
Inside Macintosh: Sound addendum

Introduction_ _2

Releases _2
Sound Manager 3.1 - July 1995 _____________________________________ 2

Native PowerPC code ___ 2
Three new audio codecs: IMA, µLaw, and “little-endian” _________________ 3
Asynchronous Alert Sounds_____________________________________ 3
New Sound Commands __ 3
New Routines ___ 3

Sound Manager 3.2 - March 1996 ____________________________________ 3
New Routines ___ 3

Sound Manager 3.2.1 - August 1996 _________________________________ 4
Pre-mixer Effects ___ 4
Sound Clock __ 4

Determining which Sound Manager is installed___________________________ 4

Sound Commands _4
clockComponentCmd __ 4
getClockComponentCmd__ 5
rateMultiplierCmd__ 5

Sound Information Selectors _5
siHardwareBusy___ 5
siHardwareFormat ___ 6
siHardwareMute___ 6
siHardwareVolume___ 6
siPreMixerSoundComponent_______________________________________ 6
siSetupCDAudio __ 7

Sound Manager Routines_ _7
SndGetInfo() and SndSetInfo() ______________________________________ 7
GetSoundOutputInfo() and SetSoundOutputInfo() _______________________ 9
ParseAIFFHeader() __ 9
ParseSndHeader()__ 10
GetCompressionInfo() ___ 10
GetCompressionName()__ 12
SoundConverterOpen()__ 12
SoundConverterClose()__ 13
SoundConverterGetBufferSizes()___________________________________ 14
SoundConverterBeginConversion() _________________________________ 14
SoundConverterConvertBuffer() ___________________________________ 14
SoundConverterEndConversion() __________________________________ 15

Conversion Example ___ 15

Using the “SoundLib” shared library _1 6

Bug fixes _1 7
Sound Manager 3.1 ___ 17
Sound Manager 3.2 ___ 19
Sound Manager 3.2.1 ___ 19

Inside Mac - Sound addendum

2

Introduction
The Sound Manager has been valuable since the introduction of the Macintosh II in
1987. The Sound Manager is Apple’s digital audio software solution that allows any
application to play and record sounds using the sound hardware found on
Macintosh computers. Sound Manager 3.0, released in 1993, added support for 16-bit
CD-quality audio, redirection of sound to third-party hardware cards, and plug-in
audio compression/decompression software (codecs).

Releases
The following is a brief history of the Sound Manager releases following the original
3.0 release. These features were not documented in the original Inside Macintosh:
Sound book, which documented the 3.0 release.

Sound Manager 3.1 - July 1995

Sound Manager 3.1 adds two new audio codecs, significant performance increases on
the Power Macintosh line of computers, and asynchronous alert sounds. It is
completely backwards compatible with previous versions of the Sound Manager.

The increased performance on Power Macintosh is one noticeable feature of Sound
Manager 3.1. Here’s a table that shows the real time usage of a Power Macintosh
6100/60 under various test cases playing a single sound. This compares the emulated
68k code of the previous Sound Manager with the new PowerPC code of Sound
Manager 3.1.

 Emulated 68k Native
PowerPC
 8-bit, mono 5% 1.6%
 8-bit, mono, w/sample rate conversion 12% 2.2%
 16-bit, stereo 13% 1.9%
 16-bit, stereo, w/sample rate conversion 26% 2.3%
 16-bit, stereo, w/sample rate conversion, IMA 41% 6.6%

As you can see, the new Sound Manager performs 3-6 times faster on your
PowerMac. In addition, recording with the Sound Input Manager has also been
enhanced, and will be 7-9 times faster.

 Native PowerPC code
All of the critical sound components are native PowerPC code. This includes the
mixer, sample rate converter, format converters, MACE 3:1 and 6:1 compression and
decompressers. The sound input interrupt handler also uses native PowerPC code to
boost performance during recording. These enhancements on Power Macintosh will
let games and QuickTime movies play more smoothly and provide higher capture
rates when recording digital video.

Inside Mac - Sound addendum

3

 Three new audio codecs: IMA, µLaw, and “little-endian”
The IMA 4:1 audio compression format is based on a standard proposed by the
Interactive Multimedia Association, and is used to compress 16-bit sound with a
ratio of 4:1. It is particularly good at compressing CD-quality music and is fully
integrated into QuickTime.

The µLaw 2:1 format (pronounced “mu-law”) is an international standard for
compressing voice-quality audio (typically 16-bit, 8 kHz speech) with a ratio of 2:1. It
is often used in telephony applications, and also on the Internet as the encoding
format for “.au” sound files.

The “little-endian” codec provides support for the byte-ordering used on Intel-
standard personal computers. This codec lets QuickTime directly play 16-bit sound
files encoded in the popular “.wav” file format.

 Asynchronous Alert Sounds
The Sound Manager previously tied up your Macintosh while playing an alert
sound, forcing you to wait until the sound was done playing before you could
continue. Sound Manager 3.1 removes this limitation by playing alert sounds
asynchronously, so alert dialogs and other interface elements can continue
processing while the alert sound is playing.

New sounds are queued within the same process and additional sounds from other
processes are mixed together. This gives the user a perceived performance increase.
You’ll probably feel that the machine is running faster when a system alert sound
doesn’t lock up your computer anymore. You can disable this (but why would you
want to?) by setting the sysBeepSynchronous flag when calling
SndSetSysBeepState().

 New Sound Commands
rateMultiplierCmd
getRateMultiplierCmd

 New Routines
SndGetInfo()
SndSetInfo()

Sound Manager 3.2 - March 1996

These new features are only available with Sound Manager version 3.2 or later.
Check for this by calling SndSoundManagerVersion() for the installed version.

 New Routines
GetSoundOutputInfo()
SetSoundOutputInfo()
ParseAIFFHeader()
ParseSndHeader()
GetCompressionName()

Inside Mac - Sound addendum

4

Sound Manager 3.2.1 - August 1996

These new feature are only available with Sound Manager version 3.2.1 or later.
Check for this by calling SndSoundManagerVersion() for the installed version.

 Pre-mixer Effects
The siPreMixerSoundComponent has been added for installing a pre-mixer sound
component to provide specialized audio effects, such as the Sound Sprockets sound
localizer. Refer to the new Sprockets Games documentation for use with this new
sound effect. You can find more information about the Sound Sprockets component
at the World Wide Web page http://devworld.apple.com/dev/games/

 Sound Clock
There are two new sound commands, clockComponentCmd and
getClockComponentCmd. These were added to support a sound clock which is used
by QuickTime as the main time base. The Sound Manager sound clock is only
available when QuickTime is installed. This keeps QuickTime's video in synch with
the audio. There is one sound clock per source (e.g. sound channel) which is
updated with each hardware buffer.

Determining which Sound Manager is installed

The Sound Manager provides a routine, SndSoundManagerVersion(), which
returns the currently installed version. To check for Sound Manager 3.1 or later, use
the following code:

Boolean HasSoundManager3_1(void)
{

NumVersion version;

version = SndSoundManagerVersion();
if ((version.majorRev > 3) ||

((version.majorRev == 3) && (version.minorAndBugRev >= 0x10)))
return (true);

else
return (false);

}

Sound Commands
The following are new sound commands added since the release of Sound Manager
3.0 as documented in Inside Macintosh: Sound.

clockComponentCmd

Use the clockComponentCmd to turn the clock on or off. Set the param1 as a
Boolean, using true to turn it on and false to turn it off.

SndCommand cmd;

cmd.cmd = clockComponentCmd;
cmd.param1 = true; // turn the clock on
err = SndDoImmediate(chan, &clockComponentCmd);

Inside Mac - Sound addendum

5

getClockComponentCmd

Use the getClockComponentCmd to obtain the ComponentInstance of the clock,
setting the param2 field as the address of your ComponentInstance variable.

SndCommand cmd;
ComponentInstance clock;

cmd.cmd = getClockComponentCmd;
cmd.param2 = (long)&clock; // get the clock component
err = SndDoImmediate (chan, &getClockComponentCmd);

rateMultiplierCmd

The rateMultiplierCmd uses a fixed-point value to provide a multiplier to the
playback rate of all sounds played on this channel. This allows you to vary the
sample rate of the sound being played, and thus control its pitch. The
getRateMultiplierCmd returns the current rate multiplier. For example, to play all
sounds on a channel shifted up one octave in pitch, you could use the following
code:

OSErr RaisePitchOneOctave(SndChannelPtr chan)
{

SndCommand cmd;
OSErr err;

cmd.cmd = rateMultiplierCmd;
cmd.param1 = 0;
cmd.param2 = 0x00020000; // rate of 2.0

err = SndDoImmediate(chan, &cmd);
return (err);

}

The rateMultiplierCmd is more useful than the old rateCmd, which applied only to
the sound currently playing and was based on the sampling rate of the hardware.

Sound Information Selectors
The following are new sound informational selectors added since the release of
Sound Manager 3.0 as documented in Inside Macintosh: Sound. These selectors are
used to obtain information and control the sound environment using the
GetSoundOutputInfo(), SetSoundOutputInfo(), SndGetInfo(), SndSetInfo(), or
SPBGetDeviceInfo() and SPBSetDeviceInfo() routines.

siHardwareBusy

Used by all input and output devices. This returns the state of the hardware.
Typically, this means whether or not the hardware interrupts are active. For input
devices, the infoData parameter points to a short word. For output devices, the
infoPtr is a short word containing the value. A value of 0 represents that the
hardware is not busy, whereas 1 represents busy. This selector is only supported by
the get calls, since it doesn't make since to "set" a device busy.

Inside Mac - Sound addendum

6

short hwBusy;

err = GetSoundOutputInfo(nil, siHardwareBusy, &hwBusy);

siHardwareFormat

Added the siHardwareFormat for output devices. Use this selector with the
GetSoundOutputInfo() and SndGetInfo() routines. This returns a
SoundComponentData structure of the format used by the output hardware device.

SoundComponentData outputFormat;

err = GetSoundOutputInfo(nil, siHardwareFormat, &outputFormat);

siHardwareMute

This output selector was previously defined, but should be documented and
implemented as returning the mute state of all sources that can be heard. For
example, the PowerMac has a speaker and headphone source. If no headphones are
plugged in, then return the mute state of the speakers. If headphones are inserted,
then return the mute state of both (e.g. siHardwareMute is muted when both
speakers and headphones are muted). The idea is if the user has sources that can be
heard and all are muted, then the hardware has been muted. If any one of the
sources can be heard, then the hardware is not muted.

short hwMuted;

err = GetSoundOutputInfo(nil, siHardwareMute, &hwMuted);

siHardwareVolume

This output selector was previously defined, but should be documented and
implemented as returning the volume of the device that can be heard. For example,
the PowerMac can have the speaker and the headphones both be audible to the user.
In this case, return the loudest volume setting. If both the speaker and the
headphones are muted, then again return the loudest setting. If one is muted and
the other is audible, then return the volume of the audible source.

unsigned long hwVolume;

err = GetSoundOutputInfo(nil, siHardwareVolume, &hwVolume);

siPreMixerSoundComponent

Used to install a given sound component into the component chain. The given
component will be installed just before the mixer component. This sound
component can access the audio stream and modify the data prior to its being sent to
the mixer. An example of its use is shown below by installing the Sound Sprockets
sound localizer.

Inside Mac - Sound addendum

7

SoundComponentLink soundLink;

soundLink.description.componentType = kSoundEffectsType;
soundLink.description.componentSubType = kSSpLocalizationSubType;
soundLink.description.componentManufacturer = kAnyComponentManufacturer;
soundLink.description.componentFlags = 0;
soundLink.description.componentFlagsMask = kAnyComponentFlagsMask;
soundLink.mixerID = nil;
soundLink.linkID = nil;

err = SndSetInfo(chan, siPreMixerSoundComponent, &soundLink);

// configure the localization settings
// and send them to the sound component

err = SndSetInfo(chan, siSSpLocalization, &localizationSettings);

siSetupCDAudio

This selector is only used by input devices that have special requirements in order to
hear the audio from the CD player. For example, currently the 840AV and
PowerMacs require the user to open the Sound control panel, select the Inputs
panel, and then open the Options dialog. From here they have to select the CD Input
and also check the Play-Through option. The new siSetupCDAudio avoids this
troublesome operation by setting up the input device to allow you to hear audio CDs
from the audio CD player.

The infoData parameter points to a short word. A value of 1 means to setup the
hardware (e.g. set input source to CD and turn on Play-Through). A value of 0
means to return the input hardware to some initial state, either the default settings
or the settings prior to setting up for the CD audio. Any other value is an error. If
the input device had no special needs for CD audio (e.g. the audio is heard regardless
of the input hardware settings) then the selector is not supported and it returns an
error. The SPBGetDeviceInfo() should return a 1 or 0 value depending on its current
setting. If the input source is the CD and Play-Through, if required, is on, then
return the value of 1. This should happen even if nothing ever requested setting up
for CD audio. It should return the state of the actual condition of the input
hardware.

Sound Manager Routines
The following are new Sound Manager routines added since the release of Sound
Manager 3.0 as documented in Inside Macintosh: Sound.

SndGetInfo() and SndSetInfo()
extern pascal OSErr SndGetInfo(SndChannelPtr chan, OSType selector, void
*infoPtr);

extern pascal OSErr SndSetInfo(SndChannelPtr chan, OSType selector, const void
*infoPtr);

Inside Mac - Sound addendum

8

The two new routines SndGetInfo() and SndSetInfo() are used to get and set
information about the sound environment. Both routines use a selector based
interface similar to the SPBGetDeviceInfo() and SPBSetDeviceInfo() routines found
in the Sound Input Manager, and in fact they use the same sound information
selectors.

SndGetInfo() and SndSetInfo() operate on an open Sound Manager channel, and can
be used to retrieve and change information about the channel, including hardware
settings. These routines should be used instead of attempting to communicate
directly with sound components.

These new calls are only available with Sound Manager version 3.1 or later. Check
for this by calling SndSoundManagerVersion() for the installed version. Note that
you can always open a sound channel for the hardware device that you desire by
passing kUseOptionalOutputDevice as the synth parameter and the component
reference as the init parameter.

OSErr OpenChannel(OSType myType)
{
 ComponentDescription searching;
 Component outputDevice;
 OSErr err;

 // search for a sound output device component
 searching.componentType = kSoundOutputDeviceType;
 searching.componentSubType = myType;
 searching.componentManufacturer = kAnyComponentManufacturer;
 searching.componentFlags = 0;
 searching.componentFlagsMask = kAnyComponentFlagsMask;
 outputDevice = nil;
 outputDevice = FindNextComponent(outputDevice, &searching);

 if (outputDevice == nil)
 err = cantFindHandler; /*component not found*/
 else
 {
 gChan = nil;
 err = SndNewChannel(&gChan, kUseOptionalOutputDevice,
 (long)outputDevice, nil);
 }
 return (err);
}

For example, to determine the current hardware sampling rate of the given sound
channel you could use this code:

UnsignedFixed sampleRate;

err = SndGetInfo(gChan, siSampleRate, &sampleRate);

Inside Mac - Sound addendum

9

GetSoundOutputInfo() and SetSoundOutputInfo()
pascal OSErr GetSoundOutputInfo(Component outputDevice, OSType selector,

void *infoPtr);

pascal OSErr SetSoundOutputInfo(Component outputDevice, OSType selector,
const void *infoPtr);

These two routines get and set information about the sound environment:
GetSoundOutputInfo() and SetSoundOutputInfo(). Both routines use a selector
based interface similar to the SPBGetDeviceInfo() and SPBSetDeviceInfo() routines
found in the Sound Input Manager, and in fact they use the same sound info
selectors.

GetSoundOutputInfo() and SetSoundOutputInfo() operate directly on a sound
output device, and can be used to retrieve and change information about the
hardware settings. These routines should be used instead of attempting to
communicate directly with sound output components. Setting the output device
parameter to nil causes the default output device to be used. These calls are similar
to GetSndInfo() and SetSndInfo() but do not require an opened sound channel. For
example, to determine the sampling rate of the sound hardware on the default
output device, you could use this code:

OSErr GetCurrentSampleRate(UnsignedFixed *sampleRate)
{
 OSErr err;

 err = GetSoundOutputInfo(nil, siSampleRate, sampleRate);
 return (err);
}

ParseAIFFHeader()
pascal OSErr ParseAIFFHeader(short fRefNum, SoundComponentData *sndInfo,
 unsigned long *numFrames, unsigned long *dataOffset)

ParseAIFFHeader() returns information describing the audio data in the given AIFF
file. The fRefNum parameter specifies the open AIFF file to use. The sndInfo
parameter is a SoundComponentData structure that returns the following
information about the format of the sound in the AIFF file:

 flags - always returns 0
 format - the sound format (i.e. 'raw ', 'twos', 'MAC3', etc.)
 numChannels - the number of channels (i.e. 1 = mono, 2 = stereo)
 sampleSize - the sample size (i.e. 8 = 8-bit, 16 = 16-bit)
 sampleRate - the sampling rate (in samples/second)
 sampleCount - the number of audio samples in the file
 buffer - always returns 0
 reserved - always returns 0

The numFrames parameter returns the number of frames of audio data in the file,
and the dataOffset parameter returns the byte offset of the first audio sample in the
file.

Inside Mac - Sound addendum

10

ParseSndHeader()
pascal OSErr ParseSndHeader(SndListHandle sndHandle,

SoundComponentData *sndInfo, unsigned long *numFrames,
unsigned long *dataOffset)

ParseSndHeader() returns information describing the audio data in the given 'snd '
resource handle. The sndHandle parameter specifies the sound handle to use. The
sndInfo parameter is a SoundComponentData structure that returns the following
information about the format of the sound in the handle:

 flags - always returns 0
 format - the sound format (i.e. 'raw ', 'twos', 'MAC3', etc.)
 numChannels - the number of channels (i.e. 1 = mono, 2 = stereo)
 sampleSize - the sample size (i.e. 8 = 8-bit, 16 = 16-bit)
 sampleRate - the sampling rate (in samples/second)
 sampleCount - the number of audio samples in the handle
 buffer - always returns 0
 reserved - always returns 0

The numFrames parameter returns the number of frames of audio data in the
handle, and the dataOffset parameter returns the byte offset of the first audio sample
in the handle.

GetCompressionInfo()
pascal OSErr GetCompressionInfo(short compressionID, OSType format,

short numChannels, short sampleSize, CompressionInfoPtr cp)

For a given AIFF file or snd resource, the information contained within it might be
used to determine basic characteristics of the sound such as its duration.

duration = numSampleFrames / sampleRate

Note that this is a valid calculation for an uncompressed sound. But this calculation
returns an incorrect result for a compressed sound. The problem here is that each
sample frame in a compressed sound is composed of one or more packets rather
than sample points (see Inside Macintosh: Sound page 2-9 to 2-11), and each packet
in that compressed sound can itself represent several sample points. We therefore
need a way to determine the number of samples in a packet in order to get an
accurate calculation.

The compressionID parameter defines the compression algorithm used on the
sample. The AIFF-C Extended Common Chunk does not contain a compressionID
field. In this case (and when using snd resources where the OSType describing the
compression format is known) you should always pass the constant
fixedCompression in this parameter and the OSType in the format parameter. The
format field will then contain the OSType representing the compression format. If
you set the compressionID field in a compressed sound header to any value other
than fixedCompression, then the format field is set to zero. The format parameter is
the OSType describing the format of the compressed sound data. If you pass the
constant fixedCompression in the compressionID parameter you will need to pass a
valid compression type here. Some of the valid format types are:

Inside Mac - Sound addendum

11

NONE - sound is not compressed
MAC3 - compression format is MACE 3:1
MAC6 - compression format is MACE 6:1
ima4 - compression format is IMA 4:1

There are some snd resources that do not store an OSType in the format field of the
compressed sound header describing the compression format. You can still use
GetCompressionInfo() in this case by passing in the compressionID and passing 0 in
the format parameter. The correct OSType will be returned in the format field of the
CompressionInfo structure. Using the appropriate fields from an AIFF-C Extended
Common Chunk or our snd resource compressed sound header, we can make the
call to GetCompressionInfo():

example Extended Common Chunk
 myExtendedCommonChunk.ckID = 'COMM';
 myExtendedCommonChunk.ckSize = 34;
 myExtendedCommonChunk.numChannels = 1;
 myExtendedCommonChunk.numSampleFrames = 7633;
 myExtendedCommonChunk.sampleSize = 8;
 myExtendedCommonChunk.sampleRate = 22254.54545;
 myExtendedCommonChunk.compressionType = MAC3;
 myExtendedCommonChunk.compressionName = “MACE 3-to-1”;

example Compressed Sound Header
myCompressedSoundHeader.samplePtr = nil;
myCompressedSoundHeader.numChannels = 1;
myCompressedSoundHeader.sampleRate = rate22khz;
myCompressedSoundHeader.encode = cmpSH;
myCompressedSoundHeader.numFrames = 7633
myCompressedSoundHeader.format = 0;
myCompressedSoundHeader.compressionID = threeToOne;
myCompressedSoundHeader.packetSize = threeToOnePacketSize;
myCompressedSoundHeader.snthID = 0;
myCompressedSoundHeader.sampleSize = 8;

// fill in the CompressionInfo from our Extended Common Chunk

 OSErr err;
 CompressionInfo cmpInfo;

 err = GetCompressionInfo(fixedCompression,
(OSType)(myExtendedCommonChunk.compressionType),
myExtendedCommonChunk.numChannels,
myExtendedCommonChunk.sampleSize,
&cmpInfo);

// fill in the CompressionInfo from our Compressed Sound Header

 OSErr err;
 CompressionInfo cmpInfo;

 err = GetCompressionInfo(myCmpSoundHeader->compressionID,
myCmpSoundHeader->format,

 myCmpSoundHeader->numChannels,
myCmpSoundHeader->sampleSize,
&cmpInfo);

Inside Mac - Sound addendum

12

Note that this call will work for all sound formats, compressed or uncompressed.
Using GetCompressionInfo() the Sound Manager will do the right thing. We get
back the information we need in the CompressionInfo struct, with no special casing
needed. Upon returning from the call to GetCompressionInfo() we have a filled
CompressionInfo struct.

recordSize = 20
format = MAC3
compressionID = threeToOne
samplesPerPacket = 6
bytesPerPacket = 2
bytesPerFrame = 2
bytesPerSample = 1

We can now use this information to determine the duration of our sound.

duration = (numSampleFrames * samplesPerPacket) / sampleRate

By substituting the data given from the example above, we get the following results.

2.06 seconds = (7633 * 6) / 22254.54545

By including the CompressionInfo struct you should never need to special case code
for compressed vs. uncompressed sounds -- and all sound data calculations should
be correct. The following is a list of useful calculations which can be made using the
data returned in the struct, along with data from our Extended Common Chunk or
Compressed Sound Header:

seconds = (numFrames * samplesPerPacket) / sampleRate;
samples = numFrames * samplesPerPacket;
bytes = numFrames * bytesPerFrame;
compressionRatio = (samplesPerPacket * bytesPerSample) / bytesPerPacket;

GetCompressionName()
pascal OSErr GetCompressionName(OSType compressionType, Str255
compressionName)

GetCompressionName() returns a string describing the given compression format
in a string that can be displayed to the user. The compressionType parameter
specifies the compression format, and the name is returned in compressionName.
This string can be used in pop-up menus and other user interface elements to allow
the user to select a compression format.

SoundConverterOpen()

An architecture has been added to Sound Manager 3.2 to allow you to easily convert
between sound formats. Some of the operations that can be performed are
compression, decompression, channel conversion, sample rate conversion and
sample format conversion.

A conversion session is begun by calling SoundConverterOpen(), to which you pass
the format of the sound to be converted and the desired output format. A

Inside Mac - Sound addendum

13

SoundConverter identifier is returned that must be passed to all further routines in
this session. SoundConverterClose() is used to close the session.

SoundConverterGetBufferSizes() allows you to determine input and output buffer
sizes based on a target buffer size. This lets you allocate buffers to fit the conversion
established with SoundConverterOpen().

Converting a sound is a three-step process. First, you call
SoundConverterBeginConversion() to initiate the conversion and reset the
SoundConverter to default settings. Then SoundConverterConvertBuffer() is called
one or more times to convert sequential buffers of the input data to the output
format. Finally, when all input data has been converted,
SoundConverterEndConversion() flushes out any data left in the converter.

pascal OSErr SoundConverterOpen(const SoundComponentData *inputFormat,
const SoundComponentData *outputFormat, SoundConverter *sc)

SoundConverterOpen() sets up the conversion session and returns a
SoundConverter identifier to be passed to all further routines. The inputFormat
parameter specifies the format of the sound data to be converted using a
SoundComponentData structure. The following fields must be set up to describe the
sound correctly:

 flags - set to 0
 format - the sound format (i.e. 'raw ', 'twos', 'MAC3', etc.)
 numChannels - the number of channels (i.e. 1 = mono, 2 = stereo)
 sampleSize - the sample size (i.e. 8 = 8-bit, 16 = 16-bit)
 sampleRate - the sampling rate (in samples/second)
 sampleCount - set to 0
 buffer - set to 0
 reserved - set to 0

The outputFormat parameter specifies the output format, and must be passed fields
similar to inputFormat. Output fields that are different from input fields will cause
a conversion. For example, if the input sound format is 'raw ' and the output
format is 'MAC3', the data resulting from the conversion will be compressed with
MACE 3:1. This allows any combination of compression, decompression, channel
conversion, sample size conversion and sampling rate conversion. A
SoundConverter identifier is returned to manage the session, which must be passed
to all further routines.

SoundConverterClose()
pascal OSErr SoundConverterClose(SoundConverter sc)

SoundConverterClose() terminates the session and frees up all memory and
services associated with this session.

Inside Mac - Sound addendum

14

SoundConverterGetBufferSizes()
pascal OSErr SoundConverterGetBufferSizes(SoundConverter sc,

unsigned long targetBytes, unsigned long *inputFrames,
unsigned long *inputBytes, unsigned long *outputBytes)

SoundConverterGetBufferSizes() is used to determine the input and output buffer
sizes for a given target size. This is so you can make sure your buffers will fit the
conversion parameters established with SoundConverterOpen().

The targetBytes parameter is the approximate number of bytes you would like both
your input and output buffers to be. The inputFrames and inputBytes parameters
return the actual size you should make your input buffer, in frames and bytes
respectively. The outputBytes parameter returns the size in bytes for your output
buffer.

Note: The returned input and output buffer sizes can be larger than your target size
settings. This is because they are rounded up depending on the format, but they will
be very close to the target settings. Also note that the input and output sizes may be
very different, depending on the input and output formats given in
SoundConverterOpen. The sizes are calculated assuming you will convert all data
in the input buffer to the output buffer.

SoundConverterBeginConversion()
pascal OSErr SoundConverterBeginConversion(SoundConverter sc)

SoundConverterBeginConversion() starts a conversion. All state information is
reset to default values in preparation for a new input buffer.

This routine can be called at interrupt time.

SoundConverterConvertBuffer()
pascal OSErr SoundConverterConvertBuffer(SoundConverter sc,

const void *inputPtr, unsigned long inputFrames,
void *outputPtr, unsigned long *outputFrames,
unsigned long *outputBytes)

SoundConverterConvertBuffer() converts a buffer of data from the input format to
the output format. The inputPtr parameter points to the input data, and
inputFrames gives the number of frames in that buffer. The outputPtr parameter
specifies where the output data should be placed. The output Frames and
outputBytes parameters return the number of frames and bytes placed in the output
buffer respectively.

This routine will consume all the data in the input buffer, but, depending on the
complexity of the conversion, not all the converted data may be put in the output
buffer right away. The SoundConverterEndConversion() routine is used to flush
out all this remaining data before a conversion session is closed.

Inside Mac - Sound addendum

15

If you are using this routine in conjunction with SoundConverterGetBufferSizes(),
it is very important that you do not pass in a value in inputFrames larger than the
frames value returned by SoundConverterGetBufferSizes(), or you will overflow
your output buffer. The SoundConverterConvertBuffer() calls converts ALL the
input data!

This routine can be called at interrupt time.

SoundConverterEndConversion()
pascal OSErr SoundConverterEndConversion(SoundConverter sc, void *outputPtr,
 unsigned long *outputFrames, unsigned long *outputBytes)

SoundConverterEndConversion() ends a conversion. Any data remaining in the
converters is flushed out and returned here.

This routine can be called at interrupt time.

 Conversion Example
The following is an example of how to use the sound conversion architecture to
convert a buffer of silence to IMA 4:1, changing the sampling rate in the process.

enum {
 kTargetBytes = 20 * 1024
};

void main(void)
{
 SoundConverter sc;
 SoundComponentData inputFormat, outputFormat;
 unsigned long inputFrames, inputBytes;
 unsigned long outputFrames, outputBytes;
 Ptr inputPtr, outputPtr;
 OSErr err;

 inputFormat.flags = 0;
 inputFormat.format = kOffsetBinary;
 inputFormat.numChannels = 1;
 inputFormat.sampleSize = 8;
 inputFormat.sampleRate = rate22050hz;
 inputFormat.sampleCount = 0;
 inputFormat.buffer = nil;
 inputFormat.reserved = 0;

 outputFormat.flags = 0;
 outputFormat.format = kIMA4SubType;
 outputFormat.numChannels = 1;
 outputFormat.sampleSize = 16;
 outputFormat.sampleRate = rate44100hz;
 outputFormat.sampleCount = 0;
 outputFormat.buffer = nil;
 outputFormat.reserved = 0;

Inside Mac - Sound addendum

16

 err = SoundConverterOpen(&inputFormat, &outputFormat, &sc);
 if (err != noErr)

DebugStr("\pOpen failed");

 err = SoundConverterGetBufferSizes(sc, kTargetBytes,
 &inputFrames, &inputBytes, &outputBytes);
 if (err != noErr)

DebugStr("\pGetBufferSizes failed");

 inputPtr = NewPtrClear(inputBytes);
 outputPtr = NewPtrClear(outputBytes);

 // fill input buffer with 8-bit silence
 {
 int i;
 Ptr dp = inputPtr;

 for (i = 0; i < inputBytes; i++)
 *dp++ = 0x80;
 }

 err = SoundConverterBeginConversion(sc);
 if (err != noErr)

DebugStr("\pBegin Conversion failed");

 err = SoundConverterConvertBuffer(sc, inputPtr, inputFrames,
 outputPtr, &outputFrames, &outputBytes);
 if (err != noErr)

DebugStr("\pConversion failed");

 err = SoundConverterEndConversion(sc,
 outputPtr,&outputFrames, &outputBytes);
 if (err != noErr)

DebugStr("\pEnd Conversion failed");

 err = SoundConverterClose(sc);
 if (err != noErr)

DebugStr("\pClose failed");
}

Using the “SoundLib” shared library
If you are developing a PowerPC-native application and wish to call some of the
new routines in Sound Manager 3.0 and later, you will need to link with the
SoundLib shared library. This is because not all of the Sound Manager routine
definitions are included in the InterfaceLib library currently built into Power
Macintosh systems. The Sound Manager 3.1 extension installs a shared library with
these missing routine definitions, and you use SoundLib to reference this library.

SoundLib is a “dummy” library, and just contains symbol references to the real
shared library in the Sound Manager 3.1 extension. The SoundLib file should be
used only for linking your PowerPC application – it should NOT be installed in the
System Folder and is not to be given to users, as this can cause library conflicts. The
SoundLib file simply provides the symbols that are then resolved from the Sound
Manager 3.1 extension at run time. You should “weak” link with SoundLib and
check in your application for the presence of Sound Manager 3.1 before calling one

Inside Mac - Sound addendum

17

of these new routines (see sample code above). SoundLib is a .pef file, not a .xcoff
file.

Some of the routines defined in SoundLib include GetCompressionInfo(),
GetSoundPreference(), SetSoundPreference(), UnsignedFixedMulDiv(),
SndGetInfo(), SndSetInfo() and all the sound component interfaces needed when
developing a native sound component.

Bug fixes
The following is a brief summary of bugs that have been fixed with various releases
since Sound Manager 3.0 and is not a complete list. The intention here is to point
out major areas of improvement that might affect a large number of applications.

Sound Manager 3.1

• ampCmd values are always scaled to volumeCmd value. This allows sound
channels that are issued the ampCmd or sound resources with embedded
amdCmd’s (e.g. Simple Beep) to work properly.

• Reset alert sound channels to full volume since Simple Beep leaves it set to zero.

• Changed get siHardwareMute in PowerMacs to report if speaker is muted, and if
headphones are inserted and muted. Always set the speaker and headphone
volume according to preferences when registering. This caused SysBeep() to flash
the menu bar if the speakers were muted and headphones were in use.

• A sound component within the Sound Manager extension calling
Get/SetSoundPreference() from within it’s register method failed.

• Unlock the preference file name string resource after loading it the first time.

• Sound components code resource is not marked locked, which would cause it to
load low in the system heap. This reduces system heap compacting and purging
during SndNewChannel().

• Do not call UniqueID() in SetSoundPreference() because there may not be any
QuickDraw globals. The default ID will be 0 instead of the result from UniqueID().

• SndNewChannel() works better in low memory conditions. It may open a channel
with more allocated in the application’s heap, when in the past it would only
allocate from the system heap. This was found to be a problem for many
multimedia applications that have very large SIZE resource settings (which caused
the system heap to be crushed).

• SndChannelStatus() was not setting the scCurrentTime correctly for compressed
data. It now calls GetCompressionInfo() for the proper values.

Inside Mac - Sound addendum

18

• SndPlay() will play any type of sound resource on any type of sound channel.
Previously “Simple Beep” would not play using SndPlay() with a channel that was
allocated for the sampledSynth.

• Getting a sound preference using GetSoundPreference() could sometimes cause
CloseResFile() be to called on a random value. GetResource() may not return the
resource and not set ResErr. This behavior is documented in Inside Macintosh.

• SndRecord() would leak a very large handle if any errors occurred.

• Added support in SetupSndHeader() for arbitrary compression formats instead of
just MACE 3 and MACE 6.

• In SPBCloseDevice() we call SBPStopRecording() if the device is busy. Otherwise
the system will hang and forces the user to reboot the machine.

• When recording to disk, if you re-use one of the data buffer handles, it must be
resized in case the sample rate or size changed. This fixes a heap corruption problem
when doing multiple recordings to disk with different sample rates and/or sizes.

• When recording and playing from disk, removed the code that calls HPurge() and
HLock() at interrupt time. This can confuse the Memory Manager to no end when
you interrupt MoveHHi() so we only do this at non-interrupt time now. This could
mean that handles are left around locked and non-purgable when recording is over,
but there is not much we can do about this until someone calls SPBStopRecording()
or SndStopFilePlay().

• Fixed a bug in SndStartFilePlay() with ‘snd ‘ resources where it was re-using a
parameter block to do a close before that parameter block was finished with the read.
Fixed by using a third parameter block for the close.

• SndPlayDoubleBuffer() was computing the wrong amount of silence to play if the
sound was compressed. This has been fixed.

• Fixed rounding problems in the sample rate converter. It was overshooting the
buffer and caused clicking when downsampling with integer step factors.

• Apple Sound Chip sound component supports software muting. You see this in
the Volumes panel of the Sound control panel.

• Allow for the use of any sample rate when recording with MACE compression.

• When turning on the play-through feature on the PowerMacs to hear an audio
CD, the speaker would mute and un-mute incorrectly.

• Work around input hardware problem where the input hardware would reverse
the left and right stereo signals on Power Macs.

Inside Mac - Sound addendum

19

Sound Manager 3.2

• New version of InstallMoveHHiPatch() that will install on PowerMacs when the
old Memory Manager is running. On PowerMacs with our new native PowerPC
sound components we use more than 3k of the stack. The MoveHHi() in the new
ROMs will only preserve 3k so we have to patch it to preserve more stack space.

• Use a nil sound output component reference to specify the default device when
calling Get/SetSoundOutputInfo().

• Deal with left over samples during compression better by preserving them across
calls to PlaySourceBuffer(). This allows sequential calls to a compressor with non-
packet multiple buffer sizes to seam together without clicks.

• Fixed SetSource() in the format converter so it does not ask the source for 8-bit
twos-complement data, which no other sound component supports. This fixes
problems when the format converter is installed after the mixer and is asked to
output 8-bit twos.

• In the sample rate converter the samplesToSkip field now stores the amount to
skip into a new buffer. The byteOffset field is updated to this value when a new
buffer is received. This fixes a problem playing scales with the freqDuration
command when a new buffer is played before the old buffer has reached the end.

• The gestaltSoundAttr proc being installed needs to avoid using unknown CPUs or
re-cycled machine types.

• Multiply bytesPerSample by 8 to get sampleSize for sound header. Fixes bug in
SetupSndHeader with arbitrary compression formats.

• Fixed the siHardwareBusy selector in the 8500 series.

• Added speaker and headphone muting into the preferences. This allows for the
user to specify the speaker is no muted when using external speakers or
headphones, and the next time the machine is started the user's preference is
restore. Previously it would default to always muting the speaker if something was
inserted into the headphone jack.

• Preserve register A0 within sound input driver when calling getting preferences.

• SndSoundManagerVersion(), SPBVersion(), and MACEVersion() should all
return a NumVersion. A recent version of the interfaces were changed to return an
unsigned long, but this fails with creating native PowerPC code.

Sound Manager 3.2.1

• The sample rate converter saves the interpolation tap values across buffers. It was
clearing this value when a new buffer was issued (e.g. bufferCmd) which caused a
click between buffers.

Inside Mac - Sound addendum

20

• Fix siHardwareBusy selector for Apple Sound Chip and some PowerMac
machines. It was returning a random result.

• Updated the type and creator of the SoundLib to the new constants. This avoids a
problem with the Code Fragment Manager which cannot distinguish between a run-
time shared library and a dummy link library. Note that this file is only for
programmers to use when building PowerPC applications. This file does not belong
within a System Folder.

