Adding QuickTime MP support to a component.

QuickTime MP works by capturing components registered at extension time and acting as
afilter to cals subsequently passed by QuickTime to the component.

If amultiprocessing system is present, frames or parts of frames will be automatically
distributed by QuickTime MP to the other processors in the system leaving the main
processor freeto fetch data, initiate more component calls via QuickTime, or whatever else
needs to be done. If all the other processors are busy QuickTime MP processes the frame
on the main processor.

QuickTime MP requires components to support two specific component selectors. The
kComponentTargetSelect selector and the kComponentGetM PWorkFunctionSel ect
selector.

Responding to the kComponentTargetSel ect selector involves remembering the
Componentl nstance of the component doing the targetting -in this case QuickTime MP.
This component will be called later in order to retrieve a'work function' that should be used
to perform the actual component work.

Responding to the kComponentGetM PWorkFunctionSel ect selector involves returning a
pointer to the ‘work function’ that the component normally usesto do its work and an
arbitrary reference constant to be passed to the work function when it is called.

The work function is what the component uses to perform the bulk of its work. For
example the BandCompress function is frequently architected such that it establishes what
work needs to be done and then either directly calls a'CompressStrip' function, or defers
the call using the deferred task manager. The 'CompressStrip' function or itsequivaent is
the 'work function'.

Rather than access the function by name when it is needed, a pointer to the work function
should be acquired by calling the new component manager function

ComponentGetM PWorkFunction(). Components that are 68K based or never received the
kComponentTargetSel ect selector should simply specify themselves as the Component
Instance from which the work function is to be retrieved. Otherwise, if the component is
PPC, and the component was targetted, it should specify the targetting component as the
Component Instance from which the work function isto be retrieved. The pointer thus
acquired should be used to perform the work.

When your component calls the work function retrieved using the above techniqueit really
calls QuickTime MP. QuickTime MP directs an MP task to call the real work function
using the parameters you specify and the refcon you provided in response to the
kComponentGetM PWorkFunctionSelect selector. Note that because the work function is
going to be called from an MP task it must not contain ANY toolbox callsand MUST be
PowerPC based.

A work function has awell-defined entry point:

t ypedef pascal Conponent Result (*Conponent MPWor kFuncti onProcPtr)

(voi d *gl obal Ref Con, Conponent MPWr kFunct i onHeader Recor dPtr header) ;

gl obal Ref Con isthe refcon value specified in your response to the
kComponentGetM PWorkFunctionSelect selector. It will probably be a pointer to your
global storage handle.

Conponent MPWor kFunct i onHeader Recor dPt r isastructure set up immediately prior to
calling the work function. It is used for passing certain required information aswell asthe
normal parameters needed by your work function (e.g. baseAddr, rowBytes, etc).

The required information is as follows:

struct Conponent MPWr kFunct i onHeader Record {

U nt 32 header S ze;

U nt 32 recordS ze;

U nt 32 wor kFl ags;
Uuntil6 processor Count ;
Untl6 unused;

H

header Si ze should be st to:
si zeof (Conponent MPWr kFunct i onHeader Record)

recor dSi ze should be et to:
header . header . header Si ze + si zeof (Wr kParaneters);
where Wr kPar anet er s isauser defined structure that can hold the

arbitary parameters to be used by the work function.

wor kFl ags should be set to one of:
npWor kFl agDoVr k
npWor kFl agDoConpl et i on
npWor kFl agCopyWor kBl ock
npWr kFl agDont Bl ock
npWor kFl agGet Pr ocessor Count

nmpWor kFl agDoWr k means that the work functionisisto becaled or is
being called for the purpose of doing work and that the user defined
parameters describe the work to be done. Y our work function
should respond to the presence of this flag by performing the
requested work.
nmpWor kFI agDoConpl et i on means that the work function isto be called or
isbeing called for the purpose of ‘completing’ after aframe has been
finished. In the case of compression and decompression this will
mean caling Cal | | CMConpl et i onProc() using the
compl etionProc
which should be recorded and obtained from the user defined
Wor kPar anet er s section. Note that if acomponent has NOT been
targetted then it should call the work function itself with this flag set.
If it has been targetted then QuickTime MP will automatically call
the
work function with this flag set when the frame is finished. Note
that the latter will occur at interrupt time.

mpWr kFl agCopyWr kBl ock should be set prior to caling the work
function if the Conponent MPWor kFunct i onHeader Recor d will
possibly be destroyed before the work function runs, i.e. it is stored
locally to the function that is calling the work function. Since MP
tasks run asynchronously the record must remain valid at all times.
If the record is alocated out of global memory and is not released
until the completion proc is called then you do not need to set this
flag.

nmpWor kFl agDont Bl ock should be set if QuickTime MP should not
walit for preceeding frames in the sequence being grabbed or played
to complete. Thisisimportant if the following flag isto be used.

Problem: differential framesin jeopardy in scenario described
below.

mpWor kFl agGet Pr ocessor Count can be used to get the number of
processors in the system. QuickTime MP will return the
number in the pr ocessor Count field of the
Conponent MPWor kFunct i onHeader Recor d. This number can be
used to submit n seperate work requests for asingle frame wheren
isthe number of processors available. This should increase the
playback rate of asingle frame. The mpWr kFl agDont Bl ock should
be set when submitting work requests for split frame data.

Problem: differential frames may be generated out of sequence since
no blocking will occur on previous frames.

To incorporate the work function specific parameters into a single block to pass to the work
function you can use the following approach:

/* Your work function paraneters */
t ypedef struct {
char *dat a;
char *baseAddr;
short rowBytes;
| OMConpl eti onProcRecord conpl eti onProc;

etc...
} W)rkiDararreters, *Wor kPar anet er sPtr;
/* Required data format for a work function */
t ypedef struct {
Conponent MPWor kFunct i onHeader Recor d header ;

\Wor kPar anet er s par ans;
} Wor kHeader, *WorkHeaderPtr;

A work header pointer iswhat is passed to the work function.

The example code shows all of the changes described in this document. It is based on the
codec sample provided on the QuickTime 2.1 CD. The CompressStrip and
DecompressStrip functions were altered so that they could do awhole frame at once -the
more work that you can do in one call to the work function the better.

All of the significant aterations are denoted with the comment:
[* --- Add for QuickTime MP */

Additional comments within the code may help clarify things.
For early adopter support please call:

Chris Cooksey

(770) 967 2077 x213
ccooksey @daystar.com

