

ScriptX Language Guide

December 1995

Sc
rip

tX
 La

n
g

u
a

g
e

 Su
m

m
a

ry

C

o
m

m
e

nts a
nd

 Line
 C

o
ntinua

tio
n

-
-

com
m

ent
/
/

C
+
+

style com
m

ent
/
*

i
n
s
e
t

c
o
m
m
e
n
t

*
/

\

continue expression on next line

Va
ria

b
le

 D
e

cla
ra

tio
n

l
o
c
a
l

[

c
o
n
s
t
a
n
t

]

variable,

variable,
 ...

l
o
c
a
l

[

c
o
n
s
t
a
n
t

]

variable
[

:
=

value
]

g
l
o
b
a
l

[

c
o
n
s
t
a
n
t

]

variable,

variable,

.
.
.

g
l
o
b
a
l

[

c
o
n
s
t
a
n
t

]

variable
[

:
=

value
]

Va
ria

b
le

 A
ssig

nm
e

nt
variableD

eclaration

:
=

value
ivA

ccess
:
=

value
elem

entA
ccess

:
=

value

H
exa

d
e

c
im

a
l N

um
b

e
rs

0
x

N

String
 C

o
nsta

nts
"
s
t
r
i
n
g
"

String
 Esc

a
p

e
s

\
<
n
n
n
n
>

hex escape for unicode characters
\
r

return
\
t

tab
\
"

doublequote
\
\

backslash

A
rra

y a
nd

 Keye
d

Linke
d

List Lite
ra

ls
#
(

elem
ent,

elem

ent,

elem
ent

.
.
.
)

#
(

key:
value,

key:

value,

.
.
.
)

Ele
m

e
nt A

c
c

e
ss

collection [
key]

Ra
ng

e
 Lite

ra
ls

startval
t
o

endval
[

b
y

increm
ent]

startval

[

e
x
c
l
u
s
i
v
e
|
i
n
c
l
u
s
i
v
e

]

t
o

endvalue
[

e
x
c
l
u
s
i
v
e
|
i
n
c
l
u
s
i
v
e

]

c
o
n
t
i
n
u
o
u
s

N
a

m
e

 Lite
ra

ls
@

nam
e

S
c
r
i
p
t
X

L
a
n
g
u
a
g
e

S
u
m
m
a
r
y

 – V
e

rsio
n

 1.5
O
p

e
ra

to
rs a

nd
 Func

tio
na

l Eq
uiva

le
nts

+
s
u
m

-
s
u
b

-
n
e
g
a
t
e

*
m
u
l

/
q
u
o

=
e
q
u
a
l

=
=

e
q

!
=
=
n
e

<
>

n
e
q
u
a
l

!
=

n
e
q
u
a
l

<
l
t

>
g
t

<
=

l
e

>
=

g
e

Lo
g

ic
a

l Exp
re

ssio
ns

expresion

a
n
d

expression
expression

o
r

expression
n
o
t

expression

C
o

m
p

o
und

 Exp
re

ssio
ns

(
expression

;

expression
;

.
.
.

)
(

expression
expression
.
.
.

)Func
tio

n C
a

lls
function

arg

arg
arg

.
.
.

function

positionalA
rg

positionalA
rg .

.
.

keyarg:
value

\
keyarg:

value .
.
.

function
(

arg,

arg,

arg,

.
.
.
)

function
(

regulararg,

regulararg,

.
.
.
,

keyarg:
value,

keyarg:

value,

.
.
.
)

function
(
)

a
p
p
l
y

functionN
am

e [
 argum

ents]
collectionO

fA
rgum

ents

Insta
nc

e
 a

nd
 C

la
ss Va

ria
b

le
 A

c
c

e
ss

object.
ivnam

e
class.

cvnam
e

O
b

je
c

t C
o

e
rc

io
n

originalobject
a
s

new
class

CiiiceRrrFfffscsBcerTecc

o
nd

itio
na

ls
f

test
t
h
e
n

trueexpression

e
l
s
e

falseexpression
f

test
t
h
e
n

trueexpression
f

test
d
o

trueexpression

a
s
e

[

testexpression

]

o
f

tag:

expression
.
.
.

[

o
t
h
e
r
w
i
s
e
:

expression

]

n
d

e
p

e
a

t Lo
o

p
s

e
p
e
a
t

w
h
i
l
e
|
u
n
t
i
l

test
d
o

expression
e
p
e
a
t

expression

w
h
i
l
e
|
u
n
t
i
l

test

o
r Lo

o
p

s
o
r

sources
[

w
h
i
l
e
|
u
n
t
i
l

test
]

d
o

expression
o
r

sources
[

w
h
i
l
e
|
u
n
t
i
l

test
]

collectIt
o
r

sources
[

w
h
i
l
e
|
u
n
t
i
l

test
]

selectIt

ources:
num

ber
index

:
=

collection
|

rangeliteral
index

i
n

collection
|

rangeliteral

ollectIt:

c
o
l
l
e
c
t

[
i
n
t
o

collection
]

[
b
y

m
ethod]

[
a
s

collectionC
lass]

expression

electIt:

s
e
l
e
c
t

item

[
i
n
t
o

collection
]

[
b
y

m
ethod]

[
a
s

collectionC
lass]

i
f

test

lo
ck a

nd
 Lo

o
p

 C
o

ntro
ls

o
n
t
i
n
u
e

-
-

 to continue in e a loop
x
i
t

[

w
i
t
h

expression

]

-
-

 to exit from
 a loop

e
t
u
r
n

expression

-
-

functions and m
ethods only

hre
a

d
s a

nd
 Pip

e
s

xpression

&

ollection

|

function
ollection

|

C
ollectionC

lassO
rInstance

O
b

je
c

t a
nd

 C
la

ss D
e

finitio
n

[
l
o
c
a
l
]

o
b
j
e
c
t

[

objectnam
e]

(

classlist
)

[

keyw
ordarg:

value,

keyw
ordarg:

value
keyw

ordarg:
value

.
.
.
]

[

i
n
s
t
[
a
n
c
e
]

v
a
r
[
i
a
b
l
e
]
s

varnam
e
[
:

value]
[

qualifier]

varnam
e

.
.
.
]

[

i
n
s
t
[
a
n
c
e
]

m
e
t
h
o
d
s

m
ethoddef

.
.
.
]

[

s
e
t
t
i
n
g
s

ivnam
e:

value,

ivnam
e:

value
ivnam

e:
value

.
.
.
]

[

c
o
n
t
e
n
t
s

item
,

item
item

]

e
n
d

[
l
o
c
a
l
]

c
l
a
s
s

classnam
e
(

classlist)
[
c
l
a
s
s

v
a
r
[
i
a
b
l
e
]
s

varnam
e
[
:

value
]

[

qualifiers
]

varnam
e

.
.
.

]

[
i
n
s
t
[
a
n
c
e
]

v
a
r
[
i
a
b
l
e
]
s

varnam
e
[
:

value
]

[

qualifiers
]

varnam
e

.
.
.

]

[
c
l
a
s
s

m
e
t
h
o
d
s

m
ethoddef

]
[
i
n
s
t
[
a
n
c
e
]

m
e
t
h
o
d
s

m
ethoddef

]
e
n
d

qualifiers:

[

r
e
a
d
o
n
l
y

]

[

t
r
a
n
s
i
e
n
t
O
p
t
i
o
n

]

\

[

r
e
f
e
r
e
n
c
e

]

transientO
ption

:

t
r
a
n
s
i
e
n
t

[

i
n
i
t
i
a
l
i
z
e
r

function]

Func
tio

n a
nd

 M
e

tho
d

 D
e

finitio
n

[
l
o
c
a
l
]

f
[
u
]
n
[
c
t
i
o
n
]

functionN
am

e
argum

ents
-
>

body
(

argum
ents

-
>

body
)

[
c
l
a
s
s
]

m
e
t
h
o
d

m
ethodN

am
e
s
e
l
f

argum
ents

-
>

body

argum
ents:

positionalA
rgum

ents
\

[
#
r
e
s
t

args
]

[

#
k
e
y

keys
]

keys:
key:

varN
am

e
(

defaultV
alue

)

n
e
x
t
M
e
t
h
o
d

s
e
l
f

argum
ents

a
p
p
l
y

n
e
x
t
M
e
t
h
o
d

argum
ents

-
-

init or other m
ethod w

ith

#
r
e
s
t

 args

Fre
e

 M
e

tho
d

s
m
e
t
h
o
d

m
ethodN

am
e
s
e
l
f

{

o
b
j
e
c
t

 object
}

\

argum
ents

-
>

body
[

c
l
a
s
s

]

m
e
t
h
o
d

m
ethodN

am
e
s
e
l
f

{

c
l
a
s
s

 class
}

\

argum
ents

-
>

body

Se
tte

r a
nd

 G
e

tte
r M

e
tho

d
s

[
c
l
a
s
s
]

m
e
t
h
o
d

setter
s
e
l
f

arg
-
>

body
[
c
l
a
s
s
]

m
e
t
h
o
d

getter
s
e
l
f

-
>

body

setter:
varnam

eS
e
t
t
e
r

|

g
e
t

varnam
e

getter:
varnam

eG
e
t
t
e
r

|

g
e
t

varnam
e

M
o

d
ule

s
m
o
d
u
l
e

m
oduleN

am
e

[

e
x
p
o
r
t
s

variables
]

[

u
s
e
s

m
odule

m
odule

m
odule ...]

[

u
s
e
s

m
odule

w
i
t
h

[

i
m
p
o
r
t
s

e
v
e
r
y
t
h
i
n
g

]

[

i
m
p
o
r
t
s

variable,

variable,

variable,

.
.
.

]

[

e
x
c
l
u
d
e
s

variable,

variable,

variable,

.
.
.

]

[

e
x
p
o
r
t
s

e
v
e
r
y
t
h
i
n
g

]

[

e
x
p
o
r
t
s

variable, variable, variable,

.
.
.

]

[

p
r
e
f
i
x

prefix
]

[

r
e
n
a
m
e
s

oldN
am

e:
new

N
am

e
oldN

am
e:

new
N

am
e

.
.
.

]

e
n
d

]

e
n
d

i
n
M
o
d
u
l
e

m
odule

g
e
t
M
o
d
u
l
e

@

m
odule

Exc
e

p
tio

ns
g
u
a
r
d

expression
expression
.
.
.

[

c
a
t
c
h
i
n
g

catchList
]

[

o
n

e
x
i
t

exit code
]

e
n
d

catchlist:

exception

[

arg]
:

action
exceptionC

lass
[

arg]
:

action

c
a
u
g
h
t

error
t
h
r
o
w

a
g
a
i
n

O
the

r (A
va

ila
b

le
 O

nly in Sc
rip

tX
 Liste

ne
r)

?

-
-

last value in listener
-
-
<
<
<

-
-

execute input file up to
>
>
>

-
-
<
<
<
-

-
-

execute input file, but don’t print it

Contents

Preface..1

Who Should Read This Book ... 1

Summary of Contents... 2

Manual Conventions... 2

Chapter 1 Introducing the ScriptX Language.. 5

ScriptX—A Technical Overview.. 7

The ScriptX Language.. 8

The Kaleida Object Model .. 9

ScriptX and the Core Classes .. 11

What is Object-Oriented Programming?... 12

Chapter 2 ScriptX Building Blocks... 25

Expressions .. 27

Comments .. 29

Numbers ... 30

Strings .. 31

System Objects .. 33

Names .. 34

Variables... 36

Assignment... 38

ScriptX Operators and Simple Expressions ... 40

Operator Precedence ... 41

Arithmetic.. 42

Tests of Equality and Magnitude .. 44

Logical Operators ... 48

Arrays and Keyed Linked Lists ... 48

Access to Members of Collections ... 50

Compound Expressions ... 53

Compound Expressions and Variable Scope... 54

Chapter 3 Working with Objects... 57

Creating New Objects... 59

Coercing Objects to Other Classes .. 67

Comparing Objects... 69

Finding Information About Classes and Objects .. 72
 v

ScriptX Language Guide

Output... 74

Chapter 4 Conditionals and Loops .. 81

Conditionals: if and case .. 83

Repeat Loops ... 85

for Loops... 86

Loop Control Expressions .. 94

Chapter 5 Functions, Threads and Pipes .. 97

Defining Functions.. 99

Anonymous Functions .. 105

Closures ... 107

Using apply to Call Functions ... 109

Threads .. 109

Pipes... 110

Chapter 6 Defining Classes and Objects... 113

Defining Classes... 115

Defining Objects ... 121

Multiple Inheritance .. 127

Defining Methods.. 129

Defining the new, init, and afterInit Methods .. 136

Comparison Functions.. 143

Defining Class and Instance Variables... 145

Chapter 7 Collections .. 153

Collections .. 155

Strings as Collections ... 169

Searching Strings ... 170

Chapter 8 Exceptions .. 173

Catching and Handling Exceptions... 175

What Happens In a Guard Construct ... 177

How to Control Throwing and Catching.. 182

Retrieving Information about the Exception.. 184

Creating Exception Subclasses and Instances .. 185
vi

Contents

Chapter 9 Modules... 187

Module Basics .. 190

Module Concepts.. 192

Defining and Using Modules... 200

Organizing Modules.. 219

Storing Modules.. 227

Appendix A ScriptX Reference .. 231

ScriptX Language Syntax ... 233

Tokens and Literals .. 234

Types of Expression ... 240

Expression Syntax.. 243

Assignment and Variable Access ... 245

Flow of Control ... 247

Definition of Classes... 249

Definition of Objects ... 250

Definition of Functions and Methods .. 251

Modules .. 253

Exception Handling... 254

ScriptX EBNF Grammar ... 255

Appendix B Unicode Escape Characters.. 261

Appendix C Unicode Escape Characters.. 265
vii

ScriptX Language Guide

viii

Figures

Figure 1-1: Storing data for dog instances..14

Figure 1-2: Creating inheritance hierarchies of dogs17

Figure 1-3: Multiple inheritance and dogs ..20

Figure 2-1: ScriptX number classes...30

Figure 2-2: Pointer assignment..39

Figure 3-1: Regular functions ..65

Figure 3-2: Generic functions ...66

Figure 6-1: An illustration of depth-first topological order.128

Figure 7-1: A few of the collection classes..156

Figure 9-1: Exporting names from modules.......................................193

Figure 9-2: Importing names into modules..194

Figure 9-3: Importing names into a module, with a prefix194

Figure 9-4: Interface module ..220

Figure 9-5: Implementation modules...220

Figure 9-6: Client modules ..221

Figure 9-7: The ScriptX, Substrate and Scratch modules.................221

Figure 9-8: Circular module references...222

Figure 9-9: Paint and draw interfaces and implementations.........223

Figure 9-10: Paint and draw interfaces and implementations.........223

Figure 9-12: Pass-through interface/implementation model............225

Figure 9-13: Using a build module to compile a project...................225

Figure 9-14: A network of modules to be saved229

Figure A-1: Types of ScriptX expressions ...243
 ix

ScriptX Language Guide
x

Tables

Table 2-1: Special characters in strings ..32

Table 2-2: System objects ..33

Table 2-3: ScriptX operator precedence, highest to lowest............41

Table 2-4: Operators and their equivalent functions........................47

Table 3-1: Class coercion examples...68

Table 5-1: Pipe forms ..111

Table 5-2: Pipe forms ..111

Table 7-1: Coercions between collection classes161

Table A-1: Notations used in the ScriptX EBNF grammar234

Table A-2: Precedence and associativity of ScriptX operators235

Table A-3: ScriptX reserved words ...236

Table A-4: Punctuation marks in ScriptX ...237

Table B-1: Unicode characters..263

Table B-2: Unicode Characters ...267
 xi

ScriptX Language Guide
xii

Preface

Preface

This document is part of the ScriptX Technical Reference Series. This series is
for programmers using ScriptX to develop interactive multimedia tools and
titles. This series includes the following documents:

• The ScriptX Components Guide provides an overview of ScriptX architecture,
conceptual explanations about the organization of the ScriptX classes into
components, and script examples showing how the classes work together. It
covers ScriptX from the multimedia title, down to the operating system
devices. This manual is essential to anyone designing and building
multimedia titles in ScriptX. It is the companion volume to the ScriptX Class
Reference.

• The ScriptX Class Reference is a detailed reference to the ScriptX class library
that provides, in dictionary form, a complete specification of the classes,
methods, variables, and functions available for building multimedia titles
and tools in ScriptX. It is the companion volume to the ScriptX Components
Guide.

• The ScriptX Language Guide (this manual) is a practical guide to using the
ScriptX programming language. It provides complete functional
descriptions of the language as well as concrete descriptions of tasks you
might do when actually working with the ScriptX language. Anyone
programming in ScriptX will want to use this book.

• The ScriptX Tools Guide provides information about the ScriptX development
process that is not covered in the other manuals. The first part discusses
how to use the browsers, the Listener and other tools that are supplied with
ScriptX. All users will want to read this part. The second part explains how
to extend ScriptX by loading classes written in C, and discusses
platform-specific issues. Developers who wish to add classes written in C to
ScriptX will want to read the second part. The third part of the ScriptX Tools
Guide discusses how to build additional tools in ScriptX. Tool developers
will want to read the third part.

• The ScriptX Quick Reference summarizes information about the ScriptX
Language and Class Library. It includes the grammar of the language,
listings of components and their classes, and an alphabetical reference to
classes, including class variables, instance variables, and methods.

Who Should Read This Book

Anyone interested in learning about how to write ScriptX scripts should read
this book. This book describes the ScriptX authoring language and provides
many annotated examples that demonstrate how to perform basic tasks in
ScriptX.
1

ScriptX Language Guide

Summary of Contents

This book is a reference manual for the overall structure of the ScriptX
scripting language, including syntax summaries and examples of its use. It
contains nine chapters and two appendixes.

Summary of Chapters

Chapter 1, “Introducing the ScriptX Language,” is an overall introduction to
the ScriptX language and to its use of object-oriented programming concepts.

Chapter 2, “ScriptX Building Blocks,” describes the basic parts of ScriptX that
are used to build larger expressions: numbers, strings, arrays, and arithmetic.

Chapter 3, “Working with Objects,” includes information about creating and
using ScriptX classes and objects, both the system-defined classes and any
others that may be written in scripts.

Chapter 4, “Conditionals and Loops,” describes the constructs in the ScriptX
language for compound expressions and control flow.

Chapter 5, “Functions, Threads and Pipes,” shows how to define functions in
ScriptX and describes the thread and pipe operators.

Chapter 6, “Defining Classes and Objects,” describes how to define and
specialize new and existing classes and objects in the ScriptX language.

Chapter 7, “Collections,” describes the classes that can contain other objects,
and the searching and selecting protocol for those objects.

Chapter 8, “Exceptions,” outlines the ScriptX exception system and the
constructs in the language for catching and handling exceptions.

Chapter 9, “Modules,” describes the module system in ScriptX, which allows
name space packaging and management.

Appendixes

Appendix A, “ScriptX Reference,” contains an EBNF grammar for the ScriptX
Language. It includes detailed discussion of tokens, operators, reserved words,
and expression syntax.

Appendix B, “Unicode Escape Characters,” contains a table of Unicode values
for special characters that are common to the Macintosh, OS/2, and Windows.

Manual Conventions

This manual is set primarily in Palatino and ITC Avant Garde, except that code
examples and code words, including names of classes, functions, generic
functions, and variables, are set in Courier.

If the return value of an expression is relevant to the discussion, that result is
shown after an arrow on the line following the code (if it’s not relevant,
nothing is shown):
2

Preface

tax:descript
2 + 2

➯ 4

Ellipses (. . .) replace parts of example scripts that are not relevant to the
discussion:

class example (MyClass)
. . .

end

Definitions of syntax from the ScriptX language are shown with an initial
graphic (▼) to allow you to find them easily in the text.

▼ if expression do expression

Syntax for function calls is shown with a different initial graphic (◆). Global
functions are functions that are not associated with any particular class or
obejct. Generic functions are used to call methods on individual objects.
Generic and global functions are not part of the ScriptX language itself; they
are defined by the core classes, and by the scripted classes and objects you
create in your own programs.

◆ append collection value

In syntax definitions, the Courier typeface indicates reserved words. Variable
parts of the expression are in italic and are explained in the body of text
following the definition.

Parts of syntax definitions that are optional are shown with brackets
surrounding the optional part. These brackets are not part of the construct
itself. They should be omitted in scripts:

▼ exit [with expression]

Parts of scripts that are intended to be repeated multiple times contain an
ellipsis (. . .) at the end of the series:

▼ expression expression expression . . .

ion
3

ScriptX Language Guide
4

C H A P T E R

Introducing the
ScriptX Language
 1

1

ScriptX Language Guide
6

Introducing the ScriptX Language

1

CL
Sm
Lin
Hy

authoring e
Listener
This volume provides a definitive description of the ScriptX authoring
language, part of the ScriptX Language and Class Library. It contains the
syntax for ScriptX and provides information on using the language effectively.
The book is designed to offer several different paths that readers can follow,
depending on their familiarity and experience with other programming
languages, with object-oriented programming, and with formal grammars.

Appendix A, “ScriptX Reference,” is intended as an alternative entry-point and
reference for advanced users. Appendix A presents an annotated EBNF
grammar of the ScriptX language.

This chapter, “Introducing the ScriptX Language,” provides an overview of the
ScriptX language. It includes a section that introduces concepts in
object-oriented programming, beginning on page 12. Readers who are familiar
with other object-oriented programming languages may want to skip this
section, proceeding directly to the following chapter.

Whatever path you take through this book and the other documentation you
receive with your ScriptX Language and Class Library, you will want to
reinforce your reading with hands-on experience. The ScriptX Language and
Class Library includes an interactive listener window that can be used for
trying out the examples in this book. The Listener provides you with instant
feedback, evaluating expressions as you enter them. If you prefer not to type,
you will find complete listings of all scripts, organized by chapter, on your
CD–ROM. For directions on using the ScriptX Listener, see the ScriptX
Developer's Guide.

The description of the ScriptX language and the code examples used in this
book are independent of any existing authoring tool or environment. Although
you should be able to enter code examples in this book in any ScriptX
environment that allows it, the examples in this book are intended to be more
illustrative than tutorial.

ScriptX—A Technical Overview

The ScriptX language is part of an overall framework for multimedia title
development. ScriptX is a cross-platform, dynamic, object-oriented
programming language with influences that include CLOS (Common Lisp
Object System), Smalltalk, and Dylan, as well as scripting languages such as
Lingo and HyperTalk. The language was designed to be easy to use in an
interactive session.

It is expected that most ScriptX titles will eventually be generated by authoring
tools or development environments specialized for creating multimedia titles.
Those tools will effectively hide much of the actual code of the ScriptX title.

OS
alltalk
go
perTalk

nvironments
7

1

ScriptX Language Guide

bytecode

expression
However, many of those authoring environments may require some additional
scripting with ScriptX. For example, an environment may require the author to
fill in parts of a title with specific scripts (for example, to describe the action of
a button), or to provide other capabilities that the tool itself does not provide.
In addition, some environments may provide an interactive environment, such
as the ScriptX Listener, which can be used to enter ScriptX expressions and see
an immediate result.

The ScriptX Language

The following section describes the main features of the ScriptX language:

• Programs written in the ScriptX language are compiled into a fast, portable
form called bytecode. The bytecode compiler is part of the ScriptX Language
and Class Library. Complete ScriptX titles consist of scripts in this bytecode
form, plus media content. Titles are compiled into platform-independent
bytecode which runs on the Kaleida Media Player for each platform. The
bytecode compiler allows ScriptX programs to have both the flexibility of an
interpreted language and the speed of a compiled language. Compilation is
immediate and interactive. ScriptX is characterized as a scripting language
in part because classes, objects, functions, and methods can be created and
compiled incrementally. New methods can be added to an existing class, or
an instance of a class, without recompilation.

• ScriptX is a pure object system. ScriptX is uniformly object oriented. In
ScriptX, in contrast with C++, every value is an object reference. Many
object-oriented languages allow a mixture of object and non-object types.
ScriptX does not. In ScriptX, every unit of information is an object. Every
construct in the language is an expression, and every expression returns an
object. Every operand in every operation is an object. Some core classes do
store information internally that is not in the form of an object. For example,
individual characters in a string are not objects. However, in the ScriptX
language, such data can only be evaluated and manipulated as objects.

• The ScriptX language is rooted in the Kaleida object system and the core
classes. This differs from C++, in which, at least in theory, a developer might
begin a new application by developing the equivalent of RootObject for
that application. (In ScriptX, RootObject is the root system class from
which all other classes in the application inherit.)

• ScriptX implements latent typing of variables, also known as dynamic
typing. This contrasts with static typing in both C and C++. Static typing
means that type is associated with the location the value is assigned to, not
with the value itself. By contrast, latent typing means that type is associated
with and intrinsic to the object itself. Static typing requires an explicit
declaration of type for any location that stores a value. With static typing, all
types that can be used in a program must be declared at compile time. With
latent typing in ScriptX, a location does not actually store a value, but rather
a reference to an object, generally stored elsewhere. One could say that all
ScriptX variables are of a single type—object reference. In practice, this means
that type checking is associated not with the compiler but with the object
itself. Type checking, which is optional, can be performed at runtime.

s

8

Introducing the ScriptX Language

1

classes

core classe
classes
• ScriptX allows any variable to store a reference to any object. In untyped
languages, expressiveness is limited by the ability of the language to parse
and interpret data from the input stream. Lingo, ToolScript, and
Hypertalk—untyped languages that are popular with existing multimedia
authoring tools—accept only data that can be represented as a string. In
these languages, data is stored and manipulated in other forms internally,
but all data must be represented implicitly as a string in a program. ScriptX
has a single data type, an object reference, which has the flexibility to
accommodate every kind of data and program construct, including classes,
objects, functions, methods, modules, directories, and files.

• ScriptX allow objects to be assigned to variables at runtime, a feature known
as dynamic binding. This allows new objects to be imported into a program to
interact with existing objects. If these objects understand a common set of
protocols, they can communicate at runtime. Dynamic binding allows
programmers to create a style of program that is open-ended. For example,
a title developer could ship a new set of scenes and characters to
complement an existing title.

• ScriptX offers a full range of control structures, including branching, case
statements, for loops, and repeat loops that terminate at either the beginning
or the end of the loop. The ScriptX for loop is notable in that it can iterate
over the members of a range or collection of objects. ScriptX control
structures are implemented as expressions that return values. This allows
control structures to be nested within other control structures.

• ScriptX is modular. Using modules, a programmer can specify well-defined
interfaces to programming libraries. Through the use of modules, a
programmer can protect a program’s namespace. Modules allow groups of
programmers to collaborate on large programming tasks.

The Kaleida Object Model

The following section describes the main features of the Kaleida object model.

• Classes are themselves objects. Class variables are really instance variables
of class objects, and class methods are instance methods of a class object.
Class objects are real, denotable objects in ScriptX that can be queried,
assigned to variables, and acted upon in the same ways as all other objects.
Class objects exist in a hierarchy, with each class object inheriting
information from the classes “above” it in the hierarchy. Subclasses add or
refine information that makes them more specific than the classes higher up
in the hierarchy. Class and instance variables are inherited through the class
hierarchy. Each class is an instance of its metaclass. For a description of the
Kaleida metaclass network, see the “Object System Kernel” chapter in the
ScriptX Components Guide.

• Classes and objects defined using the ScriptX language become
fully-featured, first-class representations in the ScriptX environment. They
interact seamlessly with existing objects and with the language. Although
there are internal differences, there is no distinction, in programming
interface, between a scripted and a non-scripted class. This allows title and
tool development to take place in a modular and incremental fashion, with
the ability to re-use and specialize any user-developed classes and objects.

Kaleida object model <$startrange>;object sys-
tem<$startrange>

s

9

1

ScriptX Language Guide

methods
method dis

generic fun

inheritance:m
multiple inhe

memory mana
garbage colle

ariable access
ncapsulation
stance variab
stance variab
etter methods
etter methods
• Methods, like class and instance variables, are inherited through the class
hierarchy. When a generic function is invoked, if the particular object that it
is invoked on does not define a method for it, ScriptX searches for an
appropriate method in each superclass up the inheritance tree until an
implementation is found. (The system maintains an efficient dispatch cache
to make this searching essentially negligible.) That method is then invoked,
with the original arguments, and it operates on the original object.

• Methods are invoked indirectly through the use of generic functions, allowing
for the separation of interface and implementation. Generic functions allow
you to use a single generic name and argument list to refer to multiple
implementations of the given generic function that may exist in different
classes. In object-oriented programming terminology, this behavior is known
as polymorphism. Generic functions are called identically to regular
functions, with the restriction that a generic function always has a first
positional argument, its target object.

• When classes or instances are multiply inherited, instance variable access
and method dispatch become more complicated. (Method dispatch
determines which method implementation is selected when a generic
function is called, as just described.) In singly-inherited classes, the search
for an appropriate implementation of a generic function is linear. If a
method definition is not found in the current class, its superclass is
searched, and so on up to RootObject. In multiply-inherited classes, the
order in which each class is searched determines which method is invoked,
especially in cases where different superclasses may define different
implementations for that generic function. ScriptX searches the class
hierarchy in a depth-first, topological fashion. (For more information on
inheritance, see “Multiple Inheritance” on page 127 of Chapter 6, “Defining
Classes and Objects.”) Each individual superclass is searched before any
common superclasses are searched.

• Objects that persist between user sessions can be saved to the ScriptX object
store. Program elements, including objects, classes, functions, methods,
variables, and modules, can be saved to the object store, just as other objects
that represent data are saved. The object store is designed for flexible load
management—objects can be preloaded into memory for better
performance. In the object store, objects are stored in a variety of containers,
which are themselves objects. Once data or program elements are stored in
containers, they can be moved from system to system, from platform to
platform, to run on any system that supports the Kaleida Media Player.

• Memory management is integrated into the ScriptX environment, and is
invisible to the ScriptX programmer. Memory allocation is automatic and
occurs when objects are created. Memory deallocation is also automatic;
memory for unused objects is reclaimed through the use of a real-time,
incremental garbage collector when there are no longer any references to the
object. The “Memory Management” chapter of the ScriptX Components Guide
describes memory management with the Kaleida Media Player.

• Access to instance and class variables, the getting and setting of values, is
implemented through accessor methods. Each class and instance variable is
associated with a corresponding getter method that returns its value. If the
value of a class or instance variable can be changed by a script, there is also

patch

ctions;polymorphism

ultiple
ritance

gement
ctor

les:getter methods
les:setter methods
10

Introducing the ScriptX Language

1

eida object m
em<$endrang

ore classes
a corresponding setter method that sets its value. It is this implementation
of variable access that enables ScriptX to support encapsulation of data in
objects.

ScriptX and the Core Classes

Most object-oriented languages, including ScriptX, are coupled with an
extensive class library. Unlike some, however, ScriptX is a rooted language,
meaning that many ScriptX values are interpreted directly as objects from this
library. The ScriptX library provides a rich body of core classes containing
powerful abstractions for multimedia programming. For example, there is a
hierarchy of classes inheriting from the class Clock, which handles timing and
synchronization. The programmer can simply use these core classes and
specialize them to fit particular needs. The ScriptX core classes are described in
the ScriptX Components Guide and the ScriptX Class Reference.

Being a rooted language, ScriptX was designed with the core classes library in
mind. It therefore has many language constructs that know about and
incorporate the methods that all objects are expected to have. The result is that
ScriptX has multiple surface syntax; in other words, it often has more than one
way to express the same thing. These alternate ways of expressing something,
which are in many cases shortcuts for longer operations that use methods, are
especially important in the areas of object creation and operator syntax. For
example, StringConstant and Array are two core classes where shortcut
language constructs can be used to create an instance of the class. By just
entering the data which comprises a StringConstant object, you create a
StringConstant object. Similarly, just entering the contents of an array in
array form creates an Array object. The following are some examples showing
both the shortcut language syntax and the corresponding longer version using
method syntax:

The examples below demonstrate using operator syntax and array access,
which are shorter and more natural than using the equivalent method syntax:

Language Syntax Equivalent Method Syntax

"I am a string" new StringConstant \
string:"I am a string"

global ar := #(1, 2) global ar := new Array
append ar 1
append ar 2

global kl := #(1:"one", 2:"two") global kl := new KeyedLinkedList
append kl 1 "one"
append kl 2 "two"

odel <$endrange>;object
e>
11

1

ScriptX Language Guide

object orien
trange>
OOP, see o

ming

objects
What is Object-Oriented Programming?

You can look at object-oriented programming as a conceptually simple
extension of what good programmers have always done or as a radically new
approach to software creation. In truth, object-oriented programming is both.
As such, you can approach learning it from either point of view. The rest of this
chapter explores object-oriented programming as an extension to conventional,
procedural programming.

Procedural Programming

Procedural programming is based on two entities: data structures and
functions. Data structures contain information. Functions act on that
information. Traditional programming tools typically create and maintain these
two entities separately.

Smart programmers have always found ways to reuse data structures and
functions. Reusing them is a good idea—they are already tested, they behave
in understood ways, and they often represent data or actions that many
programs need.

However, once you move a data structure from one program to another, you
discover that you need some functions to manage it. Or, when you move a
function, you discover the need for a data structure for it to manipulate. While
traditional programming languages don’t provide much support for this sort of
reuse, good programmers have still done it.

Combining Structure and Function

Object-oriented programming combines data structures and the functions that
act on them into a single unit. This combination of a data structure plus the
functions that act on that data structure is called an object.

You can change the contents of the object’s data structure using the functions
that come with the object. These functions don’t need a separate data structure.
You can think of the object as a component.

Operator Syntax Equivalent Method Syntax

2 + 3 sum 2 3

5 * 4 mul 5 4

ar[1] getOne ar 1

ar[1] := 2 setOne ar 1 2

ted programming <$star-

bject oriented program-
12

Introducing the ScriptX Language

1

encapsulat

classes
instance
Combining the two basic entities—data structures and functions—into objects
makes it easier to move them to other programs and reuse them. Data
structures and functions that represent the information and tasks of a
particular enterprise can be saved and shared, making programming tasks
quicker to complete and easier to maintain.

Protecting Data

Objects provide the advantage of data protection. Many programming
problems are the result of changing a data structure in a way that the
programmer didn’t expect or didn’t intend.

An object controls access to its data by making data inaccessible from
outside—you can only get and set its values by using functions for getting and
setting that are provided by the object. The correct object-oriented
programming term is encapsulation. Encapsulation allows an object to provide
quality control for its own data.

Thinking in Types

You can think of each type of object as representing a template. This template
is similar to the defined types that many other languages support, like a record
or a structure. As a template, the object can be used to create new objects that
share similar features. Each object created from the template gets a new,
initialized copy of the data structure defined for that type of object. Each object
created from the template also gets access to the functions that act on its data
structure. You can think of the template as a factory for building objects of a
particular type.

In object-oriented programming, such a template is called a class. Every object
is built from instructions that are associated with its class. Objects of the same
type are instances of the same class. Every object is an instance of any classes
that it belongs to or inherits from.

Properties and Methods

Suppose you want to represent dogs in a computer program. You start by
listing things you want to keep track of about a dog. In procedural
programming the things you want to keep track of are stored in your data
structure. Your data structure might contain items or fields such as name,
owner, breed, and temperament. Each object will store data for one dog
instance (See Figure 1-1).

ion
13

1

ScriptX Language Guide

properties
instance va
class variab

behavior

methods

classes:cre
objects:cre
Figure 1-1: Storing data for dog instances

In object-oriented programming, these items or fields are sometimes called
properties. Most properties are associated with a particular dog, that is, with a
given instance of the class Dog. Properties that are associated with a particular
dog are called instance variables. You might also want to define properties for
your program that are associated with all dogs—for example, you might want
to keep track of the population of dogs. Properties that are associated with the
Dog class in general are called class variables.

Now that you have a data structure for a dog, the next step in designing a
program is to figure out what a dog does. A dog performs certain activities,
which most programmers would refer to as procedures or functions. In your
dog program, these functions might include eat, sleep, run, fetch, bark, bite,
and sniff. In object-oriented programming, the actions that an object carries out
are sometimes called behaviors.

If you wrote a procedural program, most of your program would consist of
functions. In ScriptX, functions that are associated with a particular object or
class of objects are called methods, in part to differentiate them from functions
that are not associated with any object. To summarize, functions that are
associated with objects are called methods; those that are not associated with
objects are called simply functions.

Creating Objects and Classes

Although the formal discussion of the syntax for defining objects and classes
doesn’t occur until Chapter 6, ScriptX is a very natural and readable language.
This is a good place to jump in and examine ScriptX code.

This code sample creates a class called Dog and an instance of Dog called
nikki. Enter the first eight lines of code below, beginning with the word
class. This creates the Dog class. The Dog class can then be used as a template
for creating Dog objects. Each Dog object will have all the properties, such as
owner and breed, that are defined in the template. The Dog class also defines
three instance methods—bark, fetch, and sniff—just enough to give you
the general idea.

--

name

breed

age

length

Instance Variables:

sex

weight

temperament

Ella

P. Water Dog

4 years

75 cm

female

16 kg

just like Fred

owner Fred

Dog instance

name

breed

age

length

Instance Variables:

sex

weight

temperament

Odan

Mastiff

18 months

250 cm

male

100 kg

sweet

owner Jan

Dog instance

name

breed

age

length

Instance Variables:

sex

weight

temperament

Tyler

Shihtzu

9 months

16 cm

male

1.8 kg

frisky

owner Wade

Dog instance

riables
les

ating<$startrange>
ating<$startrange>
14

Introducing the ScriptX Language 1

instance va

return value

methods:ca
-- this code example, and others throughout this volume, are on
-- the CD–ROM with the ScriptX Language and Class Library
--
class Dog()

instance variables
name, owner, breed, age, length, weight, sex, temperament

instance methods
method bark self -> print "makes a lot of noise"
method fetch self -> print "fetches a stick"
method sniff self -> print "sticks nose into things"

end

➯ Dog

The return line (➯ Dog) indicates that the ScriptX bytecode compiler has
compiled the Dog class. That means you can now create Dog objects.

The next four lines of code create the first Dog object, which is assigned to the
variable nikki. In this example, the value of four of the instance variables for
nikki are set at initialization. Since the other four are ignored, their values
will be undefined until they are explicitly set.

object nikki (Dog)
settings name:"Nikki", owner:#("Jocelyn","Ken"), sex:@female,

breed:"English Springer Spaniel", temperament:@nervous
end

➯ Dog@0xef8908

Instance variables are like slots or buckets. You can put any ScriptX object into
the “slots” that are defined for the dog. This example uses several of the most
common classes of object in the system. The dog’s name instance variable
contains a StringConstant object "Nikki". The dog’s owner instance
variable contains an Array object. Each item in that array is also a
StringConstant object. The sex and temperament instance variables
contain NameClass objects, also known as name literals.

The return value (➯ Dog@0xef8908) tells you the Dog object exists, and it
gives the memory address. Of course, this memory address will differ with
each computing session, and on each platform. (Unlike the real Nikki, this dog
stays put at 0xef8908 until you no longer want her around!)

Ignoring for now the ScriptX language syntax, notice how easy it is get back
information about nikki. Here’s what you type into the Listener to get access
to the owner instance variables defined by the object nikki.

nikki.owner

➯ #("Jocelyn", "Ken")

Now consider the three instance methods defined for the class Dog: bark,
fetch, and sniff. In object-oriented programming you can think of calling a
method as sending a message to an object, telling that object to perform some
operation.

fetch nikki

riables

lling
15

1 ScriptX Language Guide

classes:cre
objects:cre

specializati

inheritance
➯ "fetches a stick"
OK

The third line (OK) is the return value of the fetch method. The print
function in the definition of the fetch method prints "fetches a stick" to
the Listener window. This string is not itself a return value—printing a string is
just an operation that fetch carries out. Throughout this manual, an
arrow (➯) indicates output from ScriptX to your Listener or debugger
window, including both printed messages and return values. Output from
ScriptX is also indented, to indicate that you do not type it in.

This example shows how you can create a description of a dog’s properties and
behavior as part of a dog template. This template is the Dog class, from which
usable Dog objects can be created. Each Dog from this template has the same
properties and the same general behavior, as described by its methods.

Note that each dog could behave differently, even though all Dog objects share
the same behavior. This is because a dog’s methods have access to the object’s
own data. You could write a fetch method such that a Dog object with good
temperament fetches faster than a Dog object with bad temperament.

Beyond Traditional Programming

So far, object-oriented programming simply represents a codified system for
doing what good programmers have always done: protect their data and reuse
trusted, tested code. This section focuses on things you can do with
object-oriented programming that couldn’t be simulated in procedural
programming languages.

Defining by Difference

Many times, programmers need to create new code that is similar to existing
code. In particular, there is often a need to modify the functionality of
something that already works, without totally rewriting it. Object-oriented
programming provides just this type of extended reuse, allowing you to create
a new class using an existing class as a base. The new class is a specialization of
the existing class. You only need to define how a new class is different from its
parent class—what properties and behavior it adds to or modifies in the base
class. In other respects, the new class is the same as the base from which it was
created.

Object-oriented programming is characterized by inheritance. This means that a
specialized class inherits the properties and behavior of its parent, which leads
to a hierarchy of classes, grouped together based on similarities in their data
structures and methods. This grouping of classes provides a family tree of
classes that range from general to specialized.

Going back to the dog example, say you want a world that is populated by
many kinds of dogs. The example created one class, Dog. For some programs,
that might be adequate. But what if you want to create a program that really
models all the different ways that dogs behave?

ating<$endrange>
ating<$endrange>

on
16

Introducing the ScriptX Language 1

polymorphi

superclass
subclass
Object-oriented programmers often design a hierarchy of classes that reflect the
specialization of behavior and properties they need to model. The Dog class
has general properties and behavior for all dogs. Using inheritance and
specialization, you can specialize that Dog class to create more specialized
classes that have particular characteristics and behavior. For example, you
could divide dogs into various categories like hunting dogs and lap dogs as
shown in Figure 1-2. There is no right way to categorize dogs; how you set up
the dog hierarchy should depend on how you want to use them. Think of all
the ways to divide up the world of dogs!

Figure 1-2: Creating inheritance hierarchies of dogs

One of the advantages to creating a hierarchy of classes is that different classes
can share the same behavior, or methods. This sharing of behavior is called
polymorphism. Each class or object that inherits a method can define its own
version of that method.

Technically, when your ScriptX program calls a method, it does not call the
method directly. For each method name, ScriptX creates a generic function.
Unlike regular functions, generic functions are always associated with an
object. Generic functions look just like regular functions, except that the first
argument is always an object. You always call a generic function on a particular
object. ScriptX determines which method to call, based on the value of the first
argument to the function, which is the object you are calling the function on.
Methods are really versions of generic functions, defined for a particular class
or object.

Generic functions reduce the complexity of the system of objects. A
programmer can get work done using the small vocabulary of generic
functions that is shared by a family of objects. Rather than a single function
with a single behavior, a generic function stands for a whole range of general
behavior, shared by a whole set of objects. Each class of object supplies an
appropriate implementation of the generic function . A programmer can easily
learn to use all dog classes, since every dog implements bark, fetch, and
sniff—the advantage is that each dog can implement them in its own way.
For example, each specification of the Dog class can have its own
implementation of bark. The following example shows how to specialize the
Dog class by creating two new subclasses: HuntingHound and LapDog. In
object-oriented programming terminology, Dog is a superclass of
HuntingHound and LapDog. HuntingHound and LapDog are subclasses of
Dog. Notice the specialization of the bark generic function on the
HuntingHound and LapDog classes.

class HuntingHound (Dog)
instance methods

method bark self -> print "wooof, wooof"

Dog

BloodHoundBassetHound Poodle Shihtzu

HuntingHound LapDog

sm
17

1 ScriptX Language Guide

override
methods:ov

methods:ne
nextMethod
end

➯ HuntingHound

class LapDog (Dog)
instance methods

method bark self -> print "yip, yip, yip, yip, yip"
end

➯ LapDog

Hunting hounds and lap dogs continue to share the same implementation of
the fetch and sniff methods, since they are not specialized. The bark
method, although it was already defined by the Dog class, has been redefined.
In object-oriented programming terminology, to specialize behavior in this
manner is to override a method.

To override a method is not necessarily to replace it with a completely new
version. A subclass can invoke the version of a method that is provided by a
superclass in its own implementation of that method. Here is an example.

class Shihtzu (LapDog)
instance methods

method bark self -> (
nextMethod self
print "jumps up and down"

)
end

➯ Shihtzu

object tyler (Shihtzu) settings name:"Tyler" end

➯ Shihtzu@0xefcf88

bark tyler

➯ "yip, yip, yip, yip, yip"
"jumps up and down"
OK

Note – Since you are used to getting a return value in the Listener window,
from now on, return values are shown only where required by the discussion.

In the example above, the expression nextMethod self causes any instances
of Shihtzu to call the bark method defined by the next superclass that
implements it. In this case, the next implementing superclass is LapDog. Each
instance of Shihtzu first calls the more general bark method for all instances
of LapDog, and then continues with the specialized version for a Shihtzu
object.

Polymorphism, the sharing of behavior, allows you to be more general because
you are specific in indicating which object should fulfill the request. The
programmer uses the generic function to describe what should be done and
leaves it to the object to determine how exactly to do it.

By comparison, functions in a procedural program have only a single version.
You must create a separate function or add special case code and additional
arguments for each new thing you want to do. Modifying a procedural
program increases the complexity of the system, and makes it harder for you to
maintain and scale your code.

erriding

xtMethod
18

Introducing the ScriptX Language 1

protocols
Protocols

A class that defines a common set of methods that every subclass either
inherits a definition of, or creates its own definition for, is said to define a
protocol. For example, the Dog class defines a protocol in the bark, fetch, and
sniff methods. These three methods are implemented for every instance of
Dog, making them the Dog protocol. A protocol is a set of generic functions
that is defined for every class in some branch of a class hierarchy.

In some object-oriented programming environments, the concept of protocol is
much more formal. In ScriptX, it is an informal term that identifies a set of
shared behaviors. As a programmer, it makes your life easy to know that every
dog, whether a golden retriever or a cocker spaniel, knows how to bark. Each
subcategory of dog, each individual dog breed, or even each individual dog,
can define its own bark, but you are guaranteed that if you have a dog, it
knows how to bark.

Defining New Behavior

You can create completely new behavior in a subclass. This example creates a
BassetHound class that implements the drool method, a method that other
dogs, with less active salivary glands and more active facial muscles, might not
share. In the dog world example, drool behavior is peculiar to basset hounds.

class BassetHound (HuntingHound)
instance methods

method drool self -> print "slobbers all over everything"
end
-- now create an instance of BassetHound
object vaps (BassetHound)

settings name:"Vaps", owner:"The Crosbys"
end
-- call the drool generic function on vaps
drool vaps

➯ "slobbers all over everything"

Note the following distinction, which is important in object-oriented
programming. In the previous example, it isn’t the BassetHound class that
drools. The BassetHound class is a template used to define the properties and
behavior of basset hounds. To be more precise, the BassetHound class is a
template that defines the ways in which basset hounds differ from hunting
dogs, and from dogs in general. But you have to create an actual instance of
BassetHound, a BassetHound object, in order to see a dog drool.

Multiple Inheritance

Up to this point, the model for the world of dogs contained only instances of
some subclass of Dog. That might do if you were only interested in one aspect
of a dog’s behavior. But in the real world, systems are far more complex. Some
unlucky dogs are wild or stray, and do not have owners. Instead, they have
territories and live in packs. Other dogs are tame, and have both owners and

inheritance:multiple<$startrange>
multiple inheritance <$startrange>
19

1 ScriptX Language Guide
veterinarians. Naturally, wild dogs behave very differently from pets. But so
far, the dog world example is set up as if all dogs have a property called
owner, an instance variable that stores the owner’s name.

Fortunately, ScriptX allows any object or class to inherit from more than one
parent class. This multiple inheritance allows you to factor the behavior of dogs
into several different parent classes. To factor behavior is to divide or separate
aspects of behavior in logical ways. The ability to factor information or
behavior is one of the benefits of multiple inheritance. For example, you can
keep the Dog class, renamed Canine, and create two new classes, Pet and
WildAnimal, that contain aspects of canine life that are peculiar to domestic
and feral dogs (see Figure 1-3). Mixing these classes together will produce dogs
with the desired characteristics.

Figure 1-3: Multiple inheritance and dogs

The following example creates a PetDog class that uses multiple inheritance to
define properties and behavior. The new class is a template for creating objects
that share characteristics of all of its parents. PetDog inherits from both the
Canine and Pet classes, which incorporate the general properties and
behavior of the previously defined Dog class, and add new ones.

Note – If you have been using the ScriptX Language and Class Library in one
continuous session since the beginning of this chapter, you will not be able to
redefine the Dog class until you eliminate all instances of Dog from the system.
Instead of reusing Dog, this example uses the name Canine as a root class for
dogs.

class Canine ()
instance variables

age, length, weight, sex, temperament
instance methods

method bark self -> print "makes a lot of noise"
method sniff self -> print "sticks nose into things"
method sleep self -> print "lazy dog sleeps all day"

end
class Pet ()

instance variables
name, owner, breed, veterinarian, spayed

instance methods
method fetch self -> print "fetches a stick"

end
class PetDog (Pet, Canine)
end

The PetDog class does not actually define any new behavior or properties for
PetDog objects. An instance of PetDog will have all the instance variables and
instance methods that its superclasses define. Now create a PetDog object.

Canine

StrayDog

WildAnimal Pet

Pet Dog
20

Introducing the ScriptX Language 1

inheritance
multiple inh
mix in

inheritance
multiple inh
object tammy (PetDog)
settings name:"Tammy", owner:"the Metzenbergs", sex:@female,

spayed:@true, breed:"Siberian Husky", veterinarian:"Dr. Donovan"
end
fetch tammy

➯ "fetches a stick"

sniff tammy

➯ "sticks nose into things"

PetDog object tammy defines properties of both a Canine object and a Pet
object. She barks, sniffs, and sleeps like a canine, and she fetches like a pet.

Although you would probably want to override the fetch method, you could
easily create a Cat class and combine it with Pet to create the new class
PetCat. In object-oriented terminology, Pet is being used to mix in
characteristics of Pet with another class to create a new subclass that offers
additional features.

As you work with ScriptX, you will find many examples of multiple
inheritance in use. With multiple inheritance, it is easy to add new features to
classes and objects you create. ScriptX ships with a library of media classes
called the core classes. You can add functionality to your own classes by
mixing them in with these predefined media classes. For example, if you
wanted to have your PetDog object appear in a ScriptX window, you could
create a new class that mixes PetDog with TwoDShape, one of the core classes.
As an instance of TwoDPresenter, a TwoDShape object can present a graphic
object, such as a bitmap. Mixing in the TwoDShape class would give your
objects the ability to display a target object (such as a bitmap) in a window
with a two-dimensional coordinate system.

Ease of Modification

Suppose you have already built a system that works. You have a trusted, tested
sequence of logic. Do you want to add new functionality, when any change
might break your entire system?

In an object-oriented environment, you can isolate changes so that they have
an effect on only a particular class, a group of classes, or even a particular
object. Suppose you have a pet dog that sleeps on top of his doghouse. You
don’t have to create a new class, or modify any existing classes. You can add
this new behavior to a particular PetDog object when you create the object.

object snoopy (PetDog)
instance methods

method sleep self -> (
print "sleeps on top of his doghouse"
nextMethod self

)
settings name:"Snoopy", owner:"Charlie Brown", breed:"Beagle"

end
sleep snoopy

➯ "sleeps on top of his doghouse"
"lazy dog sleeps all day"
OK

:mixing in classes
eritance:mixing in classes

:multiple<$endrange>
eritance<$endrange>
21

1 ScriptX Language Guide

class librari
As this example shows, specialization in ScriptX is not limited to defining new
classes. You can add new instance variables and define or override instance
methods at any level, even for a single object.

Connections Between Objects

In ScriptX, as in all object-oriented languages, you often build complex data
structures by connecting objects. ScriptX stores values by reference. When you
assign or set an instance variable, you store a reference to another object. In
this respect, instance variables create a network of connections between objects.
These object connections allow you to connect information in ways that are
natural and logical, avoiding duplication of information and functionality.

Suppose you want to know where pet dogs live. As defined in the previous
section, the PetDog class inherits from both Pet and Canine. From the Pet
class, a pet dog inherits the instance variable owner. If an owner has an
address instance variable, you can get access to that information through the
dog. The following example defines the Owner class and creates an instance of
Owner and an instance of PetDog.

class Owner ()
instance variables

name, address
end
-- create an owner
object jan (Owner)

settings name:"Jan", address:"Fairfax, California, USA"
end
-- create a dog for the owner to own
object odan (PetDog)

settings breed:"Mastiff", sex:@male, name:"Odan"
end

If the dog’s owner instance variable is set, you can figure out where the dog
lives by examining the owner’s address instance variable.

odan.owner := jan
odan.owner.address

➯ "Fairfax, California, USA"

This connection makes additional information available about a pet dog,
without modifying the Canine or PetDog classes. (In an actual program, you
could make this connection at initialization, and introduce error and type
checking.)

Building and Maintaining Libraries

Traditional libraries of code are collections of pretested functions that extend a
language. These functions typically address narrow areas of specific behavior,
such as database design or special mathematics. Rarely are all the necessary
data structures provided. Most libraries can’t attempt to solve complete,
application-level problems. The library code is intended to be connective. As

es<$startrange>
22

Introducing the ScriptX Language 1

class librari

classes:sea
sealed clas

classes:abs
abstract cla
classes:con
concrete cl

classes:scr
scripted cla
the programmer, you write the majority of the code in an application. You
construct the problem-solving framework and use library code where
appropriate to fill in the gaps.

Object-oriented libraries are collections of classes arranged in hierarchies that
resemble family trees. The library classes and the objects created from those
classes are complete and ready to use. They can address larger scale problems
than function libraries can. The programmer can use them to accelerate
development, making it possible to prototype rapidly by using library objects
as a base for exploration.

More importantly, it is possible for an object-oriented system to provide a set of
objects that have built-in relationships. By creating collections of cooperating
objects, it’s possible for an object-oriented system’s libraries to act as pretested
problem-solving frameworks. The framework provides the majority of the
code. You plug your objects into the slots left in the framework.

It’s easy to modify object-oriented systems without breaking them, because the
changes are localized in individual objects, not spread out across many data
structures and functions. Adding new behavior to an object-oriented system
can often be as simple as creating a new type of object and placing an object of
that type in an existing system of code. The system is modified by changing the
type of the object that receives a method. The trusted, tested sequence of logic
doesn’t have to change.

Special Kinds of Classes

The ScriptX core classes library defines a few classes that cannot be specialized.
This means you cannot create new subclasses of those classes. You cannot add
methods or instance variables to those classes, or to instances of those classes.
These classes are said to be sealed. Sealed classes are often internally optimized
and as such do not provide behavior that would be available to subclasses. The
sealed classes include classes that represent numbers, Boolean values, names,
gates, and threads. Most of the classes in the core classes are not sealed.

Another special kind of class, common throughout the core classes, is an
abstract class. When a class hierarchy is organized, information is factored into
superclasses so that common subclasses can share and reuse it. Often, when
information is factored in this way, classes can result that provide partial
information for their subclasses, but do not contain enough information to
create fully-featured instances of themselves. These classes are called abstract
classes. An abstract class can be subclassed or mixed in with another class, but
it cannot be instantiated. Abstract classes exist as a basis for defining other
classes. ScriptX prevents you from instantiating an abstract class. Any class
that is not abstract is concrete.

A final distinction is between scripted classes and the core classes themselves. A
scripted class is one that is created using the ScriptX language. (The core
classes are created with Objects-In-C, an extension of the C programming
language developed by Kaleida Labs, Inc.) All scripted classes are unsealed.
Although there are some internal differences between scripted classes and the
core classes, their external interface is the same.

es<$endrange>

led
ses

tract
sses
crete

asses

ipted
sses
23

1 ScriptX Language Guide

object orien
drange>>
Wrapping Up Objects

In summary, objects are data structures that are associated with both data and
the functions, which are called methods, that act on that data. Objects are
created from classes, which act as templates for building objects. Each object is
an instance of its parent class.

Classes are organized in a hierarchy that resembles a family tree, based on the
characteristics they share. Classes inherit the properties and behavior of their
parent classes. When it is created, or instantiated, each object gets a copy of the
instance variables and access to the instance methods that are defined for its
class.

With each new class of objects, a programmer is free to define new instance
variables and methods, or to override existing methods to behave in a new,
appropriate way for the particular class. This redefinition can even incorporate
the parent’s version of the same method.

This class inheritance tree ranges from very general types at its root to more
specialized types at the branches. The types in a particular branch of the tree
share a common way of doing things. New classes can be added at any point in
the tree. Almost any existing type can be the parent for a new type.

Much of the real power of an object-oriented environment is found in the class
libraries that can be included with an object-oriented language. They allow a
programmer to concentrate on the problem at hand, building solutions from
reliable, tested components.

The primary benefits of object-oriented programming are reduced complexity,
increased reusability, and extensibility. Objects are a way of bundling data and
functions together to make a reusable software component. Objects protect
their internal workings, hiding their data and generalizing their functions so
that there are fewer details for a programmer to deal with. Classes are factories
for making usable objects. Classes provide the basis for making new types
simply by describing how the new type is different from an existing type.

Object-oriented programming gives you the ability to create a general
framework which, because of polymorphism, continues to work with new and
unexpected specializations of the system. All the basic frameworks in ScriptX,
such as the animation compositor, depend on polymorphism. Because of
polymorphism, you can rely on existing frameworks to work with new objects
that you define in your title.

ted programming <$en-
24

C H A P T E R

ScriptX Building
Blocks
 2

2

ScriptX Language Guide
26

ScriptX Building Blocks

2

This chapter describes many of the basic building blocks of the ScriptX
language, including expression syntax, comments, lexical constructs such as
end-of-line, literals such as numbers and strings, variable scope, declaration,
assignment, and simple operators.

Expressions

ScriptX is an expression-based language. An expression is a language construct
that can be evaluated to yield a value. In ScriptX, every complete construct in
the language yields a value, and that value is always an object.

Valid expressions in ScriptX include things that you might not consider to be
expressions in other languages, such as loops and conditionals. Since every
construct in ScriptX yields a value, you can write more flexible code by nesting
expressions within other expressions and passing around their results.

When a ScriptX expression is evaluated, the resulting value is always an object,
and that object is an instance of a class (either one of the ScriptX core classes or
a class you have defined). Where the distinction between the value and the
class of an object is important, this book refers to each separately. For example,
the expression 2 + 2 yields an ImmediateInteger object whose value is 4.

End-of-Line

ScriptX is a flexible, command-based language which, unlike some other
programming languages, does not require statement punctuators such as
semicolons. In ScriptX, an end-of-line most commonly signifies the end of an
expression. You can break an expression over multiple lines, but only if the
break occurs at a point where the expression is incomplete.

For example, you could write the expression a < b as follows:

a <
b

In this example, the end of the expression has not yet occurred at the end of the
first line, so ScriptX looks to the next line for the expression to be completed.
That same expression could not be written this way:

a
< b

Because a is a complete expression in ScriptX, the end-of-line after a is
considered the end of the expression. The second line would then result in an
error, since the ScriptX bytecode compiler expects to find a new expression
beginning on that line.
27

2

ScriptX Language Guide

A sentence is a complete syntactic construct that can be evaluated by the
ScriptX bytecode interpreter. The bytecode interpreter does not evaluate an
expression until you enter a “complete sentence” in the Listener window. An
incomplete sentence can be continued on the following line. The following
generalizations apply to completion of ScriptX sentences.

1. When the interpreter is expecting a closing delimiter, such as a parenthesis,
square bracket, or brace, the sentence is incomplete.

2. A complete sentence cannot end with a separator, such as a comma, colon,
or function body separator (->).

3. A complete sentence cannot end with a binary operator, such as an
arithmetic or comparison operator (+, –, *, /, =, ==, <>, !=, !==, <, >, <=,
>=), the collection access operator ([]), the function operator (()), or the
assignment operator (:=).

Line breaks can make a ScriptX program less readable. Some programmers use
the backslash (\) to indicate all line breaks, even in cases where it is not
required by ScriptX syntax. Most programmers break lines only in obvious
places, such as after separators and binary operators.

A script cannot be broken in the middle of a literal (such as a number or string)
without causing a syntax error, or changing the meaning of the expression.

-- this example generates a syntax error
global myArray := #(33, 44, 55, 6
6, 77, 88, 99)
-- ** Syntax error: ("syntax error") at "6" (SyntaxError)

In the next example, the line break is interpreted as a newline character:

global myString := "This is my
string"

➯ "This is my
string"

To force evaluation of an incomplete sentence in the scripter, type !! and press
enter. Two exclamation marks act as a terminator, allowing you to begin
entering a new expression. If the expression that the scripter was currently
evaluating is incomplete, termination reports a syntax error.

(a + b) < !!
-- ** Syntax error: ("syntax error") at "(a + b) < !" (SyntaxError)

For more information on ScriptX syntax and expressions, see Appendix ,
“ScriptX Reference.”
28

ScriptX Building Blocks

2

Continuation Over Multiple Lines

Most ScriptX expressions can be written on a single line. Some expressions
have recognizable boundaries that allow them to be broken over multiple lines.
If an expression is too long to fit on a single line, and cannot be divided, you
can continue an expression on the next line by placing a backslash (\) at the
end of the line.

A backslash indicates that an expression continues on the next line. The
backslash itself is treated as white space. If you prefer, you can use a backslash
wherever there is a line break, for readability. When an example in this book
uses the backslash, the second line is indented to show continuation from the
previous line.

1 + 2 + 3 \
+ 4 + 5

Since tabs are treated as blank space in ScriptX, you can use tabs freely to make
your ScriptX code more readable. One place you might not want to use a tab is
in a string—you wouldn’t want tab characters embedded in your strings.

print "This is an example of a very long expression, one that \
is too long to fit on one line."

The example above shows a call to the print function. Function calls are the
most common case of an expression that is too long to fit on one line but
cannot be split over multiple lines unless you use a backslash. Function calls
are described in further detail in Chapter 3, “Working with Objects.”

Finally, multiple expressions can be placed on one line, separated by
semicolons:

t := b * b; if t < j then t else j; print b; print t

Comments

A comment, which is a text annotation added for readability, is ignored by the
compiler. The ScriptX language implements two styles of comments:
end-of-line comments and inset comments. Since they can extend over many
lines, inset comments are often called multiple-line comments.

End-of-line comments begin with two dashes (--) or two slashes (//).
Everything that follows the second dash or slash, up to the end of the line, is
considered a comment and is ignored by the compiler. Note that a backslash
(\) within a comment is ignored. To continue a comment onto the next line,
you must precede that line with dashes or slashes as well.

-- This is a comment that is quite verbose so I have
-- no choice but to continue it on the following line.

// This comment style is for lost souls who suffer C++ envy

End-of-line comments are useful for appending to a line of code:
29

2

ScriptX Language Guide

2 + 5 - (15 / 4) -- some random arithmetic
true == false // a silly comparison

Inset or multiple-line comments (/* this is a comment */) use the same
notation as the C programming language. Unlike C, ScriptX allows inset
comments to be nested, as in the following example.

/* This is part of a comment which
will continue for many lines,

/* and so is this,
and this too!

*/ But the comment is not finished yet!
This is still part of the same comment!
It ain't over till the woman of size sings!

*/

The ability to nest multiple-line comments provides a versatile mechanism for
“commenting out” sections of source code. Although nested comments are
more flexible than the unnested C-style comments, several other kinds of errors
are possible. For example, by deleting a comment terminator that is nested
within another comment, a developer might inadvertently comment out other
parts of a program.

Numbers

One of the simplest constructs in ScriptX is the number literal. A number literal
evaluates to an instance of the appropriate Number class. Figure 2-1 shows the
available number classes. The “Numerics” chapter of the ScriptX Components
Guide provides additional information on the range and precision of each of
these classes.

Figure 2-1: ScriptX number classes

Floating-point numbers must begin with an integer—that is, you must use
0.1234 rather than simply .1234. Floating-point numbers with no fractional
value must include a 0 after the decimal, that is, 4.0 or 12345.0, to
differentiate them from integers. For example, 4.0 is treated as a floating point
number, while 4 is treated as an integer.

Number

Integer

ImmediateInteger

Fixed

Float

LargeInteger

Legend
Gray box = abstract class
Black box = concrete class

RootObject

ImmediateFloat
30

ScriptX Building Blocks

2

Floating point numbers can also be represented using exponential notation.

6.023e23 -- Avogadro’s number

Negative numbers are preceded by a minus sign.

-123.456
6.626e-27 -- Planck’s constant
-0.99999999

Keep in mind that floating point values, unlike integers, are not stored with
exact precision on computer systems.

4.2 -- it will be stored as an ImmediateFloat object

➯ 4.19999885559082

Hexadecimal Numbers

You can use numbers in scripts in hexadecimal form using the 0x notation.

0xFFF
0x04

When a hexadecimal number literal is evaluated, ScriptX creates an instance of
ImmediateInteger or LargeInteger, just as it would for its decimal
equivalent. Only integer hexadecimal numbers are supported by ScriptX.

Strings

String literals in ScriptX consist of one or more characters delimited by double
quotes (").

"This is a string."

The value of a string literal is an instance of the class StringConstant, which
stores the string as a sequence of UTF values, an optimized representation of
31-bit Unicode/ISO 10646 values. Unicode allows ScriptX to represent most
international characters.

Strings can contain any characters, including single quotes, operators, and
other characters that would be interpreted differently by ScriptX outside the
string. The following strings contain character sequences that make them look
like other ScriptX constructs:

"Is it a string? Yes, it's a string."
"-- A string with a comment in it"
"a string with an assignment := in it"
"a string with arithmetic in it: 4 + 4"
31

2 ScriptX Language Guide
Strings can also include end-of-line characters; that is, strings can be spread
over several lines. End-of-line characters are preserved in a string as newline
characters:

"Jack and Jill
went up the hill
to fetch a pail of water"

Table 2-1 lists special characters that can be included in strings as escape
sequences.

Note that ScriptX handles the problem of different implementations of the
newline character (\n) on different platforms by forcing the newline character
from all platforms to the value 13.

When the text string is compiled, ASCII special characters are converted into
their internal equivalents, and are not displayed again as escape characters.

"a string with a \n return in it"

➯ "a string with a

return in it"

Non-ASCII Unicode characters are represented as Unicode escape characters
when they are printed to a stream, such as the Listener window.

-- \<2122> represents the trademark symbol (™)
"ScriptX\<2122> is a really awesome language"

➯ "ScriptX\<2122> is a really awesome language"

At this time, the operating systems on which the Kaleida Media Player runs do
not support the Unicode standard. Full support is expected in the future. In the
interim, ScriptX maps common Unicode characters to platform-specific
character sets. Characters are displayed correctly as the target of a text
presenter, provided that the character is supported by the underlying system,
and that an appropriate glyph is available in the display font.

ScriptX does not map platform specific (non-ASCII) characters to their
corresponding unicode characters. Representation of non-ASCII characters
requires the use of escape sequences, as in the example above. Appendix ,
“Unicode Escape Characters,” contains a listing of many commonly used

Table 2-1: Special characters in strings

Characters Meaning

\r return

\n new line

\t tab

\" double-quote

\\ backslash

\<nnnn> hexadecimal values for Unicode characters
32

ScriptX Building Blocks 2
special characters and their hexadecimal Unicode values. For an explanation of
Unicode and UTF encoding, see the “Text and Fonts” chapter of the ScriptX
Components Guide.

A Note on Strings and String Constants

String literals, described in this section, are instances of the class
StringConstant. Instances of String and StringConstant appear the
same in most operations, but functions or operators (such as the comparison
functions described on page 40) that are concerned with the classes of those
objects may differentiate between them.

When you attempt to modify a string constant, some operations convert it
automatically to a String object, its editable counterpart. These operations
include string addition and subtraction, described on page 43. Other
operations require that you explicitly coerce the string constant to a string.
Coercion of objects from one class to another is described in Chapter 3,
“Working with Objects.”

System Objects

ScriptX provides several objects, created at start-up, that serve as system
constants. Table 2-2 describes those objects.

You may be accustomed to languages where certain functions, like void
functions in C and C++, return no value. ScriptX is a language of expressions,
a language where every expression returns a value. That return value is always
an object. Think of a system object as a pointer to some fixed location in

Table 2-2: System objects

Object Use

true, false The true and false objects are the two instances of the
Boolean class. If true and false are coerced to a Number
class, true = 1 and false = 0, so that true > false.

undefined Equivalent to NULL in other languages; undefined should be
used to mean “has no value.”

unsupplied The value assigned to any keyword arguments that were not
given explicit values when the function or method was called.
Keyword arguments to functions are described in Chapter 5.

empty
Used by functions that operate on collections such as arrays to
indicate “element asked for was not found.” Do not use empty
to mean undefined; use undefined instead. See page 163
for more information about the empty object.

OK Used by functions that have specific side effects and no relevant
return value (similar to functions in C that return void).
Functions that return OK should always return OK regardless of
the outcome of the function (unless the function reports an
exception and the thread it is running in dies). See Chapter 5 for
more information about functions and threads. See Chapter 8
for more information about exceptions.
33

2 ScriptX Language Guide
memory. A system object is simply a value that is the outcome of so many
ScriptX expressions that it has been predefined by the system. All such values
are defined as objects, providing completeness to the ScriptX object system.

You can use system objects in your own scripts. Be careful to use them exactly
as they are defined in Table 2-2, so that the classes and objects you create can
work with other classes and objects.

Names

There are two kinds of names in ScriptX, lexical names and name literals.
Lexical names are used to name variables and other denotable things,
including functions and local function arguments. Name literals can be used as
labels for function arguments, as keys in keyed collections, or anywhere else
that a simple label might be required.

ScriptX names are case insensitive. That is, upper and lower case letters are
treated the same. However, ScriptX remembers the case used the first time a
new name appears and uses that case whenever it displays that name.

Throughout the Kaleida Technical Reference Series, the following case
conventions are used:

• Names of functions, methods, and variables are often compounded from
several words. In cases like this, the first letter in every word except the first
is capitalized:

appendNew
beginDecompressSeq

• Names of modules and classes have all words capitalized, including the first
word:

SequencePlayer
KeyedLinkedList

ScriptX defines about a hundred reserved words that cannot be used as lexical
names. (They can be used to name keyword arguments for functions.) For a
complete list of reserved words, see Table A-3 on page 236.

The ScriptX core classes define the names of many classes, variables, methods,
keywords, global functions, global variables, and global constants. These
names are imported into any module that uses the ScriptX module. A script
can override these names, both globally and locally. It is quite common to
override them locally. For example, a class may use the name of another class
internally as the name of an instance variable, often an instance variable that it
uses to store an embedded object. Although it is permitted, it is not good
programming practice to override any of these names globally.
34

ScriptX Building Blocks 2
Lexical Names

Lexical names are used to name things in a program that the compiler must
interpret during compilation, such as variables, local functions, and function
arguments.

Names must begin with an alphabetic character or an underscore (_). They
can contain only uppercase and lowercase letters (A–Z, a–z), numbers, or the
underscore character. Names cannot contain spaces, tabs, special characters, or
non-alphanumeric characters such as symbols and punctuation. They can be
up to 256 characters in length.

Here are some examples of valid names:

foo
mylist
_x
HugePulsingCreatureFromTheCratersOfVenus
bignum4500
oswald_acted_alone

Here are some examples of names that are invalid:

23skidoo -- invalid, because it starts with a number
curses@(*&#!*@& -- invalid, because it contains symbols
spread out -- interpreted as two names, because it contains a space
aïda -- contains an accented or inflected character

Name Literals

Unlike lexical names, which are used to name things at compile time, name
literals denote NameClass instances which exist at run time. Name literals
evaluate to NameClass objects.

• To create a name literal from a simple name, use an at sign (@) before the
name itself:

@foo

• To create a name literal from an expression, call intern NameClass on the
expression:

intern NameClass ("foo" + "bar")

Name literals follow the same upper and lower case conventions as lexical
names. Here are some more examples and uses of name literals:

@utterly_undefined_thing
prin variableThing @normal debug -- used as a label for an argument
animals := #(@snake:"cobra", @bird:"sparrow", @fish:"guppy")

Name literals form a proper set. Multiple occurrences of a name literal with the
same sequence of characters always evaluate to the same object. For example,
the names @lefthanded, @LeftHanded, and @LEFTHANDED are not merely
35

2 ScriptX Language Guide
equal—they represent the same object. Name literals can be stored and
compared more efficiently than strings, since multiple instances of strings may
contain the same sequence of characters but are still different objects.

Name literals are useful as labels to make your scripts more readable. For
example, if a function has an argument that is always one of three values, you
can use name literals for those values instead of using numbers or strings.
Additionally, name literals can be used as keys in key-value pairs, or anywhere
else you need a valueless label in a script. Name literals are used extensively in
this way by the ScriptX core classes.

Variables

This section describes variables and scope, including variable declaration and
assignment. It also provides a brief introduction to modules. Modules are
covered in greater detail in Chapter 9, “Modules.”

Variable Scope and Extent

The scope of a variable definition determines where that variable is defined and
where it can be referred to by name. The extent determines how long that
variable remains defined.

ScriptX provides two different kinds of scope for its variables: global and local.
Variables that are declared global have a global scope. This means they
continue to exist for the duration of the program’s execution, and they are
visible in modules that use the current module. Variables that are declared
local, however, can be declared and used only within the context of a limited
variable scope. Local declarations cease to exist once that variable scope has
ended.

ScriptX does not directly define a static scope, as in C and C++, but equivalent
functionality is available through closures. A closure variable is a variable that
persists in memory like a global variable, but is visible only within a local
scope. Closures and closure variables are defined on page 107.

The ScriptX language has several constructs that introduce a new variable
scope different from that of the scope surrounding it, including function and
method definitions and some loops. Compound expressions are the most
commonly used construct that defines a new variable scope. See “Compound
Expressions” on page 53 for more information about local variables and
examples of how variables act within different variable scopes.

By default, ScriptX variables are global, including the variables that are used to
name functions, classes, and some objects. However, you should explicitly
declare each variable you use to be either local or global using the
expressions described in the section “Declaring Variables” on page 37.
36

ScriptX Building Blocks 2
A Note on Modules

In addition to the concepts of local and global variables, ScriptX also provides
support for modules. Modules in ScriptX are a packaging system that allows
control over multiple global variable namespaces. Global variable names are
only visible within the module where they are declared, and in modules that
use that module. Modules allow for integration of large titles from components
made by many different programmers without naming conflicts.

Every ScriptX expression is compiled and executed within the context of a
given module. Global variables defined and used within a single module are
only visible to other expressions that are visible within that module. Different
modules can have different global variables with the same name. Using
modules, you can import, export, and rename variables across modules to
combine parts of ScriptX programs without worrying about whether different
parts of a program use the same names.

You do not need to define modules, or even understand modules, in order to
use ScriptX. Most ScriptX environments provide a default module in which
you can define variables, enter expressions, execute scripts, and experiment
with ScriptX. ScriptX modules are useful when you are creating larger
programs or parts of programs that you expect to distribute and be used by
other ScriptX programs. Chapter 9, “Modules,” describes how to define and
use multiple modules to manage variables in your ScriptX program.

Declaring Variables

Variables are declared using the local or global construct.

▼ local varname, varname, varname . . .

global varname, varname, varname . . .

The varname is the name of the variable to be declared. Multiple variable names
can be specified in the same expression, separated by commas.

Local variables can only be declared and referred to by name inside a construct
that introduces a new variable scope (such as a compound expression,
described on page 53). You cannot declare them at the outermost level.

Global variables can only be declared at the outermost scoping level. It is
considered good programming practice, in ScriptX as in all languages, to
declare a global variable before it is used. Many programmers declare global
variables at the beginning of a program or module.

global density, mass, velocity

You do not have to declare variables before they are used. Be forewarned,
however, that the first time you reference a variable that has not yet been
declared (either by assigning an object to it or by simply referring to it by
37

2 ScriptX Language Guide
name), that such a variable is declared global (regardless of the scope in
which it is defined) and a warning is printed to your environment’s debugging
window or stream:

mishegoss := @normal
-- ** Warning: Undeclared global mishegoss

➯ @normal

For the sake of brevity, many examples in this book do not explicitly declare
global variables. Readers should assume that any global variables used in
examples have already been declared.

If you try to reference a variable that has been declared, but has not yet had
anything assigned to it, ScriptX reports an exception.

global pickup
print pickup
-- ** While calling from the listener at:

0: PUSH-EXTERNAL-VARIABLE Scratch:pickup
-- ** Scratch:pickup does not have a variable value

(UninitializedVariable)

Variables can be assigned initial values using the assignment operator (:=),
which is described in the section “Assignment” on page 38. A colon can also be
used to assign an initial value to a variable.

global pickup := 52
global defenseBudget:3.18e11, moonsOfMars:2

Constants

You can make both local and global variables read-only by following either the
local or global reserved word with the reserved word constant. Constants
have values that cannot be changed by assignment, and as such must have
values assigned to them at time of declaration:

global constant halfTon := 1000
global constant lightSpeed := 2.998e8 -- speed of light, meters/sec

Assignment

To assign a value to a variable, use the assignment operator (:=).

▼ location := expression

On the lefthand side, location is a variable name or declaration. Most
expressions in the ScriptX language can be used on the righthand side. For
more information on the assignment expression, see the discussion on page 245
in Appendix A, “ScriptX Reference.”

local var := 15
38

ScriptX Building Blocks 2
x := "string that goes in x"

Variables can be assigned to a value without being declared first, as in the
previous example. A warning is printed if you do so. Variables that are
assigned a value before they are declared are automatically declared as global
variables, regardless of the scope in which they are used.

Variable assignment expressions evaluate to the value assigned; this allows
you to nest or cascade assignments within other expressions:

z := 14 + (y := 3 - (x := 6))

➯ 11

In this example, the expression x := 6 evaluates to 6, and y evaluates to –3,
allowing the value 11 to be assigned to z.

Variable assignment in ScriptX is reference assignment. Assigning one variable
to another does not copy the object that variable contains. Both variables
contain a reference to the same object. Consider the following assignment
expressions:

myRect := new Rect x2:100 y2:100

➯ [0, 0, 100, 100] as Rect

myOtherRect := myRect

➯ [0, 0, 100, 100] as Rect

In the first assignment, a new instance of the Rect class is assigned to myRect
(the new method is described in the next chapter). In the second assignment,
myRect is then assigned to myOtherRect, which has the effect of setting
myOtherRect to reference the same Rect object that myRect references.

Figure 2-2: Pointer assignment

If you change any properties of myRect, you also change myOtherRect, since
they both refer to the same object in memory.

myRect.y2 := 60

➯ 60

myOtherRect

➯ [0, 0, 100, 60] as Rect

RectmyRect

myOtherRect
39

2 ScriptX Language Guide
Variables and the Garbage Collector

As a ScriptX program runs, many objects are created. When there are no longer
any references to those objects, the garbage collector automatically removes
them from memory and reclaims the space they were using. This happens
when all variables that reference an object have other values assigned to them,
and there are no other references, such as by membership in an array or
through another object’s instance variables.

Each variable declaration uses only one word of memory, four bytes on a 32-bit
processor, until an object is assigned to it. Objects are whatever size they are
when instantiated. Once an object is assigned to a variable, ScriptX keeps that
object in memory until there is no longer an active reference to it, including
any other variables that reference that object. Of course, an object may itself
contain references to other objects. Some objects, such as arrays, contain
references to objects that are their members or elements.

Memory assigned to a local variable can be reclaimed at the end of the scope in
which that variable is declared. Memory assigned to a global variable cannot
be recovered unless the value of the variable is set to undefined, or the
variable is unbound.

To allow the garbage collector to reclaim memory from unused objects, use
local variables whenever possible. For global variables, set the value of a
variable that references the object to undefined (or some other value) when
the object is no longer needed. This allows memory to be reclaimed without
undoing the declaration itself.

global garbage := "taking up space"

➯ "taking up space"

garbage := undefined

➯ undefined

garbage

➯ undefined

In this example, garbage still exists as an empty slot in memory. This slot
points to the undefined object, a system object.

ScriptX Operators and Simple Expressions

This section describes the basic operators ScriptX has for forming simple
expressions. Table 2-3, “ScriptX operator precedence, highest to lowest,” shows
the order in which ScriptX expressions are evaluated.

ScriptX includes operators for the following:

• arithmetic

• equality

• magnitude

• logical expressions
40

ScriptX Building Blocks 2
Most ScriptX operators give the programmer the option of using white space
both before and after the operator. Many programmers prefer to add white
space, for readability.

z:=x*y -- less readable, but the compiler still understands it
z := x * y -- more readable

ScriptX is permissive about space around operators, with one exception. The
subtraction operator (-) requires a trailing space. The minus sign without a
trailing space is interpreted as the unary operator for negation.

3 - 5 -- with trailing space

➯ -2

3-5 -- without trailing space, the compiler doesn’t understand

➯ -- ** "Ill-formed expression" (generalError)

3 +- 5 -- not very readable, but the compiler understands it

➯ -2

3- 5 -- ugly, but the compiler understands it

➯ -2

For a formal treatment of operators, see Appendix , “ScriptX Reference.”

Operator Precedence

Table 2-3 summarizes the precedence of ScriptX operators and expressions.
Operators higher up the table are evaluated first if they occur side-by-side in
an expression. Operators in the same table cell have equal precedence and are
evaluated from left to right, unless otherwise stated.

Table 2-3: ScriptX operator precedence, highest to lowest

Operator (s) Notes

collection[key] element access in collections, described on page 50

object.variable class and instance variable access, described in Chapter 3

function arg arg . . .
function (arg, arg, . . .)

function calls, described in Chapter 3

object as class object coercion, described in Chapter 3

- negation, described on page 42

* / multiplication, division, described on page 42

+ - addition, subtraction, described on page 42

= == <> != !==
> < >= <=
contains

equality and magnitude, described on page 44.
contains is used for collection membership, described on
page 52

not logical not, described on page 48.

and logical and, described on page 48

or logical or, described on page 48.

in
by

for expressions
association is from right to left.

| pipe operator, described in Chapter 5
41

2 ScriptX Language Guide
You can change the order of evaluation by surrounding expressions with
parentheses. ScriptX evaluates the innermost expressions first:

(((3 + 15) * 2) == 36)
(3 < 4) and (5 >= 2)

For additional information on operators and expression syntax, see Appendix ,
“ScriptX Reference.”

Arithmetic

The ScriptX language includes the following infix operators for simple
arithmetic:

+ addition

- subtraction

* multiplication

/ division

Each of these operators requires two operands. When two operands for an
arithmetic expression are of different number classes, one operand may be
promoted internally to accommodate the range of the other class.

The following examples demonstrate the promotion of x, which is an
ImmediateInteger object. The getClass method is defined by
RootObject, the root class from which all ScriptX classes inherit, so it is
available to all objects.

global x:2, y:3.5, z:123.456789, w:9876543210, a, b, c
getClass x

➯ ImmediateInteger

getClass y

➯ ImmediateFloat

getClass z

➯ Float

getClass w

➯ LargeInteger

a := x + y

➯ 5.5

repeat
guard
exit
for
return

loops and block control expressions are described in
Chapter 4, while the guard expression is described in
Chapter 8.

& thread operator, described in Chapter 5

location := value assignment operator, described on page 38

Table 2-3: ScriptX operator precedence, highest to lowest

Operator (s) Notes
42

ScriptX Building Blocks 2
getClass a

➯ ImmediateFloat

b := x + z

➯ 125.456789

getClass b

➯ Float

c := x + w

➯ 9876543212

getClass c

➯ LargeInteger

The result may be demoted for efficiency, if there is no loss of range.

global p:3.23, q:4.23, resultObject
getClass p

➯ ImmediateFloat

getClass q

➯ ImmediateFloat

resultObject := p - q

➯ 1

getClass resultObject

➯ ImmediateInteger

String Arithmetic

You can use the addition and subtraction operators on strings.

String addition concatenates its operands into a single string:

"this" + "that"

➯ "thisthat"

"Once upon " + "a time"

➯ "Once upon a time"

String subtraction removes the first instance of the second string operand from
the first:

"one two three" - "one"

➯ " two three"

"banana" - "an"

➯ "bana"

The following code illustrates an easy way to print out the value of a variable.
Note that the parentheses are necessary and that the integer x must be coerced
to a String object in order to be added to another string.

x := 10
print ("x: "+ x as String)

➯ "x: 10"
43

2 ScriptX Language Guide
String subtraction can make stripping the extension away from a file name
easy:

myFilename := “Answers.doc”
myPrefix := myFilename - “.doc”

➯ “Answers”

Note – In these examples, string addition and subtraction convert the original
string, an instance of the class StringConstant, into an instance of the class
String (its editable counterpart). StringConstant is a subclass of String.
Operations that specifically test for an object’s class may not consider String
and StringConstant to be the same, even though they are both strings.

Tests of Equality and Magnitude

ScriptX provides several operators for testing equality (whether two objects are
equal in value), identity (whether two objects are exactly the same object), and
magnitude (whether one object is greater or less than another). This section
describes those operators.

In addition to the equality and comparison operators, ScriptX also defines a
full set of object comparison functions that can be used in a more general way
than many of the operators. These functions are based on four generic
functions, which can be redefined in new classes and objects. ScriptX equality
and comparison functions are described in Chapter 3, “Working with Objects,”
and in the “Global Functions” chapter of the ScriptX Class Reference.The
Comparison protocol is described in the “Object System Kernel” chapter of the
ScriptX Components Guide.

Equality and Identity

ScriptX has two infix operators for testing object identity (== and !==), and
three for testing equality (=, !=, and <>). All five operators return either true
or false.

Identity tests determine whether two references refer to the same object. In an
object-based system, two objects are the same if they are the same object in
memory. ScriptX defines two identity operators:

== tests whether two references are identical

!== tests whether the references are not identical (the negation of ==)

The following examples illustrate the use of the identity operators:

num1 := 3.14159265 -- a Float object
num2 := num1
num2 == num1

➯ true

num1 !== num2

➯ false
44

ScriptX Building Blocks 2
rect1 := new Rect x2:50 y2:50
rect2 := new Rect x2:50 y2:50
rect1 == rect2

➯ false

In the first two identity tests, num1 and num2 are the same object in memory. In
the third test, although the Rect objects in rect1 and rect2 were defined in
the same way, and appear to be the same, they are different objects in memory,
so the identity test returns false. (Chapter 3, “Working with Objects,”
describes how to define objects using the new method.)

Note – Two ImmediateFloat or ImmediateInteger objects that have the
same value always appear to be the same object in identity tests. For more
information on immediate objects, see the “Numerics” chapter in the ScriptX
Components Guide.

Equality tests determine whether two objects have the same value. The objects
may or may not be the same object in memory. (If they are the same object in
memory, then they are equal.) Equality tests are only concerned with the data
the two objects contain.

= tests whether two objects are equal

!=, <> tests whether the two objects are not equal (the negation of =).
The not-equal operators are equivalent and can be used
interchangeably

The following examples illustrate the use of equality operators:

num1 := 3.14159265 -- a Float object
num2 := num1
num2 = num1

➯ true

rect1 := new Rect x2:50 y2:50
rect2 := new Rect x2:50 y2:50
rect1 = rect2

➯ true

In the second example, the objects are different objects in memory (the identity
test evaluated to false), but they have been defined the same way with the
same parameters. Their values are the same, so the equality test returns true.

If two objects are not comparable, they are not equal.

num1 = rect1

➯ false

Objects sometimes contain deeply embedded references to other objects. For
example, each of the Rect objects defined above might be the boundary for
another ScriptX object, such as a TextPresenter object. These
TextPresenter objects, in turn, might be embedded in PushButton objects.
45

2 ScriptX Language Guide
ScriptX allows each class to determine with which other classes it is
comparable, and what the criteria are for equality between comparable objects.
For example, a class can determine whether the comparison of two objects
should be shallow or deep. (A deep comparison compares deeply embedded
structures.) For more detail on comparison of objects, see Chapter 3, “Working
with Objects.”

Ordering

ScriptX has four infix magnitude operators that test whether one object is of
greater “value” than another:

Magnitude operators only work if the operands they are given are
comparable—that is, from the same or similar classes. If you try to compare
objects from classes that are not comparable, ScriptX reports an error. Every
object responds to the isComparable method, a method defined by
RootObject and inherited by all classes in the system. The following test
shows that num1 and rect1, defined in the previous section, are not
comparable.

isComparable num1 rect1

➯ false

Each class determines which classes it is comparable with, by specializing the
isComparable method. If a class is comparable with another, then it must
determine how the comparison is made. For information on the Comparison
protocol, see the “Object System Kernel” chapter of ScriptX Components Guide.

Magnitude expressions on comparable objects return true or false, as shown
in the following examples:

3 < 4

➯ true

3 <= 3

➯ true

"apple" < "zucchini"

➯ true

Equivalent Functions

Most of the ScriptX operators for arithmetic, equality, and magnitude described
in the previous sections are shorthand for generic or global function calls.
During compilation, those operators are converted into the appropriate
function call with the appropriate arguments. For example, ScriptX translates

< less than

> greater than

<= less than or equal to

>= greater than or equal to
46

ScriptX Building Blocks 2
the expression 2 + 2 into the generic function call sum 2 2. The sum method
is defined by the Number classes, allowing this expression to be evaluated
correctly by any numbers.

Since ScriptX translates operators to generic function calls before evaluating an
expression, you can extend the use of many of those operators to scripted
classes that you create yourself. If you define each of the comparison methods
that are part of the Comparison protocol in your class, ScriptX can then use
instances of your class as arguments to the appropriate operator.

You can also call these functions yourself in a ScriptX expression, instead of
using their operator counterparts, as shown in these examples:

sum 2 2

➯ 4

equal "asparagus" "celery"

➯ false

Table 2-4 contains a list of ScriptX operators and their equivalent functions.
These functions are all generic functions except for eq (the equivalent function
for ==) and ne (the equivalent function for !==), which are global rather than
generic. Note that this means that eq and ne cannot be specialized, whereas
the generic functions can. For information on defining functions, see Chapter 5,
“Functions, Threads and Pipes.” For information on creating new classes and
objects that use these functions, see .”

ScriptX defines other arithmetic functions and tests of equality and magnitude
that are not generic and cannot be specialized. See the “Global Functions”
chapter of ScriptX Class Reference, and the class definitions of Number and
Integer in the same volume.

Table 2-4: Operators and their equivalent functions

Operator Function Meaning

+ sum addition

- sub subtraction

* mul multiplication

/ quo division

= equal equality

== eq identity

<>, != nequal inequality

!== ne not identity

< lt less than

> gt greater than

<= le less than or equal to

>= ge greater than or equal to
47

2 ScriptX Language Guide
Logical Operators

Expressions that return true or false can be grouped into logical expressions
using and, or, and not.

▼ expression and expression

expression or expression

not expression

The and logical expression only evaluates to true if all of the sub-expressions
(expression in the syntax) on either side of the and operator also evaluate to
true. If any of the sub-expressions evaluates to false, the entire and
expression evaluates to false. The and expression is short-circuiting; that is,
the expression stops evaluating its sub-expressions after the first false
expression is found.

The or logical expression evaluates to true if any of the sub-expressions on
either side of the or evaluate to true. The or expression stops evaluating its
sub-expressions once the first true expression is found. The or expression
only evaluates to false if all of its sub-expressions also evaluate to false.

The not expression negates the value of expression. If expression evaluates to
true, the not expression evaluates to false, and vice versa.

((3 + 2) < (4 + 5)) and 1 >= 1

➯ true

"this" < "that" or "penny" > "pound"

➯ false

not ("feet" = "feet")

➯ false

Arrays and Keyed Linked Lists

The ScriptX language provides two literal constructs that directly represent
collections of objects in scripts: an array literal and a keyed linked list literal. In
addition, ScriptX provides two simple language constructs for accessing
members and testing for membership in collections of all kinds.

Array and KeyedLinkedList are two of the many subclasses of
Collection that can be used in a ScriptX program. Collections provide
comprehensive behavior for groupings of objects. Array and
KeyedLinkedList are prime representations of two categories of collection:
those with explicit keys and those without. Collections are described in detail
in Chapter 7, “Collections,” and in the “Collections” chapter of ScriptX
Components Guide.

Array Literal

The array literal construct contains any number of expressions, separated by
commas, surrounded by parentheses, and beginning with a hash sign (#):
48

ScriptX Building Blocks 2
▼ #(expression, expression, expression, expression, . . .)

When the array construct is evaluated, each individual expression is also
evaluated, in order, so that the resulting array contains the result of each of
those expressions. Arrays themselves are instances of the class Array. Here are
some examples of array literals:

#(2, 4.2 + 5, "Fresno", 3 < 4, #(@doug, @jocelyn, @jim))

➯ #(2, 9.19999694824219, "Fresno", true, #(@doug, @jocelyn, @jim))

#() -- empty array

➯ #()

In some languages, all items in an array must be of the same type. The first
example demonstrates that in ScriptX, members of an array can belong to
different classes. The five members of this array belong to the classes
ImmediateInteger, ImmediateFloat, StringConstant, Boolean, and
Array, respectively.

Keyed Linked List Literal

The keyed linked list literal is similar to the array literal, except that the
expressions within the parentheses are unordered key-value pairs. The keyed
linked list construct evaluates to an instance of KeyedLinkedList.

▼ #(key:value, key:value, key:value, . . .)

In the keyed linked list literal, key-value pairs are separated by commas, with
colons separating the key from the value. Like the array construct, all the
expressions within the keyed list literal are evaluated before the instance of the
KeyedLinkedList is created.

The value part of a key-value pair can be any expression. To specify most
complex expressions as the key part of the pair, you must specify that
expression inside parentheses (and the result of that expression becomes the
key itself). The following expressions can be used without parentheses as the
key part of the key-value pair:

• a number, string, or name (45, "this or that", @nameMe)

• a variable name

• an array access expression (myArray[1], described in “Access to Members
of Collections”)

• a reference to a class or instance variable (myRect.x1, described in Chapter
3, “Working with Objects”)

Here are several examples of the use of keyed linked list literals:

#(@fruit: "apple", @vegetable: "carrot", @legume: "kidney bean")
#(:) -- empty keyed list
#(1:"money", 2:"show", 3:"ready", 4:"go")
49

2 ScriptX Language Guide
#(#(1,2,3):@oneToThree, #(4,5,6):@fourToSix, \
#(7,8,9,10):@sevenToTen))

x := 1; y := 4
#((x < y):@smallX, (x > y):@smallY)

➯ #(true:@smallX, false:@smallY)

Literals and Other Collections

You can use the array and keyed list literals, together with coercion, to
represent any kind of collection “literally” in a script.

#("Bornstein","Agostino","Reiman","Jacobi") as SortedArray

➯ #("Agostino", "Bornstein", "Jacobi", "Reiman") as SortedArray

Coercion is discussed in the section “Coercing Objects to Other Classes” on
page 67, and again in the section “Coercing Between Collection Classes” on
page 160.

Access to Members of Collections

Array and KeyedLinkedList are two of the Collection classes from the
ScriptX core classes. The Collection classes implement a common set of
methods for operations on the items they store.

The ScriptX language provides access to members of collections with the
element access expression. The element access expression provides a reference
to an element by its position or key.

▼ collection[position]

collection[key]

In the element access expression, collection must evaluate to an instance of
Collection such as Array or KeyedLinkedList. position is an ordinal
position within the array, and key is a key in a key-value pair.

Like the keys in the keyed linked list literal, you can specify complex
expressions as the collection part of the element access expression by
surrounding them with parentheses. You can also specify that the following
expressions are the array or keyedLinkedList:

• a variable name

• an actual array or keyed linked list (#(1, 2, 3))

• another array access expression (myArray[1])

• a reference to a class or instance variable (myRect.x1, described in Chapter
3, “Working with Objects”)

• an anonymous function with no arguments (described in Chapter 5,
“Functions, Threads and Pipes”)
50

ScriptX Building Blocks 2
• nextMethod (described in Chapter 6, “Defining Classes and Objects)

If the given key is not found, or the position is out of range, the element access
expression returns the empty object. empty is used specifically in the collection
classes to mean “element not found.”

myMenu := #(@breakfast:"coffee", @lunch:"burrito",@dinner:"pizza")

➯ #(@breakfast:"coffee", @lunch:"burrito", @dinner:"pizza")

myMenu[@midnightSnack]

➯ empty

The element access expression is translated by the compiler into a call to the
generic function getOne . The getOne generic function is implemented by all
of the collection classes, and as such, the element access expression is also
available to any collection. See Chapter 7, “Collections,” for more information
about the collection classes.

These examples show how to use the element access expression:

array1 := #("un", "deux", "trois")
array1[1]

➯ "un"

array1[3]

➯ "trois"

array1[0]

➯ empty

#("once", "twice", "thrice", "four times")[4]

➯ "four times"

keyedList1 := #("snake":"cobra","bird":"sparrow","fish":"guppy")
keyedList1["bird"]

➯ "sparrow"

array2 := #(array1)
array2[1]

➯ #("un", "deux", "trois")

array2[1][2]

➯ "deux"

(if array1.size > 1 then array1 else #(undefined))[1]

➯ "un"

Setting Items

You can also use the element access expression, as described in the previous
section, to change the value of the item at that key or position.
51

2 ScriptX Language Guide
▼ collection[position] := value

collection[key] := value

As in the element access expression, collection is a factor or expression within
parentheses that results in a collection such as an array or keyed linked list.
The position represents an ordinal position within the collection, while the key
represents a key associated with one item. The value is either the value for the
given key or the value to be placed at that position in the array.

The element access expression, when used with an assignment operator, is
compiled into a call to the generic function setOne. The setOne generic is
implemented by all collection classes, and as such, the element access construct
is available to any collection.

These examples show how to change or add an element to a collection such as
an array using the element access and assignment expressions:

global houseplant := #(@palm) -- create an array

➯ #(@palm)

houseplant[2] := @africanViolet -- add a second element

➯ @africanViolet

housePlant

➯ #(@palm,@africanViolet)

houseplant[3] := @begonia -- add a third element

➯ @begonia

housePlant

➯ #(@palm,@africanViolet,@begonia)

houseplant[1] := @fern -- set a new value for first element

➯ @fern

housePlant

➯ #(@fern,@africanViolet,@begonia)

Element Access and Other Collections

Since the element access expression is a shorthand for getOne or setOne, it
can be used with any class that implements these generic functions. In the
ScriptX core classes, many of the media classes are implemented as collections,
including windows, menus, documents, animation lists, and even title
containers. The element access expression is used with all of these classes, and
with scripted collection classes as well.

Testing for the Presence of an Element

To see if an object is in an array or keyed list, use contains:
52

ScriptX Building Blocks 2
▼ collection contains thing

n this syntax, collection is an expression that evaluates to a Collection object,
and thing is the object in the collection for which you are testing. The
contains expression returns either true or false, depending on whether or
not the element is present in the collection.

The contains construct is compiled into a call to the generic function
isMember before the expression is evaluated. The isMember generic function
is implemented by all collection classes, and as such, the contains construct
is available with any collection.

Here are some examples of how contains is used in scripts:

x := #("one", "three", "five")
x contains "one"

➯ true

x contains "two"

➯ false

#(1:"one",2:"two",3:"three") contains "two"

➯ true

Compound Expressions

Compound expressions, sometimes called block expressions or just blocks, are
simply a series of complete expressions surrounded by parentheses. Those
expressions can be on separate lines, on the same line separated by semicolons,
or in any combination, just like normal expressions.

▼ (

expression

expression

. . .

)

Compound expressions allow you to control the order in which an expression
is evaluated. A compound expression can also be used to group several
expressions into what appears, from the point of view of surrounding
expressions, as a single expression. Thus, you can use a compound expression
anywhere a single expression would work. The result of evaluating a
compound expression is the value of the last expression in the block, unless a
specific exit or return value has been specified using a block control expression.
See “Conditionals and Loops” on page 81, for information on using compound
expressions with block control expressions such as exit and continue.

A compound expression yields an object, just like a regular expression. A
compound expression can be used in place of most ScriptX expressions.

-- globals cannot be explicitly declared in a block
global m:0, n:1
53

2 ScriptX Language Guide
-- a compound expression, because it is enclosed in parentheses
t := (if m < n then m else n)

➯ 0

(
x := "string1"
y := "string2"
print (x + y)
)
"string1string2"

➯ OK

If the final statement in a compound expression is a local declaration, it returns
undefined rather that the value of the local declaration. Note the difference
between the first and second expressions.

global y := (local x := 10)

➯ undefined

global y := (x := 10)

➯ -- ** Warning: Undeclared global x
10

Compound Expressions and Variable Scope

Compound expressions define a new local variable scope for the expressions
within them. Local variables declared in the block are only available to the
expressions within that block that occur after the declaration.

global z, x := 15
(

local q:= 10
z := x + q

)
z -- evaluate z

➯ 25

q-- evaluate q
-- ** Warning: Undeclared global q

Note that z continued to exist outside the block because it was declared
globally. The variable q, however, was declared locally, and so is only available
within the block expression in which it was defined. In the example that
follows, note that the local definition within the block overrides the global
definition outside the block.

global var1 := "string"
(

local var1 := "a different string"
var1 -- the block returns the value of this because it's
 -- the last expression in the block

)

➯ "a different string"

var1

➯ "string"
54

ScriptX Building Blocks 2
The first var1 evaluates to the value of the local assignment, as declared in the
block. The second var1 , which occurs after the end of the block, returns the
value of the global var1 variable.

When ScriptX encounters a variable reference, it first checks the local scope for
the value of that variable, and then each surrounding variable scope. This
causes local variables to “hide” the values of global variables and local
variables of the same name, including variables that may contain substrate
classes, objects, and functions.

The following example shows that the global variable is visible inside the block
until it is overriden by a local variable with the same name. After the block’s
scope has ended, the local variable no longer exists.

global a, b:2, c:3
(

a := b
local b:5
c := b

)

➯ 5

a -- evaluate a

➯ 2

b -- evaluate b

➯ 2

c -- evaluate c

➯ 5
55

2 ScriptX Language Guide
56

C H A P T E R

Working with Objects
3

3

ScriptX Language Guide
58

Working with Objects

3

bjects:creating

bjects:literals
erals

bjects:new;new
ScriptX is an object-oriented language that operates on a hierarchy of classes
and objects. The language makes no distinction between the core set of ScriptX
classes and the classes and objects that you define yourself. Creating new
instances, accessing and changing instance variables, and calling methods are
operations which are used with all classes. This chapter contains an overview
of the basic operations on classes and objects in ScriptX.

Creating New Objects

In ScriptX, all information you work with in the process of writing a program
is contained in objects. Objects can be created in many ways in ScriptX. Objects
are created as literals, as the result of a function call to other objects, as a side
effect of those functions, or explicitly by you in a script. This latter case is the
focus of this section.

ScriptX provides three primary ways in which you can directly create new
objects:

• using a literal construct

• using the new generic function

• using the object expression

A Note On Memory Allocation

Memory allocation in ScriptX is automatic. When you create a new object, the
appropriate amount of memory is allocated for that object in the system.

Literals

Literals are special constructs in the language that allow you to represent many
common objects directly in a script. Numbers, strings, and array constructs, as
described in the previous chapter, are all literals. Here are some examples:

• The literal 4 yields an ImmediateInteger object with the value 4.

• The literal "cat" yields a StringConstant object with the value "cat".

• The literal #(1,2,3,4) yields an Array object that contains four
ImmediateInteger objects with the values 1, 2, 3, and 4.

new

Only a few select classes in the ScriptX core classes have literal representations
in the ScriptX language. The most common way to create an instance of any
class in a script is by using the new generic function:

<$startrange>

<$startrange>
59

3

ScriptX Language Guide

eyword argum
eyword argum
ew:keyword ar
t:keyword arg
◆ new class [key:value key:value . . .]

Function calls are discussed later in this chapter, beginning on page 65. The
calling sequence for the generic function new has three components:

• new, the name of a generic function

• a name, the name of the class (or an expression that returns the name)

• a set of key-value pairs, separated by spaces, called keyword arguments.

Keyword arguments specify initial parameters of the new object, for example,
its initial state or size. Often, these parameters set initial values for instance
variables. The new method creates the instance and then passes those keyword
arguments internally to the object’s init generic function. The keyword
arguments that a class allows are defined by that class’s init method, and by
all of its superclasses which implement an init method.

Each class definition in the ScriptX Class Reference specifies the keyword
arguments that are used by that class. Scripted classes also define keyword
arguments, and they can specialize any behavior they inherit. For example, a
scripted class can supply different default values for a keyword argument it
inherits. For more information on specializing the init method, see page 136.

Keyword arguments can be specified in any order, and many of them are
optional. Any optional keywords you do not specify in calling new are given
default values by the init method when the object is initialized.

The init method determines which keyword arguments are optional and
what the default values are. Each init method applies the init method
defined by its superclasses. Superclasses may define other keyword arguments.
The init method may specialize or override any behavior it inherits from its
superclasses. In this way, a class’s init method, together with that of its
superclasses, determines which keyword arguments are defined, which are
required or optional, and what the default values are.

Many classes define no keyword arguments:

myStencil := new Path
new LinkedList

If some keywords are optional, you can specify values for only the ones you
are concerned with, and allow the others to be initialized to defaults:

myRect2 := new Rect x2:500 y2:500 -- x1 and y1 are set by default
bigArray := new Array initialSize:150 -- growable is set by default

Because new evaluates to a new instance of the given class, you can nest
expressions using new within other expressions:

rectangular := new TwoDShape stencil:(new Rect x2:500 y2:500)

The new Rect expression evaluates to an instance of the Rect class, which is
then used as the value for the stencil keyword argument to the TwoDShape
class. By nesting new, you write more concise code and avoid extra variables.

ents:new
ents:init
guments
uments
60

Working with Objects

3

bjects:new;new

bjects:object e
nge>

bject expressi
bject expressi
eyword argum
Note that the new generic is not a part of the ScriptX syntax. It is actually a
generic function, a generic you call on class objects. Recall that in the ScriptX
object system, classes are themselves objects. You can call the new generic
function on any concrete class to create an instance of that class. (Concrete and
abstract classes are defined on page 25.)

In most cases, ScriptX reports an exception if you attempt to call new on an
abstract class. However, in some special cases the Kaleida Media Player creates
a new instance of a concrete subclass of that abstract class automatically.
(Examples include KeyboardDevice and MouseDevice.)

For more information on new, see the “Overview” chapter of the ScriptX Class
Reference. For information on the object system, see the “Object System Kernel”
chapter of ScriptX Components Guide.

Using the object Expression

An alternative to the new generic for creating new instances of a class is to use
the object definition construct. The object construct allows you to give
initial values to any instance variables, including those that are not initialized
by keyword arguments.

Note – The complete form of the object definition expression allows you to
fully specialize a new object. You can add new instance variables, define new
methods, and even create an object that is an instance of a mixture of classes.
This chapter describes only some aspects of this expression. For more
information, see Chapter 6, “Defining Classes and Objects.”

The simplest form the object expression creates a new instance of a class. Just
as with new, the object expression allows you to specify any available or
required keyword arguments:

▼ object [variableName] (classes)

[keyword:value, keyword:value, . . .]

end

In the object expression, classes is the class or list of classes this object is an
instance of. It can be a list of several classes, separated by commas.
variableName is an optional variable to which you can assign this object. The
keyword:value pairs are any keyword arguments. As with the generic function
new, you can specify keyword arguments in any order. You can specify
keyword arguments on the same line, separated by commas, on separate lines,
or in any combination:

object (Rect) x1:35, y1:35, x2:50, y2:50 end

object (Rect)
x1:35, y1:35
x2:50, y2:50

end

<$endrange>

xpression;object<$star-

on:initialization
on:keyword arguments
ents:object expression
61

3 ScriptX Language Guide

bject expressi
eyword argum

settings
object expres

objects:creati
object (Array)
initialSize:100
growSize:10

end

The object expression evaluates to an instance of the new class, which allows
it to be nested within other expressions. You can also assign the new object to a
variable, using one of two forms: you can specify a variableName in the first line
of the object expression, or you can put the variable name on the left side of
an assignment statement, with the object expression on the right.

object myNewRect (Rect) x2:100, y2:100 end -- constant variable
myOtherNewRect := object (Rect) x2:100, y2:100 end -- not constant

The difference between these two forms is that the first form, in which you
include the variable name inside the object expression, causes the variable
myNewRect to be declared constant. This prevents you from assigning
anything else to that variable once the object has been created. You can,
however, use the object expression multiple times to redefine the object
assigned to a variable.

Initializing Instance Variables

You can use the object expression to initialize the values of any instance
variables defined by that object. In many cases, the object may use keyword
arguments to give many of its instance variables initial values. However, if
there are other instance variables defined by the object that are not set directly
by keyword arguments, you can specify initial values for those instance
variables as well.

▼ object [variableName](classes)

[keyword:value, keyword:value, . . .]

settings

variable:value

. . .

end

The settings reserved word, which should always occur just after any
keyword arguments in an object expression, indicates that the following
instance variables should be initially set. You can then specify any number of
variable:value pairs. Just as with the keyword arguments, these variable:value
pairs can be specified on a single line separated by commas, on separate lines,
or in any combination.

For example, the class TwoDShape defines instance variables for its fill and
stroke values as well as variables for the x and y coordinates of the shape.
The init method for TwoDShape defines keyword arguments for fill and
stroke, but not for the coordinates. This example uses keyword arguments to
set the fill and stroke for the shape, and then settings to initialize the values
of x and y.

on:keyword arguments
ents:object expression

sion:settings

ng<$endrange>
62

Working with Objects 3

nstance variab
rect1 := object (TwoDShape)
fill:(new Brush color:redColor) -- keyword argument
stroke:(new Brush color:greenColor) -- keyword argument
settings

x:50, y:50
end

Instance Variable Access

Instance variables define the attributes or properties of an object. For example,
instance variables may be used to hold information such as coordinate position
(for graphic objects), tempo and number of channels (for audio objects), or
form of compression (for video objects).

Many instance variables are assigned initial values through keyword
arguments to the new generic or the object definition construct. Once the
object has been created, you can use the language constructs described in these
sections to get and set the values of those instance variables.

Variable Access Expression

You query the value of an instance variable by using the dot syntax:

▼ object.instanceVariable

object is an object (or an expression that yields an object), and instanceVariable is
the name of the instance variable.

In the following example, a new instance of the class Line is created. Instances
of Line have four instance variables for the coordinates of their starting and
ending points: x1, y1 and x2, y2. This example uses keyword arguments to
set those variables, and then it accesses those values:

myLine := new Line x1:10 y1:10 x2:65 y2:65
myLine.x1

➯ 10

-- test: is the endpoint higher than the startpoint?
myLine.y2 < myLine.y1

➯ false

If an object’s instance variable holds another object that in turn has its own
instance variables, you can “chain” references to those variables:

object myRectangularShape (TwoDShape)
stroke:blackBrush, boundary:(new Rect x2:100 y2:100)

end
myRectangularShape.boundary.x2

➯ 100

les:modifying
63

3 ScriptX Language Guide

nstance varia
assignment:in
Note that in order to specify most complex expressions as the object part of the
instance variable construct, you must specify that expression inside
parentheses so that it is evaluated first. The only expressions that can be used
without parentheses as the object part of an instance variable expression are:

• a variable name

• An array or keyed linked list literal (#(1, 2, 3))

• an array access expression (myArray[1])

• a reference to another class or instance variable (myRect.x1)

• an anonymous function with no arguments, resulting in an object (described
in Chapter , “Functions, Threads and Pipes”)

• nextMethod (described in Chapter , “Defining Classes and Objects)

Instance Variable Access—An Efficiency Note

Since all access to instance variables is through method calls (see “Setters,
Getters, and Real and Virtual Variables” on page 145) it is best to avoid
repeated calls to an object nested several levels deep.

Using an example from Chapter 1, we got the address of Odan’s owner using
the construct odan.owner.address. This involves two function calls, one for
each “.”. Let’s say you want to send out a mailing to every dog owner living
in the same city as Odan’s owner, so you need to compare each address in your
list to Odan’s address. You could greatly improve efficiency by assigning
Odan’s address to a variable and then using that variable for comparison, thus
accessing the address just once instead of every time you make a comparison.
The following code fragment, though not complete, illustrates the point:

address := odan.owner.address -- assign to a variable
for i := 1 to addressList.size do -- create a for loop to iterate over

-- an array of addresses
if addressList[i] = address do -- compare each item to variable

... -- your function for sending mail

A further efficiency could be achieved by using the Collection method
forEach in place of the for loop, but the for loop is easier to understand in
an example at this point.

Changing the Values of Instance Variables

Use the assignment operator (:=) to set the value of an instance variable:

▼ object.instanceVariable := value

As before, object is an object or an expression that yields an

object, instanceVariable is the name of the instance variable, and

value is an expression that sets the new value.

bles:assignment
stance variables
64

Working with Objects 3

nstance varia
nstance varia

ass variables:

nctions:calling

generic funct
generics, see

tions<$nopag
myLine := new Line x1:10 y1:10 x2:65 y2:65
-- Change the line’s starting point to be 0,0
myLine.x1 := 0
myLine.y1 := 0
-- Change the line’s endpoint to be 10,10
myLine.x2 := 10
myLine.y2 := 10

Most instance variables are read-write. That is, you can both query their values
and change them. A few are read-only. If you try to change them, an error is
reported. Whether an instance variable is read-write or read-only is defined by
the class.

Class Variables

Class variables are similar to instance variables, except that they are variables
defined by an entire class, rather than by a single instance of the class. Think of
class variables as instance variables for the class itself. To query or change the
value of a class variable, use the same ScriptX construct as for instance
variables, specifying the class (or an expression that yields a class) instead of
an object:

class.varname
For example, interests is a class variable defined by the Event class. The
result of entering the following code is a collection of the interests that have
been posted in myEvent.

myEvent.interests

Calling Functions

There are two kinds of functions in ScriptX: regular functions and generic
functions.

Regular functions are just like functions in other languages; they have a single
interface (its name and arguments), and a single implementation (the function
definition), as shown in Figure 3-1.

Figure 3-1: Regular functions

Generic functions are used to invoke methods that are defined by classes and
objects. Unlike regular functions, generic functions have a single interface, but
they can select from many different implementations of that function

bles:read-write
bles:read-only

access

<$startrange>

Interface

definition of a
print function

for arrays

definition of a
printfunction

for strings

Implementation

definition of a
print function
for rectangles

arrayPrint
myArray

 rectPrint
myRect

stringPrint
myString

ions<$startrange>
 generic func-

e>
65

3 ScriptX Language Guide

functions:call
functions:posi
functions:keyw
positional arg
$nopage>
(methods) based on the object specified as the first argument. When you call a
generic function, it selects an appropriate method to invoke and transfers
control to that method, passing along any arguments you specified
(Figure 3-2). For a definition of generic functions, see the discussion on page 19
and page 12.

Figure 3-2: Generic functions

In Figure 3-2, prin is a generic function that takes three arguments, an object
to print, an argument that determines how to print it, and a stream object
(prin is described in detail on page 75). Since each class has a different
printable representation, there are separate methods in each class that
implement prin. The generic function prin uses the class of the object
(myArray, myRect, and myString, instances of Array, Rect, and String) to
choose the appropriate implementation.

Both regular and generic functions are called identically in scripts. There are
three forms of function calls:

▼ functionName positionalArgs keywordArgs

functionName(positionalArgs, keywordArgs)

functionName()

The first two forms are used to call regular or generic functions with
arguments. Both forms are equivalent and are described below. The third form
is used to call regular functions without any arguments This third form cannot
be used with generic functions because they require at least one argument—the
object the generic function is to operate on. The empty argument list () is used
to indicate to ScriptX that this is a function call and not a variable reference.

In the first two forms, positionalArgs are any required positional arguments for
that function, and keywordArgs are any keyword arguments that the function or
generic function may have defined. Keyword arguments are key:value pairs,

method prin,
defined on
Array class

Implementation
Array Rect String

method prin,
defined on
String class

method prin,
defined on
Rect class

Interface

Generic
Function prin

prin myRect
@Normal debug

prin myArray
@Normal debug

prin myString
@Normal debug

expression
tional arguments
ord arguments

uments, see functions
66

Working with Objects 3

eneric function
nctions:calling

bjects:coercio
oercion<$start
s, see coercio
where the key and the value are separated by a colon. Positional arguments, if
any, must appear before any keyword arguments and must be specified in the
correct order. Keyword arguments, if any are defined, can appear in any order.

The second form for calling functions is one that may seem more familiar to
those who are accustomed to other programming languages. In this form, all
the arguments, positional or keyword, are separated by commas and
surrounded by parentheses.

The following examples illustrate calling both regular and generic functions.
These examples use the following functions:

• the new generic function, as described on page 59

• the append generic function, which appends an element to the end of a
collection such as an array

• the getNth generic function, which retrieves the element at the given
position in a collection such as an array

• the getClassName generic function, which returns a string containing the
name of the class of which this object is an instance

• the regular functions helloWorld (which takes no arguments, but prints a
message to the debugging stream), and HamCheeseOnRye, which, when
called with the appropriate arguments, returns a congratulatory message.
These functions do not exist as part of the the core ScriptX system and are
shown for syntactic purposes only

cheez := #("swiss", "cheddar", "roquefort")
append cheez "havarti" -- returns the key of the item added to cheez

➯ 4

getNth cheez 3

➯ "roquefort"

getNth(cheez, 4)

➯ "havarti"

getClassName cheez

➯ "Array"

helloWorld() -- function with no args

➯ "Hi mom!"

hamCheeseOnRye meat:@liverwurst cheese:@swiss bread:@rye

➯ --** "@liverwurst is not an appropriate sandwich ingredient"

hamCheeseOnRye(meat:@ham, cheese:@swiss, bread:@wholewheat)

➯ --** "@wholewheat is not an appropriate sandwich ingredient"

hamCheeseOnRye meat:@ham cheese:@swiss bread:@rye

➯ "a most excellent sandwich."

Coercing Objects to Other Classes

Object coercion refers to the ability to convert an instance of one class into an
instance of another. For example, you might coerce an integer (an instance of
ImmediateInteger) into its string representation (an instance of String,
StringConstant, or Text). In ScriptX, however, object coercion does not

s<$endrange>
<$endrange>

n<$startrange>
range>
n <$nopage>
67

3 ScriptX Language Guide
change the original object, as the term coerce might imply. Instead, coercion in
ScriptX creates a new instance of the target class, and uses the original object
for deriving the contents of that new instance.

The as expression coerces an object to another class:

▼ object as class

In this expression, object is the object you want to coerce, and class is the class
you want the object to be coerced to. The types of classes a given object can be
coerced to is determined by the destination class, or if the destination class
can’t coerce, the object’s own class. If neither attempt at coercion succeeds, an
exception is reported.

123 as Float

➯ 123.0

123 as String

➯ "123"

123 -- the original object is still 123

➯ 123

myList := new LinkedList
myList as Fixed -- this attempt to coerce reports an exception
-- ** Cannot coerce #() as LinkedList into a Fixed. (CantCoerce)

When an object is coerced to another class, some of the information the original
object contained can be lost. For example, when you convert an instance of a
number class with more precision to one with less precision, you may lose the
extra information that the additional precision provided:

43.5 as ImmediateInteger

➯ 43

In this example, the original object (an instance of ImmediateFloat) was
coerced to the class ImmediateInteger, which truncated the fractional part.

Table 3-1 provides some simple examples of how objects can be coerced.

Table 3-1: Class coercion examples

Original Class Sample Expression Result

ImmediateInteger 123 as Float 123.0

ImmediateInteger 123 as LargeInteger 123

ImmediateInteger 123 as String "123"

Float 123.5 as ImmediateInteger 123

String "345" as ImmediateInteger 345

String "345" as Fixed 345.0
68

Working with Objects 3

bjects:coercio
oercion<$endr

bjects:compa
nopage>[obje
omparison<$s
Note that in order to specify most complex expressions on either side of the as
construct you must specify those expressions inside parentheses so that they
are evaluated first. The only expressions that can be used without parentheses
in an as expression are, where appropriate:

• a number, string, or name literal (45, "this or that", @nameMe)

• A variable name

• an array or keyed linked list literal (#(1, 2, 3))

• an array access expression (myArray[1])

• a reference to a class or instance variable (myRect.x1)

• an anonymous function with no arguments (described in Chapter ,
“Functions, Threads and Pipes”)

• nextMethod (described in Chapter , “Defining Classes and Objects”)

A coercion expression is actually compiled as a call to the global function
coerce. A script can call coerce as an alternative to the as operator. For
example, the following expressions coerce a StringConstant object, that is a
string literal, to a Text object, a kind of string that can be edited. These two
coercion expressions are equivalent:

"When in the course of human events" as Text
coerce "When in the course of human events" Text

The coerce function, in turn, calls one of two underlying generic functions.
The Coercion protocol comprises a set of generic functions that allow scripted
classes to be coerced to and from other classes, including substrate classes.
Each class can implement its own version of morph or newFrom to define
which classes of objects it can be coerced to, and to perform the coercion
operation. By specializing these generics, scripted classes can be coerced freely
using the as construct in the ScriptX language. If an object cannot be
converted, it reports the cantCoerce exception. For more information on
coercion, see the “Object System Kernel” chapter of the ScriptX Components
Guide.

Comparing Objects

Chapter , “ScriptX Building Blocks,” describes a set of operators that are used
to compare objects for equality, identity, and magnitude. That chapter also
notes that those operators are shorthand for a set of equivalent global
functions, which are summarized on page 48. This section summarizes several
additional ScriptX comparison functions.

These comparison functions are part of a suite of object comparison functions
that ScriptX provides. Because they are based on generic functions, you can
override the generics in the classes and objects you define to extend the object
Comparison protocol.

Chapter , “Defining Classes and Objects,” describes how to specialize your
classes to allow for comparison of objects.

n<$endrange>
ange>

ring, see comparison
cts:aaa]
tartrange>
69

3 ScriptX Language Guide

Comparable
omparison:isC
omparison:cm
omparison:glo

comparison:un
For more information on the Comparison protocol, see the “Object System
Kernel” chapter of the ScriptX Components Guide. For complete definitions of
ScriptX comparison functions, see the “Global Functions” chapter of the
ScriptX Class Reference.

isComparable and cmp

Two functions that are useful for comparing objects are the generic function
isComparable and the cmp global function. The isComparable generic
function, defined by RootObject, is one of the four generics that are the basis
of the Comparison protocol. isComparable returns true or false,
depending on whether its arguments are comparable. If isComparable
returns true, then comparison operators and comparison functions (described
in Chapter , “ScriptX Building Blocks”) can be used on the tested objects
without causing an exception.

Each class can override isComparable to indicate which classes it can be
compared with. The default implementation of isComparable simply states
that two objects are comparable if they are of the same class.

isComparable 1 2

➯ true

isComparable 1 "banana"

➯ false

The cmp global function is a general purpose comparison function. When it is
called with two arguments (which must be comparable), it uses the equal (=)
and lt (<) generic functions to return one of three values:

• @same if the arguments have the same values (equal evaluates to true)

• @before if the first argument is less than the second (lt returns true)

• @after if the first argument is greater than the second (lt returns false)

The following examples demonstrate the cmp function:

cmp 1 1

➯ @same

cmp 1 4

➯ @before

cmp 4 1

➯ @after

Universal Comparison

In addition to simple comparison tests, ScriptX also defines a set of global
functions for determining universal equality and magnitude. The universal
comparison functions provide an ordering for all objects, even those that may
not be comparable. These functions can be used to sort any objects.

omparable
p
bal functions

iversal comparison
70

Working with Objects 3

comparison:fu
comparison:un

comparison:e

comparison:m
Universal comparison functions can compare two objects of different classes. If
two objects are of the same class, and that class does not implement a method
for localLT, then ult can still report an exception. Generally, all objects for
which comparison is meaningful, such as numbers and strings, implement a
method for localLT. To insure that the universal comparison functions work
for a given object, use canObjectDo to query the object to see whether it
implements localLT. For information on canObjectDo, see page 74.

The seven universal comparison functions are ueq, une, ult, ugt, uge, ule,
and ucmp.

The functions ueq (universal equal) and une (universal not equal) test for
object equality. The ueq function returns true only if:

• The classes of its arguments are the same, and

• the values of its arguments are equal

Conversely, une returns true if either the classes of its arguments are not the
same or the values of its arguments are not the same.

arg1 := 1.9 -- an instance of ImmediateFloat
arg2 := 1.9 as Float
arg1 = arg2 -- equivalent to the equal global function

➯ true

ueq arg1 arg2 -- test for universal equality

➯ false

In this example, arg1 is assigned the number 1.9 (an instance of class
ImmediateFloat), and arg2 is assigned the same value, coerced to the
Float class. Because the values of these numbers are the same, the equality test
returns true. However, because the classes of these objects are different, ueq
returns false.

The global functions ugt, ult, uge, and ule are used for universal
comparisons of magnitude. (They are the universal counterparts of the > (gt),
< (lt), >= (ge), and <= (le) operations, respectively). Each of these functions
returns true if one of the following rules is true:

• If the classes of the arguments are the same, then the methods return the
same result that the non-universal comparison would have returned.

For example, for the expression ult 1 2, the classes are the same
(ImmediateInteger), and the value 1 is indeed less than 2, so the function
returns true. Since lt 1 2 returns true, ult 1 2 returns true.

• If the classes are different, then the names of the classes are compared
alphabetically.

For example, for the expression ult 1 "this", the two classes
(ImmediateInteger and String) are different, so the names of the classes
are compared. Because ImmediateInteger is alphabetically “less than”
String (that is, “I” comes before “S”), the expression returns true.

nctions
iversal equality

quality

agnitude
71

3 ScriptX Language Guide

omparison<$e

ects:generic f
otObject clas
havior class
otClass class

tSubs
tSupers
Universal comparison functions exist to provide a total ordering, which is not
necessarily a meaningful ordering, like that provided by their non-universal
counterparts. Sorting objects alphabetically by their class name may not be
very meaningful, but it does allow objects of any class to be sorted together.

Finally, the ucmp function is the universal equivalent of the cmp function. ucmp
returns one of the following values, based on the following rules:

• @same if the ueq function returns true for the arguments.

• @before if the ult function returns true for the arguments.

• @after if the ueq and ult functions both return false for the arguments.

Finding Information About Classes and Objects

This section describes generic functions that are useful for finding information
about a class or object, such as what its superclasses are, whether it defines a
particular generic function, or the class of a given object. These methods are
defined by the classes RootObject, RootClass, and Behavior, and as such,
they are available to all classes and objects. For more information, see the
“Object System Kernel” chapter of the ScriptX Components Guide, and the
definitions of RootObject and Behavior in the ScriptX Class Reference.

Note – RootObject, Behavior, and RootClass define several generic
functions that expose API that is private, and not considered part of the ScriptX
Language and Class Library. Any classes, objects, instance variables, or
methods not documented in the Kaleida Technical Reference Series, or in
associated release notes, are not supported by Kaleida. Since such API is likely
to change with future versions of ScriptX, using it in a title or tool may result
in future incompatibilities with Kaleida products.

Some of the generic functions discussed here return a very large collection of
objects, generally in an array. By default, only the first ten elements of a
collection are printed to a stream. You might want to read ahead to section
“Output” which begins on page 74 to explore options for printing a complete
listing.

◆ getSubs class

getSupers class

The getSubs and getSupers generic functions return an array of all the
subclasses or superclasses of class, respectively. For getSupers, this includes
all the classes up to RootObject. The generic function getSupers returns an
array in exact inheritance precedence order.

ndrange>

unctions
s

72

Working with Objects 3

tDirectSubs
tDirectSupers

DirectSub
Sub
MemberOf

allInstances
deepInstances

etClassName
etClass

aKindOf
◆ getDirectSubs class

getDirectSupers class

In contrast with getSubs and getSupers, the generics getDirectSubs and
getDirectSupers return an array of immediate (direct) subclasses or
superclasses of class, respectively.

◆ isDirectSub class otherClass

isSub class otherClass

isMemberOf class object

The generic functions isDirectSub, isSub, and isMemberOf test the
relationship between two classes, or between a class and an object. The
isDirectSub generic returns true if class is a direct subclass of the class
otherClass; the isSub generic returns true if class inherits from the class
otherClass. The isMemberOf generic returns true if the given object is an
instance of class.

◆ allInstances class

The generic function allInstances returns an Array object containing a list
of all instances of class that currently exist in the system. Note that instances of
a subclass are considered instances of the given class.

◆ getClassName object

getClass object

The getClassName function returns a string containing the name of the class,
of which object is an instance. The getClass function returns the class object of
which the object is an instance. Comparisons using getClass are more efficient
than they would be with getClassName, since getClassName requires the
system to create and compare strings. The getClass generic function
references the object’s own class object directly.

◆ isAKindOf object class

The isAKindOf generic function tests the relationship between object and class.
If object is an instance of the given class, or if object is an instance of a class that
inherits from this class, isAKindOf returns true.

73

3 ScriptX Language Guide

etDirectGener
etAllGenerics

anObjectDo

Names
lIvNames

etter methods
es:getter met

bjects:printing
nopage>
rinting:objects
utput, see prin

ebug stream
rinting:debug
◆ getDirectGenerics object

getAllGenerics object

The getDirectGenerics function returns an array containing all the generic
functions that are implemented by methods that are defined directly by the
class that object is an instance of. The getAllGenerics function returns all the
generic functions available to object, whether they are implemented in the class
itself or in any of its superclasses.

◆ canObjectDo object generic

The canObjectDo function tests whether object has an implementation (a
method) for the generic function generic. This generic functions is often called
on class objects.

◆ ivNames classOrObject

allIvNames classOrObject

The ivNames function returns a sorted array of instance variables defined only
on the class or object. The allIvNames function returns a sorted array of all
instance variables available to the class or object, including instance variables
inherited from all the superclasses of this class. Both these functions return
only those instance variables that occupy real places in memory, which may
not be all the available instance variables. For a complete list, use
getDirectGenerics or getAllGenerics, and locate those generic
functions that end with -Getter.

Output

Every ScriptX object can be printed using a set of global functions that print a
text-only representation of that object to an output stream. How an object’s
printable representation appears depends on how that class has defined it. In
many cases, the printable representation may be nothing more than the name
of the object’s class and its memory address. In other cases, the class may
define its printable representation to contain significant information about the
value or contents of that object.

Printable representations are useful for debugging purposes. Be careful when
using an object’s printable representation to refer to that object—the object’s
printable representation may not be the same thing you would type into a
script to create or query that object.

ScriptX defines a default stream named debug for printable representations. In
some ScriptX environments, the debug stream may be attached to a listener or
debugging window. You can also create additional streams and use them as the
stream argument to each of the functions described in this section.

ics

;instance vari-
hods

, see printing

<$startrange>
ting <$nopage>

stream
74

Working with Objects 3

rint global func
The Short Answer

The simplest way to get the printable representation of an object is to call the
function print on it. The print global function writes a representation of the
object to the debug stream. This form of printing is used extensively in
examples throughout this book.

t := new Rect
print t

➯ [0, 0, 0, 0] as Rect

r := new LinkedList
print r

➯ #() as LinkedList

Note – The function call print "t" appears to have the same output in the
Listener window as the simply typing the string literal "t", followed by a
newline character. The difference is that the print function actually prints to a
stream, the debug stream, which can be directed to the Listener window, or to
another window, such as a debugger.

You can do simple formatted output by coercing the printable representation of
any object into a string, adding it to another string as a label, and then printing
the result:

print ("r contains: " + (r as String))

➯ "r contains #() as LinkedList"

The prin Generic Function

The basic generic function for printing objects is prin. Many classes in the
ScriptX core classes implement a prin method; prin is commonly specialized
by scripted classes.

◆ prin objectToPrint option stream

where:

• objectToPrint is the object you want printed

• option tells how to print the information (see below)

• stream is a writeable instance of ByteStream, or one of its subclasses.

The prin method prints objectToPrint to stream using the specified option
without including a newline character at the end of the line.

See the “Streams” chapter of ScriptX Components Guide and the ScriptX Class
Reference for more information about streams.

tion
75

3 ScriptX Language Guide

ebug stream;p
Unlike the print function, which is a global function that is not associated
with any class, prin is a generic function. It is defined as a method by the root
system class, RootObject, and can be specialized by any class in the system
that requires a special printed representation. The prin generic function is
used as a primitive by all other printing functions, most of which, like print,
are global functions. By specializing prin for a class, you can assure that all
ScriptX printing functions can print that class. (In certain classes that contain
recursive structures, it is necessary to specialize the recurPrin generic
function as well.)

By default, ScriptX provides only one appropriate stream for printable
information—the debugging stream, referenced by the system global variable
debug. Streams can also be instances of the class String or a stream that you
have created yourself.

The option argument to prin may be one of the following names. Some classes,
notably the Exception classes, define other options available to prin, but at
least these four must be available:

• @normal prints a “regular” representation of the object.

• @complete prints a complete representation which may include more
information than @normal, depending on the class. In collections such as
Array, for example, the @normal representation only prints the first ten
elements. The @complete representation prints all the elements.

• @debug prints even more information suitable for debugging purposes,
including the class of the object, or in the case of collections such as arrays,
the class of the collection and the classes of each of its items.

• @unadorned prints a plain representation of the object, which may vary
depending on the class. For example, it prints an instance of String
without quote characters as delimiters. It prints a name literal, a NameClass
object, without the identifying “@” sign.

In the following examples, the result (specified by ➯) is the output printed to
the stream, not the result of the prin expression itself:

a := "test string"
prin a @normal debug

➯ "test string"

prin a @debug debug

➯ StringConstant: "test string"

prin a @unadorned debug

➯ test string

t := #(1,2,3,4)
prin t @normal debug

➯ #(1, 2, 3, 4)

prin t @unadorned debug

➯ 1234

prin t @debug debug

➯ Array@0x3904e8: #(ImmediateInteger: 1, ImmediateInteger: 2,
ImmediateInteger: 3, ImmediateInteger: 4)

rinting:debug stream
76

Working with Objects 3

printing:g
t := #(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
prin t @normal debug -- default is only 10 elements

➯ #(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...)

prin t @complete debug -- @complete prints all the elements

➯ #(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Other Printing Functions

The generic function prin is used by several global functions, summarized
here, which can be used as shortcuts to the prin generic. Printing functions are
described in detail in the “Global Functions” chapter of the ScriptX Class
Reference.

◆ prinln self arg [stream]

prinln operates in the same manner as prin, except it also prints a newline
character after the output.

◆ prin1 self [stream]

prin1 is equivalent to prin with the @normal option. The stream argument is
optional and defaults to debug.

◆ print object [stream]

A combination of prinln and prin1, the print function prints the object
representation to stream with the @normal option and a newline character. The
stream argument is optional and defaults to debug. See the discussion and
examples that begin on page 75.

◆ prinString object arg

prinString yields a new String instance containing a printed
representation of the given object.

◆ printString object

printString is equivalent to prinString, except that it forces the @normal
option.

◆ shortPrin object arg stream length

shortPrin is equivalent to prin, except that shortPrin prints only the
number of characters specified by length.

lobal functions
77

3 ScriptX Language Guide

printing:format
ormat global f
Formatted Output

Generalized formatted output is available with the format function:

◆ format stream formatString object option

The format global function prints a formatted string to a stream, where stream
is the stream to print to, (for example, debug), formatString is the string to print
(which can include substitution characters), object is the object you want a
printable representation of, and option is one of the four printing options, as
described on page 76. The final argument is optional—if it is not supplied, it is
passed as undefined and defaults to @normal.

Note – The stream and object arguments to format are in a different order than
in prin and its associated functions.

The formatString argument is a string that may contain substitution characters.
Those substitution characters represent the object being printed, and are
replaced in the resulting output by the printable representation of that object.
For single objects, use “%*” as a substitution character.

i := 15
format debug "I is %*\n" i @normal

➯ I is 15

Note that the format string can contain special characters such as newlines.

To print out a number of objects in one format string, you can put those objects
in an array and use the array element substitution character. For multiple
objects, the substitution character is “%n” where n is the position of the element
in the collection. The “%” can be used as a terminator after n. If you use this
form for multiple elements in a collection, the option argument of the format
expression must be a collection of options (such as an array), with a separate
option for every element being printed.

format debug "%1 and %2% are dead\n" \
 #("rosencrantz", "guildenstern") #(@unadorned,@unadorned)

➯ rosencrantz and guildenstern are dead

As a shorthand for printing an array of options, the letters n, c, u, and d can be
inserted after individual items. This allows items to be printed out with
different formats. When individual formats are supplied, they override formats
that are supplied in the fourth argument.

-- in this example, format codes %n1 and %u2 make the final
-- argument unnecessary
format debug "%n1 and %u2 are dead\n" #("rosencrantz", "guildenstern")

➯ "rosencrantz" and guildenstern are dead

-- in this example, @unadorned overrides @debug for both items
format debug "%u1 and %u2 are dead\n" \

 #("rosencrantz", "guildenstern") #(@debug,@debug)

ted output
unction
78

Working with Objects 3

cursive struct
rinting:recursiv
ollections:prin
➯ rosencrantz and guildenstern are dead

If you use the “%*” substitution in a format string on a collection object, the
resulting output string contains the entire printable representation of that
object:

format debug "The array is: %*" w @normal

➯ The array is: #("rosencrantz", "guildenstern")

The “%n” substitution only works on collections that implement the getNth
method. See Chapter , “Collections,” or the “Collections” chapter of the ScriptX
Components Guide for more information about collections. If you use the “%n”
substitution on objects that are not collections, ScriptX reports an exception.

Recursive Output

Objects that contain other objects, for example collections such as arrays or
keyed lists, may contain multiple copies of the same object, and may even
contain references to themselves. In such a case, the printable representation of
that object has a special format to manage recursion:

keepOnGoing := #(1,2,3)
append keepOnGoing keepOnGoing

In this example, append added the array keepOnGoing to itself as its own
fourth element. Without a special format to represent this condition, the
printable representation of keepOnGoing would go into an infinite loop trying
to print its fourth element:

#(1, 2, 3, #(1, 2, 3, #(1, 2, 3, ...

Instead, keepOnGoing prints using a special format that looks like this:

print keepOnGoing

➯ #1=#(1, 2, 3, #1#)

In this format, the object that contains a reference to itself is specified by a
number (#1 in this case), an equal sign, and the printable representation of
itself. Then, in the list of elements, any elements that refer to that same object
are indicated by that number, surrounded by hash signs (#1# in this case).

Collections that contain multiple copies of the same object are printed using a
recursive format:

x := "elbow"
b := #(x, x)
print b

➯ #(#1="elbow", #1#)

In this example, the #1="elbow" part refers to the first occurrence of x, and
#1# refers to all other occurrences.

ures;printing
e structures

ting
79

3 ScriptX Language Guide
In objects that contain multiple recursive or repeated objects, those collections
are numbered consecutively:

a := "elbow"
b := "knee"
c := #(a, b, b, a)
print c

➯ #(#2="elbow", #1="knee", #1#, #2#)
80

C H A P T E R

Conditionals and
Loops
 4

4

ScriptX Language Guide
82

Conditionals and Loops

4

nditionals
tartrange>

expression
tartrange>
This chapter outlines the structures in the ScriptX language for handling
conditionals such as if and case, and loops such as for and repeat, as well
as several expressions for control of these loops.

Conditionals: if and case

Conditionals are used to perform an action or combination of actions based on
the outcome of a given test. ScriptX has three forms of conditionals:

• if . . . do . . .

• if . . . then . . . else . . .

• case . . . end

If Conditional

ScriptX has two if expressions: if . . . do and if . . . then . . . else.

▼ if conditional do trueExpression

if conditional then trueExpression else falseExpression

Use if . . . do if you are only interested in the true condition, and
if . . . then . . . else if both the true and false conditions must be handled.
You can use if . . . then without the else statement, but the compiler will be
waiting for the else statement, so you will not immediately see the result of
an if . . . then statement in the Listener window. Once another expression has
been entered, however, you will see the results of both expressions. If you type
an if . . . then without the else and want to see the result right away, you
can use the operator !!, which is legal only at the top level when an
expression is complete.

The conditional part of the if expression is an expression that evaluates to
either false or something other than false. In both forms of the if
expression, trueExpression is evaluated if the value of conditional is not false.
That is, the test expression does not have to evaluate specifically to the true
object for trueExpression to be evaluated—it just has to evaluate to something
other than false. Both trueExpression and falseExpression are often compound
expressions.

Both forms of the if expression return a value—that value is the value of
either trueExpression or falseExpression, depending on which one was evaluated.
Because if expressions return a value, you can nest if expressions inside
other expressions, such as an assignment.
83

4 ScriptX Language Guide

expression
ndrange>

se expression
tartrange>

herwise <$sta
ge>
If the test in the if . . . do expression returns false, the whole if expression
returns undefined.

Here are some examples using if expressions:

global x := 1, y := 5, p
if x > 0 do x := 0

p := if x > 0 then x else 0

if x < y then x
else (

print "x is greater than y, setting x to 0"
x := 0

)

case Conditional

Case expressions are used to switch between possible operations based on the
result of evaluating an initial expression.

▼ case [test] of

tag : expression

. . .

[otherwise : expression]

end

The value of test is compared to the value of each of the tags in the tagged
expressions (the tag:expression clause) in succession using the equal global
function as a test of object equality. When this comparison first evaluates to
true, then the expression (often a compound expression) is evaluated. Once a
match is found and the expression is evaluated, the case expression terminates
and yields the value of that expression. No other comparisons are made. Note
that the case expression, like the if expression, always yields a value. If there
is no match, the value is undefined.

You can have any number of tag:expression clauses in a case expression.
Whereas the expression can be any expression (including a compound
expression), the tag is a limited form of expression, evaluated before the return
value of test is matched against it. The tag can be one of the following:

• a number, string, or name literal (45, "this or that", @nameMe)

• a variable name

• an array or keyed linked list literal (#(1, 2, 3))

• an array access expression (myarray[1])

• a reference to a class or instance variable (myrect.x1)

• an anonymous function with no arguments (described in Chapter ,
“Functions, Threads and Pipes”)

• nextMethod (described in Chapter , “Defining Classes and Objects.”

r-
84

Conditionals and Loops 4

herwise <$en-
nge>
nditionals
ndrange>
se expression
ndrange>

peat expres-
n <$star-
ge>
• any other inner-level expression enclosed in parentheses

The optional otherwise clause identifies the default case, if none of the tags
result in true:

case pet of
@cat: print "meow"
@dog: print "woof"
@bird: print "chirp"
@snake: print "hiss"
otherwise: print "mysterious animal noise"

end

bool := case i of
0:false
1:true
otherwise: (print "out of range"; undefined)

end

If the test is omitted, the tags are expected to be expressions that evaluate to
true or false. When the first tag expression to yield true is evaluated, the
case expression terminates and yields the value of its corresponding
expression, which it evaluates.

case of
(isComparable a b): (

case of
(a > b): print "a is greater than b"
(a = b): print "a is equal to b"
otherwise: print "a is less than b"

end
)
otherwise: print "a and b are not comparable"

end

If the otherwise tag is omitted and none of the other tags match the value of
the test expression, the value of the case expression is undefined.

Repeat Loops

ScriptX has two forms of repeat loops: one that repeats as long as a
conditional test is not false (repeat . . . while), and one that repeats until the
conditional test is not false (repeat . . . until). Each form has two variants,
providing a total of four possible forms:

85

4 ScriptX Language Guide

til, see repeat
n<$nopage>
ile, see repea

n<$nopage>

peat expres-
n <$endrange

 expression
tartrange>
▼ repeat while conditional do expression

repeat until conditional do expression

repeat expression while conditional

repeat expression until conditional

In all four forms, conditional is the loop control expression, which must be an
expression that evaluates to either false or not false, and expression is the
body of the loop containing the expression (often a compound expression) that
is executed at each iteration of the loop.

In the repeat forms that have the expression before the conditional, the
expression is evaluated at least once before the conditional is evaluated. In the
other forms (the do forms), if the while test evaluates to false, or the until
test to not false, then expression is never evaluated.

All repeat expressions return the OK object, a special system object, regardless
of the outcome of their conditional tests or actions.

global x := 10
repeat while x > 0 do (

print (sin x)
x := x - 1

)

x := 10
repeat (

print x
x := x - 1

) until x == 0

Using the exit construct defined on page 94, you can exit from within a repeat
loop, returning a different value.

for Loops

In ScriptX, the for loop is very sophisticated and includes

• concurrent looping of multiple iteration sources

• collecting and selecting values based on tests

• compounding the results of several loops

ScriptX has three forms of for loops:

 expres-

t expres-

>

86

Conditionals and Loops 4

 expression:it
tion <$star-
ge>
▼ for sources [conditional] do expression

for sources [conditional] collect [into collection]

[by function] [as collectionClass] expression

for sources [conditional] select expression [into collection]

[by function] [as collectionClass] if conditional

In each form of the for expression, sources is the source of iteration and
conditional is an additional, optional test that can be used to control the loop.

Simple Iteration

The simplest use of the ScriptX for loop is to execute an expression a specified
number of times. This iteration can take three forms:

▼ for numericExpr do expression

for item := rangeOrCollection do expression

for item in rangeOrCollection do expression

In the first form, numericExpr is the number of times to iterate, or an expression
that results in a number; and expression is the expression, often a compound
expression, to evaluate at every iteration. The expression is evaluated the
number of times specified.

for 9 do print "hello"

allSpaces := #()
for 52 do append allSpaces " "

The last two forms are for iterating over ranges or collections. The item part of
the for loop names the local iteration variable, which holds successive values
from the range or collection as the loop iterates. This local iteration variable is
available within the body of the loop. The rangeOrCollection part is either a
range, as described below, or a collection such as an array. Finally, the
expression part of the loop, as in the previous form, is an expression, often a
compound expression, that is evaluated at each iteration. Note that item :=
and item in are equivalent forms, and both ranges and collections can be
used with either form.

In all of these forms, the for loop returns the last value of the loop body
expression when the loop ends.

Here are two examples of using this form of for loop. The sections that follow
supply more examples.

global i, myArray := #(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
for i := 1 to 10 do print myArray[i]
global theMin := 25
for i in #(1, 435, 234, 23, 8) do

if i < theMin do theMin := i

-

87

4 ScriptX Language Guide

nge literals
nges
➯ undefined

The for loop evaluates to undefined because in the last iteration, the if
expression evaluates to undefined; theMin, however, has a value of 1, as you
would expect.

Note – A ScriptX for expression actually works by creating an object called an
iterator. Within a for loop, a script can perform many operations that would be
impossible without access to this iterator. Iterators, an advanced topic, are
discussed in the “Collections” chapter of the ScriptX Components Guide. Also
note that when you want to minimize memory usage and garbage collection,
you can avoid creating an iterator by using the forEach method on a
collection instead of using a for expression.

for Loops and Ranges

Explicit ranges are specified using the range literal construct. You can also use
any expression that yields a Range object.

▼ startValue to endValue [by increment]

The startValue side of the range is the number from which to start iterating, the
endValue side is the number with which to end, and the optional increment is
the amount by which to increment at each iteration. If by increment is omitted,
the increment is assumed to be 1.

for i := 1 to 23 do print i
for i in 0 to 100 by 10 do print (i * i)

To decrease the index at each iteration, simply reverse the order of the
startvalue and endvalue of the range. For decreasing ranges, you must always
state the amount by which to decrement:

for i := 10 to 1 by -1 do print (i + i)

The range syntax described here is actually a range literal that creates an
instance of one of the subclasses of Range. That literal can be used anywhere
in a script. Ranges are described in greater detail in the section on “Ranges”
beginning on page 157, and in the “Collections” chapter of the ScriptX
Components Guide.

for Loops and Collections

You can use for loops to iterate over collections such as arrays and linked lists.
At each iteration, each item in the collection in turn is assigned to the iteration
variable (i in these examples). The loop body is then evaluated with the local
iteration variable set to that value.
88

Conditionals and Loops 4

loops:multiple
rces

 expression:it
tion <$en-
nge>
for i in #(1,2,3,4) do print i
for i := #("Francois","Inez","Louis","Margot") do

format debug "%* did it!\n" i @unadorned

Note that ranges, described in the previous section, are also collections, which
allows you to form for expressions like this:

global countdown := 10 to 1 by -1
for i in countdown do

(format debug "%* seconds to blast off!\n" i @normal)

Multiple Sources of Iteration

All for loops can have multiple sources of iteration, separated by commas.
Each source is iterated at each loop. The loop terminates when any one of the
sources of iteration ends.

-- in this example, the first iterator terminates first
for 14, i := 1 to 1000 by 23 do

(prin i @normal debug; prin " " @unadorned debug)

➯ 1 24 47 70 93 116 139 162 185 208 231 254 277 300 OK

-- in the following example, the second iterator terminates first
for 14, i := 1 to 1000 by 230 do

(prin i @normal debug; prin " " @unadorned debug)

➯ 1 231 461 691 921 OK

for i := 1 to 10, j := 1 to 10 by 2 do (
format debug "I is %1. J is %2\n" #(i, j) #(@normal,@normal)
print (i * j)

)

-- print only the first 8 elements in the array listOfPeople
for 8, i in listofPeople do print i

Additional Tests

In for expressions you can also specify an additional, optional test to stop
each form of the loop from further iterations. Using tests in addition to
standard iterations allows both the simplicity of for loops and the flexibility of
a repeat loop.

▼ for source while conditional do expression

for source until conditional do expression

In this form of the for expression, the source part of the loop is any of the
forms described in the previous sections, and conditional is an expression that
returns false or an object whose value is not false.

x := 1
for 23 while x <= 5 do (

print x
x := x + 1

-

89

4 ScriptX Language Guide

 expres-
n:collecting re
s
tartrange>
 expres-

n:selecting re-
s
tartrange>
)

➯ 1

2
3
4
5
6

You see 1 through 6 in the Listener window because the for expression above
prints 1 through 5 and then returns 6, which is the value of the for expression
(that is, the value of x, the last expression inside the for expression) at the end
of the loop.

Here’s the same loop performed using until rather than while:

x := 1
for 23 until x > 5 do (

print x
x := x + 1

)

➯ 1

2
3
4
5
6

Here’s another example using while:

for m := 1 to 100, n := 1 to 100 by 5 while m * n * n < 10000 do (
prin m @normal debug; prin ", " @unadorned debug
prinLn n @normal debug

)

Collecting or Selecting Results

The examples of for loops in the previous sections all used the do reserved
word to begin an expression that is evaluated each time the loop iterates. The
for loop also has forms that allow you to collect the results of an iterated
expression into a collection such as an array, or to collect a particular value of
an iterated expression based on a given test.

▼ for sources [(while|until) conditional] collect

[into collection] [by function] [as collectionClass] expression

for sources [(while|until)conditional] select expression

[into collection] [by function] [as collectionClass] if conditional

In both forms, source is the source (or sources) of iteration, as described in
“Simple Iteration” on page 87 and conditional is the optional while or until
test described in “Additional Tests.”

-

90

Conditionals and Loops 4

 expression:in
lause
The collect form builds a collection (an array by default) of the values of the
loop body at each iteration. At each iteration the expression is evaluated, and
the values of that expression are collected.

for i := 1 to 10 collect i

➯ #(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

sinvals := for i := 1 to 3 collect sin i

➯ #(0.841470984807897, 0.909297426825682, 0.141120008059867)

The select form allows you to select and assemble a collection of the values
of the loop at each iteration based on a given test. If the test returns true, the
value of expression at each iteration is put into a collection (an array by default).

Note that to use a complex expression in the expression part of the select
form, you must specify that expression inside parentheses. The only
expressions that can be used without parentheses in the select form of the
for loop are:

• a variable name (for example, the name of the index variable)

• an array access expression (myArray[i])

• a reference to a class or instance variable (myRect.x1)

• an anonymous function with no arguments (see “Anonymous Functions” on
page 105 of Chapter , “Functions, Threads and Pipes”)

• nextMethod (see “Defining Class and Instance Variables” on page 145 of
Chapter 6, “Defining Classes and Objects”)

Here are some examples:

negativesins := for i := 1 to 10 select (sin i) if (sin i) < 0

➯ #(-0.756802, -0.958924, -0.279415, -0.544021)

global status := #(@doorClosed:false, @keyInIgnition:true,
@propellerMoving:true)

print status

➯ #(@doorClosed:false, @keyInIgnition:true, @propellerMoving:true)

for i in #(@doorClosed, @keyInIgnition, @propellerMoving)
select i if status[i] = true

➯ #(@keyInIgnition, @propellerMoving)

into

The optional into clause allows you to append collected or selected items to
an existing collection such as an array:

squares := #()
for s in 1 to 10 collect into squares (s * s)

The into clause is most useful for several disconnected (either sequential or
nested) for loops that modify the same collection:

-

91

4 ScriptX Language Guide

expression:by
se
nums := for i in 1 to 5 collect i
for i in 20 to 23 collect into nums i
for i in 40 to 45 collect into nums i
prin nums @complete debug

➯ #(1, 2, 3, 4, 5, 20, 21, 22, 23, 40, 41, 42, 43, 44, 45)

global doors, openDoors := #()
doors := #(@front:false,@back:true,@side:true,@garage:false)
for i in #(@front,@back,@side,@garage)
select i into openDoors if doors[i] = true

➯ #(@back, @side)

Note that the expression following the reserved word into must evaluate to
an instance of a collection. That collection expression can be one of the
following expressions:

• a variable name (for example, the name of the index variable)

• an array or keyed linked list literal (#(1, 2, 3))

• an array access expression (myArray[i])

• a reference to a class or instance variable (myrect.x1)

• an anonymous function with no arguments (see “Anonymous Functions” on
page 105 of Chapter , “Functions, Threads and Pipes”)

• nextMethod (see the discussion of nextMethod on page 132 of Chapter 6,
“Defining Classes and Objects”)

• any other expression, surrounded by parentheses.

by

The optional by clause in either the collect or select form of the for
expression allows you to specify a function that is used to add each new item
to the final collection. This function, which is called a collector, can be either a
regular function or a generic function that has the required form. To be used as
a collector, a function must return the collection into which the items are being
collected.

The collector function is called with two arguments on each pass through the
loop. The first argument is a collection (specified by the into clause, or created
based on the as clause). The second argument is the current value of the loop
body. Several generic functions in the Collection protocol have the required
form, and others can easily be embodied in a scripted function. The following
script joins a sequence of collections into one using merge, a generic function
that every Collection object provides a method for.

global firstArray := #(1,2,3,4,5)
global secondArray := #(@yes,@no,@maybe)
global thirdArray := #("sow","ewe","cow","hen")
bigJumbledArray := #(firstArray,secondArray,thirdArray)
niceNeatArray := #()
for i in bigJumbledArray collect into niceNeatArray by merge i

➯ #(1, 2, 3, 4, 5, @yes, @no, @maybe, "sow", "ewe", ...)

92

Conditionals and Loops 4

 expression:a
use
By default, a for expression calls the appendReturningSelf global function,
which is defined for sequences. This global function is similar to append,
except that it returns the collection itself. (By contrast, the generic function
append returns the key of the item that was appended.) Another useful
function for collecting items is the global function addManyValues.

In the following example, items are collected into a string using a function that
is built around prepend, a generic function for which all sequences define a
method. This has the effect of reversing the order of a string. (Keep in mind
that prepend is an inefficient way to add items to some sequences, including
arrays and strings. It is used here only for illustration purposes.) For more
information on functions, see Chapter , “Functions, Threads and Pipes.”

global reagan := new String string:""
speech := "Facts are stupid things"
-- define a function that can act as a collector or selector
function prependReturningSelf sequence value -> (

prepend sequence value
return sequence

)
-- use the collector function to reverse the string
for i in speech collect into reagan by prependReturningSelf i

➯ "sgniht diputs era stcaF"

For a variation on this script which uses an anonymous function, see page 104
of Chapter 5, “Functions, Threads and Pipes.”

The only types of expressions that can be specified after by without
parentheses are the following, where appropriate:

• a variable name (for example, the name a generic function or a class)

• an array access expression (myArray[i])

• a reference to a class or instance variable (myRect.x1)

• an anonymous function (see “Anonymous Functions” on page 105 of
Chapter , “Functions, Threads and Pipes”)

• nextMethod (see “Class and Instance Methods” on page 120 of Chapter ,
“Defining Classes and Objects”

To specify complex expressions in a by clause, you must specify them within
parentheses.

as

The optional as clause specifies a collection class into which elements are
collected or selected. Collections are described in Chapter , “Collections.” Note
especially the section on strings as collections.

for i in "jabberwocky" collect as Array i

➯ #(106, 97, 98, 98, 101, 114, 119, 111, 99, 107, ...)

for i in "jabberwocky" select i as String if i > 105

➯ "jrwoky"

s
93

4 ScriptX Language Guide

 expression
ndrange>
 expres-

n:collecting re
s
ndrange>
 expres-

n:selecting re-
s

op control ex-
ssions
ock control ex-
ssions

ntinue

t

The first example collects characters in a string literal (a StringConstant
object) into an array. They are coerced to Unicode values, which are
ImmediateInteger objects, before being added to the array. The second
example selects only those elements of a string for which the Unicode value is
greater than 105.

The expression following the as reserved word must evaluate to a class. The
types of expressions that can be specified after as without parentheses are the
same as for the by clause, listed above. To specify a complex expression in an
as clause, you must specify it within parentheses.

Loop Control Expressions

Loop control expressions are used to affect the flow of control in a compound
expression such as those used with for and repeat loops.

▼ continue

exit [with expression]

The continue expression causes the closest enclosing for or repeat loop to
immediately begin its next iteration. If there are no further iterations, the loop
ends.

for i in #(1, 3, 6, 9) do (
 if (i * i) = 36 do continue
 print i
)

➯ 1
3
9

If continue is used in the collect or select forms of the for loop, the
value of the loop expression is not added to the collection if the loop is
interrupted. For example:

for i := 1 to 5 collect (
if i = 3 then continue else i

)

➯ #(1, 2, 4, 5)

The exit expression is used to immediately stop execution of the innermost
for or repeat loop, continuing the execution of the surrounding loop or
block. Loops that are exited with exit alone return undefined. To specify a
return value for the loop, use the exit with form. The return value of the
entire block is then the value of expression.

val := for i in #(1, 3, 6, 9) do (
 if i = 6 do exit with "Six"
 print i
)

-

94

Conditionals and Loops 4
➯ 1

3
“Six”

print val

➯ "Six"
95

4 ScriptX Language Guide
96

C H A P T E R

Functions, Threads
and Pipes
 5

5

ScriptX Language Guide
98

Functions, Threads and Pipes

5

nctions
tartrange>

nctions:argu
nts
guments, see
ctions

nopage>
This chapter describes how to define ScriptX functions and also discusses the
ScriptX thread and pipe operators.

Defining Functions

Functions provide a way to group a series of common operations under a
single name. As described in Chapter 3, “Working with Objects,” there are two
kinds of functions in ScriptX: regular functions and generic functions. This
section describes how to define regular functions. Generic functions are created
as a side effect of defining a method on a class or object. Method definition is
described in Chapter 6, “Defining Classes and Objects.”

Functions, like all things in ScriptX, are objects (literally, instances of a subclass
of AbstractFunction, typically ByteCodeMethod). There are two ways to
define functions. A named function definition creates a new variable and
immediately assigns the function object to it. An anonymous function is not
assigned to a variable, although it can be assigned in a subsequent expression.
Anonymous functions are described on page 105.

If you are defining a recursive function, you must use a named function. This
is true because a named function is the only kind of implicit or explicit variable
declaration in which you can use a name within the initializing expression and
have it refer to the variable being defined. In other cases, it refers to an outer
scope variable of that name.

Function Syntax Summary

Regular functions with names are defined using the following syntax:

▼ function fnName [positionalArgs] [#rest restArg] [#key keywordArgs] \

-> body

The function reserved word, which can be shortened to simply fn, signals
that this is the start of a function definition, and fnName is the name of the
variable this function object is assigned to. After the function name are the
parameters to the function: positionalArgs specify arguments that are required
by the function and must be specified in a specific order (position), restArg
holds an array of optional arguments given when the function is called, and
keywordArgs is a list of keyword arguments. All three types of arguments are
optional, although they must be specified in this order.

Finally, body is the expression, often a compound expression, that makes up the
body of the function. The expressions within the function body are executed
when the function is actually called.

-

99

5

ScriptX Language Guide

nc-
ns:names
nc-
ns:scope
nctions:local
cal:functions

nctions:key-
d arguments

yword argu
nts
Function Names and Variables

The fnName part of the function definition is the name of the variable that this
function object is assigned to once it has been created. Like all variables in
ScriptX, if fnName has not been previously declared, it is automatically declared
global. You can specify that fnName is to be declared locally by preceding the
function keyword with the word local. Note that just as with local variables,
you can only define a local function inside a local scope (that is, not at the top
level).

local function sortIt theList -> . . .

Additionally, the variable that this function is assigned to is automatically
declared constant in the function definition, which means that you cannot
assign anything else to it once the function has been created (except by
redefining another function). This is to prevent accidentally overwriting the
definition of a function with a simple assignment. If you expect to reuse the
global variable name to which you’ve assigned a function elsewhere in your
script, consider using the anonymous function construct instead (or a local
variable, if appropriate).

Functions with Positional Arguments

Functions with positional arguments are the simplest form of function, and
they look and operate just like functions in other languages. When the function
is called, the positional arguments must all be specified and must be in the
right order for the function to work.

You can specify any number of positional argument parameters (including
none), but they always appear first in the function definition, before any “rest”
arguments or keyword arguments.

function square n -> n * n
square 10

➯ 100

function beepMe -> print "beep!"
beepMe()

➯ "beep!"

Note – If a function has no arguments, empty parentheses are required.

Functions with Keyword Arguments

Functions with keyword arguments provide the most flexibility for the user.
You can call such a function with different numbers of arguments, in any order,
and some or all of those arguments can be optional. However, calling functions
that have been defined to use keyword arguments involves a performance hit
because all the keyword arguments must be processed by ScriptX before the
function is executed.

-

100

Functions, Threads and Pipes

5

To specify that your function takes keyword arguments, use the #key
keyword in the function definition, followed by the definitions of the keywords
themselves:

▼ function fnName [positionalArgs] [#rest restArg] [#key keywordArgs] \

-> body

Keyword arguments are optional in the function definition, but if they are
included, they must be specified after both the positional arguments and the
optional “rest” argument (described in the next section).

You can specify any number of keyword arguments after the #key reserved
word. Keyword arguments look like this:

▼ keyName:[argName] [(initialValue)] . . .

where:

• keyName is the name of the keyword, as specified when the function is
called. The optional argName is a keyword (specified when the function is
called) that is assigned to in the body of the function. If you do not specify
argName in the function definition, the keyword value is assigned to a local
variable of the same name as the keyword.

• argName is most often used when the local variables used for the keywords
may conflict with other system-defined variables. Because functions start a
new variable scope, the variable names of your keys as used in the body of
the function may hide the variable names of classes or objects or other
functions that you may want to make use of in the body of that function.
Specifying a separate argName allows you to continue to access the original
values of those variable names while still being able to use meaningful
keyword names.

• initialValue is the optional value this keyword argument is to initially be set
to if a value is not given for that argument when the function is called. This
is often called the default value. The initial value is always specified within
parentheses. If you do not specify a initial value for a keyword, and no
value for that keyword is given when the function is called, the value of that
keyword in the body of that function is the unsupplied object. Note that
unsupplied is different from undefined; undefined must be specifically
indicated by the user for it to appear in the body of a definition (and may
have a specific meaning), but unsupplied is used if the user did not
specify that key at all.

If a function with keyword arguments is called with duplicate keywords, the
value of the first one in the series is used.

Here are some examples:

-- reportArgs simply prints out its a and b values
function reportArgs #key a: b: -> (print a; print b)
reportArgs a:10 b:20
101

5 ScriptX Language Guide

nctions:rest
uments

startrange>
st arguments
➯ 10
20

reportArgs a:100

➯ 100
unsupplied

reportArgs a:10 b:30 a:50

➯ 10
30

-- reportArgs2 is the same as reportArgs, but the values of the
-- keys are assigned to the local variables moo and quack
-- instead of a and b.
function reportArgs2 #key a:moo b:quack -> (

print moo; print quack
)
reportArgs2 a:10

➯ 10
unsupplied

-- reportArgs3 defines default values for a and b so
-- neither will appear as unsupplied
function reportArgs3 #key a:(1) b:(2) -> (

print a; print b
)
reportArgs3() -- use all defaults

➯ 1
2

reportArgs3 a:20

➯ 20
2

-- reportArgs4 defines default values
-- and assigns them to local variables
function reportArgs4 #key a:moo(1) b:quack(2) -> (

print moo; print quack
)
reportArgs4()

➯ 1
2

reportArgs4 a:6

➯ 6
2

Functions with Rest Arguments

ScriptX allows you to define a function that you can call with any number of
arguments. For example, you could create a function that adds up all of the
numbers passed into it—two numbers, ten numbers, or whatever—the
important thing is that the number of arguments is not fixed.

102

Functions, Threads and Pipes 5
The #rest argument allows you to define a function with a variable number of
arguments. In this sense, “rest” means “the rest of the arguments after the
positional arguments, except the denoted keyword arguments.” The function
collects those “rest” values into an array, and in the body of the function you
can access elements in that array.

Unlike positional arguments, rest arguments are not required—when you call
the function you can supply no rest arguments, or as many as you need to.

Notice in the following function definition that #rest takes a single argument
restArg. The combination #rest restArg comes after any positional arguments
and before any keyword arguments. By convention, the argument args is
typically used for restArg (though you could name it whatever you want), so
what you often see in examples is the combination #rest args.

▼ function fnName [positionalArgs] [#rest restArg] [#key keywordArgs] \

-> body

This is an example of a function that takes no arguments other than its rest
arguments:

-- addEmUp takes a variable number of arguments, sums them all
-- and returns the sum
function addEmUp #rest args -> (

local sumArgs := 0
for i in args do sumArgs := sumArgs + i

)
addEmUp 1 2 3 4 5

➯ 15

addEmUp 3 4

➯ 7

In place of using args in the previous example, we could have used numList,
to denote the list of numbers.

This example defines a function that takes a single required argument and a
variable number of rest arguments (each argument happens to itself be an
array):

-- joinArray takes a single required array and a variable number
-- of other arrays. It builds a single array of all the
-- elements in all its arguments
function joinArray array1 #rest otherArrays -> (

for i in otherArrays do addMany array1 i
return array1

)
joinArray #(1,2,3) #(4,5,6)

➯ #(1, 2, 3, 4, 5, 6)

joinArray #() #(@angora,@persian) #(@egyptianmau) #(@housecat)

➯ #(@angora, @persian, @egyptianmau, @housecat)
103

5 ScriptX Language Guide

nctions:re-
n values
turn
Combining Rest and Keyword Arguments

If your function definition uses both the #rest and #key reserved words to
define both rest and keyword arguments, the non-positional arguments can
only be in the form of keyword-value pairs (keyword:value). You cannot mix
arbitrary numbers of #rest arguments and keyword arguments.

When a function with both rest and keyword arguments is called, the
keywords and values supplied to the function are stored into the rest argument
in sequence (key, value, key, value, and so on) with the keywords appearing as
NameClass objects.

function showRest #rest args #key a: b: c:(100) ->
print args debug

showRest a:10 b:20 c:30
#(@a, 10, @b, 20, @c, 30)

showRest a:10
#(@a, 10)

showRest()
#()

Note that the compiler translates a keyword argument into a pair of
conventional arguments. The following function calls are equivalent:

grok foo:10 moof:20
grok @foo 10 @moof 20

Function Return Values

You can specify a function’s return value using the return block control
expression:

▼ return expression

When a return expression is encountered in the body of a function definition,
the function is immediately exited with the value specified by expression.

Functions that do not specify a specific return value return the value of the last
expression evaluated while executing the function.

function factorial n -> (
if n <= 0 then return 1
else return (n * (factorial (n - 1)))

)
-- now, try a few test values
factorial 0

➯ 1

factorial 4

➯ 24

function sumAndPrint #rest args -> (
local mySum := 0
104

Functions, Threads and Pipes 5
for i in args do mySum := mySum + i
format debug "The sum is: %*\n" mySum @normal
return mySum

)

sumAndPrint 10 20 34 45

➯ The sum is: 109
109

Anonymous Functions

The anonymous function expression evaluates to a function object (actually, an
instance of the class ByteCodeMethod). Unlike function definitions using the
function construct, anonymous function definitions don’t cause a variable to
be declared implicitly, and so are not accessible by naming the variable to
which they are bound (hence the term anonymous function). Anonymous
functions are useful for nesting function definitions in other expressions, or as
arguments to other functions.

▼ ([positionalArgs] [RestArg] [KeywordArgs] -> body)

Anonymous functions can be defined with the same three types of arguments
as regular functions: positional arguments, rest arguments, and keyword
arguments. Just as with regular functions, all three types of arguments are
optional, but must be specified in the order shown.

(n -> n * n)
(a b -> a + b)
(#rest nums -> for i in nums do print (i * 10))

Anonymous functions can be used wherever normal function calls are used:

function addTwo a b -> a + b
addTwo 4 5

➯ 9

(a b -> a + b) 4 5

➯ 9

for i in #(1,2,3,4) collect (n -> n as String) i

➯ #("1", "2", "3", "4")

In the ScriptX core classes, many generic functions take a function as an
argument. An anonymous function is an ideal way to pass a function object as
an argument, since it doesn’t require assigning a name. The following example
demonstrates the use of an anonymous function in a callback script. The
second argument in the third expression, addTimeCallback, registers a
callback that will print the clock’s time in 15 seconds. This printing action is
called as an anonymous function.
105

5 ScriptX Language Guide
global myClock := new Clock
myClock.rate := 1
addTimeCallback myClock (c -> print c.time) \

myClock #() (myClock.time + 15) true

Because an anonymous function expression evaluates to a function object, you
can assign an anonymous function expression to a variable, and then use that
variable name to call the function, just as if you had created that function with
the function expression. The difference is that the variable to which you
assign the anonymous function is not a constant variable, so it can be
reassigned to any other object.

cubeMe := (a -> a * a * a)
cubeMe 2

➯ 8

As mentioned earlier, if your function requires recursion (a recursive function
calls itself to accomplish an operation), you cannot use an anonymous
function. Recursion depends on a special binding of a variable name to a
function definition before that function object has been created. The function
expression provides a local binding that allows recursion. An anonymous
function does not.

-- this is OK
function sumTheNum arg -> (

if arg <= 0 then return 0
else return (arg + (sumTheNum (arg - 1)))

)

sumTheNum 2

➯ 3

sumTheNum 10

➯ 55

In the following example, an anonymous function is bound to a variable. It
works as intended at runtime. However, it is less efficient than the same
function would be with a function binding, since the compiler cannot
optimize for recursion.

-- an inefficient way to do recursion
sumTheNum2 := (arg -> (

if arg = 0 then return 0
else return (arg + (sumTheNum2 (arg - 1)))

))

The body of an anonymous function can be a series of expressions. The
following script repeats an example that first appeared on page 92, where it
was defined using a named function.

global backwards := new String string:""
global palindrome := "Satan, oscillate my metallic sonatas"
for i in palindrome collect into backwards by \

(sequence value -> prepend sequence value; sequence) i

➯ "satanos cillatem ym etallicso ,nataS"
106

Functions, Threads and Pipes 5

osures<$star
nge>
nctions:clo-
es<$startran
ope:clo-
es<$startran
In this example, the body of the anonymous function contains two expressions.
At each iteration through palindrome, the anonymous function prepends i to
backwards and then returns the new version of backwards. The value of the final
expression (the final version of backwards in this example) is the return value of
the entire function. A ScriptX for expression can act as a collector,
accumulating items into a collection. Since the by clause in a for expression
must evaluate to a function that returns the collection itself, this anonymous
function combines prepend and an expression that returns the collection. In
this way, the anonymous function makes it possible to use prepend as a
collector function. For information on the for expression, see the discussion
which begins on page 86.

Anonymous functions can be used to provide a “wrapper” around a function,
perhaps to change its signature or return value. In the previous example, an
anonymous function acts as a wrapper around the generic function prepend,
creating a version of prepend that returns the modified sequence. This can be
especially useful if you are storing a function in a variable or table. For a code
example that demonstrates the use of anonymous functions in a function
lookup table, see the section “Using the Collections Component” in the
“Collections” chapter of the ScriptX Components Guide.

Closures

A closure is a function that refers to a closure variable, also called a free
variable. This variable is declared as a local variable in some higher scope that
contains the definition of the closure. The closure itself can be defined as either
a local function or an anonymous function. A closure is created any time a local
or anonymous function with free variables “escapes” from the scope in which
those variables are defined.

The following example creates a closure around a local function called
elapsedTime. This closure can then be used to keep track of the time that has
passed since the last time it was called. In a ScriptX title, it could be used to do
simple timekeeping without creating a clock, and without defining any new
global variables. ScriptX defines a global instance of CalendarClock for
simple timekeeping, stored in a global variable called theCalendarClock.
(Since it is accurate only to one second, the clock stored in
theCalendarClock is not intended for system timekeeping.) The closure
function that is defined here refers to this clock internally.

function closureMaker -> (
-- x is the free variable or closure variable
local x := theCalendarClock.time
-- elapsedTime is the function that will be returned as a closure
local fn elapsedTime -> (

local result := theCalendarClock.time - x
x := theCalendarClock.time
result

)

-

ge>

ge>
107

5 ScriptX Language Guide

sures<$en-
nge>
nctions:clo-

s<$en-
nge>
nctions:anony
us <$en-
nge>
pe:clo-
-- the next expression is the return value of this function
-- it returns the local function elapsedTime
-- that turns it into a closure
elapsedTime

)

➯ #<ByteCodeMethod Scratch:closureMaker of 0 arguments>

In this example, a closure is created when the local function is returned by a
global function. This means that elapsedTime “escapes” to the top level, even
though it was defined as a local function.

Each time closureMaker is called, it returns another closure. The closures it
creates share code with the other closures on the elapsedTime function, but
each closure maintains its own value for the closure variable x. The value of
this closure variable is accessible only through the closure. In the following
example, a call to timeKeeper answers the question, “How much time has
passed since I called you last?”

timeKeeper := closureMaker() -- create a closure

➯ #<ByteCodeMethod anonymous of 0 arguments>

-- now, wait seven seconds and try timeKeeper
timeKeeper()

➯ 0:0:7:0 as Time

The ScriptX closure construct is more versatile and powerful than a static
variable in C or C++. A closure can be used to encapsulate a value, such as a
counter, so that it is only accessible through a function. The following example
creates a closure from an anonymous function.

-- defines a closure on an anonymous function
function counter -> (local x:0; (-> x := x + 1))

Each time counter is called, it returns a new closure that behaves
isomorphically with repect to other counters, while retaining its own closure
variables, as the following example demonstrates:

myCounter := counter()
myCounter()

➯ 1

myCounter()

➯ 2

-- now create another counter
global anotherCounter := counter()
anotherCounter()

➯ 1

myCounter() -- myCounter still retains its own closure variables

➯ 3

anotherCounter() -- so does anotherCounter

➯ 2-
108

Functions, Threads and Pipes 5

reads <$star
nge>
nc-
ns:threads
Using apply to Call Functions

The apply function is a special way of calling functions where some or all of
the arguments that you want to send to that function are available in a
collection such as an array. It takes the arguments out of the collection and
“applies” the function to them as if you had written them down explicitly in a
normal function call.

▼ apply function otherArgs collectionOfArgs

In using apply, otherArgs can be any number of interim arguments. The final
argument to apply, however, must be a collection such as an array (or an
expression that results in a linear collection). That array contains any
remaining arguments to the function, and can contain any number of elements,
including none #().

The apply function is often useful when you are calling a function that defines
rest arguments from within another function that also defines rest arguments.
It allows you to “spread out” an array of arguments into a function call,
regardless of how many elements the original array had in it.

function addEmUp #rest args -> (
local sum := 0
for i in args do sum := sum + i
return sum

)
global a := #(1,4,9,16)
global b := 1 to (a.size)
myArgs := merge a b
-- use apply to call a function with rest arguments
apply addEmUp myArgs

➯ 40

A typical use of apply is in initialization (init) methods for classes and
objects. All init methods define rest arguments, and you are required to pass
them along to a superclass’s init methods. For more information on
initialization methods and apply, see Chapter 6, “Defining Classes and
Objects.”

Threads

Threads are independent processes that run in parallel with one another,
sharing processor time. For example, you could process a long search or
compilation in the background in one thread, and run a continuous animation
in another thread, while still interacting with the main application. A ScriptX
title starts running in the main thread, which can be referenced through the
global variable theMainThread. The title can create and run other threads at
any time.

-

109

5 ScriptX Language Guide

pera-
s:thread

reads <$en-
nge>

pe opera-
<$star-
nge>

pera-
s:pipe<$star
nge>
nctions:pipe
erator<$star-
nge>
The ScriptX thread system is described in detail in the ScriptX Components
Guide. The ScriptX language provides a shorthand construct for spawning
threads, similar to that used in the UNIX shell languages. The ampersand
character (&), when used at the end of an expression as a postfix operator,
starts that expression running in a separate thread.

(p := importBitmap "monalisa") &
computePrimesTo 10000 &

The example above starts threads running functions called importBitmap and
computePrimesTo in parallel with the main program. Any number of
separate threads can run at the same time, subject to the limitations of memory
and processor time, allowing parallel processing of different tasks.

The thread operator (&) creates a thread object, with the expression that
precedes it as the code that runs in the thread. The thread is immediately
active. You can test the status of the thread or control the thread by using any
of the global functions or generic functions described in the ScriptX Class
Reference.

t := computePrimesTo 100 &
repeat until (t.status = @done) do

print "tick"
print "computation completed"

This example executes a computePrimesTo function as a thread and then
prints “tick” to the debug stream until the status of the thread changes from
@running to @done.

The & operator is a shorthand form for the callInThread global function,
which creates a new RegularThread object with an operating priority of
@normal. The value of priority, either @normal or @high, determines how
much processing time the thread receives. See the “Threads” chapter of the
ScriptX Components Guide for more details on thread priority.

Pipes

Pipes are used to iterate over a source collection, range, or other sequenceable
class. Each element is fed through the pipe to a function, or a collection class or
instance. Pipes are often a useful shorthand for many nested for loops.

▼ from | to

The pipe operator is an infix shorthand for calling the pipe generic function,
which you can specialize in a scripted class. Tables 5-1 and 4-2 describe how
pipe is implemented by certain classes in the core classes.

-

110

Functions, Threads and Pipes 5
The following examples demonstrate the use of pipes:

1 to 5 | LinkedList

➯ #(1, 2, 3, 4, 5) as LinkedList

#(3,4,5,6) | #(1,2)

➯ #(1, 2, 3, 4, 5, 6)

function double n -> 2 * n
1 to 10 | double

➯ #(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

#(1, 2, 3, 4) | (n -> 2 * n)

➯ #(2, 4, 6, 8)

You can also “cascade” pipe expressions, that is, string two or more pipe
expressions together.

function squares n -> n * n
1 to 5 | double | squares

➯ #(4, 16, 36, 64, 100)

A useful trick is to pipe a long collection to the print function. The collection
would otherwise be displayed in truncated form. The following example
collects a list of generic functions that the Rect class implements. Only the first
few values are reproduced here.

getAllGenerics Rect | print

➯ init()
localEqual()
prin()

Table 5-1: Pipe forms

Piping From Results in

instance of Collection each item in the collection is piped to the class or function
on the to side of the pipe operator.

instance of Range each number in the range is piped to the class or function on
the to side of the pipe operator.

Table 5-2: Pipe forms

Piping To Results in

Collection class a new instance of that class is created and the source items
are collected into that instance.

instance of Collection source items are appended to the end of the existing
Collection object.

a function source items are used as the arguments to the function and
an instance of LinkedList is used to collect the results. The
function being piped to must be defined to be a function
with only one argument.
111

5 ScriptX Language Guide

nctions <$en
nge>
pe opera-
<$endrange>
era-

s:pipe<$en-
nge>
nctions:pipe
erator<$en-
nge>
morph()
copy()
. . .

As an intermediate step, the collection could be piped to SortedArray, so that
it is alphabetized.

getAllGenerics Rect | SortedArray | print

➯ bboxGetter()
copy()
drawSelf()
finalize()
heightGetter()
heightSetter()
. . .

This script creates a list of classes of objects that implement the generic
function pipe. Note the use of an anonymous function. The anonymous
function is especially useful here as a “package” around canObjectDo, a
generic function that requires two arguments. Since pipe works only with
functions requiring one argument, the anonymous function solves the problem.
It takes the one argument supplied by pipe, passes it to canObjectDo, and
supplies pipe as the second argument to canObjectDo. The result of the
anonymous function is then passed on to the next pipe.

getSubs RootObject | (y -> if canObjectDo y pipe then y else empty) \
| SortedArray | print

➯ AccessoryContainer
ActionList
ActuatorController
ApplyTree
Array
ArrayList
Bounce
Btree
ByteString
. . .

-

112

C H A P T E R

Defining Classes and
Objects
 6

6

ScriptX Language Guide
114

Defining Classes and Objects

6

Up to this point, discussion has centered on simple examples using existing
classes and methods in the ScriptX core classes. ScriptX also allows you to
define your own classes, and to specialize individual instances of classes.

Classes and objects created in the ScriptX language using the syntax in this
chapter are fully-featured, first-class objects. This means that the ScriptX
language, the parser, and the compiler treat user-defined classes and objects in
the same way as built-in system classes and objects. This allows you to easily
build powerful specialized extensions to ScriptX on top of the core ScriptX
implementation.

This chapter describes the syntax for developing new singly- and
multiply-inherited classes and objects, and for defining methods and variables
within them. It also describes some methods that are commonly overridden in
subclasses so that those classes can interact effectively with the language and
with other classes in the ScriptX core classes library.

Defining Classes

The most common way to extend the power of ScriptX is to define new
subclasses that specialize the existing core classes. You can even create your
own hierarchy of classes for whatever application your ScriptX program
requires. Defining your own classes allows you to create comprehensive class
libraries that can be re-used in any modules and scripts.

Syntax Summary

To define a new class, use the class expression.

▼ class variableName (classList)

[class variables

. . .]

[instance variables

. . .]

[class methods

. . .]
115

6

ScriptX Language Guide

[instance methods

. . .]

end

The class expression has an introductory clause followed by four main
sections for defining the features of the new class: class variables,
class methods, instance variables, and instance methods. Each
part of the expression is described in the following sections.

You must specify the sections of the class expression in the order in which
they appear above, although you do not need to include all of them. Use only
the sections you need in order to create your specialized subclass. Each section
can be on a separate line, as shown in the syntax, or all can be on the same line,
or the two styles can be used in any combination.

Classes and Variable Names

The first clause of the class expression specifies the name of the new class
and the inheritance of this class.

▼ class variableName (classList)

. . .

end

lThe variableName part of this line specifies the name of the variable to which
this class object will be assigned once it has been created. Like all variables in
ScriptX, if the variable named by variableName has not been previously
declared, it is automatically declared global. You can specify that the variable
name is to be declared locally by putting the reserved word local in front of
the reserved word class. Note that just as with local variables, you can only
define a local class inside a local scope (that is, not at the top level).

(
local class SortedLinkedList (LinkedList)
end

)

This example creates a subclass of the class LinkedList (with no further
specialization) and assigns it to the local variable SortedLinkedList.

In addition, the variable to which a class is assigned is declared constant,
which means that you cannot assign anything else to it once the class has been
created. This is to prevent accidentally overwriting the definition of a class
with a simple assignment. You can, however, redefine a class using the name of
the original class. (Some restrictions apply; see “A Note on Redefining Classes”
on page 117 for more information.)
116

Defining Classes and Objects

6

Classes and Inheritance

The first clause of the class expression also specifies the inheritance of this
class.

▼ class variableName (classList)

. . .

end

The classList, within parentheses, specifies a list of classes from which this class
inherits (that this class is a subclass of). The classList can be a single class, or a
list of classes separated by commas. If you specify multiple classes in classList,
your new class multiply inherits from all those classes. See “Multiple
Inheritance” on page 127 for more information on classes with multiple
superclasses.

If classList is not specified, (the parentheses are empty), then the class is a direct
subclass of RootObject.

A Note on Redefining Classes

You can redefine a class by using the class expression with the same name as
a previously-defined class. There are several things to note about redefining
classes:

• You cannot redefine any of the ScriptX core classes. Although you cannot
redefine core classes, you can add additional methods to a class, and you
can redefine methods. Generally, you should redefine methods in a scripted
subclass, since other classes and objects may depend on the class’s default
behavior.

• Each time you use the class expression to define a class, all previous
definitions of that class are replaced. You cannot incrementally add to the
definition of a class using multiple class definitions.

• You cannot redefine a class that has existing instances, since those instances
will not work with the new class. To remove instances of a class, you must
remove all references to those instances. Removing those references may
include setting global variables that hold those instances to some other
value (for example, undefined), or removing instances from other
structures such as collections. Once all references to an instance are gone,
the ScriptX garbage collector removes that instance.

Class and Instance Variables

Class and instance variables specify the properties or state of a given class or
object. You can think of class variables as instance variables defined directly on
the class object itself. (Technically, that is exactly what they are.)
117

6

ScriptX Language Guide

Instance variables are variables whose values can vary from instance to
instance. For example, the class Car may define an instance variable called
color. Each instance of Car can then have its own value for color.

Class variables are variables that relate to the class itself, and are accessible to
and shared by all the instances of a class, including the class itself. For
example, the class LuxuryCar might have a features class variable that
holds an array of features common to all instances of luxury cars, such as
@antiLockBrakes or @woodPaneling. Those features are shared by all
instances of LuxuryCar, and if the value of that variable is ever changed, it
affects all those instances equally.

Both class and instance variables are accessed through the use of special
generic functions called setters and getters. Setters change (or set) the value of
a variable; getters query for (or get) the current value of a variable. ScriptX
language constructs for querying and changing class and instance variables are
described beginning on page 63. Use these generic functions to indirectly gain
access to the variable itself.

ScriptX provides several mechanisms for defining class and instance variables
with many different features, including read-only variables, variables that
automatically calculate their values when they are queried by some other
method in the class or object, or variables that discard their values when stored
on disk. Each of these more complex forms for defining variables, as well as
details on setter and getter generic functions, is described in detail in “Defining
Class and Instance Variables” on page 145.

The simplest way to create a class or instance variable in a class is to use either
the class variables or instance variables sections of the class
expression.

▼ class variableName (classList)

class variables

varName

varName:initialValue

. . .

instance variables

varName

varName:initialValue

. . .

end

The reserved words class variables can be shortened to class vars.
Similarly, the reserved words instance variables can the shortened to
inst variables or simply inst vars. Each short form is equivalent to its
longer counterpart. After these reserved words, you can specify any number of
variable names (here, varName) on separate lines, or all on one line separated
by commas, or in any combination.
118

Defining Classes and Objects 6
You can also specify initial values for those variables (initialValue) by supplying
a colon and the value after the variable. The initial value of a class variable is
assigned when the class is created; the initial value for an instance variable is
assigned each time a new instance of that class is created. If you do not specify
initial values for a class or instance variable, its value is undefined.

Each of these forms creates “real” instance variables, that is, variables that exist
as slots in memory. They also construct pairs of setter and getter functions
automatically for each of the variables listed when the class is created. For
more details on the setter and getter functions, see “Defining Class and
Instance Variables” on page 145.

The following example shows the definition and use of a class variable:

class PurpleDragon ()
class vars numDragons : 0
instance methods

method moreDragons self -> (
(getClass self).numDragons := (getClass self).numDragons + 1

)
end

This example defines a class PurpleDragon. Since no class is specified in the
class inheritance list, the class inherits directly from RootObject, the root
system class. The PurpleDragon class defines a class variable, numDragons,
which is initially set to 0. It also defines an instance method to increase the
value of the class variable numDragons by one. Instance methods are
described in the section “Class and Instance Methods” on page 120.

Now, you can instantiate PurpleDragon and call moreDragons on any of
those instances. The numDragons class variable is increased:

dragon1 := new PurpleDragon
dragon2 := new PurpleDragon
PurpleDragon.numDragons -- the initial value

➯ 0

moreDragons dragon1

➯ 1

moreDragons dragon2

➯ 2

PurpleDragon.numDragons -- find out new value

➯ 2 i

A Note on Class Variables and Inheritance

Class variables, like instance variables, are inherited from class to subclass.
However, each class that inherits a class variable from a superclass gets a
different version of that class variable; all it inherits is the name. It provides its
own “slot” for that variable. This differs from C++, in which class variables are
shared by a class, all its instances, and all its subclasses and their instances.

For example, suppose you have a class LuxuryCar, which defines a class
variable paneling, whose default value is @oak.
119

6 ScriptX Language Guide
class LuxuryCar ()
class variables paneling:@oak

end

Now, suppose you created a subclass of LuxuryCar called
BargainLuxuryCar. The BargainLuxuryCar class inherits the paneling
class variable (and its value) from LuxuryCar:

class BargainLuxuryCar (LuxuryCar) end
BargainLuxuryCar.paneling

➯ @oak

However, because each class owns its own slot for class variables, even
inherited ones, if you change the value of LuxuryCar’s class variable
paneling, BargainLuxuryCar’s version of the class variable paneling is
not affected.

LuxuryCar.paneling := @teak

➯ @teak

BargainLuxuryCar.paneling

➯ @oak

Class and Instance Methods

Methods are implementations of generic functions that are defined directly by
an object or class, or that are accessible to an object or class through
inheritance. Class methods operate on the class object itself, and so are related
to the class as a whole (much like class variables). Instance methods operate on
an instance of a class. To define class or instance methods, use the
class methods or instance methods sections of the class expression:

▼ class variableName (classList)

class methods

methodDefinition

. . .

instance methods

methodDefinition

. . .

end

The reserved words instance methods can be shortened to inst methods;
both forms are equivalent.

Both the class methods and instance methods reserved words are
followed by any number of individual method definitions. Method definitions
are very similar to function definitions—see “Defining Methods” on page 129
for more information.
120

Defining Classes and Objects 6
One of the most commonly defined instance methods is the init method,
which determines how an instance of a class is to be initialized when the new
method is called on the class. For detailed information on defining
initialization methods, see the discussion of the new, init, and afterInit
methods that begins on page 136.

Defining Objects

The best way to extend ScriptX is through the use of specialized subclasses,
which can then be reused in many different situations.

However, there may be circumstances where you do not want to create a new
subclass, for example, if you want to change only one instance of a class to
have some specific behavior. For this reason, ScriptX also allows specialization
of individual instances through the object expression.

Chapter 3, “Working with Objects,” described simple uses of the object
expression to create an object and to set its instance variables. This section
describes the full form of the expression, which allows you to define instance
variables and methods, set initial instance variables, and provide a list of initial
elements for container objects such as arrays.

Syntax Summary

The syntax for the object expression has an initial definition clause, a set of
optional keyword arguments for initializing the object, and four main sections:
instance variables, instance methods, settings, and contents.

▼ object [variableName] (classList)

 [keyword:value, keyword:value . . .]

[instance variables

. . .]

[instance methods

. . .]

[settings

. . .]

[contents

. . .]

end

You must specify the sections of the expression in this order, although all of
them are optional. You can use any subset of these sections to create an
instance of a class with the specializations you need. Each section can be on a
separate line, as shown in the syntax, or all on the same line, or in any
combination.
121

6 ScriptX Language Guide
Objects and Variable Names

The first clause of the object expression includes an optional variableName,
which specifies the variable that the object is assigned to when it is created.

▼ object [variableName] (classList)

. . .

end

Like all variables, if the variableName has not been previously declared, it is
automatically declared global. You can specify that variableName is to be
declared locally by preceding the object expression with the local reserved
word. Note that just as with local variables, you can only define a local object
inside a local scope (that is, not at the top level).

(
local object myList (LinkedList)

. . .
end
)

The expression above creates a new instance of the class LinkedList (by
calling new on LinkedList) and assigns it to the local variable myList.

The variable to which this object is assigned is automatically declared
constant, which means that you cannot assign anything else to it once the
object has been created. You can, however, redefine this variable to hold
another object by using the object expression again with that same variable
name.

If you leave off variableName, the object expression simply yields an object of
the appropriate class. This allows you to nest the object expression within
other expressions:

myShape := new TwoDShape \
boundary:(object (Rect) x2:30, y2:20 end) \
stroke:(object (Brush) color:blackColor, pattern:grayPattern \

settings linewidth:3 end)

Objects and Inheritance

The first line of the object expression also specifies the class or classes this
object is an instance of.
122

Defining Classes and Objects 6
▼ object [variableName](classList)

. . .

end

The classList, which must be within parentheses, specifies a list of classes from
which the new object inherits. This list can be a single class or a list of classes
separated by commas. If you specify multiple classes in classList, all of those
classes contribute to the newly created object. See “Multiple Inheritance” on
page 127 for more information on objects with multiple superclasses.

If classList is not specified (that is, the parentheses are empty), then the object is
a special instance of RootObject.

Redefining Objects

Each successive use of the object expression, using the same variable name,
makes the old definition unavailable, effectively overwriting any
specializations you may have made to that object.

You can add method definitions to any existing object using free method
definitions. Free methods are described in the section “Free Method Syntax” on
page 133.

Initialization Keywords

▼ object [variableName] (classList)

[initKey:argument, initKey:argument . . .]

. . .

end

Keyword arguments, as described in Chapter 3, “Working with Objects,” are
used to define the initial parameters of a new object, which may include setting
the initial values of some of its instance variables. The keyword arguments that
an object requires are defined by that class’s init method and by the init
methods defined by all its superclasses, for objects with multiple superclasses.
You can look up a particular class in the ScriptX Class Reference for a list of
keyword arguments that it uses.

Keyword arguments can be specified in any order, and many of them are
optional. If you do not specify an optional keyword argument in the object
expression, those keywords are given default values when the object is
initialized (as defined by that class’s init method). Again, see the ScriptX
Class Reference for a list of keyword arguments for each class, including default
values.
123

6 ScriptX Language Guide
Instance Variables

The instance variables section of the object expression is used to add
new instance variables to an object, just as it was used to add new instance
variables to a class in the class expression.

▼ object [variableName] (classList)

instance variables

varName

varName:initialValue

. . .

end

The instance variables reserved words can be shortened to
instance vars, inst variables, or simply inst vars. All forms are
equivalent.

Instance variable names can be specified either as names only (in which case
their initial values are undefined), or they can be initialized by specifying a
varName:initialValue pair separated by a colon. The initialValue of the variable
can be any expression, including nested object definitions:

object lotsOfVars (Player)
instance variables

firstIV
secondIV:@cowabunga
thirdIV:object (PushButton) inst vars pb1 end

end

You can specify variable definitions on separate lines, on the same line
separated by commas, or in any combination.

object foo (Array)
instance vars

a, b
c:"purple"
d:3, e:4

end
124

Defining Classes and Objects 6
Instance Methods

▼ object [variableName] (classList)

instance methods

methodDefinition

. . .

end

The instance methods section of the object expression, followed by any
number of method definitions, adds new methods or redefines existing
methods for the given object. See “Defining Methods” on page 129 for more
information on defining methods.

The reserved words instance methods can also be specified as
inst methods. Both forms are equivalent.

Settings

▼ object [variableName] (classList)

settings

varName: value

. . .

end

The reserved word settings allows you to set initial values for instance
variables defined by the class or classes this object is an instance of. You can
also use the settings section to specify values for new instance variables you
defined in an instance variables section. (Adding your own instance
variables or instance methods to an object definition is called specialization.)

You can specify variable assignments on separate lines, on the same line
separated by commas, or in any combination.

-- first create the Novel class as a template for this example
class Novel () inst vars author, title, characters end

-- now create an instance of book
object myNovel (Novel)

inst vars
authorsSister

settings
author:"Emily Bront\<00e9>"
title:"Wuthering Heights"
characters:#("Heathcliff","Catherine")
authorsSister:"Charlotte Bront\<00e9>"

end
125

6 ScriptX Language Guide
Using the settings clause is equivalent to first creating the object and then
setting its instance variables with separate assignment statements. The
following code is equivalent to the example above except that it does not
include the specialization of adding the instance variable authorsSister.

myNovel := new Novel
myNovel.author := "Emily Bront\<00e9>"
myNovel.title := "Wuthering Heights"
myNovel.characters := #("Heathcliff","Catherine")

Using settings has the advantage of using fewer expressions to accomplish
the same thing, and of having the new object be initialized with its instance
variables already set to the values you require.

Contents

▼ object [variableName] (classList)

contents

element, element, element, . . .

end

The contents section of the object expression is used to specify the initial
contents of objects that can hold other objects, such as collections. Chapter 7,
”Collections”, describes this set of utility classes and how to use them.

Each of the elements in the contents section is added to the object using the
addToContents method. Objects that inherit from Collection have a
default version of this method. If you are using a class or object that does not
inherit from Collection, you must implement the addToContents method
for the contents section to work. You can also override addToContents in
this object, or in a class that this object inherits from, to change the default
behavior (for example, to print a debugging message as each element is
added).

A Note on Special Classes Created by object

In ScriptX, every object is by definition an instance of some class and receives
its behavior and state information from that class. If an object is created by the
object expression and has specializations (additional instance variables or
methods) or is an instance of multiple classes, then a class for that special
object does not truly exist.

To get around this paradox, when you use the object expression, ScriptX
creates a special “hidden” class for the object created. In most cases you do not
need to refer to or use these special classes. Be aware, however, that using the
getClass function on a specialized object (particularly one that is an instance
of multiple classes) may result in unusual results:

object specialObject (TwoDShape, Dragger) end
getClass specialObject
126

Defining Classes and Objects 6
➯ TwoDShapeDragger

Multiple Inheritance

Multiple inheritance allows a subclass or instance to be created that inherits
behavior from multiple superclasses. The new subclass or object inherits both
class and instance variables and methods from each superclass, allowing you
to combine the behavior of each superclass into a single subclass or object.

To create a new class or object that inherits from several superclasses, list the
classes in the first line of the class or object definition, separated by commas:

▼ class variableName (class, class, class, . . .)

▼ object [variableName] (class, class, class, . . .)

The newly created class inherits behavior and properties from all of its
superclasses. This has the following effects:

• The keyword arguments of the multiply-inherited class or object are the set
of all the keyword arguments that were available in each original class. All
required keyword arguments are still required by the new class or object.

• All class and instance variables inherited from each of the superclasses are
available to the new class or object.

• All methods available from each superclass are available to the new class or
object. However, if more than one of the superclasses defines a method with
the same name, the superclass that receives the generic function call for that
method is determined by the order in which the classes are specified in the
original class list.

Inheritance in multiply inherited ScriptX classes operates in a depth-first
topological order. This means that all the superclasses of the first class in the list
are searched before the superclasses of the next class in the inheritance list, and
so on up the inheritance chain. To view this order , call getSupers on the new
class.

You can control the inheritance of your subclass or object by controlling the
order of its superclasses in the class or object definition. For example, if
your class inherits from two classes, you can often simply reverse the order of
those classes if the wrong method is being invoked first. Figure 6-1 shows a
simple hierarchy of classes that illustrates the meaning of depth-first
topological ordering.
127

6 ScriptX Language Guide
Figure 6-1: An illustration of depth-first topological order.

Here are class definitions for Horse, Stallion, and Donkey, the parent
classes of Mule:

class Horse () end
class Donkey () end
class Stallion (Horse) end
class Mule (Stallion, Donkey) end

If Mule is defined so that it inherits first from Stallion, then methods
defined by both Stallion and Horse take precedence over methods defined
by Donkey. To check the specific order in which ScriptX searches classes for a
given generic function, you can use the getSupers generic function.
getSupers returns an array of the superclasses of a given class in depth-first
topological order, which is the order in which they are searched.

getSupers Mule

➯ #(Stallion, Horse, Donkey, RootObject)

If Mule inherits first from Donkey, then methods defined by Donkey take
precedence over methods defined by either Stallion or Horse. Notice how
the ordering of classes reported by getSupers changes when we redefine the
Mule class.

class Mule (Donkey, Stallion) end
getSupers Mule

➯ #(Donkey, Stallion, Horse, RootObject)

We can use getSupers to determine the inheritance of any ScriptX class, no
matter how complicated. Here are several examples drawn from the core
classes.

class BouncyArray (Projectile, Array) end
getSupers BouncyArray

➯ #(Projectile, Array, Sequence, LinearCollection,
ImplicitlyKeyedCollection, Collection, RootObject)

class WeirdInheritance (QueuedEvent, TwoDShape, LinkedList) end
prin ((getSupers WeirdInheritance) as Array) @complete debug

➯ #(QueuedEvent, Event, TwoDShape, TwoDPresenter, Presenter,
LinkedList, Sequence, LinearCollection, ImplicitlyKeyedCollection,
Collection, RootObject

RootObject

Horse Donkey

Stallion

Mule

Donkey
128

Defining Classes and Objects 6
The following example demonstrates the importance of inheritance order in
classes and objects. The BassetHound and PitBull classes, subclasses of
Dog, have their own implementations of the generic function getTemper.

class Dog () inst vars name end

-- create subclasses of Dog for the breeds BassetHound and PitBull
class BassetHound (Dog)

instance methods
method getTemper self -> (

format debug "%*'s temper is good.\n" (self.name) @unadorned
)

end

class PitBull (Dog)
instance methods
method getTemper self -> (

format debug "%*'s temper can be bad.\n" (self.name) @unadorned
)

end

Frookie and Noodle are both mutts. Noodle inherits first from
BassetHound, so his temperament is usually good. Frookie inherits first
from PitBull, so his temperament can be very bad.

object Frookie (PitBull, BassetHound) settings name:"Frookie" end

object Noodle (BassetHound, PitBull) settings name: "Noodle" end

-- test the getTemper method on both dogs
getTemper Frookie

➯ Frookie's temper can be bad.

getTemper Noodle

➯ Noodle's temper is good.

Defining Methods

This section describes the ScriptX syntax for defining methods. It also describes
common ways of using method definition and redefinition to make your class
effectively interact with other classes.

• “Method Definition Syntax” on page 130 describes the general syntax for
defining methods.

• “Free Method Syntax” on page 133 describes the free method syntax, which
allows you to add methods to existing classes and objects from outside the
class and object expressions.

• “Overriding Methods” on page 134 describes how to override or augment
methods defined elsewhere in the inheritance hierarchy. It also explains why
you might want to do that.
129

6 ScriptX Language Guide
Methods and Generic Functions

You call a method by calling a generic function on an object; the generic
function redirects this function call to the appropriate method. Chapter 3,
“Working with Objects,” describes the relationship between methods, defined
by classes and objects, and generic functions, which are used to access those
methods. For a definition of generic functions, see page 19.

When you define methods using the expressions described in this section, you
do not have to do anything extra to create a new generic function or to make
sure the existing generic function knows about your new definition. ScriptX
automatically updates the appropriate generic function for your method
definition or creates a new generic function for new methods.

Note – The generic function you name, and thus, the one you specialize, is the
one that is visible in the current module. You can have many different generic
functions of the same name in different modules. For information on names
and modules, see “Modules” on page 187.

Method Definition Syntax

Method definitions are almost identical to function definitions. Unlike
functions, method definitions require at least one argument—the object or class
on which the method is invoked. That argument is typically called self, and it is
always the first argument to that method.

Because method and function definitions are so similar, this section provides
only a general summary of the syntax itself. For more details, see the section
“Defining Functions” on page 99 of Chapter 5, “Functions, Threads and Pipes.”
Methods are defined using the following general syntax.

▼ method methodName self arguments -> body

where:

• methodName names the generic function which invokes this method.

• self holds the current object on which this method operates. (Any other
argument name can be used here besides self; the word self is used by
convention.)

• arguments are required positional arguments, rest arguments, or keyword
arguments. Examples of each form are shown on page 131.

• body is an expression, often a compound expression, that is executed when
the method is invoked.

A method can also have keyword arguments, as described in “Defining init
Methods” on page 138. However, since they complicate the syntax and are
often not needed, they are described later.
130

Defining Classes and Objects 6
As elsewhere, you must refer to class and instance variables in the body of a
method definition using the standard class and instance variable access
expression (self.variable). ScriptX does not provide a mechanism for
automatically accessing class and instance variables by name within a method
definition.

Methods, like functions, can use the return expression to specify the value the
method returns. Without an explicit return, the method returns the value of the
last expression evaluated. When in doubt on a return value, consider returning
self, undefined, or OK.

object myObj (RootObject)
inst vars a:500
inst methods
method incrementA self inc -> (

self.a := self.a + inc
)

end

class GenericClass (RootObject)
instance methods
method printClass self -> (

print ("I'm an instance of " + (getClassName self))
)
method printMe self -> (

format debug "This is me: %*.\n" self @normal
printClass self

)
end

global myGenericClass := new GenericClass
printMe myGenericClass

➯ This is me: GenericClass@0x1161b7c

“I’m an instance of GenericClass”

class MyLL (Array)
instance methods
method addItemToBeginning self item -> (

addNth self 1 item
format debug "%* added " item @normal
return self

)
end

global myLinkedList := new MyLL
addItemToBeginning myLinkedList 12345

➯ 12345 added #(12345) as MyLL

More Examples

The following class, MyClass, defines three methods:

• addAllIVs, which takes no required arguments (except self) and sums
the values of the instance variables a, b, and c.

• addEmUp takes a #rest argument, and sums all the values of its arguments,
then adds the value returned by addAllIVs.
131

6 ScriptX Language Guide
• changeIVs takes three keyword arguments (incA, incB, incC), for which
the default values are all 10, and increments the values of a, b, and c with
the appropriate increment.

class MyClass ()
instance vars a,b,c
instance methods
method addAllIVs self -> (

self.a + self.b + self.c
)
method addEmUp self #rest allArgs -> (

local s := 0
for i in allArgs do (s := s + i)
s := s + (addAllIVs self)

)
method changeIVs self #key incA:(10) incB:(10) incC:(10) -> (

self.a := self.a + incA
self.b := self.b + incB
self.c := self.c + incC
print self.a; print self.b; print self.c
return self

)
end

Now that the class and its methods have been defined, here are some examples
of its use:

object exmpl (MyClass)
settings a:1, b:5, c:12

end
exmpl.a

➯ 1

exmpl.b

➯ 5

exmpl.c

➯ 12

addAllIVs exmpl

➯ 18

addEmUp exmpl 3 8 4 6

➯ 39

changeIVs exmpl -- no keywords, defaults are all 10

➯ 11
15
22

changeIVs exmpl incA:4 incB:-7

➯ 15
8
32
132

Defining Classes and Objects 6
Free Method Syntax

Free methods are methods that can be defined outside the boundaries of a class
or object definition. Free methods are useful for adding or redefining method
definitions in existing classes or objects without having to redefine the entire
class or object.

Free method definitions look similar to regular method definitions, with the
addition of a special clause that specifies the class or object to which this
method belongs. There are two forms of method definition: one for adding
instance methods to an object, and one for adding either class or instance
methods to a class.

▼ method methodName self { object object } args -> body

▼ [class] method methodName self { class class } args -> body

In both forms, methodName is the name of the generic function that invokes this
method. If the class reserved word is included before the method reserved
word, that method is a class method.

The args part of each free method definition supplies the arguments this
method takes (besides self). These can be positional arguments, rest
arguments, or keyword arguments. See Chapter 5, “Functions, Threads and
Pipes,” for a description of each of these types of arguments.

The expression within braces is called a restriction, and is used to point to the
class or object that the method is associated with. Note that the restriction must
come after the self argument, but before any other arguments.

Finally, the body part of the method definition is the expression, often a
compound expression, that the method evaluates when invoked.

The first form adds an instance method to the object specified by object. The
expression in braces holds an object, and can be one of the following
expressions, where appropriate:

• a variable name

• an anonymous function definition with no arguments

• an array access expression (myArray[1])

• a reference to a class or instance variable (self.x)

• any other expression, contained within parentheses

Here is an example:

tryThisOut := #(1,2)
method appendSum self {object tryThisOut} n m ->

(append self (n + m); return self)
appendSum tryThisOut 3 4

➯ #(1,2,7)
133

6 ScriptX Language Guide
The second form adds either an instance method or a class method to the class
specified by class, which can contain one of the expressions from the list above
for object.

class MyClass () end
method jellydonut self {class MyClass} name ->

format debug "%* is not a jellydonut!\n" name @unadorned

i := new MyClass
jellydonut i "cruller"

➯ "cruller is not a jellydonut!"

Adding Methods to the ScriptX Core Classes

Using free method definitions, it is possible to add new methods to those
ScriptX core classes that are not sealed. This allows you to extend the behavior
of those classes, and of classes that inherit from those classes.

When adding methods to the core classes, be careful not to override existing
methods. That is, avoid defining a method of the same name as one that
already exists in that class, particularly initialization (init and afterInit)
methods. A class may depend on internal behavior defined by those methods;
overriding those methods may cause errors in the operation of that class.

As an alternative to overriding existing methods in the ScriptX Core Classes,
consider creating a subclass of that class with your own definitions instead.

Overriding Methods

The previous sections described how to create entirely new methods for your
class or object. However, the other important use of method definitions is to
override an existing method. Overriding a method means providing a different
implementation for an inherited method. This can happen either in class
specialization or instance specialization. For an example of class specialization,
TwoDShape defines the draw method; a subclass of TwoDShape that
re-implements the draw method is said to override the draw defined in its
superclass. For an example of instance specialization, an instance of
TwoDShape that re-implements the draw method is said to override the draw
defined in its class.

When you override an existing method, your method must have the same
name and positional arguments as the original method, but can have new
keyword arguments. In addition, the method can use the functionality
provided by superclasses by calling nextMethod. As such, there are two ways
to override an existing method:

• If you want add to the existing functionality provided in superclasses, call
nextMethod.

• If you want to replace (rather than add to) the functionality provided by the
superclasses, don’t call nextMethod. Use this approach when the behavior
you want is not an addition to the existing behavior. However, some
methods (init, afterInit) require that you call nextMethod.
134

Defining Classes and Objects 6
The first option reuses the existing implementation, while the latter does not.
In either case, you can provide your own specialization in the body of the
method. The latter option was described in the previous section “Method
Definition Syntax” on page 130.

You use nextMethod to call the overriding method from the body of a
method, like this:

◆ method methodName self arguments -> (

. . . optionally do something here . . .

nextMethod self arguments

. . . optionally do something else here . . .

)

The nextMethod expression passes the call upward through the inheritance
hierarchy, calling methods with the same name, so that each superclass can
invoke its own implementation of that method on the instance. Another way to
look at this is that invoking nextMethod simply allows you to call the original
methods that would have been invoked had you not overridden. Each
nextMethod encountered calls the next method up the chain, hence the term
nextMethod.

Since nextMethod calls methods in superclasses, you should supply to
nextMethod any arguments that you want those superclasses to handle. For
example, since the draw method in TwoDShape takes three arguments (self,
surface, clip), when you create a subclass of TwoDShape where you
override draw, you would call nextMethod with those same arguments:

method draw surface clip -> (
nextMethod self surface clip

)

In another example, the following method definition overrides the append
method for a given object such that the original append is called only if the
item to be appended to this object is an instance of the ImmediateInteger
class. (The append method is defined in the Sequence class.) Otherwise, an
error message is printed to the debug stream and the method returns
undefined:

global myArrayOfIntegers := #()

-- override the append method on myArrayOfIntegers
method append self {object myArrayOfIntegers} item -> (

if (getClass item = ImmediateInteger) then (
nextMethod self item

)
else (

format debug "Not an ImmediateInteger: %*\n" item @normal
return undefined

)
)

135

6 ScriptX Language Guide
Multiple Inheritance with nextMethod

Technically, because ScriptX supports multiple inheritance, a method can have
more than two chains of inheritance up to RootObject. In this case,
nextMethod calls the next method in depth-first order, as described in
“Multiple Inheritance” on page 127. Use getSupers to see the order in which
the methods are called. For example, given a class that inherits from both
TwoDShape and Bounce, nextMethod calls the classes in the order shown
here:

class BouncingShape (TwoDShape, Bounce)
end

getSupers BouncingShape | print

➯ #<Class Substrate:Bounce>
#<Class Substrate:TwoDController>
#<Class Substrate:Controller>
#<Class Substrate:IndirectCollection>
#<Class Substrate:Collection>
#<Class Substrate:TwoDShape>
#<Class Substrate:TwoDPresenter>
#<Class Substrate:Presenter>
#<Class Substrate:RootObject>

Note – The ScriptX core classes provide mechanisms to define additional
behavior for certain methods and protocols in the core classes. For example, if
you are interested in overriding any of the methods that add or delete items in
collections, as the example above does, consider the advantages of using the
IndirectCollection class. For more information, see the “Collections”
chapter of the ScriptX Components Guide.

Defining the new, init, and afterInit Methods

When you create a new instance of a class using the new method or object
construct, several things happen that create and initialize the instance of that
class. (The following sections on initialization apply equally to the new method
and the object construct.) As shown in the figure, the new method (1)
allocates memory for the new object and sets up other internal values; it then
(2) calls init on the newly created instance to initialize it, passing along any
arguments that had been specified to new; it finally (3) calls afterInit for
post-initialization, again passing along any arguments that had been specified
to new. Notice that new is a class method (operates on a class), while init and
afterInit are instance methods.

Note – While its is routine to call the new method, you should never directly
call init or afterInit (which are automatically called by new); doing so
will not re-initialize the object, and might put the instance into an unknown
state or cause unexpected behavior. Calling init, in particular, might cause
your program to crash.
136

Defining Classes and Objects 6
This section describes init and afterInit, and how to override them in
your own classes to specialize the initialization.

When you create a subclass of an existing class, you may often want to
override how it is initialized. To do this, you override the init and
afterInit methods in your subclass. You are not required to define either an
init or afterInit method in your subclass; you only need to define them if
your subclass’s initialization behavior is different from that of its superclasses.

The new method should almost never be overridden. (You could override new
if you want to limit the number of instances that can be created.)

The init method initializes the new instance of its class. Every instantiable
class has an init method, which contains implementation to set up some of
the initial values of a new instance.

Be aware that the instance is in an incomplete state until init is done. This is
very important to keep in mind. It is not safe to do anything that may have the
side effect of calling a method on this instance, which is still in an incomplete
state. Calling a method on an incomplete instance can cause your program to
crash.

However, the afterInit method is a safe place to perform all
post-initialization work. Since the object is fully initialized at this point, it’s
safe to call a method on it. The default afterInit method for most core
classes is empty. The Collection classes have an afterInit method that
allows you to add initial keys and values to that new collection. Where
afterInit comes in handy, again, is in subclasses you define.

If you create a subclass of Window, you might define afterInit to create
whatever objects the window is supposed to initially requite or contain, such
as pushbuttons, bitmaps, players, and other objects. Then every time new is
called on that class, the new window will automatically get the objects it needs.

Both init and afterInit are defined in similar ways and are described in
the following sections.

Keyword Arguments

Keyword arguments are arguments in a method or function that have explicit
keywords. You can recognize a keyword argument by the colon (:) used to
separate the keyword from the value:

keyword:value

The new method for many classes uses keyword arguments. For example, the
following code creates a new instance of a Point class; it uses the keywords x
and y to intialize the point to coordinates 10,20:

create an

The new method

instance

1 2 3
init afterInit
137

6 ScriptX Language Guide
new Point x:10 y:20

Keyword arguments are described in the following section “Defining init
Methods.”

Defining init Methods

The definition of the init method has the syntax shown below. It is defined to
take only one positional argument, self, one rest argument restArg (which is
actually a collection of arguments), and any number of keyword arguments
keywordArgs. Keyword arguments are not restricted to only the init method;
any method definition can contain keyword arguments.

◆ method init self #rest restArg [#key keywordArgs] -> (

. . .

apply nextMethod self keywordArgs restArg

. . .

)

where:

• restArg is an argument (typically args) that holds the collection of keyword
arguments passed into init.

• keywordArgs is an optional series of newly defined keyword arguments, each
of which can be renamed with argName and can have an initial value which
must be inside parentheses. Keyword arguments have this syntax:

keyName:[argName] [(initialValue)] . . .

• nextMethod passes the original method call (including arguments) up the
inheritance hierarchy, so that each superclass has a chance to perform its
particular initialization on the new instance.

• apply calls nextMethod with all members of restArg as arguments. For
more information, see “Using apply to Call Functions” on page 109 in
Chapter , “Functions, Threads and Pipes.”

As you recall, the new method automatically calls init. When you call any
function or method with a series of keyword arguments, these arguments are
wrapped in a collection. In this case, the collection of keyword arguments are
passed to restArg in init.

Use #key to define any new keyword arguments. An example of a keyword
argument is scale:(10). Notice that the parentheses are required around the
default value, even if the value is simply a number and not a complex
expression. For a complete description of keyword arguments, see the
discussion that begins on page 100 of Chapter 5, “Functions, Threads and
Pipes.”
138

Defining Classes and Objects 6
In general, the new method that calls init can contain a variable number of
keyword arguments, and should therefore include #rest restArg, as shown,
which collects those keyword arguments together into the collection restArg.
(It’s interesting to note that #rest can collect any kind of arguments. It is used
to collect keyword arguments in the init method, whereas it can be used to
collect non-keyword arguments in functions.)

If the new method that calls init does not contain a variable number of
keyword arguments, then you do not need to include #rest restArg. However,
about the only time you can be sure of this constraint is with a
non-subclassable (sealed) class that inherits directly from RootObject.

Unless you really know what you’re doing, there are only two things you can
do inside the body of init:

• Call nextMethod, optionally passing in keywords with initial values along
to superclasses

• Assign values to the instance variables that the subclass itself defines

Note – When you are defining an init or afterInit method, you should set
only those instance variables that are defined within that class. However, if you
find you must set an instance variable that is “owned” by a superclass, you
should call nextMethod before you set its value. Setting an instance variable
that is “owned” by a superclass and then calling nextMethod after that may
result in unexpected behavior, sometimes even a system crash.

It’s important to call nextMethod, because init is implemented in
RootObject; nextMethod ensures that that implementation is called. Notice
that it does not matter what init returns; its return value is ignored.

Here is a “minimal” implementation of the init method which does no
specialization:

method init self #rest args -> (
apply nextMethod self args

)

In this example, any keywords supplied to the new method are passed into
init as the collection args; this collection is then passed up to the init
method of its superclasses using apply nextMethod.

Initializing Keywords and Instance Variables

Notice you have three places you can set initial values in the init definition:

• In the keyword arguments that are defined in the #key line of init. If the
same keyword appears in restArg and keywordArgs, the method accepts only
the first one. Therefore, since restArg appears before keywordArgs at this
point, restArg takes precedence over keywordArgs.

• As keyword arguments to nextMethod in the body. Here the precedence
order is opposite that of the previous case—since keywordArgs appears
before restArg, keywordArgs takes precedence over restArg.
139

6 ScriptX Language Guide
• As explicit assignment statements in the body, such as self.scale := 10.
If this occurs after nextMethod, it takes precedence over the two previous
places.

Important – It may not be safe in the body of init to set instance variables for
a superclass or for any other class, or to call methods on any objects, because
doing so may have the side effect of calling a method on this instance, which is
still in an incomplete state. Calling a method on an incomplete instance can
cause your program to crash.

Examples of Overriding init

Here are some examples of class definitions that override init:

The BlahShape class specializes Rect to add an extra instance variable, which
is initialized to a linked list.

class BlahShape (Rect)
inst vars

blahList
inst methods

method init self #rest args -> (
apply nextMethod self args
self.blahList := new LinkedList
return self

)
end

The TextTable class, suitable for creating a table, specializes ArrayList by
adding three instance variables. It specializes the init method to set values
for those instance variables, supplying a default of 10 columns and a name of
“Laura’s Table”. It also supplies a default value for initialSize (one of the
keyword arguments that ArrayList defines) to set a TextTable instance to 30
elements.

class TextTable (ArrayList)
inst vars

recClass, columns, name
inst methods
method init self #rest args \

#key columns:(10) tabClass: name:("Laura’s Table") -> (
apply nextMethod self initialSize:(30) args
self.recClass := tabClass
self.columns := columns
self.name := name
return self

)
end

ArrowPresenter is a subclass of TwoDPresenter that adds two instance
variables and overrides by setting values for those instance variables. Its init
method also supplies a different default value for one of the keyword
arguments that the TwoDPresenter class uses.
140

Defining Classes and Objects 6
class ArrowPresenter (TwoDPresenter)
instance variables strokePaint, direction
instance methods

method init self #rest args ->(
apply nextMethod self boundary:(new Rect x2:15 y2:15) args
self.strokePaint := blackBrush
self.direction := @up
return self

)
end

Passing Initial Values in init to Superclasses

If you calculate or otherwise determine values for keyword arguments that
need to be supplied to the init methods defined by superclasses, you can pass
those values in keyword-value pairs using nextMethod.

For example, if your superclass’s init method defines a scale keyword
argument, but you want instances of your class to always have a scale of 15,
you could supply the value 15 to the scale keyword in the nextMethod call.

-- Initial value of scale is always 15, even if passed in another value
method init self #rest args -> (

apply nextMethod self scale:15 args
return self

)

Now, even if an alternate value for scale is supplied when this method is
called, a scale of 15 is always used. Both values appear in the nextMethod
arguments (one explicitly as scale, the other is in args), but nextMethod
always chooses the first value of the key it finds.

In addition, a subtle point with the init method (or with any function or
method that defines both rest and keyword arguments) is that the arg
argument collects only keyword arguments that have been supplied directly in
the call to init; it does not collect keyword arguments for which you’ve
simply specified default values in the init definition.

For example, say that your superclass takes an optional scale keyword.
Therefore, if you want to be able to override the default value, you might
assume that simply specifying a default value to the keyword argumenta after
#key will work:

-- Incorrect implementation
-- This method does not pass the default scale value to its superclasses
method init self #rest args #key scale:(15) -> (

apply nextMethod self args
)

The problem in this example is that unless you specifically give a value for
scale when you create an instance of your class, the value of scale does not
get appended to args, and so does not automatically get passed to your
superclass’s init method.
141

6 ScriptX Language Guide
To pass the default value of any keyword argument you define in your own
init method to your superclass’s init, you must explicitly pass that keyword
along in the nextMethod call, and supply its current value:

-- Correct implementation
-- This method passes the default value of scale to its superclasses
method init self #rest args #key scale:(15) -> (

apply nextMethod self scale:scale args
)

This allows you to specify the default value of 15 to the scale keyword
argument. It also allows the value of scale to be overridden by a value
supplied with new or object.

Defining afterInit Methods

The afterInit method is identical in structure to the init method. Just as
with init, the afterInit method requires a rest argument, and you must
call apply nextMethod at some point in the body of afterInit so that all
superclasses have a chance to add their post-initialization behavior.

However, it is much less restrictive than init in what you can implement
inside the body, since self at this point is fully initialized.

◆ method afterInit self #rest restArg [#key keywordArgs] -> (

. . .

apply nextMethod self keywordArgs restArg

. . .

)

See the previous init method definition for descriptions of restArg, keywordArgs,
and the other elements of this definition.

The following is a simple example using init and afterInit. The class
SameKey inherits from SortedKeyedArray, but for every key-value pair in
the array, each key is exactly the same object. Only the values vary. The
SameKey class has an instance variable called, appropriately, key, which holds
the key that is repeated for every key-value pair. When you call new on this
class, you have two available keyword arguments: key, which specifies the
value for the key instance variable, and vals, which holds an array of
potential values for the new collection. During initialization of the new object,
the value of key is assigned to the key instance variable, and the contents of
vals are added to the collection.

class SameKey (SortedKeyedArray)
instance vars

key
instance methods

method init self #rest args #key key: -> (
apply nextMethod self args
self.key := key
142

Defining Classes and Objects 6
)
method afterInit self #rest args #key vals: -> (

apply nextMethod self args
for i in vals do add self self.key i

)
end

The init method defines a keyword argument, key, to hold that key, and
assigns that value to the instance variable self.key. Because adding a new
element to a collection requires a method call on that object, an afterInit
method is required. The afterInit method defines an additional keyword
argument, vals, which holds an array of possible values for the new class. The
afterInit method then adds the new key-value pair (using the key specified
in the key instance variable) to the new collection.

When a new instance of SameKey is created, it looks like this:

newSameKey := new SameKey key:@flavor \
vals:#(@cherry,@watermelon,@peach)

➯ #(@flavor:@peach, @flavor:@watermelon, @flavor:@cherry) as SameKey

Comparison Functions

ScriptX provides several default functions for comparing objects, as described
in Chapter , “Working with Objects.” When you create new subclasses or
objects, your new classes may need to specialize those functions so that they
behave properly.

For example, instances of String can be compared. The ordering used by the
localLt method defined by the String class is based on a lexicographic
ordering of Unicode values. (The ASCII character set is a subset of the Unicode
character set.) Suppose you want to create a specialized class of strings
(DeutschString) that handles all those lugubrious vowel sounds in the
German language. You want the ScriptX comparison functions to correctly sort
German strings like "Frühling", "Österreich", and "Mädchen" that
contain inflected vowels.

You can specialize the three generic comparison functions listed below by
specifying method definitions in your class. These generic functions take two
arguments, self and another object, and return true or false.

• isComparable

• localLt

• localEqual

You do not need to redefine all of these to affect the behavior of many
comparison functions; you only need to define those that are different from
your class’s inherited definition. You can use nextMethod to call the original
definitions of these functions from within your definition.
143

6 ScriptX Language Guide
isComparable

The isComparable generic function returns either true or false, depending
on whether the objects (and they must be objects, not classes) can be compared.
By default, isComparable returns true if each argument is of the same class.

(getClass self) = (getClass anotherObject)

However, some objects may be comparable even though they are not instances
of the same class. For example, numbers are generally comparable. Instances of
Number are comparable because each number class defines its own versions of
isComparable, localLt, and localEqual. If you define a new class, you
might want to specialize these three methods in your class so that instances of
other classes can be compared with instances of your class.

method isComparable self other -> (
if ((nextMethod self other) == true) or \

(isAKindOf self MySuperClass)
then return true
else return false

)

method isComparable self other -> (
if ((allIvNames other) contains @target)
then return true
else return false

)

localLt and localEqual

The localLt and localEqual generic functions are used by their functional
equivalents, lt and equal (< and =) to specify whether one object is less than
or equal to another in value. They are also used as the basis for many of the
other comparison functions, such as cmp, le, ge, and gt.

Both localLt and localEqual generally assume that their arguments are
comparable, that is, that isComparable returns true.

When redefining localLt and localEqual, be careful not to actually call any
comparison functions or operators to compare those same arguments. Because
those functions use the methods you are now defining, you can create a
circular method call by doing this. For example, do not do this:

method localEqual self other -> (
if (self = other)

then return true
else return false

)

Note that the test, self = other, uses the equal function, which then uses
localEqual to test its arguments. However, you’ve just redefined
localEqual to test the arguments using equal, and so on.
144

Defining Classes and Objects 6
You can avoid this circularity by using nextMethod to compare the objects, or
to compare parts of those objects. For example, you might compare the values
of instance variables:

method localLt self other -> (
if (isComparable self other)
then if ((nextMethod self other) == true) and \

(((size self) < (size other)) == true)
then return true
else return false

)
else (report Unordered #(self, other))

For more information about comparison functions and the ScriptX Comparison
protocol, see the chapter “Object System Kernel” in the ScriptX Components
Guide.

Defining Class and Instance Variables

Previous sections in this chapter described a simple form for defining class and
instance variables. This section contains further details on how to define class
and instance variable in specific ways, including

• A description of setter and getter functions and their relationship to the
variables they are changing and querying

• The difference between real and virtual variables

• Defining real instance variables, including adding special behavior for
storing those variables when this class is stored to the ScriptX object store

• Defining and overriding the setter and getter generic functions to create
virtual variables or to specialize the behavior of real variables

Setters, Getters, and Real and Virtual Variables

The ScriptX language provides the following forms for accessing or changing
class or instance variables:

classOrObject.variableName
classOrObject.variableName := value

In contrast with many other object-oriented programming languages, these
forms for querying and changing instance variables do not read or write the
variable directly. Instead, they call special generic functions called setters (to
change the variable) and getters (to query a variable’s value), which then
operate on the class or object to retrieve or change the value of that variable.

The use of setters and getters to access a class or object’s variables allows a
great deal of flexibility in querying or changing that variable.

• You can override the setter and getter functions for your class or object to
provide additional behavior when a variable is accessed or changed. For
example, you could update other variables that are affected when this
145

6 ScriptX Language Guide
variable changes. You can print debugging messages, or you can make sure
that the value to which a variable is being assigned is of a specific class or
within a set range.

• Because of the existence of setters and getters, the class and instance
variables themselves do not have to actually exist in memory. The setter and
getter functions can instead calculate the values of those variables from
some other features of the class or object, and return that value.

This last feature, using setters and getters to mimic the existence of a real
variable, is known as creating virtual class or instance variables. Virtual
variables are different from real variables, which occupy real locations in
memory (and take up space in the final object). Both real and virtual variables
appear the same from the outside, and both are accessed in the same way. The
only difference lies in their definition and storage within your class or object.

Defining Real Variables

To define real class or instance variables you use the class variables or
instance variables sections of the class or object definitions, as
described earlier in this chapter on page 117 and again on page 124.

▼ class variableName (classList)

class variables

varName

varName:initialValue

. . .

instance variables

varName

varName:initialValue

. . .

end

In addition to these simple forms where you specify either the name of the
variable or the name and its initial value, each variable definition can also
specify a set of optional keywords to specify, primarily, how this variable is to
be handled when this class or object is stored in the ScriptX object store. Those
keywords appear in a specific order before the variable name and its initial
value:

▼ [readOnly] [transient [initializer function]] \

[reference] varName [:initialValue]

The qualifiers to each variable are all optional, but they must be specified in
the order shown for them to be processed correctly.
146

Defining Classes and Objects 6
The first optional qualifier, readOnly, indicates that this variable can be
retrieved but cannot be changed. When this variable is created, only a getter
method is constructed for it.

The remaining qualifiers are used for classes and objects that are stored into
ScriptX storage containers, part of the ScriptX object store. By default, when a
class or object is stored, all of its class and instance variables are also stored
with their current values. Additionally, when the class or object is loaded from
the storage container, all the objects that its instance variables hold are also
retrieved.

The remaining three optional qualifiers allow you to specialize how each
variable is to behave when stored:

The transient qualifier specifies that when the class or object is stored, the
value of this variable is discarded. Transient variables have initial values of
undefined when they are restored, unless an initializer function is specified.

The initializer qualifier specifies that when a transient object is restored,
the function specified by function is executed to set the initial value of this
instance variable. (Only transient variables can take an initializer.) The function
expression can hold any of the following expressions, where appropriate:

• a variable name

• an anonymous function definition

• an array access expression (myArray[1])

• a reference to a class or instance variable (self.x)

• any other expression, contained within parentheses

The reference qualifier specifies that when the class or object this variable
belongs to is restored, the object this variable holds is not restored along with
it. Instead, that object is only restored when the variable is queried. The
reference qualifier is useful for variables that hold very large objects that do
not immediately need to be loaded into memory when your ScriptX program
starts running.

For further details on the ScriptX object store and how objects are stored, see
the ScriptX Components Guide.

Defining Virtual Class or Instance Variables

Virtual class or instance variables, as mentioned in the introduction to this
section, are variables that occupy no slots in memory and take up no space in
the object. Virtual variables do not actually exist; instead, their values are
calculated by setter and getter functions when the variable is accessed or
queried, and their values returned as if the variable did actually occupy a real
location in memory. In this way, virtual variables mimic the appearance of real
class or instance variables.

Virtual class or instance variables are particularly useful for variables that may
frequently change as a consequence of some other operation on that object.
Take, for example, an object that holds other objects such as a collection. That
147

6 ScriptX Language Guide
collection object might have a size instance variable that returns the number
of elements in that collection. Any operation that adds or removes elements
from that array would have to change the value of that instance variable,
requiring an extra step (and more time) for each add or removal operation.

If size is a virtual instance variable, the size would never be stored anywhere
in memory. Instead, when the size instance variable is queried, the getter
method counts the items in the array and returns that value. No memory is
used for that number, and each method that adds or removes elements from
the array has one less operation it has to keep track of.

When you define a real class instance variable, ScriptX automatically creates a
setter and getter method for that variable when the class or object is created. To
define virtual instance variables, you must define setter and getter methods for
those variables yourself.

ScriptX has two forms for defining setter and getter methods (two for creating
setter methods, and two for creating getter methods):

▼ method variableSetter self value -> body

method variableGetter self -> body

method set variable self value -> body

method get variable self -> body

In each definition, variable is the name of the class or instance variable. In the
first two definitions, the variable name appears just before the words Setter
or Getter (with no space in between). For example, the getter method for the
virtual instance variable x would be the xGetter method. In the second two
definitions, the variable name appears after the reserved words get or set.

Each of the setter and getter forms are equivalent; that is, the method set
form is equivalent to the variableSetter form and the method get form is
equivalent to variableGetter.

Getter methods always have only one argument, self, and setters have two,
self and the value the variable is to be “set” to. The body part of each
method should always return the value of the virtual instance variable as its
last argument.

If the virtual instance variable is to be considered read-only, define only a
getter method for that variable and not a setter method.

The names of virtual instance variables should not be defined in a
class variables or instance variables definition; remember, as virtual
instance variables, simply the existence of the setter and getter methods gives
those variables the appearance of reality.

The following examples show how to define setter and getter methods within a
class or object definition. The first example is trivial. It simply says that the
instance variable ten has a value of 10.

method tenGetter self -> return 10
method tenSetter self value -> (
148

Defining Classes and Objects 6
print "Cannot change ten. ten is 10."
10

)

The second example creates a virtual instance variable called position, which
could be used to query or change the object’s position in some
two-dimensional space. Here position is built from the existing x and y
instance variables. Setting position, an array of two elements, is
accomplished by setting the values of x and y.

method get position self -> (
return #(self.x, self.y)

)
method set position self value -> (

self.x := value[1]
self.y := value[2]
return value

)

The third example defines a virtual instance variable lineWidth that provides
direct access to an instance variable that is defined by a member object.

method lineWidthGetter self -> (
return self.stroke.lineWidth

)

The lineWidthGetter method could be defined as a free method for
subclasses of certain core classes, such as TextPresenter. (Note that you
cannot change a core method in a core class, but you can change a method in a
subclass of a core class.)

-- create a subclass of TextPresenter and defind lineWidthGetter as a
-- free method on it
class MyTextPresenter (TextPresenter) end
method lineWidthGetter self {class MyTextPresenter} -> (

return self.stroke.lineWidth
)
-- now create a test of lineWidthGetter
global myTP := new MyTextPresenter \

stroke:blackBrush fill:whiteBrush \
boundary:(new Rect x2:200 y2:200) target:"inconceivable"

myTP.lineWidth

➯ 1

Specializing Setters and Getters for Real Variables

As mentioned previously, real variables are also queried and changed through
the use of setter and getter methods. By default, a pair of setter and getter
generic functions are constructed by ScriptX for each class or instance variable
when you create a class or object with the class or object expressions. You
can, however, augment or change the behavior of those setters and getters for
real variables, just as you did for virtual variables (for example, to print
debugging messages or to change the value of some other part of the class or
object).
149

6 ScriptX Language Guide
You can either specialize the setter and getter for a variable that has been
defined in this same class or object, or you can specialize the setter and getter
for a variable that has been defined in a superclass and inherited by this class
or object. To specialize setters and getters, you use the same method definition
syntax that you used to define virtual instance variables, as described on
page 147.

Specializing Setters and Getters for Inherited Variables

You can override or augment the setter and getter behavior in your class for a
variable defined in a superclass in much the same way that you override other
methods in other classes. You define a method of the same name in your class,
and you call nextMethod to pass the method call up the class hierarchy to the
appropriate implementation of that method.

For example, suppose you have defined a class called VerbosePresenter
that inherits from the class TwoDPresenter. The TwoDPresenter class
defines x and y instance variables to indicate the position of your presenter in
a coordinate space. In VerbosePresenter, you want to augment the behavior
of the setter methods for x and y to print a message to the debugging stream
each time x or y is changed. You also want to accept floating point values and
store them for precision, but round them to the nearest integer value for actual
display.

To do this, store the values with higher precision in another set of instance
variables which you define. Define setter methods for x and y to transform the
value from floating point to integer, print a message, and then call
nextMethod, which allows the superclass to actually set the variable:

class VerbosePresenter (TwoDPresenter)
instance variables

_x, _y
instance methods
method xSetter self value -> (

self._x := value
local val
format debug "x is stored internally as %* " value @normal
format debug "but displayed as %*\n" \

(val := round value) @normal
nextMethod self val

)
method ySetter self value -> (

self._y := value
local val
format debug "y is stored internally as %* " value @normal
format debug "but displayed as %*\n" \

(val := round value) @normal
nextMethod self val

)
end

As previously noted, you should avoid setting any instance variables which
are owned by superclasses before calling nextMethod. In the example above,
the instance variables which are set (_x and _y) are not owned by any
150

Defining Classes and Objects 6
superclasses because they are defined in the new class VerbosePresenter.
Therefore, in this particular case, there is no problem with calling nextMethod
last.

If you do not specify nextMethod as the last expression in the setter or getter
method body, you need to explicitly return the value of the variable as the last
expression.

method xGetter self {class VerbosePresenter} -> (
local value := nextMethod self
format debug "x is displayed as %* " value @normal
format debug "but stored internally as %*\n" self._x @normal
return value

)
method yGetter self {class VerbosePresenter} -> (

local value := nextMethod self
format debug "y is displayed as %* " value @normal
format debug "but stored internally as %*\n" self._y @normal
return value

)

Specializing Setters and Getters for Variables Defined In
the Same Class

In the current version of ScriptX, you cannot truly override the default setter
and getter methods for a real class or instance variable defined in that same
class or object. The default setter and getter methods, as defined when you
create a real variable in a class or object expression, provide a way of
bypassing the normal setter and getter mechanism and directly gaining access
to the memory location that stores the value of that variable. When you
override the default setter or getter behavior for a variable, you lose the ability
to directly access the variable. For example, to change the default behavior of a
getter method for the variable x, you would have to use the expression self.x
in the body of that getter method, which calls the getter method for x that you
just defined, which queries self.x, and so on.

You can mimic the effect of augmenting the default setter and getter behavior
by implementing your variable as a virtual variable, and then using a
“placeholder” variable to hold the actual value of the variable whose behavior
you are augmenting.

For example, suppose your class Person has an instance variable called name
which can only have values of the class String or of one of its subclasses.
Because of this restriction on the possible values of name, you need to define a
nameSetter method that checks the class of the value to which the variable is
set to make sure that it is a string, and reports an error otherwise.

Because you cannot change the default behavior of a real variable defined on
this class, you create a placeholder for that real variable, for example, a real
variable called _name. Then implement your nameSetter method, and in the
body of the method definition, use the placeholder variable _name instead of
the variable name to hold the actual name value:
151

6 ScriptX Language Guide

ass variables
ndrange>

stance vari-
es <$en-
nge>
class Person ()
instance variables _name
instance methods

method nameSetter self value -> (
if ((isaKindOf value String) == false) then

print "bad value for IV name."
else self._name := value

)
end

Now, if you instantiate the class Person, you can use name just as if it were a
real variable, and nameSetter checks to make sure the object you are
assigning to name is of the right class.

foo := new Person
foo.name := 43

➯ "bad value for IV name"

foo.name := "Elsa"

➯ "Elsa"

This next example uses a fake placeholder variable (_radius) for the virtual
variable radius in the class MyRoundClass:

class MyRoundClass ()
instance variables _radius
instance methods
method set radius self value -> (

format debug "changing radius to %*" value @normal
self._radius := value

)
method get radius self -> (

format debug "The value of radius is %*" self._radius @normal
return self._radius

)
end
152

C H A P T E R

Collections
7

7

ScriptX Language Guide
154

Collections

7

lec-
s<$star-
ge>
llection class
Collections

Collections are classes that implement common aggregate data structures such
as arrays, linked lists, and hash tables. The Collection class and its
subclasses define behavior for collections and provide methods for adding and
removing elements in collections, for querying and changing those elements,
and for searching for elements in collections.

This section is not an exhaustive description of collection classes in ScriptX. It
is intended as an introduction to the most useful classes and the most common
ways of using those classes. Figure 7-1 depicts an abbreviated class-inheritance
diagram for the Collections component. The sections that follow contain a
short summary of many of the available collection classes, and of the most
commonly used methods. For more information on collections, see the ScriptX
Components Guide and the ScriptX Class Reference.
155

7

ScriptX Language Guide

rray class
rrayList class
nkedList class
The ScriptX Collection Classes

Figure 7-1: A few of the collection classes

Array, ArrayList, and LinkedList

The Array class provides the simplest data structure of the Collection
classes, containing simply a linear array of elements. LinkedList is similar to
Array, except it is implemented as a linked list of elements. Arrays are
generally allocated with some number of “slots,” (typically 20), and grow by
an incremental number of elements when they run out of slots. Linked lists are
variable in size; elements are added and removed dynamically as needed. The
ArrayList class provides a hybrid of Array and LinkedList; its internal

IndirectCollection

Controller

Range

DiscreteRange

NumberRange

IntegerRange

ContinuousNumberRange Array

ArrayList

SortedArray

Single

Sequence

LinkedList

ImplicitlyKeyedCollection ExplicitlyKeyedCollection

BTree

KeyedLinkedList

SortedKeyedArray

HashTable

TwoDMultiPresenter

Pair

Quad

Triple

ByteString

EmptyClass

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

Collection

SequenceCursor

LinearCollection

Container

RootObject

ByteStream

String
156

Collections

7

yedLinkedList
s

rtedArray
s
rtedKeyedAr-
class
structure is like a linked list of individual arrays. Arrays are typically faster for
querying and changing elements, but linked lists are faster for inserting
elements.

Array, ArrayList, and LinkedList are implicitly keyed sequences (they
inherit from the abstract classes Sequence and
ImplicitlyKeyedCollection), which means that their elements are
accessed through their position in the list or array and not by some explicit key.
Sequences begin with the ordinal position 1 (that is, the first element in a
sequence is ordinal position 1). The following code illustrates using ordinal
position to access an element of an array:

-- using the element access construct to get the first element
myArray[1]
-- using the method getOne to access the eighth element
getOne myArray 8

KeyedLinkedList

The class KeyedLinkedList is a list of explicit key-value pairs. Whereas
sequences can be said to have implicit keys (their keys are their ordinal
positions), instances of KeyedLinkedList have explicit keys. The values
associated with those keys are usually accessed via the keys themselves.

SortedArray, SortedKeyedArray

The SortedArray and SortedKeyedArray classes provide implementations
of an array and an array of key-value pairs, respectively, that are always
sorted. If you add new elements to a sorted collection, they are inserted based
on where they should appear in the sorting order.

You have the option of specifying the function that will be used to sort keys or
items in the array. For example, if your sorted array contains items that are
instances of some class, items can be sorted on the value of a particular
instance variable. For a discussion of sorting with these classes, see the
“Collections” chapter in the ScriptX Components Guide.

Note – Note that sorted arrays and sorted keyed arrays do not resort
themselves if you modify one of their elements. If you modify a sorted array,
you should do so by explicitly removing the item from the array, modifying it,
and adding it back, so that the array will be sorted properly.

Ranges

Ranges are used to represent a range of numbers between two values. Ranges
are divided into two broad categories, those which contain discrete numbers
and those which do not. In the first category is the class DiscreteRange,
which inherits from Range and Sequence and has subclasses IntegerRange
157

7

ScriptX Language Guide

ngle class
air class
riple class
uad class

nge literals
nges <$star-
ge>
and NumberRange. These range classes containing discrete numbers are
subclasses of Collection. Ranges containing numbers which are not discrete
belong to ContinuousNumberRange and do not inherit from Collection.

• IntegerRange, a range of numbers in which the elements are integers

• NumberRange, a range of discrete numbers in which the elements can be of
any subclass of Number except Integer

• ContinuousNumberRange, a range of non-discrete numbers

Single, Pair, Triple, and Quad

Single, Pair, Triple, and Quad are bounded sequences, that is, they can
only contain a specific number of elements (one, two, three, and four,
respectively). These classes take up less memory than a more general sequence
(such as an array) with the same number of elements. Also, they provide
slightly better performance because they are accessed directly, eliminating one
level of indirection. Therefore, it is recommended that you use a Single,
Pair, Triple, or Quad whenever it is appropriate.

global args := #(myString, 1, 0, 999) as Quad

Other Classes

ScriptX collections include two other classes which may be of interest:

• HashTable: an implementation of a hash table, useful for variable-size
collections requiring very quick access

• BTree: an implementation of a B-tree structure, typically useful for very
large indexed collections (such as databases)

Array and KeyedLinkedList Literals

Chapter 2, “ScriptX Building Blocks,” described the literals in ScriptX for
specifying instances of the Array and KeyedLinkedList classes. They are
reproduced here for a summary:

▼ #(element, element, element, . . .)

#(key:value, key:value, . . .)

Range Literals

Ranges, such as those used in the for loop examples, are a special literal that
creates an instance of the appropriate subclass of Range.
158

Collections 7

nges:continu-
<$startrange
▼ startValue to endValue

startValue to endValue by increment

In both forms, startValue is the number to begin the range, and endValue is the
number to end the range.

1 to 10
1 to 56

To iterate down from one number to another, put the larger number first in the
range:

10 to 1 by -2
100 to 50 by -1

The by increment clause allows you to specify the amount by which each
number in the range is incremented or decremented. If startValue is lower than
endValue, the by increment clause is optional. In this case, there is a default
value for increment, which is 1. If startValue is larger than endValue, the
increment must be explicitly stated.

1 to 10 by 2
1 to 100 by 7
0 to 1 by 0.1
10 to 1 by -1
88 to 0 by -8

Although the startValue, endValue, and increment are often numbers, they can
also be an expression that results in a number. Keep in mind that most complex
expressions must be specified inside parentheses for those expressions to be
evaluated before the range expression. The following expressions can be used
without parentheses, where appropriate:

• a variable name

• an array access expression (myArray[1])

• a reference to a class or instance variable (myRect.x1)

• an anonymous function with no arguments, resulting in a number
(described in the section “Anonymous Functions” on page 105 in Chapter ,
“Functions, Threads and Pipes”)

• a nextMethod call resulting in an object (The nextMethod call is described
on page 132 in Chapter 6, “Defining Classes and Objects”).

Continuous Ranges

The range literal generally evaluates to an instance of the IntegerRange or
NumberRange class. There is also a literal for ContinuousNumberRange, a
range of all the numbers (floating-point and integer) between the end-points of
the range. Although you can test the membership of a given number in a
ContinuousNumberRange, you cannot count or list its elements.

>

159

7 ScriptX Language Guide

nges <$en-
nge>
nges:continu-
<$endrange>

lections:creat
an instance

lections:coer-
n <$star-
ge>
ercion:collec-
s<$star-
ge>
To create an instance of ContinuousNumberRange, use the following literal
syntax:

▼ startNum to endNum continuous

The continuous reserved word indicates that the range is to be continuous.
You also have the option of specifying the exclusivity of the numbers that
begin and end the continuous range. There are two reserved words for
exclusivity:

exclusive
inclusive

Either the startNum or the endNum, or both, can be specified as exclusive or
inclusive, where exclusive means that the range includes all numbers
except that number itself, and inclusive means the range includes the
number specified. The default is inclusive.

1 to 3 continuous
1 exclusive to 3 inclusive continuous
1 to 3 exclusive continuous

Note that in the last example, the exclusive reserved word only applies to
the end number of the range. You must specify exclusivity separately for both
ends of the range.

Creating New Instances of Collections

Just as with other objects you can use either the new method or the object
expression to create a new instance of a subclass of Collection. You can
specify the initial contents of a collection using the contents reserved word:

object myList (Array)
contents "penny", "nickel", "dime", "quarter"

end

➯ #("penny", "nickel", "dime", "quarter")

Probably the easiest way to create a new instance of a collection with an initial
set of values is to use either the array or keyed list literal (as described on
page 158), and then coerce the resulting Array or KeyedLinkedList object
into an instance of the appropriate class. See the next section “Coercing
Between Collection Classes” for examples.

Coercing Between Collection Classes

Collections can be coerced into other collection classes by using the as
reserved word with the new collection class.

-

160

Collections 7

lections:coer-
n <$star-
ge>
ercion:collec-
<$endrange>
▼ oldCollection as newCollection

In this syntax, oldCollection is an expression yielding the original collection, and
newCollection is the class of the collection to which it is coerced (or an
expression resulting in a class).

col := #(4,2,1,3)
getClass col

➯ Array

col as SortedArray

➯ #(1,2,3,4) as SortedArray

col2 := col as KeyedLinkedList

➯ #(4:4,2:2,1:1,3:3)

col2 as LinkedList

➯ #(4,2,1,3) as LinkedList

The return values in the above examples are shown as if they had been printed
using the prin method. The printable representations of most of the collection
classes always refer to the class of the object as if that object had been coerced,
even if it was originally created as an instance of that class. This is so that the
printable representation of a collection class is the same as the syntax for
creating that collection in a script. See “Printing Collections” on page 168 for
more information.

Coercing between subclasses of Collection that are not of similar
appearance may have unusual side effects. Table 7-1 describes the effect of
many of these coercions.

Table 7-1: Coercions between collection classes

Original Collection New Collection Effect of Coercion

Sequences such as
Array and LinkedList

Explicitly keyed
collections such as
KeyedLinkedList

The elements in the original
collection become both the key
and the value in the key-value
pair (that is, the keys and the
values in each are the same in the
new collection).
#(1,2) as KeyedLinkedList
➯ #(1:1,2:2)

Explicitly keyed
collections such as
KeyedLinkedList

Sequences such as
Array and LinkedList

Only the values in the original
key-value pairs are retained. The
order of the elements in the new
collection may not be the same as
in the original collection.
#(1:"one",2:"two") as Pair
➯ #("one","two") as Pair
161

7 ScriptX Language Guide

lections:ac-
s to items
tartrange>
Accessing and Changing Elements in Collections

To get access to an element in a collection, use a method such as one of those
described in the next section, or use the element access construct, which is
actually syntactic shorthand for the getOne method:

▼ collection [key]

With this syntax, collection is an instance of a collection class, or an expression
that returns a collection. If this collection is an implicitly keyed collection, then
key represents the position of an element.

melons := #("honeydew","canteloupe","water","carnegie")
melons[1]

➯ "honeydew"

melons[3]

➯ "water"

If the collection is an explicitly keyed collection, then the key is an explicit key,
or an expression that returns a key.

r := #(@one:"money",@two:"show",@three:"get ready",@four:"go!")
r[@two]

➯ "show"

To change elements in a collection, use the same syntax as above, followed by
an assignment. This form of element access is syntactic shorthand for the
setOne method:

Unsorted collections
such as Array and
KeyedLinkedList

Sorted collections such
as SortedKeyedArray
and SortedArray

The elements in the original
collection are sorted.
#(4,3,1,2) as SortedArray
➯ #(1,2,3,4)

Unbounded collections
such as Array and
KeyedLinkedList

Bounded collections such
as Single and Pair

If the unbounded collection
contains more elements than the
bounded collection can hold, only
the initial elements are included
in the new collection. All others
are discarded. If there are too few
elements in the unbounded
collection, the remaining elements
are set to undefined.
#(1,2,3,4) as Pair
➯ #(1,2) as Pair

Table 7-1: Coercions between collection classes

Original Collection New Collection Effect of Coercion
162

Collections 7

lections:ac-
s to items
ndrange>

lections:emp-
bject

mpty object
▼ collection [key] := newValue

For example:

melons := #("honeydew","canteloupe","water","carnegie")
melons[3] := "cassava"
print melons

➯ #("honeydew","canteloupe","cassava","carnegie")

melons[5] := "water"
print melons

➯ #("honeydew","canteloupe","cassava","carnegie","water")

r := #(@one:"money",@two:"show",@three:"get ready",@four:"go!")
r[@four] := "pause"
print r

➯ #(@one:”money”, @two:”show”, @three:”get ready”, @four:"pause")

Summary of the Collection Protocol

This section contains a partial list of generic functions that a Collection
object responds to. For a complete listing, see the definition of Collection in
the ScriptX Class Reference.

The empty Object

Many of the methods described in the sections below return empty if the
element or key you specify is not in the collection. The empty object is a
special global constant used by the collection classes to mean “item not found.”
It should not be confused with undefined. Both empty and undefined are
system objects, objects that act as placeholders or constants.

Do not put the empty object into a collection as an element itself. If you assign
the empty object to a collection, it becomes difficult to tell whether a method is
returning the fact that the specified element was not found, or that it was
found, but it was the empty object. Use undefined instead of empty to
indicate that an item in a collection has no value.

Functions as Arguments

Some of the generic functions in the collections component take a function as
one of their arguments. These generic functions provide a means of iterating
through a collection to perform some action. In many cases, the function
supplied as an argument is used to select which element or elements from the
collection will be returned or operated on by the calling generic function. For
instance, removeAll deletes from the collection all elements which cause the
function passed to it to return true. A generic function such as chooseAll
returns all items which cause the function to return true. In the case of
forEach, however, the function is simply applied to each item in the
collection, and there is no return value.
163

7 ScriptX Language Guide
These generic functions all take three arguments. The generic function
forEach is used to illustrate the form:

forEach collection func arg

collection is the collection to be operated on

func is the function to be applied to the items in the collection

arg is the argument to be passed to func

The function func is iteratively passed two arguments: an item from collection
and the arguments contained in arg. If the collection has a natural order
(inherits from LinearCollection), the items will be passed to func in that
order. The content of the variable arg depends on how many arguments func
requires. If func takes no arguments, arg needs to be undefined. If func takes
two or more arguments, arg needs to be an array of the arguments.

--calling forEach to print each item to the debug stream
forEach #(2,4,6,8) print debug

The call to forEach in the example above is equivalent to the following code:

print 2 debug; print 4 debug; print 6 debug; print 8 debug

The generic functions chooseAll, chooseOne, chooseOneBackwards,
chooseOneBinding, forEach, forEachBackwards, forEachBinding,
map, removeAll, and removeOne all take a function as their second
argument. See the ScriptX Components Guide and ScriptX Class Reference for more
complete information.

Generic Functions for Accessing Elements in Collections

◆ getOne self key

getAll self key

getNth self ordinal

The getOne method gets the value given by the first instance of key in the
collection self; getAll gets all the values associated with the given key. The
getNth method, available only on collections that refer to an element’s
position as its key, gets the value at the ordinal position ordinal, and is the
specialized form of getOne for collections with implicit keys. Keep in mind
that ScriptX sequences begin at position 1, not position 0, as in some
programming languages.

The getOne method is equivalent to the expression self [key].
164

Collections 7

lections:add-
items
◆ getOrdOne self value

The getOrdOne method is available only on collections that refer to an
element’s position as its key (that is, subclasses of the abstract collection
LinearCollection). It returns the position at which the first instance of value
is located in the collection self.

◆ getKeyOne self value

getKeyAll self value

The getKeyOne and getKeyAll methods act like getOrdOne on explicitly
keyed collections such as KeyedLinkedList; given the value, they return the
first key in the collection self whose value equals value (getKeyOne) or all keys
whose values equal value (getKeyAll).

Generic Functions for Adding Elements to Collections

◆ add self key value

The add method inserts the key-value pair specified by key and value into the
collection self. For sequences such as arrays or lists, key is the position in the
list.

◆ addMany self another

The addMany method appends all the values (or key-value pairs) in the
collection another to the collection specified by self. When the collections are
both strings, this method can be used to concatenate them.

◆ append self value

prepend self value

The append method inserts the given value at the end of the collection self;
prepend inserts it at the beginning.
165

7 ScriptX Language Guide

lections:re-
ving items

lec-
s:changing

ms
Generic Functions for Deleting Elements from Collections

◆ deleteOne self value

deleteAll self value

deleteNth self ordinal

The deleteOne method deletes the first instance of the given value in the
collection self; deleteAll deletes all instances of value from self. With
collections that have explicit key-value pairs, both the keys and the values are
deleted. The deleteNth method, available only on collections that refer to an
element’s position as its key, deletes the instance of the element at the ordinal
position ordinal.

◆ deleteKeyOne self key

deleteKeyAll self key

The deleteKeyOne method deletes the first instance of the key-value pair
specified by key in the collection self. The deleteKeyAll method deletes all
instances of that key and its values.

Generic Functions for Changing Elements in Collections

◆ setOne collection key value

setAll collection key value

The setOne generic function changes the binding of the first instance of key to
value in the collection collection. If key does not exist, the key-value pair
specified by key and value is added to the collection. The setAll method is
equivalent to setOne, except that for all instances of key, the associated values
are changed to value.

In sequences such as arrays, key is the position of the element in the collection
collection, and cannot be greater than the current length of the collection plus
one. (If key does not exist in the collection, the key-value pair can be added to
the end of the sequence but not to any position beyond that.)

The setOne generic function is equivalent to the expression
collection [key]:= value.

Generic Functions for Searching Collections

Collection access methods can be used to select a particular value, key, or
key-value binding.
166

Collections 7
The generic functions that follow are the ones that are most useful for
searching collections, and they are also examples of generic functions that take
a function as an argument. Such functions have an iterator built in to their
implementation. It is possible to create you own iterator and then apply your
own operations, but using functions with a built-in iterator is more efficient.

◆ chooseOne self func arg

This function calls func once for each item in the collection self, supplying func
with the argument arg, until func returns true. It returns the value of the first
item in the collection for which func returns true, or empty if no call to this
function returns true.

nameArray := #(“Hal”, “Sid”, “Su”, “Wanmo”, “Sid”)
chooseOne nameArray (x -> x = “Sid”) undefined

➯ “Sid”

getOrdOne nameArray “Sid”

➯ 2 -- the first occurrence of "Sid" is at ordinal position 2

◆ chooseAll self func arg

This function calls func once for each item in the collection self, supplying func
with the argument arg. It returns a collection of all the elements in self for
which func returns true. This function is probably the most useful one for
searching collections.

-- select the numbers over 75
global numArray := #(4, 2.5, 109, 35, 3809, 1.0, 333.333)
chooseAll numArray (x -> x > 75) undefined

➯ #(109, 3809, 333.333)

-- select the numbers over 75 which are integers
chooseAll numArray (x -> x > 75 and \

(isAKindOf x Integer)) undefined

➯ #(109, 3809)

-- select the numbers over 10000
chooseAll numArray (x -> x > 10000) undefined

➯ #() -- there are no numbers over 10000

Other Useful Generic Functions and Properties

◆ collection.size
167

7 ScriptX Language Guide

lections:size

lections:mem
ship

lections:print-
<$startrange>
nting:collec-
s<$star-
ge>
The size instance variable contains the number of elements in the collection. It
is a virtual instance variable that is automatically calculated by its getter
method. You cannot change it yourself.

◆ isEmpty self

The isEmpty generic function tests whether the collection self is empty. It
returns either true or false.

◆ isMember self value

The isMember generic function tests whether the element specified by value is
in the given collection, where value is the value of an explicitly keyed list, or an
element in a sequence such as an array.

The following construct is another way to test membership in a collection:

myArray := #(1, 2, 3, 4)
myArray contains 3

➯ true

Printing Collections

Collection objects, just like all objects, have a printable representation that can
be printed to a stream using the standard printing functions described in
Chapter , “Working with Objects” in the section “Output” on page 74.
Instances of Array or KeyedLinkedList print in the same syntax as the array
and keyed list literals:

print #("this and that")

➯ #("this and that")

print #("this":"that")

➯ #("this":"that")

Instances of classes other than Array or KeyedLinkedList use a similar
format, with the name of the class after the array or list itself. This
representation is also the same as the syntax for coercing between collections.

nums := #(2,3,1) as SortedArray
print nums

➯ #(1,2,3) as SortedArray

gourmet := #(@capon:"meat",@brie:"cheese") as SortedKeyedArray
print gourmet

➯ #(@brie:"cheese", @capon:"meat") as SortedKeyedArray

The @normal printed representation of a collection (that is, the one used by the
prin generic function) is limited to printing only ten items, with an ellipsis at
the end to show that there are more items in the collection. For collections with

-

168

Collections 7

lections:print-
<$endrange>
nting:collec-
s<$en-
nge>
lections
ndrange>
more than ten items, you may want to print using either the @complete
representation, or use a for loop to print all the elements of the collection
individually.

series := (1 to 12) as Array
print series

➯ #(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .)

prin series @complete debug

➯ #(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

for i in series do print i

➯ 1
2
3
4
. . .

A useful trick for printing collections is to “pipe” them to a printing function.
As an intermediate step, you can even pipe them through a sort function or a
sorted collection. For more information on the pipe operator, see “Pipes” on
page 110. Here is an example of piping:

ScriptXQATeam := #("Bob Cotterill","Rajiv Joshi","Kathleen Peirce",
"Su Quek","Felicia Santelli","Kim Swix","Maggie Womack",
"Yosh Kashima","Bill Hogan")

ScriptXQATeam | SortedArray | print

➯ "Bill Hogan"
"Bob Cotterill"
"Felicia Santelli"
"Kathleen Pierce"
. . .

Strings as Collections

A string (a String, StringConstant, or Text object) is actually a collection
of integers which represent Unicode values corresponding to characters.
Therefore, when you use collection methods on strings, you need to use the
integer which corresponds to the Unicode value of a character rather than the
character itself. For example, methods such as add, append, prepend,
deleteOne, and deleteAll must be given an integer as value when they are
applied to strings. Conversely, if the return value is an object from a collection,
and the collection is a string, that return value will be an integer.

The collection access construct is the shortest way to find the Unicode value for
a character. You simply create a string of one character and then access the first
(and only) character:

“e”[1]

➯ 101

To get the character that an integer represents, you can create an empty string,
add the integer to it, and then print it as a string:
function intToString intVal ->
169

7 ScriptX Language Guide
(
local str := new String
append str intVal
print str
)

intToString 99

➯ “c”

Searching Strings

Methods which can be used to search collections can also be used to search
strings. The most useful is findRange, which, when applied to a string, will
search for the first occurrence of a match to the supplied string.

◆ findRange self toMatch

This function finds the first range of contiguous values inside the string self
that matches the characters in the string toMatch. It returns the ordinal position
of the first character in the matching range or 0 if there is no match.

global myStr := “Let’s see how this works.”
findRange myStr “see how this works”

➯ 7

findRange myStr “see if this works”

➯ 0

The global function findNthContext, which provide searching capabilities
specific to strings, is useful for parsing. It allows you to search for the nth
word, sentence, or paragraph. You can also supply a function designating a
delimiter and search for the range of characters bounded by that delimiter.

◆ findNthContext args context

The argument args is a Quad which supplies the following :

the string to be searched

n, designating which occurrence to find

the cursor position to begin searching

the cursor position to end searching

The context is either @word, @sentence, @paragraph, or an anonymous
function giving a delimiter.

The following example demonstrates using findNthContext but is not a
complete explanation. More information is available in the global functions
section of ScriptX Class Reference.

-- create a string
170

Collections 7
global str := "This is a sample string."

-- search for the fourth word in str, starting at the cursor position
-- 0 and continuing until the end (str.size)
global args := #(str, 4, 0, str.size) as Quad
findNthContext args @word

-- print out the word returned
copyFromTo args[1] args[3] args[4]

➯ "sample"

-- search for the second set of characters bounded by ":"
global s := "first name:last name:street address:city:state"
global args := #(s, 2, 0, s.size) as Quad
findNthContext args (r -> r == ":"[1])

-- print out the characters returned
copyFromTo args[1] args[3] args[4]
"last name:"

A second global function for searching strings is searchIndex, which finds
the first occurrence of the string you want to match. (Note that the string you
want to match must be at least three characters long and cannot contain any
spaces.) Searching is fast because searchIndex is actually searaching a
signature index, which is built automatically when you create a StringIndex
object and supply a string for its string instance variable.

◆ searchIndex strIndex match searchContext wholeWord

This function searches the StringIndex object strIndex for the first occurrence
of match using searchContext to tell it where to search. The last argument,
wholeWord, is either true or false, indicating whether the match must be a
whole word (as opposed to only part of a word).

The following code example demonstrates using searchIndex. It will be
easier to follow if you have read the entries for SearchContext and
StringIndex in ScriptX Class Reference.

-- create a string
global myString := "Newton devised a new system."

-- create a StringIndex object
global strIndex := new StringIndex string:myString

-- create a SearchContext object suitable for beginning the search at
-- the beginning of the string
global sc := initialSearchContext strIndex 0

-- search for the first occurrence of "new" as a whole word
searchIndex strIndex "new" sc true

-- print out the result
copyFromTo sc.string sc.startOffset sc.endOffset

➯ "new"
171

7 ScriptX Language Guide
-- search for the first occurrence of "new" as a whole word or as part
-- of a larger word
searchIndex strIndex "new" sc false

-- print out the result (Note that searchIndex is not case sensitive.)
copyFromTo sc.string sc.startOffset sc.endOffset

➯ "Newton"
172

C H A P T E R

Exceptions
8

8

ScriptX Language Guide
174

Exceptions

8

ceptions <$sta
ors, see excep
ching, see gu
ught<$nopage
ow again, see
see guard ex
An exception is an unusual or abnormal situation in a script or in the ScriptX
system that might cause your ScriptX program to fail. For example, you might
attempt to divide a number by zero. The ScriptX exception system allows you
“catch” those exceptions and handle them gracefully. So, if a “divide by zero”
exception occurs, you can catch the exception, print a warning, restore your
variables to their original values, and continue executing the program.

The ScriptX exception system is made up of three parts:

• There is a set of exception classes, included with the ScriptX core classes,
that provide exceptions for common situations. You can also create your
own exceptions by defining new subclasses of these classes.

• The guard construct in the ScriptX language allows you to catch exceptions
and handle them within your script.

• The report generic function allows you to report your own exceptions
within your scripts.

This chapter describes how to catch and handle single exceptions, classes of
exceptions, or all exceptions in your scripts, as well as how to report
(sometimes called “throw”) an exception.

The core classes define a standard set of exception classes that represent
common errors, warnings, or other unwanted situations that may occur during
the execution of a script. In addition, you can create your own classes and
instances to represent kinds of exceptions and specific exceptions that your
code might report during its execution.

For more details on the core set of exception classes, see the ScriptX Class
Reference. For more information on defining your own exceptions, see
“Creating Exception Subclasses and Instances” on page 185.

Catching and Handling Exceptions

ScriptX provides the following guard construct, which allows you to catch and
handle exceptions within your scripts:

▼ guard

guardedCode

[catching

exceptionName [lexicalName]:[action]

...]

rtrange>
tions<$nopage>

ard expression<$nopage>
>
 guard expression<$nopage>
pression<$nopage>
175

8

ScriptX Language Guide

ard expression
ard expression
ard expression
[on exit

exitCode]

end

The guardedCode is an expression (often a compound expression) containing the
code to be guarded. Code that may report an exception must be guarded if that
exception is to be caught. Any ScriptX expression can be guarded, with the
following exceptions:

• A global, unglobal, or local expression cannot be guarded. (A local
expression can be used inside a compound expression that is guarded. The
global and unglobal expressions are permitted only at the top level.)

• Since they are permitted only at the top level, a module definition
expression or an in module expression cannot be guarded. (These
expressions are discussed in Chapter 9, “Modules.”)

The optional catching section contains a tagged list of exceptions to check
for, each one matched with an expression to execute if an exception occurs.
This list is sometimes referred to as the catch list. Use exceptionName to specify
one of three types of values: an instance of an exception class (to catch a
specific exception), an exception class (to catch any exception within a class of
exceptions), or the keyword all (to catch all exceptions).

Each item in the catch list can have a lexical name associated with its action.
The optional lexicalName, if one is given, is bound to the argument that is
reported with the exception, allowing the expression that catches and handles
the exception to process this argument as well. When ScriptX reports an
exception, the exception is bound to the global variable throwTag, and its
reporting argument, if defined, to the global variable throwArg. These two
global variables are covered in greater detail in the section “Retrieving
Information about the Exception” on page 184. Think of each item in the
tagged list of exceptions as being equivalent to throwTag throwArg, where
throwArg is optional.

Expressions in the catch list are often compound expressions. These
expressions could be used to print a message or handle some other
consequence of catching the exception.

The optional on exit section contains an expression (often a compound
expression) that is always executed whether or not the guarded code reports an
exception. The expression in on exit is guaranteed to be executed.

Further details on each of these guard clauses are given in the remainder of
this section.

caught and throw again

ScriptX also provides the caught and the throw again expressions, which,
when used within the catching clause of the guard construct, prevent the
remaining statements in the catch list from being executed after an exception
has been caught.

:caught
:throw again
:catching
176

Exceptions

8

The caught expression specifies that the exception has been caught. Once the
exception has been caught, ScriptX immediately breaks out of the catching loop
and does not check the remaining clauses in the catching clause or any other
catch lists. The caught expression requires one argument, an expression
containing the return value of the guard clause if that guard clause resulted in
an exception. For example, if the guarded code is the generic function
addMany, and the script attempts to add too many items to a collection, the
argument to caught, and therefore the return value of guard, might be an
error message:

global myArray := new Array initialSize:10 growable:false
global otherArray := #(1,2,3,4,5,6,7,8,9,10,11,12)
-- now try to add too many items to an array
guard

addMany myArray otherArray
catching

boundedError: caught (print "Tried to add too many items" debug)
end

➯ "Tried to add too many items"

An examination of myArray shows that we succeeded in adding the first ten
items before the exception was reported.

myArray

➯ #(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Like caught, the throw again expression causes ScriptX to stop checking the
remaining statements in this catching clause. Unlike caught, the exception
is then reported again, which causes ScriptX to test each of the exceptions in
any surrounding guard constructs, or to drop the exception if there are no
surrounding guard constructs. For example, if x is some number, and y is 0, the
catching construct prints a message and then reports the divideByZero
exception again, so any surrounding guard constructs can catch it if needed.

guard (z := x/y)
catching

divideByZero: (print "Divide By Zero"; throw again)
end

To throw again is to leave the exception uncaught. It is up to surrounding
guard expressions to catch the exception. If there is no surrounding guard
expression, or if the surrounding guard expression fails to catch the exception,
the thread dies, and no value is returned.

What Happens In a Guard Construct

If no exceptions are reported during execution of the guarded code, the point
of execution leaves the guarded code, executes the on exit code, and leaves
the guard construct.
177

8 ScriptX Language Guide

ard expressio

ard expressio
If an exception is reported during execution of the guarded code, the system
stops executing the guarded code, executes the on exit code, then looks for
all clauses in the catch list that catch the reported exception. For each clause in
the catch list that catches the reported exception, the specified consequence
occurs.

If any expression in the catching part of the guard construct uses the
caught keyword, ScriptX immediately exits from the guard construct. None
of the remaining statements in the current catch list or any surrounding catch
lists are executed.

After ScriptX has checked the clauses in the current catch list, it reports
(throws) the exception again, which means it checks for catch lists in any
surrounding guard construct.

If any clause that catches the exception uses the throw again construct, the
system throws the exception again immediately. In this case, it does not check
the remaining statements in the catch list of the current guard construct, but
immediately moves on to the surrounding one.

The system continues throwing the exception until the exception is explicitly
caught by the caught construct. If the exception is not caught, if the caught
construct is not specified for that exception, then the thread that was running
when the exception occurred dies. If the exception occurs in the main thread,
the title quits. Imagine the exception bouncing around from catcher to catcher
until either something finally catches it for good, or it falls to the ground
uncaught.

Specifying Exceptions to Catch

The guard construct, through the catching list, can catch individual
exceptions, instances of a class of exceptions, or all exceptions.

To catch a particular exception, specify the Exception instance in the catch
list. For example, this line catches only the divideByZero exception:

catching
divideByZero : print "Divide by zero error. \n"

To catch all instances of a class of exception, specify the exception class in the
catching list. For example, this line catches all reported math exceptions,
including divideByZero, lossOfRange, invalidNumber, and any other
exceptions that are instances of the class MathException.

catching
MathException : print "Some kind of math error."

To catch all exceptions, specify the all keyword in the catch list. For example,
this line catches all reported exceptions, including both system-defined
exceptions and user-defined exceptions.

catching
all : print "Look out, there’s an error about."

n:catching

n:all
178

Exceptions 8
An Example: Printing Messages

The best way to demonstrate the use of exceptions is by example. This example
prints a message about each kind of exception that was caught. This is an
overly simple example, and you would normally want to print out more
information about the precise conditions under which the exception occurred.
Details on how to retrieve and print information about an exception are given
in “Retrieving Information about the Exception” on page 184.

In the example, note the use of all: caught undefined as the last clause in
the catch list. This clause explicitly catches every exception to prevent it from
being thrown again, thus ensuring that the point of execution leaves the guard
construct and continues executing the remainder of the code. By putting this
line at the end of the catch list, you ensure that all other consequences of an
exception occur before the exception is explicitly caught. The caught construct
must return a value, which in this case is undefined.

During the execution of the guarded expressions, several kinds of exceptions
could occur. First, the width or length might not be defined on box1.
Secondly, the values of those instance variables might be undefined or some
other non-numeric value. Finally, the length of the box might actually be 0.

• If either the width or length instance variable is not defined for box1, that
variable does not have a setter or getter method, and so a noMethod
exception is reported (for example “no lengthGetter method for Box”).
The remaining expressions in the guarded code are not executed. First, the
on exit code is executed. The exception is then intercepted and handled
by the first clause in the catch list, which prints the message
"There’s a method missing." to the debug stream.

• If box1 is an object that implements both the length and width instance
variables, but length contains 0, the second expression in the guarded code
reports a divideByZero exception, since the ratio expression attempted
to divide the value of width by zero. The on exit code is executed. The
exception is intercepted and handled by the second clause in the catch list,
and the message "Divide by zero error." is printed. The exception is
also intercepted and processed by the third clause, since the divideByZero
exception is an instance of the class MathException. The message
"Some kind of math error." is also printed.

guard (
width := box1.width
length := box1.length
ratio := width / length

)
catching

noMethod : print "There's a method missing."
divideByZero : print "Divide by zero error."
MathException : print "Some kind of math error."
all: caught undefined

on exit
print "On exit code being executed"

end

guarded code

catch list
179

8 ScriptX Language Guide

ceptions:neste
ard expressio
• If box1 is an object that implements both the length and width instance
variables, but either one contains a non-number value, the third expression
reports the invalidNumber exception. The on exit code is executed. The
exception is intercepted and handled by the third clause in the catch list,
since the invalidNumber exception is an instance of the class
MathException. The message "Some kind of math error." is
printed.

Note that none of the catchers in the catch list has caught the exception yet. If
any kind of exception occurs, the exception is finally caught by the fourth
clause in the catch list (all). Since the exception has been caught, no more
catchers in the catch list, or in any catch lists of surrounding guard
expressions, are executed. The value of the guard expression is undefined.
Since the expression was finally caught, execution continues after the
outermost guard expression.

Nesting Guard Constructs

Expressions to be guarded within a guard expression can consist of or include
other guard expressions. The use of multiple guard levels enables you to tune
your exception-catching code. For example, you can write code that checks all
expressions in a block for exceptions of type e1, additionally checks a subset of
the expressions for exceptions of type e2, and checks a further subset for
exceptions of type e3.

Usually, when an exception is reported by a guarded expressions in a guard
construct, ScriptX checks each of the clauses in the catch list to find which ones
catch the exception. Each exception in the catch list is checked, even if one has
already caught the exception (unless one of the expressions uses the caught or
throw again construct as discussed in “How to Control Throwing and
Catching” on page 182.)

After checking all the clauses in the current catch list, ScriptX checks the catch
list in the surrounding guard construct. This act of moving up to the
surrounding guard construct to check for statements that catch an exception is
known as throwing the exception. The system continues stepping up through
the guard levels until one of the following occurs:

• The exception is explicitly caught by the caught construct, in which case
the system exits from the outermost guard expression and continues
executing the program.

• There are no more catch lists to check, in which case the thread in which the
exception originated dies and execution of the process terminates.

The following example demonstrates how nested guard expressions work.

d guard expressions
n:nested
180

Exceptions 8
S1 and S2 represent ScriptX expressions that can be guarded. The symbols e1,
e2, e3, e4, and e5 represent lexical names, either instances of Exception or
exception classes. In this example, expression S1 is guarded against exceptions
e4 and e5, while expression S2 is guarded against exceptions e1, e2, e3, e4,
and e5.

Consider what happens if S1 reports an exception:

1. The point of execution jumps to the catch list in the outer guard expression
and checks if the reported exception is an instance of e4. If so, it executes
the expression repair D and continues with the next catcher in the list.

2. The system checks if the exception is an instance of e5. If so, it executes the
expression repair E and continues with the next catcher in the list, which
is an all clause.

3. The clause all: caught undefined explicitly catches the exception and
prevents it from being thrown again.

4. The system exits the outermost guard expression and executes the
expression S3.

Consider what happens if S2 reports an exception:

1. The system checks if the exception is an instance of e1. If so, it executes the
expression repair A and continues with the next catcher in the list.

2. The system checks if the exception is an instance of e2. If so, it executes the
expression repair B and continues with the next catcher in the list.

3. The system checks if the exception is an instance of e3. If so, it executes the
expression repair C and continues with the next catcher in the list.

4. On reaching the final catcher in the catch list, the system throws the
exception again, which means it checks the catch list in the surrounding
guard expression if there is one, which there is.

5. The point of execution jumps to the catch list in the outer guard expression
and checks if the reported exception is an instance of e4. If so, it executes
the expression repair D and continues with the next catcher in the list.

guard (
S1
guard

S2
catching

e1: repair A
e2: repair B
e3: repair C

end
)
catching

e4: repair D
e5: repair E
all: caught undefined

end
S3

inner expression

outer expression
181

8 ScriptX Language Guide

ard expres-
n:caught
ard expres-

n:throw again
6. The system checks if the exception is an instance of e5. If so, it executes the
expression repair E and continues with the next catcher in the list, which
is an all clause.

7. The catcher all: caught undefined explicitly catches the exception and
prevents it from being thrown again.

8. The system exits the outermost guard expression and executes the
expression S3.

In several examples outlined in this chapter, the exception is finally caught by
the all clause. This clause is really just a macro that expands to Exception—
it is a shorthand way of intercepting all instances of Exception. Note that
there is no particular reason, although the examples in this chapter show it,
that the all clause has to be last in the catch list. A catch list can have no all
clause, or it can have several.

How to Control Throwing and Catching

The following sample code illustrates the use of caught and throw again:

guard (
S1
guard

S2
catching

e1: (repair A; caught A)
e2: (repair B; throw again)
e3: repair C

end
) catching

e4: repair D
e5: repair E
all: caught undefined

end
S3

If S2 reports an e1 exception, the following happens:

1. The system checks if the reported exception is an instance of e1. If so, it
executes the expression repair A. The caught statement terminates the
search for matching exceptions. Execution exits from the guard expression
and continues on to S3. The guard construct returns A.

If S2 reports an e2 exception, the following happens:

1. The system checks if the exception is an instance of e1, which it is not.

2. The system checks if the exception is an instance of e2. Since it is, it executes
the expression repair B. The throw again expression causes the
exception to be thrown again immediately, which means it stops checking
catchers in the current catch list and starts checking catchers in the catch list
of the surrounding guard expression.

3. The system checks if the exception is an instance of e4.
182

Exceptions 8

ceptions:re-
ing

port
4. The system checks if the exception is an instance of e5.

5. The catcher all: caught undefined explicitly catches the exception and
prevents it from being thrown again.

6. Execution moves out of the outer guard expression and continues on to
expression S3

Reporting Exceptions

To report an exception, call the report function with two arguments:

• the exception to report

• an object containing information about the exception that occurred, which is
used for the exception’s format string (or default message) among other
things

The actual object to be passed as the second argument varies from exception
instance to exception instance.

For example, the format string for the divideByZero exception instance is
"Attempt to divide %* by zero" where %* will be replaced by the
number on which the attempt to divide by 0 was made. For instance, when an
attempt is made to divide 25 by 0, a divideByZero error is reported by the
following statement:

report divideByZero 25

The value 25 is passed to the exception’s format string and the format string
for the reported exception becomes:

"Attempt to divide 25 by zero."

The second argument to report can be a collection if you want to pass more
than one object to the format string.

For example, the format string for the noMethod exception requires two input
values: the method that was called and the class.

The following statement reports a noMethod exception when an attempt is
made to call the nonexistent turnPurple method on an instance of the class
Window:

report noMethod #("turnPurple", Window)

When this code is executed, an exception is reported. The formatted result for
the exception is:

No "turnPurple" method for Window.
183

8 ScriptX Language Guide
Retrieving Information about the Exception

Script uses two global variables to record information about the most recently
reported exception:

• The throwTag global variable is bound to the most recently reported
exception instance.

• The throwArg global variable is bound to the extra argument that was
passed by the report method when the exception was reported.

To print the format string associated with the most recently reported exception,
use the following call to the prin method:

 prin throwTag throwArg debug

The exception classes specialize the prin generic function. (Recall that print,
prinln, format, and the other global printing functions are derived from the
generic prin, as discussed in the section on “Output” on page 74.) On most
objects, the prin method takes three arguments: the object to print, a style
argument, and an optional stream. In the case of exception objects, the second
argument can be one of the following:

• a style argument (one of @normal, @complete, @debug, or @unadorned),
in which case the name of the exception is printed in the indicated style

• any other argument, in which case the argument is passed to the exception’s
format string, and the format string is printed

When prin is called on an exception with a second argument of throwArg, it
prints the format string for the exception. The global variable throwTag is
always bound to the most recently reported exception.

To retrieve the information that the most recently reported exception received
from report, get the value of the global variable throwArg.

The following example shows the use of throwArg and throwTag. Note that
the prinln function does the same thing as prin, but adds a newline at the
end of the printed output.

global a1:88, b1:0, c1, d1, e1
guard (

c1 := a1 / b1
d1 := a1 - b1
e1 := a1 / c1

)
catching

divideByZero returnArg: (
format debug "The number divided by 0 is: %*\n" throwArg @normal
prin "The default error message is:\n" @unadorned debug
prinln throwTag throwArg
caught undefined

)
end

This script, upon attempting to divide 88 by 0, catches the divideByZero
error and prints the following messages to the debugging stream:
184

Exceptions 8

ception class
ceptions: sub-
ses of Excep
The number divided by 0 is: 88
The default error message is:
Attempt to divide 88 by zero. (DivideByZero)

Creating Exception Subclasses and Instances

To define subclasses of Exception or any of its subclasses, use the class
construct as discussed in Chapter 6, “Defining Classes and Objects.” For
example, the following class declaration creates a class of exceptions that is
particular to a class of objects called People:

class PeopleException (Exception) end

To create instances of exceptions, use new with appropriate exception class.
The syntax for using new on exception classes is:

◆ new ExceptionClass name: "name" format: "format string"

The class ExceptionClass is the class to instantiate. The top-level exception class
is Exception. The value in name is a string containing the name of the
exception instance, for example "tooOld".The value in format string is the
format string for the exception. The string is used as the default exception
message, so it should contain useful information about the exception. The
format string follows the substitution character rules as described in
“Formatted Output” on page 78.

When an exception is reported, the second argument to the report method is
passed to the format string for use by the substitution characters in the string.
When calling report on an exception, make sure that the second argument
matches the type of input required by the exception’s format string. If the
format string contains %*, the second argument to report should be an object.
If the format string contains %n, the second argument to report should be a
LinearCollection object containing at least n objects.

The following statement creates a tooOld exception as an instance of the
exception class PeopleException.

tooOld := new PeopleException name: "tooOld" \
format: "No one lives to be %* years old."

When this exception is reported, the second argument to report should be the
unsuitable age. For example, the People class defines an ageSetter method
that reports the tooOld exception if the age is greater than 115:

class People ()
instance variables _age
instance methods

method ageGetter self ->
return self._age

-

185

8 ScriptX Language Guide

ceptions <$en
ard expressio
ceptions:guar
nge>
method ageSetter self val -> (
if val > 115 then report tooOld val
else self._age := val

)
end

If a script attempts to set a person’s age to a value that is too large, ageSetter
calls report on the tooOld instance of PeopleException, with an argument
of 122. This reports an exception:

abuela := new People
abuela.age := 122
-- ** No one lives to be 122 years old. (tooOld)

The default message is usually printed when the exception is reported but not
caught. If the exception is caught by the catch list in a guard construct, the
consequences of the exception depend entirely on the action defined by the
clause in the catch list that catches the exception (which could include printing
out the format string for the exception).

drange>
n<$endrange>
d expression<$en-
186

C H A P T E R

Modules
9

9

ScriptX Language Guide
188

Modules

9

Modules provide a mechanism so that ScriptX programs can be packaged into
components—components that can be compiled, managed, and integrated into
other ScriptX programs without naming conflicts.

Many programming environments allow for only one set of global names. If
you define a global variable, the variable’s name is available in all parts of the
program at all times. If the program that contains a variable’s definition is
incorporated and compiled into another program, that variable name is visible
to all parts of that new program as well, and may conflict with variables of the
same name that are defined elsewhere.

ScriptX provides a level of indirection between names and variables. A variable
is an association between a name and a location in memory—a location which
stores a value. In ScriptX, that value is always a reference to an object. This
association between a name and a value cell is called a name binding. A module
can be thought of as a collection of name bindings.

Using ScriptX modules, a given location in memory can have different names
in different parts of a program. A module is a device for resolving name
conflicts, so that groups of programmers can collaborate on a project. Using
modules, you can encapsulate your program as a unit, and specify which
classes, objects, functions, and global variables are visible outside that unit.
ScriptX modules allow code that is compiled and tested for one project to be
reused in other projects.

Modules have one other important function in ScriptX. Although the ScriptX
class ModuleClass does not inherit from Collection, a module is best
understood as a collection of name bindings. When a module is added to a title
container, it stores its name bindings for classes, objects, functions, and
variables to disk. This feature is useful as a mechanism for storing and
retrieving compiled classes, functions, variables and objects.

Modules should not be confused with segmentation or dynamic loading of
objects. When the ScriptX bytecode compiler is instructed to switch from one
module to another, using the in module expression, all objects defined while
executing in former module remain in memory. Any bindings that exist in the
former module still exist, and can be used when that module becomes the
current module again. Nor does loading a new module load any objects that
the new module defines. A program must explicitly create or load any objects
it defines.

Chapter Summary and Organization

This chapter is organized in five sections. ScriptX modules are designed to
support teams of programmers who collaborate on large projects. Many
readers, especially those who are using ScriptX for the first time, may not have
189

9

ScriptX Language Guide

any immediate need for all the features of ScriptX modules. Those who are not
using ScriptX for large projects may want to skip portions of the chapter until
they actually need the features that are described.

“Module Basics” on page 190 describes essential features of modules in
ScriptX. Programmers who are new to ScriptX may want to read just this
section and return to the remainder of the chapter at a later date. If you do not
intend to define modules or save compiled code between programming
sessions, you should find everything you need to know about modules in this
section.

“Module Concepts” on page 192 continues the discussion in the previous
section, exploring underlying ideas that are necessary for defining your own
ScriptX modules.

“Defining and Using Modules” on page 200 presents the syntax for creating a
module in ScriptX, and for switching the compiler environment between
modules. This section defines all the syntax for importing and exporting names
and variables between modules.

“Organizing Modules” on page 219 presents a conventional technique for
using modules called the interface/implementation model. This model can be
used to create larger networks of modules. It allows modules to be managed
without the need for complex use relationships. If your program contains only
a single module, and you do not intend for the code to be usable by others, you
can skip this section and go on to the next.

“Storing Modules” on page 227 discusses how to structure your ScriptX
program so that it can be saved more easily. Without modules, you must
individually store each class and object that your program uses, and you must
also reconstruct any global variables that the program requires. By
encapsulating the program within a module, classes, objects, functions, and
global variables in the program are automatically saved for you.

Module Basics

All ScriptX expressions are compiled within a module. You can always tell
what module you are currently compiling in by looking at the title bar of the
active listener window. If no module has been defined, then ScriptX compiles
expressions in the Scratch module. The title bar of the listener window reads
“ScriptX Listener in module Scratch.”

It is not necessary to define a new module to use ScriptX. If you do not define
a module, your program compiles in the Scratch module, the default
module. This module could just as easily have been called the “runtime”
module in that it is created automatically, “from scratch,” every time ScriptX
runs, but cannot be saved. Any time you start running ScriptX, your program
is compiled in the Scratch module until you explicitly declare that it is
compiling in another module, by using the in module expression. If you are
working in a user-defined module and then select New Listener from the
ScriptX File menu, a new Listener starts in the Scratch module.
190

Modules

9

The Scratch module is one of three instances of ModuleClass that is created
by the system. The global function currentModule indicates which module
ScriptX is currently compiling in.

allInstances ModuleClass

➯ #<#<Module Substrate>, #<Module ScriptX>, #<Module Scratch>

currentModule()

➯ #<Module Scratch>

In addition to the Scratch module, ScriptX creates two system modules. The
Substrate module is the module in which all global names from the core
classes are defined and implemented. The ScriptX module is the interface
module for the Substrate module. It is through the ScriptX module that
names defined in the substrate are exported to other modules, including the
Scratch module.

Note – The system does not allow you to redefine the ScriptX or Substrate
modules. The ScriptX and Substrate modules implement the
interface/implementation model, as described in the section “Organizing
Modules” on page 219.

The Scratch module is suitable for testing brief scripts that are compiled from
scratch each time they run. But if you want to save a project you have
compiled, so that it can run in the Kaleida Media Player, it must be compiled
and saved in another module.

An authoring environment can potentially define other “default” modules in
addition to the ScriptX and Scratch modules. For example, an authoring
tool could define new class libraries that are specific to some environment, or
accessories that allow you access to platform-specific features. When you start
up ScriptX in the Listener, the compiler is placed into the Scratch module.
Other authoring environments may define a different “working” module.

The ScriptX module is the standard interface module which all other
ScriptX modules and authoring environments include. This module exports
all variable names in the ScriptX core classes, including names of classes,
system objects, generic functions, and global variables. When you create a new
module in which you plan to implement ScriptX code (an implementation
module), you should import (use) the ScriptX module so that you have
access to the core classes.

Conventions for Using Modules

The following suggestions make for good ScriptX programming practice, and
good documentation too:

• Store each module definition by itself in a separate source file.

• Do not compile a single source file in more than one module.

• Do not store compiled code from a single source file in more than one
container.
191

9

ScriptX Language Guide

• Always store a module in the same container as code objects (classes,
functions, etc.) that are compiled in that module.

• Use in module at the top of each source file that contains code for a given
module. Everything in the file should belong to and be compiled in that one
module. In this way, you can tell from looking at each source file which
module it belongs to.

• Remember to delete old modules from containers as you redefine containers
and restructure your title.

Module Concepts

Modules provide a mechanism for creating and managing multiple namespaces,
similar to the packaging system in the Lisp language and the proposed
“namespace” mechanism in C++. Each module has its own global scope, and
variables that are declared global are only global within the boundaries of that
module. The only real global names are the names of modules themselves.

This section describes the terms and concepts that underlie the use of modules
in ScriptX:

1. To export a name is to make a name that is defined in a given module
available for import into other modules. Only names that are exported are
public. Each name that is to be public must be explicitly exported.

2. To import a name is to make a name that has been exported by another
module available for use within a given module. Therefore, to access a name
in another module requires two steps: that it be exported from that module
and imported into this module. A module can import any name that is
public.

3. A name binding is an association between a name and a value cell in memory.
A ScriptX module can be thought of as a collection of name bindings for
objects in a program.

4. A variable could be described as the set of name bindings (across modules)
for a given value cell in memory. A variable is defined in only one module,
the module in which it is initially assigned a value. Although a variable is
visible and can be changed in all modules in which it has a name binding, it
can be saved in a storage container only in the module which defines it.

5. A module owns a variable if it defines it by assigning a value to the name
that is associated with the variable. A definition is a statement of ownership
which combines the declaration of a name and the assignment of a value to
that name.

6. Modules are not a security feature. Modules do not control access to objects
in any way. The fact that a module owns a variable does not prevent a
program passing a reference to the object that variable refers to on to a
program that is compiling in another module. Modules only control access
to objects by name.
192

Modules

9

As background reading for this section, you might want to review the ScriptX
treatment of scope, lexical names, variables, and assignment from earlier
sections of this volume.

Exporting Names

Every global name within a module is either exported (public) or unexported
(private). By default, names are not exported. When you define a module, you
specify which names are exported—that is, which names are available outside
the module for import into other modules. Only names that are exported by
some module can be imported by other modules.

Because a ScriptX variable can store a reference to any object, including classes
and functions, exporting the name of a class or function makes those objects
public, ready for import into other modules.

Figure 9-1: Exporting names from modules

A ScriptX module can export a name, even though it does not define the
variable that is associated with that name. If a module exports names that are
declared and defined by one of its client modules, it acts as an interface for that
module. The section “Organizing Modules” on page 219 shows how this
feature can be used to create a network of interface and implementation
modules.

Importing Names

To access names in another module, you must export those names from that
module and then import them into this module. Imported names appear in the
new module just as if they had been declared there, and, if they have been
defined as variables, their definitions come along as well. The importing
module is considered to be using the first module, and the relationship
between two modules is called a use relationship. Modules can use and be
used by any number of other modules, as long as no circular use relationships
are created.

In Figure 9-2, MyOtherModule uses MyModule. The names x, y, and z that are
exported by MyModule are imported by MyOtherModule. The two variables
named x in the two modules both point to the same value cell. Thus, if you set
x to a new value in one module, its value is changed in both modules.

MyModule

x

y

z

a

b

c

Exported Global Names

Unexported Global Names
193

9 ScriptX Language Guide
Although the name is exported from one module and imported into the other,
access to its value cell is completely symmetric—it can be set or get from either
module.

Figure 9-2: Importing names into modules

When you specify that one module uses another module, you can control
which names from that module you want to import. You can also rename
imported names in your own module, to prevent naming clashes, by prefixing
the imported names with a set of characters or by simply giving the variables
entirely different names. A renamed variable maintains its original definition.
In effect, a ScriptX variable can have a different name in each module. Finally,
imported names can also be re-exported, effectively “passing them along” to
any modules that use the module that re-exported them.

Figure 9-3: Importing names into a module, with a prefix

Name Bindings

A module is a collection of name bindings that the compiler uses at a particular
point in the execution of a program. ScriptX name bindings allow for the
separation of names and objects, so that objects can have different names in
different modules. A different name can be “bound” to a given variable in each
module in which it is visible.

A binding is an association between a name and a value cell in memory. A
value cell stores a pointer to an object somewhere in memory. Bindings act as a
level of indirection between names and value cells. This indirection is what

x

y

z

d

e

f

MyModule

x

y

z

a

b

c

MyOtherModule
uses MyModule

MyModule

x

y

z

a

b

c

MyOtherModule
uses MyModule

a_x

a_y

a_z

d

e

f

prefix a_
194

Modules 9
allows a ScriptX program to run with different namespaces. When the ScriptX
compiler switches from one module to another, it is actually switching from
one set of bindings to another.

Think of a binding as a way to hang on to an object. Objects do not have to be
associated with bindings. References to objects are embedded within other
objects, often many levels deep. Expressions that assign a new global name,
such as an assignment, function, or class expression, create a binding.

The following example demonstrates what bindings are created when a simple
ScriptX program runs. Although it is not a complete technical description, it
shows in a heuristic way how objects are associated with names, through
bindings, and how names are used in a ScriptX program to get access to
objects. ScriptX manages a global namespace (there is one global namespace
for each module), by keeping a table of name bindings.

class KittyCat ()
inst vars

favoriteFood
end
-- create an instances of Cat
object kiri (KittyCat)

settings favoriteFood:"tuna"
end

➯ KittyCat@0xe938c8

This program creates four name bindings. The first one is used to get access to
the newly created KittyCat class, which is itself an object. The next two
bindings are associated with instance variable access. Instance variable access
is actually through generic getter and setter functions. These generic functions
call the appropriate getter and setter methods. ScriptX automatically creates
entries for generics in the module’s name table. Finally, the script creates an
object, an instance of KittyKat. This object is associated with a binding,
bringing the total of new bindings in the system to four.

The following is a list of bindings that have been created so far in the execution
of this program. Names in the first column are associated with objects,
including classes and generic functions, in the second column. Lexical names
are in lower case because they are interned in their downcase form. (In the
scripter, you don’t have to be concerned with case; you are free to use
uppercase and lowercase to make your scripts more understandable.)

Note that on initialization, the favoriteFood instance variable slot for the
kiri object is filled with a string constant (that is, with a pointer to a
StringConstant object). This string constant has no bindings of its own. A
script can only get and set the contents of instance variables through some

Lexical Name Points To

kittycat the KittyCat class

favoritefoodgetter a generic function

favoritefoodsetter a generic function

kiri a KittyCat object at address 0xe938c8.
195

9 ScriptX Language Guide
binding or bindings. A simple instance variable access is actually a generic
function call, which uses the bindings defined for the object and for the generic
functions it provides a method for.

kiri.favoriteFood

➯ "tuna"

The instance variable access expression kiri.favoriteFood is translated
into a call to the getter generic function that is associated with this instance
variable. Two bindings are required to get a value—one to the generic function
and one to the object itself.

favoriteFoodGetter kiri

Each instance variable is really associated with two name bindings, one for its
getter and one for its setter. If an instance variable of the same name exists
elsewhere in the current module, it shares the same binding. A generic function
handles method dispatch, routing calls to a getter or setter to the method
defined by the appropriate object. This allows the same instance variable name
to be used by many different objects within a module.

This chapter discusses syntax for importing and exporting variables in
modules. What really happens in ScriptX is that a module imports and exports
a set of name bindings. As a result, ScriptX modules do not just share values—
they share value cells.

Defining Variables Within Modules

Each variable can have only one definition across modules, although that
variable can be given a different name when it is imported into another
module. The module that provides a definition for that module is considered to
own that variable, and only the module that owns it can redefine it. When a
module is stored into the ScriptX object store, all the variables that it owns and
their most recent values are stored with it.

The only truly global names are module names. All variables are declared
within some module. A variable can only be accessed (referenced) within some
module. Since a given value cell can be bound to different names in different
modules, and since the same name can be used to denote different variables in
different modules, you do not know what variable something is until you
know what module it was compiled in.

A variable is owned by the module that defines it. Only one module owns each
variable. The ScriptX class definition, object definition, function definition, and
global assignment expressions (a global assignment is a global declaration and
assignment all in one expression) all declare and define a variable. Note that a
variable defined when an object is assigned to a name. This name is usually
declared as a name and assigned a value in the same expression, as in a class,
object, or function declaration.

A module does not have to be the module that defines a variable to export a
name for that variable. The ScriptX module system allows variables to be
exported from one module, and then imported and defined in another module.
196

Modules 9
That second module, the one that defines the variable, does not have to
re-export the variable for that definition to be visible, nor does a module that
wants to use that variable need to use the module that defined it. By using the
module that exported the variable, its definition comes along automatically.
This separation between an exported variable and its definition allows you to
organize and build networks of modules which can include circular use
relationships between modules, multiple interfaces to the same module, and
more comprehensible relationships amongst complex networks of modules
that use and export many different variables. “Organizing Modules” on
page 219 describes how to use modules in this way.

A single variable can be exported, imported, and renamed in different
modules. Any module with access to that variable can change its value, if that
variable has not been declared constant. However, only one module is
considered to own that variable. When a module is stored in the ScriptX object
store, it stores all variables it owns with their current values. If a variable is not
owned by any modules, it cannot be stored with any of those modules.

The module that owns a variable is the module that provides its definition. A
variable that is not defined in any module is not owned by any module.

The class, object, and function declaration expressions declare and assign
the variable in one expression, allowing them to be owned by the module that
defined them. You can separate declaration and assignment for both objects
and functions. For classes, the name must be specified when the class is
declared, and that name is automatically declared constant. Thus, a class name
is always owned by the module in which it is declared.

A global variable that you create and assign by hand (using an assignment
expression) requires two conditions to be owned by a module: you must both
declare it and assign it in the same expression:

global myVariable := "variable's value"

Only declaration and assignment in the same expression confer ownership of a
variable; declaring and assigning the variable in different expressions is not the
same:

global anotherVariable
anotherVariable := "another value" -- anotherVariable is not owned

A variable that is declared but not assigned any value does not get saved with
a module—the module does not yet own that variable. Note that when you
define a variable in a ScriptX program you do not necessarily have to give it
the same value it will hold when the module is stored. When modules are
stored in the ScriptX object store, the module stores the most recent value for
each variable that it owns. To make sure a variable is owned by a module
without having to assign it its proper value right away, give it a value of
undefined at declaration time:

global VarToBeChanged := undefined

Later on in the program, you can assign the value you want to be stored.
197

9 ScriptX Language Guide
A module maintains its own table of name bindings. To export a variable is to
allow other modules to have a binding for a particular value cell. To say that a
particular module defines a variable means that its value cell was created in
that module. The value cell is created when the variable is assigned a value.
Other modules that have access to the variable have access only through the
value cell in the module where it is defined. To import a variable into a module
is to have a binding for that variable in the current module. Other options for
using modules, such as excludes, prefix, and renames, also operate on this
table of bindings.

If a module attempts to define a variable that is already shared, an error
message results and the variable is not redefined. If a variable is exported
(shared), then it is still only one variable (not a copy) and can have only one
definition. For example, if a shared variable is defined in one module, assigned
to in another module, and read in a third module, the third module reads the
value that was assigned by the second module.

A shared variable does not have to have the same name in each module that
uses it. You can use features like prefix and renames to give the variable
multiple names, but it is still only one variable (not a copy) and has only one
definition. Different modules may use different names, but they are still
accessing the same location in memory.

If a variable is not exported, then you can use the same identifier to define a
separate variable in another module. These variables have the same name
within each module, but they refer to different locations in memory.

In this respect, a variable is really just a collection of name bindings, one for
each module in which the variable is visible. A variable continues to exist and
to occupy memory when the module it is defined in is no longer the module
that the compiler is currently using. A variable is visible to scripts in the
current module if the current module has a binding for it.

Examples—Ownership of Variables

ScriptX distinguishes between declaring a name and defining a variable. In
practice the declaration of a name and the definition of a variable usually occur
in the same expression, but the distinction is important.

The global expression declares a ScriptX lexical name. A name that is
declared global is visible only within the module in which it is declared, unless
that name is exported. In this way, the same lexical name can be declared in
different modules.

In the following example, the module Europe exports four names: finland,
albania, portugal, and ireland.

module Europe
uses ScriptX
exports finland, albania, portugal, ireland

end
in module Europe
global finland, albania:19, portugal := 27
198

Modules 9
When the global expression is combined with an assignment expression, the
resulting expression both declares a lexical name and defines a variable. Since
albania and portugal are assigned values, albania and portugal are
both declared as names and defined as a variables.

At this point, a program can access the values of albania and portugal,
since both names have been defined as variables. Although finland is
declared as a name, it is not assigned a value, so finland is not defined as a
variable. Likewise, ireland has not been assigned a value, so it cannot be
accessed as a variable. Since ireland has not been declared either, assigning a
value to ireland will cause the compiler to issue a warning. By contrast,
finland has been declared, so the compiler does not issue a warning when a
value is assigned to finland.

If compilation and execution switch to another module that uses the Europe
module, the variables that are defined in Europe are visible there.

module World
uses ScriptX, Europe

end
in module World
albania

➯ 19

portugal

➯ 27

At this point in the execution of the program, finland and ireland have still
not been defined as variables. When they are assigned values in the World
module, they are defined in the World module. Even though finland was
declared in the Europe module, and ireland was exported by Europe, but
not declared, both variables are now defined in World.

in module World
finland := 11
ireland := 94

If compilation reverts to the Europe module, finland and ireland retain
their definitions as variables. They are visible in both Europe and World.

in module Europe
finland

➯ 11

ireland

➯ 94

Although all four of the variables in this example are exported by Europe, and
three of them are declared there, it is where they are defined that determines
how they are saved. Since albania and portugal are defined in the Europe
module, they are saved to the object store with Europe. By contrast, finland
and ireland are actually defined in the World module.
199

9 ScriptX Language Guide
Only declaration and definition in the same module confers ownership. Since
finland is not declared in the World module, it cannot be owned by any
module, and is not saved. But ireland, even though it was exported by
Europe, is declared and defined in the World module. Thus, ireland is
saved with the World module.

The object, class, and function definition expressions implicitly declare a global
name and define a variable as well, creating a binding for that variable in the
current module.

module Universe
uses ScriptX

end
in module Universe
class Star () end
object sun (Star) end
function orbit a b ->

format debug "1%* orbits 2%*\n" #(a, b) @normal

In this example, sun, star, and orbit are declared as lexical names and
defined as variables (a class definition is a constant). Each of these variables
has a binding in the Universe module, meaning that a lexical name is
associated with the variable in that module. Since sun, star, and orbit are
defined as variables in Universe, they can be saved to the object store with
Universe, and they can be exported to other classes.

Defining and Using Modules

Modules can be defined only at the top level in a ScriptX program. To define a
module, use the module definition expression. A module definition expression
returns a ModuleClass object. The complete module definition expression is
summarized here. Each of its optional clauses is covered in greater detail later
in this chapter.

▼ module ModuleName

[exports variable, variable, variable, . . .]

[exports [readonly] instance variables variable, . . .]

[uses module, module, module, . . .]

[uses module with

[imports everything]

[imports variable, variable, variable, . . .]

[imports [readOnly] instance variables

variable, variable, variable, . . .]

[excludes variable, variable, variable, . . .]

[excludes [readOnly] instance variables

variable, variable, variable, . . .]

[exports everything]

[exports variable, variable, variable, . . .]
200

Modules 9
[exports [readOnly] instance variables

variable, variable, variable, . . .]

[prefix prefix]

[renames oldName:newName, oldName:newName, . . .]

[renames [readOnly] instance variables

voldName:newName, oldName:newName, . . .]

end]

end

A module definition expression can include two main sections, which are both
optional, and can be specified in any order. The exports options (described in
the section “Exporting Variables to Other Modules” on page 206) specify which
names are exported from this module. The uses options (described in the
section “Importing Variables From Other Modules” on page 209) specify which
names are imported from other modules.

In this syntax definition, and in many of the examples on the following pages,
the individual sections of the module definition are shown on separate lines.
You can specify a module definition in this way, all on a single line, or in any
combination:

module foo exports x, y, z uses bar with prefix Z end end

module MyModule
exports varOne, varTwo
uses foo with excludes Z end

end

Defining a Module

The first line of the module definition specifies the name this module is to be
known by:

▼ module ModuleName

...

end

Unlike ScriptX global variables, which are only global within the scope of a
given module, module names are truly global. There is only one namespace for
module names. Because of this, you should choose a module name that is
unique and distinct:

module PaintInterfaceUser
module DeveloperModule_Rev15_345a
module LotsOfSillyClassesThatOnlyPartiallyWorkTogether
201

9 ScriptX Language Guide
By convention, module names are capitalized according to the same rules as
class names. Initial letters are capitalized, with every succeeding word also
capitalized.

Redefinition of Modules

Modules can be redefined. When you redefine a module, the new definition
completely replaces the existing definition. By redefining a module, you can
export additional variables, or define new use relationships.

Redefinition of a module does not break existing code at runtime. For example,
if you redefine a module to exclude some variable from another module, which
the module was already using, the module continues to use that variable. It is
possible to import or export additional variables, but not to remove a variable
from the list of variables that are imported or exported. The following example
demonstrates this:

module Blue exports ink, paper end
module Pink uses Blue end
in module Blue
global ink := "blue"
global paper := "white"
in module Pink
global stone := ink + paper

➯ "bluewhite"

-- now redefine Pink and change the value of ink from within Blue
module Pink uses Blue with excludes ink end end
in module Blue
ink := "red"
in module Pink
global Stone := ink + paper

➯ "redwhite"

The global variable ink is still accessible in module Pink, even though it has
been redefined to exclude ink, and ink continues to reflect the value that was
set for it in module Blue.

The following example shows that it is possible to end up with more than one
binding for a variable in a given module:

module Green exports grass, leaves end
module Brown uses Green end
in module Green
global grass := "green"
global leaves := "green"
in module Brown
global compost := grass + leaves

➯ "greengreen"

-- now redefine Brown so that it renames grass, and change value
module Brown uses Green with renames grass:herbs end end
in module Green
grass := "brown"
in module Brown
202

Modules 9
compost := grass + leaves

➯ "browngreen"

global moreCompost := herbs + leaves

➯ "browngreen"

In the module Brown, the variable grass, as defined by Green, is accessible
through both the original name and its new name. It has two valid bindings.

Developers should be aware that the redefinition of modules is a convenience
at runtime. Redefinition of a module cannot resolve all possible cases. If a
program needs to redefine a module to exclude or rename variables that are
already being used in existing code, the best option is to recompile.

Switching Modules

All ScriptX expressions are compiled within the context of a given module. To
move the scope of the ScriptX compiler from one module to another, use the
following expression:

▼ in module ModuleName

The in module expression places the ScriptX compiler (and therefore your
Listener window or authoring environment) into the scope of the module
specified by ModuleName, giving you access to all the variables defined in that
module or imported from other modules. If the module you specify does not
exist, ScriptX reports an exception. The ScriptX compiler remains in the
specified module until in module is invoked again, placing the compiler in a
different module. The in module expression is allowed only at the top level in
your program.

Note – The ScriptX expression in module does not take a ModuleClass
object as its target. It operates on a name literal, the scripter name of a module.
Unlike other names in ScriptX, names of modules are not lexical names. With
lexical names (names of constants and variables), the name represents the
object itself. The name of a module is like a label for the module, a label which
the in module expression recognizes. However, ScriptX functions that take a
module as a parameter, such as the generic functions load and store, must
be passed the ModuleClass object itself.

If you need access to the ScriptX core classes in your module, make sure the
module that you specify in an in module expression has been defined to use
the ScriptX module.

Generally, in module is used in a ScriptX program after its module definition,
but before the remainder of the expressions (class definitions, variable
declarations, and so on) that make up the program to be compiled within that
module.
203

9 ScriptX Language Guide
module DefinitionModule
exports FirstClass, sumThem
-- this exports getters and setters
exports instance variables a, b, c
uses ScriptX

end

module TestingModule
uses ScriptX, DefinitionModule

end

in module DefinitionModule
class FirstClass ()

instance variables a, b, c
instance methods

method init self #rest args #key a:(10) b:(10) c:(10) -> (
apply nextMethod self args
self.a := a
self.b := b
self.c := c

)
method sumThem self -> (

print (self.a + self.b + self.c)
)

end

in module TestingModule
global t := new FirstClass a:20
sumThem t

➯ 40

A new module can be defined within the scope of any other module, with the
caveat that the module cannot use another module that is not yet defined. (For
information on circular relationships, see page 211.) Defining a module does
not switch the compiler into that module. Only the in module expression
switches the compiler into another module..

Importing and Compiling Files with fileIn

The generic function fileIn, implemented by DirRep and ByteStream, is
available only with the ScriptX Language and Class Library. (The Kaleida
Media Player does not include the bytecode compiler, which compiles and
executes scripts.) A large ScriptX project is typically compiled from a build file,
and this build file usually includes a series of calls to fileIn. This design
makes it easy to divide a large project into an number of smaller source files
which are compiled in a set order.

Scripts that are imported using fileIn run in the Scratch module by
default. The fileIn generic function defines a module keyword argument,
which takes a ModuleClass object. This keyword can be used to specify
which module the file is compiled in.

-- the file dogs.sx will be compiled in the AnimalInterface module
fileIn name:dogs.sx module:(getModule @AnimalInterface)
204

Modules 9
The in module expression, if it appears within a source file that is read in
using fileIn, overrides fileIn in determining which module a given script
is compiled in, but only within the scope of that file. Compilation reverts back
to the previous module after fileIn finishes compiling and executing the
script and returns a value.

The fileIn generic function It is possible to specify a module fileIn also
specifies a module using the module keyword, the code within the file being
imported is compiled within the named module. The fileIn generic function
is described in the class definition of DirRep in the ScriptX Class Reference.

One disadvantage to using the module keyword with fileIn is that it can be
hard to tell at a glance which module a given script is compiled in. For that
reason, many programmers ignore the module keyword. They prefer to specify
the current module explicitly at the top of each source file, using in module
as the first expression in the file.

In contrast with fileIn, scripts that are read in and compiled using the
Open Title . . . menu command in the current ScriptX Listener window run in
the current environment, and place the ScriptX compiler directly into the
modules specified by any in module expressions in the file.

Module Objects

The module definition, like all other ScriptX expressions, yields an object, in
this case, an instance of ModuleClass. However, unlike class or function
definition expressions, the name of the module is not a variable which is
assigned to that module object, so you cannot use the module name to refer to
the module object as you would any other variable.

In most cases you simply use the module as an environment in which you
create and manipulate other objects. There may be cases, however, in which
you need access to a ModuleClass object itself:

• When you want to dispose of that module, that is, allow the module itself
and all the values of the variables it holds to be claimed by the ScriptX
garbage collector.

• When you want to save a module to a ScriptX storage container.

Once a module has been defined, you can get access to the module object itself
using either the getModule or currentModule functions:

◆ getModule ModuleName

The global function getModule returns the ModuleClass object that is
specified by the given name. If you do not specify a valid module, getModule
returns false. Unlike the in module expression, getModule cannot define a
new module. The module referred to by ModuleName must already have been
defined. Note that getModule does not affect which module ScriptX is
currently compiling in. Only the in module expression can be used to switch
from one module to another.
205

9 ScriptX Language Guide
The getModule function returns false if it does not return a module. You
can use this feature to test whether a module is defined or not:

if not (getModule @whatever) do
(

-- This block executes only if the module @whatever is not defined
)

Once you have a module object to operate on, you can add that module to a
container in the object store (as described in “Storing Modules” on page 227).
For example, to append the Definition module to the tc title container:

append tc (getModule @Definition)

You can use any other functions that operate directly on module objects (such
as fileIn, described above). Of course, the ScriptX, Substrate, and
Scratch modules, which are defined by the system, cannot be saved.

◆ currentModule()

The global function currentModule, which is actually implemented as a
macro, returns the ModuleClass object in which ScriptX is currently
compiling. It reflects the state of the compiler during compilation, and is not
meant to be used at runtime. ScriptX does not have a “currently active”
module at runtime.

Do not use currentModule in scripts. It exists only for informational and
debugging purposes.

◆ deleteModule ModuleName

A module can be removed from memory using deleteModule, but only if it
is not being used by any other module.

The global function deleteModule can be called with either the name of the
module, or a ModuleClass object as its argument. If the module is being used
by another module, and cannot be deleted, deleteModule reports the
deletingUsedModule exception. If the modules that are using it are then
deleted, the module can be deleted.

Exporting Variables to Other Modules

To specify which global variables are exported outside this module, use the
exports section of the module definition expression:
206

Modules 9
▼ module ModuleName

exports variable, variable, variable, . . .

end

The exports reserved word is followed by a list of variable names that are
visible outside this module. Those variables can be variables that are defined,
or will be defined, within this module. They can also be variables that were
imported from other modules, and are thus “passed along” by this module.
Variable names can be specified on separate lines, on the same line separated
by commas, or in any combination.

module Australia
uses ScriptX
exports beer, engineers

end
in module Australia
global beer := "Foster's"
global engineers := #("Wainwright", "Nicholson", "Williams")

You can use multiple exports sections in your module definition, which is
useful for documentation purposes or to group sets of exported variables
together into logical groups. The resulting module exports all of the variables
in all the exports sections.

module California
uses ScriptX
exports chips, software
exports almonds, avocados, cherries, figs, lettuce, wine
exports entertainment, movies

end
in module California
global chips := #("PowerPC", "Intel")
global software := "ScriptX"
. . .

A module must explicitly export all the names that are to be visible outside the
module. The point of modules is really to exclude names, to export only those
names that are required by other modules. Consider the following analogies
between ScriptX and C.

• The exports clause is a declaration of names that are visible outside the
module, analogous to the extern statement in C.

• In C, you explicitly declare that a global variable is not visible elsewhere, by
declaring that it is static. In ScriptX, a global variable is like a static
variable by default. It must be explicitly exported to be visible in other
modules. Thus, the default case is reversed.

• In C, the boundary between name spaces is the file. In ScriptX, the boundary
is the module, which can extend across multiple files. Of course, a
well-constructed program uses only one module in a given file.

• An interface module, defined later in this chapter (see “Organizing
Modules” on page 219), is really analogous to a header file in C.
207

9 ScriptX Language Guide
Exporting Classes

You can export a class simply by specifying the variable that contains that class
in an exports section of a module definition. However, be aware that
exporting the class name alone does not automatically provide access to that
class’s methods and variables. To have full access to an exported class from
another module, you must not only export the variable that contains that class,
but you must also explicitly export.

• The names of any methods (generic functions) defined by that class that do
not already have a name binding, including any methods that the exported
methods also use

• The setter and getter generic functions for the class and instance variables
defined by that class

If you do not explicitly export these variables, those parts of that class are
unavailable to any modules that use this module. For example, suppose you
have the following class definition, where the Person class has two instance
variables, name and age, and two methods, printName and printAll.

class Person ()
instance variables

name, age
instance methods

method printName self -> (
prin ("My name is " + self.name + "\n") @Normal debug

)
method printAll self -> (

printName self
prin ("My age is " + self.age + "\n") @Normal debug

)
end

In order for both instance variables and both methods to be available outside
the module, you must explicitly export all of the name bindings that are
defined by the class:

module PersonModule
-- the class itself
exports Person
-- Person’s instance variables (getter and setter generics)
exports nameSetter, nameGetter, ageSetter, ageGetter
-- Person’s methods
exports printName, printAll

end

Exporting Instance Variables

To make exporting instance variables easier, the ScriptX module definition
includes special syntax for exporting instance variables:
208

Modules 9
▼ module ModuleName

exports [readonly] instance variables variable, variable, . . .

end

The instance variables reserved words can be shortened to
instance vars or simply inst vars. The list of variables can be supplied
on one line separated by commas, on separate lines, or in any combination.

The optional readonly reserved word exports the list of instance variables
specified by variables in a read-only form; that is, they can be queried but
not changed.

The instance variables part of an exports clause is simply shorthand for
exporting the setter and getter generic functions for those variables. If the
readonly option is specified, only getter methods are exported. The following
module definitions are equivalent:

module MyModule
exports readonly instance variables x
exports instance variables y

end

module MyModule
exports xGetter, ySetter, yGetter

end

Importing Variables From Other Modules

To import variables from one module into another, use the uses clause of a
module definition. There are two forms of uses: the short form (uses) that
simply imports all the exported variables from the given module into this
module, and the long form (uses . . . with), which allows control over which
variables should be imported, and how they should be handled. For example,
a uses . . . with clause can change their names or reexport them.

For the complete syntax for defining a module, see page 200. The syntax for
both uses clauses in a module definition is as follows:

▼ module ModuleName

[uses module, module, module, . . .]

[uses module with

[imports everything]

[imports variable, variable, variable, . . .]

[imports [readOnly] instance variables

variable, variable, variable, . . .]

[excludes variable, variable, variable, . . .]

[excludes [readOnly] instance variables

variable, variable, variable, . . .]

[exports everything]
209

9 ScriptX Language Guide
[exports variable, variable, variable, . . .]

[exports [readOnly] instance variables

variable, variable, variable, . . .]

[prefix prefix]

[renames oldName:newName, oldName:newName, . . .]

[renames [readOnly] instance variables

voldName:newName, oldName:newName, . . .]

end]

end

The line containing the reserved word uses specifies the modules whose
variables are to be imported. The first form is simply the reserved word uses
followed by the other modules whose variables are to be imported. Note that
with this form, all variables are imported from the specified modules. The
modules can be specified on the same line separated by commas, on separate
lines, or in any combination. Any module you specify in a uses definition
must already have been defined. You can have a single uses, or you can have
multiple uses clauses in the same module definition. Note that if you want the
variables in the ScriptX core classes to be available to the expressions in this
module, you have to explicitly use the ScriptX module.

The second form of uses clause, uses with, allows more control over how
imported variables from individual modules are handled. The uses with
clause specifies options for a single module. You must use an individual
uses with clause for each module.

The uses with clause contains several sub-clauses, referred to in this chapter
as options, all of which are optional and may be included in any order. Also,
although they have been presented here on multiple lines and indented, they
may also be specified on a single line, or in any combination.

The uses form is equivalent to the uses with form with
imports everything. That is, the following two definitions are equivalent:

module Mocha
uses ScriptX

end

module Mocha
uses ScriptX with

imports everything
end

All uses with option are described in the following sections.
210

Modules 9
uses

▼ module ModuleName

uses module, module, module, . . .

end

This is the simplest form of module definition that imports variables from
other modules. All variables that are exported from the specified modules are
imported into the module given by ModuleName.

A Note on Circular Use Relationships

A circular use relationship is defined as two modules that have uses clauses
that import variables from each other. In this example, Foo uses Bar which
uses Foo:

-- Don’t define a circular relationship like this
module Foo

exports x, y, z
uses Bar

end

module Bar
exports a, b, c
uses Foo

end

Because a module’s uses clause can only name modules that have already
been defined, explicit circular use relationships cannot occur (the first
definition returns a warning stating that module bar does not exist).

It is possible to define implicit circular use relationships between modules by
exporting variable names from one module and defining those variables in
another. This method of defining and using modules is described in
“Organizing Modules” on page 219.

uses with imports

▼ module ModuleName

uses module with

imports everything

imports variable, variable, variable, . . .

imports [readOnly] instance variables
211

9 ScriptX Language Guide
variable, variable, variable, . . .]

end

end

The optional imports clause is used to specify which variables to import from
the module specified by module.

The imports option, when used with the reserved word everything, simply
imports all the variables that the given module exports. If you use
imports everything, you cannot use any of the other forms of imports in
the same uses with clause. Also, if you omit all imports options in a
uses with clause, imports everything is assumed. The advantage to
using imports everything rather than a simple uses clause is that other
options, such as prefix and renames, are also available.

The imports option followed by a list of variables specifies exactly which
variables to import into this module. The variable names can be specified on
separate lines, on the same line separated by commas, or in any combination.

The imports option with the instance variables reserved words (or the
readOnly instance variables reserved words) is syntactic shorthand for
importing the setter and getter generic functions for the named instance
variables (or, in the case of readOnly, only the getter method). The
instance variables reserved words can be shortened to instance vars
or simply inst vars. See “Exporting Classes” on page 208 for more
information on importing and exporting classes and their methods and
variables.

The following example creates a module and exports three global variables it
defines.

module XYZ
uses ScriptX
exports x, y, z

end
in module XYZ
global x:10, y:"foo", z:#(56,567)

The following module uses XYZ and imports all variables from it.

module XYZimport1
uses ScriptX
uses XYZ with imports everything end

end
in module XYZimport1
print x

➯ 10

print y

➯ "foo"

print z

➯ #(56, 567)
212

Modules 9
The third module uses XYZ, but it imports only x and z from this module.
Since y is undefined within this module, attempting to access y from this
module reports an exception.

module XYZimport2
uses ScriptX
uses XYZ with imports x, z end

end
in module XYZimport2
print x

➯ 10

print z

➯ #(56,567)

print y -- this reports an exception

➯ -- ** XYZimport2:y does not have a variable value \
(UninitializedVariable)

uses with renames

▼ module ModuleName

uses module with

renames oldName:newName, oldName:newName, . . .

renames [readOnly] instance variables

oldName:newName, oldName:newName, . . .

end

end

The optional renames clause is used to import a variable from the given
module and give it a new name. The definition of the variable, if any, is still
valid in the new module under the new name. The renames keyword is
followed by any number of oldName and newName pairs, on the same line
separated by commas, on separate lines, or in any combination. The old and
new variable names, oldName and newName, are separated by colons. The
renames clause, used without an imports clause, assumes
imports everything.

The renames clause with the instance variables reserved words (or the
readOnly instance variables reserved words) is syntactic shorthand for
renaming the setter and getter generic functions for the named instance
variables (or, in the case of readOnly, only the getter method). See “Exporting
Classes” on page 208 for more information on importing and exporting classes
and their methods and variables.

The renames option overrides both import and prefix; the variables
specified by renames are both imported and given the names specified by
newName.

The following script sets up module XYZ, as in the previous example.
213

9 ScriptX Language Guide
module XYZ
uses ScriptX
exports x, y, z

end
in module XYZ
global x:10, y:"foo", z:#(56,567)

This module uses module XYZ, imports only x, and renames it externalX.

module XYZrename1
uses ScriptX
uses XYZ with

renames x:externalX
end

end
in module XYZrename1
print externalX

➯ 10

print y

➯ "foo"

The next module explicitly imports x and y, but renames x. Renaming x
overrides import x so that x is imported, but with a new name.

module XYZrename2
uses ScriptX
uses XYZ with

imports x, y
renames x:otherX

end
end
in module XYZrename2
-- this reports an exception
print x

➯ -- ** XYZrename2:x does not have a variable value \
(UninitializedVariable)

print otherX

➯ 10

print y

➯ "foo"
214

Modules 9
uses with prefix

▼ module ModuleName

uses module with

prefix prefix

end

end

The optional prefix clause is used to import variables and rename them by
attaching a prefix (specified by prefix) to the variable name. Prefixing variable
names is useful for resolving conflicts in variable names between modules or
for simply indicating which module a variable came from. The prefix option,
used without an imports option, assumes imports everything.

You can assign a prefix to all imported variables and then rename specific
variables by using the renames clause for those variables.

The following script sets up module XYZ, as in the previous example.

module XYZ
uses ScriptX
exports x, y, z

end
in module XYZ
global x:10, y:"foo", z:#(56,567)

Module XYZprefix1 imports all variables from module XYZ and prefixes
variables from that module with XYZ_.

module XYZprefix1
uses ScriptX
uses XYZ with

prefix XYZ_
end

end
in module XYZprefix1
print x

➯ -- ** XYZprefix1:x does not have a variable value
(UninitializedVariable)

print XYZ_x

➯ 10

print XYZ_y

➯ "foo"

Module XYZprefix2 uses both a prefix clause and a renames clause. The
renames clause overrides the prefix for specific variables.

module XYZprefix2
uses ScriptX
uses XYZ with

prefix ext_
renames x:fumbleWhizzy
215

9 ScriptX Language Guide
end
end
in module XYZprefix2
print ext_x

➯ -- ** XYZprefix2:ext_x does not have a variable value
(UninitializedVariable)

print ext_y

➯ "foo"

print fumbleWhizzy

➯ 10

uses with excludes

▼ module ModuleName

uses module with

excludes variable, variable, variable, . . .

excludes [readOnly] instance variables

variable, variable, variable, . . .

end

end

The optional excludes clause is used to explicitly exclude individual
variables from a module. The list of variable names can be on a single line
separated by commas, on individual lines, or in any combination. If you use
excludes without an imports clause, imports everything is assumed.

The excludes option with the instance variables reserved words (or the
readOnly instance variables reserved words) is syntactic shorthand for
excluding the setter and getter generic functions for the named instance
variables (or, in the case of readOnly, only the getter method). See “Exporting
Classes” on page 208 for more information on importing and exporting classes
and their methods and variables.

Like renames and prefix, excludes is used to prevent imported variable
names from clashing with variable names in the current module. However,
excludes is also useful when there are a lot of imported variables and most,
but not all, are relevant; rather than specifying all the variables this module is
interested in with an import clause, you can simply specify the variables that
this module is not concerned with using excludes.

The example uses module XYZ, just as in the previous section.

module XYZ
uses ScriptX
exports x, y, z

end
in module XYZ
global x:10, y:"foo", z:#(56,567)

This module imports all the variables from module XYZ, excluding y.
216

Modules 9
module XYZexclude1
uses ScriptX
uses XYZ with

imports everything
excludes y

end
end
in module XYZexclude1
print x

➯ 10

print y

➯ -- ** XYZexclude1:y does not have a variable value \
(UninitializedVariable)

uses with exports

▼ module ModuleName

uses module with

exports everything

exports variable, variable, variable, . . .

exports [readOnly] instance variables

variable, variable, variable, . . .

end

end

The optional exports clause is used to re-export any variables that have been
imported from module using the imports or renames clauses (sometimes
called “transitive exporting”). You also use it to export variables created within
this module. If the variables have been renamed or prefixed upon import
(using the renames or prefix clauses), those variables are exported using
those new names.

The exports option, when used with the reserved word everything, simply
re-exports all the variables that were imported from module. If you use
exports everything, you cannot use any of the other forms of exports in
the same uses with clause.

The exports option followed by a list of variables specifies exactly which of
the variables to re-export. The variable names can be specified on separate
lines, on the same line separated by commas, or in any combination.

The exports option with the instance variables reserved words (or the
readOnly instance variables reserved words) is syntactic shorthand for
re-exporting the setter and getter generic functions for the named instance
variables (or, in the case of readOnly, only the getter method). See “Exporting
Classes” on page 208 for more information on importing and exporting classes
and their methods and variables. The instance variables reserved words
can be shortened to instance vars or simply inst vars. All are
equivalent.
217

9 ScriptX Language Guide
The example uses module XYZ, just as in the previous section.

module XYZ
uses ScriptX
exports x, y, z

end
in module XYZ
global x:10, y:"foo", z:#(56,567)

Module XYZexport, which exports its own variables (a and b), imports
everything from module XYZ, renames x to otherX, and transitively exports
otherX and y.

module XYZexport
exports a, b
uses ScriptX
uses XYZ with

imports everything
renames x:otherX
exports otherX, y

end
end

in module XYZexport
global a := "croissant"
global b := pi
print otherX

➯ 10

Module moreXYZexport uses XYZexport and imports all. The variables that
get imported are y (from module XYZ), otherX (which is actually the variable
x from module XYZ) and a and b (from module XYZexport).

module moreXYZexport
uses ScriptX
uses XYZexport with

imports everything
end

end

in module moreXYZexport
print a

➯ "croissant"

print b

➯ 3.14159

print y

➯ "foo"

print otherX

➯ 10

print x

➯ -- ** moreXYZexport:x does not have a variable value \
(UninitializedVariable)
218

Modules 9
Organizing Modules

This section describes a conventional approach to organizing ScriptX programs
within modules called the interface/implementation model. This model can be
used to create larger networks of modules. It allows modules to be managed
without the need for complex use relationships that are difficult to understand.

For a simple ScriptX title that is to be distributed to others, you might define a
single module that uses the ScriptX module. It can also use other modules—
such as modules associated with library or accessory containers.

module MyOwnTitle uses ScriptX end
in module MyOwnTitle
-- build your title here . . .

For simple programs, encapsulating code within modules and importing and
exporting variables is reasonably straightforward. Larger and more complex
programs, with multiple modules that use and are used by each other, can
create complex dependencies. In large networks of modules, it may become
difficult to keep track of the relationships between modules.

The interface/implementation model is a model for designing networks of
modules. Using the interface/implementation model, you can create modules
with implicit circular use relationships. You can combine interfaces to construct
customized, general interfaces that are based on the needs of the client module.

The interface/implementation model can also be used to define multiple
interfaces to the same ScriptX program. For example, a code library could have
an interface for end users and an interface for programmers—without
duplicating any code

This section describes how the interface/implementation model can be used to
create a better structure for large ScriptX programs.

Interfaces, Implementations, and Clients

The interface/implementation model for organizing modules separates
modules into three types, which differ in the way they are defined and the way
they are used.

• Interfaces are modules that export variables, but do not provide any
definitions for those variables. Interface modules are never used in an
in module expression and should have no code associated with them at all.
Interface modules are used by other modules, but do not use any other
modules.

• Implementations are modules that provide the definitions for the variables
exported from interfaces, but do not export any variables themselves.

• Clients are simply modules that use an interface module. Implementation
modules are clients of their interfaces. Other modules that in turn use
interfaces are also clients.
219

9 ScriptX Language Guide
Exporting Variables Defined Elsewhere

The ability to separate a module’s interface and implementation depends on a
feature of module interaction in ScriptX where the module that exports a
variable is not the same module that owns its definition. Indeed, the module
that owns the variable definition does not have to export that variable for its
definition to be accessible. (You might want to review the discussion of
variable definitions that begins on page 196.) This section contains a simple
example which should clarify this relationship.

The module BakeryInterface exports the variable rye, but does not
provide a definition for that variable. BakeryInterface is an interface
module. Note that BakeryInterface does not use any other modules
(including the ScriptX module).

module BakeryInterface
exports rye

end

Figure 9-4: Interface module

A second module, Bakery, uses the BakeryInterface module and provides
a definition for the imported variable rye. Bakery is the implementation
module for BakeryInterface.

module Bakery
uses BakeryInterface

end
in module Bakery
global rye := "rye bread"

Figure 9-5: Implementation modules

The Bakery module does not, and should not, re-export the rye variable. The
purpose of the Bakery module is simply to provide an implementation for
variables exported elsewhere; it is not used by any other modules.

Now, any modules that use BakeryInterface (clients of the
BakeryInterface module) automatically receive the definitions of those
variables from Bakery even though they were not explicitly exported. For
example, if the Delicatessen module uses BakeryInterface,
Delicatessen has access to the definition of rye in Bakery even though
Bakery didn’t export rye and Delicatessen didn’t use Bakery.

BakeryInterface

Exports rye

BakeryInterface

Exports rye

Bakery

Imports and
defines rye
220

Modules 9
module Delicatessen
uses ScriptX, BakeryInterface

end

in module Delicatessen
print rye

➯ "rye bread"

Figure 9-6: Client modules

Note that module Delicatessen needs to use the ScriptX module to have
access to the print function. Like other global functions, print is a part of the
object system, and not of the ScriptX language itself.

Although using modules in this way may seem like an unnecessary level of
indirection, it allows you to organize and combine interface modules freely
without worrying about where the contents of those interface modules are
defined.

Figure 9-6 actually depicts the relationship between the three “system
modules” that are defined by ScriptX: the ScriptX, Substrate, and
Scratch modules. In Figure 9-7, the diagram in Figure 9-6 has been relabeled
to demonstrate this relationship between system modules. The ScriptX
modules acts as an interface module, and the Substrate module as an
implementation module. The Scratch module, and any user-defined modules
that use the ScriptX module, are clients of the ScriptX module.

Figure 9-7: The ScriptX, Substrate and Scratch modules

rye’s definition from

Delicatessen

Imports rye and receives

bakery automatically

BakeryInterface

Exports rye

Bakery

Imports and
defines rye

Substrate’s definition from

Scratch

Imports core classes; receives

ScriptX automatically

ScriptX

Exports the

Substrate

Imports and
defines core
classes names

core classes
names

(Interface module) (Implementation module)
221

9 ScriptX Language Guide
Circular Module References

The separation of interface and implementation in modules allows you to
create implicit circular relationships between modules that would not
otherwise be possible. Direct circular use relationships in a module definition
are not possible because of forward references to modules that have not yet
been defined. However, by defining separate interface and implementation
modules, you can create circular references to modules such that there are no
forward references.

Here is an example of a small set of modules, for draw and paint operations.
The implementation for each group of operations requires the use of the other,
a circular reference. Using the interface/implementation model, the circularity
is broken as all the interface modules are defined before any module tries to
use any other module.

module DrawInterface
exports line, rectangle, circle

end

module PaintInterface
exports pencil, brush, fill

end

module DrawImplementor
uses ScriptX, DrawInterface, PaintInterface

end

module PaintImplementor
uses ScriptX, PaintInterface, DrawInterface

end

If you were to draw the relationships between these modules, they might look
like this:

Figure 9-8: Circular module references

Here, the DrawImplementor module provides definitions for the
DrawInterface module. It is also a client of the PaintInterface module,
whose definitions are, in turn, provided in PaintImplementor. Finally,
PaintImplementor is a client of DrawInterface, which completes the
circularity.

Imports and defines
line rectangle circle

Uses PaintInterface

PaintInterfaceDrawInterface

PaintImplementorDrawImplementor

Imports and defines
pencil brush fill

Uses DrawInterface

Exports line Exports pencil
brush fillrectangle circle
222

Modules 9
Combining Module Interfaces

Another advantage of using the interface/implementation model to organize
modules is that it allows you to create several interface and implementation
modules, and then combine those interfaces in different ways. This is
particularly useful for large projects where portions of the project may be
produced by different programmers—each portion of the program would have
its own interface which could then be combined into a single interface that
provides access to the larger program as a whole.

For example, say you had two ScriptX programs, one for drawing functions
(vector graphics) and one for painting (bitmap graphics). Using the
interface-implementation module for organizing modules, you would create
four modules: two interfaces and two implementors:

Figure 9-9: Paint and draw interfaces and implementations

Once the interfaces and implementations are defined, you can create a third
interface (such as GraphicsInterface) that does nothing except use the
other two interface modules, and re-export the variables it imported from those
modules. Clients of GraphicsInterface have access to all the variables in
both the PaintInterface and DrawInterface modules

Figure 9-10: Paint and draw interfaces and implementations

Multiple Interfaces, One Implementation

Although the discussion up to this point has focussed on interfaces and
implementations in pairs (one interface for each implementation), the most
important part of the interface/implementation model is the separation of
interfaces from implementations, not their organization. This section shows

PaintInterface DrawInterface

PaintImplementor DrawImplementor

Exports painting Exports drawing
functions functions

Uses Uses
DrawInterfacePaintInterface

PaintInterface DrawInterface

GraphicsInterface

Uses PaintInterface
Uses DrawInterface
Exports everything

Exports drawing
functions

Exports painting
functions
223

9 ScriptX Language Guide
examples of using multiple interface modules for the same implementation
module, effectively providing many different “views” of a ScriptX program
based on how much information you want to reveal to the clients of those
interfaces.

Suppose you have created a large body of ScriptX code for producing various
musical sounds. For that single large MusicModule implementation, you
could have multiple interfaces, each of which provides access to only some of
the variables within that module. For example, a ClassicalMusic interface
module would provide access to violin, flute, and harpsichord; a
RockNRoll module would include electricGuitar and drumKit; and a
Madrigals module would include access to voices such as altoVoice, and
bassVoice.

Figure 9-11: Multiple interfaces, one implementation

This same scheme could be applied to a complex ScriptX application where
you want to limit some of the features of the application based on whether
your user should have access to module NewUser, IntermediateUser, or
AdvancedUser. By providing separate interfaces for each of those users, you
could provide a subset of features to the new user, more features to the
intermediate user, and a complete set to the advanced user.

The pass-through model is a variation on the standard
interface/implementation model, useful for defining several discrete protocols
and combining them into a single interface.

MusicImplementation

ClassicalMusic

Exports violin, flute,
harpsichord

RockNRoll

Exports drumKit,
electricGuitar

Madrigals

Exports tenorVoice,
altoVoice, sopranoVoice

Uses ClassicalMusic, RockNRoll,
Madrigals, GregorianChant,
SpeedMetal, Jazz, IndustrialDeath

Defines everything
224

Modules 9
Figure 9-12: Pass-through interface/implementation model

Using a Build Module

A build module is a technique for creating a title without necessarily loading,
or even saving, the code that is used in running the title. A complicated title,
one with many implementation modules, and perhaps several interface
modules, is a good candidate for using a build module.

The build module contains the code that builds the title. Often, it is a special
module that corresponds with the build file for a project. The build file is
compiled in the build module. By avoiding references from other modules to
any variable that is defined in the build module, you can keep the code that is
used to build the project from being loaded at runtime. A build module is often
a transient object—an object that is not saved to the object store. The build
module is the best place for variables that represent compilation status, since
those variables should mean nothing at runtime.

Figure 9-13: Using a build module to compile a project

MusicImplementation

ClassicalInterface

Exports symphony,
concerto, sonata

JazzInterface

Exports
improvisation

MusicInterface

Uses MusicInterface

Uses ClassicalInterface
with exports everything

Uses JazzInterface
with exports everything

Exports rythym, melody, harmony

TitleImplementationOne

uses TitleInterface

Build Implementation

uses TitleInterface

TitleImplementationTwo

uses TitleInterface

TitleInterface

exports stuff

transientpersistent
225

9 ScriptX Language Guide
Defining an Accessory Protocol

One possible application of the interface/implementation model is to create a
protocol through which accessory programs can “bind” dynamically with a
title at runtime. A ScriptX title does not have to be self-contained. Dynamic
binding allows for the creation of titles that are shipped to end users with
“hooks” for adding new scenes and characters.

A ScriptX title can be a constructive experience, one where users add new
objects to create what is, in effect, their own title. In a sense, publishing a title
that is a constructive experience means publishing a protocol.

Of course, two programs cannot interact without knowing something about
each other. A title’s accessory protocol is, in effect, a list of names that are
recognizable to both the title and to accessories. These names represent classes,
objects, functions, and generics that are public in any module that uses the
accessory protocol. Although it is not necessary to determine all possible
interactions between objects in advance, a set of names must be agreed upon.

module GidgetAccessoryInterface
exports instance variables accessoryProtocols
exports addToPresenter, GidgetClass

end

The GidgetTitleImplementation module, in turn, uses both the ScriptX
and GidgetAccessoryInterface modules. Within this module, the
accessoryProtocols instance variable, the generic addToPresenter, and
the class GidgetClass are defined. Since they are defined there, they are also
saved there.

module GidgetTitleImplementation
uses ScriptX, GidgetAccessoryInterface

end

An accessory that uses the GidgetAccessoryInterface should define its
own module.

module GidgetAccessoryImplementation
uses ScriptX, GidgetAccessoryInterface

end

By now, it should be obvious that the accessory interface model is a familiar
one. Think of the ScriptX module as the “accessory interface” for the ScriptX
core classes. Every module that uses the ScriptX module is running as an
accessory to ScriptX, which is implemented in the Substrate module. Just as
the substrate makes a portion of the names it defines visible in the ScriptX
module, any user-defined module can export some of the names it defines
through its own interface module.
226

Modules 9
Storing Modules

One big advantage to structuring your ScriptX program using modules is that
modules allow your program to be saved more easily into the ScriptX object
store. Without modules, you must individually store each class and object that
your program uses, and you must also reconstruct any global variables that the
program requires. By encapsulating your program in a module or in multiple
modules, and by saving only the module, all global variables and their values
(classes, objects, and functions) that are defined within that module are
automatically saved. When you save the module, every name that is defined in
that module is saved as well. In effect, modules are a container for compiled
code objects (classes, objects, and functions).

Storing Module Objects

You can save a module to a storage container such as a title, library, or
accessory container. To store a module, you must first have access to the
module object. Since module names are not lexical names, you can use the
getModule function, described on page 205, to get access to the ModuleClass
object itself, supplying the module’s name as an interned NameClass object.
Here, the ModuleClass object that represents module MyModule is assigned
to the global variable theModule:

global theModule := getModule @mymodule

Once you have access to a module object, you can add it to a storage container
just as you would any other object. This example creates a title container and
adds a module to that container:

-- create a title container. theStartDir is the default for dir:
global tc := new TitleContainer path:"test.sx" dir:theStartDir
append tc (getModule @mymodule)

One weakness to this approach is that it builds the title container that is to
store module MyModule outside of that module. What if the title container’s
startup action needs to refer to classes or objects that are defined in the module
itself? The following code example demonstrates how to create a module and
create the container that stores it within the same module. This example also
saves that module to the title container without saving any variables that refer
to the creation of the container.

First, create a module, TopModule. In this module, you create any classes and
global variables that are to be stored with the module in your title or library
container.

module TopModule
uses ScriptX

end
in module TopModule
global topVar1 := "the first topVar"
class TopModuleTitle (TitleContainer)

instance variables
accessoryProtocols:#("string1", "string2", "stringEtc")

end
227

9 ScriptX Language Guide
Suppose you want to avoid having the container itself store variables that refer
to the creation of the container—that’s wasted space. To make the code that
builds a title or library container non-persistent, enclose it in parentheses and
make all the “throwaway” variables local.

(
local tc := new TopModuleTitle \

dir:theScriptDir \
path:"modacct.sxt" \
name:"top"

append tc (getModule @TopModule)
tc.startUpAction := (tc ->

print "here we go"
load tc[1]
print topVar1

)
close tc

)

For more information on adding objects to title containers, library containers,
and accessory containers, see the “Title Management” chapter of the ScriptX
Components Guide.

Retrieving Objects from the Object Store

When your program runs from a ScriptX library container, the first thing it
should do, presumably in its start-up script, is retrieve any saved modules
from the object store. Recall that modules really have two functions in ScriptX.
They exist at compile time to provide distinct compilation units, independent
name spaces. But at runtime, modules serve as containers in which compiled
class and function objects can be retrieved from the object store.

Of course, lexical names do not exist at runtime. A ScriptX program is
compiled into bytecode. But the objects that those names represent during
compilation must still be loaded into memory. Modules provide a convenient
mechanism for saving and retrieving code.

Typically, a ScriptX title starts up by loading all modules in which its classes
and functions are defined. During compilation, the order in which modules are
defined and the order in which source files are compiled generally matters. It is
quite possible for a class to be defined in one module, while its methods are
defined in another module that uses the first module.

At runtime, the order in which modules are loaded generally does not matter.
It is usually easiest to load all class and function objects at start-up. Modules
are not useful as a program segmentation technique, since classes and
functions, once loaded, cannot be unloaded.
228

Modules 9
Saving Interfaces and Implementations

When you add a module to any ScriptX library container, the ScriptX object
store adds all the variables that it “owns.” In addition, it also adds all the other
modules it uses and any modules that also use it. By storing a module, you are
effectively also storing everything that touches or is touched by that module.

In some cases, saving a module may cause more information to be stored than
you want. Consider the following network of modules:

Figure 9-14: A network of modules to be saved

This example shows interface and implementation modules for painting
functions, PaintInterface and PaintImplementation. In addition, it
includes two clients of the PaintInterface module that use its variables:
PaintApplication and DrawInterface.

Assume, for this example, that you wanted to store only the painting functions
(PaintInterface and PaintImplementation) into a painting library. If
you stored PaintInterface first, the ScriptX object store would include all
the other modules that use PaintInterface—all the modules in the network.

Storing PaintImplementation first, rather than PaintInterface, prevents
this sort of runaway storage of modules. Because implementation modules, by
definition, are never used by any other modules, only the modules that the
implementation module itself uses are stored.

Here are some hints for storing only the modules you need:

• Add modules that use other modules to storage containers before adding
modules that are used by other modules.

• Add only the implementation part of an implementation/interface pair.

PaintApplication

Uses PaintInterface

Uses PaintInterface

PaintImplementation

PaintInterface

Uses PaintInterface

DrawInterface
229

9 ScriptX Language Guide
230

A P P E N D I X

ScriptX Reference
A

A

ScriptX Language Guide
232

ScriptX Reference

A

This appendix provides a formal specification of the ScriptX language. It is
intended as an entry point and reference for advanced users. It presents an
annotated EBNF (Extended Backus-Naur Form) grammar of ScriptX. The
complete EBNF grammar is listed separately at the end of the appendix.

The ScriptX grammar is organized into the following sections:

Topic Discussion Listing

Tokens and Literals 234 255

Types of Expression 240 255

Expression Syntax 243 256

Assignment and Variable Access 245 257

Flow of Control 247 257

Definition of Classes 249 258

Definition of Objects 250 258

Definition of Functions and Methods 251 259

Modules 253 259

Exception Handling 254 260

ScriptX Language Syntax

In an Extended Backus-Naur Form grammar, each unit of syntax is defined
using tokens and other constructs and that are part of the language. For brevity
and readability, this grammar does not depict all rules that govern the use of
punctuation and white space with operators and other tokens. Some
information about precedence of expressions and operators is also unspecified.

Reserved words and tokens, such as operators, that appear directly as shown
in the input stream, are set in Courier boldface in lines of syntax, in lightface in
body type. Non-terminals, units of syntax that are defined elsewhere in the
grammar, are set in Palatino italics. Descriptive comments are used
occasionally to indicate non-printing characters. Since ScriptX is not case
sensitive, uppercase characters have been omitted.

Courier boldface reserved words, operators, printing characters
Courier lightface reserved words, operators, printing characters in body type
Palatino italics non-terminals, units of syntax

Table A-1 lists the notations that are used in this grammar.
233

A

ScriptX Language Guide

Tokens and Literals

Tokens are the basic building blocks that make up expressions and other
constructs in a programming language. The ScriptX bytecode compiler
interprets a stream of input characters, which it can pass through only once. As
it reads these characters, the compiler interprets them, one at a time. A token is
a sequence of one or more input characters that the compiler recognizes and
understands as having some meaning. The ScriptX language has the following
kinds of tokens: symbols, operators, reserved words, punctuation marks, and
literals.

Literals are sequences of characters that are a literal representation of instances
of one of a special set of classes. The value of a literal is the object it represents.
Literals are tokens in the input stream that the bytecode compiler recognizes as
objects. ScriptX provides string literals, name literals, numeric constants, and
several kinds of collections and ranges as literal objects.

Symbols

A symbol must begin with an alpha character, and it can be up to 256
characters in length. The underscore character, which can be used
interchangeably with alpha characters, is the only non-alphanumeric character
that is permitted in a symbol. Symbols cannot contain blanks or other
separators. Although case is remembered when a symbol is first encountered,
and is saved for subsequent printing, ScriptX is not case sensitive.

symbol ::= initialChar [trailingChar]*
initialChar ::= alphaChar | underscore
trailingChar ::= alphaChar | underscore | decimalDigit
alphaChar ::= a | b | c | . . . | x | y | z
decimalDigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
underscore ::= _

A symbol is a lexical name, a name that is understood by the compiler. The
compiler associates a symbol at compile time with the thing in a program that
it names, such as a variable, constant, or function.

Table A-1: Notations used in the ScriptX EBNF grammar

Notation Meaning

::= is defined as

| or

[expr] expr is optional

[expr]* repeat expr zero or more times

[expr]+ repeat expr one or more times
234

ScriptX Reference

A

Operators

All ScriptX operations are performed on operands that are objects, and the
result of any operation is also an object. Many operators actually serve as a
shorthand for functions or generics that are defined by the ScriptX object
system. For example, the RootObject class provides each object with a
default version of the methods isComparable, localLT, localEqual, and
eq. These four generic functions are visible to the scripter. A class can override
these generics to provide its own version of the Comparison protocol. In this
way, the number and string classes have different definitions of equality.

Table A-2 indicates the precedence and associativity of operators in the ScriptX
language. In this table, precedence is ordered from highest to lowest.

Most ScriptX operators can be used with or without white space. Careful use of
white space, which is defined on page 237, can make a program more readable.
Certain operators require a separator to prevent ambiguity. Operators that are
reserved words, such as contains or as, must be set off by a separator,
normally a blank. The subtraction operator requires a separator, normally a
blank, so that the compiler can distinguish it from the negation operator.

Reserved Words

Reserved words are words that cannot, with one exception, be used as names
of things because they have special syntactic meanings in ScriptX. (Reserved
words can be used as keywords, followed by a colon, in keyword argument

Table A-2: Precedence and associativity of ScriptX operators

Operator or Token Associativity

element access in collections ([]) left to right

class and instance variable access (. , ’) left to right

coercion (as) left to right

negation (-) left to right

multiplication and division (*, /) left to right

addition and subtraction (+, -) left to right

=, >, <, !=, ==, !==, >=, <=, <>, contains left to right

not left to right

and left to right

or left to right

select left to right

where, before, after, from, to, through left to right

in, by, using right to left

pipe operator (|) left to right

repeat, guard, exit, for, return left to right

thread operator (&) left to right

assignment operator (:=) right to left

ScriptX expression left to right
235

A ScriptX Language Guide
definitions, which are defined on page 252 of this grammar.) Table A-2 contains
a list of reserved words, including several that are not currently in use in the
ScriptX grammar, but are reserved for future use. Throughout this appendix,
reserved words are indicated in the Courier typeface.

Punctuation Marks and Meta-Characters

Separators and terminators are often classified together as a single kind of
token, as punctuation. Delimiters and lead-in characters are meta-characters
that the compiler uses to identify other tokens. Punctuation marks and

Table A-3: ScriptX reserved words

#key first my

#rest fn named

actual for nextMethod

after from not

and function object

any get of

anything global on

as guard or

before if otherwise

by imports prefix

case in readonly

catching inclusive reference

class index renames

class method initializer repeat

class methods inst return

class variables inst methods select

class vars inst variables set

collect inst vars settings

constant instance then

contains instance methods through

contents instance variables throw

continue instance vars throw again

continuous into times

do it to

else its transient

end kind unglobal

every last until

everything local uses

excludes macro using

exclusive method where

exit middle while

exports module with
236

ScriptX Reference A
meta-characters have no meaning in and of themselves, except that they set off
or identify other tokens. A separator indicates the end of one token and the
beginning of the next. A terminator indicates the end of a complete
grammatical construct, such as an expression or a clause within an expression.
A delimiter or a lead-in character indicates that some group of characters it is
associated with in the input stream represents a particular kind of token.

In this grammar, those punctuation marks that have a visual printed
representation, such as the comma or colon, are depicted in literal form, in the
same typeface and style as reserved words. Nonprinting punctuation marks,
such as the end-of-line character, are indicated in certain cases.

White space is a concept that goes hand-in-hand with punctuation. Any input
characters that the compiler ignores are called white space. ScriptX has two
kinds of white space. First, there are comments. ScriptX identifies a sequence of
characters that begins with two hyphens (--) or two slashes (//) and ends
with a new line or carriage return as a comment. A comment can be inserted in
the middle of an expression; interpretation of the expression will resume on the
next line. ScriptX also accepts C-style inset comments, using the same
delimiters. ScriptX, in contrast with ANSI C, allows inset comments to be
nested.

A second kind of white space is blank space. Blank space consists of optional
space, tab, and end-of-line characters that can be inserted between tokens to
make code more readable. Certain punctuation marks can serve as white space,
while others cannot. If a punctuation mark can serve as white space, then two
or more are permitted wherever one is permitted. Table A-4 lists punctuation
marks in the ScriptX language, identifying whether or not they can be used as
white space.

Table A-4: Punctuation marks in ScriptX

Punctuation White Space Purpose

blank yes separator

comma (,) no separator in some lists

colon (:) no separator in some paired elements

newline yes separator in incomplete expressions
terminator in complete expressions

carriage return yes separator in incomplete expressions
terminator in complete expressions

semicolon (;) no terminator (newline)

stop (!!) no terminator that halts evaluation of
expressions in the input stream

quotes (" ") no delimiter for string literals

@-sign no lead-in character for name literals

hash sign (#) no lead-in character for array and keyed list
literals

function (->) no lead-in character for function body
237

A ScriptX Language Guide
In most cases, this grammar does not explicitly indicate where end-of-line and
white space characters are allowed, except where an end-of-line character is
required as a separator. An incomplete sentence can be broken with a newline
character; evaluation of the expression resumes on the following line. ScriptX
programmers commonly break lines after a binary operator, after a separator
that cannot act as white space, or anywhere where the compiler is expecting a
closing delimiter such as a parenthesis.

Parentheses serve as separators as well as delimiters in expressions that could
otherwise not be parsed. The following examples demonstrate how
parentheses can be used to turn an expression into a factor. Factors, indivisible
syntactic units, are discussed in the section “Types of Expression” on page 240.

function doIt a b -> (
print a; print b

)

doIit -1 -2

➯ -1
-2

doIt -(1) -(2)

➯ no sub instance method

doIt negate(1) negate(2)

➯ too many arguments 4 supplied 2 allowed

doIt (negate(1)) (negate(2))

➯ -1
-2

backslash (\) no separator that also turns the next new
line or carriage return in the input stream
into white space
lead-in character for escape characters

two hyphens (--) yes lead-in character for a comment

two slashes (//) yes lead-in character for a comment

comment (/* */) yes delimiters for ANSI C style inset
comments, which can be nested

parentheses no delimiters for certain kinds of lists,
anonymous functions, compound
expressions; often required as a separator
to insure that an expression is parsed

brackets no delimiters for access to members of
collections

braces no delimiters for restrictions

angle brackets < > no delimiters for hexadecimal constants
used to represent unicode characters
(also used as comparison operators)

Table A-4: Punctuation marks in ScriptX

Punctuation White Space Purpose
238

ScriptX Reference A
As these examples demonstrate, ScriptX allows lists of arguments with
minimal punctuation. If arguments are not separated by commas, then the
arguments themselves must be factors. By enclosing an expression that is used
as an argument within parentheses, it becomes a factor, a complete and
indivisible unit of punctuation.

ScriptX punctuation allows for a variety of programming styles; its flexibility
accounts for the fluidity of ScriptX code. Punctuation usually causes few
difficulties, even for beginning scripters. For more information on punctuation,
see the discussion that begins on page 29 of this volume.

Literals

Name literals represent instances of the class NameClass. Any valid name that
is preceded by an at sign (@) is interned. Name literals are full-fledged
NameClass objects that have the same value at compile time and run time.
They are used as labels in programs, often to represent a state or outcome. Two
name literals that have the same value are the same object. That is, the names
@insideOut, @insideout, and @INSIDEOUT are not merely equal, they are
actually the same object.

nameLiteral ::= @ [trailingChar]+
trailingChar ::= alphaChar | underscore | decimalDigit

A string literal is a sequence of Unicode characters, enclosed in double quotes
in the input stream. A string literal can extend over multiple lines, can be any
length, and can include any valid Unicode character, including newline. To use
certain nonprinting characters in a string, escape characters are required.

stringLiteral ::= " [unicodeChar]* "
unicodeChar ::= -- any printing char

| escapeChar
| \< hexConst >

escapeChar ::= \n | \r | \t
hexDigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f
hexConst ::= [hexDigit]+

The compiler automatically stores a string literal as a StringConstant object.
To modify or edit a string literal, it must first be converted to the String or
Text class. Although name literals and symbols are not case sensitive in
ScriptX, strings are. For more information on strings, see the “Text and Fonts”
chapter of ScriptX Components Guide.

A numeric constant is automatically stored as an instance of one of the
subclasses of Number: ImmediateInteger, LargeInteger,
ImmediateFloat, or Float, depending on range and precision requirements.
An integer constant is stored as an ImmediateInteger object, except when its
value extends beyond the 29-bit storage range of the class. ScriptX has no
unsigned data types. A floating point constant is converted to either an
ImmediateFloat or a Float object depending on both range and precision
requirements. For more information, see the “Numerics” chapter of ScriptX
Components Guide.
239

A ScriptX Language Guide
numericConst ::= mantissa [exponent]
| hexLiteral

mantissa ::= integerConst [.decimalDigit] [decimalDigit]*
exponent ::= e integerConst
integerConst ::= [negOperator] [decimalDigit]+
negOperator ::= -
decimalDigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
hexLiteral ::= 0x [hexDigit]+

The ScriptX language provides several other literal constructions. A literal
construction is an expression that creates a new instance of a class directly.
Normally, you create a new class either by calling the new method or by using
the object expression. ScriptX creates instances of Array,
KeyedLinkedList, ContinuousNumberRange, and NumberRange from
literal expressions.

arrayLiteral ::= #(exprList)
| #(keyedList)
| #()
| #(:)

exprList ::= simpleExpr [, exprList]*
keyedList ::= factor : simpleExpr [, keyedList]*

rangeLiteral ::= factor to factor [by factor]
| factor by factor [by factor]
| factor to factor [inclOption] continuous
| factor inclOption to factor [inclOption] continuous

inclOption ::= inclusive | exclusive

These collections and ranges can also be instantiated by normal means, by
calling new on the appropriate class or by using an object definition expression.

Types of Expression

A ScriptX program is a sequence of ScriptX expressions. Every complete
construct in the ScriptX language is an expression. Every expression yields a
value that is an object, and every object is an instance of a class, either a class
that is defined by the environment, or one that is created by the user.

A sentence is the basic unit of syntax that is evaluated incrementally by the
ScriptX bytecode compiler, generally a single top-level expression followed by
an end-of-line character.

sentence ::= [endOfLine]* sentence
| topLevelExpr endOfStream
| topLevelExpr endOfLine
| endOfStream

An expression that can be entered and evaluated at the top level, outside of
any blocks, is a top-level expression. An expression that can be entered and
evaluated inside a compound expression, that is, within parentheses, is an
inner-level expression. A few operations are permitted only at one level. For
240

ScriptX Reference A
example, modules can only be defined at the top level, and locals can only be
declared as inner-level expressions. Most ScriptX expressions are allowed at
both levels.

topLevelExpr ::= simpleExpr
| globalExpr
| guardExpr
| assignmentExpr
| repeatExpr
| moduleExpr
| inModuleExpr

innerLevelExpr ::= expr
| localExpr

Expressions are a subcategory of inner-level expressions, a general category to
which most other ScriptX expressions belong.

expr ::= simpleExpr
| guardExpr
| assignmentExpr
| repeatExpr
| blockControlExpr

In ScriptX, the target of a control structure is generally an expression. Examples
are the if . . . then and guard constructs.

ifExpr ::= if simpleExpr then expr else expr
| if simpleExpr do expr

guardExpr ::= guard expr [catching catchList] [on exit expr] end

A simple expression is a subcategory of both expression and top-level
expression. An expression that forms a clause within another expression must
be a simple expression.

simpleExpr ::= factor
| ifExpr
| caseExpr
| forExpr
| classDefExpr
| objectDefExpr
| functionDefExpr
| callExpr
| coercionExpr
| pipeExpr
| threadExpr
| arithmeticExpr
| pathExpr
| indexExpr
| rangeLiteral

A factor is a subcategory of simple expression. Factors are expressions, such as
literals, that are indivisible units of syntax, units that usually cannot be
factored into smaller units. A factor is the smallest possible piece of an
expression that is itself an expression.
241

A ScriptX Language Guide
Any expression that is enclosed in parentheses, including a compound
expression or an anonymous function, is a special kind of factor. In the
surrounding scope, an expression enclosed in parentheses is recognized as a
factor. This allows any inner-level expression to be used where a factor is
required. Because of the precedence of factors, parentheses provide classical
control over evaluation order.

ScriptX includes two special constructs that behave as factors. The
nextMethod construct, which must appear within the body of a method,
denotes the method you are in. Its prime use is for calling superclass methods.
The question mark (?) is a special construct that always stands for the most
recent value returned at the top level by the scripter. As a consequence, it
makes sense only in scripts that are evaluated in a listener window.

factor ::= location
| numbericConstant
| stringLiteral
| nameLiteral
| ?
| nextMethod
| anonFuncDefExpr
| compoundExpr
| arrayLiteral

Figure A-1 demonstrates how top-level and inner-level expressions can be
broken out into one of the five grammatical categories defined here: top-level
expressions, inner-level expressions, expressions, simple expressions, and
factors. These categories are used throughout the grammar to establish rules of
syntax.
242

ScriptX Reference A
Figure A-1: Types of ScriptX expressions

Expression Syntax

This section defines some of the basic expressions that are commonly used in
ScriptX programs.

A compound expression is a list of one or more inner-level expressions,
enclosed in parentheses. In this respect, parentheses in ScriptX are analogous to
braces in C and C++. Since end-of-line tokens can be used as white space,
programmers can use parentheses in a variety of styles, just as they do in C. A
compound expression is a factor.

topLevelExpr

globalExpr

moduleDefExpr

inModuleExpr

guardExpr

simpleExpr

repeatExpr

assignmentExpr

location

numeric constant

string literal

name literal

array literal

anonFuncDefExpr

compoundExpr

nextMethod

guardExpr

assignmentExpr

repeatExpr

simpleExpr

blockControlExpr

localExpr

expr

innerLevelExpr

factor

expression

top-level expression

ifExpr

caseExpr

forExpr

classDefExpr

objectDefExpr

functionDefExpr

pipeExpr

threadExpr

callExpr

coercionExpr

arithmeticExpr

pathExpr

indexExpr

rangeLiteral

factor

simple expression

inner-level expression

freeMethDefExpr
243

A ScriptX Language Guide
compoundExpr ::= (compoundExprSeq)
compoundExprSeq ::= innerLevelExpr moreExprs
moreExprs ::= endOfLine compoundExprSeq

| endOfLine [moreExprs]*
| empty

A call expression is a simple expression that invokes a function or method,
supplying a list of arguments that matches the list of parameters in that
function or method’s calling sequence. (Elsewhere in this grammar, function
parameters are sometimes referred to as “argument definitions.”) The first
token in a call expression must be a factor. This factor must yield a function
object, such as a generic function, and is usually the name of a variable holding
the function.

The balance of a call expression, if present, supplies a list of arguments. ScriptX
supports several different formats for this list, with a choice of commas or
spaces as separators.

callExpr ::= factor paramSequence
| factor (simpleExpr , paramList)
| factor (symbol : factor [, paramList])
| factor ()

paramSequence ::= [symbol :] factor [paramSequence]
paramList ::= [symbol :] simpleExpr [, paramList]

Only the first two forms of call expression apply to method calls. The first
parameter in a method call is always a positional argument; it supplies the
name of the object that the method is being called on. A function that is called
with no arguments requires a set of empty parentheses, depicted in the fourth
form, to identify the expression as a call expression.

Note – In the call expression, and in other ScriptX expressions where a script
supplies a list of elements to the compiler, ScriptX version 1.0 has a built-in
limit of 200 items in a list. This restriction is defined syntactically, and applies
to explicit function arguments, global and local declarations, lists of class and
instance variables, and lists of expressions in a compound expression sequence.

If a call expression includes both keyword and positional arguments, positional
arguments must be supplied first, and in their proper order, followed by rest
and keyword arguments. Supplying improper arguments or supplying
arguments in the wrong order generates an exception.

The block control expression is a general form that encompasses several types
of expression. A block control expression can only be used within a control
structure, such as a function, method, or loop. Within a loop, the continue
expression is used to immediately resume at the next iteration of the loop. The
exit expression is similar to continue, except that evaluation resumes
outside the loop, with the next expression in the script. The optional with
clause sets the value of the construct upon exit. The return expression exits
from the enclosing function or method, and can set the return value, which is
244

ScriptX Reference A
otherwise undefined. The final form of block control expression,
throw again, is associated with exception handling, and is used only inside
guarded code.

blockControlExpr ::= continue
| exit [with simpleExpr]
| return [simpleExpr]
| throw again

An arithmetic expression performs an arithmetic or logical operation on one or
more operands. The coercion expression has a similar form. The negation
operator and not are unary operators—they operate on a single operand. The
compiler allows any simple expression as an operand. This expression must
evaluate at run-time to an instance of an appropriate class. For example, the
addition operation is defined only for instances of subclasses of Number and
String. In some cases, if the second operand is incompatible with the first, it
attempts to coerce it. If it is unable to coerce to an appropriate class, it
generates an exception.

arithmeticExpr ::= negOperator simpleExpr
| simpleExpr arithOperator simpleExpr
| simpleExpr compOperator simpleExpr
| simpleExpr contains simpleExpr
| not simpleExpr
| simpleExpr and simpleExpr
| simpleExpr or simpleExpr

coercionExpr ::= factor as factor

Pipe and thread operators provide shorthand equivalents for common
operations on objects. The pipe expression is equivalent to an invocation of the
pipe generic function, which is implemented on the collection family of
classes. The thread operator spawns a new RegularThread object, running
the given expression asynchronously.

pipeExpr ::= | simpleExpr
threadExpr ::= simpleExpr &

Assignment and Variable Access

The ScriptX assignment expression assigns the value of a simple expression to
a location. A location is either the name of a global or local variable, a specifier
for some object’s instance variable, or a specifier for an element in a collection.

assignmentExpr ::= location := simpleExpr
| location := assignmentExpr
| location := guardExpr

location ::= symbol
| ivAccess
| elementAccess

An assignment expression yields the value that is assigned. This allows
assignment expressions to be cascaded or embedded within other expressions.
245

A ScriptX Language Guide
ScriptX provides a choice in syntax for instance variable access. In the
possessive form, a separator is required before the symbol. Instance variable
access associates left-to-right, so expressions can be nested to allow for access
to instance variables defined by embedded objects.

ivAccess ::= factor.symbol
| factor’s symbol

ScriptX uses brackets to identify elements of a collection in an element access
expression. Note that the brackets in the element access expression are not
meta-characters of the EBNF grammar.

elementAccess ::= factor [simpleExpr]

A binding is an association between a symbol, or lexical name, and a global or
local variable. A binding can be declared local or global. An assignment
statement or a class or object definition expression stores a pointer to some
object at that location. Objects do not necessarily have to have a binding—they
can be embedded within other objects. Objects can also have more than one
binding.

binding ::= variable
funBindings ::= functionDefExpr [, functionDefExpr]*

| freeMethDefExpr [, freeMethDefExpr]*

A local declaration is allowed only at the inner level, inside the scope for
which the binding is local. An explicit global declaration is allowed only at the
top level. If the scope of a declaration is not given explicitly, it is global by
default. Of course, a global declaration is global only within modules that use
its definition. The unglobal version of the global expression removes a
global binding.

localExpr ::= local binding [, binding]*
| local funBindings

globalExpr ::= global binding [, binding]*
| unglobal binding [, binding]*
| global funBindings

A variable is a symbol that is associated with some location through a binding.
When a variable is declared, it is initialized automatically. The compiler offers
several options at initialization. A variable can be declared constant,
meaning that its value cannot later be changed by assignment. A variable can
be associated with a restriction. (Although the restriction syntax is legal in any
variable declaration, restrictions are currently implemented only in free
method definitions. Otherwise, restrictions are ignored.) A variable can be
assigned an initial value. If no value is assigned to a variable when it is
declared, its value is set to undefined, a special object.
246

ScriptX Reference A
variable ::= [constant] symbol [restriction] [initialVal]
restriction ::= { class factor }

| { kind factor }
| { object factor }

initialVal ::= : simpleExpr
| := simpleExpr

Flow of Control

An if expression evaluates a simple conditional to determine flow of control
in a program. In ScriptX, a conditional may yield any object, with the Boolean
false object meaning false, and any other value meaning true. The if
expression has three alternate forms, based on whether an else clause is
supplied. If then is supplied as the second keyword, without an
accompanying else clause, execution is delayed until the parser interprets the
next complete expression. To force evaluation in a listener window after a
then clause, enter two exclamation marks (!!).

ifExpr ::= if simpleExpr then expr else expr
| if simpleExpr do expr
| if simpleExpr then expr

The ScriptX case expression is analogous to the switch statement in C and
C++, but the ScriptX case expression is more flexible. As with other control
structures, a case expression first evaluates a simple control expression. Case
tags can be any factor. These factors are evaluated in order. When a factor
matches the value of the control expression (using the equals global function,
equivalent to the “=” operator, as a test), its associated expression is executed.
If no factor matches, the expression in the otherwise clause, if one is
provided, is executed. In contrast with the C switch statement, no explicit
break is required. Only one expression within the body of a case expression is
executed.

caseExpr ::= case [simpleExpr] of taggedFormList end
taggedFormList ::= taggedForm [moreTaggedForms]
moreTaggedForms ::= [endOfLine]* taggedFormList
taggedForm ::= factor : expr

| otherwise : expr

The repeat expression is almost identical with the if . . . do form of the
if expression, except that the target expression is repeated as a loop until its
control expression returns false. The first two forms of this expression do not
guarantee that the loop will ever be executed, since the control expression
might return false on its first iteration. The final two forms of this expression
guarantee that the loop will be executed at least once, since the control
expression is evaluated only after the loop is executed.

repeatExpr ::= repeat while simpleExpr do expr
| repeat until simpleExpr do expr
| repeat expr while simpleExpr
| repeat expr until simpleExpr
247

A ScriptX Language Guide
The ScriptX for expression has three parts. The first part gives the source or
sources of iteration. The second part, which is optional, provides a conditional
that is evaluated once before each iteration of the loop. The third part is the
body of the loop.

forExpr ::= for forSources [forTest] forBody

A for expression can supply more than one source of iteration. The program
iterates through these sources in parallel, stopping when the first of these
iterations ends.

forSources ::= forSource [, forSource]*
forSource ::= simpleExpr

| symbol := simpleExpr
| symbol in simpleExpr

There are two forms for the source of iteration in a for expression. The
simplest takes a simple expression yielding a number. It uses this number as a
count for the number of times the loop should iterate. The second associates a
series of values with a local variable, accessible in the loop body. This form can
be used with the discrete range literal, or with a simple expression that yields
a collection.

Syntax for the optional test clause in a for expression is the same as for a
repeat expression.

forTest ::= while simpleExpr
| until simpleExpr

The body of a for expression is a clause that is repeated on each iteration of
the loop. Three variants are available for the body of a for expression. In the
first variant, the body of the loop is simply an expression, often a compound
expression, that is evaluated once for each iteration of the loop. The second
and third variants result in a collection of values that is built during the
iterations. The third variant selects values for this collection based on the result
of a test expression.

forBody ::= do expr
| collect [into simpleExpr] [by factor] \

[as factor] simpleExpr
| select factor [into simpleExpr] \

[by factor] [as factor] if simpleExpr

The second and third variants for the body of a for expression allow for any of
three optional clauses, which must specified in the order shown. The into
clause allows a script to specify an existing collection as the target of collect
or select. The by clause allows a script to specify the collection function that
will be used to add values to the collection (appendReturningSelf, a variant
of append that returns a collection, is the default). The as clause specifies
which class of collection should be constructed.
248

ScriptX Reference A
Definition of Classes

The class definition expression creates a new class, which inherits the
properties and behavior of a list of superclasses. Each item in the list of
superclasses must be a simple expression that returns a class. The class name,
which is required, must be a symbol. If this symbol is specified in the object
definition expression, it is declared as a constant, and can no longer be
assigned to another object.

classDefExpr ::= class symbol (supersList) classBody end
supersList ::= simpleExpr [, supersList]*

The body of a class definition expression has four clauses. These clauses are
used to define class variables, class methods, instance variables, and instance
methods. All four clauses are optional, but those that are present must be
supplied in the specified order.

classBody ::= [classVars] [instanceVars] [classMethods] [instMethods]

Class and instance variables are defined in separate clauses within the body of
the class definition expression. Class and instance variables are implemented
through accessor methods, which get or set a value. Virtual instance variables,
which do not correspond with any physical slot, are implemented as methods.
Real instance variables, although they are associated with an actual slot in the
memory, are also queried through getter and setter methods. You use the class
and object definition expressions to define real variables.

classVars ::= class var[iable]s varList
instanceVars ::= inst[ance] var[iable]s varList
varList ::= [qualifiers] variable moreVars
moreVars ::= [endOfLine]+ varList

| [, varList]*

When a real class or instance variable is defined, you can specify whether that
variable is readonly, transient, or reference. These options, if specified,
must be given in order. A variable that is read-only can be retrieved from the
object store, but not changed. A variable that is transient cannot be stored in
the object store, so its value is discarded each time the object is saved and
retrieved. If a variable is transient, you can specify an optional initialization
function to restore its value each time the class or object is retrieved. A
reference variable is a real variable that is not loaded from the object store until
it is actually needed by the system.

qualifiers ::= [readonly] [transientOption] [reference]
transientOption ::= transient [initializer factor]

Class and instance methods can be defined within the body of a class definition
expression. Each method definition must begin on a new line.
249

A ScriptX Language Guide
classMethods ::= class methods methods
instMethods ::= inst[ance] methods methods
methods ::= methodDefExpr moreMethods
moreMethods ::= [endOfLine]* methods

Note that both class and instance methods can be defined outside the class
body, as free methods. Discussion of method definition expressions, and of
syntax for free methods, begins on page 251.

Definition of Objects

The object definition expression creates a new object, whose properties and
behavior are derived from a given list of classes. This list has the same form
and syntax as the list of superclasses in a class definition expression. If the
object inherits from one class, it is an instance of that class. A script can also
define an object that inherits from more than one class, and is a special instance
of all of them.

The object’s name, which is optional, must be a symbol. If this symbol is
specified in the object definition expression, it is declared as a constant global
variable into which the object is stored.

objectDefExpr ::= object [symbol] ([classesList]) objectBody end
classesList ::= simpleExpr [, classesList]

The body of an object definition expression has five optional clauses. These
clauses are used to set keyword arguments, to define instance variables and
methods, to initialize instance variables, and to insert a series of initial values
into certain kinds of objects, such as collections. All five clauses are optional,
but those that are present must be supplied in the specified order. The instance
variables and instance methods clauses are exactly as defined under the class
definition expression, on page 249. The others are defined below.

objectBody ::= [initialization] [instVars] [instMethods] \
[settings] [contents]

Every ScriptX object defines or inherits a version of the init method, which
takes keyword arguments and generally performs initialization tasks. The
initialization section supplies the object’s init method with a list of
keyword-value pairs. Although the initialization section is optional, many
classes require some keyword arguments when a new object is created.

initialization ::= initList | empty
initList ::= initForm moreInitForms
initForm ::= symbol : simpleExpr
moreInitForms ::= [endOfLine]+ initList

| [, initList]*

The settings clause in the object definition expression is in the same form as
the initialization section. It allows a script to set initial values for instance
variables that are writable, but are not set by the object’s init method. Any
instance variables that are not initialized are set to undefined.
250

ScriptX Reference A
settings ::= settings initList

The contents clause in the object definition expression applies only to objects
that implement the addToContents method. In the core classes,
addToContents is defined as part of the Collection protocol. Use the
contents clause to add a series of values to a new Collection object. Values
are supplied as a comma or return separted list of simple expressions, and are
added to the collection by the addToContents method in the order in which
they are supplied.

contents ::= contents contentsList
contentsList ::= simpleExpr moreContentForms
moreContentForms ::= [endOfLine]+ contentsList

| [, contentsList]*

Definition of Functions and Methods

Expressions that define functions, methods, and free methods are closely
related in syntax. Each definition has three sections: a symbol, a set of
parameter definitions, and a body.

functionDefExpr ::= f[unctio]n symbol [argSeq] body
| f[unctio]n symbol ([argList]) body

methodDefExpr ::= method [getterOrSetter] symbol argSeq body
freeMethDefExpr ::= [class] method [getterOrSetter] symbol argSeq body
body ::= -> expr

The reserved words get and set are semantically equivalent to naming a
method with “getter” and “setter” as suffixes. A method that is defined as a
getter or setter acts as a virtual instance variable. For more information on
getter and setter methods, see page 142.

getterOrSetter ::= get | set

A ScriptX function or method can accept three different kinds of arguments.
Positional arguments are conventional, unkeyed arguments, and they must be
supplied in the correct order when the function or method is called. Rest
arguments, which are also unkeyed, provide a mechanism for passing in a
variable number of arguments. Key arguments are passed with a keyword
identifier, as a keyword-value pair, so they can be supplied in any order.

argSeq ::= [positionalArgSeq] [restArg] [keywordArgSeq]
argList ::= [positionalArgList] [restArg] [keywordArgList]

A function’s argument definitions (parameters) are matched with arguments in
the call expression’s argument sequence. Call expressions are discussed on
page 244. Positional arguments are matched first. A function or method accepts
a set of positional arguments, separated by commas or spaces.

positionalArgSeq ::= argument [argument]*
positionalArgList ::= argument [, positionalArgList]*
251

A ScriptX Language Guide
An argument definition is a symbol. It resembles a local variable definition,
naming a variable that is defined within its own body. Like a local variable
declaration, an argument definition overrides a name that is defined in a
surrounding scope. Restrictions are permitted as part of the argument syntax,
but they are not implemented in the current version of ScriptX.

argument ::= symbol [restriction]

The rest argument clause supplies a symbol, which the call expression uses to
pass a variable-length sequence of unkeyed arguments. When the function or
method is called, this symbol is bound to an array, and all the arguments from
the call expression’s argument list are placed in sequence in that array. Rest
arguments are useful when a function wants to accept a variable-length
sequence of arguments.

restArgs ::= #rest symbol

The keyword argument sequence begins with the reserved word #key, which
serves as a lead-in for the sequence or list that follows. Keyword-argument
pairs can be separated by blanks if parentheses are not used, or by commas if
parentheses are used.

keywordArgSeq ::= #key keyArgPair [keyArgPair]*
keywordArgList ::= #key keyArgPair [, keyArgPair]*

Each keyword-argument definition can have three parts. Only the first part, the
name of the keyword itself, is actually required. This argument defintion is the
key that a calling function uses to specify which argument it is supplying. A
function or method definition can supply an optional symbol, which will be
the name of the argument inside the function body. Otherwise, the argument’s
name inside the function is the name of the keyword itself.

keyArgPair ::= argument : [symbol] [(simpleExpr)]

A function or method definition can also supply an optional expression,
enclosed in parentheses, which is used to set a default value if a keyword
argument is not supplied by the caller. It is up to the function or method itself
to test for required keyword arguments, and report an exception if any are
missing, or are supplied incorrectly.

An anonymous function, also called an in-line function definition, is a function
definition that is not assigned to a lexical name. Unlike other functions and
methods, it is a factor. Its argument definition list is in the same form as the
argument definition list for a regular function definition. The body of an
anonymous function must be a compound expression sequence. This sequence
can be as simple as one inner-level expression.

anonFuncDefExpr ::= (anonArgs -> compoundExprSeq)
anonArgs ::= [paramSequence] [restArg] [keywordArgSeq]

| empty
252

ScriptX Reference A
Modules

Expressions that define modules, or that set the current working module, are
only allowed at the top level.

inModuleExpr ::= in module symbol
moduleDefExpr ::= module symbol [moduleOptions] end

Each module option can be repeated any number of times, and in any order,
within the module definition expression.

moduleOptions ::= [moduleOption]*
moduleOption ::= exports [readonly] \

[inst[ance] var[iable]s] symbolSeq
| uses symbolSeq
| uses symbol [with usesOptions] end

symbolSeq ::= symbol [, symbol]*

A module must explicitly list each name that it exports. Names of classes,
objects, global variables, global functions, and generic functions, including
getter and setter methods, must be explicitly listed in an exports clause.

Two syntactic choices are available in a module definition expression for using
other modules. A uses clause lists a module or modules that are imported as a
whole into the module. A uses . . . with clause allows for additional
restrictions on how names are imported from another module. A
uses . . . with clause contains a list of options. Each uses . . . with option can
be repeated any number of times, and in any order.

usesOptions ::= [usesOption]*
usesOption ::= imports everything

| imports [readonly] \
[inst[ance] var[iable]s] symbolSeq

| exports everything
| exports [readonly] \

[inst[ance] var[iable]s] symbolSeq
| prefix symbol
| excludes [readonly] \

[inst[ance] var[iable]s] symbolSeq
| renames [readonly] \

[inst[ance] var[iable]s] renameSeq
renameSeq ::= symbol : symbol [, symbol : symbol]*

Each uses . . . with option provides functionality for handling names that are
imported into modules. Names that are imported from another module can be
specified individually, or a module can import every name. Names that are
imported can be exported again to other modules that use the current module.
Names can also be excluded or renamed. An importing module can prefix all
names from a given module that it uses.
253

A ScriptX Language Guide
Exception Handling

The guard expression is used for catching and handling exceptions. It
provides an extra layer of exception handling while ScriptX executes the
guarded expression, which is often a compound expression. If this expression
is a compound expression, other guard expressions can be nested dynamically
inside it.

The guard expression has two optional clauses. The catching clause is
executed only if an exception occurs. It supplies a list of exception tags, known
as catchers, that are paired with expressions. These catchers can be exception
classes, or they can be instances of those classes.

guardExpr ::= guard expr [catching catchList] [on exit expr] end

The on exit clause allows a script to supply an expression that will be
executed automatically when the flow of control leaves the guard expression.
ScriptX is guaranteed to execute the expression in the on exit clause, whether
or not an exception is reported.

The catching clause resembles the case expression, but it actually functions
quite differently. Each entry in the catch list is called a catcher. When an
exception occurs, ScriptX matches the exception with every catcher on the
catch list. After each entry in the catch list has been tested, ScriptX executes the
expression in the on exit clause, if one is present, and throws the exception
again.

catchList ::= catcher moreCatchers
moreCatchers ::= [endOfLine]* catchList

| [endOfLine]* moreCatchers
| empty

catcher ::= symbol [symbol] [: expr]

The following constructs apply to the catching clause. The reserved word
all, used as a symbol in the catch list, catches all exceptions. Note that all is
not analogous with otherwise in the case expression. Evaluation of the
script resumes with the next item in the catch list after the expression
associated with all has been executed. An all catcher can be at the
beginning, at the end, or anywhere in the middle of a catch list, and there can
even be multiple all catchers in a catch list.

The reserved word caught acts as a function, and catches the exception. It
serves as a break point, causing the flow of control to leave the catch list.
caught requires an expression, which is evaluated and serves as the return
value of the guard expression. If the expression is not caught, evaluation
continues until the end of the catch list is reached.

The reserved word throw again, defined as a block control expression, causes
the flow of control to leave the current catch list, but it reports the exception
again. If the guard expression is called within another guard expression,
evaluation switches to the catching clause in the next surrounding guard
expression.
254

ScriptX Reference A
ScriptX EBNF Grammar

Tokens and Literals

symbol ::= initialChar [trailingChar]*
initialChar ::= alphaChar | underscore
trailingChar ::= alphaChar | underscore | decimalDigit
nameLiteral ::= @ [trailingChar]+

arithOperator ::= + | - | * | /
negOperator ::= -
compOperator ::= = | == | <> | != | !== | < | > | <= | >=
integerConst ::= [negOperator] [decimalDigit]+
mantissa ::= integerConst [.decimalDigit] [decimalDigit]*
exponent ::= e integerConst
numericConst ::= mantissa [exponent]

| hexLiteral
hexConst ::= [hexDigit]+
hexLiteral ::= 0x [hexDigit]+

stringLiteral ::= " [unicodeChar]* "
unicodeChar ::= -- any printing char

| escapeChar
| \< hexConst >

alphaChar ::= a | b | c | . . . | x | y | z
decimalDigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
hexDigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f
underscore ::= _
escapeChar ::= \n | \r | \t

endOfLine ::= \n\r -- new line plus carriage return (OS/2 and Windows)
| \r -- carriage return (Macintosh)
| ;

endOfStream ::= -- end of stream

arrayLiteral ::= #(exprList)
| #(keyedList)
| #()
| #(:)

exprList ::= simpleExpr [, exprList]*
keyedList ::= factor : simpleExpr [, keyedList]*

rangeLiteral ::= factor to factor [by factor]
| factor by factor [by factor]
| factor to factor [inclOption] continuous
| factor inclOption to factor [inclOption] continuous

inclOption ::= inclusive | exclusive

Types of Expression

sentence ::= [endOfLine]* sentence
| topLevelExpr endOfStream
| topLevelExpr endOfLine
| endOfStream
255

A ScriptX Language Guide
topLevelExpr ::= simpleExpr
| globalExpr
| guardExpr
| assignmentExpr
| repeatExpr
| moduleExpr
| inModuleExpr

innerLevelExpr ::= expr
| localExpr

expr ::= simpleExpr
| guardExpr
| assignmentExpr
| repeatExpr
| blockControlExpr

simpleExpr ::= factor
| ifExpr
| caseExpr
| forExpr
| classDefExpr
| objectDefExpr
| functionDefExpr
| callExpr
| coercionExpr
| pipeExpr
| threadExpr
| arithmeticExpr
| pathExpr
| indexExpr
| rangeLiteral

factor ::= location
| numericConstant
| stringLiteral
| nameLiteral
| ?
| nextMethod
| anonFuncDefExpr
| compoundExpr
| arrayLiteral

Expression Syntax

compoundExpr ::= (compoundExprSeq)
compoundExprSeq ::= innerLevelExpr moreExprs
moreExprs ::= endOfLine compoundExprSeq

| endOfLine [moreExprs]*
| empty

callExpr ::= factor paramSequence
| factor (simpleExpr , paramList)
| factor (symbol : factor [, paramList])
| factor ()

paramSequence ::= [symbol :] factor [paramSequence]
paramList ::= [symbol :] simpleExpr [, paramList]
256

ScriptX Reference A
blockControlExpr ::= continue
| exit [with simpleExpr]
| return [simpleExpr]
| throw again

coercionExpr ::= factor as factor
pipeExpr ::= | simpleExpr
threadExpr ::= simpleExpr &

arithmeticExpr ::= negOperator simpleExpr
| simpleExpr arithOperator simpleExpr
| simpleExpr compOperator simpleExpr
| simpleExpr contains simpleExpr
| not simpleExpr
| simpleExpr and simpleExpr
| simpleExpr or simpleExpr

Assignment and Variable Access

assignmentExpr ::= location := simpleExpr
| location := assignmentExpr
| location := guardExpr

location ::= symbol
| ivAccess
| elementAccess

localExpr ::= local binding [, binding]*
| local funBindings

globalExpr ::= global binding [, binding]*
| unglobal binding [, binding]*
| global funBindings

binding ::= variable
funBindings ::= functionDefExpr [, functionDefExpr]*

| freeMethDefExpr [, freeMethDefExpr]*

variables ::= variable [, variable]*
variable ::= [constant] symbol [restriction] [initialVal]

restriction ::= { class factor }
| { kind factor }
| { object factor }

initialVal ::= : simpleExpr
| := simpleExpr

ivAccess ::= factor.symbol
| factor’s symbol

elementAccess ::= factor [simpleExpr]

Flow of Control

ifExpr ::= if simpleExpr then expr else expr
| if simpleExpr then expr
| if simpleExpr do expr
257

A ScriptX Language Guide
caseExpr ::= case [simpleExpr] of taggedFormList end
taggedFormList ::= taggedForm moreTaggedForms
moreTaggedForms ::= [endOfLine]* taggedFormList
taggedForm ::= factor : expr

| otherwise : expr

repeatExpr ::= repeat while simpleExpr do expr
| repeat until simpleExpr do expr
| repeat expr while simpleExpr
| repeat expr until simpleExpr

forExpr ::= for forSources [forTest] forBody
forSources ::= forSource [, forSource]*
forSource ::= symbol in simpleExpr

| symbol := simpleExpr
| simpleExpr

forTest ::= while simpleExpr
| until simpleExpr

forBody ::= do expr
| collect [into simpleExpr] [by factor] [as factor] simpleExpr
| select factor [into simpleExpr] \

[by factor] [as factor] if simpleExpr

Definition of Classes

classDefExpr ::= class symbol (supersList) classBody end
supersList ::= simpleExpr [, supersList]*
classBody ::= [classVars] [instanceVars] [classMethods] [instMethods]

classVars ::= class var[iable]s varList
instanceVars ::= inst[ance] var[iable]s varList
varList ::= [qualifiers] variable moreVars
moreVars ::= [endOfLine]+ varList

| [, varList]*
qualifiers ::= [readOnly] [transientOption] [reference]
transientOption ::= transient [initializer factor]

classMethods ::= class methods methods
instMethods ::= inst[ance] methods methods
methods ::= methodDefExpr moreMethods
moreMethods ::= [endOfLine]* methods

Definition of Objects

objectDefExpr ::= object [symbol] ([classesList]) objectBody end
classesList ::= simpleExpr [, classesList]
objectBody ::= [initialization] [instanceVars] [instMethods] \

[settings] [contents]

initialization ::= initList | empty
initList ::= initForm moreInitForms
initForm ::= symbol : simpleExpr
moreInitForms ::= [endOfLine]+ initList

| [, initList]*
258

ScriptX Reference A
settings ::= settings initList
contents ::= contents contentsList
contentsList ::= simpleExpr moreContentForms
moreContentForms ::= [endOfLine]+ contentsList

| [, contentsList]*

Definition of Functions and Methods

functionDefExpr ::= f[unctio]n symbol [argSeq] body
| f[unctio]n symbol ([argList]) body

methodDefExpr ::= method [getterOrSetter] symbol argSeq body
freeMethDefExpr ::= [class] method [getterOrSetter] symbol argSeq body
anonFuncDefExpr ::= (anonArgs -> compoundExprSeq)
body ::= -> expr
getterOrSetter ::= get | set

argSeq ::= [positionalArgSeq] [restArg] [keywordArgSeq]
argList ::= [positionalArgList] [restArg] [keywordArgList]
anonArgs ::= [paramSequence] [restArg] [keywordArgSeq]

| empty
positionalArgSeq ::= argument [argument]*
positionalArgList ::= argument [, positionalArgList]*
restArgs ::= #rest symbol
keywordArgSeq ::= #key keyArgPair [keyArgPair]*
keywordArgList ::= #key keyArgPair [, keyArgPair]*
argument ::= symbol [restriction]
keyArgPair ::= argument : [symbol] [(simpleExpr)]

Modules

inModuleExpr ::= in module symbol
moduleDefExpr ::= module symbol [moduleOptions] end
moduleOptions ::= [moduleOption]*
moduleOption ::= exports [readonly] [inst[ance] var[iable]s] symbolSeq

| uses symbolSeq
| uses symbol [with usesOptions] end

symbolSeq ::= symbol [, symbol]*

usesOptions ::= [usesOption]*
usesOption ::= imports everything

| imports [readonly] [inst[ance] var[iable]s] symbolSeq
| exports everything
| exports [readonly] [inst[ance] var[iable]s] symbolSeq
| prefix symbol
| excludes [readonly] [inst[ance] var[iable]s] symbolSeq
| renames [readonly] [inst[ance] var[iable]s] renameSeq

renameSeq ::= symbol : symbol [, symbol : symbol]*
259

A ScriptX Language Guide
Exception Handling

guardExpr ::= guard expr [catching catchList] [on exit expr] end
catchList ::= catcher moreCatchers
moreCatchers ::= [endOfLine]* catchList

| [endOfLine]* moreCatchers
| empty

catcher ::= symbol [symbol] [: expr]
260

A P P E N D I X

Unicode Escape
Characters
 B

B

ScriptX Language Guide
262

Unicode Escape Characters

B

nicode
ScriptX maps Unicode values into the character set of the underlying platform.
Most platforms on which the Kaleida Media Player runs do not yet support
Unicode. The Macintosh and Windows have their own internal character sets,
which are incompatible. ScriptX currently depends on the underlying platform
for screen display of fonts. The font, in turn, is responsible for the glyph.

Table B-1 lists selected Unicode characters that can be mapped to the character
sets of current Kaleida Media Player platforms. For a complete listing of
Unicode characters, see The Unicode Standard, published by Addison-Wesley.

The Unicode character encoding standard is developed by The Unicode
Consortium, incorporated as Unicode, Inc. The Unicode Consortium is a
non-profit organization whose charter is to maintain and promote the Unicode
standard worldwide. Founding members include major companies and
institutions involved in international computing.

Although you can specify any valid Unicode character in ScriptX, a character
can only be displayed if it can be mapped to the character set of the underlying
operating system. The operating system, in turn, must supply a font that
renders the appropriate glyph.

Table B-1: Unicode characters

Character Unicode Character Unicode

¡ 00A1 å 00E5

¢ 00A2 æ 00E6

£ 00A3 ç 00E7

¤ 00A4 è 00E8

¥ 00A5 é 00E9

§ 00A7 ê 00EA

¨ 00A8 ë 00EB

© 00A9 ì 00EC

ª 00AA í 00ED

« 00AB î 00EE

¬ 00AC ï 00EF

® 00AE ñ 00F1

¯ 00AF ò 00F2

± 00B1 ó 00F3

´ 00B4 ô 00F4

µ 00B5 õ 00F5

¶ 00B6 ö 00F6

· 00B7 ÷ 00F7
263

B

ScriptX Language Guide

¸ 00B8 ø 00F8

º 00BA ù 00F9

« 00BB ú 00FA

¿ 00BF û 00FB

À 00C0 ü 00FC

Á 00C1 ÿ 00FF

Â 00C2 ı 0131

Ã 00C3 Œ 0152

Ä 00C4 œ 0153

Å 00C5 Ÿ 0178

Æ 00C6 ƒ 0192

Ç 00C7 ˚ 02DA

È 00C8 ˛ 02DB

É 00C9 ˜ 02DC

Ê 00CA ˘ 0306

Ë 00CB ˙ 0307

Ì 00CC – 2013

Í 00CD — 2014

Î 00CE ‘ 2018

Ï 00CF ’ 2019

Ñ 00D1 ‚ 201A

Ò 00D2 “ 201C

Ó 00D3 ” 201D

Ô 00D4 „ 201E

Õ 00D5 † 2020

Ö 00D6 ‡ 2021

¥ 00D7 • 2022

Ø 00D8 ‰ 2030

Ù 00D9 ‹ 2039

Ú 00DA › 203A

Û 00DB ∂ 2202

Ü 00DC ™ 2122

ß 00DF ⁄ 2215

à 00E0 ∞ 221E

á 00E1 ≠ 2260

â 00E2 ≤ 2264

ã 00E3 ≥ 2265

ä 00E4

Table B-1: Unicode characters (Continued)

Character Unicode Character Unicode
264

Index

– 41–43, 47
!= 41, 45, 47
!== 41, 44, 47
& 42
() 41
* 41–42, 47
+ 41–43, 47
. 41
/ 42, 47
:= 38, 42
< 41, 46–47
<= 41, 46–47
<> 41, 45, 47
<nnnn> 32
= 41, 45, 47
== 41, 44, 47
> 41, 46–47
>= 41, 46–47
[] 41
\ 32
\" 32
\n 32
\r 32
\t 32
| 41

A
abstract classes 23
afterInit 136, 142–143
all, see guard expression 175
allInstances 73
allIvNames 74
and 41, 48
anonymous functions, see functions 105
apply, see functions 109
arguments, see functions 99
arithmetic operators 42–43
Array class 48, 50, 156
array literals 48, 240
arrays

access 50
changing items 51
membership 53

as 41
as, see coercion 67
assignment 245, 247

arrays 51
instance variables 64
variables 38, 257

authoring environments 7

B
backslash 29
behavior 14
Behavior class 72
bindings 194, 198, 246
blank space 237
block control expressions 94
block expressions, see compound expressions 53
Boolean class 33
Boolean operators 48
BTree class 158
by 41
bytecode 8
bytecode compiler 234
ByteStream class
fileIn instance method 204

C
call expression 244
canObjectDo 74
case conventions 34
case expression 84–85, 247
case sensitivity 34, 195
catching, see guard expression 175
caught, see guard expression 175
class expression 249–250
class libraries 22–23
class methods 120–121, 249
class variables 14, 117, 120, 145, 152, 249

getter methods 145, 249
inheritance 119
initial values 119
initializer 147
maximum number 244
qualifiers 146
readonly 147, 249
real 146
reference 147, 249
setter methods 145, 249
transient 147, 249
virtual 147

classes 9, 13, 258
abstract 23
concrete 23
creating 14, 16
definition 115, 121, 249–250
inheritance 117
local 116
redefining 117
scripted 23
sealed 23
 269

Index
CLOS 7
closures 107–108
coercion 67, 69

collections 160–161
Collection class 48, 50, 155
collections 155, 169

access to items 50, 162–163, 246
adding items 165
changing items 51, 166
coercion 160–161
contents 126, 251
creating an instance 160
deleting items 166
empty object 163
membership 53, 168
printing 79, 168–169
removing items 166
searching 166
size 168

comments 29–30, 237
Common Lisp Object System 7
comparison 69, 72
cmp 70
equality 71
global functions 70–71
isComparable 70
magnitude 71
universal comparison 70
universal equality 71

comparison operators 46
comparison protocol 143, 145
isComparable 144
localEqual 144
localLT 144

compound expressions 53, 55, 243
maximum number of expressions 244
scope 54

concatenation 165
concrete classes 23
conditionals 83, 85
constants 38
contains 41, 53
contents 126
continue 94, 244
core classes 9, 11
currentModule global function 191, 205–206

D
debug stream 74, 76
deepInstances 73
deleteModule global function 206
delimiters 236
depth-first order 127–128
DirRep class
fileIn instance method 204

E
empty object 33, 163
encapsulation 10, 13
end-of-line 27, 238
eq 47
equal 47
equality operators 44
errors, see exceptions 175
Exception class 185

subclasses of 185
exceptions 175, 186, 254, 260
guard expression 175, 186, 254
nested guard expressions 180
reporting 183
throwArg 184
throwTag 184

exit 42, 94, 244
exponential notation 31
expressions 8, 240, 245, 255, 257

breaking 27
call 244
compound 243
continuation 29
definition 27
end-of-line 27
factor 241
inner level 240
return values 33
simple expression 241
top level 240

extent 36–37

F
factor 241
factors 238
false 33
fileIn instance method (ByteStream) 204
fileIn instance method (DirRep) 204
Fixed class 30
Float class 30
floating point 30
for 42
for expression 86, 94, 248
as clause 93
by clause 92
collecting results 90, 94
into clause 91
iteration 87, 89
multiple sources of iteration 89
return value 90
selecting results 90, 94

format global function 78
free methods, see methods 133
functions 99, 112, 251–252, 259

anonymous 105, 108
apply 109
arguments 99, 251
270

Index
call expression 65–66
calling 65, 67
closures 107–108
keyword arguments 66, 100, 251
local 100
maximum number of arguments 244
names 100
pipe operator 110, 112
positional arguments 66, 100, 251
rest arguments 102, 251
return values 104
scope 100
threads 109

G
garbage collector 10, 40
ge 47
generic functions 10, 65, 67, 130
generics, see generic functions 65
getAllGenerics 74
getClass 42, 73
getClassName 73
getDirectGenerics 74
getDirectSubs 73
getDirectSupers 73
getModule global function 205
getOne 50
getSubs 72
getSupers 72, 128
getter methods 10, 74, 145, 152
get reserved word 251
specializing 149

global 36, 246
maximum number of declarations 244
modules 192, 197

global variables 194, 197
modules 37

gt 47
guard 42
guard expression 175, 186, 254
all 178, 254
catching 176, 178, 254
caught 176, 182, 254
nested 180
on exit 175, 254
throw again 176, 182, 254

H
HashTable class 158
hexadecimal numbers 31
HyperTalk 7

I
identity operators 44
if expression 83–84, 247

ImmediateFloat class 45
ImmediateInteger class 30, 42, 45
in 41
in module 192, 203–204
inheritance 16

mixing in classes 21
multiple 10, 19, 21

init 136, 141
keyword arguments 60

initializer, see class variables, instance
variables 147

instance 13, 65
instance methods 120–121, 249

definition 125
instance variables 14–15, 117, 119, 145, 152, 249

assignment 64
definition 124
getter methods 10, 74, 145, 249
initial values 119
initializer 147
maximum number 244
modifying 63
qualifiers 146
read-only 65
readonly 147, 249
read-write 65
real 146
reference 147, 249
setter methods 10, 145, 249
setting initial values 125
transient 147, 249
virtual 147

isAKindOf 73
isComparable 70, 144
isDirectSub 73
isMemberOf 73
isSub 73
ivNames 74

K
Kaleida object model 9, 11
keyed list literal 49
keyed list literals 240
keyed lists

access 50
changing items 51
membership 53

KeyedLinkedList class 48, 50, 157
keyword arguments 100
init 60
new 60
object expression 61–62
reserved words 34

keywords, see also reserved words 235
271

Index
L
LargeInteger class 30
le 47
lead-in characters 236
lexical names 35
Lingo 7
LinkedList class 156
Lisp 7
Listener 7

modules 190, 203, 205
Unicode characters 32

literals 59, 234, 239–240, 255
array 48
keyed list 49
name 35–36
number 30
string 31

local 36, 246
class definition 116
functions 100
maximum number of declarations 244

localEqual 144
localLT 144
logical operators 48
loop control expressions 94
loops 247
lt 47

M
magnitude operators 46
memory management 10
method dispatch 10
methods 10, 14, 259

calling 15
core classes 134
definition 129, 143, 251–252
free methods 133–134
nextMethod 18, 135
overriding 18, 134

mix in 21
ModuleClass class 191, 205
modules 37, 189, 229, 253, 259

circular references 211, 222
defining 200
excludes 216, 253
exporting classes 208
exporting instance variables 208
exporting names 193
exporting variables 193
exports 253
exports 206, 209, 217, 253
fileIn 204
importing names 193
importing variables 193
imports 211, 253
interface/implementation model 219, 226
moving between 203–204

names 201, 205
organization 219
prefix 215, 253
readonly 209
renames 213, 253
Scratch module 190–191
ScriptX module 191
storing 227, 229
uses 209, 211, 253
uses with 253
uses...with 209, 218
variable definition 197

mul 47
multiple inheritance 10, 127, 129

mixing in classes 21
multiple inheritance

19, 21

N
name bindings 246
name literals 35–36, 239
NameClass class 35–36
names 34, 36

bindings, see bindings 194
case 34, 195
lexical names 35
module names 205
modules 201
name literals 35–36
reserved words 34

namespaces 194, 198
ne 47
negation 41
nequal 47
new 59, 136–137

keyword arguments 60
nextMethod 18, 135, 242

getter and setter methods 150
not 41
Number class 30
numbers

comparison protocol 144
demotion 42–43
exponential notation 31
floating point 30
hexadecimal 31
literals 30
number classes 30
promotion 42–43

numeric constants 239

O
object expression 61
contents 126, 251
initialization 61
instance methods 125
272

Index
instance methods 250
instance variables 124
instance variables 250
keyword arguments 61–62
settings 62, 125, 250

object store
class and instance variables 146, 249
storing modules 197, 227, 229
storing variables 197

object system 9, 11
object-oriented programming 12, 24
objects 12, 258

coercion 67, 69
comparing, see comparison 69
creating 14, 16, 59, 62
definition 121, 127, 250–251
generic functions 72
inheritance 122
literals 59
new 59, 61
object expression 61
printing, see printing 74
redefining 123

OK 33
OOP, see object-oriented programming 12
operators 44, 48, 235

addition 42–43
Boolean 48
comparison 46
division 42–43
equals 44
identity 44
logical 48
magnitude 46
multiplication 42–43
not equals 44
pipe 110, 112
precedence 41–42
subtraction 41–43
thread 110
white space 41

or 41
otherwise 84–85
output, see printing 74
override 18

P
Pair class 158
pipe operator 110, 112, 245
polymorphism 10, 17
positional arguments, see functions 66
prin generic function 75, 80
print global function 29, 75
printing

collections 168–169
debug stream 74, 76
formatted output 78

global functions 77
objects 74, 80
recursive structures 79

properties 14
protocols 19
punctuation marks 236

Q
Quad class 158
quo 47

R
range literals 88, 158, 240
ranges 88, 158, 160

continuous 159–160
ContinuousNumberRange class 158
IntegerRange class 157
NumberRange class 158

readonly, see class variables, instance variables 147
real variables, see class variables, instance

variables 146
recursive structures

printing 79
reference, see class variables, instance

variables 147
repeat 42
repeat expression 85–86, 247
report 183
reserved words 34, 235
rest arguments 102
return 42, 104, 244
return value 15
RootClass class 72
RootObject class 42, 72

S
saving, see object store 189
scope 36–37

closures 107–108
compound expressions 54

Scratch module 190–191
scripted classes 23
ScriptX Building Blocks 25
ScriptX module 191
sealed classes 23
sentence 28, 240
separators 236
setOne method (Collection) 51
setter methods 10, 145, 152
set reserved word 251
specializing 149

settings 62
Single class 158
Smalltalk 7
SortedArray class 157
273

Index
SortedKeyedArray class 157
specialization 16
string addition 43–44
String class 33
string literals 239
string subtraction 43–44
StringConstant class 33
strings

as collections 169
classes 33
comparison protocol 143
escape characters 32
literals 31
parsing 170
searching 170
special characters 32
Unicode characters 32

sub 47
subclass 17
Substrate module 191
sum 47
superclass 17
symbols 234
syntax

description 3
system objects 33

T
terminators 236
tests 44, 48

comparison 46
equality 44
identity 44
logical 48
magnitude 46

thread operator 245
threads 109–110
throw again 244
throw again, see guard expression 175
throwArg 184
throwTag 184
tokens 234, 239, 255
transient, see class variables, instance

variables 147
Triple class 158
true 33, 42

U
undefined 33, 40
unglobal 246
Unicode 32, 239, 263
Unicode Escape Characters 261, 265
unsupplied 33
until, see repeat expression 86

V
variable access 10
variables

access 246
assignment 38
compound expressions 54
declaration 36, 40
definition 196–197
exporting 206, 209
importing 209, 218
memory management 40
modules 194, 197
rules for naming 35
scope 36–37
static, see closures 36

virtual variables, see class variables, instance
variables 147

W
while, seerepeat expression 86
white space 237
274

Index
275

Index
276

Index
277

Index
278

Index
279

Index
280

Index
281

Index
282

Colophon

PRODUCT DEVELOPMENT

VP Engineering • Chris Jette

Chief Architect • John Wainwright

Kaleida Founder • Erik Neumann

Kaleida Fellow • Andrew Nicholson

ScriptX Language Team • Wade Hennessey (mgr), Mike Agostino, Eric Benson, Ross Nelson,
Chris Richardson, David Williams

ScriptX Media Team • Erik Neumann (mgr), Vidur Apparao, Ikko Fushiki, Jennifer Jacobi,
Chih Chao Lam, Michael Papp, Ken Tidwell, Ken Wiens

Cross-Platform Team • Elba Sobrino (mgr), Yukari Huguenard, Alan Little, Jeanne Mommaerts,
Charlie Reiman, Richard Roth, Vladimir Solomonik, Clayton Wishoff, Wanmo Wong

Quality Engineering Team • Ermalinda Horne (mgr), William Africa, Adela Bartl, Ron Decker,
Suzan Ehdaie, Rajiv Joshi, Tony Leung

Technical Publications Team • Douglas Kramer (mgr), Jocelyn Becker, Alta Elstad,
Maydene Fisher, Howard Metzenberg, Sandra Ware

Application Support Engineering Team • Ray Davis, Rob Lockstone, Felicia Santelli, Su Quek

AND ALL OUR FELLOW KALEIDANS

Masumi Abe, Harvey Alcabes, Rob Barnes, Amy Benesh, Fred Benz, Alison Booth, Mike Braun,
Mark Bunzel, Janet Byler, John Cummerford, Shannon Garrow, Marylis Garthoeffner, Norman
Gilmore, Bill Grotzinger, Sue Haderle, Diana Harwood, Don Hopkins, Bill Howell, John Hudson,
Pat Ladine, Fritzi Lareau, Deb Lyons, Karl May, Steve Mayer, Victor Medina, Gabe Mont-Reynaud,
Tom Morton, Randy Nelson, Christy O'Connell, Karen O'Such, Christian Pease, David Rosnow,
Molly Seamons, Ken Smith, Michelle Smith, Ivan Vazquez, Greg Womack

THANKS TO KALEIDA ENGINEERING ALUMNI, INCLUDING:

Sarah Allen, Dan Bornstein, Jim Inscore, David Kaiser, Shel Kaphan, Laura Lemay, Dave Lundberg,
Leslie Lundquist, Fred Malouf, Dmitry Nasledov, Steve Riggins, Steve Shaw, Cheng Tan,
Phil Taylor

Special Thanks To...

Lady, Nikki, Boots, Ella, Iggy, Kiri, Frisky, Tyler and Rufus

THIS DOCUMENT

Writing • Howard Metzenberg, Maydene Fisher, Jocelyn Becker

Original author • Laura Lemay

Book production • Sandra Ware, Jacki Dudley, Diana Harwood

Publication management • Doug Kramer, Jim Inscore

This book was created electronically using Adobe FrameMaker on Macintosh Quadra computers.

Documentation Roadmap

Class Reference
ScriptX
Components

ScriptX ScriptX
Tools

ScriptX
Quick Start Guide

sxuniv.sxt

ScriptX University
OnlineScriptX

Language
Guide

Quick Reference
ScriptX

Guide

User’s guide
for ScriptX

Classes from A-Z,
Functions,

Constants

Brief overview
of language,

Variables, components and
classes

Listener, browser,
debugger, profiler,

Expressions,
conditionals,
class definitions,
etc.

importers, etc.

Guide

Acrobat versions are available for most manuals

Lessons in
ScriptX basics

	ScriptX Language Guide
	Contents
	Figures
	Tables
	Preface
	Who Should Read This Book
	Summary of Contents
	Manual Conventions

	Chapter 1 - Introducing the ScriptX Language
	ScriptX—A Technical Overview
	The ScriptX Language
	The Kaleida Object Model
	ScriptX and the Core Classes
	What is Object-Oriented Programming?

	Chapter 2 - ScriptX Building Blocks
	Expressions
	Comments
	Numbers
	Strings
	System Objects
	Names
	Variables
	Assignment
	ScriptX Operators and Simple Expressions
	Operator Precedence
	Arithmetic
	Tests of Equality and Magnitude
	Logical Operators
	Arrays and Keyed Linked Lists
	Access to Members of Collections
	Compound Expressions
	Compound Expressions and Variable Scope

	Chapter 3 - Working with Objects
	Creating New Objects
	Coercing Objects to Other Classes
	Comparing Objects
	Finding Information About Classes and Objects
	Output

	Chapter 4 - Conditionals and Loops
	Conditionals: if and casenditionals
	Repeat Loops
	for Loop
	Loop Control Expressions

	Chapter 5 - Functions, Threads and Pipes
	Defining Functions
	Anonymous Functions
	Closures
	Using apply to Call Functions
	Threads
	Pipes

	Chapter 6 - Defining Classes and Objects
	Defining Classes
	Defining Objects
	Multiple Inheritance
	Defining Methods
	Defining the new, init, and afterInit Methods
	Comparison Functions
	Defining Class and Instance Variables

	Chapter 7 - Collections
	Collections
	Strings as Collections
	Searching Strings

	Chapter 8 - Exceptions
	Catching and Handling Exceptions
	What Happens In a Guard Construct
	How to Control Throwing and Catching
	Retrieving Information about the Exception
	Creating Exception Subclasses and Instances

	Chapter 9 - Modules
	Module Basics
	Module Concepts
	Defining and Using Modules
	Organizing Modules
	Storing Modules

	Appendix A - ScriptX Reference
	ScriptX Language Syntax
	Tokens and Literals
	Types of Expression
	Expression Syntax
	Assignment and Variable Access
	Flow of Control
	Definition of Classes
	Definition of Objects
	Definition of Functions and Methods
	Modules
	Exception Handling
	ScriptX EBNF Grammar

	Appendix B - Unicode Escape Characters
	Index
	Colophon
	Documentation Roadmap

