
QuickTime Music Architecture
Atomic Instrument Format In QuickTime 2.1

David Van Brink 19 June 1995
25 July 1995, revised instrument format

7 November 1995, trivia
2 December 1995, instrument component API



0. Introduction

QuickTime 2.0 featured the brand new “QuickTime Music
Architecture”, which allowed QuickTime movies and applications to
play musical notes, through a General MIDI synthesizer or through
the Macintosh’s built-in speaker. Unfortunately, there was no way
to include sounds other than the 40 or so sampled instruments
licensed from Roland. Although these sounds are of good quality,
they are somewhat stifling, perhaps, creatively.

QuickTime 2.2 introduces a public API and format for adding
sounds to the QuickTime Music Architecture. These sounds may be
embedded in a QuickTime movie, passed via a call to QuickTime, or
dropped into the System Folder.

1. Atomic Instrument Format

QuickTime 2.1 includes a set of calls for manipulating atoms. These
calls allow the construction in memory of hierarchical trees of data,
with a fairly simple API set. A tree of atoms lives inside an atom
container. There is one and only one root atom per container. Each
atom has a four-character (32-bit) type, and a 32-bit ID. Each atom

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
1

may be either an internal node, or a leaf atom with data.

This is a picture of an atomic instrument atom container.

root

tone knbl ntrq sinf sdat

sdsc knbl

The atom types used are as follows.

ÔtoneÕ - kaiToneDescType

tone description, required

Every atomic instrument must have a tone description.

ÔknblÕ - kaiKnobListType

knob list, optional

struct InstKnobRec {
long number;
long value;

};

struct InstKnobList{
long knobCount;
InstKnobRec knobs[1];

};

For a custom instrument, or a modification of the built-in
instrument specified by the the tone description, a knob list may
specify values for one or more knobs.

ÔntrqÕ - kaiNoteRequestInfoType

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
2

note request info, optional

struct NoteRequestInfo {
UInt8 flags;
UInt8 reserved; /* must be zero */
short polyphony; /* Maximum number of voices */
Fixed typicalPolyphony; /* Hint for level mixing */

};

Contains part of a note request structure that is not in the tone
description. This is useful when embedding an instrument into the
sample description of a QuickTime movie. If it is absent, then
“reasonable” values for the polyphony are assumed.

ÔsinfÕ - kaiSampleInfoType

sample info, optional: 0, 1, or many

To include your own sampled sounds in an atomic instrument, you
must include 1 or more sample info atoms, each of which contains
several atoms with various information attached. The sample
description atom, in particular, refers via an ID number, to the one
or more sample data (‘sdat’) atoms which must also be present at
the level of sibling-to-sample-info.

ÔsdscÕ - kaiSampleDescType

sample description, required, 1 per sample info

struct InstSampleDescRec {
OSType dataFormat;
short numChannels;
short sampleSize;
UnsignedFixed sampleRate;
short sampleDataID;
long offset;
long numSamples;
long loopType;
long loopStart;
long loopEnd;
long pitchNormal;
long pitchLow;
long pitchHigh;

};

The sample description atom contains information about
how to interpret the sound data, with regards to sample

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
3

rate, number of bits per sample, and so on. Note
especially the “sampleDataID” field, which determines
which of the ‘sdat’ atoms is used for the actual sample
data of this instrument.

Presently, the dataFormat field must be ‘raw ‘ for 8 bit
audio data (unsigned bytes) and ‘twos’ for 16 bit audio
data (signed words).

The three pitch fields specify the range over which to
play this particular sample, and the MIDI pitch which is
produced when played at the sample rate specified in
the sample description atom. Note that by using the
knob list atom, to alter the envelope, and the pitch fields,
to constrain the sample to a particular keyboard key,
one can use the atomic instrument structure to describe
complex key splits and drumkits.

ÔknblÕ - kaiKnobListType

knob list, optional

Each sample info may optionally override one or more of
the instrument knobs. Any knob included in this list
overrides the knob settings for the instrument. If the
user or score changes a knob (via the
MusicSetPartKnob() call) it will have no effect on a
sample which overrides that knob.

ÔsdatÕ - kaiSampleDataType

sample data, optional: 0, 1, or many

Finally, the actual audio data. Rather trivial. It follows the format
given by a previous ‘sdsc’ atom. Each sample data atom may be
pointed to by more than one sample description atom. A practical
use of this might be for a drumkit which has two keys, both of
which play an identical closed-high-hat sound.

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
4

2. Instrument Component API

When initialized, the software synthesizer searches for components
of type ‘inst’. These components may report a list of atomic
instruments available to the software synthesizer. At present, ‘inst’
components are only used by the software synthesizer; other
synthesizers (music components) do not have this functionality.

There are two calls which an instrument component must
implement: GetInstrument(), and GetInfo().

GetInstrument

pascal ComponentResult GetInstrument(InstrumentComponent ic,
long instID, AtomicInstrument *atomicInst)
ComponentCallNow(1,8);

This call returns a handle to an atomic instrument. It is the caller’s
responsibility to dispose of it; the instrument component need not
keep track of it any further.

GetInfo

pascal ComponentResult GetInfo(InstrumentComponent ic,
InstCompInfoHandle *instInfo)
ComponentCallNow(2,4);

This call returns a handle to a structure which describes all of the
instruments that the instrument component may deliver. It is the
caller’s responsibility to dispose of it; the instrument component
need not keep track of it any further.

The C definition of the structure is as follows.

struct GMInstrumentInfo {
long cmpInstID;
long gmInstNum;
long instMatch;

};

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
5

typedef struct GMInstrumentInfo GMInstrumentInfo;
typedef GMInstrumentInfo *GMInstrumentInfoPtr;
typedef GMInstrumentInfo **GMInstrumentInfoHandle;

struct nonGMInstrumentInfoRecord{
long cmpInstID; // if 0, category name
long flags; // match, show in picker
long shortNameIndex; // index in shortNames (1 based)
long longNameIndex; // index in longNames (1 based)

};
typedef struct nonGMInstrumentInfoRecord
nonGMInstrumentInfoRecord;

struct nonGMInstrumentInfo {
long recordCount;
Handle shortNames;
Handle longNames;
nonGMInstrumentInfoRecord instInfo[1];

};
typedef struct nonGMInstrumentInfo nonGMInstrumentInfo;
typedef nonGMInstrumentInfo *nonGMInstrumentInfoPtr;
typedef nonGMInstrumentInfo **nonGMInstrumentInfoHandle;

struct InstCompInfo {
long infoSize; // size of this record
long GMinstrumentCount;
GMInstrumentInfoHandle GMinstrumentInfo;
long GMdrumCount;
GMInstrumentInfoHandle GMdrumInfo;
long nonGMinstrumentCount;
nonGMInstrumentInfoHandle nonGMinstrumentInfo;
long nonGMdrumCount;
nonGMInstrumentInfoHandle nonGMdrumInfo;

};
typedef struct InstCompInfo InstCompInfo;
typedef InstCompInfo *InstCompInfoPtr;
typedef InstCompInfo **InstCompInfoHandle;

3. Software Synthesizer Knobs

Atomic Instruments for the software synthesizer are defined by
some waveform data, and a set of “knob” value. These knob values
specify things like a volume envelope which is applied to the
sampled audio. The knob values appear in atoms with the type

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
6

‘knbl’ as described above. Typically, the instrument will have a full
list of knobs, and, if the instrument contains more than a single
sample, each sample will contain values for several knobs which
are tuned for that particular sample.

Knobs can be specified either by index or by ID. A nonzero value in
the high byte of the 24 bit knob number field indicates that it is an
ID. The knob index ranges from 1 to the number of knobs; the ID is
an arbitrary number. ID’s are the preferred means to specify a
knob, since they will definitely not change over different versions
of the QuickTime software; the indices might.

kSynthKnobStartID = 0x02000000,
 // Volume related knobs
kSynthKnobVolumeAttackTimeID,
kSynthKnobVolumeDecayTimeID,
kSynthKnobVolumeSustainLevelID,
kSynthKnobVolumeRelease1RateID,
kSynthKnobVolumeRelease1KeyScalingID,
kSynthKnobVolumeRelease2TimeID,

kSynthKnobVolumeLFODelayID,
kSynthKnobVolumeLFORampTimeID,
kSynthKnobVolumeLFOPeriodID,
kSynthKnobVolumeLFOShapeID,
kSynthKnobVolumeLFODepthID,

kSynthKnobVolumeOverallID,
kSynthKnobVolumeVelocity127ID,
kSynthKnobVolumeVelocity96ID,
kSynthKnobVolumeVelocity64ID,
kSynthKnobVolumeVelocity32ID,
kSynthKnobVolumeVelocity16ID,

 // Pitch related knobs
kSynthKnobPitchTransposeID,

kSynthKnobPitchLFODelayID,
kSynthKnobPitchLFORampTimeID,
kSynthKnobPitchLFOPeriodID,
kSynthKnobPitchLFOShapeID,
kSynthKnobPitchLFODepthID,
kSynthKnobPitchLFOQuantizeID,

 // Stereo related knobs
kSynthKnobStereoDefaultPanID,
kSynthKnobStereoPositionKeyScalingID,
kSynthKnobPitchLFOOffsetID,
kSynthKnobExclusionGroupID

Volume ADSR Knobs

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
7

In traditional synthesizer jargon, “ADSR” stands for Attack-Decay-
Sustain-Release, and is a fairly standard notation for describing the
change in some attribute of a sound over time. This can be referred
to as an “envelope,” and, in the case of volume, the “volume
envelope.”

A D R

S
 t

100%
volume

A, D, and R are specified by
a duration of time. S is
specified as an amplitude
level. The S (sustain)
portion of the envelope lasts
as long as the note is held
down (in the case of a
keyboard, as long as the
finger depresses the key).

For a practical example, a piano would have a very short attack
time, say, less than 20 milliseconds, and a brief decay time, perhaps
250 milliseconds (a quarter second), decaying to 30 percent of the
maximum volume. This nearly instant attack and quick decay
would simulate the volume burst at the beginning of an actual
piano tone, giving it a percussive sound. The release time
determines how quickly the sound disappears once the notes
duration is up (or, for a keyboard, how soon the sound disappears
after the finger is removed from the key). For a piano, this is pretty
quick, perhaps 100 milliseconds.

Volume LFO Knobs

“LFO” stands for “Low Frequency Oscillator.” An LFO is used in a
music synthesizer to provide a slow and cyclic alteration to some
attribute of the sound. In the case of volume, this imparts a
pulsating or “tremolo” effect. The user may determine the depth of
the effect, with the “Volume LFO Depth” knob, where the minumum
setting, 0, causes no LFO modification to the sound, and the
maximum setting, 100%, causes the sound to vary between silence

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
8

and twice its natural volume.

The rate of the effect is controlled by the “Volume LFO Period”
knob, and is specified in milliseconds.

Several shapes of LFO may be applied to the sound. This is
controlled by the “Volume LFO Shape” knob.

200%

100%

0%

2. Triangle

200%

100%

0%

4. Sawtooth Down

200%

100%

0%

3. Sawtooth Up

200%

100%

0%

6. Square Up & Down

200%

100%

0%

5. Square Up

200%

100%

0%

1. Sine (drawn
wrong)

The LFO effect does not necessarily apply to the entire duration of
the sound. It can be controlled further by the “Volume LFO Delay”
and “Volume LFO Rampup” times. The delay specified in
milliseconds a duration before any LFO is applied at all. The
rampup time specifies how long it takes to go from no affect to the
full depth specified. Thus, the overall volume envelope, including
ADSR and LFO parameters, may resemble the following illustration.

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
9

 t

100%
volume

LFO Delay

LFO Rampup Time

LFO Depth

LFO Shape: Triangle

Pitch Transpose and LFO Knobs

The pitch of a sound corresponds to its musical note, or frequency.
The Software Synthesizer has several knobs which affect the pitch
of each sound played.

Throughout the QuickTime Music Architecture, musical pitches are
specified using fixed point MIDI values, where 60.0 represents a
piano’s middle C key. Eight bits of fraction are used. The standard
tuning of a 440 Hz A note is used, where A is MIDI pitch 57.0. Thus,
we can convert from MIDI pitch P to frequency in Hz, F, using the
equation,

F = 440 × 2 P - 57 12 ,

and from Hz to MIDI pitch using

P = 12 log F 440 log 2 + 57.

The “Pitch Transpose” knob simply adds a fixed point value to
every note played on the part.

There is also a “Pitch LFO” which modifies the pitch of the sound
over time in much the same way that the volume LFO affects the
volume. The “Pitch LFO Depth” is specified in fixed point semitones,
and the “Pitch LFO Shape” has one additional shape, Random, which
picks a random interval up to the current depth setting.

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
10

+Depth

0

-Depth

1. Sine (drawn
wrong)

2. Triangle

+Depth

0

-Depth

3. Sawtooth Up

+Depth

0

-Depth

4. Sawtooth Down

+Depth

0

-Depth

5. Square Up

+Depth

0

-Depth

6. Square Up & Down

+Depth

0

-Depth

7. Random

+Depth

0

-Depth

 // Pitch related knobs
kSynthKnobPitchTransposeID,

kSynthKnobPitchLFODelayID,
kSynthKnobPitchLFORampTimeID,
kSynthKnobPitchLFOPeriodID,
kSynthKnobPitchLFOShapeID,
kSynthKnobPitchLFODepthID,
kSynthKnobPitchLFOQuantizeID,

 // Stereo related knobs
kSynthKnobStereoDefaultPanID,
kSynthKnobStereoPositionKeyScalingID,
kSynthKnobPitchLFOOffsetID,
kSynthKnobExclusionGroupID

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
11

VolumeAttackTime
kSynthKnobVolumeDecayTimeID,
kSynthKnobVolumeSustainLevelID,
kSynthKnobVolumeRelease1RateID,
kSynthKnobVolumeRelease1KeyScalingID,
kSynthKnobVolumeRelease2TimeID,

kSynthKnobVolumeLFODelayID,
kSynthKnobVolumeLFORampTimeID,
kSynthKnobVolumeLFOPeriodID,
kSynthKnobVolumeLFOShapeID,
kSynthKnobVolumeLFODepthID,

__
Atomic Instrument Format In QuickTime 2.2

Van Brink
12

