
 Adding QuickTime MP support to a component.

QuickTime MP works by capturing components registered at extension time and acting as
a filter to calls subsequently passed by QuickTime to the component.

If a multiprocessing system is present, frames or parts of frames will be automatically
distributed by QuickTime MP to the other processors in the system leaving the main
processor free to fetch data, initiate more component calls via QuickTime, or whatever else
needs to be done. If all the other processors are busy QuickTime MP processes the frame
on the main processor.

QuickTime MP requires components to support two specific component selectors. The
kComponentTargetSelect selector and the kComponentGetMPWorkFunctionSelect
selector.

Responding to the kComponentTargetSelect selector involves remembering the
ComponentInstance of the component doing the targetting -in this case QuickTime MP.
This component will be called later in order to retrieve a 'work function' that should be used
to perform the actual component work.

Responding to the kComponentGetMPWorkFunctionSelect selector involves returning a
pointer to the 'work function' that the component normally uses to do its work and an
arbitrary reference constant to be passed to the work function when it is called.

The work function is what the component uses to perform the bulk of its work. For
example the BandCompress function is frequently architected such that it establishes what
work needs to be done and then either directly calls a 'CompressStrip' function, or defers
the call using the deferred task manager. The 'CompressStrip' function or its equivalent is
the 'work function'.

Rather than access the function by name when it is needed, a pointer to the work function
should be acquired by calling the new component manager function
ComponentGetMPWorkFunction(). Components that are 68K based or never received the
kComponentTargetSelect selector should simply specify themselves as the Component
Instance from which the work function is to be retrieved. Otherwise, if the component is
PPC, and the component was targetted, it should specify the targetting component as the
Component Instance from which the work function is to be retrieved. The pointer thus
acquired should be used to perform the work.

When your component calls the work function retrieved using the above technique it really
calls QuickTime MP. QuickTime MP directs an MP task to call the real work function
using the parameters you specify and the refcon you provided in response to the
kComponentGetMPWorkFunctionSelect selector. Note that because the work function is
going to be called from an MP task it must not contain ANY toolbox calls and MUST be
PowerPC based.

A work function has a well-defined entry point:

typedef pascal ComponentResult (*ComponentMPWorkFunctionProcPtr)

(void *globalRefCon, ComponentMPWorkFunctionHeaderRecordPtr header);

globalRefCon is the refcon value specified in your response to the
kComponentGetMPWorkFunctionSelect selector. It will probably be a pointer to your
global storage handle.

ComponentMPWorkFunctionHeaderRecordPtr is a structure set up immediately prior to
calling the work function. It is used for passing certain required information as well as the
normal parameters needed by your work function (e.g. baseAddr, rowBytes, etc).

The required information is as follows:

struct ComponentMPWorkFunctionHeaderRecord {
UInt32 headerSize;
UInt32 recordSize;
UInt32 workFlags;
UInt16 processorCount;
UInt16 unused;

};

headerSize should be set to:
sizeof(ComponentMPWorkFunctionHeaderRecord)

recordSize should be set to:
header.header.headerSize + sizeof(WorkParameters);
where WorkParameters is a user defined structure that can hold the
arbitary parameters to be used by the work function.

workFlags should be set to one of:
mpWorkFlagDoWork
mpWorkFlagDoCompletion
mpWorkFlagCopyWorkBlock
mpWorkFlagDontBlock
mpWorkFlagGetProcessorCount

mpWorkFlagDoWork means that the work function is is to be called or is
being called for the purpose of doing work and that the user defined
parameters describe the work to be done. Your work function
should respond to the presence of this flag by performing the
requested work.

mpWorkFlagDoCompletion means that the work function is to be called or
is being called for the purpose of 'completing' after a frame has been
finished. In the case of compression and decompression this will
mean calling CallICMCompletionProc() using the

completionProc
which should be recorded and obtained from the user defined
WorkParameters section. Note that if a component has NOT been
targetted then it should call the work function itself with this flag set.
If it has been targetted then QuickTime MP will automatically call

the
work function with this flag set when the frame is finished. Note
that the latter will occur at interrupt time.

mpWorkFlagCopyWorkBlock should be set prior to calling the work
function if the ComponentMPWorkFunctionHeaderRecord will
possibly be destroyed before the work function runs, i.e. it is stored
locally to the function that is calling the work function. Since MP
tasks run asynchronously the record must remain valid at all times.
If the record is allocated out of global memory and is not released
until the completion proc is called then you do not need to set this
flag.

mpWorkFlagDontBlock should be set if QuickTime MP should not
wait for preceeding frames in the sequence being grabbed or played
to complete. This is important if the following flag is to be used.

Problem: differential frames in jeopardy in scenario described
below.

mpWorkFlagGetProcessorCount can be used to get the number of
processors in the system. QuickTime MP will return the
number in the processorCount field of the
ComponentMPWorkFunctionHeaderRecord. This number can be
used to submit n seperate work requests for a single frame where n
is the number of processors available. This should increase the
playback rate of a single frame. The mpWorkFlagDontBlock should
be set when submitting work requests for split frame data.

Problem: differential frames may be generated out of sequence since
no blocking will occur on previous frames.

To incorporate the work function specific parameters into a single block to pass to the work
function you can use the following approach:

/* Your work function parameters */
typedef struct {

char *data;
char *baseAddr;
short rowBytes;
ICMCompletionProcRecord completionProc;
.
etc...
.

} WorkParameters, *WorkParametersPtr;

/* Required data format for a work function */
typedef struct {

ComponentMPWorkFunctionHeaderRecord header;
WorkParameters params;

} WorkHeader, *WorkHeaderPtr;

A work header pointer is what is passed to the work function.

The example code shows all of the changes described in this document. It is based on the
codec sample provided on the QuickTime 2.1 CD. The CompressStrip and
DecompressStrip functions were altered so that they could do a whole frame at once -the
more work that you can do in one call to the work function the better.

All of the significant alterations are denoted with the comment:

/* --- Add for •QuickTime MP */

Additional comments within the code may help clarify things.

For early adopter support please call:

Chris Cooksey
(770) 967 2077 x213
ccooksey@daystar.com

