extent.

DISCUSSION

In most cases, you need to use this method only if you are creating a subclass of
IAExtentParser.
26 The IAExtentParser Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
SEE ALSO

The GetExtentLength method (page 27).

GetExtentLength 1

Returns the length of a text extent.

uint32 GetExtentLength ();

method result The length of the text extent.

DISCUSSION

In most cases, you need to use this method only if you are creating a subclass of
IAExtentParser.

SEE ALSO

The SetExtentLength method (page 26).

SetStartOfNext 1

Sets the beginning of the next extent.

void SetStartOfNext (byte* start);

start A pointer to the beginning of the next extent.

DISCUSSION

If you are creating a subclass of the IAExtentParser class, you may want to use
this method to keep track of the beginning of your own extent (such as a
paragraph).
The IAExtentParser Class 27
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
SEE ALSO

The GetStartOfNext method (page 28).

GetStartOfNext 1

Returns the beginning of the next extent.

byte* GetStartOfNext ();

method result A pointer to the beginning of the next extent.

DISCUSSION

If you are subclassing the IAExtentParser class, you may want to use this
method to keep track of the beginning of your own parser-deÞned extent (such
as a paragraph).

SEE ALSO

The SetStartOfNext method (page 27).

SetBytesLeft 1

Sets the number of bytes left in the buffer.

void SetBytesLeft (uint32 length);

length The number of bytes remaining to be parsed in the buffer.

DISCUSSION

In most cases, you need to use this method only if you are creating a subclass of
IAExtentParser.
28 The IAExtentParser Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
SEE ALSO

The GetBytesLeft method (page 29).

GetBytesLeft 1

Returns the number of bytes left in the buffer.

uint32 GetBytesLeft ();

method result The number of bytes remaining to be parsed in the buffer.

DISCUSSION

In most cases, you need to use this method only if you are creating a subclass of
IAExtentParser.

SEE ALSO

The SetBytesLeft method (page 28).

SetGroupNumber 1

Assigns a group number to a text extent.

void SetGroupNumber (uint32 gNum);

gNum The group number to assign.

DISCUSSION

A group is an arbitrary set of extents. For example, if the extent is a sentence, a
paragraph is a group of extents. An extent contained in the Þfth paragraph of a
document could have a group number of 5.
The IAExtentParser Class 29
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
SEE ALSO

The GetGroupNumber method (page 30).

The SetOrderNumber method (page 30).

GetGroupNumber 1

Returns the group number assigned to an extent.

uint32 GetGroupNumber ();

method result The group number assigned to the extent.

DISCUSSION

A group is an arbitrary set of extents. For example, if the extent is a sentence, a
paragraph is a group of extents. An extent contained in the Þfth paragraph of a
document could have a group number of 5.

SEE ALSO

The SetGroupNumber method (page 29).

The GetOrderNumber method (page 31).

SetOrderNumber 1

Assigns an order number to a text extent.

void SetOrderNumber (uint32 oNum);

oNum The order number to assign.
30 The IAExtentParser Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
DISCUSSION

Extents contained in groups often have order numbers to make tracking them
easier. For example, the third sentence (extent) in a paragraph (group) might
have the order number 3.

SEE ALSO

The GetOrderNumber method (page 31).

The SetGroupNumber method (page 29).

GetOrderNumber 1

Returns the order number assigned to an extent.

uint32 GetOrderNumber ();

method result The order number assigned to the extent.

DISCUSSION

Extents contained in groups often have order numbers to make tracking them
easier. For example, the third sentence (extent) in a paragraph (group) might
have the order number 3.

SEE ALSO

The SetOrderNumber method (page 30).

The GetGroupNumber method (page 30).

IsCancelled 1

Determines whether the parsing process was cancelled.

bool IsCancelled ();
The IAExtentParser Class 31
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
method result True if the parsing process was cancelled by the client.

DISCUSSION

In most cases, you need to use this method only if you are creating a subclass of
IAExtentParser.

AreReturnsRemoved 1

Determines whether carriage returns were removed from the document.

bool AreReturnsRemoved ();

method result True if carriage returns were removed.

DISCUSSION

In most cases, you need to use this method only if you are creating a subclass of
IAExtentParser.

GetNextExtent 1

Returns the next text extent.

virtual IAExtentDoc* GetNextExtent (
RankedProgressFn* progressFn,
clock_t progFrequency,
void* callerData);

progressFn A pointer to an application-deÞned progress function. If not
NULL, the IAT calls this function periodically to give the client
application control.

progFrequency The wait time between callbacks, in clock ticks (using the ANSI
clocks_per_sec standard).
32 The IAExtentParser Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
callerData A pointer to application-speciÞc data that is passed to the client
application when the callback occurs.

method result A pointer to the next parsed extent.

DISCUSSION

This method calls the protected method GettingNextExtent (page 33), which
does the actual work of parsing the next text extent.

Protected Method 1

GettingNextExtent 1

Returns the next text extent.

virtual IAExtentDoc* GettingNextExtent (
RankedProgressFn* progressFn,
clock_t progFrequency,
void* callerData,
bool *endBuffer) = 0;

progressFn A pointer to an application-deÞned progress function. If not
NULL, the IAT calls this function periodically to give the client
application control.

progFrequency The wait time between callbacks, in clock ticks (using the ANSI
clocks_per_sec standard).

callerData A pointer to application-speciÞc data that is passed to the client
application when the callback occurs.

endBuffer If true, the parser has reached the end of the buffer

method result A pointer to the next parsed sentence.
The IAExtentParser Class 33
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
DISCUSSION

This is a pure virtual method that does the actual work for the public method
GetNextExtent (page 32). When implementing your own extent parsers, you
must override this method.

The IAANSISentenceParser Class 1

Ancestor IAExtentParser

Subclasses None.

Header Þle Abstractor.h

Description 1

The IAANSISentenceParser class is a subclass of IAExtentParser that breaks up a
document into text extents that are sentences. To parse other types of extents,
you must write your own extent parser by creating a subclass of
IAExtentParser.

Public Methods 1

IAANSISentenceParser 1

Constructor for this class.

IAANSISentenceParser (
byte* buffer,
uint32 bufferLength,
const char* abbrevFile,
bool removezReturns);

buffer A pointer to the buffer that holds the text to be parsed.
34 The IAANSISentenceParser Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
bufferLength The size of the buffer.

abbrevFile A pointer to a string containing the path to an abbreviations
Þle. This text Þle contains a list of abbreviated words. The
sentence parser assumes that a punctuation mark such as a
period (.) signals the end of a sentence unless the word
containing the mark is contained in this Þle (for example, the
abbreviation e.g. should go in the Þle). In general this path
should point to the Þle EnglishAbbreviations.

removezReturns
If true, the parser removes carriage returns from the parsed
sentences. If you do not specify this parameter, the default is to
remove returns.

~IAANSISentenceParser 1

Destructor for this class.

virtual ~IAANSISentenceParser();

SetRequiredUpper 1

Sets whether a parsed sentence must begin with an upper-case letter.

void SetRequiredUpper (bool value);

value If true, the parser requires a sentence to begin with an
upper-case letter. If you do not specify this parameter, the
default setting is true.

SEE ALSO

The IsRequiredUpper method (page 36).
The IAANSISentenceParser Class 35
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
IsRequiredUpper 1

SpeciÞes whether a parsed sentence is required to start with an upper-case
letter.

bool IsRequiredUpper () const;

method result If true, the parser requires a sentence to begin with an
upper-case letter.

SEE ALSO

The SetRequiredUpper method (page 35).

Protected Method 1

GettingNextExtent 1

Returns the next parsed sentence in the document.

virtual IAExtentDoc* GettingNextExtent (
RankedProgressFn* progressFn,
clock_t progFrequency,
void* callerData,
bool* endBuffer);

progressFn A pointer to an application-deÞned progress function. If not
NULL, the IAT calls this function periodically to give the client
application control.

progFrequency The wait time between callbacks, in clock ticks (using the ANSI
clocks_per_sec standard).

callerData A pointer to application-speciÞc data that is passed to the client
application when the callback occurs.

endBuffer If true on output, the parser has reached the end of the buffer
36 The IAANSISentenceParser Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
method result A pointer to the next parsed sentence.

DISCUSSION

This method is called by the public method GetNextExtent (page 32).

The IAExtentCorpus Class 1

Ancestor IACorpus

Subclasses None.

Header Þle Abstractor.h

Description 1

The IAExtentCorpus class is a subclass of IACorpus that represents a set of
strings in memory (such as a collection of text extents). The actual body of the
strings is maintained in a buffer managed by the client. For more information
about corpus classes, see Chapter 8, ÒCorpus Category,Ó in the Apple
Information Access Toolkit v.1.0 ProgrammerÕs Guide.

Public Methods 1

IAExtentCorpus 1

Constructor for this class.

IAExtentCorpus (uint32 corpType);

IAExtentCorpus (byte* buffer, uint32 corpType);
The IAExtentCorpus Class 37
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
buffer A pointer to the buffer holding the text associated with this
corpus.

corpType An integer specifying the type of extents this corpus handles. If
you do not specify this parameter, the default corpus type is
ExtentCorpusType.

~IAExtentCorpus 1

Destructor for this class.

virtual ~IAExtentCorpus();

GetProtoDoc 1

Tells the index the type of documents this corpus represents.

IADoc* GetProtoDoc ();

method result A pointer to a new instance of the document type (for example,
an instance of IAExtentDoc).

GetDocText 1

Retrieves the text associated with an extent.

IADocText* GetDocText (const IADoc* doc);

doc The extent whose text you want to retrieve.

method result A pointer to the extent text.
38 The IAExtentCorpus Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
GetBuffer 1

Retrieves the buffer associated with the corpus.

byte* GetBuffer ();

method result A pointer to the buffer.

The IAExtentDoc Class 1

Ancestor IADoc

Subclasses None.

Header Þle Abstractor.h

Description 1

The IAExtentDoc class is a subclass of IADoc that represents a text extent in a
corpus represented by IAExtentCorpus. See ÒThe IAExtentCorpus ClassÓ
(page 37) for more information about IAExtentCorpus.

Public Methods 1

IAExtentDoc 1

Constructor for this class.

IAExtentDoc (
const byte* buffer,
uint32 offset,
uint32 textLength,
uint32 extentNumber,
The IAExtentDoc Class 39
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
uint32 groupNumber,
uint32 rank,
RankedHit* rankHitVal);

buffer
A pointer to the buffer containing the text extent.

offset The offset of the text extent in the buffer, in bytes.

textLength The length of the text extent, in bytes.

extentNumber
The extent number assigned to the extent.

groupNumber
The group number assigned to the extent.

rank The rank assigned to the extent. If you do not specify this
parameter, the default rank is 0.

rankHitVal The ranked hit value assigned to the extent. If you do not
specify this parameter, the default ranked hit value is NULL.

SEE AlSO

ÒThe IADocumentAbstractor ClassÓ (page 19).

ÒThe IAExtentParser ClassÓ (page 23).

~IAExtentDoc 1

Destructor for this class.

virtual ~IAExtentDoc();

DeepCopy 1

Creates a deep copy of the extent.

IAStorable* DeepCopy () const;
40 The IAExtentDoc Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
method result Apointer to the copy of the extent.

DISCUSSION

Calling DeepCopy creates a copy of the extent as well as copies of any objects
referenced by the extent.

StoreSize 1

Stores the size of the extent.

uint32 StoreSize () const;

method result The size of the extent, in bytes.

Store 1

Stores the extent.

void Store (IAOutputBlock *output) const;

output A pointer to the output block in which to store the extent.

SEE ALSO

The Restore method (page 41).

Restore 1

Restores the extent from a given block.

IAStorable* Restore (IAInputBlock *input) const;

input A pointer to the block containing the extent.
The IAExtentDoc Class 41
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
method result A pointer to the restored extent.

SEE ALSO

The Store method (page 41).

LessThan 1

Checks if the extent is less than another.

bool LessThan (const IAOrderedStorable neighbor) const;

neighbor The extent you want to compare against.

method result True if the extent is less than that of neighbor.

Equal 1

Checks to see if two extents are equal.

byte* Equal (const IAOrderedStorable neighbor) const;

neighbor The extent you want to compare against.

method result True if the two extents are equal.

GetText 1

Gets the buffer associated with the extent.

byte* GetText () const;

method result A pointer to the buffer containing the text.
42 The IAExtentDoc Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
GetLength 1

Gets the length of an extent.

uint32 GetLength () const;

method result The length of the extent, in bytes.

GetOffset 1

Gets the offset of the extent within the buffer.

uint32 GetOffset () const;

method result The offset of the extent, in bytes.

GetExtent 1

Gets the extent as a null-terminated string.

byte* GetExtent () const;

method result A pointer to the extent.

DISCUSSION

Space for the returned extent is allocated by IAMallocArray, so you must call
IAFreeArray to free the memory when you no longer need the extent.
The IAExtentDoc Class 43
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
SetRank 1

Sets the rank of an extent.

void SetRank (uint32 rank) const;

rank The rank to assign to the extent.

SEE ALSO

The GetRank method (page 44).

GetRank 1

Gets the rank of an extent.

uint32 GetRank () const;

method result The rank assigned to the extent.

SEE ALSO

The SetRank method (page 44).

SetRankedHit 1

Sets the ranked hit value of an extent.

void SetRank (uint32 rankHitVal) const;

rankHitVal The ranked hit value to assign to the extent.

SEE ALSO

The GetRankedHit method (page 45).
44 The IAExtentDoc Class

2/19/98  Apple Computer, Inc.

C H A P T E R 1

Document Summarization
GetRankedHit 1

Gets the ranked hit value of an extent.

uint32 GetRankedHit () const;

method result The ranked hit value assigned to the extent.

SEE ALSO

The SetRankedHit method (page 44).

GetExtentNumber 1

Gets the extent number assigned to the extent.

uint32 GetExtentNumber () const;

method result The extent number assigned to the extent.

SEE ALSO

ÒThe IAExtentParser ClassÓ (page 23).

GetGroupNumber 1

Gets the group number assigned to the extent.

uint32 GetGroupNumber () const;

method result The group number assigned to the extent.

SEE ALSO

ÒThe IAExtentParser ClassÓ (page 23).
The IAExtentDoc Class 45
2/19/98  Apple Computer, Inc.

 C H A P T E R 1

Document Summarization
46 The IAExtentDoc Class

2/19/98  Apple Computer, Inc.

C H A P T E R 2

Contents

2/19/98  Apple Computer, Inc.

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Document Routing
Clusters 37
The Document Router 37
The IARouter Class 41

Description 42
Public Methods 42

IARouter 42
~IARouter 42
InitializeClusters 43
WhichCluster 43
Store 44
Restore 44
StoreSize 45
GetProgressFn 45
GetProgressData 45
GetProgressFreq 46

Protected Methods 46
BestCluster 46
ClearAccumulator 46
AddDocVectorToAccumulator 47
AccumulateDocVector 47
AddToAccumulator 47

The IACluster Class 48
Description 48
Public Methods 48

IACluster 48
~IACluster 48
GetNextDoc 49
47

C H A P T E R 2
Reset 49
Protected Method 50

GetCorpus 50
The HFSCluster Class 50

Description 50
Public Methods 50

HFSCluster 50
~HFSCluster 51
GetNextDoc 51
Reset 51
48 Contents

2/19/98  Apple Computer, Inc.

C H A P T E R 2
Document Routing 2

In addition to searching for documents, you can use the IAT to route
documents into particular categories. For example, say you have a collection of
unsorted documents related to transportation that you want to divide into
three categories: planes, trains, and automobiles. After setting up the various
categories, you can use the IAT to compare documents from the unsorted
collection with examples for each category. For each category you must have
speciÞed one or more documents as examples of what it should contain; that is,
you would ÒprimeÓ the trains category with documents heavily-related to
trains, and so on. The category that provides the best Þt (the highest ranked
score) is the most appropriate place to put the unsorted document.

This chapter describes how to use the IAT to deÞne document categories and
route documents among those categories.

Clusters 2

A category for related documents is called a cluster. Clusters are represented
by the IACluster class, which must be subclassed to handle particular
document types. For example, the IAT provides the subclass HFSCluster, which
represents a cluster of HFS documents (that is, Mac OS Þles). When subclassing
IACluster, you must override the GetNextDoc method, which returns the next
document in the cluster, and the Reset method, which resets the iterator.

For a given cluster, you must provide one or more example documents, which
are used to establish weighting criteria when comparing the cluster to an
unsorted document. For an HFSCluster, these documents are contained in the
folder associated with the cluster.

The Document Router 2

After establishing your clusters, the IAT router, deÞned in the class IARouter,
lets you identify the cluster that offers the best Þt for an unsorted document.
Clusters 49
2/19/98  Apple Computer, Inc.

 C H A P T E R 2

Document Routing
Note
The router does not copy or move the unsorted document;
it only identiÞes the cluster to which the document
belongs. Any moving or copying actions must be done by
your application. ◆

When seeking the best Þt for a document, you can add the weighting (that is,
the normalized term-weighted vector, or TWVector) of that document to the
weighting of the appropriate cluster, if desired. That is, each additional
document that Þts in the cluster helps deÞne what should be there.

Listing 2-1 shows an example that displays the best Þt cluster for each of a
number of unsorted documents.

Listing 2-1 Identifying best fit clusters for documents using the router

// Enter the name of folder containing the items to route
StringPtr unSortedItems = "\pMyDisk:Folders:Disorganized Stuff";

// Enter name of the index
StringPtr singleIndexName = "\pMyDisk:Folders:test.index";

// Enter the names of the router folders
StringPtr clusterFolders[] = {

"\pMyDisk:Folders:Planes",
"\pMyDisk:Folders:Trains",
"\pMyDisk:Folders:Automobiles",
"\p" // empty string to mark end
};

void DemoRouting()
{

FSSpec fsSpec;
char str[256];

// Create/initialize our index
(void)FSMakeFSSpec(0, 0, singleIndexName, &fsSpec);

IAStorage* myStorage = MakeHFSStorage(fsSpec.vRefNum, fsSpec.parID,
fsSpec.name);
50 The Document Router

2/19/98  Apple Computer, Inc.

C H A P T E R 2

Document Routing
myStorage->Initialize();

HFSCorpus myCorpus = new HFSCorpus;
IAAnalysis* myAnalysis = new SimpleAnalysis();

VectorIndex* myIndex = new VectorIndex(myStorage,myCorpus,
myAnalysis);

myIndex->Initialize();

// Setup clusters
uint32 clusterCount = 0;
for (clusterCount = 0; clusterFolders[clusterCount][0] != 0;

clusterCount++) {}

HFSCluster** folders = new HFSCluster*[clusterCount];

for (uint32 i = 0; i < clusterCount; i++) {
folders[i] = new HFSCluster(myIndex, clusterFolders[i]);
}

// Instantiate a router and initialize with the corpuses representing
// our clusters.

IARouter myRouter (myIndex);
myRouter.InitializeClusters((IACluster**)folders, clusterCount);

AddItemsToIndex(unSortedItems, myIndex);
myIndex->Flush();

HFSTextFolderCorpus* source = new HFSTextFolderCorpus(unSortedItems);

IADocIterator* docs = source->GetDocIterator();
IADoc* doc = docs->GetNextDoc();

// Now loop through each unsorted document and find the best cluster
while (doc) {

uint32 clusterIndex = myRouter.WhichCluster(doc, false);
printf ("%s belongs in cluster %d\n",

PToCStr(((HFSDoc*)doc)->GetFileName(), str), ++clusterIndex);
The Document Router 51
2/19/98  Apple Computer, Inc.

 C H A P T E R 2

Document Routing
delete doc;
doc = docs->GetNextDoc();
}

// Cleanup
delete docs;
delete source;

myRouter.Store();
myIndex->Flush();
myStorage->Commit();

delete myIndex;
delete myStorage;

for (uint32 i = 0; i < clusterCount; i++) {
delete folders[i];
}

delete [] folders;
}

// End DemoRouting

// This method is called by the DemoRouting method.
void AddItemsToIndex(StringPtr folderPathName, VectorIndex* inIndex)
{

FSSpec myFsSpec;
OSErr err = FSMakeFSSpec(0, 0, folderPathName, &myFsSpec);
IAAssertion(err == noErr, "Can't get folder", IAAssertionFailure);

HFSIterator folderIterator(fsSpec.vRefNum,FSSpecToDirID(&myFsSpec));

IATry {
while (folderIterator.Increment()) {

CInfoPBRec* pb = folderIterator.GetPBRec();

HFSDoc* doc = new HFSDoc((HFSCorpus*)inIndex->GetCorpus(),
pb->hFileInfo.ioVRefNum, pb->hFileInfo.ioFlParID,
pb->hFileInfo.ioNamePtr);

inIndex->AddDoc(doc);
52 The Document Router

2/19/98  Apple Computer, Inc.

C H A P T E R 2

Document Routing
}
}

IACatch (const IAException& exception) {
printf("%s, %s\n", exception.What(), exception.GetLocation());
}

}
// End AddItemsToIndex

In this example, after creating the index, the corpus, and specifying the type of
analysis, the DemoRouting method sets up clusters based on what was deÞned in
clusterFolders[]. Each folder in the array should contain example documents
deÞning the type of document that should belong to the cluster. Documents to
be routed should be in the unSortedItems folder.

After initializing the clusters by calling the InitializeClusters method, the
router (myRouter) then simply cycles through the corpus representing the
contents of unSortedItems and calls the WhichCluster method for each
document. If you set the second parameter in WhichCluster to true, the
weighting of the document to be routed is added to the appropriate cluster
when a match is made.

In this example, after the DemoRouting method routes all the documents in
unSortedItems, it calls the Store method before removing all instantiated
objects. Doing so saves the cluster information and weightings so you can
retrieve them at some later time. If you speciÞed that the cluster accumulate
weightings as documents were routed, the saved settings will reßect the
additional weightings. If you want to route additional documents later using
the stored cluster settings, you call the Restore method instead of instantiating
clusters and calling InitializeClusters.

The sections that follow describe the classes and methods used for routing
documents using the IAT.

The IARouter Class 2

Ancestors None.

Subclasses None.

Header Þle IARouter.h
The IARouter Class 53
2/19/98  Apple Computer, Inc.

 C H A P T E R 2

Document Routing
Description 2

The following methods allow you to use the IAT to sort documents into
clusters. Note that the IAT only speciÞes which cluster to put a document in;
your application must copy or move the document based on the categorization.

Public Methods 2

IARouter 2

Constructor for this class.

IARouter (
VectorIndex* index,
TProgressFn* progressFn,
clock_t progressFreq,
void* appData);

index A pointer to the vector index.

progressFn A pointer to an application-deÞned progress function. If not
NULL, the IAT calls this function periodically to give the client
application control.

progressFreq The wait time between callbacks, in clock ticks (using the ANSI
clocks_per_sec standard).

appData A pointer to application-speciÞc data that is passed to the client
application when the callback occurs.

~IARouter 2

Destructor for this class.

virtual ~IARouter();
54 The IARouter Class

2/19/98  Apple Computer, Inc.

C H A P T E R 2

Document Routing
InitializeClusters 2

SpeciÞes clusters to use in the routing.

void InitializeClusters (
IACluster** clusters,
uint32 howManyClusters);

clusters A pointer to an array of IACluster pointers specifying the
clusters to use.

howManyClusters
The number of IACluster pointers in the array.

DISCUSSION

You call InitializeClusters when you want to route documents using a new
set of clusters. If you want to route documents using an older saved set of
clusters, you should call the Restore method (page 56) instead.

WhichCluster 2

SpeciÞes the cluster to which a document belongs.

uint32 WhichCluster (
IADoc* doc,
bool accumulate);

doc A pointer to a document to be routed.

accumulate If true, the normalized weighting of the speciÞed document
(that is, its TWVector) is added to the weighting of the cluster. If
you do not specify this parameter, the default is false.

method result An value specifying the index of the cluster to which the
document belongs.
The IARouter Class 55
2/19/98  Apple Computer, Inc.

 C H A P T E R 2

Document Routing
DISCUSSION

The WhichCluster method does not move or copy the document to the
indicated cluster. If you want to move the document, your application must do
so itself.

Store 2

Stores the router settings.

void Store (
IAStorage* storage,
IABlockID block) const;

storage A pointer to a IAStorage* object. If you do not specify this
parameter, the default is NULL, and Store uses the storage
instance that contains the index used by the router.

block
The ID of the block in which you want to store the router
settings. If you do not specify this parameter, the default block
ID is 0.

SEE ALSO

The Restore method (page 56).

Restore 2

Restores saved router settings.

void Restore (
IAStorage* storage,
IABlockID block);

storage A pointer to a IAStorage object containing the router
information. If you do not specify this parameter, the IAT
attempts to restore the setting from the storage instance used by
the index associated with the router.
56 The IARouter Class

2/19/98  Apple Computer, Inc.

C H A P T E R 2

Document Routing
block
The ID of the block containing the router settings you want to
retrieve. If you do not specify this parameter, the default block
ID is 0.

SEE ALSO

The Store method (page 56).

The InitializeClusters method (page 55).

StoreSize 2

Stores the size of the current router.

IABlockSize StoreSize () const;

method result The size of the router.

GetProgressFn 2

Returns a pointer to the application-deÞned progress function.

TProgressFn* GetProgressFn () const;

method result A pointer to the application-deÞned function. The IAT calls
back to this function periodically to allow the client time to do
other things, if desired.

GetProgressData 2

Returns the progress function data.

void* GetProgressData () const;
The IARouter Class 57
2/19/98  Apple Computer, Inc.

 C H A P T E R 2

Document Routing
method result A pointer to the data passed to the application at the time of the
progress function callback. You specify the location of this data
when the IARouter constructor is called.

GetProgressFreq 2

Returns the time between calls to the progress function callback.

clock_t GetProgressFreq () const;

method result The wait time between callbacks, in clock ticks (using the ANSI
clocks_per_sec standard).

Protected Methods 2

BestCluster 2

Returns the best cluster for a given TWVector.

uint32 BestCluster (TWVector *vector) const;

vector A pointer to a TWVector object.

method result The index of the cluster to which the TWVector best Þts.

DISCUSSION

If you want to subclass IARouter and implement your own best cluster
algorithm, you may want to override this method.

ClearAccumulator 2

Clears the accumulator associated with the router.

void ClearAccumulator (void);
58 The IARouter Class

2/19/98  Apple Computer, Inc.

C H A P T E R 2

Document Routing
AddDocVectorToAccumulator 2

Adds a documentÕs TWVector to the accumulator.

void AddDocVectorToAccumulator (TWVector* newDocVector);

newDocVector A pointer to the TWVector object representing the document.

SEE ALSO

The AccumulateDocVector method (page 59).

AccumulateDocVector 2

Adds the TWVector representing a document to the accumulator.

void AccumulateDocVector(IADoc* doc);

doc A pointer to a document.

SEE ALSO

The AddDocVectorToAccumulator method (page 59).

AddToAccumulator 2

Adds the speciÞed TWVector to the weighting of a given cluster.

void AddToAccumulator (
uint32 cluster,
TWVector *docVector);

cluster The cluster to whose weighting you want to add the TWVector.

docVector A pointer to the TWVector for a given document.
The IARouter Class 59
2/19/98  Apple Computer, Inc.

 C H A P T E R 2

Document Routing
DISCUSSION

This method adds a TWVector to the weighting of a particular cluster, not the
accumulator that is generated during the WhichCluster call.

The IACluster Class 2

Ancestors None.

Subclass HFSCluster

Header Þle IARouter.h

Description 2

This abstract class represents a cluster of documents. You must subclass this
class to represent clusters of an actual document format. For example, the
HFSCluster class is a subclass of IACluster that you use to represent clusters of
HFS format documents (that is, Mac OS Þles).

Public Methods 2

IACluster 2

Constructor for this class.

IACluster (IAIndex* index);

index A pointer to the index that contains this cluster.

~IACluster 2

Destructor for this class.
60 The IACluster Class

2/19/98  Apple Computer, Inc.

C H A P T E R 2

Document Routing
virtual ~IACluster ();

GetNextDoc 2

Gets the next document in the cluster.

virtual IADoc* GetNextDoc () const;

method result A pointer to the next document in the cluster.

DISCUSSION

The type of document returned depends on the IACluster subclass. For
example, the HFSCluster subclass of IACluster returns documents of type
HFSDoc.

Reset 2

Resets the iterator.

virtual void Reset ();

DISCUSSION

After you call Reset, the GetNextDoc function (page 61) begins with the Þrst
document in the cluster.
The IACluster Class 61
2/19/98  Apple Computer, Inc.

 C H A P T E R 2

Document Routing
Protected Method 2

GetCorpus 2

Retrieves the corpus in the index associated with the cluster.

IACorpus* GetCorpus () const;

method result A pointer to the corpus.

The HFSCluster Class 2

Ancestor IACluster

Subclasses None.

Header Þle HFSCluster.h

Description 2

The HFSCluster class is a subclass of IACluster that handles clusters of HFS
documents (that is, Mac OS Þles).

Public Methods 2

HFSCluster 2

Constructor for this class.
62 The HFSCluster Class

2/19/98  Apple Computer, Inc.

C H A P T E R 2

Document Routing
HFSCluster (
IAIndex* index
StringPtr clusterName);

index The index to contain this cluster.

clusterName A pointer to the pathname of the folder containing document
examples for the cluster.

~HFSCluster 2

Destructor for this class.

virtual ~HFSCluster ();

GetNextDoc 2

Gets the next HFS document in the cluster.

IADoc* GetNextDoc () const;

method result A pointer to the next HFS document in the cluster.

DISCUSSION

The HFSCluster subclass of IACluster returns documents of type HFSDoc.

Reset 2

Resets the iterator.

void Reset ();
The HFSCluster Class 63
2/19/98  Apple Computer, Inc.

 C H A P T E R 2

Document Routing
DISCUSSION

After you call Reset, the GetNextDoc function (page 63) begins with the Þrst
document in the cluster.
64 The HFSCluster Class

2/19/98  Apple Computer, Inc.

C H A P T E R 3

Contents

2/19/98  Apple Computer, Inc.

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Additions and Changes to
Existing Classes
Additional Information About the IAMutex Class 55
Creating a Subclass of IAMutex 55
Registering Your Mutex With the IAT 57

The TWVector Class 58
Description 58
Public Methods 58

HasNegativeComponents 58
StoreSize 58
DeepCopy 59
Store 59
Restore 59
SortByTerm 60
SortByWeight 60
SortByAbsoluteWeight 60
Truncate 61
TruncateAbsoluteValue 61
AddIntoAverage 62
AddWeighted 62
AddWeightedAllowNegatives 63

The IAStruct Class 64
Description 64
Public Method 64

~IAStruct 64
The IAAccessor Class 65

Description 65
Public Methods 65

Store 65
65

C H A P T E R 3
Update 66
The HFSIterator Class 66

Description 67
Public Methods 67

HFSIterator 67
The HFSTextFolderCorpus Class 68

Description 68
Public Methods 68

GetDocIterator 68
66 Contents

2/19/98  Apple Computer, Inc.

C H A P T E R 3
Additions and Changes to Existing Classes 3

This chapter describes new information about existing IAT classes documented
in the Apple Information Access Toolkit v.1.0 ProgrammerÕs Guide.

Additional Information About the IAMutex Class 3

As mentioned in the Apple Information Access Toolkit v.1.0 ProgrammerÕs Guide,
you can use the IAMutex class to coordinate access to a storage object when
using or developing multi-threaded applications. No thread synchronization or
access control (thread safety) is necessary when reading a storage object.
However, only one thread of a multi-threaded application should be able to
write to the storage at any particular time. Doing so prevents lockouts and
accidental overwriting of data. The IAMutex class contains methods that let you
create a mutex (a mutual-exclusion handler or semaphore) that can coordinate
write access between multiple threads.

Creating a Subclass of IAMutex 3

You must create a subclass of the IAMutex class if you want to prevent
multiple-write access. Your subclass should be able to lock out other threads if
one thread is writing to the storage object, and it should be able to transfer
write access to another thread when necessary. Listing 3-1 shows an example
subclass of IAMutex. This example uses the Metrowerks LMutexSemaphore class
(provided with PowerPlant) to implement the IAMutex protocol, but you may
choose another implementation if desired.

Listing 3-1 A subclass of IAMutex

#include "PowerPlantMutex.h"
#include <LMutexSemaphore.h>
#include <LThread.h>
#include <UException.h>
#include <UThread.h>

class PowerPlantMutex : public IAMutex, public LMutexSemaphore {
public:
Additional Information About the IAMutex Class 67
2/19/98  Apple Computer, Inc.

 C H A P T E R 3

Additions and Changes to Existing Classes
void Lock();
void Unlock();
void Signal();
};

void PowerPlantMutex::Lock() {
ThrowIfOSErr_(Wait());
}

void PowerPlantMutex::Unlock() {
Signal();
}

void PowerPlantMutex::Signal() {
// code copied from LMutexSemaphor::Signal(), except this version
// does not call LThread::Yield()

LThread *thread = LThread::GetCurrentThread();
{

StCritical critical; // disable preemption within this block
if (thread != mOwner) {

Throw_(errSemaphoreNotOwner);
} else if (mNestedWaits > 0) {

--mNestedWaits;
} else if (mExcessSignals < 0) {

THREAD_ASSERT(mThreads.qHead != NULL);
mOwner = UnblockThread(mThreads.qHead, noErr);

} else {
THREAD_ASSERT(mExcessSignals == 0);
mOwner = NULL;
++mExcessSignals;

}
}
//LThread::Yield();

}

The PowerPlantMutex class inherits from both the IAMutex and PowerPlant
LMutexSemaphore classes.

The Lock method takes one of two actions:
68 Additional Information About the IAMutex Class

2/19/98  Apple Computer, Inc.

C H A P T E R 3

Additions and Changes to Existing Classes
■ If no other thread currently has the semaphore (allowing it write access, in
this case) then it gives the current thread the semaphore and puts the others
in a wait state.

■ If another thread has the semaphore, put the current thread in a wait state.

The Unlock method calls the Signal method, which indicates that the current
thread is giving up its semaphore. The semaphore can then pass to a waiting
thread (if any).

Registering Your Mutex With the IAT 3

After implementing your IAMutex subclass, you must register the class with the
IAT. This allows the IAT to create mutex instances as necessary for each thread.

To register your mutex, you must set the IANewMutex variable. IANewMutex is
declared as a pointer to a function with the following prototype:

IAMutex* myFuncName();

For example, if you wanted to register the PowerPlantMutex class in Listing 3-1,
you would have to cast it as a function that matches the required IANewMutex
prototype:

IAMutex* NewPowerPlantMutex() {
return new PowerPlantMutex();
}

Then, to register PowerPlantMutex, you would deÞne IANewMutex as follows:

IANewMutex = &NewPowerPlantMutex;

You should register your mutex as part of any global initializations in your
application and before you create your index. The IAT can then create and
remove mutexes as needed.

Note
For single-threaded applications, the IANewMutex variable
automatically defaults to the address of
IADefaultMutexConstructor, which implements a dummy
(no-op) mutex. ◆
Additional Information About the IAMutex Class 69
2/19/98  Apple Computer, Inc.

 C H A P T E R 3

Additions and Changes to Existing Classes
The TWVector Class 3

Ancestors None.

Subclasses None.

Header Þle TWVector.h

Description 3

The TWVector class now contains additional methods.

For more information about TWVectors and the other available methods, see
Chapter 6, ÒAccessor Category,Ó in the Apple Information Access Toolkit v.1.0
ProgrammerÕs Guide.

Public Methods 3

HasNegativeComponents 3

Determines whether the vector has components with negative weight.

bool HasNegativeComponents () const;

method result If true, the vector contains components with negative weight.

StoreSize 3

Stores the size of the vector.

IABlockSize StoreSize () const;
70 The TWVector Class

2/19/98  Apple Computer, Inc.

C H A P T E R 3

Additions and Changes to Existing Classes
method result The size of the vector, in blocks.

DeepCopy 3

Creates a deep copy of the vector.

TWVEctor* DeepCopy () const;

method result A pointer to the copy of the vector.

DISCUSSION

Calling DeepCopy creates a copy of the vector as well as copies of any objects
referenced by the vector.

Store 3

Stores the vector.

void Store (IAOutputBlock *output) const;

output A pointer to the output block in which to store the vector.

SEE ALSO

The Restore method (page 71).

Restore 3

Restores the vector from a given block.

TWVector* Restore (IAInputBlock *input) const;

input A pointer to the block containing the vector.
The TWVector Class 71
2/19/98  Apple Computer, Inc.

 C H A P T E R 3

Additions and Changes to Existing Classes
method result A pointer to the restored vector.

SEE ALSO

The Store method (page 71).

SortByTerm 3

Sorts the vector by term.

void SortByTerm ();

SortByWeight 3

Sorts the vector by weight.

void SortByWeight ();

SEE ALSO

The SortByAbsoluteWeight method (page 72).

SortByAbsoluteWeight 3

Sorts the vector by the absolute value of the component weight.

void SortByAbsoluteWeight ();

SEE ALSO

The SortByWeight method (page 72).
72 The TWVector Class

2/19/98  Apple Computer, Inc.

C H A P T E R 3

Additions and Changes to Existing Classes
Truncate 3

Removes terms with lower weights.

void Truncate (uint32 maxTerms);

maxTerms The maximum number of terms to keep. Truncate removes
terms, starting with the lowest weights, until maxTerms or less
are left.

SEE ALSO

The TruncateAbsoluteValue method (page 73).

TruncateAbsoluteValue 3

Removes terms with lower absolute weights.

void TruncateAbsoluteValue (uint32 maxTerms);

maxTerms The maximum number of terms to keep. Truncate removes
terms starting with the lowest absolute weights until maxTerms
or less are left.

SEE ALSO

The Truncate method (page 73).
The TWVector Class 73
2/19/98  Apple Computer, Inc.

 C H A P T E R 3

Additions and Changes to Existing Classes
AddIntoAverage 3

Adds a new vector to the current one and returns a vector representing the
result.

TWVector* AddIntoAverage (
const TWVector *newVector,
uint32 totalVectorCount,
bool invertNewVector);

newVector A pointer to the new vector.

totalVectorCount
The total number of vectors in the result.

invertNewVector
If true, the new vector is inverted before adding it to the current
one.

method result A pointer to the resulting vector.

AddWeighted 3

Adds a new vector to the current one, allowing weighting adjustments, and
returns a new vector representing the result. Both vectors must have positive
component weights.

TWVector* AddWeighted (
const TWVector *vector,
float weightFactorCurrent,
float weightFactorAdded);

vector A pointer to the new vector.

weightFactorCurrent
The weighting factor for the current vector. The component
weight of the current vector is multiplied by this value.
74 The TWVector Class

2/19/98  Apple Computer, Inc.

C H A P T E R 3

Additions and Changes to Existing Classes
weightFactorAdded
The weighting factor for vector being passed in (that is,
*vector). The component weight of the vector is multiplied by
this value.

method result A pointer to the resulting vector.

DISCUSSION

The weight factors for the vectors are used to ensure that the components in the
resulting vector have the same level of importance.

This method does not allow either vectorÕs component weight to be less than
zero. If either vector has a negative component weight, you must use the
AddWeightedAllowNegatives method (page 75) instead.

AddWeightedAllowNegatives 3

Adds a new vector to the current one, allowing weighting adjustments, and
returns a vector representing the result.

TWVector* AddWeightedAllowNegatives (
const TWVector *vector,
float weightFactorCurrent,
float weightFactorAdded);

vector A pointer to the new vector.

weightFactorCurrent
The weighting factor for the current vector. The component
weight of the current vector is multiplied by this value.

weightFactorAdded
The weighting factor for vector being passed in (that is,
*vector). The component weight of the vector is multiplied by
this value.

method result A pointer to the resulting vector.
The TWVector Class 75
2/19/98  Apple Computer, Inc.

 C H A P T E R 3

Additions and Changes to Existing Classes
DISCUSSION

The weight factors for the vectors are used to ensure that the components in the
resulting vector have the same level of importance. This method allows vectors
to have negative component weights.

The IAStruct Class 3

Ancestors None.

Subclasses Most IAT classes.

Header Þle IACommon.h

Description 3

This class now contains a virtual destructor.

The IAStruct class is the base class for most IAT classes. For more information
about the IAStruct class, see Chapter 4, ÒCommon Practices in IAT,Ó in the
Apple Information Access Toolkit v.1.0 ProgrammerÕs Guide.

Public Method 3

~IAStruct 3

Destructor for this class.

virtual ~IAStruct ();
76 The IAStruct Class

2/19/98  Apple Computer, Inc.

C H A P T E R 3

Additions and Changes to Existing Classes
The IAAccessor Class 3

Ancestors None.

Subclass RankedAccessor

Header Þle IAAccessor.h

Description 3

The IAAccessor class now contains additional methods.

For more information about the IAAccessor class and the other available
methods , see Chapter 6, ÒAccessor Category,Ó in the Apple Information Access
Toolkit v.1.0 ProgrammerÕs Guide.

Public Methods 3

Store 3

Stores an accessor.

void Store (IAStorage* storage,
IABlockID block);

storage The storage object to hold the saved accessor. If you do not
specify this parameter, Store uses the default storage object.

block The block ID of the storage object in which to save the accessor.
If you do not specify this parameter, the default ID is 0.

SEE ALSO

The Update method (page 78).
The IAAccessor Class 77
2/19/98  Apple Computer, Inc.

 C H A P T E R 3

Additions and Changes to Existing Classes
Update 3

Updates an accessor.

void Update (
IAStorage* storage,
IABlockID block);

storage The storage object to hold the updated accessor. If you do not
specify this parameter, Update uses the default storage object.

block The block ID of the storage object in which to update the
accessor. If you do not specify this parameter, the default ID is 0.

DISCUSSION

The Update method allows you to update a stored accessor to reßect changes in
one or more indexes. For example, if the index has changed since the last time
you stored the accessor, you can update the accessor with the changes without
having to reinitialize the entire accessor. However, the updates are not stored if
you do not call the Store method before disposing the accessor.

Calling the Update method on an empty accessor initializes the accessor.

SEE ALSO

The Store method (page 77).

The HFSIterator Class 3

Ancestors None.

Subclasses None.

Header Þle HFSIterator.h
78 The HFSIterator Class

2/19/98  Apple Computer, Inc.

C H A P T E R 3

Additions and Changes to Existing Classes
Description 3

The HFSIterator class now has a constructor that supports callbacks to an
application-deÞned progress function.

For more information about the IAAccessor class and the other available
methods, see Chapter 8, ÒCorpus Category,Ó in the Apple Information Access
Toolkit v.1.0 ProgrammerÕs Guide.

Public Methods 3

HFSIterator 3

Constructor for this class.

HFSIterator (
short vRefNum,
long rootDirId,
TProgressFn* progressFn,
clock_t progressFreq,
void* appData);

vRefNum The HFS volume reference number.

rootDirId The directory ID of the highest level folder. If you do not
specify this parameter, the default is the volume root.

progressFn A pointer to an application-deÞned progress function. If not
NULL, the IAT calls this function periodically to give the client
application control.

progressFreq The wait time between callbacks, in clock ticks (using the ANSI
clocks_per_sec standard).

appData A pointer to application-speciÞc data that is passed to the client
application when the callback occurs.

DISCUSSION

The callback is invoked during calls to the GetDirectoryInfo method.
The HFSIterator Class 79
2/19/98  Apple Computer, Inc.

 C H A P T E R 3

Additions and Changes to Existing Classes
The HFSTextFolderCorpus Class 3

Ancestors IACorpus --> HFSCorpus

Subclasses None.

Header Þle HFSTextFolderCorpus.h

Description 3

The GetDocIterator method now supports callbacks to an application-deÞned
progress function.

For more information about the IACorpus class and the other available methods,
see Chapter 8, ÒCorpus Category,Ó in the Apple Information Access Toolkit v.1.0
ProgrammerÕs Guide.

Public Methods 3

GetDocIterator 3

Constructs a document iterator.

IADocIterator * GetDocIterator (
TProgressFn* progressFn,
clock_t progressFreq,
void* appData);

progressFn A pointer to an application-deÞned progress function. If not
NULL, the IAT calls this function periodically to give the client
application control.

progressFreq The wait time between callbacks, in clock ticks (using the ANSI
clocks_per_sec standard).
80 The HFSTextFolderCorpus Class

2/19/98  Apple Computer, Inc.

C H A P T E R 3

Additions and Changes to Existing Classes
appData A pointer to application-speciÞc data that is passed to the client
application when the callback occurs.

DISCUSSION

The callback is invoked during calls to the GetDirectoryInfo method.
The HFSTextFolderCorpus Class 81
2/19/98  Apple Computer, Inc.

 C H A P T E R 3

Additions and Changes to Existing Classes
82 The HFSTextFolderCorpus Class

2/19/98  Apple Computer, Inc.

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Revision History A

Table A-1 lists changes made to this document since its creation.

Table A-1 Revision History

Date Changes and notes

2/18/98 Method GetNumberOfSentences now replaced by
GetNumberOfExtents. Method GetSentences replaced by
GetExtents.

Added reference material for IAExtentCorpus and IAExtentDoc
classes.

Tweaked sample code. All SentenceDoc objects in sample code
replaced by IAExtentDoc objects.

2/9/98 Cleaned up and commented sample code. Added glossary and
See Also cross-references in reference sections. Revised text
based on editorial comments.

1/28/98 First public release.
83
2/19/98  Apple Computer, Inc.

A P P E N D I X A

Revision History
84
2/19/98  Apple Computer, Inc.

Glossary
cluster A category of related documents.
A cluster is represented by objects of the
IACluster class.

document summary A subset of a
document that best typiÞes the documentÕs
contents. A document summary is typically
made up of one or more text extents. See
also text extent.

extent parser A mechanism that searches
for and isolates text extents. See also text
extent.

mutex A mutual exclusion semaphore,
used to ensure that two threads cannot
perform the same action at the same time.
For example, in the IAT, you can use the
mutex to ensure that two different threads
do not attempt to write to the same storage
object at the same time.

router A mechanism for selecting the best
category to assign to a given document.
Typically a router compares an unsorted
documents with sample documents from
each available category and determines the
best Þt.

semaphore A special ßag that can be set
by a thread in a multithreaded application.
For example, possession of the semaphore
could indicate that that thread currently has
the attention of the processor and all other
threads must wait.

term-weighted vector (TWVector) A
vector constructed from the weighted terms
(or tokens) in a document. You can
determine the similarity of two documents
by seeing how closely their TWVectors
match.

text extent A logical subset of a document.
For example, a text extent could be a
sentence, or a paragraph, or even just a
block of 40 characters.
85
2/19/98  Apple Computer, Inc.

G L O S S A R Y
86
2/19/98  Apple Computer, Inc.

Index
A

AccumulateDocVector method 59
AddDocVectorToAccumulator method 59
AddIntoAverage method 74
AddToAccumulator method 59
AddWeightedAllowNegatives method 75
AddWeighted method 74
AreReturnsRemoved method 32

B

BestCluster method 58

C

ClearAccumulator method 58
clusters, deÞned 49

D

DeepCopy method (IAExtentDoc class) 40
DeepCopy method (TWVector class) 71

E

EnglishAbbreviations file 16
EnglishStopwords file 17
EnglishSubstitutions file 17
Equal method 42
extent parsers 14
extents. See text extents 13

G

GetBufferLength method 25
GetBuffer method 25, 39
GetBytesLeft method 29
GetCorpus method 62
GetDocIterator method 80
GetDocText method 38
GetExtentLength method 27
GetExtent method 43
GetExtentNumber method 45
GetExtents method 22
GetGroupNumber method 30, 45
GetLength method 43
GetNextDoc method (HFSCluster class) 63
GetNextDoc method (IACluster class) 61
GetNextExtent method 32
GetNumberOfExtents method 22
GetOffset method 43
GetOrderNumber method 31
GetProgressData method 57
GetProgressFn method 57
GetProgressFreq method 58
GetProtoDoc method 38
GetRankedHit method 45
GetRank method 44
GetStartOfExtent method 26
GetStartOfNext method 28
GetText method 42
GettingNextExtent method

(IAANSISentenceParser class) 36
GettingNextExtent method (IAExtentParser

class) 33

H

HasNegativeComponents method 70
87
2/19/98  Apple Computer, Inc.

I N D E X
HFSCluster class 62
~HFSCluster method 63
HFSCluster method 63
HFSIterator class 78
HFSIterator method 79
HFSTextFolderCorpus class 80

I

IAAccessor class 77
IAANSISentenceParser class 34
~IAANSISentenceParser method 35
IAANSISentenceParser method 34
IACluster class 60
~IACluster method 61
IACluster method 60
IADocumentAbstractor class 14, 19
~IADocumentAbstractor method 20
IADocumentAbstractor method 20
IAExtentCorpus class 37
~IAExtentCorpus method 38
IAExtentCorpus method 37
IAExtentDoc class 39
~IAExtentDoc method 40
IAExtentDoc method 39
IAExtentParser class 14, 23
~IAExtentParser method 24
IAExtentParser method 24
IAMutex class 67
IANewMutex variable 69
IARouter class 53
~IARouter method 54
IARouter method 54
IAStruct class 76
~IAStruct method 76
InitializeClusters method 53, 55
IsCancelled method 31
IsRequiredUpper method 36

L

LessThan method 42

M

multi-threaded applications, handling 67
mutexes 67

P

Presenting a document summary 17

R

Reset method (HFSCluster class) 63
Reset method (IACluster class) 61
Restore method (IAExtentDoc class) 41
Restore method (IARouter class) 56
Restore method (TWVector class) 71

S

SetAnalysis method 21
SetBuffer method 24
SetBytesLeft method 28
SetExtentLength method 26
SetGroupNumber method 29
SetOrderNumber method 30
SetParser method 22
SetRank method 44
SetRequiredUpper method 35
SetStartOfExtent method 25
SetStartOfNext method 27
SetStorage method 22
SortByAbsoluteWeight method 72
SortByTerm method 72
SortByWeight method 72
88
2/19/98  Apple Computer, Inc.

I N D E X
Store method (IAAccessor class) 77
Store method (IAExtentDoc class) 41
Store method (IARouter class) 56
Store method (TWVector class) 71
StoreSize method (IAExtentDoc class) 41
StoreSize method (IARouter class) 57
StoreSize method (TWVector class) 70
Summarize method 21
syntax conventions 8

T

text extents, deÞned 13
TruncateAbsoluteValue method 73
Truncate method 73
TWVector class 70

U

Update method 78

W

WhichCluster method 53, 55
89
2/19/98  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

2/19/98  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using
Adobeª Illustrator and Adobe Photoshop.

Text type is Palatino¨ and display type is
Helvetica¨. Bullets are ITC Zapf
Dingbats¨. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Jun Suzuki

PEER EDITORS
Steve Evangelou and Lisa Karpinski

PRODUCTION EDITOR
Glen Frank

Special thanks to Farzin Maghoul and
Wayne LoofBourrow.

Acknowledgments to Donna S. Lee and
Tony Francis.

	Additions to the Apple Information Access Toolkit
	Contents
	Preface: About This Document
	What’s In This Document
	Conventions Used in This Document
	Special Fonts
	Command Syntax
	Types of Notes

	Chapter 1: Document Summarization
	Document Summaries
	Extent Parsers
	The Document Abstractor
	Presenting the Summary
	The IADocumentAbstractor Class
	Description
	Public Methods

	The IAExtentParser Class
	Description
	Public Methods
	Protected Method

	The IAANSISentenceParser Class
	Description
	Public Methods
	Protected Method

	The IAExtentCorpus Class
	Description
	Public Methods

	The IAExtentDoc Class
	Description
	Public Methods

	Chapter 2: Document Routing
	Clusters
	The Document Router
	The IARouter Class
	Description
	Public Methods

	The IACluster Class
	Description
	Public Methods
	Protected Method

	The HFSCluster Class
	Description
	Public Methods

	Chapter 3: Additions and Changes to Existing Classes
	Additional Information About the IAMutex Class
	Creating a Subclass of IAMutex
	Registering Your Mutex With the IAT

	The TWVector Class
	Description
	Public Methods

	The IAStruct Class
	Description
	Public Method

	The IAAccessor Class
	Description
	Public Methods

	The HFSIterator Class
	Description
	Public Methods

	The HFSTextFolderCorpus Class
	Description
	Public Methods

	Glossary
	Index

