ScriptX Post 1.5 Differences

Three of the ScriptX reference works have been given minor revisions, reflecting both
editorial reworking of the documentation and changes to the application programming
interface. The ScriptX Language Guide is untouched, except for editorial changes. This
document is a complete summary of changes to the ScriptX API since the most recent
printing of the ScriptX documentation.

Global Functions Suspend the Event System

Two global functions, event Ori ti cal Up and event Ori ti cal Down, were conceived as a
means to prevent ScriptX from thrashing when too many events are passing through the
queue. A low-end system can be flooded with events in a scene that a high-end system
would handle easily. Use event Ori ti cal Up and event Ori ti cal Down, to block receipt
of new mouse and keyboard events until the system finishes handling events that are
already in the queue.

eventCriticalDown (global function)

event i ti cal Down() O (none)

Allows the event system to resume processing user input. This function is always
paired with a prior call to event i ti cal Up, which suspends processing of keyboard
and mouse events. A call to event i ti cal Down balances a call to event Ori ti cal Up,
enabling the system to resume processing of these events. See event Ori ti cal Up, a
global function defined below. (Events component)

eventCriticalUp (global function)

eventritical Up() O (none)

Suspends processing of keyboard and mouse events until the next call to

event Ori ti cal Down. A call to event Ori ti cal Up precedes a critical segment of a code
in which the system discards mouse and keyboard events. Of course, event Ori ti cal Up
affects any class that maintains an interest in mouse and keyboard events, including
Menu, Scrol | Bar, and Text Edi t.

Within an event-critical segment, input devices continue to receive events from the
underlying operating system, but they “swallow” these events rather than convert them
into ScriptX events. An event-critical segment must be followed by a call to

event i ti cal Down, which allows the event system to resume processing of these
events. These two functions are designed so that a program can insure that the system
finishes responding to a keyboard or mouse event before the next event is received.

The paired functions event Ori ti cal Up and event i ti cal Down are analogous to
threadQritical Up and t hreadCri ti cal Down. The system maintains a count of calls to
event Ori ti cal Up, and each call must be matched by a corresponding call to

event Ori ti cal Down before the system resumes processing user input. If the system is
likely to be in an event-critical state for a long time, set the value of poi nt er Type, an
instance variable defined by MouseDevi ce, to @i t .

Use event Ori ti cal Up and event Ori ti cal Down cautiously and sparingly. An
unbalanced call to event Ori ti cal Up can leave the system in a suspended state, from
which the user may be unable to regain control of the system. The keyboard
combinations command-period (MacOS) and control-break (Windows and OS/2) allow
the user to escape from an event-critical state. (Events component)

Note — This function affects the entire runtime or authoring environment, including any
other title or tool that is currently open. If a program requires user input, it must insure
that event processing is restored.

Pointer Class Gives Developers Mouse Pointer Control

The new Poi nt er class allows ScriptX to control the mouse pointer, which can be any
16 x 16 x 1 Bi t map object. As with previous versions of the ScriptX Player, the mouse
pointer is determined by the value of poi nt er Type, an instance variable defined by
MouseDevi ce. In previous versions, the value of poi nt er Type was a name token that
identified one of several standard system pointers. In the current version, the value of
poi nt er Type can be either a Naned ass object that represents one of the standard
system pointers or a Poi nt er object that represents a custom pointer. See the Poi nt er
and MouseDevi ce classes for more information.

Global Functions Replace OpenPanel and SavePanel Classes

Three new global functions have been added, with two of them providing the
functionality of the QpenPanel and SavePanel classes, and the third one adding the
ability to generate a native system dialog box containing a user-supplied message.

The three classes Fi | ePanel , QpenPanel , and SavePanel have been removed from
ScriptX, which means that any code using the CpenPanel or SavePanel classes will
need to be rewritten using the new, simpler global functions pr esent QpenFi | ePanel
and pr esent SaveFi | ePanel .

presentOpenFilePanel (global function)
present QpenFi | ePanel typelist O Array or undefi ned
typelist Arr ay object containing Naned ass objects, which may

include the following file types:

@i tle- A ScriptX file containing a Ti t | eCont ai ner
object

@i brary - A ScriptX file containing a
Li braryCont ai ner object

@ccessory - A ScriptX file containing an
Accessor yCont ai ner object

@i nary - A file containing binary data

@ext - A file containing ASCII data

@mnknown - The file type is not specified, and any file
type may be selected

Presents a platform-specific Open dialog box where the user can select a file; returns an
array of strings representing the full path of the file selected, or undef i ned if no file is
selected. The dialog box displays as options the file types specified in typelist. If
@unknown or any unknown value is specified in typelist, the Open dialog box allows
any file type to be selected. If the user clicks Open or OK (depending on the platform),
the filename is returned; if the user clicks Cancel, the function returns undef i ned. In
any case, it is up to the title to actually open the file.

presentSaveFilePanel (global function)
present SaveFi | ePanel prompt defaultName O Array or undefi ned
prompt String object

defaultName String object

Presents a platform-specific Save As file dialog box, where the user can type in a
filename, and which contains the specified prompt and default filename. If the user
clicks OK or Save, the function returns an array containing the full pathname of the file
named in the file entry field. If the user clicks Cancel, the function returns undef i ned.
In any case, it is up to the title to actually save the file. The string of text supplied for
prompt will appear next to the file entry field as a prompt; the string of text supplied as
the default file name will appear in the dialog box’s file entry field when it is first
opened.

presentMessagePanel (global function)

pr esent MessagePanel message icon button-list default-ix cancel-ix
O | medi at el nt eger

message Stri ng object, the text to display

icon Narred ass object, one of @war ni ng, @ritical,
@nf ornat i on, or @one

button-list Array object containing 1, 2, or 3 String objects to be
used as button names

default-ix | mredi at el nt eger object, the index of the button that
is the default

cancel-ix | mredi at el nt eger object, the index of the button that

is to be returned by the cancel key or 0

Presents a native system dialog box containing the user-supplied message specified in
message, the icon specified in icon, and buttons labeled with the strings specified in
button-list; returns the index into button-list of the button that was pressed. One button
must be the default (the button selected if the user hits the return key), and it is
specified by giving its index into button-list. There must also be a button designated as
the one to be returned if the user hits command -. (the command key plus a period) on
a Macintosh or Ctrl-Break on a Windows machine. This button can be the same as the
default key, but that is not necessarily the case.

The icons displayed in the message window are machine-dependent.

Example 1

present MessagePanel "Nyuk, nyuk" @ritical #("Me", "Larry",
"Qurly") 2 1

Example 1 presents a dialog box with the message “Nyuk, nyuk.” The dialog box
contains an icon indicating that the message is “critical”, and it has three buttons
labeled “Moe”, “Larry”, and “Curly”. “Larry” is the default button, and “Moe” is the
cancel button.

Example 2

present MessagePanel "Format your disk" @warning #("Format",
"’\b") 2 2

Example 2 presents a dialog box with the icon that indicates a “warning” message and
the message “Format your disk”. It has two buttons, one labeled “Format” and one
labelled “No”. “No” is both the default button and the cancel button.

Three Classes Handle the System Menu

ScriptX gives title developers control of the system menu bar, the standard set of menus
that is associated with the active application. The Syst enMenuBar class has been
modified extensively—it is now an array that maintains a list of Syst eniMenu objects. An
instance of Syst enMenu is an array of Syst eniMenul t emobjects. Note the distinction
between Menu objects, which are presenters, and are handled by the ScriptX compositor,
and Syst enMenu objects, which are handled by the underlying operating system. See
the Syst emMenuBar, Syst emvenu, and Syst emvenul t emclasses for more information.

New Text Features

You can now double-click and shift-click for selecting text:
Double-clicking—double-click on any part of a word to select the whole word.

Shift-clicking—place the cursor at the beginning of the text you want to select,
depress the shift key, and click at the end of the text you want to select. The selection
will include everything between the initial cursor position and the position at which
the mouse was clicked.

Miscellaneous changes

1. clippingStencil is now cli ppi ngPresent er. Even though the name has changed,
this Scrol | i ngPresent er instance variable has the same functionality and is still a
Stenci | object. Any code which uses cl i ppi ngSt enci | will need to be changed so that
cl i ppi ngPresent er is used instead.

2. The global function qui t now takes one argument, which can be any object. It ignores
the argument. The qui t function’s signature was modified to make it compatible with
the sel ect Acti on, an instance variable defined by the new Syst enMenul t emclass.

quit(true) -- the argunent is ignored

3. The syst enQuery global function has several new features. See the “Global
Functions” chapter of the ScriptX Class Reference.

Pointer

Pointer

RootObject

Pointer

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Input Devices

Poi nt er is a concrete class that represents a mouse pointer on a ScriptX display surface.
Poi nt er supplies a mouse device with a bitmap image and mask that visually
represents the position of the mouse on the screen.

Creating and Initializing a New Instance

The following script creates a new instance of Poi nt er and sets the value of
poi nt er Type for an associated mouse device:

gl obal bm := new bitmapSurface \
bBox: (new Rect x2:16 y2:16) \
bi t sPer Pi xel : 1
fill bm bmbBox bmbBox identityMatrix blackBrush

gl obal nyPointer := new Pointer \
bi t map: bm \
mask: bm \
hot Spot: (new Point x:5 y:5)
gl obal nyMuseDevi ce : = new MouseDevi ce

nyMouseDevi ce. poi nt er Type : = nyPoi nter

The global variable nyPoi nt er contains an initialized instance of Poi nt er. The new
method uses keywords that are defined ininit.

init
init self [bitmap: bitmap] [mask: bitmap] [hot Spot : point] O (none)
self I nput Devi ce object
bi t map: Bi t map object
nask: Bi t map object
hot Spot : Poi nt object

Initializes the Poi nter self, applying the values supplied with the keywords to the
instance variables of the same name.

If you omit an optional keyword, its default value is used:
bi t map: undef i ned
mask: undef i ned
hot Spot: (new Point x:1 y:1)

Instance Variables

bitMap

self. bi t map (read-write) Bi t map

Specifies a bitmap that represents the position of the pointer self on a display surface.
This bitmap must be 16 x 16 in size, and 1 bit deep.

Pointer

hotSpot

self. hot Spot (read-write) Poi nt

Specifies the hot spot or active spot for the pointer self. When the mouse is clicked, the
mouse click occurs at this point in the two-dimensional coordinates of the display
surface.

mask

self. mask (read-only) Bi t map

Specifies a bitmap that represents a mask for the pointer self on a display surface. This
bitmap must be 16 x 16 in size, and 1 bit deep.

SystemMenu

RootObject

Collection

LinearCollection ImplicitlyKeyedCollection

Sequence

SystemMenu

Class type: Core Class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Array

Component: Title Management

The Syst enMenu class provides a container for Syst emvenul t emobjects. A

Syst emMenuBar object acts as a container for Syst emvenu objects. The standard menus
that appear on all platforms, such as the File and Edit menus, are implemented as
Syst emvenu objects by ScriptX.

Syst enenu inherits from Ar r ay. The class specializes those methods that add, set, or
delete the value of any element in the array, such as addNt h, set Nt h, and del et eNt h, to
insure that elements are instances of Syst emvenul t em and that the menu bar is
updated when any changes are made.

Creating and Initializing a New Instance

The following script creates a new instance of Syst enenu:

nyMenuChoi ces : = new Systemenu \
nane: " Edi t"

The variable nyMenuChoi ces contains the initialized system menu. When
nyMenuChoi ces is instantiated, ScriptX applies the default values of gr owabl e and
initialSize, keywords defined by the parent Array class.

init

init self [name: string] O self
self Syst emvenu object
nane: Stri ng object, used to set the name of the menu

Superclasses of Syst emMenu apply the following keywords:
initial Size: I nt eger object
grovabl e: Bool ean object

Initializes the Syst emvenu object self, setting the name that appears at the top of the
menu to the value supplied for nane. See the Array class for information on how
initial Sizeand growabl e are applied.

- Title of Book

Instance Variables

authorData

self. aut hor Dat a (read-write) (object)

Specifies an object that is supplied as an argument when the system menu’s preselect
action or select action is called.

name

self. nane (read-write) String

Specifies the name of the system menu self. The value of name is stored internally as a
string, such as "Edi t" or "Fi | €". Any object that can be coerced to a string can be used
to set the value of name.

preSelectAction

self. preSel ect Action (read-write) (function)

Specifies a function that is called automatically when the user clicks on the menu in the
menu bar, but before a menu item is selected. This function is called with the one
argument, for which the value of aut hor Dat a is supplied.

selectAction

self. sel ect Action (read-write) (function)

Specifies a function that is called automatically when a menu item is selected. This
function is called with the one argument, for which the value of aut hor Dat a is
supplied.

SystemMenuBar

RootObject

Collection

LinearCollection ImplicitlyKeyedCollection

Sequence

SystemMenuBar

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Array

Component: Title Management

The Syst enMenuBar class gives ScriptX the ability to control the appearance of the
menu bar that is presented by the native operating system. Each title has its own system
menu bar, as specified by the syst enMenuBar instance variable defined by

Ti t1 eCont ai ner. You can hide or show the menu bar and enable or disable its menu
items. One active title can show the menu bar, while another hides it. The menu bar
automatically changes depending on which title has user focus.

The location and appearance of the system menu bar is platform-dependent, as shown
in the following figure. With MacOS, the menu bar is always located at the top of the
screen. In Windows and OS/2, the menu bar is located below the ScriptX title bar,
which appears at the top of the screen only when the ScriptX window is “maximized.”

system menu bar *’ = ScriptX : >

@ File Edit Window < File Edit Window

A\,

Macintosh system menu bar Windows and OS/2 menu bar

Figure 0-1: The menu bar’s appearance is determined by the underlying platform.

A system menu bar is a container for system menus, and a system menu is a container
for system menu items. Syst enMenuBar inherits from Ar ray, which it specializes to
store only instances of Syst emvenu. The class specializes those methods that add, set, or
delete the value of any element in the array, such as addN h, set Nt h, and del et eNt h, to
insure that elements are instances of Syst emvenu, and that the menu bar is updated
when any changes are made.

The Syst enMenuBar class provides access, via class variables, to internal functions that
open and close titles, open accessories, bring up a new listener window, and bring up a
page setup dialog box. This allows a programmer to invoke these functions as the select
action of a menu item. Each of these functions takes one argument, which is ignored, for
signature compatibility.

SystemMenuBar

10

Creating and Initializing a New Instance

The following script creates a new instance of Syst enMenuBar :

nyMenus := new SysteniMenuBar

The variable nyMenus contains the initialized system menu bar. When nyMenus is
instantiated, ScriptX applies the default values of growabl e and i ni ti al Si ze,
keywords defined by the parent Array class.

init
init self O self
self Syst emvenuBar object
Superclasses of Syst enmvenuBar apply the following keywords:
initial Size: I nt eger object
growabl e: Bool ean object

Initializes the Syst emenuBar object self. See the Array class for information on how
initial Sizeand growabl e are applied.

Class Variables

closeTitleAction (SystemMenuBar)

self. cl oseTitl eAction (read-only) (function)

Returns the internal function that closes a title. The associated function takes one
argument, which is ignored.

newListenerAction (SystemMenuBar)

self. newLi st ener Acti on (read-only) (function)

Returns the internal function that opens a new Listener window. The associated
function takes one argument, which is ignored.

openAccessoryAction (SystemMenuBar)

self. openAccessor yAct i on (read-only) (function)

Returns the internal function that opens an accessory. The associated function takes one
argument, which is ignored.

openTitleAction (SystemMenuBar)

self. openTi t| eActi on (read-only) (function)

Returns the internal function that opens a title. The associated function takes one
argument, which is ignored.

pageSetupAction (SystemMenuBar)

self. pageSet upAct i on (read-only) (function)

Returns the internal function that opens a page setup dialog. The associated function
takes one argument, which is ignored.

Instance Variables

hasUserFocus

self. hasUser Focus (read-only) Bool ean

When tr ue, the appearance of the system menu bar self responds to changes in its
instance variables and methods; when f al se, it does not respond to changes. In the
current release, since each title has exactly one system menu bar, this variable is set to
t r ue whenever a window in the title has user focus.

A title container manages focus on its system menu bar automatically—it stores a
reference to its system menu bar in its Syst emvenuBar instance variable. It is possible
for no window in a title to have focus while its system menu bar has focus. This can
happen if two titles share the same menu bar—the background title does not have
focus, but its menu bar has focus because it is used by the foreground title.

isVisible

self. i sVisible (read-write) Bool ean

When tr ue, the system menu bar self is visible; when f al se, the system menu bar is
hidden. Setting i sVi si bl e has the same effect as calling the methods showand hi de.

Instance Methods

hide

hi de self O self

Hides the system menu bar self. Has the same effect as setting i sVi si bl e to f al se.

setUserFocus

set User Focus self hasUserFocus O Bool ean
self Syst emvenuBar object
hasUserFocus Bool ean object

Sets user focus for the system menu bar self. This method is not usually called from the
scripter, since the title container normally manages focus. It is visible to the scripter so
that it can be specialized.

show

show self O self

Shows the system menu bar self. Has the same effect as setting i sVi si bl e to true.

11

- Title of Book

SystemMenultem

RootObject

SystemMenultem

Class type: Core Class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Title Management

The Syst enMenul t emclass implements the behavior of individual menu items on a
system menu

Creating and Initializing a New Instance

The following script creates a new instance of Syst enenul t em

nyltem := new Systemenul tem\
name: “Print List"

The variable nyl t emcontains the initialized system menu item, which can be added to
a system menu. It is displayed in a menu as a choice or menu command with the name
“Print List.” The newmethod uses keyword arguments defined by the i ni t method.

init

init self O self
self Syst emvenul t emobject
nane: St ri ng object

Initializes the Syst emvenul t emobject self, applying the keyword name to the instance
variable of the same name.

If you omit an optional keyword, its default value is used:
nane: undef i ned

Instance Variables

authorData

self. aut hor Dat a (read-write) (object)

Specifies an object that is supplied as an argument when the system menu item’s select
action is called.

checked

self. checked (read-write) Bool ean

Specifies whether the menu item self is checked.

enabled

self. enabl ed (read-write) Bool ean

Specifies whether the menu item self is enabled.

12

name

self. nanme (read-write) String

Specifies the name of the system menu item self. The value of name is stored internally
as a string, such as " Copy" or " Past e". Any object that can be coerced to a string can be
used to set the value of name.

selectAction

self. sel ect Action (read-write) (function)

Specifies a function that is called automatically when a menu item is selected. This
function is called with the one argument, for which the value of aut hor Dat a is
supplied.

13

