
Apple Computer, Inc.

QuickTime for Windows 2.0
Developer's Manual

 Apple Computer, Inc.

Apple, the Apple logo, Finder, QuickTime, and Macintosh are registered trademarks of Apple Computer,
Inc., registered in the U.S.A. and other countries. Workgroup Server systems is a trademark of Apple
Computer, Inc.

Mention of non-Apple products is for information purposes and constitutes neither an endorsement nor a
recommendation. Apple assumes no responsibility with regard to the selection, performance, or use of these
products. All understandings, agreements, or warranties, if any, take place directly between the vendors and
the prospective users. Product specifications are subject to change without notice.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page iii

TABLE OF CONTENTS

TABLE OF CONTENTS.. iii

How to Use this Manual.. vii

Preface .. ix
About the QuickTime for Windows Documentation .. ix
Conventions Used in this Manual ... ix

Note Boxes .. ix

Section I. QuickTime for Windows Overview .. 1
QuickTime for Windows Concepts... 1

1. What is QuickTime for Windows ... 1
2. Movies and Time .. 2
3. Tracks in Movies... 3
4. Active and Inactive Movies .. 4
5. The Movie Controller.. 5
6. Initialization .. 7
7. Associating Movies with Movie Controllers .. 10
8. Playing Movies through a Movie Controller .. 11
9. Attached and Detached Movie Controllers ... 13
10. Active and Inactive Movie Controllers ... 14
11. Movie Size and Position ... 16

NewMovieController .. 17
MCSetControllerBoundsRect ... 18
MCPositionController ... 19
MCSetControllerAttached .. 21
MCNewAttachedController .. 21
MCSetMovie ... 21
MCGetControllerBoundsRect... 22
GetMovieBox.. 22

12. Movie Controller Attributes .. 22
13. Badges ... 25
14. Actions and Filters .. 26
15. Pictures .. 29
16. Getting Pictures from Movies ... 31
17. Getting User Data.. 34
18. Getting System Data from Movies.. 37
19. Cover Procedures .. 38
20. QuickTime for Windows Error ... 39
21. Additional Media Types Supported by QuickTime for Windows 39

Getting Information about the Tracks in a Movie... 40
Enabling and Disabling Tracks ... 40
Searching for Text in a Movie .. 41

22. Getting Text from a Movie ... 41

QuickTime for Windows 2.0 Developer's Manual

Page iv  1994 Apple Computer December 21, 1994

23. Memory Management ... 42
The QuickTime for Windows Environment ... 43

Hardware Considerations .. 43
Developing QuickTime for Windows Programs .. 43
QuickTime for Windows On-line Help .. 43

QuickTime for Windows Applications ... 44
The Movie Player .. 44
The Picture Viewer ... 45

QuickTime for Windows vs. QuickTime for the Macintosh 46
Summary ... 46
The Movie Controller.. 46
Initialization and Termination Differences ... 47
Picture Handling Differences .. 47
Other Differences .. 47

Preparing Macintosh movie and picture files for QuickTime for Windows............. 51

Section 2. A QuickTime for Windows Tutorial 53
Introduction ... 53
WINPLAY1 - Your First QuickTime for Windows Program 53

Introduction ... 53
The WINPLAY1 Source Code ... 53
Building QuickTime for Windows Programs ... 57
Initializing QuickTime for Windows Programs.. 57
Loading a Movie ... 58
Creating a Movie Controller ... 59
Modifying the Window Procedure.. 60
Cleaning Up .. 61
Running WINPLAY1.EXE... 61

STEREO - Managing Multiple Movies .. 63
Introduction ... 63
The STEREO Source Code ... 63
Understanding Active and Inactive Movie States ... 71
Visualizing Attached and Detached Movie Controllers 73
Attaching Movie Controllers to Movies ... 74
Detaching and Re-attaching a Movie Controller .. 74
Calling MCIsPlayerMessage... 75
Running STEREO.EXE .. 75

BIGEIGHT - Movie Controller Attributes.. 77
Introduction ... 77
The BIGEIGHT Source Code ... 77
The Power of MCDoAction .. 87
Actions and Flags .. 87
Regulating Movie Controller Attributes with MCDoAction 89
Using MCSetVisible ... 91
Badge .. 91
Running BIGEIGHT.EXE .. 92

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page v

FILTERS - Using Action Filter .. 94
Introduction ... 94
The FILTERS Source Code .. 94
Declaring an Action Filter... 99
Setting an Action Filter ... 99
Defining an Action Filter .. 100

Section III. Programmer's Reference.. 103
QuickTime for Windows API - Functions .. 103
QuickTime for Windows API - Data Structures ... 249

Appendices ... 257
Appendix B. Region Codes... 259

Index ... 261

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page vii

How to Use this Manual

This manual is designed to acquaint you with QuickTime for Windows concepts and get
you writing QuickTime for Windows programs quickly.

To get the most out of it, you should:

• Read Section 1 to gain an understanding of QuickTime for Windows' overall
purpose, possibilities and limitations.

• Proceed to Section 2 when you are ready to begin a tutorial using sample
QuickTime for Windows programs.

• Use Section 3, the comprehensive Programmer's Reference, to look up detailed
information on specific elements of the QuickTime for Windows API.

It is also recommended that you read the following introductory pages about the
QuickTime for Windows documentation and the conventions used in this manual.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page ix

Preface

About the QuickTime for Windows Documentation

This document is the programmer's manual for developers of QuickTime for Windows-
aware applications in the Microsoft Windows environment. Unlike the Macintosh
version, the current release of QuickTime for Windows handles movies in play mode
only. As a result, this manual focuses on an QuickTime for Windows entity known as the
Movie Controller. All movies must be under the direct supervision of movie controllers,
and most of the programmatic interface presented in the Tutorial and Programmer's
Reference sections of this manual is devoted to supporting the creation and functionality
of this entity.

This approach was taken because much of the existing documentation for QuickTime for
Windows covers implementation areas not yet available to the Windows developer.
General architectural overviews and design perspectives of QuickTime for Windows are
covered, but material which could distract or otherwise prevent developers from running
movies in their Windows programs as soon as possible has been kept to a minimum. If
the developer wishes further information on how movies are created and edited, or about
the internals of QuickTime for Windows itself, he or she should consult the Apple
QuickTime documentation.

To get the greatest benefit from this manual, the developer should already be familiar
with the Windows development tools and the Microsoft C programming language
environment.

If you have QuickTime for Windows on CD-ROM, this manual is also available to you in
electronic form on the CD. QuickTime for Windows help files are available whether you
have installed from CD-ROM or diskettes. See subsection B of the overview for more
information on QuickTime for Windows help files.

Conventions Used in this Manual

To alert the developer when special consideration should be given to certain areas in the
text, the following conventions are employed:

Note Boxes
Important information is often called out in a note box:

Note: Text set off this way presents reminders or notes related to the topic.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 1

Section I. QuickTime for Windows Overview

QuickTime for Windows Concepts

As a QuickTime for Windows developer, you will need to understand the various high
level strategies and paradigms that QuickTime for Windows incorporates before you
design and code your own QuickTime for Windows applications. These concepts fall into
several categories: what QuickTime for Windows is, how programs incorporate it, what
is normal QuickTime for Windows behavior and what is the responsibility of the
application. This section gives you enough background on these concepts to proceed to
the tutorial section and start writing your own QuickTime for Windows programs.

1. What is QuickTime for Windows?

QuickTime for Windows is a technology that lets your Microsoft Windows programs
play QuickTime movies and view QuickTime pictures. QuickTime is Macintosh-based
software that can create movies as well as play them. In addition to playing movies in the
QuickTime format, QuickTime for Windows can also play MPEG files, if appropriate
hardware is installed on the playback computer.

A movie playing in a Windows application can be directly manipulated by the user with a
special control bar called a movie controller, usually found attached to the bottom of the
movie window (see Figure 1, in the next page). Any Windows program can play one or
more QuickTime for Windows movies, from sophisticated word processors and
spreadsheets to standalone applications created specifically to play movies.

QuickTime for Windows 2.0 Developer's Manual

 Page 2  1994 Apple Computer December 21, 1994

Figure 1. A QuickTime for Windows movie in a word processing document.

To make your Windows programs QuickTime for Windows-capable, you will have to
modify their source code, recompile and relink them with the QuickTime for Windows
libraries. This manual will guide you through that process.

2. Movies and Time

A traditional movie, whether stored on film, laser disc or tape, is a continuous stream of
data. To the Windows developer, a QuickTime movie is a standard DOS file with an
extension of .MOV. A movie file can contain text, MPEG, music (MIDI), and digitized
visual and sound data along with sequencing information describing the order in which
the movie data should be played. When the file is opened, the data is assigned a movie
object. It is still not playable as a movie, however, until it is associated with a movie
controller.

Movies may be played on Windows machines, but not saved. You must use Macintosh-
based QuickTime software to edit movies. An individual movie frame may be copied to
the Windows clipboard. Of course, movie files can be copied or renamed outside of
QuickTime for Windows applications just like any other DOS files. Further information
on Macintosh QuickTime movie files can be found in the QuickTime documentation.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 3

A QuickTime movie is completely self-contained. All of its visual and sound data exists
in a single DOS file, which is referenced by a QuickTime for Windows program through
QuickTime for Windows API calls when the time comes to load it. Your application
never works directly with movie data, as QuickTime for Windows routines allow your
programs to manage movie characteristics while they are playing under Windows.

Movies are instantiated and later freed by using QuickTime for Windows functions.
OpenMovieFile opens the file containing the movie, just like any DOS file.
NewMovieFromFile extracts movie data from the opened file and assigns a movie
object to that data. This object is the means by which the movie will be played.
CloseMovieFile closes the file normally. DisposeMovie frees the movie object.

MovieFile mfMovie;
Movie mMovie;
•
•
OpenMovieFile ("MYMOVIE.MOV", &mfMovie, OF_READ);
NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
CloseMovieFile (mfMovie);
•
•
DisposeMovie (mMovie);

Understanding time management of media is essential to understanding QuickTime for
Windows routines and data structures. QuickTime for Windows defines time coordinate
systems that anchor a movie to a common temporal reality--the second. A time coordinate
system contains a time scale scored in time units. The number of units that pass per
second quantifies the scale. For example, a time scale of 26 means that 26 units pass per
second and each time unit is 1/26 of a second.

A time coordinate system also contains a duration, which is the length of the movie in
number of time units it contains. Particular points in a movie can be identified by a time
value, which is the number of time units to that point.

The last of QuickTime for Windows time-related concepts is the idea of rate. A movie's
rate is expressed as a multiple of its time scale. For instance, in a movie with a time scale
of 2 played at rate of 2.5, five time units would pass in one second.

3. Tracks in Movies

A movie can contain one or more tracks. Each track represents a single stream of data in a
movie and is associated with a single media. The media has control information that
refers to the actual movie data.

All of the tracks in a movie use movie’s time coordinate system. That is, the movie’s time
scale defines the basic time unit for each of the movie’s tracks. Each track begins at the
beginning of the movie, but that track’s data might not begin until some time value other
than 0. This intervening time is represented by blank space - in an audio track the blank

QuickTime for Windows 2.0 Developer's Manual

 Page 4  1994 Apple Computer December 21, 1994

space translates to silence; in a video track the blank space generates no visual image.
Each track has its own duration. This duration need not correspond to the duration of the
movie. The movie’s duration always equals the maximum duration of all the tracks.

A track is always associated with one media. The media contains control information that
refers to the data that constitutes the track. The track contains a list of references that
identify portions of the media that are used in the track. In essence, these references are
an edit list of the media. Consequently, a track can play the data in its media in any order
and any number of times.

QuickTime for Windows supports a movie with up to five different tracks. There can be
multisound tracks of each type of supported media. The currently available media are
Video, Sound, Text, Music (MIDI) and MPEG. Any given movie may contain any
combination of these tracks. For example, a movie might contain only a sound track.

QuickTime for Windows provides calls for working with the individual tracks in a movie.
For example, GetMovieTrackCount provides a count of all tracks in the movie.
GetMovieIndTrack allows you to obtain a reference to a track with a specified index,
whereas GetMovieIndTrackType allows you to obtain a reference to a track of a
particular media type, such as text. You can use SetTrackEnabled to selectively
enable and disable tracks. You can use GetTrackMatrix to determine where in a
movie the track is spatially located. PtInTrack tests to see if a given point intersects a
track and is useful for performing hit testing operations on individual tracks.

4. Active and Inactive Movies

Movies have active and inactive states. The most distinctive feature of an inactive movie
is that it simply cannot be played. QuickTime for Windows accomplishes this by not
giving the movie any time slices from its internal scheduler. Visually the movie appears
to be paused, but any attempt to start it will fail until the movie is activated.

You can make a movie active when you load it from a file, or change its state later. In the
code fragment below, the movie is made inactive by setting the fifth parameter of
NewMovieFromFile to 0. Using newMovieActive instead makes it active:

MovieFile mfMovie;
Movie mMovie;
•
•
NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, newMovieActive, NULL);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 5

To set the movie's state dynamically, you can use the routine SetMovieActive:

Movie mMovie;
Boolean bState;
•
•
SetMovieActive (mMovie, bState);

A movie's state can be queried via the function GetMovieActive.

Note: It is good QuickTime for Windows style to keep a movie inactive until you are
ready to play it, since active movies receive cycles from QuickTime for Windows'
scheduler and are a drag on the system unless ready for play. You should therefore use
normally 0 instead of newMovieActive when calling NewMovieFromFile, and
subsequently SetMovieActive once you are ready to play the movie.

5. The Movie Controller

As noted above, the user interface to a QuickTime for Windows movie is the Movie
Controller. Any movie played in a Windows application must be associated with one.
Normally, a movie controller appears as a bar-shaped collection of controls attached to
the bottom edge of a movie (see Figure 1, above). Each of the individual elements in a
movie controller dictates a specific action for a movie:

Figure 2. The Movie Controller.

Under certain circumstances, some movie controller elements may not be present. For
example, your application might need to restrict the operation of a controller by not
displaying the step buttons. Or, the user could use the grow box to shrink it to the point
where the controller itself must hide some of its elements, based on the available space it
has to work with. A movie controller instance is created and later freed with the routines
NewMovieController and DisposeMovieController:

QuickTime for Windows 2.0 Developer's Manual

 Page 6  1994 Apple Computer December 21, 1994

RECT rcMovie;
Movie mMovie;
MovieController mcController;
•
•
mcController = NewMovieController (mMovie, &rcMovie, mcTopLeftMovie,
 hwndParent);
•
•
DisposeMovieController (mcController);

In Windows terms, a movie and its associated controller have a common parent window,
generally the application in whose client area they both appear. When adding movie
controllers to your applications, you can think of them as custom controls that are subject
to the same conventions and programmatic considerations as standard Windows controls.
You should note that while destroying a window that contains a movie controller causes
DisposeMovieController to be called internally, this is simply a safety feature.
You should dispose your movie controllers explicitly as a matter of course.

Although the Movie Controller is clearly designed to accept mouse input, it has a
keyboard interface as well. The following table applies to any movie controller with an
enabled keyboard interface:

Key Action
Return/Space Toggles Play/Pause state
Right Arrow Step forward one frame
Left Arrow Step backward one frame
Up Arrow Increase volume (when sound is enabled)
Down Arrow Decrease volume (when sound is enabled)
Home Go to start of movie
End Go to end of movie
Ctrl + Home Go back to next selection time*
Ctrl + End Go forward to next selection time*
Ctrl + Right Arrow Play forward
Ctrl + Left Arrow Play backward
Shift + (Return or Space) Plays and selects while playing, until shift is released
Shift + Right Arrow Extends selection criteria through the next frame
Shift + Left Arrow Extends selection criteria through the previous frame
Shift + Home Go to start of movie, extending selection back to start
Shift + End Go to end of movie, extending selection to end
Ctrl + Shift + Home Go back to next selection time, extending selection*
Ctrl + Shift + End Go forward to next selection time, extending selection*

*Selection times are the start and end points of either the movie or the current selection (if any).

The focus of this manual will be the Movie Controller. The API is rich enough, however,
to allow movies to be handled in a wide variety ways to make your QuickTime for
Windows programs robust and interesting to use.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 7

6. Initialization and Termination of QuickTime for Windows
Programs

Initializing your applications to play movies is essentially a three-step process. First, links
to QuickTime for Windows must be established. Second, you have to allocate QuickTime
for Windows memory for your application. Finally, you must add a routine to your
application's main window procedure.

OSErr oserrResult;
•
•
if ((oserrResult = QTInitialize (NULL)) != QT_OK)
 {
 /* Take appropriate action, e.g. a message box saying movies won't */
 /* play but the program will continue to run. */
 }

if (EnterMovies () != noErr)
 {
 /* Take appropriate action, e.g. a message box saying movies won't */
 /* play but the program will continue to run. */
 }

Establishing links to QuickTime for Windows is accomplished by calling the routine
QTInitialize. Normally, this is done automatically when the first QuickTime for
Windows call is executed, but it is good style to call it yourself. This prevents resource
leaks. This function takes one parameter, the address of a variable which is filled with
QuickTime for Windows version data that might be useful if your application depends on
it. (Please refer to Section III, Programmer's Reference, for further information on this
topic). If no error condition is returned, you must call EnterMovies to allocate
QuickTime for Windows memory for your application. If either QTInitialize or
EnterMovies returns an error, such as incorrect Windows version or sub-386 CPU,
your application will run normally but all subsequent movie-related calls will be ignored
by QuickTime for Windows.

It is only necessary to call QTInitialize once in each of your applications. If a
particular application employs DLLs that make QuickTime for Windows API calls, each
DLL can initialize itself by calling QTInitialize explicitly. This is recommended as
good QuickTime for Windows style and can be done in LibMain:

QuickTime for Windows 2.0 Developer's Manual

 Page 8  1994 Apple Computer December 21, 1994

int FAR PASCAL LibMain (HINSTANCE hInst, WORD wDataSeg,
 WORD wHeapSize, LPSTR lpszCmdLine)
 {
 OSErr oserrResult;
 •
 •
 if ((oserrResult = QTInitialize (NULL)) != QT_OK)
 {
 /* Take appropriate action, e.g. a message box saying movies */
 /* won't play but the program will continue to run. */
 }
 •
 •
 return 1;
 }

Calling EnterMovies is necessary to play movies (your program might display just
QuickTime for Windows pictures, in which case the only initialization required is
QTInitialize). EnterMovies only needs to be called once by your program (or its
DLLs) to initialize it for playing movies--subsequent calls to EnterMovies are ignored
by QuickTime for Windows.

The final piece of code required to make movies run is MCIsPlayerMessage, a
function that must be placed in the application's window procedure. For each movie
controller that your program creates, there must be a separate call to this routine in the
movie controller's parent window procedure.

MCIsPlayerMessage processes all messages coming into the window procedure, but
only messages directed to its associated controller receive attention. Movies are started
and stopped, and their states and attributes changes based on messages routed to their
controllers via this MCIsPlayerMessage.

LONG FAR PASCAL WndProc (HWND hWnd, UINT uiMessage, WPARAM wParam,
 LPARAM lParam)
 {
 if (MCIsPlayerMessage (mcController, hWnd, uiMessage, wParam,
 lParam))
 return 0;

 switch (uiMessage)
 {
 /* cases */
 }
 return DefWindowProc (hWnd, uiMessage, wParam, lParam);
 }

Now that we have established the paradigm for what keeps movies running, we can make
an exception to it. You don't always have to use MCIsPlayerMessage, especially if
your program functions in an unusual way. There are essentially two QuickTime for
Windows API calls that handle movie playing in this case: MCIdle and MCKey.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 9

You can refer to Section III, Programmer's Reference, for further information on how
these routines work. If your program can accommodate MCIsPlayerMessage,
however, it is highly recommended that you code it that way.

At this point, your application as a whole is considered initialized under QuickTime for
Windows, even though no movies or movie controllers have yet been instantiated.

Figure 3. Initialization and Termination of QuickTime for Windows Programs.

Graceful termination of QuickTime for Windows programs that play movies is almost a
mirror image of initialization. At some point in your program's termination activity, the
routines that deallocate QuickTime for Windows memory and sever links to the
QuickTime for Windows libraries must be called.

•
•
ExitMovies (); // Deallocate QuickTime for Windows memory
QTTerminate (); // Sever links to QuickTime for Windows

Although QTTerminate is probably called automatically when your program or DLL
terminates, it is still good style to issue the call explicitly. In some cases, you may want to
call it way before the normal end of your application (e.g., when system memory is at a
premium and your program is finished playing movies).

If your program uses DLLs with QuickTime for Windows routines, each DLL can call
QTTerminate. This is the recommended approach and can be done in the WEP
function:

int FAR PASCAL WEP (int nParam)
 {
 •
 •
 QTTerminate (); // Sever links to QuickTime for Windows
 return 1;
 }

QuickTime for Windows 2.0 Developer's Manual

 Page 10  1994 Apple Computer December 21, 1994

QuickTime for Windows programs that do not call EnterMovies (e.g. those that
display only individual QuickTime for Windows pictures) do not have to call
ExitMovies. Like EnterMovies, you only need to call ExitMovies once
during the life of your program.

7. Associating Movies with Movie Controllers

As noted earlier, a movie must be associated with a controller before it can be played.
Several routines in the QuickTime for Windows API perform this operation. For an initial
association, NewMovieController is commonly used, as we saw earlier.

For existing controllers, a good choice is MCNewAttachedController. You need to
supply parameters for the existing movie and movie controller objects, the window
handle of the parent application and the upper left corner of the movie rectangle.

Movie mMovie;
MovieController mcController;
POINT ptUpperLeft;
•
•
MCNewAttachedController (mcController, mMovie, hWnd, ptUpperLeft);

MCSetMovie takes the same parameters and lets you set the movie object to NULL
(second parameter) if you want to specifically disassociate the controller from the movie.

Movie mMovie;
MovieController mcController;
POINT ptUpperLeft;
•
•
MCSetMovie (mcController, mMovie, hWnd, ptUpperLeft);

When a controller is associated with a movie, the movie object reference is recorded in
the controller's data structure. A movie controller can be associated with many movies
during its existence, but only one at a time (see figure 4, below). Movie data structures
contain no elements which link them with movie controllers.

Figure 4. Association of Movies and Movie Controllers.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 11

Once a movie is associated with a controller, it starts playing immediately (assuming it
has a non-zero play rate, which is normally the case). To make a movie paused when first
visible and associated with a new controller, you can use MCDoAction with an action of
mcActionPlay and a play rate of 0. It is good style to do this as soon as possible after
performing the association.

Movie mMovie;
MovieController mcController;
RECT rcMovie;
•
•
mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);
MCDoAction (mcController, mcActionPlay, 0);

If you want to play n cases of the same movie simultaneously, you have to open the file n
times to get n unique movie objects, then associate n controllers.

Movie controllers remain associated with movies regardless of their states. If a controller
is made invisible or inactive, for instance, it stays associated with its movie. Conversely,
movies continue to play even if the states of their associated controllers are changed
while they are playing. If either one of an associated pair is destroyed, the other is not
affected.

Association implies nothing about the proximity of movies and their controllers on the
screen. It is simply the means by which any movie can be plugged in to any controller
and played.

8. Playing Movies through a Movie Controller

A movie associated with a controller is ready for playing (if the movie is active). While
the basic apparatus for this activity appears simple and straightforward, there are many
subtleties in the relationship of the movie controller to the movie. In one sense, the Movie
Controller is simply a human interface. In another, it is the mechanism through which
large amounts movie data are focused and made meaningful to the user.

QuickTime for Windows 2.0 Developer's Manual

 Page 12  1994 Apple Computer December 21, 1994

Figure 5. Relationship of Movie Controller to Movie Data

Individual elements of the controller calibrate this mechanism by determining movie
sound volume, movie start point, movie display size, etc. Most of these elements change
their appearance depending on the values they represent. One element, the volume fader,
does not appear at all until specifically called up.

An important distinction needs to be made here: The visual representation of a movie is
the sequence of images which flow through a rectangular area on your screen, even
though the movie is actually the chunk of movie data sitting in memory. It is the Movie
Controller, acting as a movie projector, that is the connection between the movie data and
its presentation (i.e. it tells the movie to start and stop playing but also specifies the
attributes of the area in which the movie will appear).

A movie is started by the function MCDoAction with the mcActionPlay action
parameter and an appropriate play rate. This can happen automatically when a movie
controller’s play button is clicked, or explictly at any appropriate place in your program.

Movie mMovie;
MovieController mcController;
LFIXED lfxRate;
•
•
lfxRate = GetMoviePreferredRate (mMovie);
MCDoAction (mcController, mcActionPlay, lfxRate);

As a movie plays, a synchronized stream of data in the form of still image frames is sent
to the specified movie display area according to the settings held by the movie controller.
Similarly, blocks of movie sound data are sent to your system's sound driver after being
synchronized with the visual data.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 13

Figure 6. Movie Sound Data Handling

9. Attached and Detached Movie Controllers

Until now, we have only been concerned with one type of movie controller--the attached
variety. A controller's underlying autonomy, however, is demonstrated by the fact that it
can be visually detached from a movie and still play it. Detached controllers can be
repositioned anywhere on the screen and still remain associated with their movies, just as
if they were still physically attached. They may be disabled, hidden and resized in their
detached state as well.

Figure 7. Detached and Attached Controllers

Detachment is a two-step process if you want the controller visually separated from the
movie. The most commonly used routines are MCSetControllerAttached with its
last parameter set FALSE (resets the attachment flags) and MCPositionController
(specifies new coordinates):

QuickTime for Windows 2.0 Developer's Manual

 Page 14  1994 Apple Computer December 21, 1994

MovieController mcController;
RECT rcMovie, rcController;
•
•
MCSetControllerAttached (mcController, FALSE);
MCPositionController (mcController, &rcMovie, &rcController, 0L);

Once detached, a movie controller can be easily re-attached via another call to the
function MCSetControllerAttached, this time with TRUE as the last parameter.
The controller will move back to its normal attached position beneath the movie it
controls.

You can query the attachment state of a controller using MCIsControllerAttached
and also resize it independently from its movie after it has been detached, as we will see
in subsection A, part 10. A detached controller cannot resize its associated movie.

Note: A detached controller cannot be in a different window than that of its movie.

Although attached movie controllers are the most straightforward way to direct the
operation of your movies, it is easy to conceive of interesting ways to use detached
controllers. For instance, they could have specific meanings or implications in a
customized user interface, or they could control movies which have been built into other
graphical objects without getting in the way.

Detachment can be viewed as simply an attribute of an associated movie/movie controller
pair.

Figure 8. Movie imbedded in complex graphic, controller detached

10. Active and Inactive Movie Controllers

Instantiated movie controllers exist in one of two states as far as QuickTime for Windows
is concerned: active or inactive. When a controller is created, it is set to the active state by

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 15

default. At any point in the program, it may be set to the inactive state by calling
MCActivate with its last parameter set to FALSE. Calling the function with TRUE
reactivates the movie controller.

MovieController mcController;
•
•
MCActivate (mcController, hWndParent, FALSE);

Generally, movie controllers behave very much like standard Windows controls. An
inactive movie controller is analogous to a disabled Windows control in that it does not
respond to mouse clicks. Additionally, all of its elements are grayed, the slider appears as
an outline and the belt is hidden. Keyboard input is always ignored by an inactive movie
controller.

QuickTime for Windows allows you to set the active or inactive state for as many movie
controllers as you wish. If one of your applications requires that only a single controller
have active status at any given time, you will have to devise your own scheme for
managing these types of situations.

Both attached and detached movie controllers can be made inactive. Doing so has no
effect on the movie with which either type is associated, except that the movie cannot be
affected by the controller user interface until it is reactivated.

If a movie is running and its controller is inactive, you either have to call a function like
MCDoAction with appropriate parameters or reactivate the controller to allow the user
to stop the movie. There is no QuickTime for Windows function to specifically query the
active state of a movie controller.

Figure 9. An inactive movie controller.

The ability to alter the state of a movie controller dynamically could be advantageous
under a number of scenarios. For instance, you might have a movie that your application
needs to play uninterrupted from beginning to end. In this instance, you would disable the
controller when the movie was started and re-enable it when the movie was over.

Another example is the case mentioned earlier where you want only one of many movie
controllers active at a time, so that keyboard input can be directed properly. As your
QuickTime for Windows applications increase in complexity, this level of control will
prove valuable.

QuickTime for Windows 2.0 Developer's Manual

 Page 16  1994 Apple Computer December 21, 1994

11. Movie Size and Position

Bounds Rectangles
The key to sizing and positioning movies and movie controllers is the controller's bounds
rectangle. If the movie controller is attached, this is the area encompassed by the
controller plus the movie rectangle (see Figure 10, below).

Figure 10. Attached Movie Controller Bounds Rectangle

When a movie controller is detached, its dimensions alone determine the bounds
rectangle:

Figure 11. Detached Movie Controller Bounds Rectangle

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 17

Rectangles specified by routines which move or create movie controllers become the
bounds rectangles for those controllers. Depending on the particular function (and
possibly its flags), the resulting bounds rectangle treats its contents in different ways.

In some cases, the movie is scaled within the limits of the bounds rectangle. In others, the
movie is resized to completely fill its assigned portion of the rectangle. It is worth
studying each of the following examples carefully to get a solid understanding of these
differences.

After any call that resizes or repositions the bounds rectangle is processed, QuickTime
for Windows calls MCDoAction with mcActionControllerSizeChanged.
If your program has a filter, you can make it handle this action (see subsection A, part 13
for information on filters).

NewMovieController
This call creates a new attached controller in the bounds rectangle you provide. The
movie and controller are positioned in the rectangle according to the creation flags
specified:

Flags:

Results:

0

Movie controller positioned at bottom
of bounds rectangle. If movie extends
beyond remaining area in either direction,
it is scaled to fit in center of remaining
area.

If movie fits completely within
remaining area, it is centered within
remaining area.

Flags:

Results:

mcTopLeftMovie

Same as above case, but resultant movie
and controller shifted to top left corner
of bounds rectangle.

QuickTime for Windows 2.0 Developer's Manual

 Page 18  1994 Apple Computer December 21, 1994

Flags:

Results:

mcScaleMovieToFit

Movie controller positioned at bottom
of bounds rectangle. Movie resized to
fit in remaining area.

Flags:

Results:

mcTopLeftMovie
mcScaleMovieToFit

Bounds rectangle you supply expanded
to accommodate movie controller. Movie
resized to fit in bounds rectangle you
supply.

The following example shows how a new movie controller is created with a bounds
rectangle matching the current dimensions of a movie plus the controller, then how the
dimensions of the bounds rectangle are retrieved so that the movie/movie controller pair
can be exactly encompassed by the parent window:

MovieController mcController;
Movie mMovie;
RECT rcMovie;
•
•
// Get current dimensions of movie

 GetMovieBox (mMovie, &rcMovie);
 OffsetRect(&rcMovie, -rcMovie.left, -rcMovie.top);

// Instantiate the controller

 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);

// Get the new bounds rectangle

 MCGetControllerBoundsRect (mcController, &rcMovie);
 AdjustWindowRect (&rcMovie, WS_CAPTION | WS_OVERLAPPED, FALSE);
 OffsetRect(&rcMovie, -rcMovie.left, -rcMovie.top);
 SetWindowPos (hWnd, 0, 0, 0,
 rcMovie.right, rcMovie.bottom, SWP_NOMOVE | SWP_NOZORDER);
 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);

MCSetControllerBoundsRect
For detached movie controllers, this function repositions and resizes the controller. For
attached controllers, it repositions and resizes both the controller and the movie.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 19

Attachment state:

Results:

Detached

Centers the movie controller
vertically in the rectangle you
provide. Returns a value of
controllerBoundsNotExact
if your rectangle is too big.

Attachment state:

Results:

Attached

Movie controller positioned at
bottom of bounds rectangle. Movie
resized to fit in remaining area.

MCPositionController
This routine repositions the movie and movie controller for both attached and detached
controllers:

Detached Controllers: Calling MCPositionController for a detached
controller requires specifying two rectangles, one for the movie and one for the
controller. The controller is always centered vertically in its rectangle. The function
returns controllerBoundsNotExact if this rectangle is too big.

The movie is repositioned and resized depending on the flags you provide:

Flags:

Results:

0

If movie extends beyond rectangle
in either direction, it is scaled to
fit in center of the rectangle.

If movie fits completely within
rectangle, it is centered within
rectangle.

QuickTime for Windows 2.0 Developer's Manual

 Page 20  1994 Apple Computer December 21, 1994

Flags:

Results:

mcTopLeftMovie

Same as above, but resultant movie
shifted to top left corner of bounds
rectangle.

Flags:

Results:

mcScaleMovieToFit

Movie resized to fit in rectangle
you supply.

Attached Controllers: Calling MCPositionController on an attached controller
requires specifying only one rectangle for both the movie and the controller (the second
rectangle is ignored and should be coded as NULL). The way the rectangle is used
depends on the flags you provide:

Flags:

Results:

0

Movie controller positioned at
bottom of bounds rectangle. If
movie extends beyond remaining
area in either direction, it is scaled
to fit in center of remaining area.

If movie fits completely within
remaining area, it is centered within
remaining area.

Flags:

Results:

mcTopLeftMovie

Same as above case, but resultant
movie and controller shifted to top
left corner of bounds rectangle.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 21

Flags:

Results:

mcScaleMovieToFit

Movie controller positioned at
bottom of bounds rectangle.
Movie resized to fit in remaining
area.

MCSetControllerAttached
As discussed previously, MCSetControllerAttached attaches or detaches a movie
controller. If the controller is made detached, only a logical operation takes place. It is not
physically moved until a subsequent MCPositionController is issued.

If the movie controller is made attached, it is moved underneath the movie:

Figure 12. How SetControllerAttached works.

MCNewAttachedController
MCNewAttachedController takes an existing movie controller, associates a movie
with it and attaches the controller to the movie. The controller is made visible if it was
not already.

If the controller is detached when the call is issued, it is first attached. The controller
bounds rectangle is then offset such that its top left corner is aligned with the point
specified in the call.

MCSetMovie
MCSetMovie takes an existing controller and associates a new movie with it. The
controller bounds rectangle is then offset such that its top left corner is aligned with the
point specified in the call.

QuickTime for Windows 2.0 Developer's Manual

 Page 22  1994 Apple Computer December 21, 1994

MCGetControllerBoundsRect
The function for retrieving the bounds rectangle is MCGetControllerBoundsRect,
which fills a Windows RECT structure with the desired coordinates:

RECT rcBounds;
MovieController mcController;
•
•
MCGetControllerBoundsRect (mcController, &rcBounds);

GetMovieBox
You can always use GetMovieBox to obtain the coordinates of the movie only:

RECT rcMovie;
Movie mMovie;
•
•
GetMovieBox (mMovie, &rcMovie);

If no the movie currently has no bounds, either because it contains no enabled tracks with
bounds, or its movie box was previously set to an empty rectangle, the rectangle specified
to receive the coordinates is made empty.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume client
device coordinates.

12. Movie Controller Attributes

Aside from features like attachment, activation state, size and position, movie controllers
have other important attributes which can be manipulated by an application. Some of
these attributes are stored in data structures which you can access as flags arranged in bit
fields. Others are retrieved or set individually.

Figure 13. Movie Controller Attributes.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 23

If a movie controller needs to be hidden, for example, the easiest way to do it is to call the
routine MCSetVisible (using FALSE makes the controller invisible):

Boolean bVisible;
MovieController mcController;
•
•
MCSetVisible (mcController, bVisible);

Invisible movie controllers may be attached, detached, active or inactive. You just can't
see them. It is possible, however, to control a movie if its controller is not visible. For
instance, you can stop or start a movie by single- or double-clicking (respectively)
directly on it.

Also, you can use a movie controller's keyboard interface (if enabled) to stop, start or
otherwise manipulate a movie (see subsection 4 of this overview). Finally, you can
control a movie programatically using appropriate routines from the QuickTime for
Windows API.

To query the visibility state of a movie controller, you can use the corresponding routine
MCGetVisible. Setting visibility might be useful in applications handling multiple
movies, special case movies and overall application aesthetics, just as you would
detachment or activation.

The states of the Movie Controller's individual control elements are also considered
attributes. To hide the speaker button and the left and right step buttons, you can use
MCDoAction:

MovieController mcController;
•
•
MCDoAction (mcController, mcActionSetFlags,
 mcFlagSuppressStepButtons | mcFlagSuppressSpeakerButton);

To hide the grow box, you have to fill a Windows RECT structure with zeros, then pass
its address to MCDoAction to use in setting the grow box bounds:

MovieController mcController;
RECT rcGrowBoxRect;
•
•
SetRectEmpty (&rcGrowBoxRect);

MCDoAction (mcController, mcActionSetGrowBoxBounds,
 &rcGrowBoxRect);

Enabling the keyboard interface for a movie controller is also done with MCDoAction,
as is querying the state of a controller's keyboard interface:

QuickTime for Windows 2.0 Developer's Manual

 Page 24  1994 Apple Computer December 21, 1994

MovieController mcController;
Boolean bActive;
•
•
MCDoAction (mcController, mcActionSetKeysEnabled, TRUE);
•
•
MCDoAction (mcController, mcActionGetKeysEnabled, &bActive);

If a movie controller's keyboard interface is enabled, the controller will accept keyboard
input only if it is active.

If you need to get more low-level information about a movie controller, the function
MCGetControllerInfo is available. This call retrieves a long integer with bit flags
denoting controller attributes such as whether the movie is playing, looping, looping back
and forth, if the movie has sound, and so forth.

MovieController mcController;
LONG lMCInfoFlags;
•
•
MCGetControllerInfo (mcController, &lMCInfoFlags);
if (lMCInfoFlags & mcInfoHasSound)
 {
 •
 •
 }

The following table consolidates the full range of movie controller attributes, how to get
their status, and how to set them. Full documentation on the various functions is found in
Section III, Programmer's Reference.

Attribute How to Query Attribute Status How to Set Attribute Status
Controller Attachment State call MCIsControllerAttached call MCSetControllerAttached,

NewMovieController or
MCNewAttachedController

Controller's Movie call MCGetMovie call MCSetMovie, or
NewMovieController

Controller Active State --- call MCActivate
Controller Bounds Rectangle call MCGetControllerBoundsRect call MCSetControllerBoundsRect
Controller Position call MCGetControllerBoundsRect

(for detached controllers only)
call MCPositionController

Controller Size call MCGetControllerBoundsRect
(for detached controllers only)

call MCPositionController

Controller Visibility call MCGetVisible call MCSetVisible
Action Filter Used --- call MCSetActionFilter
Play State call MCGetControllerInfo,

check mcInfoIsPlaying bit flag

Sound State call MCGetControllerInfo,
check mcInfoHasSound bit flag

Looping State call MCGetControllerInfo,
check mcInfoIsLooping bit flag

call MCDoAction with the action flag
mcActionSetLooping

Looping Palindrome State call MCGetControllerInfo, check
mcInfoIsInPalindrome bit flag

call MCDoAction with the action flag
mcActionSetLoopIsPalindrome

Keyboard Active State call MCDoAction with the action flag
mcActionGetKeysEnabled

call MCDoAction with the action flag
mcActionSetKeysEnabled

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 25

Speaker Button Visibility call MCDoAction with the action flag
mcActionGetFlags, check for
mcFlagSuppressSpeakerButton

call MCDoAction with the action flag
mcActionSetFlags set to
mcFlagSuppressSpeakerButton

Step Button Visibility call MCDoAction with the action flag
mcActionGetFlags, check for
mcFlagSuppressStepButtons

call MCDoAction with the action flag
mcActionSetFlags set to
mcFlagSuppressStepButtons

Grow Box Visibility --- call MCDoAction with the action flag
mcActionSetGrowBoxBounds

Window Palette Use call MCDoAction with the action flag
mcActionGetFlags, check for
mcFlagsUseWindowPalette

call MCDoAction with the action flag
mcActionSetFlags set to
mcFlagsUseWindowPalette

Volume Level call MCDoAction with the action flag
mcActionGetVolume

call MCDoAction with the action flag
mcActionSetVolume

Selection State call MCDoAction with the action flag
mcActionGetPlaySelection

call MCDoAction with the action flag
mcActionSetPlaySelection

Badge Use State call MCDoAction with the action flag
mcActionGetUseBadge

call MCDoAction with the action flag
mcActionSetUseBadge

Play Every Frame State call MCDoAction with the action flag
mcActionGetPlayEveryFrame

call MCDoAction with the action flag
mcActionSetPlayEveryFrame

Play Rate call MCDoAction with the action flag
mcActionGetPlayRate

call MCDoAction with the action flag
mcActionPlay

13. Badges

A badge is a visual element displayed on the face of a movie to distinguish it from a
static graphic when its movie controller is not visible. To be able to display a badge
automatically, a movie controller must be created with the mcWithBadge creation flag.

Three conditions have to be met before a badge can be displayed automatically. First,
the movie cannot be playing. Second, the badge flag must have been turned on when
the movie controller was created (or with mcActionSetUseBadge). Third, your
application must call MCSetVisible with FALSE as the second parameter, to make
the movie controller invisible.

If the first two conditions are satisfied, calling MCSetVisible with FALSE (or
creating the controller with mcNotVisible) hides the controller and causes the badge
to be displayed.

Movie mMovie;
MovieController mcController;
RECT rcMovie;
•
•
mcController = NewMovieController (mMovie, &rcMovie, mcWithBadge, hWnd);

If a movie controller is displaying a badge, clicking the badge hides it and restores the
movie controller (if the mcWithBadge flag is on).

QuickTime for Windows 2.0 Developer's Manual

 Page 26  1994 Apple Computer December 21, 1994

Figure 14. A Movie with a Badge

A good point to remember is that the visibility of the badge is not an attribute of a movie
controller, while the ability to display a badge is.

If your application needs more control over displaying badges, you can use the function
MCDrawBadge. This routine lets you display a badge at any time, regardless of whether
mcWithBadge is on or the movie is playing. Calling the function does not affect the
state of the mcWithBadge flag.

When you call MCDrawBadge, you must set the second parameter to NULL. The third
parameter receives the address of a handle to a badge region, which your program can use
later at its discretion.

MovieController mcController;
HRGN hrgnBadge;
•
•
MCDrawBadge (mcController, NULL, &hrgnBadge);

Obviously, under certain circumstances you can create a situation where both a badge and
a movie controller are visible at once, which is not good QuickTime for Windows style.

14. Actions and Filters

The function MCDoAction is one of the most versatile in the QuickTime for Windows
API. Although it is available to you for handling specific, low-level tasks, it is also used
by various high-level functions in QuickTime for Windows. Along with a movie
controller object, it takes parameters for the action desired and additional data specific to
that action, often the address of a Boolean value denoting whether the action item should
be toggled on or off:

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 27

MovieController mcController;
Boolean bFlag;
•
•
MCDoAction (mcController, mcActionActivate, &bFlag);

As we have seen, MCDoAction can be used to do things like starting a movie and
setting the controller’s active state. Many other actions can be effected by this routine,
however, and it is worth exploring the complete list in Section III, Programmer's
Reference to get a sense of the power and flexibility that MCDoAction provides.

Closely related to MCDoAction is the function MCSetActionFilter, which gives
you a way to intercept the MCDoAction call. The usefulness of this routine is hard to
underestimate, since QuickTime for Windows itself uses MCDoAction so extensively--
especially in processing user interaction.

For example, almost anywhere you click on the movie controller generates a
MCDoAction call internally. By creating carefully-designed filter functions, you can
customize the behavior of your movie controllers to almost any level you wish.

MCSetActionFilter inserts the address of a user-defined filter function in the movie
controller's data structure. This filter function is called automatically when your program
calls MCDoAction. MCSetActionFilter's last parameter is a LONG which can be
used to pass additional information to the filter function or the movie controller itself
(e.g. the address of a structure containing data necessary for complex processing).

Boolean CALLBACK __export MyFilter (MovieController, UINT, LONG);

MovieController mcController;
struct {...} *pData;
•
•
MCSetActionFilter (mcController, MyFilter, (LONG) pData);

If you compile your program using Borland smart callbacks or Microsoft's -GEs
compiler option, or your filter function is in a dynamic link library, you do not need to
use MakeProcInstance on your filter address before calling
MCSetActionFilter.

If a filter function is used, it gets a chance to process the action item before the movie
controller. Its return value must be a Boolean: TRUE indicates that the controller doesn't
have to handle it. FALSE tells the controller to complete any appropriate processing of
the action item.

QuickTime for Windows 2.0 Developer's Manual

 Page 28  1994 Apple Computer December 21, 1994

To remove a filter, you must call MCSetActionFilter with the filter function
address set to NULL. Since a filter is essentially a callback function, it must be declared
as CALLBACK and listed in the EXPORTS section of your .DEF file.

Figure 15. Using an Action Filter Function

You can view using an action filter as a kind of built-in subclassing. The following code
fragment shows how you might set up your switch and case statements to handle a
limited number of actions:

Boolean CALLBACK __export MyFilter (MovieController mcController,
 UINT uAction, LPVOID lpParam)
 {
 switch (uAction)
 {
 case mcActionDraw:
 •
 •
 return TRUE;

 case mcActionPlay:
 •
 •
 return TRUE;

case mcActionKey:
 •
 •
 return TRUE;

 case mcActionBadgeClick:
 •
 •
 return TRUE;

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 29

 default:
 return FALSE;
 }
 }

15. Pictures

Like a movie, a QuickTime for Windows picture is a collection of data that can be
rendered visually. Unlike a movie, a picture consists of a single complete image with no
time coordinate system. This complete image is actually composed of one or more pieces,
often arranged as bands within the area of the complete image.

Pictures are stored in picture files, from which they may be extracted using various
QuickTime for Windows API routines and then displayed by your application. All of the
pieces that comprise a complete image as described above are generally stored in the
same picture file. Once extracted, a QuickTime for Windows picture is handled
conceptually as a picture object, in a manner similar to a movie object.

QuickTime for Windows pictures are stored in the Macintosh PICT format (for a
complete discussion of this format, refer to Inside Mac Volumes V and VI) or JFIF format
(see the document JPEG File Interchange Format, Version 1.1, available from C-Cube
Microsystems, San Jose, CA). Picture files and picture objects are manipulated by
QuickTime for Windows API calls. For example, to extract a picture object:

PicHandle phPicture;
PicFile pfPicture;
•
•
if (OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ) != noErr)
 {
 phPicture = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }
•
•
DisposePicture (phPicture);

As noted earlier, your QuickTime for Windows applications do not have to call
EnterMovies if they are only going to deal with picture objects. QTInitialize is
required, however, along with QTTerminate. Since picture objects occupy memory,
they must be disposed of properly with DisposePicture (or its equivalent,
KillPicture) when they are no longer needed. As with movies, a picture file should
be closed as soon as possible once its picture is extracted.

The Macintosh PICT file format defines numerous opcodes, in much the same way as, for
example, the TIFF format. Under QuickTime for Windows, however, only a subset of
these opcodes are processed:

• 0x0090 - BitsRect

QuickTime for Windows 2.0 Developer's Manual

 Page 30  1994 Apple Computer December 21, 1994

• 0x0091 - BitsRgn

• 0x0098 - PackBitsRect

• 0x0099 - PackBitsRgn

• 0x009A - DirectBitsRect (denotes a direct image)

• 0x009B - DirectBitsRgn (denotes a direct image)

• 0x8200 - Compressed QuickTime image

• 0x8201 - Uncompressed QuickTime image

• 0x0011 - Version

To draw the image contained in a picture object, you can use DrawPicture:

PicHandle phPicture;
HDC hdc;
RECT rcPicture;
•
•
DrawPicture (hdc, phPicture, &rcPicture, NULL);

Certain pictures may be stored with additional data defining a custom palette. You can
extract this palette with GetPicturePalette and then use it in your Windows
application to obtain a more faithful rendering of a picture:

PicHandle phPicture;
HDC hdc;
HPALETTE hpalPicture
RECT rcPicture;
•
•
// Standard Windows call to see if driver can handle a palette

 if (GetDeviceCaps (hdc, RASTERCAPS) || RC_PALETTE)
 {
 hpalPicture = GetPicturePalette (phPicture);
 SelectPalette (hdc, hpalPicture,0);
 RealizePalette (hdc);
 }
 •
 •
 DrawPicture (hdc, phPicture, &rcPicture, NULL);

Picture files cannot be created or edited, but the images in them may be converted to
formats for editing and saving under Windows. For example, the following code puts a

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 31

device independent bitmap, derived from a QuickTime for Windows picture, on the
Windows clipboard:

PicFile pfPicture
PicHandle phPicture;
DIBHandle hdPicture;
•
•
// Extract a picture and convert it to Windows Device Independent
// Bitmap (DIB)

 if (OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ) != noErr)
 {
 phPicture = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }
 •
 •
 hdPicture = PictureToDIB (phPicture);
 DisposePicture (phPicture);

// Put the DIB in the clipboard

 OpenClipboard (hWnd);
 EmptyClipboard ();
 SetClipboardData (cf_DIB, hdPicture);
 CloseClipboard ();

Some QuickTime for Windows API calls allow you to operate directly on a picture file
without first extracting a picture object. For instance, DrawPictureFile draws the
image contained in a file:

PicFile pfPicture;
RECT rcPict;
HDC hdc;
•
•
OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
DrawPictureFile (hdc, pfPicture, &rcPict, NULL);
ClosePictureFile (pfPicture);

You can use GetPictureInfo to extract information about a picture object. Similarly,
you can use GetPictureFileInfo to extract data directly from a picture file.

16. Getting Pictures from Movies

Movie data can be viewed as a collection of compressed still images. A routine
that allows you to retrieve such individual images from a movie is GetMoviePict,
which takes a specified movie time as a parameter.

MCGetCurrentTime retrieves the movie's current time, i.e. position on the movie's
time axis. This function can be used whether a movie is playing or not.

QuickTime for Windows 2.0 Developer's Manual

 Page 32  1994 Apple Computer December 21, 1994

Movie mMovie;
MovieController mcController;
PicHandle phMyPicHandle;
TimeValue tvTime;
TimeScale tsTime;
•
•
tvTime = MCGetCurrentTime (mcController, &tsTime);
phMyPicHandle = GetMoviePict (mMovie, tvTime);

The picture object obtained from GetMoviePict points to an image in a format
unusable by Windows directly. If you want to convert it to a Windows format suitable for
use by other Windows applications, your can do so using PictureToDIB or
DrawPicture with a memory device context. This routine returns a handle to a device-
independent bitmap, which can then be used to put the picture in the Windows clipboard
or send it to a printer.

Note: Picture handles on Windows are not public data structures, as they are on the
Macintosh. You should not make any assumptions about the contents of a Picture handle.
You should always use the KillPicture function to dispose of the picture.

Figure 16. Retrieving a Picture from a Movie

The alternative to converting an image retrieved by GetMoviePict is to display it
directly. Calling the function DrawPicture puts the picture on the screen (only for
display device context) at coordinates you specify. You'll need to supply a device context,

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 33

the picture object reference and a display rectangle. Whatever you decide to do with a
movie picture object you retrieve, you must free it when you are done with it.

Movie mMovie;
MovieController mcController;
PicHandle phMyPicHandle;
TimeValue tvTime;
•
•
tvTime = MCGetCurrentTime (mcController, /* Time scale address */);
phMyPicHandle = GetMoviePict (mMovie, tvTime);
DrawPicture (hdcMyDevCon, phMyPicHandle, &rcPicture, NULL);
•
•
DisposePicture (phMyPicHandle);

As with picture objects extracted from picture files, pictures extracted from movies may
also contain custom palette information. You can use GetPicturePalette to
retrieve this data and set the Windows palette to better render these individual movie
images.

A movie poster is a frame in a movie selected when the movie was created to represent
the movie when it is not loaded or not being played. You have access to this picture with
GetMoviePosterPict, which returns an image object created from the frame
designated as the movie's poster. One interesting way to use movie posters might be in an
open movie dialog box. When the name of the movie is highlighted in the list box, its
poster would be displayed next to it.

case LN_SELECT:
 •
 •
 OpenMovieFile (/* file name highlighted */, ...);
 NewMovieFromFile (...);
 phMyPicHandle = GetMoviePosterPict (/*NewMovieFromFile object */);
 hDIB = PictureToDIB (phMyPicHandle);
 /* Display DIB in dialog box using bitmap object. */
 break;

The GetMoviePict and GetMoviePosterPict routines return image of all currently enabled
tracks in the movie. For example, if a movie has both a Video track and a Text track, the
returned picture contains both track’s images. In some cases you may only want the
image from one track. In these cases you can use GetTrackPict instead. The following
example extracts the picture from the first enabled Video track in the movie, if one exists.

QuickTime for Windows 2.0 Developer's Manual

 Page 34  1994 Apple Computer December 21, 1994

Movie mMovie;
MovieController mcController;
PicHandle phMyPicHandle;
TimeValue tvTime;
Track trkVideo;
•
•
tvTime = MCGetCurrentTime (mcController, /* Time scale address */);
trkVideo = GetMovieIndTrack(mMovie, 1, VideoMediaType,

movieTrackMediaType | movieTrackEnabledOnly);
if (trkVideo) {
 phMyPicHandle = GetTrackPict (trkVideo, tvTime);
 DrawPicture (hdcMyDevCon, phMyPicHandle, &rcPicture, NULL);
 DisposePicture (phMyPicHandle);
}
•
•

17. Getting User Data from Movies

User data is typically inserted into a movie by its creator to identify special
characteristics, production credits, and so forth. Any movie can contain a user data list,
which is available for use by your application. A user data list comprises all the user data
for a movie, and may contain one or more user data items. Each user data item has
several attributes:

• The type identifier - denotes the specific type of the item, e.g. date, copyright, etc.

• The index value - a unique, one-based number denoting list position among like
types

• The data itself - generally text, possibly other data

To get a handle to a movie's user data, you call GetMovieUserData:

Movie mMovie;
UserData udData;
•
•
udData = GetMovieUserData (mMovie);

With this handle, you can parse the data. Each of the other functions which handle user
data has a specific purpose in this regard:

GetNextUserDataType takes the user data handle and desired user data type as
parameters. If the type parameter is 0, the routine returns the first user type in the user
data list. For subsequent calls (for example, in a loop to get all the user data), use the
previous value returned by this function. The current format of the user data type
identifier in a QuickTime movie is four-character constant, which is supported in the

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 35

Macintosh environment, but not directly under Windows. You can create the equivalent,
however, with the macro QTFOURCC.

UserData udData;
OSType osType;
•
•
osType = QTFOURCC('','d','a','y');
osType = GetNextUserDataType (udData, osType);

Below are some common user data types (note they are case senstive). By convention,
text user data types start with a "" symbol. Remember to use the QTFOURCC macro.

cpy Copyright statement

day Date the movie's content was created

dir Name of movie's director

ed1 to ed9 Edit dates and descriptions

fmt Indication of movie format (computer-generated, digitized, etc.)

inf Information about the movie

prd Name of movie's producer

prf Names of performers

req Special hardware and software requirements

src Credits for providers of movie source content

wrt Name of movie's writer

LOOP Denotes that the movie expects to be played in loop mode. If
the value of this user data type is empty or 0, normal loop mode
is indicated. A value of 1 denotes palindrome loop mode.

WLOC Denotes that the last known position of the movie on the
desktop is available, represented by two 16-bit integers
contained in its associated value. Because movies are created on
the Mac, this may not translate well to the Windows desktop.

CountUserDataType returns the number of items of a given type in a user data list.
You pass it the handle to the user data list and the desired type:

UserData udData;
LONG lItemCount;
•
•
lItemCount = CountUserDataType (udData, QTFOURCC('','d','a','y'));

GetUserData retrieves a specified user data item. You need to pass it the handle of a
global memory block you have allocated, in which it will place the requested item. When
you allocate the memory block, you should make it of an arbitrary size, since QuickTime

QuickTime for Windows 2.0 Developer's Manual

 Page 36  1994 Apple Computer December 21, 1994

for Windows will reallocate memory internally based on your handle if the data item
requested is too big. You must free this handle explicitly when you are done with it.
In addition to the memory handle, you must also pass GetUserData the index value of
the data item you want, and the address of a LONG which it fills with the size of the data
item requested (in bytes).

UserData udData;
HGLOBAL ghMem;
LONG lIndex, lByteCount;
struct {...} *pData;
•
•
// Note arbitrary size of allocation request

if ((ghMem = GlobalAlloc (GMEM_MOVEABLE, 128)) == NULL);
 {
 /* Inform user of failure. */
 return;
 }

GetUserData (udData, &ghMem, QTFOURCC('t','e','s','t'), lIndex,
 &lByteCount);

pData = GlobalLock (ghMem);
•
•
/* Do something with user data item. */
•
•
GlobalUnlock (ghMem);
GlobalFree (ghMem);

When you specify a type of user data in this routine, you must know its format in
advance. One way to handle this is to have GlobalLock return a pointer to a structure
type you declare which maps onto the structure of the user data type you are retrieving.

GetUserDataText retrieves the text associated with a particular user data text item.
Its parameters are the same as for GetUserData, with one exception: the region code.
A region code is a value representing a particular language or country.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 37

UserData udData;
LONG lIndex, lByteCount;
HGLOBAL ghMem;
LPSTR lpstrText;
•
•
ghMem = GlobalAlloc (GMEM_MOVEABLE, 128); // Note arbitrary size

GetUserDataText (udData, &ghMem, QTFOURCC('@','d','a','y'),
 lIndex, 0, &lByteCount);

lpstrText = (LPSTR) GlobalLock (ghMem);
lpstrText [lByteCount] = '\0';
•
•
/* Do something with text string. */
•
•
GlobalUnlock (ghMem);
GlobalFree (ghMem);

In this example, 0 is the code for US (English). A table of these codes is presented in the
documentation for this function in Section III, Programmer's Reference, along with a
more complex example integrating all of these calls.

18. Getting System Data from Movies

In addition to individual picture frames and user data, movies contain a substantial
amount of other data that your QuickTime for Windows programs can make use of, such
as preferred play settings, time-based information and so forth.

Preferred settings are data elements held by a movie that denote optimum performance
characteristics. When a movie is created, the author has the opportunity to encode what
he or she feels is the most suitable volume, play rate, etc., which can later be used to play
the movie as the author intended.

Figure 17. Available Movie System and User Data

QuickTime for Windows 2.0 Developer's Manual

 Page 38  1994 Apple Computer December 21, 1994

For example, you can get the preferred volume with GetMoviePreferredVolume,
then use the return value to set the movie volume with a call to MCDoAction with the
mcActionSetVolume parameter.

To retrieve the preferred play rate, the call is GetMoviePreferredRate. You can set
the movie's play rate as above using the mcActionPlay action with the returned rate as
the additional parameter.

The second category, metric data, is more diverse. You will be the best judge of how to
use these particular routines in your QuickTime for Windows programs. The routine
GetMovieDataSize, for instance, returns the size in bytes of a specified movie
segment.

GetMovieTimeScale returns the movie's time scale, which (as we noted earlier) is a
specific fraction of a second. GetMovieDuration returns a movie's duration
expressed in terms of its time scale.

You can manipulate a movie's time scale with ConvertTimeScale. The timestamp
functions, GetMovieCreationTime and GetMovieModificationTime, return
the values for when the movie was created and last modified, respectively.

19. Cover Procedures

QuickTime for Windows allows your application to perform custom processing whenever
one of your movies covers a screen region or reveals a region that was previously
covered. You perform this processing in cover procedures. Cover procedures are useful in
handling movies with "empty segments," i.e. portions of movies intentionally lacking
any visual element.

By default, QuickTime for Windows will display the normal background color during an
empty segment. You can use a cover procedure to display other information meaningful
to your application.

There are two types of cover procedures: those that are called when your movie covers a
screen region, and those called when it uncovers a screen region, revealing a region that
was previously covered. Cover procedures that are called when your movie covers a
screen region are responsible for erasing the region--you may choose to save the hidden
region in a bitmap. Cover procedures that are called when your movie reveals a hidden
region must redisplay the hidden region.

Use SetMovieCoverProcs to set both types of cover procedures. The following
example shows how to establish a cover procedure called when your movie uncovers a
screen region.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 39

OSErr CALLBACK __export CoverProc (Movie, HDC, LONG);
•
•
HWND hWnd;
Movie mMovie;
•
•
SetMovieCoverProcs (mMovie, CoverProc, 5879);
•
•
OSErr CALLBACK __export CoverProc (Movie m, HDC hdc, lID)
 {
 RECT rcClip;
 GetClipBox (hdc, &rcClip;
 FillRect (hdc, &rcClip, GetStockObject (WHITE_BRUSH));
 return 0;
 }

Note that the third parameter to SetMovieCoverProcs is an arbitrary constant passed
directly to your routine. You can use this to distinguish invocations when your cover
procedure is shared by two or more movies.

If you compile your program using Borland smart callbacks or Microsoft's -GEs
compiler option, or your filter function is in a dynamic link library, you do not need to
use MakeProcInstance on your cover procedure address before calling
MCSetMovieCoverProcs. Since a cover procedure is essentially a callback function,
it must be declared as CALLBACK and listed in the EXPORTS section of your .DEF file.

20. QuickTime for Windows Error Handling

The QuickTime for Windows API provides two routines for trapping non-Movie
Controller function errors: GetMoviesError and GetMoviesStickyError.
Detailed information on these routines can be found in Section III, Programmer's
Reference. Movie Controller functions do not return error conditions.

21. Additional Media Types Supported by QuickTime for
Windows

QuickTime for Windows can play movies containing up to five different media types. So
far, we've looked at movies with two: video and sound. Additional media types that
QuickTime for Windows supports are as follows. Media types can be combined in a
movie in any combination, but only one of a single type is processed.

• Text: textual data, like subtitles, that is often played in combination with video.
QuickTime for Windows supplies API's for your application to search for text in a
movie.

QuickTime for Windows 2.0 Developer's Manual

 Page 40  1994 Apple Computer December 21, 1994

• MPEG: a combination of video and/or sound encoded in standard MPEG format.
Most often, movies with MPEG media do not also contain standard QuickTime video
and sound media, although they can. QuickTime for Windows can also play MPEG
media directly from MPEG files. MPEG playback requires special hardware, like
Sigma Design's Reel Magic board, to be installed.

• Music or MIDI: sound data, such as that generated by an electronic musical
instrument, encoded in QuickTime music format. Most PC sound boards process
MIDI data.

An example of a movie with both text and video media is shown below.

Getting Information about the Tracks in a Movie
You can use GetMovieIndTrack to determine if a particular kind of track is present
in a movie. Alternatively, you can use GetMovieTrackCount, and
GetMovieIndTrack to interate through all the tracks in a movie. Then, use
GetTrackMedia to get the media out of the track. (The extracted media can then be
manipulated using various media routines). You can then use
GetMediaHandlerDescription to determine the type of each track. Once you
have a track, you can use GetMediaSampleDescription to obtain the sample
description handle for the track. This will provide information about the particular data
for that track, for example the compressor used to create a video track, or the sample rate
of a sound track.

Enabling and Disabling Tracks
Data in a QuickTime movie is stored in tracks. Before you can enable or disable a
particular track, you must obtain the track’s reference. To do this, call
GetMovieIndTrackType. For example:

Movie m;
Track trkText;
•
•
trkText = GetMovieIndTrackType (m, 1,

TextMediaType, movieTrackMediaType);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 41

The track obtained from this call can then be passed to SetTrackEnabled:

Track trkText;
•
•
SetTrackEnabled (trkText, FALSE);

The effect of disabling a track depends on whether the media it contains is visible (video
and text) or audible (sound and music) or both (MPEG). If the media is visible, it is
hidden when disabled. The movie rectangle (as obtained by GetMovieBox) shrinks to
the smallest rectangle enclosing the enabled visible media. The opposite occurs when the
media is enabled. If the media is audible, it is silenced when disabled.

After enabling or disabling one or more tracks, you must call MCMovieChanged. This
call alerts the Movie Controller that you have changed certain characteristics of the movie
and instructs it to re-generate its appearance appropriately.

Movie m;
MovieController mc;
•
•
MCMovieChanged (mc, m);

You can determine if a particular track is enabled by calling GetTrackEnabled.
Track trkMusic;
Boolean bEnabled
•
•
bEnabled = GetTrackEnabled (trkMusic);

A track’s enabled state is also effected by the movie’s active state. If the movie is
inactive, all tracks are effectively disabled. However, if you call GetTrackEnabled, it
will still return TRUE for those tracks which were enabled when the movie was made
inactive. The actual enabled state of any track is actually the combination of the movie’s
active state and the track’s enabled state.

Searching for Text in a Movie
If a movie contains text media, your program can use MovieSearchText to search for
text. MovieSearchText can be instructed to skip to the movie time of the found text
and, independently, to highlight it.

22. Getting Text from a Movie

The text stored in a movie can be used in many different ways. The most obvious is to
display the data. However, after a search operation, the user may wish to copy the text
from the movie to use it in a word processor. In other cases, an application may wish to
apply its own search algorithm. Some applications may use the text stored in a movie to
allow scripts or hot spots to be associated with a movie. In all these cases, the application
must be able to get the text out of the movie.

QuickTime for Windows 2.0 Developer's Manual

 Page 42  1994 Apple Computer December 21, 1994

The easiest way to extract text is to use the PutMovieIntoTypedHandle routine.
This routine will provide the text, translated from Macintosh to Windows characters
where appropriate. You can have the text automatically placed on the clipboard, and the
text may be from a single sample or a range of time.

A lower level approach to extracting text, is to use the GetMediaSample routine. This
provides access to the raw text sample, including any additional information or tables that
may be stored with the text.

23. Memory Management

Because QuickTime for Windows is based on QuickTime originally developed for the
Macintosh it requires certain memory management functionality which is not available
directly from MS Windows. To alleviate this problem, QuickTime for Windows provides
a set of routines to emulate the Macintosh Memory Manager. The following routines are
supported:

NewHandle
DisposeHandle
HLock
HUnlock
HGetState
HSetState
GetHandleSize
SetHandleSize
MemError

The only major difference between the Macintosh and Windows version of the Memory
Manager is the addition of the function DereferenceHandle on Windows. You
cannot directly dereference handles under Windows. You must use the
DereferenceHandle function to do this. DereferenceHandle only works if the
Handle is locked.

For Windows programmers, the most notably difference from MS Windows memory
management routines is that the lock and unlock routines do not maintain a count. If a
handle is locked 3 times, a single unlock will unlock the block. To maintain the state of a
handle, use the HGetState and HSetState routines.

Future version of QuickTime for Windows may provide more complete Macintosh
Memory Manager support.

QuickTime for Windows routines which take a Handle as an argument, expect a
Handle which was created by QuickTime for Windows’ NewHandle routine. They
will fail if passed a standard Windows HANDLE.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 43

 The QuickTime for Windows Environment

Hardware Considerations

The supported environment for QuickTime for Windows is Windows 3.1 or later, either
standard or enhanced mode, running on an I386, I486, or Pentium machine. If a program
incorporating QuickTime for Windows is run in a non-supported environment,
QTInitialize will fail. If this happens, it is responsibility of your application not to
execute any further QuickTime for Windows calls. QuickTime for Windows does
provide some assistance in this area by making all of its calls no-ops when
QTInitialize fails, but you should take the extra steps to not even call the functions
if QTInitialize fails.

Developing QuickTime for Windows Programs

To start building QuickTime for Windows programs, you need to make four changes to
your development environment and program source files:

• Include the library file QTW.LIB in the link line of your program’s make file

• Add the line #include “QTW.H” to your program’s source file.

• Change the stack size to at least 16K in your program’s.DEF file

• Check that the SET LIB, SET INCLUDE and PATH environment variables in your
AUTOEXEC.BAT or IDE project options file to access all of the QuickTime for
Windows development tools.

QuickTime for Windows On-line Help

If you have installed QuickTime for Windows from diskettes, all of the help files are in
the directory \qtw\help. They are in the standard .HLP format, accessible with the
WinHelp program. If you have installed from CD-ROM, you will have the standard .HLP
files plus their source code files (with the extension .RTF) and their corresponding help
project files (with the extension .HPJ), also in \qtw\help. Of particular note are the
files for the Movie Controller, which you can integrate with your application's help
system.

You can rebuild the compiled help files using the Windows help compiler. For example,
to build the Movie Controller help file, you would invoke:

HC31 MCENU.HPJ

The three-letter "ENU" string in the file name indicates the U.S. English version.
To compile help files for other languages, use the appropriate source files in
\qtw\help.

QuickTime for Windows 2.0 Developer's Manual

 Page 44  1994 Apple Computer December 21, 1994

QuickTime for Windows Applications

QuickTime for Windows provides two sample applications for viewing QuickTime
movies and pictures: Movie Player and Picture Viewer. These programs use the
Microsoft standard Multiple Document Interface (MDI) to view multiple movies or
pictures, respectively. Complete source code is provided for each application for use as a
learning tool. When running either program, you will find extensive on-line help
available through the Help menu item or the F1 function key.

The Movie Player

This application lets you play one or more movies in its main window. All movies run in
standard MDI child windows. You can resize any of the movies by dragging on their
borders, or by using the grow box in the lower right corner. Individual movie frames and
an OLE movie object reference can be copied to the clipboard through the Edit menu
item, and information about the movie is available under the Movie menu item. The
Movie Player executable is in the \windows subdirectory. Its source code is in
\qtw\samples\mplayer. You can build PLAYER.EXE with the make file
PLAYER.MAK (in standard NMAKE format), also located in this directory.

Online help files for the Movie Player are provided in two formats: PLAYENU.RTF
(rich text format, only if you installed from CD-ROM) and PLAYENU.HLP (standard
compiled help files, usable by the Windows help subsystem). These help files are in the
directory \qtw\help and are currently localized for the U.S. English language. You
can localize them for other languages at your discretion (no other localization is normally
required for QuickTime for Windows programs). Help files for the Movie Controller,
MCENU.RTF and MCENU.HLP, are in the same format and location.

Figure 18. The Movie Player program.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 45

The Picture Viewer

This application lets you view one or more pictures in its main window. All pictures are
displayed in standard MDI child windows, which you can resize by dragging on their
frame-sizing borders or by using the grow box in the lower right corner. Individual
pictures can be copied to the clipboard through the Edit menu item, and information
about the picture is available under the Image menu item. The Picture Viewer executable
is in the \windows subdirectory. Its source code is in \qtw\samples\pviewer.
You can build VIEWER.EXE by executing the make file VIEWER.MAK (in standard
NMAKE format), also located in this directory.

Online help files for the Picture Viewer are provided in two formats: VIEWENU.RTF
(rich text format, only if you installed from CD-ROM) and VIEWENU.HLP (standard
compiled help files, usable by the Windows help subsystem). These help files are in the
directory \qtw\help and are currently localized for the U.S. English language. You
can localize them for other languages at your discretion (no other localization is normally
required for QuickTime for Windows programs).

Figure 19. The Picture Viewer program.

QuickTime for Windows 2.0 Developer's Manual

 Page 46  1994 Apple Computer December 21, 1994

QuickTime for Windows vs. QuickTime for the
Macintosh

Summary

As an experienced QuickTime programmer ready to use the QuickTime for Windows
API, you know about differences between the Windows and Macintosh platforms. You
should also be aware of how QuickTime and QuickTime for Windows themselves differ
in implementation.

We noted earlier that QuickTime movies can be created and edited on the Macintosh,
while they can be handled in playback mode only in the current version of QuickTime for
Windows. It is also worth re-emphasizing that the primary focus of the QuickTime for
Windows API and related documentation is the Movie Controller.

Although QuickTime for Windows' API is based as closely as possible on QuickTime's,
the platform differences noted above have necessitated the creation of QuickTime for
Windows calls with no counterpart on the Macintosh side. These are discussed in context
in the material that follows. Equally important is that many of the QuickTime Toolbox
routines available to the Macintosh developer are not exposed in the QuickTime for
Windows API, since the focus is on the Movie Controller.

The Movie Controller

The important ideas to keep in mind regarding the QuickTime for Windows Movie
Controller are:

• Playing movies under QuickTime for Windows is possible only with the Movie
Controller, as opposed to under QuickTime, which allows movies to be played
using its Toolbox API.

• The QuickTime for Windows Movie Controller is functionally identical to the
default movie controller under QuickTime.

• You can simulate the appearance of a QuickTime toolbox application using an
invisible movie controller.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 47

Initialization and Termination Differences

QuickTime is an operating system extension on the Macintosh and does not need to be
explicitly initialized. Under QuickTime for Windows, any application that makes calls to
the QuickTime for Windows libraries must first verify that the libraries are available on
the system. This is accomplished with the QuickTime for Windows-only routine
QTInitialize, which establishes links to those libraries if they are present. The
QTTerminate function must be called before your QuickTime for Windows-enabled
program is unloaded. Details on these calls are available in Section III, Programmer's
Reference.

Picture Handling Differences

Since pictures on the Macintosh are also generally handled at the operating system level,
there are a number of new routines to deal with individual QuickTime for Windows
images. Again, complete information on these calls is available in Section III,
Programmer's Reference.

ClosePictureFile
DisposePicture
DrawPicture
GetPictureFileInfo
GetPictureFromFile
GetPictureInfo
GetPicturePalette
KillPicture
OpenPictureFile
PictureToDIB

Other Differences

The following new routines are included in the QuickTime for Windows API to bridge
other platform differences. See Section III, Programmer's Reference.

MAKELFIXED (macro)
MAKESFIXED (macro)
MCIsPlayerMessage (named MCIsPlayerEvent on the Macintosh)
NormalizeRect
QTFOURCC (macro)

Versions of QuickTime for Windows prior to 2.0 provided GetVideoInfo and
GetSoundInfo calls which were never present on the Macintosh version of QuickTime. In
QuickTime 2.0 for Windows the GetMediaSampleDescription takes the place of these
two calls and removes the need for calls such as GetTextInfo or GetMusicInfo.
GetVideoInfo and GetSoundInfo are considered obsolete, and should no longer be used.
They are maintained only for compatibility reasons.

QuickTime for Windows 2.0 Developer's Manual

 Page 48  1994 Apple Computer December 21, 1994

QuickTime API Calls Supported by QuickTime for Windows

Application Defined Movie Routines SetMovieCoverProcs
Enabling and Disabling Movies and Tracks GetMovieActive

GetTrackEnabled
SetMovieActive
SetTrackEnabled

Locating Tracks and Media GetMediaTrack
GetMovieIndTrack
GetMovieIndTrackType
GetMovieTrackCount
GetTrackMedia
GetTrackMovie

Enhancing Movie Playback Performance PrerollMovie
Error Routines ClearMoviesStickyError

GetMoviesError
GetMoviesStickyError

Movies and the Event Loop GetMovieStatus
PtInMovie
UpdateMovie

Generating Pictures from Movies GetMoviePict
GetMoviePosterPict
GetTrackPict

Getting Information about Tracks and
Media

GetMediaHandlerDescription
GetMediaSampleDescription
GetMediaTimeScale
GetTrackDimensions
GetTrackMatrix

Initializing the Movie Toolbox EnterMovies
ExitMovies

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 49

Movie Controller DisposeMovieController
MCActivate
MCDoAction
MCDraw
MCDrawBadge
MCGetControllerBoundsRect
MCGetControllerInfo
MCGetCurrentTime
MCGetMovie
MCGetVisible
MCIdle
MCIsControllerAttached
MCIsPlayerMessage
MCKey
MCMovieChanged
MCNewAttachedController
MCPositionController
MCSetActionFilter
MCSetControllerAttached
MCSetControllerBoundsRect
MCSetVisible
NewMovieController

Determining Movie Creation and
Modification Time

GetMovieCreationTime
GetMovieDataSize
GetMovieModificationTime

Movie Routines CloseMovieFile
DeleteMovieFile
DisposeMovie
GetMovieBox
NewMovieFromDataFork
NewMovieFromFile
OpenMovieFile
SetMovieBox

Working with Pictures and Picture Files DisposePicture
DrawPictureFile
GetPictureFileHeader
KillPicture

Movie Posters and Movie Previews GetMoviePosterTime
Preferred Movie Settings GetMoviePreferredRate

GetMoviePreferredVolume
Time Base Routines AddTime

ConvertTimeScale
SubtractTime

QuickTime for Windows 2.0 Developer's Manual

 Page 50  1994 Apple Computer December 21, 1994

Working with Movie User Data CountUserDataType
GetMovieUserData
GetNextUserDataType
GetUserData
GetUserDataText

Working with Movie Time GetMovieActiveSegment
GetMovieDuration
GetMovieTime
GetMovieTimeScale
GetMovieSelection
TrackTimeToMediaTime

Matrix Support ConcatMatrix
TransformRect

Memory Management Support DereferenceHandle
DisposeHandle
GetHandleSize
HGetState
HLock
HSetState
HUnlock
MemError
NewHandle
SetHandleSize

Extracting Data from a Movie GetMediaSample
PutMovieIntoTypedHandle

Seaching Text Tracks MovieSearchText

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 51

Preparing Macintosh movie and picture files for
QuickTime for Windows

QuickTime movies prepared on the Macintosh to play under Windows need to have two
related characteristics. They must be 1) self-contained, and 2) contained in a single fork
file. These characteristics are set by the Macintosh application that saves the movie.
Such an application is the Movie Player, which is part of QuickTime 2.0 for the
Macintosh. In addition, QuickTime for Windows is designed to process only a single
track of each of these media types (additional tracks are ignored):

Video
Text
MPEG
Sound
Music

If your movies contain more than one track of any of these media types, you must use a
movie editing program to composite multiple tracks.

Macintosh QuickTime pictures may be transferred to a Windows machine directly
(e.g., over a network or with a Mac to PC file transfer program) and viewed without any
special preparation.

To use the Movie Player to create a movie file that can be ported to a Windows machine:

1. Make sure that the QuickTime 2.0 extension is installed in your System
Folder.

• Launch the Movie Player.

• Open the QuickTime movie to be saved.

QuickTime for Windows 2.0 Developer's Manual

 Page 52  1994 Apple Computer December 21, 1994

3. In the File Menu select "Save As".

4. Click the "Make movie self-contained" button. This creates a movie that
contains no references to other files.

5. Check "Playable on non-Apple computers". This creates a movie file that does
not depend on resources.

6. Save the file.

The file just created can now be ported to a Windows machine (e.g., over a network or
with a Mac to PC file exchange program) and viewed with any application that supports
QuickTime for Windows.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 53

Section 2. A QuickTime for Windows Tutorial

Introduction

The series of sample programs presented in this section of the manual is intended as a
learning tool. While they clearly demonstrate the power and flexibility of the QuickTime
for Windows API, none of the programs should be taken out of context or used in
production quality applications without careful consideration. Although the complete
source code for each program is listed out in this section, the files are also in the
\qtw\samples directory of your installed QuickTime for Windows environment.

WINPLAY1 - Your First QuickTime for Windows
Program

Introduction

WINPLAY1 serves one purpose: it puts into context the essential steps for initializing,
executing and disposing various QuickTime for Windows API components required to
play a movie. Its user interface is a plain frame window completely filled by a single
movie and attached movie controller.

The WINPLAY1 Source Code

• WINPLAY1.MAK is the standard make file.

• WINPLAY1.DEF is the module definition file.

• WINPLAY1.C is the C source file.

WINPLAY1.MAK

ALL : WINPLAY1.EXE

WINPLAY1.OBJ : WINPLAY1.C
 cl -c -AS -DSTRICT -G2 -Zpel -W3 -WX -Od winplay1.c

WINPLAY1.EXE : WINPLAY1.OBJ WINPLAY1.DEF
 link /nod /a:16 winplay1, winplay1.exe, nul, qtw libw slibcew, \
 winplay1.def;
 rc winplay1.exe

QuickTime for Windows 2.0 Developer's Manual

 Page 54  1994 Apple Computer December 21, 1994

WINPLAY1.DEF

NAME WINPLAY1
DESCRIPTION 'Sample Application'
EXETYPE WINDOWS
STUB 'winstub.exe'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 16384

WINPLAY1.C

#include <windows.h>
#include <qtw.h>

long FAR PASCAL __export WndProc (HWND, UINT, WPARAM, LPARAM);

MovieFile mfMovie;
RECT rcMovie;
Movie mMovie;
MovieController mcController;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {
 static char szAppName[] = "WinPlay1";
 HWND hWnd;
 MSG msg;
 WNDCLASS wndclass;

// Establish links to QuickTime for Windows

 if (QTInitialize (NULL))
 {
 MessageBox (NULL, "QTInitialize failure", szAppName, MB_OK);
 return 0;
 }

// Allocate memory required for playing movies

 if (EnterMovies ())
 {
 MessageBox (NULL, "EnterMovies failure", szAppName, MB_OK);
 return 0;
 }

// Register and create main window

 if (!hPrevInstance)
 {
 wndclass.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 55

 wndclass.hIcon = LoadIcon (NULL,IDI_APPLICATION);
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
 wndclass.lpszMenuName = NULL;
 wndclass.lpszClassName = szAppName;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, "RegisterClass failure", szAppName, MB_OK);
 return 0;
 }
 }

 hWnd = CreateWindow (szAppName, szAppName, WS_CAPTION | WS_SYSMENU |
 WS_CLIPCHILDREN | WS_OVERLAPPED, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, hInstance, NULL);

 if (hWnd == NULL)
 {
 MessageBox (NULL, "CreateWindow failure", szAppName, MB_OK);
 return 0;
 }

// Instantiate the movie

 if (OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ) != noErr)
 {
 MessageBox (NULL, "OpenMovieFile failure", szAppName, MB_OK);
 return 0;
 }

 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
 CloseMovieFile (mfMovie);

// Instantiate the movie controller

 GetMovieBox (mMovie, &rcMovie);
 OffsetRect(&rcMovie, -rcMovie.left, -rcMovie.top);
 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);

// Make the movie paused initially

 MCDoAction (mcController, mcActionPlay, 0);

// Eliminate the grow box

 SetRectEmpty (&rcMovie);
 MCDoAction (mcController, mcActionSetGrowBoxBounds, &rcMovie);

// Make the frame just big enough for the movie

 MCGetControllerBoundsRect (mcController, &rcMovie);
 AdjustWindowRect (&rcMovie, WS_CAPTION | WS_OVERLAPPED, FALSE);
 OffsetRect(&rcMovie, -rcMovie.left, -rcMovie.top);
 SetWindowPos (hWnd, 0, 0, 0,
 rcMovie.right, rcMovie.bottom, SWP_NOMOVE | SWP_NOZORDER);

QuickTime for Windows 2.0 Developer's Manual

 Page 56  1994 Apple Computer December 21, 1994

// Make the movie active

 SetMovieActive (mMovie, TRUE);

// Make the main movie visible

 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);

// Play the movie

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }

// Destroy the movie controller

 DisposeMovieController (mcController);

// Destroy the movie

 DisposeMovie (mMovie);

// Cut the connections to QuickTime for Windows

 ExitMovies ();
 QTTerminate ();

// Return to Windows

 return msg.wParam;
 }

long FAR PASCAL __export WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
 {
 PAINTSTRUCT ps;

// Drive the movie controller

 if (MCIsPlayerMessage (mcController, hWnd, message, wParam, lParam))
 return 0;

// Process the windows message

 switch (message)
 {
 case WM_PAINT:

 if (!BeginPaint (hWnd, &ps))
 return 0;
 EndPaint (hWnd, &ps);
 return 0;

 case WM_DESTROY:

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 57

 PostQuitMessage (0);
 return 0;
 }

// Return to Windows

 return DefWindowProc (hWnd, message, wParam, lParam);
 }

Building QuickTime for Windows Programs

The most significant difference between WINPLAY1.MAK and an otherwise standard
make file is in the link line: a file named QTW.LIB is specified in the library list. In
general, the only change necessary for your existing Windows make files is to make sure
QTW.LIB is added to your list of statically-linked libraries.

WINPLAY1.DEF is provided only to complete the source file set for this tutorial.
Module definition files for your existing Windows programs generally will not have to be
modified for QuickTime for Windows.

Initializing QuickTime for Windows Programs

The first QuickTime for Windows function in WINPLAY1.C is QTInitialize, which
has a void parameter list and returns one of five possible values:

QTI_OK Success
QT_FAIL_CORRUPTDLL A QuickTime for Windows DLL failed to load
QTI_FAIL_NOEXIST QuickTime for Windows is not installed
QTI_FAIL_286 QuickTime for Windows requires a 386 or better
QTI_FAIL_WIN30 Windows 3.1 or better required

This routine must be called before any other QuickTime for Windows function. Although
it is performed automatically when any such function is executed, you should call it
explicitly as a matter of programming style. Its primary purpose is to bind QuickTime for
Windows-enabled applications to QuickTime for Windows at run time. Normally, a
program utilizing DLLs is bound to them at link time; if calls to the DLLs are not
resolved at load time, the program fails to load. The function QTInitialize provides
access to QuickTime for Windows functions after the program has loaded. If QuickTime
for Windows is not installed, the program will fail to play movies but otherwise run
normally.

For instance, if you were the developer of an existing word processing program, you
might want to add the ability to play movies in your documents but still be able to run the
application on a non-QuickTime for Windows system.You can develop a QuickTime for
Windows-enabled application without worrying about whether its DLLs will be present
on future host systems.

QuickTime for Windows 2.0 Developer's Manual

 Page 58  1994 Apple Computer December 21, 1994

QTInitialize also provides safety features to prevent a fatal failure if the application
is running on a non-supported platform, or if the application accidentally makes a
QuickTime for Windows call when QuickTime for Windows is not present. In these
cases, all QuickTime for Windows calls are no-ops.

In WINPLAY1, a standard Windows message box is displayed if QTInitialize does
not return QTI_OK, and the program exits when the message box is dismissed. If we fell
through to the rest of the QuickTime for Windows functions, each of them would return
unsuccessfully and no movie would be displayed. The program's main window would be
created, however, and it would behave normally.

If QTInitialize returns successfully, the program calls EnterMovies to allocate
memory required by QuickTime for Windows (not its movies) that will be used to track
movies for this program. EnterMovies has an empty parameter list and returns an
OSErr. An OSErr is returned by a number of QuickTime for Windows functions. 0
indicates no error. Various other integer values denote QuickTime for Windows error
conditions which your program may react to as you deem appropriate. Please see
Appendix A for a listing of these error codes.

WINPLAY1 checks the return and puts up a message box, followed by a program exit, if
an error condition is indicated. An application may call EnterMovies multiple times,
but memory will be allocated only for the first call.

As noted in the overview, QTInitialize and EnterMovies (if your program plays
movies) only need to be called once during the life of your QuickTime for Windows
application. Functions which deal with initializing individual movies, discussed next,
need to be executed for each QuickTime for Windows movie your program incorporates.

Loading a Movie

Assuming WINPLAY1 has been successfully initialized for using the QuickTime for
Windows libraries, it can now proceed to ready a specific movie for playing.
OpenMovieFile is hard coded to open the movie file SAMPLE.MOV, its first
parameter. Its second parameter is the address of mfMovie, which will be passed to
NewMovieFromFile.

The third parameter is an integer expressed as a standard file open flag as defined for the
Windows OpenFile function, normally OF_READ, since movies generally cannot be
opened other than read-only in the current version of QuickTime for Windows.
OpenMovieFile returns an OSErr, which is checked and handled in the same way as
it was for EnterMovies and QTInitialize.

Note: For overall clarity, return codes are not checked for QuickTime for Windows
functions beyond this point. Of course, in production-grade code all QuickTime for
Windows return values would be checked and handled appropriately.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 59

To initialize a movie object to pass to NewMovieController, we have to call
NewMovieFromFile. Its first parameter is the address of our movie object mMovie.
Second is the mfMovie assigned by QuickTime for Windows when we called
OpenMovieFile. The fifth parameter is hard coded to 0 to mark it simply as inactive.
The rest of the parameters are set to NULL in the current version of QuickTime for
Windows. For each movie you want to play, you must call OpenMovieFile and
NewMovieFromFile . WINPLAY1 only plays a single movie, and thus only makes
the calls once.

CloseMovieFile is called next, since movie files should not be left open any longer
than necessary. It takes mfMovie as its only parameter.

Creating a Movie Controller

While NewMovieFromFile allocates and initializes all storage required for the movie
and performs various internal tasks (e.g. telling QuickTime for Windows' scheduler to
add the movie to its tables), there is still some conceptual distance. What we have now is
access to a collection of movie data with no mechanism to play it. As explained in the
overview, this is the role of the Movie Controller.

W must first pass QuickTime our movie’s size and position within WINPLAY1's client
area. The routine GetMovieBox provides these values, which are the original
dimensions of the movie as contained in the movie file (if the movie is freshly extracted
with NewMovieFromFile).

We are now prepared to call NewMovieController, which must be done for each
movie controller you wish to create (again, our sample program only has one). The
parameters are:

• mMovie, the movie object assigned by QuickTime for Windows when it
processed NewMovieFromFile

• the address of rcMovie, the structure we have just filled with our movie's
desired dimensions and coordinates

• mcTopLeftMovie and mcScaleMovieToFit, standard controller
creation flags for displaying the movie in the movie rectangle (rcMovie)

• hWnd, the window handle for WINPLAY1, whose window will be the parent for
the new movie controller and associated movie.

NewMovieController returns a MovieController object, an entity which you
will use extensively in subsequent QuickTime for Windows calls.

QuickTime for Windows 2.0 Developer's Manual

 Page 60  1994 Apple Computer December 21, 1994

Several key things now happen involving the QuickTime for Windows internal functions
and data structures. The visible effect, once the movie is made visible, is the creation of
the movie controller and its individual controls.

Before we call ShowWindow, however, we have to make WINPLAY1's frame window
just big enough to enclose the movie and movie controller. This is accomplished with a
combination of Windows calls and the routine MCGetControllerBoundsRect
(previously discussed in part 10 of QuickTime for Windows Concepts in the overview).

As explained in the overview, once a movie is associated with a controller, it starts
playing immediately (assuming it has a non-zero play rate, which is normally the case).
To make a movie paused when first visible and associated with a new controller, you can
use MCDoAction with an action of mcActionPlay and a play rate of 0. It is good
style to do this as soon as possible after performing the association.

It is important to note again that movies and movie controllers are not married for life.
Movie controllers can be dynamically reassigned to movies at any point in your program,
providing they are properly initialized. Destroying one does not destroy the other, nor
does disconnecting a movie/movie controller pair disable either component. You will
learn various ways to exploit this feature as you explore this tutorial.

Modifying the Window Procedure

The single piece of QuickTime for Windows code in WndProc is the routine
MCIsPlayerMessage, but it wields significant power. Its parameters are:

• mcController, the movie controller object initialized in
NewMovieController

• hWnd, the main window handle of WINPLAY1

• message, wParam and lParam, the same parameters passed in to WndProc.

To elaborate on the overview, the job of MCIsPlayerMessage is to redirect all
messages targeted for the movie controller. If a message received by WndProc is not
meant for the movie controller, MCIsPlayerMessage returns 0 and the message gets
processed normally. If the message is supposed to be handled by the movie controller,
MCIsPlayerMessage returns non-zero and the message does not get handled by
WINDPLAY1.

Remember that for each movie controller you create, you have to code a separate call to
MCIsPlayerMessage with the corresponding mcController variable as the first
parameter. Since WINPLAY1 creates a single controller, we only make the call once.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 61

Cleaning Up

Before WINPLAY1 exits, it needs to make sure it has not left any garbage lying around
or kept any resources tied up. We do this in three stages, conceptually the reverse order of
how the initialization was handled. First, we destroy the movie controller by calling
DisposeMovieController, which takes the mcController object as its only
parameter, and needs to be called for every movie controller you have created.

Second, the movie is released by executing DisposeMovie. This, too, is required for
each movie you have instantiated, with the appropriate mMovie object as its sole
parameter. Finally, ExitMovies (if your application plays movies) and
QTTerminate are invoked. Like their counterparts that handle QuickTime for
Windows initialization, they must only be called once by your program. As noted in the
overview, executing QTInitialize is not required, but is recommended for good
overall style.

Remember that while destroying a window with a movie controller in it causes the
function DisposeMovieController to be called internally for that controller, this
is a safety feature only. Good QuickTime for Windows style dictates specifically
disposing the controller.

Running WINPLAY1.EXE

Having successfully compiled and linked WINPLAY1.EXE, you will want to fire it up
and watch it play a movie. Before you do, however, you need to check that the movie
name hard coded in the OpenMovieFile routine matches the file name and location of
the movie you expect to play. Since WINPLAY1.EXE only specifies the movie name
(and not the path), make sure SAMPLE.MOV is in the same directory as
WINPLAY1.EXE before you run it. If you want to play other movies without rebuilding
WINPLAY1.EXE, you can copy any other sample movie files to the directory containing
WINPLAY1.EXE, using the hard coded movie name as a target file name.

QuickTime for Windows 2.0 Developer's Manual

 Page 62  1994 Apple Computer December 21, 1994

Figure 20. Running WINPLAY1.EXE.

Once you have made sure WINPLAY1.EXE can find its data, you should try to run it,
preferably using the Run option under the Program Manager's File menu item (see
Figure 20). Clicking on the face of the movie window or the start button in the movie
controller will run the movie. Now is probably a good time to experiment with the other
movie controller buttons to get a feel for its basic operation.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 63

STEREO - Managing Multiple Movies

Introduction

Now that you can play a movie in a Windows program, you should next understand the
issues of dealing with various movies in the same application. In this section, you will
create a program called STEREO.EXE which plays two movies simultaneously and lets
you dynamically detach their controllers. The concepts we'll explore include:

• Active and inactive states of movies and movie controllers

• Attached and detached movie controllers

• Resizing movies and movie controllers

• Multiple calls to MCIsPlayerMessage in a window procedure.

The STEREO Source Code

Before getting into the STEREO.C listing, you should note that the Common Dialog Box
Library is used to create the Open Movie dialog box. COMMDLG.LIB is included on the
link line of STEREO.MAK.

STEREO.MAK

ALL : STEREO.EXE

STEREO.OBJ : STEREO.C STEREO.H
 cl -c -AS -DSTRICT -G2 -Zpel -W3 -WX -Od stereo.c

STEREO.RES : STEREO.RC STEREO.H
 rc -r stereo.rc

STEREO.EXE : STEREO.OBJ STEREO.RES STEREO.DEF
 link /nod /a:16 stereo, stereo.exe, nul, qtw commdlg libw slibcew, \
 stereo.def;
 rc stereo.res

STEREO.DEF

NAME STEREO
DESCRIPTION 'Sample Application'
EXETYPE WINDOWS
STUB 'winstub.exe'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 16384

QuickTime for Windows 2.0 Developer's Manual

 Page 64  1994 Apple Computer December 21, 1994

\STEREO.H

#define IDM_OPEN 1
#define IDM_ATTACH 2
#define IDM_DETACH 3

STEREO.RC

#include <windows.h>
#include "stereo.h"

stereo MENU
 {
 POPUP "&File"
 {
 MENUITEM "&Open...", IDM_OPEN
 }
 POPUP "&Action"
 {
 MENUITEM "&Attach Controller", IDM_ATTACH
 MENUITEM "&Detach Controller", IDM_DETACH
 }
 }

STEREO.C

#include <windows.h>
#include <commdlg.h>
#include <string.h>
#include <stdlib.h>
#include <direct.h>
#include <qtw.h>
#include "stereo.h"

#ifdef __BORLANDC__
 #define _getcwd getcwd
#endif

long FAR PASCAL __export WndProc (HWND, UINT, WPARAM, LPARAM);
VOID CalcSize (HWND);

RECT rcLeft, rcRight, rcMovieBox, rcClient;
MovieController mcLeft, mcRight, mcActive;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {
 static char szAppName [] = "Stereo";
 HWND hWnd;
 MSG msg;
 WNDCLASS wndclass;

// Establish links to QuickTime for Windows

 if (QTInitialize (NULL))
 {

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 65

 MessageBox (NULL, "QTInitialize failure", szAppName, MB_OK);
 return 0;
 }

// Allocate memory required for playing movies

 if (EnterMovies ())
 {
 MessageBox (NULL, "EnterMovies failure", szAppName, MB_OK);
 return 0;
 }

// Register and create main window

 if (!hPrevInstance)
 {
 wndclass.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = LoadIcon (NULL,IDI_APPLICATION);
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
 wndclass.lpszMenuName = szAppName;
 wndclass.lpszClassName = szAppName;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, "RegisterClass failure", szAppName, MB_OK);
 return 0;
 }
 }

 hWnd = CreateWindow (szAppName, szAppName, WS_OVERLAPPEDWINDOW |
 WS_CLIPCHILDREN, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, NULL, hInstance, NULL);

 if (hWnd == NULL)
 {
 MessageBox (NULL, "CreateWindow failure", szAppName, MB_OK);
 return 0;
 }

// Show the main window

 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);

// Play the movies

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }

// Cut the connections to QuickTime for Windows

QuickTime for Windows 2.0 Developer's Manual

 Page 66  1994 Apple Computer December 21, 1994

 ExitMovies ();
 QTTerminate ();

// Return to Windows

 return msg.wParam;
 }

long FAR PASCAL __export WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
 {
 OPENFILENAME ofn;
 PAINTSTRUCT ps;
 Boolean bLeft;
 POINT ptMovie;
 MovieFile mfMovie;

 static Movie mLeft, mRight;

 static char szDirName [256];
 static char szFile [256];
 static char szFileTitle [256];

// Drive the movie controllers

 if (MCIsPlayerMessage (mcLeft, hWnd, message, wParam, lParam)
 || MCIsPlayerMessage (mcRight, hWnd, message, wParam, lParam))
 return 0;

// Process window messages

 switch (message)
 {

 // Create empty movie controllers when main window is created

 case WM_CREATE:

 SetRectEmpty (&rcMovieBox);
 SetRectEmpty (&rcClient);

 mcLeft = NewMovieController (NULL, &rcClient,
 mcNotVisible, hWnd);
 mcRight = NewMovieController (NULL, &rcClient,
 mcNotVisible, hWnd);
 return 0;

 // Process menu commands

 case WM_COMMAND:

 switch (wParam)
 {

 // Use COMMDLG to open a movie file

 case IDM_OPEN:

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 67

 memset (&ofn, 0, sizeof (ofn));
 ofn.lStructSize = sizeof (ofn);
 ofn.hwndOwner = hWnd;
 ofn.lpstrFilter = "Movies (*.mov)\0*.mov\0\0";
 ofn.nFilterIndex = 1;
 ofn.lpstrFile = szFile;
 ofn.nMaxFile = sizeof (szFile);
 ofn.lpstrFileTitle = szFileTitle;
 ofn.nMaxFileTitle = sizeof (szFileTitle);
 ofn.lpstrInitialDir =
 _getcwd (szDirName, sizeof (szDirName));
 ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;

 if (GetOpenFileName (&ofn) &&
 (OpenMovieFile (ofn.lpstrFile, &mfMovie,
 OF_READ) == noErr))
 {
 RECT rcGrowBox;

 // Dispose of any existing movies

 DisposeMovie (mLeft);
 DisposeMovie (mRight);

 // Extract two instances of the same movie

 NewMovieFromFile (&mLeft, mfMovie, NULL, NULL,
 0, NULL);
 NewMovieFromFile (&mRight, mfMovie, NULL, NULL,
 0, NULL);
 CloseMovieFile (mfMovie);

 // Get the normal dimensions of the movie

 GetMovieBox (mLeft, &rcMovieBox);
 OffsetRect (&rcMovieBox, -rcMovieBox.left,
 -rcMovieBox.top);

 // Calculate initial positions of controllers

 GetClientRect (hWnd, &rcClient);
 rcLeft.top = rcRight.top = rcClient.top +
 (rcClient.bottom / 2) - (rcMovieBox.bottom / 2);
 rcLeft.bottom = rcRight.bottom = rcClient.top +
 (rcClient.bottom / 2) + (rcMovieBox.bottom / 2);
 rcLeft.left = (rcClient.right / 4)
 - (rcMovieBox.right / 2);
 rcLeft.right = rcLeft.left + rcMovieBox.right;
 rcRight.left = (rcClient.right / 2)
 + (rcClient.right / 4)
 - (rcMovieBox.right / 2);
 rcRight.right = rcRight.left + rcMovieBox.right;

 // Associate the movies with the existing controllers

 ptMovie.x = rcLeft.left;
 ptMovie.y = rcLeft.top;

QuickTime for Windows 2.0 Developer's Manual

 Page 68  1994 Apple Computer December 21, 1994

 MCSetMovie (mcLeft, mLeft, hWnd, ptMovie);

 ptMovie.x = rcRight.left;
 ptMovie.y = rcRight.top;
 MCSetMovie (mcRight, mRight, hWnd, ptMovie);

 // Pause the movies

 MCDoAction (mcLeft, mcActionPlay, 0);
 MCDoAction (mcRight, mcActionPlay, 0);

 // Center the movies

 MCPositionController (mcLeft, &rcLeft,
 NULL, mcTopLeftMovie + mcScaleMovieToFit);
 MCPositionController (mcRight, &rcRight,
 NULL, mcTopLeftMovie + mcScaleMovieToFit);

 // Make the controllers visible

 MCSetVisible (mcLeft, TRUE);
 MCSetVisible (mcRight, TRUE);

 // Make both movies active and the right mc inactive

 SetMovieActive (mLeft, TRUE);
 SetMovieActive (mRight, TRUE);
 MCActivate (mcRight, hWnd, FALSE);

 // Eliminate the grow boxes

 SetRectEmpty (&rcGrowBox);
 MCDoAction (mcLeft, mcActionSetGrowBoxBounds,
 &rcGrowBox);
 MCDoAction (mcRight, mcActionSetGrowBoxBounds,
 &rcGrowBox);
 }
 return 0;

 // Change active controller to attached

 case IDM_ATTACH:

 MCSetControllerAttached (mcActive, TRUE);
 return 0;

 // Change active controller to detached

 case IDM_DETACH:
 {
 RECT rcMCRect;
 SHORT sMCHeight;

 // Detach the controller

 MCSetControllerAttached (mcActive, FALSE);

 // Choose the appropriate movie/movie controller

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 69

 if (mcActive == mcLeft)
 {

 // Get the bounds rect for the controller only
 // since it is now detached

 MCGetControllerBoundsRect (mcLeft, &rcMCRect);
 OffsetRect (&rcMCRect, -rcMCRect.left, -rcMCRect.top);

 // Save the controller height

 sMCHeight = rcMCRect.bottom - rcMCRect.top;

 // Move the controller down

 memcpy (&rcMCRect, &rcLeft, sizeof (RECT));
 rcMCRect.top = rcLeft.bottom +
 (rcMovieBox.bottom / 2);
 rcMCRect.bottom = rcMCRect.top + sMCHeight;
 MCPositionController (mcLeft, &rcLeft, &rcMCRect,
 mcTopLeftMovie);
 }

 else
 {

 // Get the bounds rect for the controller only
 // since it is now detached

 MCGetControllerBoundsRect (mcRight, &rcMCRect);
 OffsetRect (&rcMCRect, -rcMCRect.left, -rcMCRect.top);

 // Save the controller height

 sMCHeight = rcMCRect.bottom - rcMCRect.top;

 // Move the controller down

 memcpy (&rcMCRect, &rcRight, sizeof (RECT));
 rcMCRect.top = rcRight.bottom +
 (rcMovieBox.bottom / 2);
 rcMCRect.bottom = rcMCRect.top + sMCHeight;
 MCPositionController (mcRight, &rcRight, &rcMCRect,
 mcTopLeftMovie);
 }
 }
 return 0;
 }
 return 0;

 // Center the controllers in the left and right halves of the window

 case WM_SIZE:

 // Attach the controllers

 MCSetControllerAttached (mcLeft, TRUE);

QuickTime for Windows 2.0 Developer's Manual

 Page 70  1994 Apple Computer December 21, 1994

 MCSetControllerAttached (mcRight, TRUE);

 CalcSize (hWnd);
 MCSetControllerBoundsRect (mcLeft, &rcLeft);
 MCSetControllerBoundsRect (mcRight, &rcRight);
 return 0;

 case WM_LBUTTONDOWN:
 {
 SFIXED sfxVolume;

 // Activate the controller selected by the mouse click

 GetClientRect (hWnd, &rcClient);
 bLeft = (SHORT) (LOWORD (lParam)) < ((rcClient.right -
 rcClient.left) / 2);
 mcActive = bLeft ? mcLeft : mcRight;
 MCActivate (mcLeft, hWnd, bLeft);
 MCActivate (mcRight, hWnd, !bLeft);

 // Disable sound and keyboard interface for appropriate controller

 if (mcActive == mcLeft)
 {
 MCDoAction (mcRight, mcActionGetVolume, (LPVOID)
 &sfxVolume);
 sfxVolume = - (abs (sfxVolume));
 MCDoAction (mcRight, mcActionSetVolume, (LPVOID) sfxVolume);

 MCDoAction (mcRight, mcActionSetKeysEnabled,
 (LPVOID) FALSE);
 }

 else
 {
 MCDoAction (mcLeft, mcActionGetVolume, (LPVOID) &sfxVolume);
 sfxVolume = - (abs (sfxVolume));
 MCDoAction (mcLeft, mcActionSetVolume, (LPVOID) sfxVolume);

 MCDoAction (mcLeft, mcActionSetKeysEnabled, (LPVOID) FALSE);
 }

 // Enable sound and keyboard for active controller

 MCDoAction (mcActive, mcActionGetVolume, (LPVOID) &sfxVolume);
 sfxVolume = abs (sfxVolume);
 MCDoAction (mcActive, mcActionSetVolume, (LPVOID) sfxVolume);

 MCDoAction (mcActive, mcActionSetKeysEnabled, (LPVOID) TRUE);
 }
 return 0;

 // Repaint the Window

 case WM_PAINT:

 if (!BeginPaint (hWnd, &ps))
 return 0;

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 71

 EndPaint (hWnd, &ps);
 return 0;

 // Destroy the movies and controllers when the window is destroyed

 case WM_DESTROY:

 DisposeMovieController (mcLeft);
 DisposeMovieController (mcRight);
 DisposeMovie (mLeft);
 DisposeMovie (mRight);
 PostQuitMessage (0);
 return 0;
 }

// Return to Windows

 return DefWindowProc (hWnd, message, wParam, lParam);
 }

VOID CalcSize (HWND hWndCaller)
 {
 RECT rcBounds;

 GetClientRect (hWndCaller, &rcClient);

 MCGetControllerBoundsRect (mcLeft, &rcBounds);
 OffsetRect (&rcBounds, -rcBounds.left, -rcBounds.top);

 rcLeft.top = rcRight.top = rcClient.top +
 (rcClient.bottom / 2) - (rcBounds.bottom / 2);

 rcLeft.bottom = rcRight.bottom = rcClient.top +
 (rcClient.bottom / 2) + (rcBounds.bottom / 2);

 rcLeft.left = (rcClient.right / 4) - (rcBounds.right / 2);
 rcLeft.right = (rcClient.right / 4) + (rcBounds.right / 2);

 MCGetControllerBoundsRect (mcRight, &rcBounds);
 OffsetRect (&rcBounds, -rcBounds.left, -rcBounds.top);

 rcRight.left = (rcClient.right / 2) + (rcClient.right / 4)
 - (rcBounds.right / 2);
 rcRight.right = (rcClient.right / 2) + (rcClient.right / 4)
 + (rcBounds.right / 2);
 }

Understanding Active and Inactive Movie States

As we learned in the overview, both movies and movie controllers have active and
inactive states. While they are easy to set, it is still important to remember two things:
these states do not affect QuickTime for Windows programs in parallel ways, and more
than one movie or controller can be active simultaneously.

QuickTime for Windows 2.0 Developer's Manual

 Page 72  1994 Apple Computer December 21, 1994

A movie's state can be set by SetMovieActive, whose parameters are the movie
object and a value of either TRUE (for active) or FALSE (for inactive). An inactive movie
simply is not played--it does not receive cycles from QuickTime for Windows' internal
scheduler. Don't confuse a movie's active state with its playing/paused state. In other
words, calling SetMovieActive should not be used to start or stop playing a movie.

A movie controller's state can be set by MCActivate with its last parameter set to
TRUE or FALSE. Again, since movie controllers generally mirror the behavior of
standard Windows controls, it is useful to view an inactive movie controller as a disabled
Windows control. It cannot receive user input (i.e. mouse clicks, since keyboard input is
enabled separately) and its appearance is grayed. Movie controllers are created with an
active state by default.

A movie/movie controller pair can easily have opposing states. For instance, an active
movie can have an inactive controller, and vice versa. In the former case, a playing
movie's controller can be deactivated, graying it and prohibiting further user input, but the
movie will keep playing. In the latter, clicking the start button on an inactive movie's
active controller will not play the movie.

Since more than one movie or movie controller can have active or inactive status under
QuickTime for Windows itself, it is the application's responsibility to identify and keep
track of its own application specific active movies, movie controllers and controller
attributes (e.g., sound and keyboard states). Any serious QuickTime for Windows
program design must be aware of and incorporate this paradigm if it expects to
effectively route events and call QuickTime for Windows functions with appropriate
movie and movie controller objects.

STEREO addresses the issue in an elementary way using a variable called mcActive.
Whenever a movie controller is activated by a user input event (i.e. a mouse click), the
movie controller object linked to the window area which received the click is copied into
this variable. (This is merely a convention used to simplify our sample program--see the
code fragment below). As a result, routines using the program's active movie controller
object pass mcActive instead of the variable that received the original controller object.

STEREO calls MCActivate on what it deems its non-active controller with the last
parameter set to FALSE, setting it to a QuickTime for Windows inactive state. This in
turn causes the controller's elements to be grayed (see Figure 21).

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 73

case WM_LBUTTONDOWN:
 •
 •
// Activate the controller selected by the mouse click

 GetClientRect (hWnd, &rcClient);
 bLeft = (SHORT) (LOWORD (lParam)) < ((rcClient.right -
 rcClient.left) / 2);
 mcActive = bLeft ? mcLeft : mcRight;
 MCActivate (mcLeft, hWnd, bLeft);
 MCActivate (mcRight, hWnd, !bLeft);
 •
 •
 return 0;

Visualizing Attached and Detached Movie Controllers

A movie controller is attached to or detached from a movie also by an explicit
QuickTime for Windows function call, such as MCSetControllerAttached. Once
attached, it is automatically associated and normally appears joined to the bottom edge of
the movie (under uncommon circumstances they may be programatically attached but not
physically joined). When the controller is used for resizing, both it and the movie grow or
shrink together. If the application repositions either one of them, they both travel in
unison.

Detached movie controllers are not joined physically to their movies (as above, this
is the normal condition--sometimes they may be programatically detached but not
separated). Although they play their movies just like attached controllers, repositioning or
resizing one does not necessarily affect the other. As you will see in this tutorial,
detached movie controllers can perform some very useful functions.

You cannot create a detached movie controller from scratch. If your program requires
one, you have to detach an existing attached controller. STEREO plays with this idea a
little by creating a pair of movie controllers using NewMovieController with its first
parameter set to NULL, then associating them with movies when they are opened.

The other parameters are the address of the RECT containing the controller's screen
coordinates--in this case all zeros, the controller creation flags and the parent window
handle. Creation flags are discussed in subsection D, part 4, and in Section III,
Programmer's Reference.

STEREO's two movie controllers are created early (and invisibly) to simplify the flow of
this tutorial application. Not only that, they also play the same movie--eventually.
Nevertheless, the program demonstrates several important differences between attached
and detached controllers, as well as QuickTime for Windows' high degree of flexibility in
handling them and its other components.

QuickTime for Windows 2.0 Developer's Manual

 Page 74  1994 Apple Computer December 21, 1994

Attaching Movie Controllers to Movies

As explained in the overview, the function MCNewAttachedController is often
used to both associate and attach movies and movie controllers. STEREO uses
MCSetMovie instead to simply associate them. Its significant parameters are PtLeft
and PtRight, the upper left corners of the movies relative to their parent window.

STEREO calls MCSetMovie on its existing controllers as soon as a movie is selected
for opening, detaches them for proper sizing of their movie rectangles, then re-attaches
them and makes them visible. We now have two otherwise normal movies with attached
movie controllers ready for playing. But this is not the only way to attach a movie
controller to a movie, as you can infer by using the Action menu to dynamically detach
and re-attach them even while they are running.

Detaching and Re-attaching a Movie Controller

Pulling down the Action menu gives you Attach Controller and Detach Controller options
for the application's active movie controller. If the controller is not attached, selecting
Attach Controller causes it to jump to its appropriate attached position. The routine used
for this purpose is MCSetControllerAttached, which takes as parameters the
movie controller object and the Boolean value TRUE.

Selecting the Detach Controller menu item when the controller is currently attached to a
movie triggers two significant events. First, MCSetControllerAttached is called
with a value of FALSE. This alone, however, does not physically separate the movie
controller from the movie. To split them apart you need MCPositionController.

The parameters of interest are the addresses of the RECT structures for the desired
coordinates of the movie and the movie controller. If we had wanted to query the
attachment state of the movie controller so we could, say, gray the appropriate menu
item, we could have used the routine MCIsControllerAttached.

STEREO uses numbers which set the resulting detached controllers at arbitrary distances
slightly below their movies, but your future programs could use values which have real
meaning in developing a consistent user interface for your QuickTime for Windows
applications. For example, your detached movie controllers could be handled like custom
menus or tool bars in terms of their default positions and where the user of the application
might expect to find them if not attached to their movies.

Resizing Movies and Movie Controllers

Just as it is the application's job to designate and track its own active movie controller(s),
it must also handle changing movie and movie controller dimensions if the application's
window is resized. STEREO does this under the WM_SIZE case in its window
procedure, using the routine MCSetControllerBoundsRect.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 75

When a WM_SIZE message is received, the program gets the coordinates of the client
rectangle. It then bisects that area vertically to derive left and right sub-rectangles for
each movie, which are supplied with slight offsets to
MCSetControllerBoundsRect The function centers the resized movies and
controllers in the new rectangles.

In your own QuickTime for Windows programs you may not want to resize your movies
with your program windows. STEREO does it to show you the power of this particular
call.

Calling MCIsPlayerMessage More than Once

Each movie controller that you want to receive messages must have a corresponding
MCIsPlayerMessage call in the window procedure of its parent window. STEREO.C
contains two instances of the routine, each one with a different controller object.

As your QuickTime for Windows programs get more complex, this is one of the points
where you should carefully design the handling of their movie controller messages. For
instance, you might keep an array of controller objects and call MCIsPlayerMessage
in a for loop, passing specific objects conditionally, etc. Again, you will have to decide
the best way to handle this.

Running STEREO.EXE

When STEREO.EXE is executed, the movie controllers will not be visible in the client
area of the main window, since no movie is open yet. When a movie is opened from the
file menu, each controller will become visible and attach itself to one of the two movies
which will appear in STEREO's client area. The left one is initially set to an active state,
and the right one made inactive. At that point the program's user interface should
resemble Figure 21.

QuickTime for Windows 2.0 Developer's Manual

 Page 76  1994 Apple Computer December 21, 1994

Figure 21. Running STEREO.EXE

As you experiment with the Action menu, your movie controllers will become detached
and could ultimately look like Figure 22. You will notice that while the visual parts of
both movies can play simultaneously, only the sound track of the active movie will be
played. This is a Windows limitation--not a condition that can be controlled with the
QuickTime for Windows API.

Figure 22. STEREO.EXE with Detached Movie Controllers.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 77

BIGEIGHT - Movie Controller Attributes

Introduction

Beyond basic characteristics like association and attachment, movie controllers have
many other useful attributes. The next sample program, BIGEIGHT.EXE, allows you to
switch on and off eight of these attributes for a single detached movie controller. The
attributes demonstrated are: controller visibility, speaker button visibility, step button
visibility, grow box visibility, sound availability, keyboard interface availability, movie
looping and palindrome looping modes.

The BIGEIGHT Source Code

BIGEIGHT.MAK

ALL : BIGEIGHT.EXE

BIGEIGHT.OBJ : BIGEIGHT.C
 cl -c -AS -DSTRICT -G2 -Zpel -W3 -WX -Od bigeight.c

BIGEIGHT.RES : BIGEIGHT.RC BIGEIGHT.H
 rc -r bigeight.rc

BIGEIGHT.EXE : BIGEIGHT.OBJ BIGEIGHT.RES BIGEIGHT.DEF
 link /nod /a:16 bigeight, bigeight.exe, nul, qtw libw slibcew, \
 bigeight.def
 rc bigeight.res

BIGEIGHT.DEF

NAME BIGEIGHT
DESCRIPTION 'Sample Application'
EXETYPE WINDOWS
STUB 'winstub.exe'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 16384

BIGEIGHT.H

#define IDM_CONTROLLER 1
#define IDM_GROW_BOX 2
#define IDM_KEYBOARD 3
#define IDM_LOOPING 4
#define IDM_PALINDROME 5
#define IDM_SOUND 6
#define IDM_SPEAKER_BUTTON 7
#define IDM_STEP_BUTTONS 8

QuickTime for Windows 2.0 Developer's Manual

 Page 78  1994 Apple Computer December 21, 1994

BIGEIGHT.RC

#include <windows.h>
#include "bigeight.h"

bigeight MENU
 {
 POPUP "&Attributes"
 {
 MENUITEM "&Hide Controller", IDM_CONTROLLER
 MENUITEM "&Hide Step Buttons", IDM_STEP_BUTTONS
 MENUITEM "&Hide Speaker Button", IDM_SPEAKER_BUTTON
 MENUITEM "&Hide Grow Box", IDM_GROW_BOX
 MENUITEM SEPARATOR
 MENUITEM "&Disable Keyboard Interface", IDM_KEYBOARD
 MENUITEM "&Disable Sound", IDM_SOUND
 MENUITEM "&Enable Looping", IDM_LOOPING
 MENUITEM "&Enable Palindrome Looping", IDM_PALINDROME
 }
 }

BIGEIGHT.C

#include <windows.h>
#include <qtw.h>
#include "bigeight.h"

long FAR PASCAL __export WndProc (HWND, UINT, WPARAM, LPARAM);

MovieController mcController;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {
 static char szAppName[] = "BigEight";
 HWND hWnd;
 MSG msg;
 WNDCLASS wndclass;
 Movie mMovie;
 RECT rcMovie, rcMovieBox;
 MovieFile mfMovie;

// Establish links to QuickTime for Windows

 if (QTInitialize (NULL))
 {
 MessageBox (NULL, "QTInitialize failure", szAppName, MB_OK);
 return 0;
 }

// Allocate memory required for playing movies

 if (EnterMovies ())
 {
 MessageBox (NULL, "EnterMovies failure", szAppName, MB_OK);
 return 0;

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 79

 }

// Register and create main window

 if (!hPrevInstance)
 {
 wndclass.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = LoadIcon (NULL,IDI_APPLICATION);
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
 wndclass.lpszMenuName = szAppName;
 wndclass.lpszClassName = szAppName;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, "RegisterClass failure", szAppName, MB_OK);
 return 0;
 }
 }

 hWnd = CreateWindow(szAppName, szAppName, WS_OVERLAPPEDWINDOW |
 WS_CLIPCHILDREN, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, NULL, hInstance, NULL);

 if (hWnd == NULL)
 {
 MessageBox (NULL, "CreateWindow failure", szAppName, MB_OK);
 return 0;
 }

// Instantiate the movie

 if (OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ) != noErr)
 {
 MessageBox (NULL, "OpenMovieFile failure", szAppName, MB_OK);
 return 0;
 }

 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
 CloseMovieFile (mfMovie);

// Instantiate the movie controller

 GetMovieBox (mMovie, &rcMovieBox);
 OffsetRect(&rcMovieBox, -rcMovieBox.left, -rcMovieBox.top);

 GetClientRect (hWnd, &rcMovie);
 rcMovie.top = (rcMovie.bottom / 2) - (rcMovieBox.bottom / 2);
 rcMovie.bottom = rcMovie.top + rcMovieBox.bottom;
 rcMovie.left = (rcMovie.right / 2) - (rcMovieBox.right / 2);
 rcMovie.right = rcMovie.left + rcMovieBox.right;

 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);

QuickTime for Windows 2.0 Developer's Manual

 Page 80  1994 Apple Computer December 21, 1994

// Make the movie paused initially

 MCDoAction (mcController, mcActionPlay, 0);

// Enable the keyboard interface

 MCDoAction (mcController, mcActionSetKeysEnabled, (LPVOID) TRUE);

// Make the movie active

 SetMovieActive (mMovie, TRUE);

// Make the main window visible

 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);

// Play the movie

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }

// Destroy the movie controller

 DisposeMovieController (mcController);

// Destroy the movie

 DisposeMovie (mMovie);

// Cut the connections to QuickTime for Windows

 ExitMovies ();
 QTTerminate ();

// Return to Windows

 return msg.wParam;
 }

long FAR PASCAL __export WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
 {
 PAINTSTRUCT ps;
 RECT rcGrowBox;

 static Boolean bControllerVisible = TRUE;
 static Boolean bGrowBoxVisible = TRUE;
 static Boolean bKeysEnabled = TRUE;
 static Boolean bLoopingEnabled = FALSE;
 static Boolean bPalindromeEnabled = FALSE;
 static Boolean bSoundEnabled = TRUE;
 static Boolean bSpeakerVisible = TRUE;
 static Boolean bSteppersVisible = TRUE;

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 81

// Drive the movie controller

 if (MCIsPlayerMessage (mcController, hWnd, message, wParam, lParam))
 return 0;

// Process the windows message

 switch (message)
 {
 case WM_COMMAND:
 {
 HANDLE hMenu;

 hMenu= GetMenu (hWnd);

 switch (wParam)
 {
 case IDM_CONTROLLER:
 {
 if (bControllerVisible == FALSE)
 {

 // Change the controller menu item

 ModifyMenu (hMenu, IDM_CONTROLLER, MF_BYCOMMAND |
 MF_STRING, IDM_CONTROLLER,
 (LPSTR) "Hide Controller");
 bControllerVisible = TRUE;

 // Show the controller

 MCSetVisible (mcController, TRUE);

 // Ungray the other menu itmes

 EnableMenuItem (hMenu, IDM_STEP_BUTTONS, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_SPEAKER_BUTTON,
 MF_ENABLED);
 EnableMenuItem (hMenu, IDM_GROW_BOX, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_KEYBOARD, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_SOUND, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_LOOPING, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_PALINDROME, MF_ENABLED);
 }

 else
 {

 // Change the controller menu item

 ModifyMenu (hMenu, IDM_CONTROLLER, MF_BYCOMMAND |
 MF_STRING, IDM_CONTROLLER,
 (LPSTR) "Show Controller");
 bControllerVisible = FALSE;

 // Hide the controller

QuickTime for Windows 2.0 Developer's Manual

 Page 82  1994 Apple Computer December 21, 1994

 MCSetVisible (mcController, FALSE);

 // Grey the rest of the menu items

 EnableMenuItem (hMenu, IDM_STEP_BUTTONS, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_SPEAKER_BUTTON, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_GROW_BOX, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_KEYBOARD, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_SOUND, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_LOOPING, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_PALINDROME, MF_GRAYED);
 }
 }
 break;

 case IDM_STEP_BUTTONS:
 {
 LONG lFlags;

 if (bSteppersVisible == FALSE)
 {

 // Change the step button menu item

 ModifyMenu (hMenu, IDM_STEP_BUTTONS, MF_BYCOMMAND |
 MF_STRING, IDM_STEP_BUTTONS,
 (LPSTR) "Hide Step Buttons");
 bSteppersVisible = TRUE;

 // Restore the step buttons

 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags &= ~mcFlagSuppressStepButtons;
 MCDoAction (mcController, mcActionSetFlags,
 (LPVOID) lFlags);
 }

 else
 {

 // Change the step button menu item

 ModifyMenu (hMenu, IDM_STEP_BUTTONS, MF_BYCOMMAND |
 MF_STRING, IDM_STEP_BUTTONS,
 (LPSTR) "Show Step Buttons");
 bSteppersVisible = FALSE;

 // Hide the step buttons

 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags |= mcFlagSuppressStepButtons;
 MCDoAction (mcController, mcActionSetFlags,
 (LPVOID) lFlags);
 }
 }
 break;

 case IDM_SPEAKER_BUTTON:

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 83

 {
 LONG lFlags;

 if (bSpeakerVisible == FALSE)
 {

 // Change the speaker button menu item

 ModifyMenu (hMenu, IDM_SPEAKER_BUTTON, MF_BYCOMMAND |
 MF_STRING, IDM_SPEAKER_BUTTON,
 (LPSTR) "Hide Speaker Button");
 bSpeakerVisible = TRUE;

 // Restore the speaker button

 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags &= ~mcFlagSuppressSpeakerButton;
 MCDoAction (mcController, mcActionSetFlags,
 (LPVOID) lFlags);
 }

 else
 {

 // Change the speaker button menu item

 ModifyMenu (hMenu, IDM_SPEAKER_BUTTON, MF_BYCOMMAND |
 MF_STRING, IDM_SPEAKER_BUTTON,
 (LPSTR) "Show Speaker Button");
 bSpeakerVisible = FALSE;

 // Hide the speaker button

 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags |= mcFlagSuppressSpeakerButton;
 MCDoAction (mcController, mcActionSetFlags,
 (LPVOID) lFlags);
 }
 }
 break;

 case IDM_GROW_BOX:
 {
 if (bGrowBoxVisible == FALSE)
 {

 // Change the grow box menu item

 ModifyMenu (hMenu, IDM_GROW_BOX, MF_BYCOMMAND |
 MF_STRING, IDM_GROW_BOX, (LPSTR) "Hide Grow Box");
 bGrowBoxVisible = TRUE;

 // Set the grow box bounds to make it visible

 GetClientRect (hWnd, &rcGrowBox);
 MCDoAction (mcController, mcActionSetGrowBoxBounds,
 &rcGrowBox);
 }

QuickTime for Windows 2.0 Developer's Manual

 Page 84  1994 Apple Computer December 21, 1994

 else
 {

 // Change the grow box menu item

 ModifyMenu (hMenu, IDM_GROW_BOX, MF_BYCOMMAND |
 MF_STRING, IDM_GROW_BOX,(LPSTR) "Show Grow Box");
 bGrowBoxVisible = FALSE;

 // Set the grow box bounds to all zeros to hide it

 SetRectEmpty (&rcGrowBox);
 MCDoAction (mcController, mcActionSetGrowBoxBounds,
 &rcGrowBox);
 }
 }
 break;

 case IDM_KEYBOARD:
 {
 if (bKeysEnabled == FALSE)
 {

 // Change the keyboard interface menu item

 ModifyMenu (hMenu, IDM_KEYBOARD, MF_BYCOMMAND |
 MF_STRING, IDM_KEYBOARD,
 (LPSTR) "Disable Keyboard Interface");
 bKeysEnabled = TRUE;

 // Enable the keyboard interface

 MCDoAction (mcController, mcActionSetKeysEnabled,
 (LPVOID) TRUE);
 }

 else
 {

 // Change the keyboard interface menu item

 ModifyMenu (hMenu, IDM_KEYBOARD, MF_BYCOMMAND |
 MF_STRING, IDM_KEYBOARD,
 (LPSTR) "Enable Keyboard Interface");
 bKeysEnabled = FALSE;

 // Disable the keyboard interface

 MCDoAction (mcController, mcActionSetKeysEnabled,
 (LPVOID) FALSE);
 }
 }
 break;

 case IDM_SOUND:
 {
 SFIXED sfxVolume;

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 85

 if (bSoundEnabled == FALSE)
 {

 // Change the sound menu item

 ModifyMenu (hMenu, IDM_SOUND, MF_BYCOMMAND |
 MF_STRING, IDM_SOUND, (LPSTR) "Disable Sound");

 // Restore the sound

 MCDoAction (mcController, mcActionGetVolume,
 (LPVOID) &sfxVolume);
 sfxVolume = abs (sfxVolume);
 MCDoAction (mcController, mcActionSetVolume,
 (LPVOID) sfxVolume);

 bSoundEnabled = TRUE;
 }

 else
 {

 // Mute the sound

 MCDoAction (mcController, mcActionGetVolume,
 (LPVOID) &sfxVolume);
 sfxVolume = -(abs (sfxVolume));
 MCDoAction (mcController, mcActionSetVolume,
 (LPVOID) sfxVolume);

 bSoundEnabled = FALSE;
 }
 }
 break;

 case IDM_LOOPING:
 {
 if (bLoopingEnabled == FALSE)
 {

 // Change the looping menu item

 ModifyMenu (hMenu, IDM_LOOPING, MF_BYCOMMAND |
 MF_STRING, IDM_LOOPING, (LPSTR) "Disable Looping");
 bLoopingEnabled = TRUE;

 // Enable looping

 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);
 }

 else
 {

 // Change the looping menu item

QuickTime for Windows 2.0 Developer's Manual

 Page 86  1994 Apple Computer December 21, 1994

 ModifyMenu (hMenu, IDM_LOOPING, MF_BYCOMMAND |
 MF_STRING, IDM_LOOPING, (LPSTR) "Enable Looping");
 bLoopingEnabled = FALSE;

 // Disable looping

 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) FALSE);
 }
 }
 break;

 case IDM_PALINDROME:
 {
 if (bPalindromeEnabled == FALSE)
 {

 // Change the palindrome menu item

 ModifyMenu (hMenu, IDM_PALINDROME, MF_BYCOMMAND |
 MF_STRING, IDM_PALINDROME,
 (LPSTR) "Disable Palindrome Looping");
 bPalindromeEnabled = TRUE;

 // Enable palindrome looping

 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) TRUE);
 }

 else
 {

 // Change the palindrome menu item

 ModifyMenu (hMenu, IDM_PALINDROME, MF_BYCOMMAND |
 MF_STRING, IDM_PALINDROME,
 (LPSTR) "Enable Palindrome Looping");
 bPalindromeEnabled = FALSE;

 // Disable palindrome looping

 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) FALSE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) FALSE);
 }
 }
 break;
 }
 }
 return 0;

 case WM_PAINT:

 if (!BeginPaint (hWnd, &ps))

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 87

 return 0;
 EndPaint (hWnd, &ps);
 return 0;

 case WM_DESTROY:

 PostQuitMessage (0);
 return 0;
 }

// Return to Windows

 return DefWindowProc (hWnd, message, wParam, lParam);
 }

The Power of MCDoAction

One of the most powerful routines in the QuickTime for Windows API is MCDoAction.
As you can see in the BIGEIGHT.C listing, this function is used to change and query
Movie Controller attributes. In QuickTime for Windows’, MCDoAction is a key routine
which can be used to dictate most of the Movie Controller’s behavior. It is so versatile, in
fact, that several other QuickTime for Windows routines use it internally to accomplish
their particular tasks.

MCDoAction works by taking as its second parameter a particular defined action. There
are over thirty-five such mcActions in the QuickTime for Windows API, ranging from
starting the movie to toggling low-level attributes. In most cases, a third parameter is
required to modify the task of the mcAction parameter. Often this is a Boolean value
which turns a certain attribute on or off, or a pointer to a value holding state information:

MovieController mcController;
•
•
MCDoAction (mcController, mcActionSetKeysEnabled, (LPVOID) FALSE);

Actions and Flags

There are four components to the methods you use to determine attributes for a movie
controller. The first is the collection of mcActions used by MCDoAction. A full listing
of these actions is provided in Section III, Programmer's Reference.

Second is a group of flags used specifically by MCDoAction when it specifies the
mcActions mcActionSetFlags or mcActionGetFlags:

Flag Function
mcFlagSuppressStepButtons Inhibit display of step buttons
mcFlagSuppressSpeakerButton Inhibit display of speaker button
mcFlagsUseWindowPalette Use a Windows palette to display
movies

QuickTime for Windows 2.0 Developer's Manual

 Page 88  1994 Apple Computer December 21, 1994

BIGEIGHT uses the first and second flags in the above list when it hides its movie
controller's step and speaker buttons:

case IDM_SPEAKER_BUTTON:
 •
 •
 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags |= mcFlagSuppressSpeakerButton;
 MCDoAction (mcController, mcActionSetFlags, (LPVOID) lFlags);

Use of the flag mcFlagsUseWindowPalette is slightly more complex, as it involves
the Windows palette manager. Telling a movie controller to use this flag instructs it to
construct a color palette based on the color table information found in the movie.

For instance, a particular movie might be of a sunset with fifty shades of orange. If the
normal palette is used, these would all be mapped to a much smaller number of orange-
ish hues. If a custom palette is used, additional shades of orange will be available for a
much more faithful display. You should note that using
mcFlagsUseWindowPalette only works with display drivers that support palettes--
typically drivers that handle colors at pixel depth eight. Further information on this flag
may be found in Section III, Programmer's Reference.

Also be aware that any program you are running that calls RealizePalette will
distort other visible movies or pictures. This is because the palette on which the other
images were based has changed. To restore them as well as possible, it is recommended
that each of your QuickTime for Windows applications trap the WM_PALETTECHANGED
message in its main window procedure. When this message is received, they should
repaint their main windows and all child windows (using InvalidateRect is
recommended) to remap their colors as closely as possible to the newly realized system
palette.

The third set of flags constitutes a long integer and can be referred to as the mcInfoFlags.
These flags hold state information set by MCDoAction with one of its mcActions, and
can be retrieved by the function MCGetControllerInfo, as we saw in the overview.
A table with these flags is presented in part 11, subsection A, of the overview.

The last group of flags are used to set movie controller attributes at creation time, not in
conjunction with a MCDoAction call:

Flag Function
mcTopLeftMovie positions movie in top left corner of Movie rectangle
mcScaleMovieToFit makes movie fit exactly into movie rectangle
mcWithBadge makes movie controller capable of badge display
mcNotVisible makes movie controller invisible when created

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 89

These flags are used by the routine NewMovieController when a movie controller is
created. The first two are used by MCPositionController when a controller is
repositioned. BIGEIGHT uses two of them to instantiate its controller:

MovieController mcController;
Movie mMovie;
RECT rcMovie;
•
•
mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit + mcWithBadge, hWnd);

As the states of these flags are not maintained by a movie controller, the QuickTime for
Windows API does not provide a way to query them.

Regulating Movie Controller Attributes with MCDoAction

One of the first uses BIGEIGHT makes of MCDoAction is to enable the movie
controller's keyboard interface:

MovieController mc;
•
•
MCDoAction (mcController, mcActionSetKeysEnabled, (LPVOID) TRUE);

An inactive keyboard interface is the default attribute for a new movie controller, but you
can enable it at any time by calling MCDoAction as above with the last parameter set to
TRUE. A list of the keyboard actions supported by the interface appears in part 4 of the
overview. BIGEIGHT lets you toggle this attribute on and off using its attributes menu.

The default visible attributes of a movie controller are the speaker button, the start/pause
button, the slider, the step buttons and the grow box (for attached controllers only). Of
these, the speaker, the steppers and the grow box can be made invisible, though not all in
the same way.

A controller's speaker and step buttons may be hidden or restored using MCDoAction
with mcActionSetFlags and either mcFlagSuppressSpeakerButton or
mcFlagSuppressStepButton, respectively:

case IDM_STEP_BUTTONS:
 •
 •
 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags |= mcFlagSuppressStepButtons;
 MCDoAction (mcController, mcActionSetFlags, (LPVOID) lFlags);

QuickTime for Windows 2.0 Developer's Manual

 Page 90  1994 Apple Computer December 21, 1994

In BIGEIGHT, the current flags are retrieved, modified and reset in as short a time as
possible. This is good QuickTime for Windows programming style for a couple of
reasons. First, you should not attempt to maintain a set of these flags yourself. The are
managed by QuickTime for Windows and subject to its own internal functionality. Also,
like Windows itself, QuickTime for Windows is a complex message-based entity that
expects you to deal efficiently with any state information it makes available to you.

Hiding the grow box also uses MCDoAction, but with a different action parameter,
namely mcActionSetGrowBoxBounds:

case IDM_GROW_BOX:
 •
 •
 SetRectEmpty (&rcGrowBox);
 MCDoAction (mcController, mcActionSetGrowBoxBounds, &rcGrowBox);

What actually hides the grow box are the dimensions of the third parameter, rcMovie,
which have all been set to 0 by the Windows function SetRectEmpty. This is the only
way to hide a movie controller's grow box.

BIGEIGHT calls MCDoAction the same way to restore the grow box, but with a non-
zeroed rectangle. In this case, the client area of the parent window is used nominally.

The looping and looping palindrome attributes affect how a movie plays once it has been
started by its controller. Simple looping specifies that the movie play continuously from
start to finish until it is stopped by the user. Palindrome looping causes it to play
continuously back and forth. MCDoAction has defined actions for both the looping and
palindrome attributes. The third parameter in either case is a Boolean, which is used to
toggle the attributes on or off. For palindrome looping to work, both normal looping and
palindrome looping have to be enabled.

case IDM_PALINDROME:

 MCDoAction (mcController, mcActionSetLooping, (LPVOID) TRUE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) TRUE);

To query the state of the looping attributes, you can call MCGetControllerInfo and
then examine the variable it fills with the attribute flags discussed above.

Turning the sound off involves using MCDoAction to retrieve the volume value,
negating it, then using MCDoAction again reset it to the negative value. To turn it back
on, we retrieve the value and reset the absolute value of it.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 91

case IDM_SOUND:
 {
 SFIXED sfxVolume;

 if (bSoundEnabled == FALSE)
 {
 // Restore the sound

 MCDoAction (mcController, mcActionGetVolume, (LPVOID) &sfxVolume);
 sfxVolume = abs (sfxVolume);
 MCDoAction (mcController, mcActionSetVolume, (LPVOID) sfxVolume);
 bSoundEnabled = TRUE;
 }
 else
 {
 // Mute the sound

 MCDoAction (mcController, mcActionGetVolume, (LPVOID) &sfxVolume);
 sfxVolume = -(abs (sfxVolume));
 MCDoAction (mcController, mcActionSetVolume, (LPVOID) sfxVolume);
 bSoundEnabled = FALSE;
 }
 }
 break;

Using MCSetVisible

Setting the visibility attribute of a movie controller does not require MCDoAction.
Rather it uses the function MCSetVisible, which takes the controller object and a
TRUE or FALSE second parameter to either show or hide it:

MovieController mcController;
Boolean bState;
•
•
MCSetVisible (mcController, bState);

As noted in the overview, you can hide or restore an existing movie controller to view at
any time. You can also specify that it be hidden when created (using the controller
creation flags discussed earlier), and then later change its visibility attribute by calling
MCSetVisible with a value of TRUE.

Badges

When a movie controller is made invisible, a badge can appear on the face of its
associated movie to distinguish it from other types of graphic objects. The ability to
display a badge is an attribute set at creation time with the controller creation flag
mcWithBadge or later with MCDoAction. If this attribute is not set, no badge will
appear.

BIGEIGHT sets the badge attribute when it creates its controller:

QuickTime for Windows 2.0 Developer's Manual

 Page 92  1994 Apple Computer December 21, 1994

Movie mMovie;
MovieController mcController;
RECT rcMovie;
•
•
mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit + mcWithBadge, hWnd);

Clicking on a badge will hide it and display the movie controller, providing that the
mcWithBadge flag is set.

If you want to manipulate a badge manually, MCDrawBadge is available. Assuming you
do not set the mcWithBadge flag, you must be prepared to call this function whenever
you want the badge to appear. Since playing the movie will automatically write over an
existing badge, there is no specific QuickTime for Windows routine to hide a badge.
MCDrawBadge does not set the mcWithBadge flag.

The second parameter of MCDrawBadge should always be NULL in this version of
QuickTime for Windows. The third is the address of a handle to the badge region
(a standard Windows HRGN) subsequently available to your program. QuickTime for
Windows creates a region describing the area in which it drew the badge, and returns
that region to you. It is your responsibility to later delete this region.

MovieController mcController;
HRGN hrgnBadge;
•
•
MCDrawBadge (mcController, NULL, &hrgnBadge);

A badge is a movie controller attribute even though it is a separate visual object. This
assertion is supported by the fact that its availability can be set and queried with
MCDoAction, and also at controller creation time along with other attributes.

Running BIGEIGHT.EXE

The first thing you see when you run BIGEIGHT is a movie positioned near the center of
its client area. The program's single menu item allows access to options which toggle
various attributes of the movie controller. For example, selecting Hide Controller makes
the entire movie controller invisible. Clicking Hide Step Buttons, Hide Speaker Button or
Hide Grow Box removes these elements from the controller. The other options are equally
self-explanatory, and it is a good idea to play around with them to see how they work.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 93

Figure 23. Running BIGEIGHT.EXE (with Attributes menu dropped).

QuickTime for Windows 2.0 Developer's Manual

 Page 94  1994 Apple Computer December 21, 1994

FILTERS - Using Action Filters

Introduction

Action filters are the means by which you can customize movie controller behavior.
When you set a filter, all subsequent MCDoAction calls will immediately call your
filter function, giving you first crack at handling the action specified by MCDoAction.
In Windows terms, you are essentially subclassing a movie controller. Additionally,
your filter can tell MCDoAction to return immediately or pass the action through to the
controller for normal processing.

FILTERS.EXE intercepts incoming movie controller bounds rectangle change messages
(resulting, for example, from dragging the grow box) and then resizes the movie rectangle
proportionately, i.e. preserving the original aspect ratio. The resulting bounds rectangle is
scaled proportionately, adjusting the height to match the width to which it has been
dragged.

The FILTERS Source Code

FILTERS.MAK

ALL : FILTERS.EXE

FILTERS.OBJ : FILTERS.C
 cl -c -AS -DSTRICT -G2 -GA -GEs -Zpel -W3 -WX -Od filters.c

FILTERS.EXE : FILTERS.OBJ FILTERS.DEF
 link /nod /a:16 filters, filters.exe, nul, qtw libw slibcew, \
 filters.def;
 rc filters.exe

FILTERS.DEF

NAME FILTERS
DESCRIPTION 'Sample Application'
EXETYPE WINDOWS
STUB 'winstub.exe'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 16384

FILTERS.C

#include <windows.h>
#include <qtw.h>

long FAR PASCAL __export WndProc (HWND, UINT, WPARAM, LPARAM);
Boolean CALLBACK __export TestFilter (MovieController, UINT,
 LPVOID, LONG);

MovieController mcController;

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 95

RECT rcNorm;
SHORT sMCHeight;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {
 static char szAppName[] = "Filters";
 HWND hWnd;
 MSG msg;
 WNDCLASS wndclass;
 MovieFile mfMovie;
 RECT rcMovie;
 Movie mMovie;

// Establish links to QuickTime for Windows

 if (QTInitialize (NULL))
 {
 MessageBox (NULL, "QTInitialize failure", szAppName, MB_OK);
 return 0;
 }

// Allocate memory required for playing movies

 if (EnterMovies ())
 {
 MessageBox (NULL, "EnterMovies failure", szAppName, MB_OK);
 return 0;
 }

// Register and create main window

 if (!hPrevInstance)
 {
 wndclass.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = LoadIcon (NULL,IDI_APPLICATION);
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
 wndclass.lpszMenuName = NULL;
 wndclass.lpszClassName = szAppName;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, "RegisterClass failure", szAppName, MB_OK);
 return 0;
 }
 }

 hWnd = CreateWindow(szAppName, szAppName, WS_OVERLAPPEDWINDOW |
 WS_CLIPCHILDREN, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, NULL, hInstance, NULL);

 if (hWnd == NULL)
 {

QuickTime for Windows 2.0 Developer's Manual

 Page 96  1994 Apple Computer December 21, 1994

 MessageBox (NULL, "CreateWindow failure", szAppName, MB_OK);
 return 0;
 }

// Instantiate the movie

 if (OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ) != noErr)
 {
 MessageBox (NULL, "OpenMovieFile failure", szAppName, MB_OK);
 return 0;
 }

 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
 CloseMovieFile (mfMovie);

// Get the normal movie dimensions. We'll use these as the
// movie aspect ratio in the filter

 GetMovieBox (mMovie, &rcNorm);
 OffsetRect (&rcNorm, -rcNorm.left, -rcNorm.top);

// Build the movie rectangle

 GetClientRect (hWnd, &rcMovie);
 rcMovie.top = (rcMovie.bottom / 3) - (rcNorm.bottom / 2);
 rcMovie.bottom = rcMovie.top + rcNorm.bottom;
 rcMovie.left = (rcMovie.right / 3) - (rcNorm.right / 2);
 rcMovie.right = rcMovie.left + rcNorm.right;

// Instantiate the movie controller

 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit + mcWithBadge, hWnd);

// Make the movie paused initially

 MCDoAction (mcController, mcActionPlay, 0);

// Calculate the controller height for use in filter

 MCGetControllerBoundsRect (mcController, &rcMovie);
 OffsetRect (&rcMovie, -rcMovie.left, -rcMovie.top);
 sMCHeight = rcMovie.bottom - rcNorm.bottom;

// Set an action filter, passing in the parent window handle

 MCSetActionFilter (mcController, TestFilter, (LONG) ((LPVOID) hWnd));

// Enable the keyboard interface

 MCDoAction (mcController, mcActionSetKeysEnabled, (LPVOID) TRUE);

// Make the movie active

 SetMovieActive (mMovie, TRUE);

// Make the main window visible

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 97

 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);

// Play the movie

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }

// Destroy the movie controller

 DisposeMovieController (mcController);

// Destroy the movie

 DisposeMovie (mMovie);

// Cut the connections to QuickTime for Windows

 ExitMovies ();
 QTTerminate ();

// Return to Windows

 return msg.wParam;
 }

long FAR PASCAL WndProc (HWND hWnd, UINT message, WPARAM wParam,
 LPARAM lParam)
 {
 PAINTSTRUCT ps;

// Drive the movie controller

 if (MCIsPlayerMessage (mcController, hWnd, message, wParam, lParam))
 return 0;

// Process the windows message

 switch (message)
 {
 case WM_PAINT:

 if (!BeginPaint (hWnd, &ps))
 return 0;
 EndPaint (hWnd, &ps);
 return 0;

 case WM_DESTROY:

 PostQuitMessage (0);
 return 0;
 }

// Return to Windows

QuickTime for Windows 2.0 Developer's Manual

 Page 98  1994 Apple Computer December 21, 1994

 return DefWindowProc (hWnd, message, wParam, lParam);
 }

Boolean CALLBACK __export TestFilter (MovieController mcCaller,
 UINT uAction, LPVOID lpParam, LONG refcon)
 {
 RECT rcBounds;
 static Boolean bBlock;

// Don't want to recursively call ourselves

 if (bBlock)
 return FALSE;

// Respond to mcAction

 switch (uAction)
 {
 case mcActionControllerSizeChanged:

 // Force a paint of the old client rectangle

 InvalidateRect ((HWND) refcon, NULL, TRUE);

 MCGetControllerBoundsRect (mcCaller, &rcBounds);

 // Calculate new bounds rect bottom

 rcBounds.bottom =
 rcBounds.top + MulDiv (rcBounds.right - rcBounds.left,
 rcNorm.bottom, rcNorm.right);

 // Add the controller height back in

 rcBounds.bottom += sMCHeight;

 bBlock = TRUE;
 MCSetControllerBoundsRect (mcCaller, &rcBounds);
 bBlock = FALSE;

 return TRUE;

 default:

 return FALSE;
 }
 }

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 99

Declaring an Action Filter

Each movie controller in your program can have a unique action filter, but only one at a
time. To be used successfully, an action filter must meet certain criteria:

• It must be a callback function

• It must be explicitly exported

• It must use a defined parameter list.

FILTERS uses an action filter named TestFilter:

Boolean CALLBACK __export TestFilter (MovieController, UINT FAR *,
 LPVOID, LONG);

Like normal window or dialog procedures, it is declared as CALLBACK. It returns a
Boolean value denoting whether the action passed to it by MCDoAction should be
processed normally when the filter returns (FALSE), or if MCDoAction should itself
return at that point (TRUE).

The filter's first argument is the related movie controller object. Its second is the address
of the mcAction item currently being handled by MCDoAction. The third is an
additional value dependent on the second. Fourth is a variable for passing additional data
to the filter. The first three arguments are essentially a pass-through of the parameters
passed to MCDoAction when it was called.

Setting an Action Filter

The routine used to set an action filter is MCSetActionFilter:

HANDLE hInst;
MovieController mcController;
•
•
MCSetActionFilter (mcController, TestFilter, 0L);

You can set a new action filter at any time in your program. If you want to remove a
filter, you must call MCSetActionFilter with a NULL filter parameter:

HANDLE hInst;
MovieController mcController;
•
•
MCSetActionFilter (mcController, (MCActionFilter) NULL, 0L);

QuickTime for Windows 2.0 Developer's Manual

 Page 100  1994 Apple Computer December 21, 1994

Although not demonstrated above, the last parameter can be used to pass data such as a
window handle or the address of a structure with useful information for the action filter.
Filter functions may be defined in any of your application's modules, either the
executable itself or a library.

Defining an Action Filter

The action filter used by FILTERS traps dragging the grow box. If you wished, you could
code cases for all of the possible mcActions and create unusual behavior for each. The
filter would still function normally, although your movie might not perform as well as
expected. In other words, if your program needs a filter, be sure to plan carefully for all
of the extra processing that will be involved.

The basic layout of a filter is similar to a window procedure.

Boolean CALLBACK __export TestFilter (MovieController mcCaller,
 UINT uAction, LPVOID lpParam, LONG lRefCon)
 {
 switch (uAction)
 {
 /* cases */
 }

 return FALSE;
 }

Each of your cases should return TRUE or FALSE when its processing is finished.
Good QuickTime for Windows style specifies that the default return value be FALSE,
causing the action to be handled normally by the movie controller if the filter didn't
process anything.

The case TestFilter deals with is resizing the bounds rectangle if the grow box is
dragged. This causes QuickTime for Windows to generate a MCDoAction call with an
mcAction of mcActionControllerSizeChanged. The third parameter, lParam,
has no bearing on this particular action and is not used. TestFilter's last argument,
lRefCon, receives the application's parent window handle so the filter can call
InvalidateRect.

case mcActionControllerSizeChanged:

// Force a paint of the old client rectangle

 InvalidateRect ((HWND) refcon, NULL, TRUE);

 MCGetControllerBoundsRect (mcCaller, &rcBounds);

// Calculate new bounds rect bottom

 rcBounds.bottom =
 rcBounds.top + MulDiv (rcBounds.right - rcBounds.left,
 rcNorm.bottom, rcNorm.right);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 101

// Add the controller height back in

 rcBounds.bottom += sMCHeight;

 bBlock = TRUE;
 MCSetControllerBoundsRect (mcCaller, &rcBounds);
 bBlock = FALSE;

 return TRUE;

When our grow box is dragged and released, QuickTime for Windows recalculates the
controller's bounds rectangle. In this simplified example, we first ensure that no garbage
is left on the screen by calling InvalidateRect. We then retrieve the new rectangle
with MCGetControllerBoundsRect. After subtracting the height of the movie
controller derived in WinMain, we calculate a new height for our movie based on its
new width.
The effect is to vary the height to preserve the original aspect ratio of the movie. Calling
MCSetControllerBoundsRect displays the adjusted rectangle.

In general, if your application contains a movie controller with a grow box, you should
use a filter to let the program know when the controller's size or position changes, since
the program has no other way of knowing when this happens (you may have observed the
consequences in BIGEIGHT). By providing such a filter, you can allow, say, a word
processor to flow its text around a redimensioned movie, or simply let a program such as
FILTERS clean up after itself.

Figure 24. Running Filters (with grow rectangle showing).

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 103

Section III. Programmer's Reference

QuickTime for Windows API - Functions

AddTime

Syntax VOID AddTime (TimeRecord FAR *lptrDst,
 const TimeRecord FAR *lptrSrc)

AddTime adds two time records together, replacing the first with the result.
A time record is a structure that references a particular point in a movie, or a
duration within a movie.

Parameters TimeRecord FAR *lptrDst
The address of a time record containing the first operand for the
addition. The time record referenced is overwritten by the result
of the addition.

const TimeRecord FAR *lptrSrc
The address of a time record containing the second operand for
the addition. The time record referenced remains unmodified by
the operation.

Return None. The result is placed in the time record referenced by the first parameter.
Use GetMoviesError and GetMoviesStickyError to test for failure
of this call.

Comments If the time records contain different time scales, AddTime converts them as
appropriate.

Example MovieController mcController;
TimeRecord trOne, trTwo;
•
•
AddTime (&trOne, &trTwo);
MCDoAction (mcController, mcActionGoToTime, (LPVOID) &trOne);

See Also

Functions ConvertTimeScale, GetMovieTimeScale, SubtractTime,
GetMoviesError, GetMoviesStickyError

MCDoAction mcActionGoToTime

QuickTime for Windows 2.0 Developer's Manual

 Page 104  1994 Apple Computer December 21, 1994

Data Types TimeRecord, TimeValue

ClearMoviesStickyError

Syntax VOID ClearMoviesStickyError (VOID)

ClearMoviesStickyError clears the sticky error value. The sticky error
value is the first non-zero error code returned by an eligible QuickTime for
Windows routine since ClearMoviesStickyError was last called.
Eligible QuickTime for Windows routines operate on movies (as opposed to
movie controllers) and require a movie object.

Parameters This routine takes no parameters.

Return None.

Comments A result code is not placed into the sticky error value until the field has been
cleared. Your application should clear the sticky error value when necessary to
ensure that it does not contain a stale result code.

Example Movie mMovie;
LFIXED lfxRate;
 •
 •
 ClearMoviesStickyError ();

// Assume call produces an error code

 lfxRate = GetMoviePreferredRate (mMovie);

// Assume other calls follow with no errors
 •
 •
 if (GetMoviesStickyError())
 {
 MessageBox (NULL, "GetMoviePreferredRate Failure",
 "Program", MB_OK);
 }

See Also

Functions GetMoviesError, GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 105

CloseMovieFile

Syntax OSErr CloseMovieFile (MovieFile mfMovie)

CloseMovieFile closes an open movie file.

Parameters MovieFile mfMovie
The reference value assigned by OpenMovieFile.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can also use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments It is good QuickTime for Windows programming style to close an opened
movie file at the first opportunity, e.g. once the movie object has been
extracted.

Example MovieFile mfMovie;
Movie mMovie;
•
•
OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ);
NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
CloseMovieFile (mfMovie);

See Also

Functions OpenMovieFile, GetMoviesError, GetMoviesStickyError

ClosePictureFile

Syntax OSErr ClosePictureFile (PicFile pfPicture)

ClosePictureFile closes an open picture file.

Parameters PicFile pfPicture
The reference value assigned by OpenPictureFile.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can also use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

QuickTime for Windows 2.0 Developer's Manual

 Page 106  1994 Apple Computer December 21, 1994

Comments It is good QuickTime for Windows programming style to close an opened
picture file at the first opportunity, e.g. once the necessary data has been
extracted.

Example PicFile pfPicture;
•
•
if (OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 /* Inform user of failure. */
 }
•
•
ClosePictureFile (pfPicture);

See Also

Functions OpenPictureFile, GetMoviesError, GetMoviesStickyError

ConcatMatrix

Syntax void ConcatMatrix(const MatrixRecord FAR *mtrxSrc,
MatrixRecord FAR *mtrxDest)

Parameters MatrixRecord *mtrxSrc
Pointer to the source matrix

MatrixRecord *mtrxDest
Pointer to the destination matrix. The ConcatMatrix
function performs a matrix multiplcation operation, combining
the two matrices, and leaves the result in the matrix specified by
this parameter.

Return none

Comments The form of the operation that the ConcatMatrix function performs is
shown by the following formula:

[dest] = [dest] x [src]

This is a matrix multiplication operation. Note that matrix multiplication is not
commutative.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 107

Example MatrixRecord mtrxMovie, mtrxTrack;

GetMovieMatrix(GetTrackMovie(trkTrack), & mtrxMovie);
GetTrackMatrix(trkTrack, &mtrxTrack);
ConcatMatrix(&mtrxTrack, &mtrxMovie);
// movie matrix now contains the tracks full display matrix

See Also

Functions GetMovieMatrix, GetTrackMatrix, GetTrackDimensions

Data Types MatrixRecord

ConvertTimeScale

Syntax VOID ConvertTimeScale (TimeRecord FAR *lptrInout,
 TimeScale tsNewScale)

ConvertTimeScale converts a time from one time scale into a time
relative to another time scale.

Parameters TimeRecord FAR *lptrInout
A pointer to a TimeRecord which you must populate with the
TimeValue and the TimeScale you wish to convert.

TimeScale tsNewScale
The TimeScale to which you wish to convert.

Return None. The TimeRecord referenced by the first parameter is overwritten
with the converted TimeValue and TimeScale values that were the basis
of the conversion. Use GetMoviesError and GetMoviesStickyError
to test for failure of this call.

Comments The time coordinate system contains a time scale scored in time units. The
number of units that pass per second quantifies the scale: a time scale of 26
means that 26 units pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as a
number of time units. Particular points in a movie can be identified by a time
value, which is the number of time units to that point from the beginning of the
movie.

Different movies may have different time scales. Use ConvertTimeScale
to compare TimeValues between different movies.

QuickTime for Windows 2.0 Developer's Manual

 Page 108  1994 Apple Computer December 21, 1994

Example Movie mMovieA, MovieB;
TimeRecord trRecord;
•
•
// Convert a TimeValue in Movie A to its TimeValue in Movie B

 trRecord.value.dwLo = GetMoviePosterTime (mMovieA);
 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovieA);
 ConvertTimeScale (&trRecord, GetMovieTimeScale (mMovieB));

See Also

Functions GetMovieDuration, GetMovieTimeScale,
MCGetCurrentTime, GetMoviesError,
GetMoviesStickyError

Data Types TimeRecord, TimeValue

CountUserDataType

Syntax LONG CountUserDataType (UserData udData,
 OSType ostType)

CountUserDataType determines the number of items of a given type in a
user data list.

Parameters UserData udData
The handle to the user data list.

OSType ostType
The user data type.

Return The number of items of the specified type in the user data list. You can use
GetMoviesError and GetMoviesStickyError to test for failure of
this call.

Comments A movie's user data list is placed in a movie by its creator and may contain
items of various types. A common type is text containing copyright data,
names of people involved in the movie's production, special hardware and
software requirements, and other types of information about the movie. By
convention, text user data types start with a "" symbol. A list of commonly
used text user data types may be found in Part 15 of QuickTime for Windows
Concepts in the overview.

Example See the example in the description of GetUserDataText.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 109

See Also

Functions GetMovieUserData, GetNextUserDataType,
GetUserData, GetUserDataText, GetMoviesError,
GetMoviesStickyError

Data Types UserData, OSType

CoverProc

Syntax OSErr CALLBACK CoverProc (Movie mMovie, HDC hdc,
 LONG lID)

CoverProc is the prototype for the cover (or uncover) procedure set by the
routine SetMovieCoverProcs. It shows the parameters you must pass to
your cover procedure, and the value the procedure must return.

Parameters Movie mMovie
The movie object.

HDC hdc
The handle to a device context, whose clipping region is preset to
the area being covered or uncovered.

LONG lID
The reference constant supplied in the SetMovieCoverProcs
call. You can use this value to allow a single cover procedure to
handle multiple cases.

Return Your cover procedure should return noErr if it does not detect an error.
Otherwise, return one of the values defined in Appendix A.

Comments CoverProc is not a defined QuickTime for Windows function. It is a
prototype only, used as a template for your cover procedures.

QuickTime for Windows 2.0 Developer's Manual

 Page 110  1994 Apple Computer December 21, 1994

Example OSErr CALLBACK __export MyCoverProc (Movie, HDC, LONG);
•
•
HWND hWnd;
Movie mMovie;
•
•
SetMovieCoverProcs (mMovie, MyCoverProc, NULL, 5879);
•
•
OSErr CALLBACK __export MyCoverProc (Movie m, HDC hdc, lID)
 {
 RECT rcClip;
 GetClipBox (hdc, &rcClip);
 FillRect (hdc, &rcClip, GetStockObject (WHITE_BRUSH));
 return 0;
 }

See Also

Functions SetMovieCoverProcs

DeleteMovieFile

Syntax OSErr DeleteMovieFile (LPCSTR lpstrFileSpec)

DeleteMovieFile deletes a movie file.

Parameters LPCSTR lpstrFileSpec
The name of the movie file, including the extension (.MOV).

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can also use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments Physically deletes a movie file from the disk media.

Example DeleteMovieFile ("NEWSREEL.MOV");

See Also

Functions OpenMovieFile, CloseMovieFile, GetMoviesError,
GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 111

DereferenceHandle
Syntax LPVOID DereferenceHandle(Handle theHandle)

Parameters Handle theHandle
The handle to be dereferenced.

Return A pointer to the first byte of the memory block referenced by theHandle.
This pointer remains vaild until the handle is either unlocked or disposed.

Comments This is the only memory related function not taken directly from the Macintosh
Memory Manager. It is the only way to access the contents of the data
referenced by theHandle.

Example LPVOID dataPtr;

theHandle = NewHandle(12);
if (MemError() == noErr) {
 HLock(theHandle);
 dataPtr = DereferenceHandle(theHandle);
 // do some work
 DisposeHandle(theHandle);
}

See Also

Functions HLock

Data Types Handle

DisposeHandle

Syntax void DisposeHandle(Handle theHandle)

Parameters Handle theHandle
The handle to be disposed.

Return None. MemError will be set on return.

Comments Use DisposeHandle to throw away the block referenced by theHandle when
you no longer need the memory. It is safe to pass NULL to DisposeHandle. A
handle does not have to be unlocked to be disposed.

QuickTime for Windows 2.0 Developer's Manual

 Page 112  1994 Apple Computer December 21, 1994

Example Handle theHandle;

theHandle = NewHandle(12);
.
.
.
DisposeHandle(theHandle);

See Also

Functions NewHandle, MemError

Data Types Handle

DisposeMovie

Syntax VOID DisposeMovie (Movie mMovie)

DisposeMovie frees any memory being used by a movie. Your program
should call this routine when it is done working with a movie.

Parameters Movie mMovie
The movie object whose memory is being released.

Return None. Use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments DisposeMovie must be called, ultimately, for each movie instantiated by
your program. It does not affect the DOS file containing the movie or the
movie controller to which it may be attached.

Example Movie mMovie;
MovieFile mfMovie;
•
•
OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ);
NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
CloseMovieFile (mfMovie);
•
•
DisposeMovie (mMovie);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 113

See Also

Functions NewMovieFromFile, DisposeMovieController,
GetMoviesError, GetMoviesStickyError

DisposeMovieController

Syntax VOID DisposeMovieController
 (MovieController mcController)

DisposeMovieController destroys a movie controller.

Parameters MovieController mcController
The movie controller object being destroyed.

Return None.

Comments DisposeMovieController must be called, ultimately, for every movie
controller created by your program. This function does not affect any movie
associated with the controller being destroyed.

Example MovieController mcController;
Movie mMovie;
RECT rcMovie;
HWND hWnd;
•
•
mcController = NewMovieController (mMovie, &rcMovie,

mcTopLeftMovie, hWnd);
•
•
DisposeMovieController (mcController);

See Also

Functions NewMovieController, DisposeMovie

QuickTime for Windows 2.0 Developer's Manual

 Page 114  1994 Apple Computer December 21, 1994

DisposePicture

Syntax VOID DisposePicture (PicHandle phPicture)

DisposePicture frees any memory being used by a QuickTime for Windows
picture. Your program should call this routine when it is done working with a
QuickTime for Windows picture.

Parameters PicHandle phPicture
The picture object whose memory is being released.

Return None. Use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments Either KillPicture or DisposePicture must be called, ultimately, for
each picture instantiated by your program. It does not affect the DOS file
containing the picture.

Example PicHandle phPicture;
PicFile pfPicture;
•
•
if (!OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 phPicture = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }
•
•
DisposePicture (phPicture);

See Also

Functions GetPictureFromFile, OpenPictureFile, ClosePictureFile,
KillPicture, GetMoviesError, GetMoviesStickyError

DrawPicture

Syntax OSErr DrawPicture (HDC hdc, PicHandle phThePict,
 const LPRECT lprcFrame,
 ProgressProcRecordPtr pprpProgressProc))

DrawPicture draws a picture in the QuickTime for Windows format.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 115

Parameters HDC hdc
The handle to the device context.

PicHandle phThePict
The picture object.

const LPRECT lprcFrame
The address of a rectangle in which the picture is to be drawn
(in client area coordinates).

ProgressProcRecordPtr pprpProgressProc
Reserved. Should be coded as NULL.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can also use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments A picture is a still image held in memory (e.g. a frame from a movie), in a
format usable by QuickTime for Windows. A PicHandle is an object
reference to this type of image, obtained by a call such as GetMoviePict
(see the description of this routine). The picture object must be freed when you
are done with it. Note: All QuickTime for Windows routines referencing a
RECT or POINT assume client device coordinates.

Example Movie mMovie;
MovieController mcController;
PicHandle phPicture;
RECT rcPicture;
HDC hdc;
TimeValue tvTime;
•
•
// Retrieve last movie frame, display it at different location

 tvTime = GetMovieDuration (mMovie);
 if ((phPicture = GetMoviePict (mMovie, tvTime)) != NULL)
 DrawPicture (hdc, phPicture, &rcPicture, NULL);
•
•
// Don't forget to free the picture object

 DisposePicture (phPicture);

See Also

Functions GetMoviePict, PictureToDIB, GetMoviesError,
GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

 Page 116  1994 Apple Computer December 21, 1994

DataTypes PicHandle

DrawPictureFile

Syntax OSErr DrawPictureFile (HDC hdc, PicFile pfPicture,
 const LPRECT lprcFrame,
 ProgressProcRecordPtr pprpProgressProc)

DrawPictureFile draws an image from the specified picture file.

Parameters HDC hdc
A handle to the device context.

PicFile pfPicture
The picture file reference value returned by
OpenPictureFile.

const LPRECT lprcFrame
A pointer to a rectangle where the picture is to be drawn
(in client area coordinates).

ProgressProcRecordPtr pprpProgressProc
Reserved. Should be coded as NULL.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can also use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments This function is essentially the same as the DrawPicture function, except
that it reads the picture from disk. Picture files are characterized by the DOS
file suffix ".PIC", and are DOS versions of Macintosh PICT and JFIF files.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example PicFile pfPicture;
RECT rcPict;
HDC hdc;
•
•
OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
DrawPictureFile (hdc, pfPicture, &rcPict, NULL);
ClosePictureFile (pfPicture);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 117

See Also

Functions ClosePictureFile, DrawPicture, GetPictureFileInfo,
GetPictureInfo, GetMoviesError, GetMoviesStickyError,
OpenPictureFile

EnterMovies

Syntax OSErr EnterMovies (VOID)

EnterMovies allocates memory for QuickTime for Windows to run itself.

Parameters This function takes no parameters.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values.

Comments EnterMovies only needs to be called once during the life of your programs
that play movies. The memory allocated is not memory used for movies, but
rather for global QuickTime for Windows activities. An application may call
EnterMovies multiple times, but storage will only be allocated the first
time. Each call to EnterMovies should be balanced with a call to
ExitMovies. The memory allocated by EnterMovies is only released
when an equivalent number ExitMovies have occured, or the application
terminates.

Example if (EnterMovies() != noErr)
 {
 MessageBox (NULL, "EnterMovies failure", "WinPlay1",
 MB_OK);
 return 0;
 }

See Also

Functions ExitMovies, QTInitialize, QTTerminate

ExitMovies

Syntax VOID ExitMovies (VOID)

ExitMovies frees memory used by QuickTime for Windows to run itself.

QuickTime for Windows 2.0 Developer's Manual

 Page 118  1994 Apple Computer December 21, 1994

Parameters This routine takes no parameters.

Return None.

Comments The memory released is the global memory used by QuickTime for Windows.
It is not the memory used to store movies. QuickTime for Windows programs
that do not call EnterMovies (e.g. those that display only individual
QuickTime for Windows pictures) do not have to call ExitMovies.

Example // Cut the connections to QuickTime for Windows

 ExitMovies ();
 QTTerminate ();

See Also

Functions EnterMovies, QTInitialize, QTTerminate

GetHandleSize

Syntax Size GetHandleSize(Handle theHandle)

Parameters Handle theHandle
The handle that you want to know the size of.

Return The logical size of the handle. This is the number of bytes of memory
referenced by the handle. It is either the number of bytes assigned to the handle
when it was allocated with NewHandle, or the last successful call to
SetHandleSize.

Comments If a bad handle is passed, MemError will be set on return to indicate the
problem.

Example Handle theHandle;
Size handleSize;

theHandle = NewHandle(32);

SetHandleSize(theHandle, 61);
if (MemError() != noErr)
 return; // couldn’t allocate memory

handleSize = GetHandleSize(theHandle);
if (handleSize != 61)
 return; // QuickTime for Windows is broken. Please return
 // to place of purchase.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 119

See Also

Functions NewHandle, SetHandleSize

Data Types Handle, Size

GetMediaHandlerDescription

Syntax void GetMediaHandlerDescription(Media mdMedia,
OSType FAR *mediaType, LPSTR handlerName, OSType FAR
*manufacturer)

Parameters Media mdMedia
The media that you want to know the type of.

OSType *mediaType
A four byte code indicating the type of media referenced by the
media. For example, a video media would return
VideoMediaType. You can pass NULL for this parameter.

LPSTR handlerName
A pointer to a pascal string to return the name of the media
handler used to manage the given media. In the current
implementation this is always returned as a null string. You
may pass NULL for this parameter.

OSType *manufacturer
A pointer to a pascal string to return the name of manufacturer
of the media handler used to manage the given media. In the
current implementation this is always returned as a null string.
You may pass NULL for this parameter.

Return Movies Error is set to a non-zero value if an error occured.

Comments Use GetMediaHandler description to determine the type of any given track or
media.

QuickTime for Windows 2.0 Developer's Manual

 Page 120  1994 Apple Computer December 21, 1994

Example Track trkAnyTrack;
Media mdMedia;
OSType mediaType;

trkAnyTrack = GetMovieIndTrack(theMovie, 1);
mdMedia = GetTrackMedia(trkAnyTrack);
GetMediaHandlerDescription(md, &mediaType, NULL, NULL);
switch (mediaType) {
 case VideoMediaType:
 case SoundMediaType:
 case MusicMediaType:
.
.
.
}

See Also

Functions GetTrackMedia, GetMovieIndTrack, GetMovieIndTrackType

Data Types Media, OSType

GetMediaSample

Syntax OSErr GetMediaSample(Media mdMedia, Handle theData,
long maxSizeToGrow, long FAR *actualSize, TimeValue
mediaTime, TimeValue FAR *sampleTime, TimeValue FAR
*durationPerSample, SampleDescriptionHandle theDesc,
long FAR *sampleDescriptionIndex, long
maxNumberOfSamples, long FAR *numberOfSamples, short
FAR *sampleFlags)

Parameters Media mdMedia
The media that you want retrieve the sample from

Handle theData
Handle to receive the media sample. You create this Handle
with NewHandle.

long maxSizeToGrow
Indicates the maximum possible number of bytes that you wish
to receive. If there is no limit, pass 0.

long *actualSize
Returns the number of bytes returned in the actual sample. Pass
NULL if you don’t want this information.

TimeValue mediaTime
The media time of the sample that you wish to retrieve. You
will typically obtain this time by calling
TrackTimeToMediaTime.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 121

TimeValue *sampleTime
The starting media time of the actual first sample returned. This
may not exactly match the media time requested, as the media
time requested may fall in the middle of a sample. Pass NULL
if you don’t want this information.

TimeValue *durationPerSample
Returns the duration, in the media’s TimeScale, of the sample
or samples returned. Pass NULL if you don’t want this
information.

SampleDescriptionHandle theDesc
Returns the sample description for the sample being requested.
You must allocate the handle to pass to this routine by calling
NewHandle. Pass NULL if you don’t want this information.

long *sampleDescriptionIndex
Returns the index of the sample description. This is a
convenient way to know if the sample description changed
between samples. Pass NULL if you don’t want this
information.

long maxNumberOfSamples
Indicates the maximum number of samples that you want to
retrieve. Pass 0 if you don’t care how many samples are
returned. For video and text, most applications will want to pass
1 for this field.

long *numberOfSamples
Returns the actual number of samples. Pass NULL if you don’t
want this information.

short *sampleFlags
Returns the sample flags for the sample(s) returned. Sample
flags are used to indicate information such as wether or not a
sample is a key frame. Pass NULL if you don’t want this
information.

Return noErr if successfully complete.

Comments Use GetMediaSample to retrieve raw sample data from a QuickTime movie.

See Also

Functions TrackTimeToMediaTime, NewHandle, GetMediaSampleDescription

Data Types Handle, Media, SampleDescriptionHandle

QuickTime for Windows 2.0 Developer's Manual

 Page 122  1994 Apple Computer December 21, 1994

GetMediaSampleDescription

Syntax void GetMediaSampleDescription(Media mdMedia, long
sampleDescIndex, SampleDescriptionHandle theDesc)

Parameters Media mdMedia
The media that you want retrieve the sample description from.

long sampleDescIndex
The index of the sample description you wish to retrieve from
this media. Sample descriptions are numbered consecutively
starting from 1.

SampleDescriptionHandle theDesc
A Handle, created with NewHandle, that will be resized on
return and filled in with the requested sample description. The
actual type of sample description returned depends on the type
of the media being queried. For example, a video media returns
an ImageDescriptionHandle whereas a sound media returns a
SoundDescriptionHandle.

Return Movies Error is set to a value other than noErr on return to indicate any
problems.

Comments GetMediaSampleDescription provides a way to determine the details of the
format of the data stored in a particular media. Because a given media may
contain data of several different formats (for example one video media might
use several different compression formats), the index allows you conveniently
iterate over all available information. This routine effectively replaces the now
obsolete GetSoundInfo and GetVideoInfo routines of earlier version of
QuickTime for Windows.

Example Track videoTrack;
SampleDescriptionHandle desc;

videoTrack = GetMovieIndTrackType(theMovie, 1, VideoMediaType,
movieTrackMediaType | movieTrackEnabledOnly);
desc = NewHandle(0);
GetMediaSampleDescription(GetTrackMedia(videoTrack), 1, desc);

See Also

Functions GetTrackMedia, GetMovieIndTrack, GetMovieIndTrackType

Data Types Media, SampleDescriptionHandle,
ImageDescriptionHandle, SoundDescriptionHandle

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 123

GetMediaTimeScale

Syntax TimeScale GetMediaTimeScale(Media mdMedia)

Parameters Media mdMedia
The media that you want retrieve the TimeScale of.

Return The media’s TimeScale.

Comments When using calls such as GetMediaSample, it is necessary to be able to map
back and forth between the duration of samples in the media’s TimeScale and
the movie’s TimeScale. Often the TimeScale of the media is different than the
TimeScale of the movie. Use GetMovieTimeScale to determine the TimeScale
of the movie. Use ConvertTimeScale to convert from one TimeScale to
another.

See Also

Functions GetMovieTimeScale, ConvertTimeScale

Data Types Media, TimeScale

GetMediaTrack

Syntax Track GetMediaTrack(Media mdMedia)

Parameters Media mdMedia
The media whose Track you want to retrieve.

Return The Track referenced by the given media. If the media is invalid, 0 is
returned.

Comments Use GetMediaTrack to obtain the track that owns the given media. You
will usually obtain the media by calling GetTrackMedia.

Example Track trkFirst;
Media mdFirst;

trkFirst = GetMovieIndTrack(theMovie, 1);
mdFirst = GetTrackMedia(trkFirst);
if (GetMediaTrack(mdFirst) != trkFirst)
 ; // QuickTime for Windows is broken....

QuickTime for Windows 2.0 Developer's Manual

 Page 124  1994 Apple Computer December 21, 1994

See Also

Functions GetTrackMedia

Data Types Media, Track

GetMovieActive

Syntax Boolean GetMovieActive (Movie mMovie)

GetMovieActive queries the active state of a movie (whether or not it can
be played).

Parameters Movie mMovie
The movie object.

Return TRUE if the movie is active. FALSE if the movie is inactive. You can use
GetMoviesError and GetMoviesStickyError to test for failure of
this call.

Comments A movie with an inactive state will remain visible but will not play, since it
does not receive cycles from QuickTime for Windows' scheduler while
inactive.

Do not confuse a movie's active state with its playing/paused state, i.e. do not
use SetMovieActive to start or stop playing a movie. You can set a
movie's active state using SetMovieActive.

Example Movie mMovie;
•
•
// If the movie is active, make it inactive

 if (GetMovieActive (mMovie))
 {
 SetMovieActive (mMovie, FALSE);
 }

See Also

Functions SetMovieActive, GetMoviesError, GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 125

GetMovieActiveSegment

Syntax VOID GetMovieActiveSegment (Movie mMovie,
 TimeValue FAR *, TimeValue FAR *)

GetMovieActiveSegment determines which segment of a movie is
currently selected for playing.

Parameters Movie mMovie
The movie object.

TimeValue FAR *tvStart
A pointer to the start time value.

TimeValue FAR *tvDuration
A pointer to the duration time value.

Return tvStart and tvDuration are populated with the starting time
and the duration of the active movie segment, respectively. You can use
GetMoviesError and GetMoviesStickyError to test for failure
of this call.

Comments If the active segment is the entire movie, tvStart is set to -1 and
tvDuration is undefined.

Example Movie mMovie;
TimeValue tvStart, tvDuration;
•
•
GetMovieActiveSegment (mMovie, &tvStart, &tvDuration);
if (tvStart == -1)
 /* Code for when entire movie is active. */
else
 /* Code for when subset of entire movie is active. */

See Also

Functions GetMovieActive

MCDoAction mcActionSetSelectionBegin, mcActionSetPlaySelection,
mcActionSetSelectionDuration, GetMoviesError,
GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

 Page 126  1994 Apple Computer December 21, 1994

GetMovieBox

Syntax VOID GetMovieBox (Movie mMovie, LPRECT lprcMovieRect)

GetMovieBox obtains the current dimensions of a movie rectangle.

Parameters Movie mMovie
The movie object.

LPRECT lprcMovieRect
The address of the movie rectangle.

Return The rectangle referenced by lprcMovieRect is populated with the movie's
current dimensions. Use GetMoviesError and GetMoviesStickyError
to test for failure of this call.

Comments The movie need not be visible on the screen for this function to provide its
dimensions. Consequently, this call is quite useful for determining the optimum
rectangle for displaying a movie when calling NewMovieController.
If the rectangle referenced by lprcMovieRect is NULL, a sound-only movie
is indicated. It is up to you to handle this condition however you wish.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example RECT rcMovie;
Movie mMovie;
MovieFile mfMovie;
MovieController mcController;
•
•
// Open the movie file

 if (OpenMovieFile ("NEWSREEL.MOV", &mfMovie, OF_READ))
 {
 MessageBox (NULL, "Open failure", ...);
 }
 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL,
 newMovieActive, NULL);
 CloseMovieFile (mfMovie);

// Instantiate the movie controller

 GetMovieBox (mMovie, &rcMovie);
 OffsetRect (&rcMovie, -rcMovie.left, -rcMovie.top);
 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 127

See Also

Functions SetMovieBox, MCGetControllerBoundsRect,
GetMoviesError, GetMoviesStickyError

GetMovieCreationTime

Syntax LONG GetMovieCreationTime (Movie mMovie)

GetMovieCreationTime retrieves a movie's creation date and time.

Parameters Movie mMovie
The movie object.

Return A LONG containing the movie's creation date and time information. You can
use GetMoviesError and GetMoviesStickyError to test for failure
of this call.

Comments The returned LONG may be decoded using the C language ctime function.

Example LONG lDateTime;
Movie mMovie;
char buffer [80];
•
•
lDateTime = GetMovieCreationTime (mMovie);
wsprintf (buffer, "Movie created on %s", ctime (&lDateTime));

See Also

Functions GetMovieModificationTime, GetMoviesError,
GetMoviesStickyError

GetMovieDataSize

Syntax LONG GetMovieDataSize (Movie mMovie,
 TimeValue tvStart, TimeValue tvDuration)

GetMovieDataSize retrieves the size, in bytes, of the data in a segment of
a movie. This size includes the data in all tracks, regardless of their enabled
state.

QuickTime for Windows 2.0 Developer's Manual

 Page 128  1994 Apple Computer December 21, 1994

Parameters Movie mMovie
The movie object.

TimeValue tvStart
A time value specifying the starting point of the segment whose
size is being queried.

TimeValue tvDuration
A time value specifying the duration of the segment whose size
is being queried.

Return A LONG that contains the size, in bytes, of the movie's data that lies in the
specified segment. Use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments This function may be called whether a movie is playing or not.
Use MCGetCurrentTime to retrieve the movie's current time.

Example LONG lSize;
Movie mMovie;
TimeValue tvStart, tvDuration;
MovieController mcController;
•
•
// Get the number of bytes from the current position to two
// seconds later

 tvStart = MCGetCurrentTime (mcController, NULL);
 tvDuration = 2 * GetMovieTimeScale (mMovie);
 lSize = GetMovieDataSize (mMovie, tvStart, tvDuration);

See Also

Functions ConvertTimeScale, MCGetCurrentTime, GetMoviesError,
GetMoviesStickyError, GetMovieTimeScale

Data Types TimeValue

GetMovieDuration

Syntax TimeValue GetMovieDuration (Movie mMovie)

GetMovieDuration retrieves the duration of a movie, expressed in units of
the movie's time scale.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 129

Parameters Movie mMovie
The movie object.

Return A TimeValue containing the movie's duration, in units of the movie's time
scale. Use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments QuickTime for Windows' time coordinate system uses a time scale scored in
time units. The number of units that pass per second quantifies the scale: a time
scale of 26 means that 26 units pass per second and each time unit is 1/26 of a
second.

When the duration of all or part of a movie is needed, it is expressed in the
number of time units it contains. Particular points in a movie can be identified
by time values, which are the number of time units to those points from the
beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale to
compare TimeValues between differently scaled movies.

Example LONG lSize;
Movie mMovie;
TimeValue tvDuration;
•
•
// Get the number of bytes in this movie

 tvDuration = GetMovieDuration (mMovie);
 lSize = GetMovieDataSize (mMovie, 0, tvDuration);

See Also

Functions ConvertTimeScale, GetMovieTimeScale, MCGetCurrentTime,
GetMoviesError, GetMoviesStickyError

Data Types TimeValue

GetMovieIndTrack

Syntax Track GetMovieIndTrack(Movie mMovie, LONG
trackIndex)

QuickTime for Windows 2.0 Developer's Manual

 Page 130  1994 Apple Computer December 21, 1994

Parameters Movie mMovie
The movie object.

LONG trackIndex
The index of the track within the movie you wish to retrieve.
Tracks are numbered sequentially beginning with 1.

Return The track with the given index is returned. If an invalid index is passed, 0 is
returned for the track.

Comments Use GetMovieIndTrack to iterate through all the tracks in a movie. You can
use GetMovieTrackCount to determine how many tracks are in the movie. If
you want to locate or interate through all tracks of a give type, use
GetMovieIndTrackType

Example LONG trackCount, I;

trackCount = GetMovieTrackCount(theMovie);
for (i=1; i<=trackCount; i++) {
 Track trkThisTrack = GetMovieIndTrack(theMovie, I);

 // do something interesting here
}

See Also

Functions GetMovieTrackCount, GetMovieIndTrackType, GetTrackMedia

Data Types Movie, Track

GetMovieIndTrackType

Syntax Track GetMovieIndTrackType (Movie m,
 LONG index, OSType trackType, LONG flags);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 131

Parameters Movie m
The movie object.

LONG index
The index of the requested track, relative to 1. This index gives
the position of the track in the move relative to other tracks that
match the flags passed in the flags parameter.

Note: QuickTime for Windows currently only supports a single
track of each media type and this parameter should always be
coded as a constant of 1.

OSType trackType
The media type or media characteristic of the requested desired
track.

Use the following constants to identify the available media
types:
VideoMediaType
SoundMediaType
TextMediaType
MusicMediaType
MPEGMediaType

LONG flags
Indicates the media type or media characteristic of the desired
track.

Code any of these values singly or in combination:
movieTrackMediaType
 if a media type is specified
movieTrackCharacteristic
 if a media characteristic is specified
mediaTrackEnabledOnly

 if only enabled tracks are to be searched
Note: The Macintosh version of QuickTime allows for tracks to
be indentified by media characteristics, in addition to track
types. Media characteristics are not currently supported by
QuickTime for Windows.

Return A Track for the requested media type. If no track is available to meet the
requested critera, NULL is returned for the track. Use GetMoviesError or
GetMoviesStickyError to test for failure of this call.

QuickTime for Windows 2.0 Developer's Manual

 Page 132  1994 Apple Computer December 21, 1994

Comments The Track returned by GetMovieIndTrackType can be passed to
SetTrackEnabled, and other calls which require a Track parameter.

Example Movie m;
Track trkText;
 •
 •
trkText = GetMovieIndTrackType (m, 1,
 TextMediaHandler, movieTrackMediaType);
SetTrackEnabled (trkText, FALSE);
 •
 •
MCMovieChanged (mc, m);

See Also

Functions SetTrackEnabled

GetMovieMatrix

Syntax void GetMovieMatrix(Movie mMovie, MatrixRecord FAR
*mtrxMovie)

Parameters Movie mMovie
The movie object.

MatrixRecord *mtrxMovie
Pointer to a matrix record.

Return You can use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments The movie’s matrix is returned in mtrxMovie. The movie matrix is used to
map a movie from its coordinate system to the display coordinate system.

SetMovieBox changes the movie matrix to scale and translate the movie.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 133

Example MatrixRecord mtrxMovie, mtrxTrack;
FIXED fWidth, fHeight;
RECT r;

GetMovieMatrix(GetTrackMovie(trkTrack), &mtrxMovie);
GetTrackMatrix(trkTrack, &mtrxTrack);
ConcatMatrix(&mtrxTrack, &mtrxMovie);
// movie matrix now contains the track’s display matrix

GetTrackDimensions(trkTrack, &fWidth, &fHeight);
r.top = 0;
r.left = 0;
r.bottom = fHeight >> 16;
r.right = fWidth >> 16;
TransformRect(&mtrxMovie, &r, NULL);
// r now contains the display coordinates of the track

See Also

Functions ConcatMatrix, GetTrackMatrix

Data Types MatrixRecord, Movie

GetMovieModificationTime

Syntax LONG GetMovieModificationTime (Movie mMovie)

GetMovieModificationTime retrieves a movie's last modification date
and time.

Parameters Movie mMovie
The movie object.

Return A LONG containing the movie's last modification date and time. You can use
GetMoviesError and GetMoviesStickyError to test for failure of
this call.

Comments The resulting LONG may be decoded using the C language ctime function.

Example LONG lDateTime;
Movie mMovie;
char buffer [80];
•
•
lDateTime = GetMovieModificationTime (mMovie);
sprintf (buffer, "Movie modified on %s", ctime (&lDateTime));

QuickTime for Windows 2.0 Developer's Manual

 Page 134  1994 Apple Computer December 21, 1994

See Also

Functions GetMovieCreationTime, GetMoviesError,
GetMoviesStickyError

GetMoviePict

Syntax PicHandle GetMoviePict (Movie mMovie,
 TimeValue tvTime)

GetMoviePict retrieves an individual image from a movie in the
QuickTime for Windows picture format at a specified movie time.

Parameters Movie mMovie
The movie object.

TimeValue tvTime
The time value in the movie of the image to be retrieved.

Return A picture object. A NULL return indicates failure. You can also use
GetMoviesError and GetMoviesStickyError to test for failure of
this call.

Comments This function may be called whether a movie is playing or not.

The picture object returned is unusable by Windows directly. Use the function
PictureToDIB to convert the image to a Windows Device Independent
Bitmap (DIB). An alternative to converting the image is using DrawPicture
to display it at specified coordinates.

Example Movie mMovie;
MovieController mcController;
PicHandle phPicture;
RECT rcPicture;
HDC hdc;
TimeValue tvTime;
•
•
// Retrieve last movie frame then display it on the
// screen at another location

 tvTime = GetMovieDuration (mMovie);
 if ((phPicture = GetMoviePict (mMovie, tvTime)) != NULL)
 DrawPicture (hdc, phPicture, &rcPicture, NULL);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 135

See Also

Functions DrawPicture, GetMoviePosterPict, MCGetCurrentTime,
PictureToDIB, GetMoviesError, GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

 Page 136  1994 Apple Computer December 21, 1994

GetMoviePosterPict

Syntax PicHandle GetMoviePosterPict(Movie mMovie)

GetMoviePosterPict retrieves a movie’s poster frame in the QuickTime
for Windows picture format.

Parameters Movie mMovie
The movie object.

Return A picture object. A NULL return indicates failure. You can also use
GetMoviesError and GetMoviesStickyError to test for failure of
this call.

Comments This function may be called whether a movie is playing or not.

The picture object returned is unusable by Windows directly. Use the function
PictureToDIB to convert it to a Windows Device Independent Bitmap
(DIB). An alternative to converting the image is using DrawPicture to
display it at specified coordinates.

Example Movie mMovie;
PicHandle phPicture;
RECT rcPicture;
HDC hdc;
•
•
// Retrieve Poster Frame, then display it on the screen

 if ((phPicture = GetMoviePosterPict (mMovie)) != NULL)
 DrawPicture (hdc, phPicture, &rcPicture, NULL);

See Also

Functions DrawPicture, GetMoviePict, GetMoviePosterTime,
PictureToDIB, GetMoviesError, GetMoviesStickyError

GetMoviePosterTime

Syntax TimeValue GetMoviePosterTime (Movie mMovie)

GetMoviePosterTime finds the poster's time in the movie.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 137

Parameters Movie mMovie
The movie object.

Return The TimeValue of the poster frame. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments The poster is an image from the movie which may be used to characterize it
when the movie is not running. For example, the poster might serve as a visual
representation of a movie's contents in an open dialog.

To get the poster picture object itself use GetMoviePosterPict.

Example TimeValue tvPoster;
Movie mMovie;
•
•
tvPoster = GetMoviePosterTime (mMovie);

See Also

Functions ConvertTimeScale, GetMovieDuration, GetMoviesError,
GetMoviePosterPict, GetMoviesStickyError,
MCGetCurrentTime

Data Types TimeValue

GetMoviePreferredRate

Syntax LFIXED GetMoviePreferredRate (Movie mMovie)

GetMoviePreferredRate determines the preferred rate at which a movie
is played.

Parameters Movie mMovie
The movie object.

QuickTime for Windows 2.0 Developer's Manual

 Page 138  1994 Apple Computer December 21, 1994

Return An LFIXED value which is the preferred rate of the movie expressed as a
multiplier of the recorded rate. For example, a return value of 1.0 means play
the movie at the recorded rate. A return value of 1.5 would mean play the
movie 1.5 times faster than its recorded rate.

Use GetMoviesError and GetMoviesStickyError to test for failure
of this call.

Comments The return value can be passed on to MCDoAction mcActionPlay to play
the movie at the preferred rate.

Example Movie mMovie;
MovieController mcController;
LFIXED lfxRate;
•
•
// Play the movie at the preferred rate

 lfxRate = GetMoviePreferredRate (mMovie);
 MCDoAction (mcController, mcActionPlay, (LPVOID) lfxRate);

See Also

Functions GetMoviePreferredVolume, GetMoviesError,
GetMoviesStickyError

MCDoAction mcActionPlay

GetMoviePreferredVolume

Syntax SFIXED GetMoviePreferredVolume (Movie mMovie)

GetMoviePreferredVolume returns a movie's preferred volume setting.

Parameters Movie mMovie
The movie object.

Return An SFIXED value ranging from 256 to -256. Negative values represent
volume levels that play no sound but preserve the absolute value of the volume
setting. Use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments The return value can be passed on to MCDoAction using the action
mcActionSetVolume to play the movie at the preferred volume.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 139

Example Movie mMovie;
MovieController mcController;
SFIXED sfxVolume;
•
•
// Set the volume to the preferred level

 sfxVolume = GetMoviePreferredVolume (mMovie);
 MCDoAction (mcController, mcActionSetVolume,
 (LPVOID) sfxVolume);

See Also

Functions GetMoviePreferredRate, GetMoviesError,
GetMoviesStickyError

MCDoAction mcActionSetVolume

GetMovieSelection

Syntax void GetMovieSelection(Movie mMovie, TimeValue FAR
*start, TimeValue FAR *duration)

Parameters Movie mMovie
The movie object.

TimeValue *start
Returns the start time of the selection. The TimeValue is in the
movie’s TimeScale. If you do not need the start time of the
movie selection, pass NULL.

TimeValue *duration
Returns the duration of the selection. The TimeValue is in the
movie’s TimeScale. If you do not need the duration of the
movie selection, pass NULL.

Return Use GetMoviesError and GetMoviesStickyError to test for failure
of this call.

Comments Use GetMovieSelection to retrieve the currently selected segment of the
movie. The user can change the selection with the movie controller if your
application enables editing.

Example TimeValue tvStart, tvDuration;
Handle hHandle;

GetMovieSelection(mMovie, &tvStart, &tvDuration);
hHandle = NewHandle(0);
PutMovieIntoTypedHandle(mMovie, NULL, QTFOURCC(‘T’, ‘E’, ‘X’,
‘T’), hHandle, tvStart, tvDuration, 0, NULL);

QuickTime for Windows 2.0 Developer's Manual

 Page 140  1994 Apple Computer December 21, 1994

See Also

Functions GetMovieTime

Data Types Movie, TimeValue

GetMoviesError

Syntax OSErr GetMoviesError (VOID)

GetMoviesError retrieves the current QuickTime for Windows movie
error value and resets it to 0.

Parameters This routine takes no parameters.

Return The result code from the previous eligible QuickTime for Windows call.
Eligible QuickTime for Windows calls are calls that operate on movies (as
opposed to movie controllers) and require a movie object.

Comments Use this call to obtain the result code for QuickTime for Windows movie calls
that do not return an error as a function result. Even if a movie routine
explicitly returns an error as a function result, the result is also available using
the GetMoviesError function. See Appendix A for error condition values.

Example Movie mMovie;
LFIXED lfxRate;
•
•
lfxRate = GetMoviePreferredRate (mMovie);
if (GetMoviesError())
 {
 MessageBox (NULL, "GetMoviePreferredRate Failure",
 "Program", MB_OK);
 }

See Also

Functions GetMoviesStickyError, ClearMoviesStickyError

Data Types OSErr

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 141

GetMoviesStickyError

Syntax OSErr GetMoviesStickyError (VOID)

GetMoviesStickyError retrieves the sticky error value. The sticky error
value is the first non-zero result code returned by an eligible QuickTime for
Windows routine since ClearMoviesStickyError was last called.

Parameters This routine takes no parameters.

Return The first non-zero result code from the previous eligible QuickTime for
Windows calls since the sticky error value was last cleared. Eligible
QuickTime for Windows calls operate on movies (as opposed to movie
controllers) and require a movie object.

Comments Even if a movie routine explicitly returns an OSErr, the result is also available
using the GetMoviesStickyError function.

The GetMoviesStickyError function does not clear the sticky error
value. Use the ClearMoviesStickyError function for this purpose.

A result code will not be placed into the sticky error value until the field has
been cleared. Your application should clear the sticky error value to ensure that
it does not contain a stale result code.

Example Movie mMovie;
LFIXED lfxRate;
•
•
// Assume call produces an error code

 lfxRate = GetMoviePreferredRate (mMovie);

// Assume other calls follow with no errors
•
•
 if (GetMoviesStickyError())
 {
 MessageBox (NULL, "GetMoviePreferredRate Failure",
 "Program", MB_OK);
 ClearMoviesStickyError();
 }

See Also

Functions GetMoviesError, ClearMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

 Page 142  1994 Apple Computer December 21, 1994

GetMovieStatus

Syntax OSErr GetMovieStatus (Movie mMovie, LPVOID
lpvReserved)

GetMovieStatus returns an error code if there are any problems in the
playing of the movie. For example, a particular track cannot play because there
is insufficient memory.

Parameters Movie mMovie
The movie object.

LPVOID lpvReserved
Reserved.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments You can use this call to detect any problems during playback.

Example MovieFile mfMovie;
Movie mMovie;
LPVOID lpvReserved;
•
•
OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ);
NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
CloseMovieFile (mfMovie);
if (GetMovieStatus (mMovie, lpvReserved))
 {
 /* Display error message. */
 }

See Also

Functions GetMoviesError, GetMoviesStickyError

GetMovieTime

Syntax TimeValue GetMovieTime (Movie mMovie,
 TimeRecord FAR *trRecord)

GetMovieTime retrieves the current time of a movie at the point that the routine
is called.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 143

Parameters Movie mMovie
The movie object.

TimeRecord *trRecord
The address of a TimeRecord which will be filled with the
movie's time scale, time base and current time. The high 32 bits of
the time value field are always 0, while the low 32 bits represent
the same value as the returned TimeValue.

Return A TimeValue containing the movie's current time at the point the routine is
called. Use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments A movie's time coordinate system is based on a time scale scored in time units.
The number of units that pass per second quantifies the scale: a time scale of 26
means that 26 units pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as the length
of the portion of the movie in the number of time units it contains. Particular
points in a movie can be identified by a time value, which is the number of time
units to that point from the beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale to
compare TimeValues between different movies.

Example Movie mMovie;
TimeValue tvCurrentTime;
TimeRecord trTimeData;
•
•
// Get the movie's current time

 tvCurrentTime = GetMovieTime (mMovie, &trTimeData);

See Also

Functions ConvertTimeScale, GetMovieDuration, MCGetCurrentTime,
GetMovieTimeScale, GetMoviesError, GetMoviesStickyError

Data Types TimeScale, TimeValue

QuickTime for Windows 2.0 Developer's Manual

 Page 144  1994 Apple Computer December 21, 1994

GetMovieTimeScale

Syntax TimeScale GetMovieTimeScale (Movie mMovie)

GetMovieTimeScale retrieves the time scale of a movie.

Parameters Movie mMovie
The movie object.

Return The time scale of the movie, i.e. the number of time units that pass per second.
Use GetMoviesError and GetMoviesStickyError to test for failure
of this call.

Comments A movie's time coordinate system is based on a time scale scored in time units.
The number of units that pass per second quantifies the scale: a time scale of 26
means that 26 units pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as the
length of the portion of the movie in the number of time units it contains.
Particular points in a movie can be identified by a time value, which is the
number of time units to that point from the beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale
to compare TimeValues between different movies.

Example LONG lSize;
Movie mMovie;
TimeValue tvStart, tvDuration;
MovieController mcController;
•
•
// Get the number of bytes from the current position to two
// seconds later

 tvStart = MCGetCurrentTime(mcController, NULL);
 tvDuration = 2 * GetMovieTimeScale (mMovie);
 lSize = GetMovieDataSize (mMovie, tvStart, tvDuration);

See Also

Functions ConvertTimeScale, GetMovieDuration, MCGetCurrentTime,
GetMoviesError, GetMoviesStickyError

Data Types TimeScale, TimeValue

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 145

GetMovieTrackCount

Syntax LONG GetMovieTrackCount(Movie mMovie)

Parameters Movie mMovie
The movie object.

Return The number of tracks contained in the movie. Use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments The number of tracks returned includes both enabled and disabled tracks. Use
GetMovieIndTrack to iterate through the tracks in the movie.

Example LONG lCount;

lCount = GetMovieTrackCount(mMovie);

See Also

Functions GetMovieIndTrack

Data Types Movie

GetMovieUserData

Syntax UserData GetMovieUserData (Movie mMovie)

GetMovieUserData retrieves a handle to a list of user data belonging to a
movie. This handle is maintained internally by QuickTime for Windows. You
do not need to free it when you are finished using it.

Parameters Movie mMovie
The movie object.

Return The handle to a list of user data. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

QuickTime for Windows 2.0 Developer's Manual

 Page 146  1994 Apple Computer December 21, 1994

Comments A movie's user data list is placed in a movie by its creator and may contain
items of various types. A common type is text containing copyright data,
names of people involved in the movie's production, special hardware and
software requirements, and other types of information about the movie. By
convention, text user data types start with a "" symbol. A list of commonly
used text user data types may be found in Part 15 of QuickTime for Windows
Concepts in the overview.

Example See the example in the description of GetUserDataText.

See Also

Functions CountUserDataType, GetNextUserDataType,
GetUserData, GetUserDataText, GetMoviesError,
GetMoviesStickyError

Data Types UserData

GetNextUserDataType

Syntax OSType GetNextUserDataType (UserData udData,
 OSType ostType)

This function is used to retrieve the next user data type in a user data list.

Parameters UserData udData
The handle to the user data list.

OSType ostType
The user data type. If zero is used, the first user data type in the
list is returned. If a user data type is used, the next user data
type is returned.

Return The next user data type, or zero if no more types are present. You can use
GetMoviesError and GetMoviesStickyError to test for failure of
this call.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 147

Comments A movie's user data list is placed in a movie by its creator and may contain
items of various types. A common type is text containing copyright data,
names of people involved in the movie's production, special hardware and
software requirements, and other types of information about the movie. By
convention, text user data types start with a "" symbol. A list of commonly
used text user data types may be found in Part 15 of QuickTime for Windows
Concepts in the overview.

Example See the example in the description of GetUserDataText.

See Also

Functions CountUserDataType, GetNextUserDataType,
GetUserData, GetUserDataText, GetMoviesError,
GetMoviesStickyError

Data Types UserData

GetPictureFileHeader

Syntax OSErr GetPictureFileHeader (PicFile pfPicture,
 LPRECT lprcFrame, OpenCPicParams FAR *lpocppHeader)

GetPictureFileHeader retrieves the header to the picture file and the
picture frame rectangle.

Parameters PicFile pfPicture
The picture file reference value returned by
OpenPictureFile.

LPRECT lprcFrame
The address of the picture frame rectangle.

OpenCPicParams FAR *lpocppHeader
The address of the picture file header data.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. The picture frame rectangle and picture file header
referenced by the second and third parameters are populated with the retrieved
data. You can use GetMoviesError and GetMoviesStickyError to test
for failure of this call.

QuickTime for Windows 2.0 Developer's Manual

 Page 148  1994 Apple Computer December 21, 1994

Comments Picture files are characterized by the DOS file suffix ".PIC". They are DOS
versions of Macintosh PICT and JFIF files.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example PicFile pfPicture;
OpenCPicParams ocppHeader;
RECT rcFrame;
•
•
OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
GetPictureFileHeader (pfPicture, &rcFrame, &ocppHeader);
ClosePictureFile (pfPicture);

See Also

Functions ClosePictureFile, DrawPictureFile, GetPictureFileInfo,
GetPictureInfo, GetMoviesError, GetMoviesStickyError,
OpenPictureFile

Data Types OpenCPicParams

GetPictureFileInfo

Syntax OSErr GetPictureFileInfo (PicFile pfPicture,
 ImageDescription FAR *idImageInfo)

GetPictureFileInfo retrieves detailed information about a picture file.

Parameters PicFile pfPicture
The picture file reference value referred to by
OpenPictureFile.

ImageDescription FAR *idImageInfo
The address of the image descriptor.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. The image descriptor record is populated with information
on the picture file. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments The information retrieved by GetPictureFileInfo is more detailed than that
retrieved by GetPictureFileHeader. Picture files are characterized by the
DOS file suffix ".PIC". They are DOS versions of Macintosh PICT and JFIF files.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 149

Example PicFile pfPicture;
ImageDescription idImageInfo;
•
•
OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
idImageInfo.idSize = sizeof (ImageDescription);
GetPictureFileInfo (pfPicture, &idImageInfo);
ClosePictureFile (pfPicture);

See Also

 Functions ClosePictureFile, GetPictureFileHeader, GetPictureInfo,
GetMoviesError, GetMoviesStickyError, OpenPictureFile

 Data Types ImageDescription

GetPictureFromFile

Syntax PicHandle GetPictureFromFile (PicFile pfPicture)

GetPictureFromFile extracts a picture from a picture file.

Parameters PicFile pfPicture
The reference value assigned by OpenPictureFile .

Return A PicHandle for subsequently referencing the picture, NULL if failure. You
can also use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments You can use the picture object returned by GetPictureFromFile to create
a Windows Device Independent Bitmap (DIB).

Example PicFile pfPicture;
PicHandle phThePict;
•
•
if (!OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 phThePict = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }

See Also

Functions OpenPictureFile, ClosePictureFile, GetMoviesError,
GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

 Page 150  1994 Apple Computer December 21, 1994

GetPictureInfo

Syntax OSErr GetPictureInfo (PicHandle,
 ImageDescription FAR *)

GetPictureInfo retrieves detailed information about an image.

Parameters PicHandle phThePict
The picture object.

ImageDescription FAR *idImageInfo
The address of the image descriptor.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. The image descriptor record referenced by the second
parameter is populated with information about the image. You can use
GetMoviesError and GetMoviesStickyError to test for failure of
this call.

Comments Pictures are created using GetMoviePict, GetMoviePosterPict
and GetPictureFromFile. Note: this routine only returns information
about the first image in the picture. Future releases of QuickTime for Windows
will upgrade this function.

Example Movie mMovie;
PicHandle phThePict;
ImageDescription idImageInfo;
•
•
if ((phThePict = GetMoviePosterPict (mMovie)) != NULL)
 {
 idImageInfo.idSize = sizeof (ImageDescription);
 GetPictureInfo (phThePict, &idImageInfo);
 }

See Also

Functions GetPictureFileHeader, GetPictureFileInfo,
GetMoviePict, GetMoviePosterPict, GetMoviesError,
GetMoviesStickyError

Data Types ImageDescription

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 151

GetPicturePalette

Syntax HPALETTE GetPicturePalette (PicHandle phThePict)

GetPicturePalette retrieves a palette from a picture.

Parameters PicHandle phThePict
A picture object.

Return A handle to the picture's palette, NULL if the picture has no palette. You can
use GetMoviesError and GetMoviesStickyError to test for failure
of this call.

Comments The returned HPALETTE can be used to display pictures using a Windows
palette. You must free it, when you are done with it, using DeleteObject.
GetPicturePalette always attempts to return a palette. If the picture
does not have one, it returns a default palette.

Example PicFile pfPicture;
PicHandle phThePict;
HPALETTE hPal;
•
•
if (!OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 phThePict = GetPictureFromFile (pfPicture);
 hPal = GetPicturePalette (phThePict);
 ClosePictureFile (pfPicture);
 }

See Also

Functions ClosePictureFile, GetMoviesError, OpenPictureFile,
GetMoviesStickyError, GetPictureFromFile,

GetSoundInfo

Syntax OSErr GetSoundInfo (Movie, SoundDescription FAR *)

GetSoundInfo retrieves information about a movie’s sound track.

QuickTime for Windows 2.0 Developer's Manual

 Page 152  1994 Apple Computer December 21, 1994

Parameters Movie mMovie
The movie object.

SoundDescription FAR *sdSoundInfo
The address of the sound description data.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. The sound description record is populated with data
about the movie's sound track. You can use the routines GetMoviesError
and GetMoviesStickyError to test for failure of this call.

Comments GetSoundInfo retrieves useful information about a movie's sound track,
such as number of channels, sample size and sampling rate.

Note: This routine is obsolete. Use GetMediaSampleDescription instead.

Example Movie mMovie;
SoundDescription sdSoundInfo;
•
•
sdSoundInfo.descSize = sizeof (SoundDescription);
GetSoundInfo (mMovie, &sdSoundInfo);
if ((SHORT) sdSoundInfo.numChannels == 1)
 {
 /* Tell user sound is mono. */
 }

See Also

 Functions GetVideoInfo, GetMediaSampleDescription,
GetMoviesError, GetMoviesStickyError

 Data Types SoundDescription

GetTrackDimensions

Syntax void GetTrackDimensions(Track trkTrack, Fixed FAR
*width, Fixed FAR *height)

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 153

Parameters Track trkTrack
The track object.

Fixed *width
The width of the track before it has been transformed by the
Track and Movie matrices. You may pass NULL for width, if
you don’t require this information.

Fixed *height
The height of the track before it has been transformed by the
Track and Movie matrices. You may pass NULL for height, if
you don’t require this information.

Return You can use the routines GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments You use GetTrackDimensions in conjunction with GetTrackMatrix,
GetMovieMatrix, and ConcatMatrix to determine the current screen location of
any track in a movie.

See Also

Functions GetMovieMatrix, GetTrackMatrix, ConcatMatrix

Data Types Track

GetTrackMatrix

Syntax void GetTrackMatrix(Track trkTrack, MatrixRecord FAR
*mtrxMatrix)

Parameters

Return

Comments

See Also

Functions

Data Types Track, MatrixRecord

QuickTime for Windows 2.0 Developer's Manual

 Page 154  1994 Apple Computer December 21, 1994

GetTrackMedia

Syntax Media GetTrackMedia(Track trkTrack)

Parameters Track trkTrack
The track object.

Return The media associated with the specified track. If the track is not valid, 0 is
returned.

Comments Use GetTrackMedia to obtain the media associated with a particular track.
Some QuickTime for Windows calls require that the media, and not the track,
be used to access media specific information. You can use the routines
GetMoviesError and GetMoviesStickyError to test for failure of
this call.

Example Track trkTrack;
Media mdMedia;
OSType mediaType;

trkTrack = GetMovieIndTrack(mMovie, 1);
mdMedia = GetTrackMedia(trkTrack);
GetMediaHandlerDescription(mdMedia, &mediaType, NULL, NULL);

See Also

Functions GetMovieIndTrack, GetMovieIndTrackType, GetMediaTrack

Data Types Media, Track

GetTrackMovie

Syntax Movie GetTrackMovie(Track trkTrack)

Parameters Track trkTrack
The track object.

Return The movie associated with the specified track. If the track is invalid, 0 is
returned for the movie.

Comments Use GetTrackMovie in cases where you are provided with a track but need to
get back to its owner movie. You can use the routines GetMoviesError
and GetMoviesStickyError to test for failure of this call.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 155

Example void myTrackFunction(Track trkTrack)
{
 Movie mMovie;

 mMovie = GetTrackMovie(trkTrack);

.

.

.
}

See Also

Functions GetMovieIndTrack, GetMovieIndTrackType, GetMediaTrack

Data Types Movie, Track

GetTrackPict

Syntax PicHandle GetTrackPict(Track trkTrack, TimeValue
tvTime)

Parameters Track trkTrack
The track object.

TimeValue tvTime
The time within the track to retrieve the picture from.

Return A picture object. A NULL return indicates failure. You can also use
GetMoviesError and GetMoviesStickyError to test for failure of
this call.

Comments This function may be called whether a movie is playing or not.

Use this function to retrieve the picture of a specified track, as opposed to the
entire movie. This is useful when the movie contains multiple tracks with
visual data, such as video and text.

The picture object returned is unusable by Windows directly. Use the function
PictureToDIB to convert the image to a Windows Device Independent
Bitmap (DIB). An alternative to converting the image is using DrawPicture
to display it at specified coordinates.

See Also

Functions GetMoviePict, DrawPicture, KillPicture

QuickTime for Windows 2.0 Developer's Manual

 Page 156  1994 Apple Computer December 21, 1994

Data Types Track, PicHandle, TimeValue

GetUserData

Syntax OSErr GetUserData (UserData udData,
 LPHANDLE lphData, OSType ostType, LONG lIndex,
 LPLONG lplSize)

GetUserData retrieves data from an item in a user data list.

Parameters UserData udData
The handle to the user data list.

LPHANDLE lphData
A handle for a block memory that will receive the requested
data. This function will reallocate this memory to accommodate
the data, if necessary.

OSType ostType
The user data type.

LONG lIndex
Each user data item is identified by a unique index value. Index
values are assigned sequentially within a user data type starting
with 1.

LPLONG lplSize
The size of the data returned.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. You can use the routines GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments A movie's user data list is placed in a movie by its creator and may contain
items of various types. A common type is text containing copyright data,
names of people involved in the movie's production, special hardware and
software requirements, and other types of information about the movie. By
convention, text user data types start with a "" symbol. A list of commonly
used text user data types may be found in Part 15 of QuickTime for Windows
Concepts in the overview.

Example See the example in the description of GetUserDataText.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 157

See Also

 Functions CountUserDataType, GetMovieUserData,
GetUserDataText, GetNextUserDataType,
GetMoviesError, GetMoviesStickyError

 Data Types UserData

GetUserDataText

Syntax OSErr GetUserDataText (UserData udData, LPHANDLE
 lphData, OSType ostType, LONG lIndex,
 UINT uRegionTag, LPLONG lplSize)

GetUserDataText retrieves text from an item in a user data list. Each user
data text item may have alternative text. For example, multiple languages may
be supported. Each alternative text value is identified by a region code. A table
of these codes is provided in Appendix B.

Parameters UserData udData
The handle to the user data list.

LPHANDLE lphData
A handle for a block memory that will receive the requested
data. This function will reallocate this memory to accommodate
the data, if necessary.

OSType ostType
The user data type.

LONG lIndex
Each user data item is identified by a unique index value. Index
values are assigned sequentially within a user data type starting
with 1.

UINT uRegionTag
A region tag that may identify alternate text. A table of these
codes is provided in Appendix B.

LPLONG lplSize
The size of the text value returned.

QuickTime for Windows 2.0 Developer's Manual

 Page 158  1994 Apple Computer December 21, 1994

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. You can use the routines GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments A movie's user data list is placed in a movie by its creator and may contain
items of various types. A common type is text containing copyright data,
names of people involved in the movie's production, special hardware and
software requirements, and other types of information about the movie. By
convention, text user data types start with a "" symbol. A list of commonly
used text user data types may be found in Part 15 of QuickTime for Windows
Concepts in the overview.

Example // A function that steps through the user data list

void CheckUserDataFunctions (Movie mCheck, UINT uRegionTag)
 {
 UserData udMovie;
 OSType osType;
 LONG lUserDataCount;
 LONG i;
 LONG lByteCount;
 HGLOBAL hgMem;
 char szText [256];
 LPSTR lpszText;

// Get the user data handle

 udMovie = GetMovieUserData (mCheck);

// Allocate memory - note 128 is arbitrary amount

 hgMem = GlobalAlloc (GMEM_MOVEABLE, 128);

// Find the first user data type

 osType = GetNextUserDataType (udMovie, 0);

// Parse the user data list

 while (osType != 0)
 {
 lUserDataCount = CountUserDataType (udMovie, osType);
 for (i = 1; i <= lUserDataCount; i++)
 {
 if (GetUserDataText (udMovie, &hgMem, osType, i,
 uRegionTag, &lByteCount) == 0)
 {

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 159

 lpszText = (LPSTR) GlobalLock (hgMem);
 lpszText [lByteCount] = '\0';
 wsprintf (szText, "User Data of Type: %ld/%ld/%s",
 osType, i, lpszText);
 /* Display the text. */
 GlobalUnlock (hgMem);
 }
 }
 osType = GetNextUserDataType (udMovie, osType);
 }

// The program must free the memory

 GlobalFree (hgMem);
 }

See Also

 Functions CountUserDataType, GetMovieUserData,
GetUserData, GetNextUserDataType,
GetMoviesError, GetMoviesStickyError

 Data Types UserData, OSType

GetVideoInfo

Syntax OSErr GetVideoInfo (Movie mMovie,
 ImageDescription FAR *)

GetVideoInfo retrieves information about a movie's video track.

Parameters Movie mMovie
The movie object.

ImageDescription FAR *idVideoInfo
The address of the image description data.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. The image description data is populated with
information about the movie's video track. Use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments Note: This routine is obsolete. Use GetMediaSampleDescription instead.

QuickTime for Windows 2.0 Developer's Manual

 Page 160  1994 Apple Computer December 21, 1994

Example Movie mMovie;
ImageDescription idVideoInfo;
•
•
idVideoInfo.idSize = sizeof (ImageDescription);
GetVideoInfo (mMovie, &idVideoInfo);

See Also

Functions GetSoundInfo, GetMediaSampleDescription,
GetMoviesError, GetMoviesStickyError

Data Types ImageDescription

HGetState

Syntax signed char HGetState(Handle theHandle)

Parameters Handle theHandle
The memory handle

Return A byte containing the current state of the handle.

Comments Use HGetState to store the current lock state of the handle before calling
HLock. You can then use HSetState to restore the state later. This is necessary
as HLock and HUnlock do not use a counter on the lock state, only a boolean
flag.

Example signed char saveState;
LPVOID lpvPtr;

saveState = HGetState(hHandle);
HLock(saveState);
lpvPtr = DereferenceHandle(hHandle);
.
.
.
HSetState(hHandle, saveState);

See Also

Functions HSetState, HLock, NewHandle

Data Types Handle

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 161

HLock

Syntax void HLock(Handle theHandle)

Parameters Handle theHandle
The memory handle

Return Use MemError to check for errors.

Comments HLock locks down the memory block referenced by theHandle. The contents
of the block can only be accessed if the Handle is locked. Use HUnlock to
unlock the handler. The lock state is stored as a boolean, not as a counter. Use
HGetState and HSetState to save and restore the current lock state.

See Also

Functions HUnlock, HGetState, HSetState

Data Types Handle

HSetState

Syntax void HSetState(Handle theHandle, signed char state)

Parameters Handle theHandle
The memory handle

signed char state
A byte containing the new state of the handle

Return Use MemError to check for failure

Comments Use HSetState to restore the handle’s lock state to the state previously obtained
using HGetState. Because the handle’s lock state is stored as a boolean flag
instead of using a counter, HGetState and HSetState are provided to allow you
to save and restore a Handle’s current lock state.

QuickTime for Windows 2.0 Developer's Manual

 Page 162  1994 Apple Computer December 21, 1994

Example signed char saveState;
LPVOID lpvPtr;

saveState = HGetState(hHandle);
HLock(saveState);
lpvPtr = DereferenceHandle(hHandle);
.
.
.
HSetState(hHandle, saveState);

See Also

Functions HGetState, HLock, HUnlock

Data Types Handle

HUnlock

Syntax void HUnlock(Handle theHandle)

Parameters Handle theHandle
The memory handle

Return Use MemError to check for failure

Comments HUnlock unlocks the memory block referenced by theHandle. The contents of
the block can only be accessed if the Handle is locked. Use HLock to lock the
handler. The lock state is stored as a boolean, not as a counter. Use HGetState
and HSetState to save and restore the current lock state.

See Also

Functions HLock, DereferenceHandle, HGetState, HSetState

Data Types Handle

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 163

KillPicture

Syntax VOID KillPicture (PicHandle phPicture)

KillPicture frees any memory being used by a QuickTime for Windows
picture. Your program should call this routine when it is done working with a
QuickTime for Windows picture.

Parameters PicHandle phPicture
The picture object whose memory is being released.

Return None. Use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments Either KillPicture or DisposePicture must be called, ultimately, for
each picture instantiated by your program. It does not affect the DOS file
containing the picture.

Example PicHandle phPicture;
PicFile pfPicture;
•
•
if (!OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 phPicture = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }
•
•
KillPicture (phPicture);

See Also

Functions GetPictureFromFile, OpenPictureFile, ClosePictureFile,
DisposePicture, GetMoviesError, GetMoviesStickyError

MAKELFIXED

Syntax MAKELFIXED(integer, fract)

MAKELFIXED is a macro used to construct an LFIXED variable.

QuickTime for Windows 2.0 Developer's Manual

 Page 164  1994 Apple Computer December 21, 1994

Parameters integer
A signed sixteen-bit value representing the integral part of the
LFIXED variable.

fract
An unsigned sixteen-bit value representing the fractional part of
the LFIXED variable.

Comments LFIXED variables are normally used to hold movie rates in QuickTime for
Windows. For example, the LFIXED value 0x0028000 could be used to
represent a rate of 2.5.

Example LFIXED lfxRate;

// Set the movie rate to 2.5

 lfxRate = MAKELFIXED(0x0002, 0x8000);

See Also

Functions MAKESFIXED (macro)

Data Types LFIXED, SFIXED

MAKESFIXED

Syntax MAKESFIXED(integer, fract)

MAKESFIXED is a macro used to construct an SFIXED variable.

Parameters integer
A signed eight-bit value representing the integral part of the
SFIXED variable.

fract
An unsigned eight-bit value representing the fractional part of the
SFIXED variable.

Comments SFIXED variables are normally used to hold movie sound track volumes in
QuickTime for Windows. For example, the SFIXED value 0x0080 could be
used to represent a sound volume of 0.5.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 165

Example SFIXED sfxVolume;

// Set the movie sound volume to 0.5

 sfxVolume = MAKESFIXED(0x00, 0x80);

See Also

Functions MAKELFIXED (macro)

Data Types LFIXED, SFIXED

MCActionFilter

Syntax Boolean CALLBACK MCActionFilter (MovieController
 mcController, UINT uAction, LPVOID lpParam,
 LONG lRefCon)

MCActionFilter is the prototype for the filter function set by the routine
MCSetActionFilter. It shows the parameters you must pass to your filter,
and the value your filter must return.

Parameters MovieController mcController
The movie controller object.

UINT uAction
The action to be filtered, which is the same as the one passed to
MCDoAction.

LPVOID lpParam
The optional extra parameter that modifies the action referenced
by uAction, which is the same as the one passed to
MCDoAction.

LONG lRefcon
Additional data of use to the filter when processing the action.
Should be coded as 0L if not used.

Return TRUE indicates that the movie controller doesn't have to handle the action
(since your filter has taken appropriate action), FALSE that it does.

Comments MCActionFilter is not a defined QuickTime for Windows function. It is a
prototype only, used as a template for your filter functions.

QuickTime for Windows 2.0 Developer's Manual

 Page 166  1994 Apple Computer December 21, 1994

Example Boolean CALLBACK __export MyFilter (MovieController, UINT,
 LPVOID, LONG);
•
•
Boolean CALLBACK __export MyFilter (MovieController
mcController,
 UINT uAction, LPVOID lpVoid, LONG lRefCon)
 {
 switch (uAction)
 {
 /* cases */
 }

 return FALSE;
 }

See Also

Functions MCSetActionFilter

MCActivate

Syntax ComponentResult MCActivate (MovieController
 mcController, HWND hWnd, Boolean bActivate)

MCActivate sets a movie controller's state to active or inactive.

Parameters MovieController mcController
The movie controller object.

HWND hWnd
The controller parent's window handle.

Boolean bActivate
TRUE to set the controller active.
FALSE to set the controller inactive.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 167

Comments An inactive movie controller cannot receive mouse clicks and its appearance is
grayed. Movie controllers are created with an active state by default.

A movie/movie controller pair can have opposing states. For example, a playing
movie's controller can be deactivated, graying it and prohibiting further mouse
input, but the movie will keep playing. In the case where the controller is active
and the movie is inactive, the movie will receive no service from the QuickTime
for Windows scheduler and will not play even though the controller is
functional.

More than one movie controller can be active at a time. Both attached and
detached movie controllers can be made inactive.

There is no QuickTime for Windows function to query the active state of a
movie controller.

Example MovieController mcController;
HWND hWndParent;
•
•
// Make the controller inactive to prevent its use

 MCActivate (mcController, hWndParent, FALSE);

See Also

Functions GetMovieActive, SetMovieActive

MCDoAction mcActionActivate

MCDoActionSee also the index entries for individual mcActions
used by MCDoAction

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction causes a movie controller perform a specified action, based on
the parameters passed to it.

QuickTime for Windows 2.0 Developer's Manual

 Page 168  1994 Apple Computer December 21, 1994

Parameters MovieController mcController
The movie controller object.

UINT uAction
An action flag parameter with the prefix "mcAction...".
Each action flag parameter is documented in detail in the
following pages.

LPVOID lpvParams
A modifier of the uAction parameter.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments MCDoAction is a powerful and versatile routine, often called by QuickTime
for Windows internally, that is used to dictate most of the movie controller's
behavior by taking particular defined actions. There are many mcActions in
the QuickTime for Windows API, ranging from starting the movie to toggling
low-level attributes. In most cases, an additional parameter is required to
modify the task of the mcAction parameter. Often this is a Boolean value
which can turn a certain attribute on or off, or a pointer to a value holding state
information.

For example, your application might define a menu item that stops all currently
playing movies. When the user selects this menu item, your application could
use the MCDoAction function to instruct each controller to stop playing. You
would do so by specifying the mcActionPlay action with the last parameter
set to specify that the controller stop playing the movie.

Often you will issue a MCDoAction call in response to a user action,
such as a menu selection. More importantly, you can trap a MCDoAction
event issued by QuickTime for Windows itself in a filter, since QuickTime for
Windows passes all MCDoAction calls through your filter (if you have one)
before processing them. For further details, see MCSetActionFilter.

Example MovieController mcController;
•
•
// Disable the keyboard interface

 MCDoAction (mcController, mcActionSetKeysEnabled,
 (LPVOID) FALSE);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 169

See Also

Functions MCSetActionFilter

MCDoAction mcActionActivate

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionActivate parameter causes the movie
controller to be activated.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionActivate

LPVOID lpvParams
NULL

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments An inactive movie controller cannot receive mouse clicks and its appearance is
grayed. Movie controllers are created with an active state by default.

A movie/movie controller pair can have opposing states. For example, a playing
movie's controller can be deactivated, graying it and prohibiting further mouse
input, but the movie will keep playing. In the case where the controller is active
and the movie is inactive, the movie will receive no service from the QuickTime
for Windows scheduler and will not play even though the controller is
functional.

More than one movie controller can be active at a time. Both attached and
detached movie controllers can be made inactive.

Example MovieController mcController;
•
•
// Activate the movie controller

 MCDoAction (mcController, mcActionActivate, NULL);

QuickTime for Windows 2.0 Developer's Manual

 Page 170  1994 Apple Computer December 21, 1994

See Also

Functions MCActivate, MCDoAction, MCSetActionFilter

MCDoAction mcActionDeactivate

MCDoAction mcActionBadgeClick

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

Your filter receives a mcActionBadgeClick notification when the user has
clicked on a movie’s badge.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionBadgeClick

LPVOID lpvParams
Contains an LPBOOL which points to a boolean which is
initially set to false. Your filter routine can set this boolean to
false to cause the movie controller to ignore the click in the
badge. This can be useful in cases where your application may
wish to temporarily disable the use of badge clicks, while
allowing the badge to remain visible.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Your application should normally never issue this action. An action filter
function may trap it when the user has clicked on a movie's badge. See the
description of MCSetActionFilter for details on the filter procedure.

If a controller's badge capability is enabled, then the badge is displayed
whenever the controller is not visible. When the controller is visible, the badge
is not displayed. If the badge capability is disabled, the badge is never
displayed.

Example See the sample program listing FILTERS.C in the QuickTime for Windows
Tutorial section of this manual for further information about filters.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 171

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetUseBadge

MCDoAction mcActionControllerSizeChanged

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

Your filter receives a mcActionControllerSizeChanged notification
when the user has resized the movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionControllerSizeChanged

LPVOID lpvParams
NULL

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Your application should normally never issue this action. An action filter
function may trap it when the user has resized the movie controller. See the
description of MCSetActionFilter for details on the filter procedure.

Example See the sample program listing FILTERS.C in the QuickTime for Windows
Tutorial section of this manual for further information about filters.

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionDeactivate

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

QuickTime for Windows 2.0 Developer's Manual

 Page 172  1994 Apple Computer December 21, 1994

MCDoAction with the mcActionDeactivate parameter causes the
movie controller to be deactivated.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionDeactivate

LPVOID lpvParams
NULL

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments An inactive movie controller cannot receive mouse clicks and its appearance is
grayed. Movie controllers are created with an active state by default.

A movie/movie controller pair can have opposing states. For example, a
playing movie's controller can be deactivated, graying it and prohibiting
further mouse input, but the movie will keep playing. In the case where the
controller is active and the movie is inactive, the movie will receive no service
from the QuickTime for Windows scheduler and will not play even if the
controller is functional.

More than one movie controller can be active at a time. Both attached and
detached movie controllers can be made inactive.

Example MovieController mcController;
•
•
// Deactivate the movie controller

 MCDoAction (mcController, mcActionDeactivate, NULL);

See Also

Functions MCActivate, MCDoAction, MCSetActionFilter

MCDoAction mcActionActivate

MCDoAction mcActionDraw

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 173

MCDoAction with the mcActionDraw parameter causes the movie image
to be redrawn.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionDraw

LPVOID lpvParams
NULL

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Your application can use MCDoAction with this parameter to send an update
event to a movie controller.

Example MovieController mcController;
•
•
// Update the movie image

 MCDoAction (mcController, mcActionDraw, NULL);

See Also

Functions MCDoAction, MCDraw, MCSetActionFilter

MCDoAction mcActionGetFlags

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetFlags parameter retrieves a set of
flag values that determine the behavior of the Movie Controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetFlags

LPVOID lpvParams

QuickTime for Windows 2.0 Developer's Manual

 Page 174  1994 Apple Computer December 21, 1994

A pointer to a long integer that contains the set of flag values:

mcFlagsUseWindowPalette
mcFlagSuppressStepButtons
mcFlagSuppressSpeakerButton

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments The retrieved flags are defined as follows:

mcFlagSuppressStepButtons - Determines whether the movie
controller displays the step buttons. The step buttons allow the user to step the
movie forward or backward one frame at a time. If this flag is set, the
controller does not display the step buttons.

mcFlagSuppressSpeakerButton - Determines whether the movie
controller displays the speaker button. The speaker button allows the user to
control the movie's sound. If this flag is set, the controller does not display the
speaker button.

mcFlagsUseWindowPalette - Determines whether the movie controller
constructs a custom color palette, based on the color values found in the
movie. This flag only works with display drivers that support palettes,
typically those drivers that handle colors at pixel depth eight.

Example MovieController mcController;
LONG lFlags;
•
•
// Hide the speaker button

MCDoAction (mcController, mcActionGetFlags
, (LPVOID) &lFlags);
lFlags |= mcFlagSuppressSpeakerButton;
MCDoAction (mcController, mcActionSetFlags, (LPVOID) lFlags);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetFlags

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 175

MCDoAction mcActionGetKeysEnabled

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetKeysEnabled parameter
determines whether a movie controller's keyboard interface is enabled.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetKeysEnabled

LPVOID lpvParams
A pointer to a Boolean, set to TRUE if keyboard interface is
enabled, FALSE if not.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments An inactive keyboard interface is the default attribute for a new movie
controller. All key presses are ignored if the controller is in an inactive state.

Example MovieController mcController;
Boolean bEnabled;
•
•
// Enable keystrokes for movie if they're disabled

 MCDoAction (mcController, mcActionGetKeysEnabled,
 (LPVOID) &bEnabled);
 if (!bEnabled)
 MCDoAction (mcController, mcActionSetKeysEnabled,
 (LPVOID) TRUE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetKeysEnabled

QuickTime for Windows 2.0 Developer's Manual

 Page 176  1994 Apple Computer December 21, 1994

MCDoAction mcActionGetLooping

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetLooping determines whether
looping is enabled for a movie controller

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetLooping

LPVOID lpvParams
A pointer to a Boolean, set to TRUE if looping is enabled,
FALSE if not.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments A movie controller with looping enabled plays a movie continuously, starting
over at the beginning of the movie when the end is reached. Palindrome
looping makes the movie play backward to the beginning before starting over.

Example MovieController mcController;
Boolean bLoop;
•
•
// Turn looping on for a movie if it is off

 MCDoAction (mcController, mcActionGetLooping,
 (LPVOID) &bLoop);
 if (!bLoop)
 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetLooping, mcActionSetLoopIsPalindrome

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 177

MCDoAction mcActionGetLoopIsPalindrome

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetLoopIsPalindrome determines
whether palindrome looping is enabled for a movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetLoopIsPalindrome

LPVOID lpvParams
A pointer to a Boolean, set to TRUE if palindrome looping is
enabled, FALSE if not.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments A movie controller with looping enabled plays a movie continuously, starting
over at the beginning of the movie when the end is reached. Palindrome
looping makes the movie play backward to the beginning when it reaches the
end. Normal looping must also be enabled in order for palindrome looping to
work.

Example MovieController mcController;
Boolean bLoop;
•
•
// Turn palindrome looping on for a movie if it is off

 MCDoAction (mcController, mcActionGetLoopIsPalindrome,
 (LPVOID) &bLoop);
 if (!bLoop)
 {
 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) TRUE);
 }

See Also

Functions MCDoAction, MCSetActionFilter

QuickTime for Windows 2.0 Developer's Manual

 Page 178  1994 Apple Computer December 21, 1994

MCDoAction mcActionGetLooping, mcActionSetLooping,
mcActionSetLoopingIsPalindrome

MCDoAction mcActionGetPlayEveryFrame

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetPlayEveryFrame parameter
determines if the movie controller has been instructed to play every frame in
the movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetPlayEveryFrame

LPVOID lpvParams
A pointer to a Boolean, set to TRUE if movie controller set to
play every frame in the movie, FALSE if not.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments If the movie is playing every frame, the sound will automatically be muted.

Example MovieController mcController;
Boolean bPlay;
•
•
// See if every frame is being played. If not, make it so.

 MCDoAction (mcController, mcActionGetPlayEveryFrame,
 (LPVOID) &bPlay);
 if (!bPlay)
 MCDoAction (mcController, mcActionSetPlayEveryFrame,
 (LPVOID) TRUE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetPlayEveryFrame

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 179

MCDoAction mcActionGetPlayRate

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetPlayRate parameter determines the
movie's play rate.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetPlayRate

LPVOID lpvParams
Pointer to a LFIXED play rate value.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Rate of play values greater than 0 correspond to forward rates; values less than
0 play the movie backward. A value of 0 stops the movie. The integer portion
of the LFIXED value is signed. The fractional part is not.

The LFIXED value is the rate of the movie expressed as a multiplier of the
recorded rate. For example, a value of 1.0 means play the movie at the
recorded rate. A value of 1.5 would mean play the movie one and 1/2 times
faster than its recorded rate.

Use MCDoAction with mcActionPlay to set a movie's playback rate.

Example MovieController mcController;
LFIXED lfxRate;
•
•
// Get the movie's play rate.

 McDoAction (mcController, mcActionGetPlayRate,
 (LPVOID) &lfxRate);

See Also

Functions GetMoviePreferredRate, MCDoAction, MCSetActionFilter

MCDoAction mcActionPlay

QuickTime for Windows 2.0 Developer's Manual

 Page 180  1994 Apple Computer December 21, 1994

MCDoAction mcActionGetPlaySelection

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetPlaySelection parameter
determines whether a movie is constrained to playing a selected portion of a
movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetPlaySelection

LPVOID lpvParams
A pointer to a Boolean, set to TRUE if the movie will play only
its selected portion, FALSE if not.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments A selection can be made and cleared using the movie controller. A darkened
section of its slider represents the selected part of the movie.

Example MovieController mcController;
Boolean bPlaySel;
•
•
// Turn off play selection if it is on

 MCDoAction (mcController, mcActionGetPlaySelection,
 (LPVOID) &bPlaySel);
 if (bPlaySel)
 MCDoAction (mcController, mcActionSetPlaySelection,
 (LPVOID) FALSE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetPlaySelection, mcActionSetSelectionBegin,
mcActionSetSelectionDuration

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 181

MCDoAction mcActionGetTimeSliderRect

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetTimeSliderRect parameter
returns the rectangle enclosing the slider in the Movie Controller. This action is
useful, for example, in applications that display additional information, such as
SMPTE time code, in a window that tracks the current position of the slider.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetTimeSliderRect

LPVOID lpvParams
A pointer to a RECT. Set to empty if no slider exists. Otherwise,
set to the smallest rectangle enclosing the slider. This rectangle
is expressed in the co-ordinate space of the Movie Controller
parent window.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

MCDoAction mcActionGetUseBadge

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetUseBadge parameter determines
whether a movie controller's ability to display a badge is enabled or disabled.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetUseBadge

LPVOID lpvParams
A pointer to a Boolean, set to TRUE if the badge can be used,
FALSE if not.

QuickTime for Windows 2.0 Developer's Manual

 Page 182  1994 Apple Computer December 21, 1994

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments If a controller's badge capability is enabled, then the badge is displayed
whenever the controller is not visible. When the controller is visible, the badge
is not displayed. If the badge capability is disabled, the badge is never
displayed.

Example MovieController mcController;
Boolean bBadge;
•
•
// Turn on the badge if it is off

 MCDoAction (mcController, mcActionGetUseBadge,
 (LPVOID) &bBadge);
 if (!bBadge)
 MCDoAction (mcController, mcActionSetUseBadge,
 (LPVOID) TRUE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetUseBadge, mcActionBadgeClick

MCDoAction mcActionGetVolume

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetVolume parameter retrieves the
movie's volume.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetVolume

LPVOID lpvParams
A pointer to an SFIXED which will receive the volume.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 183

Comments Volume ranges in value from -256 to +256. A negative value indicates the
sound is muted, while preserving the absolute value of the volume.

Example MovieController mcController;
SFIXED sfxVolume;
•
•
// Get the movie's volume

 MCDoAction (mcController, mcActionGetVolume,
 (LPVOID) &sfxVolume);

See Also

Functions GetMoviePreferredVolume, MCDoAction,
MCSetActionFilter

MCDoAction mcActionSetVolume

MCDoAction mcActionGoToTime

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionGoToTime parameter causes the movie to
be positioned at the specified time value.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGoToTime

LPVOID lpvParams
The address of a time record specifying the position at which
the movie will be set.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

QuickTime for Windows 2.0 Developer's Manual

 Page 184  1994 Apple Computer December 21, 1994

Comments The minimum TimeValue you can supply in the TimeRecord pointed to in
the third parameter is 0, which is the very beginning of the movie. The
TimeValue is expressed in time units which are related to the movie's time
scale.

The time coordinate system contains a time scale scored in time units. The
number of units that pass per second quantifies the scale: a time scale of 26
means that 26 units pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as a
number of time units. Particular points in a movie can be identified by a time
value, which is the number of time units to that point from the beginning of the
movie.

Different movies may have different time scales. Use ConvertTimeScale
to compare TimeValues between different movies.

Example MovieController mcController;
TimeValue tvLocation;
Movie mMovie;
TimeRecord trRecord;
•
•
// Advance the movie to the poster frame

tvLocation = GetMoviePosterTime (mMovie);
trRecord.value.dwLo = tvLocation;
trRecord.value.dwHi = 0;
trRecord.scale = GetMovieTimeScale (mMovie);
trRecord.base = 0;
MCDoAction (mcController, mcActionGoToTime,
 (LPVOID) &trRecord);

See Also

Functions ConvertTimeScale, GetMoviePosterTime,
GetMovieTimeScale, MCDoAction, MCGetCurrentTime,
MCSetActionFilter

MCDoAction mcActionIdle

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionIdle parameter allocates processing time
to a movie controller.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 185

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionIdle

LPVOID lpvParams
NULL

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments This action is used internally by QuickTime for Windows to keep movies
playing. A filter you create can trap it and initiate further processing based
on its being issued. In unusual cases where your program cannot use
MCIsPlayerMessage, this action can be used directly to yield time to a
movie to play.

Example See the sample program listing FILTERS.C in the QuickTime for Windows
Tutorial section of this manual for further information about filters.

See Also

Functions MCDoAction, MCIdle, MCSetActionFilter

MCDoAction mcActionKey

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionKey parameter causes a Windows
WM_KEYDOWN or WM_KEYUP message to be passed to a movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionKey

LPVOID lpvParams
The address of a Windows MSG structure..

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

QuickTime for Windows 2.0 Developer's Manual

 Page 186  1994 Apple Computer December 21, 1994

Comments This action is normally issued by QuickTime for Windows internally when a
key is pressed. A filter you create can trap it and initiate further processing
based on its being issued. In unusual cases where your program cannot use
MCIsPlayerMessage, this action could be used directly to facilitate
playing a movie.

Example See the sample program listing FILTERS.C in the QuickTime for Windows
Tutorial section of this manual for further information about filters.

See Also

Functions MCDoAction, MCSetActionFilter, MCKey

MCDoAction mcActionMouseDown

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

Your filter receives a mcActionMouseDown notification when the user has
clicked on some part of the movie, its badge or the controller. For more
specific notifications of what was clicked on, see mcActionMovieClick and
mcActionBadgeClick.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionMouseDown

LPVOID lpvParams
EventRecordPtr for the click. The event record contains the
coordinates of the click.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Your application should normally never issue this action. An action filter
function may trap it when the user has clicked on some part of the movie, its
badge or the controller. See the description of MCSetActionFilter for
details on the filter procedure.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 187

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionMovieClick, mcActionBadgeClick

MCDoAction mcActionMovieClick

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

Your filter receives a mcActionMovieClick notification when the user has
clicked on the movie iteself, and not the badge or the controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionMovieClick

LPVOID lpvParams
EventRecordPtr for the click. The event record contains the
coordinates of the click.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Your application should normally never issue this action. An action filter
function may trap it when the user has clicked in the movie’s content. See the
description of MCSetActionFilter for details on the filter procedure.

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionMouseDown, mcActionBadgeClick

QuickTime for Windows 2.0 Developer's Manual

 Page 188  1994 Apple Computer December 21, 1994

MCDoAction mcActionPlay

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionPlay parameter causes the movie to play
at a specified play rate.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionPlay

LPVOID lpvParams
LFIXED play rate value.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Play rate values greater than 0 correspond to forward rates; values less than 0
play the movie backward. A value of 0 stops the movie. The integer portion of
the LFIXED value is signed. The fractional part is not.

The LFIXED value is the rate of the movie expressed as a multiplier of the
recorded rate. For example, a value of 1.0 means play the movie at its normal
rate. A value of 1.5 would mean play the movie one and 1/2 times faster than
its normal rate.

Use MCDoAction with mcActionGetPlayRate to determine a movie's
playback rate.

Example Movie mMovie;
MovieController mcController;
LFIXED lfxRate;
•
•
// Play the movie at 1.5 times its preferred rate.

 lfxRate = MAKELFIXED(0x0001, 0x8000);
 McDoAction (mcController, mcActionPlay, (LPVOID) lfxRate);

See Also

Functions GetMoviePreferredRate, MCDoAction, MCSetActionFilter

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 189

MCDoAction mcActionGetPlayRate

MCDoAction mcActionSetFlags

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetFlags parameter sets a defined
collection of flags that determine the behavior of the Movie Controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetFlags

LPVOID lpvParams
A long integer that contains the flags to be set:

mcFlagsUseWindowPalette
mcFlagSuppressStepButtons
mcFlagSuppressSpeakerButton

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments The following flags are defined:

mcFlagSuppressStepButtons - Determines whether the movie
controller displays the step buttons. The step buttons allow the user to step the
movie forward or backward one frame at a time. If this flag is set, the
controller does not display the step buttons.

mcFlagSuppressSpeakerButton - Determines whether the movie
controller displays the speaker button. The speaker button allows the user to
control the movie's sound. If this flag is set, the controller does not display the
speaker button.

mcFlagsUseWindowPalette - Determines whether the movie controller
constructs a custom color palette, based on the color values found in the
movie. This flag only works with display drivers that support palettes,
typically those drivers that handle colors at a pixel depth of eight.

QuickTime for Windows 2.0 Developer's Manual

 Page 190  1994 Apple Computer December 21, 1994

Example MovieController mcController;
LONG lFlags;

// Show the speaker button

 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags &= ~mcFlagSuppressSpeakerButton;
 MCDoAction (mcController, mcActionSetFlags, (LPVOID)
 lFlags);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetFlags

MCDoAction mcActionSetGrowBoxBounds

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetGrowBoxBounds sets the size of the
rectangle in which a movie can be resized.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetGrowBoxBounds

LPVOID lpvParams
A pointer to the bounds rectangle which defines the new limits.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Using an empty rectangle results in a movie controller not having a grow box.
Using the current bounds rectangle (see MCGetControllerBoundsRect)
allows resizing the movie smaller only. Using the client window rectangle
allows resizing the movie up to the size of the client window.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 191

Example MovieController mcController;
RECT rcBounds;
•
•
// Allow resizing only less than current bounds

 MCGetControllerBoundsRect (mcController, &rcBounds);
 MCDoAction (mcController, mcActionSetGrowBoxBounds,
 (LPVOID) &rcBounds);

See Also

Functions MCDoAction, MCGetControllerBoundsRect,
MCSetActionFilter

MCDoAction mcActionSetKeysEnabled

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetKeysEnabled sets a movie
controller's keyboard interface to the active or inactive state.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetKeysEnabled

LPVOID lpvParams
A Boolean, set to TRUE to enable a keyboard interface, FALSE
to disable it.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments An inactive keyboard interface is the default attribute for a new movie
controller. If the movie controller is made inactive, all key presses are ignored.

Example MovieController mcController;
•
•
// Enable a movie controller's keyboard interface

 MCDoAction (mcController, mcActionSetKeysEnabled,
 (LPVOID) TRUE);

QuickTime for Windows 2.0 Developer's Manual

 Page 192  1994 Apple Computer December 21, 1994

See Also

Functions MCDoAction, MCKey, MCSetActionFilter

MCDoAction mcActionGetKeysEnabled, mcActionKey

MCDoAction mcActionSetLooping

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetLooping parameter enables or
disables looping for a movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetLooping

LPVOID lpvParams
A Boolean, set to TRUE to enable looping, FALSE to disable it.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments A movie controller with looping enabled plays a movie continuously, starting
over at the beginning of the movie when the end is reached. Palindrome
looping makes the movie play backward to the beginning before starting over.

Example MovieController mcController;
•
•
// Turn looping on for a movie

 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetLooping, mcActionSetLoopIsPalindrome

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 193

MCDoAction mcActionSetLoopIsPalindrome

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetLoopIsPalindrome parameter
enables or disables palindrome looping for a movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetLoopIsPalindrome

LPVOID lpvParams
A Boolean, set to TRUE to enable palindrome looping, FALSE
to disable it.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments A movie controller with looping enabled plays a movie continuously, starting
over at the beginning of the movie when the end is reached. Palindrome
looping makes the movie play backward to the beginning when it reaches the
end. Normal looping must also be enabled in order for palindrome looping to
work.

Example MovieController mcController;
•
•
// Turn palindrome looping on for a movie

 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) TRUE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetLooping, mcActionGetLoopIsPalindrome

QuickTime for Windows 2.0 Developer's Manual

 Page 194  1994 Apple Computer December 21, 1994

MCDoAction mcActionSetPlayEveryFrame

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetPlayEveryFrame parameter
instructs the movie controller to play every frame in the movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetPlayEveryFrame

LPVOID lpvParams
A Boolean, set to TRUE to play every frame in the movie,
FALSE to play movie frames normally.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Issuing this instruction will automatically mute the movie's sound.

Example MovieController mcController;
•
•
// Instruct the movie controller to play every frame

 MCDoAction (mcController, mcActionSetPlayEveryFrame,
 (LPVOID) TRUE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetPlayEveryFrame, mcActionPlay

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 195

MCDoAction mcActionSetPlaySelection

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetPlaySelection parameter
constrains or unconstrains a movie controller to playing only the current
selection.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetPlaySelection

LPVOID lpvParams
A Boolean, set to TRUE to constrain the controller to playing
only its current selection, FALSE to unconstrain the controller.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments A selection can be made and cleared using the movie controller. A darkened
section of its slider represents the selected part of the movie.

Example MovieController mcController;
•
•
// Constrain playing to the selection

 MCDoAction (mcController, mcActionSetPlaySelection,
 (LPVOID) TRUE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetPlaySelection, mcActionSetSelectionBegin,
mcActionSetSelectionDuration

QuickTime for Windows 2.0 Developer's Manual

 Page 196  1994 Apple Computer December 21, 1994

MCDoAction mcActionSetSelectionBegin

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetSelectionBegin parameter sets
the starting point of a selected portion of a movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetSelectionBegin

LPVOID lpvParams
A pointer to a time record. You must specify the start time for
the selection in the TimeValue field.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments This action has no effect unless a mcActionSetPlaySelection has been
effected.

A selection can be made and cleared using the movie controller. A darkened
section of its slider represents the selected part of the movie.

Example MovieController mcController;
TimeRecord trRecord;
Movie mMovie;
TimeValue tvStart, tvDuration;
•
•
// Set the selection start time

 trRecord.value.dwLo = tvStart;
 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovie);
 MCDoAction (mcController, mcActionSetSelectionBegin,
 (LPVOID) &trRecord);

// Set the selection duration

 trRecord.value.dwLo = tvDuration;
 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovie);
 MCDoAction (mcController, mcActionSetSelectionDuration,
 (LPVOID) &trRecord);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 197

See Also

Functions GetMovieActiveSegment, MCDoAction, MCSetActionFilter

MCDoAction mcActionSetSelectionDuration,
mcActionSetPlaySelection

Data Types TimeScale, TimeValue

MCDoAction mcActionSetSelectionDuration

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetSelectionDuration parameter
sets the duration of a selected portion of a movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetSelectionDuration

LPVOID lpvParams
The address of a time record. You must specify the duration of
the selection in the TimeValue field.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments This action has no effect unless a mcActionSetPlaySelection has been
effected. A selection can be made and cleared using the movie controller. A
darkened section of its slider represents the selected part of the movie.

QuickTime for Windows 2.0 Developer's Manual

 Page 198  1994 Apple Computer December 21, 1994

Example MovieController mcController;
TimeRecord trRecord;
Movie mMovie;
TimeValue tvStart, tvDuration;
•
•
// Set the selection start time

 trRecord.value.dwLo = tvStart;
 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovie);
 MCDoAction (mcController, mcActionSetSelectionBegin,
 (LPVOID) &trRecord);

// Set the selection duration

 trRecord.value.dwLo = tvDuration;
 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovie);
 MCDoAction (mcController, mcActionSetSelectionDuration,
 (LPVOID) &trRecord);

See Also

Functions GetMovieActiveSegment, MCDoAction, MCSetActionFilter

MCDoAction mcActionGetSelectionBegin, mcActionSetPlaySelection,
mcActionGetPlaySelection

Data Types TimeScale, TimeValue

MCDoAction mcActionSetUseBadge

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetUseBadge parameter enables or
disables a movie controller's ability to display a badge.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetUseBadge

LPVOID lpvParams
A Boolean, set to TRUE to enable the ability to display a badge,
FALSE to disable it.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 199

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments If a controller's badge capability is enabled, then the badge is displayed
whenever the controller is not visible. When the controller is visible, the badge
is not displayed. If the badge capability is disabled, the badge is never
displayed.

Example MovieController mcController;
•
•
// Turn on the ability to display a badge

 MCDoAction (mcController, mcActionSetUseBadge,
 (LPVOID) TRUE);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetUseBadge

MCDoAction mcActionSetVolume

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetVolume parameter sets the movie's
volume.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetVolume

LPVOID lpvParams
A SFIXED value indicating the volume.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Volume ranges in value from -256 to +256. A negative value indicates the
sound is muted, while preserving the absolute value of the volume.

QuickTime for Windows 2.0 Developer's Manual

 Page 200  1994 Apple Computer December 21, 1994

Example MovieController mcController;
Movie mMovie;
SFIXED sfxVolume;
•
•
// Set the movie's volume to its preferred level

 sfxVolume = GetMoviePreferredVolume (mMovie);
 MCDoAction (mcController, mcActionSetVolume,
 (LPVOID) sfxVolume);

See Also

Functions GetMoviePreferredVolume, MCDoAction,
MCSetActionFilter

MCDoAction mcActionGetVolume

MCDoAction mcActionStep

Syntax ComponentResult MCDoAction (MovieController
 mcController, UINT uAction, LPVOID lpvParams)

MCDoAction with the mcActionStep parameter causes the movie to play
a specified number of frames at a time.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionStep

LPVOID lpvParams
A SHORT indicating the number of frames in the step.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Using a positive number of frames steps the movie forward. Using a negative
number steps the movie backward.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 201

Example MovieController mcController;
•
•
// Step the movie forward three frames

 MCDoAction (mcController, mcActionStep, (LPVOID) 3);

See Also

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionPlay

MCDraw

Syntax ComponentResult MCDraw (MovieController
 mcController, HWND hWnd)

MCDraw redraws the movie image.

Parameters MovieController mcController
The movie controller object.

HWND hWnd
The handle to the window.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments MCDraw calls MCDoAction with mcActionDraw. MCDraw is typically
used to manually refresh the movie image.

Example MovieController mcController;
HWND hWnd;
•
•
MCDraw (mcController, hWnd);

See Also

Functions MCIsPlayerMessage

MCDoAction mcActionDraw

QuickTime for Windows 2.0 Developer's Manual

 Page 202  1994 Apple Computer December 21, 1994

MCDrawBadge

Syntax ComponentResult MCDrawBadge (MovieController
 mcController, HRGN hrgnMovieRgn,
 HRGN FAR *lphrgnBadgeRgn)

MCDrawBadge displays a movie controller's badge.

Parameters MovieController mcController
The movie controller object.

HRGN hrgnMovieRgn
Must be set to NULL

HRGN FAR *lphrgnBadgeRgn
The address of the handle to a windows region which will be set
to the region occupied by the badge. If called as NULL, no
region is returned.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. The window region referenced by the third parameter
will be populated with information about the badge.

Comments The second parameter must be NULL.

A badge may be drawn whether the movie is paused or playing. Any new
movie frame, however, will overlay it. The recommended method for
displaying a badge is to specify the mcWithBadge flag when
NewMovieController is called, which will display it automatically when
the movie controller is hidden. You can also enable a controller to display a
badge by using MCDoAction with mcActionSetUseBadge.

MCDrawBadge ignores the mcWithBadge flag and will work even if the
flag was not specified when the movie controller was created.

MCSetVisible also may be used to draw a badge by side effect, if the
movie controller's visibility is set to FALSE and its badge flag is turned on.

Example MovieController mcController;
HRGN hrgnBadge;
•
•
MCDrawBadge (mcController, NULL, &hrgnBadge);

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 203

See Also

Functions MCSetVisible

MCDoAction mcActionGetUseBadge, mcActionSetUseBadge

MCGetControllerBoundsRect

Syntax ComponentResult MCGetControllerBoundsRect
 (MovieController mcController, LPRECT lprcBounds)

MCGetControllerBoundsRect retrieves the bounds rectangle of the
movie and movie controller, or just the controller, depending on whether they
are attached or detached.

Parameters MovieController mcController
The movie controller object.

LPRECT lprcBounds
The address of the bounds rectangle.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. The bounds rectangle is populated with the bounds
coordinates.

Comments If the movie controller is attached to the movie, the bounds rectangle
referenced by the second parameter is the smallest rectangle completely
encompassing both the movie and movie controller. When a controller is
detached, its dimensions alone determine the bounds rectangle. See the
illustrations in subsection A, Part 10 of the overview.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example RECT rcBounds;
MovieController mcController;
•
•
MCGetControllerBoundsRect (mcController, &rcBounds);

See Also

Functions MCNewAttachedController, MCSetControllerAttached,
MCSetControllerBoundsRect

QuickTime for Windows 2.0 Developer's Manual

 Page 204  1994 Apple Computer December 21, 1994

MCGetControllerInfo

Syntax ComponentResult MCGetControllerInfo (MovieController
 mcController, LPLONG lplMcInfoFlags)

MCGetControllerInfo determines the current status of a set of movie
controller flags.

Parameters MovieController mcController
The movie controller object.

LPLONG lplMCInfoFlags
The address of a long integer which will contain the bit flags
denoting various movie controller attributes:

mcInfoHasSound
mcInfoIsPlaying
mcInfoIsLooping
mcInfoIsInPalindrome

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values. The long integer referenced by the second parameter
will be populated with flag settings indicating controller attributes.

Comments The MCInfoFlags are defined as follows:

mcInfoHasSound - Indicates the movie has a sound track.

mcInfoIsPlaying - Indicates the movie was playing
when the call was made.

mcInfoIsLooping - Indicates the controller was playing
the movie in looping mode when the call was made.

mcInfoIsInPalindrome - Indicates the controller was
playing the movie in palindrome mode when the call was made.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 205

Example MovieController mcController;
LONG lMCInfoFlags;
•
•
// See if the movie has sound

 MCGetControllerInfo (mcController, &lMCInfoFlags);
 if (lMCInfoFlags & mcInfoHasSound)
 /* Appropriate action if movie has sound. */
 else
 /* Appropriate action if movie has no sound. */

See Also

Functions MCDoAction

MCDoAction mcActionSetLooping, mcActionSetLoopIsPalindrome,
mcActionPlay

MCGetCurrentTime

Syntax TimeValue MCGetCurrentTime (MovieController
 mcController, TimeScale FAR *tsScale)

MCGetCurrentTime retrieves the time value represented by the slider
control on the movie controller. It can also be used to obtain the time scale for
this time value.

Parameters MovieController mcController
The movie controller object.

TimeScale FAR *tsScale
A pointer to the TimeScale value. May be set to NULL if it is
not needed.

Return The TimeValue represented by the slider on the controller. If there are no
movies associated with the controller, the returned TimeValue is set to zero.

Comments This function may be called whether a movie is playing or not.

QuickTime for Windows 2.0 Developer's Manual

 Page 206  1994 Apple Computer December 21, 1994

Example Movie mMovie;
MovieController mcController;
PicHandle phPicture;
RECT rcPicture;
HDC hdc;
TimeValue tvTime;
•
•
// Retrieve frame at current movie time plus two seconds

 tvTime = MCGetCurrentTime (mcController, NULL) +
 (2 * GetMovieTimeScale (mMovie));
 if ((phPicture = GetMoviePict (mMovie, tvTime)) != NULL)
 DrawPicture (hdc, phPicture, &rcPicture, NULL);

See Also

Functions MCDoAction

MCDoAction mcActionGoToTime

Data Types TimeScale, TimeValue

MCGetMovie

Syntax Movie MCGetMovie (MovieController mcController)

MCGetMovie retrieves the movie object associated with a specified movie
controller.

Parameters MovieController mcController
The movie controller object.

Return The movie object associated with the movie controller. NULL is returned if no
movie is associated with the controller.

Comments The associated movie object is retrieved whether the controller is attached or
not.

Example MovieController mcController;
Movie mMovie;
•
•
mMovie = MCGetMovie (mcController);

See Also

Functions MCSetMovie

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 207

MCGetVisible

Syntax ComponentResult MCGetVisible (MovieController
 mcController)

MCGetVisible determines whether a movie controller is visible.

Parameters MovieController mcController
The movie controller object.

Return FALSE if the movie controller is invisible. TRUE if the movie controller is
visible. See Appendix A for error condition values.

Comments Use the function MCSetVisible to make a movie controller visible or
invisible.

Example MovieController mcController;
•
•
// Make controller invisible if it is visible

 if (MCGetVisible (mcController))
 {
 MCSetVisible (mcController, FALSE);
 }

See Also

Functions MCSetVisible, MCActivate

MCIdle

Syntax ComponentResult MCIdle (MovieController
 mcController)

MCIdle is used to keep a movie playing when your program is unable to use
MCIsPlayerMessage.

Parameters MovieController mcController
The movie controller object.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

QuickTime for Windows 2.0 Developer's Manual

 Page 208  1994 Apple Computer December 21, 1994

Comments MCIdle calls MCDoAction with mcActionIdle. Using the routine
MCIsPlayerMessage is the recommended method to keep a movie
playing, and you should use MCIdle only in special circumstances where you
must micro-manage the movie controller or cannot use
MCIsPlayerMessage.

See Also

Functions MCDoAction, MCIsPlayerMessage

MCDoAction mcActionIdle

MCIsControllerAttached

Syntax ComponentResult MCIsControllerAttached
 (MovieController mcController)

MCIsControllerAttached determines whether a movie controller is
attached to a movie.

Parameters MovieController mcController
The movie controller object.

Return TRUE if the controller is attached, FALSE if not. Otherwise an error condition.
See Appendix A for error condition values.

Comments Use the MCSetControllerAttached function to attach or detach a movie
controller. Remember not to confuse attachment with association. An attached
controller is physically adjacent to the movie on the screen. An associated
controller is used to run a movie, and need not be attached.

Example MovieController mcController;
RECT rcMovie, rcController;
•
•
// Detach the controller and move it away from movie
// But only if it is attached

 if (MCIsControllerAttached (mcController))
 {
 MCSetControllerAttached (mcController, FALSE);
 MCPositionController (mcController, &rcMovie,
 &rcController, 0L);
 }

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 209

See Also

Functions MCPositionController, MCSetControllerAttached

MCIsPlayerMessage

Syntax ComponentResult MCIsPlayerMessage (MovieController
 mcController, HWND hWnd, UINT wMessage,
 WPARAM wParam, LPARAM lParam)

MCIsPlayerMessage is the routine normally used to keep a movie playing. It is
called in a program's window procedure and redirects all messages targeted for the
movie controller.

Parameters MovieController mcController
The movie controller object.

HWND hWnd
The argument received by the window procedure.

UINT wMessage
The argument received by the window procedure.

WPARAM wParam
The argument received by the window procedure.

LPARAM lParam
The argument received by the window procedure.

Return If a message received by the window procedure is not meant for the movie
controller, MCIsPlayerMessage returns FALSE and the message gets
processed normally. If the message is handled by the movie controller,
MCIsPlayerMessage returns TRUE.

Comments For each movie controller you create, you will have to code a separate call to
MCIsPlayerMessage with the corresponding movie controller object as the first
parameter.

MCIsPlayerMessage is not the only method of playing a movie. However, it is
highly recommended. See the descriptions of MCIdle and MCKey.

QuickTime for Windows 2.0 Developer's Manual

 Page 210  1994 Apple Computer December 21, 1994

Example LONG FAR PASCAL WndProc (HWND hWnd, UINT msg, WPARAM wParam,
 LPARAM lParam)
 {
// Drive the movie controller

 if (MCIsPlayerMessage (mcController, hWnd, msg, wParam, lParam))
 return 0;

// Process the windows message

 switch (msg)
 {
 •
 •
 }
 }

See Also

Functions MCIdle, MCKey

MCKey

Syntax ComponentResult MCKey (MovieController mcController,
 WPARAM wParam, LPARAM lParam);

MCKey calls MCDoAction with mcActionKey, which causes a Windows
WM_KEYDOWN or WM_KEYUP message to be passed to a movie controller.

Parameters MovieController mcController
The movie controller object.

WPARAM wParam
The argument received by the window procedure.

LPARAM lParam
The argument received by the window procedure.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments MCKey and MCIdle can be used instead of MCIsPlayerMessage, when
your program is unable to use MCIsPlayerMessage.

See Also

Functions MCIsPlayerMessage, MCIdle

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 211

MCMovieChanged

Syntax ComponentResult MCMovieChanged (MovieController
mcController, Movie m);

Parameters MovieController mcController
The movie controller object.

Movie m
The associated movie.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments You must call MCMovieChanged after a series of one or more
SetTrackEnabled calls to instruct the Movie Controller to rebuild its
visual appearance.

Example Movie m;
Track trkText;
 •
 •
trkText = GetMovieIndTrackType (m, 1,
 TextMediaType movieTrackMediaType);
SetTrackEnabled (trkText, FALSE);
 •
 •
MCMovieChanged (mc, m);

See Also

Functions GetMovieIndTrackType, SetTrackEnabled

MCNewAttachedController

Syntax ComponentResult MCNewAttachedController
 (MovieController mcController, Movie mMovie,
 HWND hWnd, POINT ptUpperLeft)

MCNewAttachedController attaches an existing movie to an existing
movie controller.

Parameters MovieController mcController
The existing movie controller object.

QuickTime for Windows 2.0 Developer's Manual

 Page 212  1994 Apple Computer December 21, 1994

Movie mMovie
The existing movie object.

HWND hWnd
The parent window handle.

POINT ptUpperLeft
The upper left corner of the movie rectangle.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments When a movie is associated with a movie controller, a reference to the movie
object is recorded in the controller's data structure. Movie data structures
contain no elements which link them with movie controllers.

The point specified by ptUpperLeft becomes the new upper left corner of
the bounds rectangle.

Once a movie is associated with a controller, it starts playing immediately
(assuming it has a non-zero play rate, which is normally the case). To make a
movie paused when first visible and associated with a new controller, you can
use MCDoAction with an action of mcActionPlay and a play rate of 0. It
is good style to do this as soon as possible after performing the association.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example Movie mMovie;
MovieController mcController;
POINT ptUpperLeft;
•
•
MCNewAttachedController (mcController, mMovie, hWnd,
 ptUpperLeft);

See Also

Functions NewMovieController, MCSetMovie

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 213

MCPositionController

Syntax ComponentResult MCPositionController
 (MovieController mcController, LPRECT
 lprcMovieRect, LPRECT lprcControllerRect,
 LONG lControllerCreationFlags)

MCPositionController sets the size and position of a movie and its
controller. This function works with both attached and detached movie
controllers.

Parameters MovieController mcController
The movie controller object.

LPRECT lprcMovieRect
The address of a RECT structure specifying the coordinates of
the movie's bounds rectangle.

LPRECT lprcControllerRect
The address of a RECT structure specifying the coordinates of
the controller's bounds rectangle. Use NULL if the movie
controller is attached.

LONG lControllerCreationFlags
A LONG containing flags that modify the result of the routine.
These are the same flags used with NewMovieController.
If you set this parameter to 0, the movie will be centered in the
movie rectangle and the movie will be scaled to fit in that
rectangle. These flags are:

mcTopLeftMovie - Places the movie at the top left hand
corner of the movie rectangle specified.

mcScaleMovieToFit - Resizes the movie to fit into the
movie rectangle specified (excluding the area taken up by the
controller).

See subsection A, part 10 of the overview for further information
on how these flags function.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

QuickTime for Windows 2.0 Developer's Manual

 Page 214  1994 Apple Computer December 21, 1994

Comments This is the recommended call to reposition and resize a movie with a detached
controller. Remember not to confuse attachment with association. An attached
controller is physically adjacent to the movie.

An associated controller is used to run a movie, and need not be attached.

Whenever the controller bounds rectangle changes, your action filter, if any,
will get called with the mcActionControllerSizeChanged after the
changes to the rectangle have occurred.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example MovieController mcController;
RECT rcMovie, rcController;
•
•
// Detach the controller and move it away from movie

 MCSetControllerAttached (mcController, FALSE);
 MCPositionController (mcController, &rcMovie,
 &rcController, 0L);
•
•
// Re-attach the controller

 MCSetControllerAttached (mcController, TRUE);

See Also

Functions MCIsControllerAttached, MCSetControllerAttached,
NewMovieController, SetMovieBox

MCSetActionFilter

Syntax ComponentResult MCSetActionFilter (MovieController
 mcController, MCActionFilter lpfnFilter,
 LONG lRefCon)

MCSetActionFilter sets an action filter function for a movie controller.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 215

Parameters MovieController mcController
The movie controller object.

MCActionFilter lpfnFilter
The address of the user-defined filter function.

LONG lRefCon
Additional data of use to the filter when processing the action.
Should be coded as 0L if not used.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments An action filter intercepts the MCDoAction call, providing the opportunity to
process the action item before the movie controller.

The filter function must return a Boolean: TRUE indicates the controller doesn't
have to handle the action. FALSE tells the controller to complete any appropriate
processing of the action item.

To remove the filter, you must call MCSetActionFilter with the filter
function address set to NULL.

If you compile your program using Borland smart callbacks or Microsoft's -GEs
compiler option, or your filter function is in a dynamic link library, you do not
need to use MakeProcInstance on your filter address before calling
MCSetActionFilter.

QuickTime for Windows 2.0 Developer's Manual

 Page 216  1994 Apple Computer December 21, 1994

Example // Filter function declaration

 Boolean CALLBACK __export MyFilter (MovieController mcController,
 UINT uAction, LPVOID lpParam, LONG lRefCon);

// The application window procedure

 MovieController mcController;
 struct {...} *pData;
 •
 •
 MCSetActionFilter (mcController, MyFilter, (LONG) pData);

// The filter function

 Boolean CALLBACK __export MyFilter (MovieController mcController,
 UINT uAction, LPVOID lpParam, LONG lRefCon)
 {
 PVOID pStruct;

 switch (uAction)
 {
 case mcActionControllerSizeChanged:

 pStruct = (PVOID) lRefCon;

 /* Do something with structure whose address was passed. */
 •
 •
 return TRUE;

 default:
 return FALSE;
 }
 }

See Also

Functions MCDoAction, MCActionFilter

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 217

MCSetControllerAttached

Syntax ComponentResult MCSetControllerAttached
 (MovieController mcController, Boolean bAttach)

MCSetControllerAttached attaches or detaches a movie controller
from a movie.

Parameters MovieController mcController
The movie controller object.

Boolean bAttach
TRUE attaches the movie controller, FALSE detaches it.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Remember not to confuse attachment with association. An attached controller
is physically adjacent to the movie on the screen. An associated controller is
used to run a movie, and need not be attached.

If the controller is physically removed from the movie prior to attachment, it
will jump to its normal attached position directly below the movie when
MCSetControllerAttached is executed with TRUE.

Example MovieController mcController;
RECT rcMovie, rcController;
•
•
// Detach the controller and move it away from movie

 MCSetControllerAttached (mcController, FALSE);
 MCPositionController (mcController, &rcMovie,
 &rcController, 0L);

// Re-attach the controller to the movie

 MCSetControllerAttached (mcController, TRUE);

See Also

Functions MCIsControllerAttached, MCPositionController

QuickTime for Windows 2.0 Developer's Manual

 Page 218  1994 Apple Computer December 21, 1994

MCSetControllerBoundsRect

Syntax ComponentResult MCSetControllerBoundsRect
 (MovieController mcController,
 const LPRECT lprcBounds)

MCSetControllerBoundsRect resets the dimensions of a movie
controller. If the controller is attached, the movie may be resized as well.

Parameters MovieController mcController
The movie controller object.

const LPRECT lprcBounds
The address of the new bounds rectangle.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments When a movie controller is detached, its dimensions alone will be determined
by the new bounds rectangle. A movie controller's height cannot be reset. If the
rectangle has a height larger than the standard controller height, the movie
controller is centered vertically.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

When a movie controller is attached, the controller will use part of the new
bounds rectangle for itself. The movie will be sized to fit the remaining portion
of the rectangle.

Whenever the controller bounds rectangle changes, your action filter, if any,
will get called with the mcActionControllerSizeChanged after the
changes to the rectangle have occurred.

Example RECT rcBounds;
MovieController mcController;
•
•
MCSetControllerBoundsRect (mcController, &rcBounds);

See Also

Functions MCGetControllerBoundsRect, MCNewAttachedController,
MCSetControllerAttached

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 219

MCSetMovie

Syntax ComponentResult MCSetMovie (MovieController
 mcController, Movie mMovie, HWND hWndMovieWindow,
 POINT ptUpperLeft)

MCSetMovie associates or disassociates an existing movie controller with an
existing movie. If the mMovie parameter is set to NULL, the movie controller
is not associated with any movie.

Parameters MovieController mcController
The existing movie controller object.

Movie mMovie
The existing movie object.

HWND hWndMovieWindow
The parent window handle.

POINT ptUpperLeft
A new location on the screen for the movie controller bounds
rectangle.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments MCSetMovie is identical to MCNewAttachedController except that it
is possible to specify NULL as the movie object. The point specified by
ptUpperLeft becomes the new upper left corner of the bounds rectangle.

This routine is the best way to associate a different movie with a controller.
If appropriate, the location of the controller can be changed. When the movie
controller is attached, this moves the movie to another location of the screen.

When a controller is associated with a movie, a reference to the movie object is
recorded in the controller's data structure. A movie controller can be associated
with many movies during its existence, but only one at a time. Movie data
structures contain no elements which link them with movie controllers.

QuickTime for Windows 2.0 Developer's Manual

 Page 220  1994 Apple Computer December 21, 1994

Movie controllers remain associated with movies regardless of their states. If a
controller is made invisible or inactive, for instance, it stays associated with its
movie. Conversely, movies continue to play even if the states of their
associated controllers are changed while they are playing. If either one of an
associated pair is destroyed, the other is not affected.

Once a movie is associated with a controller, it starts playing immediately
(assuming it has a non-zero play rate, which is normally the case). To make a
movie paused when first visible and associated with a new controller, you can
use MCDoAction with an action of mcActionPlay and a play rate of 0. It
is good style to do this as soon as possible after performing the association.

Association implies nothing about the proximity of movies and their
controllers on the screen. It is simply the means by which any movie can be
plugged in to any controller and played.

Whenever the controller bounds rectangle changes, your action filter, if any,
will be called with the mcActionControllerSizeChanged after the
changes to the rectangle have occurred.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example MovieController mcController;
POINT ptUpperLeft;
•
•
// Disassociate the movie controller from its movie

 MCSetMovie (mcController, NULL, hWnd, ptUpperLeft);

See Also

Functions NewMovieController, MCNewAttachedController,
MCSetControllerAttached

MCSetVisible

Syntax ComponentResult MCSetVisible (MovieController
 mcController, Boolean bShow)

MCSetVisible hides a visible movie controller and makes visible a hidden
movie controller.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 221

Parameters MovieController mcController
The movie controller object.

Boolean bShow
TRUE makes the movie controller visible, FALSE hides it.

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments Invisible movie controllers can be attached, detached, active or inactive. You
just can't see them. To query the visibility state of a movie controller, use
MCGetVisible.

Calling MCSetVisible with FALSE displays the badge if the badge flag is
turned on. See the description of MCDrawBadge for more information about
badges.

Example MovieController mcController;
•
•
// Hide the movie controller

 MCSetVisible (mcController, FALSE);

See Also

Functions MCDrawBadge, MCGetVisible, NewMovieController

MemError

Syntax OSErr MemError(void)

Parameters none

Return noErr if no error condition. Non-zero if error condition. See Appendix A for
error condition values.

Comments MemError returns the error from the last Memory Manager call made. Because
some QuickTime for Windows routines may also make Memory Manager calls
you should not depend on MemError remaining unchanged after any
QuickTime for Windows call.

QuickTime for Windows 2.0 Developer's Manual

 Page 222  1994 Apple Computer December 21, 1994

Example Size hSize;

hSize = GetHandleSize(theHandle);
if (MemError())
 ; // the handle was probably invalid

See Also

Functions NewHandle, GetHandleSize, SetHandleSize, HGetState, HSetState, HLock,
HUnlock, DereferenceHandle

Data Types OSErr

MovieSearchText

Syntax OSErr MovieSearchText (Movie m, LPBYTE pbText,
 LONG cbText, SearchTextFlags flags,
 LPVOID pv,TimeValue FAR * ptvSearch,
 LPLONG plOffset)

Summary MovieSearchText searches the text media in a movie for a target string
you specify. If found, the target string can be highlighted. Similarly,
MovieSearchText can be instructed to automatically reposition the movie
to the time of the found text.

Parameters Movie m
The movie object.

LPBYTE pbText
A pointer to the search text.

LONG cbText
The length of the search text.

SearchTextFlags flags
A mask of flags, qualifying the search and specifying which
side-effect actions are to take place. See below for details..

LPVOID pv
Ignored. For future compatability, code NULL.

TimeValue FAR *ptvSearch
If non-NULL, ptvSearch must point to a TimeValue field.
After a successful search, MovieSearchText returns the
movie time of the found text in this field.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 223

LPLONG plOffset
If non-NULL, plOffset must point to a LONG field. After a
successful search, MovieSearchText returns the offset of
the found text within its text sample. This value is only useful in
conjunction with the findTextUseOffset flag described
below.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Search
Strategy

MovieSearchText begins its search from the current movie time. The
following values can be set in the flags parameter to control the search. Values
can be used in any combination using the C + or | operator.

findTextCaseSensitive
By default, the text pointed to by pbText is matched against
data in text samples without regard to case. However, if this
value is set, a case-sensitive search is performed. See the notes
below on how MovieSearchText handles case-sensitivity.

findTextReverseSearch
By default, the search starts at the current movie time and
proceeds through each successive text sample, in ascending
movie time. However, if this value is set, the search proceeds in
descending movie time.

findTextWrapAround
By default, the search ends when the last text sample (if
proceeding in ascending movie time) or the first text sample (if
proceeding in descending movie time) has been searched.
However, if this value is set, MovieSearchText wraps from
the end of the text media to the beginning (or vice versa) in an
attempt to find the requested text. The search then ends at the
current movie time.

QuickTime for Windows 2.0 Developer's Manual

 Page 224  1994 Apple Computer December 21, 1994

findTextUseOffset
By default, the search starts at the first byte of each text sample
(if proceeding in ascending movie time) or the last byte of each
text sample (if proceeding in descending movie time). However,
this strategy fails if a text sample contains more than one
occurrence of the search string, because MovieSearchText
would not be able to locate the second and subsequent
occurrences. If findTextUseOffset is set,
MovieSearchText starts the search in the first text sample
at the offset specified in plOffset. Subsequent samples are
searched normally. You do not set plOffset itself (other than
to zero in the initial conditions of a search loop); rather,
MovieSearchText uses it as state information in order to
repeat a search.

Side-Effects MovieSearchText can be instructed to execute side-effect actions as a
result of a successful search. The following values can be set in the flags
parameter to control these side-effects. Values can be used in any combination
using the C + or | operator.

searchTextDontGoToFoundTime
By default, MovieSearchText changes movie time to that
of the text sample in which the search text was found. However,
if this value is set, MovieSearchText does not change
movie time.

searchTextDontHiliteFoundText
By default, MovieSearchText highlights the search text
after a successful search. However, if this value is set,
MovieSearchText does not highlight the text. If
searchTextDontGoToFoundTime is set, the search text is
highlighted when movie time reaches that of the text sample in
which the text was found. When movie time changes from that
of the found text (for example, if the movie is playing), the
highlight is removed. MovieSearchText does not maintain
a queue of highlight requests; rather, each request supercedes
the one before it.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 225

Case
Sensitivity

When the findTextCaseSensitive flag is not set,
MovieSearchText translates the characters in the search text and in each
text sample to upper-case for the purposes of comparison. Movies can contain
special translation tables to facilitate this; if it detects one in the movie,
MovieSearchText uses the table to perform the translation. If no special
table is found, MovieSearchText uses a default translation table, which
assumes the OEM character set.

DBCS
Consider-
ations

The characters encoded in text media samples can use either SBCS (single-
byte character sets) or DBCS (double-byte character sets). It is the
responsibility of the program to determine which encoding is used, and supply
a matching encoding in pbText. In addition, MovieSearchText validates
cbText to ensure that it is even; if not, the search fails.

Example Movie m;
LPBYTE pbText;
LONG cbText;
SearchTextFlags flags;
TimeValue tvSearch;
LONG lOffset;
•
•
// Find all the occurrences of "airplane" in movie m
lpText = (LPBYTE) "airplane";
cbText = lstrlen (lpText);
flags = findTextWrapAround + findTextUseOffset;
lOffset = 0;
while (MovieSearchText (m, pbText, cbText, flags, NULL,
 &tvSearch, &lOffset) == noErr) {
 /* by default, movie time advances to the found text,
 and it is highlighted */
}

NewHandle

Syntax Handle NewHandle(Size byteCount)

Parameters

Return none

Comments Use NewHandle to allocate a new block of memory. Use DisposeHandle to
dispose of it when you are done. The contents of the handle may only be used
if the handle has been locked using HLock. Use DereferenceHandle to access
the contents of the handle.

You can check MemError to see if this routine failed.

QuickTime for Windows 2.0 Developer's Manual

 Page 226  1994 Apple Computer December 21, 1994

Example Handle hHandle;

hHandle = NewHandle(10);
if (!hHandle)
 ; // allocation failed

See Also

Functions DisposeHandle, HLock, DereferenceHandle

Data Types Handle

NewMovieController

Syntax MovieController NewMovieController (Movie mMovie,
 const LPRECT lprcMovieRect,
 LONG lControllerCreationFlags, HWND hWndParent)

NewMovieController creates and attaches a movie controller to a movie.

Parameters Movie mMovie
The movie object to be associated with the new movie
controller. This movie object was assigned by QuickTime for
Windows when it processed NewMovieFromFile. It can be
NULL, which means that the new controller will not be
associated with any movie.

const LPRECT lprcMovieRect
The address of a bounds rectangle which will determine the
movie and movie controller's size and position, depending on
the creation flags.

LONG lControllerCreationFlags

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 227

A LONG containing flags that modify the result of the routine.
If you set this parameter to 0, the movie will be centered in the
movie rectangle and the movie will be scaled to fit in that
rectangle. These flags are:

mcScaleMovieToFit - Resizes the movie to fit into the
movie rectangle specified (excluding the area taken up by the
controller).

mcTopLeftMovie - Places the movie at the top left hand
corner of the movie rectangle specified.

both mcTopLeftMovie and mcScaleMovieToFit -
Resizes the movie to fit into the movie rectangle specified, then
expands the bounds rectangle to include the movie controller
(without cutting into the movie area).

mcWithBadge - Determines whether the controller can
display a badge.

mcNotVisible - Determines the initial visibility state of
the movie controller.

See subsection A, part 10 of the overview for further
information on how the first two flags function.

HWND hWndParent
The parent window handle of the new movie controller.

Return A MovieController object. NULL indicates an error condition.

Comments NewMovieController creates the new controller within the bounds
rectangle even when the movie object is NULL. For all but one configuration
of the controller creation flags, the movie controller takes a portion out of the
specified rectangle. The exception is when both mcTopLeftMovie and
mcScaleMoveToFit are specified, in which case the movie controller is
connected abutting the specified bounds rectangle.

QuickTime for Windows 2.0 Developer's Manual

 Page 228  1994 Apple Computer December 21, 1994

To display the movie at optimum size with the correct aspect ratio, call
GetMovieBox before NewMovieController, and use the retrieved
rectangle as the bounds rectangle. Then specify both the mcTopLeftMovie
and mcScaleMoveToFit flags. Use the mcWithBadge flag to enable
badge availability. This is the recommended method of working with badges.

Movies and movie controllers are not permanently associated. Movie
controllers can be dynamically reassigned to movies at any point in the
program provided they are properly initialized. Destroying one does not
destroy the other, nor does disconnecting a movie from a movie controller
disable either component.

When a controller is associated with a movie, a reference to the movie object is
recorded in the controller's data structure. A movie controller can be associated
with many movies during its existence, but only one at a time. Movie data
structures contain no elements which link them with movie controllers.

Once a movie is associated with a controller, it starts playing immediately
(assuming it has a non-zero play rate, which is normally the case). To make a
movie paused when first visible and associated with a new controller, you can
use MCDoAction with an action of mcActionPlay and a play rate of 0. It
is good style to do this as soon as possible after performing the association.

To play n cases of the same movie simultaneously, the movie file must be
opened n times to get n unique movie objects and then create or associate n
movie controllers.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example Movie mMovie;
MovieController mcController;
HWND hWndParent;
RECT rcMovie;
•
•
// Instantiate movie controller
// Movie to display at optimum size & aspect ratio

 GetMovieBox (mMovie, &rcMovie);
 OffsetRect (&rcMovie, -rcMovie.left, -rcMovie.top);
 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWndParent);

See Also

Functions DisposeMovieController, MCNewAttachedController,
MCSetMovie

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 229

NewMovieFromDataFork

Syntax OSErr NewMovieFromDataFork (Movie FAR *fpmMovie,
 HFILE hFile, LONG lOffset, UINT uiNewMovieFlags)

NewMovieFromDataFork initializes a movie object and associated storage
in the same manner as NewMovieFromFile, except that movie data is
retrieved from an open DOS file, beginning at a specified offset.

Parameters Movie FAR *fpmMovie
The address of the movie object to be allocated.

HFILE hFile
The file handle of an open DOS file containing the movie data.

LONG lOffset
An offset into the DOS file representing the start of the movie
data.

UINT uiNewMovieFlags
newMovieActive sets movie active, 0 sets it inactive.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments This routine provides an alternative to NewMovieFromFile when movie
data is stored in a non-standard movie file. Note that the movie object will
be in a non-active state when it is extracted.

Also be aware that, unlike NewMovieFromFile, you must not close the
DOS file containing the movie until after you have called DisposeMovie.

QuickTime for Windows 2.0 Developer's Manual

 Page 230  1994 Apple Computer December 21, 1994

Example Movie mMovie;
OFSTRUCT ofstruct;
LONG lOffset
HFILE fhHandle;
 •
 •
// Open the DOS file containing the movie data

 fhHandle = OpenFile ("NEWSREEL.BIN", &ofstruct, OF_READ);

// Extract a movie object

 NewMovieFromDataFork (&mMovie, fhHandle, lOffset);
 •
 •
// Free the movie memory

 DisposeMovie (mMovie);

// Close the DOS file

 _lclose (fhHandle);

See Also

Functions OpenMovieFile, CloseMovieFile, GetMoviesError,
GetMoviesStickyError, NewMovieFromFile

NewMovieFromFile

Syntax OSErr NewMovieFromFile (Movie FAR *fpmMovie,
 MovieFile mfMovie, SHORT FAR *lpsResID,
 LPSTR lpstrResName, UINT uiNewMovieFlags,
 Boolean FAR *lpbDataRefWasChanged)

NewMovieFromFile initializes a movie object, allocates and initializes all
storage required for the movie and performs various internal tasks such as
telling QuickTime for Windows' scheduler to add the movie to its tables.

Parameters Movie FAR *fpmMovie
The address of the movie object.

MovieFile mfMovie
The reference value that refers to the open movie file. This is
obtained from OpenMovieFile.

SHORT FAR *lpsResID
Set to NULL.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 231

LPSTR lpstrResName
Set to NULL.

UINT uiNewMovieFlags
newMovieActive sets movie active, 0 sets it inactive.

Boolean FAR *lpbDataRefWasChanged
Set to NULL.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments For each movie you wish to play, you must call OpenMovieFile followed
by NewMovieFromFile. As soon as possible after NewMovieFromFile,
the movie file may be closed with CloseMovieFile.

To play n cases of the same movie simultaneously, the movie file must be
opened n times to get n unique movie objects and then associated with n movie
controllers.

Example MovieFile mfMovie;
Movie mMovie;
MovieController mcController;
RECT rcMovie;
•
•
// Open the movie file

 OpenMovieFile ("NEWSREEL.MOV", &mfMovie, OF_READ);

// Establish a movie object

 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);

// Close the movie file

 CloseMovieFile (mfMovie);

// Get a bounds rectangle

 GetMovieBox (mMovie, &rcMovie);
 OffsetRect (&rcMovie, -rcMovie.left, -rcMovie.top);

// Create a movie controller

 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWndParent);

// Make the movie active

 SetMovieActive (mMovie, TRUE);

QuickTime for Windows 2.0 Developer's Manual

 Page 232  1994 Apple Computer December 21, 1994

See Also

Functions OpenMovieFile, CloseMovieFile, GetMoviesError,
GetMoviesStickyError

NormalizeRect

Syntax VOID NormalizeRect (LPRECT lprcRect)

NormalizeRect adjusts the width and height of a rectangle such that its
aspect ratio matches that of a similar rectangle on the Macintosh.

Parameters LPRECT lprcRect
The address of the rectangle to normalize.

Return None. The normalized rectangle is placed in the rectangle referenced. You can
use GetMoviesError and GetMoviesStickyError to test for failure
of this call.

Comments NormalizeRect uses the LOGPIXELSX and LOGPIXELSY values
returned from the Windows function GetDeviceCaps to adjust the width
and height of a rectangle. It ensures the correct aspect ratio of the movie
rectangle.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example PicFile pfPicture;
OpenCPicParams ocppHeader;
OFSTRUCT ofsOpenFileStr;
RECT rcFrame;
•
•
OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
GetPictureFileHeader (pfPicture, &rcFrame, &ocppHeader);
ClosePictureFile (pfPicture);
NormalizeRect (&rcFrame);

See Also

Functions GetMoviesError, GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 233

OpenMovieFile

Syntax OSErr OpenMovieFile (LPCSTR lpstrFileSpec,
 SHORT FAR *MovieFile, int sOFlag)

OpenMovieFile opens a file containing a movie.

Parameters LPCSTR lpstrFileSpec
The name of a string containing the movie file name.

SHORT FAR *MovieFile
The address of a reference value which will be assigned by this
function, and which will be used by NewMovieFromFile
and CloseMovieFile. Valid values are in the range 0x000
through 0xFFFE. 0xFFFF indicates and invalid value.

int sOFlag
An integer expressed as a standard file open flag as defined for
the Windows OpenFile function. Movie files are normally
opened as read only (use the OF_READ flag).

Return noErr if no error condition. Non-zero if error condition.

Comments QuickTime for Windows movie file names have the DOS suffix ".MOV".

To play n cases of the same movie simultaneously, the movie file must be
opened n times to get n unique movie objects and then associate n movie
controllers.

Example MovieFile mfMovie;
Movie mMovie;
•
•
if (!OpenMovieFile ("MOVIE.MOV", &mfMovie, OF_READ))
 {
 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL,
 newMovieActive, NULL);
 CloseMovieFile (mfMovie);
 }
else
 {
 MessageBox (hWnd, "OpenMovieFile failure",
 "Movie Initialization", MB_OK);
 }

QuickTime for Windows 2.0 Developer's Manual

 Page 234  1994 Apple Computer December 21, 1994

See Also

Functions NewMovieFromFile, CloseMovieFile, GetMoviesError,
GetMoviesStickyError

OpenPictureFile

Syntax OSErr OpenPictureFile (LPCSTR lpstrFileSpec,
 PicFile FAR *pfPicture, int sOFlag)

OpenPictureFile opens a file containing a picture.

Parameters LPCSTR lpstrFileSpec
A pointer to a string containing the picture file name.

PicFile FAR *pfPicture
The address of a reference value which will be assigned by this
function, and which will be used by ClosePictureFile and
other routines that reference picture data. 0xFFFF indicates and
invalid value.

int sOFlag
An integer expressed as a standard file open flag as defined for
the Windows OpenFile function. Picture files are normally
opened as read only (use the OF_READ flag).

Return noErr if no error condition. Non-zero if error condition.

Comments QuickTime for Windows picture files are characterized by the DOS suffix
".PIC".

Example PicFile pfPicture;
•
•
if (OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 /* Inform user of failure. */
 }

See Also

Functions ClosePictureFile, GetMoviesError, GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 235

PictureToDIB

Syntax DIBHandle PictureToDIB (PicHandle pcThePict)

PictureToDIB converts a QuickTime for Windows format picture to a
Windows compatible Device Independent Bitmap (DIB) format.

Parameters PicHandle pcThePict
The QuickTime for Windows picture object.

Return A handle to a Windows Device Independent Bitmap (DIB). You can use
GetMoviesError and GetMoviesStickyError to test for failure.

Comments The QuickTime for Windows format picture may be drawn directly to the screen
without conversion to a Windows DIB by using the DrawPicture function.
The object returned by PictureToDIB must be freed by the Windows
GlobalFree function when you are through using it. It is, however, created
with the GMEM_SHARE flag, so you can conveniently load the DIB to the
Windows clipboard.

Example Movie mMovie;
PicHandle phPicture;
DIBHandle hdPicture;
•
•
// Get the poster frame and convert to Windows DIB

 phPicture = GetMoviePosterPict (mMovie);
 hdPicture = PictureToDIB (phPicture);

// Put the DIB in the clipboard

 OpenClipboard (hWnd);
 EmptyClipboard ();
 SetClipboardData (cf_DIB, hdPicture);
 CloseClipboard ();
 DisposePicture (phPicture);

See Also

Functions DrawPicture, GetMoviePosterPict, GetMoviePosterTime,
MCGetCurrentTime, GetMoviesError, GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

 Page 236  1994 Apple Computer December 21, 1994

PrerollMovie

Syntax OSErr PrerollMovie (Movie mMovie, TimeValue tvTime,
 LFIXED lfxRate)

PrerollMovie prepares a portion of a movie for playback, to enhance
playback performance.

Parameters Movie mMovie
The movie object.

TimeValue tvTime
A TimeValue specifying the starting time of the movie
segment to play.

LFIXED lfxRate
Specifies the anticipated rate at which the movie will play.
Positive values indicate forward rates, negative values reverse
rates. The rate is used as a multiplier for the movie's recorded
rate.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments Playback performance can be improved if PrerollMovie is called prior to
playing a movie.

Example Movie mMovie;
TimeValue tvTime;
LFIXED lfxRate;
•
•
PrerollMovie (mMovie, tvTime, lfxRate);

See Also

Functions GetMoviesError, GetMoviesStickyError

Data Types TimeValue, LFIXED

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 237

PtInMovie

Syntax Boolean PtInMovie (Movie mMovie, POINT ptPoint)

PtInMovie determines whether a specified point lies in a movie.

Parameters Movie mMovie
The movie object.

POINT ptPoint
The point to test, in window coordinates.

Return TRUE if the point is in the movie rectangle, FALSE if not. You can use
GetMoviesError and GetMoviesStickyError to test for error
conditions.

Comments The specified point must be supplied in window coordinates.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example Movie mMovie;
POINT ptTest;
•
•
if (PtInMovie (mMovie, ptTest))
 {
 /* Take appropriate action. */
 }

See Also

Functions GetMovieBox, GetMoviesError, GetMoviesStickyError

PtInTrack

Syntax Boolean PtInTrack(Track trkTrack, POINT thePoint)

Parameters Track trkTrack
The track object.

POINT ptPoint
The point to test, in window coordinates.

QuickTime for Windows 2.0 Developer's Manual

 Page 238  1994 Apple Computer December 21, 1994

Return TRUE if the point is in the movie rectangle, FALSE if not. You can use
GetMoviesError and GetMoviesStickyError to test for error
conditions.

Comments PtInMovie determines whether a specified point lies in a movie.

The specified point must be supplied in window coordinates.

Note: All QuickTime for Windows routines referencing a RECT or POINT
assume client device coordinates.

Example Track trkTrack;
POINT ptTest;
•
•
if (PtInTrack (trkTrack, ptTest))
 {
 /* Take appropriate action. */
 }

See Also

Functions PtInTrack, GetMoviesError

Data Types Track, Point, BOOLEAN

PutMovieIntoTypedHandle

Syntax OSErr PutMovieIntoTypedHandle(Movie mMovie, Track
targetTrack, OSType handleType, Handle theHandle,
TimeValue start, TimeValue duration, long flags,
ComponentInstance userComp)

Parameters Movie mMovie
Specifies the movie to extract information from.

Track targetTrack
Allows you to specify a particular track to extract data from. If
you want the data to come from all possible tracks in the movie,
pass NULL.

OSType handleType
Specifies the type of data to extract from the movie. For
example, passing TextMediaType will provide a handle of
text, if a text track is present in the movie.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 239

Handle theHandle
A Handle to put the extracted data into. This handle is
automatically resized to hold the data requested. You must
create the handle using NewHandle. If you pass NULL for the
handle, the extracted data will be placed on the system
clipboard for you.

TimeValue start
Indicates the starting movie time to begin extracting data from.

TimeValue duration
Indicates the duration of the sample data to be extracted.

long flags
(there is a flag here to indicate that the handle is actually a
pointer to a handle, so that you can obtain DIB’s from this
call. Contact Apple Computer Developer Support Group for
more information)

ComponentInstance userComp
Pass NULL.

Return noErr if the call completes successfully.

Comments Use PutMovieIntoTypedHandle to extract data in a particular format
from a movie. For example, you can obtain a Device Independent BitMap from
a movie or track using this call. If you extract text using this call, all character
codes are automatically translated from Macintosh to MS Windows character
set. PutMovieIntoTypedHandle can be viewed as a high level version of
GetMediaSample.

See Also

Functions GetMediaSample, NewHandle

Data Types Movie, Track, Handle, TimeValue

QTFOURCC

Syntax QTFOURCC(ch0, ch1, ch2, ch3)

QTFOURCC is a macro used to construct a four-character constant, normally
used to extract user data from a movie.

Parameters ch0...ch3

QuickTime for Windows 2.0 Developer's Manual

 Page 240  1994 Apple Computer December 21, 1994

The four characters to be concatenated.

Comments Each parameter must be enclosed in single quotes.

Example UserData udData;
OSType osType;
•
•
osType = QTFOURCC('','d','a','y');
osType = GetNextUserDataType (udData, osType);

QTInitialize

Syntax OSErr QTInitialize (LPLONG lplVersion)

QTInitialize binds applications to QuickTime for Windows at run time.
It must be called before any other QuickTime for Windows function.

Parameters LPLONG lplVersion
The address of a value that will be filled with the current
QuickTime for Windows version number.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments This function must be called before any other QuickTime for Windows
function. It is recommended that it be called before your program creates its
main window. If your program employs DLLs that make QuickTime for
Windows calls, each DLL must call QTInitialize, preferably in the
LibMain function. QTInitialize only needs to be called once during the
life of your program. The return codes can be used to determine whether
QuickTime for Windows is installed and if the hardware is capable of running
it.

If lplVersion is not coded as NULL, QTInitialize fills the value it
points to with the current QuickTime for Windows version: bits 31-16,
reserved, always 0; bits 15-12, major release level; bits 11-8, minor release
level; bits 7-0, revision number. For example, 0x00001000L is QuickTime
for Windows version 1.0.0. A program can use this data to check if it is
running under a certain QuickTime for Windows version, then react
accordingly.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 241

Example LONG lVersion;
•
•
if ((QTInitialize (&lVersion) != QTI_OK)
 || (lVersion < 0x00001000L))
 {
 MessageBox (hWnd, "QuickTime for Windows not loaded"
 " or wrong version present.",
 "QuickTime for Windows Initialization", MB_OK);
 return 0;
 }

See Also

Functions QTTerminate, EnterMovies

QTTerminate

Syntax VOID QTTerminate (VOID)

QTTerminate severs links to QuickTime for Windows.

Parameters None.

Return None.

Comments If your program uses DLLs, each must call QTTerminate, preferably in the
WEP function.

Example // Cut the connections to QuickTime for Windows

 QTTerminate ();

See Also

Functions QTInitialize, ExitMovies

SetMovieActive

Syntax VOID SetMovieActive (Movie mMovie, Boolean bActive)

SetMovieActive sets a movie's state to active or inactive.

QuickTime for Windows 2.0 Developer's Manual

 Page 242  1994 Apple Computer December 21, 1994

Parameters Movie mMovie
The movie object whose state is to be changed.

Boolean bActive
TRUE sets the movie state to active, FALSE to inactive.

Return None. Use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments An inactive movie does not receive cycles from QuickTime for Windows'
internal scheduler, so it will not play. Setting a movie inactive can be used to
control which one of several simultaneously playing movies will receive
system resources. You can query a movie's active state using
GetMovieActive.
Simply setting a movie to the active state does not affect any of its attributes,
such as visibility. You have to explicitly update a window in which a movie
appears if the movie is made active.

Example Movie mMovie;
•
•
// Deactivate the movie

 SetMovieActive (mMovie, FALSE);

// Re-activate the movie

 SetMovieActive (mMovie, TRUE);

See Also

Functions GetMovieActive, GetMoviesError,
GetMoviesStickyError, MCActivate

SetHandleSize

Syntax void SetHandleSize(Handle theHandle, Size byteCount)

Parameters Movie mMovie
The handle.

Size byteCount
The new size in bytes for the specified handle

Return none

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 243

Comments Use SetHandleSize to resize the contents of the memory block referenced by
the Handle. An attempt to resize a locked block may fail. When the handle is
resized its contains are maintained. Any references obtained to the contents of
the handle by DereferenceHandle may be invalid after calling SetHandleSize.

Use MemError to check for failure of this call.

Example Handle hHandle;

hHandle = NewHandle(12);
SetHandleSize(hHandle, 43);
if (err = MemError())
 ; // no more memory

See Also

Functions GetHandleSize, NewHandle

Data Types Handle, Size

SetMovieCoverProcs

Syntax VOID SetMovieCoverProcs (Movie mMovie,
 CoverProc UncoverProc, CoverProc CoverProc,
 LONG lRefCon)

SetMovieCoverProcs sets cover and uncover procedures for your movie.

Parameters Movie mMovie
The movie object.

CoverProc UncoverProc
The address of the uncover procedure.

CoverProc CoverProc
The address of the cover procedure.

LONG lRefCon
A reference constant that is passed to the cover procedure.

Return None. You can use GetMoviesError and GetMoviesStickyError to test
for failure of this call.

QuickTime for Windows 2.0 Developer's Manual

 Page 244  1994 Apple Computer December 21, 1994

Comments This routine allows your program to perform custom processing whenever one of
your movies covers a screen region or reveals a region that was previously
covered. This activity is performed in cover procedures, of which there are two
types: those called when your movie covers a screen region, and those called
when your movie uncovers a screen region that was previously covered. The
former is responsible for saving the region (you may choose to save the hidden
region in an offscreen buffer).

Cover procedures called when your movie reveals a hidden screen region may
redisplay the hidden region. If no uncover procedure is supplied, the default
action is to paint the uncovered region with the background brush saved when the
movie was created (GetClassWord, GetObject and
CreateBrushIndirect). If no background brush is found, a solid white
brush will be used. There is no default action if you do not supply a cover
procedure.

If you compile your program using Borland smart callbacks or Microsoft's -GEs
compiler option, or your filter function is in a dynamic link library, you do not
need to use MakeProcInstance on your cover procedure address before
calling MCSetMovieCoverProcs.

Example OSErr CALLBACK __export MyCoverProc (Movie, HDC, LONG);

HWND hWnd;
Movie mMovie;
•
•
SetMovieCoverProcs (mMovie, MyCoverProc, NULL, 5879);
•
•
OSErr CALLBACK __export MyCoverProc (Movie m, HDC hdc, lID)
 {
 RECT rcClip;
 GetClipBox (hdc, &rcClip);
 FillRect (hdc, &rcClip, GetStockObject (WHITE_BRUSH));
 return 0;
 }

See Also

Functions CoverProc, GetMoviesError, GetMoviesStickyError

SetTrackEnabled

Syntax OSErr SetTrackEnabled (Track trk,
 Boolean fEnable)

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 245

Parameters Track trk
The track, as returned by GetMovieIndTrackType.

Boolean fEnable
TRUE enable the track
FALSE disable the track

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments Call MCMovieChanged after a series of one or more SetTrackEnabled
calls.

A track that is enabled will not play unless its movie is also active.

Example Movie m;
Track trkText;
 •
 •
trkText = GetMovieIndTrackType (m, 1,
 TextMediaType, movieTrackMediaType);
SetTrackEnabled (trkText, FALSE);
 •
 •
MCMovieChanged (mc, m);

See Also

Functions GetMovieIndTrackType, MCMovieChanged

SubtractTime

Syntax VOID SubtractTime (TimeRecord FAR *lptrDst,
 const TimeRecord FAR *lptrSrc)

SubtractTime subtracts one time from another.

Parameters TimeRecord FAR *lptrDst
The address of a time record containing the first operand for the
subtraction. The time record is overwritten by the result.

const TimeRecord FAR *lptrSrc
The address of a time record containing the second operand,
which remains unmodified by the operation.

QuickTime for Windows 2.0 Developer's Manual

 Page 246  1994 Apple Computer December 21, 1994

Return None. The result is in the time record referenced by the first parameter. Use
GetMoviesError and GetMoviesStickyError to test for failure.

Comments If the time records have different time scales, SubtractTime converts them.

Example MovieController mcController;
TimeRecord trOne, trTwo;
•
•
SubtractTime (&trOne, &trTwo);
MCDoAction (mcController, mcActionGoToTime, (LPVOID) &trOne);

See Also

Functions ConvertTimeScale, GetMovieTimeScale, AddTime,
GetMoviesError, GetMoviesStickyError

MCDoAction mcActionGoToTime

Data Types TimeRecord, TimeScale

TrackTimeToMediaTime
Syntax TimeValue TrackTimeToMediaTime(TimeValue

tvTrackTime, Track trkTrack)

Parameters TimeValue tvTrackTime
Specifies the track’s time value; must be expressed in the time
scale of the movie that contains the track.

Track trkTrack
Specifies the track for the operation.

Return The corresponding time in the track’s media. This value is in the media’s time
scale.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 247

Comments You can use the TrackTimeToMediaTime function to determine whether a
specified point in time contains any media. If the track time corresponds to
empty space, this function returns a value of -1.

The TrackTimeToMediaTime function maps the track time through the track’s
edit list to come up with the media time. It is the edit list contained in the track
which determines how many times a particular media time is referenced. This
function provides a simple way to map from the movie’s time to the
corresponding time in the media. Because of the edit list, this is not necessarily
a one to one mapping.

If the time you specified lies outside of the movie’s active segment or
corresponds to empty space in the track, the function returns a value of -1.

See Also

Functions GetMovieTimeScale, GetMediaTimeScale, GetMovieIndTrack

Data Types TimeValue, Track

TransformRect

Syntax Boolean TransformRect(const MatrixRecord
*mtrxMatrix, Rect *rctRect, LPVOID)

Parameters MatrixRecord mtrxMatrix
Specifies the matrix for this operation.

Rect *rctRect
Contains a pointer to the rectangle to be
transformed. The TransformRect function
returns the updated coordinates into this
rectangle.

LPVOID
Reserved for future use. Always pass NULL

Return If the resulting rectangle has been rotate or skewed (that is, the transformation
involves operations other than sclaing and translation), the function sets the
returned Boolean value to false and returns the coordinates of the rectangle that
encloses the transformed rectangle. If the transformed rectangle and its
boundary box are the same, the function returns true.

Comments Use TransformRect to map a rectangle through a matrix. This can be used to
determine the display bounds of a particular track as shown below.

QuickTime for Windows 2.0 Developer's Manual

 Page 248  1994 Apple Computer December 21, 1994

Example MatrixRecord mtrxMovie, mtrxTrack;
FIXED fWidth, fHeight;
RECT r;

GetMovieMatrix(GetTrackMovie(trkTrack), &mtrxMovie);
GetTrackMatrix(trkTrack, &mtrxTrack);
ConcatMatrix(&mtrxTrack, &mtrxMovie);
// movie matrix now contains the track’s display matrix

GetTrackDimensions(trkTrack, &fWidth, &fHeight);
r.top = 0;
r.left = 0;
r.bottom = fHeight >> 16;
r.right = fWidth >> 16;
TransformRect(&mtrxMovie, &r, NULL);
// r now contains the display coordinates of the track

See Also

Functions ConcatMatrix, GetTrackMatrix, GetMovieMatrix, GetTrackDimensions

Data Types MatrixRecord, RECT

UpdateMovie

Syntax OSErr UpdateMovie (Movie mMovie)

UpdateMovie paints the current movie image on demand, rather than at its
scheduled time.

Parameters Movie mMovie
The movie object.

Return noErr if no error condition. Non-zero if error condition. See Appendix A
for error condition values. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments UpdateMovie allows you to manually refresh the current movie image.

Example Movie mMovie;
•
•
UpdateMovie (mMovie);

See Also

Functions GetMoviesError, GetMoviesStickyError

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 249

QuickTime for Windows API - Data Structures

ImageDescription

Description The ImageDescription structure contains information about a picture file.

Syntax typedef struct // Hungarian: id (ImageDescription)
 {
 LONG idSize;
 DWORD CodecType;
 DWORD resvd1;
 WORD resvd2;
 WORD dataRefIndex;
 WORD version;
 WORD revLevel;
 DWORD vendor;
 DWORD temporalQuality;
 DWORD spatialQuality;
 WORD width;
 WORD height;
 LFIXED hRes;
 LFIXED vRes;
 DWORD dataSize;
 WORD frameCount;
 char name [32];
 WORD depth;
 WORD clutID;
 } ImageDescription;

Fields idSize
Specifies the structure size.

CodecType
Specifies the Codec Type:

'rpza' = Apple video
'jpeg' = Apple JPEG
'rle ' = Apple animation
'raw ' = Apple raw
'smc ' = Apple graphics

rsvd1
Reserved, always 0.

QuickTime for Windows 2.0 Developer's Manual

 Page 250  1994 Apple Computer December 21, 1994

rsvd2
Reserved, always 0.

dataRefIndex
Reserved, always 1.

version
Reserved, always 0.

revLevel
Reserved, always 0.

vendor
Reserved, always 0.

temporalQuality
Reserved, always 0.

spatialQuality
Reserved, always 0.

width
Specifies the Source image width in pixels.

height
Specifies the Source image height in pixels.

hRes
Specifies the horizontal resolution (e.g. 72.0).

vRes
Specifies the vertical resolution (e.g. 72.0).

dataSize
Reserved, always 0.

frameCount
Reserved, always 0.

name [32]
Specifies the compression algorithm (e.g. Animation).

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 251

depth
Specifies the pixel depth of the source image.

clutID
Reserved, always 0.

Comments This structure is populated by QuickTime for Windows calls that request
information about a picture file (for example, GetPictureInfo).

Int64

Description The Int64 structure defines a quad word for use in other structures.

Syntax typedef struct // Hungarian: qw (quad word)
 {
 LONG dwLo;
 DWORD dwHi;
 } Int64;

Fields dwLo
Specifies the low order double word.

dwHi
Specifies the high order double word.

Comments This structure is used by the TimeRecord structure.

LFIXED

Description The LFIXED type defines a long integer where the high-order sixteen bits
define a signed short integer representing an integral value and the low-order
sixteen bits define an unsigned short integer representing a fractional value.

Comments LFIXED variables are normally used to hold movie rates in QuickTime for
Windows. For example, the LFIXED value 0x00028000 could be used to
represent a rate of 2.5.

See Also

 Functions MAKELFIXED (macro)

QuickTime for Windows 2.0 Developer's Manual

 Page 252  1994 Apple Computer December 21, 1994

 Data Types SFIXED

MusicDescription

Description The MusicDescription structure contains information about a movie's
music track.

Syntax typedef struct _ // Hungarian: md (MusicDescription)
 {LONG descSize;
 DWORD dataFormat;
 DWORD resvd1;
 WORD resvd2;
 WORD dataRefIndex;
 DWORD musicFlags;
 } MusicDescription;

Fields descSize
Specifies the structure size.

dataFormat
Specifies the data format (always 0).

resvd1
Reserved, always 0.

resvd2
Reserved, always 0.

dataRefIndex
Reserved, always 1.

musicFlags
Reserved, always 0.

Comments This structure is populated by QuickTime for Windows calls that request
information about a movie file's music track (see GetMusicInfo).

OpenCPicParams

Description The OpenCPicParams structure defines the picture file header.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 253

Syntax typedef struct // Hungarian: ocp
 {
 RECT rect;
 LFIXED hRes;
 LFIXED vRes;
 WORD wVersion;
 WORD wReserved1;
 DWORD dwReserved2;
 } OpenCPicParams;

Fields rect
Specifies a picture rectangle.

hRes
Specifies the horizontal resolution (e.g. 72.0).

vRes
Specifies the vertical resolution (e.g. 72.0).

wVersion
Specifies the version.

wReserved1
Reserved, always 0.

dwReserved2
Reserved, always 0.

Comments This structure is populated by QuickTime for Windows calls that return the
picture file header (for example, GetPictureFileHeader).

SFIXED

Description The SFIXED type defines a short integer where the high-order eight bits
define a signed integer value and the low-order eight bits define an unsigned
fractional value.

Comments SFIXED variables are normally used to hold movie sound track volumes in
QuickTime for Windows. For example, the SFIXED value 0x0080 could be
used to represent a sound volume of 0.5.

See Also

 Functions MAKESFIXED (macro)

QuickTime for Windows 2.0 Developer's Manual

 Page 254  1994 Apple Computer December 21, 1994

 Data Types LFIXED

SoundDescription

Description The SoundDescription structure contains information about a movie's
sound.

Syntax typedef struct // Hungarian: sd (SoundDescription)
 {
 LONG descSize;
 DWORD dataFormat;
 DWORD resvd1;
 WORD resvd2;
 WORD dataRefIndex;
 WORD version;
 WORD revLevel;
 DWORD vendor;
 WORD numChannels;
 WORD sampleSize;
 WORD compressionID;
 WORD packetSize;
 LFIXED sampleRate;
 } SoundDescription;

Fields descSize
Specifies the structure size.

dataFormat
Specifies the data format (always 'raw').

resvd1
Reserved, always 0.

resvd2
Reserved, always 0.

dataRefIndex
Reserved, always 1.

version
Reserved, always 0.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 255

revLevel
Reserved, always 0.

vendor
Reserved, always 0.

numChannels
Specifies the channels: 1 = mono, 2 = stereo.

sampleSize
Specifies the sample size: 8 = 8-bit sound, 16 = 16-bit sound.

compressionID
Reserved, always 0.

packetSize
Reserved, always 0.

sampleRate
Sample rate, e.g. 44100.0000 per second.

Comments This structure is populated by QuickTime for Windows calls that request
information about a movie file's sound (see GetSoundInfo).

TimeRecord

Description The TimeRecord structure defines a point in a movie's time coordinate
system.

Syntax typedef struct // Hungarian: tr (TimeRecord)
 {
 Int64 value;
 TimeScale scale;
 TimeBase base;
 } TimeRecord;

Fields value
Specifies a movie time value.

scale
Specifies the movie's time scale.

QuickTime for Windows 2.0 Developer's Manual

 Page 256  1994 Apple Computer December 21, 1994

base
NULL - means that the TimeRecord specifies a duration, or
TIMEBASE_DEFAULT - means that the TimeRecord
specifies a time, relative to the start of the movie.

Comments The minimum TimeValue is 0, which is the very beginning of a movie.
A TimeValue is expressed in time units which are related to the movie's time
scale.

The time coordinate system contains a time scale scored in time units. The
number of units that pass per second quantifies the scale: a time scale of 26
means that 26 units pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as the
length of the portion of the movie in the number of time units it contains.
Particular points in a movie can be identified by a time value, which is the
number of time units to that point from the beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale
to compare TimeValues between different movies.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 257

Appendices

Appendix A. QuickTime for Windows Error Codes

The following codes are indentical to those in
QuickTime on the Macintosh.

-50 paramErr An invalid parameter was supplied.

-102 noTypeErr Type of requested data could not be generated

-108 insufficientMemory An internal memory allocation request failed.

-111 memWAErr A bad handle was provided.

-623 notLockedErr The handle provided could not be locked or was
not locked.

-2001 badImageDescription Problem with this image description.

-2002 badPublicMovieAtom Movie file corrupted.

-2004 cantOpenHandler CODEC cannot be found.

-2008 invalidMedia The movie or picture could not be accessed.

-2009 invalidTrack This movie cannot be processed by QTW.

-2010 invalidMovie This movie is corrupted or invalid.

-2011 invalidSampleTable This movie cannot be processed by QTW.

-2012 invalidDataRef This movie cannot be processed by QTW.

-2014 invalidDuration This duration value is invalid.

-2015 invalidTime This time value is invalid.

-2017 badEditList This track's edit list is corrupted.

-2020 movieToolboxUninitialized You haven't initialized the Movie Toolbox.

-2021 wffileNotFound Cannot locate this file.

-2026 userDataItemNotFound Cannot locate this user data item.

-2027 maxSizeToGrowTooSmall Maximum size must be larger.

-2034 internalQuickTimeError Internal value.

-2036 invalidRect Specified rectangle has invalid coordinates.

-2039 invalidSampleDescIndex Sample description index value invalid.

-2041 invalidSampleDescription This sample description is invalid.

-2042 dataNotOpenForRead Cannot read from this data source.

-2045 dataAlreadyClosed You have already closed this data source.

-2046 endOfDataReached No more data is available.

-2048 noMovieInDataFork Toolbox cannot find a movie in the file.

-2053 featureUnsupported Toolbox does not support this feature.

-2054 noVideoTrackInMovie No video track found in this movie.

-2055 noSoundTrackInMovie No sound track found in this movie.

QuickTime for Windows 2.0 Developer's Manual

 Page 258  1994 Apple Computer December 21, 1994

-2062 movieTextNotFound MovieSearchText request failed.

Codes -2150 through -2200 are reseved for
QuickTime for Windows.

-2150 soundSupportNotAvailable Sound support unavailable.

-2151 maxControllersExceeded The limit on movie controllers reached.

-2152 unableToCreateMCWindow Cannot create the Movie Controller window.

-2153 invalidUserDataHandle Request for user data failed.

-2154 noPictureInFile File is valid but contains no pictures.

-2155 invalidPictureFileHandle An invalid handle was detected.

-2156 invalidPictureHandle An invalid handle was detected.

-2157 badDisplayContext An invalid DC was detected.

-2158 noMusicTrackInMovie No music track found in this movie.

-2159 noTextTrackInMovie No text track found in this movie.

-2160 noMPEGTrackInMovie No MPEG track found in this movie.

The following codes are indentical to those in
QuickTime on the Mac.

-3000 invalidComponentID An invalid component ID was detected.

-8972 codecConditionErr An error occurred during decompression.

-9995 editingNotAllowed Editing is not supported.

-9996 controllerBoundsNotExact The movie controller bounds are not exact.

The following codes are unique to QuickTime for
Windows.

0 mcEventNotHandled Movie controller event not handled.

0 mcOK Movie controller OK.

0 noErr Action complete successfully.

0 QTI_OK Initialization is OK.

1 mcEventHandled Movie controller event handled.

1 QTI_FAIL_NOEXIST Initialization failed, system not found.

2 QTI_FAIL_CORRUPTDLL Corrupt DLL found at initialization.

3 QTI_FAIL_286 Cannot initialize on a 80286 platform.

4 QTI_FAIL_WIN30 Cannot initialize on Windows release 3.0.

0x800080
01

badComponentInstance Component instance not valid.

0x800080
02

badComponentSelector Component selector not valid.

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 259

Appendix B. Region Codes

The following codes are used to identify specific languages in the function
GetUserDataText when alternative text or multiple languages are supported.
See the description of GetUserDataText in the Programmer's Reference section
for further information.

verUS 0 verIceland 21
verFrance 1 verMalta 22
verBritian 2 verCyprus 23
verGermany 3 verTurkey 24
verItaly 4 verYugoCroatian 25
verNetherlands 5 verIndiaHindi 33
verFrBelgiumLux 6 verPakistan 34
verSweden 7 verLithuania 41
verSpain 8 verPoland 42
verDenmark 9 verHungary 43
verPortugal 10 verEstonia 44
verFrCanada 11 verLatvia 45
verNorway 12 verLapland 46
verIsrael 13 verFaeroeIsl 47
verJapan 14 verIran 48
verAustralia 15 verRussia 49
verArabic 16 verIreland 50
verFinland 17 verKorea 51
verFrSwiss 18 verChina 52
verGrSwiss 19 verTaiwan 53
verGrverIceland 20 verThailand 54

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 261

Index
A
AddTime function 49, 103
Apple

Codec types 249
Documentation ix

Association
Of movies with movie controllers 10

Attachment
Of movie controllers 13

Attributes
Movie controller 22, 24
Of movies 8

AUTOEXEC.BAT 43

B
Badges

Determining badge use state 25
General information 25, 91, 169, 186

Bitmaps See also Pictures
As used by function GetMoviePict

134, 154
As used by function

GetMoviePosterPict 135
As used by function

GetPictureFromFile 148
As used by function PictureToDIB

234
Saving hidden regions with cover

procedures 38
Borland

Using smart callbacks 27, 39
Bounds rectangles

General information 16
Building programs See Development
Buttons See Controls

Pause button 5
Speaker button 23, 77, 88
Start button 5
Step buttons 5, 23, 77, 88

C
Callbacks

Borland smart callbacks 27

Cover procedures as 39
Filter functions as 99

CD-ROM
Help files on ix, 43
QuickTime for Windows on ix
RTF files on 44, 45

ClearMoviesStickyError function 48,
104

Clipboard 45
Copying movie frames to 2, 44
Putting DIBs in the clipboard 32, 234

CloseMovieFile function 3, 49, 55, 59,
67, 79, 96, 105

ClosePictureFile function 29, 31, 47, 105
Codecs

Specifying 249, 250, 254
Compilers

Borland compiler options 27, 39
Microsoft compiler options 27, 39

Compiling See also Sample programs
How to compile a QuickTime for

Windows program 57
Options for cover procedures 39
Options for filters 27

Compression See also Codecs
General information 31
Specifying codecs 249, 250, 254

ConcatMatrix function 106
Controller See Movie Controller
Controls See Buttons

Movie controller vs. standard
Windows controls 15

Subcontrols of movie controller 5
ConvertTimeScale function 38, 49, 103,

107
CountUserDataType function 35, 50,

108
Cover procedures

General information 38, 109
Setting cover procedures 242

CoverProc prototype 39, 109
Customization

Human interface customization 14
Of movie controllers 27

QuickTime for Windows 2.0 Developer's Manual

 Page 262  1994 Apple Computer December 21, 1994

Use of the Movie Controller as a
custom control 74

Using action filters 94
Using cover procedures 38, 243

D
Data structures

Movie 10, 11, 12
Movie controller 10

DEF files
Changing the stack size 43
Modifying for cover procedures 39
Modifying for filter functions 28

DeleteMovieFile function 49, 110
DereferenceHandle function 111
Design

How movies are kept running 8
Relationship of movies to movie

controllers 11
Development

Compiling 2, 57
Linking 2, 57

Device context
General information 33

Dialog boxes
Movie posters in 33, 136
Use of COMMDLG.LIB 63

DIsposeHandle function 111
DisposeMovie function 3, 49, 56, 61, 67,

71, 80, 97, 112
DisposeMovieController function 5, 6,

49, 56, 61, 71, 80, 97, 113
DisposePicture function 29, 31, 33, 34,

47, 49, 114
DLLs

Calling function QTTerminate in 240
Error message for load failure 57
Using with QuickTime for Windows

7, 9, 57
Documentation

Macintosh ix, 2
Of error codes 257
Of region codes 37
QuickTime for Windows vii

Table of Movie Controller attributes
24

DOS
How movies are stored in DOS files

3
Naming conventions for movie files

2
Naming conventions for picture files

233
Suffixes for picture files 116, 147

DrawPicture function 30, 31, 33, 34, 47,
114

DrawPictureFile function 31, 49, 116
Drivers

Sound drivers 12
Used to support palettes 88

Duration
As used in a TimeRecord 103
Expression of movie duration 38
General information 107
In time coordinate systems 3
Setting with function MCDoAction

196

E
EnterMovies function 7, 8, 10, 29, 48,

54, 58, 65, 78, 95, 117
Environment

C programming language ix
Changing your development

environment for QuickTime for
Windows 43

Macintosh vs. Windows ix, 35
Non-supported environments 43
Overview of QuickTime for

Windows environment 43
QuickTime for Windows ix
Setting DOS environment variables

43
Error handling

As performed by function
ClearMoviesStickyError 104

Error code listing 257
General information 39, 58
Initialization 6, 7

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 263

Routine names 48
ExitMovies function 9, 10, 48, 56, 61,

66, 80, 97, 117
Exporting

Exporting cover procedures 39
Exporting filter functions 28, 99

F
Fader

Component of Movie Controller 5
General information 12

Files
Closing movie files 59
Copying and renaming movie files 2
Data held in movie files 59
DOS movie files 2
Extracting a movie from a movie file

4
File open flags 58
Getting multiple movie instances

from 11
Help files ix, 43, 45
Module definition files 28
Opening movie files 2, 58
Saving movie files 2
Source files necessay for building

QuickTime for Windows
programs 43

Use of File menu item 75
Visual and sound data in movie files

3
Filters

As used with function MCDoAction
184, 185

Declaring an action filter 99
General information 17, 26, 94, 100,

164, 167
In DLLs 39
MCDoAction used in 99
Sensitivity to badge clicks 169, 185,

186
Sensitivity to bounds rectangle

changes 213
Sensitivity to resizing 170
Using with Callbacks 27

Flags
Attachment flag 13
Creation flags 17, 19, 25, 26, 59, 73,

88, 91
Creation flags used with function

NewMovieController 225
Flags used by MCDoAction 87, 88,

89, 90
General information 87
Movie controller attribute flags 22,

24
Retrieving movie controller flags

172
Setting movie controller flags 188
Using the badge flag 220

Frame 6
Frames

A movie poster as 33
Copying movie frames 44
Movie frames 12

G
GetMediaHandlerDescription function

119
GetMediaSample function 120
GetMediaSampleDescription function

122
GetMediaTimeScale function 123
GetMediaTrack function 123
GetMovieActive function 5, 48, 124
GetMovieActiveSegment function 50,

125
GetMovieBox function 18, 22, 41, 49,

55, 59, 67, 79, 96, 126
GetMovieCreationTime function 38, 49,

127
GetMovieDataSize function 38, 49, 127
GetMovieDuration function 38, 50, 128
GetMovieIndTrack function 129
GetMovieIndTrackType function 40, 48,

130
GetMovieMatrix function 132
GetMovieModificationTime function 38,

49, 133

QuickTime for Windows 2.0 Developer's Manual

 Page 264  1994 Apple Computer December 21, 1994

GetMoviePict function 31, 32, 33, 48,
115, 134

GetMoviePosterPict function 33, 48, 135
GetMoviePosterTime function 49, 108,

135
GetMoviePreferredRate function 12, 38,

49, 104, 136
GetMoviePreferredVolume function 38,

49, 137
GetMovieSelection function 138
GetMoviesError function 39, 48, 139
GetMoviesStickyError function 39, 48,

140
GetMovieStatus function 48, 141
GetMovieTime function 50, 141
GetMovieTimeScale function 38, 50,

108, 128, 143
GetMovieTrackCount function 144
GetMovieUserData function 34, 50, 144
GetNextUserDataType function 34, 35,

50, 145
GetPictureFileHeader function 49, 146
GetPictureFileInfo function 31, 47, 147
GetPictureFromFile function 29, 31, 47,

114, 148
GetPictureInfo function 31, 47, 149
GetPicturePalette function 30, 33, 47,

150
GetSoundInfo function 48, 150
GetTrackDimensions function 151
GetTrackMatrix function 152
GetTrackMedia function 153
GetTrackMovie function 153
GetTrackPict function 154
GetUserData function 35, 36, 50, 155
GetUserDataText function 36, 37, 50,

156
GetVideoInfo function 158
Grow box

Component of Movie controller 5
Hiding 23
Used in sample program

FILTERS.EXE 100
Using to shrink a movie controller 5

H
Handles

DIB handles 32
To a device context, as used by

function CoverProc 109
To a device context, as used by

function DrawPicture 115
To a device context, as used by

function DrawPictureFile 116
To badge regions 26, 92
To memory blocks 35
To user data 34, 35
Window handles 10, 59

Hardware considerations 43
Help

Help file availability ix
Movie Player help 44
On-line help information 43
Picture Viewer help 45

HGetState function 159
HLock function 160
HSetState function 160
Human interface

The Movie Controller as 11
HUnlock function 161

I
ImageDescription data type 249
Initialization

Of applications 9
Of movie controllers 6, 60
Of movies 58, 59, 229
Of QuickTime for Windows

programs 7, 57
Int64 data type 251
Interface

Multiple Document (MDI) 44
Programmatic of QuickTime for

Windows ix
User interface for sample program

STEREO.EXE 75

K
Keyboard interface

Accepting input 15, 24

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 265

As default controller 174
Directing keyboard input 15
General information 89
Setting active state with function

MCDoAction 190
KillPicture function 29, 47, 49, 114, 162

L
Language

C programming language ix
LFIXED data type 251
Limitations

Of QuickTime for Windows ix
Of Windows 76

Linking
How to link a QuickTime for

Windows program 57

M
Macintosh

Differences from Windows ix, 46
Handling of four-character constants

35
Playing movies under 1
Using function NormalizeRect to

simulate Macintosh actions 231
Make Files

Additions for QuickTime for
Windows 57

MAKELFIXED macro 47, 162
MakeProcInstance

Using with cover procedures 39
Using with filters 27

MAKESFIXED macro 47, 163
mcActionActivate action 27, 168
mcActionBadgeClick action 28, 169,

185, 186
mcActionControllerSizeChanged action

17, 98, 100, 170, 213, 215, 217, 219
mcActionDeactivate action 170
mcActionDraw action 28, 171, 200
MCActionFilter function 99, 164
mcActionGetFlags action 25, 82, 87, 88,

89, 172, 173, 189

mcActionGetKeysEnabled action 24,
174

mcActionGetLooping action 175
mcActionGetLoopIsPalindrome action

176
mcActionGetPlayEveryFrame action 25,

177
mcActionGetPlayRate action 25, 178,

187
mcActionGetPlaySelection action 25,

179
mcActionGetTimeSliderRect action 180
mcActionGetUseBadge action 25, 180
mcActionGetVolume action 25, 70, 85,

91, 181
mcActionGoToTime action 103, 182,

245
mcActionIdle action 183, 207
mcActionKey action 28, 184, 209
mcActionPlay action 11, 12, 25, 28, 38,

55, 60, 68, 80, 96, 137, 167, 178,
187, 211, 219, 227

mcActionSetFlags action 23, 25, 82, 87,
88, 89, 173, 188, 189

mcActionSetGrowBoxBounds action 23,
25, 55, 68, 84, 90, 189

mcActionSetKeysEnabled action 24, 70,
80, 84, 87, 89, 96, 167, 174, 190

mcActionSetLooping action 24, 85, 86,
90, 175, 176, 191, 192

mcActionSetLoopIsPalindrome action
24, 86, 90, 176, 192

mcActionSetPlayEveryFrame action 25,
177, 193

mcActionSetPlaySelection action 25,
179, 194, 195, 196

mcActionSetSelectionBegin action 195,
197

mcActionSetSelectionDuration action
195, 196

mcActionSetUseBadge action 25, 181,
197, 201

mcActionSetVolume action 25, 38, 70,
85, 91, 137, 198

mcActionStep action 199

QuickTime for Windows 2.0 Developer's Manual

 Page 266  1994 Apple Computer December 21, 1994

MCActivate function 15, 24, 49, 68, 70,
72, 73, 165

MCDoAction See also the index entries
for individual mcActions used by
MCDoAction

MCDoAction function 11, 12, 15, 17,
23, 24, 26, 27, 38, 49, 55, 60, 68, 70,
80, 84, 85, 86, 87, 88, 89, 90, 91, 92,
94, 96, 99, 100, 103, 137, 138, 164,
166, 207, 209, 211, 214, 219, 227,
245

MCDraw function 49, 200
MCDrawBadge function 26, 49, 92, 201
mcFlagSuppressSpeakerButton flag 25,

83, 87, 88, 173, 188, 189
mcFlagSuppressStepButtons flag 23, 25,

82, 87, 89, 173, 188
mcFlagUseWindowPalette flag 25, 87,

88, 173, 188
MCGetControllerBoundsRect function

18, 22, 24, 49, 55, 60, 69, 71, 96, 98,
100, 101, 189, 190, 202

MCGetControllerInfo function 24, 49,
88, 90, 203

MCGetCurrentTime function 32, 33, 34,
49, 128, 143, 204

MCGetMovie function 24, 49, 205
MCGetVisible function 23, 24, 49, 206
MCIdle function 8, 49, 206
mcInfoHasSound flag 24, 203, 204
mcInfoIsInPalindrome flag 24, 203
mcInfoIsLooping flag 24, 203
mcInfoIsPlaying flag 24, 203
MCIsControllerAttached function 14,

24, 49, 74, 207
MCIsPlayerMessage function 8, 9, 47,

49, 56, 60, 63, 66, 75, 81, 97, 184,
185, 206, 207, 208

MCKey function 8, 49, 209
MCMovieChanged function 41, 49, 210
MCNewAttachedController function 10,

21, 49, 74, 210
mcNotVisible flag 25, 66, 88, 226
MCPositionController function 13, 14,

19, 20, 21, 24, 49, 68, 69, 74, 89,
207, 212

MCRemoveMovie function 24, 47
mcScaleMovieToFit flag 11, 18, 20, 21,

55, 59, 68, 79, 88, 89, 92, 96, 126,
212, 226, 227, 230

MCSetActionFilter function 24, 27, 28,
49, 96, 99, 164, 167, 169, 170, 185,
186, 213

MCSetControllerAttached function 13,
14, 21, 24, 49, 68, 69, 70, 73, 74,
207, 213, 216

MCSetControllerBoundsRect function
18, 24, 49, 70, 74, 75, 98, 101, 217

MCSetMovie function 10, 21, 24, 68, 74,
218

MCSetVisible function 23, 24, 25, 49,
68, 81, 82, 91, 201, 206, 219

mcTopLeftMovie flag 6, 11, 17, 18, 20,
55, 59, 68, 69, 79, 88, 89, 92, 96,
113, 126, 212, 226, 227, 230

mcWithBadge flag 25, 26, 88, 89, 91,
92, 96, 201, 226, 227

MDI (Multiple Document Interface)
As used by Movie Player and Picture

Viewer 44
Media Types

QuickTime for Windows support 39,
51

MemError function 220
Memory

Allocation 7, 9, 36, 58, 112, 114,
117, 118, 155, 162

Low memory conditions 9
Movies residing in 12
Pictures residing in 29
User data residing in 35

Messages
Processing in QuickTime for

Windows 8
Microsoft

C programming language ix
Compiler options 27, 39
Multiple document interface 44

Mouse
Input to movie controllers 6

Movie controller
Appearance of 5

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 267

Creation 8
Destroying 6
General information ix, 1
Mouse input to 6
Subcomponents of 5
What is a movie controller? 5

Movie Player
Sample application for playing

movies 44
Movies

As DOS files 2
Creating 1
Editing ix, 2
Handling under different platforms

ix
Movie objects 2
Playing movies ix, 1, 2, 3, 4, 5
What is a movie? 2

MovieSearchText function 41, 50, 221
MusicDescription data type 252

N
NewHandle function 224
newMovieActive flag 4, 5, 126, 228,

230, 232
NewMovieController function 5, 6, 10,

11, 17, 18, 24, 25, 49, 55, 59, 60, 66,
73, 79, 89, 92, 96, 113, 126, 201,
212, 225

NewMovieFromDataFork function 49,
228

NewMovieFromFile function 3, 4, 5, 33,
49, 55, 58, 59, 67, 79, 96, 105, 112,
126, 141, 225, 228, 229

NormalizeRect function 47, 231

O
Objects

Destroying movie controller objects
61

Movie 2, 3, 59
Movie controller 6, 26
Picture 32

OpenCPicParams data type 252

OpenMovieFile function 3, 33, 49, 55,
58, 59, 61, 67, 79, 96, 105, 112, 126,
141, 229, 230, 232

OpenPictureFile function 29, 31, 47,
105, 106, 114, 116, 146, 147, 148,
150, 162, 231, 233

P
Palettes

How palettes are handled 88
Pictures with custom palettes 30

Picture Viewer
Sample application for viewing

pictures 44, 45
Pictures See also Bitmaps

Types of
JFIF 29, 116, 147
JPEG 29, 249
RAW 249
RPZA 249
SMC 249

Viewing under QuickTime for
Windows 1

What is a QuickTime for Windows
picture? 29

PictureToDIB function 31, 32, 33, 47,
134, 135, 154, 234

Poster frames
General information 33
Retrieving from movies 135

Preferences 37
PrerollMovie function 48, 235
Programming See Development
Programming style 5, 7, 9, 11, 26, 57,

60, 61, 90, 100, 105, 106, 211, 219,
227

PtInMovie function 48, 236
PtInTrack function 236
PutMovieIntoTypedHandle function 237

Q
QTFOURCC macro 35, 36, 37, 47, 238
QTInitialize function 7, 8, 29, 43, 47, 54,

57, 58, 61, 64, 78, 95, 239

QuickTime for Windows 2.0 Developer's Manual

 Page 268  1994 Apple Computer December 21, 1994

QTTerminate function 9, 29, 47, 56, 61,
66, 80, 97, 118, 240

QuickTime
Definition of QuickTime movies 2
General information 1
Time management 3

R
Region codes

General information 36
Nominal listing 259

Resizing
General information 73
In sample program FILTERS.EXE

100
Movie controllers 13, 14, 18, 74
Movies 17, 44, 74
Pictures 45
Sensitivity to function

MCSetControllerBoundsRect
217

Using function MCDoAction 189
RTF (Rich Text Format)

Used in help files 44, 45

S
Sample programs

BIGEIGHT.EXE 77
FILTERS.EXE 94
STEREO.EXE 63
WINPLAY1.EXE 53

Selection
Determining selection state 25

SetHandleSize function 241
SetMovieActive function 5, 48, 56, 68,

72, 80, 96, 124, 230, 240
SetMovieCoverProcs function 38, 39,

48, 109, 110, 242
SetTrackEnabled function 41, 48, 243
SFIXED data type 253
Slider

As Movie controller subcomponent
15

Sound
General information 2, 3, 12, 24, 38,

76, 173, 182, 188, 198, 203
Managing sound attributes in

multiple movies 72
MusicDescription type 252
Sample sizes 255
Sound information 150
Sound value range 137
Sound-only movies 126
SoundDescription type 254
Table of attributes involving sound

24
Toggling on and off in sample

program BIGEIGHT.EXE 77
Toggling on and off in sample

program STEREO.EXE 63
Variables used to hold sound data

163
Volume control 5
When sound is muted automatically

177, 193
SoundDescription data type 254
Source files

Modification of 2
States

Active/inactive movie controller
states 15, 71

Active/inactive movie states 4, 8, 14,
71

SubtractTime function 49, 244

T
Termination

Of applications 9
Time

Coordinate systems 3
Management of 3
Time scale 3
Time units 3

TimeRecord data type 255
TrackTimeToMediaTime function 245
TransformRect function 246

QuickTime for Windows 2.0 Developer's Manual

December 21, 1994  1994 Apple Computer Page 269

U
UpdateMovie function 48, 247
User data

General information 34
Listing of types 35

User Interface
Movie controller functioning as 15

W
WEP (Windows Exit Procedure)

Putting routines in 9
Window procedure

Adding QuickTime for Windows
routines to 8

Windows
Adding movie controllers to

applications 6
Difference from Macintosh

environment ix
Playing a movie in a Windows

program 5
Playing movies under 1
Unsupported versions of 7

