ScriptX
Tools Guide

K

Kaleida Labs

©1995 Kaleida Labs, Inc. All rights reserved.
U. S. Patent #5,430,875 other patents pending.

This manual, as well as the software described in it, are furnished under license and may only be used
in accordance with the terms of that license. Under the terms of that license: (1) this manual may not
be copied in whole or in part, and (2) this manual may be used only for the purpose of using software
provided by Kaleida Labs, Inc. (“Kaleida”) and creating software products which run on the Kaleida
Media Player. The contents of this manual is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Kaleida of any kind. Kaleida
assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

“ScriptX”, “Kaleida Media Player”, the “K-man” logo and “ScriptX Language Kit” are Kaleida trade-
marks that may be used only for the purpose of identifying Kaleida products. Your use of Kaleida
trademarks for any commercial purpose without the prior written consent of Kaleida may constitute
trademark infringement and unfair competition under state and federal law. All other products or
services mentioned in this manual are identified by trademarks of the companies who market those
products or services. Inquiries concerning such trademarks should be made directly to those compa-
nies.

This manual is a copyrighted work of Kaleida with all rights reserved. This manual may not be cop-
ied, in whole or in part without the express written consent of Kaleida. Under the copyright law,
copying includes photocopying, storing electronically, or translating into another language.

The ScriptX Language and Class Library (“ScriptX”) described in this manual is a copyrighted work
of Kaleida. ScriptX also contains technology described in pending U.S. patent applications. You may
use and copy ScriptX solely for the purpose of creating software products that run on the Kaleida Me-
dia Player by writing computer source code that is compiled into object code by software provided

by Kaleida. You may not use or copy ScriptX for the purpose of writing computer source code that is
compiled into object code or otherwise executed with software supplied by any other provider who

has not been expressly licensed for that purpose by Kaleida.

For Defense agencies: Restricted Rights Legend. Use, reproduction or disclosure is subject to restric-
tions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at 225.227-7013.

For Civilian agencies: Restricted Rights Legend. Use, reproduction or disclosure is subject to restric-
tions set forth in subparagraphs (a) through (d) of the Commercial Computer Software Restricted
Rights clause at 52.227-19 and the limitations set forth in Kaleida’s standard commercial agreement
for the software described in this manual. Unpublished rights reserved under the copyright laws of
the United States.

Printed in the USA.

Contents

Part 1 Development Process 3
Chapter 1 Designing a SCriptX Titlecuiieeiiiiiiiiiiie e 5
Titles, Applications and TOOIS.........c.uiii i 7
LTS 1 DT (0 =R 7
The Scenes and Stage Manager StrUCIUIEcooeovviiiiiieeneeen e e e 8

The Model-Presentation StruCtUre...........ooceiiiiiiiieiiee e 9

SCPtX TIPS AN TIAPS ..o ittt e st e e e e s e r e e e e e e asnnnes 9

LI RSP 9

LI 0L 12

Speed and MemOIY TIPS .uvuuiiiiiiiiiiiiiiiiee e e e e e e e s enerrereeeeaaanae 13
Chapter 2 Building a Title from Source Filesccccccciiiiiiiiiiiiiie e 15
Title DeveloPMENT PrOCESSccoiiiiieiieiee e 17
SOUCE FlBS ..t 17
Creating a Build File for Source SCripts..........ccoceiriiiieiiiiee e 18
Creating a Build File for Mediaccccooviiiiiiiiiiie e 22
Chapter 3 Optimizing for Speed and MEmMOTYccccccoviiiviiieiiee i 25
OptiMIZING fOr SPEEU.....ccci i e e e 27
Speed TOOIS IN SCHPEX ...uviiiiiiee ittt e e rreree e e e e aaes 27
=T [0 [U E= T [P PTRP 28

(670] (o] SHT P PP PPPPPP 28

(070] 1410701711191 P ST PRR 28

F Y 0110 g F= 1T o PP RRPR O 29

VLo 1= o TS TP OUPRTI 29

DISK ACCESS ...ttt e e e e e e e e e e e e e 30
OPtMIZING MEMOIY .viiiiiiiiiiiiiitce et e e e e e s brreeeeeeeenns 31
Memory TOOIS IN SCHPEX ...oooiiiieiieee e 31

SIZE OF A ClASS ...t 31
Garbage Collection of Persistent and Transient Objects..............ccccceeeviunnns 32

Rules of Thumb for Creating and Purging ObjectS..........coccvvvvveeiiiiiiiininnenn. 33
Debugging Memory Problems ... 34
Loading @nd PUIGINGceiiieiiiiiiiiiiiiee e 35
Presenters and BIitMapsoccuviiiiiiieiiiiiiieiee et 35

ScriptX Tools Guide

Minimizing The Need For Garbage Collection.............ccccevieriirinenicienens 35
Exceptions can Prevent Garbage ColleCtion..........cccccceevviicviieeniee s, 36

ViSUAI MEMOIY TIPS .uvviiieeei ittt e e e eeere e e e e e e e e e e e e s e e e e e e e e snannaaeeeeas 37
Garbage CollECHON TIPS ..uuuiiiieeiiiiiiiiiiiee ettt e e e e e e anes 37
SHOWCOAE TIPS trveeiieeeiiiiiiiit e e e e ettt e e e e e e st r e e e e e e s sararaeeaeeeesssaraeeaaaeeenas 37

L 11 1= PSP PPPPPN 38
Chapter 4 ScriptX Title AnalySis APl......ccii e 39
Part 2 Kaleida Media Player 45
Chapter 5 Kaleida Media Player User GUIEccccceeviiiiiiieiiee i 47
T 0o [o3 1 o] o SR 50
INStallation INSIIUCHIONSciiiiiii e e 50
MaCINtOSh ... 50
WINGOWS ...ttt et e et e e et e e b 50

(@ 15 RS 51

Starting the TIHEeeeeeeiiee e 52

= Lo) (0 1= o RS RSPRN 52
WINOOWS ...ttt ettt 52

(@ 5 PR SRT 52

Kaleida Media Player MENUS..........coociiiiiiiiiie e 53
THE FIlE IMENU.....eiiiiiiee e e e e e e e e e e e e 53

THE EIt MENU ...uiiiiiiiiiiiiiiiiiii s nnnnnnnan 54

The WINAOW MENU......ueiiiiiiiiie ettt 54

Part 3 Tools 55
Chapter 6 Introduction t0 TOOIScoiiciiiiiiie e 57
Loading TOOIS and IMPOIEIS........cueiiiiiieiiiiee ittt 60

[0 T= To [0 To TN 0T <SR URRPRN 60
(= To [T oo I 10] o o] £ (=1 (=TT TP PPPPPRIN 61
Chapter 7 ScriptX Listener and MENUSoccvviiiiiiieniieie e 63

Contents

Features in ScriptX That Are Not in KMP ..o 65
The DevelopmeENt PrOCESSc..uuviiiiiiiicciiiit et e e e aea e 65
Y= L1 0o o 1] 010, QU UTP PP PR 66
THE SCHPEX LISTENET ...uvviiiie ettt e e e e e e e e e e e aaaeaeeaeeeean 67
Typing Scripts Directly into the LiStenerccccvvvvvieei i, 68
Creating and Compiling Script Filescccooeiiiriiiieee e 70
NeW Listener WINAOWSocuuiiiiiiiiieiiiiee e 73
RESELING SCHPIX .ttt e e e e e e e e e e e e annees 73
The Listener and Other ScriptX WINAOWScccvovviriereniriere e 73
ScriptX Menu Command RefErenCe.........cuviiiiiiiiiiiiiie e 75
THE FIlE IMENU.....eiiiiiiie e e e e 75
THE EQIt MENU ...ttt 77
THEe WINAOW MENU....cieiiieiiiiie et e e e e e e e e e e e eneeeeeenes 79
THE TOOIS MENU.....eiiiiiiiiie e e 79
The TOOINAME MENU ...t e e e 80
Chapter 8 The BrOWSEr ...cci ittt e e e e e e aaaaeeaeeeeenes 81
LOAAING thE BIOWSEcoiiiiiiiiiie ettt ettt ettt e e e e e e nsbareee e e e e e s nnnnnes 83
USING the BIOWSETcceiiiiiiiiiie e ettt e e e e ettt e e e e e e et e e e e e e e e snnaaaaaeeeeessnnnes 83
RESIZING the BIrOWSET ...ttt e e e e e e e e e e e e e e nnnanes 84
Stepping Back to the Previous Browser DiSplayccccoeceveerierenniinenieenenns 84
UPAAting BrOWSEISuvviiiiieeiieiiiiiiiie e e e eeiirt e e e e s e st e aa e e e e esnaanaeeaaeaeesnnenees 84
What YOU See iN the BrOWSETceiiiiiiiiiiiiiiiiee it 85
SAMPIE USES ...eviiiiiiee ettt e e e e e e e e e e e e s eeeaeeeean 86
Editing Values in the BrOWSETc.cciiiiiiiiie e 86
Editing Methods and FUNCLIONScooociiiiiiiiec e 86
More On Actual Versus Virtual Instance Variablescccccooviviiiiienieniniineenn. 87
USING the PICKIISt....eviiiiiiiiiiiie et e e 88
RETEIENCE ... 90
I 1o 5301V =T o T SRR 90
BIrOWSEI IMENU ..oooiiiiiiiieiiiee e 90
Chapter 9 DEDUGOET . .uiiiiiiii it e e e 93
HOW to Load The DEDUGOETccci ittt 95
Opening the DEDUGQETuuiiii i 95
RESIZING the DEDUQGGET ...ciiee ittt 96
Description Of the DEDUGQETvvviiiiiiie e 97
Selected Frame Field and Call Stack Menucccceviieniiiiienniieee e, 97
Frame Variables Panel ... 98
€00 PANEL....coiiiiie e 99
Stepping Through COUEuuiiiiie et e e 100

ScriptX Tools Guide

Vi

Entering the Debugger Immediatelyocooceiioiiieine e 100
Stepping Through COUEiiiiii i 100
Setting Breakpointscuviiieeiiiiiiiiiiee e 103
Defining a Function to Run at a Breakpoint............ccccceeviiiviiieenies i, 104
UsSIiNg WatChPOINESccoiiiiiiiie et e e e e e e 106
INVeStigating EXCEPLIONS.ciiii ittt 107
Accessing Source Code for Methods and FUNCHONScoccvvieeeeeeiniiiiinenn. 107
DebuglInfo Objects in Title CONtAINEIS........covieeiiiciiiiiiiee e 109
REIEIEINCE ... e e 110
The DebugQer MENU........cc.uuiiiiieei ettt ee e 110

JLIC 1053017 =T o T S 111
The Debugger WIiNOW...........cuiuiiiiiiiiiiiieciiiiiecee e 111
The Watchpoints WINAOW..........cooiiiiiiiiiie it 113
The Breakpoints WINGQOW............couviiiiiiiieiieiee e 113
Chapter 10 ByteCodeMethod Profilercccooeveiiiiieii e 115
How to Install the Profiler ... 117
HOW t0 RUN the Profilereiiiiiieeee e 117
What The Profiler DOESccueiiiiiiiee e 118
Profiler OULPULcoiiiieeiieee et ee e e e e nennes 118
Example Use of the Profiler..........ccciiiiiiicce e 120
Chapter 11 Visual MEMOTY ..ttt e e e e e e neaea e e e e e 123
Platform DiffErE@NCES.......ceiiiiiie e 125
Running Visual Memory in the Kaleida Media Player.............ccccccceeuvvvnenn.. 126
Details of Visual MEMOIY..........uuuiiiiiiiiiiiiiiciee e 126
Chapter 12 ToOl FrameWorK.......cccoui i 129
OVEBIVIBW ...ttt ettt e ettt e e ekt e e e e bt e e e e eabe e e e e bt e e e e anbbe e e s anbeeeesnreaans 131
SCrPtX TOO! SUPPOIT c.eiiiiiiiie ettt s s e e e e e e ennes 131
WIriting @ TOOI iN SCHPLX ... a e e e 132
Implementation of the Tool Framework.............cccovcvviiiiieieniec e 133
TOOI StArtUP PrOCESS ...ttt e e e e 133
TOOI OFQANIZET ...ttt e e e e e s raeeeas 134
TOO! COMMUNICALION.eiieiiiiie et 134
TOOI MESSAGING ..vvvvvreieeeeiiiiiiiiiie e e e e s et e e e e e e e e e e e e e e e e s anaaeeeeeeeesannraneeeas 136
Easy EVENnt HandliNgoooiiiiiiiiiiie et 138
TOOI HOSE OS ACCESS ...eeiiiiiiiieeiiiiie e eteie ettt e ettt et e e s bae e e snee e e e ennneaeans 139
The DragRegion ClIASSccvvieiiiiiieiiiiiee i 141
FULUPE DIFECHIONS ...ttt 142

Contents

Chapter 13 Tool Framework APl ... 145
(€110] o F= U =0T o T i To] o 1= USRS PURR 147
Global Variablesccuuiiiiiie e 147
QL0101 (@ 1o T= U 4= RSP 148
TOOICONLAINET ...eiiiiiiie ettt et a e s b e e s e 151

Creating and Initializing a New INStanCecccooceveririeee e 151
INStANCE METNOAS ..o e 152
QL0 T0] L[a0 - SRR 155
TOOIMENU ittt et e st e e e e e sanes 156
INStaNCe Variablescccoooeeeeeee e 156
INStANCE METNOASooiiiiiie e 156
QL0 T 1 LT 41U) (= o o P 157
INStANCE METNOAS ..o e 158
[T | =d=To (o] o [T ERRR 159
INStANCE METNOASooiiiiiie e 160

Chapter 14 Photoshop Plug-ins for KIC COmMpPressionccccccovvvvvvieeeeeenniinnns 161
WRAL IS KIC? ..ttt e e e e e e e e e st e e s eneeeeeenneeeeeanes 163
Where Can the Plug-ins Be USEd?occviiiiiiie e 164
INStAlliNG the PIUG-INSoviiiiiiiiiiiee e 164
USING the PIUG-INS ..eiiiii ettt e e e e e e e e e e e e e e nnnnes 165
The Playback Side ... 165

Chapter 15 IMpPorting MeOI@.......cuiueeiiiiiiiiiiiee it 167
File Organization for IMPOMErS..........uuiiieeiiiciieie e 169
1] o o111 0T RO PTRPOT 170

Available OULPUL TYPESooiiieiee e 170
Specifying A Container for the Imported Data............cccceeeeviiciiiieenee s 171
[Tq 0] 1110 o [RSP 171
TEXE EXPOITEE ..ttt s 172
Importers Supplied by Kaleida Labs............ccccccceeiiiiiiiiiiie e, 172
TeXE IMPOITET .. 174
ASCII, ScriptX ASCIlI or RTF TeXt t0 TeXt...cuevveiiiiee e 174
TogF=To T o] 1] £ (=T (= R U PP RTTR PR 177
[o3 (030 =110 = o SRS 177
(D = (o I =110 1 F=V o IO PR TTPPPPRTRN 178
QO3 (o I =110 1 = o ISR PRRRN 181
QUICKTIME t0 BItMAPevvveiiiiee ettt e e 183
Yo 1¥ a1 T 00T o o] (=Y £ 3O PP PP 185
AIFF 10 AUIOSIIEAIM ...t 185

Vii

ScriptX Tools Guide

viii

SND t0 AUIOSTIEAIMeiiiiiiiee it e e 186
WAVE 10 AUIOSTIIEAIMeeiiiiiiiieiiiii ettt 188
MIDI IMPOMEIS. ..ttt e e e et e e e e e e e et e e e e e e eatna e e e aaaes 190
Standard MIDI t0 SIreaMcoiuiiiiiiiiie it 190
LoV T [0] 010 1 4 =] £ USSP 192
QuickTime Or AVI to MoviePlayer or InterleavedMoviePlayer................... 192
BatCh PrOCESSING ..vvviieiiiiiiiiiiie ettt e e e e e e e e e e e e e eannes 196
.. 196
Chapter 16 Using the Director-to- ScorePlayer Importer........cccoocvvveeeeeeniinnns 197
What the Director-To-ScorePlayer Importer Can Import.........cccooccvveercveeennenn. 199
What the Director-to-ScorePlayer Importer Cannot Importcc..ee..... 199
Classes and INNEMTANCE..........uiiiii e 200
How Director Titles are Converted to ScriptX ObJECEScoovvvviviieeeeiiiiiiieenn. 202
Preparing a Director Title for Importing INto SCriptX........cccccovviiiiiieenieiniiiiieen. 203
Loading the Director-to-ScorePlayer IMPOMer..........ccccveiiieeeiiiiee e 204
Importing a Director Title as a SCOrePlayer.........cccoccvvviiiiei i 204
Using the ImportDirector FUNCHONcccoooviiiiei e 204
Using the IMport/EXPort ENQGINE.........ooiiviiiiiiiee e 205
Saving an Imported Animation to a Title Container............ccccevvceeeiiiieee i, 207
Sample Script that Imports and Saves an Animation in ScriptX................. 208
Playing an Imported Title..........ceiiiciieiiie e e 210
Modifying an Imported ANIMAtiONcoeiiiiiiiiiiiee e 211
How an ActionList Player WOIKSccooveiiieieniieie e 211
What is the Target of An Action in an ANIMation?cccccvvveeveeeeniicivineenn. 212
Handy Hints for Keeping Control of Targets.........cccccoeveeiiieee e, 213
The Classes Of ACHON.......cocuiiiiiiiie e e 213
How to Read the Action List Of @ SCOre........cccceeiviiiii i 217
Retrieving Information about an AnNiMationccccoeeveeviieee e 220
Chapter 17 Director-to-ScorePlayer Importer APcccceviiiiiiicieeeieeeee, 221
AddSPriteTOSTAGEACIIONeeiiiiiiie ittt 224
ChangeINKACHIONeiiiiiiii e 226
ChangeSOUNTACLIONcooiiiiiieiiei et e e e enneee s 227
ChangeSpriteApPearanCeACHIONeveiiiirieriiiiie ittt 229
ChangeSpriteSIZEACHONeiiiiiie e 230
ChangeTemMPOACLIONcooiiiiiiiiie e e e e e ee e e e e e 231
(DT g=Toivo] 4 [10] 0 [o] 4 (] (PP PTT U TPPTPPPPPPRN 232
[0 o] oY AXox 1T o U ERRRN 233
PrepareTranSitioNACLIONcii i s s neenees 234

Contents

RemoveSpriteFromStageACtion ClIassoooovveieriiieieiiieee e 236
Yoo] (TSR 237
SCOTEPIAYET ..ot 239
ScorePlayerCastTransIatorccccciceeiie i e 242
ScorePlayerSCoreTranSIatorocciiiiiiiee e 244
Yot] = I Tod (= S 245
S o] 11 (= SRR 246
SPriteChaNNElINTOeeviiiiii i 247
JLICE ST o 1L SRR 248
L] IS o] 11 (TP RPPR TP 250
Ao =Yoo (= PP PP PPPPPPPTTR 252
WaitFOrSOUNAACHIONeiiiiiiiee e e e e e e e e e e e e e nnnns 253
Chapter 18 Using The Director Translation Kit.........ccccoccuvieeiieiiiiiiiiienneeenninns 255
(O 1= 11T SRR TaTo I T o] 1T 7= U T = 257
How the Director Translation Process WOrkS............cccvvevieeiiiiciiiienie s, 260
Cast List TranSlationcc.vveiiiiiieiiec e 261
SCOre TranSIAtiON ..ot e e e e e r e e e e e 262
What You Must Do To Build a Customized Director Importer...........c..ccceeveeee. 262
1. Design a Paradigm for Recreating a Director Title in ScriptX................. 262

2. Load the Director Translation Kit...........ccuveeiiieiiiiiiiiie e 262

3. Define Your Customized Cast Translator Class...........ccccvevereiniieeennine. 263

4. Define Your Customized Score Translator Classcccccovvceeeeinieeeene 263

5. Import a Director Animation int0 SCHPLXcovviiiiiiiriieeniiiieeee e 264
Designing a Paradigm for Recreating a Director Title in ScriptX...........cccvvvee... 264
Defining Customized Cast Translator ClasSes..........cccvvveevieeeiiiiiiieenee i, 265
Choosing Superclasses for Your New Cast Translator Class.................... 265
Accessing Information about the Director Castmembersccoeevvvveeen. 268
Defining Customized Score Translator Classes..........ccccccveevviiiiiiienie e, 268
Accessing Information about a Frame of the Director Score...................... 269
Comparing Two Frames to Check for Differencesccccccoeccvvvveeeeeiiiinns 270
How the Score Translator Gets Information about Castmembers.............. 270
Example Code for a Score Translatorcccccvivcviieeeiees i 271
Importing a Director Animation into SCHPEXcoiciiiiiiiee e 274
Advanced EXAmPIEc.uuviiiiiieii e 277
Preparing the DIreCtor Title.........cooieii e 277
How the Conversion WOTKSocuiieiiiiieiieie e 278
Further Modifying the EXample.........c.coiiiiiiiiee e 279
Chapter 19 Director Translation Kit APl ... 281
[I S TP PP PP PPPRP TP 284

ScriptX Tools Guide

DTKBIIMAP .ottt e st e e e e e s e e e e e e s s sabbbeeeeeeesannnnes 286
[0 8= 10 287
DTKCASIMEMDET ...ttt e 288
DTKCastMemberTOAUdIOSIIEAMceeiiiiiieiiiireeeciee e et e s e e e eeaeee e 289
DTKCastMemMberTOPIESENLENccuiiiiiiiiie i 290
DTKCasStMemMberTOSIENCIloiiiiiiiiiiiee e 292
DTKCASITIANSIAION ...ceiiiiiiiiiiie e e e e e e e e e e e e e e e e e nnnnns 294
DTKPAIELEeeiiiiiiieiiiiiee ettt e s e 296
[0 S 1ot o =] o > o - 297
DTKSCOrE€TIANSIALONceiiiiiiiiiiiiee e 298
DTKSRNAPE ... e e e 300
[IS Y010 o SRR 302
DTKSOUNACRANNELiiiiiiiiiiecee e 303
DTKSPtECNANNEL ..ot e e e e e e e e sanees 304
DTKTEMPOCNANNEI ...t e e e 306
I I 1 1= SRR 307
DTKTransitioNChannelcoiiiiiiiiiie e 309
DTKUNKNOWN ottt 310
[0 I SV To 1= o SR 311
Part 4 Extending ScriptX 313
Chapter 20 EXteNding SCIPX .uueiiieeiiiiiiiiiie et e e e e e e e esiraaeaaaeeaenes 315
Using the Loader to Run Loadable EXtENSIONSccvvvvevieeiiiiiiiiieiee e 317
Loadable UNItS........ccciiiiiiie et e e e e e e e e 320
INVOKING the LOATENciiiiiiiiiiiiiiiie e 320
Releasing Loadable UNits...........ccceeeiiiiciiiiiiie e 322
Writing Loadable EXTENSIONS..........uuuiiiiiiiiiiiiiiicee e 322
Combining ScriptX and External Code.cccccveeeiiiiviiieiie e e 322
Creating a Loadable UNit...........cccuuiiiiiiiiiiiecee e 322
Examples of Loadable EXtENSIONScc.uvveviieeiiiiiiiiiiiee e 324

API for ScriptX Loadable EXtENSIONS...........ccocviiiiiieii e 333
SXextend.h Header File ..o 343
C-Language Development ENVIFONMENLScccuiieiiiiieeiiiiiee e 345
Apple MacintoSh B8XXXcc.uiiiiiiie et e e 345
Apple Macintosh POWEIPC ...t 345
MICIOSOTt WINTOWSceeiiiiiiie ittt 346

L0 1S RO TP PRPTRRR 347

Contents

Chapter 21 Inter-Application CommUNICAtION........ccceeriieriircier e 349
Dynamic Data Exchange (DDE).........ccuiiiiiiiiiiiiiiie et a e 351
APPIE EVENLS oo 351

APPIE EVENL “DO SCIIPL ...iiiiiiiee ittt ettt e et e e e e e e e e e e e e e ennnenes 351
10T L= PP PR PPPRPP 353

Xi

ScriptX Tools Guide

Xii

Preface

This document is part of the ScriptX Technical Reference Series. This series is for
programmers using ScriptX to develop interactive multimedia tools and titles. This
series includes the following documents:

¢ The ScriptX Components Guide provides an overview of ScriptX architecture,
conceptual explanations about the organization of the ScriptX classes into
components, and script examples showing how the classes work together. It covers
ScriptX from the multimedia title, down to the operating system devices. This
manual is essential to anyone designing and building multimedia titles in ScriptX. It
is the companion volume to the ScriptX Class Reference.

® The ScriptX Class Reference is a detailed reference to the ScriptX class library that
provides, in dictionary form, a complete specification of the classes, methods,
variables, and functions available for building multimedia titles and tools in ScriptX.
It is the companion volume to the ScriptX Components Guide.

® The ScriptX Language Guide is a practical guide to using the ScriptX programming
language. It provides complete functional descriptions of the language as well as
concrete descriptions of tasks you might do when actually working with the ScriptX
language. Anyone programming in ScriptX will want to use this book.

® The ScriptX Tools Guide (this manual) provides information about the ScriptX
development process that is not covered in the other manuals. The first part
discusses how to use the browsers, the Listener and other tools that are supplied
with ScriptX. All users will want to read this part. The second part explains how to
extend ScriptX by loading classes written in C, and discusses platform-specific
issues. Developers who wish to add classes written in C to ScriptX will want to read
the second part. The third part of the ScriptX Tools Guide discusses how to build
additional tools in ScriptX. Tool developers will want to read the third part.

® The ScriptX Quick Reference summarizes information about the ScriptX Language and
Class Library. It includes the grammar of the language, listings of components and
their classes, and an alphabetical reference to classes, including class variables,
instance variables, and methods.

Summary of Contents

¢ Part 1, “ScriptX Development Process,” describes the development process.

¢ Part 2, “Kaleida Media Player,” describes the runtime version of ScriptX from the
end-user’s perspective.

® Part 3, “Tools,” describes how to use the listener window,, debugger, browser,
profiler, visual memory, importers, Director Tool Kit, and other tools that are
supplied with ScriptX.

¢ Part 4, “Extending ScriptX,” explains how to extend ScriptX by writing and loading
C classes, and describes the platform-dependent development environments.

Who Should Read This Book

All ScriptX developers should read the first part. Developers who wish to add classes
written in C to ScriptX should read the last part. Tool developers should read the third
part.

- ScriptX Tools Guide

This manual assumes the reader is familiar with the ScriptX language and
object-oriented programming concepts. See the ScriptX Language Guide, the ScriptX Class
Reference, and the ScriptX Components Guide for more information on ScriptX
programming.

Manual Conventions

This manual is set primarily in Palatino and ITC Avant Garde, with the following
exceptions:

¢ Code samples, class names, method names, and other code-like elements are in
Couri er.

e Menu commands are in Palatino Bold.

Note — Notes to the user look like this.

P A R T

O

N E

Development Process

CHAWPTER

Designing a ScriptX
Title

ScriptX Tools Guide

Designing a ScriptX Title

This document explores some key issues of ScriptX title design. It describes techniques
to help you take advantage of ScriptX features while avoiding pitfalls that adversely
affect your title’s size and performance.

The discussion that follows is based on the observations of numerous ScriptX
developers within Kaleida. It represents “current thinking” on ScriptX title design.
Some of the techniques discussed represent alternative—and possibly mutually
exclusive—approaches to the same issue. They are presented to help you choose the
approach that works best for your particular title.

Some of the design techniques discussed in this chapter are demonstrated in examples:
Auto Finder is available with the current ScriptX CD-ROM. Monterey Canyon is available
on the previous version, ScriptX Language Kit V1.0 CD-ROM. These examples are used
in this document to demonstrate ways to organize the development and the structure of
a title. Other examples on the ScriptX release demonstrate different approaches to the
same tasks. You may find you gain the most by first reading through this chapter to
understand ScriptX design fundamentals, then reviewing the other examples to see how
they approach title design issues.

Note-This description assumes you understand the ScriptX Language and Class Library.
While some of the topics may be useful to a beginner, they’re more likely to be helpful
after you've spent some time reading other documentation and working with ScriptX.

Finally, note that much of this discussion is based on techniques that have been tried
and proven to work. Given the short history of ScriptX, it’s likely that many other
techniques can be used to improve title design; hopefully, this document will give you a
basis for working on alternate approaches.

Titles, Applications and Tools

Title Structure

When starting a design, one of the first things you will be aware of is whether you are
creating a title, an application or a tool. Here are loose definitions of these terms based
on how they are used:

® Title — in a title, the end-user navigates and interacts with content
® Application — in an application, the end-user produces and manipulates content
® Tool - in a tool, a developer produces content, titles and applications, and other tools

These distinctions can be blurred, as titles become more and more interactive.

The abstract structure of a ScriptX title is provided through the
models-presenters-controllers system described in the “Spaces and Presenters” chapter
in the ScriptX Architecture and Components Guide. This structure is metaphor-free and
provides a high degree of flexibility in title development. The examples Beaker and Flame
and Play Farm (from the ScriptX V1.0 CD-ROM) demonstrate the use of separate
modeling and presentation spaces.

ScriptX Tools Guide

However, a variety of titles don’t require the model and presentation to be separate. In
some cases, separating the two can lead to over-abstraction and unnecessary
indirection, resulting in slower performance. Titles where the presentation and model
are not separated, that is the presentation is the model, are illustrated in Monterey
Canyon and Auto Finder. These two example titles are structured around scenes.

Note that there are many varying ways to structure a title. The next section describes
how you might structure a title that is arranged in scenes.

The Scenes and Stage Manager Structure

When a title allows the user to move from one scene to another, it’s natural to design
the title to be structured in scenes, with a stage manager that oversees the transitions
between scenes. Each scene has different media, so that the transition requires
unloading media for the previous scene and loading the next one.

Both the Monterey Canyon and Auto Finder titles define a structure organized into scenes
and a stage manager.

Scenes

Each scene is a complete, contained subset of the user presentation. Scenes are defined
as TwoDSpace subclasses whose methods correspond to behavior within a scene. Each
scene knows about the media it presents and defines the user interaction it provides.
For example, the Rover class in Monterey Canyon defines the rover scene that lets you
explore the underwater canyon.

In the code for various scene classes, instance variables are used to represent the state of
user interaction and subpresenters for the media presented in the scene. Instance
methods perform several types of action:

® Load media for the scene from the title’s media container and prepare subpresenters
for the scene.

® Implement user interaction with the scene.

® Provide memory management for the scene, to ensure that when it is finished, all
objects it manages are dereferenced so they can be garbage collected.

The Stage Manager

The stage manager acts as the manager for the title as a whole, overseeing the
transitions from scene to scene.

The Ti t| eCont ai ner class provides a useful starting place from which to implement
top-level management of a performance. Both Monterey Canyon and Auto Finder define a
subclass of Ti t| eCont ai ner that provides stage management. Here’s a part of the class
definition for the Mont er eyCanyonTi t | e class:

class MontereyCanyonTitle (TitleContainer)
instance vari abl es

st age

current Scene

st opBut t on

nmedi a

nouse
end

Designing a ScriptX Title

In these instance variables, st age represents a Ful | Scr eenW ndow where each scene is
presented, cur r ent Scene is the scene object currently being presented, and nedi a is the
library container for the media belonging to the current scene.

Rather than storing objects representing each scene, the stage managers for both
Monterey Canyon and Auto Finder store classes representing each scene. Auto Finder’s
technique for storing these classes is shown in the BU LDVE. SX script in “Building a
Saved Title” on page 19. The stage manager doesn’t create instances of these classes
until the scene is ready to be performed.

As the title runs, the stage manager’s main task is to provide transition from scene to
scene. To do so, it purges the previous scene, if any, then creates the instance
representing the next scene. In version 1.0 of ScriptX, this technique has proven to be
more reliable than creating and storing instances of each scene class in the title
container.

The Model-Presentation Structure

The model-presentation structure is another type of structure in which the model and
presentation are represented by different sets of objects. Objects in the model are
directly mapped to objects in the presentation, so that a change in the model changes
the presentation, and vice-versa.

This structure is used by the Beaker and Flame example, which has a model space for the
underlying, non-visible thermodynamic model and a separate space for presenting the
model to the user. The Play Farm title from ScriptX V1.0 also takes advantage of the
separation of model and presentation.

In using this structure, the model is one space and the presentation is a window
(another space). You should create a new class for each new type of space created. Each
space should manage the objects and media that make up its behavior. For example,
each space should bring in and purge the objects, as needed, that belong to it. The
structure of such a title can be similar to that described in the Scene-Stage Manager
description, with the Stage Manager managing both scenes and models.

ScriptX Tips and Traps

Tips

Here are some general title design pointers in no particular order.

Import and store media into library containers

Use a keyed collection as the target for the library container; this lets you refer to the
media by named rather than by integer position in the default array.. Create a script to
build these media containers. As you import and store media, keep an eye on visual
memory. This lets you preview the sizes of various media resources.

Use a strategy for incremental title modification

While authoring, you can create part of a title by loading previously-compiled storage
containers, and create the rest of the title by compiling the code you are currently
working on. (At playback, titles are loaded strictly from storage containers.) To add
developer modifications, you can incrementally update titles in several ways: through
separate loadme and buildme scripts, with patch files, and by compiling free methods
in the ScriptX Listener.

ScriptX Tools Guide

10

Structure scene-oriented titles in a scene-oriented way

Use the scene-stage manager framework where appropriate. Use scenes to manage
media, user interaction, and memory usage. Make sure each scene cleans up all its
object references or calls r equest Pur ge appropriately before it closes. Define a stage
manager to coordinate the transition from scene to scene in a title.

Be aware of thread contention

Threads allow multiple concurrent execution of scripts. They’re useful in executing
concurrent activities, such as doing a database search while an animation runs in the
main thread. As noted earlier, they’re useful for complex event handler functions, where
event handling might otherwise overrun the event handler thread stack. However, the
overhead associated with running multiple threads can create some constraints. If a title
tries to run too many threads at once, none gets sufficient time and overall performance
suffers.

Use callbacks for timed behavior

Use callbacks rather than threads for repetitive time-sensitive actions. Unlike threads,
periodic callbacks can be set to skip when system performance is bogging down.

Collections

Collections are one of the more pervasive features of ScriptX, and can be used in a
variety of contexts. For example, you can combine a group of related objects into a
single keyed collection, then assign the collection to a global variable. This provides
global access to every object in the collection with the use of only one global variable.
This is the role played by t heTi t| eCont ai ner global variable.

You can also use collections to perform higher-order programming within a title. For
example, you can put objects of any type into a collection, including classes, functions,
and generics. With such collections, the user can create new instances, call specific
methods on selected objects, and perform other types of “runtime programming.”

Be aware of the memory overhead of modules

ScriptX modules provide a useful mechanism for preventing name collisions. However,
each module you define has an associated memory overhead that you should be aware
of. Use Visual Memory when loading modules to see their affect on available memory.

Be aware of the size of your media

Common sense applies: large bitmaps and other media take up big chunks of memory
when they’re loaded. Use the Visual Memory tool both when importing media and as a
scene loads to see how much space is allocated. Pare down bitmaps using techniques
described in the next two tips.

Use compressed bitmaps for static and background images

Compressed bitmaps allow you to trade a slight hit in performance (when transitioning
into and out of a scene) for a smaller memory footprint. See the QuickTime to Bitmap
and DIB to Bitmap importers in the ScriptX Developer’s Guidefor details on importing
compressed bitmaps.

Designing a ScriptX Title

Crop Your Bitmaps

You can reduce the memory required for bitmaps by reducing them to the minimum
bounding box of non-invisible pixels, and translating the bitmap appropriately to
compensate. This technique was used with the Play Farm example (from ScriptX V1.0)
and resulted in a 50% reduction in media storage requirements for the title.

The method shri nkBi t map is included in the Medi al nport er class defined in Monterey
Canyon. Using this method makes importing take longer, but it cuts down on storage
size, playback size, and the time required by the compositor, since there’s less area to
update.

The code in shri nkBi t map makes a few assumptions—for example, it assumes that the
upper left pixel is the i nvi si bl eCol or, and the bit depth is eight.

Use invisibleColor for bitmap animations

Compared to mat t eCol or, using the i nvi si bl eCol or of a bitmap provides quicker
load times and animation (these two Bi t map instance variables are mutually exclusive).
With mat t eCol or set, the 2D Graphics system determines transparency by testing
whether a pixel of the specified color is within or outside the image area. With the

i nvi si bl eCol or set, all pixels of the specified color are simply treated as transparent.

Methods vs. Functions (Speed Tip)

In general, define classes and methods when you find yourself writing more than one
function related to a particular area of functionality within a title. Use functions in
performance-critical areas such as callbacks and high-speed loops (functions do not
have the overhead of a generic dispatch). The titles Monterey Canyon and Auto Finder
both demonstrate good object-oriented coding, with subclassing limited mostly to the
classes for title and scene management, and wide use of the classes defined in ScriptX
for most other purposes.

Make sure objects are freed when no longer needed

Here are some pointers:

* Empty out windows after hiding them to make sure they will be freed.
¢ Cancel all callbacks on a clock to make sure it will be freed.

® If a player has had its pl ayPr epar e method called, call pl ayUnpr epar e to free
buffers and perform other cleanup.

® Keep track of places where you're creating references to objects. Collections hold
onto the objects that you add to them; instance variables hold onto objects assigned
to them. For unsaved objects, be sure to enpt yQut collections and set instance
variable references to undef i ned; for saved objects, call makePur geabl e on them.

® Remove event interests; event interests may hang onto other objects.

® Only if necessary, to ensure complete collection, call the gar bageCol | ect ()
function.

Global Variables

Avoid defining global variables within a title, since, when used in a method, restricts
the way that method can used by other instances. In general, global variables set you up
for memory management problems and impede code maintenance.

11

ScriptX Tools Guide

12

Traps

You can avoid declaring globals within a title by smart use of system-defined global
variables, class variables, and instance variables. For example, t heTi t | eCont ai ner
global gives you access to the container that currently has focus. Be aware that multiple
titles may be running simultaneously, and (particularly with threads) your title’s code
may be executing when another title has focus.

The following global variables can be very useful :

theStartDr The directory where the ScriptX or Kaleida Media Player
(KMP) executable resides.

theScriptDr (Not in KMP) The directory that the most recently compiled
(or currently compiling) script started up from. The value is
set by the fi | el n method of Di r Rep. This variable allows a
script to create a title container in the same directory as its
build script. It also lets you refer to other files in the directory
where the script resides, or to create directory paths relative
to that directory.

theRoot Di r The root directory of the file system of the platform on which
ScriptX or the KMP is running.

t heTi t| eCont ai ner The title container that currently has user focus. Note that the
instance variable t heTi t| eCont ai ner . di rect ory gives you
access to the directory where the current title container
resides.

t heTi t| eCont ai ner. wi ndows[1]
The window that currently has user focus.

Also note that it’s not good practice to change instance variables of the system-defined
global constants. For example, the 2D Graphics component defines r edCol or as an
instance of RGBCol or. While you can change the individual r ed, gr een, and bl ue
instance variables of this color, doing so obviously defeats its purpose. (The instance
redCol or is considered a constant because you cannot assign another instance of
R@BCol or to it.)

Save instances vs. saving classes in your title

If your title needs many, small, short-lived objects, you can save memory by not storing
the instances, but instead storing the class and instantiating them only at runtime. This
is because, while the body of an object can be freed by calling nakePur geabl e on it, the
handle of an object, once loaded from storage, cannot be freed from memory (unless
you make the object not reachable).

Don't use different colormaps for a bitmap and its window

This causes color remapping on every frame, which is a common but hard to find
performance killer. All bitmaps in any window should have the same colormap. Call the
war ni ngs function to be notified of this color remapping.

war ni ngs true

This function enables a warning that appears in the Listener informing you each time
color remapping occurs in your title.

Designing a ScriptX Title

Avoid Needless Specializing (to Save Memory)

ScriptX provides a rich core class library that can often suffice for many types of
behavior. Be careful to avoid needless specializing of classes and objects. Each new
class, including the hidden class created when you customize an object, takes up
memory that can’t be reclaimed, even if there are no instances of that classes.

Event Handlers

The event handling thread, Event Di spat chQueue, has a limited stack depth. Thus, if
you write an event handler function that calls another function that calls another
function and so on, you may overrun the stack and cause events to get lost. You can
avoid this by keeping the code in your event handler functions simple, or by writing
event handler functions that create their own threads and return, thereby allowing the
event handler thread to continue processing events.

Speed and Memory Tips

For tips specific to speed and memory, refer to the chapter “Optimizing for Speed and
Memory” in this book.

13

ScriptX Tools Guide

14

Building a Title from
Source Files

ScriptX Tools Guide

16

Building a Title from Source Files

This document describes how to create build files which load the text and media files
for a title.

The discussion that follows is based on the observations of numerous ScriptX
developers within Kaleida. It represents several alternatives for ScriptX title building.
Much of this description is based on techniques that have been tried and proven to
work. Given the short history of ScriptX, it’s likely that these techniques can be refined.
Hopefully, this document will give you a basis for working on alternate approaches.

Note-This description assumes you understand both the ScriptX Language and the
Class Library. While some of the topics may be useful to a beginner, they’re more
likely to be helpful after you've spent some time reading other documentation and
working with ScriptX.

Title Development Process

A general approach to the title development can be summarized with the following
steps:

. Write and compile the scripts that produce the skeleton for your title
. Create the media in other applications (text, images, sound, animation, video, audio)
. Write and compile a build script to import and store that media in a library container

. Write and compile scripts that use that media and complete the title

1

2

3

4

5. Test and debug the scripts
6. Write and compile a build script that creates a title container and files-in your scripts
7. Test and debug the built title container

8. Test the title container in the Kaleida Media Player

9. Test the title container on other platforms (Windows, Macintosh, Power Mac, OS/2)

Throughout title development, you may will need to repeat some of these steps. That is,
you may need to initially import media, then create and compile scripts that use the
media, then refine and reimport the media, and so on.

Creating build files, steps 3 and 6, are described in further detail in this chapter.

Source Files
When you build a title, you generally start with two different kinds of source files:
® Script files containing ScriptX scripts in ASCII text format (extension: SX)

® Raw media files that hold the text, images, video, animation and sound (extensions
such as: RTF, DIB, AIF, SND, WAV)

17

ScriptX Tools Guide

18

To build a title, you compile the script files, some of which can import the media. While
you could import media files on-the-fly from the KMP at runtime (if you include the
importers), importing media can often be a time-consuming process. Therefore, in
general you build a separate script just to import the media into its own library
container. This process is described next.

A file that compiles source files we call a “build” file. It builds all or part of the title. The
following sections describe how to create a build file for scripts and for media

IYou can develop a title in stages. using both objects from open storage containers, and
from freshly compiled scripts. You can incrementally update the scripts and compile
them at any time as you refine and debug your title.

In its deliverable form, your title will consist entirely of compiled code—that is, code in
storage containers. The Kaleida Media Player doesn’t include the ScriptX bytecode
compiler, so all the objects it loads must already be compiled. (The KMP can import
media into existing objects if you include the importers when the user installs it.).

Creating a Build File for Source Scripts

Both Monterey Canyon and Auto Finder (included with the earlier version ScriptX V1.0)
have separate scripts for building both saved and unsaved versions of a title. The
advantage of the unsaved version is that it is faster to run—you don’t have to close and
re-open the title container as you do with the saved version.

Building an Unsaved Title

Authoring Title Loader

The authoring version of the Auto Finder title is created by the script in the file
LQADME. SX This script loads and compiles class definitions for the title. Here’s the code
for Auto Finder’s LOADME. SX script.

- - <<<-
-- Fil enane:
-- | oadne. sx

-- Qher Files Required:
-- Al those specified in a fileln.

-- Purpose:
-- Conpile and execute the Auto Finder title from scripts.

-- Specialized d asses:
-- None

-- Instructions to User:

-- File this in, then execute the title from scripts.

-- Note that the menu bar will not be hidden when running from
-- scripts, so that the menu can be accessed when debuggi ng.

-- Author:
-- Steve Mayer

fileln theScriptDr name:”function. sx”
fileln theScriptDr name:”crit.sx”
-- ... load a lot of scripts ...
filein theScriptDr name:”adl ayout. sx”

Building a Title from Source Files

fileln theScriptDr name:”autofind. sx”

gl obal af
if (not isDefined BuildOly) do
(
af := new AutoFinderTitle -- should be a path: keyword here
)
“Conpi | ed | oadme. sx”
--2>>>

After loading all the script files that define classes, the LOADME. SX script conditionally
creates a new instance of the title’s manager class Aut oFi nder Ti tl e. Aut oFi nder Ti tl e
is a subclass of Ti t| eCont ai ner, used to both store the title and provide high level
management of title-specific behavior.

Note-The LOADVE. SX script for Auto Finder on the ScriptX Version 1.0 CD-ROM
generates an exception. The line commented above should include a pat h: keyword
and argument.

For authoring purposes, the title only needs to be managed, not stored. When you
compile the LOADVE. SX script directly, the conditional global variable Bui | dOnl y is
undefined. The script therefore creates an instance of Aut oFi nder Ti t| e, but no objects
are saved to it. The instance exists only within the current ScriptX session so the author
can run its startup action. The startup action is run by calling:

start af

where start is a method defined in the Auto Finder title container af to call
startupActi on.

Note-The normal behavior of a title container is to create a new file when it is first
instantiated. This file should be deleted after each time the | oadme. sx script is run.

Building a Saved Title

To create the a version of the title that is saved to atitle container, Auto Finder uses a
second script, BU LDVE SX The BU LDME. SX script defines the Bui | dOnl y global, then
runs the LOADME. SX script. With Bui | dOnl y defined, the LOADME. SX script doesn'’t
create a manager; it simply loads and compiles all the scripts defining the classes. Then
the BU LDVE. SX script takes over, creating a file-based instance of Aut oFi nder Ti tl e
named t ¢. This container is used to save the title for playback in the KMP.

- - <<<-
-- Fil enane:
-- autofind. sx

-- Qher Files Required:
-- | oadne. sx

-- Purpose:
-- Builds the Auto Finder title container.

-- Specialized d asses:
-- AutoFinderTitle

19

ScriptX Tools Guide

20

-- Instructions to User:

-- Run this script to build the Auto Finder title container.

-- It conpiles all of the Auto Finder classes (by filing in

-- loadne.sx), and then builds a list of all classes and puts

-- themin the TitleContainer. It defines the start up action to
-- load the classes and create an instance of AutoFinderTitle.

-- Author:
-- Steve Mayer

global BuildOnly := true

fileln theScriptDr name:"|oadme. sx" quiet:true
gl obal titleContainerFilename: = "autofind. sxt"

-- Function sxSubs() finds all scripter defined classes.
function sxSubs ->
(

chooseAl | (get Subs Root hject) \

(v arg -> sxbefined v) O

-- Oreate a title container and wite its script to |oad

-- classes and run the title.

global tc := new AutoFinderTitle dir:(parentDir theScriptDr) \
path: titl eCont ai nerFi | enane

tc.startUAction : =

(tc ->
(
hi de tc. systenMenuBar
-- Load in the classes
forEach tc | oad undefined
start tc
)
)

-- Gt a list of all scripter defined classes, and store themin a
storage container.
gl obal classList := sxSubs()

-- store all the classes in the title container
for cl in classList do

(
)

append tc setters
append tc getters
append tc fade

append tc cl

close tc
-=-2>>>

Notice the function sxSubs. This function finds all the scripted classes and saves them
to the title container t c. Notice also the title startup action which loads all the contents
of the container t ¢, then starts the title. After appending all the classes of the title in the
container, the BU LDVE. SX script closes the container, thus saving the title. (In Monterey
Canyon, a separate script, BLDCLS. SX, is run to add the classes to the title container.)

Building a Title from Source Files

Note-Some developers suggest that you avoid using the sxSubs function. Instead, they
suggest you explicitly track the classes defined in your title. This is because sxSubs will
return a collection of all scripted classes, including those used to implement the
importers, browsers, and debugger. The other way to avoid this side effect is to run the
BU LDME. SX script only after restarting ScriptX with no tools installed.

Using this approach, code maintenance becomes somewhat more modular. If new
source files are defined, they only need to be added to the LOADME. SX script—
BU LDME. SX picks them up automatically when it compiles the LOADME. SX file.

Incremental Development Using Free Methods

You can modify a compiled class directly in ScriptX by using free method definitions:

nethod foo {class foobar} -> (
....redefine nethod code here....

)

Enter new code for a method into the Listener to change the behavior of any class for
the duration of the current ScriptX session. You can repeatedly redefine the methods of
any existing classes in ScriptX, even those that already have defined instances.

Incremental Development Using a Patch File

A further refinement of the previous technique for developing a title is to create a
startup function (assigned to a title container’s st ar t upAct i on instance variable) that
loads a patch file that contains only free method and function definitions. This patch file
provides a place to add incremental modifications to a title. (It’s difficult to use this
technique when you need to modify the i ni t method for a class.)

The startup function is defined to start the title in three steps:
1. Load classes from the title container

2. Load and compile the patch file using the fi | el n method.
3. Invoke the method or function that actually starts the title.

The code in the patch file consists of new and modified definitions of methods for the
classes in the container. All methods defined in the patch file use the free method
construct (shown above):

Code in the patch file can be used to modify or add methods to existing classes, and to
define new classes. You can modify methods by changing their behavior, but not by
changing the number of arguments. To modify a method’s argument signature or to add
or remove instance variables, you need to make the changes directly to the class source
file, then once again compile and store the class. You can use a file like | oadne. sx and
bui | drre. sx described in the previous section to compile and save the classes. As you
develop and test code in the patch file, you can move tested methods into the original
source for your classes, then rebuild the title container.

Note that you only want to load the patch file if it exists, and if it can be compiled. The
following code tests to see if the compiling method fi | el n is defined (it is in ScriptX
and isn’t in the Kaleida Media Player), and if there’s a patch file in the source directory:

if ((isDefined fileinl and (isthere tc.directory "SOURCE patch.sx")) do
fileln (spawn tc.directory "SOURCE') nane:"patch. sx"

2]

ScriptX Tools Guide

22

This code would be placed in the startup function for a Ti t | eCont ai ner; it can be left
in even when the container is built for playback on the KMP.

Note-You may also want to design your title so that setting a global variable within the
patch file directs your title to start with the particular scene you're working on.

Creating a Build File for Media

This section describes how to create scripts that import the media of a title and place it
in library containers. As you develop your title and its media assets, you can update
these scripts incrementally to reflect changes.

We'll use the Monterey Canyon example to demonstrate how to create a build file for
media.

Monterey Canyon Example

Monterey Canyon uses two scripts for importing its media: medi ai np. sx and
bui | drre. sx. These scripts are in files in dsgnexnp/ nont er ey/ nedi a on the previous
release of ScriptX, the V1.0 CD-ROM.

Note-The Monterey Canyon example is not included with the current version of ScriptX.
It was available in the previous release, V1.0.

The Medialmporter Class

The Medi al nporter class (defined in the file medi ai np. sx) manages the import and
storage of all the media types used in the title. Medi al nport er defines methods to
import various types of media and store them in library containers. It defines instance
variables to keep track of the container where media is being saved, the type of media
being imported, and other information. It also defines a method for shrink wrapping
(cropping) bitmaps as they are loaded, by eliminating rows or columns of surrounding
pixels that are made up entirely of invisible color.

The Build Media Script

The file bui | drre. sx contains a script that tracks media resources for Monterey Canyon,
and uses a Medi al nport er instance to import and store that media in a new library
container. The first part of that script is shown here.

- - <<
fileln theScriptDir name:"mediai np. sx" quiet:true

-- Put resulting title container in nonterey folder.
global nontereyDr := parentDr theScriptDr
global | := new LibraryContainer dir:nmontereyDr \

target Col | ection: (new HashTabl e) path: "nonterey. sxl"
global m := new Medialnporter dir:theScriptDr container:|

kkkkkk*k INTRO '\ED A *kkkkkk
m convert ToShapes: = fal se
m i nvi si bl ecol or: = whi tecol or
inport DB m "roverOl. bnmp" nedi akey: "rover1l"

Building a Title from Source Files

inport DB m "rover02. bmp" nedi akey: "rover?2"
inportDlB m "rover03. bnmp" nedi akey: "rover3"
inportDl B m "rover04. bnp" medi aKey: "rover4"
inportDlB m "rover05. bmp" nedi akey: "rover5"

m conver t ToShapes: = true

m i nvi si bl ecol or: = undefi ned

inport Dl B m "kal ei da. bmp" nedi akey: "kal ei da | ogo"
inportDIB m "introsea. bnp" nedi aKey: "intro sea"
inportDlB m "nountain. bnp” nedi akey: "nountain"

Note that this script uses the Medi al nport er instance mto import the various types of
media scene by scene. It places the media for all scenes in a single library container, | .
In contrast, Auto Finder stores the media for each scene in a separate library container.

Both techniques have benefits. Using one media container for the whole title reduces
the number of files that makeup a title, but takes longer to save. One the other hand,
using one media container for each scene allows media for that scene to be developed
separately, perhaps by different developers. Another technique would be to start out
using several media containers, then build the final version to a single media container.

In both Monterey Canyon and Auto Finder, the target collection used by each media
container is a keyed collection (a HashTabl e instance in Monterey). Each piece of media
is identified by a particular named key, rather than by an index number (which you
would get with the default Array for the title container’s target collection). This makes
it easier to rewrite and recompile scene scripts and rebuild media containers
independently, without disturbing the scene’s ability to access its media.

23

ScriptX Tools Guide

24

C HAPTETR

Optimizing for
Speed and
Memory

ScriptX Tools Guide

26

Optimizing for Speed and Memory

There is an inherent tradeoff between reducing the memory requirements of a
title or application and maximizing its speed. In a world with no memory
limits, you could maximize speed by loading the entire title into memory. In
the real world, you can instead pre-load from disk into memory just those
objects that will potentially be used next.

For information on the amount of memory required to run ScriptX, refer to the
installation section of the ScriptX Quick Start Guide. For general concepts on
how memory allocation works internally, refer to the chapter “Memory
Management” in the ScriptX Components Guide.

This chapter gives many different options for how to optimize your title.
Typically, optimizing is a matter of trading off speed and memory. If one
technique is faster, but another takes less memory, and you're not sure which
one to use, try the one that takes less memory first and see if it’s fast enough to
do the job. If it is, you're home free; if not, try the faster technique.

This chapter has two sections:
* Optimizing for Speed

¢ Optimizing for Memory

® Reducing File Size

Important — During development, you should constantly measure speed and
memory to catch and correct unfavorable changes when they occur.
Developing an entire title and then optimizing it at the end is needlessly
painful and time-consuming, and you may discover too late that you are
missing your target memory size.

Optimizing for Speed

In general, constantly monitor the speed to catch slowdowns. Add timers that
log intervals. Pre-load objects wherever possible.

SpeedToolsin ScriptX
* Bytecode Profiler

e Functions to optimize speed. These are documented in the “Title Analysis
API” chapter in this document.

fps() — (frames per second) (core function)

ptt() - (print thread timing) (core function)

27

ScriptX Tools Guide

rtt() — (reset thread timing) (core function)
war ni ngs true — (core function)

When warnings are turned on, the f ps function will print out the number of
frames the compositor was idle (if non-zero). This will help determine if the
frame rate is slow due to problems other than drawing speed. This f ps
printout helps developers optimize their titles for performance. The printout
can help a developer determine why they are getting a low frame rate. If the
compositor isn’t idle then they are just trying to do too much. If the
compositor is idle, then the bottleneck is artificial.

Language

* Minimize repeated generic access to instance variables. If you need to get
the value from a variable more than once, set it to a local variable and use
the variable instead. For example:

local tc := tree.color

use t ¢ rather than using t r ee. col or numerous times. In ScriptX, setting or
getting an instance variable is a call to a generic (rather than an offset). The
tree. col or in the previous example is equivalent to:

colorGetter tree

However, be aware that this does not work for setting a variable value.
Setting t ¢ does not set t r ee. col or.

¢ A function call is faster than a method dispatch (this is small effect and
might not be noticeable except in tight loops). Using a function call is not
object-oriented. Consider using this where appropriate—to eek out a tiny bit
of speed improvement when a generic would otherwise have just one
method.

Color

¢ A bitmap should use the same color palette as its window. This is very
important for speed.

e matt eCol or is slower than i nvi si bl eCol or (does flood fill) use
invisibleColor then where you don't want it to be transparent, change the
color slightly

Compositing

¢ Disable the compositor when arranging presenters (set its enabl ed instance
variable to f al se).

e Use direct presenters when appropriate, such as for video (set the di r ect
instance variable to t r ue).

28

Optimizing for Speed and Memory

Make sure not i f yChanged gets called only once during a composite cycle
for each presenter that needs to be reupdated.

Mark presenters as stationary and non-transparent whenever applicable.
Minimize the number of presenters that are changing simultaneously.

A new compositor instance variable useOf f scr een defaults to t r ue, but
when set to f al se, all presenters go “direct” to screen, bypassing the
off-screen buffer. This saves a whole chunk of memory, and is actually
quicker. The disadvantage is flicker in both animation and overlapping
stencils. Setting useCOf f scr een to f al se is also useful for debugging and
understanding how the compositor works and then rearranging your title
for optimal speed.

Animation

Video

Write the code that runs animation sequences and loops so that it avoids
generating needless garbage. Often code can be written so that you reuse
the same object over-and-over again, rather than creating new objects each
loop. The garbage collector can take up 15% overhead.

Call pl ayPr epar e on video and audio players to minimize switch time. To
reduce seek time on a sequence of videos from off the CD. We suggest
calling pl ayPr epar e in reverse order. (Due to lack of asynchronous reads
on Microsoft Windows, some seek time is unavoidable there.)

When switching video clips, you have a choice between storing them as
separate clips, each with their own player, or storing them all in one long
movie, with programmatic control over what section of the movie is
playing. The segmented movie seemed to be the most efficient approach.

One problem to be aware of when using segmented movies:

* You don't have predictable control of a movie player on a
frame-by-frame basis. Depending on what else is going on in the
application, the player may play past the duration you specified, which
can be particularly noticeable when looping segments. Making the loop
a high-priority callback will help, but for safety's sake, it's best to put a
buffer of a few frames between segments.

e If you're planning to switch between a series of movies in the same
location on screen, don't move them to and from the space; instead,
simply show or hide them.

¢ If you have a choice between using bitmap-based animation or
movie-player based animation, the movie-player option will likely be
faster (because movement between frames is being controlled at a lower
level, rather than through callbacks at the ScriptX layer), and take up less
space (because of Cinepak compression).

Problems to be aware of with the movie-player option:

29

ScriptX Tools Guide

* Invisible colors combined with Cinepak compression tend to leave edge
noise. If your color scheme can't be adapted to the noise, you may have
to fall back to bitmap animation.

* You have much less frame-by-frame control.

Disk Access

e If you need a group of objects, rather than loading them one at a time, load
them all. If they are nested, use | oadDeep.

30

Optimizing for Speed and Memory

Optimizing Memory

e Wherever possible, share objects instead of duplicating them.

e Constantly check “memory used” in Visual Memory to catch unnecessary
memory use.

e Load and purge objects efficiently (load from disk, purge from memory)

* Windows consume a great deal of memory. Use only one window; prepend
and delete spaces to that window.

¢ Delete and drop all references to saved objects (so they are freed) rather than
hide or disable them to regain memory.

Memory Tools in ScriptX

e Visual Memory — Available by choosing Visual Memory from the File menu.
It is also available in the Kaleida Media Player (see “Visual Memory”
chapter for details).

e Functions to optimize memory. These are documented in the “Title Analysis
API” chapter in this document.

al | I nst ances className — (core function) defined in Behavi or class
di sassenbl e — (core function) not documented

fi ndPar ent s address maxLevel — (core function)

t reeSi ze object verbose maxDepth — (core function)

obj ect Si ze maxDepth — (core function)

menor yDi ff () — (scripted function) documented in the “Title Analysis
API” chapter

menor ySnap() — (scripted function) documented in the “Title Analysis
API” chapter

menor yUsage items — (core function) documented in the “Title Analysis
API” chapter

moo() — (scripted function) documented in the “Title Analysis API” chapter
showCode — (global variable)

Size of A Class

Classes take about 1K of memory each, not including method implementation.
For this reason, when trying to conserve memory, it is useful to think about
reducing the number of classes.

31

ScriptX Tools Guide

32

Garbage Collection of Persistent and Transient Objects

The following is a coherent way to view the memory system. All objects have
two parts: a handle which points to its body. The handle is a kind of pointer to
the body and is always 32 bits; the body is the rest of the object.

When you drop all references to the handle of any object, the handle and body
are automatically garbage collected.

Object
tc[1] ——————p Handle |—| Pointer —» Body !
9o T T =
reference

Figure 3-1: All objects have a handle and a body. The body can be freed
when you call makePurgeable. The handle and body can both be
freed only by dropped all references to both.

Essentially there are two separate worlds of objects: the “persistent” (stored)
world and the “transient” (non-stored) world:

e A non-stored object is created by calling new When there are no further
references to it, it is automatically garbage collected. Because the object is
not stored, the handle and body are always garbage collected together, as a
pair.

 Stored objects are brought into memory from a storage container. A handle
to a top-level object loaded from a container cannot be garbage collected,
since the container holds onto it. (If you remove the object from the top
level, then its handle can be garbage collected if there are still no other
references to it.) A subobject can be garbage-collected if it is no longer
reachable from core objects.

If you want to keep the handle of a stored object in memory (to maintain all its
current references), but free its body, call makePur geabl e on the object. Note
this only marks the object, it will likely be purged by the end of the next
complete garbage collection cycle. (When an object’s handle is freed, it is
garbage-collected at the next cycle; when an object is purged, its body is freed
but not its handle.)

When you have a complete network of the persistent objects that can reach
each other, and call makePur geabl e on all those objects in the network, both
the bodies and handles for all those objects will be garbage collected.

Any method call on a stored object after it has been marked as purgable will
have one of two results (the one chosen is determined by gc latency and
substrate reference optimization):

e If the object was actually removed from memory, it will be reloaded from
the storage container before the method is called on it

e If the object has not been removed from memory, the purge bit will be
cleared and the method will be called on the original object still in memory

Optimizing for Speed and Memory

You must be prepared to deal with either case. The first case can happen if the
method call happened before the complete garbage collector cycle ran, or if in
the substrate some code has a direct reference to the object’s body.

To re-iterate, the purpose of makePur geabl e is to maintain references to the
object so that you can again pull it into memory (otherwise, you could just
drop all references to it).

Rules of Thumb for Creating and Purging Objects

From this, we derive several rules of thumb for good title design:

1. If you have lots of small, short-lived objects, it can save small amounts of
xmemory to instantiate them at runtime from a class rather than load them
from storage, since their handles cannot be garbage collected once brought
in from storage.

2. If you need to purge an object, it is safer to purge things are not changed,
like bitmaps and audio, so the newly loaded version is identical to any
memory-resident version.

3. If you purge an object that has changed state, you must be prepared to set
its state to the desired values before you next use it, since it can be either in
its most recently used state or its “fresh from store” state:

¢ If you want to next use it in its “fresh from store” state, you can set its
state to the stored state before you call makePur geabl e on it.

e If you want it to be in some other state, you must set its state after you
touch it again but before you use it.

Scene Changes

Scene changes are inherently at odds with the design of the garbage collector.
A scene change is any place in a title where in a short amount of time you want
to remove a significant number or size of objects and then add other objects.
Freeing the old objects can be done either of two ways, with the usual tradeoff
between speed and memory:

¢ Free them all at once, or “synchronously”, by calling makePur geabl e (if
stored) or dropping references (if non-stored) and then calling
gar bageCol | ect .

This reduces the maximum memory requirement, but there will be a pause
(about 1 second on a low-end machine) due to calling gar bageCol | ect .

e Allow the garbage collector to free them when it gets to them,
“asynchronously”.

This reduces the time to switch scenes, but requires more memory, as new
objects are loaded before all the old ones are freed.

33

ScriptX Tools Guide

34

If you can afford the pause of an explicit call to gar bageCol | ect, then the
first approach allows all old objects to be freed before loading new ones. If that
pause is too long, then you must try the second approach, allowing new
objects to be loaded into memory before the old ones are all garbage collected.

Dropping Bitmap Data

If a bitmap has been loaded from a container such as a title container or library
container, you can use the dr opDat a method to force the bitmap to drop its
data immediately.

When you make a bitmap purgeable, by calling makePur geabl e on it, the
garbage collector cleans up the memory that the bitmap uses. However, this
does not happen instantly. It happens as soon as the garbage collector gets
round to it. Before making a bitmap purgeable, you can call dr opDat a on it, to
immediately free up the memory used by the bitmap. When the garbage
collector gets round to cleaning up the object, it completes the cleanup by
freeing the memory occupied by the actual Bi t map object.

If you call dr opDat a on a bitmap that has not been loaded from a container,
(that is, you imported it in the same ScriptX session), you will get an exception.

Debugging Memory Problems

There are three main classes of memory problems in ScriptX applications:

¢ Unexpected loading of objects — You get loading of objects from storage
containers at weird unexpected moments—for example, after you've already
decided that you're done with the object and have purged it.

Debugging approach: Specialize the af t er Loadi ng method on the object
(with pri nt statements, for example) to track inflations of the objects of
interest to figure out what's triggering the inflations.

* Unnecessary garbage produced in loops — Unexpected amounts of memory
is being eaten away when it doesn’t seem like extra memory should be
needed.

Debugging approach: Use the menor ySnap and menor yDi f f functions to
take a find out what objects have come into memory.

* Objects don’t get garbage-collected — The garbage collector doesn’t want to
collect certain objects.

Debugging approach: Use f ap (find all parents) and ppat h (parent path)
functions to locate objects that are keeping otherwise-collectible objects
around. Remember that browsers and the most recent expression in the
Listener window will also keep objects in memory.

Ubiquitously useful are the familiar al | | nst ances method and Visual
Memory.

Optimizing for Speed and Memory

Loading and Purging

e Purging media — See the “Title Management” chapter in the ScriptX
Components Guide.

e Make almost everything purgeable -- retrieval is unexpectedly fast

e Think in terms of scenes, collections and 1-of-n presenters

When purging, some caveats should be noted. In our Monterey example, there
were several cases in which we load a TwoDShape object whose pr esent edBy
flag was saved as undef i ned.

Then we append this shape to a space. Later, this shape is purged. However,
the space referring to this shape can still refer to the shape. When this happens,
the shape is reloaded. However, its pr esent edBy flag is reloaded as

undef i ned when it should really be set to the space. This prevents the shape
from ever getting updated.

Presenters and Bitmayps

¢ Use non-bitmap stencils (such as Rect) rather than bitmap stencils where
equivalent.

e Trim bitmaps to the smallest possible bounding rectangle wherever possible.
e Use compressed DIBs with the low memory options whenever possible.

* Don't use full-screen bitmaps unless absolutely necessary. Use Rect .

* Use fills and small bitmaps as patterns whenever possible.

¢ Tile small bitmaps rather than using large bitmaps.

Minimizing The Need For Garbage Collection

When optimizing a title, it is important to minimize the amount of time the
garbage collector needs to run. You can do this by following a few general
rules, stated below, and then checking your title while it’s running to make
sure it’s garbage collecting only where you know it needs to.

An object in memory becomes available for garbage collection when you are
done using it (that is, you have dropped all references to it, or have called
makePur geabl e on it). Thus, an object that is no longer used becomes
garbage. While it’'s a good idea in general to avoid creating unnecessary
garbage, it can be more critical inside a loop. If garbage is created each cycle of
a loop, the garbage collector will continue to be called while that loop is
running, which steals processing time from other activities, such as
compositing.

For example, some simple animations can be implemented by using a periodic
callback that repeats an action on a regular basis. Periodic callbacks get called
frequently, often many times a second. If each callback invocation generates
just a tiny bit of unnecessary garbage, and is running 30 times a second, the
garbage accumulates, and the garbage collector needs to run often to keep up

35

ScriptX Tools Guide

36

with it. Since the garbage collector can use as much as 20% to 30% of the
processing time, your animation could be running 20% to 30% less efficiently
than it should.

So the basic aim is to minimize garbage generation within loops.

Exceptions can Prevent Garbage Collection

Each time an exception occurs, the t hr owTag and t hr owAr g global variables
get bound to objects. The t hr owTag is bound to the Except i on object that
was created, while t hr owAr g is bound to the arguments passed to the r epor t
method (which reports the exception.) If an object, such as a window, is passed
to an exception, then t hr owAr g points to that window, and the window
cannot be garbage collected.

To free up whatever objects are currently bound to t hr owAr g, you can either
set t hr owAr g to undefined, or do something that causes an exception, such as
di vi deByZer o, where the t hr owAr g does not hold onto an object that needs
to be garbage collected.

For example, to cause a di vi deByZer o exception, simply divide any number
by 0, for example:

10/ 0

To Minimize Creating Garbage in Loops:

e Within a loop, avoid creating a new object that you will just free later in that
loop. Re-use existing objects, and store them in instance variables if
necessary.

For example, if you think you need a new array each time a callback runs,
instead create only one array, put it in an instance variable, then empty it
out and fill it each time the callback runs. An array is a contiguous block of
memory whose elements point to objects; as long as its number of elements
does not change, the amount of memory it uses does not change. Emptying
it out simply nulls out elements, rather than reduces its size.

¢ Within a loop, avoid defining an anonymous function which is not held onto
by any variable. Because it has no reference, it gets garbage collected once
each loop. Instead, predefine the function. For example:

Avoid: forEach nyArray (value arg -> print value) arg

Prefer: nyFunc val arg -> (print val) -- Do this outside the |oop
forEach nyArray nyFunc arg -- Do this inside the |oop

e Within a loop, avoid using the “for a in b do c” syntax, since it creates
and frees an iterator each time it is called. Instead, use the f or Each method
(which does not create an iterator) and give it a function to call on each
member of the collection. Give it a named function, not an anonymous
function, for the previous reason. (Don't give it a method in or about
build 40, or your title will crash.)

Optimizing for Speed and Memory

Avoid: for val in nyArray do nyFunc

Prefer: forEach nyArray nyFunc arg

Calling makePurgeable on an Object

The following rules are true inside or outside loops.

e Make sure you have completely finished using an object before you call
makePur gabl e on it.

For example, don’t call makePur geabl e on a window and then empty it
out; do it the other way around. Using the object simply pulls it back into
memory, defeating the effort to purge it. In addition, bugs might occur if the
object pulled in from storage is in a different state than it was in memory
(that is, if some of its transient instance variables were changed).

Visual Memory Tips

For details, see the “Visual Memory” chapter of this document.

Garbage CollectionTips

Up to 20% of the processor time can be spent doing garbage collection.

Garbage collection should occur only when freeing objects—not when showing
or hiding objects, or moving them across the screen.

ShowCodeTTips

To find out if some code implicitly creates an object (behind your back), set the
global variable showcode to t r ue and call the code to see what it does. This
shows the individual, somewhat cryptic, bytecode instructions that get called.
From this you might be able to guess if an object is being created.

For example, the f or statement creates an iterator

showcode := true
for i in #(1) do O

This prints out a lot of stuff in the Listener, including the following (Line 6
shows that an iterator is created):

PUSH EXTERNAL- CONSTANT undef i ned

PUSH ONE

CALL- EXTERNAL Substr at e: makeArrayVal ues 1
CALL- EXTERNAL Substrate:iterate 1

9: PUSHLOCAL 1 (ilterator)

11: CALL- EXTERNAL Substrate:next 1

14: JUWP-| F- FALSE 26

37

ScriptX Tools Guide

16: PUSH LOCAL 1 (ilterator)
18: CALL- EXTERNAL- DI SCARD Substrate: val ueGetter 1

21: PUSH ZERO

22: PCP-INTOLOCAL O (result113)
24: JUW 9

26: PUSH LOCAL 0 (result113)

28: RETURN

Other

e If you have instance-specific information, design so that you can store it in
instances rather than in rarely-instantiated class definitions.

e Often you can cut down on the number of presenters, controllers, spaces,
and so on, by replacing "generic" classes (like PushBut t on) with specialized
classes designed specifically for your application.

Reducing File Size

If your delivery mechanism is CD-ROM, file size of code is not usually a
problem—the media usually fills up the disc. However, when doing fi | el n,
set the keyword debugl nf o: f al se to reduce the file size of code significantly.
This prevents the source code from being saved along with each bytecode
method.

38

ScriptX Title
Analysis API

ScriptX Tools Guide

40

ScriptX Title Analysis API

This chapter describes functions and variables that can help ScriptX programmers
analyze various characteristics of their titles, including memory usage, compositing
performance, and other factors.

Some of these functions are defined in ScriptX, and are marked “global function”.
others are implemented as scripts that need to be loaded into ScriptX to be defined, and
are marked “scripted global function.”

Note-Do not call any of these functions or variables from within a ScriptX title that
needs to run in the Kaleida Media Player. Many of these functions and variables are
not available in the Kaleida Media Player. All are unsupported, and are not guaranteed
to work on all platforms or in future versions of ScriptX. They are provided to assist
you in the process of ScriptX title development.

disassemble (global function)
di sassenbl e funcObj O Bool ean
funcObj Scripted Funct i on or Byt eCodeMet hod to disassemble

Disassembles the scripted function or byte ode method funcObj and prints its bytecode
representation in the ScriptX Listener window. The information presented by this
function is in the same form as that displayed by the ScriptX Debugger. Note that this
function works only with scripted, not core, functions or methods. This method returns
false if funcObj cannot be disassembled.

To disassemble a method, call net hodBi ndi ng (defined in Behavi or) on the class and
method you want to disassemble. For example:

di sassenbl e (nethodBi ndi ng nyd ass nyMet hod)

findParents (global function)
findParents address maxLevel O (none)
address Address of object to find the parents of
maxLevel I nt eger indicating how far up the reference paths to go

This function is used for debugging, when you want to find who’s holding onto an
object. This is useful, for example, if you expect the object to already have been garbage
collected. (Removing the last reference to an object allows it to be garbage collected.)

The fi ndPar ent s function prints to the Listener window all references to the object
with the specified address, recursing maxLevel deep. The maxLevel indicates how far to
recurse up the reference paths, parent-to-parent-to-parent, and so forth. It stops
recursing at roots (C globals, stack, global variables) and also when it detects cyclic
references.

You can specify the integer address either by using the address value displayed in the
return value of an object, using the addr essCf function on an object, or using the
address printed when you click on a memory segment in Visual Memory.

For example, to find all the variables and objects that point to t heTi t | eCont ai ner, 2
levels deep:

4]

ScriptX Tools Guide

42

findParents (addressCr theTitl eContainer) 2

The fi ndPar ent s function prints as complete a description as possible of the parents
and the object being queried. This can be useful just for getting information about the
object, since it describes persistence, object ID, host storage container, static/dynamic/
system heap residience, if there’s a t -> p present (internal debugging info), and so
forth.

fps (global function)

fps() 0 Fl oat

The “frames-per-second” function prints a float representing the current frame rate.
This value is based on the number of times per second the compositor for the current
window is compositing.

memoryDiff (scripted global function)
nmenor yOi ff memorySnap O (none)
memorySnap Rantt r eamobject returns from nmenor ySnap function

This function prints to the Listener window a list of the different objects between
memorySnap and the current state of memory. Use this function after calling the
nmenor ySnap function. For example,:

gl obal m := menorySnap()

-- Make sone changes to nenory, such as change scenes in a title
nmenoryD ff m

0 There are 4 nore instances of Rect. There is a total of 14 instances.

The two functions menor ySnap and nenoryD ff work best when paired togehter.
However, you can take several memory snaps, and then call menor yDi f f on those snaps
at different times.

This function is scripted. To define menoryDi f f, run the script mendi f f . sx located in
the uti | s/ menory folder on the ScriptX release.

memorySnap (scripted global function)

nmernor ySnap() O Ransttrean?

This function uses menor yUsage to capture the topmost objects in memory. To take a
snapshot of memory:

gl obal m := menorySnap()

Then call nenoryD ff to analyze this snapshot.

This function is scripted. To define menor ySnap, run the script mendi f f . sx located in
the uti | s/ menory folder on the ScriptX release.

memoryUsage (global function)
menor yUsage num O I nteger
num I nt eger object

Reports how memory in the ScriptX heap is being used., based on the value of num:
¢ If num equals 0, then menor yUsage reports a simple summary.

o If num is a positive integer, it reports an ordered list of the largest num consumers of
memory.

ScriptX Title Analysis API

e If items is a negative integer, menor yUsage reports on consumers of static memory
instead of dynamic (heap) memory.

Returns num, even if fewer actual consumers of memory were found. This function is
for testing and debugging only, and should not be used in any title or library. (Tools
component)

-- Exanple. Report top 30 consurers of menory in the ScriptX heap.
menor yUsage 30

-- prints report to window with up to 30 itens

0 30 -- returns 30

moo (scripted global function)

noo() O (none)

The “memory overhead overseer” function. This function is scripted; to define it, run
the script listed at the end of this description.

This function is useful for finding memory leaks in a title. For example, type moo()
after each scene change to see how much memory is being used. This function also
keeps track of cumulative memory loss since you first ran nmoo.

To find out what memory is being held onto, use fi ndPar ent s global function and
visual memory.

Here's sample output from moo:

nmoo()

"free sys "1507040" heap used "1556720" total heap "2709504

"delta free sys "-52736" delta heap used "1200" delta total heap "O
"cumul free sys "-29280" cunul used heap "6112" cumul total heap "O
"adj cumul free sys "-29280

The first line indicates the current figures.

The second line is the difference between current and previous figures.

The third line is the difference between current and starting figures.

The last line is free system memory adjusted for growth of the ScriptX heap.

This function is scripted. To define noo, run the script moo. sx located in the
util s/ nenory folder on the ScriptX release.

The moo function uses the functions t ot al Fr eeSyst enBpace, t ot al Fr eeHeapSpace
and t ot al HeapSpace, which are documented in the “Global Functions” chapter of the
ScriptX Class Reference.

ptt (global function)

ptt filename O (none)
filename String representing name of file

Print thread timing. This function prints timing information in the ScriptX Listener
and—in conjunction with the rtt function—to the filename file in t heStart Di r
directory. For example:

createFile theStartDr "pttfile" @ext
ptt "pttfile"

Information printed in the Listener window is formatted as follows:

43

ScriptX Tools Guide

44

mllisec slices tine/slice slicelsec
4327 100. 0% 343 12.6 79.3 Tot al
57 1. 3% 0 0.0 0.0 schedul er
2463 56. 9% 81 30.4 18.7 Idle
34 0. 8% 4 8.7 0.9 @ heMai nThr ead
0 0. 0% 0 0.0 0.0 "User Priority Call Backs"
52 1.2% 18.9 0.3 43.7 "SystemPriority Call Backs""
0 0. 0% 0 0.0 0.0 "Event Di spat chQueue"
1448 33.5% 49 29.6 11.3 "Gar bage Col | ector”
268 6. 2% 101 2.7 23.3 " Consol eThr ead"

This report represents a snapshot of current thread timing information. The column
“millisec” represents the amount of time consumed by each thread, and the percentage
column (unlabeled) represents the percentage of total time taken per thread. “slices”
represents the number of time slices allotted to each thread, “time/slice” represents the
number of milliseconds per slice, and “slice/sec” represents the number of slices for a
thread each second. The last column prints the names of each thread currently running.

Information printed in the filename file is formatted as follows:

2884321 2884321 0 "I dle"

2884505 184 0 "Schedul er"

- - enter "System Priority Call Backs"
2884544 39 0 "System Priority CallBacks"
2884636 92 0 " Schedul er"

- - enter "System Priority Call Backs"
2884855 219 0 " Consol eCB"

2885142 287 0 "System Priority CallBacks"
2885354 212 0 " Schedul er"

- - enter " Consol eThr ead"

This information may not be as immediately useful as that printed to the Listener. The
first column represents time in milliseconds at which a thread begins execution, the
second represents the total time in milliseconds taken by a particular execution.

rtt (global function)

rtt arg O (none)
arg I nt eger value of 1 or O

Reset thread timing. Use this function with ptt to control the output of periodic thread
timing information. An arg of 1 resets the time and causes the thread timing information
to begin writing out to the file specified with ptt. An argument of 0 resets the time and
causes thread timing information to stop writing out to the file specified with ptt.

showCode (global variable)

showCode 0 Bool ean

When this variable is set t r ue, and whenever expressions execute in ScriptX, the
corresponding bytecode instructions and all intermediate forms of the parse tree
display in the Listener window. This makes it possible to analyze ScriptX expressions.
To turn it on, set it true:

showcode := true

P AR T

T

W

O

Kaleida Media Player

C HAPTETR

Kaleida Media Player
User Guide

ScriptX Tools Guide

48

Kaleida Media Player User Guide

This chapter provides a sample “User Guide” that ScriptX title developers can modify
for inclusion with their ScriptX titles. The audience for this User Guide is any end-users
the need to install the Kaleida Media Player (KMP) and a title. This chapter is a
template for telling your customers how to accomplish this installation, launch their
title, and use the KMP menus.

NOTE - This chapter talks about an installer script for the Kaleida Media Player.
Kaleida does not provide such an installer; you need to provide your own. When you
set up your installer, be sure to include everything in your title’s directory (KMPDIR)
except for SX_Temp (which may include a symbol file, DLL files, and a file for a KMP
icon), and of course include anything else your title requires such as loadables and
importers.

This chapter uses the title Your Example Title as the example ScriptX title that your
customer wants to install. Similarly, generic names in italics are used for names of
installer scripts and files that your customers need to install.

NOTE - Feel free to duplicate all or any part of this chapter for your own use, as you
see fit, substituting your own title’s name in place of Your Example Title and your own
installer name and other file names.

This documentation assumes that your title has implemented all of the features in the
standard way, as documented. For example, your title must implement cut, copy, and
paste to move a selection to and from the clipboard.

The remainder of this chapter contains the sample installation documentation, which
covers four sections:

¢ Introduction

¢ Installation Instructions

® Starting the Kaleida Media Player
¢ Kaleida Media Player Menus

49

ScriptX Tools Guide

Introduction

The enclosed copy of Your Example Title includes the Kaleida Media Player (KMP), a
software-only, cross-platform multimedia platform (no special hardware is required).
Written in ScriptX, the programming language developed by Kaleida Labs, Inc., Your
Example Title is one of the first of the new generation of applications being developed to
play on the KMP.

Before you can play Your Example Title, the KMP must be installed on the primary hard
disk drive of your multimedia personal computer. Following is a set of installation
instructions, an explanation of how to launch Your Example Title on your Macintosh,
Microsoft Windows, or OS/2 multimedia personal computer, and a quick reference to
the menu items available to you from within the KMP.

Installation Instructions

50

To install the Kaleida Media Player (KMP) on your Macintosh, Windows, or OS/2
multimedia personal computer, follow the instructions given in this section.

Macintosh
1.

Windows

Insert the Your Example Title CD-ROM into the CD-ROM drive. A CD-ROM icon
entitled Your Example Title appears on your desktop.

. Double-click on the Your Example Title icon. This opens a window with the contents

of the Your Example Title CD-ROM displayed.

. Double-click on the folder titled mac.KMP. This opens a new window that contains

an icon named Installr.

. Double-click on the Installr icon to install the KMP.

. Insert the Your Example Title CD-ROM into the CD-ROM drive.

Launch the installer from either the Program Manager or the File Manager.

To launch the installer from the Program Manager, select Run from the Program
Manager File menu. At the dialog command line, type the letter of your CD-ROM
drive, a colon, a backslash, win.KMP, a backslash, and SETUP (assuming the installer
is named SETUP. EXE). For example , if your CD-ROM drive is drive D, type:

D\ wi n. KMA SETUP

followed by the Enter key.

To launch the installer from the File Manager, select the CD-ROM drive and the
win. KMP directory. In the win.KMP directory you will find an icon for SETUP. EXE
Double-click on this icon to start the installer.

When the installer is launched, a dialog box appears. Click on the “Set Location”
button.

. Type the drive letter onto which you would like the KMP installed followed by

KMPDIR, which is the name of the directory where you want the KMP installed. For
example, if the hard drive where you would like to install the KMP is drive C, type:

C\KWD R

Kaleida Media Player User Guide

followed by the Enter key.

Once you have entered the name, click on OK. This returns you to the opening
dialog box.

5. Click on the “Install” button.

0S/2
1. Insert the Your Example Title CD-ROM into the CD-ROM drive.

2. Launch the installer from either an OS/2 session or the File Manager.

¢ To launch the installer from an OS/2 session, either windowed or full screen, type
the letter of your CD-ROM drive, a colon, a backslash, 0s2.KMP, a backslash, and
SETUP (assuming the installer is named SETUP. EXE). For example , if your CD-ROM
drive is drive D, type:

D\ 0s2. KMP\ SETUP

followed by the Enter key.

¢ To launch the installer from the File Manager:
a. Double-click on your desktop Drives folder.
b. Double-click on the icon for your CD-ROM.
c. Double-click on the icon for your 0s2.KMP directory.
d. Double-click on the icon for SETUP. EXE

3. When the installer is launched, follow the on-screen instructions.

4. *** DLL ?7? ***

51

ScriptX Tools Guide

Starting the Title

The title file appears as an icon in the operating system as follows:

(Your icon goes here)

The KMP file appears as an icon in the operating system as follows:

K

Macintosh

You can start your title on the Macintosh in any one of the following ways:; these
options open both the title and the KMP:

® By double-clicking the icon for your title file, Your Example Title
® By dragging the icon for the title file onto the KMP icon

Windows

You can start the title on Windows from either the File Manager or the Program
Manager; these options open both the title and the KMP:

® From the Program Manager, double-click on the Your Example Title icon.

® From the File Manager, double-click on the ExmplITtlsxt file within the appropriate
directory.

0S/2

You can start the KMP on OS/2 from either an OS/2 session or the File Manager; these
options open both the title and the KMP:

® From the File Manager, double-click on the Your Example Title icon.

¢ From within an OS/2 session, double-click on the ExmplTH.sxt file within the
appropriate directory.

Kaleida Media Player User Guide

Kaleida Media Player Menus

This section describes each of the commands available from the menus of the Kaleida
Media Player (KMP).

The File Menu

The File menu provides access to KMP titles, as well as a way to close title files and quit
the Kaleida Media Player application.

Open Title

Opens KMP title files such as Your Example Title.

A title file is a file that contains a complete, working title developed for the KMP. When
you open a title file, the title starts and runs. Note that you can also open a title file by
double-clicking its icon or by dragging its icon onto the KMP icon (Macintosh only).
Filenames for titles generally end in “. SXT”.

Open Accessory

Opens KMP accessory files.

An accessory file is a file that contains a KMP accessory. Accessories are not intended to
run on their own. Instead, they are designed to be used within other titles. An accessory
closes when you close its title, unless another title is also using it. Filenames for
accessories generally end in “. SXA”.

Close Title

Closes the current title.

Page Setup or Print Setup

Displays the Page Setup (Macintosh) or Print Setup (Windows) dialog box that allows
you to set options for printing.

Print

Provides standard printing features for KMP titles.

Quit or Exit

Quits the Kaleida Media Player, closing all titles and accessories previously opened.
This menu command is named Quit on the Macintosh and Exit in Microsoft Windows
and OS/2.

About ScriptX

Provides version and copyright information for the KMP. On the Macintosh, this menu
item is located as the first item under the Apple menu.

53

ScriptX Tools Guide

54

The Edit Menu

Provides standard editing features for text in KMP titles.

Undo

(Not yet implemented.)

Cut

Cuts the current selection, which removes it from its current location and places it in the
clipboard.

Copy

Copies the current selection, which leaves it undisturbed and places a copy of it on the
clipboard.

Paste

Pastes the current content of the clipboard at the current insertion point or selection.

Clear

Clears the current selection, removing it from its current location and discarding it. Has
no effect on the clipboard.

The Window Menu

This menu provides a list of all windows currently open in the KMFP, listing them by
name. This menu is empty until you open a title with a window. Selecting a window
from this menu brings it in front of all other windows on the screen.

In Microsoft Windows and in OS/2, this menu contains three extra commands:
Cascade, Tile, and Arrange Icons. These are standard menu items for those systems
and are described in the documentation for those systems.

P A R T T H R E E

Tools

C HAPTETR

Introduction to Tools

ﬂ ScriptX Tools Guide

58

Introduction to Tools n

This part of the ScriptX Developer’s Guide discusses the ScriptX development
environment and the windows, browsers and tools available to help you use the system
and view your objects.

This part includes the following chapters:

Chapter 7, “ScriptX Listener and Menus,” introduces the ScriptX Language and
Class Library and describes how to use the ScriptX Listener window to evaluate and
load ScriptX code.

Chapter 8, “The Browser” discusses the browsers that provide graphical interfaces
for viewing classes, instances, functions, free methods, and modules.

Chapter 9, “Debugger,” discusses the debugger which you can use to investigate
exceptions and step through code.

Chapter 10, “ByteCodeMethod Profiler” discusses how to use the ByteCodeMethod
profiler to see where your methods are spending most of their time.

Chapter 11, “Visual Memory” describes how to use the Visual Memory Tool.

Chapter 12, “Tool Framework describes the platform on top of which tools can be
built.

Chapter 13, “Tool Framework API” describes the classes, methods, functions and
variables that support the tool framework of the previous chapter.

Chapter 14, “Photoshop Plug-ins for KIC Compression” describes how to use the
Kalieda Image Compression (KIC) plug in for Photoshop.

Chapter 15, “Importing Media,” describes how to use import non-ScriptX media files
into ScriptX. The imported media is converted into appropriate ScriptX objects. For
example, QuickTime™ movies can be imported as Mvi ePl ayer objects; AIFF sound
files can be imported as Di gi t al Audi oPl ayer objects; and image files can be
imported as Bi t map objects.

Chapter 16, “Using the Director-to- ScorePlayer Importer,” describes how to import
titles built with Macromedia Director® into ScriptX, and how to modify these
imported titles in ScriptX.

Chapter 17, “Director-to-ScorePlayer Importer APL” describes the API used by the
classes that import and play Director titles in ScriptX.

Chapter 18, “Using The Director Translation Kit,” describes how to build your own
customized importer for importing Director titles.

Chapter 19, “Director Translation Kit APL” describes the API used by the classes that
enable you to build customized Director importers.

59

ﬂ ScriptX Tools Guide

Loading Tools and Importers

60

This section discusses how to select which tools and importers to load when ScriptX
starts up. In the current release, you cannot load a tool or importer after ScriptX has
started.

Loading Tools

To determine what tools are loaded when ScriptX starts up, move tools in or out of the
Tool s directory in the ScriptX startup directory.

When ScriptX starts up, it looks for a directory called Tool s in the ScriptX startup
directory. If this directory contains a library container called t ool util.sx| and

wi dget s. sx|, ScriptX loads the tools in the Tool s directory. It then loads the tools in
each first-level subdirectory of Tool s, processing the directories in alphabetical order.

If a subdirectory in the Tool s directory contains its own subdirectories, the contents of
those subdirectories do not get loaded automatically. You must move all tools that you
want loaded to the Tool s directory or to a first-level subdirectory of Tool s.

If you don’t want all the tools loaded, you should move all the tools that you don't
want loaded out of the Tool s directory and its first-level subdirectories. One way to
move tools so they are not loaded, but are still located conveniently, is to create a
directory containing a subdirectory in the Tool s directory, and move all the tools that
you don’t want loaded into the second-level subdirectory.

If ScriptX loads any tools, an additional Tool s menu appears in the ScriptX menu bar.
The commands available through this menu depend on which tools are loaded. The
menu has a command for starting or opening each tool that has been loaded. When a
tool is invoked, it may cause additional tool-specific menus to appear.

Each tool that is loaded adds memory overhead to the ScriptX application, so you may
find you need to increase the memory for the ScriptX application as you increase the
number of tools loaded.

After ScriptX has started, you can load individual tools by using the Open menu
command to open the appropriate library container that loads tools.

You cannot load or use tools in the Kaleida Media Player.

Introduction to Tools n

Loading Importers

If you want to load importers, the ScriptX startup directory must contain a directory
called i nportrs containing the importers to be loaded.

ScriptX is shipped to you with an i nportrs directory in the startup directory. This
directory contains all the importers provided with ScriptX. If you do not want the
importers to be loaded when ScriptX starts up, either rename the i npor t r s directory to
something else, such as i nportrx, or move the importers that you don’t want loaded
out of the i nportrs directory.

The i nportrs directory contains a subdirectory named for the platform you are using
(for example, mac or wi n). Each platform subdirectory contains the loadable files that
implement the import and export capabilities. (In the current release, there is only one
exporter, which is a text exporter.)

When the ScriptX development environment starts up, it searches the i mportrs
directory, and loads the importers and exporters that are appropriate to the platform
and current software version.

The code for the importer and exporter routines is not loaded; instead, the kinds of
conversions supported by the importer and exporter modules are registered in the
system. The import/export engine loads the code for a specific conversion only when it
is needed, not before. Thus, loading importers when ScriptX starts up does not have a
significant memory overhead.

The recommended process for using media in titles is to import the media in the ScriptX
development environment and save it to a container. If a title needs to use media at
playback time, it can get it out of the container. Thus a title would generally speaking
not use the importers in the Kaleida Media Player, although it is entirely possible and
acceptable to do so.

61

ﬂ ScriptX Tools Guide

62

C HAPTETR

ScriptX Listener and
Menus

ScriptX Tools Guide

64

ScriptX Listener and Menus

The ScriptX Language and Class Library is implemented for the development of titles
and tools in an executable file named “ScriptX.” This implementation has all the
capabilities of the Kaleida Media Player (KMP), plus the compiler and other capabilities
that support title and tool development. These capabilities are provided through the
user interface of the ScriptX Listener window and ScriptX menu items.

This chapter lists the features that distinguish ScriptX from the KMP, describes how to
start ScriptX, and then describes how to use both the ScriptX Listener window and the
menu commands.

Features in ScriptX That Are Not in KMP

ScriptX has the following features not found in the Kaleida Media Player. In general,
the API for these features are documented in the ScriptX Class Reference (and are noted
as not being available in the Kaleida Media Player):

¢ ScriptX includes the ScriptX bytecode compiler, the component that compiles ASCII
text scripts into bytecode format. ScriptX is thus able to accept, compile, and execute
scripts written using the published ScriptX API published in the Field Guide to the
ScriptX Language and the ScriptX Class Reference. On the other hand, the KMP can
execute only code that has previously been compiled, such as the code saved in a
title container.

¢ In ScriptX, the fil el n method, defined by the D r Rep and Byt eSt r eamclasses,
provides access to the ScriptX bytecode compiler. Since the compiler isn’t present in
the KMP, you can only use the fi | el n method in code intended to run in ScriptX.

® In ScriptX, the global variable t heScri pt D r represents the directory where the
most recently loaded and compiled script file resides. Since the KMP can’t load and
compile scripts, the runtime doesn’t define this global.

® ScriptX can automatically load media importers, browsers, and other loadable
development features described in this document. If your title needs to import
media, you should explicitly include the appropriate importers on your release
media and load them into the KMP from your title.

¢ In ScriptX, showChangedRegi on is a diagnostic instance variable in the
TwoDConposi t or class that displays the changed regions of a window. This enables
you to optimize your title to do the least amount of updating possible.

® ScriptX contains many other diagnostics associated with optimizing and debugging
your scripts. The war ni ng function is a diagnostic that warns you of conditions that
can slow down performance. Currently it warns you when a bitmap transfer occurs
with mismatched color maps.

The Development Process

Figure 7-1 illustrates the development process from the initial script (with an extension
. SX), being filed into the compiler on Macintosh or Windows. Though greatly
simplified, this figure shows the basic steps involved.

65

ScriptX Tools Guide

When you develop a ScriptX title or tool, you develop scripts using the ScriptX
Language and Class Library for playback on the Kaleida Media Player.

The compiler parses the script file and generates bytecode, which can be saved to a title
container (with extension . sxt), library container (. sx|), or accessory container (. sxa).
This bytecode is portable across all platforms and can be played on either the Macintosh
or Windows version of the Kaleida Media Player. The development process is described
in more detail in the “Title Design” chapter in the binder documentation.

Notice the bytecode is shared by both the authoring and playback processes.

This process becomes more complicated when there are multiple script files, library
files, and accessory files.

i Authoring |
KMP
script Compiler bytecode
Macintosh
T Macintosh sxt KMP
SX LS or Windows sx
: ScriptX : Y=t
Compiler . SXa

Circles designate components
included with ScriptX authoring environment

l Playback —‘

Figure 7-1: The ScriptX authoring and playback processes

Starting ScriptX

66

The ScriptX executable file appears as an icon in the operating system as follows:

Scripti

You can start ScriptX from the operating system in one of several ways:

® By double-clicking the ScriptX icon
® By clicking once on the ScriptX icon and choosing “Open” from the menu

® By dragging the icon for a title file onto the ScriptX icon, which also opens the title
(Macintosh only)

Double-clicking on a title file will open the Kaleida Media Player, not ScriptX.

When you start ScriptX, you'll see the startup screen first, followed by the Listener
window, labeled “ScriptX™ Listener,” as shown in Figure 7-2. As ScriptX continues to
load, you'll see some messages from importer and tool files, if any, as they are
automatically loaded. The importers are implemented as ScriptX libraries that load
non-ScriptX resources. The messages are of the form “SNDImporter registered,”
“DIBImporter registered,” and so forth. Only importers listed in these messages are
available for this session, unless they are a static part of the environment.

For a description of how to configure ScriptX to load various importers and tools, see
“Loading Tools and Importers” on page 60.

ScriptX Listener and Menus

Note — If you want to quickly empty out the Listener window at any time (such as at
startup), select all of the text in the window and then delete it:

Macintosh: Press Command-A and Delete

Windows: Press Ctrl-A and Backspace

The ScriptX Listener

If you've read the ScriptX Quick Start Guide and run the examples, you've already been
introduced to the Listener. This discussion goes into greater detail of its workings.

As shown in Figure 7-2, the ScriptX Listener window is a text window in which you can
interact with ScriptX. You can enter expressions into this window and ScriptX responds
with results of the expressions.

The Listener itself is a process underlying the Listener window that accepts text
expressions that you enter. It “listens,” in a sense, for complete expressions that you
enter, and responds by compiling and evaluating them. More specifically, the Listener is
a continuously-running loop that parses the input stream, compiles it into bytecode,

calls the bytecode to be evaluated, prints the returned result, then waits for the next
input.

File Edit Window

= ScriptX Listener ﬂ
Wavelmporter registered.

IIFF Importer registered.

DIB Importer registered.

RTF Importer registered.

MIDI Importer registered.

V1 Importer registered.

Plain Text Importer registered.

QuickTime Importer registered.

Startup time: 7.14 seconds.

[=]

Figure 7-2: ScriptX as it appears at startup with the Listener window open (Microsoft
Windows version shown)

The Listener window can be thought of as the user interface to the ScriptX Language
and Class Library. Through the Listener window, you gain direct control of the full
facilities of ScriptX. You can use the Listener window to try out single expressions, and
to test and debug full scripts. You can create objects and save them to title container
files. Unless you're using a tool that has “Save As ScriptX” capability, you'll use the
Listener extensively in developing a ScriptX title.

Developers have basically two ways to enter scripts for the Listener to evaluate:
® By typing or pasting text directly into the Listener window

® By typing text into a text file created in a separate text editor, such as TeachText on
the Macintosh or NotePad on Windows. This text can be loaded either using the
fil el n method or the Open Title menu command.

In either case, each complete ScriptX expression is compiled and executed immediately
when the compiler recognizes the expression is complete. Each time a statement
executes successfully, the Listener displays the return value. If a statement fails to
execute, the Listener displays the exception that caused the failure.

67

ScriptX Tools Guide

68

Typing Scripts Directly into the Listener

The Listener Window is a simple text window. Any text that you type remains in the
window. As you enter more and more text, the window eventually scrolls. You can
scroll backward to find and re-execute previously entered scripts. You can execute a
single line or select a group of lines and execute them all at once. The Listener lets you
perform all of the standard text editing functions—you can select text and choose Cut
or Copy from the Edit Menu to place it on the clipboard, and choose Paste to paste it
elsewhere.

Note — Enter and Return are two different keys that do slightly different things in
ScriptX. Windows computers label both keys “Enter.” This manual uses the following
Macintosh convention (since it gives them different labels):

¢ The key located just above the right-hand Shift key is called “Return”

¢ The key located on the numeric keypad is called “Enter”

To enter scripts into the ScriptX Listener, just type the script and press Return after each
line. ScriptX evaluates an expression when Return is pressed if the expression is
complete. Thus

X := 1 <return>

returns the value 1 after you press <r et ur n>. In contrast,

X .= <return>
1 <return>

returns the value 1 after you press the second <r et ur n>. It does not evaluate after the
first <r et ur n> because an expression that ends with the assignment symbol (: =) is not
complete. The Listener waits after the first <r et ur n> for you to complete the
expression.

When pressed at the end of a line, the Enter key does the same thing as the Return key.

Throughout the rest of this manual, we do not show the <r et ur n> character in
expressions. We assume that you will enter the line using either Return or Enter, or one
the other techniques described later. When an expression returns a value, we use the
arrow () in this manual as a convention to indicate the value returned. The previous
expression returns the value 1 only after the 1 is entered, so would appear as follows:

O = X

The Continuation Character

When a ScriptX statement requires more than a single line, and if you simply press
Return at the end of the first line, the Listener will determine whether the expression is
minimally complete, and, if so, will compile and evaluate it. (If the expression is not
complete, the Listener will wait for you to enter another line.) To avoid this, type the
backslash continuation character, \, at the end of a line to signal to the Listener that it
shouldn’t attempt to evaluate the current line yet. The following example illustrates:

® Incorrect:

gl obal nyShape : = new TwoDShape target:(new Rect x2:100 y2:100)
fill:blackBrush

ScriptX Listener and Menus

e (Correct:

gl obal nyShape := new TwoDShape target:(new Rect x2:100 y2:100) \
fill:blackBrush

The first line of the incorrect version creates nyShape with fill set to undefi ned, its
default. The second line reports an error:

gl obal nyShape := new TwoDShape target: (new Rect x2:100 y2:100)

0O TwoDShape@x14f 2b08
fill:blackBrush

0O -- ** Syntax error: ("syntax error") at "fill:" (SyntaxError)

Incomplete Expressions

The Listener does not have any particular “command line” like some compliers do. You
can type or select an expression on any line and press Enter to execute it. Control
alternates between you and the Listener—you enter an expression, it evaluates the
expression and returns control back to you.

The way you tell whether the Listener has returned control to you or not is by whether
it has returned a value. If it has no value to return, it prints “OK.” Sometimes you may
find you enter a script that unexpectedly hangs up and does not return a value. In
general, this is due to the expression not having been completed (possibly a bug in your
script). The Listener is merely waiting for you to type the characters that will complete
the expression.

® There is no guaranteed way to force the Listener to return control to you (such as if
you have a runaway thread); however, if you are stuck in the middle of an
expression, the first thing to try is typing two exclamation marks and press Enter,
which forces the expression to terminate:
I

The following conditions can cause the Listener to “hang”:

® An unbalanced pair is missing its trailing character:
([0 A{

® A binary operator has been entered and is waiting for a value:
1 +

¢ A definition or case statement has not been ended:
case of
(a = true): print "true"
(a = false): print "fal se"

® A comment has been inserted in the wrong place. Inspect all comments

Executing A Previously Entered Line

You can re-execute an expression you have already entered in the Listener window. Do
this by scrolling back to that line with the mouse or cursor keys, put the insertion point
anywhere on the line, and press the Enter key (on the numeric keypad). This key always
interprets the current selection.

69

ScriptX Tools Guide

70

Alternatively, you can move the insertion point to the end of the line and press Return
to evaluate it (the same as if you had typed in the line). However, pressing a Return
anywhere else but at the end of a line inserts a carriage return and does not attempt to
evaluate the line.

Executing More Than One Line

To execute a group of lines that already appear in the Listener window, select them with
the mouse and press the Enter key (on the numeric keypad). All lines are evaluated, and
all results from the expressions appear at the end of the selected text.

Use this technique when you paste scripts into the window. For example, after you copy
a function from a text editor and paste it into the Listener window , select the lines with
the mouse, and press Enter to evaluate them.

Summary of Return and Enter Keys

The Return and Enter keys work as follows:

Return key Evaluates a line only if the insertion point is at the end of the line;
otherwise, it inserts a carriage return

Enter key Evaluates a line when the insertion point is anywhere on the line;
never inserts a carriage return

To evaluate an expression, do one of the following:

¢ For a single line with the insertion point anywhere, press the Enter key

¢ For a single line with the insertion point at the end, press the Return key
® For more than one line, select the lines and press the Enter key

If the line contains a complete expression, it is immediately evaluated; otherwise, the
Listener continues to wait for you to enter the rest of the expression.

Creating and Compiling Script Files

While you can type simple scripts directly into the ScriptX Listener, to write a more
serious script—one that you can save, modify, enhance, and debug—you create a script
file. A script file is any standard ASCII text file created using a text editor such as
TeachText on the Macintosh or NotePad on Windows. ASCII text is plain text without
font styles applied to it, and is sometimes known as “Text only.”

The procedure for compiling such a script file is to either load it from the menus with
Open Title or from the Listener window with the fi | ei n method.

Note — The convention for naming script files, valid across all platforms, is to use the
. SX extension. This extension is required in Microsoft Windows and optional on the
Macintosh.

Loading Script Files Using 'fileIn’

You can use fil el n (a D r Rep method) in the Listener window to open a script file. To
load the file sanpl e. sx, from the directory where ScriptX is located, do the following:

fileln theStartDir narme: "sanpl e. sx"

ScriptX Listener and Menus

This method opens the file, then reads in and evaluates each line, continuing non-stop
until the end of the file. It displays only the value from the last evaluation.

The fil el n method is used in “make” files or “build” files, which are files that
automate the building of titles made from multiple script files. A make file loads each of
the script files in the proper order. Loading a make file is a way to do batch processing
of scripts.

The following example is a make file that uses the fi | el n method to load in several
media files:

fileln theStartD r nare:"bitmaps. sx"
fileln theStartDir nane:"debug. sx"
fileln theStartDir nane:"panel .sx"
fileln theStartDr name:"nodesQoj . sx"
fileln theStartDir name:"activate. sx"

A make file can either be loaded using the Open Title menu command or by again
using fi | ei n on the name of the make file.

Note — The fi | el n method is used only during the development of titles and is not
available in the Kaleida Media Player, since this method uses the ScriptX compiler.

Loading Script Files From the Menu

The easiest way to open a script file created outside ScriptX is by selecting the Open
Title command from the File menu. This menu command opens up a dialog box from
which you can select the script and open it. When you open the file, it is loaded into the
Listener window a line at a time by default—you must press Return to evaluate the
displayed line and continue to the next line. This is called single-step compiling. You
can change this to load the entire file without stopping, called quick-compiling.

In either case, when the end of the file is reached, the Listener window displays an end
of file marker to indicate it is done:

<eof >

Quick-Compile and Single-Step Compile

You switch between these two compile modes by typing special symbols at the point in
the script where you want to start quick-compiling or single-step compiling. Once you
use a special symbol, that mode becomes the default. The rest of that file and any
subsequent script files will read in with that mode until a symbol is encountered that
changes the mode.

The two ways to compile scripts from the Open Title menu command are as follows:

® Quick-compile — Loads the entire file without pausing, like the fi | ei n method. The
quick-compile symbol is:

-- <KL

® Single-step compile — Loads a line at a time, which allows you to watch the value
returned from each complete expression. This is the default mode. The single-step
compile symbol is:

-- >>>

71

ScriptX Tools Guide

72

In the single-step mode, the Listener reads in and displays the first line of your script
without evaluating it yet, then pauses, waiting for you to press Return. This allows
you to read each line before it runs. Once you press the Return key, it evaluates that
line, reads in the next line and pauses again.

Notice these symbols are preceded by the comment symbol (- -). The actual
quick-compile and single-step symbols are <<< and >>>, respectively, made from three
“less-than” or “greater than” signs. These two symbols are not a part of the ScriptX
language, and are interpreted only by the Open Title menu command, not by the
filei n method. If you use the fil el n method to open such a file, you must put the
symbols inside a comment, or it will report an error. The Open Title menu command
reads the quick-compile symbol anywhere it occurs, even inside a comment. (If you will
not use fil el n on that file, you can omit the comment symbol.)

Note — The Open Title menu command serves two distinct purposes: to open and
compile scripts, as described here, and to open title files that are compiled and saved in
title containers, as described in the Title Management chapter of the ScriptX Components
Guide.

Using the Compile Symbols

If you want to troubleshoot just one particular part of a script, you can speed up the
compile process: Put a quick-compile symbol at the beginning of a script, a single-step
symbol just ahead of where you want to watch the expressions, and a quick-compile
symbol after that section, as follows:

-- <

-- (This code will conpile quickly)

-- >>>

-- (This code will be conpiled one line at a tine)
-- <

-- (This code will conpile quickly)

Note — The single-step and quick-compile symbols are specific to the ScriptX Listener
and are not part of the ScriptX Compiler. Thus, scripts loaded in other ways, such as
through the fil el n method, will generate compiler errors if the characters are not
embedded in a comment.

Quick Compiling With Intermediate Results

When the Listener encounters the symbol <<<- in a script, it begins compiling the script
quickly, displaying the intermediate results. Note the hyphen (-) typed after the normal
quick-compile symbol. In this mode, the Listener lists the return values and exceptions
as each statement compiles, as well as any change in quick or single-step compiling.
The complete symbol, including the comment symbol, is:

-- <LlL-

ScriptX Listener and Menus

Trying out the Sample Scripts

The ScriptX Developer’s CD contains a number of well-commented script examples that
you can run in the Listener window to learn more about ScriptX. You can also modify
the scripts in these examples to fit the needs of your titles.

New Listener Windows

You can open other Listener windows by choosing New Listener from the File menu.
This would be useful if you have two different scripts that you are working on
simultaneously. Each Listener runs in a separate thread, so you can be in the middle of
one expression in one window, and switch to the other to enter a separate expression. In
addition, each Listener window can be switched to a different module. If a title has
multiple modules that you are working in, it is convenient to open a new Listener
window for each module and use the i n nodul e construct to switch modules.

You hide and show the original Listener window without losing its contents by
choosing Listener from the File menu. New Listener windows cannot be hidden and
shown—if you close one, it cannot be re-opened. New Listener windows can be closed
by clicking in the close box (Macintosh) or choosing Close from its menu (Macintosh).
This closes the window and purges it for garbage collection. Choosing New Listener
opens a new Listener window.

Resetting ScriptX

As you execute ScriptX statements or run scripts from the ScriptX Listener, you alter the
state of ScriptX. If you want to restore ScriptX to its original state, select the Quit or Exit
command from the File menu, then restart it.

The Listener and Other ScriptX Windows

Any window, top clock, or top player that you create must belong to a title container.
The global constant t heScr at chTi t| e is the default owner if you don’t specify another.
However, the Listener window is an exception to this rule. It doesn’t belong to any title
container, not even the scratch title, nor does it show up in any Ti t | eCont ai ner ’s list
of windows.

While you can always get to the Listener window from the Window menu, there are
certain restrictions on interaction between the Listener and any titles you may be
working on. These are discussed in the following sections.

Copying and Pasting Text in the Listener

You can use the Cut, Copy, and Paste menu commands in ScriptX to cut, copy and paste
text from the Listener to and from other ScriptX applications. You would only be able to
use these edit features with a ScriptX title if that title had implemented the cut, copy, or
past e methods you want to use. For example, to cut from the Listener window and
paste into a title window, that window would need to have the past e method
implemented.

If you want to put @at i ve text on the clipboard, you cannot do it from the Listener.
ScriptX considers text copied or cut to the clipboard from the Listener window to be of
type @ext, which is the same as if it were copied or cut from a non-ScriptX application.

73

ScriptX Tools Guide

74

The Listener and User Focus

The presence of the Listener window does not disturb the user focus attributes of other
windows or titles. That is, the value of the hasUser Focus instance variable of a title
container and window does not change when the Listener is opened, brought in front,
typed in, or closed, even though the title’s window appears to have lost user focus
behind the Listener window.

Exceptions in the Listener Window

In general, when an exception occurs in the Kaleida Media Player, an exception dialog
box should appear. However, in this release only, exceptions that would appear in the
Listener window in ScriptX do not display an exception dialog box. This means that if
an exception can stop the KMP without displaying an exception dialog box. The KMP
will simply hang and not continue.

To work around this, check carefully for exceptions that are reported to the Listener
window, and work to prevent those exceptions.

Working With Other Windows (Macintosh only)

Instances of Not i ceW ndow D al ogW ndowand Pal et t eW ndow on the Macintosh
display in a layer in front of the Listener window, and nothing you can do will move
the Listener window in front of them. The Listener window may also appear inactive
(its title bar is dimmed). However, that does not need to stop you from continuing to
type into and use the Listener window.

To use the Listener when it cannot be moved forward, press Command-L, the keyboard
command that normally makes the Listener active, then begin typing. Even though the
Listener remains behind the window, you can continue to execute commands, such as
calling hide on the window.

Before displaying the notice, dialog, or palette window, it helps to position the Listener
window so that the window will not obscure it.

For example, this script creates a notice window, which is modal:

global n := new NoticeWndow
show n

-- Press Command- L

hide n

ScriptX Listener and Menus

ScriptX Menu Command Reference

This section describes each of the commands available in the ScriptX menus. Menu
items available only in Microsoft Windows or Macintosh are marked as such.

Some of these menu commands have keyboard shortcuts. If the menu bar is hidden, it
is quite convenient to access some those menu commands by using their shortcuts.

The File Menu

The File menu provides access to ScriptX titles and script files, as well as a way to close
title files and quit ScriptX. The File menu also provides access to two windows, the
ScriptX Listener and ScriptX Visual Memory, that help you use ScriptX.

Open Title

Performs one of two distinct actions, depending on the file the user selects: Opens a title
file that is compiled and saved in a title container (. SXT), or opens and compile a script
file (. SX).

A title file is a file containing a Ti t| eCont ai ner instance and the objects representing a
title. When you open a title file, the title starts and runs, as it would in the Kaleida
Media Player. See the chapter “Title Management” in the ScriptX Architecture and
Components Guide for more on creating and saving a title. Note that you can also open a
title file in the operating system by dragging its icon onto the ScriptX icon (Macintosh
only). In Windows, a title file must have a . SXT extension or it cannot be opened; the
Macintosh has no such restriction.

When the user selects a title file, this menu command calls the open class method on
Ti t1 eCont ai ner, supplying the di r and pat h keywords with the directory and
filename the user selected:

open TitleContainer dir:myDirRep path: filename

A script file is an ASCII text file containing a script written in the ScriptX language. You
create script files using a standard text editor, such as TeachText on the Macintosh or
NotePad in Windows. A script file is loaded one line at a time. As each line is loaded, it
is compiled and evaluated by ScriptX. The Listener window displays each line as it
loads, along with the return value of that expression. If an expression fails to compile,
the Listener reports the exception that caused the failure. For more information, see
“Loading Script Files From the Menu” on page 71. (This part of the Open menu
command is not available in the KMP.) In Windows, a script file must have an . SX
extension or it cannot be opened; the Macintosh has no such restriction.

This menu command calls the fi | el n instance method on the instance of D r Rep
corresponding to the directory and filename the user selected:

fileln myDirRep nane: filename

75

ScriptX Tools Guide

76

Open Accessory
Opens a ScriptX accessory file (. SXA).

An accessory file is a file containing an Accessor yCont ai ner instance and the objects
representing an accessory. When you open an accessory file, it is made available to the
current title. An accessory closes when you close its title, unless another title is also
using it. See the chapter “Title Management” in the ScriptX Architecture and Components
Guide for more on creating and saving an accessory.

This menu command calls the open class method on AccessoryCont ai ner, supplying
the di r and pat h keywords with the directory and filename the user selected:

open AccessoryCont ai ner dir:myDirRep pat h: filename

Close Title

Closes a ScriptX title. If the scratch title is the current title container, then this command
instead closes its frontmost window (you cannot close the scratch title). This command
has no effect on the Listener window.

This menu command calls the ¢l ose instance method on the current title container:

cl ose theTitl eContai ner

Listener

Shows or hides the Listener window. See the discussion “The ScriptX Listener” on
page 67 for more information.

If the Listener window is showing but has other non-modal windows in front of it, this
command brings it in front of those windows. If the Listener window is the frontmost
window, this command hides it. If the Listener window is currently hidden, this
command shows it. (Not available in the KMP.)

Note — Macintosh only - If a dialog, notice, or palette window is in front of the Listener
window, this command gives the Listener window typing focus so you can type
commands into it. Notice that this menu command does not move the Listener window
in front of the other windows.

New Listener

Creates and displays a new Listener window. Unlike the original Listener window, you
cannot hide and later show this window—closing this window makes it available for
garbage collection. See the discussion “New Listener Windows” on page 73 for more
information. (Not available in the KMP.)

Visual Memory

Shows or hides the Visual Memory window, which shows a map of available memory
in various colors. The window has a legend at the top that indicates what the colors
mean. See the chapter “Memory Management” in the ScriptX Architecture and
Components Guide for more on the use of the Visual Memory window.

ScriptX Listener and Menus

If the Visual Memory window is currently visible, this command hides it. If the window
is currently hidden, this command shows it. (Not available in the KMP.)

Page Setup or Print Setup

Displays the Page Setup (Macintosh) or Print Setup (Windows) dialog box that allows
you to set options for printing. This option is not yet implemented for OS/2.

This menu option does not invoke any ScriptX methods. This menu option is a
companion to the Print menu option, and the dialog box is the same one that is
displayed from other applications.

Print

Provides standard printing features for KMP titles. This option is not yet implemented
for OS/2.

This menu command calls the pri nt Ti t | e method on the title container that has user
focus (t heTi t1 eCont ai ner). The default implementation of pri ntTi t| e calls the

pri nt Wndowmethod on the frontmost window of the title (Wi ndows[1]). The default
implementation of pri nt Wndow does nothing. You can create a subclass of

Ti t1 eCont ai ner and specialize the print Ti t | e method, or you can create a subclass of
W ndow and specialize the pri nt Wndowmethod to provide an implementation of
printing for your title.

Quit or Exit

Quits ScriptX, and, by default, does not save any titles, accessories, or libraries
previously opened. This menu command is named Quit on the Macintosh and Exit in
Microsoft Windows and OS/2.

This menu command calls the qui t () global function:

qui t ()

About ScriptX

Provides version and copyright information about ScriptX. On the Macintosh, this
menu item is located as the first item under the Apple menu.

The Edit Menu

Provides standard editing features for both text in the ScriptX Listener and objects in
ScriptX titles. The target of all commands in the Edit menu is the ScriptX window that
currently has user focus. This window may belong to a ScriptX title or it may be the
ScriptX Listener window.

Within the ScriptX Listener, you can cut, copy, and paste text. For example, you can
type a ScriptX statement in the Listener and execute it, then copy it from the Listener
window and paste it into the text file for a script.

Within a title, the title must implement cut, copy, and paste features. See the chapter
“Title Management” in the ScriptX Architecture and Components Guide for more on
implementing editing features in a title.

77

ScriptX Tools Guide

78

Undo

Reverses the effect of the previous edit in the Listener window.

Note — ScriptX does not provide any API to make use of the Undo menu command in a
title.

Cut

When the Listener window is active, this menu command cuts the current selection in
that window, which removes it from the window and places it on the clipboard. The
clipboard’s t ypeLi st instance variable is set to @ ext .

When a window belonging to a title container is active, this menu command calls the
cut method on t heTi t | eCont ai ner (which in turn calls cut on its frontmost window,
which has no default implementation):

cut theTitl eContainer

Copy

When the Listener window is active, this menu command copies the current selection in
that window, which leaves it in the window and places a copy of it on the clipboard.
The clipboard’s t ypeLi st instance variable is set to @ext .

When a window belonging to a title container is active, this menu command calls the
copy method on t heTi t| eCont ai ner (which in turn calls copy on its frontmost
window, which has no default implementation):

copy theTitleContai ner

Paste

When the Listener window is active, this menu command pastes the text from the
clipboard into that window at the insertion point.

When a window belonging to a title container is active, this menu command calls the
past e method on t heTi t | eCont ai ner (which in turn calls past e on its frontmost
window, which has no default implementation):

paste theTitl eContai ner

Clear

When the Listener window is active, this menu command deletes the currently selected
text, which removes it from the window. Has no effect on the clipboard.

When a window belonging to a title container is active, this menu command calls the
cl ear method on t heTi t| eCont ai ner (which in turn calls cl ear on its frontmost
window, which has no default implementation):

paste theTitl eContai ner

ScriptX Listener and Menus

Select All

Selects all text in the Listener window. (Not available in the KMP.)

Fonts (Windows only)

Changes the font, style and size of text in the Listener window. The font you choose is
saved for future sessions. (Not available in the KMP.)

The Window Menu

This menu provides a list of all main windows currently open in ScriptX, listing them
by the title they were given when created in ScriptX. If the ScriptX Listener window is
open, it is included in this menu. Selecting a window from this menu makes it the key
window and gives it user focus.

In the KMP, this menu is empty until you open a title that has a window.

In Microsoft Windows, this menu contains three extra commands: Cascade, Tile, and
Arrange Icons. These are standard menu items that are described in the Microsoft
Windows documentation.

The Tools Menu

This menu does not appear unless the Tools directory is present at the same level as the
ScriptX executable file. This menu provides a list of all tools currently available in
ScriptX, as well as high-level controls for any tool that’s currently selected.

This menu is divided into two parts by a horizontal line. The upper part includes
About, Preferences, and Quit. These commands are dimmed until you choose a tool
from the lower part of this menu. The top three menu commands then apply to the tool
that is active.

About

Provides version and copyright information about the currently selected tool. (The
information may be displayed in the Listener window.)

Preferences

Lets you set preferences for the currently selected tool.

Quit

Quits the currently selected tool.

Components

Displays components that enhance ScriptX. Examples include Grapher, which displays
a class tree of all classes, and RGB Color, a tool for editing color. All components are
currently not supported.

79

ScriptX Tools Guide

Browsers

Displays browsers available in ScriptX. Currently, these are the Class, Instance, and
Source browsers described elsewhere in this document.

Debugger

Displays the debugger available in ScriptX.

The Tool[Name Menu

In this place appears the Instances, Modules, Source, or Debugger menu, corresponding
to the tool that selected from the Tools menu that is currently active. This menu displays
a list of menu commands specific to that tool.

80

C HAPTETR

The Browser

n ScriptX Tools Guide

82

The Browser n

The ScriptX Browser Component provides a visual interface that enables you to view
modules, classes, instances and source code in the ScriptX development environment.

You can use the browser to see what classes, global variables, functions and methods
are contained in a module. You can also change the value of global variables.

You can see the subclasses and superclasses of a class, the instance variables defined on
a class, the methods defined on a class, and all instances of a class. You can also change
the values of class variables.

You can see and change the values of the instance variables of an instance.
For collections, you can view the contents of the collection.

You can view and edit the definitions of functions and free methods defined in scripts
that you have loaded, and also view the definition of methods that have been
specialized at the instance level.

Loading the Browser

You can load the ScriptX Browser anytime during a ScriptX session so long as the files
wi dgets. sx| and tool util.sx| are in the startup directory or a directory in the
startup directory. To load the Browser, open the title container br owser . sxt, which will
most likely be located in a folder called Tool s or Tool sx in the startup directory.

If you want the Browser to load automatically when ScriptX starts up, put the file
browser . sxt in a folder called Tool s in the startup directory.

After the Browser loads, whether you load it explicitly or it loads when ScriptX starts
up, the browsers remain closed until you open them.

To display the Browser menu, which has commands that allow you to interact with the
browsers, select the Browser command from the Tools menu. You will see the Browser
menu in the menu bar.

Using the Browser

To display a module, class, or instance, in the appropriate browser, call the i nspect
method on it from the Listener:

gl obal p: = new pl ayer

-- Dsplay p in a browser
inspect p

-- Dsplay the class Player in a Browser
i nspect pl ayer

-- Dsplay the contents of the nmodul e nyModule in a browser
i nspect (get Modul e @yhbdul e)

Figure 8-1 shows the Browser displaying a Pl ayer object.

83

n ScriptX Tools Guide

J=————— player@30723788

global Contrast
globalGainOffset
globalHue

global PanCffset
globalJaturation 100
marlerlist undefined
status @stop
rideoBlankCount 1]

Yariables Methods | .= | Inheritance

Figure 8-1: The Browser

You can cause an item listed in one browser window to be displayed in its own browser
window by double-clicking the item. If you hold the Shift key down while
double-clicking, the current browser window updates to show the selected item, instead
of opening a new browser window.

Resizing the Browser

You can change the size and shape of a browser window by grabbing the bottom right
hand corner with the mouse, and dragging it to the desired shape.

You can move the panel divider in the browser by clicking on it to grab it, and moving
it left of right.

Stepping Back to the Previous Browser Display

84

To step back to the display of the previously displayed object, or module in a browser,
select the Back command in the Browser menu. If you continue selecting the Back
command, you eventually cycle back to the originally displayed item.

Note — If you display an object of any kind in a browser, the object is added to the
browser’s history list, which means it can’t be purged from memory until it comes off
the history list. Each browser keeps track of approximaltely 20 objects in its history list.

Updating Browsers

If the state of an object displayed in a browser changes, the browser does not update
automatically. To update the browser to show the latest state of the displayed item,
choose the Refresh menu command from the menu for that kind of Browser.

The Browser n

For example, if the a browser window is displaying the object p (which is a Pl ayer
instance), and you change the value of p’s ti ne instance variable in the Listener, the
browser does not update to reflect the change. To update the browser, click on it to
ensure that it is the top browser and select the Refresh command in the Browser menu.

If you use the Edit command in the Browser menu to change the value of a variable or
an item in a collection, then the browser updates to show the change.

What You See in the Browser

The title of a browser windows indicates what class, object, or module is currently
displayed. Each browser window shows two panes, and five buttons.

The buttons are:
® Variables
Shows the instance and class variables (if applicable) for the displayed object.
The left hand pane shows the method name, the right hand pane shows its value.
® Methods
Shows the instance and class methods (if applicable) for the displayed object.

The left hand pane shows the variable name, the right hand pane shows its its full
name, including which module it is in.

¢ Contents
Shows the contents of the displayed object, if it is a collection or a module.
The left hand pane shows the key, the right hand pane shows the value.

¢ Alllnstances
Shows all instances of the displayed class.

The left hand pane shows the number of the object, the right hand pane shows the
object.

® Inheritance
Shows the superclasses and subclasses (if applicable) for the displayed object.

The left hand pane shows the names of the superclasses and subclasses, the right
hand pane shows the full name including the module.

Depending on what is being displayed, one or more of these buttons may be grayed out
if they are not applicable. For example, when displaying a non-collection instance, the
Contents button is not useful so it is grayed out. When displaying an instance, the All
Instance button is grayed out.

Use these buttons, in conjunction with the commands in the Browser menu, to
determine what is displayed in the browser.

The menu commands that help determine what is displayed are:
® Sort Order

Determines whether the displayed items are displayed alphabetically (Alphabetical)
or sorted by inheritance (Inheritance).

Default value is Alphabetical.
¢ Select IVs by

85

n ScriptX Tools Guide

When instance and class variables are displayed, this command determines hether
actual instance variables (Slot name) or virtual instance variables (Virtual Name) are
displayed.

Actual instance variables are defined in the class definition, whereas virtual instance
variables are implemented only through setter and getter methods.

Default value is Slot Name.
® Specialization Level

Determines whether the displayed items include the instance variables or methods
defined on the local class (Class) or includes those defined in all superclasses (All).

Default value is Class.
® Include Accessor Methods

When methods are displayed, determines whether setter and getter methods are also
displayed.

By default, accessor methods are not included.
¢ Include Root Object

Determines whether instance variables and methods inherited from the class
RootObject are displayed.

By default, instance variables and methods inherited from RootObject are not
included.

Sample Uses

What you see in the browser depends on what button and what menu command are
currently selected.

For example, to see the value of the pr esent edBy instance variable of a TwoDShape
instance, you need to ensure that the Variables button is selected, and the
Specialization level is set to All, since pr esent edBy is inherited from W ndowand is
not directly defined on TwoDShape.

Suppose you define a class that has an instance variable FavFood that is implemented
through setter and getter methods, and is not declared in the class definition. To see this
method displayed, ensure that the Methods button is selected, and the Select IVs by
command is set to Virtual Name.

Editing Values in the Browser

To change the value of an instance variable displayed in a browser window, click on the
instance variable entry to select it, then choose Edit from the Browser menu.

To change the value of an element in a collection displayed ina browser, click on the
desired element to select it, the choose Edit from the Browser menu.

In the dialog box that appears, enter the new value, then press the OK button. The
dialog box disappears, and the browser window updates to show the new value.

Editing Methods and Functions

You can change the source code for user-defined functions and free methods in the
browser so long as the source code is available. The source code will be available if the
free method or function was defined in the Listener in the current ScriptX session, or it

86

The Browser n

was defined in a file that was loaded into ScriptX either by the Open menu command,
or by using the fi | el n method with the debugl nf o keyword set to t r ue (which is the
default setting.)

To edit the definition of a function, display the contents of the module containing the

function. Select the desired function, then choose Edit from the Browser menu. In the

window that appears, make your changes then select the OK button. The changes will
be saved.

To edit the definition of a method, this, ensure that the Met hods button is selected so
that the methods are displayed. Select the desired method, then choose Edit from the
Browser menu. In the window that appears, make your changes then select the OK
button. The changes will be saved.

A free method is a method that is defined outside of a class definition. For example, the
methods pri nt Food and pri nt Nane, defined below, are both instance methods on the
class Part yGoer. However, pri nt Food is defined within the class definition, so its
definition will never be visible in the Class Browser. The method pri nt Name on the
other hand is a free method and its definition can be viewed in the browser.

class PartyGoer (Root(hject)
i nstance vari abl es

f ood

narre
i nstance met hods

net hod printFood self ->
(format debug "My favorite food is %" self.food @ornal)

end

nmethod printNane self {class PartyCGoer} ->
(format debug "My name is %" self.name @nador ned)

More On Actual Versus Virtual Instance Variables

The browser can show the actual instance variables or the virtual instance variables.
Actual instance variables are those that are defined in the class definition. Virtual
instance variables are those that are defined by setter and getter methods.

The following code shows a simple class definition. In this example, pri cePer G amand
wei ght are actual instance variables, since they are defined in the class definition,
whereas cost is a virtual instance variable, since it is implemented through a setter and
getter method.

class Fruit (RootChject)
i nstance vari abl es

pri cePer G am

wei ght
end

nmet hod costSetter {class Fruit} value ->
("Cannot change the cost directly"

)

nethod costCetter {class Fruit} ->
(pricePerGam * weight

)

87

n ScriptX Tools Guide

Use the Select IVs by menu command in the Browser menu to select whether to show
actual or virtual instance variables. The Slot Names choice shows actual instance
variables. The Virtual Names choice shows instance variables implemented through
seter and getter methods.

Note that for scripted classes, all actual instance variables also have setter and getter
methods, so the list of virtual instance variables also includes the actual instance
variables.

For ScriptX Core classes however, actual instance variables do not necessarily have
setter and getter methods, so the list of virtual instance variables does not necessarily
include all the actual instance variables too. However, if a class defines a setter and
getter method for an inherited instance variable, that instance variable shows up in both
the actual and virtual instance variable lists.

Note that a browser window displays and updates quicker when displaying actual
instance variables than when displaying virtual instance variables.

Using the Picklist

You can also create your own list of objects to browse. This list is known as the Pick
List.

To create a Pick List, select the Pick List command from the Browser menu.

A browser opens. One (possibly the only) entry in the left hand column is <new
category>.

Select <new category>. In the dialog box that opens, enter the name of your category,
for example, A ocks and Pl ayers, (don’t use quotes) then press OK.

In the next window that appears, enter a function that returns a collection of objects to
browse, for example (-> al | I nstances cl ock). Then press OK.

The PickList browser updates to show the category heading on the left, and the objects
returned by the function on the right, as illustrated in Figure 8-2.

You can click on any object in the right hand column of the Pick List to browse it.

The picklist is saved in the file pi ckl i st. i ni, which you can add directly in any text
editor to delete or add entries as well.

PickList

Clocle@ix1d 43be0
Cloclemix1d 44458
Cloclo@ix1d 44 43
Clocko@0x1d451a0
Cloclomix1d 45644
Cloclke@ix1d 45745
Clocle@lx1d 4651
Cloclo@inld da 958
Clock@0x1d dabiic
Flarper®@nlddeece
Cloclo@xn1d4d 163

LIS TR B R T

Figure 8-2: The PickList

Further examples of useful categories and their functions are:

88

The Browser n

Category is Current spaces

Function is:
(-> alllnstances Space)

Category is Current modules

Function is:
(-> alllnstances Mdul ed ass)

Category is All scripted classes

Function is:
(-> chooseAl |l (alllnstances Rootd ass) (cl z -> sxdefined cl) 0)

89

n ScriptX Tools Guide

Reference

This section provides a reference to the browser and its menus.

Tools Menu

The Tools menu includes commands that are relevant to all tools. It also allows you to
select which additional menu to display.

About

Displays information about the currently selected tool.

Preferences

Opens a dialog box that lets you set preferences for the browser, so long as the Browser
is the currently selected tool. (To make it be the currently selected tool, either click on a
browser or select the Browser menu command in the Tools menu.)

You can set the following:

¢ the number of items the browser keeps in its history list

¢ the default setting for the Specialization menu command

¢ the default setting for the Sort IVs by menu command

¢ the default font for text in the browser

¢ the default size for text in the browser

¢ the default color for for the browser background (blue might be the only choice)

If you make changes and press OK, the changes are saved for the current session only.
If you make changes and press Save, the changes take effect immediately, and are also
written out to a preferences file (br owser. i ni). When you start ScriptX up
subsequently, the preferences are read back in and continue to take effect.

Quit
Closes the currently selected tool, removes its menu from the menu bar and removes it
from the list of tools available through the Tools menu.

Browser

This command causes the Browser menu to appear in the menu bar.

Browser Menu

The Browser menu appears when the browser is the currently selected tool.

Sort Order

Lets you choose how to sort instance/class variables and methods. The choices are:
¢ Alphabetical

90

The Browser n

Sorts alphabetically.

Inheritance

Sorts the methods and instance/ class variables according to which class they are
inherited from.

Select IVs by

Lets you choose whether to display actual or virtual instance/class variables. The
choices are:

Slot Name

Displays actual instance/class variables (that is, instance/class variables that are
defined in the class definition.)

Displays all methods, including setter and getter methods.

Virtual Name

Displays virtual instance/ class variables (that is, instance/ class variables that are
defined by setter and getter methods.)

Displays methods excluding methods for which there is a getter method, since
the corresponding instance/class variables appears in the list of variables.

Specialization Level

Let you decide whether local or inherited instance/class variables and methods should
be displayed. The choices are"

Class

The instance/class variables and methods that are defined on or specialized for
the displayed instance or class are listed. If an instance is displayed, the methods
that are defined on or specialized for its direct class parent are also displayed.

All
All instance/ class variables and methods that are available to the displayed

instance or class are listed. This includes locally defined ones, and all the ones
inherited from the parent class and all superclasses.

Include Accessor Methods

Determines whether or not accessor methods (that is, setter and getter methods) are
included in method listings. The default is no.

Include Root Object

Determines whether methods and instance or class variables inherited from the class
Root (bj ect are included in listings. The default is no.

Picklist

Displays a customizable list of browsable objects. For details see “Using the Picklist” on
page 88.

91

n ScriptX Tools Guide

92

Set Breakpoint

Lets you set a breakpoint for a method or function that is written in ScriptX. (You
cannot set breakpoints on methods defined on ScriptX Core Classes, since they are
written in OIC.)

Back

The Back menu sets the target object of the browser to the previous item inthe browser's
history list.

Edit
Lets you change the values of instance/class variables, change elements in a collection,

and edit function or method definitions.

If the selected value is editable, this menu command opens a dialog box that you can
type a new value into. Selecting Change in the dialog box saves the change and updates
the browser display to show the change.

Refresh

Updates all open browser windows to reflect any changes that have occurred since they
were opened or refreshed.

C HAPTETR

Debugger

n ScriptX Tools Guide

94

Debugger n

The ScriptX Debugger is a tool that helps you to debug code written in the ScriptX
language. You can use the debugger to investigate errors that occurred, or to execute
code one step at a time to see what happens.

When an exception occurs, you can use the debugger to try to find out what caused the
exception. You can view the sequence of function or method calls that lead up to the
exception. (This sequence is known as the call stack.) You can see what arguments each
function or method in the stack was called with, and you can see the code for each
function or method.

You can use the debugger to specify breakpoints, which are functions or methods that
cause your code to be suspended and the debugger to become active. When the
debugger becomes active, you can step through the ScriptX code one expression at a
time to see what happens and what changes at each step.

You can also set watchpoints, which are expressions that the debugger constantly
monitors. Watchpoints show the current value of a variable or an expression.

The debugger is a tool for developers. It is available in the ScriptX development
environment, but not in the Kaleida Media Player. Use the debugger to aid in the
development of your title, but do not write a title so that it depends on the debugger in
any way at runtime.

How to Load The Debugger

You can load the debugger anytime during a ScriptX session so long as the files

wi dgets. sx| and tool util.sx| are in the startup directory. To load the debugger,
open the title container debugger . sxt which will most likely be located in a folder
called Tool s or sxTool s in the startup directory.

If you want the debugger to load automatically when ScriptX starts up, put the file
debugger . sxt in a folder called Tool s in the startup directory.

To display the Debugger menu, which has commands that allow you to open and use
the debugger, select the Debugger command from the Tools menu. You will see the
Debugger menu in the menu bar.

You can have one debugger window per thread.

Opening the Debugger

If the New Debugger on Exception flag is set to to true (which is the default setting), a
debugger will open automatically when an exception occurs. (Note that the debugger
does not open if a system error occurs.)

To change the New Debugger on Exception preference setting, ensure that the
Debugger menu is visible in the menu bar, then select the Preferences command from
the Tools menu. Set the preferences as you desire. See “Preferences” on page 111 for
more information on setting preferences.

95

n ScriptX Tools Guide

You can cause the debugger to open when a method or function executes by setting a
breakpoint for the desired method or function. See “Setting Breakpoints” on page 103
for detail on how to set breakpoints. Or you can recompile your method or function to
include a call to break (), which will open the debugger when that point is reached.

You can also open the debugger for a particular thread by selecting | nt err upt from the
Debugger menu and choosing the appropriate thread, or by typing break () in the
Listener.

Click on the arrow to see a menu
of all the calls in the call stack. Call Stack Menu

: theMainThread

Scratch:ColoredThing™ToopDark+ 21 [Selected Frame |

Clocki®0n2 241 76
undefrned

b2 Tterator ower#(1, 2,3, Ll as
Frame Variables Panel

--n 15 the number of trmes to darlen
--t15 the time towait

method loopDark self {class colored Thing}n t -

Code Panel

local ¢ i= self avand owerclack
foriinltenda

(darlen self

wralttime ¢ t
foriinltenda

i
lighten self
wralttimect

)
__av__ | [stepin] [lepover [out]

step Status Line

Figure 9-1: The Debugger Window

Resizing the Debugger

To change the size or shape of the debugger, grab the bottom right corner with the
mouse and drag it to the desired shape. You can also drag the divider bar in the Frame
Variables panel to the left or right to resize the parts of that panel.

96

Debugger n

Description of the Debugger

The Debugger Window is illustrated in Figure 9-1. It has the following components:
® Selected Frame Field

¢ (Call Stack Menu

¢ Frame Arguments Panel

¢ Code Panel

¢ Button Bar

® Status Line

You can change the size and shape of the Debugger Window by grabbing the bottom
right corner with the mouse and dragging the mouse to make the window the desired
size.

Figure 9-1 shows the Debugger Window.

Selected Frame Field and Call Stack Menu

The Selected Frame Field shows the currently selected frame, which is one of the calls in
the call stack.

To view all the calls in the call stack, click on the arrow at the right end of the Selected
Frame Field. A menu appears listing all the calls in the stack. Selecting on of these calls
causes the Selected Frame Field to show the selected call (or frame). The Frame
Variables panel updates to show the arguments that the function or method was called
with, and also the local values pushed on the stack during the call.

The Code Panel updates to show the code for the selected frame. See “Selected Frame
Field and Call Stack Menu” on page 97 for more information about the code listing in
the Code Panel.

Call Stacks

The Call Stack Menu lists the functions or methods that have been invoked in the
current path of execution.

For example, suppose the following functions are defined:
function functionA -> (functionB())

function functionB -> (function())

When you call f uncti onA, it calls f uncti onB, which calls f uncti onC. When
f uncti onCis reached, the call stack is:

functionC
functi onB
functi onA

Only the function and method calls that lie directly in the path that leads to the current
call are included in the call stack. For example, suppose f uncti onA functi onBand
functi onCare defined as follows:

function functionA -> (

functi onAl()
functionB())

97

n ScriptX Tools Guide

98

function functionB -> (functionQ))
When f unct i onCis reached, the call stack does not include f unct i onAl, since it was
not involved at any level in invoking f uncti onC

Each entry in the call stack menu has the following format:
module:callName offset

where module is the module containing the function or method; callName is the function
or method that was called; and offset is the number of the bytecode instruction that was
reached. (Each ScriptX expression is compiled into bytecode instructions.)

For example:

Scrat ch: functi onB+3

which means f uncti onB in the scratch module at the instruction starting at the third
byte. In most cases, the only interesting information conveyed by the offset is whether it
is 0 or greater than 0. If it is 0, that means you have just entered the frame and have not
yet executed anything in the frame. If the offset is greater than 0, that means that you
are part way through executing the frame.

Expressions that were entered from the Listener show up in the Call Stack Menu as
anonynous. For example, Figure 9-2 shows the Call Stack Menu after entering the
following function call in the Listener:

| oopDark sun 20 2 ()

The expression that was entered in the Listener shows up initially in the Call Stack
Menu simply as anonynous+0.

Figure 9-2: The Call Stack Menu showing an anonymous call

Frame Variables Panel

The Frame Variables panel shows the arguments and local stack values appropriate to
the selected frame in the Call Stack Menu. A frame is a specific invocation of a function
or method.

When you are executing code step by step, the selected frame is always displayed in the
Call Stack Field. As you step through code, the Frame Variables panel updates to show
the local stack values as they change.

For example, Figure 9-3 shows the Frame Variables panel as it appears at one point
during the execution of the | oopDar k function.

You see that | oopDar k method was called with self as a Col or edShape object; n as 4
and t as 2. So far, the variable ¢ has been bound to a 4 ock object, result (a name that the
debugger uses for results) is bound to the undef i ned object, and a temporary variable
holds the value 1 to 4. which corresponds to 1 to nin the f or statement.

Debugger n

Scratch:ColaredThing " loopDark+ 15

coloredSha pe@ (224154
T 4

1 2

c Clock@(x224] 144

resultd undefined

1tod

method loopDark self {class colored Thing}n t -=
(

local ¢ = self sind o, clock

foriinltonda

Figure 9-3: Frame Variables panel shows the arguments and stack values of a frame

If you double click on an object in the Frame Variables panel, the Browser will open to
display that object, so long as the Browser is loaded. See the Browser Chapter 8 for
information about the Browser.

Note also that you can grab the divider bar with the mouse and move it to the left or
right.

Code Panel

The Code Panel shows the ScriptX source code that makes up the selected fame in the
Current Frame Field. In Figure 9-4 the Code Panel shows the definition for the function
dar ken.

method datken thing {class colored Thing} -=
(

local thingColor = thing.fill.colo

if (thingredCounter = 0] ox
(thingblueCounter = 1) ox
{thing.greenCounter = 0)

da

[

if thingroloe.red =0

then thingroloz.red = thingrolor.red - 1
else thing.red Countey 1= thingredCounter + 1
1f thingroloe blue =1

then thingrolo: blue = thingroloe blue - 1

1.2l .. 11"l . a1l L. ial.. 1

Figure 9-4: The Code Panel showing the source for the dar ken method

The Code Panel can show source code for functions or methods that were loaded with
their source code, as discussed in “Accessing Source Code for Methods and Functions”
on page 107.

99

n ScriptX Tools Guide

Underlined code indicates a break point.

You can use the Step Into and Step Over buttons to execute one ScriptX experssion at a
step. You can use the Out button to execute the current function or method to
completion.

You can also set breakpoints in the Code panel by pressing the mouse down on the
desired expression, and choosing Set Breakpoint from the menu that appears. Similarly
to remove a breakpoint, you can mouse down on underlined code in the Code Panel,
and choose Remove Breakpoint from the menu that appears.

Stepping Through Code

100

You can use the debugger to set breakpoints, which suspend your program. When a
breakpoint is reached, you can step through the program one expression at a time.

You might want to set a breakpoint, for example, on a function or method that causes
an exception. Or you might want to set a breakpoint to stop a program at a place just
before it starts behaving differently to how you expect it to behave. Then you can

execute the program one expression at a time to see what changes occur at each step.

You can set multiple breakpoints, so that you can step through a few instructions, and
then press the Go button to continue running until the next breakpoint.

If an exception occurs while stepping through a program, you will no longer be able to
continue stepping. In this case, use the Go button to continue running the program and
leave the debugger.

As you step through code, the expression currently being executed is highlighted in the
Code Panel (so long as the source code is loaded.)

Entering the Debugger Immediately

You can also enter the debugger by selecting the Interrupt menu command from the
Debugger menu and choosing the desired thread to interrupt. (Note that the Listener
uses the main thread.) If a program is currently running, it stops and invokes the
debugger. If a program is not currently running, the very next ScriptX expression to be
executed in the chosen thread invokes the debugger.

So if you interrupt the main thread, the next time you evaluate an exression in the
Listener, the debugger opens and you can use it step through the code in the expression.

Note that although you can interrupt Core (OIC) code, you will not see any interesting
information in the debugger window.

You can also use the break function to force a break. For example, if you enter the
following code in the Listener, the br eak function invokes the debugger, and then you
can step through the code in nyFn.

(break (); nyFn a b ¢)

Stepping Through Code

When stepping through code in the debugger, you can use the Step Into, Step Over,
and Out buttons. Both Step Into and Step Over execute the next ScriptX expression in
the Code Panel. (This will be the highlighted instruction.) The Out button executes all
the remaining expressions in the currently displayed function or method.

Debugger n

The Step Into button executes the currently highlighted expression. If that instruction
calls a function or method written in ScriptX, then the Code Panel updates to show the
code for the called function or method. (You can use the keyboard accelarator F8 instead
of the Step Into button.)

The Step Over button executes the currently highlighted expression to completion. If
that expression calls a function or method written in ScriptX, the entirre function or
method is run to completion without stepping. (You can use the keyboard accelarator
F9 instead of the Step Over button.) Note that you can step over function or method
calls, but you cannot step over statements. Each expression in a statement is executed
individually, regardless of whether you step into it or step over it.

In the top debugger shown in Figure 9-5 the next thing to be executed is the

saveCol or s method. The debugger on the bottom left shows the results if you Step
Into into the saveCol or s function. The debugger on the bottom right shows the results
if you Step Over the saveCol or s function.

The Out button executes all the expressions in the current function or method that have
not been executed yet. It executes them to completion, and effectively steps you back
out to the routine that called this function or method. You can use the F6 key instead of
the Out button.

Go

When you press the Go button, the system continues running as it would in the absence
of the debugger. When an exception occurs, the usual behavior of the system is to
return to the nearest guard clause. If there is no intervening guard clause, the Listener
prints a message about the exception, and the current thread stops. (Note that the F5
keyboard accelerator is bound to the Go button.)

101

n ScriptX Tools Guide

Scratch:ColoredThing “flash+ S The debugger is
ready to execute the

saveColors method.

method flash self {class coloredThing -

local thisColor = self f1ll coloe
savreColors salf

blacken self

wralttime self ssmndownclock 2
whiten self

wralttime self smndoerclock 2
restoreColor self

]

Scrateh:ColoredT hing “saveCalars+ 0 Scratch.ColoredThing “flash+13

Step Into Step Over

method saweColors self {class colored Thing} -= method flash self {class coloredThing) -
lacal thisCaolar i= self . f1ll.colax local thisColoz i= self fill.colox

self prewFed = thiscolor.eed savelolors self

self prewBlue = thiscolor blue blacleen self

self presrGreen 1= thiscolorgreen wralttime self saandowr.clock 2

] whiten self

wraittimne self andoerclock 2
tastoreColor self

)

Figure 9-5: Difference between Step Into and Step Over

102

Debugger n

Setting Breakpoints

You can set a breakpoint in several ways.

From the Debugger menu, choose Show then choose Breakpoint to open a Breakpoints
window. In the window, specify the ScriptX function or method name for which to set
the breakpoint.

This actually sets the breakpoint on the first expression within that function or method.
You can set breakpoints for user-defined or dynamically loaded functions and methods
written in the ScriptX language. You cannot set breakpoints on anything other than
functions and methods that have been defined in the ScriptX language, which means
you cannot set breakpoints on methods on ScriptX core classes, since they are written in
OIC not ScriptX. It also means you cannot set breakpoints on functions in loadable C
code.

For a function, enter the name of the function. For example:

Add Breakpoint

|Er’eak Sumbol:

Il:-::intl:-:-ln:-::s|

For a method, the entry should be in the form class"method. For example, to set a
breakpoint on the dar ken method of the class Col or edThi ng, the entry would be:
Col or edThi ng”*dar ken. For example:

Add Breakpoint

IEreak Symbol:

ICu:-lnredThing"‘darken|

If you set a breakpoint for a method, the debugger will be invoked when the method is
called on any instance of the class or its subclasses (and their subclasses and so on.)

You can specify breakpoints for methods defined on a class. You cannot specify
breakpoints for method for a class that inherits the method.

You can also set breakpoint by using the Set Breakpoint command in the Class Browser.

In the class browser, select the desired method and select the Set Breakpoint command
from the Classes menu. You can only do this for user-defined methods, not for ScriptX
core classes method. The reason for this limitation is that ScriptX core classes are
written in OIC, not in ScriptX.

You can also set breakpoints in the Code panel by pressing the mouse down on the
desired expression, and choosing Set Breakpoint from the menu that appears. Similarly
to remove a breakpoint, you can mouse down on underlined code in the Code Panel,
and choose Remove Breakpoint from the menu that appears.

103

n ScriptX Tools Guide

Note — If you recompile a function or method that has breakpoints, those breakpoints
will be lost, even though they will still appear in the breakpoints window.

Defining a Function to Run at a Breakpoint

You can specify a function to be called when a breakpoint is encountered. To set such a
function, select the desired breakpoint in the Breakpoints window and click the Edit
button.

The Edit Breakpoint window opens, showing a skeletal anonymous function whose
argument is ar gLi st, (as illustrated in Figure 9-6). The ar gl i st argument is an array
of the arguments passed to the function or method on which the breakpoint is set.
Define the function as you like (but do not edit the argument list.) To compile the
function, simply close the Edit Breakpoint window.

Breakpoint function

[arglist-=
)

Figure 9-6: The Edit Breakpoints window when it opens

In the Breakpoints window, breakpoints that have an attached function are indicated by
an asterisk (*).

When the breakpoint is encountered while your code is running, the function is
invoked. The return value of the function determines what happens next.

104

Debugger n

If the return value is f al se, the breakpoint is enacted, and the debugger waits at that
expression.

If the return value is anything other than f al se, the program continues running as if
there was no breakpoint. In this case, if the breakpoint is encountered while stepping
through code in the debugger, the debugger executes the expression and waits. If the
breakpoint is encountered while the debugger is not active, the debugger is not
invoked.

Figure 9-7 shows a breakpoint function defined in the Edit Breakpoint window.

To remove a breakpoint function from a breakpoint, display the function in the
Breakpoint Window, delete all the text for the function, and close the window.

If you remove a breakpoint, its associated breakpoint function is also deleted if there is
one.

Breakpoint function

{arglist -=format debug"The args ave %* Wl b
arglist Enormal

1

Figure 9-7: The Edit Breakpoint window showing a breakpoint function

105

n ScriptX Tools Guide

Using Watchpoints

106

You can use the debugger to monitor the values of global variables or expressions.
These are known as watchpoints.

You can add and remove watchpoints in the Watchpoints window. To open the
Watchpoints window, from the Debugger menu select Show then Watchpoints.

To add a watchpoint, click the Add button. A watchpoint can be a global variable or an
expression. The following are all valid watchpoints :

X

current Col or

reci pel.ingredients

(personl. hour sWrked * personl. hour | yWage)
b * foogle(c)

The Watchpoints window updates the values for all watchpoints periodically. You can
determine the time between updates by specifying a value for the Seconds between
updates field in the Preferences dialog box. A value of 0 indicates that no updates will
occur until the debugger is invoked, or a breakpoint is reached. To open the Preferences
dialog box, select the Preferences command from the Tools menu.

The Watchpoints window updates the values for all watchpoints whenever the
debugger is invoked or a breakpoint is reached.

You can cause the Watchpoints window to update the values of its watchpoints at any
time by choosing the Refresh command in the Debugger menu.

Figure 9-8 illustrates a Watchpoints window which is monitoring several global
variables and expressions.

Watchpoints

sun.fill.coloz.red
surprevied undefined

Figure 9-8: The Watchpoints Window

Debugger n

Investigating Exceptions

When ScriptX code is running in the ScriptX development environment, and an error
occurs, an exception is reported. You can use the guar d construct discussed in the
ScriptX Language Guide to trap exceptions and take appropriate actions. The ScriptX
Class Reference lists all the exceptions that are pre-defined in the ScriptX environment.

Often you can gain useful information about an error from the message that is printed
when an exception is reported. Sometimes though the message by itself is not enough to
help you figure out what went wrong. In such cases, you can use the debugger to
explore the actions that lead up to the exception.

When the debugger is active, the standard exception reporting mechanism is replaced
by a call that invokes the debugger.

Note — When the debugger is active, it intervenes in the case of all exceptions, even if
the exception occurs inside a guar d clause. To resume the program flow and allow the
guar d clause to handle the exception, press the Go button in the debugger.

Use the debugger to examine the arguments and variables that were used and bound by
the frames leading up to the exception. The Call Stack Menu shows the functions and
methods that were called prior to the function or method that caused the error. You can
select any call in the Call Stack Menu to cause the Frame Variables panel to display the
arguments it was called with and to see the local values that werepushed onto the stack
during its execution.

You can set breakpoints on specific ScriptX functions or methods so that next time the
code runs, it will automatically stop running at the breakpoints, thus allowing you to
step through the remaining code one expression at a step.

To set a breakpoint on any function or method written in ScriptX, ensure that the
Debugger menu is available, and choose the Breakpoints option of the Show submenu.
In the dialog box that comes up, enter the function or method to break on, as discussed
in “Setting Breakpoints” on page 103.

When an exception occurs, you can use the debugger to identify the function or method
that causes the error, set a breakpoint on that call, and run the code again. When the
breakpoint is reached, you can step through the code to see what changes occur right
up to the point that the exception is reported.

When you have finished investigating and setting breakpoints, you can leave the
debugger by pressing the Go button.

When an exception occurs, you cannot continue stepping through the ScriptX code,
since if you could, it would take you into debugger code, which would not be helpful to
you in debugging your own code.

Accessing Source Code for Methods and Functions

When you load script files in to the ScriptX development environment every function or
method in the source file becomes a Byt eCodeMet hod object. The same is true when
you define functions and methods directly in the Listener.

Each Byt eCodeMet hod object has an instance variable called debugl nf o, whose value is
a Debugl nf o object. Each Debugl nf o object has a sour ce instance variable, whose
value is a string of the source code for the function or method that the Byt eCodeMet hod
object implements.

107

n ScriptX Tools Guide

108

If you define functions or methods in the Listener, or you load files either by using the
Open menu command, or by using the fi | el n function without specifying the

debugl nf o keyword argument, the source code for the functions and methods is put
into debugl nf o objects. If you do not want to keep the source code, load the file by
using the fi | el n function with the optional keyword argument debugl nf o set to

f al se. (The default is true.)

For example:

fileln theScriptDir nane:"nyfile.sx"

loads the file nyfi | e. sx, and puts the source code for the functions and methods
defined in the file into debugl nf o objects.

fileln theScriptDr nane:"nyfile.sx" debuglnfo:fal se

loads the file nyfi | e. sx without keeping the source code for the functions and
methods defined in the file.

Note — If you load a file without keeping the debugging information (that is, the
debugl nf o keyword is f al se), you will not be able to view source code for the
functions and methods defined in that file in the debugger.

To see the source code for a function or method, get the value of the sour ce instance
variable of the debugl nf o object for the Byt eCodeMet hod object that represents the
function or method.

For example, suppose f nAis a user-defined function. If you type the following in the
Listener:

fnA

The return value will be something like:

#<Byt eCodeMet hod Scrat ch: fnA of 3 argument s>
If you type the following in the Listener:

f nA debugl nf o

The return value will be something like:

Debugl nf o@x1d5e8f 8

If you type the following in the Listener:

f nA debugl nf 0. sour ce

The return value will be the a string showing the source code, for example:

“function fnD a b c ->(

W = new w ndow

ww dth := 100; w height := 100

tp := new TextPresenter\
boundary: (new rect x2:100 y2:100) \
fill:(new brush col or:yellowcol or) \
target:((a as string) + " " +

(b as string) +
prepend w tp
show w)"

+ (c as string))

Debugger n

Getting the ByteCodeMethod Object for a Method

To access the source code for methods, you first need to use the method
net hodBi ndi ng to get a byt eCodeMet hod object. For example:

(et hodBi ndi ng col or edThi ng whi t en) . debugi nf 0. sour ce

returns:

nmet hod whiten self {class Col oredThi ng} ->

(
local thisColor := self.fill.color
thisColor.red := 255
thisCol or. blue := 255
thisColor.green := 255
noti fyChanged self true

)

DebuglInfo Objects in Title Containers

All Byt eCodeMet hod objects saved to a title container save their debugl nf o objects to
the title container too. Although the debugging information can be useful for debugging
during the development process, you might want to create the final version of your title
container without saving the debugl nf o objects. This prevents end users from being
able to view the source code for your functions. Also, debugl nf o objects take up disk
space, so they increase the size of the title container file.

To create a version of the title container that does not contain debugl nf o objects, load
the files that make the title container file by using the fi | el n command with the
debugl nf o keyword argument set to f al se.

You can also call the method r emoveDebugl nf o on a Byt eCodeMet hod object to remove
its debugging information. For example:

for i in (alllnstances ByteCodeMethod) do
removeDebugl nfo i

109

n ScriptX Tools Guide

Reference

This section provides a reference to the Menus, Windows, and Buttons used by the
debugger.

The Debugger Menu

110

The Debugger menu provides commands to help you use the debugger. The Debugger
menu should appear when the debugger is active.

You can make the Debugger menu appear at any time while the Debugger is loaded by
selecting the Debugger command in the Tools menu.

Show

Lets you select a window to show. The windows list includes all existing debugger
windows, including open ones, the Breakpoints window and the Watchpoints window.

If the selected window is not open, this command opens it. If the selected window is
already open, this command brings it to the front.

Remove

Lets you select a thread from which to remove a debugger. Only threads with associated
debuggers are listed.

Interrupt

Lets you select a thread to interrupt. The debugger opens to show the code that is
currently running in that thread. This can be useful, for example, when the main thread
is taking a long time to do something, and you want to interrupt it to see what it is
doing.

Refresh

Updates the values of the watchpoints being monitored in the Watchpoints window.

Compile

Opens a dialog box that lets you choose a file to load and compile. Methods in the file
will be loaded with their source code so the source can be viewed in the debugger.

Resume Callback

Resumes a callback that was cancelled by the debugger.

If a breakpoint or exception is encountered while running a periodic callback, the
debugger automatically cancels the callback, so that the breakpoint or problem will not
be recursively incurred. When you are ready to continue executing your code, you can
use the Resume Callback command to reschedule the callback.

You would only want to reschedule the callback if you took away the break point inside
it, or fixed and recompiled the code that was causing the exception.

Debugger n

Tools Menu

The Tools menu includes commands that are relevant to all tools. It also allows you to
select which additional menu to display.

About Debugger

Displays information about the debugger.

Preferences

Allows you to set preferences for the debugger.

You can specify whether or not the debugger should open automatically when an
exception occurs. (The default is for it to be automatically invoked.) You can also
specify the time between updating for watchpoints. You can specify whether or not the
debugger window should close when the Go button is pressed.

The preferences window also allows you to specify the font and font size used in the
debugger.

If you select the OK button in the Preferences window, the preferences are set but not
saved, which means that next time you start ScriptX, the old preferences settings will be
used.

If you select the Save button, the preference settings are set and saved. The system
writes out the settings to a file called debugger . i ni in a directory called t ool pref in
the ScriptX startup directory. If the file debugger . i ni already exists, the system
overwrites it with the new settings. If the file does not already exist, the system creates
it, and if necessary creates the t ool pref directory. The next time you start ScriptX, the
system looks in the debugger . i ni file for the preference settings.

Quit
Quits from the current tool. For the debugger, it closes the debugger, removes the

Debugger menu if it is displayed, and removes the Debugger command from the Tools
menu.

Browsers

This menu only appears if the browsers are loaded. Lets you choose a browser to be the
current tool.

Debugger

Lets you choose the debugger as the current tool. If the debugger is already the current
tool, the Debugger command is marked with a tick.

The Debugger Window

The debugger window lets you display and investigate ScriptX source code. The
debugger opens when a breakpoint is encountered, the br eak function is called
explicitly, or when an exception is encountered (depending on the New Debugger on
Exception flag.) You can also open the debugger by selecting | nt err upt from the
Debugger menu, or by entering break () in the Listener.

111

n ScriptX Tools Guide

112

If the New Debugger on Exception flag is set to true in the Preferences window, a new
debugger will automatically open when an exception occurs in a thread, if there is no
debugger for that thread already.

You can have one debugger window per thread.

This section lists the buttons in the debugger.

Go

This button causes the current program to run as it would in the absence of the
debugger. If the debugger is active, the program will effectively leave the debugger and
continue running.

If an exception is encountered, the behavior in the absence of the debugger is for the
Listener to print a warning message and halt the thread that reported the exception.
Thus if you press the Go button after an exception has occurred, the Listener will print
the warning message for the exception and halt the current thread.

The keyboard accelerator for the Go button is F5.

Step Into

Executes the next ScriptX expression then halts. If the expression is a call to a function
or method, then the debugger steps into that function or method and you can step
through the code for it.

The keyboard accelerator for the Step Into button is FS8.

Step Over

Executes the next expression to completion. If the expression is a call to a function or
method, then the function or method is executed to completion.

Note that you cannot "step over" statements. Each expression in a statement is executed
as a single step.

The keyboard accelerator for the Step Over button is F9.

Out

This button executes the remaining expressions within the current function or method
to completion, and halts on the calling frame.

The keyboard accelerator for the Step Over button is Fé.

Debugger n

The Watchpoints Window

The Watchpoints window allows you to add, remove and view watchpoints. A
watchpoint can be any expression.

To open the Watchpoints Window, select the Show command in the Debugger menu,
then select Watchpoints.

Add

Allows you to add a new watchpoint to be monitored. In the edit window that appears,
enter a watch expression, which can be any legal expression.

Remove

Removes the selected watchpoint.

The Breakpoints Window

The Breakpoints window allows you to add and remove breakpoints, and to define a
function to run when the breakpoint is reached while a program is running. When a
breakpoint is reached while a program is running, the program halts and the debugger
is invoked on the program.

Use the Breakpoints window to specify a breakpoint for a ScriptX function or method.
See “Setting Breakpoints” on page 103 for information on other ways to set breakpoints.

To open the Breakpoints window, select the Show command from the Debugger menu
then select Breakpoints.

Add

Allows you to add a new breakpoint. In the edit window that appears, enter the name
of a function or a method. Specify methods using the format cl ass”net hod. You can
set breakpoints for a method on the class the defines the method, but you cannot set
breakpoints for a method on a class that inherits the method.

Remove

Removes the selected breakpoint.

Edit Button

Allows you to specify a function to run when the breakpoint is reached.

See “Defining a Function to Run at a Breakpoint” on page 104 for information on
defining the function.

113

n ScriptX Tools Guide

114

C HAPTETR

ByteCodeMethod
Profiler

ScriptX Tools Guide

116

ByteCodeMethod Profiler

The ByteCodeMethod profiler provides functions that can help you analyze your
ScriptX code for performance problems. The profiler reports information that shows
how long methods and functions are taking to run.

How to Install the Profiler

To install the ByteCodeMethod Profiler ensure that the files prof . sxt and prof.lib
are in a folder called Tool s in the ScriptX startup directory. If these two files are in the
Tool s folder when ScriptX starts, the Profiler loads automatically. If pr of s. sxt is not
in the Tools folder when ScriptX starts, you can load it into ScriptX by using the Open
menu command to open it.

How to Run the Profiler

To run the profiler, you must be in the Prof i | er module. The recommended approach
is to create your own module that uses the Profiler module, then work in your own
module. You can define your classes, methods, and functions in your own module, then
use the profiler to analyze their performance.

The following code shows how to create your own module that uses the Profiler
module.

nmodul e nyModul e
uses ScriptX
uses Profiler

end

-- switch to working in nyMdul e
in nyMdul e

To begin profiling, execute:

startProfiler()

To stop profiling, execute:

stopProfiler()

You can start and stop the profiler more than once to selectively exclude certain
portions of your code from profiling.

To see the profiler's report, execute:

profilelnfo()

To discard the data and prepare for a new profiling session, execute:

resetProfiler()

117

ScriptX Tools Guide

118

What The Profiler Does

After profiling is enabled, statistics are collected for every call to a Byt eCodeMet hod
object. The time of the initial call is recorded as is the time it returns. The difference
between those two times is the total time for that particular call. All calls are tracked in
this manner. When you ask for the profiler report, the sum of the times for each

Byt eCodeMet hod object is computed, then any calls to bytecode routines nested inside
the original call are subtracted out, yeilding a 'self' time for that object. Note, calls to
substrate methods and functions are not subtracted out.

For example, consider the code below:
fn fnl x ->for i := 1 to x do printfn i

fn printfny -> print y
(startProfiler(); fnl 5; stopProfiler())

If it took 2 seconds for each iteration through the 'for i' loop, and 5 seconds to execute
each substrate print statement, the timing of the two functions would look like this:

Met hod Total 9%dotal Sel f Ooelf Calls
fnl 35 100% 10 28% 1
printfn 25 72% 25 72% 5

The total time charged to f n1 would be 35 seconds (2 seconds * 5 + the time charged to
printfn), however, the sel f time would only include the 10 seconds of iteration. The
time charged to pri nt f n is the same for both total and self, since it does not call any
other bytecode functions (the substrate pri nt function is charged to pri ntf n).

Profiler Output

The prof i | el nf o function prints a report to the Listener that details the time spend in
each ByteCodeMethod object. For example, the report might look like the following:

Profiled tine: 8.817844 sec
Tine in thread @heMai nThread: 0.017044

Met hod Tot al %dot al Sel f osel f Calls
tablel?initlvs 0. 002642 0.029% 0.002642 0. 029% 100
Scr at ch: i ndexC 3.503513 39. 73% 1. 980281 22. 45% 1900
Scratch:readntil 5.598386 63.48% 3.952018 44. 81% 500
Scr at ch: vi vNane 1. 755975 19. 91% 1. 755975 19. 91% 1100
t abl e*append 0. 122962 1.394% 0.122962 1. 394% 100
t abl e”i nport CSV 8.817844 100. 0% 1. 003966 11. 38% 1

The "Profiled time" is the amount of time used by the profiled threads between the start
and stop calls.

A report is generated for each thread for which timing information has been collected.
The "method" column lists the bytecode methods that were invoked. The names will
either have the form

Modul e: gl obal (functions)

d ass™net hod (net hods)

anonynous @ddr

The "Total" column lists the amount of time elapsed from the time that function was
invoked until it returned.

"%Total" is this number as a percentage of the total time.

ByteCodeMethod Profiler

The "Self" column shows the amount of time actually spent in that bytecode method
(and in substrate calls by that bytecode method).

"%Self" is this time as a percentage of total time.
The "Calls" column shows the number of times this bytecode was invoked.

The difference between "Total" and "Self" can be seen by looking at the bottom line of
the example. The i mpor t CSV method took up 100% of the profiled time, however only
11.38% was spent in this method, the rest of the time was spent in methods and
functions called by i mpor t CSV.

The default sorting method for printing the report is by the "Total" column. Use the
sort keyword option to print the report with other sort keys. The example is sorted by
@ane.

Anonymous Objects

Sometimes the Method column will include anonymous objects, which are shown as:
anonyrous @ddr

You can find the object by "objectifying" the address, for example:

obj ectify 30757248
Which might return something like:

#<Byt eCodeMet hod anonynous@x1d55180 of 1 argunent >

If the anonymous function is a Byt eCodeMet hod object, you can find if it has any
debugging information, by getting the value of the debugl nf o instance variable:

(obj ectify 30757248) . debugl nfo

If it has a debugl nf o object, you can see the source code for the method or function, if
it is available, by getting the value of the sour ce instance variable of the debugl nf o
object:

(obj ectify 30757248). debugl nf o. source

Output Options

The profi | el nf o function supports the following keyword options:

sort: { @ane | @otal | @elf | @alls }
stream <streanhject>
raw. {true | false }

The sort option specifies the field used to sort the timing information. By default, the
@ot al option is used.

The st r eamoption allows the output to be redirected to a ScriptX stream. The default
value is debug, the console stream.

The r awoption defaults to f al se. If set to t r ue, the output is not formatted, but
dumped in comma-delimited rows for output to a spreadsheet or other post-processor.

119

ScriptX Tools Guide

Limitations

The profiler does affect the execution time. The profiler redirects the invocation call on
Byt eCodeMet hod to collect statistics. Each call has the additional overhead of fetching
the time, and building a catch frame for each call. However, this overhead appears to be
relatively low, in the 2% range.

Example Use of the Profiler

120

This section discusses one example use of the profiler. It does not delve ito code very
much, but is intended to give you an idea of how to assess the profiled information and
use it to think about ways to speed up your code.

For an example, consider the results of running the following code:

(startProfiler (); flashColor 220 115 170
stopProfiler (); profilelnfo ())

The profiled information is:

Profiled tine: 0.512830 sec
Profile for thread @heMi nThread (0.512830)

Met hod Tot al %ot al Sel f Yoel f Calls
nod1: f| ashCol or 0.51 100. 0% 0. 000467 0. 091% 1
nmod1: Fi ndCol or edShapee

0. 50 97.56% 0.5 97. 56% 1
nod1: Col or edThi ng™f | ash

0.01 0.36% 0.006 1.22% 1
nod1: Col or edThi ng”r est or eCol or

0.012 0.37% 0.002 0.37% 1
nodl: Col or edThi ng”bl acken

0. 001635 0.318% 0.0016 0. 32% 1
nod1: Col or edThi ng™whi t en

0. 001318 0.257% 0.0013 0. 26% 1
nod1: Col or edThi ng"saveCol or s

0. 001011 0.197% 0. 0010 0. 2% 1

In summary, the function f | ashCol or took just over half a second to run, and half a
second was spent in the fi ndCol or edShape function. This tells us that speeding up
fi ndCol or edShape would give us the greatest speed gain.

So we look at the definition for f i ndCol or edShape:

function findCol oredShape red green blue ->

(
I ocal thisSquare := undefined
for square in (alllnstances col oredShape) do
(local color := square.fill.color

if color.red = red and
color.blue = blue and
col or.green = green

do thisSquare := square

)
t hi sSquar e

ByteCodeMethod Profiler

This function looks at every instance of the class Col or edShape to see if its color has
the desired red, green, and blue values. Even after it has found a match, the function
continues testing the rest of the colored shapes.

One way to improve the function would be to redefine for / i n the loop clause so that
it terminates as soon as a match is found. You can achieve this eitherusing until or
whi | e to test for a termination condition, or by rewriting the function to use the
choosene method on a collection. The chooseOne method finds one object in the
collection that matches the desired criteria.

So we redefine f i ndCol or edShape as follows:

function findCol oredShape red green blue ->

(
I ocal thisSquare := undefined
choosene (alllnstances col oredShape) \
(a b ->1local color := a.fill.color

color.red = red and
color.blue = blue and
color.green = green) 1

Now reset the profiler to clear out the existing information, and run the f | ashCol or
function again:

resetProfiler ()
(startProfiler (); flashColor 220 115 170
stopProfiler (); profilelnfo ())

This time the profiled data is as shown below. You see that the execution time has been
cut to 0.34 seconds, down from 0.51 seconds. Most of the time is still spent in the

fi ndCol or edShape function, which now takes 0.33 seconds, instead of 0.5 seconds,
which is a significant gain. However, f| ashCol or still spends most of its time in the
fi ndCol or edShape method, so if we could think of a way of narrowing the search, we
could cut the execution time down even more.

Profiled tinme: 0.336595 sec

Profile for thread @heMi nThread (0.336595)
Met hod Tot al %ot al Sel f osel f Calls
nodl: f | ashCol or

0.37 100. 01 0. 00042 0. 125% 1
nodl: Fi ndCol or edShape

0.33 96. 56 0.32 96. 38% 1
nod1: Col or edThi ng™f | ash

0.011 3.30 0. 0057 1. 7% 1
nmodl: Col or edThi ng”bl acken

0. 002 0.58 0. 0019 0. 58% 1
nodl: Col or edThi ng”r est or eCol or

0. 0016 0. 47 0. 0016 0.47% 1
nod1: Col or edThi ng™whi t en

0. 0013 0.39 0. 0013 0. 39% 1
anonynmous @9211952

0. 0007 0.20 0. 0007 0.21% 1
nodl1: Col or edThi ng”saveCol or s

0. 00058 0.17 0. 00058 0.17% 1

121

ScriptX Tools Guide

122

C HAPTETR

Visual Memory

ScriptX Tools Guide

124

Visual Memory

Visual Memory is a utility for examining memory that is managed by the garbage
collector. In the ScriptX executable, choose Visual Memory from the File menu in the
ScriptX menus to view a visual map of the ScriptX heap.

Figure 11-1 depicts the Macintosh version of Visual Memory, with the upper left portion
of the window scrolled into view.

SRe=—————"—"—"—"— Uisual Memory
— GC Count = 2, Inc = 28, Cycle Complete
Il 1] r 1 o L F
Garbage Collector Status {7 Cycle = Z.48s, GC = B.78s [28.38], Incs = 33
Memory Status —————— Tatalfres = 2663k [Susfree = 2369k Contig-Susfree = 2369k] [Sxfres = 233k Contig-Swfree = 85k]

—— [horeloc reloc-locked reloc—unlock reloc—purgeable free] [sx—full sx-partial-full sx-group-free
[

2. o2k Sk 16k, 24k 2k 4ak. 44k, STk

Memory Map

Figure 11-1: Macintosh version of Visual Memory

Platform Differences

The Macintosh and Microsoft Windows versions of Visual Memory are similar in
appearance, except that the Macintosh version has a single vertical scroll bar and is
resizeable in the horizontal direction.

The Macintosh and Windows versions of Visual Memory differ slightly, reflecting
memory management on the underlying operating system. The Macintosh System
allocates both pointers, or nonrelocatable objects, and handles, which are relocatable
pointers to pointers. Handles can be locked, unlocked or purgeable. Windows allocates
only nonrelocatable objects, or pointers. The Windows version of Visual Memory
distinguishes between memory that is free, or deallocated, and memory that is unused,
that has never been allocated from the Windows global heap. The Macintosh and
Windows also differ in internal layout of memory. For more information, consult a
reference to the architecture of the underlying operating system.

125

ScriptX Tools Guide

126

Running Visual Memory in the Kaleida Media Player

The previous section described how to display Visual Memory in the ScriptX
development environment. However, looking at memory can be even more critical in
the playback environment where your application must fit in a minimum memory
requirement. You can display Visual Memory in the Kaleida Media Player, as follows:

Microsoft Windows: Press the keys Ctrl-Shift-N (in contrast to Ctrl-N in the ScriptX
development environment). There is no Visual Memory menu selection for this.

Macintosh: This procedure first requires you to modify the Kaleida Media Player. You
must add Visual Memory to the File menu, as follows:

1. Make a copy of the Kaleida Media Player. This procedure adds a new menu item
called “Visual Memory” to this copy.

Open the Kaleida Media Player in ResEdit.
Double-click the MENU resource to open up its window.
Double-click resource number 201 (the second of the two File menus).

Choose Create New Item from the Resource menu.

AU T

Type “Visual Memory” in the Title field, and type “M” into the Cmd-Key field.

Note — Do not move the menu item up or down or add a separator above it. Leave it at
the bottom of the File menu immediately below the Quit option. (This works by the
position of the menu item in the menu, not by the menu text.)

7. Save the file and quit ResEdit.

To use Visual Memory, start the Kaleida Media Player and choose “Visual Memory”
from the File menu.

Details of Visual Memory

Visual Memory display the status of both memory and the garbage collector.

Garbage Collector Status Lines

All of the values in the top two lines of the Visual Memory window display statistics
from the latest garbage collection cycle. The first two items on the top line are described
in the following table.

Skipping to the right end of the top line, The current status of the garbage collector is
shown at the end of the top line of the Visual Memory window:

Cycle Conpl ete
which means the garbage collector is not collecting garbage.

When garbage is being collected, a gray bar flashes on and off, and the status changes to
“Scan Statics”, “Scan Gray Set”, “Recycle Garbage” and other indicators.

Along the top of the Visual Memory window, just beneath its control bar, ScriptX
displays statistics from the latest garbage collection cycle. The following table indicates
how to interpret these figures.

Visual Memory

Table 11-1: Interpretation of garbage collector status

Item or label Typical Value Interpretation

GC Count 23 number of cycles the garbage collector has
completed since startup

I nc 20 length of one increment, in milliseconds

Cycle 18. 01s length of the most recent garbage
collection cycle, in real time

co 1.27s (7.1% amount of time during the cycle that was
actually spent in the garbage collector

I ncs 61 number of increments to complete the
most recent cycle

nax inc 21.26 length of maximum increment in the most
recent cycle

wo 191.5ms (1.1% amount of time spent in write barrier in

the most recent cycle

Memory Status Lines

The third line in the Visual Memory window indicates the size of various regions of

memory:

Totalfree — Total amount of memory, combining both system and ScriptX heaps

Sysfree — Total free memory in the system heap

Contig-Sysfree — Continguous free memory in the system heap

Sxfree — Total free memory in the ScriptX heap

Contig-Sxfree — Contiguous free memory in the ScriptX heap

Multicolored Memory Map

In Figure 11-1, each small rectangle represents a page in memory, 512 bytes in the
current version of ScriptX, and contains objects of the same number of bytes. Dynamic
memory is at the top; static memory at the bottom.

The colors are defined as follows:

® Red (“sx-full”)- indicates that page is fully allocated and has no room for more

objects.

® Blue (“sx-partial-full”) — indicates the page is partially allocated.

e Light Green (“sx-group-free”) — indicates a page that is completely unused.

o White (“sx-any-free”)- represents unused memory that has never been claimed by

either static or dynamic memory.

® Turquoise blue (“sx-static”)— static memory.

® Orange (“sx-fakeptr”)- indicates that page is pointed to by a fake pointer in the root
set. Fake pointers are a natural consequence of conservative collection. Since fake
pointers occur in an unused section of memory, we know that they are not real
objects. A conservative garbage collector will not always identify every object that is

ready to be discarded.

* Yellow (“free”) —

127

ScriptX Tools Guide

128

® Brown (“noreloc”) —
® Purple (“reloc-locked”) —
® Gray (“reloc-unlocked”) —

¢ Dark green (“reloc-purgeable”) —

Refer to the flowchart, . When a cell toggles between blue and red, that means
an object is being allocated (red) and freed (blue). As described below, click on
that cell when it’s red and again when it’s blue to get lists of what it contains.
Compare the lists to find out which object is actually being allocated and freed.

Use f i ndPar ent s when the memory state is static; use the previous technique
when the state is changing.

Symptom: Unnecessary
garbage collection

inspect code
for unnecessary
garbage generated

Check
Visual Memory

Is state of Yes
Visual Memory

stable?

No

Click in use findParents
Visual Memory
to identify obect

Comment out
code until
gc stops

Congratulations
You have found
source of
garbage

Figure 11-2: Flowchart for troubleshooting unnecessary garbage collection

Examining Pages in Detalil

To examine the contents of a page of memory:
® Click on the cell that represents it in the Visual Memory display.

ScriptX prints to the Listener window a list of objects that are allocated on that page.
ScriptX stores objects of the same size, though not necessarily of the same type, together
on a page. Objects that occupy more than one page are stored in contiguous pages.

“SXObjects” indicates chunks of memory for no particular class.

C HAPTETR

Tool Framework

ScriptX Tools Guide

130

Tool Framework

Overview

Important — This document describes a preliminary version of the ScriptX Tool
Framework. Both the framework and this document are provided to help developers
implement simple tools for internal use and begin development of ScriptX-based tools.
Key parts of the Tool Framework described here are likely to change significantly in a
subsequent ScriptX release.

Note-When using the ScriptX Tool Framework, you will need to rename the “TOOLSX”
directory to “TOOLS” before launching ScriptX in order to have access to the Tool
Framework and to use tools built with it (such as the Debugger and Browser).

This section describes the approach to tool development embodied in the current
ScriptX Tool Framework.

ScriptX Tool Support

The design of the ScriptX Tool Framework reflects the need to support a variety of types
of tools. The following discussion first looks at the types of tools that will be required to
develop multimedia with ScriptX, then reveal how the ScriptX Tool Framework
supports those types of tools.

Types of Authoring Tools

We can imagine five categories of tools that can be used in the creation of a ScriptX title:
language tools, metaphor tools, component tools, media editors, and title tools. Of
these, this release of the Tool Framework includes only language tools. (The category
can be specified by the cat egory keyword in Tool Cont ai ner.)

Language tools, such as a debugger, browser, and compiler, are low-level tools that any
ScriptX programmer needs to be productive. Kaleida will provide third-parties with
language tools.

Metaphor tools describe paradigms for user interaction and allow the user to author
using high level tools. Typically, a metaphor tool consists of a set of classes that describe
the paradigm, a metaphor editor, and several component editors to manipulate the
paradigm’s classes. Existing authoring metaphors include timelines and cards and
stacks.

Component tools are designed to edit one kind of object or behavior. These tools can
stand alone or be one part of a more integrated environment. The developer of a
metaphor tool might provide a few component tools to edit classes specific to the
authoring metaphor.

Media editors create and manipulate sound, image, and movie data. Presently, ScriptX
supports media editors through the importers, which accept most common media
formats on both Macintosh and Windows.

131

ScriptX Tools Guide

132

Title Tools exist as part of a title and not in the ScriptX authoring environment. They
allow end users of a title to change the title’s contents. For example, a photo album title
might have simple tools for arranging pictures and for adding captions. Authors of such
tools should ignore this document and instead refer to the ScriptX Class Reference.

Tool Framework

The Tool Framework supplies a platform on top of which tools can be built. In addition
to defining a basic protocol for a tool, the framework gives tools access to several
host-operating system features, like the menu bar, and provides a substrate so that
multiple tools can run simultaneously and give the user the impression that there is just
one big tool, the ScriptX environment.

This framework is independent of both metaphors and protocols for titles. The tools
that live in this environment are expected to provide these behaviors. Other tools that
wish to take advantage of a specific metaphor or special class should implement the
protocols provided by those objects.

Many of the features in the framework simplify tasks that most tools will need to
perform, such as window management and trapping mouse events. Each tool could
implement these features independently, but the framework makes creating tools even
easier than it already would be in ScriptX.

Tool Protocols

To effectively send messages between tools and titles, a set of protocols is needed. With
the first release of ScriptX, there exists a de facto standard, the ScriptX Core Classes
Library, but work should be done in the future to ensure more powerful tools by
creating specialized protocol suites.

Presently, tools should use the Core Classes as their protocol. The Core Classes provide
a well-rounded set of behaviors and object appearances. Methods and instance variables
are guaranteed to have the same names and similar behaviors in all descendants of Core
Classes. For example, a tool that knows about the TwoDPr esent er class can effectively
move and resize any object that appears in a TwoDSpace, including graphic shapes,
bitmaps, user interface objects, and movies.

The model for tool development encourages tool writers to create their own classes and
to supply component tools to edit them. Only the specialized tool can edit every aspect
of an object’s behavior, because the tool has been tailored for the object. But provided
that these new classes have some inheritance from the Core Classes, a variety of tools
can edit at least parts of them.

Future work should be done by Kaleida and third party developers to establish higher
level protocols. This involves identifying major sets of functionality, such as a page
layout suite, and creating a layer on top of the Core Classes that allows tools to easily
work with objects that conform to that suite. Such standards will evolve naturally as
more developers embrace ScriptX.

Writing a Tool in ScriptX

The Tool Framework provides a structure for writing tools. In addition to the classes
and services that the framework provides, there are several philosophical elements that
you should consider when writing a tool. Following these guidelines will help to ensure
a powerful authoring environment for the user.

The first and foremost point about tools is that they are written in the ScriptX language
using the Core Classes. The Core Classes provide you with a strong application
framework with which to build your tool. Your interface will be written using ScriptX

Tool Framework

Ul objects, your event handling through controllers and the event system, and your files
stored in storage containers. The titles your tool produces shares this foundation. Get to
know and love the Core Classes Reference.

When you design your tool, start with a working model of the end result, and work
backwards to create an editor for it. Define the classes that your tool will create or edit.
Script a simple title using these classes. Then build a tool that will create and edit
instances of these objects.

Try to modularize your tool development as much as possible. This effort is key to the
interpretability of tools and to the user’s ability to pick and choose their preferred tools.
For example, if you have a metaphor tool and create separate tools to modify the screen
objects, then the user can use your screen objects in another metaphor tool or even use
a different editor to change the objects within your tool.

Protocols for good behavior in the ScriptX authoring environment are scarce now, as
there aren’t really tools available. However, as more tools appear, so will the protocols
that they bring with them. As much as possible, use these existing protocols, so that
your tool will be the most useful to your users.

By adhering to standard protocols, you can greatly reduce the amount of programming
effort required to make a tool. Nearly every metaphor tool contains an asset manager, a
layout editor, and a color picker, for example. A well-behaved ScriptX tool does not
need to implement these parts, because the user is guaranteed to have some form of
each of these tools in his or her authoring environment.

Implementation of the Tool Framework

For a tool to automatically be loaded at startup time, do the following;:

1. Make sure there is a directory called t ool s at the same level as the ScriptX
executable.

2. Make sure the t ool s directory includes a file named t | frmwr k. | i b, which is the
tool framework.

3. Put any tools you want automatically loaded into the t ool s directory. The following
section describes how the tool startup process works.

4. Start ScriptX.

Tool Startup Process

ScriptX contains code that tries to load in the Tool Framework at startup time. This
code’s main goal is to load in the framework, but it will also automatically load any
tools, titles, and scripts (but not libraries or accessories) that are in the t ool s directory.
You can place your own versions of these in the t ool s directory to have them
automatically load at startup.

When ScriptX starts up, the following steps take place:

1. This tool-loading mechanism examines only the contents of a directory called t ool s
in the same directory as the ScriptX executable. If the t 0ol s directory isn’t found
(for example, if it is renamed), ScriptX makes no further attempt to load tools.

2. Then, any ScriptX title containers (. sxt) in the t ool s directory are loaded.

3. And then it looks for scripts (. sx) in the folder, then loads and compiles them. The
order of loading is platform-dependent.

133

ScriptX Tools Guide

134

4. If there are directories directly inside of the t ool s directory, files within them are
loaded, as well in the same order: first title containers, and then scripts. Note that the
contents of any directories below this level are not loaded.

This section describes the features that the Tool Framework includes and shows how a
tool might take advantage of them.

Tool Organizer

At the core of the Tool Framework is a global object, t heTool O gani zer, a global
instance of the Tool O gani zer class, which oversees much of the functionality of the
framework. All tool communication and activation is handled through this object.
Furthermore, this object is called from the ScriptX run-time for such actions as menu
updating and window switching.

For your tool to fit into this framework, the tool must be registered with

t heTool Or gani zer. Registration occurs automatically when a tool is loaded. The
instance t heTool O gani zer provides the methods r egi st er and unregi ster for
explicit registration.

Tool Communication

In order to allow seamless integration of multiple tools, the Tool Framework contains a
simple messaging system. This mechanism activates the preferred tool for an object in
response to the user’s actions. For example, double-clicking a PushBut t on object might
bring up a script editor.

This messaging system relies on two methods, i nqui re and edi t, that the tool must
implement, as shown in Figure 12-1. The instance t heTool O gani zer asks each tool if
it can edit an object by calling its i nqui r e method; it returns an array of two names
describing what it can do. Depending on the return value, t heTool Or gani zer can then
call the edi t method on the tool, passing in the object, enabling the object to be edited
by the tool.

Alternatively, to edit an object with the available tools, you can call i nspect on the
object, which is equivalent to edi t t heTool O gani zer t heQbj ect .

1. inquire
2. edit Obj
_ ject to
theToolOrganizer ﬁ be edited

Debugger Browser

Figure 12-1: The inquire and edit methods.

To implement the default behavior for this context switching, the current tool needs to
call the edi t method in t heTool O gani zer. This searches through the list of tools and

finds a tool that can edit the object. For example, an authoring tool’s click handler might
look like:

gl obal theDbledickTine := 10
nethod getdick self { class M/Tool } theSpace clickPt theTime ->
(

local tnpQhj

-- loop through each object in the space.

for tnphj in theSpace do

Tool Framework

-- check to see if the click is inside any of the
-- objects.

if PtInBoundary tmpChj clickPt do

-- look for double-click state: sane object and
-- within a certain tine difference.

if (tnmpChj = self.lastdick) do
if (theTine < self.lastdickTime + theDbledickTine) do
(

-- this asks the tool organizer to find an editor for
-- the object and to switch to that tool. Mst likely,
-- we will be switched out at this point.

edit theTool O gani zer tnpChj #()
return self

)

-- return somet hi ng.

return self

To support this messaging, each tool must implement two methods: i nqui re and edi t.
The instance t heTool Or gani zer asks each tool if it can edit an object by calling its

i nqui r e method. The tool can test whatever aspect of the object it wants. Some of the
tests a tool might perform are:

-- in this exanple, we wll check to see if there is a Brush object
-- that we can edit. there are several ways we can | ook for one.

nmethod inquire self { class M/Tool } theCbhject the(ptions ->

(
l ocal i vLi st, tnpName

-- see if there is an instance variable with a given
-- name in the object. any of the core classes that
-- contain Brush objects call them*“fill.”

ivList := alllvNames the(ject
tnpNane : = new Naned ass name: @ill
if isMenber ivList tnpName do
return #(@iewAndEdit, @nowPartial)

-- we can check the class directly to see if this object is
-- a Brush object.

if (getdass theChject = Brush) do
return #(@iewAndEdit, @nowAl)

-- we can also check to see if the object is a subclass
-- of Brush, in which case we can edit at least parts of
-- the object.

if (isAKindCr theChject Brush) do

135

ScriptX Tools Guide

return #(@iewAndEdit, @nowSuperclass)

return #(@iewAndEdit, @nknown)

If the tool indicates that it can edit the object by what it returns from the i nquire
method, t heTool O gani zer can then make the tool current and call its edi t method
on the tool, with the object as the argument. A simple example follows:

method edit self { class MyTool } theChject the(ptions ->

(
-- bring up our editing window, if we haven't already
-- in our swtchln method.

show self.editPal ette
-- then set the window up to edit this object. at this
-- point, the user can use the controls in the w ndow
-- to change characteristics of the object.

updat eParans sel f the(hj ect
-- return somet hi ng.

return self
)

Tools designed as part of a suite can also explicitly ask other tools to edit objects. For
example, if you have a tool for editing custom classes, your main tool can manually
load the tool from the object store, make the tool current, and then call its edi t method.

Tool Messaging

In addition to the support for passing objects to other tools for editing, tools can send
messages to inform the others of changes to the system’s state. Some examples of the
messages are when an object has been changed, so that its owner knows when to
redraw it, or when an object has been deleted, so that an editor can close.

The Tool Framework’s message system is implemented as two methods in the Tool
class. A Tool can call the sendMessage method to inform other tools of changes. The
Tool should also implement the get Message method to receive messages sent by other
tools. Tools do not get messages that they send.

Information included in a message is the object in question and a Nanmed ass object that
signifies the event. Developers are expected to create suites of events that compatible
tools can support. The Tool Framework defines the following messages:

@bj ect Changed, @bj ect Del et ed, and @aveTitl e.

Here follows sample implementations of the messaging methods:

-- method that will grab inconming messages. |In this
-- nethod, we will check to see if the object we are
-- editing (we are a Brush tiny tool) has been del eted.

net hod get Message self { class M/Tool } theChject theMessage ->
(

-- first see if we are even editing an object.

136

Tool Framework

if (self.currentCbject = undefined) do return self

-- because we are storing a reference to our |one

-- edited object, we can just conmpare it to the incomng
-- object. otherw se, we could search through collections
-- or even do snarter tests.

if (theChject <> self.currentChject) do return self

-- we fell through the above test, so this neans that the
-- given object is our object. do sonething in response.

case theMessage

-- standard message. soneone else edited a part of the
-- object, so let's refresh to show the changes.

@bj ect Changed:
sel f.itsWndow changed := true

-- another standard nessage. soneone cleared the object,
-- so close the editor.

@bj ect Del et ed:

(
local tnpWnd

for tnmpWnd in self.w ndowList do hide tnpWnd
sel f.current j ect := undefined

)

-- this is our own private message that other tools can
-- send to us. we published this nmessage, we were first, and
-- it made sense, so consequently, it becane the standard.

@seThi sBrush:
(
sel f.currentBrush := t he(hject
sel f.itsWndow changed := true
end

-- return an object.

return self

-- and here is a code fragment of the nessage | woul d

-- send before closing ny tool. the user made changes,

-- so alert others. they will redraw or otherwi se do their
-- dirty deeds.

sendMessage sel f sel f.current Chj ect @bj ect Changed
for tnpWnd in self.w ndowList do hide tnmpWnd

137

ScriptX Tools Guide

138

Easy Event Handling

Many ScriptX tools will need to intercept mouse events in title windows before the
title’s controllers get at them. For example, if you need to drag around buttons (which
are already attached to a controller), how do you do that without activating the
buttons? With the Tool Framework, there is a way.

Each Tool object has two instance variables called want s i cks and cl i ckHandl er.
The two work together to give your tool instant access to mouse click events in title
windows. This mechanism ignores clicks in and instance of Tool W ndow or its
subclasses.

To automatically receive mouse down events, set the want sA i cks instance variable of
your tool to t rue. If the tool is current, then events are processed immediately. If some
other tool is current, then yours will receive events after it is switched in. You don’t
need to manually toggle the want sA i cks setting to handle tool switches.

The method that gets called in response to a click is stored in the cl i ckHandl er
instance variable. It should return t r ue if your tool responded to the event and doesn’t
want the click passed on to the title’s controllers. Or you can return f al se and
whatever would have happened without your tool present will happen.

-- sanple clickHandl er method. this just adds
-- objects to our nythical tool's selection list.

nethod selectdick self { class MTool } theSurf thePt theTime ->
(
| ocal cl i cked(pj ect
-- use sone utility method to run through the
-- presenter hierarchy and get the TwoDPresenter
-- that was clicked on.
clicked@ject := finddicked self theSurf.topPresenter
-- clicked in blank space. just return.
if (clicked(ject = undefined) do return false
-- clicked on sone other TwoDPresenter. see if we
-- care about it. we can use an already existing

-- method to check.

edi t Response := inquire self clickedhject #()
if (editResponse[2] = @nknown) do return true

-- okay, we really care. add it to our selection
-- list.

append sel f.sel ectionList clickedject
-- don’t let anything el se happen as a result of the click.

return true

This event handling is designed so that a tool can switched method in its
cl i ckHandl er based on internal settings. For example, if a tool had modes where
clicking on an object selected it, dragged it, or linked it to another object, each behavior

Tool Framework

could be implemented in a different method. As the user chooses different modes, the
tool need only set the cl i ckHandl er variable to the appropriate method to change the
behavior.

Tool Host OS Access

The Tool Framework contains several classes to help tool programmers make tools that
behave similarly to applications written on top of the platform’s operating system.

Menus

When the Tool Framework has been loaded into ScriptX, a new menu item called Tools
appears at the end of the menu bar. Every tool that has registered with

t heTool Or gani zer is listed in this menu. To select a tool, the user chooses one from the
list. The current tool is marked with a check.

ScriptX Menu Bar without Tools Installed

The first two items in this menu, About and Preferences, are standard items that each
tool will have. Tool subclasses override the corresponding methods: the about method
should display a dialog that shows the tool’s copyright and credits; pr ef er ences
should provide controls to set options for the tool.

Each tool can create and maintain its own menus in the system’s menu bar. These
menus are listed to the right of the Tools menu. When t heTool Or gani zer switches in
a tool, it installs its menus. When it switches out a tool, it removes the menus from the
menu bar.

ScriptX Menu Bar with Tools Installed

The framework has three classes with which a tool can maintain its menu bar:

Tool MenuBar, Tool Menu, and Tool Menul t em Each tool automatically has an empty
menu bar allocated for it. This object is stored in the instance variable syst enmMenuBar
inherited from the Tool Cont ai ner superclass Ti t | eCont ai ner.

Anatomy of the ScriptX Menu Bar

A Tool MenuBar instance is an array of Tool Menu objects. Use standard array
manipulation methods to add, remove, and reorder the menus. When you are done
changing the menu bar, call the nenuChanged method of the menu bar.

A Tool Menu object is an array of Tool Menul t ens. As with Tool MenuBar, use array
methods to add or remove items from a menu. Each Tool Menu object has an instance
variable called menuNane that is displayed in the menu bar. If you change the contents
of a menu or its name, call the menuChanged method.

The Tool Menul t emclass defines the behavior of each menu item. All menu updating
and execution is performed through callback functions defined by your tool. Each menu
item has a single menuHand| er that t heTool Or gani zer calls. This function is passed a
selector which indicates whether it should perform the menu command or return the
state of the menu (e.g.. enabled, checked). By default, your tool is the first argument
passed to the callback. However, you can specify another object by setting the owner
instance variable.

139

ScriptX Tools Guide

140

The appearance of a Tool Menul t emalso depends on the values of its instance variables.
i t emName contains the text to be displayed in the menu item. Menu items with “-” as
their name appear as separating lines. Items can also have keyboard shortcuts, which
are specified in the short Qut instance variable.

The following code shows the basic menu handling for a typical tool:

-- nethod to set up the nenu bar for this tool. add
-- the menus and menu itens.

nmet hod nakeMenus self { class M/Tool } ->

(

-- create the pasta menus. this allows the
-- user to choose one of three pastas. the
-- current one is checked.

self.firstMenu := new Tool Menu nane: “Pasta”

append self.firstMenu (new Tool Menul tem \
nane: “Linguine” menuFunc: pastaFunc \
shortQut: “I”)

append sel f.firstMenu (new Tool Menultem \
name: “Fettucci ne” nenuFunc: pastaFunc \
shortQut: “f”)

append self.firstMenu (new Tool Menul tem \
nane: “Cappel lini” menuFunc: pastaFunc \
shortQut: “i”)

append sel f. menuBar sel f.firstMnu

-- make the second nenu, for sauces.

sel f.secondMenu : = new Tool Menu nane: *“Sauces”
append sel f.secondMenu (new Tool Menul t em \
nane: “Pesto” nenuFunc: sauceFunc)

-- put a divider line in to separate the healthy
-- sauces fromthe really unheal thy ones.

append sel f.secondMenu (new Tool Menul t em \
name: “-")

-- add nore itens, then put the menu in the
-- menu bar.

append sel f.secondMenu (new Tool Menul t em \
nane: “Alfredo” nenuFunc: sauceFunc)
append sel f.secondMenu (new Tool Menultem \
name: “Carbonara” nenuFunc: sauceFunc)
append sel f. menuBar sel f.secondMenu

-- return this object.

return self

-- the callback function for the itens in the
-- pasta menu. they all use the sane call back.
-- this gets called both for updating AND perforning.

Tool Framework

nmet hod pastaFunc self { class M/Tool } mtem options ->

-- options specifies what the tool organizer wants us
-- to do. we can return one of four values: @nabl ed,
-- @i mmed, @nabl edChecked, or @i medChecked.

if (options = @pdate) do
(

-- to see if this is the current pasta, conpare
-- the item nunber against our previously set up
-- instance variable. check the current one.

if (mMtemitenNum = self.currentPasta) then
return @nabl edChecked

el se
return @nabl ed

)

-- the second case is to performthe nenu item for
-- this exanple, we are going to sinply update

-- our pasta selection. in other tools, we would

-- open a dialog box, run a title, or do sone other
-- spiffy thing. the next tine the nenus are updated,
-- this itemw Il be checked.

self.currentPasta := ntemitem\um
-- return this object.

return self.

The DragRegion Class

The class Dr agRegi on provides tools with a means of exchanging information between
tool and title windows. Using this class, the user can drag and drop objects between
windows. The Dr agRegi on class only provides the graphical interface for this action—it
includes no semantics for copying or placing the actual objects.

To use the Dr agRegi on class, first create a new instance with a rectangle as the
argument to its boundi ngBox keyword. In response to a mouse down event in that
rectangle, your controller should call the dr agMe method. After the user releases the
mouse button, the instance variables of the Dr agRegi on object contain information
about where the region was dropped.

DragRegion Interface

To the user, a Dr agRegi on appears as a rectangle with a gray boundary and no fill. He
or she can drag this shape anywhere on the screen. If the dropped location does not fall
within a window, then the drag is considered canceled.

-- nethod for dragging a TwoDPresenter object

-- between wi ndows. call this from your event
-- handling code, after a nouse down.

141

ScriptX Tools Guide

net hod dragShape self { class M/Tool } theShape ->

(
local tnpRgn, didDrag, tnpRect

-- nake the region object and do the drag.

t npRect : = theShape. bounday
tnmpRgn : = new DragRegi on boundi ngBox: t npRect
didDrag := dragve tnpRgn

-- return if the user dropped the shape into
-- a non-scriptx w ndow or the desktop.

if (didbrag = false) do return self

-- test to see if it is a title window there
-- are cases where it's okay to drop into a tool
-- window - that's up to you to decide.

if (isTool Wndow t heTool Organi zer tnpRgn.dropSurf)
do return self

-- we mght want to place this object into that
-- surface.

t heShape. x : = tnpRgn. dr opX
theShape.y := tnpRgn. dropY
append tnpRgn. dropSurf.topPresent er theShape

-- return an object

return self

To drag objects within title windows, use the DragControl | er Core Class and the
Dr agger mixin protocol. This ensures compatibility with future versions of ScriptX
players.

Future Directions

The following possible areas for expansion of the ScriptX Tools Framework are based on
initial user response and fairly obvious shortcomings of the framework.

To behave like normal authoring tools, a ScriptX tool should have access to some of the
system menus, in addition to its own private menus. Items of interest to tools are New,
Save, Open, Cut, Copy, Paste, and others. To implement this, the menu dispatching
would need to be modified to send these commands to the current tool, rather than to
ScriptX. In itself, this is not much work. However, adding O i pboar d support for
images and movies (commonly pasted data types), requires some crafty stream and
importer tweaking.

In-place media editing promises to be a powerful interface for designing content. The
most expedient way to support this ability seems to be through one of the compound
document architectures, such as OpenDoc or OLE. However, technical, schedule, and
general paradigm constraints make such solutions infeasible for the first release of the
framework. When these technologies are integrated into ScriptX, tools that support the
Tool Framework will behave similarly to these compound tools.

142

Tool Framework

As more developers begin to develop native ScriptX tools, tool management for the user
will get difficult. For example, the Tools menu might list dozens of tools, which the user
may or may not always need. A solution to help this problem would be to add types to
tools, so that they may be categorized for easier access. Some example categories in the
Tool O gani zer class might be: @ret aphor Tool , @ anguageTool , @r i vat eTool ,
and @onponent Tool . With this categorization in place, the framework could hide
inappropriate tools and organize the menu more intelligently.

143

ScriptX Tools Guide

144

C HAPTETR

Tool Framework API

ScriptX Tools Guide

146

Tool Framework API

This chapter lists global variables and classes defined in the Tool Framework.

Global Functions

inspect (global function)
i nspect theObject theOptions O Bool ean
theObject Object to edit
theOptions ol | ect i on of Nanmed ass objects

Equivalent to edi t self theObject.

Sends a request to the tools to edit the given object. In order to find an editor, the

Tool Organi zer calls each tool’s i nqui r e method. Using the results of this search, the
Tool Organi zer picks the most likely candidate, and calls that tool’s edi t method with
the given object as the argument. t heQpt i ons is a Col | ecti on of Narmed ass objects
that represents the context of the edit. If an editor or viewer cannot be found for
theObject, then edit returns f al se, otherwise it returns tr ue.

For more information, see the edit method in the Tool O gani zer class.

Global Variables

theToolOrganizer (global variable)

t heTool O gani zer (read-only) Tool O gani zer

An instance of the class Tool O gani zer which is created at startup when the Tool
Framework is loaded. As an Array, an instance of Tool Or gani zer contains a list of all
registered tools. If this value is undef i ned, then the framework has not been
successfully loaded.

All tools use t heTool Or gani zer as a message center for coordinating with other tools.
This object also acts as a gateway between system services (menus and windows) and
the tools.

This global variable is actually called gTool Or gani zer in the current release.

147

ScriptX Tools Guide

ToolOrganizer

Instance

Instance

148

Class type: Tool class (concrete)

Resides in: ScriptX executable but not KMP
Inherits From: Array

Component: Tool Framework

The Tool Framework creates a global instance of this class, t heTool O gani zer, which
all tools use as a message center for coordinating with other tools. This object also acts
as a gateway between system services (menus and windows) and the tools. You should
never create your own instance of this class.

As an Array, an instance of Tool Or gani zer contains a list of all registered tools.

Variables

currentTool

self. curr ent Tool (read-only) (object)

This instance variable contains a reference to the Tool Cont ai ner instance of the
currently selected tool. Use the t ool Swi t ch method to change this value. By default,
the value is undef i ned.

categories

self. cat egori es (read-only) Array

This instance variable contains an array of the categories of the tools that have been
registered with the t heTool O gani zer.

clickInstalled

self. clicklnstal | ed (read-write) Bool ean

Indicates whether the t heTool O gani zer ’s click handling is on (t r ue) or off (f al se).

itsToolMenu

self. i t sTool Menu (read-only) Array

Contains an Array of the menu items in the Tools menu.

Methods

edit

edi t self theObject theOptions O Bool ean
self t heTool O gani zer global instance
theObject Object to edit
theOptions Col | ecti on of Nanmed ass objects

Sends a request to the tools to edit the given object. In order to find an editor,

t heTool O gani zer calls each tool’s i nqui r e method. Using the results of this search,
t heTool Organi zer picks the tool that knows the most about the object (as described
below), and calls that tool’s edi t method with the given object as the argument. The
argument theOptions is a Col | ect i on of Named ass objects that represents the context of
the edit. If an editor or viewer cannot be found for theObject, then edit returns f al se,
otherwise it returns tr ue.

Tool Framework API

The i nqui r e call can return one of these responses: “I know all about the object”
(@nowAl |), “I know the superclass of the object” (@nowSuper cl ass), “I know
something about the object” (@nowParti al), “I know about objects in general.”
(@nowByDef aul t), or “I know nothing about the object” (@nknown). These responses
are listed in preference order, so that the tool that knows the most will be chosen by the
tool organizer to edit the object. If two or more tools tie for knowing the most, the first
tool that responded will get selected (which is non-deterministic).

findEditor

findEditor self theObject theOptions O Tool
self t heTool O gani zer global instance
theObject the object to be edited
theOptions Col | ecti on instance containing options

Looks through both the tool list and the component list to find an appropriate editor for
theObject. This routine calls each registered tool’s i nqui r e method to find the best
editor. theOptions is a Col | ecti on of Naned ass that represents the context of the edit.
Editors are ranked as follows, in order of suitability:

@nowAl |
@nowSuper cl ass
@nowParti al
@nowByDef aul t
@nknown

If no editor can be found, then fi ndEdi t or returns undefined. See the i nqui r e method
for Tool for more details about this subject.

isToolWindow

i sTool Wndow self theSurface o ??
self t heTool O gani zer global instance
theSurface D spl aySur f ace instance

Returns t r ue if the given D spl aySur f ace is being managed by a Tool Cont ai ner.

register

regi ster self theTool a??
self t heTool O gani zer global instance
theTool Tool object to register

Adds the given tool to the list of tools the t heTool O gani zer knows about. When a
tool is registered, its name is appended to the Tools menu. If this is the first tool to be
registered, then it is switched in automatically.

toolSwitch

t ool Swi t ch self theTool o ??
self t heTool O gani zer global instance
theTool Tool object to switch to

Makes the given tool the current tool. This tool’s menus are placed in the menu bar the
tool’s swi t chl n method is called, and the previous tool’s swi t chQut method is called.
If the tool’s want sA i cks instance variable is t r ue, the click handling mechanism is
installed.

149

ScriptX Tools Guide

150

This method is called by the t heTool O gani zer in three cases. When the user chooses
a tool from the Tools menu, the selected tool is switched in through this method. If the
user brings a tool’s window to the front, the tool is switched in. Finally, calling edi t
switches to the tool that will edit the object.

unregister

unregi ster self theTool o2
self t heTool O gani zer global variable
theTool Tool object to remove

Removes the given tool from the t heTool O gani zer ’s list of tools. A removed tool is
no longer listed in the Tools menu, nor is it polled for editing objects or for general
messages.

version

version self O String

Returns a Stri ng representing the version of the Tool Framework.

Tool Framework API

ToolContainer

Creating

Instance

Class Type: Tool class (concrete)

Resides in: ScriptX executable but not KMP
Inherits From: Ti t| eCont ai ner

Component: Tool Framework

and Initializing a New Instance

To create a new instance of Tool Cont ai ner, call newon it and supply at least the
filename:

nyTool := new Tool Container path:"browser.sxt"

The variable myTool contains the initialized tool container; this expression also creates a
file named br owser . sxt in the ScriptX startup directory (by default). The new method
uses the keywords defined inini t.

init

init self [dir: dirRep] pat h: collectionOrString [nane: string |
[user: libraryContainer] [target Col | ection: collection]

[cat egory: string] O self
self Tool Cont ai ner instance

dir: D r Rep instance

pat h: String or collection of strings representing the path
nane: Stri ng representing the filename

user: Li braryCont ai ner object

target Col | ecti on: Col | ecti on object

cat egory: Stri ng object such as “components” or “tools”

Initializes the instance of the Tool Cont ai ner and sets the cl i ckHandl er flag to f al se.
You can create a new category by supplying a new string with the cat egory keyword.

Variables

clickHandler

self. cl i ckHandl er (read-write) (function)

Specifies a method to be called in response to a mouse click in a title window. This
method is called by the t heTool O gani zer if this is the current tool and its

want sd i cks variable is t r ue. The tool can change this method at any time. The
method syntax should take the form:

aHandl er theTool theSurface thePt theTime

theSurface is the D spl aySur f ace in which the mouse was clicked. thePt is a Poi nt
object in local coordinates of theSurface. theTime is the time on the system clock when the
click happened. The cl i ckHandl er method should have a Bool ean return value. The
function should return f al se if the tool doesn’t want the click, or wants to let the title
respond to the click. It should return t r ue if the tool took the event and doesn’t want it
passed on to the title.

151

ScriptX Tools Guide

152

selectionList

self. sel ecti onLi st (read-write) Col | ecti onn

Place holder instance variable to enable Tool subclasses to create and maintain a
selection list. The Tool class leaves this value undefined.

wantsClicks

self. want sA i cks (read-write) Bool ean

A flag that indicates whether or not this tool wants the Tool O gani zer to call its
cli ckHandl er on mouse down events in non-ToolWindows. By default, this value is
fal se.

Instance Methods

edit

edi t self theObject theOptions o ??
self Tool Cont ai ner instance
theObject Object to edit
theOptions Collection of Narmed ass objects

Requests that the Tool Cont ai ner edit the given object. Just previous to making this
call, the caller will have switched in the Tool Cont ai ner. Generally, this method is
called by the t heTool O gani zer after it determines that this tool is the right editor for
theObject.

The argument theOptions is a Col | ecti on of Naned ass objects which describe the
context or parameters for the edit. Currently, there are no predefined options.

getMessage

get Message self theObject theMessage o ??
self Tool Cont ai ner object
theObject Object this message is about
theMessage Narmed ass object

This method is called when another tool has used the sendMessage method to inform
other tools of a change in state. Your Tool Cont ai ner will not be current when it
receives this message. The default method does nothing.

inquire

i nqui re self theObject theOptions O Col I ection
self Tool Cont ai ner object
theObject Object about which inquiry is made
theOptions Col | ect i on of Naned ass objects

Examines theObject in order to determine whether or not this tool self can edit or view
theObject. A Tool Cont ai ner can check the class of this object, its superclass, or can
check for the presence of a set of methods or protocols.

The argument theOptions is a Col | ecti on of Named ass objects which describe the
context or parameters for the edit. Currently, there are no predefined options.

The return value is a Col | ecti on of two Naned ass objects. The first name describes
what the tool can do to the object. Currently, the first name can be one of the following:

Tool Framework API

@i ew
@di t
@i ewAndEdi t

The second name describes the extent of the knowledge about the object. For the second
name, pass one of the following objects:

@nowA |
@nowsSuper cl ass
@nowParti al
@nowByDef aul t
@nknown

If @nknown is the amount of knowledge, then the value of the first name is ignored, but
set it to @i ewAndEdi t for future compatibility.

For example, possible return values to this function are:

O #(@dit, @nowByDefault)
O #(@iewAndEdit, @nknown)

sendMessage

sendMessage self theObject theMessage o ??
self Tool Cont ai ner object
theObject Object that message is about
theMessage Nared ass object

Alerts other registered tools about a change to the system. In order to listen to these
messages, a Tool Cont ai ner should implement the get Message method, described
below.

The three default messages are:

@bj ect Changed
@bj ect Del et ed
@aveTitl e

However, more messages will be defined as the set of tools grows. Not every tool need
respond to every message.

switchln

swi tchln self o ??

Performs necessary actions to make the tool the current tool. By default, a

Tool Cont ai ner's menu bar is installed and, if want s i cks is t r ue, the click
mechanism is turned on. Your subclass can do whatever is necessary. Often a tool shows
its floating palettes when switched in.

This method is automatically called on all tools (but not components) at startup. This
method is also called when the user chooses the tool from the Tool menu.

153

ScriptX Tools Guide

154

switchOut

swi tchQut self o2

Performs necessary actions to remove focus from this Tool Cont ai ner. The

t heTool O gani zer will remove this Tool Cont ai ner's menus and remove the click
handling. Your subclass can do whatever is necessary. Often a Tool Cont ai ner hides its
floating palettes when switched out.

toolAbout

t ool About self o ??

The user has requested information about the current tool by should the “About Tool”
menu item in the Tools menu. The default Tool Cont ai ner method does nothing.
Subclasses of Tool Cont ai ner should implement this method to display a dialog box
containing credits, copyright information, and any other relevant information about the
tool.

toolPrefs

tool Prefs self o ??

The user wants to change global settings for the current tool. The t heTool O gani zer
calls this method in response to the “Tool Preferences” item in the Tools menu. The
default method does nothing. Subclasses of Tool Cont ai ner might want to display a
dialog with various controls to change the preferences.

Tool Framework API 13

ToolMenuBar
Class type: Tool class (concrete)
Resides in: ScriptX executable but not KMP

Inherits from: SystenivenuBar, | ndirect Col | ecti on
Component: Tools Framework

Instance Variables

parentTool

self. par ent Tool

The Tool Cont ai ner instance that owns the Tool MenuBar.

Here is how the menu process is handled on both Macintosh and Window platforms:
User clicks the menu bar

ScriptX updates its menus

Tool Or gani zer calls updat e methods for each menu item in the current tool
Menu appears

User selects an item

ScriptX tries to handle the menu item

N o 0ok L=

Otherwise, t heTool O gani zer finds the menu item object and tells it to perform its
action.

155

ScriptX Tools Guide

ToolMenu

Class type: Tool class (concrete)

Resides in: ScriptX executable but not KMP
Inherits from: | ndirect Coll ection
Component: Tool Framework

A Tool Menu object is an array of menu items.

Instance Variables

name

self. nane (read-write) O String

The Stri ng that is displayed in the menu bar. This variable is set as a result of the name:
key argument to the init method. However, the value can be changed at any time. Call
the menuChanged method in Tool MenuBar to update the menu bar after changing the
name.

enableHandler

self. enabl eHandl er

Currently unused.

Instance Methods

156

init

init self nane:string O Tool Menu
self Tool Menu object
nane Stri ng object

Creates a new instance of Tool Menu, with the given name. A tool must append this item
to its Tool MenuBar for the menu to be installed.

Tool Framework API

ToolMenultem

Class type: Tool class (concrete)

Resides in: ScriptX executable but not KMP
Inherits from: Root Chj ect

Component: Tool Framework

A Tool Menul t emrepresents the basic unit in the menu bar. Any item that the user can
actually select is an instance of a Tool Menul t em Each item contains variables and
methods that actually perform the display, updating, and execution of an item.

Instance Variables

name

self. nane (read-write) String

A String object containing the text that appears in this menu item. This is first set by
the name key argument, but can be changed at any point. Call menuChanged to force the
menu bar to refresh.

If an item has a name of “-,” then the item is drawn in the menu bar as a grayed
separator line. A separator item doesn’t need a menuHandl er — it will always be
dimmed and the user can never select it.

shortCut

self.short Qut (read-write) String

A one-character Stri ng which is used as the Command-key or Accelerator-key
equivalent to this menu item. If left undefined, then the item has no key equivalent.

menuHandler

self.menuHandl er (read-write) (function)

The method that gets called by the Tool O gani zer to update or execute the menu item.
This method is called on two occasions: when the menu bar is being updated and when
the user has selected this item. A nenuHandl er should have the following definition:

nmenuFunc self theMenultem theOptions -> returns obj ect

self can be either the tool that owns the menu item, or any arbitrary object contained in
the owner instance variable.

theMenultem is this object.
theOptions is either going to be @pdat e or @er f or m

If this handler is called with t heQpt i ons equal to @pdat e, the gTool O gani zer is in
the process of dimming or checking every item in the menu bar. This happens each time
the user clicks on the menu bar, but before the menu is displayed. This gives the tool
the opportunity to dynamically gray or check items. A menuHand! er should return one
of the following values (default is @i mred):

@nabl ed

@nabl edChecked

@i mmed

@i mredChecked

@pdat e Return Val ues

157

ScriptX Tools Guide

158

If t heQpt i ons parameter is set to @er f or m then this owner object should go ahead
and execute the action associated with this menu item. The return value is ignored.

If a Tool Menul t emis menuHandl er is undefined, then the menu item is @i mmed.

itemNum

self.i t emNum (read-write) | nt eger

Index of this item in the Tool Menu list. This is a one-based count that can be used to
distinguish menu items that share a menuHandl er.

itsOwner

self.i t sQaner (read-write) Tool

Object that owns this menu item. If a Tool leaves this value undefined, the tool itself
will always be the first parameter to nenuHandl er. Otherwise, the value of this variable
is passed as the first argument to the menuHand] er.

Instance Methods

init

init self nane:string [shortQut: string] [menuFunc: object] [owner : object]

self Tool Cont ai ner instance

nare: Naned ass instance

short Qut : Col | ecti on or Stri ng representing the path
nmenuFunc: Stri ng representing the file name

owner : Li braryCont ai ner object

Sets up the Tool Menul t emobject based on the supplied keyword arguments. They in
fact correspond to the above instance variables. Only nane is required.

Tool Framework API

DragRegion

Class Type: Tool class (concrete)

Resides in: ScriptX executable but not KMP
Inherits From: Root Chj ect

Component: Tool Framework

The Dr agRegi on class provides an interface for tools to drag and drop objects into title
or tools windows. For the user, the DragRegi on appears as a dotted gray rectangle. As
the user drags the mouse across the screen, this rectangle follows. After the mouse
button is released, the Dr agRegi on returns the window underneath the rectangle.

Creating and Initializing a New Instance

To create an instance of Dr agRegi on, call newon it, and supply an optional rectangle to
boundi ngBox:

nyDragRgn : = new DragRegi on boundi ngBox: (new Rect x2:100 y2:50)

The variable nyDr agRgn contains the initialized drag region, which has the dimensions
of 100 pixels wide by 50 pixels high. The newmethod uses the keywords defined in
init.

init

init self [boundi ngBox: rect] O self
self Dr agRegi on object
boundi ngBox: Rect object representing the boundary of the region

Initializes this instance of Dr agRegi on. The value supplied with the boundi ngBox
keyword is saved to mthe instance variable r Bounds. If boundi ngBox is not specified, it
will not throw an exception, but the r Bounds instance variable should be set before
calling dr aghe.

Instance Variables

dropSurf

self. dr opSur f (read-write) D spl aySurf ace

The dr agMe method sets this instance variable to the Di spl aySur f ace object onto
which the shape was dropped. If the user dropped the shape into the desktop, then this
value is set to undefined.

dropX

self. dr opX (read-write) Nurber

The x offset of the dropped shape, as set by the dr agMe method. This value is provided
in local coordinates of the dr opSurf value. If the shape was not dropped in a
D spl aySur f ace, then this value of this field should be ignored.

dropY

self. dr opY (read-write) Nunber

The y offset of the dropped shape, as set by the dr agMe method. This value is provided
in local coordinates of the dropSurf value. If the shape was not dropped in a
D spl aySur f ace, then this value of this field should be ignored.

159

ScriptX Tools Guide

160

rBounds

self. r Bounds

Contains the Rect object that forms the outline. The x1 and y1 fields of the r Bounds
object are significant — they provide the initial position of the drag rectangle.

xGrid

self. x@id

The number of pixels to which to grid the horizontal dragging. Uses the xO'i gi n as the
origin of the grid. Not implemented in current release.

xOrigin

self. xQOri gi n

Specifies the number of pixels in screen space to offset the grid in the horizontal
direction. Not implemented in current release.

yGrid
self. y@id

The number of pixels to which to grid the vertical dragging. Uses the yO'i gi n as the
origin of the grid. Not implemented in current release.

yOrigin

self. yQrigin

Specifies the number of pixels in screen space to offset the grid in the vertical direction.
Not implemented in current release.

Instance Methods

dragMe

draghe self O Bool ean

Call this method in response to a mouse click in the drag region’s bounding box. This

creates a gray rectangle underneath the mouse, which the user drags around until he or
she releases the mouse button. If the mouse was released on top of a valid window, then
this method returns t r ue and sets the dr opSur f, dr opX, and dr opY instance variables.
Otherwise, it returns f al se.

CHAPTER

Photoshop Plug-ins
for KIC Compression

ScriptX Tools Guide

162

What is KIC?

What is KIC?

Kaleida Labs has developed a new algorithm for compressing images that
meets the needs of multimedia title developers. Users can save images using
this new compression format by using a set of plug-ins to Adobe Photoshop™.

These plug-ins enable Adobe Photoshop to save or export images in Kaleida
Labs’ new compression format, KIC (Kaleida Image Format). Compressed
image files generated by these plug-ins can then be imported into ScriptX
using the new KIC importer. The resulting compressed ScriptX bitmaps can be
saved out to the object store and manipulated in the same manner as any other
ScriptX Bi t map object.

The KIC compression algorithm has the following features:
¢ Maintains high quality for both synthetic and natural scene images.

e Achieves good (near lossless for synthetic images) quality compression at ~2
bits per pixel.

e Is quick to decompress, since it decompresses pixels and draws them
directly to their target location, rather than first drawing them to an
offscreen buffer.

e Can do partial decompression, which is useful for animation purposes
where only a portion of an image may need to be redrawn. This reduces
RAM requirements for bitmaps, since they can be stored compressed in
memory and decompressed partially or completely directly to the screen.
Partial decompression is discussed in more detail later.

¢ Handles invisible color during decompression, which can speed up sprite
animation that makes extensive use of invisible colors. The handling of
invisible colors is discussed in more detail later.

The KIC compression algorithm works with RGB color only, so if you want to
save a gray scale picture to KIC, convert it to RGB color first.

Partial Decompression

During the compositor update cycle in ScriptX, each presenter redraws the
parts of the thing it is presenting that have changed. For example, if a window
that is partially hidden by another window is brought to the front, only the
parts of the window that were previously obscured need to be redrawn. For
most decompression algorithms, if a bitmap needs to be redrawn, the entire
bitmap is decompressed and drawn to an offscreen buffer, then the parts of the
bitmap that have changed are drawn to the onscreen target. However, the KIC

163

ScriptX Tools Guide

decompression algorithm decompresses only the parts of the bitmap that have
changed, and draws them directly to the target, skipping the step of drawing
to the offscreen buffer.

Invisible Color

The invisible color of a bitmap is a color that does not get drawn, giving the
effect that the parts of the bitmap that use that color are transparent. For most
decompression algorithms, when the bitmap is decompressed all pixels are
drawn to an offscreen buffer, including those pixels that use the invisible color.
When the compositor transfers the image from the offscreen buffer to the target
on screen, the pixels that use the invisible color are not drawn. However, the
KIC decompression algorithm detects pixels that use the invisible color during
decompression, and does not draw them at all.

Where Can the Plug-ins Be Used?

The KIC compression algorithm is available through plug-ins for Adobe
Photoshop, and other applications that can work with Photoshop plug-ins.
These plug-ins allow you to save images in KIC format, either by saving or
exporting images.

For the Macintosh, file-format and export plug-ins for KIC are available. The
file-format plug-ins, which allow you to save images as KIC, work in
Photoshop 3.0. The export plug-ins, which allow you to export images as KIC,
work in Photoshop 2.0 and later. There are two versions of each plug-in file,
one for Macintoshes that have a 68881 math co-processor and one for all other
platforms on which ScriptX runs, including Macintosh computers that do not
have a 68881 math co-processor. (Exporting and saving images as KIC is much
faster on Macintoshes that have a 68881 co-processor if you use the
corresponding plug-in.)

For Windows systems, a file-format plug-in is available which works in
Photoshop 3.0.

Installing the Plug-ins

164

To install the KIC plug-ins on a Macintosh, put the files in the Plug-Ins folder
for your Adobe Photoshop application.

If your Macintosh uses a 68881, put the KI CFor mat and KI CExport files in
the Plug-Ins folder for Adobe Photoshop. (The version that requires the 68881
will put up a dialog box if it detects that there isn't a 68881 installed.)

If your Macintosh does not use a 68881 math co-processork, put the files
KI CFor mat no 68881 and KI CExport no 68881 in the plug-ins folder.

(All Macintosh Quadras and AVs have math co-processors. Many of the
lower-end Macs (LCs and Centris's) have them as an optional add-on.)

Using the Plug-ins

On a Windows machine, put the file KI CFrnt . 8bi in the Plug-Ins folder for
Adobe Photoshop.

Using the Plug-ins

If the appropriate KIC plug-in file has been put in the Plug-Ins folder for
Adobe Photoshop 3.0, then when you choose the Save As menu command in
PhotoShop, one of the available file types will be KIC Compression. If you
choose this option, a dialog box appears as shown in Figure 14-1.

KIC will also be one of the file types offered by the Open menu command.

If the the appropriate KIC plug-in file has been put in the Plug-Ins folder for
Adobe Photoshop 2.5 or later, then when you choose the Export menu
command in Photoshop, one of the available file types will be KIC
Compression. (Macintosh only.) If you choose this option, a dialog box appears
as shown in Figure 14-1.

The Qualitity slider (on some platforms this may appear as a scrolbar) let’s
you determine the quality of the compressed image as determined. 0 indicates
highest quality, and 1000 indicates lowest quality. The higher the quality, the
less the compression, and hence the larger the resulting file.

The Block Size radio buttons let you determine whether the compression
algorithm uses 4x4 or 8x8 blocks. If 4x4 block size is used, the compression will
be better and the resulting file size will be larger than if 8x8 is used. For images
that don’t use many colors, however, 8x8 often provides almost as good quality
as 4x4, which significant decrease in file size.

fuality

o 150 500 1000
High Tefault Med Low
Block Size
w44 8ue

Figure 14-1: The Dialog Box for Saving As KIC compression in Adobe Photoshop

The Playback Side

To use images compressed in the KIC format in ScriptX, import them using the
KIC importer. The decompression side of the KIC algorithm is available in
ScriptX as a ScriptX codec (similar to the Cinepak codec). The ScriptX graphics
system has already been modified to take advantage of the features of
individual codecs. Hence an author can easily to take advantage of the partial
decompression and invisible color facilities of the decompressor. The hope is

165

ScriptX Tools Guide

that authors can use the codec for both background images and animated
sprites. The result will be reduced disk-based and in-memory footprints
without a performance loss.

166

C HAPTETR

Importing Media

ScriptX Tools Guide

168

Importing Media

This chapter describes the Import/Export Tool in ScriptX. This tool allows you to
import files created outside of ScriptX into ScriptX. The Import/Export Engine
translates data in non-ScriptX files into ScriptX objects during importing and conversely
translates ScriptX objects to other data formats when exporting.

For example, when you import an AIFF sound file into ScriptX, it becomes a
Di gi t al Audi oPl ayer object with an associated Al FFSt r eam When you import a PICT
file it becomes a Bi t map object, and so on.

The current release of ScriptX contains importers for text, image, sound, and movie
data. Additional importers may be added for later releases.

File Organization for Importers

All importer and exporter modules (generally implemented as ScriptX extension
classes), must be placed in the i nportrs directory (or folder). The i nportrs directory
must be located in the same directory as the ScriptX executable. It contains a
subdirectory named for the platform you are using (for example, mac , wi n, or 0s2).
Each platform subdirectory contains the loadable extensions that implement the
import/export capabilities.

When the ScriptX development environment starts up, it searches the i nportrs
directory for extensions, and loads the ones that are appropriate to the platform and
current software version. The code for the importer and exporter routines is not loaded;
instead, the kinds of conversions supported by the importer and exporter modules are
registered with the ScriptX system. The import/export engine loads the code for a
specific conversion only when it is needed, not before.

169

ScriptX Tools Guide

Importing

To import a non-ScriptX file into Scriptx, call the i npor t Medi a method on
t hel nport Expor t Engi ne global object.This object is an instance of the class
| npor t Export Engi ne.

importMedia

i nport Medi a t hel npor t Expor t Engi ne source dataCategory \
dataFormat outputType O (object)

source The source of the data to be imported. This is usually
expressed as a St r eamobject, although in some cases it
can be a Col | ecti on of strings that describe the
pathname to the file.

dataCategory A name token indicating the category of data to be
imported.

dataFormat A name token indicating the format of the data in the
input stream.

outputType A name token indicating the type of object created in

ScriptX to hold the imported data.

Additional parameters required by a specific importer can be passed using keyword
arguments.

The options supported by the different importers are listed in the section for each
importer later on in this chapter.

The source is usually a St r eamobject that points to a file containing the data to be
imported. In the case of importing flattened, QuickTime, Cinepak-compressed movies,
source must be a Col | ecti on of strings that make up the path name of the file.

To create a stream that points to a file, use the get St r eamfunction, which takes three
arguments: the directory containing the file, the name of the file, and a token that
indicates the properties of the stream. For streams for imported files, the property is
always @ eadabl e. You can use the global instance t heScri pt Di r to indicate the
directory where the running script resides.

For example, to create a stream that points to the file | i on. ai f in the directory
containing this script:

lionstream= getStream theScriptDir "lion.aif" @eadable

If the importer is successful in converting the data, it returns a ScriptX object of the
specified output type. The example below converts a QuickTime file named hunmbi r d
to a ScriptX Movi ePl ayer object.

np := inportMedia thel nportExportEngi ne \
(getStream theScriptDr "hunmbird" @eadable) \
@ovi e @uicktime @ ayer

Available Output Types

170

A single importer can often produce different types of objects as output. You may
choose the type of output you want depending on your needs. Often, there are two
types of objects that the importer can produce, the raw media object, and a media object
attached to a ScriptX player.

Importing Media

For example, if you are importing an audio file and you want to work with it
immediately after importing, you would request that the importer generate a digital
audio player. On the other hand, if you were doing a batch import of a number of audio
files and were transferring them to ScriptX containers, there would be no need to
generate players, you would simply request the translated media as St r eamobjects.

In the following examples, the i npor t Medi a method is used to convert an AIFF file into
a ScriptX player and also into an audio stream. The output type is the fifth parameter to
the i nport Medi a method.

source := getStream theScriptDr "Lunberjack Song" @eadable

-- inport the sound into an audio stream
IjP ayer := inportMedia thel nportExportEngi ne source \
@ound @i ff @ligital audi opl ayer

inport the sound into an audio player
|jData := inportMedia thel nportExportEngi ne source \
@ound @i ff @udi ostream

Specifying A Container for the Imported Data

Exporting

Some of the importers accept optional keyword arguments that control different aspects
of behavior of the importer. The options supported by each import module are listed in
the section for each importer later on in this chapter. The most common optional
keyword is the cont ai ner keyword, which allows you to specify a container into which
the raw data for the media object will be stored.

When an importer accepts a cont ai ner keyword argument, the container is used to
store the raw data for the imported media. After the importing process has finished,
you still need to add an object that uses the media (or references an object that uses the
media) to the title container.

For example, in the following code sample, the example from the previous section has
been modified to import an AIFF stream and store it into a ScriptX container as an
audio player.

tc := new titleContainer path:"nytitle.sxt"
IjSource := getStream theScriptDr "LunbSong.aif" @eadable
IjP ayer := inportMedia thel nportExportEngine |jSource \

@ound @iff @udiopl ayer container:tc

-- save the audioplayer to the title container
append tc |jPlayer

-- You also need to wite a startup function
-- and close the title container

There is one exporter module shipping with the current release, which is a text exporter
that saves text as “ScriptX Ascii” text.

The expor t Medi @ method has five positional parameters: a destination to which the
converted data is to be written, a name token describing the data’s category, the input
form, the output form, and the object to be exported. Additional parameters required by
a specific exporter can be passed using keyword arguments.

171

ScriptX Tools Guide

Text Exporter

ScriptX 1.5 has a text exporter, that enables you to export text to a file. The text will be
formatted in “ScriptX Ascii.” The first line of the file will always be “ScriptX ascii\n.”

To export text, call the export Medi a method on t hel npor t Expor t Engi ne. The
arguments are the same as for i npor t Medi a. The stream argument specifies the file to
write to.

export Medi a t hel nmpor t Expor t Engi ne stream \
@ext @ext @sciitext userData:

The user Dat a argument is an array containing objects that are used by the text.

A “ScriptX Ascii” file contains ascii text that is marked with tags to denote ScriptX text
attributes (in much the same way that rtf uses tags to denote text characteristics.)

The following few lines are extracted from the beginning of a ScriptX ascii text, to give
an idea of what such a file might look like. In this case, the &1 for the font indicates a
font object, which will be referenced through the user Dat a array when the text is
imported or exported.

Script X ascii

\ Text

\

| eadi ng: 20 alignment:center font:&l size: 18
}THE TIME NACH NE\ n

Importers Supplied by Kaleida Labs

172

The following table shows the importers supplied by Kaleida Labs with the current
release of ScriptX. It also identifies the media formats and the platforms on which they
are supported. Currently, ScriptX runs on Macintosh, Windows, and OS/2.

Table 15-1: Importers supported in the current release

Data Data Output Resulting class Platform
category format type
argument argument argument
@ext @rTF @R chText Text All platforms
@ ext @rext @\sci i Text Text All platforms
@ nmage @i ct @i t map Bi t map Macintosh
@ol or map Col or nap
@ nmage @ B @i tmap or Bi t map All platforms
(See note @Compressed-
below) Bitmap
@l or map col or map
@ nmage @ C @i tmap or Bi t map All platforms
@Compressed-
Bitmap

Importing Media

Table 15-1: Importers supported in the current release

Data Data Output Resulting class Platform
category format type
argument argument argument
@ mage @ui cktine @i tmap or Bi t map Macintosh
@onpr essed-
Bi t map
@woDshape TwoDShape
@r esent er TwoDShape
@ound @\ FF @t ream or Audi oSt r eam All platforms
@\udi oSt r eam
@ ayer or Di gi t al Audi o-
@ gital Audi o- Pl ayer
Pl ayer
@ound @BND @Bt r eamor Audi oSt r eam Macintosh
@\udi oSt r eam
@l ayer or D gi t al Audi o-
@ gi tal Audi o- Pl ayer
Pl ayer
@ound @\VE @t r eamor Audi oSt r eam All platforms
(See note @\udi oSt ream
below)
@l ayer or D gi t al Audi o-
@i gital Audi o- Pl ayer
Pl ayer
@1 D @t andard @t r eamor M D Stream All platforms
@1 Dl stream
@ ayer or M D Pl ayer
@ Dl Pl ayer
@movi e @ui ckti me @nt er | eaved- | nt erl| eaved- All platforms
Movi ePl ayer Movi ePl ayer
@rovi e @V @nterl eaved- I nterl eaved- All platforms
Movi ePl ayer Movi ePl ayer

Note — The OS/2 DIB importer accepts any format that is supported by OS/2 via the
MMPM/2 IOprocs. Likewise, the OS/2 WAVE importer accepts any format that is
supported by OS/2 MMPM /2 IOprocs. See the OS/2 multimedia documentation for

details.

173

ScriptX Tools Guide

Text Importer

ScriptX provides a text importer that can import richt text format (rtf) text, ascii text, or
“ScriptX Ascii” text (which is text that has been previously exported from ScriptX.)

The line ending conventions for unix, mac, and dos are all handled correctly. The text
importer translates multiple consecutive blank lines as a paragraph boundary. Blank
here means any line containing just whitespace. Any 8 bit characters are translated to '?'
by the plain text importer.

The 1.5 importer treats consecutive blank lines as a paragraph boundary. Put another
way, the 1.1 importer fills paragraphs. This importer is 30X faster than the 1.0 importer.

ASCII, ScriptX ASCII or RTF Text to Text

174

importMedia
i nport Medi a thel nport Export Engi ne stream @ext\
inputType inputType [user Data:] O Text
source A St r eamobject specifying the file containing the data
to be imported.
@rext Denotes that the imported data is text.
inputType Either @\SO | t ext or @t f. Denotes whether rtf or
ASCII text is to be imported.
inputType Denotes that a Text object will be created and returned

by the importing process. If the value is @Ascii, then the
Text object will contain plain, unformatted text. If the
value is @i chText, the Text object will contain
formatted text (this option is only available for
importing rtf files, not Ascii files.)

user Dat a: Is only needed for importing ScriptX Ascii text. It is an
array containing objects that are used by the text.

This importer creates a Text object that contains the imported text.

For example, the following code shows how to import text stored in the ASCII file
“buttrfly. doc” and display it in a Text Present er: (assuming the ASCII file is in the
same directory as the script file):

global butterflyStream := getstreamtheScriptDr "buttrfly.doc" \
@eadabl e

gl obal butterflyText := inportMedia thel nportExportEngine \
butterflyStream @ext @\SC | TExt @ext
global butterflyTextPres := new TextPresenter \

target:butterflyText \

boundary: (new rect x2:400 y2: 400) \

brush: (new brush col or: bl ueCol or)
gl obal w = new wi ndow boundary: (new rect x2:500 y2: 500)
show w
append w butterflyTextPres
-- Center the text presenter in the w ndow
butterflytext.x := 50
butterflytext.y := 50

When the text importer imports rtf text, it creates and returns a Text object that
contains the imported text, retaining most of the the font and paragraph characteristics
of the text in the original file.

Importing Media

The text and paragraph characteristics that the importer handles properly include:

flush left, flush right, fill, and center alignments
paragraph indents, left and right indents

leading

space between and space before

font

font size

expand-condensed, expand-normal, expand-expanded
no underline and single underline

bold and italic typestyles

foreground color font

The text and paragraph characterists that the importer does not handle properly
include:

background color

superscript and subscript type styles
double underline

strike through, outline, shadow,
small capitals, all capitals,

RTF invisible, gray and deleted character styles.

Table 15-2, “RTF conversion” shows how certain characters in RTF are translated by the
RTF to ScriptX importer.

Table 15-2: RTF conversion

RTF RTF Inporter in ScriptX

Page, sect, row, newine '"\n'.
I'i ne, and paragraph
termnators

Tab "\t
NoBr kHyphen N
Bul | et 0x2022

UNI CCDE for bull et

EnDash as 0x2014

UNl CCDE for |ong dash

EnDash 0x2013

UNI CCDE for short dash

LQuot e 0x2018

UNLCCDE for left curly single quote

175

ScriptX Tools Guide

176

Table 15-2: RTF conversion

RQuot e 0x2019

UNI CCDE for right curly single quote
LDbl Quot e 0x201c

UNI CCDE for left curly double quote
RDbl Quot e 0x201d

UNl CCDE for right curly doubl e quote

The following example shows how to import and display the text stored in the RTF file
“snail.doc”if it was stored in the same folder as the script:

gl obal snail Stream := getstream theScriptDr "snail.doc" @eadable

gl obal snail Text := inportMdia thel nportExportEngi ne snail stream \
@ext @tf @R chText

global snail Story := new textPresenter target:snail Text \
boundary: (new rect x2:400 y2: 400)

gl obal w := new w ndow

w width := 500

w. hei ght := 500

show w

append w snail story

-- Center the text presenter in the w ndow

snail Story.x := 50

snail Story.y := 50

Importing Media

Image importers

All image importers in the current release of ScriptX import external image data into a
ScriptX Bi t map object.

Pict to Bitmap

importMedia
i npor t Medi a t hel npor t Expor t Engi ne source @mnmage @i ct outputType
[col or map: colormap] OBi t map or Col or map
source A St r eamobject specifying the file containing the data
to be imported.
@ nmage Denotes that the imported data is an image.
@i ct Denotes that the format of the imported data is pict.
outputType Denotes the class of the object created to hold the
imported data. The choices are:
@i t map The object created to hold the imported

data is a Bi t nap.

@ol ormap The object created to hold the imported
data is a Col or Map. When the output is
specified as @col or map, only the palette
information is read from the PICT.

col or map: colormap

If this optional keyword argument is used, colormap

must be a ScriptX Col or Map object. The imported

bitmap will be constructed using the supplied

Col or Map object.

You probably don’t want to use the col or map keyword

if the outputType is @ol or map.

This importer returns a ScriptX Bi t map object upon successfully converting a Macintosh
PICT or PICT2 image. The source file to be imported may be a data file in the PICT file
format, or a PICT resource in any Macintosh file.

The input picture may be any resolution and any color level. The resulting bitmap will
be of the same bit-depth as the input picture if no col or map keyword is specified,
otherwise it will be at the bit-depth of the given colormap.

For example, to import a pict file called "lobster pict" and to display the lobster in
ScriptX (assuming the pict file is in the same folder as the script file):

global lobfile := getStream theScriptDir "lobster pict" @eadable
gl obal |obbie := inportMdia thel nportExportEngine lobfile \
@nmage @ict @itmap

-- Oeate and show a w ndow
gl obal w = new wi ndow
show w

-- Make a twoDshape for the |obster

-- Show the lobster in the w ndow

gl obal | obPresenter := new TwoDShape boundary: | obbie
append w | obPresent er

The following code shows an example of importing a pict from a Macintosh resource
file:

177

ScriptX Tools Guide

178

gl obal crawBundle := new resBundle dir:theScriptDr path:"crawdad.res"”
gl obal crawsStream := get OneStream thebundl e type:"PICT" \
narre: " cr awdad. pi ct "
gl obal crawdaddi e := inportMdia thel nportExport Engi ne crawstream \
@mage @ict @itmap

-- Oeate and show a w ndow
gl obal w = new wi ndow
show w

-- Make a twoDshape for the crawdad

-- Show the crawdad in the w ndow

gl obal crawPresenter := new TwoDShape boundary: crawdaddie
append w crawPr esent er

DIB to Bitmap

importMedia

i npor t Medi a t hel npor t Expor t Engi ne source @mage @i b outputType
[col or map: colormap] [cont ai ner : container]

[pagi ngMet hod: decompMethod] O Bi t map or Col or map

source A St r eamobject specifying the file containing the data
to be imported.

@ mage Denotes that the imported data is an image.

@i b Denotes that the format of the imported data is DIB.

outputType Denotes the class of the object created to hold the

imported data. The choices are:

@i t map The object created to hold the imported
data is a Bi t map. If the bitmap to be
imported is compressed, it is
decompressed during importing.

@ol ormap The object created to hold the imported
data is a Col or Map. When the output is
specified as @col or map, only the palette
information is read from the file.

@onpr essedBi t map
The object created to hold the imported
data is a Bi t map. If the bitmap to be
imported is compressed, the existing
compression is maintained during
importing.
col or map: colormap
If this optional keyword argument is used, colormap
must be a ScriptX Col or Map object. The imported
bitmap will be constructed using the supplied
Col or Map object.
cont ai ner : container
If this optional keyword argument is used, its value
must be alLi braryCont ai ner, Titl eCont ai ner or
Accessor Cont ai ner object that is used to save
imported, compressed bitmaps. This keyword
argument is only needed when the output type is
specified as @onpr essedBi t map. If you plan to save a

Importing Media

compressed bitmap to a title container, you must
supply the cont ai ner keyword argument when you
do the importing.

pagi nghet hod: nameClass
The value of this keyword argument determines how
and when a compressed bitmap is decompressed. This
argument is only needed if the output type is specified
as @onpr essedBi t map. The choices are:

@nl oad The bitmap is decompressed when it is
loaded from the object store and
remains decompressed.

@irstUse The bitmap is decompressed the first
time it is used, and remains
decompressed.

@achUseFr ontt or age

The bitmap is loaded from the object
store and decompressed each time it is
used. The data is cleared from memory
after each use. This is the default value.

@achUseFr omvenor y

The bitmap is loaded and decompressed
the first time it is used. The compressed
data stays in memory. The bitmap is
decompressed each time it is used
again.

This importer returns a ScriptX Bi t map object if it succeeds in converting an image in
the Windows DIB (Device-Independent Bitmap) format to a ScriptX Bi t map object.

The input picture can be 1-bit, 4-bit, 8-bit or 24-bit, and may be uncompressed or
compressed in RLE4 or RLES format.

On Windows, the resulting bitmap has the same bit depth as the computer that you are
using. On the Macintosh, the resulting bitmap has the same bit depth as the input
picture if no color map is specified, otherwise it has the same bit depth as the color
map. OS/2.

If the DIB file containing the input picture is uncompressed, then it is imported
uncompressed. If it is compressed, you can choose whether to import it uncompressed
or compressed. To decompress it during importing, specify the output type as @i t map.
To maintain the compression during importing, specify the output type as

@onpr essedBi t map, and supply a storage container for the cont ai ner keyword
argument.

If you want to save an uncompressed bitmap to a title container, you don’t need to
specify a container when importing it. Simply append the Bi t map object (or any object
that refers to it) returned by the importing process to a title container.

However, if you want to save a compressed bitmap to a title container, you must
provide a library, title, or accessory container as the cont ai ner keyword argument at
import time, and also append the Bi t map object returned by the importing process (or
any object that refers to it) to the title container.

The value of the pagi ngMet hod keyword argument determines when the compressed
bitmap data is decompressed. This value is stored in the Bitmap object’s pagi nghMet hod
instance variable.

179

ScriptX Tools Guide

180

When the bitmap data is imported, the raw, compressed data is saved to the title
container provided for the cont ai ner keyword argument. The decompression method
determines when the bitmap is decompressed when it is loaded back from the object
store. If you use the bitmap before saving it to the object store, the compressed data is
still saved when and if you eventually save it. .

If the pagi ngMet hod keyword argument is @nl oad, the bitmap is decompressed when
it is loaded from the object store, and the decompressed data is held in memory.

If the pagi ngMet hod keyword argument is @i r st Use, the bitmap is decompressed
when it is first used, and the decompressed data is held in memory. .

If the pagi ngMet hod keyword argument is @achUseFr onst or age, (which is the
default) the bitmap is fetched from the title container and decompressed each time it is
used. Neither the decompressed or compressed data is kept in memory.

If the pagi ngMet hod keyword argument is @achUseFr omvenor y, the bitmap is
decompressed each time it is used. The compressed data is held in memory.

The following code shows how to import a dib file called "jelly.dib" and to display the
jellyfish in ScriptX: (assuming the dib file is in the same directory as the script file)

global jellyfishfile := getStream theScriptDr "jelly.dib" @eadable
global jellie := inportMedia thelnportExportEngine jellyfishfile \
@mage @ib @itmap \

-- Ceate and show a w ndow
gl obal w = new wi ndow
show w

-- Make a twoDshape for the jellyfish

-- Show the jellyfish in the w ndow

gl obal jellyfishPresenter := new TwoDShape boundary: jellie
append w jel |l yfishPresenter

The following example shows the code modifed to import a compressed bitmap and
save it to a title container.

gl obal oceantc := new titlecontainer path:"ocean. sxt"
global jellyfishfile := getStream theScriptDr "jelly.dib" @eadable
global jellie := inportMdia thel nportExportEngine jellyfishfile \

@nage @ib @itmap \
cont ai ner: oceantc \
pagi ngMet hod: @achUseFr onienory

-- Oreate and show a w ndow
gl obal w := new wi ndow
show w

-- Make a twoDshape for the jellyfish

-- Show the jellyfish in the w ndow

gl obal jellyfishPresenter := new TwoDShape boundary: jellie
append w jel |l yfishPresenter

-- Save the window to the title container
append oceantc jellyfishPresenter

-- You' d also need to wite a startup function and
-- close the title container

Importing Media

KIC to Bitmap

importMedia

i mpor t Medi a t hel mpor t Expor t Engi ne source @mage @Kl C outputType
[cont ai ner: container] [pagi ngMet hod: decompMethod] O Bi t map
source A St r eamobject specifying the file containing the data

to be imported.

@ mage Denotes that the imported data is an image.
@ C Denotes that the format of the imported data is KIC
outputType Denotes the class of the object created to hold the

cont ai ner: container

pagi nghMet hod: nameClass

imported data. The choices are:

@i t map The object created to hold the imported
data is a Bi t map that holds compressed
data.

@onpr essedBi t map
Same as @i t nap.

If this optional keyword argument is used, its value
must be alLi braryCont ai ner, Titl eCont ai ner or
Accessor Cont ai ner object that is used to save
imported, compressed bitmaps. If you plan to save a
compressed bitmap to a title container, you must
supply the cont ai ner keyword argument when you
do the importing.

The value of this keyword argument determines how
and when a compressed bitmap is decompressed. The
choices are:

@nl oad The bitmap is decompressed when it is
loaded from the object store and
remains decompressed.

@irstUse The bitmap is decompressed the first
time it is used, and remains
decompressed.

@achUseFr ontt or age

The bitmap is loaded from the object

store and decompressed each time it is

used. The data is cleared from memory

after each use. This is the default value.
@achUseFr omvenor y

The bitmap is loaded and decompressed
the first time it is used. The compressed
data stays in memory. The bitmap is
decompressed each time it is used
again.

This importer imports images saved in the KIC (Kaleida Image Compression) format. If
the importing is successful, it returns a Bi t map object containing compressed data.

If you want to save the imported, compressed bitmap to a title container, you must
provide a library, title, or accessory container as the cont ai ner keyword argument at
import time, and also append the Bi t map object returned by the importing process (or
any object that refers to it) to the title container.

181

ScriptX Tools Guide

182

The value of the pagi ngMet hod keyword argument determines when the compressed
bitmap data is decompressed. This value is stored in the Bi t map object’s pagi ngMet hod
instance variable.

When the bitmap data is imported, the raw, compressed data is saved to the title
container provided for the cont ai ner keyword argument. The decompression method
determines when the bitmap is decompressed when it is loaded back from the object
store. If you use the bitmap before saving it to the object store, the compressed data is
still saved when and if you eventually save it. .

If the pagi ngMet hod keyword argument is @nl oad, the bitmap is decompressed when
it is loaded from the object store, and the decompressed data is held in memory.

If the pagi ngMet hod keyword argument is @i r st Use, the bitmap is decompressed
when it is first used, and the decompressed data is held in memory.

If the pagi ngMet hod keyword argument is @achUseFr onst or age, (which is the
default) the bitmap is fetched from the title container and decompressed each time it is
used. Neither the decompressed or compressed data is kept in memory.

If the pagi ngMet hod keyword argument is @achUseFr omvenory, the bitmap is
decompressed each time it is used. The compressed data is held in memory.

The following code imports an KIC file called "door.KIC," displays the door in ScriptX:,
and then saves it to a title container. (assuming the door file is in the same directory as
the script file).

gl obal doortc := new titlecontainer path:"door.sxt"
gl obal doorfile := getStream theScriptDr "door.KI C' @eadabl e
gl obal door := inportMedia thel nportExportEngi ne doorfile \

@mage @ C @onpressedbi tmap contai ner:doortc \
pagi ngMet hod: @achUseFr onivenor y

-- Ceate and show a w ndow
gl obal w := new wi ndow
show w

-- Make a twoDshape for the door

-- Show the door in the w ndow

gl obal doorPresenter := new TwoDShape boundary: door
append w door Present er

-- Save the window to the title container
append doortc door Present er

-- You'd also need to wite a startup function and
-- close the title container

Importing Media

QuickTime to Bitmap

importMedia

i mport Medi a t hel npor t Expor t Engi ne source @mnmage @ui cktine
outputType [frame: frameNumber] cont ai ner: container

[pagi ngMet hod: decompMethod] O Bi t map or TwoDShape

source A St r eamobject specifying the file containing the data
to be imported.

@ nmage Denotes that the imported data is an image.

@ui cktine Denotes that the format of the imported data is
QuickTime.

outputType Denotes the class of the object created to hold the

imported data. The choices are:

@i t map The object created to hold the imported
data is a Bi t map that holds compressed
data.

@onpr essedBi t map
Same as @i t nap.

@woDShape
The object created to hold the imported
data is a TwoDShape.

@r esent er

Same as @woDShape.

frame: frameNumber
Denotes the frame to import. This frame will be
converted to a Bi t map object. This frame must be a key
frame of the movie. (See the discussion below for more
details on key frames.)

cont ai ner : container
If this optional keyword argument is used, its value
must be alLi braryCont ai ner, Titl eCont ai ner or
Accessor Cont ai ner object that is used to save
imported, compressed bitmaps. If you plan to save a
compressed bitmap to a title container, you must
supply the cont ai ner keyword argument when you
do the importing.

pagi nghet hod: nameClass

The value of this keyword argument determines how

and when a compressed bitmap is decompressed. The

choices are:

@nl oad The bitmap is decompressed when it is
loaded from the object store and
remains decompressed.

@irstUse The bitmap is decompressed the first
time it is used, and remains
decompressed.

@achUseFr ontt or age
The bitmap is loaded from the object
store and decompressed each time it is
used. The data is cleared from memory
after each use. This is the default value.

@achUseFr omvenor y

183

ScriptX Tools Guide

184

The bitmap is loaded and decompressed
the first time it is used. The compressed
data stays in memory. The bitmap is
decompressed each time it is used
again.

This importer converts the specified key frame in the QuickTime file to a Bi t map object,
and returns the bitmap, or a TwoDShape whose stencil is the bitmap, depending on the
value of the outputType argument. The importer maintains compression of the
QuickTime bitmaps.

The intent of this importer is to import a single frame from a QuickTime file and
convert it to a bitmap. You can theoretically import a frame from any QuickTime file,
but the importer is intended for use with Cinepak compressed movies that contain only
key frames.

The imported frame must be a key frame. When QuickTime data is compressed, certain
compression algorithms work by saving the data for a whole frame (a key frame), then
for a certain number of following frames, saving only the incremental differences
between the frames. The QuickTime to Bitmap importer can only import key frames,
that is, frames for which all the data has been saved.

Use this importer with QuickTime files for which you know which frames are the key
frames. The f r ame keyword argument requires the actual frame number. For example,
suppose frame 1 is a key frame and frame 10 is the next key frame. To import the
second key frame, specify the f r ane keyword argument as 10 (not 2).

If you want to save the imported, compressed bitmap to a title container, you must
provide a library, title, or accessory container as the cont ai ner keyword argument at
import time, and also append the Bi t nap or TwoDShape object returned by the
importing process (or any object that refers to it) to the title container.

The value of the pagi ngMet hod keyword argument determines when the compressed
bitmap data is decompressed. This value is stored in the Bitmap object’s pagi ngMet hod
instance variable.

When the bitmap data is imported, the raw, compressed data is saved to the title
container provided for the cont ai ner keyword argument. The decompression method
determines when the bitmap is decompressed when it is loaded back from the object
store.

If the pagi ngMet hod keyword argument is @nl oad, the bitmap is decompressed when
it is loaded from the object store, and the decompressed data is held in memory. .

If the pagi ngMet hod keyword argument is @i r st Use, the bitmap is decompressed
when it is first used, and the decompressed data is held in memory.

If the pagi ngMet hod keyword argument is @achUseFr onSt or age, (which is the
default) the bitmap is fetched from the title container and decompressed each time it is
used. Neither the decompressed or compressed data is kept in memory.

If the pagi ngMet hod keyword argument is @achUseFr onMenor y, the bitmap is
decompressed each time it is used. The compressed data is held in memory.

The following code illustrates how to import the fifth frame, which is a key frame, from
the QuickTime Cinepak compressed file "horses" and display the resulting bitmap in
ScriptX (assuming the file is in the same directory as the script file). The code also
shows how to save the TwoDshape object displaying the bitmap to a title container.

global tc := new titleContainer path:"horse.sxt"

gl obal horsesStream := getStream theScriptDr "horses" @eadable
gl obal horsePic := inportMdia thel nportExportEngi ne horseStream \

Importing Media

@mage @ui cktime @woDShape frame:5 \
cont ai ner:tc pagi ngMet hod: @nl oad

-- Geate and show a w ndow

-- Display the horse picture in the w ndow
gl obal w = new wi ndow, show w

append w horsePi c

-- append the twoDshape to the title container
append tc horsePic

-- don't forget to wite a startup function and
-- close the title container

Sound importers

All sound importers in the current release of ScriptX import external data formats into a
ScriptX Audi oSt reamor a Di gi t al Audi oPl ayer object. These objects are based on the
AIFF data format, and support stereo sound sampled at rates up to 22KHz.

AIFF to AudioStream

importMedia

i mport Medi a t hel nport Export Engi ne source @ound @\ FF
outputType [container: container]D Digital Audi oPl ayer

source

@ound

@\ FF
outputType

A St r eamobject specifying the file containing the data
to be imported.

Denotes that the imported data is a sound.

Denotes that the format of the imported data is AIFF.
Denotes the class of the object created to hold the

imported data. The choices are:

@tream The object created to hold the imported
data is an Audi oSt r eam

@udi oSt ream
Same as @t ream

@! ayer In this case, an Audi 0St r eamobject is
created to hold the imported sound, and
a D gi tal Audi oPl ayer is created with
the Audi oSt r eamas its media stream.
The Di gi t al Audi oPl ayer is returned
by i npor t Medi a.

@li gi t al Audi oPl ayer
Same as @I ayer.

cont ai ner : container

If this optional keyword argument is used, its value

must be aLi braryCont ai ner, Titl eCont ai ner or

Accessor Cont ai ner object that is used to save

imported audio data. If you plan to save imported

audio to a title container, you must supply the

cont ai ner keyword argument when you do the

importing. The raw data for the sound will be stored in

this container.

185

ScriptX Tools Guide

186

This importer creates a ScriptX Audi oSt r eamobject to hold the imported sound data.
The returned object is either the Audi oSt r eamor a Pl ayer that plays the Audi oSt r eam
The input file must be a file in the AIFF format that is not compressed.

If you want to save the audio stream or player to a title container, you must supply a
container as the cont ai ner keyword argument. This container is used to store a stream
containing only the raw data for the media. You must additionally append the

Audi oSt reamor Di gi t al Audi oPl ayer object, or any object that refers to them, to the
title container when the importing process is finished.

For example, to import and play the tune stored in the file “Bell. AIF” (assuming the
AIFF file is in the same directory as the script file):

gl obal bellstream := getstreamtheScriptDr "Bell. A F' @eadabl e

gl obal bel |l player := inportMedia thel nportExportEngi ne bellstream \
@ound @\ FF @l ayer

pl ayprepare bell player 1

pl ay bell pl ayer

In the following example, the above code has been modified to save the
D gi t al Audi oPl ayer to a title container.

global tc := new titleContainer path:"nytitle.sxt"
gl obal bellstream := getstreamtheScriptDir "Bell.AF' @eadabl e
gl obal bell player := inportMdia thel nportExportEngi ne bellstream \

@ound @\ FF @l ayer container:tc
pl ayprepare bell player 1
pl ay bell pl ayer

-- save the player to the title container
append tc bell Pl ayer

-- you also need to wite a startup action
-- and save the title container

SND to AudioStream

importMedia

i npor t Medi a t hel npor t Expor t Engi ne stream @ound @nd output
[cont ai ner : container]0d Audi oSt reamor Di gi t al Audi oPl ayer

stream A St r eamobject specifying the file containing the data
to be imported.

@ound Denotes that the imported data is a sound.

@nd Denotes that the format of the imported data is SND.

outputType Denotes the class of the object created to hold the

imported data. The choices are:

@t ream The object created to hold the imported
data is an Audi oSt r eam

@udi oSt ream
Same as @t ream
@) ayer In this case, an Audi 0St r eamobject is

created to hold the imported sound, and
a Di gi t al Audi oPl ayer is created with

Importing Media

the Audi oSt r eamas its media stream.
The Di gi t al Audi oPl ayer is returned
by i npor t Medi a.
@li gi t al Audi oPl ayer
Same as @I ayer.
cont ai ner : container
If this optional keyword argument is used, its value
must be a Li braryCont ai ner, Titl eContai ner or
Accessor Cont ai ner object that is used to save
imported audio data. If you plan to save imported
audio to a title container, you must supply the
cont ai ner keyword argument when you do the
importing. The raw data for the sound will be stored in
this container.

This importer creates a ScriptX Audi oSt r eamobject to hold the imported sound data.
The returned object is either the Audi 0St r eamor a Pl ayer that plays the Audi oSt r eam
The imported sound data must be in a file in the Macintosh SND format. Typically, this
is an ' snd ' resource stream. It must not be compressed.

If you want to save the audio stream or player to a title container, you must supply a
container as the cont ai ner keyword argument. This container is used to store a stream
containing only the raw data for the media. You must additionally append the

Audi oSt reamor Di gi t al Audi oPl ayer object, or any object that refers to them, to the
title container when the importing process is finished.

For example, to import and play the tune stored in the file “Lion.SND” (assuming the
snd file is in the same directory as the script file):

global lionbundle := new resBundle dir:theScriptDr path:"lion. SND'
global lionstream := geteStream |ionbundle type:"snd " id:128
gl obal lionplayer := inportMedia thelnportExportEngine \

i onstream @ound @nd @Il ayer
play |ionplayer

In the following example, the above code has been modified to save the
D gi t al Audi oPl ayer to a title container.

global tc := new titleContainer path:"nytitle.sxt"
global lionbundle := new resBundle dir:theScriptDr path:"lion. SND'
global lionstream:= getOneStream |lionbundle type:"snd " id:128
gl obal lionplayer := inportMdia thelnportExportEngine \
lionstream @ound @nd @l ayer container:tc
play |ionplayer

-- save the player to the title container
append tc |ionPl ayer

-- you also need to wite a startup action
-- and save the title container

187

ScriptX Tools Guide

188

WAVE to AudioStream

importMedia

i mport Medi a t hel mpor t Export Engi ne stream @ound @wave output
[cont ai ner: container]d Audi oSt r eamor Di gi t al Audi oPl ayer

source A St r eamobject specifying the file containing the data
to be imported.

@ound Denotes that the imported data is a sound.

@=ave Denotes that the format of the imported data is WAVE.

outputType Denotes the class of the object created to hold the

imported data. The choices are:

@tream The object created to hold the imported
data is an Audi oSt r eam

@udi oSt ream
Same as @t ream

@! ayer In this case, an Audi 0St r eamobject is
created to hold the imported sound, and
a Di gi tal Audi oPl ayer is created with
the Audi oSt r eamas its media stream.
The D gi t al Audi oPl ayer is returned
by i npor t Medi a.

@i gi tal Audi oPl ayer
Same as @I ayer.

cont ai ner : container

If this optional keyword argument is used, its value

must be a Li braryCont ai ner, TitleContai ner or

Accessor Cont ai ner object that is used to save

imported audio data. If you plan to save imported

audio to a title container, you must supply the

cont ai ner keyword argument when you do the

importing. The raw data for the sound will be stored in

this container.

This importer creates a ScriptX Audi oSt r eamobject to hold the imported sound data.
The returned object is either the Audi 0St r eamor a Pl ayer that plays the Audi oSt r eam
The file to be imported must be in the Windows WAV file format. It must not be
compressed.

If you want to save the audio stream or player to a title container, you must supply a
container as the cont ai ner keyword argument. This container is used to store a stream
containing only the raw data for the media. You must additionally append the

Audi oSt reamor Di gi t al Audi oPl ayer object, or any object that refers to them, to the
title container when the importing process is finished.

For example, to import and play the tune stored in the file “song.wav”: (assuming the
wav file is in the same directory as the script file).

gl obal songstream := getstream theScriptDr "song.wav' @eadable

gl obal songpl ayer := inportMedia thel nportExportEngi ne \
songstream @ound @WVE @l ayer

pl ayprepare songpl ayer 1.0

pl ay songpl ayer

In the following example, the above code has been modified to save the
D gi t al Audi oPl ayer to a title container.

global tc := new titleContainer path:"nytitle.sxt"

Importing Media

gl obal songstream := getstream theScriptDr "song.wav' @eadable

gl obal songpl ayer := inportMedia thel nportExportEngi ne \
songstream @ound @WVE @l ayer container:tc

pl ayprepare songpl ayer 1.0

pl ay songpl ayer

-- save the player to the title container
append tc songPl ayer

-- you also need to wite a startup action
-- and save the title container

189

ScriptX Tools Guide

MIDI Importers

The MIDI importer converts a standard MIDI file (type 0) to a ScriptX M DI St ream
object.

Standard MIDI to Stream

importMedia

i npor t Medi a t hel npor t Expor t Engi ne stream @A D @t andard outputType
[cont ai ner: container]0 M DI St reamor M DI Pl ayer

source A St r eamobject specifying the file containing the data
to be imported.

@1 Dl Denotes that the data to be imported is a MIDI sound.

@t andard Denotes that the data to be imported is in standard
MIDI format.

outputType Denotes the class of the object created to hold the

imported data. The choices are:

@tream The object created to hold the imported
data is a M DI St ream

@1 Dl Stream
Same as @t ream

@) ayer In this case, a M DI St r eamobject is
created to hold the imported sound, and
a M Dl Pl ayer is created with the
M Dl St r eamas its media stream. The
M Dl Pl ayer is returned by
i npor t Medi a.

@1 D Pl ayer
Same as @l ayer.

cont ai ner : container
If this optional keyword argument is used, its value
must be a Li braryCont ai ner, Titl eContai ner or
Accessor Cont ai ner object that is used to save
imported MIDI data. If you plan to save imported MIDI
to a title container, you must supply the cont ai ner
keyword argument when you do the importing. The
raw data for the media will be stored in this container.

This importer creates a ScriptX M DI St r eamobject to hold the imported sound data. The
returned object is either the M Dl Streamor a M DI Pl ayer that plays the M Dl St ream

You must have a MIDI-capable machine to import and play MIDI files.

If you want to save the midi stream or player to a title container, you must supply a
container as the cont ai ner keyword argument. This container is used to store a stream
containing only the raw data for the media. You must additionally append the

M D St reamor M Dl Pl ayer object, or any object that refers to them, to the title
container when the importing process is finished.

For example, to import and play the tune stored in the MIDI file “harp.mid”, (assuming
the MIDI file is in the same directory as the script file):

gl obal harpStream := getStream theScriptDir "harp.md" @eadabl e
gl obal har pP ayer i nport Medi a t hel nport Export Engi ne harpStream \
@1 D @tandard @ D Pl ayer

190

Importing Media

pl ay harpH ayer

In the following example, the above code has been modified to save the M DI Pl ayer to
a title container.

global tc := new titleContainer path:"nytitle.sxt"

gl obal harpStream := getStream theScriptDir "harp.md" @eadabl e

gl obal har pPl ayer i nport Medi a t hel nport Export Engi ne har pStream \
@1 D @tandard @1 D Pl ayer container:tc

pl ay harpPl ayer

-- save the player to the title container
append tc harpPl ayer

-- you also need to wite a startup action
-- and save the title container

191

ScriptX Tools Guide

Movie Importers

192

The Movie Importer allows you to import AVI or QuickTime movies on either a
Macintosh or Windows computer. The resulting Movi ePl ayer or
I nterl eavedMovi ePl ayer can be saved to a title container and played back on any

platform that supports ScriptX.

Note — ScriptX 1.5 can import AVI and QuickTime containing any form of compressed
video. ScriptX cannot import movies containing compressed audio of any sort. ScriptX
supports playback of Cinepak-compressed video on all platforms. Video that was
compressed with other techniques may play back on some platforms (such as the
Macintosh) but there is no guarantee of portability.

QuickTime Or AVI to MoviePlayer or InterleavedMoviePlayer

importMedia

i nport Medi a thel nport Export Engi ne source @movie @uickti meQ AVI
outputClass [contai ner: container] [out put O ass: otherOutputClass]

[copydat e :boolean]

source

@mvi e
@ui ckti meQ AVI

outputClass

cont ai ner: container

O Pl ayer

A St reamobject or a Col | ecti on of strings that

denotes the file containing the data to be imported.

Denotes that the imported data is a movie.

Denotes that the format of the imported data. The

choices are:

@ui ckTi ne The file to be imported is a QuickTime
file.

@V The file to be imported is an AVI file.

Denotes the class of the object created to hold the

imported data. The choices are:

@ ayer The object created to hold the imported
data is a Movi ePl ayer.

@abvi ePl ayer
The object created to hold the imported
data is a Movi ePl ayer.

@nt erl eavedMovi ePl ayer
The object created to hold the imported
data is a Movi ePl ayer.

If this optional keyword argument is used, its value
must be a Li braryCont ai ner, TitleContai ner or
Accessor Cont ai ner object that is used to save
imported movie data. If you plan to save imported
movies to a title container, you must supply the
cont ai ner keyword argument when you do the

Importing Media

importing. The raw data for the media streams
containing the video and sound data will be stored in
the specified container.

copydat a: boolean Use this argument if the outputClass is
@nt er| eavedMovi ePl ayer.
If copydat a is t r ue, the imported media data is copied
into ScriptX.This is the default. If f al se, The importer
does not copy the data in, but sets up the
I nt erl eavedMovi ePl ayer so that its
i nt er| eavedSt r eaminstance variable contains a
machine specific byte stream that points to the external
movie file. If copydat a is set to false, you must take
additional steps when saving the imported interleaved
movie player to the object store, as discussed in “More
on Copydata” on page 195.

ot her Qut put d ass: class
This optional keyword argument specifies the class of
the object returned by the importer. The output class
must be a subclass of Movi ePl ayer . This keyword
argument allows you to import movies as an instance of
a user-defined subclass of Movi ePl ayer, if desired.

This importer processes an input file in Apple’s QuickTime format or AVI format and
returns a Movi ePl ayer or I nt er | eavedMbvi ePl ayer object. The importing process
also creates a Di gi t al Audi oPl ayer instance and Di gi t al Vi deoPl ayer instance to
play the audio and video streams respectively, and synchronizes them to the movie
player.The importing process returns the Movi ePl ayer or Int er| eavedMovi ePl ayer
obj ect ..

If the data to be imported is in a “flattened” QuickTime file (that is, it contains no
embedded Macintosh resources), or an AVI file, source must be given as a St r eam The
importer opens the file to extract the movie data.

If the file is a QuickTime file containing embedded Macintosh resources, the source
argument must be a Col | ecti on of strings that describe the exact pathname for the file,
For now, the file path must always start from the root directory. For example, to specify
a file path for a file called nmovi el stored in the Cows subdirectory of the Ani nal s
directory that resides on HD:

path := #("HD', "Aninmals", "Cows", "noviel")

If you want to save the Movi ePl ayer or | nt er| eavedMovi ePl ayer to a title container,
you must supply a container as the cont ai ner keyword argument. This container is
used to store a stream containing only the raw data for the media. You must
additionally append the movie player, or any object that refers to it, to the title
container when the importing process is finished.

The following code sample shows how to import and play an AVI or flattened
QuickTime movie stored in the file “whale.mov” (assuming the file is in the same
directory as the script file):

gl obal whal estream := getstream theScriptDr "whal e. mov" @ eadabl e
-- if whale.nov is a flattened QuickTine file:
gl obal whal epl ayer := inportMedia thel nportExportEngi ne

whal estream @wovi e @ui cktime @ovi epl ayer

-- if whale.nov is an AVI file:

193

ScriptX Tools Guide

194

gl obal whal epl ayer := inportMedia thel nport Export Engi ne
whal estream @ovie @V @nterl eavedMovi epl ayer

gl obal w = new wi ndow boundary: (whal epl ayer. bbox)
WX = wy := 40

show w

append w whal epl ayer

pl ay whal epl ayer

The following code shows how to import the movie if whal e. mov is a QuickTime file
with embedded resources:

global pathl := theScriptDr as sequence
append pathl "whal e. nov"

gl obal whal epl ayer := inportMedia thel nport Export Engi ne
whal estream @movie @V @wovi epl ayer
gl obal whal epl ayer := inportMedia thel nportExportEngi ne whal estream \

@ovi e @ui cktime @movi epl ayer
gl obal w = new wi ndow boundary: (whal epl ayer. bbox)
WX = wy := 40
show w
append w whal epl ayer
pl ay whal epl ayer

The following code shows how to save the imported movie to a title container.
global tc := new titleContainer path:"nytitle.sxt"

gl obal whal estream := getstream theScriptDr "whal e. mov" @ eadabl e
gl obal whal epl ayer := inportMedia thel nportExportEngi ne \
whal estream @mwovi e @ui cktime \
@nt erl eavedMovi ePl ayer container:tc
gl obal w = new wi ndow boundary: (whal epl ayer. bbox)
WX = wy := 40
show w
append w whal epl ayer
pl ay whal epl ayer

-- save the player to the title container
append tc whal ePl ayer

-- you also need to wite a startup action
-- and save the title container

Note — If importing a movie generates an error message such as “couldn’t find moov
resource” it means you probably tried using a stream as the source file rather than a
collection, or the other way around.

MoviePlayer versus InterleavedMoviePlayer

If you intend to play the imported movie from a CD-ROM drive in the future, you
should import it as an | nt er| eavedMovi ePl ayer to preserve the interleaving.
Non-interleaved movies can play at a reasonable speed from a hard disk, but when
played from a CD, both the audio and video might skip during playback.

Importing Media

When you import a movie file to an | nt er | eavedMovi ePl ayer (rather than a

Movi ePl ayer), the audio and video data are copied from the QuickTime file into a
single Byt eSt r eam preserving the interleaving as specified in the QuickTime file. At
present, the importer only transfers data from the first video track and first audio track
encountered.

When a frame of the movie plays, data is needed from both the video stream and the
audio stream. If the streams are not interleaved, the video data needed for a frame may
be arbitrarily distant on the disk from the audio data needed for the same frame. When
playing back movies with non-interleaved data from a hard disk, the extra search time
required to seek to non-sequential positions is relatively small and does not
significantly affect the speed of playback. However, the search time becomes significant
if the movie is played back from a CD.

When the audio and video streams are interleaved, the video data and audio data
required for a frame are located sequentially on the disc, thus minimizing the search
time between each frame.

Note — You are recommended to ALWAYS import your movies as interleaved movie
players. In fact, if you try to import a movie as a Movi ePl ayer instead of an

I nt er| eavedMovi ePl ayer you might find the importing doesn’t work, or it might
return an interleaved movie player anyway.

More on Copydata

If the optional copydat a keyword argument is given as f al se when importing a movie
to an | nt er| eavedMovi ePl ayer, the importing process does not copy the movie data
into ScriptX. In this case, the player’s i nt er| eavedSt r eaminstance variable points to a
machine-specific byte stream. If you save the imported interleaved movie player to a
title container you must take some additional steps, since a title is not portable across
platforms if it contains a machine-specific stream.

Before adding the interleaved movie player to a title container, set its

i nt er| eavedSt r eaminstance variable to undef i ned. Add the

I nt er| eavedMovi ePl ayer to a Ti t| eCont ai ner. Specify a st art upActi on for the

Ti t1 eCont ai ner that will get an appropriate stream (the original movie file) and put it
in the i nt er | eavedSt r eaminstance variable of the interleaved movie player.

You may find it very useful to set the copydata argument to f al se when developing
your scripts, and then set it to t r ue (or don’t supply it) when importing the movie with
the intention of saving it to a title container.

195

ScriptX Tools Guide

Batch Processing

196

Multimedia titles typically contain hundreds of individual media data items. If you use
external tools to create these items, it can be tedious to execute individual ScriptX
commands to import each item. You can use batch processing to automate the
conversion process so that it can be done without user intervention.

Batch processing involves creating a list of files, and then processing every element in
the list. If you use an exception handler to catch any errors and to flag unprocessed
files, the rest of the import process can continue uninterrupted.

The following code shows a routine that imports a set of PICT files as ScriptX bitmaps.
The routine assumes that every file in the / HI Ti t| e/ cv directory is to be converted. It
also assumes the existence of a Bi t mapLi st class which can hold a large number of
bitmaps.

global pictdir := spawn theRootDir "\HD\Title\cv"

global fileCount := 0

global failCount := 0

global faillList := new LinkedLi st

gl obal inages := new BitmaplLi st

for pfile in (getContents pictdir) do (

local strm
if (isFile pfile) do (
fileCount := fileCount + 1
guard (
strm:= getStream pictdir pfile @eadabl e
bm : = inportMdia thel nport Export Engi ne \
strm @nage @ict @itnap)
append i nages bm
) catching
all : (
append failList pfile
failCount := failCount + 1
caught undefi ned

) .
on exit
plug strm
end
)

format debug "Processed % files, 9% failed\n" \
#(fileCount, fail Count) enpty

At the end of the batch processing, a list of the files that were not converted is available
in the fai | Li st object.

C HAPTETR

Using the
Director-to-
ScorePlayer Importer

ScriptX Tools Guide

198

Using the Director-to- ScorePlayer Importer

This chapter explains how to use the Director-to-ScorePlayer Importer to convert simple
animations built in Macromedia™ Director® title to a ScriptX™ title.

This chapter does not teach Director—it assumes that if you're trying to import Director
movies, you already know how to use Director.

The current release of the Director-to-ScorePlayer Importer runs only on Macintosh
computers. Director titles contain Macintosh resource objects that cannot be read on
other platforms. However, after a Director title has been imported into ScriptX, the

resulting ScriptX animation can run on any platform that supports ScriptX.

The Director-to-ScorePlayer Importer converts a frame-based animation created in
Macromedia Director to a hierarchy of objects in ScriptX. The score of a Director
animation is reproduced in ScriptX by the Scor ePl ayer class, which supports a
timeline. The Scor ePl ayer class is a subclass of Pl ayer, and has methods for playing,
stopping, rewinding, changing the rate of the animation, and so on.

Before reading about the Director-to-ScorePlayer Importer, you may find it helpful to
familiarize yourself with the ScriptX Pl ayer class, described in the ScriptX Class
Reference.

After importing a Director animation into ScriptX you can modify the way the
animation behaves. For example, you can change the positions of sprites in the
animation, add new sound effects, and so on. See “Modifying an Imported Animation”
on page 211 for details.

The Director-to-ScorePlayer Importer is built on the Director Translation Kit. For
information about the Director Translation Kit API, see Chapter 19, “Director
Translation Kit APL.”

What the Director-To-ScorePlayer Importer Can Import

A Macromedia Director title consists of a multitrack, linear stream of data. Each track
can contain animation, video, graphics, audio, MIDI data, text, or a Lingo™ script. You
can use the Director-to-ScorePlayer Importer to import

® a Macromedia Director castlist for either Director 3.1.3 or Director 4.0.

® a Macromedia Director score for either Director 3.1.3 or Director 4.0. The score
consists of up to 24 or 48 channels of animation, 5 effects channels, and a script
channel.

You can use the classes in the Director Translation Kit (DTK) to create custom importers
that convert the individual components of Macromedia Director titles to ScriptX objects.
For information about the DTK, see Appendix A.

What the Director-to-ScorePlayer Importer Cannot Import

This section describes the components of a Macromedia Director title that the
Director-to-ScorePlayer Importer cannot import. The current version of the
Director-to-ScorePlayer Importer cannot import:

e scores that use shared castmembers.

199

ScriptX Tools Guide

Lingo scripts

The current version of the Director-to-ScorePlayer Importer cannot convert Lingo
scripts to ScriptX. However, the ScriptX language can be used to create methods or
functions which perform operations equivalent to those programmed in Lingo. The
import imports lingo scripts into ScriptX unconverted.

film loops

The current version of the Director-to-ScorePlayer Importer cannot import film loops
into ScriptX. You can, however, write custom ScriptX commands that will force the
Scor ePl ayer to repeat certain portions of the animation. See the discussion of
Players in the ScriptX Class Reference for additional information.

color ink effects

The current version of the Director-to-ScorePlayer Importer can convert ink effects to
ScriptX. However, it cannot convert color ink effects.

palette transitions and cycling

The current version of the Director-to-ScorePlayer Importer can import palettes into
ScriptX. However, it cannot convert palette transitions or cycling effects.

some types of transitions

The current version of the Director-to-ScorePlayer Importer imports only wipe,
barndoor, iris, and slide transitions. However, ScriptX directly implements many
additional transitions.

Wait for QuickTime Done tempo control.

The current version of the Director-to-ScorePlayer Importer cannot import
WaitForQuickTimeDone commands, but it can import WaitForSoundDone
commands.

XObjects

The current version of the Director-to-ScorePlayer Importer cannot import XObjects,
which is the MacroMedia specified extension to Lingo.

extensions to HyperTalk®—such as XCMDs and XFCNs

The current version of the Director-to-ScorePlayer Importer cannot convert Director
HyperTalk extensions, such as XCMDs and XFCNss to ScriptX. However, the ScriptX
core classes provide the functionality of many typical XCMDs and XFCNss.

buttons—not supported

32-bit bitmap graphics—not supported

Classes and Inheritance

200

The following figure shows the inheritance hierarchy for the classes in the
Director-to-ScorePlayer Importer APL

Using the Director-to- ScorePlayer Importer

Importer DTKScoreTranslator DTKCastTranslator
Directorlmporter |— ScorePlayerScoreTranslator ScorePlayerCastTranslator
Player

ScorePlayer

ScoreTicker

ActionListPlayer

TextPresenter

Tropshape

TwoDSprite

InterleavedMoviePlayer

TextSprite

VideoSprite

Action
ChangeSoundAction
ChangeTempoAction

ChangeSpriteSizeAction

ChangelnkAction

ChangeSpriteAppearanceAction
LoopAction

PrepareTransitionAction

WaitForSoundAction

ScriptAction
(- TargetListAction

AddSpriteToStageAction

RemoveSpriteFromStageAction

LEGEND

= Abstract Class
= Concrete Class

ClassName = Areference to a ScriptX
(no box) core class

For detailed information about the classes in the Director-to-ScorePlayer Importer AP,
see Chapter 17, “Director-to-ScorePlayer Importer AP1” which lists these classes in
alphabetical order.

201

ScriptX Tools Guide

Di rect or | mpor t er —imports a score and its castlist from Macromedia Director into
ScriptX.

Scor ePl ayer Scor eTr ansl at or —a specialized subclass of the DTKScor eTr ans| at or
class that translates a Director score to a ScriptX Scor ePl ayer.

Scor ePl ayer Cast Tr ansl at or —a specialized subclass of the DTKCast Tr ansl at or class
that translates cast members in the Director cast list to TwoDSprit e, Text Sprite and
Vi deoSprite instances.

Scor ePl ayer —a specialized subclass of the Pl ayer class that controls the playback of
an imported Director score. For example, to play or stop the animation, call the pl ay or
st op methods on the Scor ePl ayer instance.

Scor e—a specialized subclass of the Acti onLi st Pl ayer class that represents an
imported Director score as a list of actions.

Spri t e—provides functionality for presenters that represent castmembers in an
imported Director score.

TwoDSpr i t e—represents a castmember from an imported Director score that
displays a shape or a bitmap.

Text Spri t e—represents a castmember from an imported Director score that
displays text.

Vi deoSpri t e—represents a video castmember from an an imported Director score.

Spri t eChannel | nf o—holds information about the state of a channel during an
animation playback.

ChangeSoundAct i on—a specialized subclass of the Acti on class that represents sound
changes in an imported Director score.

ChangeTenpoAct i on—a specialized subclass of the Acti on class that represents tempo
changes in an imported Director score.

AddSpri t eToSt ageAct i on—a specialized subclass of the Tar get Li st Acti on class that
represents the appearance of a castmember in a previosuly empty animation channel
during the playback of an imported Director score.

RenoveSpri t eFr onBt ageAct i on—a specialized subclass of the Tar get Li st Acti on
class that represents the disappearance of a castmember from an animation channel
during the playback of an imported Director score.

ChangeSpri t eSi zeAct i on—a specialized subclass of the Acti on class that represents
size changes in a sprite during the playback of an imported Director score.

Changel nkAct i on—a specialized subclass of the Acti on class that represents ink mode
changes during the playback of an imported Director score.

ChangeSpri t eAppear anceAct i on—a specialized subclass of the Acti on class that
represents changes in image or text during the playback of an imported Director score.

Pr epar eTransi t i onAct i on—a specialized subclass of the Act i on class that represents
the start of a transition during the playback of an imported Director score.

Scor eTi cker —a specialized subclass of the Pl ayer class that controls the timing for an
imported Director score.

How Director Titles are Converted to ScriptX Objects

When importing a Director title into ScriptX as a ScorePlayer, you can import both the
cast and the score, or either the cast or score.

202

Using the Director-to- ScorePlayer Importer

Cast Translation

The Director-to-ScorePlayer Importer creates a Scor ePl ayer Cast Tr ansl at or instance
that translates each member of the castlist into an appropriate ScriptX object. The
Scor ePl ayer Cast Transl at or class inherits from the class DTKCast Tr ansl at or in the
Director Translation Kit component. See Chapter 18, “Using The Director Translation
Kit” for information about cast translators in the DTK component.

Director castmembers are converted to ScriptX objects as follows:

® Director shape castmembers become TwoDSpri t e instances whose t ar get instance
variable contains a suitable St enci | instance.

® Director bitmap castmembers become TwoDSpr i t e instances whose t ar get instance
variable contains a suitable Bi t map instance.

¢ Director text castmembers become Text Spri t e instances whose t ar get instance
variable contains a Text object.

® Director video castmembers become Vi deoSpri t e instances whose t ar get instance
variable contains D gi t al Vi deoPl ayer and Di gi t al Audi oPl ayer instances.

® Director sound castmembers become Audi 0St r eamobjects.

¢ Director button castmembers are not translated.

Score Translation

The Director-to-ScorePlayer Importer creates a Scor ePl ayer Scor eTr ansl at or instance
that translates a Director score to a ScriptX Scor ePl ayer. The

Scor ePl ayer Scor eTr ansl at or inherits from the class DTKScor eTr ansl at or in the
Director Translation Kit component. See Chapter 18, “Using The Director Translation
Kit” for information about score translators in the DTK component.

In a Director animation, a score consists of a set of frames. Each frame records what
each castmember in each channel in the animation is doing in that frame. The
Director-to-ScorePlayer Importer converts a Director score to a ScriptX Scor ePl ayer
object. A Scor ePl ayer object does not have a frame-by-frame record for a score.
Instead, it implements scores as a series of actions.

Before translating the score, the importing process creates an instance of Score, a
subclass of Acti onLi st Pl ayer that holds an action list representing an imported
Director score.

The t r ansl at eFr ane method of the Scor ePl ayer Scor eTr ansl at or creates Acti on
instances to represent changes in each frame, such as change of sprite, change of
position, change of ink mode and so on. Each action is added to the action list in the
Scor e instance.

For more information on the class Acti onLi st Pl ayer, see “How an ActionList Player
Works” on page 211.

Preparing a Director Title for Importing Into ScriptX

This section provides some guidelines for preparing a Macromedia Director title or
component for importation into ScriptX.

® Ensure that the title to be imported does not have a shared cast, otherwise the
importing process will not complete successfully. If the Director title does use a
shared cast, use the facilities provided within the Director application to copy the
cast to the score before saving the title.

203

ScriptX Tools Guide

® As far as possible, set up the animation so that each channel records the actions of a
single “actor”, even if it is made up of multiple castmembers. For example, if the
animation contains a jogger, ensure that the jogger always appears in the same
channel, even if it is made up of different bitmaps tha portray the jogger in different
positions. This step is not essential to the importing process, but it will make it easier
for you to modify the title if necessary after it has been imported into ScriptX.

Loading the Director-to-ScorePlayer Importer

The files needed for the Director-to-ScorePlayer Importer and the Director Translation
Kit (which are used by the Director-to-ScorePlayer Importer) are contained in two
folders called di ri np and DTK. Make sure that the di ri np and DIK folders are in the
same folder as your ScriptX executable.

To load the Director-to-ScorePlayer Importer, open the title container saved to the file
di ri np. sxt in the di ri np directory.

open TitleContainer path:"dirinp/dirinp.sxt"

You can also use the Open command from the File menu to open the title container.

When this file has finished loading, it leaves you in the scrat ch module. However, to
use the Director-to-ScorePlayer Importer, you must work in the Di r ect or | npor t er
module. To use an imported animation, you must work in the Scor ePl ayer module.

The best way to handle the module-switching is to create modules of your own that use
the necessary modules, as discussed in “Saving an Imported Animation to a Title
Container” on page 207.

Importing a Director Title as a ScorePlayer

204

To import a Director title into ScriptX you can do either of the following:

® Use a convenience function called | nport Di r ect or which lets you interactively pick
a file to import.

® Use the regular importing mechanism described in ScriptX Developer’s Guide, (that is,
call the i npor t Medi a method on t hel npor t Expor t Engi ne).

Using the ImportDirector Function

The i nport Di rect or function opens up a file panel from which you can pick the
Director file to import. The importing process returns a Scor ePl ayer object. This

Scor ePl ayer object has an associated Space object stored in its st age instance variable.
Before you can see the animation as it plays, you must append the Scor ePl ayer
instance’s space to a visible space, such as a W ndow object.

The i nport Di rect or function takes an optional cont ai ner keyword that specifies a
storage container in which to store the imported media for the animation. See “Saving
an Imported Animation to a Title Container” on page 207 for an example of using the
i nport Di rect or function with the cont ai ner keyword.

The Director-to-ScorePlayer Importer uses modules. The classes to do the actual work of
importing reside in a module called D rect or | nport er. The classes created by the
importing process to represent the animation reside in a module called Scor ePl ayer.
You must work in the appropriate modules to use these classes.

Using the Director-to- ScorePlayer Importer

The best way to handle the module-switching is to create modules of your own that use
the necessary modules. If you are doing preliminary investigation and do not intend to
save the imported animation to a title container then you can create a single module
that uses both the D rect or | nport er module and the Scor ePl ayer module and then
work in that module. If you intend to save the imported animation to a title container,
the module-switching is more complex, as discussed in “Saving an Imported Animation
to a Title Container” on page 207.

Here is an example of how to import a Director title into ScriptX using the
I nport Di rect or convenience function, and then play the imported animation. This
example assumes that the imported animation will not be saved to a title container.

-- Load the D rector-to-ScorePl ayer inporter
open TitleContainer path:"dirinp/dirinp.sxt"”

-- Oreate a nodule that uses Drectorlnporter and ScorePl ayer nodul es

nmodul e SoneModul e
uses directorinporter
uses scorepl ayer
uses scriptX
exports scorepl ayer A
end

-- Switch to working in the new nodul e
in nodul e SonmeModul e

-- Inport the animation and return a score player.

-- An interactive file selection box appears on the screen so you
-- can select the Director file to inport.

gl obal scoreplayerA := InportD rector()

-- create and show a window to present the anination
gl obal w := new wi ndow
show w

-- append the scoreplayer’s space to the w ndow
append w scorePl ayer A st age

-- nake sure the scoreplayer is at the beginning then play it
got obegi n scorePl ayer A
pl ay scorePl ayer A

Note — You may find that your imported animation plays slowly the first time through.
This is because the ink modes are being set on the fly. Subsequent play throughs will be
faster, unless the ink modes change during the course of the animation.

Using the Import/Export Engine

The I nport Di rect or function provides a cover to using the Import/Export engine to
import a Director title into ScriptX. If you prefer, you can use the Import/Export engine
directly.

After the importer has been registered with ScriptX, you can call the i nport Medi a
method on the t hel npor t Expor t Engi ne instance to import a Director title into ScriptX.

205

ScriptX Tools Guide

206

importMedia

importMedia thelmportExportEngine source dataCategory dataFormat outputType
[cont ai ner: container | 0 Scor ePl ayer

source The source of the data to be imported.
For most importers, the source parameter may be a
ScriptX St reamobject or a Col | ecti on object
identifying the path and filename. However, because
the Director-to-ScorePlayer Importer needs access to
individual resources, you must specify source as a
collection rather than a stream. See “Specifying the
Source File” on page 206 for an example.

dataCategory The category of the imported data, which in this case is
@ret aphor.

dataFormat The format of the imported data, which in this case is
@ rector.

outputType The output type of the imported data, which in this case

is either @ast Li st or @cor ePl ayer.
An output type of @ast Li st results in an Arr ay object
that contains the imported data. When the output is
specified as @Cast Li st, only the cast members are
imported.
An output type of @cor ePl ayer results in a
Scor ePl ayer object being created to hold the
animation. When the output type is @cor ePl ayer,
both the castlist and the score are imported.

container The optional cont ai ner argument specifies a storage
container in which the converted elements will be
stored.

When a Macromedia Director castmember list is imported into ScriptX, each
castmember in the movie score or animation becomes an instance of either TwoDSprite
or Text Spri t e, depending on whether it is an image (a shape or a bitmap) or a piece of
text.

Note — The Director-to-ScorePlayer Importer cannot import a Macromedia Director
movie score or animation that uses a Shared Cast. To import such a movie score or
animation, you must first copy the shared castmembers from the Shared Cast movie to
the movie score or animation.

When the importer imports a Director score into ScriptX, it creates and initializes a
Scor ePl ayer instance, and creates a stage for it.

The stage is a Space or a TwoDMIl ti Present er instance in which the animation
appears when the Scor ePl ayer plays. The stage is the same size as the stage in
Director.

Specifying the Source File

Since the importer needs access to individual resources, you must specify the source
parameter for the i nport Medi a method as a collection containing the directories and
files that make up the pathname of the file containing the data to be imported.

To create a collection that specifies the full path, you can use one of two approaches.
Either specify the path directly as a collection, or coerce a D r Rep object to an Arr ay, as
the examples below show. In the first example, nyPr oj ect is a directory that contains
the file fi | ename. mm

src := (spawn theStartDir "nyProject”) as Array

Using the Director-to- ScorePlayer Importer

append src “fil ename. nmi

src = #("HD', "Titles", "nyQherProject")

Saving an Imported Animation to a Title Container

The Director-to-ScorePlayer Importer uses modules. The classes that do importing
reside in a module called Di rect or | nport er. The classes created by the importing
process to represent the animation reside in a module called Scor ePl ayer. To import an
animation and then use and save the imported animation, you must work in the
appropriate modules.

The best way to handle the module-switching is to create modules of your own that use
the necessary modules.

When you save an imported animation to a title container, you ideally want to save the
objects and classes in the animation but you do not want to save the classes whose sole
responsibility is to execute the importing process. Such classes include the

Scor ePl ayer Scor eTr ansl at or and Scor ePl ayer Cast Tr ansl at or. These classes
reside in the D rect or | nport er module.

We recommend that you work in a module that uses the Scor ePl ayer, Scri pt X and

D rectorl nporter modules while importing the Director animation. When the
importing process is finished, switch to a module that uses the Scor ePl ayer and

Scri pt Xmodules, (but not the Di r ect or | npor t er module). In this module, create the
window to show the animation. Add this module to the title container before saving the
title container. If you do this, the score player and all the other objects needed for the
animation, along with the window to display the animation, will all be added to the
title container. The objects used to execute the translating process will not be added to
the container, since they are in a different module.

The steps for importing and saving a Director animation in ScriptX are summarized
here:

1. Load the Director-to-ScorePlayer Importer.

2. Create a module that uses the Scri pt Xand Scor ePl ayer modules. This new module
will be refferred to as theTitleModule.

3. Switch to working in theTitleModule.
4. Open a title container.

5. Create a module that uses the Scri pt X, Scor eP ayer, Di rect or | npor t er and
theTitleModule modules.

6. Switch to working in the new module.

7. Import the Director animation into ScriptX using either the i nport D r ect or
function or the the i npor t Medi a method. In both cases, be sure to supply the storage
container of the title container as the optional cont ai ner keyword.

8. Switch back to working in theTitleModule.

9. Create and show a window, and then append the score player returned by the
importing process to the window.

10. Define a st art Acti on function for the title container. (Most likely you will want this
function to call the pl ay method on the score player to start the animation playing).

11. Add theTitleModule to the title container.
This action adds all the objects in theTitleModule to the title container.

12. Close the title container.

207

ScriptX Tools Guide

208

Sample Script that Imports and Saves an Animation in ScriptX

This sample script illustrates how to create and switch between modules when
importing a Director animation into ScriptX and saving the imported animation in a
title container.

-- Load the D rector-to-ScorePl ayer |nporter:
open TitleContainer path:"dirinp/dirinp.sxt"

-- Oreate a nmodule that uses the ScriptX Scratch and ScorePl ayer

-- nodul es. This modul e exports the variabl e scorepl ayerA so that |ater
-- you can use it to refer to the score player when the animation is
-- reloaded from the object store.

nodul e M/Titl eModul e
uses ScriptX
uses Scratch
uses ScorePl ayer
exports scorepl ayer A
exports tc

-- Switch to working in the M/TitleMdul e:
in nodule M/TitlehMdul e

-- Define the globals used in this nodul e:

gl obal scorepl ayer A : = undefined
global tc := undefined
gl obal w

-- Oeate the title container to hold the inported ani mation.
-- This title container will reside in the nodule MTitl eMdul e:

global tc := new TitleContainer path:"nyTitle.sxt"

-- Define a transient nodule that references the D rectorlnporter
-- nodul e which contains classes used to do the inporting.

nodul e tenp
uses ScriptX
uses Directorlnporter
uses ScorePl ayer
uses M/Titl eModul e
end

-- Switch to working in the tenp nodul e.
in nodule tenp
-- Inport the Director movie

scoreplayerA := InportDrector container:tc

-- Switch back to working in MTitleMdul e
in nodule M/TitlehMdul e

-- Oreate a ScriptX w ndow
w = new Wndow bbox: (Scor ePl ayer A st age. boundary)

Using the Director-to- ScorePlayer Importer

-- Append the score player's space to the w ndow
append w scor epl ayer A st age

-- Show the w ndow
show w

-- Add everything in MTitleMdule to the storage container:
append tc (getMdul e @4Titl eMdul e)

-- Define the startup function for the title container.
-- Note that scorePl ayerA has been exported as a gl obal
-- variable for this nodul e.

tc.startupAction := (self ->

(

got obegi n scorepl ayer A
pl ay scorePl ayer A

)

-- Qose the storage container to save the ani mation
close tc

Your imported animation is now saved as a title container called "nyTi t| e. sxt " in the
ScriptX startup directory.

Reloading the Saved Animation

After quitting from ScriptX, you can run the animation in any of the following ways:
® Double click on the "nyTi tl e. sxt" icon.

® Drag and drop the "nyTi t| e. sxt " icon on to the ScriptX application icon.

® Open ScriptX from the ScriptX application icon, then open the file "nyTi t| e. sxt ."

When the nyTi t] e. sxt title opens, it runs through the animation once. After making
sure you are in the correct module (M/Ti t | eMbdul €) you can use the variable
Scor ePl ayer Ato refer to the score player that controls the animation.

in nodule nytitlermodul e

-- rewind the animation to the begi nning
got obegi n scorePl ayer A

-- play the anination again
pl ay scorePl ayer A

-- stop the anination
stop scorePl ayer A

-- change the width of the w ndow presenting the animation.
-- The window is pointed to by the scoreplayer’s stage's
-- presentedBy instance variable.

scor ePl ayer A st age. present edby. wi dth := 300

209

ScriptX Tools Guide

Playing an Imported Title

210

After importing a Director animation into ScriptX as a Scor ePl ayer object, or after
opening a title container that contains a saved animation, you can run and stop the
animation by calling methods on the score player that represents the animation.

The class Scor ePl ayer inherits from the class Pl ayer. It supports most of the usual

Pl ayer methods, such as pl ay, pause, st op, got obegi n, got oend and f ast For war d.
The method pl ayUnti| does not work for score players. See the ScriptX Class Reference
for documentation on all the Pl ayer methods.

Score players can only play forwards. They cannot play backwards.

To present an animation in a window, append the score player’s stage to the window:

W = new w ndow
show w
append w scorePl ayer A st age

To play an animation, call the pl ay method on the score player:

pl ay scorePl ayer A

To stop an animation, call the st op method on the score player:

stop scorePl ayer A

To move an animation back to the beginning status, call the got obegi n method on the
score player:

got obegi n scor ePl ayer A

To move an animation to any particular frame, set the f r ame instance variable on the
Scor ePl ayer. For example, to move it to frame 8:

scorePl ayerA frane := 8

The f r ane instance variable is local to the class Scor ePl ayer, it is not inherited from
Pl ayer. For most Pl ayer classes, you move the player to a particular point in its media
by setting the ti me instance variable, but for the Scor ePl ayer class, set the frane
instance variable instead.

To step an imported animation to its next frame, increment the f r ane instance variable
of a Scor ePl ayer by 1.

scorepl ayerA frame := scorePlayerAfrane + 1

To set an animation into looping mode, so that when it reaches the end it starts over
again automatically, set the | oopi ng instance variable of the score player to true.

Changing the Rate of the Animation

A score player has a scor eTi cker instance variable, whose value is a Scor eTi cker
instance. A score ticker is basically a clock that has a callback that fires every tick to step
the animation through one frame. .

Using the Director-to- ScorePlayer Importer

The rate of the score player effects the rate of play of the animation since it is a master
clock of the score ticker. (The rate of the Scor e instance does not effect the rate of the
animation. The rate of the Scor e instance is always 0.) For more information on how
master clocks affect the rate of their slave clocks, see the “Clocks” chapter in the ScriptX
Components Guide.

To double the speed of an animation whose Scor ePl ayer has a current rate of 1:

scorePlayerArate := 2

The animation tries to play at the required speed. If the rate is too fast, the animation
does not skip frames but plays as fast as it can. The disadvantage to this approach is
that the movement of images on the screen may not stay in synch with the sound for
the animation.

Modifying an Imported Animation

After importing a Director score into ScriptX, you can modify the objects that
implement the animation in ScriptX. To modify the steps of an animation, add or
modify the actions in the action list for the animation. The action list is stored in the
acti onLi st instance variable of the Scor e object associated with the the Scor ePl ayer.

How an ActionList Player Works

Understanding how the class Act i onLi st Pl ayer works will help you understand how
the class Scor e works, since Scor e inherits much of its functionality from

ActionLi st Pl ayer. This section gives a quick description of how the class

Act i onLi st Pl ayer works. For more information on this class, see the “Animation”
chapter of the ScriptX Components Guide.

An Acti onLi st Pl ayer can be used to play a series of actions. It has two lists:

e a list of actions stored in its acti onLi st instance variable. Each action is itself an
object, an instance of one of the classes of Acti on.

® a list of targets stored in its t ar get s instance variable. Each target is an object.

Each action has an instance variable t ar get Numthat tells it which number target it
affects in the target list. It also has a t i me instance variable that tells it what time to
activate.

For example, consider the hypothetical object Ani mal Acti onLi st Pl ayer. The value of
its t ar get s instance variable is the array #(dog, zebra, lion, el ephant). The value
of its acti onl i st instance variable is the array #(actionl, action2, action3,
action4, actionb5), as illustrated in Figure 16-1, “The AnimalActionListPlayer
instance”.

211

ScriptX Tools Guide

212

Ani mal Acti onLi st Pl ayer instance

targets iv actionlist iv
#(dog, #(actionl, on targetl at time 0
zebra, action2, on target4 at time 1
l'ion, action3, on target4 at time 2
el ephant actiond, on target2 at time 2
) action5 on target3 at time 5
)

Figure 16-1: The AnimalActionListPlayer instance
When the ani mal Acti onLi st Pl ayer is played by the command:

pl ay Ani nal Acti onLi st Pl ayer

the following happens:
actionl is performed on the dog instance at time 0
acti on2 is performed on the el ephant instance at time 1
acti on3 is performed on the el ephant instance at time 2
acti on4 is performed on the zebr a instance at time 2

acti onb is performed on the | i on instance at time 5

What is the Target of An Action in an Animation?

When creating a new action, you specify the time at which the action is to occur, along
with a t ar get Numvalue that points to the object affected by the action. The object in the
t ar get Numposition of the collection in the t ar get s instance variable of the appropriate
ActionLi st instance is the object to be affected by the action. In the following
discussion, the term “the t ar get s collection” means the collection in the t arget s
instance variable of the Scor e object.

The tricky part when modifying the action list of a Scor e object is that the actions
operate on items in the t ar get s collection but the t ar get s collection could change
from frame to frame.

Each position in the t ar get s collection corresponds to a channel in the original Director
score. At any given time, the object in the nth position in the t ar get s collection
corresponds to the castmember that appears in the nth channel in the Director score at
that time.

The tar get s collection updates as the animation runs so that it records which objects
are playing in which channels at which time.

For example, suppose object A plays in channel 5 at time 10, but at time 11 object B
appears in that channel instead. In this case, object A is in the fifth position in the
target s collection at time 10, and object B is in the fifth position at time 11.

Using the Director-to- ScorePlayer Importer

Handy Hints for Keeping Control of Targets

One way to improve the ease of modification of an Director title imported into ScriptX
is to ensure that each channel in the Director title contains only one “actor” throughout
the running of the title. The actor can be made up of multiple images, for example, a
jogger might be made up of several different bitmaps portraying the jogger in different
positions.

Having only one actor per channel in Director will help you know exactly which actor
is in what position of the t ar get s collection after the title is imported into ScriptX. For
example, suppose the only actor to appear in channel 3 in a Director score is a jogger.
After importing the title into ScriptX you can be sure that any action to be performed on
the jogger must have a t ar get Numof 3.

The Classes of Action

To modify the actions in an imported animation in ScriptX, you add or modify actions
in the action list. This section lists the possible actions in an animation, and the
following sections help you read and modify the action list of an animation.

Most actions have newmethods that take a t ar get Numkeyword, a ti ne keyword, and
also action-specific keywords. In this context, the t ar get Numkeyword specifies what
channel of the animation the action will happen in and the ti me keyword specifies at
what time the action will occur.

After creating a new action, add it to the action list of the appropriate Scor e object.

An action list is sorted by time. When you call the append or pr epend method on an
action list player, the newly added action is put in the correct place in the list according
to its time. If several actions in the list have the same time, let’s say 10, then appending
another action for time 10 causes the newly added action to appear after the other
actions for time 10. Prepending another action for time 10 causes the newly added
action to come first of all the actions for time 10.

Subclasses of Action

The subclasses of Act i on that are appropriate for use in an imported animation are:

DeltaPathAction

Moves an object by a relative amount from its current position. Its del t aPosi ti on
instance variable specifies the relative distance to move. For example, to create an
action that moves the first object in the target list 10 pixels to the right and 20 pixels
up from its current position:

actionx := new DeltaPathAction targetNum1 tinme:10 \
del t aPosi ti on: (new Point x:10 y: 20)

-- append the new action to the actionlist

-- nyScorePlayer is an existing ScorePl ayer
nyActionLi st := nyscorepl ayer. score. ActionLi st

append nyActionLi st actionx

InterpolateAction

Moves an object in a smooth way to a given position at a given time. Its

dest Posi ti on instance variable specifies the destination position, and its dest Ti ne
instance variable specifies the time to arrive at the destination. For example, to create
an action that moves the second object in the target list to the position (300, 500) in
its space, to arrive there at time 20:

213

ScriptX Tools Guide

214

actionx := new Interpol ateAction targetNum2 tine:15 \
dest Posi ti on: (new Point x:300 y:500) destTine: 20
nyActionLi st := nyscorepl ayer. score. Acti onLi st

append nyActionLi st actionx

PathAction

Moves an object to an absolute position immediately. Its dest Post i on instance
variable specifies the destination position. For example, to create an action that
moves the fourth object in the target list to the position (100, 200) in its space:

actionx: = new PathAction targetNum4 tine:20 \
dest Posi ti on: (new Poi nt x: 100 y: 200)

nyActionLi st := nyscorepl ayer. score. Acti onLi st
append nyActionLi st actionx

ScriptAction

Performs an action described by a function, which allows you to do any kind of
action you want. Its scri pt instance variable contains the function to run. For
example, to call the function st r obef n on the fifth object in the target list:

actionx:= new ScriptAction targetNum5 tine:25 script:strobefn
nyActionLi st := nyscorepl ayer. score. Acti onLi st
append nyActionLi st actionx

Note: The function st r obef n takes 3 arguments—action, target and player, where
player in this case is nmyscor epl ayer . score.

TargetListAction

Executes a function and puts the object returned by the function into the specified
position in the target list. This enables you to change the objects in a target list as an
animation progresses. For example, to run the makeNewBear Fn which makes a new
Bear object, and installs it in place of the existing object at the seventh position in the
target list:

actionx: = new TargetListAction targetNum?7 tine:35 \
scri pt: makeNewBear Fn

nyActionLi st := nyscorepl ayer. score. Acti onLi st

append nyActionLi st actionx

For this to remove objects when it rewinds, you need to supply a rewind script for
the target list action, which must clear out both the t ar get s array and the
rew ndScri pts array.

Actions Specific to Imported Animations

The Scor eAct i onLi st subclass of Acti onLi st additionally supports the following

classes of actions, which are created when the Director-to-ScorePlayer Importer is
loaded.

Using the Director-to- ScorePlayer Importer

ChangeTempoAction

Changes the tempo of a score. Its t enpo instance variable contains the new tempo.
Note that this action does not take a target object since it works on the score as a
whole, not on any individual sprite in the animation. For example, to set the tempo
to 15 at time 3, and then speed it up even more to 20 at time 8:

t1: = new ChangeTenpoAction tine:3 tenpo: 15

t 2: = new ChangeTenpoAction tine:8 tenpo: 20
nyActionLi st := nyscorepl ayer. score. Acti onLi st
append nyActionList t1

append nyActionList t2

ChangeSoundAction

A ChangeSoundAct i on tells one of the two Di gi t al Audi oPl ayer instances to start
playing a sound. It has t i me, medi aSt r eamand audi oPl ayer | ndex instance
variables, as follows:
time Time for the sound to start
medi aSt r eam
A Medi aSt r eamobject that contains digitized sound.
See the previous chapter to see how to use the
Import/Export engine to import a sound file into
ScriptX as a rmedi aSt r eamobject.
audi oPl ayer | ndex
An integer (which must be 1 or 2) that represents which
channel should play the sound.

So for example to play the sound in the media stream Li onRoar i ng at time 100 on
channnel 2:

roarl := new ChangeSoundAction time:100 medi aStream Li onRoaring \
audi oPl ayer | ndex: 2
nyActionLi st := nyscorepl ayer. score. Acti onLi st

append nyActionLi st roarl

RemoveSpriteFromStageAction

A RenoveSpri t eFr onBt ageAct i onAct i on removes the sprite in the given channel
from that channel.

For example, to make the sprite in channel 2 disappear at time 15:

spriteD sappearl : = new RenoveSpriteFronttageAction targetNum 1 \
time: 15

nyActionLi st := nyscorepl ayer. score. Acti onLi st

append nyActionLi st spriteD sappear 1

AddSpriteToStageAction

This action makes a sprite appear in the given channel at the given time. During the
importing of a Director title into ScriptX, the Director-to-ScorePlayer Importer
automatically creates an AddSpri t eToSt ageAct i on action for each sprite in the
animation to make it appear the first time. Note that to change the shape of a sprite
in the animation, you should use the ChangeSpr i t eAppear anceAct i on.

AddSpri t eToSt ageAct i on instances have a t ar get instance variable that indicates
which presenter should appear. The presenter must be either a TwoDSprite or a
Text Sprite.

215

ScriptX Tools Guide

216

If this is the first time that an image is to appear in this channel, the value of the
boundary of this presenter is subsequently set by a
ChangeSpri t eAppear anceAct i on.

Note that three actions are required to make a sprite appear in a previously empty
channel:

— An AddSpri t eToSt ageAct i on puts a presenter in a channel that was previously
empty.

— A ChangeSpri t eAppear anceAct i on sets the target of the presenter. The value
of the t ar get keyword must be another presenter whose boundary instance
variable points to the desired bitmap, shape or text.

— A Pat hAct i on sets the position of the presenter.

ChangeSpriteAppearanceAction

This action changes the image of the sprite in the given channel at the given time.
When creating one of these actions, supply the t ar get keyword, whose value must
be a presenter, specifically, a TwoDSpri t e or a Text Spri te.

This action does not actually put the presenter specified by t ar get into the
animation, instead it puts the object in the target’s boundary instance variable into
the animation. The action switches the value of the boundar y instance variable of the
sprite in the given channel to be the same as the boundary of the given target.

ChangeSpriteSizeAction

This action changes the width and or height of the sprite in the given channel at the
given time. It takes wi dt h and hei ght keywords.

To change the width and height of the sprite in channel 8 at time 9:

nyActionLi st := nyscorepl ayer. score. Acti onLi st

changeSi zel := new ChangeSpriteSi zeAction targetNum8 tine:9 \
wi dt h: 100 hei ght: 120

append nyActionLi st changeSi zel

ChangelnkAction

This action changes the inkmode of the given channel at the given time. It takes an
i nknode keyword, whose value can be @opy, @ratte or @nvi si bl e.

@opy — When a sprite has an inkmode of @opy, the whole of the rectangle enclosing
the image obscures any underlying images.

@rat t e - If the inkmode of an image is @t t e, only image within the actual
boundary of the shape obscure any underlying images.

@nvi si bl e — If the inkmode of an image is @nvi si bl e, only the colored pixels of
the image obscure any underlying images, the white pixels are transparent.

These three inkmodes are illustrated in Figure 16-2. Other inkmodes default to
@opy.

Using the Director-to- ScorePlayer Importer

A

~

The inkmode The inkmode The inkmode
of the front image of the front image of the front image
is @matte is @nvi shl e is @opy
Figure 16-2: The @matte, @invisble and @copy inkmodes
To change the inkmode of channel 5 to @rat t e at time 77:

nyActionLi st := nyscorepl ayer. score. Acti onLi st

changei nk1 : = new Changel nkAction targetNum5 tine:77 \
i nknode: @matte

append nyActionLi st changei nk1

WaitForSoundAction

This action causes the animation to wait until a sound has finished. It has a
channel Nunber instance variable, whose value is 1 or 2, which indicates the sound
channel to wait for. The value of the time instance variable indicates at what time to
start waiting (that is, the animation continues playing until that time and then starts
waiting).

To make the animation start waiting at time 10 for the sound in sound channel 1 to
finish:

nyActionLi st := nyscorepl ayer. score. Acti onLi st
vai t Soundl : = new VMit For SoundActi on channel Nunber:1 tinme: 10 \
append nyActionLi st wai t Soundl

PrepareTransitionAction
This action sets up a transition.

When the importing process encounters a transition in a Director score, it creates two
actions:

* A PrepareTransitionAction that prepares the score player for the
transition.

e A ScriptAction that starts the transition playing. The value of the scri pt
instance variable is a global, exported function called
scorePl ayer Start Transi ti on.

You can modify the durati on, di recti on and scal e instance variables of existing
Prepar eTr ansi sti onAct i on instances but you cannot add new
Prepar eTransi ti onAct i on instances

How to Read the Action List of a Score

To modify an animation that was created in Director and then imported into ScriptX,
you add actions to, or modify the existing actions in, the action list of the Scor e object.

217

ScriptX Tools Guide

218

The value of the acti onLi st instance variable of the Scor e object is a collection of
actions. If you print the acti onLi st you see a list of actions, for example:

-- nyScorePlayer is a an existing scorePl ayer
nyactionlist := nyScorePl ayer.score.actionlist

returns the following action list:

#(ChangeTenpoAct i on@xad2d28, AddSpriteToSt ageActi on@xa06d48,
Pat hAct i on@xad3a48, Scri pt Acti on@xad3d08,

AddSpri t eToSt ageAct i on@xa0aa08, Pat hActi on@xad3e28,

Scri pt Acti on@xad4048, AddSpriteToSt ageActi on@xalaac8,

Pat hAct i on@xad4228, ScriptActi on@xad4608, ...) as ActionList

While this collection shows the actions that make up the animation, you cannot see
what objects perform the actions or at what times.

You can define a function that displays the actions in the action list with more
information. The example function defined here uses the f or mat method which prints a
string, and substitutes values into variables in the string. (See Chapter 3 in the ScriptX
Language Guide for more information on using the f or mat method.)

function printActions x ->(
format debug "% at time % on target nunber 9%3 \n" \
#(x, x.time, x.targetnun) \
#(@nador ned, @mnadorned, @mnadorned))

-- %, 9%, 9% refer to the itens at postion 1, 2 and 3
-- in the input list, which is #(x, x.tine, x.targetnum
-- #(@nadorned, @nadorned, @mnadorned) are the printing styles for
-- %, % and 9% (in this case, print themall in unadorned style)

You can use the method f or Each to call a function such as pri nt Acti ons on each item
in a collection. The f or Each method takes three arguments: the collection to iterate
over, the function to call for each item in the collection, and another argument that can
be used to pass additional information to the function. In this case, no additional
information is needed, so you can pass anything as the third argument since it is
ignored anyway. (See the description of the class Collection in the ScriptX Class Reference
for more information about the f or Each method.)

-- nyScorePl ayer is an existing scorePl ayer
nyactionlist := nyScorePl ayer.score.actionlist
forEach nyactionlist printActions 1

This might return:

ChangeTenpoAct i on@xedb0a8 at tine 0 on target nunber 1
AddSpri t eToSt ageAct i on@xe76548 at time O on target nunber 1
ChangeSpri t eAppear anceAct i on@xedbla8 at tine 0 on target nunber 1
Pat hActi on@xedble8 at tine 0 on target nunber 1

AddSprit eToSt ageActi on@xe2ce88 at time O on target nunber 4
ChangeSpri t eAppear anceActi on@xede6e8 at tine 0 on target nunber 4
Pat hActi on@xede728 at tine 0 on target nunber 4

AddSpri t eToSt ageActi on@xe2cf08 at time 1 on target nunber 3
ChangeSpri t eAppear anceAct i on@xedee68 at tine 1 on target nunber 3
Pat hActi on@xedeee8 at tine 1 on target nunber 3
ChangeSpri t eAppear anceAct i on@xedef 08 at tine 1 on target nunber 4
Pat hActi on@xedfa48 at tine 1 on target nunber 4
RermoveSpri t eFrontt ageActi on@xdfefa8 at tine 2 on target nunber 1
ChangeSpri t eAppear anceActi on@xedf cO8 at tinme 2 on target number 3
Pat hActi on@xedfce8 at tine 2 on target nunber 3
ChangeSpri t eAppear anceActi on@xedfa08 at tine 2 on target nunber 4

Using the Director-to- ScorePlayer Importer

Pat hActi on@xedf cb8 at tine 2 on target nunber 4
ChangeSoundAct i on@xedf ab6 at tine 2 on target nunber O
Changel nkActi on@xede688 at tinme 3 on target nunber 4
and so on...

This output shows what actions happen at what times. To help you understand the
output, here’s a line by line explanation.

At time 0, set the tempo of the animation. Note that the t ar get Numof a
ChangeTenpoAct i on is irrelevant since it operates on the animation as a whole, not on
any particular object in the animation.

ChangeTenpoActi on@xedb0a8 at tine 0 on target nunber 1

At time 0, make a sprite appear in channel 1. To make an object appear the first time, a
AddSpri t eToSt ageAct i on action puts a sprite into the channel; a

ChangeSpri t eAppear anceAct i on gives the sprite an image, and a Pat hAct i on sets the
position of the sprite. The position is determined by the path action’s dest Posi ti on
instance variable.

AddSpri t eToSt ageAct i on@xe76548 at time O on target nunber 1
ChangeSpri t eAppear anceActi on@xedbla8 at time O on target nunber 1
Pat hActi on@xedble8 at tine 0 on target nunber 1

At time 0, make the sprite in channel 4 appear.

AddSprit eToSt ageActi on@xe2ce88 at time O on target nunber 4
ChangeSpri t eAppear anceAct i on@xede6e8 at time 0 on target nunber 4
Pat hActi on@xede728 at tine 0 on target nunber 4

At time 1, make the sprite in channel 3 appear.

AddSpri t eToSt ageAct i on@xe2cf08 at time 1 on target nunber 3
ChangeSpri t eAppear anceAct i on@xedee68 at time 1 on target nunber 3
Pat hActi on@xedeee8 at tine 1 on target nunber 3

At time 1, change the image of the sprite in channel 4 and move it. The destination
position is determined by the dest Posi ti on on the Pat hAct i on instance.

ChangeSpri t eAppear anceActi on@xedef08 at time 1 on target nunber 4
Pat hActi on@xedfa48 at tine 1 on target nunber 4

At time 2, make the sprite in channel 1 disappear.

RermoveSpri t eFrontt ageActi on@xdfefa8 at tine 2 on target nunber 1

At time 2, change the image of the sprite in channel 3 and move it.

ChangeSpri t eAppear anceActi on@xedfc08 at time 2 on target nunber 3
Pat hAct i on@xedfce8 at time 2 on target nunmber 3

At time 2, change the image of the sprite in channel 4 and move it.
ChangeSpri t eAppear anceActi on@xedf a08 at time 2 on target nunber 4
Pat hActi on@xedf cb8 at tine 2 on target nunber 4

At time 2, start playing a sound.

ChangeSoundAct i on@xedf ab6 at tine 2 on target nunber 0

219

ScriptX Tools Guide

220

At time 3 change the ink mode of the sprite in channel 4

Changel nkActi on@xede688 at tinme 3 on target nunber 4

Retrieving Information about an Animation

You can use methods that operate on collections, such as choosetne and chooseAl | to
answer questions such as:

® Is there a path action for a given channel at a given time?

® What are all the sprite appear actions?

¢ What are all the actions that happen at time 10?

* What t ar get Numdoes the first path action at time 5 operate on?
® and so on...

The following sample code uses the function pri nt Acti ons introduced earlier, which
prints an action, its time and its target number. See page 218 for a definition of this
function.

-- nyScorePl ayer is an existing scorepl ayer
gl obal nyactionlist := nyScorePl ayer.score.actionlist

-- To print all the pathactions:

local pathActionList := chooseAll nyactionlist \
(a b ->(getdass a) = PathAction) \

foreach pathActionList printActions 1

-- print all the pathactions at tine 8:

| ocal pathActionListSubl := chooseA | pathActionList \
(ab->atime =28 1

foreach pathActionListSubl printActions 1

-- to print all actions at tine 8:
foreach (chooseAll nyActionList (a b -> a.tine = 8) 1) \
printActions 1

-- to print the all the actions at time = 11 on target Num 4:
foreach (chooseAll nyActionList (a b ->
(a.time = 11) and (a.targetNum = 4)) 1) \
printActions 1

C HAPTETR

Director-to-ScorePlayer
Importer API

ScriptX Tools Guide

222

Director-to-ScorePlayer Importer API

This chapter lists the classes in the Director to ScorePlayer Importer component.

The classes in the Director Translation Kit live in the DTK module, so you must work in
the Di rect or I nport er module, or in a module that uses the D rect or | npor t er
module, to be able to use them.

For information about how to use these classes to import a Director title into ScriptX,
see Chapter 16, “Using the Director-to- ScorePlayer Importer.”

223

ScriptX Tools Guide

AddSpriteToStageAction

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Tar get Li st Action

TargetListAction

ScriptAction

TargetListAction
The AddSpri t eToSt ageAct i on class is a specialized subclass of the Tar get Li st Acti on
class that represents the addition of a castmember to a channel. When importing a
Macromedia Director score, the importer creates an instance of the

AddSpri t eToSt ageAct i on class whenever a castmember is added to a channel that was
previously empty.

AddSpriteToStageAction

You can add AddSpri t eToSt ageAct i on instances to the action list of a Scor e to add a
castmember to a channel that was previously empty, or to bring back a castmember that
was previously made invisible by a RenoveSpr i t eFr ont ageAct i on action.

Creating New AddSpriteToStageAction Instances

To create a new instance of the AddSpri t eToSt ageAct i on class, call the newmethod,
which takes t arget Num ti me and t ar get keywords.

time The time at which the action is to occur.

targetNum The channel which the action affects.

target A TwoDSprite, TextSprite or Vi deoSprit e object,
depending on whether an image, text or movie is to be
displayed.

If the sprite was previously displayed and was removed
by a RenoveSpri t eFr onBt ageAct i on action, the
target keyword must be the value in the t ar get Num
position of the appropriate Scor e object’s t ar get s
instance variable.
For example, if the value of t ar get Numis 3, and the
Scor e is act i onpl ayer 1:

target: actionpl ayer.targets[3]
If this is the first time that an image is to appear in this
channel, the value of the boundary of this presenter
must subsequently be set by a
ChangeSpri t eAppear anceAct i on.

For example, to make make the character in channel 2 disappear at time 5 and then
reappear again at time 15:

-- nyscoreplayer is an existing ScorePl ayer instance

nyActionLi st := nyscorepl ayer. score. Acti onLi st
spriteD sappearl : = new RemoveSpriteFronBtageAction targetNum2 \
time:5

prepend nyActionLi st spriteD sappearl

spriteAppearl := new AddSpriteToStageAction targetNum2 tine:15 \
target: (nyscoreplayer.score.targets[2])

prepend nyActionList spriteAppearl

Instance Variables

Inherited from Acti on:
aut hor Dat a t ar get Num time
playnly

Inherited from Scri pt Acti on:
script

224

Director-to-ScorePlayer Importer API

Inherited from Tar get Li st Act i on:
rew ndScri pt

The following instance variables are defined in AddSpri t eToSt ageAct i on:

target

self. t ar get (read-write) Nunber
The sprite to to be added to a channel by the action self.

Instance Methods

Inherited from Acti on:
trigger

225

ScriptX Tools Guide

ChangelnkAction

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Action

The Changel nkAct i on class is a specialized subclass of the Acti on class that represents
a change in ink mode for a channel. When importing a Macromedia Director score, the
importer creates an instance of the ChangeSpr i t eAppear anceAct i on class whenever a
channel’s ink mode changes.

You can add Changel nkAct i on instances to the action list of a Scor e to make a channel
change its inkmode.

Currenly, the only inkmodes supported are @opy, @matte and @nvi si bl e.

Creating New ChangelnkAction Instances

To create a new instance of the Changel nkAct i on class, call the newmethod, which
takes target Num ti me, and i nknode keywords.

time The time at which the action is to occur.

targetNum The channel which the action affects.

inkmode The new inkmode, which can be @matte, @opy or

@nvi si bl e.

For example, to change the inkmode of the character in channel 5 to @rat t e at time
77:

-- nyscoreplayer is an existing ScorePl ayer instance

nyActionLi st := nyscorepl ayer. score. Acti onLi st

changei nk1 : = new Changel nkAction targetNum5 tine:77 \

i nknode: @matte
append nyActionLi st changei nk1

Instance Variables

Inherited from Acti on:
aut hor Dat a t ar get Num time
playOnly

The following instance variables are defined in Changel nkAct i on:

inkMode

self. i nkMode (read-write) Nunber

The ink mode to be set by the action self on the channel determined by the value in self’s
t ar get Numinstance variable. The ink mode can be @ratt e, @opy or @nvi si bl e.

Instance Methods

Inherited from Acti on:
trigger

226

Director-to-ScorePlayer Importer API

ChangeSoundAction

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Action

RootObject

The ChangeSoundAct i on class is a specialized subclass of the Acti on class that
represents sound changes. While the Director Importer is importing a Macromedia
Director movie score or animation, each sound change (such as a sound starting to play)
becomes a ChangeSoundAct i on. A ChangeSoundAct i on tells one of the two

D gi t al Audi oPl ayer instances to start playing a sound.

ChangeSoundAction

You can add ChangeSoundAct i on instances to the action list of a Scor e to add
additional sound changes to an animation.

Creating New ChangeSoundAction Instances

To create a new instance of the ChangeSoundAct i on class, call the newmethod, which
takes ti ne, medi aSt r eamand audi oPl ayer | ndex keywords.
time Time for the sound to start
mediaStream
A Medi aSt r eamobject that has sound in it. See the
previous chapter for information on how to use the
Import/Export engine to import a sound file into
ScriptX as a medi aSt r eamobject.
audioPlayerIndex
An integer (which must be 1 or 2) that represents which
channel should play the sound.

For example to play the sound in the media object Li onRoar i ng at time 100 on
channnel 2:

roarl := new ChangeSoundAction time:100 medi aStream Li onRoaring \
audi oPl ayer | ndex: 2

-- nyScorePlayer is an existing ScorePl ayer

nyActionLi st := nyscorepl ayer. score. Acti onLi st

append nyActionList roarl

Instance Variables

Inherited from Acti on:
aut hor Dat a t ar get Num time
pl aynl y

The following instance variables are defined in ChangeSoundAct i on:

audioPlayerindex

self. audi oPl ayer | ndex (read-write) Nunber

The value of this instance variable is either 1 or 2, indicating which sound channel to
use to play a sound.

mediaStream

self. medi aSt r eam (read-write) Medi aSt r eam

An Audi oSt r eamobiject that is associated with a D gi t al Audi oPl ayer object when the
Scor e triggers a ChangeSoundAct i on.

227

ScriptX Tools Guide

Instance Methods

Inherited from Acti on:
trigger

228

Director-to-ScorePlayer Importer API

ChangeSpriteAppearanceAction

Action
ChangeSpriteAppearanceAction

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Action

The ChangeSpri t eAppear anceAct i on class is a specialized subclass of the Act i on class
that represents a change in appearance of a castmember. When importing a Macromedia
Director score, the importer creates an instance of the ChangeSpr i t eAppear anceAct i on
class whenever a castmember changes its appearance.

You can add ChangeSpr i t eAppear anceAct i on instances to the action list of a Scor e to
make a castmember change its appearance.

Creating New ChangeSpriteAppearanceAction Instances

To create a new instance of the ChangeSpri t eAppear anceAct i on class, call the new
method, which takes t ar get Num ti ne and t ar get keywords.

time The time at which the action is to occur.

targetNum The channel which the action affects.

target The TwoDSpri t e or Text Spri t e object whose
boundar y instance variable points to the desired image
or text.

This action does not actually put the presenter specified by t ar get into the
animation, instead it puts the object in the target’s boundary instance variable into
the animation. The action switches the value of the boundary instance variable of the
object in the given channel to be the same as the boundary of the given target.

Instance Variables

Inherited from Acti on:
aut hor Dat a t ar get Num time
playOnly

The following instance variables are defined in ChangeSpr i t eAppear anceAct i on:

target

self. t ar get (read-write) Sprite

The sprite whose appearance is to be changed by the action self.

Instance Methods

Inherited from Acti on:
trigger

229

ScriptX Tools Guide

ChangeSpriteSizeAction

Action
ChangeSpriteSizeAction

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Action

The ChangeSpri t eSi zeAct i on class is a specialized subclass of the Acti on class that
represents a change in size of a castmember. When importing a Macromedia Director
score, the importer creates an instance of the ChangeSpri t eSi zeAct i on class whenever
a castmember changes its size.

You can add ChangeSpri t eSi zeAct i on instances to the action list of a Scor e to make a
castmember change its size.

Creating New ChangeSpriteSizeAction Instances

To create a new instance of the ChangeSpri t eAppear anceAct i on class, call the new
method, which takes t arget Num ti ne, wi dt h and hei ght keywords.

time The time at which the action is to occur.
targetNum The channel which the action affects.
width The new width of the castmember.
height The new height of castmember.

To change the width and height of the character in channel 8 at time 9:

-- nyscoreplayer is an existing ScorePl ayer instance

nyActionLi st := nyscorepl ayer. score. Acti onLi st

changeSi zel : = new ChangeSpriteSi zeAction tine:9 targetNum8 \
wi dt h: 100 hei ght: 120

append nyActionLi st changeSi zel

Instance Variables

Inherited from Acti on:
aut hor Dat a t ar get Num time
playOly

The following instance variables are defined in ChangeSpr i t eAppear anceAct i on:

height

self. hei ght (read-write) Nurber

The height to be set by the action self on the sprite in the channel determined by the
value in self’s t ar get Numinstance variable.

width

self. wi dt h (read-write) Nunber

The width to be set by the action self on the sprite in the channel determined by the
value in self’s t ar get Numinstance variable.

Instance Methods

230

Inherited from Acti on:
trigger

Director-to-ScorePlayer Importer API

ChangeTempoAction

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Action

The ChangeTenpoAct i on class is a specialized subclass of the Acti on class that
represents tempo changes in an animation. When translating a Macromedia Director
movie score or animation, the importer creates an instance of the ChangeTenpoAct i on
class whenever the tempo of the score changes.

You can add ChangeTenpoAct i on instances to the action list of a Scor e to add
additional sounds to an imported animation.

Creating New ChangeTempoAction Instances

To create a new instance of the ChangeTenpoAct i on class, call the newmethod, which
takes ti ne and t enpo keywords.
time: Time for the sound to start
tempo: An integer indicating the tempo (that is, the playback
rate) for the animation.

Note that this action does not take a t ar get Numkeyword since it works on the score as
a whole, not on an individual object in the animation. For example, to set the tempo to
15 at time 3, and then speed it up even more to 20 at time 8:

-- nyScorePl ayer is an existing ScorePl ayer
t1: = new ChangeTenpoAction tine:3 tenpo: 15
t2: = new ChangeTenpoAction tine:8 tenpo: 20
nyActionLi st := nyscorepl ayer. score. Acti onLi st
append nyActionList t1

append nyActionList t2

Instance Variables

Inherited from Acti on:
aut hor Dat a t ar get Num time
playnly

The following instance variables are defined in ChangeTenpoAct i on:

tempoValue

self. t enpoVal ue (read-write) Nunber

The playback rate to which the ChangeTenpoAct i on self changes the associated Scor e
object.

Instance Methods

Inherited from Acti on:
trigger

231

ScriptX Tools Guide

Directorimporter

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: | nporter

RootObject

Importer A D rectorlnporter object imports either a castlist from a Director animation, or a

Directorimporter score along with the castmembers, into ScriptX.

The Director | nporter class is used by the Import/Export engine. It does not have
methods that are accessible by users.

232

Director-to-ScorePlayer Importer API

LoopAction

Action
LoopAction

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Action

The LoopAct i on class is a specialized subclass of the Acti on class that causes an
animation to start playing over again when it reaches the end. Users do not need to
create loop actions. To cause an animation to loop, set the | oopi ng instance variable of
the score player to t r ue.

Instance Variables

Inherited from Acti on:
aut hor Dat a t ar get Num time
pl ayCnl y

The following instance variables are defined in LoopAct i on:

looping

self. | oopi ng (read-write) Bool ean

Either t rue or f al se depending on whether the score action player is set to be looping
or not. (The score player is the one whose score’s action list includes the loop action

self.)

Instance Methods

Inherited from Acti on:
trigger

233

ScriptX Tools Guide

PrepareTransitionAction

Action
Azction

PrepareTransitionAction

Class type: Tool clas (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Action

The Prepar eTransi ti onActi on class is a specialized subclass of the Acti on class that
prepares a transition to play. When the transiton starts playing, the score ticker for the
animation stops ticking until the transition has finished.

When importing a Director title to a score player, the importing process creates two
actions for each transition in the score:

A transition generates two actions:
® A PrepareTransitionAction
e A ScriptAction

In between these two actions in the action list are the actions that setup the current
frame.

The script for the Scri pt Acti on is an exported global function called
Scor ePl ayer Start Transi ti on that starts the transition playing.

Instance Variables

234

Inherited from Acti on:
aut hor Dat a t ar get Num time
playOly

The following instance variables are defined in Prepar eTransi ti onActi on:

direction

self. direction (read-write) Naned ass

Specifies the direction for the transition player that will be created by the action self.

duration

self. durat i on (read-write) Nunber

Specifies the duration for the transition player that will be created by the action self.

scale

self. scal e (read-write) Nunber

Specifies the scale for the transition player that will be created by the action self.

scoreTicker

self. scor eTi cker (read-write) Scor eTi cker

Specifies the score ticker that needs to be restarted when the transition started by the
action self is completed.

When a transtion starts, the animation is suspended, that is, its score ticker (clock) is
stopped until the transiton is completed.

Director-to-ScorePlayer Importer API

transitionClass

self. transitiond ass (read-write) Nunber

Specifies the class of transition that the action self is preparing to play.

Instance Methods

Inherited from Acti on:
trigger

235

ScriptX Tools Guide

RemoveSpriteFromStageAction class

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
TargetListAction Inherits from: Action
ScriptAction The RenoveSpri t eFr onBt ageAct i on class is a specialized subclass of the Acti on class
TargetListAction that makes a sprite disappear from a channel. When translating a Macromedia Director

s ———yeTe score, the importer creates an instance of the RenoveSpri t eFr ontt ageAct i on class
whenever a castmember disappears from an animation channel.

Creating New RemoveSpriteFromStageAction Instances

To create a new instance of the RenoveSpri t eFr ont ageAct i on class, call the new
method, which takes t ar get Numand ti ne keywords.

time The time at which the action is to occur.
targetNum The channel which the action affects.

For example, to make make the character in channel 2 disappear at time 5:

-- nyscoreplayer is an existing ScorePl ayer instance

nyActionLi st := nyscorepl ayer. score. Acti onLi st
spriteD sappearl := new RenoveSpriteFronttageAction targetNum2 \
time:5

prepend nyActionLi st spriteD sappearl

Instance Variables

Inherited from Acti on:
aut hor Dat a t ar get Num time
playOnly

Inherited from Scri pt Acti on:
scri pt

Inherited from Tar get Li st Acti on:
rew ndScri pt

Instance Methods

Inherited from Acti on:
trigger

236

Director-to-ScorePlayer Importer API

Score

RootObject

Player

ActionListPlayer

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Acti onLi st Pl ayer

The Scor e class is a specialized subclass of the Acti onLi st Pl ayer class that holds the
list of actions that make up an animation that was imported from a Director score.

When the Director Importer creates a Scor ePl ayer object, the Scor ePl ayer object
creates an instance of Scor e automatically. Note that this instance of Scor e is intended
for use by the system to manage the animation, and is not meant to be modified by
users. It is used to execute actions at certain times that are set by the score ticker.

The actions that make up the animation are stored in the score’s acti onLi st instance
variable.

Instance Variables

Inherited from d ock:

cal | backs rate ticks
effectiveRate resol ution tine
mast er d ock scal e title
of f set sl aved ocks

Inherited from Pl ayer:

audi oMt ed gl obal Cont r ast gl obal Vol umeC f set

dat aRat e gl obal Hue mar ker Li st

duration gl obal PanCf f set st at us

gl obal Bri ght ness gl obal Sat urati on vi deoBl anked
Inherited from Acti onLi st Pl ayer:

acti onLi st aut hor Dat a rew ndScripts

targets

The following instance variables are defined in Scor e:

audioPlayers

self. audi oPl ayer s (read-write) Array

Specifies an array of two Di gi t al Audi oPl ayer objects. These digital audio players
represent the two sound channels of an animation that was imported from a Director
score.

ChangeSoundAct i on instances in the list of actions for the score self will change the
audio stream associated with one of these audio players.

executingTimeJump

self. exect ut i ngTi meJunp (read-write) Array

Specifies whether or not the score self is jumping in time rather than playing.

scorePlayer

self. scor ePl ayer (read-only) Scor ePl ayer

Specifies the Scor ePl ayer object that created the score self.

237

ScriptX Tools Guide

stage

self. st age (read-write) Space

Specifies the Space object that the score self uses to display and remove sprite objects.
That is, it is the stage on which the animation appears when the score is playing.

Instance Methods

Inherited from O ock:

addPer i odi cCal | back cl ockAdded pause
addRat eCal | back cl ockRenoved resune
addScal eCal | back ef fecti veRateChanged ti neJunped
addTi meCal | back f or EachSl ave wai t Ti me

addTi meJunpCal | back i sAppropri at ed ock waitUnti |

Inherited from Pl ayer:

addnar ker goToBegi n pl ayPr epar e
ej ect goToEnd pl ayUnpr epar e
f ast For war d goToMar ker Fi ni sh pl ayUnti |

get Mar ker goToMar ker St ar t rew nd

get Next Mar ker pause stop

get Pr evi ousMar ker pl ay

Inherited from Act i onLi st Pl ayer:
get Mut eChannel set Mit eChannel

The following instance methods are defined in Scor e:

getLast
getLast self Action
self. audi oPl ayer s (read-write) Array

Returns the last action in the action list of the score self.

238

Director-to-ScorePlayer Importer API

ScorePlayer

RootObject

Player

ScorePlayer

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Pl ayer

The Scor eP ayer class is a specialized subclass of the Pl ayer class that controls the
playback of an animation created by importing a Director score. An instance of this
class (rather than the Scor e class) is played to run animation.

When the Director Importer imports a Macromedia score, it returns a Scor eP| ayer
object that can be used to control the running of an animation.

A Scor ePl ayer object inherits the ability to play, fast forward, rewind, go to a specific
marker, pause, and stop playback from the Pl ayer class. A Scor ePl ayer cannot play
backwards.

A score player has a target space (stored in its st age instance variable) in which the
animation appears when it plays. By default, the stage of a score player is the same size
as the stage for the original Director score.

You do need to create instances of the Scor ePl ayer class. When the Director Importer
imports a Macromedia Director score, it automatically creates an instance of the
Scor ePl ayer class.

If you change the value of the f r ame instance variable of a stopped score player to a
frame that has a transition, then the transition will not be set up and will not play when
the score player starts playing from that frame.

Instance Variables

Inherited from O ock:

cal | backs rate ticks
ef fecti veRate resol ution tine
mast er A ock scal e title
of f set sl aved ocks
Inherited from Pl ayer:
audi oMt ed gl obal Cont r ast gl obal Vol umeC f set
dat aRat e gl obal Hue mar ker Li st
duration gl obal PanCx f set stat us
gl obal Bri ght ness gl obal Sat urati on vi deoBl anked

The following instance variables are defined in Scor eP| ayer:

brushCache

self. br ushCache (read) Array

Specifies an array of the brushes used by the text sprites in the animation controlled by
the score player self.

castList

self. cast Li st (read) Array

Specifies an array of the 2D sprites, text sprites and audio streams that appear in the
animation controlled by the score player self. Each sprite represents a castmember in the
Director castlist that was imported.

239

ScriptX Tools Guide

240

frame

self. frame (read-write) | nt eger

Specifies the frame that the score player self is currently playing.

loopAction

self. | oopActi on (read-write) LoopAcat i on

Specifies the LoopAct i on instance that is the first action in the action list for the score
for the scoreplayer self. This loop action is involved in determining whether the score
player loops or not. Users never need to interact with the loop action instance or
instance variable. Instead, set the value of the score player’s | oopi ng instance variable
to switch looping on and off.

looping

self. | oopi ng (read-write) Bool ean

Specifies whether or not the animation begins over from the beginning when it reaches
the end. If the value is t r ue, the animation loops. If the value is f al se, the animation
stops when it reaches the end.

score

self. score (read-write) Scor e

Specifies the score containing the list of actions that make up the animation controlled
by the score player self.

scoreTicker

self. scor eTi cker (read) Scor eTi cker

Specifies the Scor eTi cker object that is a player that has the Scor ePl ayer as its master
clock, and has a callback that calls st ep or st epBack methods on the Scor ePl ayer ’s
Scor e. The Scor eTi cker is basically responsible for controlling the timing of the
animation.

scoreTickerRate

self. scor eTi cker Rat e (read) I nt eger

Specifies the rate for the score ticker associated with the score player self.

spriteChannelinforray

self. sprit eChannel | nf oArr ay (read-write) Array

Specifies an array of 24 or 48 Sprit eChannel | nf o objects. Each Sprit eChannel | nf o
object is updated during the animation to contain information about the channel it
represents, such as the current i nknode for the channel.

stage

self. st age (read-write) Space

A Space or a TwoDMul ti Present er object that the Director Importer created when it
initialized the score player self. This stage is used to display sprites when the animation

plays.

Director-to-ScorePlayer Importer API

textSpriteCache

self. t ext Spri t eCache (read) Array

Specifies an array of 24 or 48 Text Spri t e objects. This cache is called upon during
animation when text is displayed so that the presenters do not need to be created at
animation time.

transitionPlayer

self. transi tionPl ayer (read-write) Space

If a transition is playing, specifies the transi ti onPl ayer object playing the transition.
If no transition is playing, this instance variable has the value undef i ned.

twoDSpriteCache

self. t woDSpr i t eCache (read) Array

Specifies an array of 24 or 48 TwoDSpri t e objects. This cache is called upon during
animation when images are displayed so that the presenters do not need to be created
at animation time.

Instance Methods

Inherited from O ock:

addPer i odi cCal | back cl ockAdded pause
addRat eCal | back ¢l ockRenmoved resume
addScal eCal | back ef fecti veRat eChanged ti neJunped
addTi neCal | back for EachSl ave wai t Ti ne

addTi neJunpCal | back i sAppropri at ed ock waitUntil

Inherited from Pl ayer:

addMar ker goToBegi n pl ayPr epar e
ej ect goToEnd pl ayUnpr epar e
f ast Forward goToMar ker Fi ni sh pl aynti |

get Mar ker goToMar ker St art rew nd

get Next Mar ker pause stop

get Previ ousMar ker pl ay

The following instance methods are defined in Scor ePl ayer:

restartAnimation

restart Ani mation self O undefi ned

Restarts the animation played by the score player self when a transtion finishes playing.

241

ScriptX Tools Guide

ScorePlayerCastTranslator

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: DTKCast Menber ToPr esent er and DTKCast Menber ToAudi oSt r eam

RootObject

DTKCastTranslator

The Scor ePl ayer Cast Transl at or class has methods for translating castmembers in a
Director score to ScriptX objects. It translates shape and bitmap castmembers to
DTKCastMemberToPresenter TwoDSpr i t e objects, it translates text castmemberts to Text Spri t e objects, and it

Ty translates sound castmembers to Audi 0St r eamobjects. It cannot translate video and
button cast members, they become undef i ned objects in ScriptX.

DTKCastMemberToStencil

ScorePlayerCastTranslator

The Director importer creates and uses a Scor ePl ayer Cast Tr ans| at or object. Users
should not need to either create or modify instances of this class.

Instance Variables

brushCache

self. br ushCache (read) Array

Specifies an array of the brushes used by Text Spri t e objects that represent converted
text castmembers in the castlist converted by self.

Instance Methods

translateBitmap

transl at eBi t map self bitmapCast O TwoDSprite
self Scor ePl ayer Cast Transl at or object
bitmapCast A DTKBi t map object representing a Director bitmap
castmember.

Translates a Director bitmap castmember in the castlist being converted by self to a
TwoDSpri t e object. The 2D sprite has an appropriate bitmap in its t ar get instance
variable.

translateShape

transl at eShape self shapeCast O TwoDSprite
self Scor ePl ayer Cast Tr ansl at or object
shapeCast A DTKShape object representing a Director shape
castmember.

Translates a Director shape castmember in the castlist being converted by self to a
TwoDSpri t e object. The 2D sprite has an appropriate stencil in its t ar get instance
variable.

translateSound

transl at eSound self soundCast O Audi oSt ream
self Scor ePl ayer Cast Tr ansl at or object
soundCast A castmember displaying text.

Translates a Director sound castmember in the castlist being converted by self to an
Audi oSt r eamobject. The audio sprite has an appropriate stream containing digitiazed
sound data in its i nput St r eaminstance variable.

242

Director-to-ScorePlayer Importer API

translateText

transl at eText self textCast O TwoDSprite
self Scor ePl ayer Cast Transl at or object
textCast A castmember displaying text.

Translates a Director text castmember in the castlist being converted by self to a
Text Spri t e object. The text sprite has appropriate text in its t ar get instance variable.

translateUnknwn

transl at eText self cast O undefi ned
self Scor ePl ayer Cast Transl at or object
cast A castmember of unknown type.

Translates a Director text castmember of unknown type in the castlist being converted
by self to an undefined object.

translateVideo

transl at eText self videoCast 0O VideoSprite
self Scor ePl ayer Cast Tr ansl at or object
videoCast A castmember that plays video.

Translates a Director video castmember in the castlist being converted by self to a
Vi deoSpri t e object. The video sprite can play the appropriate movie.

243

ScriptX Tools Guide

ScorePlayerScoreTranslator

RootObject

DTKScoreTranslator

ScorePlayerScoreTranslator

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: DTKScor eTr ansl at or

A Scor ePl ayer Scor eTr ansl at or object translates a Director score into a ScriptX
Scor ePl ayer object and other associated objects.

You do not need to create an instance of the Scor ePl ayer Scor eTr ansl at or class.
When the Director Importer imports a Director score, it creates an instance of the
Scor ePl ayer Scor eTr ansl at or class automatically.

Instance Variables

Inherited from DTKScor eTr ans| at or:
castlist cont ai ner dtk
out put Stream

The following instance variables are defined in Scor ePl ayer Scor eTr ansl at or:

scorePlayer

self. scor ePl ayer (read-write) Scor ePl ayer

Specifies the Scor ePl ayer object that represents the Director score translated into
ScriptX by the translator self.

Instance Methods

244

Inherited from DTKScor eTr ans| at or:
pr epar eToTr ansl at eScor e
transl at eFr ane
set DTK

Director-to-ScorePlayer Importer API

ScoreTicker

RootObject

Player

ScoreTicker

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Pl ayer

A Scor eTi cker instance is a clock that ticks a Scor e.

Each imported Director animation has a Scor eTi cker object associated with the Score
object for the animation. The score ticker is intended for use by the system to manage
the timing of the animation, and is not meant to be modified by users.

Instance Variables

See the ScriptX Class Reference for the instance variables inherited from superclasses of
Scor eTi cker.

The following instance variables are defined in Scor eTi cker:

stepCallback

self. st epCal | back (read-write) Cal | back

Specifies the callback that calls the st ep or st epBack methods on the score that is ticked
by the score ticker self.

stepTarget

self. st epTar get (read-write) Score

Specifies the target to which to send the current method. The target is the score that is
ticked by the score ticker self.

Instance Methods

See the ScriptX Class Reference for the instance methods inherited from superclasses of
Scor eTi cker.

The following instance methods are defined in Scor eTi cker:

tickleAnimation

tickl eAni mation self score O target
self Scor eTi cker object
score The Scor e object to be ticked.

Invokes the callback in the st epCal | back instance variable to call the appropriate step
method on the score that is ticked by the score ticker self.

245

ScriptX Tools Guide

Sprite

RootObject Class type: Tool class (abstract)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
e Inherits from: Root Chj ect

This is an abstract class, whose purpose is to provide a common superclass to the
classes TwoDSprite, TextSprite, and Vi deoSprite.

When a Director castlist is imported into ScriptX, each castmember becomes a a 2D
sprite, a text sprite, or a video sprite.

246

Director-to-ScorePlayer Importer API

SpriteChannelinfo

RootObject
SpriteChannelinfo

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Root Chj ect

A SpriteChannel | nf o instance holds information about the state of a channel during
an animation playback. Currently a Spri t eChannel I nf o object records the
channel Nunber, i nkMbde, nmat t eCol or and i nvi si bl eCol or.

When the Director Importer imports a Director score, it creates 24 or 48

Spri t eChannel | nf o objects — one for each channel. The Scor ePl ayer created by the
importing process has an instance variable Spri t eChannel | nf o, whose value is an
array of all the Sprit eChannel | nf o objects for this animation.

As the animation progresses, each Sprit eChannel | nf o object updates to maintain the
correct information about the channel for the current time.

Instance Variables

These instance variables are for use by the system to maintain information about the
state of the animation, and should not be changed by users.

channelNumber

self. channel Nunber (read) I nt eger

The channel that the Spri t eChannel | nf o object self holds information about.

inkMode

self. i nkMbde (read-write) Naned ass

The current inkmode for this channel, which will be either @opy, @t te. or
@nvi si bl e.

matteColor

self. mat t eCol or (read-write) RGBCol or

The current matte color for this channel.

invisibleColor

self. i nvi si bl eCol or (read-write) R@BCol or

The current invisible color for this channel.

Instance Methods

setink

setlnk self newlnk O Nared ass
self Spri t eChannel | nf o object
newlnk The new inkmode.

Updates the Spri t eChannel | nf o object self to hold the current inkmode information.

Users should not call this method. It gets called automatically at the appropriate time.

247

ScriptX Tools Guide

TextSprite

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Sprite and Text Present er

TextPresenter

TextSprite

The class Text Spri t e represents sprites in an animation that display text.

When the Director importer imports a Director castlist into ScriptX, each castmember
that displays text becomes a Text Spri t e instance. To speed up the running of an
animation, the Scor ePl ayer keeps a cache of 24 or 48 Text Spri t e instances, one for
each channel, which are used to present text on the screen during the animation.

The Text Spri t e class inherits instance variables from its superclasses. For example, the
boundar y instance variable denotes the shape to be presented; the wi dt h instance
variable denotes the width; the hei ght instance variable denotes the height; and the x
and y instance variable denotes the x and y values of the shape’s position. The z
instance variable denotes the z ordering, which determines where the shape is in the
stack of displayed images (an image with a high z value appears on top of an image
with a low z value on the screen.)

To change the values of instance variables of Text Spri t e instances that are
participating in an animation, you should use appropriate Act i on instances. For
example, use a Pat hAct i on to change the position; use a Changel nkAct i on to change
the ink mode and use a ChangeSprit eSi zeActi on to change the size.

Instance Variables

Inherited from Presenter:

pr esent edBy subPresenters t ar get
Inherited from TwoDPr esent er :
bBox gl obal Regi on transform
boundary gl obal Tr ansf orm width
changed hei ght w ndow
cl ock i mageChanged X
conposi t or isVisible y
di rect posi tion z
eventinterests stationary
gl obal Boundary t ar get
Inherited from Text Present er:
attributes fill sel ect i onFor egr ound
cur sor i nset stroke
cur sor Brush of f set
enabl ed sel ecti onBackgr ound

The following instance variables are defined in Text Sprite:

invisibleColor

self. i nvi si bl eCol or (read) R@BCol or

The invisible color for the text sprite self.

matte

self. matte (read) R@BCol or

The matte color for the text sprite self.

248

Director-to-ScorePlayer Importer API

Instance Methods

Inherited from TwoDPr esent er :

addChangedRegi on draw refresh

adj ust d ockMast er get Boundar yl nPar ent wi ndowToLocal
createl nt erestLi st | ocal ToW ndow show

hi de conposi t or Changed

Inherited from Text Present er :
cal cul ate get Poi nt For O f set pr ocessMouseDown
get O f set For XY

249

ScriptX Tools Guide

TwoDSprite

250

TwoDShape

TextSprite

Sprite

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Sprite and TwoDShape

The class TwoDSpr i t e represents sprites in an animation that display a shape or a
bitmap

When the Director importer imports a Director score into ScriptX, each shape
castmember or bitmap castmember becomes a TwoDSpr i t e instance.To speed up the
running of an animation, the Scor ePl ayer keeps a cache of 24 or 48 TwoDSprite
instances, one for each channel, which are used to present images on the screen during
the animation.

The TwoDSpri t e class inherits instance variables from its superclasses. For example, the
boundary instance variable denotes the shape to be presented; the wi dt h instance
variable denotes the width; the hei ght instance variable denotes the height; and the x
and y instance variable denotes the x and y values of the shape’s position. The z
instance variable denotes the z ordering, which determines where the shape is in the
stack of displayed images (an image with a high z value appears on top of an image
with a low z value on the screen.)

To change the values of instance variables of TwoDSpri t e instances that are
participating in an animation, you should use appropriate Act i on instances. For
example, use a Pat hActi on to change the position; use a Changel nkAct i on to change
the ink mode and use a ChangeSpri t eS zeActi on to change the size.

Instance Variables

Inherited from Presenter:

pr esent edBy subPresenters t ar get
Inherited from TwoDPr esent er:

bBox gl obal Regi on transform

boundary gl obal Tr ansf orm wi dt h

changed hei ght wi ndow

cl ock i mageChanged X

conposi t or isVisible y

direct posi tion z

eventlnterests stationary

gl obal Boundary t ar get

Inherited from TwoDShape:
fill stroke

The following instance variables are defined in TwoDSpri t e:

invisibleColor

self. i nvi si bl eCol or (read) R&Col or
The invisible color for the 2D sprite self.

matteColor

self. matte (read) RGBCol or

The matte color of the 2D sprite self.

Director-to-ScorePlayer Importer API

Instance Methods

Inherited from TwoDPr esent er :

addChangedRegi on draw refresh

adj ust d ockMast er get Boundar yl nPar ent wi ndowToLocal
createl nt erestLi st | ocal ToW ndow show

hi de conposi t or Changed

251

ScriptX Tools Guide

VideoSprite

TextPresenter

252

VideoSprite

Sprite

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Sprite and | nterl eavedMovi ePl ayer

The class Vi deoSpri t e represents sprites in an animation that play video.

When the Director importer imports a Director castlist into ScriptX, each castmember
that plays video becomes a Vi deoSpri t e instance.

The Text Spri t e class inherits instance variables from its superclasses. For example, the
boundary instance variable denotes the shape to be presented; the wi dt h instance
variable denotes the width; the hei ght instance variable denotes the height; and the x
and y instance variable denotes the x and y values of the shape’s position. The z
instance variable denotes the z ordering, which determines where the shape is in the
stack of displayed images (an image with a high z value appears on top of an image
with a low z value on the screen.)

To change the values of instance variables of Text Spri t e instances that are
participating in an animation, you should use appropriate Acti on instances. For
example, use a Pat hActi on to change the position; use a Changel nkAct i on to change
the ink mode and use a ChangeSpri t eSi zeActi on to change the size.

Instance Variables

See the ScriptX Class Reference for the instance variables inherited from superclasses of
Vi deoSprite.

The following instance variables are defined in Vi deoSpri te:

invisibleColor

self. i nvi si bl eCol or (read) RGBCol or

The invisible color for the video sprite self.

matte

self. matte (read) R@BCol or

The matte color for the video sprite self.

Instance Methods

See the ScriptX Class Reference for the instance methods inherited from superclasses of
Vi deoSprite.

Director-to-ScorePlayer Importer API

WaitForSoundAction

Action
WaitForSoundAction

Class type: Tool class (concrete)
Resides in: di ri np. sxl . Works in the KMP and the ScriptX executable.
Inherits from: Action

The Wi t For SoundAct i on class is a specialized subclass of the Act i on class that makes
an animation wait until a sound has finished before it resumes.

When translating a Macromedia Director score, the importer creates an instance of the
Vi t For SoundAct i on class whenever the score has a WaitForSound tempo control.

Creating New WaitForSoundAction Instances

To create a new instance of the Wi t For SoundAct i on class, call the newmethod, which
takes ti me and channel Numkeywords.
time: Time to start waiting.
channelNumber:
An integer, either 1 or 2, indicating which sound
channel is playing the sound that the animation should
wait for to be finished.

Note that this action does not take a t ar get Numkeyword since it works on the score as
a whole, not on any individual object in the animation. For example, to tell the
animation to stop playing at time 10 and to wait until the sound in sound channel 1 has
finished before resuming:

-- nyScorePlayer is an existing ScorePl ayer

wait1l: = new Wit For SoundAction time: 10 channel Nunber: 1
nyActionLi st := nyscorepl ayer. score. Acti onLi st

append nyActionList waitl

Instance Variables

Inherited from Acti on:
aut hor Dat a t ar get Num time
playnly

The following instance variables are defined in Wi t For SoundAct i on:

channelNumber

self. channel Nunber (read) R&BCol or

The number of the sound channel which this action is waiting for. The value will be
either 1 or 2.

channelNumber

self. channel Nunber (read) RGBCol or

The number of the sound channel which this action waits for. The value is either 1 or 2,
which is an index into the array in the audi oPl ayer s instance variable of the score
containing the action self.

scoreTicker

self. scor eTi cker (read-write) scor eTi cker

Specifies the score ticker that needs to be restarted when the sound for wich the action
self is waiting is completed.

253

ScriptX Tools Guide

When the wai t For SoundAct i on is invoked, the animation is suspended, that is, its
score ticker (clock) is stopped until the sound is completed.

scoreTickerRate

self. scor eTi cker Rat e (read-write) scor eTi cker

Specifies the rate at which to restart the score ticker discussed above.

Instance Methods

Inherited from Acti on:
trigger

The following instance methods are defined in Wi t For SoundAct i on:

startScoreTicker

start Scor eTi cker self O undefi ned

Starts the score ticker ticking again when the sound for which the animation is waiting
has finished playing. The result is that the animation starts playing again.

254

C HAPTETR

Using The Director
Translation Kit

ScriptX Tools Guide

256

Using The Director Translation Kit

This chapter discusses the use of the Director Translator Kit (DTK) to build customized
importers for Director titles.

The Director to ScorePlayer Importer, discussed in Chapter 16, “Using the Director-to-
ScorePlayer Importer”, is one example of an importer that can be built with the Director
Translation Kit.

If you want to import a simple Director animation, and play it back in ScriptX
automatically, then the Director to ScorePlayer Importer may be sufficient for your
needs, and you do not need to read this chapter. However, if you have your own ideas
about how to recreate a Director title in ScriptX and you do not want to use the

Scor ePl ayer mechanism provided by the Director to ScorePlayer Importer, then you
need to write your own customized Director Translator. If that’s the case, you should
read this chapter and you should also be very familiar with how to use the ScriptX
language.

The translation of data from a Director title to ScriptX-readable data is managed by a
DTK object. The DTK object is simply a translator — it translates a description of the
Director animation into ScriptX-readable information. It does not interpret the
information or work out how to reproduce the animation in ScriptX.

During the process of translating a Director title, the DTK object gets the information
from the Director title and makes it available to customized ScriptX cast and score
translators. These translators in turn convert the data into ScriptX objects that recreate
the Director title in ScriptX. You must write the translators.

This chapter assumes you have intimate knowledge of Director castlists and scores. It
does not explain concepts or terms that would be familiar to experienced Director users.
Chances are that if you're not experienced at Director then you’re not ready to write
your own customized Director importers.

Classes and Inheritance

This section shows the inheritance hierarchy for the classes in the Director Translator
Kit. It also lists and provides brief descriptions of these classes.

257

ScriptX Tools Guide

ClassesWritten RootObject

in OIC:

ScoreTranslator Sup

Classes Written
in ScriptX:

258

CastTranslator Support Classes:
DTKCastMember

DTKBitmap

DTKShape

DTKSound

DTKText

DTKButton

DTKVideo

DTKUnknown

DTKPalette

port Classes:

DTKScoreFrame
DTKSoundChannel
DTKSpriteChannel
DTKTempoChannel

DTKTransitionChannel

RootObject

DTKCastTranslator

DTKCastMemberToStencil

DTKCastMemberToPresenter

DTKCastMemberToAudioStream

DTKScoreTranslator

LEGEND

= Abstract Class
= Concrete Class

ClassName = A reference to a ScriptX
(no box) core class

Using The Director Translation Kit

DTK Class and the Classes that Hold Raw Data About a
Director Animation

These loadable classes are written in Objects In C (OIC), the language used to write the
ScriptX core classes. The DTK class, the DTKCast Menber class and the subclasses of
DTKCast Menber are fully defined. You do not need to subclass or modify them. These
classes retrieve the data from a Director animation and store it in a way that other
ScriptX classes (namely DTKCast Trans| at or and DTKScor eTr ansl at or classes) can
access and use.

In the following list of classes, indentation indicates inheritance.

DTK— has methods that control the process of importing a Macromedia Director
animation into ScriptX.

DTKCast Menber —an abstract class that is the common superclass for all classes that
hold information about Director castmembers.

DTKBi t map—holds information about bitmap castmembers.
DTKShape—holds information about shape castmembers.
DTKSound—holds information about sound castmembers.
DIKText —holds information about text castmembers.

DTKBut t on—holds information about button castmembers.
DTKUnknown—holds information about castmembers of an unknown kind.
DTKVi deo—holds information about video castmembers.

DTKPal et t e—holds information about colormap castmembers.

DTKScor eFr ane—holds information about a frame of a Macromedia Director score.

DTrKSoundChannel —holds information about a sound channel for a frame of a
Macromedia Director score.

DTKSpr i t eChannel —holds information about a sprite channel for a frame of a
Macromedia Director score.

DTKTenpoChannel —holds information about a tempo channel for a frame of a
Macromedia Director score.

DTKTr ansi t i onChannel —holds information about a transition channel for a frame of a
Macromedia Director score.

Cast Translator and Score Translator Classes

These loadable classes are written in ScriptX. These are the classes you need to subclass
and modify to create your own customized Director importer.

In the following list of classes, indentation indicates inheritance.

DTKCast Tr ansl| at or —the common superclass for all classes that convert Director cast
members to ScriptX objects.

DTKCast Menber ToAudi oSt r eam—takes information from a DTKSound object and
converts it to an Audi oSt r eamobject.

DrKCast Menber ToSt enci | —takes information from a DTKShape, DTKBi t nap or
DTKText object and converts it to a Stenci | or Text object in ScriptX.

259

ScriptX Tools Guide

DrKCast Menber ToPr esent er —takes information from a DTKShape, DTKBi t map, a
DIKText or DTKVi deo object and converts it to a TwoDShape, Text Present er or
I nt er | eavedMovi ePl ayer object as appropriate.

DTKScor eTr ansl at or —converts a Director score to ScriptX objects.

How the Director Translation Process Works

260

The process of translating a Director title into a ScriptX title is managed by a DTK
instance, which has two helpers, a DTKCast Tr ansl at or instance and a

DTKScor eTr ansl at or. A DTK instance’s cast Tr ansl at or instance variable holds the
cast translator, and the scor eTr ansl at or instance variable holds the score translator.

The DTK instance’s t r ansl at eDi r ect or method controls the translation, which has two
parts:

® Translating the castmembers.

The transl at eDi r ect or method calls the t r ansl at eCast method. The
transl at eCast method examines each cast member in turn and determines what
kind it is (such as bitmap, sound, text or button), then passes information about the

castmember to the DTKCast Tr ansl at or instance. The cast translator determines how

the castmember is implemented as ScriptX objects and instance variables. See “Cast
List Translation” on page 261 for details.

¢ Translating the score.

The transl at eDi rect or method then calls the t ransl at eScor e method. The
transl at eScor e method passes information about each frame in the score in turn to
the transl at eFr ame method on the score translator. The t r ans! at eFr ame et hod
on the score translator determines how the information is implemented as ScriptX
objects and instance variables. See “Score Translation” on page 262 for details.

The DTK object translates the cast if it has a cast translator in its cast Tr ansl at or
instance variable, and it translates the score if it has a score translator in its

scor eTransl at or instance variable. Thus you can choose to translate just the cast list,
just the score, or both the cast list and the score, by setting either or both of the
cast Transl at or and scor eTr ansl at or instance variables.

Using The Director Translation Kit

Cast List Translation

A DTKinstance’s transl at eDi r ect or method calls the transl at eCast method to
translate a Director cast list into ScriptX.

During cast translation, the DTK instance works with the DTKCast Tr ansl at or in its
cast Transl at or instance variable to translate each castmember.

The transl at eCast method first calls the pr epar eToTr ansl at eCast method on the
cast translator. Then it does does the following for each castmember:

1. Figures out what media type the castmember is and creates an instance of the
appropriate subclass of the DTKCast Menber class.

If the castmember is a bitmap, the DTK creates a DTKBi t map instance.

If the castmember is a shape (such as an oval, rectangle or round rectangle) the DTK
creates a DTKShape instance.

If the castmember is a sound, the DTK creates a DTKSound instance.

If the castmember is a text box, the DTK creates a DTKText instance.

If the castmember is a button, the DTK creates a DTKBUt t on instance.

If the castmember is a movie, the DIK creates a DTKVi deo instance.

If the castmember is a palette, the DTK creates a DTKPal et t e instance.

If the castmember is anything else for now, the DIK creates a DTKUnknown instance.
2. Calls a method on the cast translator, passing in the new object as an argument.

If the castmember is a bitmap, the DTK calls the tr ansl at eBi t nap method on the
cast translator, passing it the newly created DTKBi t map instance.

If the castmember is a shape (such as an oval, rectangle or round rectangle) the DTK
calls the t r ans| at eShape method on the cast translator, passing it the newly created
DrKShape instance.

If the castmember is a sound, the DTK calls the t r ansl at eSound method on the cast
translator, passing it the newly created DTKSound instance.

If the castmember is a text box, the DTK calls the t r ans| at eText method on the cast
translator, passing it the newly created DTKText instance.

If the castmember is a button, the DTK calls the t r ansl at eBut t on method on the cast
translator, passing it the newly created DTKBut t on instance.

If the castmember is a movie, the DTK calls the t r ansl| at eVi deo method on the cast
translator, passing it the newly created DTKVi deo instance.

If the castmember is a palette, the DTK calls the t ransl at ePal et t e method on the
cast translator, passing it the newly created DTKPal et t e instance.

If the castmember is anything else for now, the DTK calls the tr ansl at elnknown
method on the cast translator, passing it the newly created DTKUnknown instance.

261

ScriptX Tools Guide

Score Translation

A DTK instance’s t ransl at eDi r ect or method calls the DTK's t r ansl| at eCast method,
then calls the t ransl at eScor e method to translate the Director score into ScriptX.

The t ransl at eScor e method works with the DTKScor eTr ansl at or instance in the
scor eTransl at or instance variable.

The transl at eScor e method does the following;:

1. First it copies the value of the cast Li st instance variable on the DTK instance to the
cast Li st instance variable on the score translator. This enables the score translator
to have its own record of the objects that represent the castmembers. If the cast list
has not already been translated, this instance variable will be empty.

2. Next it calls the prepar eToTr ansl at eScor e on the score translator.
3. Then it starts translating the data for each frame on a frame by frame basis.

At each frame, it calls the transl at eFr ane method on the score translator, passing
information about the frame in the form of two DTKScor eFr ane objects, one for the
current frame and one for the previous frame. It also passes a changedArray

argument, indicating the sprite channels in which changes have occurred this frame.

The t ransl at eFr ame method determines what to do with the information and how
to turn it into ScriptX objects and instance variables. You must write the
transl at eFr ane method.

What You Must Do To Build a Customized Director Importer

262

This section lists the steps for building your own, completely new Director Translator.
Each step is discussed in detail in a section of its own following this listing.

1. Design a Paradigm for Recreating a Director Title in ScriptX

Work out how you want to recreate the castmembers and actions of the score in ScriptX,
and, if necessary, create the classes to support the paradigm. What these classes are and
do is entirely up to you.

2.Load the Director Translation Kit

The files needed for the Director Translation Kit are contained in a folder called DTK
Make sure that the DTK folder is in the same folder as your ScriptX executable.

To load the Director Translation Kit, open the title container saved to the file dt k. sx| in
the di ri np directory.

open TitleContainer path:"dtk/dtk.sxl"

You can also use the Open command from the File menu to open the title container.

When this file has finished loading, it leaves you in the Scrat ch module. However, to
use the Director Translation Kit, you must work in the DTK module.

The best way to handle the module-switching is to create modules of your own that use
the necessary modules.

Using The Director Translation Kit

3. Define Your Customized Cast Translator Class

Create a subclass of DTKCast Tr ansl at or and define its appropriate media translation
methods (that is t ransl at eBi t map, tr ansl at eShape, t r ansl at eText,
transl at eSound, t r ansl at eVi deo and t r ansl at eBut t on).

Define the pr epar eToTr ansl at e Cast method on your cast translator class to do any
work (such as printing messages) that needs to be done before cast translation begins.

Create the new class as a subclass of DTKCast Tr ansl at or if you want to define all the
media translation methods from scratch, or create it as a subclass of one or more
existing subclasses of DTKCast Tr ansl at or if you want it to inherit some predefined
functionality. See “Choosing Superclasses for Your New Cast Translator Class” on
page 265 for more details of the functionality provided by the existing subclasses of
DTKCast Tr ansl at or.

The input argument to a media translation method is a DTKCast Menber object that
contains information about the castmember to be translated:

¢ The argument to transl at eBi t map is a DTKBi t map object.

® The argument to tr ansl at eShape is a DTKShape object.

¢ The argument to transl at eText is a DTKText object.

® The argument to transl at eSound is a DTKSound object.

¢ The argument to transl at eBut t on is a DTKBut t on object.

® The argument to transl at ePal ett e is a DTKPal et t e object.
¢ The argument to transl at eVi deo is a DTKVi deo object.

¢ The argument to anything else is a DTKUnknown object.

The media translation methods can access instance variables on the DTKCast Menber
instance. See “Accessing Information about the Director Castmembers” on page 268 for
a list of instance variables for each subclass of DTKCast Menber .

The returned value of each media translation method is automatically added to the
cast| i st instance variable of the DTK instance associated with the cast translator, so
make sure that each media translation method returns a value that reasonably
represents the castmember.

4. Define Your Customized Score Translator Class

Create a subclass of DTKScor eTr ansl at or and define its pr epar eToTr ansl at eScor e
and t ransl at eFr ame methods.

The pr epar eToTr ansl at eScor e method takes no arguments other than self. Define this
method to do any prelimanary work necessary before translating the score.

The t r ansl at eFr ane method takes four arguments: self, the previous frame, the current
frame, and a “changed array.”

The previous frame and current frame are both DTKScor eFr ane objects that contain
information about the relevant frames.

The changed array argument is a 24 member array for Director 3.1 titles or a 48 member
array for Director 4.0 titles. Each value in the array is a boolean representing whether or
not a change has occured in each sprite channel. For example, if sprite channel 5 is
different in any way in this frame than in the previous frame, then changedArr ay[5] is
true. If there is no change, changedArray[5] is false.

The transl at eFr ame method must do all the work of taking the raw frame data and
turning it into useful ScriptX objects. You must write the t r ansl at eFr ame method.

263

ScriptX Tools Guide

The transl at eFr ame method can retrieve information about the current frame by
accessing instance variables on the DTKScor eFr anme object for the current frame. See
“Accessing Information about a Frame of the Director Score” on page 269 for a list of
instance variables on a DTKScor eFr ane object.

The transl at eFr ame method can figure out what's different between the two frames
by comparing the FrameScor e objects and then do appropriate tasks in keeping with
your paradigm for recreating Director titles in ScriptX.

5. Import a Director Animation into ScriptX

After you have created your own customized class of cast translators and score
translators, you are ready to translate a Director title, as follows:

1. Create three instances:
® an instance of the class DTK
® an instance of your customized cast translator class
® an instance of your customized score translator class

2. Set the cast translator instance as the value of the DTK instance’s cast Tr ansl at or
instance variable, and set the score translator as the value of the scor eTr ansl| at or
instance variable.

To translate the cast only, set only the cast translator. To translate the score only, set
only the score translator.

3. Start the translation by calling the transl at eDi r ect or method on the DTK instance.

See “Importing a Director Animation into ScriptX” on page 274 for example code for
creating DTK cast and score translator instances and setting the translation in motion.

Designing a Paradigm for Recreating a Director Title in ScriptX

264

When building a customized Director Translator the first step is to design the paradigm
for how the Director score and castlist should be implemented in ScriptX, and build the
support classes to implement the paradigm.

For example, the Director to ScorePlayer Importer uses a Scor ePl ayer class, Scor e
class, customized Act i on classes, and Spri t e classes to represent a Director animation.

Although the subject of designing your own paradigm takes up just a few paragraphs
in this document, it is no small task. The reason there is so little documentation for it is
that you have to design it and do all the work for it yourself and there is no set way to
go about doing that.

Using The Director Translation Kit

Defining Customized Cast Translator Classes

To specify how to translate Director cast members into ScriptX objects, create a
customized subclass of DTKCast Tr ansl at or and define the methods to translate the
media used by the Director cast member.

DTKCast Trans!| at or is the pre-defined superclass for all cast translators. It contains the
transl at eBi t map, t ransl at eShape, transl at eText, t ransl at eSound,

transl at eButton, transl at eVi deo, transl| at ePal ett e and t r ansl at eUnknown
methods. For the duration of this chapter, these methods are referred to collectively as
the media translation methods.

The value returned by a media translation method is automatically installed as the next
member of the array in the cast Li st instance variable of the DTK This castlist is often
used by the score translator when the time comes to translate the score. You do not need
to write the code to install the returned value into the castlist, but you do need to make
sure that the media translation methods return values that are meaningful to add to the
DTK's castlist.

The class DTKCast Tr ansl at or has an instance variable called out put St r eam The intent
of this instance variable is to point to an output stream associated with the cast
translator. The media translation methods on the cast translator can, if desired, send
information about the translated castmember to the output stream. (If not defined, the
output stream defaults to the debug stream.)

Choosing Superclasses for Your New Cast Translator Class

The DTKCast Tr ansl at or class defines all the media translation methods to simply
return undef i ned. However, three subclasses of DTKCast Tr ansl| at or are provided to
give some level of pre-defined behavior for cast translators.These are:

e DTKCast Menber ToSt enci | class

This class defines the t ransl at eShape method to convert Director bitmap
castmembers to ScriptX Bi t map objects and Director shape castmembers to ScriptX
Stenci | objects. It defines the transl at eText method to convert Director text
castmembers to ScriptX Text objects.

e DTKCast Menber ToPr esent er class

This class defines the t r ansl at eShape method to convert Director bitmap and shape
castmembers to TwoDShape objects; to convert text castmembers to Text Present er
objects; and to convert video castmembers to InterleavedMoviePlayer objects.

e DTKCast Menber ToAudi oSt r eamclass

This class defines the t r ans| at eSound method to convert Director sound
castmembers to ScriptX Audi oSt r eamobjects.

If you want to define all the media translation methods from scratch then create your
class as a subclass of DTKCast Tr ansl at or. The more likely scenario is that you will
want to use some of the predefined cast translation behavior, and add some behavior of
your own design. In this case, pick the existing subclasses of cast translator whose
functionality is closest to the desired functionality, to be the superclasses of your
customized cast translator class. Modify the media translation methods to suit your
needs.

A media translation method can call next Met hod to invoke the superclass’s method. For
example, suppose you want your cast translator to translate Director sound
castmembers to digital audio players and to translate Director bitmap, shape, text and
video castmembers to appropriate Present er objects that know the name of the cast
member. You also want send details about the cast member to an output file.

265

ScriptX Tools Guide

266

In this case you would create subclasses of the appropriate kinds of Present er and
give each subclass a name instance variable. You would also need to create a new cast
translator class, whose superclasses are DTKCast Menber ToAudi oSt r eamand

DTKCast Menber ToPr esent er . (Later on, when you create an instance of the cast
translator, you will need to set its t ext A ass, shaped ass, bi t mapd ass, and

vi deod ass instance variables to the appropriate class.)

You would define the t rans! at eSound method on the cast translator class to return an
instance of your new digital audio player class instead of an audio stream. You would
define the transl at eShape, transl at eBi t map, transl at eText, transl at eVi deo,
and t r ansl at eSound methods to call next Met hod, and to install the name of the
castmember in the nane instance variable, as well as sending the information to an outp
file. The sample code is shown below. (You can also find the code in the DTKsanpl

folder on the CD.)

in Mdul e nyMdul e

-- create subclass that have a nane iv
cl ass Cast TwoDShape (TwoDShape)
instance vari abl es

nane
end

cl ass Cast Text Presenter (TextPresenter)
instance vari abl es

nane
end

cl ass Cast Movi ePl ayer (InterleavedMovi ePl ayer)
i nstance vari abl es

nane
end

class CastD gital Audi oPl ayer (Digital Audi oPl ayer)
i nstance vari abl es

nane
end

-- create a new class of CastTransl ator

cl ass Cast Tol nf oTransl ator (DTKCast Menber ToAudi oSt r eam
DTKCast Menber ToPr esent er)

end

-- Wen you create an instance of tstMenberTolnfo translator,
-- you will need to set the follow ng ivs:

-- bitmapd ass : = cast TwoDShape

-- shaped ass := cast TwoDShape

-- textd ass := CastText Presenter

-- videod ass := CastMviePl ayer

net hod transl at eShape self {class CastTol nfoTransl ator} shapeCast ->

(

local thePresenter := nextMthod self shapeCast
t hePresent er. nane : = shapeCast. cast Nane

format sel f.outputStream "\nCast nmenber at position %4 is a shape naned %.

Using The Director Translation Kit

It is being translated to a Cast TwoDShape. \n" \
#(shapeCast . cast Nunber, shapeCast . cast Nane) #(@nador ned, @nador ned)

-- return the presenter so that it is put in the cast |ist
t hePresent er

nethod translateBitMap self {class CastTolnfoTranslator} bitnmapCast ->

(

local thePresenter := nextMethod self bitmapCast
t hePresent er. nane : = bitmapCast. cast Nane

format sel f.outputStream "\nCast nenber at position %4 is a bitnap naned %.
It is being translated to a Cast TwoDShape. \n" \
#(bi t mapCast . cast Nunber, bitnapCast. cast Nane) #(@nadorned, @mnador ned)

-- return the presenter so that it is put in the cast |ist
t hePr esent er

nethod transl ateText self {class CastTol nfoTransl ator} textCast ->

(

local thePresenter := nextMthod self textCast
t hePresenter. nane := textCast.castName

format self.outputStream "\nCast nenber at position %4 is a text item
named %.I1t is being translated to a Cast TextPresenter. \n" \
#(t ext Cast . cast Nunber, textCast.cast Nane) #(@nadorned, @mnador ned)

-- return the presenter so that it is put in the cast list
t hePr esent er

met hod transl ateVideo self {class CastTol nfoTranslator} videoCast ->

(

local thePresenter := next Method self vi deoCast
t hePresent er. nane := vi deoCast. cast Narre

format self.outputStream "\nCast menber at position %4 is a video named %2.
It is being translated to a CastMviePl ayer. \n" \
#(vi deoCast . cast Nunber, vi deoCast . cast Nane) #(@nador ned, @nador ned)
-- return the presenter so that it is put in the cast I|ist
t hePr esent er

net hod transl ateSound self {class CastTol nfoTransl ator} soundCast ->

(

I ocal theAudi oStream : = next Method sel f soundCast
local theM ayer := new CastDi gital Audi ol ayer nedi aStreamt heAudi oStream

format sel f.outputStream "\nCast nenber at position %4 is a sound named 9%2.
It is being translated to a cast digital audio player. \n" \
#(soundCast . cast Nunber, soundCast . cast Nane) #(@nador ned, @nador ned)

-- return the player so that it is put in the cast list

267

ScriptX Tools Guide

t hePl ayer

Accessing Information about the Director Castmembers

For each castmember in the castlist, the DTK object’s t r ansl at eCast method figures out
what media type the castmember is and creates an instance of DTKBi t map, DTKShape,
DTKText, DTKSound, DTKButt on, DTKVi deo or DTKUnknown as appropriate. The DTK
passes this instance to the appropriate media translation method on its cast translator.
The media translation methods can get information about the castmember being
processed by accessing instance variables on the object passed to it.

The following list gives the names of the instance variables for the class DTKCast Menber
and its subclasses DTKBI t map, DTKShape, DTKText , DTKSound, DTKBut t on, DTKVi deo
and DTKUnknown.

See the Chapter 19, “Director Translation Kit API” reference for more information on
each of these instance variables.

e DTKCast Menber class

cast Fi | eNane castFi |l eType castFul | Path cast Nanme
cast Nunber cont ai ner I i ngoScri pt I'i nked

e DTKBi t map class
bbox regi strationpt bi t map

e DTKText class
back@ oundCol or bbox bor der Wdt h t ext
gutterWdth editabl e style justification
dr opshadow boxShadowsi ze

shoul dAut oTab shoul dAut oW ap

e DTKShape class
back@ oundCol or box filled f or eG oundCol or
li neWdth | i neType pattern shapeStyl e

e DTKSound class
audi ost ream

e DTIKButton class
buttonStyl e

e DIKPal ett e class
col or Map

e DTKuUnknown class
nothing

Defining Customized Score Translator Classes

268

To specify how to translate a Director score into ScriptX objects, create a customized
subclass of DTKScor eTr ansl at or and define its pr epar eToTr ansl at eScor e and
transl at eFr ane methods. These methods are empty stubs, so you must define them
completely for your subclass of score translator.

The class DTKScor eTr ans| at or has an instance variable called out put St r eam The
intent of this instance variable is to point to an output stream associated with the score
translator. The pr epar eToTr ansl at eScor e and t r ans| at eFr ane methods on the score

Using The Director Translation Kit

translator, can, if desired, send information about the translated score to the output
stream. (If the output stream is not defined, the information goes to the debug stream,
which is the Listener window.)

Define the prepar eToTr ansl at eScor e method to do any preliminary work necessary
before translating the score, such as printing a message or creating support classes
needed by the translation process. The pr epar eToTr ans| at eScor e method takes a
single argument of self, the score translator object.

Define the t r ansl at eFr ame method to translate a frame in a Director score to ScriptX
objects. You must decide how to represent the information about the frame in ScriptX.
This method is the real workhorse for the score translation process.

Accessing Information about a Frame of the Director Score

For each frame in the score, the t r ansl at eScor e method passes three instances to the
t ransl at eFr ane method on the score translator:

® a DTKScor eFr ane instance that contains information about the current frame.
® a DTKScor eFr ane instance that contains information about the previous frame.

* an Array instance, known as the changedArray argument, that holds an array of 24 or
48 booleans (depending on which version of Director you are importing from). For
each sprite channel, if a change has occurred between the previous and current
frame, the corresponding value in the changed array is t r ue, otherwise it is f al se.

The transl at eFr ame method on the score translator can get information about the
frame by accessing the instance variables on the DTKScor eFr ane objects.

The instance variables on a DTKScor eFr anme object are:
* absol ut eFr ameNunber

Contains an integer indicating the frame number currently being processed.
* rel ati veFrameNurber

Contains an integer indicating the relative position of the frame number currently
being processed within the subset of frames to be translated.

¢ tenpoChannel

Contains a DTKTenpoChannel object, that has t enpo and wai t For Sound instance
variables. The t enpo instance variable indicates the tempo for the frame, and
wai t For Sound indicates if this frame is waiting for a sound and if so, for which
sound channel it is waiting for.

e transitionChannel

Contains a DTKTr ansi t i onChannel object, that has nane, di recti on and
chunki ness instance variables that describe the transition occuring in this frame (if

any).
e soundChannel s

Contains an array of two DTKSoundChannel objects, one for each sound channel in
the Director title. Each DTKSoundChannel object has a cast | ndex instance variable,
whose value indicates the position in the cast list of the sound cast member that is
playing in this frame, if any.

® spriteChannel s

269

ScriptX Tools Guide

270

Contains an array of 24 or 48 DTKSpr i t eChannel objects, depending on which
version of Director the score was created in. Each DTKSpri t eChannel object holds
information about a single channel in the score. Each DTKSpri t eChannel object has
X, Y, Wi dt h, hei ght, i nk, t hi ckness and cast | ndex instance variables, that describe
the cast member, if any, in that channel in this frame.

DTKScoreFrame Objects and its Helpers are Recycled

The DTKScor eFr anme, DTKTenpoChannel , DTKTr ansi t i onChannel , DTKSoundChannel
and DTKSpri t eChannel objects are recycled as the score translation process continues.
The transl at eFr anme method should not keep references to the DTKScor eFr ane object
or any of the objects to which it points, since the references would become obsolete.
Instead, write the t r ansl at eFr ane method to retrieve information from them, and
implement the retrieved information as other objects in keeping with your own
paradigm.

Comparing Two Frames to Check for Differences

When translating frames in a Director score to ScriptX, the important information often
concerns the changes between one frame and the next. For example, has a sound started
playing? Have any of the characters changed position? Have the inkmodes for any
channels changed? Have any new characters appeared or any existing characters
disappeared?

The transl at eFr ame method on the score translator can compare the values of the
instance variables on the pr evFr ame argument to those on the cur r ent Fr ane argument.

You can also use the changed Array argument to check if there was a change between the
current and prevous frame for each sprite channel.

The following code illustrates how to check if there was a tempo change between the
previous and current frame.

net hod transl at eFrane {nyScoreTrans} \
sel f prevChannel current Channel changedArray

(
local currentTenpo := currentFrane.tenpoChannel .t enpo
| ocal prevTenpo: = prevFrane.tenpoChannel .t enpo
if (currentTenpo <> prevTenpo)
t hen
format self.outputstream "\rThe tenpo has changed to % \r" \
current Tenpo @nador ned
el se
format self.outputstream "\rThe tenpo is still 9% \r" \
current Tenpo @nador ned
-- rest of code for translateFrame
)

How the Score Translator Gets Information about Castmembers

In most cases, the cast translator and score translator need to work together to capture
useful information about the castmembers used in a score. The cast translator returns
objects that go into the castlist and the score translator can get objects from the castlist.

During the cast translation process, for each castmember in the original Director title (be
it a bitmap, shape, text box, sound, video or button), the cast translator returns an object
that goes into the ScriptX castlist.

Using The Director Translation Kit

While the cast translation process is underway, the castlist is maintained by the
cast| i st instance variable on the relevant DTK instance. When the cast translation is
finished, the DIK instance copies the list in its cast | i st instance variable over to the
cast|i st instance variable on its score translator. Thus the score translator can get
castmembers by referring to its own cast | i st instance variable.

Finding which Sound CastMember is Playing in a Channel

The soundChannel s instance variable of a DTKScor eFr ane object holds an array of two
DTKSoundChannel objects, one for each sound channel in the score. To find the position
in the castlist of the sound playing in a channel, get the value of the cast | ndex instance
variable of the appropriate DTKSoundChannel object. If a sound is playing in the
channel, the value of the cast | ndex instance variable will be 1 or 2. If a sound is not
playing, it will be 0.

Finding which Sprite CastMember Appears in a Channel

The spri t eChannel s instance variable of a DTKScor eFr ane object holds an array of
DTKSpri t eChannel objects, one for each sprite channel in the score. To find the position
in the castlist of the visual castmember appearing in a sprite channel, get the value of
the cast | ndex instance variable of the appropriate DTKSpri t eChannel object. The
value of the cast | ndex instance variable will be 1 to 48 if a sprite is in the channel, or 0
if no sprite is in the channel.

Example Code for a Score Translator

This section gives the code for an example DTKScor eTr ansl at or subclass called

Scor eTol nf oTr ansl at or. This class has a very simple mode of operation: it simply
sends information about each frame in the score to its output stream. The purpose of
this example is to illustrate how to get information out of the DTKScor eFr ane objects.
You would normally want to define the transl at eFr ane method on your customized
score translator class to actually do something useful with the retrieved information,
rather than just print it as is done here.

In the following example, the score translator assumes that the cast translator has put
an appropriate presenter in the cast Li st array for each castmember. Each presenter
contains information about the castmember it represents. (You can find this code in the
DriKsanpl folder on the CD.)

in Mdul e nyMdul e

-- Oeate the new class of Score Transl ator
cl ass ScoreTol nf oTransl at or (DTKScor eTr ansl at or)
end

net hod prepareToTransl ateScore self {class ScoreTol nfoTranslator} ->

(
)

-- define the method that translates each frane
net hod transl ateFrane self {class ScoreTol nfoTranslator} \
prevFrane currentFrane changedArray ->

print "\nl am preparing to translate the score. S lence please.\n"

(

local framenum : = current Frane. absol ut eFr ameNunber

271

ScriptX Tools Guide

272

-- Print the frane nunber to the output stream
format sel f.outputstream "\ n\n\nProcessing frane nunber % \n" \
f ramenum @nador ned

-- Translate data about the frane

t ransl at eTenpoDat aToText sel f prevFrame current Frame

t ransl at eSoundDat aToText self prevFrame current Frame

transl ateSpriteDat aToText self prevFrane currentFrane changedArray

met hod transl at eTenpoDat aToText self {class ScoreTol nfoTransl ator}\
prevFrane currentFrane ->

(

I ocal currentTenpo := currentFrarre. t enpochannel

-- Print a nessage to the output stream that says whether the
-- the tenpo has changed since the previous frane, and
-- what the current tenpo is.
if (currentFrane.tenpoChannel .tenpo <> prevFramne.t empoChannel .t enpo)
t hen
format self.outputstream "\nThe tenpo has changed to % \n" \
current Tenpo. t enpo @nador ned
el se
format self.outputstream "\nThe tenpo is still 9% \n" \
current Tenpo. t enpo @nador ned

-- Lets see if we need to wait for any sounds.

-- The value of the DTKTenpoChannel's waitForSound iv is:

-- 0 (don't wait for any sound),

-- 1 (wait for the sound in channel 1) or

-- 2 (wait for the sound in channel 2)

if (currentFrane.tenpoChannel . wait For Sound <> 0) do

format self.outputstream "W need to wait for the sound in channel %

to finish \n" currentFrane.tenpoChannel . wai t For Sound @mnador ned

nmet hod transl at eSoundDat aToText self {class ScoreTol nfoTranslator} \
prevFrane currentFrane ->
(
-- A DIKScoreFrane object has a soundChannels iv that contains
-- an array of two DIKSoundChannel objects, one for each sound channel

-- For each sound channel, find which position the sound playing
-- in that channel occupies in the cast list.

-- Print sutiable messsages to the output stream

for i :=1to 2 do

Using The Director Translation Kit

(
I ocal ol dlndex := prevFrame. soundChannel s[i]. cast| ndex
local newl ndex := currentFrane. soundChannel s[i]. cast| ndex
-- If no sound is playing in this channel, castlndex will be 0
if (new ndex <> 0)
t hen
format self.outputstream "Sound channel 9% is playing sound %2.\n"\
#(i, self.castlist[new ndex]. nedi astrean) \
#(@nador ned, @nador ned)
el se
format self.outputstream "Sound channel % is currently silent.\n"\
i @nador ned
if new ndex <> ol dl ndex
t hen
format self.outputstream "This is a change from the previous frane.\n\
1 @mnador ned
el se
format self.outputstream "This is the sane as the previous frame.\n"\
1 @mnador ned
) -- close |oop

nethod transl ateSpriteDataToText self {class ScoreTolnfoTranslator} \
prevFrane currentFrane changedArray ->

-- Get the cast list.
theCastList := self.castlist

-- For each sprite channel:

for i := 1 to 48 do

(
-- Find which sprite channel we are currently focusing on.
local theSpriteChannel := currentFrame. spriteChannel s[i]
local thePrevSpriteChannel := prevFrane.spriteChannel s[i]

-- Find which position the sprite that appears in

-- that channel occupies in the cast |ist.

local spritePosition := theSpriteChannel.cast|ndex

local prevSpritePosition := thePrevSpriteChannel . castlndex

-- Find the actual cast nenber object for the sprite in the channel

thisCast := theCastList[spritePosition]
pr evCast theCast Li st [prevSpritePosition]

-- Print suitable messages to the output stream
if thisCast <> enpty do
(
format self.outputstream "\n The castnenber in channel % is
Its nane is 93. \n.
It is at position % in the cast list. \n\
This cast nmenber is a %. \n \

273

ScriptX Tools Guide

Its x coordinate is %. \n \

Its y coordinate is %.\n \

Its inknode is 98. \n \

It is 99 high and %40 wide. \n\n" \
#(i, thisCast, thisCast.nane,
spritePosition, (getdass thisCast), \
theSpriteChannel .x, theSpriteChannel.y, \
thespriteChannel .ink, \
t heSpriteChannel . hei ght, theSpriteChannel .width) \
#(@nadorned, @mnadorned, @mnadorned, @nadorned, @mnadorned,
@nador ned, @nadorned, @nadorned, @nador ned)

if changedArray[i] == fal se
t hen
print "No change in this sprite channel." self.outputstream
el se
(

-- Compare the ink mode of the current and previous franes
if (thePrevSpriteChannel.ink <> theSpriteChannel.ink)
do

print "The ink node has changed since the previous channel.\n" \
sel f. out put st ream

-- Comparing the state of the sprite in the
-- current and previous franes

if (thisCast <> prevCast)
print "The sprite has changed." self.out putstream

if (thePrevSpriteChannel.x <> theSpriteChannel.x) or
(thePrevSpriteChannel .y <> theSpriteChannel.y)

print "The sprite has changed position." self.outputstream

if (thePrevSpriteChannel .wi dth <> theSpriteChannel .wi dth) or
(thePrevSpriteChannel . hei ght <> theSpriteChannel . hei ght)

do
print "The sprite has changed size." self.outputstream
) -- closes if changedArray[i] == fal se
) -- closes if thisCast <> enpty el se
) -- closes for i := 1 to 48 do
) -- closes nethod

Importing a Director Animation into ScriptX

To import a Director animation into ScriptX, create an instance of the DTK class, an
instance of your customized cast translator class and an instance of your customized
score translator class.

Set the cast translator as the value of the DTK instance’s cast Trans| at or instance
variable, and set the score translator as the value of the scor eTr ansl at or instance
variable. To translate the cast only, set only the cast translator. To translate the score
only, set only the score translator.

274

Using The Director Translation Kit

Start the translation by calling the transl at eDi r ect or method on the DTK instance.

Creating a DTK Instance

To create a new DIKinstance, call the newmethod on the DTK class, optionally specifying
the di r ect or Fi | eNane keyword argument as the Director file to be translated. If you
do not specify the di r ect or Fi | eNane keyword argument when creating a new DIK
instance, you must set the value of the DTK instance’s di r ect or Fi | eName instance
variable before you set the DTK to work, otherwise it won’t know what file to translate.
The value of the di rect or Fi | eNane keyword argument or instance variable must be a
sequence of strings that describe the pathname to the file, for example, #("HD",
"Scores", "DancingDol phin").

Creating Cast Translator and Score Translator Instances

The newmethods for the classes DTKCast Tr ans| at or and DTKScor eTr ansl at or both
accept an out put St r eamkeyword argument that specifies the output stream associated
with the translator. This output stream is set as the value of the out put St r eaminstance
variable of the cast or score translator.

If no out put St r eamkeyword argument is supplied, the output stream defaults to
debug, which means all data sent to the output stream appears in the ScriptX Listener
window.

If the neither the pr epar eToTr ansl at eCast method or the media translation methods
on the cast translator send data to the output stream, there is no need to supply the
out put St r eamkeyword argument when creating the cast translator. If neither the
prepar eToTr ansl at eScor e or t ransl at eFr ame methods on a score translator send
data to the output stream, there is no need to supply the out put St r eamkeyword
argument when creating the score translator.

Start the Translation Rolling

To start a DTK instance translating the Director file pointed to by its di r ect or Fi | eNane
instance variable, call its t ransl at eDi r ect or method, which takes an optional

cont ai ner keyword argument which specifies the storage container in which to store
the imported media. The value for the cont ai ner keyword argument can be a storage
container, a title container or a library container.

The following example illustrates how to create a DTK instance and a cast translator and
score translator for it, and how to start the DTK instance importing a Director animation.
This example shows how to create and specify output streams for cast and score
translators. This example creates instances of the Cast Tol nf oTr ansl at or and

Scor eTol nf oTransl at or classes that were defined previously in this chapter. (You can
find the sample code in the DTKsanpl e folder on the CD.)

Load the DIK
open TitleContainer dir:theStartDr path:"dtk/dtk.sxl"

Qeate a nodule to work in
nodul e nyMbdul e

uses DIK

uses ScriptX

in nodul e nyMdul e

load the files that define the CastTol nfoTransl ator

275

ScriptX Tools Guide

276

-- and ScoreTol nfoTransl ator cl asses
fileln theScriptdir name:"nyQrans. sx"
fileln theScriptdir name:"nyStrans. sx"

-- make sure we are still in nyMdul e
in nodul e nyMdul e

-- COeate a new DIK instance
-- use the open file dialog box so the user can select a Drector file

gl obal |ocPanel := new (penPanel
openFi | ePanel | ocPanel
dirFile := locPanel.fil enane

-- create an instance of DIK
nyDTK := new DTK directorFileNane:dirFile

-- if the files castData.txt and scoreData.txt already exist
-- then del ete them
if isfile theScriptDir "castData.txt"
do delete theScriptDr "castData.txt"
if isfile theScriptDir "scoreData.txt"
do delete theScriptDir "scorData.txt"

-- create the files castData.txt and scoreData.txt
createFile theScriptDr "castData.txt" @ext
createFile theScriptDr "scoreData.txt" @ext

-- Oreate the output streans for the translators
global castStream := getStreamtheScriptDr "castData.txt" @eadwite
gl obal scoreStream := getStream theScriptDir "scoreData.txt" @eadwite

-- Oeate a cast and score translator
gl obal nyst := new ScoreTol nfoTransl at or out put st ream scoreSt ream
gl obal nyct := new Cast Tol nfoTransl ator out put stream cast Stream

-- tell the cast translator what classes to use when translating
-- shapes, bitmaps, text, and video

nyct. shaped ass := Cast TwoDShape

nyct.textd ass := Cast Text Presenter

nyct. bi t mapd ass : = Cast TwoDShape

nyct. vi deod ass := Cast Movi ePl ayer

-- Associate the Cast Translator with the DIK instance.
-- Associate the Score Translator with the DIK instance.

nyDTK. cast Transl ator := nyct
nyDTK scoreTransl ator := nyst

-- Set the DIK to work to inport the data:
transl ateD rector nyDTKiransl ateD rector nyDIK

Using The Director Translation Kit

Advanced Example

This section discusses another example. This example can be used to import
scene-based Director title, that contain ScriptX tags as comments in lingo scripts.

This section gives an overview of the example and explains what it is trying to achieve,
without delving into much code. All the files to recreate the example are on the CD, in
the DTKEXnpl folder.

The sample Director file provided in the DTKExnpl folder contains three scenes. One of
the scenes contains three separate animations. In Director, these animations must all
perform at the same tempo, whereas in ScriptX each animation can perform with a
different tempo. Another of the scenes presents several musical instruments. In Director,
only one instrument can play at a time, whereas in ScriptX multiple instruments can
play simultaneously.

Preparing the Director Title

Create a prototype of your title in Director, and label the significant frames and
channels. For example, label the start of each scene and the start of each distinct
animation in a scene.

Write lingo scripts that contain “hints” for the ScriptX importer. These hints are written
as comments in lingo. For example, for the frame that marks the beginning of scene 2 in
the example Director file,the lingo script is:

--SXd ass Scene
--SXEast Scene2
- - SXsoundLooped yes

This script indicates that this frame is the start of a scene. When the frame is imported,
a new Scene object will be created, whose east neighbor is Scene2. While the scene is
open, the sound for the scene will loop continuously.

Another example is:

--SXd ass Ani nation
--SXfirstFrame Eyel ash
--SX ast Frane Eyel ashEnd
--SXfirstChannel 4

--SXl ast Channel 7
--SXautoStart yes

--SX ooped yes

This script indicates that this frame is a start of an animation. The first frame is labelled
Eyel ash, and the last frame is labelled Eyel ashEnd. The first channel to participate in
the animation is 4, and the last is 7. The animation should start automatically, and
should loop continuously.

Another example is:

on nousedown --SXd ass NavButton
Lbtn "Scenel" --SXtoScene Scenel

end

--SXPressedPresenter LftBtnH

This script indicates that this channel in this frame is a navigation button. When the
button is pressed, the current scene closes and Scenel opens. When you press the
button, the pressed presenter is the castmember named Lft Bt nH .

277

ScriptX Tools Guide

278

How the Conversion Works

This section briefly discusses how the conversion works.

Custom Classes

The CQust on asses folder contains all the class definitons for the custom classes
needed. For example, it contains definitions for the classes Scene, Ani mat i on, and
NavBut t on amongst others. It also contains a file cci . mod, that loads all the custom
classes and saves them to a library container, Qust d ass. sx| .

Several of the custom classes have specialized i ni t or af t er| ni t methods that take a
keyword argument of | i ngo. The i nit or after| ni t methods then use the f i ndSXkey
method (discussed in the section “Information for the Build Process”) to search the
lingo script for more information about the object being initialized.

Cast and Score Translators

The DTKSaver folder contains the definitions for the customized score and cast
translators. It also contains a file that defines the function readMM i | e, which opens a
dialog box that lets you choose a Director file, then calls transl at eDi rect or on that
file.

The folder contains a file DTKSaver . mak, which loads the class and function definitons
and saves the classes and the readMM i | e function to the library container
DTKSaver . sxl .

Information for the Build Process

The folder Bui | der contains a file bui | der . sx that defines the functions needed for the
conversion process, the main one being Bui | dATi t| e, and builds a library container,
bui | der. sx| to contain the functions.

The function Bui | dATi t| e contains the information for converting castmembers to
instances of ScriptX classes, and for parsing and using the information embedded in the
lingo scripts.

One of the auxiliary functions used by Bui | dATi t| e is the function f i ndSXKey which is
defined in the library container gl obal s. | i b. This function prepends "--SX' to a
string, and then searches a script for an occurence of the string and returns the word
after the string.

For example, suppose the script is:

--SXd ass Scene
--SXEast Scene2
- - SXsoundLooped yes

In this case, the following command:

findKey(script "d ass")

searches the given script for the first occurrence of "- - SXd ass" and returns the word
after it in the script, which is Scene, which indicates the class to create an instance of.

The code below is an extract from Bui | dATi t| e. This extract illustrates how the
importing process uses the information embedded in the lingo scripts to decide what to
do.

Using The Director Translation Kit

In the code here, f rameScri pt is bound to a lingo script. If the script contains the string
"--SXcl ass", the variable newd assNane is bound to the appropriate class. If the
newd assNane is Scene, print a header message, and create a new instance of the class

Scene.

local franmeScript := spriteChannel s[1][@i ngoscri pt]
if frameScript <> undefined do

(local script := frameScript

local newd assName := findSXKey(script, "dass")
if newd assName = "Scene" do

(print "--------- [S'e =\ I "
I ocal newScene := new Scene |ingo:script boundary: (w bbox)
-- and so on

Converting the Title from Director to ScriptX

The file ti tl eBui | d. sx imports a Director title into ScriptX. This file requires that the
library containers bui | der. sx|, Qust A ass. sx|, and dt kSaver . sx| reside in the same
folder with it.

When you load the file tit| eBui | d. sx, it calls the function r eadMVf i | e which opens a
dialog box that lets you choose a Director title to import, and then calls
transl ateDirector on the file, to start the translation process.

Further Modifying the Example

If you wish to extend the example to do other things, you need to decide on appropriate
tags to put in lingo scripts. If you wish to use the function SXf i ndKey to search for tags,
your tags must follow the format:

- - SXsonet hi ng next Wr d

For example:

--SXcl ass Dragon
--SXeneny SirGeorge

You also need to write your own cast and score translators, or copy and modify the cast
and score translators that come with this example. The cast translator is defined in the
folder DTKSaver in the file cast Saver . sx, and the score translator is defined in the file
Scor eSaver . sx.

You will need to define your own custom classes to implement the desired behavior for
your title.

If you want to use the function bui | dTi t| e as the basis for a function that builds a title,
copy it and modify it to suit your needs. You may need to add extra conditional clauses
to take different tags or classes into account.

For example:

local frameScript := spriteChannel s[1][@i ngoscri pt]
if frameScript <> undefined do
(local script := frameScript

I ocal newd assMName: = findSXKey(script, "class")
if newd assNane = "Dragon" do

(print "--------- Dragon -------------

279

ScriptX Tools Guide

I ocal newDragon := new Dragon |ingo:script boundary: (w bbox)
-- and so on

280

C HAPTETR

Director Translation
Kit API

ScriptX Tools Guide

282

Director Translation Kit API

This chapter lists the classes in the Director Translation Kit (DTK). You can use the
Director Translation Kit to build your own importers that convert either an entire title
or specific components of a title from Macromedia Director to ScriptX.

The classes in the Director Translation Kit live in the DTK module, so you must work in
the DTK module, or in a module that uses the DTK module, to be able to use them.

For information about how to use these classes to build a customized Director to
ScriptX importer, see Chapter 18, “Using The Director Translation Kit.”

283

ScriptX Tools Guide

DTK

RootObject

284

DTK

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: Root Chj ect

The DTK class controls the process of importing a Director title into ScriptX. It has a
transl at eCast method that translates the cast list and a t r ansl| at eScor e method that
translates the score. Its t ransl at eDi r ect or method calls t r ansl at eCast and

transl at eScore.

Keywords for the New Method for DTKCastMemberToStencil

The newmethod for the DTK class takes the following keywords.

outputStream A stream associated with the translator which the translator
can send data to.

container A storage container in which to store imported media.
toFrame The frame number from which to start importing.
fromFrame The frame number up to which to import.

Instance Variables

backgroundColorindex

self. backgr oundCol or | ndex (read-write) Nurber

Specifies the index into the current color map that the background fill color should be.
Currently the color map is always the system color map.

castList

self. cast Li st (read-write) Array

An array of ScriptX objects that represent the castmembers imported from a
Macromedia Director score. The members of the array are text sprites, 2D sprites, video
sprites and audio streams. All cast members that are not successfully translated are
represented by undef i ned objects.

This array is updated as the cast translation occurs. Before the cast translation begins,
its value is an empty array.

castTranslator

self. cast Transl at or (read-write) DTKCast Tr ansl at or

The DTKCast Transl at or used to convert a Macromedia Director castlist to ScriptX
objects.

defaultFrameRate

self. def aul t FraneRat e (read-write) Nunber

The default frame rate for a Macromedia Director movie score. The score translator uses
this instance variable.

directorFilename

self. di rect or Fi | enane (read-write) Nunber

The file name of the Director file to be imported.

Director Translation Kit API

labelList

self. | abel Li st (read-write) Array

A list of ScriptX Mar ker objects that represent the labels in a Macromedia Director
movie score.

numberOfFrames

self. nunber & Fr anes (read-write) Nunber

The number of frames to be imported.

numberOfCastMembers

self. nunber O Menber s (read-write) Nunber

The number of cast members in the array in the cast Li st instance variable.

scoreTranslator

self. scor eTr ansl at or (read-write) DTKScor eTr ansl at or
The DTKScor eTr ansl at or used to convert a Macromedia Director score to ScriptX
objects.

stageRect

self. st ageRect (read-write) Rect

The r ect object to use as the boundary for the space which will be used as the stage for
the imported animation.

Instance Methods

translateCast

transl at eCast self O undefi ned

Converts a Director cast list into ScriptX objects.

translateDirector

transl ateDi rector self O undef i ned
self DTK object

Converts a Macromedia Director animation to ScriptX objects, using the DTK self’s cast
translator and score translator, if any.

translateScore

transl at eScore self O self

Converts a Director score into ScriptX objects.

285

ScriptX Tools Guide

DTKBitmap

RootObject

DTKBitmap

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Menber

A DTKBi t map instance holds information about a Director bitmap castmember.

Instance Variables

286

Inherited from DTKCast Menber :

cast Fi | eNanme castFi |l eType cast Ful | Path
cast Nane cast Nunber cont ai ner
|'i ngoScri pt I'i nked

The following instance variables are defined in DTKBi t map:

bitmap

self. bi t map (read-write) Bi t map

Specifies a Bi t map object that corresponds to the bitmap used by a Director bitmap
castmember.

bBox

self. bBox (read-write) Rect
Specifies a ScriptX Rect object that is the bounding rectangle of the bitmap.

registrationpPt

self. regi strati onPt (read-write) Poi nt

A Poi nt object that represents the registration point for a Macromedia Director bitmap
graphic.

Director Translation Kit API

DTKButton

IRootObject
DTKCasltMember
DTKl';itmap
DTKButton

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKText

A DTKBuUt t on class holds information about a Director button castmember.

Instance Variables

Inherited from DTKCast Menber :

cast Fi | eNanme castFi |l eType cast Ful | Path
cast Nane cast Nunber cont ai ner
|'i ngoScri pt I'i nked

Inherited from DTKText :
backgr oundCol or bBox bor der Wdt h
t ext

The following instance variables are defined in DTKBut t on:

buttonStyle

self. buttonStyl e (read-write) Naned ass

The style of the button being converted—either @ushbut t on, @ adi oBut t on, or
@heckbox.

287

ScriptX Tools Guide

DTKCastMember

RootObject
DTKCastMember

Class type: Tool class (abstract)
Resides in: dt k. sxl
Inherits from: Root Chj ect

The DTKCast Menber class is the base class for all classes that represent castmembers
imported from Macromedia Director.

Instance Variables

288

castFileName

self. cast Fi | eNarre (read-write) String

The name of a linked file. If the value of the instance variable | i nked is f al se, the
cast Fi | eNarre instance variable is an empty string.

castFileType

self. cast Fi | eType (read-write) String

The Macintosh file type of a linked file, which is a Stri ng object. If the value of the
instance variable | i nked is f al se, the cast Fi | eType instance variable is an empty
string.

castFullPath

self. cast Ful | Pat h (read-write) String

The fully qualified path to a linked file. If the value of the instance variable | i nked is
fal se, the cast Ful | Pat h instance variable is an empty string.

castName

self. cast Nare (read-write) String

The name of the cast being imported from a Macromedia Director cast list.

castNumber

self. cast Nunber (read-write) String

The number of the cast being imported from a Macromedia Director cast list.

container

self. cont ai ner (read-write) String

The container in which to store the media for the cast member .

lingoScript

self. 1'i ngoScri pt (read-write) String

The unconverted Lingo script for the cast member.

linked

self. I'i nked (read-write) Bool ean

If the castmember media is linked to a file on a disk, the value of this instance variable
is true; if not, f al se.

Director Translation Kit API

DTKCastMemberToAudioStream

RootObject

DTKCastTranslator

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Tr ansl at or

The DTKCast Menber ToAudi oSt r eamclass is a specialized subclass of the
DTKCast Tr ansl at or class that converts a Macromedia Director sound castmember to
an Audi oSt r eamobject in ScriptX.

PDTKCastMemberToAudioStream|

Instance Variables

Inherited from DTKCast Transl at or:
dt k cont ai ner out put St ream
war ni ngs

Instance Methods

Inherited from DTKCast Tr ansl at or:

set DTK transl at eBi t map transl ateButton
t ransl at eShape t ransl at eSound transl at eText
t ransl at eUnknown transl at eVi deo

The inherited definitions for t r ansl at eBut t on, t r ansl at eShape, transl at eBi t map,
transl at eText and and tr ansl at elnknown methods all simply return undefined.

The following instance methods are defined in DTKCast Menber ToAudi oSt r eam

translateSound

transl at eSound self soundCastMember O Audi oSt ream

Translates a Macromedia Director sound castmember to an Audi 0St r eamobject in
ScriptX.

289

ScriptX Tools Guide

DTKCastMemberToPresenter

RootObject

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Menber ToSt enci |

DTKCastTranslator

DTKCastMemberToStencil
The DTKCast Menber ToPr esent er class is a specialized subclass of the

DTKCast Trans!| at or class that converts a Macromedia Director shape, bitmap, text or
video castmember to an appropriate presenter object in ScriptX.

DTKCastMemberToPresenter

Keywords for New for DTKCastMemberToPresenter

The newmethod for the DTKCast Menber ToPr esent er class takes out put St r eam
shaped ass, bi t mapd ass and t ext A ass keywords.

outputStream A stream associated with the translator which the translator
can send data to.

shapeClass ~ The class of Presenter that the transl at eShape method will
translate shape castmembers to. The default is TwoDShape.

bitmapClass The class of Present er that the transl at eBi t map
method will translate bitmap castmembers to. The
default is TwoDShape.

textClass The class of Present er that the t r ansl at eText
method will translate text castmembers to. The default
is Text Present er.

videoClass The class of Presenter that the translateVideo method
will translate video castmembers to. The default is
InterleavedMoviePlayer.

Instance Variables

Inherited from DTKCast Transl at or :
dtk cont ai ner out put St ream
war ni ngs

The following instance variables are defined in DTKCast Menber ToPr esent er :

bitmapClass

self. bi t mapd ass (read-write) d ass

Specifies which class to use as the parent for the object created when the
transl at eBi t map method on the translator self translates a bitmap castmember to a
ScriptX object.

shapeClass

self. shaped ass (read-write) d ass

Specifies which class to use as the parent for the object created when the
transl at eShape method on the translator self translates a shape castmember to a
ScriptX object.

290

Director Translation Kit API

textClass

self. text d ass (read-write) d ass

Specifies which class to use as the parent for the object created when the
transl at eText method on the translator self translates a text castmember to a ScriptX
object.

videoClass

self. vi deod ass (read-write) d ass

Specifies which class to use as the parent for the object created when the
transl at eM deo method on the translator self translates a video castmember to a
ScriptX object.

Instance Methods

Inherited from DTKCast Tr ansl at or :

set DTK transl at eBi t map transl at eButton
t ransl at eShape transl at eSound transl at eText
t ransl at eUnknown transl at eVi deo

The inherited definitions for t r ansl at eBut t on, t r ans| at eSound and
transl at eUnknown methods all simply return undefined.

The following instance methods are defined in DTKCast Menber ToPr esent er :

translateBitmap

transl at eBi t map self bitmapCastmember O TwoDShape

Converts a Macromedia Director bitmap castmember to a TwoDShape object in ScriptX.

translatePalette

transl at ePal ette self paletteCastmember O Col or Map

Converts a palette castmember to a Col or Map object in ScriptX.

translateShape

transl at eShape self shapeCastmember 00 TwoDShape

Converts a Macromedia Director shape castmember to a TwoDShape object in ScriptX.
This method generates a brush for the fill and stroke of the presenter, whose color and
pattern are retrieved from the DTKShape object.

translateText

transl at eText self textCastmember O Text Present er

Converts a Macromedia Director text castmember to a Text Present er object in ScriptX.

translateVideo

transl at eVi deo self videoCastmember O Interl eavedMovi ePl ayer

Converts a Macromedia Director video castmember to an | nt er | eavedMovi ePl ayer
object in ScriptX.

291

ScriptX Tools Guide

DTKCastMemberToStencil

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Tr ansl at or

RootObject

DTKCastTranslator
The DTKCast Menber ToSt enci | class is a specialized subclass of the

DTKCast Trans!| at or class that converts a Macromedia Director graphic castmember to
a Stencil object in ScriptX.

DTKCastMemberToStencil

Keywords for the New Method for DTKCastMemberToStencil

The newmethod for the DTKCast Menber ToSt enci | class takes an out put St r eam
keyword.

outputStream A stream associated with the translator which the translator
can send data to.

Instance Variables

Inherited from DTKCast Tr ansl at or :
dt k cont ai ner out put St ream
war ni ngs

Instance Methods

Inherited from DTKCast Tr ansl at or:

set DTK transl ateBi t map transl ateButton
t ransl at eShape t ransl at eSound transl at eText
t ransl at eUnknown transl at eVi deo

The inherited definitions for t r ansl at eBut t on, t r ans| at eSound, t r ans| at eVi deo,
and transl at enknown methods all simply return undefined.

The following instance methods are defined in DTKCast Menber ToPr esent er :

translateBitmap

transl at eBi t map self bitmapCastmember 0 Bitmap

Converts a Macromedia Director bitmap castmember to a Bi t map object in ScriptX.

translatePalette

transl at ePal ette self paletteCastmember O Col or Map

Converts a palette castmember to a Col or Map object in ScriptX.

translateShape

transl at eShape self bitmapCastmember O Stencil

Converts a Macromedia Director shape castmember—such as a Rect, RoundRect, Li ne,
or Oval —to an appropriate St enci | object in ScriptX.

292

Director Translation Kit API

translateText

transl at eText self textCastmember O Text

Converts a text castmember to a Text object in ScriptX.

293

ScriptX Tools Guide

DTKCastTranslator

RootObject

CastTranslator

294

Class type: Tool class (abstract)
Resides in: dt k. sxl
Inherits from: Root Chj ect

The DTKCast Transl at or class is the base class for all cast translators. A cast translator
converts Macromedia Director castmembers into ScriptX objects.

Instance Variables

container

self. cont ai ner (read-write) St or ageCont ai ner

The St or ageCont ai ner object in which the cast translator self can store media used by
translated cast members.

dtk
self. dt k (read-write) DTK

The DTK object that will work with the translator self to translate the Director castlist.

outputStream

self. out put St r eam (read-write) Stream

A stream associated with the translator self. The translator can write data to this stream
during cast translation if desired.

warnings

self. war ni ngs (read-write) Bool ean

When t r ue, specifies that the warnings are to be printed; when f al se, warnings are not
to be printed. Default is t r ue.

Instance Methods

prepareToTranslateCast

prepar eToTr ansl at eCast self O undefi ned

Does whatever work is necessary before translating the castlist. By default, this method
is undefined. Define it if you want to on your customized cast translator class.

translateBitMap

transl at eBi t Map self bitmapCastmember O undefi ned

Translates a bitmap castmember to a ScriptX object. The default object created is
undef i ned. Subclasses should override this method to return a meaningful object.

translateButton

transl at eBut t on self buttonCastmember 0O undefined

Translates a button castmember to a ScriptX object. The default object created is
undef i ned. Subclasses should override this method to return a meaningful object.

Director Translation Kit API

translatePalette

transl at ePal ette self paletteCastmember O undefi ned

Translates a palette castmember to a ScriptX object. The default object created is
undef i ned. Subclasses should override this method to return a meaningful object.

translateShape

transl at eShape self shapeCastmember O undefined

Translates a shape castmember to a ScriptX object. The default object created is
undef i ned. Subclasses should override this method to return a meaningful object.

translateSound

transl at eSound self soundCastmember O undefined

Translates a sound castmember to a ScriptX object. The default object created is
undef i ned. Subclasses should override this method to return a meaningful object.

translateText

transl at eText self textCastmember O undefi ned

Translates a text castmember to a ScriptX object. The default object created is
undef i ned. Subclasses should override this method to return a meaningful object.

translateUnknown

transl at eUnknown self castmember O undefi ned

Translates a castmember other than a button, sound, video, text, bitmap or shape
castmember. The default object created is undef i ned.

translateVideo

transl at eUnknown self videoCastmember O undefi ned

Translates a video castmember to a ScriptX object. The default object created is
undef i ned. Subclasses should override this method to return a meaningful object.

295

ScriptX Tools Guide

DTKPalette

RootObject
DTKCastMember
DTKPalette

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Menber

A DTKPal et t e instance holds information about a Director palette castmember.

Instance Variables
Inherited from DTKCast Menber :

cast Fi | eNanme castFi |l eType cast Ful | Path
cast Nane cast Nunber cont ai ner
|'i ngoScri pt I'i nked

The following instance variables are defined in DTKPal et t e:

colorMap

self. col or Map (read-write) Col or Map
A ScriptX Col or Map object that represents the palette of the cast member.

296

Director Translation Kit API

DTKScoreFrame

RootObject
DTKScoreFrame

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: Root Chj ect

A DTKScor eFr ane instance holds information about a frame in a Director score.

Instance Variables

absoluteFrameNumber

self. absol ut eFr aneNunber (read-write) Nunber

The number of the frame in the Macromedia Director movie score that the
DTKScor eFr arre object represents.

relativeFrameNumber

self. rel at i veFr aneNunber (read-write) Nunber

The number of the frame in the Macromedia Director movie score that the
DTKScor eFr ane object represents, in relation to the point at which the translation
began.

scriptChannels

self. scri pt Channel s (read-write) Array

An array of scripts for each channel for this frame in the score.

soundChannels

self. soundChannel s (read-write) Array

An array that consists of two DTKSoundChannel objects for the frame.

spriteChannels

self. spri t eChannel s (read-write) Array

An array that consists of 24 or 48 DTKSpri t eChannel objects for the frame, depending
on the version of Director that the imported file was created in.

tempoChannel

self. t enpoChannel (read-write) DTKTenpoChannel
The DTKTenpoChannel object for the frame.

transitionChannel

self. transi ti onChannel (read-write) DTKTr ansi t i onChannel

The DTKTr ansi ti onChannel object for the frame.

297

ScriptX Tools Guide

DTKScoreTranslator

RootObject
DTKScoreTranslator,

Class type: Tool class (abstract)
Resides in: dt k. sxl
Inherits from: Root Chj ect

The DTKScor eTr ansl at or class is the base class for all score translators. A score
translator converts a Macromedia Director score to ScriptX.

Keywords for the New Method for DTKCastMemberToStencil

The newmethod for the DTKScor eTr ansl at or class takes the following keywords.

outputStream A stream associated with the translator which the translator
can send data to.

Instance Variables

castList

self. cast Li st (read-write) Array

An array of the sprites and audio streams that corrspond to the castmembers in the
imported Director cast. If the cast has not been imported, the value of this instance
variable is undefined.

container

self. cont ai ner (read-write) St or ageCont ai ner

The St or ageCont ai ner object in which to store the media for the imported score.

dtk

self. dt k (read-write) DTK
The DTK object that is controlling the DTKScor eTr ansl| at or object.

outputStream

self. out put St r eam (read-write) Stream

The stream that the translator self can send data to, if desired.

Instance Methods

298

prepareToTranslateScore

prepar eToTr ansl at eScor e self O sel f

This method is called before the score translator self starts translating the score. By
default, it does nothing.

Director Translation Kit API

translateFrame

transl at eFrame self currentFrame previousFrame changedArray O sel f
self DTKScor eFr ame object
currentFrame DTKScor eFr ame object
previousFrame DrKScor eFr ane object
changed Array Array object

When converting a Macromedia Director movie score, the DTK calls this method for each
frame of the movie score.

299

ScriptX Tools Guide

DTKShape

RootObject

DTKCastMember
DTKShape

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Menber

A DTKShape instance holds information about a Director shape castmember.

Instance Variables

300

Inherited from DTKCast Menber :

cast Fi | eNanme castFi |l eType cast Ful | Path
cast Nane cast Nunber cont ai ner
|'i ngoScri pt I'i nked

The following instance variables are defined in DTKShape:

backgroundColor

self. backgr oundCol or (read-write) R&Col or
A ScriptX R@BCol or object that represents the background color of the shape.

bBox

self. bBox (read-write) Rect
A ScriptX Rect object that is the bounding rectangle of the shape.

filled

self.filled (read-write) Bool ean

If the shape is filled, the value of this instance variable is t r ue.

foregroundColor

self. f or egr oundCol or (read-write) RGBCol or
A ScriptX RGBCol or object that represents the foreground color of the shape.

lineWidth

self. i neWdth (read-write) Nunber

The thickness of the line that constitutes the border of the shape.

lineType

self. 1'i neType (read-write) Naned ass

For lines, specifies which way the line runs. If self is a line that runs from top left to
bottom right the value is @ri ss. If self is a line that runs from bottom left to top right,
the value is @r oss. If self is not a line, the value is undef i ned.

pattern

self. pattern (read-write) Bi t map

Specifies a bitmap for the one bit pattern for the shape self. (It does not return 8 bit
patterns, or tiles, yet.)

Director Translation Kit API

shapeStyle

self. shapeStyl e (read-write) Synbol
The type of the stencil—either @ect, @oundRect, @i ne, or @val .

301

ScriptX Tools Guide

DTKSound

RootObject

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Menber

DTKCastMember
DTKSound

A DTKSound instance holds information about a Director sound castmember.

Instance Variables
Inherited from DTKCast Menber :

cast Fi | eNanme castFi |l eType cast Ful | Path
cast Nane cast Nunber cont ai ner
|'i ngoScri pt I'i nked

The following instance variables are defined in DTKSound:

Instance Variables

audioStream

self. audi oSt r eam (read-write) Audi oSt r eam

The Audi 0St r eamobject that is associated with the sound.

302

Director Translation Kit API

DTKSoundChannel

RootObject Class type: Tool class (concrete)
Resides in: dt k. sxl
DTKSoundChannel . .
Sl Inherits from: Root Chj ect

The DTKSoundChannel class represents a sound channel for a frame of a Macromedia
Director movie score.

Instance Variables

castindex

self. cast | ndex (read-write) Nunber

An index into the array of castmembers that the DTKCast Tr ansl at or generates. This
array resides in the cast Li st instance variable on the DTK class.

303

ScriptX Tools Guide

DTKSpriteChannel

RootObject
DTKSpriteChannel

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: Root Chj ect

The DTKSpri t eChannel class represents a sprite channel for a frame of a Macromedia
Director movie score.

Instance Variables

304

absoluteChannelNumber

self. absol ut eChannel Nunber (read-write) Nunber

The number of the Macromedia Director sprite channel that the DTKSpri t eChannel
object is converting.

castindex

self. cast | ndex (read-write) Nunber

Specifies which position in the castlist is occupied by the sprite currently appearing in
the channel self.

height

self. hei ght (read-write) Nunber
The height of the sprite in the channel self.

ink

self. i nk (read-write) Nared ass

Specifies the ink mode for the channel self. The value is @opy, @atte, or @nvi si bl e.

lingoScript

self. 1 i ngoScri pt (read-write) Nanmed ass

The unconverted Lingo script for the channel self.

relativeChannelNumber

self. rel at i veChannel Nunber (read-write) Nunber

The number of the Macromedia Director sprite channel that the DTKSpri t eChannel
object is currently converting, in relation to the channel that it first converted.

thickness

self. t hi ckness (read-write) Nunber

Specifies the thickness of the border of the sprite in channel self.

useRectFromChannel

self. useRect Fr omChannel (read-write) Bool ean

Specifies ... in channel self.

Director Translation Kit API

width

self. wi dt h (read-write) Nunber
Specifies the width of the sprite in channel self.

X

self. X (read-write) Nunber

Specifies the x coordinate of the location on the stage of the sprite in channel self.

y
self.y (read-write) Nunber

Secifies the y coordinate of the location on the stage of the sprite in channel self.

305

ScriptX Tools Guide

DTKTempoChannel

RootObject
DTKTempoChannel

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: Root Chj ect

The DTKTenpoChannel class represents a tempo channel for a frame of a Macromedia
Director movie score.

Instance Variables

306

tempo

self. t enpo (read-write) Nunber

The tempo for a frame of the Macromedia Director movie score being imported.

waitForSound

self. wai t For Sound (read-write) | nt eger

Indicates which sound channel to wait for, if any.

Director Translation Kit API

DTKText

RootObject
DTKCastMember
DTKText

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Menber

A DTKText instance holds information about a Director text castmember.

Instance Variables

Inherited from DTKCast Menber :

cast Fi | eNanme castFi |l eType cast Ful | Path
cast Nane cast Nunber cont ai ner
|'i ngoScri pt I'i nked

The following instance variables are defined in DTKText :

backgroundColor

self. backCol or (read-write) R&Col or
A ScriptX REBCol or object that represents the background color of the text.

bbox

self. bbox (read-write) Rect
A ScriptX Rect object that is the bounding rectangle of the text.

borderWidth

self. bor der Wdt h (read-write) Nunber

Specifies the width of the border for the Director text castmember that has been
converted to the DTKText object self.

boxShadowSize

self. boxShadowsi ze (read-write) Nurber

Specifies the size of the shadow for the box for the Director text castmember that has
been converted to the DTKText object self.

dropShadowSize

self. dr opShadowsi ze (read-write) Nunber

Specifies the size of the drop shadow for the Director text castmember that has been
converted to the DTKText object self.

editable

self. edi t abl e (read-write) Bool ean

Specifies whether the text should be editable or not.

gutterwWidth

self. gutter Wdt h (read-write) Nunber

Specifies the width of the gutter for the Director text castmember that has been
converted to the DTKText object self.

307

ScriptX Tools Guide

308

justification

self.justification (read-write) Naned ass

Specifies the justification for the Director text castmember that has been converted to
the DTKText object self. Values are @| ushl ef t (possibley @eft), @| ushri ght
(possibly @i ght), and @enter.

shouldAutoTab

self. shoul dAut oTab (read-write) Bool ean

Specifies whether the text should have autotabs or not.

shouldWrap

self. shoul dW ap (read-write) Bool ean

Specifies whether the text should wrap or not.

style

self. styl e (read-write) Nanmed ass

Specifies the style of the text for the Director text castmember that has been converted
to the DTKText object self. Possible values are @udj ust ToFi t, @crol | i ng,
@i xedSi ze, and @i neToW dt h.

text

self. t ext (read-write) Text

Specifies the text displayed by the Director text castmember that has been converted to
the DTKText object self. The text retains the attributes such as justification and typestyle
that it had in the original Director cast member.

Director Translation Kit API

DTKTransitionChannel

RootObject
DTKTransitionChannel

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: Root Chj ect

The DTKTr ansi ti onChannel class represents a transition channel for a frame of a
Macromedia Director movie score.

Instance Variables

chunkiness

self. chunki ness (read-write) Nunber

A number from the Macromedia Director document. You can define its meaning in
ScriptX.

direction

self. di rection (read-write) Naned ass

The direction in which the transition self moves, which can be @p, @own, @eft, or
@i ght.

duration

self. durati on (read-write) Nunber

The number of frames that the transition self takes to complete.

name

self. nane (read-write) Nanmed ass

The type of the transition self, which can be @i pe, @ar ndoor, @ri s, or @l i de.

309

ScriptX Tools Guide

DTKUnknown

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Menber

The DTKUnknown class is used to represent Director castmembers that cannot be
translated into ScriptX objects, because the cast type is not recognised or not supported
by the Director Translation Kit.

Instance Variables
Inherited from DTKCast Menber :

cast Fi | eName castFi |l eType cast Ful | Pat h
cast Nanme cast Nunber cont ai ner
i ngoScri pt l'i nked

310

Director Translation Kit API

DTKVideo

RootObject
DTKCastMember

Class type: Tool class (concrete)
Resides in: dt k. sxl
Inherits from: DTKCast Menber

A DTKVi deo instance holds information about a Director video castmember.

Instance Variables

Inherited from DTKCast Menber :

cast Fi | eNanme castFi |l eType cast Ful | Path
cast Nane cast Nunber cont ai ner
|'i ngoScri pt I'i nked

The following instance variables are defined in DTKText :

directToStage

self. di rect ToSt age (read-write) Bool ean

Specifies whether the direct to stage attribute is set to true or not.

moviePlayer

self. movi ePl ayer (read-write) I nt er| eavedMovi ePl ayer

A ScriptX | nt er | eavedMovi ePl ayer object that can be used to play the imported
movie.

pausedAtStart

self. pausedAt St art (read-write) Bool ean

Specifies whether the movie is paused at the start or not.

showController

self. showControl | er (read-write) Bool ean

Specifies whether to show the controller or not.

useSound

self. useSound (read-write) Bool ean

Specifies whether the movie uses sound or not.

311

ScriptX Tools Guide

312

P AR T F O U R

Extending ScriptX

CHAPTER

Extending ScriptX

ScriptX Developer's Guide

316

Extending ScriptX

Most of the code in a ScriptX title or tool is compiled into the cross-platform bytecode
format which can be executed by any ScriptX run-time engine. For the current release,
the supported platforms for ScriptX are OS/2, the Apple Macintosh (68040 and
PowerPC), and Microsoft Windows-based systems.

Occasionally, you may need to write code that is either platform-specific, or that
requires resources or performance levels not available from the scripter. The Kaleida
Media Player allows you to include additional routines in your projects, created in C.
ScriptX allows these external code libraries (called extensions) to be loaded and run on
the platform for which they are compiled.

Using extensions, you can

® use special-purpose routines already in existence.

® generate high-performance subroutines.

® access platform features not necessarily exposed to the scripting language.

The disadvantage to extensions is that compiled code can be used on only a single
platform. You must compile separate versions of your code for each machine or
operating system on which you expect to run it. Once the code is written and compiled,
you can load this external code and call your routines from within the run-time
environment.

When creating extensions you should also create a scripted version of any extension
functions, if possible. This allows the functions to be performed on any platform for
which the C version of the extension is not available.

To support the execution of platform-specific extensions, the ScriptX run-time engine
includes a Loader class that is capable of loading extensions and binding them into the
run-time engine. In addition, the Loader component includes a Menor y(hj ect class that
facilitates the exchange of data between extensions and the run-time engine, and
provides static long-term storage for loadable extensions. The classes in the Loader
component are documented in the ScriptX Class Reference.

This chapter is organized in two sections. The first part, “Using the Loader to Run
Loadable Extensions,” describes how to load C-based extensions into ScriptX. The
second part, “Writing Loadable Extensions” on page 322, describes how to write both
scripter code and loadable code to allow for communication at run time between
ScriptX and the loadable extension.

Using the Loader to Run Loadable Extensions

The Loader component provides a mechanism for binding platform-specific code to a
particular run-time engine. A release disk can contain loadable code for several
platforms. The loader takes care of loading the appropriate units for the current
platform.

To organize and maintain separate code for each platform, the loader uses the
hierarchical directory structure of the platform’s file system. A loadable group is a
collection of compiled binary code files known as loadable units. The name of the
loadable group is the name of the directory (or folder) containing the loadable units.
Within the loadable group directory is another series of directories, one for each
platform for which code exists. Within these platform directories are the loadable units.

317

ScriptX Developer's Guide

318

group directory

platform directories

poweros2 ‘ win31 ‘ win95 mac powermac

loadable units

Figure 20-1: Hierarchical directory structure of a loadable group.

Each platform directory contains a text file named gr oup, which describes the loadable
units for that platform. The group file, described below, maps symbolic names of
loadable units to specific files (which must have file names that are legal for the
platform).

mac win31
group group.txt
longDescriptiveName.lib lgdscrnm.lib
sillyFileName.lib sllyflnm.lib

Figure 20-2: Contents of a loadable group’s platform directory.

The Group File

In Figure 20-1, the loadable group is named | dgr p. When given the command to begin
processing the group, the loader searches the directory corresponding to the current
platform and opens the file named gr oup. This file is a text database describing the
contents of the loadable group and the attributes of each of the loadable units in the
directory.

The files that make up a group are simply a logical collection of files and are not
physically combined in any way. The units in a group are not necessarily loaded at the
same time, although all loadable units are brought into the system when the group file
is read.

Extending ScriptX

For each loadable unit, the gr oup file contains seven lines of text. These lines of text
define attributes of a loadable unit and must appear in the order described below.
Comment lines, indicated by a hash sign (#) in the first position in the line, can precede
each unit description. Blank lines between unit descriptions are ignored. The following
list summarizes each of these seven lines of text:

1. Loadable unit name.
The loadable unit name can be any string of non-blank ASCII characters.
2. File name containing the loadable unit.

The file name must be a legal file name for the platform. It identifies one of the
binary files in the platform directory.

3. Symbolic name of the loadable unit’s entry point and exit point.

The entry point name is the name of an executable function inside the binary file that
is called as soon as the unit is loaded. The exit point is an optional symbolic name,
separated from the entry point by white space. The exit point function is called when
the loadable unit is relinquished.

4. System version number.

The system version number indicates compatibility with ScriptX versions. This
number is usually 0, indicating that the unit is compatible with any ScriptX version.
If the system version number is not 0, then the unit cannot be loaded unless the
number matches the version number of the currently executing Kaleida Media
Player.

5. Loadable unit version number.

The loadable unit version number identifies the unit. If the loader encounters more
than one loadable unit of the same name, it loads the one with the highest version
number.

6. Loadable unit type.

The loadable unit type must be one of two strings, either Loader TypeLi nkabl e or
Loader TypeEphener al . (For more information about the unit type, see “Loadable
Units” later in this chapter.)

7. Load list flag.

The load list flag must be set to either true or f al se. The load list flag is used if the
loader has been invoked using the process method. The pr ocess method tells the
loader to walk through the entire group file and load every unit that has the value in
its load list flag line set to t r ue.

The following example illustrates a group file containing three loadable units named
regi stration, JPEQ nporter, and G FI npor t er. Note that only the first unit has its
load list flag set to t r ue.

#Regi sters other units with the system
regi stration

register.lib

startUp shut Down

0

1

Loader TypeEphenrer al

true

#Cont ai ns JPEG i nporter
JPEQ nporter

jpeg.lib

initdass

319

ScriptX Developer's Guide

320

0

1

Loader TypeLi nkabl e
fal se

#Contains the G F inporter
Q Fl nporter

gif.lib

initdass

0

1

Loader TypeLi nkabl e

fal se

Loadable Units

Each loadable unit corresponds to a compiled code extension. Every loadable unit must
contain at least one function that is the designated entry point for the unit. When the
loader successfully brings the unit into memory, the entry point function is invoked.
The entry point function typically performs initialization chores that are necessary for
successful operation of other routines in the unit.

If the purpose of the loadable unit is to perform a single action at load time, such as
defining a set of properties, initializing a hardware component of the system, or
something similar, the unit should have the loader unit type Loader TypeEpherer al .
(The loader unit type is declared in the sixth line of the unit description.) When an
ephemeral unit is brought into memory, its entry point function is invoked. The unit is
then released, allowing the garbage collector to remove it from memory.

Loadable units that contain class definitions or functions that are to be called after the
unit is loaded must have a loader unit type Loader TypeLi nkabl e. These units are
bound into the run-time engine and act as if they were part of the substrate. Linkable
units can be released from memory after they have been used. This allows the system to
dynamically load and discard code that is not used frequently, such as import or export
routines.

Invoking the Loader

You create an active instance of the loader by calling the newmethod on the Loader
class. You can then invoke methods on the instance of Loader to process loadable
groups and loadable units. The loader creates instances of Loadabl eG oup,

Loadabl elni t, and Loadabl eUni t | d to represent loadable groups, loadable units, and
loadable units that are currently in memory. (For more information on the Loader class,
see the ScriptX Class Reference.)

Processing Complete Groups

The simplest way to invoke the loader is to call the pr ocess method. The pr ocess
method loads every unit in the gr oup file that has its load list flag set to true. An
example using the pr ocess method might look like this:

nyLoader := new Loader
nyLoadabl el DLi st := process nylLoader "I dgroup”

Extending ScriptX

These two expressions create a loader instance and tell it to process the group in the
directory | dgr oup. The loader returns a list of Loadabl eUni t | D objects for units that
are loaded into memory. The loader expects to find the directory | dgr oup in the
directory from which ScriptX was launched.

Since ephemeral units are discarded immediately after loading, pr ocess never returns a
Loadabl eUni t | D object for an ephemeral unit. In addition, you do not get

Loadabl eUni t | Dobjects for units that have their load list flag set to f al se, since these
units are not brought into memory at all.

Note — If you process a loadable group more than once, the loader will make sure that
units marked Loader TypeLi nkabl e are not brought into memory more than once.
However, any ephemeral units in the group are loaded and executed again. If an
ephemeral unit should run only once, have the unit set a scripted global variable or
instance variable that can be tested by your initialization code.

Processing Individual Units

Instead of processing a loadable group all at once, you can selectively load individual
units. In that case, you must get the Loadabl eG oup and Loadabl eUni t objects from
the loader that represent the units. The code below provides an example of this
technique.

nyLoader := new Loader
nyGoup := get@oup nylLoader "I dgroup"”

unitl := getlLoadabl elnit nyGoup "firstUnit"

unit2 := getlLoadabl ebnit nyQGoup "secondunit"
firstID := | oadMbdul e nyLoader nyGoup unitl
secondl D : = | oadMbdul e nyLoader nyG oup unit?2

In this example, two units, fi rst Uni t and secondUni t, have been loaded from the

| dgr oup loadable group. The Loader class defines the | oadModul e method, which
brings these units into memory and invokes their entry point routines. (If | oadMobdul e
cannot return the specified unit, it returns a global instance of Loadabl eUni t | D that
represents an error condition.) Note that individual units are loaded irrespective of the
setting of their load list flag.

Once a unit has been loaded into memory, you can examine the value returned by its
entry point function by calling the | oader Val ue method on the Loader instance and
passing the unit ID as a parameter. The following example assumes that the entry point
function of unit f i r st | Dreturns a value that indicates whether or not initialization was
successful.

success := (| oaderVal ue nyLoader firstlD)

When | oader Val ue is called on an ephemeral unit, it always returns enpt y. To make an
ephemeral unit’s entry point function return a value, call | oader Val ue again, before
any other loadable unit has run, passing the value enpt y as the unit ID. In the following
example, the second call to | oader Val ue is able to inspect the return value that is left
over from the first call, provided that one other loadable units have run through the
same loader.

-- the first call to |oaderValue returns enpty,

success := | oaderVal ue nyLoader firstlD
-- the second call returns a val ue
success := | oaderVal ue nylLoader enpty

321

ScriptX Developer's Guide

An ephemeral unit has other mechanisms for communication with ScriptX. It may set a
global variable, set properties, change the state of an instance of Menor yChj ect, or
throw an exception to indicate its completion status.

Releasing Loadable Units

When a unit is no longer needed in memory, call the rel i nqui sh method on the
Loadabl eUni t | Dobject. (The Loadabl elni t | Dobject is then garbage collected like any
other ScriptX object.) The loadable unit is not physically removed from memory until all
references to it are discarded. The following lines show examples of using the

rel i nqui sh method to release a loadable unit.

forEach i in idList do relinquish i
relinquish firstlD

If you have defined an exit point function in your loadable extension, that function will
be called as part of the relinquish process.

Writing Loadable Extensions

322

While most applications and tools can be written directly in the ScriptX language, it is
sometimes necessary to program at a lower level than allowed by the scripter. This can
be done by using the C programming language. Using a loadable extension written in
C, you have access to hardware features such as I/O ports and devices. With extensions,
you can create device controllers, importers and exporters, or high-speed computational
functions.

The code you write to create extensions can interact with the ScriptX object system, and
has access to any capability provided at the scripter level.

Loadable extensions must be compiled separately on each platform. The ScriptX
debugger cannot be used with loadable extensions—a system-level debugging tool is
required. For information on compiler options and debugging tools for each ScriptX
platform, see Appendix A, “Platform Notes.”

Combining ScriptX and External Code.

The ScriptX run-time environment supports loading code that is not part of the system
by using an instance of the Loader class and associated classes, as described in the first
part of this chapter.

The loader resolves external references in the loaded code to symbols in the ScriptX
substrate. You can, therefore, invoke ScriptX methods and refer to ScriptX objects inside
loadable extensions. The interface between loadable extensions and the ScriptX
substrate is described in “API for ScriptX Loadable Extensions” on page 333" later in
this chapter.

Creating a Loadable Unit

Version 1.0 of the ScriptX Language and Class Library restricted loadable units to
processing data passed in from the substrate. With the version 1.0 API, a loadable unit
could not modify the display or make operating system calls that would conflict with
the operation of the ScriptX environment.

Extending ScriptX

Version 1.5 of the ScriptX Language and Class Library extends the API for loadable
extensions, allowing a program to access any capability provided at the scripting level
without having to “pop up” to that level to perform the needed function. With the
version 1.5 API, access is provided via an external call function that boxes C arguments
into a parameter block and passes it in to the substrate using the same mechanisms
provided for scripted code. Thus, all arguments and return values used with loadable
extensions are objects.

Using the version 1.5 API, extensions can create objects using the services of ScriptX,
but they cannot store these object locally. A name-based interface is provided for
creating and accessing ScriptX objects. Function calls refer to ScriptX global objects
using module name and object name, passing name arguments as C strings.

For a complete listing of the API, see “API for ScriptX Loadable Extensions” on
page 333. The following rules apply to programming loadable extensions in C:

1. Both functions and data can be declared in C. However, loadable extensions have
access to objects only through the services of ScriptX. Static data cannot be of type
SX(vj ect, nor can it be a structure with elements of type SXChj ect.

2. Functions declared in C can be exported to the scripter as global functions
(primitives) or as generic functions (methods), using the functions SXext MakeQ obal
and SXext MakeGener i c. Such functions may accept from 0 to 10 arguments, all of
which must be of type SX(bj ect .

3. Generic functions created in C cannot override generics that are created in the
ScriptX substrate. (Generics created in the ScriptX substrate are visible in the
substrate module, whose interface module is the ScriptX module.) However, generic
functions created in C are allowed to overload generics that are created in the
scripter.

4. A ScriptX object (any value of type SX(bj ect) cannot be stored into any statically
declared C variable. To store a ScriptX object, store it as a scripter level global
variable or instance variable, using the functions provided for that purpose
(SXext Get A obal , SXext Set A obal , SXext Get | / and SXext Set | V).

5. You may declare stack (automatic) variables of type SX(bj ect and store objects in
them.

6. You may use the standard C functions (nal | oc and free) to allocate and free
dynamic memory that is not shared at the scripter level.

7. To make C structures that are visible at the scripter level, you must create instances
of class Meror yQoj ect . A Merror yChj ect object can be created either from the
scripter or from a loadable extension, but its methods can be called only from C. The
complete API for the Mermor yQoj ect class is given on page 341. Because they are
objects, they must be stored according to the rules defined here.

8. You can create a Menor yChj ect either by specifying a size in bytes, or by specifying
the structure components and names in a special array. Structure components must
be of one of the following types: SXchar, SXshort, SXi nt, SXdoubl e, and SXstri ng.
These types are defined by OIC and exported to the external API in the header file
SXExt end. h.

9. Aloadable extension in C can directly invoke any function in the SXext end. h file. It
can invoke any function or method defined in theScriptX Class Reference via the
SXext Cal | function.

10. ScriptX runs essential system services such as garbage collection, callbacks, and
event dispatch in other threads, which run concurrently with the thread from which
the entrypoint function was called. If a loadable extension runs for a long time, it
should call SXt hr eadYi el d or SXt hr ead| dl e at reasonable intervals to permit
ScriptX to run.

323

ScriptX Developer's Guide

324

Examples of Loadable Extensions

The following examples illustrate how to create loadable extensions in C. For the
complete extending ScriptX API see “API for ScriptX Loadable Extensions” on page 333.

A Simple Example

This simple example, which requires only the original ScriptX Version 1.0 AP, is the
“Hello World!” of loadable units.

#i ncl ude " SXextend. h"
SXobj ect startHere(SXobject id, SXobject grp, SXobject unit)
{

}

return SXwiteString (debug, "Hello Wrld!'\n");

The code in the previous example defines a single entry point named st ar t Her e. When
this function is called, the OIC function SXwri t eStri ng is invoked on the debug object
with a sign-on string. SXwri t eStri ng, a generic function that is implemented by
streams, is one of the functions that is exported from the substrate as part of the API for
loadable extensions. Printing to the debug stream causes a string to appear in the
console window of the authoring environment.

Functions mentioned in this chapter that have names beginning with SX, such as
SXWiteString, are defined in OIC in the ScriptX substrate, and exported for use in
loadable extensions. Prototype definitions for the available OIC functions are declared
in the header file SXext end. h.

Because this code has no further use once it has signed on, it is a likely candidate to be
an ephemeral unit. (To make a unit ephemeral, set the sixth line in its registration in the
group file to Loader TypeEphener al .) Another likely task for an ephemeral unit would
be to check for the existence of a particular piece of hardware on the system and return
SXt rue or SXf al se as a result.

Entry Points and Exit Points

Every loadable unit must have an entry point and may optionally have an exit point.
ScriptX invokes the entry point function when the unit is loaded. If an exit point
function exists, ScriptX invokes the exit point function when rel i nqui sh is called on
the loadable unit. The example above has only an entry point function.

The entry and exit functions you create must conform to the prototypes shown below:

SXobj ect entryPt(SXobject |d, SXobject grp, SXobject unit);
voi d exitPt(SXobject env, char *gNane, char *uNane);

An entry point function is called with three parameters, the loader, group, and unit
objects that are active in loading your code. Entry point functions written in C have no
way of using these objects. Do not attempt to modify them in any way. An entry point
function should return a legal ScriptX object.

An exit point function is called with three parameters also. The first is the environment,
which is the value your entry point function returned. The second and third arguments
are C strings that identify the names of the loadable group and loadable unit in which
your code is contained. Your exit point function (which is completely optional) should
not return a value.

Extending ScriptX

Exporting Functions to the Scripter

This example shows how to create a global function and export the function and a
scripter name to a particular ScriptX module. Use this example as a prototype for
creating an external routine that is coded in C for computational efficiency.

The ScriptX Prim ti ve class defines the behavior of executable code objects. Global
functions such as the comparison functions are implemented as instances of Pri nitive
in ScriptX. A Prim ti ve object holds the address of an executable function and the
minimum and maximum number of parameters the function requires. The function
SXext MakeFunct i on creates a Pri mi ti ve object and binds it to a name. Primitives and
other objects created by an extension can be bound to global variables in the scripter, in
any particular module.

The following example shows an extension which defines a factorial function. In this
case, the entry point code exports the function to the scripter and the factorial function
remains in memory to be called when needed. For a complete listing of the header file
SXext end. h, see page 343.

#i ncl ude " SXextend. h"

/*
Factorial function: to demo use of | oader
The following script |loads and binds the code:
I'd := new | oader
grp := getgroup |d "<groupdirnanme>"
unit := getloadabl eunit grp "<unitname>"
nyid := | oadnmodule Id grp unit
fact := | oadervalue |d nyid
fact 7
*/
/*
* Factorial: conputes x!' Uses floating point to
allow large results.
*/
SXdoubl e factorial (SXdoubl e d)
{
if (d <20
return 1.0;
el se
return d * factorial (d - 1.0);
}
/*
* This is the function that we export to the scripter. It

* converts between the object world and the C data world.
*/

SXobj ect fact Fn(SXobj ect n)

{
return SXdoubl eToQoj ect (factori al (SXdoubl eFrom(n)));

325

ScriptX Developer's Guide

326

/*
* Loader entry: sign on, export our synbol.
*/
SXobj ect fact EntryPoi nt (SXobject id, SXobject grp, SXobject unit)
{
SXobj ect ' s;
s = SXnakeString("Hello from Factorial!'\n");
SXwriteString(debug, "Hello from Factorial!\n");
return SXext MakeFuncti on("nureri csl npl enentation", "factorial”
factFn, 1, 1);
}

In this example, the f act Ent ryPoi nt exports the function as a code primitive. To
export an extension function to the scripter, you must create a Pri mi ti ve object by
using the SXext MakeFunct i on function and pass that object back to ScriptX as the
result of your entry point function.

From the scripter, the entry point function’s return value is retrieved by calling
| oader Val ue on the current Loader instance.

The following ScriptX code loads the unit and binds the exported function pointer to a
scripter symbol.

nyLoader := new | oader

grp := get&oup nyLoader "factgroup”

unit := getlLoadableUnit grp "factorialUnit"
nyid := | oadModul e nyLoader grp unit
factorial := |oaderVal ue nyLoader nyid
factorial 7

This example assumes that the loadable unit’s group file is in a directory called

f act gr oup, and that the unit name is f act ori al Uni t. The call on | oader Val ue
retrieves the value returned by the entry point function last loaded from the loader. A
possible group file for this extension might look like this:

#define factorial extension
factorial

factorl.lib

f act Ent r yPoi nt

0

1

Loader TypeLi nkabl e

true

When you no longer need your factorial function, The r el i nqui sh method informs the
loader that you no longer need the loadable unit, and that it can be released from
memory. To release the unit in the preceding example, you must call r el i nqui sh on the
unit id, and destroy the pointer to the primitive function object.

factorial := undefined
rel i nqui sh nyl D

Extending ScriptX

When you export values that point into loaded code to the scripter (such as the
factorial function exported in the previous example), be sure to remove any
references before you r el i nqui sh the loadable extension. For example, if you executed
relinqui sh nyl D and then called factori al again, the function pointer in the
factorial primitive would no longer be valid, and the system would probably crash.

Access to ScriptX from Loadable Units

Version 1.5 of ScriptX adds additional functionality to the Extending ScriptX AP]I,
including the Menor yQhj ect class. An instance of Menor yChj ect is an object, a fixed
chunk of memory, that both ScriptX and C code can have a pointer to. This opens the
way for additional communication between loadable extensions and ScriptX.

The following example creates a subclass of Menor yQj ect and defines methods in C
for logical operations on the new class. It is typical of loadable units that define certain
operations in C, for computational efficiency. Note that a Bi t Array object can
implement generic functions that are coded in ScriptX and generic functions that are
coded in C. In this example, the loadable unit has access to ScriptX from within C.

The first portion of this example is written in ScriptX, and it creates a memory object, an
instance of a subclass of Menor yQbj ect called Bi t Arr ay. Initialization of the Bi t Arr ay
class is in ScriptX. Other generics for operating on a bit array can be defined in C and
imported into ScriptX as generic functions using the helper function

SXext MakeGeneri c.

-- ScriptX part of BitArray exanple
class BitArray (MenoryQoject)
inst vars
bitSi ze
cl ass met hods
nethod afterlnit self #rest args -> (
apply next Method sel f args
process (new | oader) "exsx2"

end

nethod init self {class BitArray} #rest args #key nunBits:(16) -> (

if (nod nunBits 8 == 0) do
report general Error #("nunBits nust be a miltiple of 8\n")

apply nextMethod self initial Size:((nunBits / 8) as Integer) args
self.bitSize := nunBits
clear self

)

-- specialize local Equal to provide for equality test

met hod | ocal Equal self {class BitArray} other -> (
bi tequal self other

)

-- specialize prin to provide for printing

nmethod prin self {class BitArray} how strm-> (
for i := 0 to (self.bitSize - 1) do
witeString strm ((getbit self i) as String)

The remaining code is compiled in C, and loaded into ScriptX at run time. This simple
example defines an entry point function, a utility function that locks the memory object
and returns a pointer, and a series of standard operations for manipulating bits. Each
function has a prototype as a ScriptX object (type SXobj ect).

The entrypoint function includes a series of calls to SXext MakeGener i c, one of the
Extending ScriptX API helper functions. Each call to SXext MakeGener i c creates a
generic function, and a method that implements that generic function on the Bi t Arr ay

327

ScriptX Developer's Guide

class. For example, the “and” bit operation is defined as the C function andQ and
exported to the scripter as the generic function | ogi cal And, implemented as a method
on Bi t Array. For a defintion of SXext MakeGener i c, see page 338.

#i ncl ude " SXextend. h"
#i ncl ude <nenory. h>
#i ncl ude <string. h>

/* C support for BitArray class - sinplified version */
#def i ne SYS MDULE NULL
#defi ne Bl T_MDULE "scratch"

typedef enum {
CPequal ,
CPand,
CPor
CPxor

} bi naryQpcode ;

/* prototypes */

voi d *get Poi nt er (SXobj ect arg, SXint *objSize);

SXobj ect bi naryQp(SXobj ect sel f, SXobject arg2, binaryQpcode op);
SXobj ect equal Op(SXobj ect sel f, SXobject arg2);

SXobj ect and((SXobj ect self, SXobject arg2);

SXobj ect or Qo(SXobj ect sel f, SXobject arg2);

SXobj ect xor Qp(SXobj ect self, SXobject arg2);

SXobj ect not p(SXobj ect sel f);

SXobj ect cl ear Op(SXobj ect sel f);

SXobj ect set Bit Op(SXobj ect sel f, SXobject which, SXobject val);
SXobj ect get Bi t OQp(SXobj ect sel f, SXobj ect which);

SXobj ect entryPoi nt (SXobj ect 1d, SXobject grp, SXobject uni);

/* lock down the external nermory object and return it's pointer */
voi d *get Poi nter (SXobj ect arg, SXint *objSize)

*obj Size = SXintFron(SXextGet| V(BIT_MDUE, arg, "bitSize"));
SX ockMent(ar g) ;
return SXdereference(arg);

}

/* conpare two BitArrays */
SXobj ect bi naryQp(SXobj ect sel f, SXobject arg2, binaryQpcode op)

{
regi ster unsigned char*objp, *otherp;
SXi nt obj Si ze, otherS ze;
SXi nt opResul t;
SXobj ect argl, result;

if (op == CPequal) {
result = trueject;
argl = self;

}

el se {
/* copy of self is destination */
result = SXextCall (SYS_ MDULE, "copy", self, NJULL);
argl = result;

}

objp = getPointer(argl, &objS ze);

otherp = getPointer(arg2, &otherS ze);

328

Extending ScriptX

if (objSize !'= otherSize) {
SXunl ockMen(ar gl) ;
SXunl ockMen(ar g2) ;
SXext Cal | (SYS_MCDULE, "report"™, general Error,
SXnakeString("BitArray objects nust have sane size"), NULL);
return SXundefi ned;
}

obj Size /= 8;
while (objSize--) {
switch (op) {
case CPequal :
if (*objp != *otherp) {
result = fal se(hj ect;
goto bail Qut;
}
br eak;
case CPand :
*objp & *otherp;
br eak;
case CPor :
*objp | = *otherp;
br eak;
case CPxor :
*objp ~= *otherp;
br eak;
} /* switch */
obj p++;
ot her p++;
} /* while*/
/* bailQut is a label, target of a goto fromwthin the |oop */
bai | Qut :
SXunl ockMen ar gl) ;
SXunl ockMen{ ar g2) ;
return result;

}

/* conpare two BitArrays */
SXobj ect equal Qp(SXobj ect sel f, SXobject arg2)
{

return binaryQ(sel f, arg2, CPequal);
}

/* and two BitArrays */
SXobj ect and(p(SXobj ect sel f, SXobject arg2)
{

return binaryQ(sel f, arg2, CPand);
}

/* or two BitArrays */
SXobj ect or Op(SXobj ect sel f, SXobject arg2)
{

return binaryQ(sel f, arg2, CPor);
}

/* xor two BitArrays */
SXobj ect xor Qp(SXobj ect sel f, SXobject arg2)
{

}

return binaryQ(sel f, arg2, CPxor);

/* logical not of a BitArrays */

329

ScriptX Developer's Guide

SXobj ect not p(SXobj ect sel f)
{

unsi gned char *obj p;

SXi nt obj Si ze;

SXobj ect result;

/* copy of self is destination */
result = SXextCall (SYS MDULE, "copy", self, NUL);

/* get pointer to destination */
objp = getPointer(result, &objSize);

obj Size /= 8;

while (objSize--) {
*obj p++ = ~ *obj p;
}

SXunl ockMen(resul t);
return result;

}

/* zero out a BitArray */
SXobj ect cl ear OQp(SXobj ect sel f)
{

unsi gned char *obj p;

SXi nt obj S ze;

/* get pointer to destination */
objp = getPointer(self, &objS ze);

obj Size /= 8;
while (objSze--) {
*obj p++ = 0;

SXunl ockMen(sel f);
return self;

}

/* wite nth bit, zero-based, bit 0 is |eftnost */
SXobj ect set Bi t Qp(SXobj ect sel f, SXobject which, SXobject val)

{
unsi gned char *obj p;
SXi nt obj S ze;
SXi nt bit;
SXi nt result;

/* get pointer to self */

objp = getPointer(self, &objS ze);

bit = SXi nt Fron{which);

if (bit <0 || bit >= objSze) {
SXunl ockMen(sel f);
SXext Cal | (SYS_MCDULE, "report", general Error,

SXmakeString("BitArray index out of bounds"), NUL);

return SXundefi ned;

330

Extending ScriptX

}

if (val == SXintTohject(0) || val == fal se(hject)
objp[bit / 8 & ~ (1 << (7 - (bit %8)));

el se
objp[bit / 8 |= (1 << (7 - (bit %8)));

SXunl ockMen(sel f);
return self;

/* read nth bit, zero-based, bit 0 is leftnost */
SXobj ect get Bi t Op(SXobj ect sel f, SXobj ect which)

}

unsi gned char *obj p;

SXi nt obj S ze
SXi nt bit;
SXi nt result;

/* get pointer to self */

objp = getPointer(self, &objS ze);

bit = SX nt Fron{which);

if (bit <0 || bit >= objSize) {
SXunl ockMen(sel f);
SXext Cal | (SYS_MCDULE, "report™, general Error,

SXnmakeString("BitArray index out of bounds"), NUL);

return SXundefi ned,;

}

if (objp[bit / 8 & (1 << (7 - (bit %8))))
result = 1;

el se
result = 0;

SXunl ockMen(sel f);
return SX nt ToChj ect (result);

/* function executed when this library is |oaded */
SXobj ect entryPoi nt (SXobj ect 1d, SXobject grp, SXobject uni)

{

SXobj ect nyd ass;
nyd ass = SXextGetd obal (BIT_MDUE, "BitArray");
if (nydass == SXenpty) {
SXext Cal | (SYS_MCDULE, "report™, general Error,
SXnmakeString("dass BitArray not found"), NULL);
return fal se(ject;
}
/* specialize BitArray with new nethods */
SXext MakeCGeneri ¢c(BI T_MXDUE, "bitEqual", nyd ass, equal O);
SXext MakeCeneri c(BI T_MXDULE, "bitAnd", nyd ass, andQ);
SXext MakeGeneri c(BI T_MXDUE, "bitOQ", nydass, or();
SXext MakeCGeneri c(Bl T_MODULE, "bitXor", nyd ass, xor(Q);
SXext MakeCeneri c(BI T_MDULE, "bitNot", nyd ass, not();
SXext MakeGeneri c(BI T_MXDULE, "clear", nydass, clear);
SXext MakeCGeneri c(BIT_MXDUE, "getBit", nydass, getBit();
SXext MakeCeneri c(BI T_MXDULE, "setBit", nydass, setBit();

return trueQoject;

331

ScriptX Developer's Guide

332

Access to C Data Structures from ScriptX

Aloadable unit can also define its own data structures that are not ScriptX objects. (The
main limitation on loadable units is that they cannot have static access to ScriptX
objects.) A useful application of this example would be to create a buffer variable in an
importer.

The Exanpl e class creates a loader and calls a loadable unit from ScriptX in its
after!lnit method.

-- ScriptX portion of class
cl ass Exanpl e()
class vars
| oadl D
inst Vars
X,y
cstruct
cl ass rmet hods
nethod afterlnit self #rest args -> (
apply next Met hod self args
process (new Loader) "exanple"

)

end

nethod afterinit self {class Exanple} #rest args -> (
/* create instance of MenoryQhject */
sel f.cstruct := all ocat eExanpl e()
apply next Method self args
)
/* accesses internal C structures in a menory object */
nethod doStuff self {class Exanple} -> (
sel f.cstruct[@ccessCode] := 5
sel f.cstruct[@ccessMethod] : =
doConnect sel f. cstruct

" ETP"
)

The C portion of the Exanpl e class definition is compiled to exanpl e. | i b.

#i ncl ude SXextend. h
typeDef nystruct struct {

SXi nt accessCode;
SXchar accessMet hod[256] ;
int ot her;
int stuff;
} nystruct;

SXobj ect al | ocFn(SXobj ect nem

{
/* EXT_INT AND EXT_STR NG
are defined in the header file SXextend.h */
return SXmakeMenor y(hj ect (EXTsi ze(nystruct),
EXTt ype("accessCode", EXT_INT, nystruct, accessCode),
EXTt ype("accessMet hod", EXT_STR NG nystruct, accessMethod),
null);
}

SXobj ect connect Fn(SXobj ect 1d, SXobject grp, SXobject uni)

{
nystruct *np;

Extending ScriptX

SXl ockmen{ rren) ;

np = SXdereference(men);
doSt uf f (np) ;

SXunl ocknen(men) ;

return trueQoject;

}

/* the entrypoint function exports C functions to the scripter

* as primtives (global functions) */

SXobj ect entryPoi nt (SXobj ect 1d, SXobject grp, SXobject uni)

{
SXext MakeFuncti on("xnpl I npl ", "doConnect", connectFn, 1, 1);
SXext MakeFuncti on("xnpl I npl ", "al | ocat eExanpl e*, allocFn, 0, 0);

Common Errors

The following is a list of the most common mistakes in using the ScriptX external API:

1. The most common error in using the ScriptX external API is the specification of the
wrong module in a helper function. Every ScriptX name is a symbol that is defined
in a particular module. A module can determine whether names are visible to other
modules, and can export all names it defines, or selected names. If the variable that
defines a name exports it, other modules must decide explicitly whether or not they
import names from any given module, and which name they import. As an
optimization, ScriptX interprets a null value as the ScriptX module, which is the
interface module for the ScriptX substrate, in which the core classes are defined.

2. Only object values can be passed to and from ScriptX. Passing a non-object value
causes ScriptX to report an exception.

3. The helper function SXext Cal |, used to call a ScriptX function or method from C,
requires a statement terminator. A common error is the failure to terminate a list of
arguments to SXext Cal | .

API for ScriptX Loadable Extensions

The ScriptX external API is defined in three parts. First, there is a set of function and
type definitions from the substrate that are exported to the external API. Second, there
is a set of helper functions that map C calls into substrate calls. Finally, the external API
defines a new class (Meror yQhj ect) for representing allocated memory blocks.

This section provides a reference to the types and functions exported to the external API
in the header file SXext end. h. Each entry identifies the version number of ScriptX for
which it was first added to the external ScriptX API. Use this information, when
needed, to write code that is compatible with earlier versions of the Kaleida Media
Player.

Functions that are defined in the substrate and exported to the ScriptX external API are
prefixed by SX Functions that are defined as part of the ScriptX external API are
prefixed by SXext .

Type Definitions

Extensions can use these data types to communicate with the ScriptX substrate.

333

ScriptX Developer's Guide

334

Sxint (1.0)

typedef long SXint;
The SXi nt type is a 32-bit single integer value.

SXbool (1.5)

typedef SXint SXbool;

The SXbool type is a 32-bit single integer value, where a value of zero represents f al se
and a non-zero value represents t r ue.

SXdouble (1.0)

t ypedef doubl e SXdoubl €;

The SXdoubl e type is a floating point value that implements the 64-bit IEEE floating
point standard. For more information on fixed and floating point arithmetic in ScriptX,
see the “Numerics” chapter of the ScriptX Components Guide.

SXobject (1.0)

typedef voi d* SXobject;

The SXobj ect type represents any ScriptX object. All objects are passed by pointer, so
voi d* is used as the declaration for object values.

Global Constants and Variables

debug (1.0)

The global variable debug is a St r eamobject. When you write to the debug stream in the
ScriptX authoring environment, the output appears on the debug console.

SXempty (1.5)

A ScriptX system object that represents the state of emptiness on a collection or
container. Never set the value of any ScriptX object to SXenpt y; it is a value that is
returned by the system.

falseObject (1.0)

The ScriptX Bool ean object representing the value false.

SXundefined (1.0)

The ScriptX object representing the value undefined.

SXunsupplied (1.5)

The ScriptX object representing the value unsupplied.

trueObject (1.0)

The ScriptX Bool ean object representing the value true.

Extending ScriptX

Entry/Exit Prototypes
entryPoint (1.0)
SXobj ect entryPoint (SXobj ect loader, SXobj ect group, SXobject unit)

entryPoint Name of the entry function

loader The Loader object

Qroup The Loadabl eG oup object

unit The Loadabl elhi t object

Your function must return a legal ScriptX object. For more information on defining an
entry point function, see the discussion of “Entry Points and Exit Points” on page 324.
For a code example that demonstrates how to define a legal entry point function, see
SXext MakeFunct i on on page 338.

exitPoint (1.0)
SXobj ect exitPoint (SXobj ect env, char *g¢Name, char *uName)

exitPoint Name of the exit function

env Return value of the entry function, an object

gName The name of the loadable group

uName The name of the loadable unit

Performs any necessary operations before the loadable unit is released. For more
information on defining an exit point function, see the discussion of “Entry Points and
Exit Points” on page 324.

Conversion Functions

SXintToObject (1.0)

SXobj ect SXi nt ToChj ect (SXi nt val)
val The 32-bit integer to be converted

Returns a ScriptX object representing the value. For an example in which
SXi nt ToQbj ect is used, see SXmaked obal on page 339.

SXdoubleToObject (1.0)

SXobj ect SXdoubl eToQhj ect (SXdoubl e val)
val The 64-bit floating point value to be converted

Returns a ScriptX object representing the value.

SXmakeString (1.0)

SXobj ect SXmakeString(char *str)
str A C string

Returns a ScriptX object representing the string. The following example demonstrates
the use of SXmakeStri ng to report an exception in ScriptX:

SXhj ect x;

X = SXextCal | (SYS_MDULE, "report", general Error,
SXmakeString("Bad craziness in this code!l"), NJUL);

335

ScriptX Developer's Guide

336

SXintFrom (1.0

SXi nt SXi nt Fr on{ SXobj ect wval)
val A ScriptX Nunber object.

Returns a 32-bit integer with the same integer value as the ScriptX object. The usual
rules about truncation apply. For more information, see the “Numerics” chapter of the
ScriptX Components Guide.

SXdoubleFrom (1.0)

SXdoubl e SXdoubl eFr on{ SXobj ect wval)
val The ScriptX object to be converted

Returns a C floating point value equivalent to val. For more information, see the
“Numerics” chapter of the ScriptX Components Guide.

SXstringOf (1.0)

char * SXstri ngCr (SXobj ect str)
str The ScriptX string object.

Returns a pointer to the C string represented by the given ScriptX object str. Do not
modify the string in any way. Make a copy of the string if you need to modify it. Any
ScriptX String, StringConst ant, or Text object can be used as an argument to
SXstringCf.

Thread Functions

SXthreadldle (1.0)

voi d SXt hreadl dl e()

Allows any necessary system requests to be served. Other threads may be scheduled
during the execution of this call.

SXthreadYield (1.0)

voi d SXt hreadVYiel d()

Allows ScriptX to switch to the next scheduled thread.

Helper Functions

SXextCall (1.5)

SXobj ect SXext Cal | (char *module, char * functionName ,
SXobj ect objectl, SXobj ect object2, . .., NALL)

module The module in which the call is made

functionName The name of the generic or global function to call

objectl, object2, . . . A variable length list of from 0 to 10 objects, passed as
arguments to the generic or global function
functionName.

NULL NULL is required to terminate the argument list

Calls a given global or generic function in the given module, passing the list of objects
as arguments.

Extending ScriptX

The following code example demonstrates how to use SXext Cal | to call a generic
function in ScriptX:

result = SXextCall (SYS_MXDULE, "addEvent I nterest",
SXext Get | V("scratch”, sel f, "nouseMovel nterest”), NULL) ;

The syntax for calling a global function is the same. For an example that demonstrates
how to report an exception, see SXmakeSt ri ng on page 335. For a code example that
demonstrates how to call a function or method with keyword arguments, see

SXext Maked obal on page 339.

SXextGetGlobal (1.5)
SXobj ect SXext Get A obal (char *moduleName, char * globalName)

moduleName The module in which the call is made

globalName Name of the given global variable

Returns the value of the given global variable globalName that is defined in the module
moduleName.

The following example demonstrates how to access a ScriptX global variable. First, the
global variable nyMbuseEvent is defined in the scripter.

-- ScriptX portion of exanple

in nodul e special _nmodul e

gl obal flapPresenter := new TwoDShape

obj ect nyMuseEvent (MuseUpEvent) presenter:flapPresenter end

The global variable nyMouseEvent can be accessed from a loadable extension using
SXext Get d obal .

/* C portion of exanple */
SXobj ect nouseevent _1;
mouseevent _1 = SXext Get A obal ("speci al _nmodul ", "nyMuseEvent");

Note that names of classes are global names in the ScriptX module, and can be
referenced using SXext Get A obal . See the code example given for
SXnmakeNarrel nt er ned on page 339.

SXextGetlV (1.5)
SXobj ect SXext Get | (char *moduleName, SXobj ect obj, char *iv)

moduleName The module in which the call is made

obj A ScriptX object

v Name of the given instance variable on obj

Calls a given global or generic function in the given module, passing the list of objects
as arguments.

The following example demonstrates how to access a ScriptX instance variable from C.
This instance variable is defined by the object mouseevent _1, a ScriptX MouseUpEvent
object, in the example given for SXext Get A obal .

/* this exanple continues the exanple for SXextGetd obal */

SXobj ect presenter_1;
presenter_1 = SXext Getl|V("special _nodul e", nouseevent_1, "presenter");

337

ScriptX Developer's Guide

338

SXextGetModule (1.5)

SXobj ect SXext Get Modul e(char *moduleName)
moduleName The name of a module

Returns a Modul ed ass object with the name moduleName, or f al seQbj ect if no such
module exists. SXext Get Modul e is equivalent to the global function get Modul e in the
scripter, which is defined in the “Global Functions” chapter of the ScriptX Class
Reference.

SXextMakeFunction (1.5)

SXobj ect SXext MakeFuncti on(char *module, char *fnName, SXobj ect (*func) (),
SXInt minArgs, SXInt maxArgs)

module The module in which the function is defined

fnName The name of the function in that module

func A pointer to a C function

minArgs Integer representing minuimum number of arguments
maxArgs Integer representing maximum number of arguments

Creates a ScriptX Prim ti ve object that represents the given C function func and binds
that function to a ScriptX name. The funtction is callable from the scripter. The
Prinmtive class, a subclass of Abst ract Funct i on, represents a ScriptX global function.

The following example demonstrates the use of SXext MakeFunct i on. The function
bowdl eri ze is first defined in C; it takes one argument, which must be of type

SXobj ect . The script then calls SXext MakeFunct i on to export bowdl eri ze to the
scripter, assigning it as the entry point function. From the scripter, bowdl eri ze is called
as a global function.

/* first define the function in C */
SXobj ect bowdl eri ze(SXobj ect theText)

/* body of function, function processes text here */

}
/* now use SXextMkeFunction to export bowdlerize to the scripter */
SXobj ect entryPoi nt (SXobj ect 1d, SXobject grp, SXobject uni)

SXext MakeFunct i on(" Censor | npl enent ati on", "bowdl eri ze",

bowdl eri ze, 1, 1);
return trueQoject;

SXextMakeGeneric (1.5)

SXobj ect SXext MakeGeneri c(char *module, char *generic,
SXobj ect specializer, SXobj ect (*func ())

module The module in which the generic is defined
generic The name of the generic in that module
specializer The object that is specialized by the generic
func A pointer to a function

Creates a ScriptX generic function, defined in the given module, with the name generic
that is defined in that module. The function is implemented as a method defined by
specializer, which is a ScriptX class or object. The function func, which implements a
method for the generic function, will create an instance of one of the subclasses of
Abstract Funct i on in ScriptX. (The actual function class is not specified, and is subject
to change in future versions of ScriptX.)

Extending ScriptX

The following example demonstrates the use of SXext MakeGeneri c. The generic
function bowdl eri ze is first defined in C; it takes one argument, which must be an
object of type Speci al Text . The script then calls SXext MakeGeneri ¢ to export

bowdl eri ze to the scripter, assigning it as the entry point function. From the scripter,
bowdl eri ze is called as a method on Speci al Text.

/* first define the function in C */
SXobj ect bowdl eri ze(SXobj ect sel f)

/* body of method, which processes a Special Text object */

}

/* now use SXext MakeCeneric to export bowdlerize to the scripter */
SXobj ect entryPoi nt (SXobj ect 1d, SXobject grp, SXobject uni)

{
SXobj ect nyd ass;
nyd ass = SXext Getd obal ("scratch", "Special Text");
if (nydass == SXenpty) {
SXext Cal | (SYS_MCDULE, "report", general Error,
SXmakeStri ng("d ass Speci al Text not found"), NULL);
return fal se(hject;
}
/* export "bowdlerize" to the scripter as a generic function */
SXext MakeCGeneri c("scratch”, "bowdl erize", nyd ass, bowdl erize);
return trueQoject;

}
SXextMakeGlobal (1.5)
SXobj ect SXext MakeQ obal (char *module, char *global, SXobj ect wvalue)

module The module in which the global is defined

global The name of the global in that module

value The object that is assigned to the global

Defines a ScriptX global variable with the given name, in the given module, and assigns
its value.

The following example uses the C interface to create a new instance of the ScriptX class
R@&BCol or, and assigns it to the global variables bgCol or.

bgCol or = SXext Cal | (SYS_MDULE, "new',

SXext Get Q obal (SYS_MIDULE, "R@&Col or "),

SXnmakeNanel nt erned("red"), SXi nt To(hj ect(0),
SXmakeNanel nt er ned(" green"), SX nt ToChj ect (100),
SXnmakeNanel nt er ned(" bl ue"), SXi nt ToChj ect (100), NULL);
SXext MakeQ obal (SYS_MIDULE, "bgCol or ", bgCol or) ;

SXmakeNamelnterned (1.5)

SXobj ect SXmakeNanel nt er ned(char *str)
str A pointer to a C string

Creates a ScriptX Named ass object, given a C string str, and interns the name in the
system name table.

The following example demonstrates the use of SXmakeNanel nt er ned in calling a
ScriptX generic function with keyword arguments:

SXhj ect nyRect ;

nyRect = SXextCal | (SYS_MDULE, "new',
SXext Get @ obal (SYS_ MIDULE, "Rect "),

339

ScriptX Developer's Guide

340

SXmakeNanel nt er ned(" x2"), SXi nt ToQbj ect (320),
SXnmakeNanel nt er ned("y2"), SXi nt ToChj ect (240), NULL) ;

SXreadStream (1.5)
SXobj ect SXr eadSt r ean(SXobj ect *stream, voi d* buffer
SXi nt length)

stream St r eamobject, a ScriptX stream

buffer A C buffer, into which the stream is read

length An integer, the length of the stream in bytes
Reads safely from the given stream of the given length in the given buffer.
SXextSetGlobal (1.5)

SXobj ect SXext Set A obal (char *moduleName, char * globalName
SXobj ect wvalue)

moduleName The module in which the call is made
globalName Name of the given global variable
value The value to be set, a ScriptX object

Sets the value of the global variable globalName, in module moduleName, to the given

value, which must be of type SXobj ect.

SXextSetlV

(1.5)

SXobj ect SXext Set | V(char *moduleName, SXobj ect obj, char *iv
SXobj ect wvalue)

moduleName The module in which the call is made

obj A ScriptX object

v Name of the given instance variable on obj
value The value to be set, a ScriptX object

Sets the value of the instance variable iy, defined by object obj, in module moduleName, to

the given value, which must be of type SXobj ect .

The following example sets the value of the instance variable pat t er n, defined by the

object f Brush, to grayPat t er n, which is a global instance of Br ush.

SXext Set | V(SYS_MODULE, f Brush, "pattern”,
SXext Get A obal (SYS_MIDULE, "grayPattern"));

SXwriteStream (1.5)
SXobj ect SXwriteStrean(SXobj ect *stream, voi d* buffer
SXint length)

stream St r eamobject, a ScriptX stream

buffer A C buffer, into which the stream is read

length An integer, the length of the stream in bytes
Writes safely from the given buffer into the given stream,
SXwriteString (1.0)

void SXwriteString(SXobject stream, void?* cstring)

stream St r eamobject, for example, the debug object
cstring A C string

Writes the string to the designated stream.

Extending ScriptX

Creating a Memory Object

An instance of Menor y(hj ect can be created either from the scripter or from a loadable
extension. Meror yQhj ect defines an i ni t method with one required keyword
argument, i ni ti al Si ze. For an example in which an instance is created from the
scripter, see the Bi t Array class on page 327.

The function SXmakeMenor yChj ect creates an instance of Menor y(hj ect from a
loadable extension.

SXmakeMemoryObject (first calling sequence) (1.5)

voi d SXmakeMenor yCoj ect (SXi nt size, NULL)

size I nt eger object, the size in bytes
null An ASCII null character, used as a terminator

Creates an instance of Menor yQbj ect, a ScriptX object, of the given size. The null
character acts as a terminator.

SXmakeMemoryObject (second calling sequence) (1.5)

voi d SXmakeMenor yQoj ect (EXTsi ze(structure) ,
[EXTtype(string, nacro, structure, nenber),

NULL)
(EXTsi ze(structure) A macro that determines the size in bytes
[EXTtype(), . . .] A macro
null Argument list terminator

Creates an instance of Meror yQhj ect, a ScriptX object. The macros used in this calling
sequence are defined in SXext end. h. The EXTsi ze macro, defined in SXext end. h,
determines the size of the object, based on the size of the associated structure that is
defined in C.

The EXTt ype macro, also defined in SXext end. h, is an optional argument, and is
invoked once for each structure member (field) that is imported from a structure
defined in C to the scripter. It takes four arguments.

The first argument is a C string that will be used in the scripter as a name for that
member. The second argument takes a macro for the underlying C data type, one of
EXT_I NT, EXT_CHAR EXT_SHORT, EXT_LONG or EXT_FLQAT. The third argument takes the
name of the structure, the same name that is passed as an argument to EXTsi ze. The
final argument is the C name of that structure member, as defined in the structure’s

t ypedef statement.

As in the first calling sequence to SXmakeMeror yQoj ect, an ASCII nul | is required for
the final argument. Since SXMakeMenor yQbj ect accepts a variable number of
invocations of EXTt ype as arguments, this final argument acts as a terminator.

For an code sample that demonstrates the use of this calling sequence to
SXmakeMenor yChj ect, see the Exanpl e class, which begins on page 332.

MemoryObject API

Menor yChj ect defines only a single method that is visible at the scripter level, the i ni t
method. Meror yQoj ect defines the following instance methods, exported from the
substrate to the ScriptX external APL. Although the following generic functions are
implemented in the substrate as methods on Menor y(hj ect, they are called externally
as functions in C. No scripter equivalents exist for these methods.

341

ScriptX Developer's Guide

342

SXdereference (1.5)

voi d SXder ef er ence(SXobj ect self)
self Meror y(hj ect object

Get the fixed address of the Menor yChj ect instance self in memory. A call to
SXder ef er ence must be preceded by a call to SXI ockMem If the memory object is
locked, this call returns null.

SXgetOSHandle (1.5)

voi d SXget OSHand| e(SXobj ect self)
self Menor y(hj ect object

Get the handle representation of the Menor yChj ect instance self (system dependent). If
the underlying memory system is handle-based, then a handle is returned. If the system
is pointer-based, a pointer is returned.

SXlockMem (1.5)

voi d SX ockMen(SXobj ect self)
self Menor yChj ect object

Locks the Meror y(hj ect instance self in memory, so that the system cannot relocate it. A
call to SXI ockMemmust precede a call to SXder ef er ence.

SXreadAt (1.5)

voi d SXreadAt (SXobj ect self, SXint * offset
void *buffer, SXint I|ength)

self Menor yChj ect object

offset I nt eger object, position to begin reading
buffer A C buffer

length I nt eger object, number of bytes to read

Copies data safely from the Menor y(hj ect instance self into a C buffer.

SXunlockMem (1.5)

voi d SXunl ockMen(SXobj ect self)
self Menor yQhj ect objec

Unlocks the Menor y(hj ect instance self in memory, allowing the system to relocate it.
The number of calls to SXunl ockMemmust match and balance the number of calls to
SX ockMembefore the memory is relocatable.

SXwriteAt (1.5)

voi d SXwriteAt (SXobj ect self, SXint * offset
void *buffer, SXint |ength)

self Menor yChj ect object

offset I nt eger object, position to begin reading
buffer A C buffer

length I nt eger object, number of bytes to read

Writes data safely from a C buffer into the Menor y(hj ect instance self.

Extending ScriptX

SXextend.h Header File

#i ncl ude <stddef. h>

/* Exported in V1.0 */

typedef |ong SXint;

t ypedef SXi nt SXbool ;

t ypedef doubl e SXdoubl e;

typedef void * SXobj ect ;

extern SXobj ect SXi nt ToChj ect (SXint val);
extern SXobj ect SXdoubl eTohj ect (SXdoubl e val);
ext ern SXobj ect SXmakeStri ng(char *str);

extern SX nt SXi nt Fr on{ SXobj ect val);

ext ern SXdoubl e SXdoubl eFr on{ SXobj ect val);
extern char* SXstringd (SXobj ect str);

ext ern SXobj ect SXwriteString(SXobject stream char *string);
extern void SXt hr eadYi el d(voi d) ;

extern void SXt hr eadl dl e(voi d);

extern SXobj ect t rueChj ect ;

ext ern SXobj ect fal sej ect ;

/**************************/

/* Exported in V1.1 */

t ypedef SXobj ect SXcl ass;

t ypedef char SXchar;

t ypedef short SXshort;

ext ern SXobj ect general Error;

ext ern SXobj ect SXenpt y;

extern SXobj ect SXundef i ned;

ext ern SXobj ect SXunsuppl i ed;

ext ern SXobj ect SXext DebugSt r eanf voi d) ;

#defi ne debug (SXext DebugSt rean())

extern SXobj ect SXmakeNanel nt er ned(char *str);

/**************************/

/* Helper functions defined for V1.1 */

extern SXobj ect SXext Maked obal (char *nodul eNane,
char *gl obal Nane, SXobject val);
ext ern SXobj ect SXext MakeGeneri c(char *nodul eNane,

char *cl assNane, SXobject speciali zer,
SXobj ect (*func)());

ext ern SXobj ect SXext MakeFunct i on(char *nodul eNane,
char *fnNarme, SXobject (*func)(),
SXint mnargs, SXint naxargs);

ext ern SXobj ect SXext Get Modul e(char *rmodul eNane) ;

ext ern SXobj ect SXext Get @ obal (char *nodul eNane,
char *gl obal Nane) ;

343

ScriptX Developer's Guide

344

extern

extern

extern

extern

extern
extern

SXobj ect SXext Set @ obal (char *modul eNane, char *gl obal Nane,
SXobj ect val);
SXobj ect SXext Get | V(char *rodul eNane,
SXobj ect obj, char *iv);
SXobj ect SXext Set | V(char *rmodul eNane,
SXobj ect obj, char *iv, SXobject val);
SXobj ect SXext Cal | (char *nodul eNane,
char *generic, ...);
voi d SXext ReadStrean(SXobj ect strm void *buffer, SXint |ength);

void SXextWiteStrean{SXobject strm
void *buffer, SXint |ength);

/* Accessor functions for MenoryChject class */

#defi ne
#defi ne
#def i ne
#def i ne
#defi ne
#defi ne

#defi ne
#def i ne
extern
extern
extern
extern

extern
extern

EXT_TYPE SXCHAR 1
EXT_TYPE_SXSHCRT 2
EXT_TYPE SXINT 3
EXT_TYPE_SXDOUBLE 4
EXT_TYPE SXN CHAR 5
EXT_TYPE_SXCHAR STAR 6

EXT_SI ZE(baseType) (si zeof (baseType))
EXT_ELEMENT(sxnane, sxt ype, baseType, t heFi el d)\
(sxnare), ((SXint) (sxtype)), ((SX nt) of f set of (baseType, t heFi el d))

SXobj ect SXext MakeMenoryChj ect (SXint size, ...);
SXobj ect SXr eadAt (SXobj ect ext nem

void *buffer, SXint offset, SXint |ength);
SXobj ect SXwri t eAt (SXobj ect ext mem

void *buffer, SXint offset, SXint length);
SXi nt SX ockMen{ SXobj ect extmen);
SXi nt SXunl ockMen(SXobj ect ext nen) ;
voi d * SXder ef er ence(SXobj ect ext nen);

Extending ScriptX

C-Language Development Environments

ScriptX supports one C-language compiler per platform for the development of
C-extensions to ScriptX. On the Apple Macintosh, you must use the Symantec C++
compiler; on Microsoft Windows and OS/2, you must use the Watcom C/386 compiler.
This chapter outlines the compile and link procedures required to create an extension
on each platform.

Apple Macintosh 68XXX

See the printed documentation for current information.

Compiling an Extension

To create ScriptX extensions to use on the Macintosh, you must have Think C V7.0 or
later.

Note — The Macintosh versions of ScriptX and the KMP are compiled with V7.0.1 of the
Think C compiler.

For each extension, create a single source file and compile the module using the
following switches:

Set Project Type
O Application
O Far Code
U Far Data
Conpi | er Settings
O Four-byte ints
O Aign arrays of char

Linking the Extension

Use the Think C Build Library command to link the extension and write it to a library
file.

Loading the Extension

Create a group file as described in Chapter 18, “Using The Director Translation Kit.”
The group file’s loadable unit file name should point to the library generated by Think
C.

Apple Macintosh PowerPC

Compiling an Extension

To create ScriptX extensions to use on the Macintosh, you must have CodeWarrior.

Note — The Macintosh versions of ScriptX and the KMP are compiled with XXXX of the
CodeWarrior compiler.

345

ScriptX Developer's Guide

For each extension, create a single source file and compile the module using the
following switches:

See the printed documentation for current information.

Linking the Extension

See the printed documentation for current information.

Loading the Extension

See the printed documentation for current information.

Create a group file as described in Chapter , “Extending ScriptX.” The group file’s
loadable unit file name should point to the library generated by Think C.

Microsoft Windows

See the printed documentation for current information.

Compiling an Extension

To create ScriptX extensions to use on Microsoft Windows, you must have Watcom
C/386, V9.5.

Important — The Windows versions of ScriptX and the KMP are compiled using version
9.5 of the Watcom C compiler. Watcom has recently introduced version 10.0a of this
product which may contain different internal symbols. Watcom doesn’t guarantee
backward compatibility of code compiled using version 10.0a of the compiler. As a
result, the ScriptX Loader may not work properly with code compiled with version
10.0a.

For each extension, you create a single source file and compile the module using the
following switches:

wce386p -nf -4s -wd -zq -fpi -s -j -zpz -bt=windows foo.c

- nf flat nenory nodel

-4s optimze for 486 and pass arguments on stack

-fpi floating point math is done inline fpu instructions
-s remove stack checks

-j signed char by default

- bt =wi ndows build for Wndows

-zpz pack structures on word boundaries

Linking the Extension

Do not link the output of the compiler. ScriptX loads the object file (. obj) directly.

Loading the Extension

Create a group file as described in Chapter 9, “The ScriptX Loader.” The group file’s
loadable unit file name should point to the . obj file output by the compiler.

346

Extending ScriptX

0S/2

See the printed documentation for current information.

Compiling an Extension

To create ScriptX extensions to use with OS/2, you must have Watcom C/386, V10.0.

Important — The Windows versions of ScriptX and the KMP are compiled using version
10.0 of the Watcom C compiler. Watcom has recently introduced version 10.0a of this
product which may contain different internal symbols. Watcom doesn’t guarantee
backward compatibility of code compiled using version 10.0a of the compiler. As a
result, the ScriptX Loader may not work properly with code compiled with version
10.0a.

For each extension, you create a single source file and compile the module using the
following switches:

wce386p -nf -4s -w4 -zq -fpi -s -j -zpz -bt=wi ndows foo.c

- nf flat nenmory nodel

-4s optimze for 486 and pass arguments on stack

- f pi floating point math is done inline fpu instructions
-S renove stack checks

- signed char by defaul t

- bt =wi ndows build for Wndows

-zpz pack structures on word boundari es

Linking the Extension

Do not link the output of the compiler. ScriptX loads the object file (. obj) directly.

Loading the Extension

Create a group file as described in Chapter 9, “The ScriptX Loader.” The group file’s
loadable unit file name should point to the . obj file output by the compiler.

347

ScriptX Developer's Guide

348

CHAPTER

Inter-Application
Communication

ScriptX Developer's Guide

350

Inter-Application Communication

ScriptX supports different forms of Inter-Application Communication on different
platforms:

DDE on Windows and OS/2

AppleEvents on Macintosh and Power Macintosh

Dynamic Data Exchange (DDE)

ScriptX supports DDE for Microsoft Windows and OS/2. The Kaleida Media Player can
operate as a DDE server, meaning that you can send it DDE commands from another
application and it will respond. The following are the server name and commands for

ScriptX:
DDE ser ver nane: "Script X'
DDE commands: [Fi | eQoen(filename)] — open a document

[Corpi | eSel ect (filename)] — Compile an ASCII script
[Fil ePrint (filename)] — Print a ScriptX title
[Qui t App(filename)] — Quit ScriptX

Apple Events

ScriptX supports the following Apple events. (ScriptX does not support AppleScript—it
has no dictionary.) These were in version 1.0, but were not documented.

® Open application (startup ScriptX)

® Open document (startup ScriptX with a specific title)
¢ Print document (print a ScriptX title)

® Quit application (quit ScriptX)

ScriptX also supports the Apple event Do Scri pt, to compile a ScriptX script.

Apple Event “Do Script”

ScriptX supports the Do Scri pt Apple event only in the ScriptX development
environment, and not in the Kaleida Media Player.

DISCLAIMER: We cannot guarantee that Do Script will work the same way or return
the same values in future releases of ScriptX.

In general, Apple Events are a mechanism for one Macintosh application (the source) to
communicate with another Macintosh application (the target). The Do Scri pt Apple
event enables the source application to send a script to ScriptX for execution, as follows.

In the source application, you assign a ScriptX script to a Do Scri pt event and send the
event to ScriptX. The Do Scri pt event asks ScriptX to execute the expressions specified
in its script.

351

ScriptX Developer's Guide

352

When ScriptX receives a Do Scri pt event, ScriptX wraps the associated script as a
stream, spawns a separate thread and executes the fi | el n method (defined in

Byt eSt r eam on the stream. Do Scri pt returns nothing. The fi | el n method compiles
the stream into ScriptX bytecode and executes the results. As you would expect with
fileln, the script does not appear in the Listener, but the value of the last expression
and any script errors do appear. When finished, it prints “Script done” in the Listener.

The following is the specification for the Do Scri pt event.

Event Class kAEM scSt andar ds "'msc'
Event ID kAEDoScri pt " dosc'
Parameter

keyD rect (bj ect
Description: The ScriptX script to execute. This can
be any series of ScriptX expressions
in text form. Length of text limited only
by memory. (?)
Descriptor type: typel nt| Text
Required or Optional? Required
Reply Parameter
nothing

For more information on Do Scri pt, see the Apple Event Registry Standard Suites
document distributed by Apple (located in Dev.CD Mar 95:Technical Documentation:
Apple Events Registry & Suites:Apple Events Registry page 9-404).

AppleScript Dictionary for “DoScript”

Implementing the AppleScript dictionary will allow a developer to execute a ScriptX
expression from AppleScript, such as:

tell application “ScriptX
DoScri pt "new W ndow'
end tell

Note — The AppleScript Dictionary feature is not yet implemented.

Index

Symbols

<<< 71
<<<- 72
—-<<< 71
->>> 7]
<eof> 71
>>> 71

\ 68

A

About Debugger menu command 111
About menu command 79, 90
About menu item 139
About ScriptX

menu command 53, 77
actions

classes of 213
Add Button 113
AddSpriteToStageAction class 215, 224
AIFF files

importing 185
Apple Macintosh

compiling, linking and loading 345
ASCII text

importing 174
authoring

diagram 65

B

backslash 68
batch importing 196
bitmaps
importing 177
importing from DIB files 178, 181
importing from PICT files 177
importing from QuickTime 183
breakpoint functions 104
breakpoints
defining functions 104
setting 103
Breakpoints window 113
Browse Item menu command 90
Browser menu 90
Browsers
menu command 111
browsers 83
API reference 90
loading 83
updating 84
Browsers menu command 80, 90

browsing

see inspecting
building

customized director imorters 262
bytecode compiler 65
bytecode instructions

viewing in debugger 99
ByteCodeMethod Profiler 117

C

call stack 97
menu 97
viewing in debugger 97
cast translators 259
building customized translators 265
what they do 261
ChangelnkAction class 216, 226
ChangeSoundAction class 215, 227

ChangeSpriteAppearanceAction class 216, 229

ChangeSpriteSizeAction class 216, 230
ChangeTempoAction class 215, 231
Cinepak compressed movies
importing 183
Class Browser 83
loading 83
classes
inspecting 83
Clear menu command 54, 78
clickHandler 138
Close Title menu command 53, 76
code
entering in the Listener 68
code panel
in debugger 99
Compile menu command 111
compiler 65
compiling
Apple Macintosh C code 345
Microsoft Windows C code 346, 347
quickly 71, 72
ScriptX scripts 70
single-step 71
Components menu command 79
Cont Button 112
continuation character 68
Copy menu command 54, 78
creating
ScriptX scripts 70
customized director importers
building 262
Cut menu command 54, 78

353

Index

D

debug global variable 334
Debugger 93, 95, 115, 123

API reference 110

breakpoint functions 104

call stack menu 97

code panel 99

description 97

entering immediately 100

frame args panel 98

loading 95

opening 95

setting breakpoints 103

Step button 100

Step Over button 100

stepping through code 100

viewing bytecode instructions 99

viewing source code 99

watchpoints 106
Debugger menu 110
Debugger menu command 80, 111
Debugger window 111
debugger.sxt 95
debugging 95

exceptions 107
Debuglnfo class 107
DeltaPathAction class 213
development process

diagram 65
DIB files

importing 178, 181
Director Importer

introduction 199

loading 204
Director titles

importing 199

preparing for importing 203
Director Translation Kit 257, 283

loading 262
Director Translation Kit API 281
DirectorImporter class 232
Director-to-ScorePlayer Importer API Reference 221
DragRegion class 141
DTK

see Director Translation Kit
DTK class 284
DTKBitmap class 286
DTKButton class 287
DTKCastMember class 288
DTKCastMemberToAudioStream class 289
DTKCastMemberToPresenter class 290
DTKCastMemberToStencil class 292
DTKCastTranslator class 294
DTKScoreFrame class 297
DTKScoreTranslator class 298
DTKShape class 300
DTKSound class 302
DTKSoundChannel class 303

DTKSpriteChannel class 304
DTKTempoChannel class 306
DTKText class 296, 307
DTKTransitionChannel class 309
DTKUnknown class 310
DTKVideo class 311

E

edit 134
Edit Button 113
Edit menu 54, 77
end of file marker 71
ent ryPoi nt function (External API) 335
exceptions
debugging 107
executing
more than one line in Listener 70
previously entered line in Listener 69
Exit menu command 53, 73, 77
exi t Poi nt function (External API) 335
exporting 171
objects as media files 169
expressions
incomplete 69

F

fal seChj ect global constant 334
File menu 53, 75
fileIn instance method 65, 70, 75
Fonts menu command 79
frame args panel

in debugger 98
free methods

example 87

G

garbage collector ??—128

getMessage 136

Global instances
theImportExportEngine 170

global variables
theScratchTitle 73
theScriptDir 65

Go Back button 84

Go Button 112

group file, see loadable groups

I
images
importing 177
ImportDirector function 204
imported animations
modifying 211
reading the action list 217

354

Index

timing control 210
importers

file organization 169
loading 59, 60
importing

AIFF 185

bitmaps 177

cinepak compressed key frames 183
DIB files 178, 181
Director titles 199
images 177

media files 169
MIDI files 190
movies 192

pict files 177
QuickTime 192, 194
QuickTime frames 183
RTF files 174

SND 186

sound 185

specifying source files 206
text 174

WAVE files 188
ImportMedia method

general syntax 170
importrs directory 59, 61, 169
incomplete expressions 69
inkmodes 216
inquire 134
inspect 134
inspect method 83
inspecting

classes 83

instances 83, 85

modules 83
installing

Macintosh version of KMP 50

OS/2 version of KMP 51

Windows version of KMP 50
Instance Browser 83

loading 83
instances

inspecting 83, 85
InterpolateAction class 213
Introduction 57
introduction 59
investigating exceptions 107
invoking

debugger immediately 100

K

Kaleida authoring player, see ScriptX Language and
Class Library
Kaleida Image Compression (KIC) 163
Kaleida Media Player 47, 65
installing Macintosh version 50
installing OS/2 version 51

installing Windows version 50
starting 52

KIC plugins 163

KMP
see Kaleida Media Player

L

language tools 131
linking
Apple Macintosh C code 345
Microsoft Windows C code 346, 347
Listener 67
Listener menu command 76
Listener window 67
entering scripts 68
pasting text 73
loadable extensions 317—7?
access to C data structures 332
common errors 333
entry point function 327
examples 322—333
exporting functions to the scripter 325327
external APl 333—77
external API header file 343—77?
rules for creating 323
loadable groups 317—321
group file 318
processing 320
loadable units 318—322
processing 321
releasing 322
rel i nqui sh method (Loadabl elnit1 D) 326
Loader component 317—322
loading
Apple Macintosh C code 345
browsers 83
Debugger 95
Director Importer 204
Director Translation Kit 262
importers 59, 60
Microsoft Windows C code 346, 347
ScriptX scripts 70
ScriptX scripts from menu 71
tools 60
LoopAction class 233

M

machine-specific notes 345
media
importing 169
media editors 131
memory management
Visual Memory 125
Memory Management component ??—128
Menor yQhj ect class 323, 327, 341—342
SXder ef er ence method 342

3565

Index

SXget C8Handl e method 342

SX ockMemmethod 342

SXreadAt method 342

SXunl ockMemmethod 342

SXwriteAt method 342
menu commands

About 79, 90

About Debugger 111

About ScriptX 53, 77

Back 92

Browsers 80, 90, 111

Clear 54,78

Close 76

Close Title 53, 76

Compile 110, 111

Components 79

Copy 54,78

Cut 54,78

Debugger 80, 111

Edit 92

Exit 53, 73,77

Interrupt 110

Listener 76

New Listener 73

Open Accessory 53, 76

Open Title 53, 75

Opentitle 71

Page Setup 53, 77

Paste 54,78

Picklist 91

Preferences 79, 90, 111

Print 53, 77

Print Setup 53, 77

Quit 53, 73, 77, 79, 90, 111

Refresh 84, 92, 110

Remove 110

Resume Callback 110

Select All 79

Select IVSby 91

Set Breakpoint 92, 103

Show 110

Sort order 90

Specialization level 91

Undo 54,78

Visual Memory 76
menus

Browser 90

Debugger 110

Edit 54, 77

File 53,75

Tools 79, 90, 111

tool-specific 80

Window 54, 79
metaphor tools 131
method profiler 117
Microsoft Windows

compiling, linking and loading 345, 346, 347
MIDI files

importing 190

modifying

imported animations 211
modules

inspecting 83

movies

importing 192

N

New Debugger on Exception preference 95
New Listener menu command 73, 76

O

Open Accessory menu command 53, 76
Open Title menu command 53, 70, 71, 75
opening

debugger 95

ScriptX scripts 70

ScriptX scripts from menu 71

P

Page Setup menu command 53, 77
Paste menu command 54, 78
pasting text

from the Listener 73
PathAction class 214
Photoshop KIC plugins 163
Pict files

importing 177
platform-specific notes 345
plugins

kic for Photoshop 163
preferences

New Debugger on Exception 95
Preferences menu command 79, 90, 111
Preferences menu item 139
PrepareForTransitionAction class 234
PrepareTransitionAction class 217
Primtiveclass 325,326
Print menu command 53, 77
Print Setup menu command 53, 77
Profiler 117

Q
quick-compiling 71, 72
QuickTime files
importing 192, 194
importing as bitmaps 183
Quit menu command 53, 73, 77, 79, 111

R

Refresh menu command 84, 110
Refresh Window menu command 91, 92

356

Index

Remove Button 113
Remove menu command 110
RemoveSpriteFromStageAction 236
RTF files

importing 174

S

sample scripts 73
Save Change menu command 91
Score class 237
score translators 259
building customized translators 268
what they do 262
ScorePlayer class 239
ScorePlayerCastTranslator class 242
ScorePlayerScoreTranslator class 244
ScoreTicker class 245
script files
compiling 70
creating 70
loading 70
loading from menu 71
sample scripts 73
ScriptAction class 214
scripts
entering in the Listener 68
ScriptX
starting 66
ScriptX Developer’s CD 73
ScriptX Listener and Menus 25, 63
ScriptX Listener window 67
ScriptX scripts
entering in the Listener 68
Select All menu command 79
sendMessage 136
Set Breakpoint menu command 103

Show Class Methods menu command 92
Show Instance Methods menu command 92
Show Instance Variables menu command 92

Show menu command 110

showChangedRegion instance variable 65

single-step compiling 71
SND
importing 186
sound
importing 185
source code
stepping through 100
viewing in debugger 99
source files
for importing 206
Sprite class 246
SpriteChannellnfo class 247
starting Kaleida Media Player 52
starting ScriptX 66
Step Button 100, 112
Step Over Button 100, 112

stepping

through code 100
SXbool type 334
SXder ef er ence method (MenoryChj ect) 342
SXdoubl e type 334
SXdoubl eFr omfunction (External API) 336
SXdoubl eTohj ect function (External API) 335
SXenpt y global constant 334
SXext Cal | function (External API) 336
SXext Get @ obal function (External API) 337
SXext Get | Vfunction (External API) 337
SXext Get Mbdul e function (External API) 338
SXext MakeFunct i on function (External API) 338
SXext MakeGeneri ¢ function 327
SXext MakeGener i ¢ function (External API) 338
SXext Maked obal function (External API) 339
SXext Set A obal function (External API) 340
SXext Set | V function (External API) 340
SXget OSHandl e method (Menor yChj ect) 342
SXint type 334
SXi nt Fr omfunction (External API) 336
SXi nt ToQoj ect function (External API) 335
SX ockMemmethod (Meror yChj ect) 342
SXmakeMenor y(hj ect function (External API) 341
SXmakeNanel nt er ned function (External API) 339
SXMVakePri mtive function 326
SXmakeSt ri ng function (External API) 335
SXobj ect type 334
SXr eadAt method (Menoryhj ect) 342
SXr eadSt r eamfunction (External API) 340
SXst ri ngxr function (External API) 336
SXt hr eadl dl e function (External API) 336
SXt hr eadYi el d function (External API) 336
SXundef i ned global constant 334
SXunl ockMemmethod (Menoryhj ect) 342
SXunsuppl i ed global constant 334
SXwr i t eAt method (Meror yChj ect) 342
SXwri t eSt r eamfunction (External API) 340
SXwri t eStri ng function (External API) 340

T

TargetListAction class 214

text

importing 174

TextSprite class 248

The Browser System 81
theImportExportEngine global instance 205
theImportExportEngine global variable 170
theScratchTitle global variable 73
theScriptDir global variable 65
theToolOrganizer 134

Think C compiler 345

title tools 132

tifrmwrk.lib 95

Tool Framework 129

implementation 133

tool organizer 134

357

Index

tools
loading 60
tools directory 60, 95
Tools Framework 60
Tools menu 79, 90, 111, 139
toolsx directory 60, 95
trueChj ect global constant 334
TwoDSprite class 250

U

Undo menu command 54, 78
updating
browsers 84
user focus 74
Using The Director Translation Kit 255
Using the Director-to-ScorePlayer Importer 197

\Y%

VideoSprite class 252
viewing
see inspecting
Visual Memory 125
Visual Memory menu command 76

W

WaitForSoundAction class 217, 253
wantsClick 138
watchpoints
using in debugger 106
Watchpoints window 113
Watcom C/ 386 compiler 345
WAVE files
importing 188
widgets.sx] 95
Window menu 54, 79
windows
Breakpoints 113
Debugger 111
Watchpoints 113
writing a tool in ScriptX 132

358

Colophon

PRODUCT DEVELOPMENT

VP Engineering ¢ Chris Jette

Chief Architect ¢ John Wainwright
Kaleida Founder ¢ Erik Neumann
Kaleida Fellow ¢ Andrew Nicholson

ScriptX Language Team ® Wade Hennessey (mgr), Mike Agostino, Eric Benson, Ross Nelson,
Chris Richardson, David Williams

ScriptX Media Team ® Erik Neumann (mgr), Vidur Apparao, Ikko Fushiki, Jennifer Jacobi,
Chih Chao Lam, Michael Papp, Ken Tidwell, Ken Wiens

Cross-Platform Team ¢ Elba Sobrino (mgr), Yukari Huguenard, Alan Little, Jeanne Mommaerts,
Charlie Reiman, Richard Roth, Vladimir Solomonik, Clayton Wishoff, Wanmo Wong

Quality Engineering Team ¢ Ermalinda Horne (mgr), William Africa, Adela Bartl, Ron Decker,
Suzan Ehdaie, Rajiv Joshi, Tony Leung

Technical Publications Team ¢ Douglas Kramer (mgr), Jocelyn Becker, Alta Elstad,
Maydene Fisher, Howard Metzenberg, Sandra Ware

Application Support Engineering Team ¢ Ray Davis, Rob Lockstone, Felicia Santelli, Su Quek

AND ALL OUR FELLOW KALEIDANS

Masumi Abe, Harvey Alcabes, Rob Barnes, Amy Benesh, Fred Benz, Alison Booth, Mike Braun,
Mark Bunzel, Janet Byler, John Cummerford, Shannon Garrow, Marylis Garthoeffner, Norman
Gilmore, Bill Grotzinger, Sue Haderle, Diana Harwood, Don Hopkins, Bill Howell, John Hudson,
Pat Ladine, Fritzi Lareau, Deb Lyons, Karl May, Steve Mayer, Victor Medina, Gabe Mont-Reynaud,
Tom Morton, Randy Nelson, Christy O'Connell, Karen O'Such, Christian Pease, David Rosnow,
Molly Seamons, Ken Smith, Michelle Smith, Ivan Vazquez, Greg Womack

THANKS TO KALEIDA ENGINEERING ALUMNI, INCLUDING:

Sarah Allen, Dan Bornstein, Jim Inscore, David Kaiser, Shel Kaphan, Laura Lemay, Dave Lundberg,
Leslie Lundquist, Fred Malouf, Dmitry Nasledov, Steve Riggins, Steve Shaw, Cheng Tan,
Phil Taylor

Special Thanks To...
Lady, Nikki, Boots, Ella, Tyler,Rufus, Kiri, Frisky,and Iggy

THIS DOCUMENT
Writing ® Jocelyn Becker, Doug Kramer, Howard Metzenberg
Book production ¢ Sandra Ware, Jacki Dudley, Diana Harwood, Beth Delson

This book was created electronically using Adobe FrameMaker on Macintosh Quadra computers.

Documentation Roadmap

ScriptX
Quick Start Guide

109090

ScriptX ScriptX ScriptX ScriptX ScriptX

Language Components Class Reference Quick Reference Tools

Guide Guide Guide
Expressions, User’s guide Classes from A-Z, Brief overview Listener, browser,
conditionals, for ScriptX Functions, of language, debugger, profiler,
class definitions, Variables, components and importers, etc.
etc. Constants classes

Acrobat versions are available for most manuals

sxuniv.sxt

Online
ScriptX University

Lessons in
ScriptX basics

	ScriptX Tools Guide
	Contents
	Preface
	Part1 - Development Process
	Chapter 1 - Designing a ScriptX Title
	Titles, Applications and Tools
	Title Structure
	The Scenes and Stage Manager Structure
	The Model-Presentation Structure

	ScriptX Tips and Traps
	Tips
	Traps
	Speed and Memory Tips

	Chapter 2 - Building a Title from Source Files
	Title Development Process
	Source Files
	Creating a Build File for Source Scripts
	Creating a Build File for Media

	Chapter 3 - Optimizing for Speed and Memory
	Optimizing for Speed
	Speed Tools in ScriptX
	Language
	Color
	Compositing
	Animation
	Video
	Disk Access

	Optimizing Memory
	Memory Tools in ScriptX
	Size of A Class
	Garbage Collection of Persistent and Transient Objects
	Rules of Thumb for Creating and Purging Objects
	Debugging Memory Problems
	Loading and Purging
	Presenters and Bitmaps
	Minimizing The Need For Garbage Collection
	Exceptions can Prevent Garbage Collection
	Visual Memory Tips
	Garbage Collection Tips
	ShowCode Tips
	Other
	Reducing File Size

	Chapter 4 - ScriptX Title Analysis API

	Part 2 - Kaleida Media Player
	Chapter 5 - Kaleida Media Player User Guide
	Introduction
	Installation Instructions
	Macintosh
	Windows
	OS/2

	Starting the Title
	Macintosh
	Windows
	OS/2

	Kaleida Media Player Menus
	The File Menu
	The Edit Menu
	The Window Menu

	Part 3 - Tools
	Chapter 6 - Introduction to Tools
	Loading Tools and Importers
	Loading Tools
	Loading Importers

	Chapter 7 - ScriptX Listener and Menus
	Features in ScriptX That Are Not in KMP
	The Development Process
	Starting ScriptX
	The ScriptX Listener
	Typing Scripts Directly into the Listener
	Creating and Compiling Script Files
	New Listener Windows
	Resetting ScriptX
	The Listener and Other ScriptX Windows

	ScriptX Menu Command Reference
	The File Menu
	The Edit Menu
	The Window Menu
	The Tools Menu
	The ToolName Menu

	Chapter 8 - The Browser
	Loading the Browser
	Using the Browser
	Resizing the Browser
	Stepping Back to the Previous Browser Display
	Updating Browsers

	What You See in the Browser
	Sample Uses

	Editing Values in the Browser
	Editing Methods and Functions

	More On Actual Versus Virtual Instance Variables
	Using the Picklist
	Reference
	Tools Menu
	Browser Menu

	Chapter 9 - Debugger
	How to Load The Debugger
	Opening the Debugger
	Resizing the Debugger

	Description of the Debugger
	Selected Frame Field and Call Stack Menu
	Frame Variables Panel
	Code Panel

	Stepping Through Code
	Entering the Debugger Immediately
	Stepping Through Code
	Setting Breakpoints
	Defining a Function to Run at a Breakpoint

	Using Watchpoints
	Investigating Exceptions
	Accessing Source Code for Methods and Functions
	DebugInfo Objects in Title Containers

	Reference
	The Debugger Menu
	Tools Menu
	The Debugger Window
	The Watchpoints Window
	The Breakpoints Window

	Chapter 10 - ByteCodeMethod Profiler
	How to Install the Profiler
	How to Run the Profiler
	What The Profiler Does
	Profiler Output

	Example Use of the Profiler

	Chapter 11 - Visual Memory
	Platform Differences
	Running Visual Memory in the Kaleida Media Player
	Details of Visual Memory

	Chapter 12 - Tool Framework
	Overview
	ScriptX Tool Support
	Writing a Tool in ScriptX

	Implementation of the Tool Framework
	Tool Startup Process
	Tool Organizer
	Tool Communication
	Tool Messaging
	Easy Event Handling
	Tool Host OS Access
	The DragRegion Class
	Future Directions

	Chapter 13 - Tool Framework API
	Global Functions
	Global Variables
	ToolOrganizer
	ToolContainer
	ToolMenuBar
	ToolMenu
	ToolMenuItem
	DragRegion

	Chapter 14 - Photoshop Plug-ins for KIC Compression
	What is KIC?
	Where Can the Plug-ins Be Used?
	Installing the Plug-ins
	Using the Plug-ins
	The Playback Side

	Chapter 15 - Importing Media
	Chapter 16 - Using the Director-to- ScorePlayer Importer
	What the Director-To-ScorePlayer Importer Can Import
	What the Director-to-ScorePlayer Importer Cannot Import

	Classes and Inheritance
	How Director Titles are Converted to ScriptX Objects
	Preparing a Director Title for Importing Into ScriptX
	Loading the Director-to-ScorePlayer Importer
	Importing a Director Title as a ScorePlayer
	Using the ImportDirector Function
	Using the Import/Export Engine

	Saving an Imported Animation to a Title Container
	Sample Script that Imports and Saves an Animation in ScriptX

	Playing an Imported Title
	Modifying an Imported Animation
	How an ActionList Player Works
	What is the Target of An Action in an Animation?
	Handy Hints for Keeping Control of Targets
	The Classes of Action
	How to Read the Action List of a Score
	Retrieving Information about an Animation

	Chapter 17 - Director-to-ScorePlayer Importer API
	AddSpriteToStageAction
	ChangeInkAction
	ChangeSoundAction
	ChangeSpriteAppearanceAction
	ChangeSpriteSizeAction
	ChangeTempoAction
	DirectorImporter
	LoopAction
	PrepareTransitionAction
	RemoveSpriteFromStageAction class
	Score
	ScorePlayer
	ScorePlayerCastTranslator
	ScorePlayerScoreTranslator
	ScoreTicker
	Sprite
	SpriteChannelInfo
	TextSprite
	TwoDSprite
	VideoSprite
	WaitForSoundAction

	Chapter 18 - Using The Director Translation Kit
	Classes and Inheritance
	How the Director Translation Process Works
	What You Must Do To Build a Customized Director Importer
	Designing a Paradigm for Recreating a Director Title in ScriptX
	Defining Customized Cast Translator Classes
	Defining Customized Score Translator Classes
	Importing a Director Animation into ScriptX
	Advanced Example

	Chapter 19 - Director Translation Kit API
	DTK
	DTKBitmap
	DTKButton
	DTKCastMember
	DTKCastMemberToAudioStream
	DTKCastMemberToPresenter
	DTKCastMemberToStencil
	DTKCastTranslator
	DTKPalette
	DTKScoreFrame
	DTKScoreTranslator
	DTKShape
	DTKSound
	DTKSoundChannel
	DTKSpriteChannel
	DTKTempoChannel
	DTKText
	DTKTransitionChannel
	DTKUnknown
	DTKVideo
	File Organization for Importers
	Importing
	Exporting
	Importers Supplied by Kaleida Labs
	Text Importer
	Image importers
	Pict to Bitmap
	DIB to Bitmap
	KIC to Bitmap
	QuickTime to Bitmap

	Sound importers
	AIFF to AudioStream
	SND to AudioStream
	WAVE to AudioStream

	MIDI Importers
	Standard MIDI to Stream

	Movie Importers
	QuickTime Or AVI to MoviePlayer or InterleavedMoviePlayer

	Batch Processing

	Part 4 - Extending ScriptX
	Chapter 20 - Extending ScriptX
	Using the Loader to Run Loadable Extensions
	Loadable Units
	Invoking the Loader
	Releasing Loadable Units

	Writing Loadable Extensions
	Combining ScriptX and External Code.
	Creating a Loadable Unit
	Examples of Loadable Extensions
	API for ScriptX Loadable Extensions
	SXextend.h Header File

	C-Language Development Environments
	Apple Macintosh 68XXX
	Apple Macintosh PowerPC
	Microsoft Windows
	OS/2

	Chapter 21 - Inter-Application Communication
	Dynamic Data Exchange (DDE)
	Apple Events
	Apple Event “Do Script”

	Index

