
Graphics Importers - 1
©1996 Apple Computer, Inc.

Introduction

Graphics Importer components provide a generic way for applications to interact with the
images contained within any graphics file containing still images. The goal is to allow an
application to work with any type of image data, regardless of the file format or
compression used in the document. The application simply specifies the file that the image
resides in, and the destination rectangle the image should be drawn into, and all other
details will be taken care of. Of course, more complex interactions are supported.

The following routine shows the simplest possible use of graphics importers to draw a
picture.

void drawFile(const FSSpec *fss, const Rect *boundsRect)
{

GraphicsImportComponent gi;

GetGraphicsImporterForFile(fss, &gi);

GraphicsImportSetBoundsRect(gi, boundsRect);
GraphicsImportDraw(gi);

CloseComponent(gi);
}

This same code can be used to draw the file regardless of image file formats. In the current
implementation the following file formats are supported: QuickDraw picture, MacPaint,
Photoshop (2.5/3.0), SGI .rgb, GIF, and JFIF. Also supported is the new QuickTime
Image File format, which is defined below.

If the same file is going to be drawn more than once, it is probably a good idea to keep the
graphics import component around, rather than creating and disposing it each time. In this
way, drawing will be faster as less work needs to be done for each draw.

Specifying the Data Source

Data for graphics import components can actually be stored in any location. Graphics
import components use QuickTime data handler components to obtain their data. Most
users of graphics import components will never need to worry about the details of this
however, as routines are provided to allow the data source to be set as either a file or a
handle.

ComponentResult GraphicsImportSetDataFile(GraphicsImportComponent
gi, const FSSpec *theFile)

Specify the file that the graphics data resides in.

ComponentResult GraphicsImportGetDataFile(GraphicsImportComponent
gi, FSSpec *theFile)

Returns the file that the graphics data resides in. If the data source is not a file, this routine
returns paramErr.



Graphics Importers - 2
©1996 Apple Computer, Inc.

ComponentResult
GraphicsImportSetDataHandle(GraphicsImportComponent gi,
Handle h)

Specifies the handle that the graphics data resides in.

ComponentResult
GraphicsImportGetDataHandle(GraphicsImportComponent gi,
Handle *h)

Returns the handle that the graphics data resides in. If the data source is not a handle, this
routine returns paramErr.

ComponentResult
GraphicsImportSetDataReference(GraphicsImportComponent gi,
Handle dataRef, OSType dataReType)

Specifies the data reference that the graphics data resides in. The routines
GraphicsImportSetDataFile and GraphicsImportSetDataHandle both call this routine, with
the appropriate data reference and data references type. See QuickTime documentation for
more details on data references.

ComponentResult
GraphicsImportGetDataReference(GraphicsImportComponent gi,
Handle *dataRef, OSType *dataRefType)

Returns the data reference that the graphics data resides in. Both the dataRef and
dataRefType parameters may be set to nil if the corresponding information is not desired.
Both GraphicsImportGetDataHandle and GraphicsImportGetDataFile call
GraphicsImporGetDataReference and then manipulate the result accordingly.

Retrieving Image Data

ComponentResult GraphicsImportReadData(GraphicsImportComponent gi,
void *dataPtr, unsigned long dataOffset, unsigned long
dataSize)

Once the data source has been assigned, data can be read directly from the image by using
GraphicsImportReadData. GraphicsImportReadData communicates with the appropriate
data handler to retrieve data. Typically only authors of graphics import component will
need to use this routine. This routine should always be used to retrieve data from the data
source, rather than reading it directly.

Getting Image Characteristics

ComponentResult
GraphicsImportGetNaturalBounds(GraphicsImportComponent gi,
Rect *naturalBounds)

Use GraphicsImportGetNaturalBounds to determine the native size of the image associated
with the graphics import component. The natural bounds will always be zero based.
GraphcisImportGetNaturalBounds is provided for the convenience of users of graphics
import components: the implementation just calls GraphicsImportGetImageDescription
and extracts the width and height fields.

ComponentResult
GraphicsImportGetImageDescription(GraphicsImportComponent
gi, ImageDescriptionHandle *desc)



Graphics Importers - 3
©1996 Apple Computer, Inc.

GraphicsImportGetImageDescription returns lots of information about the image
associated with the graphics import component. In particular, the format of the compressed
data, bit depth, natural bounds, and resolution are returned. The returned image description
must be disposed of by the caller.

Setting Drawing Parameters

When drawing, you may wish to specify various parameters for the drawing operation
such as clipping, scaling, graphics mode, and quality, These are all supported by individual
calls. All of these routines are based on corresponding routines in the Image Compression
Manager for working with image decompression sequences.

ComponentResult
GraphicsImportSetBoundsRect(GraphicsImportComponent gi,
const Rect *bounds)

GraphicsImportSetBoundsRect defines the rectangle into which the graphics image should
be drawn. This routine creates a matrix to map from the image’s natural bounds to the
specified bounds and calls GraphicsImportSetMatrix.

ComponentResult
GraphicsImportGetBoundsRect(GraphicsImportComponent gi, Rect
*bounds)

GraphicsImportGetBoundsRect returns the bounding rectangle for drawing. This routine is
implemented by calling GraphicsImportGetMatrix and GraphicsImportGetNaturalBounds
and using the results to calculate the drawing rectangle.

ComponentResult GraphicsImportSetMatrix(GraphicsImportComponent
gi, const MatrixRecord *matrix)

Defines the matrix to be used for drawing.

ComponentResult GraphicsImportGetMatrix(GraphicsImportComponent
gi, MatrixRecord *matrix)

Returns the matrix to be used for drawing. The drawing matrix is initialized to the identity
matrix when the graphics import component is instantiated.

ComponentResult GraphicsImportSetClip(GraphicsImportComponent gi,
RgnHandle clipRgn)

Defines the clipping region for drawing. All drawing operations ignore the port clip, so to
clip the image, GraphicsImportSetClip must be called. Pass nil for the clipRgn to set the
clipRgn to full. The default clip region is nil. The graphics import component makes a copy
of this region.

ComponentResult GraphicsImportGetClip(GraphicsImportComponent gi,
RgnHandle *clipRgn)

Returns the current clipping region. The caller is responsible for disposing of the returned
region. If there is no clipping region, nil is returned.

ComponentResult
GraphicsImportSetGraphicsMode(GraphicsImportComponent gi,
long graphicsMode, const RGBColor *opColor)



Graphics Importers - 4
©1996 Apple Computer, Inc.

Defines the graphics mode for drawing the image. If the opColor field is non-nil, the op
color is also defined. The default graphics mode is ditherCopy and the default opColor is a
50% gray.

ComponentResult
GraphicsImportGetGraphicsMode(GraphicsImportComponent gi,
long *graphicsMode, RGBColor *opColor)

Returns the current graphics mode and opColor. Both the graphicsMode and opColor
fields may be set to nil if the corresponding information is not required.

ComponentResult GraphicsImportSetQuality(GraphicsImportComponent
gi, CodecQ quality)

Sets the image display quality. In the Image Compression Manager this is called accuracy.
The default value is normal accuracy. Values range from 0 to 1024, with higher values
being higher quality.

ComponentResult GraphicsImportGetQuality(GraphicsImportComponent
gi, CodecQ *quality)

Returns the image display quality. In the Image Compression Manager this is called
accuracy.

ComponentResult
GraphicsImportSetSourceRect(GraphicsImportComponent gi,
const Rect *sourceRect)

Defines the source rectangle area of the image to use. Provides a way to only use a portion
of the source image. Pass nil to specifiy that the entire image source rectangle should be
used.

ComponentResult
GraphicsImportGetSourceRect(GraphicsImportComponent gi, Rect
*sourceRect)

Returns the current source rectangle. The default source rectangle is the image’s natural
bounds.

Drawing

ComponentResult GraphicsImportSetGWorld(GraphicsImportComponent
gi, CGrafPtr port, GDHandle gd)

Defines the graphics world for drawing to take place in. Resetting the graphics world is a
relatively expensive operation and so should be avoided when possible. This is true even
when setting the graphics world to the same graphics world.

ComponentResult GraphicsImportGetGWorld(GraphicsImportComponent
gi, CGrafPtr *port, GDHandle *gd)

Returns the current graphics world for drawing. If the port or gd parameters are not
required, they may be set to nil.

ComponentResult GraphicsImportDraw(GraphicsImportComponent gi)
GraphicsImportDraw draws the image using the current settings. If
GraphicsImportSetGWorld has not been called, the current port will be used.



Graphics Importers - 5
©1996 Apple Computer, Inc.

Saving

Graphics import components allow their data to be saved into two other formats:
QuickDraw pictures and QuickTime Image Files. This capability is only needed by
programs which perform translation of file formats. Applications that only wish to draw
the image can use GraphicsImportDraw.

ComponentResult
GraphicsImportSaveAsPicture(GraphicsImportComponent gi,
const FSSpec *fss, ScriptCode scriptTag)

Creates a new QuickDraw picture file containing the image currently in use by the graphics
import component. If possible, the picture will remain in the compressed format. For
example, if the image file is a JFIF file, the picture will contain compressed JPEG data. If
you don’t know what the scriptTag is pass reply.sfScript or smSystemScript.

ComponentResult
GraphicsImportSaveAsQuickTimeImageFile(GraphicsImportCompone
nt gi, const FSSpec *fss, ScriptCode scriptTag)

Creates a new QuickTime Image File containing the image currently in use by the graphics
import component. If possible, the data will remain in the compressed format. For
example, if the image file is a JFIF file, the QuickTime Image File will contain compressed
JPEG data. If you don’t know what the scriptTag is pass reply.sfScript or
smSystemScript.

Miscellaneous

ComponentResult
GraphicsImportGetDataOffsetAndSize(GraphicsImportComponent
gi, unsigned long *offset, unsigned long *size)

This function returns the offset and size of the actual image data within the file. By default
the offset returned is zero and the size returned is the size of the file. However, some
graphics import components will override this function to skip over header information.

QuickTime Image Files

Do we really need another image file format? Yes. QuickTime’s ability to wrap any
compressed data into a QuickDraw picture is a wonderful thing from a compatibility
perspective. However, for applications that want to work with the compressed data
contained within the picture, it is a real pain. Determining if compressed data is present,
and extracting it requires writing obscure code to sit in QuickDraw bottlenecks to spool
data and try to catch compressed data running by. Furthermore, there are all sorts of weird
cases to deal with like multiple compressed images in a single file. The QuickTime Image
File solves this and a few other issues.

The QuickTime Image File is intended to be the most natural way to carry around
QuickTime compressed data. The file uses the same atom based structure as a QuickTime
movie. There are only two defined atom types, ‘idsc’ which contains an image description
and ‘idat’ which contains the actual image data. For a JPEG image, the image description
atom would contain a QuickTime image description describing the JPEG image’s size,
resolution, depth, etc. and the image data atom would contain the actual JPEG compressed



Graphics Importers - 6
©1996 Apple Computer, Inc.

data. The QuickTime image file can also contain other atoms. For example, it can contain
single fork preview atoms as defined in the QuickTime 2.1 documentation. Furthermore,
since the QuickTime Image File is a single fork format, it will work well in cross platform
areas.

On the Macintosh, the QuickTime Image File has a file type of ‘qtif’.


