
QuickTime Image Transcoders - Page 1 - ©1996 Apple Computer, Inc.

Image Transcoding
4/2/96 - Draft 2

Note

This is an early draft of this document and of this interface. Any and all comments are
appreciated. Please send comments, clarifications, and questions to Peter Hoddie (email:
hoddie.jp@applelink.apple.com).

Introduction

QuickTime 2.2 provides support for a new kind of image manipulation: image
transcoding. Until now, if a user needed to convert from compressed image data into
another compressed image format, it was necessary to decompress the compressed image
data to RGB pixels, and then compress the RGB pixels into the new format. For certain
types of compressed image data, it is possible to convert directly from one compressed
format to another. This direct conversion process is called image transcoding. Transcoding
has two advantages over the traditional decompress/compress approach to converting the
format of compressed data. First, the operation is usually substantially faster as much of
the data can be copied directly from the source image data format to the destination image
data format. Secondly, the operation is usually more accurate as decompressing and
recompressing provides two steps for introducing round off and other errors. By directly
transcoding, the opportunities for small errors to be introduced or accumulate are
substantially reduced.

Overview

QuickTime’s image transcoding support is contained within the Image Compression
Manager. Image transcoding can be invoked either explicitly, using new API’s in the
Image Compression Manager, or implicitly, by using existing routines for decompressing
images.

QuickTime’s support for decompressing images has been enhanced so that if a request is
issued to decompress an image, but no image decompressor component is installed for
that image format, QuickTime will attempt to locate an image transcoder to convert the
image data into a supported format. This transcoding is performed completely
transparently to the calling application. This automatic image transcoding is supported both
for QuickTime movie’s and for compressed image data stored in QuickDraw pictures.

QuickTime also provides an API for applications to transcode images. These API’s make
it possible for any application to take compressed image data and transcode it into another
format. This capability is useful for applications which create QuickTime movies by
combining pieces of other QuickTime movies. These applications often convert the format
of the compressed image data by decompressing the image and then recompressing it to
the new format. If no other processing is to be performed on the compressed data, an
image transcoder can be used instead to increase the speed and fidelity of the operation.

As with most other services in QuickTime, the details of image transcoding are handled by
components. Image transcoder components are new with QuickTime 2.2. Image

QuickTime Image Transcoders - Page 2 - ©1996 Apple Computer, Inc.

transcoder components are used by the Image Compression Manager to perform both
implicit and explicit image transcoding as described above. Application developers that
perform image transcoding do not interact directly with the image transcoder components,
but rather interact with the Image Compression Manager. The Image Compression
Manager takes care of the details of working with image transcoder components. If
developers wish to add new image transcoding operations to QuickTime, they can write an
image transcoder component.

Image Transcoding Routines

The Image Compression Manager uses the idea of an image sequence when compressing
or decompressing data. An image sequence allows QuickTime to make certain
optimizations because it knows that a similar operation will be repeated multiple times (i.e.
images will be repeatedly compressed to the same image data format). Similarly, the
Image Compression Manager’s support for image transcoding is based on the idea of an
image transcoding sequence. The image transcode sequence identifier is an opaque value as
shown below.

typedef long ImageTranscodeSequence;

To create an image transcoding sequence, use the ImageTranscodeSequenceBegin routine.

pascal OSErr ImageTranscodeSequenceBegin(ImageTranscodeSequence
*its, ImageDescriptionHandle srcDesc, OSType destType,
ImageDescriptionHandle *dstDesc)

ImageTranscodeSequenceBegin returns the image transcode sequence identifier in the “its”
parameter. If the operation fails, the value pointed to by the “its” parameter is set to nil.
The “srcDesc” parameter is the image description for the source compressed image data.
The “destType” parameter is the desired compression format to transcode the source data
into. The “dstDesc” parameter is used to return an image description for the data which
will be generated by the image transcoding sequence. The caller of the
ImageTranscodeSequenceBegin routine is responsible for disposing of the image
description which is returned in the “dstDesc” parameter. If no transcoder is available to
perform the requested transcoding operation, an error of handlerNotFound is returned.

When an image transcoding sequence is complete, use ImageTranscodeSequenceEnd to
dispose of the image transcoding sequence.

pascal OSErr ImageTranscodeSequenceEnd(ImageTranscodeSequence its)

The only parameter to ImageTranscodeSequenceEnd is the identifier of the image
transcoder sequence to dispose. It is safe to pass a value of 0 to this routine.

To transcode a frame of image data, use ImageTranscodeFrame, after having created the
image transcoder sequence using ImageTranscodeSequenceBegin.

pascal OSErr ImageTranscodeFrame(ImageTranscodeSequence its, void
*srcData, long srcDataSize, void **dstData, long
*dstDataSize)

QuickTime Image Transcoders - Page 3 - ©1996 Apple Computer, Inc.

The “its” parameter specifies the image transcoding sequence to use to perform the
transcoding operation. The “srcData” field contains a pointer to the source data to
transcode. The source data must be locked. The “srcDataSize” field indicates the size of the
compressed source image data in bytes. A pointer to the transcoded image data is returned
in the “dstData” parameter, and the size of the transcoded image data is returned in the
“dstDataSize” parameter. The caller of this routine is responsible for disposing of the
transcoded data using the ImageTranscodeDisposeFrameData routine.

When the transcoded image data returned by ImageTranscodeFrame is no longer needed,
call ImageTranscodeDisposeFrameData to dispose of the data.

pascal OSErr ImageTranscodeDisposeFrameData(ImageTranscodeSequence
its, void *dstData)

The “its” parameter” specifies the image transcoding sequence that was used to generate
the transcoded data. The “dstData” parameters is a pointer to the transcoded image data
generated by the ImageTranscodeFrame routine. The ImageTranscodeDisposeFrameData
routine must be used to dispose of the transcoded data. Only the image transcoder that
generated the data knows how to properly dispose it.

Image Transcoder Components

It is only necessary to understand image transcoder components if you are writing an
image transcoder. To perform image transcoding, you should use the services provided by
the Image Compression Manager.

Image transcoder components are standard Component Manager components. See Inside
Macintosh: More Toolbox for details on creating components.

Image transcoder components have a type of ‘imtc’ as defined below.

enum {
ImageTranscodererComponentType = 'imtc'

};

The sub-type field of the component defines the compressed image data format that the
transcoder accepts as an input. The manufacturer field of the component defines the
compressed image data format that the transcoder generates as output.

pascal ComponentResult
ImageTranscoderBeginSequence(ImageTranscoderComponent ci,
ImageDescriptionHandle srcDesc, ImageDescriptionHandle
*dstDesc)

ImageTranscoderBeginSequence specifies the format of source compressed image data
format in the “srcDesc” parameter. The image transcoder should allocate a new image
description and returned in the “dstDesc” parameter. The new image description should be
a completely filled out image description which is sufficient for correctly decompressing
the data which will be generated by subsequent calls to ImageTranscoderConvert.

QuickTime Image Transcoders - Page 4 - ©1996 Apple Computer, Inc.

pascal ComponentResult
ImageTranscoderConvert(ImageTranscoderComponent ci, void
*srcData, long srcDataSize, void **dstData, long
*dstDataSize)

ImageTranscoderConvert performs the actual image transcoding operation. A pointer to the
source compressed image data is provided in the “srcData” parameter and the size in bytes
of the source data is specified in the “srcDataSize” parameter. The image transcoder
component is responsible for allocating storage for the transcoded data, transcoding the
data, and returning a pointer to the transcoded data in the “dstData” parameter. The image
transcoder’s ImageTranscoderDisposeData routine will be called to dispose of the
transcoded data. The size of the transcoded data in bytes should be returned in the
“dstDataSize” parameter.

The memory allocated to store the transcoded image data must not be in an unlocked
handle. Even if the image transcoding operation can be done in place, the transcoded data
must be placed in a separate block of memory from the source data. The image transcoder
component must not write back into the source image data.

The responsibility for allocating the buffer for the transcoded data has been placed in the
transcoder with the intent that some hardware manufacturers may find it useful to place the
transcoded data directly into on-board memory on their video board. If the transcoding
operation is being performed on a movie, the transcoded data pointer will be almost
immediately passed on to a decompressor. If the decompressor is implemented in
hardware, some performance may be increased because the transcoded data is already
loaded onto the decompression hardware.

pascal ComponentResult
ImageTranscoderDisposeData(ImageTranscoderComponent ci, void
*dstData)

When the client of the image transcoder component is done with a piece of transcoded data,
ImageTranscoderDisposeData is called with a pointer to the transcoded data. The image
transcoder component should not make any assumptions about the maximum number of
outstanding pieces of transcoded data, or the order in which the transcoding data will be
disposed.

pascal ComponentResult
ImageTranscoderEndSequence(ImageTranscoderComponent ci)

ImageTranscoderEndSequence is called when there are no more frames of data to be
transcoded using the parameters specified in the previous call to
ImageTranscoderBeginSequence. After ImageTranscoderEndSequence is called, the
component will either be closed or receive another call to ImageTranscoderBeginSequence
with a different image description (for example, the dimensions of the source image may
be different).

Example Image Transcoder Component

The following code is an example of an image transcoder component. It converts from an
imaginary compressed data format, ‘bgr ‘ to uncompressed rgb pixels. The transcoding

QuickTime Image Transcoders - Page 5 - ©1996 Apple Computer, Inc.

process is simply copying the source data to the destination and inverting each byte in the
process. This example serves to show the format of how an image transcoder might work
without getting into an tedious details of a particular image transcoding operation.

#include <ImageCompression.h>

pascal ComponentResult main(ComponentParameters *params, Handle storage
);

pascal ComponentResult TestTranscoderBeginSequence (Handle storage,
ImageDescriptionHandle srcDesc, ImageDescriptionHandle *dstDesc);
pascal ComponentResult TestTranscoderConvert (Handle storage, void
*srcData, long srcDataSize, void **dstData, long *dstDataSize);
pascal ComponentResult TestTranscoderDisposeData (Handle storage, void
*dstData);
pascal ComponentResult TestTranscoderEndSequence (Handle storage);

pascal ComponentResult main(ComponentParameters *params, Handle storage
)
{

ComponentFunctionUPP proc = nil;
ComponentResult err = noErr;

switch (params->what) {
case kComponentOpenSelect:
case kComponentCloseSelect:

break;
case kImageTranscoderBeginSequenceSelector:

proc = (ComponentFunctionUPP)
TestTranscoderBeginSequence;

break;
case kImageTranscoderConvertSelector:

proc = (ComponentFunctionUPP)TestTranscoderConvert;
break;

case kImageTranscoderDisposeDataSelector:
proc = (ComponentFunctionUPP)

TestTranscoderDisposeData;
break;

case kImageTranscoderEndSequenceSelector:
proc = (ComponentFunctionUPP)

TestTranscoderEndSequence;
break;

default:
err = badComponentSelector;
break;

}

if (proc)
err = CallComponentFunctionWithStorage(storage,

params, proc);

return err;
}

pascal ComponentResult TestTranscoderBeginSequence (Handle storage,
ImageDescriptionHandle srcDesc, ImageDescriptionHandle *dstDesc)
{

*dstDesc = srcDesc;

QuickTime Image Transcoders - Page 6 - ©1996 Apple Computer, Inc.

HandToHand((Handle *)dstDesc);
(***dstDesc).cType = 'raw ';

return noErr;
}

pascal ComponentResult TestTranscoderConvert (Handle storage, void
*srcData, long srcDataSize, void **dstData, long *dstDataSize)
{

Ptr p;
OSErr err;

if (!srcDataSize)
return paramErr;

p = NewPtr(srcDataSize);
err = MemError();
if (err) return err;

{
Ptr p1 = srcData, p2 = p;
long counter = srcDataSize;
while (counter--)

*p2++ = ~*p1++;
}

*dstData = p;
*dstDataSize = srcDataSize;

return noErr;
}

pascal ComponentResult TestTranscoderDisposeData (Handle storage, void
*dstData)
{

DisposePtr((Ptr)dstData);

return noErr;
}

pascal ComponentResult TestTranscoderEndSequence (Handle storage)
{

return noErr;
}

