QuickTime 2.2 (?)

Miscellaneous Changes

Notes on new stuff in QuickTime 2.2. Some of the information may even be accurate.
Some of the features may not actually bein QuickTime 2.2.

Image Compression Manager

ExtractAndCombinel mageFields

Many hardware compression formats contain two fields of video data. Examples of this
include Radius VideoVision, TrueVision Targa 2000, among others. Many video
processing programs need to perform operations on the individual fields, such asreversing
them, or combining one field of aframe with afield from anothe frame. These operations
have required decompressing each frame, copying the appropriate fields, and then
recompressing. In addition to being a slow operation, this also caused a quality loss
because the decompress/compress phase. The new ExtractAndCombinel mageFields call
allows an application to request that the field operation be performed directly on the
compressed data. The routine takes as inputs one or two compressed images, and creates a
compressed image on output. A long word of flags indicates the operation to be performed

pascal OSErr Extract AndConbi nel nageFi el ds(l ong fi el dFl ags, void
*datal, |ong dataSizel, |mageDescriptionHandl e descl, void
*data2, |ong dataSize2, |mageDescriptionHandl e desc2, void
*out put Data, | ong *out Dat aSi ze, | mageDescri pti onHandl e
descQut);

Thefield flags field contains flags indicating the operation to be performed. The flags
currently define dare shown below. A correctly formed request will specify one odd and
one even input field, and map them one to the even output field and the other to the odd
output field.

enum {

evenFi el d1ToEvenFi el dQut = 1<<0
evenFi el d1ToOddFi el dQut 1<<1,
oddFi el d1ToEvenFi el dQut 1<<2,
oddFi el d1ToGOddFi el dQut = 1<<3,
evenFi el d2ToEvenFi el dQut = 1<<4,
evenFi el d2ToOddFi el dQut 1<<5,
oddFi el d2ToEvenFi el dQut 1<<6,
oddFi el d2ToQddFi el dQut = 1<<7

b

The*“datal” and “data2” fields should point to compressed data of the sizesindicated by
“dataSizel” and “dataSize2” respectively. The “descl” and “desc2” fields contain image
descriptions describing the type of compressed datain each field. If The field flags only
uses a specifies datato be used from datal, then data2, dataSize2, and desc2 can be nil. The
outputData pointer points to amemory buffer to receive the compressed resulting frame.
Use GetM axCompressionSize to determine how big this buffer should be. On input the

QuickTime 2.2(?) notes - Page 1 - Apple Confidential

“outDataSize” field indicates the size of the outputData buffer. When the call returns, the
“outDataSize” field will be updated to contained the actual size of the compressed data. The
“descOut” field indicates what format the compressed data should be in. Typically thiswill
be the same format as “descl” and “desc2”. If no codec is present in the system that can
perform the operation, ExtractAndCombinel mageFields returns an error of
codecUnimpErr. Thiscall is currently implemented for the Component Video (YUV)
codec. This should be helpful for debugging.

ExtractAndCombinel mageFields for Codec Authors

Therea functionality of ExtractAndCombinelmageFields is performed by individual
Image Codecs. A new codec component routine has been defined for this purpose. Its
component selector is shown below.

codecExt r act AndConbi neFi el ds = 0x15

pascal Component Result CDCodecExtract AndConbi neFi el ds(PREAMBLE,
long fieldFlags, void *datal, |ong dataSizel,
| mageDescri pti onHandl e descl, void *data2, |ong dataSize2,
| mageDescri ptionHandl e desc2, void *outputData, |ong
*out Dat aSi ze, | mageDescri pti onHandl e descQut)

The parameters for this routine are exactly as explained above for

ExtractAndCombinel mageFields. The codec should check to make sure that it understands
the image formats specified by “descl” and “desc2”, as these may not be the same as the
codec’ s native image format. The image format specified by “descOut” will be the same as
the image codec’ s native image format.

Alpha Channel Support

The Image Compression Manager now understands how to blit images that contain an
alphachannel. Alpha channels are only supported for images with a 32 bit source pixel.
Alpha channelsin 16 bit source pixels are not supported. The high byte of each pixel
contains the apha channel. The apha channel can be interpreted in one of three ways:
straight apha, pre-multiplied with white, and pre-multiplied with black. Alpha channels are
supported by graphics mode (transfer mode). QuickDraw graphics modes are only 8 bits
in size. QuickTime graphics modes start at 256. The graphics modes for alpha channel
blitting are shown below.

enum {
graphi csModeSt rai ght Al pha = 256,
gr aphi csModePr eWi t eAl pha = 257,
gr aphi csModePr eBl ackAl pha = 258

Currently only the ‘raw * and animation codecs support storing data with an apha channel,
both in the “Millions of Colors+” mode.

To set atrack in amovie to use an apha channel graphics mode use

MediaSetGraphicsMode. To set an Image Sequence to use an alpha channel graphics mode
(or any other) use SetDSequenceTransferMode.

QuickTime 2.2(?) notes - Page 2 - Apple Confidential

Known issues. Using frame differenced Animation data with an alpha channel may cause
interesting results with the current code. Alpha channel support requires the QuickTime
PowerPlug.

JPEG & RAW Codecs

Both the JPEG and Raw codecs have been updated to include asynchronous decompress
support. This support isonly present on the PowerPlug versions, as the performance on
68k machines would be less than exciting.

Sprites

Both the Sprite Toolbox and the Sprite Track now support graphics modes. This allows for
sprites to blend with the background in various ways. Of particular interest is the ability to
use 32 bit animation compressed sprites with an alpha channel graphics modes.

The graphics mode is specified to both the Sprite Toolbox and the Sprite Track using
ModifierTrackGraphicsM odeRecord which contains both a graphics mode and an opcol or
(which isrequired for some graphics modes, such as blend). To set the graphcis mode
when using the Sprite Toolbox, use the following constant when calling SetSpriteProperty
and pass a pointer to a ModifierTrackGraphicsM odeRecord structure.

kSpritePropertyG aphi csvbde

To include the graphics mode in a Sprite Track, include an atom of type
kSPritePropertyGraphicsM ode (and data of type Modifier TrackGraphicsM odeRecord).

The sprite track also supports receiving modifier track data to control the sprites. Currently
only matrix inputs are supported. These can be sent to individual spritesto control their
location. If the movie aso contains matrices to move the sprites, the results are undefined
(i.e. don't try this). To do this, set up amodifier track (such as a Tween Track) to send
matrix datato the sprite track. In the input map use the following input type to indicate that
the matrix should be set to a sprite.

#def i ne kTrackModi fierObjectMatrix 6

In the input map, the “kSpritePropertylmagelndex” contains along indicating the id of the
sprite to send the data to. For example, to send the datato sprite id 3, set the
kSpritePropertylmagelndex to 3. (I know the nameis confusing, but is the right idea).

Movie Toolbox

One nifty new Movie Toolbox routine has been added to make it easier to work with
modifier tracks. GetTrackDisplayMatrix returns amatrix which is the concatentation of all
matrices currently effecting the tracks location/scaling/etc. Thisincludesthe movie's
matrix, the track’ s matrix, the modifier matrix, and any other random matrix that might be
around (none at thistime). Since modifier information is passed between tracks at
MoviesTask time, the information returned by this call will only be as accurate as the time
of the last MoviesTask call.

QuickTime 2.2(?) notes - Page 3 - Apple Confidential

pascal OSErr Get TrackDi splayMatri x(Track theTrack, MatrixRecord
*matri x)

It is already possible to determine the entire clip of atrack at the current time using
GetTrackDisplayBoundsRgn. The results of GetTrackDisplayBoundsRgn take into account
any clip regions provided by modifier tracks.

Data Handler

QuickTime' s primary data handler (the HFS Data Handler) has been updated to alow for
higher performance play back. Specificaly, in the past reads were only started from
MoviesTask. Those reads were asynchronous, but there could be considerable gaps
between the completion of one read and the start of the next. The data handler has been
modified to allow aread to be started from the completion of the previousread. This
allows the data handler to maximize the throughput from the device. Noticeable
performance improvements have been observed.

Sequence Grabber

The sequence grabber sound channel has been enhanced to alow sound to be capture at any
samplerate. The sample rate is specified, asin the past, by using SGSetSoundlnputRate.
However, if the requested rate is not close to one of the hardware rates, the sound will be
software rate converted to the requested rate. This feature isimportant to QuickTime
Conferencing. The user interface in the sequence grabber sound sample panel has been
updated for this feature, but does not fully exposeit. If 8k isnot present in the sound input
driver’s native rates, 8k is added to the rate pop-up. The user is not current allowed to select
any arbitrary rate, just harware rates and 8Kk.

QuickTime 2.2(?) notes - Page 4 - Apple Confidential

QT Resource Manager

The QuickTime resource manager is designed to address the needs of QTi to be ableto
store datain avariety of location, while accessing it in the same way regardless of where it
is stored. The resource manager groups data into resource maps. Each map contains a list
of resources, and information about where the actual resource datais stored. The data may
be stored in the map itself, or the data may be stored in the same file the map is stored in
(but external to the map itself). Finally, the data may be stored external to the map by
placing it in an externa datareference. Another feature of the QuickTime resource manager
isthat resource maps may be chained together into atree. If aresource cannot be foundin a
given map, its parent map will be searched for the data, and so on, until the root is reached.

Resources are identified by four long words. Thefirst isclass. Thisis usually the object
class of the object that owns the resource. The next two longs are type and subtype. The
last long isthe resource id within the class/type/subtype. Another feature of the QuickTime
resource manager isthat if a search for aresourcefails, the classfield is replaced with the
parent class and the search is repeated. In thisway, for example, if aresource cannot be
found for a picture object, the search will be retried on the base object. This allows
resources to be overriden in the same way object methods are typically overriden.

Because searching for aresource can be arelatively expensive operation, the QuickTime
resource manager requires the application to create areference to aresource in a particular
map. In thisway the resource can be accessed many times, but only looked up once.
QuickTime ensures that the reference is invalidated as appropriate due to changesin the
resource maps, so it will aways be accurate. This allows an object, for example the picture
object, to create areference to its required resources once when being initialized and then
quickly access them for use when necessary.

Because the QuickTime resource manager has information about all resources currently in
use, and when they were last used, it can perform reasonably intelligent caching of resource
data

Note: the current implementation of the QuickTime resource manager is not as clever, fat,
or wonderful asit might be. It will be improved once its usage can be reasonably profiled.

pascal OSErr QINewResour ceMap(ResourceMap *theMap, ResourceMap
par ent Map)

QTNewResourceMap creates a new resource map. A parentMap may be specified. If there
IS no parent map, the parentMap field should be set to nil.

pascal OSErr QID sposeResour ceMap(ResourceMap theMap)
QTDisposeResourceM ap disposes of the specified resource map, all of its resources, all
references to resources in the map, and al the map’ s children maps.

pascal OSErr QrRenmpoveAl | Resour cesFr oniVap(Resour ceMap t heMap)
QTRemoveAllResourcesFromMap empties all resources out of the specified map. Thisis
useful if you need to reinitialize an existing map. All references to resourcesin the map
remain.

QuickTime 2.2(?) notes - Page 5 - Apple Confidential

pascal OSErr QrAddDat aRef er enceToMap(Resour ceMap t heMap, OSType

dat aRef Type, Handl e dat aRef, ResourceDat aRef erence

*r esDat aRef)
Before adding a resource to the map that storesits data external to the map using a data
reference, it is necessary to add the data reference to the map. QTAddDataReferenceToM ap
takes aresource map, a data reference (specified by dataRef Type and dataRef), and returns
aResourceDataReference. After al resources have been added to the map that require the
data reference, the ResourceDataReference should be disposed using
QTRemoveDataReferenceFromMap. ResourceDataReferences are maintained in the
resource map using counters. Calling QTAddDataReferenceToMap adds the data
reference, and setsit counter to 1. Asresources are added that use the data reference, its
counter isincremented. When the application done adding the resources to the map that use
the ResourceDataReference, calling QTRemoveDataReferenceFromMap decrements the
counter, ensuring that the counter of the number of resources that use the data referenceis
correct. It isimportant that this counter be correct so that the data reference can be removed
from the map when it is no longer referenced by any resources.

pascal OSErr QrRenpveDat aRef er enceFr omvap(Resour ceDat aRef er ence
~ resDat aRef)
See the description of QTAddDataReferenceToMap.

pascal OSErr QrAddResour ceRef erenceToMap(Resour ceMap t heMap,
OSType rd ass, OSType rType, OSType rSubType, long id, |ong
of fset, long size, ResourceDataReference resDat aRef)

QTAddResourceReferenceToMap creates aresource entry in the resource map. The
resource isidentified by the rClass, rType, rSubType, and id fields. The resDataRef field is
the data reference added to the map by QTAddDataReferenceToMap. The offset and size
indicate the offset of the datainto the resource map, and the size of the data in the resource
map. A size of “-1” indicates that the datais the al the data in the file beginning at “ offset”.
Thisis aconvenient way to create aresource which references data which takes up an entire
file, and whose size is may change after the movie is authored. QuickTime ismore
efficient at run timeif the actual size of the resource is specified instead of -1.

pascal OSErr QrAddResour ceDat aToMap(ResourceMap t heMap, OSType

rcd ass, OSType rType, OSType rSubType, long id, void *data,

| ong size)
QTAddResourceDataT oM ap adds data directly into a resource map instead of it being
stored externa to the map. This maps the map larger, and precludes unloading the resource
data under low memory conditions, so it should be used carefully. The resourceis
indentified by rClass, rType, rSubType, and id. The resource data is pointed to by the
“data’ field and the resource sizeisindicated by “size’.

pascal OSErr QrAddResour ceAl i asToMap(ResourceMap t heMap, OSType
rc ass, OSType rType, OSType rSubType, long id, OSType
r ToCl ass, OSType rToType, OSType rToSubType, |ong tolD)

Current unused. Intended to be a mechansim to allow a given resource to specify that its
data actually resides in another resource.

pascal OSErr QIrRemoveResour ceFromvap(Resour ceMap t heMap, OSType
rc ass, OSType rType, OSType rSubType, long id)

QuickTime 2.2(?) notes - Page 6 - Apple Confidential

QTResourceFromMap del etes the specified resource from the map. Any resource
references which reference this resource will be invalidated.

pascal OSErr QINewResour ceRef erence(ResourceMap t heMap, OSType
rc ass, OSType rType, OSType rSubType, long id,
Resour ceRef erence *resourceRef, Qri Object notifyOnChanges)
QTNewResourceReference creates areference to the resource specified by rClass, rType,
rSybType, and id relative to “theMap”. The resource referenceis returned in

“resourceRef”. The “notifyOnChanges’ field is currently unused.

pascal OSErr QI'NewResour ceRef erenceFor Cbj ect (Qli Obj ect t heQbj ect,
OSType rType, OSType rSubType, long id, ResourceReference
*resour ceRef)
QTNewResourceReferenceForObject is similar to QTNewResourceReference, but is
intended for use by authors of QTi objects. The rClass, theMap, and notifyOnChanges
fields are replaced by “theObject” which indicates which object is creating the reference.
From the object, QuickTime determines the values for the missing fields.

pascal OSErr QIDi sposeResour ceRef erence(Resour ceRef erence
resour ceRef)
When aresource reference is no longer in use, QT DisposeResourceReference disposesiit.
Resource references created with either QT NewResourceReference or
QTNewResourceReferencelForObject can be passed to this routine.

pascal OSErr QrGet ResourceSi ze(Resour ceRef erence resourceRef, |ong
*dat aSi ze)
QT GetResourceSize returns the size of the resource specified by the resourceRef. If the
resource was defined with asize of “-1”, thisroutine will return the actual resource size,
not “-1” based on the rules described under QT AddResourceDataToMap.

pascal OSErr QrLockResour ceDat a(Resour ceRef erence resour ceRef,
| ong of fsetlntoResource, |ong dataSize, Ptr *where)

QTLockResourceData provides away to directly access the data stored in a particular
resource. The starting offset of the desired datain the resource is specified, as well asthe
datasize. A pointer isreturned to the actual resource data. This routine can fail, due to
insufficient memory. In these cases, the caller cal use QTReadResourceData (described
below) to access the resource data. UseQTUnlockResourceData to release the data. It is
important to unlock the resource data as soon as possible to avoid heap fragmentation. It is
safe to call QTLockResourceData for multiple segments of resource data, aslong aseach is
eventually balanced with acall to QTUnlockResourceData.

pascal OSErr Qrunl ockResour ceDat a(Resour ceRef erence resour ceRef,
| ong of fsetl ntoResource, |ong dataSize)
QTUnlockResourceData rel eases the resource data previously locked down. Caching is
performed by the QuickTime resource manager so that if the datais asked for again later, it
will most likely till be in memory. The same values for offsetlntoResource and dataSize
should be used as when QTL ockResourceData was called.

pascal OSErr QrReadResour ceDat a(Resour ceRef erence resour ceRef,
| ong of fsetlntoResource, |ong dataSize, Ptr where)
TReadResourceData copies a segment of resource data into the callers buffer. The offset
p Seg

into the resource data and size of the resource datais provided. A pointer to abuffer isalso

QuickTime 2.2(?) notes - Page 7 - Apple Confidential

passed. QTReadResourceDatais much less likely to fail than QTLockResourceData, as the
QuickTime resource manager is not required to allocated any memory.

pascal OSErr QrIGet Resour ceDat aRef er ence(Resour ceRef erence
resour ceRef, OSType *dat aRef Type, Handl e dat aRef erence)
QTGetResourceDataReference returns the data reference associated with the given resource
reference. If there is no data reference, because the datais stored in the map itself, the
dataRef Type field is set to nil. Most applications will not need to use this routine.

pascal OSErr QrPut Resour ceMapl nt oAt on{ Resour ceMap resour ceMap,

QTAt omCont ai ner contai ner, QTAtom atom OSType dat aRef Type,

Handl e dat aRef)
QTPutResourceM apl ntoAtom flattens the specified resourceMap into a QT AtomContainer
at the specified QTAtom node. The resource map is stored in aform suitable for storage.
The resource map can be recreated from the QT AtomContai ner/QTAtom node by using
either QTNewReourceMapFromAtom or QTMergeAtomToResourceMap. If the file that
the resource map is to be stored in is know, its data reference should be passed into the
dataRef Type and dataRef fields. This allows the QuickTime resource manager to create
relative aliases to the data, so that data references can be resolved more accurately.

pascal OSErr QI'NewResour ceMapFr omAt on{ Resour ceMap *resour ceMap,
Resour ceMap parent Map, QTAt onCont ai ner contai ner, QTAtom

atom
QTNewResourceM apFromAtom creates a new resource map from the specified flat

resource map stored in the QT AtomContainer within the QTAtom node. In most cases,
QTMergeAtomToResourceMap should be used.

pascal OSErr QIMer geAt onToResour ceMap(Resour ceMap resour ceMap,
QTAt omCont ai ner contai ner, QTAtom atom OSType dat aRef Type,
Handl e dat aRef)
QTMergeAtomToResourceM ap takes a resource map, and merges the contents of the flat
resource map contained in QTAtomContainer within QT Atom node. If possible, the data
reference of thefile that the resource map was loaded from should be specified in
dataRef Type and dataRef to ensure that external data references can be resolved.

QuickTime 2.2(?) notes - Page 8 - Apple Confidential

