ScriptX
Class Reference

December 1995 Kaleida Labs

©1995 Kaleida Labs, Inc. All rights reserved.
U. S. Patent Nos. 5,430,875 and 5,475,811. Other patents pending.

This manual, as well as the software described in it, are furnished under license and may only be used
in accordance with the terms of that license. Under the terms of that license: (1) this manual may not
be copied in whole or in part, and (2) this manual may be used only for the purpose of using software
provided by Kaleida Labs, Inc. (“Kaleida”) and creating software products which run on the Kaleida
Media Player. The contents of this manual is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Kaleida of any kind. Kalei-
da assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

“ScriptX”, “Kaleida Media Player”, the “K-man” logo and “ScriptX Language Kit” are Kaleida trade-
marks that may be used only for the purpose of identifying Kaleida products. Your use of Kaleida
trademarks for any commercial purpose without the prior written consent of Kaleida may constitute
trademark infringement and unfair competition under state and federal law. All other products or
services mentioned in this manual are identified by trademarks of the companies who market those
products or services. Inquiries concerning such trademarks should be made directly to those com-
panies.

This manual is a copyrighted work of Kaleida with all rights reserved. This manual may not be cop-
ied, in whole or in part without the express written consent of Kaleida. Under the copyright law,
copying includes photocopying, storing electronically, or translating into another language.

The ScriptX Language and Class Library (“ScriptX”) described in this manual is a copyrighted work
of Kaleida. ScriptX also contains technology described in pending U.S. patent applications. You
may use and copy ScriptX solely for the purpose of creating software products that run on the Kalei-
da Media Player by writing computer source code that is compiled into object code by software pro-
vided by Kaleida. You may not use or copy ScriptX for the purpose of writing computer source code
thatis compiled into object code or otherwise executed with software supplied by any other provider
who has not been expressly licensed for that purpose by Kaleida.

For Defense agencies: Restricted Rights Legend. Use, reproduction or disclosure is subject to restric-
tions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at 225.227-7013.

For Civilian agencies: Restricted Rights Legend. Use, reproduction or disclosure is subject to restric-
tions set forth in subparagraphs (a) through (d) of the Commercial Computer Software Restricted
Rights clause at 52.227-19 and the limitations set forth in Kaleida’s standard commercial agreement
for the software described in this manual. Unpublished rights reserved under the copyright laws of
the United States.

Printed in the USA.

Kaleida Labs, Inc.
¢/o Apple Computer
1 Infinite Loop
Cupertino, CA 95014

Contents

Preface ... 1
AU NG it 1
SUMMANY Of CONTENTS. ...t 2
Conventions Used in MANUAL ... 8

Chapter 1 Information Common to All ClaSSEeScoovvviiiiiiiiieiiiiiiiieee e 13
Creating O SUDCIASS.oiiiiiii 16
Inherited Methods and VariabIesccccccciiiiiiiiiii 16
Sefters and Geftters for Instance Vanables............occcevii 17
Positional and Keyword Arguments in Methods ..o, 17
Creating and Initializing a New INSTANCE.....covii 18
Overriding the Initialization in @ SUBCIASS ... 20
PIOTOCOIS 1vvvtiiiiiiiiiii 21

Chapter 2 Global FUNCLIONS ...uuiiiiiiiiiiiiiiiie et 25

Chapter 3 Global Constants and Variablesccccccviiiiiis 55

Chapter 4 Class DeSCIPLIONS ...ciiiiiiiiiiiiiiiie e e e 67
ABSTTACTFUNCTION ..o 68
ACCESSOTYCONTOINET .1 ittt 69
A T O 73
A CH O LIS, L1ttt 75
A CTH ON LIS P OY T ittt 77
A CTUDTO . 80
ACTUATOICONTIONET. ...t 83
ATy L 89
ATy LIS L 93
AU IOSTIEAM i 96
BOIND OO L ittt 99
1= T 1Y/ o) O 102
2] 10 g T T @ J 105
BItMNOPOSUMACE i 110
Bl S vttt 112
B OO B N i 113
BOUNCE ittt 114
BIUSHY Lot 118

vii

ScriptX Class Reference

viii

Bl I ittt 121
BT EIATON uvviiiiiiiii 123
BUfEredSIream v 124
ByteCodeMeTtNOO 125
BYTEPIDE ittt 126
BYTESTIEAM 1oviiiiiiii 129
BY TS NG ittt 132
CaAleNAICIOCK .. 135
CAlDACK e 137
(0] [1Y PP 140
G B KB OX 11ttt 144
CheCKEIBOAIT 147
CUNKSITEAM . 148
PO, i 150
ClPPEASTENCIL...cii i 152
O CK ittt 154
COlIECTION L 161
O O i 178
(@] 0] 115 5T | o TSP PP 179
COIOISCNEME oo 182
(@] T 1110 1P 185
ContiNUOUSNUMBDEIRANGE . .ivviiiiiii i 186
CONTTONET i 188
COSTUMEAPIESENT T ...t 193
UV B 195
DT ittt 199
DEBDUQGINTO ittt 203
Dl GO ittt 204
DeltaPAthACHON v 205
DIOMONAINS 1.ttt 207
DIGITAIAUGIOPIOYET ... 208
DIGITAIVIACOPIOYET ... 211
[BT PP 215
DISCIEtERANGE .. iviiiiiiiiii 221
DISPIAYSUIMACE 11viiiiiiiii 224
DISSOIV ittt 227
DOCTEMPIOTE 11iiiiiiiiiii 228
DOCUMENT Lottt 232
DrAQCONTTONET ©uvviiiiiiiiii 236
IO g ittt 241
EMNOTYCIOSS 11ttt 245
BV T 246
EventDISpAtChQUEUEccvvii 252
EVENTQIUEUE ..ot 254
EXC D ION L 256
EXPIICitlyKeyedColECTiON. ... 257
E XD O T i 258
BN e 260
B B it 261
B ettt 262
B Ot 263
FOCUSEVENT 264

FONTC ONTEXT ... 268
B i 270
FUIISCIEENWINAOW L.iiiiiiiiiiiiiiiiiiiiiiiii 272
GANAGED OO ittt 276
GO i 277
GENETIC 1ottt 278
G ENENCBUTTON .. 279
(€7 (0 1Y/ 1 1Y PP PSP OSPUUSSUSR 282
GIOUP P IESE NI . ittt 286
GIOUPD SO ittt 290
HOSNTADIE 1. 294
HASOhTADIEITEIATO . v 296
HT M LS T O 1ttt 297
IMMEIATEFIOOT. . ittt 300
IMMEAIATEINTEGET ittt 302
IMpPlicitlyKeyedColleCHON . ..vvvivi 303
D O BT i 304
IMPOMEXPOMENGINEG ... 306
INAIFECTCONECTION ..o 308
INAireCtColleCHONITEIATON ..vvvviiiiiiiii 312
INOUTID EVICE 1 1iiiii it 313
TS0 1= PP 315
INTEGEIRANGE (i 317
INtereavedMOVIEPIAYET 320
INTEIPOIATEACTION L1iiiiiiiiii 326
INTEID O AT O 329
IS ettt ettt ettt 333
B O O i 336
IV A CTHION 340
KeYDOAIADEVICE ..iiiiiiiiiiiiiiiii i 342
KeyboardDOWNEVENT ... 346
KEYDOAIAEVENT 1otiiiiiiiii 348
KeyboardFOCUSMAONAQETcciiiiiiiii 352
KeyboArdUPEVENT ... 354
KeYeALINKEALIST . vvvviiiiiiii 356
KeyedLinKkedListHeratorccccciiiii 359
(e | o 1= F OO 360
LM EIN e OO .ttt 363
LIBraryCONTOINET v 364
LI 375
LINEAICOIECTION vttt 377
LINearColleCtioNeraiOr 382
LN S T AM ittt 383
LINKEALIST 1 385
LINKEALISTHEIATON 11vviiiiiiiii 388
LIS BOX 11ttt 389
LISTSEIECTION 11viiiiiiiiii 392
LOAAABIEGIOUD v1vvviiiiiiiii 395
LOAAABIEUNIT .tviiiiiiiii 397
LOAAABIEUNITIA ..o 399
LOOIT T ittt 400

ScriptX Class Reference

LOAAEICOAR ... ittt 403
L O K ittt 404
DT 1ttt 406
MEAIOSTTEAM ... i 408
MediaSTTEAMPIOYET 411
MeEMOIYODIECT. . i 413
MEMOIYSTIEOM oo 414
L NIU ittt 416
D IDIIVET 111 ti it e e e e 422
MIDIEVENT .ttt e e 425
V1T T 1YY PP UPP PSPPI 427
V11 B3 { =Y T o o IO PR OPP R SPRR 432
MOAUIECIASS .. 434
MOUSECTOSSINGEVENT L..iiiiiiiiiii 435
MOUSEDEVICE ..ot 437
MOUSEDOWNEVENT ...t 441
MOUSEEVENT .o 443
MOUSEMOVEEVENT ... 448
MOUSEUREVENT L. it 450
MOV EMENT Lo 453
M OVIE P IAY T i 456
IMIUHTLISTBOX 1111t vttt e e e e e e e e e e 460
NAMEBINAING. ... 463
NOMIECIASS 1rvvvrriiiiiiiii i 464
N UMD Lottt 467
NUMBDEIRANGE ©.vviiiiiiiiiiiiii 472
ONEOTNPIESENTET L.1iiiiiiiiiiiiiiiii 475
OV Al i 479
P O i 481
POQEEIEMENT .. 484
PAGELAYET ittt 487
PAQETEMPIATE it \491
o PP 495
PaletteChangedEvenT ..o 497
P O N L 500
POTNACTHON v 514
PerlodiCCAlDACK .1vvvii 516
PRYSICAIKEYDOAIA ..o 518
PRYSICOIMOUSE .. v 520
PRI CIOSS 1ttt ittt 522
PIATfOIMFONT oottt 526
P Y BT ittt 528
0]) 537
PORUPRBUITON 11ttt 539
PORUDRMENU 11ttt 542
P I S N O Lottt 548
PIHIMITIVE oot 551
PHMITIVEMETNOA 1iiiiii 552
PHNTEISPDOCE it 553
PHNTEISUITACE w1vviiiiiii 558
PrOJE T i 561
PUSI L 563

QUG 1 571
QUEUEAEVENT ... 573
QUICKTIMEPIOYET 111iviiiiiiiiiiiiiiiiiii 576
RAGHIOBUTTON .. 579
RAAIOBUHTONCONTTONET .. iiiiiiiiiiiiiiii 582
RAIOGTOUD 11ttt e 586
ROMNSITEAM e 590
RANAOMCRUNKS ©11vviiiiiiiiiiiiiiiiiiii e 592
RONAOMISTATE 1ot 593
RONQIG i 595
ROTECAIDACK 11t 597
R T ittt 598
RE IS oottt 601
RECTWIDE 1o 602
RO QIO 1ttt 603
RESBUNGIE ... e 604
ST 1 (=Yoo o H PP P PP P PPPPPUUSUUR 606
RGBCOION ittt 607
ROOTCIAISS ittt 609
ROOTDIIREID 1ottt a e s 610
ROOTODIECT . 611
ROUNGARECT .. 620
ROWCOIUMNCONTIONET . .vviiiiiiiiiiiii 623
SCAIECADACK. .. ittt 628
SCHPTACTON (i 629
SOOI B . . i 632
SOOI B OX ittt 641
SCIOIINGPIESENTEL. .. ittt 647
SCIOINGTEXTEQIT ... 652
SCIOIILISTBOX 1.ttt 655
SEATCNCONTEXT .ot 658
S UM ittt 661
SEAUENCECUISOT 1ttt 666
SEQUENCEIEIATON. ..ot 668
SNAPEACTION Lo 669
SIMPIESCIOIBAN ... 671
ST i 673
Sl ittt 675
SINAITEXTEQIT .. vt 678
SO A ATTAY vttt 681
SOMEAKEYEAAITAY ©1viviiiiiiii i 684
DI ittt 686
SEENCHL 1 690
STENCIBUTTON. ...t 693
STOTAGECONTAINET ...t 697
S M L 701
ST I sttt 705
STINGC ONSTANT Lot 710
STINGINAEX ittt 713
SO ST 1ttt 717
ST O W D i 718

Xi

ScriptX Class Reference

SUITQICE i 719
SYSTEMIMENU 1o 721
SYSTEMMENUBAT ..o 723
SYSTEMMENUITEM ..o 726
TAIGETLISTACTION .ottt 728
T P S T A 1ttt 732
T T ittt 736
TEXTE AT i 743
TEXTBUTTON ottt 747
TEX P IS NI ittt 750
TEXISTENCH vttt 759
TRIEAQ i 761
T 1 e 767
T A CTION Lottt 770
TIMECAIDACK Lvvviiiiiii 772
TIMeJumpPCAllDACK. ... 773
TIHIEC ONTAINET 1ttt 774
OGO ittt 782
TrANSTHONPIOYET 788
111 793
TWOD COMIDOSITON it 795
TWOD CONITONET .. ittt 799
TWOD MOTTIX 1ottt 802
TWODMUPIESENTEN ..iiiiiiiiiii 807
TWODPIESENTET L1ttt 814
TWODSNAPE 1ottt 826
TWODSPDOCE 11t 828
USECIAUSE 1ottt 833
VW P Oy Ol it 834
VIAEOSTIEAM Lo 837
WINAOW 1ottt 841
WV i 851
Appendix A Loadable EXIENSIONScuiieiiiiiiiiiiiiie i 855
AppendixX B EXCEPLIONS ...uuiiiiiiiii ittt e e e e e e e e 859
EXCPTION 865
ClOCKEXCEPTON oottt 869
COolleCTIONEXCEPTION ..ot 870
DeVICESEXCEPRTION 11t 872
DIrREPEXCEPRTION 11iviiiiiiii 873
EVENTEXCEPRTION 1 875
G ENETIAIEXCEPTION ittt 876
[nnTeTe] 1ol a1 = 1 (o] CHN PP PP PUPSSPUUSU 879
LOAAEIEXCEPTION 11ttt 880
MOThEXCEPRTION ..o 881
MEMOIYEXCERTION ©.iiiiiiiiiiiii i 883
ObJSTOIEEXCEPTION . viiiiiiiiiiiiiiii 884

Xii

PIAYEIEXCEPTION 11iviiiiiiii 886

ST BT O 1 ittt 890
SPACEEXCEPTION oot 892
SHEAMEXCEPRTION. ... 893
Sy S M E IO it 895
TEXTEXCEPRTION 1t 897
TRIEAAEXCEPTHON .ot 899
TWODGIaphiCSEXCEPTON oo 901
APPENAIX C GlOSSAIY ..oiicviiiiiiiei ettt e e e e e e e e e e e e e e snnnes 903
100 = PP PSPPI 909

Xiii

ScriptX Class Reference

Xiv

Preface

Audience

This document is part of the ScriptX Technical Reference Series. This series is for
programmers using ScriptX to develop interactive multimedia tools and titles. This
series includes the following documents:

® The ScriptX Quick Start Guide includes instructions for installation, a documentation
roadmap, tutorials, and a list of new features. It also describes how to contact
Kaleida. This is the place to begin when starting with ScriptX.

® The ScriptX Language Guide is a practical guide to using the ScriptX programming
language. It provides complete functional descriptions of the language, but does not
cover the ScriptX classes. Anyone programming in ScriptX will want to use this
book.

¢ The ScriptX Components Guide provides a detailed description of the ScriptX
components. For each component it describes the conceptual overview, how it
works, how to use it, and complete, working sample scripts. It covers the full range
of ScriptX features, from the multimedia title to the operating system services. This
manual is essential to anyone designing and building multimedia titles and
applications in ScriptX. It is the companion volume to the ScriptX Class Reference.

¢ The ScriptX Class Reference (this manual) is a detailed reference to the ScriptX classes
and API (Application Programming Interface). It provides, in dictionary form, a
complete specification of the classes, methods, variables, and functions available for
building multimedia titles and applications in ScriptX. It is the companion volume to
the ScriptX Components Guide.

® The ScriptX Tools Guide provides information about the ScriptX development process,
tools, and importers, as well as how to extend ScriptX. The first part discusses how
to use the Listener, debugger, browser, profiler, and other tools that are supplied
with ScriptX. All users will want to read this part. The second part explains how to
extend ScriptX by loading classes written in C, and discusses platform-specific
issues. Developers who wish to add classes written in C to ScriptX will want to read
the second part. The third part of the ScriptX Tools Guide discusses how to build
additional tools in ScriptX. Tool developers will want to read the third part.

® The ScriptX Quick Reference summarizes information from the three manuals ScriptX
Language Guide, ScriptX Components Guide, and ScriptX Class Reference. It includes the
grammar of the language, listings of components and their classes, and an
alphabetical reference to classes, including class variables, instance variables, and
methods.

Note — Release notes are included with the ScriptX software. Be sure to refer to these
notes for the known restrictions and bugs in the current version of ScriptX.

This document is written for the ScriptX programmer who wants to design and build
multimedia titles, applications, or tools to be delivered and run with the Kaleida Media
Player.

This document describes API with the implicit understanding that, unless otherwise
noted, those API are available at runtime with the Kaleida Media Player. Therefore, if a
feature is not available at runtime, such as the fi | el n instance method in the D r Rep
class, a note is included to that effect.

- Preface

This document is written at the level of ScriptX, and no knowledge of the C language is
necessary. (C is required only for those who want to write C extensions to ScriptX).

Titles, Applications and Tools

The terms title, application, and tool have specific meanings that are often mean different
things to different people. While their meanings sometimes overlap, in the context of
this document, they are defined as follows:

title — A program in which an end-user plays, explores, learns or is entertained.

application — A program in which an end-user gets work done, generally performing a
specific, useful task.

tool — A program used to create a title or application. In general, a ScriptX tool runs
only with the ScriptX executable, not with the Kaleida Media Player.

Programs do not have to be monolithic. A program that allows you to explore (a title)
could contain a word processor (an application) and the means to modify the word
processor (a tool). Thus, any program can contain other kinds of programs.

A title or application developer requires use of the API available in the ScriptX Class
Reference. A tool developers also requires use of the API available in the ScriptX Tools
Guide.

Throughout this document, in general we use the single term “title” to mean any of
these three kinds of programs.

Summary of Contents

This manual contains the following sections:

® “Preface” describes what headings a typical class description contains, as well as
what conventions are used throughout this manual.

® Chapter 1, “Information Common to All Classes,” includes, obviously, information
that is common to all classes in this manual.

¢ Chapter 2, “Global Functions,” describes all of the public global functions in ScriptX.

¢ Chapter 3, “Global Constants and Variables,” describes all of the public global
constants and variables in ScriptX.

® Chapter 4, “Class Descriptions” constitutes the bulk of this manual. It describes all of
the public classes in ScriptX, in alphabetical order, from A-Z. It includes core classes,
loadable classes and scripted classes. It does not include tool classes—they are in the
ScriptX Tools Guide.

Preface

Class Descriptions

The following diagram shows how a class is described, using a fictitious class as an
example. The variable and method headings are described on the following page.

Class Name - - - - - = = = =~ = == ===~ i

Inheritance diagram - - - - - - - - - - -« } AN

Class type: - -~ -~~~ -~~~ - -~ . N
Abstract or Concrete, NN
Sealed or Not Sealed .

Resides in:

ScriptX or KMP executables,
or C-loadable or ScriptX Library file

Inherits from:

Name of direct superclass (more than
one name if it multiply inherits)

Component:
Name of ScriptX component
this class belongs to

A class description giving the purpose of ---
the class and what it can be used for.

How to create and initialize an instance - - -
of the class.

The variable and method descriptions.

A list of the methods that subclasses
of this class must implement.

A list of the exceptions that this
class can generate. (not shown)

AN RootObject
AN stack

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root Obj ect

Component: Spaces and Presenters

The St ack class is an array of Car d objects for creating stacks of cards. Each
Car d object keeps track of its corresponding Backgr ound object.

S - - -Creating and Initializing a New Instance
n The following script is an example of how to create a new stack:
’ / nmyStack := new Stack boundary: (new Rect x2:100 y2:100)
’ ’ This creates a stack whose boundary is 100 x 100 pixels.

, ‘ | Class Variables

!
’ 4 classCard

self. cl assCard (read-write) I nt eger

An index into the array self.

Class Methods

' new

I new self 0 Stack

Creates and returns a new St ack object.

!
i Instance Variable

myController

self. myControl | er (read-only) StackControl | er

\ The controller that dispatches methods to the card self.

' Instance Methods

' goBack

' goBack self 0 Stack

Goes back one card in the traversal list of the stack self.

Subclasses Must Implement
Subclasses of Stack must implement the following methods:

next
previ ous

Each class description contains the headings described as follows; a heading doesn’t
appear if the class contains no information for that heading.

Inheritance

Diagram

The inheritance diagram for each class displays all of its superclasses, including all
multiple inheritance paths, up to Root (bj ect . The classes are shown from left-to-right
in the order that they are searched for inherited behavior and properties. When an
operation involving a keyword, variable or method is performed on a class or its
instance, ScriptX searches up the inheritance tree for the first class that implements the
operation. As shown in the diagram, the classes are searched in this order:

From bottom-to-top, left-to-right, with Root (bj ect last.

- Preface

For example, the Array class, as shown in the following diagram, is searched in the
order Array, Sequence, Li near Col | ection, I nplicitlyKeyedCol | ecti on,
Col | ecti on, Cont ai ner, and Root (hj ect .

LinearCollection Container

Collection

ImplicitlyKeyedCollection

Sequence

Basic Class Attributes

Class Type:
Indicates which of the following types the class is:

Core Class — Resides in the ScriptX and KMP executables. Most classes fall into this
category, and they are documented in this document, the ScriptX Class Reference.

Tool Class — Resides only in the ScriptX executable, not in the KMP. These are
documented in the ScriptX Tools Guide.

Loadable Class — Resides in a C-loadable. We define “loadable” here to mean only
the C-loadables, not the scripted loadables. For a list of loadable classes, see the
appendix “Loadable Extensions.”

Scripted Class — Resides in a ScriptX library container, accessory container, title
container or script. For a list of scripted classes, see the appendix “Loadable
Extensions.”

In addition, a class can be concrete (instantiable) or abstract (not instantiable), and
sealed (subclassable) or not sealed. See the Glossary for more complete definitions of
these terms.

Resides In:
Indicates which file the class is defined in. There are four places that a file can reside:

ScriptX executable — This executable has the filename “Scri pt X" on the Macintosh,
and “scri pt x. exe” on Microsoft Windows.

KMP executable — The Kaleida Media Player, which has the filename “KMP”.
. l'i b file — Loadable classes reside in C-libraries.
. sxl file — Scripted classes reside in ScriptX library containers.

By definition, core classes are defined in both the ScriptX and KMP executables, and
tool classes are defined only in the ScriptX and not the KMP executable.

For loadable and scripted classes, the “Resides in” line also indicates which executables
they work with. In this version of ScriptX, all loadable and scripted classes shipped
from Kaleida work with both ScriptX and the KMP executables. (That is, there are no
tools-only loadables at this point.)

Preface .

Inherits From:

Indicates the direct superclasses of the given class. Since ScriptX supports multiple
inheritance, a class can have more than one direct superclass.

Component:

Indicates which component the class is documented in. The components correspond to
chapters in the ScriptX Components Guide.

Inherited API

For class variables, class methods, instance variables, and instance methods (the
following four sections), the inherited variables and methods are also listed ahead of
the variables and methods defined in that particular class. Every class also inherits the
class methods from Behavi or and instance methods from Root Cbj ect, as described in
the “Information Common to All Classes” chapter.

Class Variables

The class variables for the specified class are listed and described. These are the
variables that are kept in the class and are shared by all instances of the class. Each class
variable has the same value for all instances of the class. The syntax format is as shown
below under “Instance Variables,” except self is a class, not an instance.

Class Methods

The class methods for the specified class are listed and described. These are the
methods that operate on classes (rather than instances)—their first argument must be a
class name. The class method syntax is as shown below in “Instance Methods,” except
the argument self is a class, not an instance.

Instance Variables

The instance variables for the specified class are listed and described. These are the
variables whose values are kept with the instances of the class (rather than with the
class itself) and therefore can vary with each instance. The variable syntax is in the

following format:

variable

self. vari abl e (read-attrib) value
|

|
“read-write” or “read-only”

The name of the instance variable
The instance in which the instance variable is defined

Indicates the value of the variable, specifying the instance, class,
or class family of this variable, being as specific as possible

The value of the variable is specified at the right-end of the syntax line, and can be a
class name, class family name, (object), (class) or (function) as specified in the next section
for the return value of an instance method. You can get access to an instance variable by
using either of two equivalent forms: self. vari abl e (as shown above) or

self s vari abl e.

- Preface

A variable can be either read-write, meaning you can change it, or read-only, meaning
you cannot change it. In the current version, ScriptX does not always enforce read-only,
so it may actually be possible for you to change a variable documented as read-only, but
doing so may cause errors.

Notice that when a variable is a collection, such as accessori es in the

Ti t1 eCont ai ner class, or an object with instance variables, it may not be obvious what
read-only means. Read-only means that you cannot change the object assigned to the
variable. However, if that object is a collection or has instance variables, it does not say
whether or not you can change the members of that collection or the values of its
instance variables. Those are determined by the attributes of the object itself.

Instance Methods

The instance methods for the class are listed and described. These are the methods that
operate on instances of the class rather than on the class itself. The instance method
syntax is in the following format. The syntax shown is the calling syntax rather than the
implementing syntax. That is, we show how the method is called rather than how it
would appear in a method definition.

net hod ‘(super cl ass) ‘

net hod self arg O return

T\ L
The one or more arguments passed in to the method
The instance on which the method can be called

The name of the method

Indicates the superclass that defines this method, if any.
Is omitted if the method is defined in the current class

Indicates the instance, class, or class family returned
by the method, being as specific as possible.

The arrow (O) itself means returns. After the arrow is the value the method returns,
giving as specific a value as possible. Every method returns an instance of some class.
For many methods, the most that can be generally known is the class of the returned
instance, and so that class appears here. Any of the following can appear as the return:

¢ A class name indicates the class of the returned instance. Two class names
can appear here (separated by commas) if the value returned can be an
instance of either class; for example, String, Nunber.

* A class family name can appear here if the value returned can be an instance
of any class in that family. The class family name can be an abstract class.
For example, if the return value specifies Nunber, the method can return an
instance of I nt eger, Fi xed, or possibly any other subclass of Nunber.

e self appears here if the object returned is the same object as the first
argument self passed in to the method. Likewise, another method argument
can appear here if that argument is returned.

* (none) means the return value is unspecified—don’t use it for anything. (This
value appears as K in the ScriptX Listener window.)

Preface .

® (function) means the return value is an instance of Abstract Functi on, the
abstract parent class to which all functions, generics, and methods belong.
Abst ract Functi on and its subclasses, which include Generi ¢ and
Byt eCodeMet hod, are not documented in the ScriptX Class Reference. They
cannot be specialized, and they have no visible properties or methods.

* (object) means the return value is an instance of any class. This has the same
meaning as specifying Root Qbj ect, since Root (bj ect family includes all
classes.

* (class) means the return value is any class. This has the same meaning as
specifying Root A ass.

Square brackets around an argument, [opti onal], indicates that a keyword argument
is optional; all other arguments are required. All positional arguments are required. See
the section “Positional and Keyword Arguments in Methods” in the chapter
“Information Common to All Classes” for more information about arguments.

As a convention in this document only, we omit a backslash at the end of a method that
wraps to the next line, even though a backslash would be required if you were writing
the method in a program.

Inherited API

Within each of the previous four headings Class Variables, Class Methods, Instance
Variables, and Instance Methods, a list of inherited API can appear, listed in three
columns. For example, the TwoDShape class inherits the following instance variables:

Inherited from Presenter:

pr esent edBy subPresenters t ar get
Inherited from TwoDPr esent er :

bBox gl obal Regi on transform

boundary gl obal Tr ansf orm wi dt h

changed hei ght w ndow

cl ock i mageChanged X

conposi t or isVisible y

direct posi tion z

eventInterests stationary

gl obal Boundary t ar get

This information is indicates to you where else in this document those variables or
methods are documented. Although in most cases, these inherited variables or methods
can be used with the subclass (TwoDShape, in the above example), be aware that this is
not always true. In other words, just because a method or variable works with a
superclass does not mean that it works the same way with the subclass. Some instance
variables are initialized when you create an instance of the class and at that point are
read-only and not meant to be changed, even though they are documented as
read-write in their superclass. Some methods will throw exceptions for subclasses
because they are not seekable, not writable, or have some other constraint. This manual
does not attempt to document every condition under which every inherited method or
variable works.

For example, the Pai r class is a collection that always has exactly two values—you can
change these values (using set Nt h) but you cannot add or delete values. That is,
although Pai r inherits the add method from Col | ecti on, calling add on Pai r reports
an exception: “Collection has reached its bounds.”

- Preface

Subclasses Must Implement

Subclasses of this class must implement the methods that are listed (descriptions of the
methods are found elsewhere). More specifically, these methods must be implemented
somewhere in the inheritance tree between this class and every instantiable subclass.
For example, Col | ecti on is an abstract class that does not implement the add method,
but its instantiable subclass Sequence implements add. (If add were not implemented,
items could not be added to instances of Sequence.)

Global Constants

These are any special instances of the class. Examples include enpty, true, fal se,
whi t eBr ush, and bl ackBr ush.

Exceptions Generated

The exceptions that can be generated when using this class are listed and described.

Note — Methods that a class inherits are not documented with that class in detail if their
behavior is the same as in the superclass they inherit from; the methods are documented
if this class provides different behavior.

Conventions Used in Manual

Font Conventions

In order to distinguish elements of ScriptX, this manual uses the following font
conventions:

® Code samples, class names, method names, and other literal elements are in
Couri er.

¢ Variable argument names are set in italic.

As an example of both rules, here is the method syntax for creating a new instance of
a ock object:

new self master d ock: clock scal e: number

Upper/Lowercase Conventions

The following conventions are used in naming elements of ScriptX:

® (Class names and module names begin with an uppercase letter.
Examples of classes: 4 ock, Pl ayer, Card
Examples of modules: Scrat ch, Scri pt X

¢ All other names begin with a lowercase letter.
This includes names of methods, functions, constants, and variables. Examples: new
(method), r ed (instance variable), obj (user-defined variable).

® All compound names use uppercase to begin each embedded word.
This applies to all categories: classes, methods, functions, constants and variables.
Examples:

Preface .

PushBut t on class (has an uppercase “B”)

sel ect A | method (has an uppercase “A”)

Class Names Used as Normal Text

Figure P-1 shows the Space family of classes, which is made of the Space class and all
its subclasses. To convey that “x is an instance of Space, or any subclass of Space,” it’s
a convenient shortcut to say simply “x is a space.” A space can be an instance of
TwoDSpace, W ndow PagelLayer, or G oupSpace or class, but not the Space class since it
is abstract.

TwoDSpace GroupSpace

Figure Preface-1: The Space family of classes.

Notice that in the phrase “x is a space”, the word “space” does not use the conventions
for indicating a class name (Space)—it does not have an initial uppercase letter, nor is it
set in Courier. The word looks like any other regular word. This demonstrates the
following convention used throughout this manual:

A class name that appears as normal text in lowercase letters refers to an instance that is
created from the corresponding family of classes.

Here’s another example of the word “space” in lowercase used in a sentence:
A space is an environment where objects live and interact.
This sentence is simpler than, and yet has the same meaning as:
An instance of the Space family is an environment where objects live and interact.

Throughout this manual this convention is used. An unwary reader might not catch the
full meaning of such a sentence, which leads to this corollary:

Watch out for class names formatted as regular text— such as space, action,
presenter, container, and so on. They have the specific meaning described in this
convention.

Note that the lowercase term “space” specifically does not refer to the Space class itself,
or necessarily to an instance of the Space class. In fact, Space is indeed an abstract class
and cannot be instantiated, so the term “space” must refer to an instance of a subclass of

Space.

As another example, someone unfamiliar with the ScriptX classes might not realize that
the use of the word “presenter” in the sentence “A presenter can draw itself” refers
specifically to an instance from the Present er family of classes.

The following table lists some of the lowercase class names that might not be obvious to
the uninitiated.

Lowercase

Class Name Meaning

space an instance of the Space family of classes
action an instance of the Acti on family of classes
presenter an instance of the Present er family of classes

- Preface

Lowercase

Class Name Meaning

point an instance of the Poi nt family of classes

container an instance of the Cont ai ner family of classes

2D space an instance of the TwoDSpace family of classes

sequence an instance of the Sequence family of classes

clock an instance of the A ock family of classes

keyed collection an instance of the KeyedCol | ecti on family of classes
Important Terms

10

The following terms are used throughout this manual. Also refer to the Glossary
appendix for more terms.

abstract class — A type of class designed for subclassing rather than instantiating. An
abstract class can range from containing no implementation (a true abstract class) to
containing full implementation (a true mixin class). Contrast with concrete.

concrete class — A type of class that can be instantiated. Some concrete classes are
instantiated by the system and cannot be instantiated by the author— Bool ean, for
example, can have only two instances, t r ue and f al se. In general, a concrete class has
a new class method for creating instances. For some concrete classes, this method is not
visible at the scripter level. For example, new instances of the Nunber subclasses are
automatically generated by the compiler as it encounters numbers in a script. Contrast
with abstract.

sealed class — A type of class that cannot be subclassed. Very few classes in ScriptX are
sealed. The Nunber class is an example of a sealed class. Note that sealed classes can
have predefined subclasses—for example, Nunber has the subclass Fi xed.

mixin class — A type of class that can usefully be mixed into other classes. All classes in
ScriptX are technically mixin classes, although they don’t all add functionality. The
classes Dragger and SequenceQur sor are true mixin classes in that they contain a full
implementation—by mixing them in you automatically get the added functionality you
want without further implementation.

method — A function that is defined and implemented in a class or an instance of a
class. A class method requires a class as its first argument; an instance method requires
an instance as its first argument. When used alone, the term method could apply to
either—its meaning depends on the context. The methods of a class or instance are often
called its behavior.

You can easily distinguish between class methods and instance methods by looking at
whether its first argument is a class or an instance. In the following example, newis a
class method, since it operates on Poi nt, a class. However, xSetter is an instance
method, since it operates on pt, an instance.

pt := new Point -- ‘new is a class method
xSetter pt 100 -- ‘xSetter’ is an instance nethod

instance variable — A variable of a particular instance; this variable holds some state
information for that instance. The value of an instance variable is kept with the
instance (in contrast to a class variable, where the value is kept with the class). One
instance of Poi nt might have an x-location of 100, another instance might have an
x-location of 50. Thus, the values of instance variables distinguish instances of the same
class. In the following example, X is an instance variable.

pt := new Point -- Ceates a new instance of Point

Preface .

pt.x := 100 -- Sets x of pt to 100

class variable — A variable of a particular class; this variable holds some state
information for that class. ScriptX has very few class variables in its core classes.

11

- Preface

12

CHAPTER

Information
Common to All
Classes

Information Common to All Classes

14

Information Common to All Classes

The ScriptX classes represent basic building blocks of a multimedia title or application.
As shown in the ScriptX Class Inheritance Tree at the front of this book, they cover a
wide range of functionality, from specifying integers and arrays, to compositing video
and audio on-screen. These classes form the standard for developing titles and
applications using the ScriptX language.

This document contains both core classes and loadable classes; the core classes are those
resident in the Kaleida Media Player file, while the loadable classes are separate
loadable files that extend the ScriptX capabilities, and are written either in C, OIC
(Objects in C), or in ScriptX.

This manual documents the public, platform-independent classes, methods, variables,
constants, and functions that are available in version 1.1 of the Kaleida Media Player.
This set is known as the ScriptX API (Application Programming Interface) targeted for
the Kaleida Media Player. Notice this excludes the classes available only in the ScriptX
Development Environment; these are documented in the ScriptX Tools Guide.

These classes are accessible at the scripter level, and they are portable to all ScriptX
platforms, except where noted. Those exceptions are due to constraints or features
inherent in the underlying operating systems. From the perspective of playing back a
ScriptX title, these classes are available in ScriptX players on all platforms—currently
Macintosh, Power Macintosh, Windows, and OS/2. Thus, if you write a title or
application based on the classes in this document, it will run on all platforms that
ScriptX runs on.

A few classes, methods, functions, and variables are available only in the development
environment, not the Kaleida Media Player, since they require the ScriptX bytecode
compiler, or of interest only while debugging a title, such as the fi | el n method,

war ni ng method and showChangedRegi on instance variable.

Note that substrate (private) classes, metaclasses and the C-language interface are not
included in this manual.

Each class in ScriptX belongs to a component, as noted at the beginning of each class
description. ScriptX is made up of the components described in the companion manual,
the ScriptX Components Guide.

The information in this chapter is common to all classes in this reference guide, and is
described in the following sections:

¢ Creating a Subclass

® Inherited Methods and Variables

e Setters and Getters for Instance Variables

® Positional and Keyword Arguments in Methods
® C(reating and Initializing a New Instance

¢ Overriding the Initialization in a Subclass

® Protocols

15

Information Common to All Classes

Creating a Subclass

The core classes are defined by Kaleida Labs. If none of the core classes performs the
task you need, you can define your own class by subclassing any existing core class. In
this subclass you can specialize the instance methods and the setter/getter methods for
its instance variables.

You should never try to directly modify the definition of a core class in any way—you
should instead create a subclass and specialize that subclass. For example, if you want
the ti ckl e method of the Gravi ty class to operate differently, you should create a
subclass of it, then specialize the method there.

To create a subclass of a class, use the cl ass construct described in the ScriptX Language
Guide. Be sure to implement the methods described in the “Subclasses Must Implement”
section of the class description. For example, if you subclass Sequence, you must
implement the methods addN h, del et eNt h, get Nt h, and so forth.

Inherited Methods and Variables

16

Every class description includes a 3-column listing of the methods and variables that
the class inherits, if any. However, the class methods and instance methods common to
every class are listed below instead of with the class descriptions. (This saves repeating
them for every class.) There are no class variables or instance variables common to all
classes.

For example, get D r ect Generi cs is a useful method that you can call on any class, and
get d ass is a useful method that you can call on any instance. The complete lists
follow.

Class Methods

Every class inherits the following class methods from the Behavi or class:

Inherited from Behavi or:

cand assDo get Supers nmet hodBi ndi ng
get D r ect Subs i sD rect Sub new

get D rect Supers i sMenber O

get Subs i sSub

Instance Methods

Every class inherits the following instance methods from the Root (bj ect class:

Inherited from Root Chj ect:

addNewToSt or ageCont ai ner get Al | Generi cs | ocal Equal
addSub(bj ect s get Al | Met hods | ocal Lt
addToSt or ageCont ai ner get d ass nor ph

af t er Loadi ng get d assNane prin

af t er Loadi ngl f Necessaryget D rect Generi cs recurPrin

al | 1 VNanes get Di r ect Met hods r enoveMet hod
can(oj ect Do inflate r enoveMet hods
conpar abl e i SAKIi ndCF store
deflate i vNanes traverse

del et eFronBtore i vTypes

eq | oad

Information Common to All Classes

Setters and Getters for Instance Variables

Every instance variable has a getter method (for getting its value), and those that are
read-write also have a setter method (for setting its value). These methods are named
ivnameGet t er and ivnameSet t er, and are not explicitly documented in this manual. For
example, if an object named nyBox has an instance variable named wi dt h, you can
access it using instance variables:

nyBox.wi dth := val ue -- for setting the val ue

nyBox. wi dt h -- for getting the val ue
You can also use the equivalent methods:

wi dt hSetter nyBox val ue -- for setting the value

w dt hGetter nyBox -- for getting the val ue

Both styles have identical access times—neither one is more direct or faster than the
other. You can choose one style or the other based on which style you prefer. Kaleida
has adopted the style of accessing instance variables using the instance variable style
rather than the method style.

Note — In this manual we explicitly document instance variables, but not their setters or
getters. You can presume that any instance variable has an “undocumented” getter and
setter (if writable) that you are free to use. Their names are the instance variable name
with Getter and Setter added as a suffix, respectively.

When you want an instance variable to behave differently, such as to also perform a
side effect, you can override the setter and getter methods in any subclass of a core
class. In the example above, you could override wi dt hSetter or wi dt hGett er. You
might override wi dt hSetter to test the supplied width value to ensure it does not
exceed the screen width before accepting the value. (You should never modify any
method in a core class— create a subclass and then specialize the method there.)

Important — for Current Release — For the current release, there is no direct access to
an instance variable slot. A “slot” is a particular location in memory where the value of
the instance variable is stored. Some instance variables store values in slots while others
do not. For example, val ueEqual Conpar at or is an instance value with no slot. Instance
variables without slots (virtual instance variables) call functions to set or get their
values from the environment. The instance variable pr esent edBy is an example of a
variable with a slot to hold its value (a real instance variable).

When you create a subclass, instance variables that are identified in this manual as
read-only can be made read-write by including a setter method for them. For example,
the i ncl udesLower instance variable is read-only for the immutable class Nunber Range,
but but if you create a mutable subclass of Nunber Range, you can implement an

i ncl udesLower Sett er to make it read-write.

In the current version, ScriptX does not always enforce read-only. Although you can
actually change a variable designated as read-only, doing so may cause errors.

Positional and Keyword Arguments in Methods

ScriptX methods can have two kinds of arguments: “positional” arguments and
“keyword” arguments. Most core class methods have only positional arguments; the
few methods that have keyword arguments include newinit,ini tAfter,

get OneSt r eamand makeOneSt r eam

17

Information Common to All Classes

® Positional arguments must be supplied in the specified order, and all arguments
must be supplied or an exception is reported.

For example, the append method requires the first argument be the sequence object,
and the second argument be the value to be appended:

append nyArray 10

¢ Keyword arguments can be supplied in any order; required arguments must be
included, but optional arguments can be omitted.

For example, the newmethod on Array has two optional keywords: i ni ti al Si ze
and gr onabl e. When creating an array, you can specify these in either order, or omit
them to accept the default. The following are all acceptable:

new Array initial Size:100 growabl e:true
new Array growable:true initialSize:100
new Array growable:true

new Array

Note that the first argument of every method is a positional argument (as is nyArr ay in
the previous example).

Creating and Initializing a New Instance

18

Each class description given in this manual describes how to create (instantiate) and
initialize instances of that class under the heading “Creating and Initializing a New
Instance.” Concrete classes can be instantiated; abstract classes cannot.

Creating and initializing are related operations—the act of creating an instance
automatically initializes it. Specifically, the newmethod, when called on a class, creates
an instance of that class, then calls i ni t to initialize the instance, and then calls
afterlnit.

Creating an Instance of a Class

The method for creating an instance is the class method new To create an instance of
any concrete class:

Call the newmethod specifying the class name as the first parameter, followed by the
keyword arguments from the i nit and after | nit methods (described next). You
must include the required keywords; include optional keywords at your discretion.
You can enter the keyword arguments in any order. (Note that few core classes have
an implementation for the af t er | ni t method.)

The newmethod creates an empty instance of the class, and then it automatically
initializes the instance by calling the class’s i nit and after| ni t methods with the
keywords you supplied. The newmethod returns the initialized instance.

For example, the following script creates a new instance of the Bi t map class:

nyPoint := new Point x:10 y:20

The resulting variable, called nyPoi nt, contains the initialized point instance. Its x
instance variable is set to 10, and y instance variable is set to 20.

Information Common to All Classes

The Creation and Initialization Syntax

As stated previously, the newmethod passes its arguments along for i ni t and
afterlnit to use. Since most classes have no after| ni t implementation, the syntax
for the newand i nit methods for most classes is identical. As an example, the syntax
for the i ni t method of Poi nt is as follows (where the square brackets indicate that the
keyword argument is optional):

init

init self [x:number] [y:number] O (none)
self Poi nt instance
X: Nunber object representing x value in pixels
y: Nurber object representing y value in pixels

Initializes the Poi nt object self, applying the values supplied with the keywords to
the instance variables of the same names, as follows: x sets the x-coordinate and y
sets the y-coordinate.

If you omit an optional keyword, its default value is used. The defaults are:

x: 0
y:0

Notice that required keywords don’t have default values, since the developer must
always provide values.

Also notice that i ni t has two different kinds of arguments—those with and without
keywords. The first argument self has no keyword, whereas the keyword arguments are
each of the form keywor d: value, as shown in the following diagram:

1st argument 3nd argument

2nd argument
[1

I 1
init self x:number y:number

keyword value keyword value

How the new Method Works

When you call the newmethod on a class, the method creates an instance of that class,
then callsinit and afterlnit on that instance, as shown in the following diagram:

The new method

1 2 3

creates an » init Safterlnit
instance

As shown in the diagram, the newmethod has three parts:

1. Creates an instance, which allocates the appropriate amount of memory for the
specified class.

2. Calls the i ni t method, which initializes the variables for the instance and calls i ni t
on any superclasses.

19

Information Common to All Classes

3. Calls the af t er I ni t method, which performs some post-initialization work, such as
building internal structures dependent on settings derived from i ni t, or assigning
further user-supplied values to the initialized instance. This method is not
implemented for most core classes; it is mainly available to be specialized in
subclasses.

Notice that newis a class method while i nit and afterlnit are instance methods. The
newmethod is a class method defined in the Behavi or class, and takes any number of
arguments. The arguments are usually ignored when allocating memory, but are passed
along for use in the i nit and afterl nit methods.

Theinit and afterl nit methods, on the other hand, are implemented individually in
each class. When i ni t is called on any instance, it initializes the instance self, applying
the arguments to instance variables or internal states. Keywords are passed along to
superclasses, as appropriate, up the inheritance tree, to ensure the inherited portions of
the instance are properly initialized.

Notes About Initialization

Overriding the |

20

The method for initializing an instance is i ni t and the method for performing
post-initialization is af t er | ni t. There is no need for you to explicitly initialize an
instance, since that happens automatically when you call newto create the instance. In
fact, if you were to call i ni t on an instance, the instance is not guaranteed to be
initialized. There is no way to re-initialize an instance—the only way to get an
initialized instance is to create a new instance.

Note — While it is routine to call the newmethod, you should never directly call i nit or
afterlnit (which are automatically called by new); doing so will not re-initialize the
object, and might put the instance into an unknown state or cause unexpected behavior.
Calling i ni t, in particular, might cause your program to crash.

Since abstract classes cannot be instantiated, the newmethod is not documented for
abstract classes. However, the i ni t method is documented for many abstract classes
because it plays an important part in the initialization of instances of concrete
subclasses. That is, when you subclass an abstract (or concrete) class, the i ni t method
of that subclass must call its superclass’s i ni t method in order to instantiate the
subclass properly.

nitialization in a Subclass

Note — Do not change any method directly in any of the core classes, including the new
init orafterlnit methods—doing so would override important internal
initialization. You should create a subclass and then override the method in that
subclass. You can, however, add new methods to a core class that do not override
existing methods.

As stated previously, the newmethod is responsible for allocating memory required for
the object, while the i ni t and af ter I ni t methods assign initial values to the newly
created instance. You can override any of these methods in a subclass of a core class.

You would override the newmethod in some very special cases where there must be a
limit to the number of instances created. For example, in a system that has only one
hardware mouse, when two different concurrently-running ScriptX titles ask for a
mouse, they should both get the same mouse device. When the second title calls new
the method should not create a new MbouseDevi ce object, but should return the device
already created.

Information Common to All Classes

Protocols

You would override i ni t to change how values are assigned to the created instance.

If you override the new init, or afterlnit method in a class, be sure to invoke its
superclass’s i ni t (or af t er| ni t) method using the next Met hod call. This allows the
superclasses to properly initialize the instance as needed. For example:

nethod init self #rest args ->

(
-- some specialization
apply next Method sel f args
-- some nore specialization
)

For more detailed information, refer to the description of the i ni t method in the
ScriptX Language Guide.

As used in ScriptX, the term “protocol” has a general, conceptual meaning and also has
a specific implementation. The following is a description of these two senses.

Conceptual Definition

A protocol is an interface description for an object. It is most generally defined as a set
of generic functions, including the setter/ getter generic functions for instance variables.
The purpose of any protocol is to generalize and standardize a set of behaviors for
particular objects so that other objects will know how to interface to them.

For example, the Player protocol is the set of generic functions that are implemented by
corresponding methods in the Pl ayer class. Objects that want to respond to the Player
protocol can implement the Player protocol. Objects that want to use a player can call
the generic functions belonging to the Player protocol.

In its simplest form, a protocol involves two objects: a “caller” and an “implementer”.
The protocol is the interface that the implementer makes available to the caller; it is an
agreement for the caller to interface to the implementer in a certain, prescribed way. The
caller agrees to call only generic functions belonging to the protocol, and the
implementer agrees to provide an implementation of the methods for those generic
functions.

The implementer must provide the implementation (that is, a method) for each generic
function in the set defined by the protocol. It can do so either directly by method
definition in its instance or class, or indirectly by inheriting an implementation from a
superclass. These methods allow the implementer object to respond to the protocol.

Different families of classes can independently implement the same protocol. In other
words, it is not necessary that two implementers that respond to the same particular
protocol share any classes in common. The only requirement is that if the caller invokes
a generic function that is within the protocol definition, that the implementer have a
corresponding method. Independent implementations of protocols makes the generic
functions more polymorphic and general-purpose.

In the following figure, the implementer (object B) provides a protocol that the caller
(object A) uses. For example, if object B implements the Player protocol, which includes
the generic function pl ay, then object A can call the pl ay generic function on object B,
invoking its pl ay method and causing it to begin playing.

21

Information Common to All Classes

22

From the standpoint of object A, the caller, when A calls a generic function on object B,
object B can implement the corresponding method either by inheriting the
implementation from the Pl ayer class, or by instead directly defining the method. It is
important only that the protocol is somehow implemented by object B.

Caller Implementer
! Player protocol |
Object A | " Object B
play
A calls Player protocol pause B implements Player protocol

rewind

fastForward

stop

Figure 1-1: Object A calls the Player protocol on object B. Object B implements and
responds to the Player protocol.

Here are some of the basic protocols in ScriptX:

® The Space protocol — for containment of objects

¢ The TwoDPresenter protocol — for drawing objects to the screen
¢ The Player protocol — for media playback

® The Clock protocol — for real-time control

® The Thread protocol — for execution control

® The Collection protocol — for data management

In ScriptX version 1.0 we do not provide an explicit representation of a protocol
separate from that of a class. Implicitly, every class represents a protocol defined by the
set of methods that the class and its superclasses implement. In a later version of
ScriptX, we plan to explicitly represent protocols and be able to name them, test for
conformance, compose over them and so on.

Implementation of Protocols

In version 1.0 of ScriptX, the space and controller families of classes are the only classes
that use protocols by name and do protocol checking—in this case, every class
represents a protocol. Both the Space and Control | er classes define a prot ocol s
instance variable, which is a list of classes. This list of classes forms the necessary
protocols for objects added to the space or controller. You can add or remove classes
from this list to raise or lower the admissions requirements.

Saying a class is a protocol is a shorthand way of saying the generic functions of that
class (including setters/getters for instance variables) define the protocol. Indirectly, the
prot ocol s list defines the generic functions that objects in the space or controller are
capable of responding to—hence, you can safely call those generic functions on objects
in the space or controller.

In the case of a space, before allowing an object into the space, the space checks to see if
the object implements all the protocols. It does this by iteratively calling i SAKi ndCf on
the object and each class in the protocols list. The object is added only if every test
returns tr ue.

The current means of protocol-checking in spaces and controllers is by testing against
the list of classes. However, if you need to perform your own way of protocol-checking,
you can implement it yourself by checking against a list of generic functions. If you
need to do protocol-checking, you can implement your own way of doing it.

Some of the core classes have a default protocols list. For example, an instance of the
TwoDSpace class has the TwoDPr esent er class in its protocols list. This means only
instances of TWoDPr esent er or its subclasses may enter a 2D space.

Information Common to All Classes

Likewise, the Bounce class is a controller that has TwoDPr esent er and Proj ecti | e in
its protocols list, as shown in the following diagram. Thus, an instance of Bounce can
control only objects that are both a kind of TwoDPr esent er and Proj ecti | e.

Bounce

Instance Variables:
protocols ‘ TwoDPresenter
é Projectile

Figure 1-2: The Bounce class has two built-in protocols: TwoDPresenter and
Projectile.

23

Information Common to All Classes

24

CHAPTER

Global Functions

Global Functions

26

Global Functions

This chapter lists global functions that are defined by ScriptX. These functions are
available in any module that uses the ScriptX module. Some of these functions are
associated closely with one component and the classes that component defines. The
component reference at the end of each description indicates which chapter in the
ScriptX Components Guide to refer to for more information.

Global Functions

addManyValues (global function)
addManyVal ues collection valuel value2 ... O Col | ection
collection Col | ect i on object
valuel Any object
value? Any object
Any object

Adds to collection each of the values as if by “add self enpty value” in the given order
(notice the key is passed in as enpty). The newly extended collection is returned.

addressOf (global function)
addressC object O I nt eger
object Any object

Returns the address in memory of the given object. This function is used in debugging
tools. (Memory Management component)

appendReturningSelf (global function)
appendRet ur ni ngSel f self value 0 Sequence
self Sequence object
value Any object

Appends the given value to the sequence self, returning the sequence. Similar to the
generic function append, which it calls implicitly, appendRet ur ni ngSel f is used
internally by ScriptX language constructs that append values to a sequence. (Collection

component)

callinThread (global function)

cal | I nThread func arg priority O Thread
func Funct i on object
arg Any object, used as an argument to the function
priority Naned ass object, either @yst emor @ser

Creates and returns a new Thr ead object with the given priority. This thread calls the

function func with the argument arg when it runs. It applies default values for the other
parameters. This thread is immediately active (runnable), but it won’t actually run until
its turn, as determined by the scheduler. A high priority thread is guaranteed to run at
least once before the scheduler allows any before normal priority threads to run again.

27

Global Functions

28

The global function cal | I nThread is an alternative to calling newon the Thr ead class.
You can assign any thread properties, such as | abel and preenptibility, to a thread
created with this function. For more information on creating a thread, see the class
definition for Thr ead.

This global function gets it name cal | | nThr ead because it calls a function “in a thread”
as opposed to the way functions are normally called.

All three arguments are required. If the thread function is to be called with no
argument, use undef i ned as a value for arg. Threads have 2 priority levels, @yst em
and @ser; system priority is intended only for critical tasks that run for a short time
without blocking. (Threads component)

canRequestPurge (global function)
canRequest Pur ge object 0 Bool ean
object Any object

Returns tr ue if object has been added to a storage container. (Title Management
component)

closeMidiDriver (global function)

cl oseM di Dri ver midiDriver 0 K

This function closes a MIDI driver, which is specified as a pair whose first element is a
string of the driver’s name, and the second element is a name such as @nt ernal or
@xternal .

cmp (global function)

cmp x y O Nared ass

Compares the objects x and y, returning either @are, @ef or e, or @f t er. (Object
System Kernel)

The cnp function is equivalent to the following;:

function cnp x y ->
if (isConparable x y) then (
if (localEqual x) then
@ane
else if (localLT x y) then
@efore
el se
@fter
)
else -- report an exception
report unordered (#(x, y) as Pair)

coerce (global function)
coer ce objectOrClass targetClass O (object)
objectOrClass Any object or class
targetClass Any class

Returns a copy of objectOrClass coerced to an instance of the class targetClass. The global
function coer ce is the basis for the ScriptX language construction as. Coerce is defined
to call mor ph and newFr om two generics that implement the Coercion protocol.(Object
System Kernel)

The coer ce is equivalent to the following:

Global Functions

function coerce x y ->

guard

nmor ph(x, y, @ornmnal)
cat chi ng

cant Coerce : (newFrom (classC x) vy)
end

For more information, see the discussion of coercion in the “Object System Kernel”
chapter of ScriptX Components Guide.

currentModule (global function)

curr ent Modul e() O Modul ed ass

Returns a Modul ed ass object, the module in which the program is currently running.
See also the global function get Mbdul e. (Modules)

defaultDeflate (global function)
def aul t Def | at e object class stream O (object)
object Object to be deflated by default mechanism
class Class of object to be deflated
stream A storage stream containing the object reference

Causes object to be deflated by its default mechanism. (Title Management component)

defaultinflate (global function)
defaul tInflate object class stream O (object)
object Object to be inflated by default mechanism
class Class of object to be inflated
stream A storage stream containing the object reference

Causes object to be inflated by its default mechanism. (Title Management component)

deflateSubObjectReference (global function)

def | at eSubChbj ect Ref er ence theSubObject stream O (object)

theSubObject An object to be deflated by default mechanism
stream A storage stream containing the subobject reference

Call this function within a specialized def | at e method to perform default deflation on
any subobjects such as instance variables. (Title Management component)

delnstallQuitQuery (global function)
del nstal | Quit Query querylD O Function
querylD I nt eger object

Removes the quit query with ID number queryID from the list of quit queries, returning
the function that was maintained as a quit query. This query ID, the result of
i nstal | Qui t Query, should be stored in a program that may later need to remove a quit

query.
A quit query is a ScriptX function that returns t r ue or f al se. If the query returns t r ue,
execution of quit queries continues until all queries return t r ue or until one turns

f al se. For more information, see the “Title Management” chapter of the ScriptX
Components Guide. (Title Management component)

29

Global Functions

30

delnstallQuitTask (global function)
del nst al | Qui t Task taskID O Function
taskID I nt eger object

Removes the quit task with ID number faskID from the list of quit tasks, returning the
function that was maintained as a quit task. This task ID, the result of i nst al | Qui t Task,
should be stored if a program may need to remove a quit task later in its execution.

A quit task is a ScriptX function that has no return value. Once the quit queries have
executed successfully, All quit tasks are guaranteed to run. For more information, see
the “Title Management” chapter of the ScriptX Components Guide. (Title Management
component)

deleteModule (global function)

del et eModul e moduleName O (none)

The global function del et eMbdul e can be called with either the name of the module (a
Nanmed ass object) or a Modul ed ass object as its argument. If the module is being used
by another module, and cannot be deleted, del et eMbdul e reports the

del et i ngUsedMbdul e exception. If the modules that are using it are then deleted, the
module can be deleted as well.

disassemble (global function)
di sassenbl e funcObj O Bool ean
funcObj Scripted Funct i on or Byt eCodeMet hod to disassemble

See the “Title Analysis AP1” chapter in the ScriptX Tools Guide. (Tools component)

enableHeapGrowth (global function)
enabl eHeapQ owt h option O option
option Bool ean object

If option is t r ue, the heap is allowed to grow in small increments as memory is required.
If option is f al se, then the system calls gar bageCol | ect before heap growth is allowed.
In either case, the function returns the value of option passed in. Note that setting option
to f al se does not prevent growth of the heap; it only forces the system to recover
unused memory before trying to grow the heap. This function is considered part of the
ScriptX API and can be used in ScriptX titles and code libraries. (Memory Management
component)

€eq (global function)

eq x y O Bool ean

Returns true if x and y are exactly the same object. This function is the same as using
the double-equal operator (==). In ScriptX 1.0, eq was implemented as a generic
function.

For | mredi at el nt eger and | nedi at eFl oat objects, eq returns t r ue if two objects
have the same value, even though they may be different objects. For more information,
see the discussion of immediate objects in the “Numerics” chapter of ScriptX
Components Guide. (Object System Kernel)

Global Functions

equal (global function)

equal x y O Bool ean

Compares the objects x and y, returning tr ue if they are comparable and have the same
values. This function is the same as using the single equal operator (=). Thus, the follow
two expressions are equivalent:

equal a b
a=m>

The equal function is also equivalent to the following definition:

function equal x y -> (isConparable x y) and (Ilocal Equal x y)

The generic functions i sConpar abl e and | ocal Equal are defined by Root Obj ect and
implemented by many classes in the system. (Object System Kernel)

eventCriticalDown (global function)

event i ti cal Down() O (none)

Allows the event system to resume processing user input. This function is always
paired with a prior call to event Ori ti cal Up, which suspends processing of keyboard
and mouse events. A call to event Ori ti cal Down balances a call to event Ori ti cal Up,
enabling the system to resume processing of these events. See event Ori ti cal Up, a
global function defined below. (Events component)

eventCriticalUp (global function)

event i tical Up() O (none)

Suspends processing of keyboard and mouse events until the next call to

event Ori ti cal Down. A call to event Ori ti cal Up precedes a critical segment of a code
in which the system discards mouse and keyboard events. Of course, event Ori ti cal Up
affects any class that maintains an interest in mouse and keyboard events, including
Menu, Scrol | Bar, and Text Edi t .

Within an event-critical segment, input devices continue to receive events from the
underlying operating system, but they “swallow” these events rather than convert them
into ScriptX events. An event-critical segment must be followed by a call to

event O i ti cal Down, which allows the event system to resume processing of these
events. These two functions are designed so that a program can insure that the system
finishes responding to a keyboard or mouse event before the next event is received.

The paired functions event Ori ti cal Up and event Ori ti cal Down are analgous to
threadOritical Upand threadCriti cal Down. The system maintains a count of calls to
event i tical U, and each call must be matched by a corrresponding call to

event Ori ti cal Down before the system resumes processing user input. If the system is
likely to be in an event-critical state for a long time, set the value of poi nt er Type, an
instance variable defined by MouseDevi ce, to @i t .

Use event Oritical U and event i ti cal Down cautiously and sparingly. An
unbalanced call to event Ori ti cal Up can leave the system in a suspended state, from
which the user may be unable to regain control of the system. The keyboard
combinations command-period (MacOS) and control-break (Windows and OS/2) allow
the user to escape from an event-critical state. (Events component)

Note — This function affects the entire runtime or authoring environment, including any
other title or tool that is currently open. If a program requires user input, it must insure
that event processing is restored.

31

Global Functions

32

findNthContext (global function)

findNthCont ext args context 0O Bool ean
args is an array with these elements: # (string, n, startOffset, endOffset) as Quad

string Stri ng object (string to select from)
n I nt eger object (nth item)
startOffset I nt eger object (cursor position to start searching in
string)
endOffset I nt eger object (cursor position to end searching in
string)
context one of (@wor d/@ent ence/ @ar agr aph) or a supplied delimiter function

If the search is successful, returns t r ue and sets startOffset and endOffset to be the range
of the context found; otherwise, returns f al se and sets startOffset and endOffset to 1. (It
is not required that args be coerced to a Quad, but it is more efficient to do so.)

The delimiters used by f i nd\t hCont ext to determine where a context begins and ends
are listed below:

@wor d

— anything that is not alphanumeric (“high-order” or “text_Matrix” would be
considered two words)

@ent ence

u oy

— period (“.”), question mark (“?”), and exclamation mark (“!”)
—new line character (“\n”)
@ar agr aph
— new line character (“\n”)
In addition, the end of a string will serve as the end delimiter for any context.

You may specify your own delimiter by supplying an anonymous function indicating
what the delimiter is to be. The argument to this function is the element to be used as
the delimiter. It must be given as a Unicode character, which means that it must be in
integer form. Below are two ways of specifying x as the delimiter:

findMthContext args (r ->r == "x"[1]) --"x"[1] is 120
findMthContext args (r ->r == 120)

If the context is @ent ence or @ar agr aph, or if you define your own delimiter, the
delimiter is included as part of the text in the range defined by the third and fourth
elements of ar gs. This is so because sometimes you want the delimiter included, as in
the case of a period to end a sentence. If you do not want the delimiter included,
however, you need to remove it yourself. (Example 3 demonstrates removing a
delimiter from text.) Delimiters are not included if the context is @wor d.

Example 1:

To find the second word in the Stri ngConst ant object s, starting the search at cursor
position 0 and ending the search at curosr position 999, enter the following code:

global s := "a quick brown fox. First there was the word"
global args := #(s, 2, 0, 999) as Quad
findNthContext args @wrd

The function returns t r ug, and ar gs becomes #("a qui ck brown fox. First there
was the word", 2, 2, 7).

Global Functions

Example 2:

To find the first sentence in s starting at cursor position 0 and ending at the end of the
string, enter the following code:

global args := #(s, 1, 0, s.size) as Quad
find\t hContext args @ent ence

The function returns t r ue, and ar gs becomes #("a qui ck brown fox. First there
was the word", 1, 0, 18).

Example 3:

The following code uses the letter “A” as the delimiter. Note that the code sample is
enclosed in parentheses so that variables can be local.

(

local t := "oneAt woAt hr eeAf our Afive"

--assigne t.size to a variable for efficiency

local length'T := t.size

local args := #(t, 1, 0, lengthQT) as Quad

repeat while (findNthContext args (r ->r == "A'[1])) do
(
print ("(" + (args[3] as String) + ", " + (args[4] as String) + \

"y:" + """ + (copyFromlo t args[3] args[4]) + "'")

args[2] := args[2] + 1 --reset args for next search
args[3] := 0
args[4] := lengthOT
)

)

Here is the output from this script:

" oneAt woAt hr eeAf our Af i ve"

#(" oneAt woAt hr eeAf our Afive", 1, 0, 23) as Qad
1

"(0, 4):'oneA ™

"(4, 8):'twoA "

"(8, 14):'threeA ™

"(14, 19):'fourA ™"

"(19, 23):'five'"

(014

The following code demonstrates first deleting the delimiter, and then replacing the
delimiter with a space:

global t :=1t as String --coerce t to a String so you can nodify it
gl obal nyCopyT := copy t

del eteAll nyCopyT "A'[1] --the value of "A'[1l] is 65

o 4

myCopy T

O "onetwot hreefourfive"

--instead of just deleting the delimter, the follow ng code replaces
--the delimter with a space

33

Global Functions

34

for i in 1 to t.size do
if t[i] = "A'[1] do t[i] := 32 --32 is the Unicode value for " "
O undefined

t
O "one two three four five"

findParents (global function)
findParents address maxLevel O (none)
address Address of object to find the parents of
maxLevel I nt eger indicating how far up the reference paths to go

See the “Title Analysis API” chapter in the ScriptX Tools Guide. (Tools component)

format (global function)
format stream formatString objectToPrint arg O (object)
stream Byt eSt r eamobject that is writable
formatString String object
objectToPrint An object to print
arg Narred ass object indicating style

Allows you to specify which item in an object to print, where stream is a writable byte
stream, typically the debug stream, to which the function will print, and formatString is
a Stri ng object. If formatString contains % or %m% where n is a nonnegative integer,
then the function is equivalent to:

prin (getNth (objectToPrint, n)) (getNth (printArg, n)) self

If formatString contains %, then the function is equivalent to

prin (objectToPrint, printArg, strean)
The target objectToPrint is typically an object, such as an instance of Array, that has
several elements. Use f or mat to selectively print one of those elements.

The final argument, arg, represents a ScriptX printing style such as @or nal or @ebug.
For more examples of f or mat, and for an explanation of printing styles, see “Formatted
Output” in the ScriptX Language Guide. (Streams component)

fps (global function)

fps() O Fl oat
See the “Title Analysis API” chapter in the ScriptX Tools Guide. (Tools component)

garbageCollect (global function)

gar bageQol | ect () O I nteger

Runs the garbage collector to completion (without yielding) from the present point in
its execution cycle. Returns the number of complete cycles since ScriptX began running.
This function could be used to clear all available memory, perhaps in preparation for a
scene transition. (Memory Manager component)

Global Functions

gatelsOpen (global function)
gat el s(pen gate 0 Bool ean
gate Gat e object

Returns true if the given gate is currently open. This function never returns t r ue on
Condi ti on objects, since they are only open instantaneously. (Threads component)

gateOpen (global function)
gat eQpen gate O (none)
gate Gat e object

Opens the given gate. Note the restrictions placed on particular gates. For example,
Lock objects may be opened only by the thread that successfully passed through or
waited on them. (Threads component)

gateWait (global function)
gat eWi t gate O (none)
gate Gat e object

Causes the current thread to block, if the given gate is not open, and the thread waits for
the gate to open. If the thread succeeds in acquiring the gate, execution of the process
continues. If the thread does not succeed in acquiring the gate, it blocks. When a thread
blocks, the value of st at us is @wi ti ng. (Threads component)

gateWaitAfterOpening (global function)
gat eWMi t Af t er Qpeni ng waitOnMe openMe O (none)
waitOnMe Gat e object
openMe Gat e object

Opens the gate openMe and then waits for the gate waitOnMe to open. The open and
wait are performed atomically with respect to the thread system, allowing you to
prevent race conditions in typical lock/condition pairs. (Threads component)

ge (global function)

ge x y O Bool ean

Compares the objects x and y, returning t r ue if x is greater than or equal to y. (Object
System Kernel)

The ge function is equivalent to the following:
function ge x y -> not (It x vy)

getMidiDriverList (global function)

get M di DriverlList() OArray

This function returns a list of pairs, where each pair corresponds to an installed MIDI
driver. In each pair, the first element is a string of the driver’s name, and the second
element is a name such as @nt ernal or @xt ernal .

getModule (global function)
get Modul e moduleName O Modul ed ass
moduleName Nared ass object representing a module name

35

Global Functions

36

Returns a Modul ed ass object with the name moduleName, or f al se if no such module
exists. This name does not have to be interned. The function returns a module, which
can be coerced to an array to see its contents. If no such module exists, it returns f al se.
See also the global function curr ent Mbdul e. (Modules)

The following example uses coercion and the pipe operation to print a sorted list of
names defined in the substrate module, the definition module for the ScriptX core
classes. (Since this example takes a long time to run, you might run it in a separate
thread by opening a new listener window from the File menu.)

gl obal nyMdul e := get Mbdule @ubstrate
(nyModul e as SortedArray) | print

getPrinterNamelList (global function)

get Pri nt er NarreLi st () O Array

Returns an array of Stri ng objects that represent the names of printer devices available.
These names can be used to create Pri nt er Sur f ace and Pri nt er Space instances. On
some platforms, printer selection is carried out outside the scope of an application and
only the currently chosen printer is listed. (Printing component)

getStorageContainer (global function)
get St or ageCont ai ner object O St or ageCont ai ner
object Root Chj ect object

Returns the St or ageCont ai ner in which object resides. (Title Management component)

getStorageCacheSize (global function)

get St or ageCacheSi ze() O | medi at el nt eger

Prints the number of 4K blocks currently being used for storage cache. See also
set St or ageCacheSi ze below. (Title Management component)

getThreadList (global function)
get Thr eadLi st desiredStatus O Sequence
desiredStatus Narmed ass object

Returns a list of currently existing threads with the status desiredStatus. Refer to the
instance variable st at us, defined by the Thr ead class, for a list of available status
names. If desiredStatus is passed as undef i ned, this method returns a list of all threads.
For technical reasons, threads whose status is @one or @i | | ed are not tracked.
(Threads component)

growHeap (global function)
growHeap byteCount O I nteger
byteCount I nt eger object

Attempts to grow the heap by byteCount bytes. Normally the heap grows in small
increments as required, but you might be able to make your title run more efficiently if
you know in advance by how much you need to grow the heap. Returns the number of
bytes actually added, which may be larger than byt eCount, since the heap grows in
fixed increments. This function is considered part of the ScriptX API and can be used in
ScriptX titles and code libraries. (Memory Management component)

Global Functions

gt (global function)
gt xy O Bool ean

Compares the objects x and y, returning t r ue if x is greater than y. (Object System Kernel)

The gt function is equivalent to the following:

function gt x y -> not (le x y)

ignoreRefreshRegion (global function)
i gnor eRef r eshRegi on compositor boolean 0 Bool ean
compositor TwoDConposi t or object
boolean Bool ean object, indicating desired state

Tells the TwoDConposi t or object compositor whether or not to ignore requests to refresh
the screen. If the value of the second argument is t r ue, it ignores requests. Otherwise, it
restores the compositor to normal operation. Although the compositor has no visible
state variable, it has an implicit state. At any given time, it is either ignoring refresh
operations (t r ue) or not ignoring them (f al se).

The return value indicates the previous “state” of the compositor—whether it was
previously ignoring requests to refresh. Typically, you call i gnor eRef r eshRegi on to
turn refreshing off, saving the state to a variable. Then, when you no longer want to
ignore refreshing, call i gnor eRef r eshRegi on again, passing the saved state as the
second argument to restore the compositor to its original state. This allows calls to

i gnor eRef r eshRegi on to be nested, as might happen in recursive structures.

The following code demonstrates a standard framework for using
i gnor eRef r eshRegi on to prevent unnecessary redrawing of a presenter:

gl obal saveState

nyW ndow. conposi tor. enabl ed := fal se

noti fyChanged nyPresenter false

saveState := ignoreRefreshRegi on nyPresenter true -- start ignoring
-- do sone things to the presenter nyPresenter here

i gnor eRef reshRegi on nyPresenter saveState -- restore comnpositor

noti fyChanged nyPresenter false

nyW ndow. conposi tor. enabled := true

Compare i gnor eRef r eshRegi on with simply disabling the compositor. When you
disable the compositor, calls to not i f yChanged still accumulate, but changes are not
drawn to the current display surface. When you enable the compositor, the display
surface is updated to the state it would have been in if the compositor had never been
disabled. (The generic function not i f yChanged is defined by TwoDPr esent er and
specialized by many of its subclasses.)

When you call i gnor eRef r eshRegi on, calls to noti f yChanged are ignored. The
compositor “stops listening” until refreshing is restored. Changes to the display surface
do not accumulate. (Spaces and Presenters component)

Calls to i gnor eRef r eshRegi on should always be paired, and they should be used only
for very brief periods of time. Since i gnor eRef r eshRegi on suspends the thread system
by calling t hreadQri ti cal Up and t hreadCri ti cal Down, it should be used only briefly,
so as not to suspend essential system services such as garbage collection and callbacks.

inflateSubObjectReference (global function)
i nfl at eSubQbj ect Ref er ence stream O (object)
stream A storage stream containing the subobject reference

37

Global Functions

38

Call this function with a specialized i nf | at e method to perform default inflation on
any subobjects such as instance variables. (Title Management component)

initialSearchContext (global function)
i nitial SearchCont ext strlndex startOffset O Sear chCont ext
strindex St ringl ndex object.
startOffset I nt eger object

Returns an instance of Sear chCont ext which can be used as the third argument to
sear chl ndex to start a search of the string associated with strIndex at the ordinal
position designated by startOffset.

This function is used only in connection with the global function sear chl ndex, which is
in turn used only in connection with the classes Stri ngl ndex and Sear chCont ext . See
the entries for those classes for a more complete definition and code examples.

installQuitQuery (global function)
instal | QuitQuery func arg O I nteger
func Funct i on object
arg Any object

Adds the quit query, with the function func and the argument arg, to the list of quit
queries maintained by the Kaleida Media Player, returning a unique integer as an ID. This
ID can be used later to remove a quit task, by calling del nst al | Qui t Query. When qui t
is called, the function func is called with arg as its only argument:

func arg

A quit query is a ScriptX function that should be written to return true or fal se. If a
query returns t r ue, execution continue with the next quit query; if all quit queries
return tr ue, the quit tasks are then executed. If a quit query returns f al se, the quit
process is immediately aborted and no more quit queries or quit tasks are executed. For
more information, see the “Title Management” chapter of the ScriptX Components Guide.
(Title Management component)

installQuitTask (global function)
instal | QuitTask func arg O I nt eger
func Funct i on object
arg Any object

Adds the quit task, with the function func and the argument arg, to the list of quit tasks
maintained by the Kaleida Media Player, returning a unique integer as its ID. This ID can
be used later to remove a quit task, by calling del nst al | Qui t Task. When qui t is
called, after all quit queries have returned tr ue, the quit tasks are run. Each quit task
calls its function func with arg as its only argument:

func arg

You should write this function to perform a quit task, such as releasing an operating
system resource. The return value from this function is ignored. For more information,
see “Quitting ScriptX” in the “Title Management” chapter of the ScriptX Components
Guide. (Title Management component)

isDefined (macro)
i sDef i ned variable 0 Bool ean
variable a valid ScriptX lexical name

Global Functions

Indicates whether the given name has a global name binding in the current module.
Returns f al se if no binding exists, or if one exists but has the value undef i ned.
Returns tr ue if a global binding exists, and if its value cell points to an object other
than the undef i ned system object. Since i sDef i ned only checks global names (in the
current module), it cannot tell when a local binding is overriding a global binding. In
the following code example, i sDef i ned returns f al se.

gl obal foo := undefined
if foo !'= true do (
local foo := 3
if foo =3 do print "I know about foo. Do you too?"
if isDefined foo then format debug "My foo is %\n" foo @ornal
el se print "boo hoo, | know no foo!"
)
O "I know about foo. Do you too?"
"boo hoo, | know no foo!"
(03¢

You can use i sDef i ned to determine if a script is operating in the Kaleida Media Player
or the ScriptX Language and Class Library by checking to see if a name binding that
exists only in the ScriptX Language and Class Library, such as fi |l el n, is currently
defined. Note that i sDef i ned is a macro, not a function. Thus, it cannot be passed as an
argument to a function or generic that expects an instance of Abst ract Functi on.
(Modules)

isinMemory (global function)
i sl nMenory object O Bool ean
object Any object

Returns t r ue if object currently occupies memory. Returns f al se if object is not in
memory. (Title Management component)

isPurgeRequested (global function)
i sPur geRequest ed object 0 Bool ean
object Any object added to a storage container

Returns true if r equest Pur ge has been called on object, where object has been added
(but not necessarily saved) to a storage container. Note that i sPur geRequest ed and

i sl nMenory could both be true for object at the same time, since object may not yet have
been garbage collected. (Title Management component)

largestFreeHeapBlock (global function)

| ar gest Fr eeHeapBl ock() O I nt eger

Reports the largest free, contiguous block of memory that is available to the ScriptX
runtime environment in the ScriptX heap. This function is independent of the
underlying operating system. See also the global function t ot al Fr eeHeapSpace.
(Memory Manager component)

largestFreeSystemBlock (global function)

| ar gest Fr eeSyst enBl ock() O I nt eger

Reports the largest free, contiguous block of memory that is available to the ScriptX
runtime environment outside of the ScriptX heap. See also the global function
t ot al Fr eeSyst enBpace.

39

Global Functions

40

* Windows allocates memory to both system and applications from the Windows
global heap. The function | ar gest Fr eeSyst enBl ock reports the size of the largest
continuous block in the global heap that could be allocated to ScriptX. (Windows
systems may run with virtual memory.)

¢ The Macintosh System implements separate heaps for the system and applications. It
allocates a fixed, contiguous zone in main memory to each application. On the
Macintosh, | ar gest Fr eeSyst enBl ock reports the size of the largest contiguous
block available in the zone currently allocated to ScriptX. (Macintosh systems may
run with virtual memory.)

® 0S/2 does not distinguish between real and virtual memory, so
| ar gest Fr eeSyst enBl ock reports the largest contiguous zone of real or virtual
memory that is available. Since OS/2 systems generally run with virtual memory,
this is typically a very large number. OS/2 is implemented with fully preemptive
multitasking, so this number changes instantaneously. Under OS/2, applications run
in memory that is protected and paged by the operating system, and the system is
free to swap pages between real and virtual memory. OS/2 behaves as if it had
virtually unlimited memory, however performance slows markedly as main memory
is used up by the system and open applications, forcing applications to swap
between real and virtual memory.

This function is useful in tracing the source of memory management conflicts with
certain platforms, however results are dependent on the underlying operating system. It
is recommended strictly as a diagnostic tool. (Memory Manager component)

le (global function)

lexy O Bool ean

Compares the objects x and y, returning t r ue if x is less than or equal to . (Object System
Kernel)

The | e function is equivalent to the following:

function le x y ->
if (isConparable x y) then
(localLt x y) or (local Equal x vy)
el se
(report unordered (#(x, y) as Pair))

loadDeep (global function)
| oadDeep object O self
object Root Chj ect object

Loads the object object along with all subobjects of object, which are any objects
reachable from object through instance variables, function arguments, or any other
means. If object is not a persistent object (has not been added to any storage container),
then this method does nothing.

Use the | oadDeep method with caution. In some cases you may be able to get a
performance gain from using | oadDeep, for example to preload a scene, but you need to
make sure you know what you are loading and make sure it is well constrained. If a
subobject of a subobject of the object you called | oadDeep on is an object that is stored
in a different container, then that container will be opened. Or you might simply be
loading many more objects than you need to, even if they are all in the same container.
You could end up taking a performance hit instead of making a performance gain. Since
objects are loaded from storage in blocks, you are almost always loading some objects
you may not need, even when you are very careful about what you load. If you are less
cautious about what you load, you could end up loading quite a few unneeded objects.

Global Functions

lockMany (global function)
I ockMany lockl lock2 . .. O (none)
lock1 Lock object

lock2 Lock object

Used when a thread must acquire several locks simultaneously. This prevents “deadly
embrace,” a scenario where two or more threads are blocked because they are each
unable to acquire a lock that another thread owns. (Threads component)

lockNowOrFail (global function)

| ockNowOr Fai | lock 00 Bool ean

Locks (waits successfully on) the given lock and returns true, or leaves the lock in its
previous state and returns f al se. (Threads component)

It (global function)

It xy O Bool ean
Compares the objects x and y, returning t r ue if x is less than . (Object System Kernel)

The | t function is equivalent to the following:

function It x y ->
if (isConparable x y) then
(localLt x vy)
el se
(report unordered (#(x, y) as Pair))

mciCommand (global function)
nti Command cmdString O (none)
cmdString Stri ng representing the command

Loads the Multimedia Command Interface (MCI) command represented by the string
cmdString.

Note — This function works only in Microsoft Windows, and resides in a loadable
extension that must be explicitly loaded. To load it, select Open Title from the File
menu, go to the LOADABLE/ MO OMD directory and select the “l oadne. sx” file.

Once the MCI command is loaded into the ScriptX runtime environment, you
can compile code that mixes MCI commands with other ScriptX commands.
Note that mixing MCI commands with ScriptX commands makes your code platform
specific. If you want your title to run on any platform, you should conditionally execute
this platform-specific code and provide alternative functionality for systems other than
Windows.

The nti Command function is contained in the MCI loadable extension. This function The
MCI extension provides the interface to Microsoft Windows MCI commands. Loading
an MCI command provides the same syntax defined for that command through the
standard ScriptX interface. In other words, the commands and syntax for the MCI
command can be mixed freely with ScriptX expressions in the source code for a title.
The entire MCI interface is provided through the single function nti Conmand.

For more information, such as how to load this extension, refer to the appendix
“Loadable Extensions” in the ScriptX Components Guide. (Loadable extensions component)

41

Global Functions

42

memoryDiff (scripted global function)
nenor yOi ff memorySnap O (none)
memorySnap Rantt r eamobject returns from nmenor ySnap function

See the “Title Analysis API” chapter in the ScriptX Tools Guide. (Tools component)

memorySnap (scripted global function)

menor ySnap() 0 RanBtream
See the “Title Analysis API” chapter in the ScriptX Tools Guide. (Tools component)

memoryUsage (global function)
menor yUsage items O I nt eger
items I nt eger object

See the “Title Analysis API” chapter in the ScriptX Tools Guide. (Tools component)

moo (scripted global function)
noo() O (none)
See the “Title Analysis API” chapter in the ScriptX Tools Guide. (Tools component)

ne (global function)

ne x y O Bool ean

Compares the objects x and y, returning t r ue if x is not the same object as y. (Object
System Kernel)

The ne function is equivalent to the following:
function ne x y -> not (eq x y)

nequal (global function)

nequal x y O Bool ean

Compares the objects x and y, returning t r ue is they are not comparable or do not have
the same values. (Object System Kernel)

The nequal function is equivalent to the following:

function nequal x y -> not (equal X Yy)

objectify (global function)
obj ectify address O object
address I nt eger object

Returns the object at a given address in memory. The value of address must be the
address of a legal object. Note that obj ect i fy is the inverse of addr essCf, also a global
function. This function is used by debugging tools. (Memory Management component)

objectSize (global function)
obj ect Si ze object O I nt eger
object Any object

Global Functions

Reports how much memory an object is using. This amount is a shallow count of
memory, and does not report how much memory is held onto by internal structures or
embedded objects. Note that the amount of memory used at the top level by the array
defined below does not change even as 1024 objects are added to the array.

global nyQhj := new Array

obj ect Size nyChj -- it is enpty

032

for i in 1 to 1024 collect into nyChj i
O#(1, 2, 3, 4, 5 6, 7, 8 9, 10, ...)
objectSize nyChj -- its size is now 1024
032

This function should be used strictly as a diagnostic tool. See also the global function
treeSi ze. (Memory Management component)

openMidiDriver (global function)

openM di Dri ver midiPair O MD Driver orfal se

This function opens a MIDI driver, which is specified as a pair whose first element is a
string of the driver’s name, and the second element is a name such as @nternal or
@xt ernal . The function returns the opened M Dl Dri ver, or f al se if the open
operation was unsuccessful.

See the introduction to this chapter, or the Media Players chapter in the ScriptX
Components Guide for more information on finding and opening MIDI drivers.

presentMessagePanel (global function)

pr esent MessagePanel message icon button-list default-ix cancel-ix
O I nmedi at el nt eger

message Stri ng object, the text to display

icon Narred ass object, one of @war ni ng, @ritical,
@nf or mat i on, or @one

button-list Array object containing 1, 2, or 3 St ri ng objects to be
used as button names

default-ix | medi at el nt eger object, the index of the button that
is the default

cancel-ix | medi at el nt eger object, the index of the button that

is to be returned when the user clicks the cancel key

Presents a native system dialog box containing the user-suppplied message specified in
message, the icon specified in icon, and buttons labeled with the strings specified in
button-list; returns the index into button-list of the button that was pressed. One button
must be the default (the button selected if the user hits the return key), and it is
specified by giving its index into button-list. There must also be a button designated as
the one to be returned if the user hits command -. (the command key plus a period) on
a Macintosh or Ctrl-Break on a Windows machine. This button can be the same as the
default key, but that is not necessarily the case.

The icons displayed in the message window are machine-dependent.

Example 1

present MessagePanel "Nyuk, nyuk" @ritical #("Me", "Larry",
"Qurly") 21

Example 1 presents a dialog box with the message “Nyuk, nyuk.” The dialog box
contains an icon indicating that the message is “critical”, and it has three buttons
labeled “Moe”, “Larry”, and “Curly”. “Larry” is the default button, and “Moe” is the
cancel button.

43

Global Functions

44

Example 2

present MessagePanel "Format your disk" @warning #("Format",
"’\b") 2 2

Example 2 presents a dialog box with the icon that indicates a “warning” message and
the message “Format your disk”. It has two buttons, one labeled “Format” and one
labelled “No”. “No” is both the default button and the cancel button.

presentOpenFilePanel (global function)
present QpenFi | ePanel typelist O Array or undefi ned
typelist Arr ay object containing Nanmed ass objects, which may

include the following file types:

@i tle- A ScriptX file containing a Ti t | eCont ai ner
object

@i brary - A ScriptX file containing a
Li br ar yCont ai ner object

@ccessory - A ScriptX file containing an
Accessor yCont ai ner object

@i nary - A file containing binary data

@ext - A file containing ASCII data

@mnknown - The file type is not specified, and any file
type may be selected

Presents a platform-specific Open dialog box where the user can select a file; returns an
array of strings representing the full path of the file selected, or undef i ned if no file is
selected. The dialog box displays as options the file types specified in typelist. If
@unknown or any unknown value is specified in typelist, the Open dialog box allows
any file type to be selected. If the user clicks Open or OK (depending on the platform),
the filename is returned; if the user clicks Cancel, the function returns undef i ned. In
any case, it is up to the title to actually open the file.

NOTE — The global function pr esent QpenFi | ePanel replaces the class QpenPanel .

presentSaveFilePanel (global function)
present SaveFi | ePanel prompt defaultName O Array or undefi ned
prompt String object
defaultName String object

Presents a platform-specific Save As file dialog box , where the user can type in a
filename, and which contains the specified prompt and default filename. If the user
clicks OK or Save, the function returns an array containing the full pathame of the file
named in the file entry field. If the user clicks Cancel, the function returns undef i ned.
In any case, it is up to the title to actually save the file. The string of text supplied for
prompt will appear next to the file entry field as a prompt; the string of text supplied as
the default file name will appear in the dialog box’s file entry field when it is first
opened.

NOTE — The global function pr esent SaveFi | ePanel replaces the class SavePanel .

Global Functions

prinl (global function)
prinl object stream O (none)
object An object to print
stream Byt eSt r eamobject that is writable

Prints object to stream in the same way that the pri n method would with @or nal as the
printing style. If stream isn’t supplied, this function prints to the debugging stream.
(Object System Kernel)

prinLn (global function)
prinLn object arg stream 0 (none)
object An object to print
arg Narmed ass object indicating printing style
stream Byt eSt r eamobject that is writable

Prints object to stream in the same way that the pri n method would, and with the same
arguments, but with a newline character added at the end of the printed string. The

second argument, arg represents a ScriptX printing style such as @or mal or @ebug. If
stream isn’t supplied, this function prints to the debugging stream. (Object System Kernel)

prinString (global function)
prinString object arg O String
object An object to print
arg Narmed ass object indicating printing style

Creates and returns a new instance of St ri ng containing the printed representation of
object, formatted by arg, where arg represents a ScriptX printing style such as @or nal
or @ebug. (Object System Kernel)

str := new String
prin object arg str
return str
print (global function)
print object stream O (none)
object An object to print
stream Byt eSt r eamobject that is writable

Prints object to stream in the same way as the pri n function would if @or nal were
supplied as its printing style, but adding a newline character at the end of the printed
string. If stream isn’t supplied, this function prints to the debugging stream. (Object
System Kernel)

printRecursively (global function)
print Recursi vely object arg stream O (none)
object An object to be printed
arg Narred ass object indicating printing style
stream Byt eSt r eamobject that is writable

Redirects the pri n method to call recur Prin, a primitive defined in Root Qbj ect that
handles the printing of objects that contain recursive structures. Use this function to
specialize the pri n method to handle objects that contain recursive structures. In a
scripted class that contains recursive structures, define the pri n method to call

pri nt Recur si vel y, passing on its own arguments.

45

Global Functions

46

The function pri nt Recur si vel y calls the method r ecur Pri n on the object to be printed,
using the printing style arg, to print to stream. It supplies a final argument that
represents a recursive print state. See the method recur Pri n, defined by Root (bj ect .
This fourth argument is passed on to resolve references in recursive structures. (Object
System Kernel)

printStorageStats (global function)

print St orageSt at s() O (none)

Prints information about where the object storage system is spending its time (seeking,
reading, caching). You can use this information to identify portions of your title where
you are doing too much seeking and reading or where you are recaching an object that
you just cached a couple of reads ago. You can also use this information to quantify the
improvement (or lack of improvement) in your title’s performance as a result of using
the storage reorganizer (see the st or ageFi | eRel ocat e global function) or making
other changes to your title. To collect information on discrete portions of your title, use
the reset St or ageSt at s global function before you enter the portion of your title for
which you want to collect a separate set of storage statistics. See the “Title
Management” chapter of the ScriptX Components Guide for a detailed description of the
information printed by pri nt St or ageSt at s. (Title Management component)

printString (global function)
printString object Ostring

Creates and returns a new instance of Stri ng containing the printed representation of
object. (Object System Kernel)

The function pri nt Stri ng is equivalent to
return (prinString (object @ornal))
ptt (global function)

ptt filename O (none)
filename String representing name of file

See the “Title Analysis AP1” chapter in the ScriptX Tools Guide. (Tools component)

purgeModuleContents (global function)
pur geMbdul eCont ent s module O (none)
module Modul ed ass object

Iterates through all named objects in a module, calling r equest Pur ge on named objects
that are purgeable. (Modules)

quit (global function)

qui t object O (none)
ignoreMe any object

Initiates the Quit Manager, quitting ScriptX. The single parameter can be any object,
and is ignored. A parameter is required for compatibility with the system menu bar. The
Quit Manager passes through three phases as it shuts down the system. First it runs
quit queries. If a quit query returns t r ue, execution continues with the next quit query.
If any quit query returns f al se, the quit process is immediately aborted, no more quit
queries or quit tasks are executed, and execution of the main program resumes.

If all quit queries return t r ue, the Quit Manager goes on to the second phase, running
quit tasks. Once the quit tasks begin running, system shutdown is assured.

Global Functions

After all quit tasks have run, the Quit Manager closes the ScriptX object system and
relinquishes control of resources it was using, such as memory, to the underlying
operating system. This final phase of shutdown is not visible to the user or the scripter.

By default, there are no quit queries defined, so calling qui t closes the Kaleida Media
Player without any user interaction. If you want to ask the user about saving work they
have done, or asking if they are sure they want to close a title, you would do that in a
quit query.

For more information, see the global functions i nstal | Qui t Query and
i nstal | Qui t Task, defined in this chapter. (Title Management component)

requestPurge (global function)
request Pur ge object O (none)
object Any object added to a storage container

If object is in memory, this method flags object for garbage collection. This object can be
any object that has been added (but not necessarily saved) to a storage container.

The object in memory is marked for garbage collection and its memory is recovered in
the next garbage collection cycle as long as no methods are called on it. Any subobject
of object also is marked for garbage collection. All references to object are maintained if
object has been saved to its storage container. (References are maintained by keeping a
handle to the object in memory, and purging only the body of the object. If all references
are removed, the handle will also be garbage collected.) Any future method call on
object reloads the object into memory from its storage container. See also the

i sl nMeror y, canRequest Pur ge, and i sPur geRequest ed global functions.

Calling r equest Pur ge on an object that has never been added to a storage container
does nothing. Calling r equest Pur ge on an object that has been added but has never
been updated (saved to its storage container), displays a warning that you are
requesting a premature purge; once the next garbage collection cycle has run, that
storage container will no longer contain that object, and future references to the object
will result in errors. If you call r equest Pur ge on an object that has been modified since
the last time it was updated, then changes you made to the object since the last time
you updated it will be lost; you may want to use this as a way to “revert to the last
saved” version of the object. Calling r equest Pur ge on a persistent container is illegal
and results in an exception. (Title Management component)

resetStorageStats (global function)

reset StorageSt at s() O (none)

Resets or clears the storage statistics that are being gathered by the pri nt St orageSt at s
global function. You may want to use the r eset St or ageSt at s function between
transitions or at other strategic places (so that you can gather statistics for a discrete
portion of your title) when you are running your title with pri nt St orageSt at s turned
on. (Title Management component)

rtt (global function)

rtt arg O (none)
arg I nt eger value of 1 or O

See the “Title Analysis AP1” chapter in the ScriptX Tools Guide. (Tools component)

a7

Global Functions

48

safeRecurPrin (global function)
saf eRecur Pri n object arg stream state O (object)
object Object to be printed
arg Narmed ass object indicating printing style
stream Byt eSt r eamobject that is writable
state Object that represents a recursive print state

This function is called by the r ecur Pri n method, a variation on the pri n method that is
used to print out objects that contain recursive structures. The r ecur Pri n method calls
saf eRecur Pri n, passing its own arguments. The arguments to recur Pri n and

saf eRecur Pri n are the same as the arguments to pri n, with the addition of a final
argument that represents a recursive print state. This argument, supplied by the global
function pri nt Recur si vel y, is passed on to resolve references in recursive structures.
(Object System Kernel)

searchindex (global function)
sear chl ndex strindex match searchContext whole 0O Sear chCont ext
strindex Stringl ndex object
match String object
searchContext Sear chCont ext object
whole Bool ean object

This function searches string for match using searchContext to tell it where to start or
resume searching and usingwhole to tell it whether or not a match must be a whole
word. Returns enpt y if match is not found; otherwise returns a Sear chCont ext object.

Because sear chl ndex is used only in connection with Stri ngl ndex and
Sear chCont ext objects, the entries for those classes contain more complete information.

setGCIncrement (global function)
set &2 ncrenent incr O incr
incr I nt eger object between 1 and 1000

Sets the time increment incr, measured in milliseconds, for which the garbage collector
will run before yielding, returning the value that has been set. Developers can use

set Q0 ncrenent to increase or decrease the amount of time spent in the garbage
collector.

Time spent in the garbage collector is also a function of the number and priorities of
other active threads. Setting too low a value for incr can starve the garbage collector.
Setting too high a value can interrupt other processes. If the system is thrashing, setting
a higher value may even have a negative effect on the overall performance of a title.
(Memory Management component)

setStorageCacheSize (global function)
set St or ageCacheSi ze num O I nedi at el nt eger
num | mredi at el nt eger object, O<num<256

Sets the size of the storage cache to num 4K blocks, where num must be greater than
zero and less than 256. The default storage cache size is 8 4K blocks. You may want to
increase this cache size to improve your object loading time (and therefore your title’s
performance). (Title Management component)

Global Functions

shortPrin (global function)
short Prin object arg stream maxLength O (none)
object Object to be printed
arg Narmed ass object indicating printing style
stream Byt eSt r eamobject that is writable
maxLength I nt eger object greater than zero

Identical to the pri n method (defined on Root Qbj ect) except that short Pri n will
never print out more than the number of characters specified by maxLength. (Object
System Kernel)

storageFileRelocate (global function)
st or ageFi | eRel ocat e inputTitleStream outputTitleStream logStream 0 ByteStream
inputTitleStream any readable Byt eSt r eamobject
outputTitleStream any writable Byt eSt r eamobject
logStream any readable Byt eSt r eamobject

Reorganizes the objects are stored in the title file or files represented by inputTitleStream
into a physical layout that will be more optimal when the title is run. The logStream is
the record of object access that was saved in the st or agePr of i | eLog when you ran
your title with storage profiling turned on. This object access information is used by
storageFileRelocate to optimize the physical layout of objects in the container. The title
file or files represented by outputTitleStream are the newly reorganized files.

The following is an example script to reorganize a title, ti t| e. sxt, into a more optimal
physical layout:

global src := getStream (buildDr, "title.sxt", @eadable)
global tgt := getStream (buildDr, "reloc.sxt", @witable)
global log := getStream (buildDr, "osprofile.log", @eadable)
storageFi | eRel ocate src tgt |og

plug src

plug tgt

plug | og

To reorganize a more realistic title that consists of many files, use collection objects for
the input and output title arguments and operate on the collection members in a loop.
See the “Title Management” chapter of the ScriptX Components Guide for an example
script. (Title Management component)

systemQuery (global function)
systenQuery name O (object)
name Nared ass object representing attribute

Queries the operating system for information about attributes of the underlying
platform on which ScriptX or the Kaleida Media Player is running. The name argument
represents the attribute being queried, the return values represent the attributes for the
particular platform. The following name arguments are used:

® @oni tor Rect s — Returns an Ar r ay object containing Rect objects that represent the
pixel area of all monitors; the first entry represents the main monitor.*

® @mni t or Dept hs — Returns an Ar ray object containing integers representing the
depths of all monitors; the first entry represents the main monitor.*

® @puType — Returns an instance of Stri ng such as "MX%8030" and "i 486
conpati bl " (returns "M368020" in emulation mode on a PowerMacintosh).

49

Global Functions

50

* @hysi cal Menory — Returns an instance of | nt eger representing physical memory
in the machine, in 1024 byte units.

® @s\Ver si on — Returns an instance of Nunber representing the version of the
operating system, which has both a major and a minor version number, such as “7.1”
for Macintosh System 7.1, or “3.1” for Microsoft Windows 3.1.

® @sNane — Returns a St ri ng object representing the operating system name
(currently " Maci nt osh", " 0§/ 2", or "W ndows").

® @xBuil d — Returns a string indicating the version, build, and date compiled.

* @xBui | d\Nunber — Returns an integer representing the ScriptX build, for version 1.5
only. For earlier versions, @xBui | dNunber returns undef i ned.

® @XxVer si on — Returns an instance of Fl oat representing the ScriptX version (a value
such as 1.0 or 1.5).

* @xNane - Returns an instance of Stri ng representing the ScriptX product name
(currently " Scri pt X Builder" or "ScriptX Player")

* Note that @mni t or Rect s and @roni t or Dept h return arrays with entries in the same
order, so that a size in the array of rectangles corresponds with a pixel depth in the
array of integers.

threadCriticalDown (global function)

threadCri ti cal Down() O (none)

Allows the scheduler to resume, so that it can switch threads. This function is always
paired with a prior call to t hreadCri ti cal Up, which suspends the scheduler and
prevents the running thread from being preempted. A call to t hreadCri ti cal Down
balances a call to t hreadQri ti cal Up, enabling the scheduler to preempt the running
thread. See t hreadCri ti cal Up, a global function defined below. (Threads component)

threadCriticalUp (global function)

threadCri ti cal Up() O (none)

Suspends the scheduler, preventing it from switching threads until the next call to
threadCriti cal Down. A call to t hreadOriti cal Up precedes a critical segment of a
code in which the scheduler is not allowed to switch threads. This segment must be
followed by a call to t hreadCri ti cal Down, which allows the scheduler to resume.
These two functions are designed to insure that short segments of code can be executed
atomically with respect to the scheduler.

Use threadQritical Up and threadCri ti cal Down cautiously and sparingly. An
unbalanced call to t hreadCri ti cal Up can leave the system in a suspended state, from
which the user will be unable to recover. Two other global functions,

gat eQpenThenVi t and | ockMany, can be used to assure that common operations with
gates are performed atomically. (Threads component)

Note — In the future, your ScriptX title or tool may run on systems that use more than
one processor. When the ScriptX runtime environment is implemented to run with
multiple processors, t hreadQri ti cal Up will suspend all threads that are running on
other processors. Keep in mind that t hreadQri ti cal Up and threadCri ti cal Down are
meant to enclose only brief segments of code. To assure that a title runs smoothly, make
sure that any threads can be preempted whereever possible.

Global Functions

threadExit (global function)
t hreadExi t result O Bool ean
result The object that is to be returned by the thread

Exits the currently running thread and returns result. This is equivalent to calling the
Thr ead instance method t hr eadRet ur n: (Threads component)

threadReturn theRunni ngThread result)

threadldle (global function)

t hreadl dl e() 0 Bool ean

Allows the thread system to do idling activities, and then yields to let other threads run.
Returns t r ue if a yield took place. (Threads component)

threadYield (global function)

t hreadYi el d() 0 Bool ean

Causes the running thread to yield for one cycle to the next thread scheduled to run.
Returns true if in fact there was such a thread and a yield took place. (Threads
component)

threadYieldTo (global function)
t hreadYi el dTo nextThread O Bool ean
nextThread Thr ead object

Causes the running thread to yield to the thread nextThread, but only if that thread is in
fact runnable. If it isn’t, this function is equivalent to t hr eadYi el d, yielding to the next
thread scheduled to run. Returns t r ue if there was such a thread and a yield took place.
(Threads component)

totalFreeHeapSpace (global function)

t ot al Fr eeHeapSpace() O I nt eger

Reports the total amount of free memory that is available to the ScriptX runtime
environment in the ScriptX heap. See also the global functions | ar gest Fr eeHeapBl ock
and t ot al HeapSpace() . (Memory Management component)

totalFreeSystemSpace (global function)

t ot al Fr eeSyst enBpace() O I nt eger

Reports the total amount of free memory that is available to the ScriptX runtime
environment outside of the ScriptX heap. See also the global function

| ar gest Fr eeSyst enBl ock for an explanation of how to interpret

t ot al Fr eeSyst enBpace on each ScriptX platform.

This function is useful in tracing the source of memory management conflicts with
certain platforms, however results are dependent on the underlying operating system. It
is recommended strictly as a diagnostic tool. (Memory Manager component)

totalHeapSpace (global function)

t ot al HeapSpace() O I nt eger

Returns the total number of bytes in the ScriptX heap. Note that the amount of heap
space currently in use can always be determined as follows:

51

Global Functions

52

X := total HeapSpace() - total FreeHeapSpace() .

This function should be used strictly as a diagnostic tool. (Menory Manager component)

treeSize (global function)
treeSi ze object verbose maxDepth O Int eger
object Any object
verbose I nt eger object
maxDepth I nt eger object

Reports how much memory the given object is using, treating this object as the root of a
possible tree of objects. The function t r eeSi ze adds up the memory used by all objects
that the given object is pointing to. It detects recursion, counting recursive structures
only once. If the value of verbose is O, t r eeSi ze returns a value, but does not print a
report. If the value of verbose is non-zero, t r eeSi ze prints out a full report, showing by
indentation how objects are laid out in memory.

nyChj := new Array

treeSize nyGhj 0 10

032

for i in 1 to 1024 collect into nyChj i
O#(1, 2, 3, 4, 5 6, 7, 8 9, 10, ...)
treeSize nyGhj 0 10

08224

Note that t r eeSi ze only follows pointers in the ScriptX heap. Some objects, such as
W ndow objects, contain pointers to structures in system memory.

This function should be used strictly as a diagnostic tool. See also the global function
obj ect Si ze. (Memory Management component)

ucmp (global function)

ucnp x y O Narmed ass

Compares the objects x and y universally, returning either @ane, @efore, or @fter.
(Object System Kernel)

The ucnp function is equivalent to the following:

function ucnp x y ->

if (ueq x y) then @ane
else if (ult x y) then @efore
el se @fter

ueq (global function)

ueq x y O Bool ean

Compares the objects x and y, returning t r ue if they are universally equal. (Object
System Kernel)

The ueq function is equivalent to the following;:

function ueq x y -> ((getdass x) == (getd ass y)) and (local Equal x y)

Global Functions

uge (global function)

uge x y O Bool ean

Compares the objects x and y, returning t r ue if x is universally greater than or equal to
y. (Object System Kernel)

The uge function is equivalent to the following;:
function uge x y -> not (ult x vy)

ugt (global function)

ugt x y O Bool ean

Compares the objects x and y, returning t r ue if x is universally greater than y. (Object
System Kernel)

The ugt function is equivalent to the following;:
function ugt x y -> not (ule x y)

ule (global function)

uexy O Bool ean

Compares the objects x and y, returning t r ue if x is universally less than or equal to y.
(Object System Kernel)

The ul e function is equivalent to the following:

function ule x y ->
if ((getdass x) == (getdass y)) then
(localLt x y) or (local Equal x y)
el se
(local LT (getd ass x) (getdass y))

ult (global function)

ult xy O Bool ean

Compares the objects x and y, returning t r ue if x is universally less than . (Object
System Kernel)

The ul t function is equivalent to the following:

function ult x y ->
if ((getdass x) == (getdass y)) then
(local Lt x vy)
el se
(local LT (getd ass x) (getdass y))

une (global function)

une x y O Bool ean

Compares the objects x and y, returning t r ue if they are universally not equal. (Object
System Kernel)

The une function is equivalent to the following:

function une x y -> not (ueq x Yy)

53

Global Functions

54

updatelndex (global function)
updat el ndex strindex O Stringl ndex
strindex Stringl ndex object

This function rebuilds strindex’s signature index based on strIndex’s stri ng instance
variable. In order to keep the index valid, updat el ndex should be used any time
strIndex’s string is modified.

See the entry for St ri ngl ndex for a more complete description and code examples.

warnings (global function)
war ni ngs flag O (object)
flag Bool ean object

When flag is true, sets ScriptX to display warnings in the Listener when it encounters
harmful—though not fatal—situations. In the current release, this function causes a
warning when a bitmap with one color map is transferred to a surface with another
color map, which diminishes drawing performance.

This function is provided only in ScriptX. It is not included in the Kaleida Media Player.

xor (global function)

xor boolean1 boolean2 [0 Bool ean

Performs the “logical exclusive or” operation on booleanl and boolean2, two Bool ean
objects. Returns t r ue if and only if the value of booleanl or boolean2 (but not both) is
true. (Note that in ScriptX 1.0, eq was defined as a generic function.)

The following example demonstrates how a function can be rewritten in a more efficient
(although perhaps less readable) manner using xor. Note that roundl and r ound2 are
both equivalent to round, a generic that is implemented by Nunber objects.

fn roundl x -> (
if x>0 then
if (abs (frac x)) >= 0.5 then ceiling x
el se floor x
el se
if (abs (frac x)) >= 0.5 then floor x
el se ceiling x
)
-- a nore efficient but |ess readable version of roundl
fn round2 x ->
if xor (abs(frac x) >= 0.5) (x > 0) then floor x else ceiling x

CHAPTER

Global Constants
and Variables

Global Constants and Variables

56

Global Constants and Variables

This chapter lists global constants and global variables that are defined by ScriptX.
These objects are available to the scripter with these name bindings, in any module that
uses the ScriptX module. Some of these constants and variables are associated closely
with one component and the classes that component defines. The component reference
at the end of each description indicates which chapter in the ScriptX Components Guide
to refer to for more information.

blackBrush (global constant)

bl ackBr ush Brush

Represents a global instance of the Br ush class with col or set to bl ackCol or, pattern
set to bl ackPat t ern, and i nkMbde set to srcCopy (2D Graphics component).

blackColor (global constant)

bl ackCol or R@&BCol or

Represents an RGBCol or instance whose r ed, gr een, and bl ue instance variables are all
set to 0 (2D Graphics component).

blueColor (global constant)

bl ueCol or R@&BCol or

Represents an R@BCol or instance whose bl ue instance variable is set to 255 and whose
red and gr een instance variables are set to 0 (2D Graphics component).

console (global constant)

consol e MDText W ndow

Available only in the ScriptX executable, not in the Kaleida Media Player. The consol e
is the Listener window, which is an instance of MJText W ndow (machine-dependent).
(Tools Component)

You can change the font size in the Listener window by setting the f ont Si ze instance
variable, which is quite useful for relieving eye strain on large monitors or when
demonstrating ScriptX to large audiences:

console.fontSize := 16
cyanColor (global constant)
cyanCol or RGBCol or

Represents an R@BCol or instance whose gr een and bl ue instance variables are set to
255 and whose r ed instance variable is set to 0 (2D Graphics component).

defaultBrush (global constant)

def aul t Brush Br ush

Represents a global instance of the Brush class; also, a synonym for the global instance
whi t eBr ush. See whi t eBr ush, defined in this section. (2D Graphics component)

57

Global Constants and Variables

58

e (global constant)

e FI oat

Represents the mathematical constant e (2.1718...) as a float. (Numerics component)

empty (global constant)

enpty Enpt yd ass
The enpt y object is an instance of Enpt yd ass. It has several different uses:

In an implicitly keyed collection, when there’s no need to specify a key with a method,
use enpt y as a placeholder. For example, the key is ignored when adding to a sorted
array: (Collections component)

ar := new SortedArray
add ar enpty “Hello” -- adds the value “Hello” to the array

In explicitly keyed collections, using enpty as the key for add means “use the given
value as the key”. For example:

kI := new KeyedLi nkedLi st
add kI enpty 1 -- adds the key-value pair 1 1 to the linked Ilist

The enpt y object is returned from a collection when the thing you asked for isn’t there.
For example, you get enpty if you try to get the third item of a Pai r object:

pr := new Pair 1 2
getNNh pr 3 -- returns enpty

Note — Never insert the enpt y object into a collection. A number of collection methods
return enpt y as the value that signals “no matching elements in the collection.” Placing
the enpt y object in the collection would cause these methods to behave erratically, and
possibly fail altogether. Some collections may report the badVal ue exception if you try
to put enpty in them.

false (global constant)

fal se Bool ean

Represents a constant that can be used in Boolean expressions. The global constant
fal se is one of two global instances of the Bool ean class. (Numerics component)

greenColor (global constant)

gr eenCol or RGBCol or

Represents an R@BCol or instance whose gr een instance variable is set to 255 and whose
red and bl ue instance variables are set to 0. (2D Graphics component)

loadableUnitldNull (global constant)

| oadabl elni t | dNul | Loadabl elnit1d

Returned by the Loader method | oadMbdul e when the loadable unit contains
unloadable data. (Loader component)

Global Constants and Variables

loadableUnitIdError (global constant)

| oadabl eUni t | dErr or Loadabl elnitld

Returned by the Loader method | oadMbdul e when loading a loadable unit generates
an error. (Loader component)

loadableUnitldLoading (global constant)

| oadabl eUni t | dLoadi ng Loadabl ebnit1d

Returned by the Loader method | oadMbdul e when a loadable unit is already loading.
(Loader component)

loadableUnitldInitErr (global constant)

| oadabl enitldinitErr Loadabl elnit|d

Returned by the Loader method | oadMbdul e when a loadable unit’s entry point
function fails to return properly. (Loader component)

loaderCodeBad (global constant)

| oader CodeBad Loader Code

Represents a global instance of the class Loader Code. (Loader component)

loaderCodeError (global constant)

| oader CodeEr r or Loader Code

Represents a global instance of the class Loader Code. (Loader component)

loaderCodeOk (global constant)

| oader CodeCk Loader Code

Represents a global instance of the class Loader Code. (Loader component)

magentaColor (global constant)

nmagent aCol or R@BCol or

Represents an R@BCol or instance whose r ed and bl ue instance variables are set to 255
and whose gr een instance variable is set to 0. (2D Graphics component)

nan (global constant)

nan Nunber

Represents an uncountable number of items, such as all numbers in the range between
1 and 2. (This example is uncountable because it includes an infinite number of
irrational numbers, such as the square root of 2, with no way to find them all.) By
“uncountable,” we mean there is no way to map the positive integers (1, 2, 3 ...) to all
numbers. The term nan is from computer science and stands for “not a number.” This
constant is returned as the result of certain operations on numbers, such as dividing by
zero. (Numerics component)

neginf (global constant)

negl nf Nunber

Represents negative infinity. This constant is useful for expressing a range with any
Nunber class. The following example creates the range of negative numbers: (Numerics
component)

59

Global Constants and Variables

60

new Nunber Range | ower Bound: negl nf upper Bound: 0

nullStream (global constant)

nul | Stream Nul | Streand ass

The single, global instance of Nul | Streand ass, a subclass of Byt eSt r eam
representing a stream containing no data. (Streams component)

objectStoreMessages (global variable)

obj ect St or eMessages (read-write) | medi at el nt eger

Prints messages to the Listener whenever a storage container is loaded from or saved to.
If you want the messages written to some other stream and not to the Listener, redirect
the output by setting obj ect St or eMessagesSt r eam Which messages are written
depends on which flags are set, where each flag is a separate bit as shown in the table
below. Set the value of obj ect St or eMessages to an integer from 1 to 7. To set more
than one flag, add their values. For example, if you set obj ect St or eMessages to 3, a
message will be printed to the Listener when an object is inflated (1) and when it is
deflated (2). Notice that only the first flag is available in the KMP. (Title Management
component)

Flag Bit Messages Written

1 Write info on inflate of object.
2 Write info on deflate of object.
4 Write info on deflate/inflate for every class slice of object.

Note: Only output level 1 is available in the KMP.

objectStoreMessagesStream (global variable)

obj ect St or eMessagesSt r eam (read-write) Byt eStream

Stores messages written by obj ect St or eMessages. If obj ect St or eMessagesSt r eamis
undefined, messages written by obj ect St or eMessages are printed to the Listener. (Title
Management component)

The following is an example of using obj ect St or eMessagesSt r eam

obj ect St or eMessagesStream : = debug

OK (global constant)

(014 Kd ass

Represents the value returned by functions or methods when they have no relevant
return value (similar to voi d-returning functions in C). Functions that return OK always
return OK regardless of the outcome of the function.

This global constant is useful for developers writing tools. For example, if you write a
function that prints a list of classes in the Listener window. When done printing the list,
the function also returns the value of the function, which would normally be the last
class in the list—therefore, the last class would print twice. To avoid this, you can
include OK as the return value for the function; then the function would print the list of
classes, then the value OK. (Object System Kernel)

Global Constants and Variables

pi (global constant)

pi Fl oat

Represents pi (3.14159...) as a float. (Numerics component)

piDiv2 (global constant)

pi D v2 Fl oat

Represents pi/2 as a float. (Numerics component)

posinf (global constant)

posl nf Nurber

Represents positive infinity. This constant is useful for expressing a range with any
Nunber class. The following example creates the range of positive numbers:

new Nunber Range | ower Bound: 0 upper Bound: posl nf

(Numerics component)

printTruncateStringSize (global variable)

print TruncateStri ngSi ze (read-write) | nt eger

Sets the size in characters of the longest possible string returned in the Listener window.
Its initial value is 512 characters. To allow unlimited characters, set this variable to —1.

Available only in the ScriptX development environment, not in the Kaleida Media
Player, since the Listener window does not exist in the KMP. (Tools component)

rarelylnflatedClasses (global variable)

rarel yl nfl at edd asses (read-write) Array

Allows coarse-grained developer control of physical storage layout by allowing you to
specify classes that are rarely used in your title. The rar el yl nf| at edd asses variable
is a collection of class names; it contains Debugl nf o by default. Instances of classes
listed in rar el yl nf| at edd asses, and children of these instances, are moved to the
end of the storage file. This can slow deflation of these objects, but it can improve
overall inflation performance substantially. (Title Management component)

redColor (global constant)

redCol or R@&BCol or

Represents an R@BCol or instance whose r ed instance variable is set to 255 and whose
green and bl ue instance variables are set to 0 (2D Graphics component).

showCode (global variable)

showCode (read-write) Bool ean
See the “Title Analysis API” chapter in the ScriptX Tools Guide. (Tools component)

sqrt2 (global constant)

sqrt2 Fl oat

Represents the square root of 2 as a float.

61

Global Constants and Variables

62

storageProfileLog (global variable)

storageProfil eLog (read-write) Byt eStream

Stores a record of how objects are accessed in your title when you run your title with
storage profiling turned on. This record can then be used by the st or ageFi | eRel ocat e
global function to reorganize the objects stored in your title so that they are stored in a
more optimal physical layout. To turn on storage profiling, simply define this variable
and then open and run the title you want to profile. When you are finished profiling,
plug the st or agePr of i | eLog stream to ensure all data is flushed to disk. Then set

st orageProf i | eLog to undef i ned to turn profiling off. (Title Management component)

The following is an example of how to profile your title:

-- Turn on profiling.

storageProfilelLog := getStream (buildDir, "osprofile.log", @eadable)
-- Qpen and run your title.

-- Qose the profile log and turn off profiling.

pl ug storageProfilelLog

storageProfil eLog := undefined
theCalendarClock (global constant)
t heCal endar d ock Cal endar d ock

This global constant is created by the ScriptX runtime environment at startup, and is the
single instance of the class Cal endar d ock. If you attempt to create an instance of
Cal endar d ock using the newmethod, this global is returned (Clocks component).

theClipboard (global constant)

t hed i pboar d d i pboard

Specifies the clipboard into which objects can be cut or copied, and from which objects
can be pasted. For more details, see the O i pboar d class. (Title Management component)

theContainerSearchList (global variable)

t heCont ai ner Sear chLi st (read-write) Col | ection

The global variable t heCont ai ner Sear chLi st provides a collection of D r Rep
instances that represent directory search paths for resolving references between objects
stored in separate St or ageCont ai ner files. At ScriptX startup, this collection contains
only the global D r Rep instance t heSt art O r. When any title, library, or accessory
container is opened, its directory is automatically added to this list, to facilitate finding
other files. A title can add items to and remove items from this collection as it needs to.

To see how this global variable is used, refer to “Opening a Title Container” in the
ScriptX Components Guide. (Title Management component)

theDefaultlColorMap (global constant)

t heDef aul t 1Col or Map Col or Map

Represents the platform-specific default color maps for 1-bit screen depths. See note for
t heDef aul t 8Col or Map (2D Graphics component).

theDefault2ColorMap (global constant)

t heDef aul t 2Col or Map Col or Map

Represents the platform-specific default color maps for 2-bit screen depths. See note for
t heDef aul t 8Col or Map (2D Graphics component).

Global Constants and Variables

theDefault4ColorMap (global constant)

t heDef aul t 4Col or Map Col or Map

Represents the platform-specific default color maps for 4-bit screen depths. See note for
t heDef aul t 8Col or Map (2D Graphics component).

theDefault8ColorMap (global constant)

t heDef aul t 8Col or Map Col or Map

Represents the platform-specific default color maps for 8-bit screen depths. The actual
default color map used on a specific platform depends on the pixel depth of the
underlying hardware and the actual color palettes supported by the underlying
graphics system (2D Graphics component).

theEventTimeStampClock (global constant)

t heEvent Ti neSt anpd ock d ock

Represents the A ock instance used for generating time stamps supplied with events.
Its scal e instance variable is set to 1000 and its r at e instance variable is set to 1 (Events
component).

thelmportExportEngine (global constant)

t hel npor t Export Engi ne | npor t Expor t Engi ne

Specifies the instance of | mpor t Expor t Engi ne that the ScriptX system created at
startup. (Import and Export component)

theMainThread (global variable)

t heMai nThr ead (read-only) Thr ead

Specifies the main thread, which is the original thread of control in the system and is
not necessarily currently running. The thread labeled t heMai nThr ead has no special
priority in the scheduler. This thread cannot be restarted. Killing it is equivalent to
quitting ScriptX. (Threads component)

theOpenContainers (global variable)

t heQpenCont ai ner s (read-only) Array

Specifies all open library, title and accessory containers. This list is automatically
updated any time such a container is opened or closed. The order of containers is the
order in which they are opened, with the most recently opened one first—not the order
they appear on-screen. (Title Management component)

theOpenTitles (global variable)

theQpenTitl es (read-only) Array

Specifies the open title containers, generally ordered by focus priority, which is the
same order they appear visually on-screen. (This order is not guaranteed.) This list is
updated automatically any time a title container is opened or closed. (Title Management
component)

63

Global Constants and Variables

64

theRootDir (global constant)

theRoot Di r Root D r Rep or D r Rep

Represents the root directory of the host platform. This constant is an instance of the
system-specific subclass of Root D r Rep on operating systems, such as the Macintosh OS
and DOS, that represent each storage device as a volume or drive. It is an instance of
the system-specific subclass of D r Rep on other operating systems, such as UNIX. (Files
component)

theRunningThread (global variable)

t heRunni ngThr ead (read-only) Thr ead

Specifies the currently executing thread. In ScriptX, only one thread runs at a time; the
scheduler apportions execution time to active threads. (Threads component)

theScratchTitle (global constant)

theScratchTitl e Ti t1 eCont ai ner

Specifies the default title container to hold windows, clocks, and players created outside
a title. That is, when you create a new window, clock, or player and omit the title
keyword, the object is added to the title container specified by t heScr at chTi t1 e. This
title container is created automatically at startup and cannot be saved.

You can move a window, clock, or player from the container specified by

t heScrat chTi t| e to any other library, title, or accessory container either by setting its
titl e instance variable or by appending it directly to the new title container, which
causes it to automatically be removed from its previous title container. (Title
Management component)

theScriptDir (global variable)

theScriptDr (read-write) D r Rep

Not available in the Kaleida Media Player. This variable represents the source directory
of the most recently opened and compiled ASCII text script file. It can be useful for
specifying the path to files needed by a script when that script is shared from a server
by mulitple developers. Using t heScri pt Di r instead of t heStart Di r enables the script
to be successfully compiled regardless of the location of the ScriptX development
environment. (Files component)

Note — The global variable t heScri pt Di r is defined only in the ScriptX executable, and
not in the Kaleida Media Player. Using this global in a KMP title may cause the title to
fail. The fil el n method that sets this value requires the ScriptX bytecode compiler,
which is present only in ScriptX. (Files component)

theStartDir (global constant)

theStartDir D rRep

Specifies the directory representative instance representing the directory where the
currently running ScriptX runtime environment is located. To see the array of strings
representing the directories, coerce theStart D r to an array, as follows:

theStartDir as Array

Global Constants and Variables

When a title or library is specifying the path to another title or library, it is usually
preferable to specify it relative to the original title, by using the di r ect ory instance
variable of the title container (rather than t heSt art D r). This frees the Kaleida Media
Player to be located anywhere relative to the title. (Files component)

theTempDir (global constant)

theTenpDi r D rRep

Represents a directory that can be used for temporary storage in the file system. (Files
component)

theTitleContainer (global variable)

t heTi t | eCont ai ner (read-only) Ti t| eCont ai ner

Specifies the title container that currently has user focus. This means the system menu
bar for this title container, if set to showing, is visible, and the title’s frontmost window,
if any, has user focus.

This value is updated when the user (or a script) selects another title, making it active.
(Title Management component)

theUIEventDispatchQueue (global variable)

t heU Event D spat chQueue (read-only) Event D spat chQueue

Contains the name of the primary dispatch queue, an Event D spat chQueue object,
through which system-defined queued events are processed, including mouse and
keyboard events. (Events and Input Devices component)

throwArg (global variable)

t hr owAr g (read-only) (object)

Contains the argument that was reported with the most recent exception. See also
t hr owTag. (Exceptions)

throwTag (global variable)

t hr owTag (read-only) Excepti on

Contains the most recent exception that was reported. See also t hr owAr g. (Exceptions)

true (global constant)

true Bool ean

Represents a constant that can be used in Boolean expressions. The global constant t r ue
is one of two global instances of the Bool ean class. (Numerics component)

whiteBrush (global constant)

whi t eBr ush Brush

Represents a global instance of the Br ush class with col or set to whi t eCol or, pattern
set to bl ackPat t ern, and i nkMdde is @r cCopy. (2D Graphics component)

whiteColor (global constant)

whi t eCol or R@Col or

Represents an RGBCol or instance whose r ed, gr een, and bl ue instance variables are all
set to 255 (2D Graphics component).

65

Global Constants and Variables

yellowColor

(global constant)

yel | owCol or R@BCol or

Represents an RGBCol or instance whose r ed and gr een instance variables are set to 255
and whose bl ue instance variable is set to 0 (2D Graphics component).

66

CHAWPTER

Class Descriptions

AbstractFunction

AbstractFunction

68

RootObject

AbstractFunction

Class type: Core class (abstract, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Object System Kernel

Abst ract Functi on is the superclass of all ScriptX functions and generic functions. In
the current version of ScriptX, subclasses of Abst ract Functi on include
Byt eCodeMet hod, Prinmitive, PrimtiveMthod, and Generi c.

Although all ScriptX functions and generic functions are objects (a method is an
implementation of a generic function for a particular class or object), you never create
an instance of Abstract Functi on directly. ScriptX functions are created automatically
when you use the function, method, and anonymous function definition expressions in
the ScriptX language.

To test whether an object is a function, use the generic i SAKi nddf with the class
Abst ract Funct i on as an argument.

global cubeMe := (x -> x * x * X) -- creates an anonynous function

0 #<Byt eCodeMet hod anonynous of 1 argunent>
i SAKi ndFf cubeMe Abstract Function

O true

Developers can assume that future ScriptX function classes will inherit from
Abst ract Funct i on. In other respects, do not assume that the implementation of
functions and generics will be the same in future releases of ScriptX.

AccessoryContainer

AccessoryContainer

RootObject

Collection
IndirectCollection
StorageContainer

LibraryContainer

AccessoryContainer

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Li braryCont ai ner
Component: Title Management

The AccessoryCont ai ner class represents a file on disk that contains a set of classes
and instances that can be dynamically added to a running title. This overall set of
classes and instances is known as an “accessory”. An accessory incrementally adds data
or behavior to a title, and may be used by any number of titles. An accessory
supplements and is subordinate to a title. The title container represented by

theScrat chTi t| e is always open and can serve as the title container for accessories
that stand alone.

An accessory container is a collection: It inherits from I ndi rect Col | ecti on. Its default
target collection is an Ar ray object. You should add to an accessory container objects
that you want the get Accessory method to access. The get Accessory method
determines which objects in the accessory are passed to the title. The title’s
addAccessory method receives those objects and performs whatever is appropriate for
that title, such as instantiating accessory classes, slaving an accessory clock off its
clocks, or putting accessory presenters into its windows.

If an accessory container creates an instance of a window, clock, or player, that instance
has its ti t1 e instance variable set to t heScrat chTi t1 e. It is then up to the title to
reassign this value to itself when it adds the accessory. The window will then close
when the title closes, and the clock or player will pause when the title pauses.

The responsibility for determining the whether a particular accessory is suitable for a
title rests on the title to which it is added. The title’s i SAppr opri at eAccessory method
is automatically called when the user opens a title container from within ScriptX using
the Open Title menu command. When calling the open method from a script, it is up to
the script to call i SAppropri at eAccessory.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Accessor yCont ai ner class:

nyAcc := new AccessoryContai ner \
dir:nyTitle.directory \
pat h: "M/Acc. sxa" \
nane: "M/ Accessory" \
user: nyTitle

69

AccessoryContainer

70

The variable nyAcc contains the initialized accessory container, which is stored in a new
file called M/Acc. sxa in the directory given by nyTi tl e. di rect ory. Its name when
asked to print is My Accessory. The accessory container will be used by the nyTitl e
title container, meaning the accessory container will normally remain open as long as
the title container is open. The newmethod uses the keywords defined in i nit.

Note — The convention for naming accessory container files, valid across all platforms,
is to use the . sxa extension, as shown above (meaning “ScriptX Accessory”).

init

init self [dir:dirRep] pat h: collectionOrString [namne: string |
[user: titleContainer] [t arget Col | ecti on: collection | O (none)

This method is inherited from Li br ar yCont ai ner with no change in keywords and
defaults, except the user can only be a title container, not a library container—refer to
that class for details. Do not call i ni t directly on an instance—it is automatically called
by the newmethod.

Class Methods

Inherited from Col | ecti on:
pi pe

Inherited from St or ageCont ai ner :
open

Inherited from Li br ar yCont ai ner :
open

The following class methods are defined in Accessor yCont ai ner:

open (LibraryContainer)

open self [dir:dirRep] path: collection [mode: name]
[user : titleContainer | O Accessor yCont ai ner

Similar to the open method in Li br ar yCont ai ner, except it opens and returns an
accessory container.

To summarize, this method opens the accessory, calls the function in

preStart upAction, loads its | i brari es instance variable, and makes itself a user of
each library. If the user keyword is supplied, this method then calls addUser on the
supplied title container with self as its new user. This method then adds the accessory to
t heCpenCont ai ner s global variable, and finally calls the function in start upActi on.

Most of the implementation is inherited from Li br ar yCont ai ner, with no change in
keywords or defaults. Refer to open in that class for more details.

Note — When a user chooses Open Accessory from the menu and chooses an accessory,
the open method is called on the accessory with t heTi t| eCont ai ner as its user. It then
calls i sAppropri at eAccessory: If t r ue is returned, it calls addAccessory; if f al se, the
accessory is not added to the title, but is left open.

AccessoryContainer

Instance Variables

Inherited from Col | ecti on:

bounded

iteratord ass
keyEqual Conpar at or
keyUni formty
keyUni form tyd ass

maxSi ze

m nSi ze

nut abl e

nut abl eCopyd ass
proprietored

Inherited from | ndi rect Col | ecti on:

target Col | ection

Inherited from Li br ar yCont ai ner:

copyri ght
directory
libraries
nane

Instance Methods

Inherited from Col | ecti on:

add

addvany
addToCont ent s
chooseAl |
choosee
chooseeBi ndi ng
del et eAl |

del et eBi ndi ngAl |
del et eBi ndi ngOne
del et eKeyAl |

del et ekeyCne

del et eCne

enpt yQut

presStartupAction
startupAction
term nat eAction

type

for Each

f or EachBi ndi ng
get Al

get Any

get KeyAl |
get Keyne
get Many
get One
hasBi ndi ng
hasKey

i ntersects
i sEmpty

i sMerber

Inherited from | ndi rect Col | ecti on:

i sAppr opri at eChj ect

obj ect Added

Inherited from St or ageCont ai ner :

cl ose

updat e

request Pur geFor Al | (hj ects

Inherited from Li br ar yCont ai ner:

addUser
cl ose
i sAppropri at eChj ect

obj ect Added
recurPrin
renmoveUser

si ze

uniformty

uni form tyd ass

val ueEqual Conpar at or

users
Ver si on

iterate

| ocal Equal
map

ner ge

pi pe

prin
renoveA |
removeOne
set Al

set One

si ze

obj ect Renoved

termnate

Since an Accessor yCont ai ner object is an indirect collection, you can also use any
methods defined in the class specified by t ar get Col | ect i on. The target collection is by
default an instance of Array, which inherits from Sequence; in this case, the following

instance methods are accessible:

Accessible from Li near Col | ecti on:

chooseeBackwar ds
chooseQr dOne

del et eFi r st

del et eLast

del eteN h

del et eRange

fi ndRange

f or EachBackwar ds
get First

get Last

getMddl e

getNth

get Nt hKey
get O dne
get Range

| ocal Equal
| ocal LT

pop

71

AccessoryContainer

72

Accessible from Sequence by redirection:

addFi fth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourth noveToBack setNth
addN h noveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort
append setFifth

appendNew set Fi rst

The following instance method is defined in Accessor yCont ai ner :

getAccessory

get Accessory self O Col | ection

Returns objects from the accessory self. This method is automatically called by
addAccessory (defined in Ti t| eCont ai ner). This method has an empty
implementation in Accessor yCont ai ner; you must override it in a subclass to do
something useful. You should implement this method to return a collection of whatever
objects the accessory should pass to the title when addAccessory is called. It might
typically return an array containing clocks, players, and presenters. For example, a tape
measure accessory might create an array of all the objects that make up a new tape
measure and return that array.

Action

Action

RootObject

Action

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Animation

Act i on is a noninstantiable superclass for the Act i on family of classes. All objects in the
Acti on family have a target object (t ar get Num), a time when the action occurs (ti ne),
and a tri gger method to begin the action.

Subclasses of Act i on provide a variety of possible actions to change an object’s bitmap,
position, or path, or to run a script.

Instance Variables

authorData

self. aut hor Dat a (read-write) (object)

You may put whatever data you desire here. Otherwise, the value is undef i ned.

playOnly

self. pl aytnl y (read-write) Bool ean

If t r ue, the action self is triggered only while playing, not while “fast forwarding” or
otherwise jumping in time. It is important to set pl ayOnl y to t r ue for actions that you
want to happen only while playing, and not while “fast forwarding”.

For example, let’s say you have an action list with an action at time t 1 that causes the
player to jump back to an earlier time. With pl ayCnl y set to f al se, doing a time jump
forward beyond time t 1 would be impossible, because trying to jump past t 1 would
trigger the backward time jump and send the player backward. However, with

pl aynl y set to t rue, such an action would be ignored during the “fast forward”
phase.

targetNum

self. tar get N\um (read-write) | nt eger

The index of the target object to perform the action self on. This index is within the list
of targets held by the Acti onLi st Pl ayer object.

time

self. time (read-write) | nt eger

The time at which the action self should happen, in ticks of the Acti onLi st Pl ayer
object. A time of 0 ticks corresponds to the start of the action list player. Converting the
time to seconds depends on whether the action list player is slaved to other clocks. In
the simplest case, if the action list player has no master clock (its mast er d ock is set to
undef i ned), the time in seconds is calculated by ti ne/scal e, where scal e is the scale
of the action list player.

Because the time relative to the start of the action list player, the time value of an action
on an Act i onLi st object does not change if an action is added ahead of it, or if the scale
is changed.

73

Action

Instance Methods

74

trigger

trigger self target player O self
self Act i on object
target Any object
player Acti onLi st Pl ayer object

Causes the action self to happen on the given target object. This method is called by the
Acti onLi st Pl ayer object player when it’s time to execute this action.

The action should affect the target object. When the action list player calls tri gger, the
value for target is automatically determined by taking the t ar get Numinstance variable
and finding the object in the corresponding slot in the player’s target list. If the

t ar get Numinstance variable is out of range (that is, less than 1 or greater than the size
of the target list), the value of the farget is enpty. Also, if there is no target in a certain
slot in the target list yet, the value of target is undef i ned.

ActionList

ActionList

LinearCollection Collection

ImplicitlyKeyedCollection

Sequence

SortedArray

ActionList

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: SortedArray

Component: Animation

Acti onLi st class represents a collection of actions used by the Acti onLi st Pl ayer
object to control target objects over time. The action is any instance of the Act i on family
of classes. Actions in an action list are sorted and keyed by time.

Creating and Initializing a New Instance

The following script is an example of how to create a newinstance of the Acti onLi st
class:

nyActionLi st: = new Acti onLi st

The variable nyAct i onLi st contains the initialized action list. The newmethod uses the
keywords defined ininit.

init
init self [initialSize:integer] [growabl e: boolean] O (none)
self Acti onLi st object
Superclass Sort edArr ay uses the following keywords:
initial Size: I nt eger object
grovabl e: Bool ean object

Initializes the Acti onLi st object, which is a Sort edAr r ay object with an initial size of
300. Do not call i ni t directly on an instance—it is called automatically by the new
method.

If you omit an optional keyword, its default value is used. The defaults are:
initial Size:300
growabl e: true

Class Methods

Inherited from Col | ecti on:
pi pe

75

ActionList

Instance Variables

Inherited from Col | ecti on:

bounded
iteratord ass

keyEqual Conpar at or

keyUni formty

keyUni form tyd ass

The following instance variables are defined in Acti onLi st:

duration

maxSi ze

m nSi ze

nut abl e

nut abl eCopyd ass
proprietored

si ze

uniformty

uni form tyd ass

val ueEqual Conpar at or

self. dur ati on

(read-only)

| nt eger

Specifies the total time to play all the actions on the list, in the action list player’s units
of time. For example, if the action list player’s master clock is set to undef i ned, then to
get the time in seconds, you calculate ti ne/scal e, where scal e is the scale of the

action list player.

Instance Methods

76

Inherited from Col | ecti on:

add for Each
addiany f or EachBi ndi ng
addToCont ent s get Al
chooseAl | get Any
choosee get KeyAl |
chooseeBi ndi ng get Keyne
del eteAl | get Many
del et eBi ndi ngAl | get One
del et eBi ndi ngGne hasBi ndi ng
del et eKeyAl | hasKey
del et ekeyCne i ntersects
del et ene i SEmpty
enpt yQut i sMenber
Inherited from Li near Col | ecti on:
chooseneBackwar ds fi ndRange
chooseOr dCne f or EachBackwar ds
del et eFi r st get First
del et eLast get Last
del eteN h getMddl e
del et eRange getNth
Inherited from Sequence:
addFifth moveBackwar d
addFi r st nmoveFor war d
addFourth noveToBack
addNt h nmoveToFr ont
addSecond pr epend
addThird pr ependNew
append setFifth
appendNew set Fi rst

iterate

| ocal Equal
map

mer ge

pi pe

prin
renoveA |
renovene
setAll

set One

si ze

get Nt hKey
get O dOne
get Range

| ocal Equal
| ocal LT

pop

set Fourth
set Last
setNth
set Second
set Third
sort

ActionListPlayer

ActionListPlayer

RootObject

ActionListPlayer

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Pl ayer

Component: Animation

The Acti onLi st Pl ayer class represents a player that plays the actions on an action list
over time. The “media” of this player is the Acti onLi st object. At the time indicated in
each Act i on object, the Acti onLi st Pl ayer object calls the tri gger method on the
action, which then causes the action to affect its target object. The action can be an
instance of any subclass of Acti on, such as Scri pt Acti on, Pat hAction, or

ShapeActi on.

The Acti onLi st Pl ayer object also has a list of target objects. Since actions refer only to
an index into the list of target objects, an action list can be reused for different target
objects.

You can fast forward or rewind an Acti onLi st Pl ayer object. Fast forward simply
plays all actions quickly up to the specified time. However, rewinding is not so simple.
Rewinding is accomplished by rewinding to the very beginning of the action list and
fast forwarding to the specified time; this process can be slow for long action lists, but is
necessary to reconstruct the state. If you can rewind to a time when a target object
should not exist, you must make sure that the object is disposed of during the rewind.
You can do this by adding objects to the target list using a Tar get Li st Act i on object
and specifying a dispose function for r ewi ndScri pt (defined in Tar get Li st Acti on).
Then, during any rewind, all of the objects on the target list are immediately disposed
of, before playing the action list player from the beginning of the action list.

Note that an Act i onLi st Pl ayer object can operate inside of a G oupPr esent er object,
so that the objects being controlled by the Acti onLi st Pl ayer object can be moved as a
contiguous group, or can, for example, respond as a group to a mouse down event. In
this case, the actions on the action list continue to operate in the local coordinate system
of the G oupPr esent er object.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Act i onLi st Pl ayer class:

al p: = new ActionLi stPl ayer \

Acti onLi st Pl ayer ActionList) \
target Count : 10

The variable al p contains an initialized instance of the action list player with room for
10 targets that it can act on. The newmethod uses the keywords defined in i ni t.

77

ActionListPlayer

78

init
init self actionList:actionList [target Count: integer]
[targets: sequence] [masterd ock: clock] [scal e: number] O (none)
self Acti onLi st Pl ayer object
actionLi st: ActionLi st object
tar get Count : Maximum number of targets in the target list. Note that

if you supply the target list you do not also need to
supply this number

targets: Array object listing the targets for the player
Superclass A ock uses the following keywords:

mast er A ock: a ock object to use as the master clock for the player
scal e: I nt eger object to use as the scale for the player

Initializes the Acti onLi st Pl ayer object self. If no acti onLi st is supplied, this method
reports an exception. If t ar get s is supplied, sets the t ar get s instance variable to the
given target list.

If t ar get s is not supplied, the method uses t ar get Count to determine the number of
items in the target list. If both t ar get s and t ar get Count are not supplied, the method
reports an exception. Do not call i ni t directly on an instance—it is automatically called
by the new method.

If you omit an optional keyword, its default value is used. The defaults are:
t ar get Count : 50
targets: (new Array initialSize:50 growable:true)
mast er A ock: undef i ned
scale: 1

Instance Variables

Inherited from d ock:

cal | backs rate ticks
effectiveRate resol ution tinme
nmast er d ock scal e title
of f set sl aved ocks

Inherited from Pl ayer:

audi oMit ed gl obal Cont r ast gl obal Vol umeCr f set
dat aRat e gl obal Hue mar ker Li st
duration gl obal PanCx f set st at us

gl obal Bri ght ness gl obal Sat urati on vi deoBl anked

The following instance variables are defined in Acti onLi st Pl ayer:

actionList

self. acti onLi st (read-write) Act i onLi st

Specifies the action list being played back (this player’s media).

authorData

self. aut hor Dat a (read-write) (object)

The author may put whatever data they desire here. Otherwise, the value is undef i ned.

ActionListPlayer

rewindScripts

self. rewi ndScri pts (read-write) Array

Specifies an initially empty array that gets filled up with functions from the

rew ndScri pt instance variable of instances of Tar get Li st Act i on, as the action list
player plays. The rewi ndScri pt s instance variable is automatically maintained—you
shouldn’t directly add or remove items from it.

targets

self. targets (read-write) Sequence

Specifies an array of target objects. Actions refer to targets on this list by specifying an
index into the list.

Instance Methods

Inherited from d ock:

addPeri odi cCal | back cl ockAdded pause

addRat eCal | back cl ockRenoved resurme

addScal eCal | back ef fecti veRateChanged ti neJunped

addTi neCal | back for EachSl ave wai t Ti ne

addTi meJunpCal | back i sAppropri at ed ock wai tUntil
Inherited from Pl ayer:

addnar ker goToBegi n pl ayPr epar e

ej ect goToEnd pl ayUnpr epar e

f ast For war d goToMar ker Fi ni sh pl ayUnti |

get Mar ker goToMar ker St ar t resume

get Next Mar ker pause rew nd

get Pr evi ousMar ker pl ay stop

The following instance methods are defined in Acti onLi st Pl ayer:

getMuteChannel

get Mit eChannel self targetNum O Bool ean
self Acti onLi st Pl ayer object
targetNum Nunber object

Returns t r ue if the target channel specified by targetNum is currently muted; otherwise,
it returns f al se. When a channel is muted, then all actions for that sprite are ignored
(that is, not executed).

setMuteChannel

set Mut eChannel self targetNum onOff O onOff
self Acti onLi st Pl ayer object
targetNum Nunber object
onOff Bool ean object

Sets the target channel given by targetNum to be muted if the value of onOff is t r ue.
Returns the same Boolean value that was passed in.

79

Actuator

Actuator

80

RootObject

Actuator

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: User Interface

The Act uat or class provides the basic protocol for interacting with PushBut t on and
Togg! e objects. Think of an actuator as an object that passes through different states,
such as pressed, released, and disabled.

Act uat or defines six methods which are generally specialized by its subclasses:
activate, mul ti Activate, press, rel ease, t oggl eOn, and t oggl et f . These
methods, which correspond to changes in the actuator’s state, are meant to be called as
actions from a controller. As defined by Act uat or, these methods do nothing but
manage the value of the pressed and t oggl edOn instance variables.

The acti vat e, press, and r el ease methods are called automatically by a controller
whenever there is a corresponding change in state. The mul ti Acti vat e method is
really a special case of acti vat e, and is called automatically when multiple mouse
clicks occur within the double-click time interval. The t oggl eOn and t oggl eC! f
methods are called indirectly by the acti vat e method in the Toggl e class. Since they
are defined by Act uat or, a developer can create an actuator with toggle-like behavior
that does not inherit from Toggl e.

An actuator is associated with a controller, generally an instance of

Act uat or Cont rol | er, from which it derives its behavior. This controller is associated
with a set of interests in mouse events. It actively manages these interests, receiving and
processing mouse events, and responds by calling the activate, mul ti Activate,
press, and r el ease methods on the actuators it controls. For more information, see the
definition of Act uat or Control | er.

To be controlled by an Act uat or Control | er object, an actuator must be attached to
that controller, and to the space that it controls. A controller is always attached to a
space—it can control only objects that are contained in its space. To be controlled by an
actuator controller, an actuator must first be added to that space. Then, depending on
the value of whol eSpace, it must be added to the controller as well.

If the value of whol eSpace is t r ue, an actuator controller automatically controls all
actuators that are added to its space. If the value of whol eSpace is f al se, then the
actuator must be explicitly added to the actuator controller. The controller classes,
including Act uat or Control | er, inherit from | ndi r ect Col | ecti on. A controller uses
this collection behavior to maintain a list of objects that it controls.

Although the PushBut t on and Togg! e classes both perform hit testing within a
rectangular region, it is possible to define a subclass of Act uat or that performs more
precise hit testing on non-rectangular objects such as bitmaps. For example, the author
could define a subclass of Act uat or mixed with TwoDShape using a Bi t map as a target.
The boundary of the resulting object is based on the bitmap. For more information, see
the discussion of hit testing in the “User Interface” chapter of the ScriptX Components
Guide.

Act uat or is not a TwoDPr esent er class. An author can create a concrete subclass of
Act uat or, but it must inherit from both Act uat or and a TwoDPr esent er class if it is to
be controlled by an Act uat or Contr ol | er object.

Actuator

Creating and Initializing a New Instance

You cannot create an instance of Act uat or —it is an abstract class. However, Act uat or
has an i ni t method for initializing instances of its concrete subclasses.

init

init self [enabl ed: boolean] [menu: menu] O (none)
self Act uat or object
enabl ed: Bool ean object
nenu: Menu object to present when the actuator is activated

Initializes the Act uat or object self, applying values supplied with the keyword
arguments to the instance variables of the same name. Do not call i ni t directly on an
instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

enabl ed: true
menu: undef i ned

Instance Variables

enabled

self. enabl ed (read-write) Bool ean

Specifies whether the actuator self can respond to user input. If the value of enabl ed is
f al se, then press, rel ease, acti vate, and mul ti Acti vat e should return without
taking action.

Subclasses of Act uat or may take some action to indicate that an actuator is not
enabled. For example, the Pushbut t on class specifies a presenter, stored in its

di sabl edPr esent er instance variable, that is displayed whenever the value of enabl ed
is f al se.

menu

self. menu (read-write) Menu

Specifies the menu to present when the actuator self is activated.

pressed

self. pressed (read-only) Bool ean

Specifies whether the actuator self is currently pressed.

toggledOn

self. t oggl edCn (read-write) Bool ean

Specifies whether the actuator self is currently toggled on.

Instance Methods

activate

activate self O self

Sets the value of pressed on the actuator self to f al se. Subclasses of Act uat or
generally specialize this method. Although acti vat e can be called directly from a
script, it is usually the controller associated with an actuator that calls acti vat e.

81

Actuator

82

multiActivate

mul ti Acti vat e self numberOfClicks O self
self Act uat or object
numberOfClicks I nt eger object indicating number of clicks

Sets the value of pressed on the actuator self to f al se. Subclasses of Act uat or may
specialize this method to perform an action associated with multiple mouse clicks. In a
class of actuators that does not define a separate and distinct response to multiple
mouse clicks, mul ti Acti vat e can be redirected to call acti vat e one or more times.
Although mul ti Act i vat e can be called directly from a script, it is usually the controller
associated with an actuator that calls nul ti Acti vate.

A call to mul ti Acti vat e tells the actuator to take the action defined by that actuator if
it receives numberOfClicks mouse clicks, each within the double-click interval of the last
click. (Act uat or Control | er class queries the system to obtain the system defined
double-click threshold.)

press

press self O self

Sets the value of pressed on the actuator self to t r ue. Subclasses of Act uat or generally
specialize this method. Although pr ess can be called directly from a script, it is usually
the controller associated with an actuator that calls pr ess.

release

rel ease self O self

Sets the value of pressed on the actuator self to f al se. Subclasses of Act uat or
generally specialize this method. Although r el ease can be called directly from a script,
it is usually the controller associated with an actuator that calls r el ease.

A call to r el ease tells an actuator, formerly in its pressed state, that it has been released
without being activated. This can happen, for example, if the user clicks the mouse over
an actuator and then slides the mouse away before releasing the mouse button, so that
the actuator is released without being activated.

toggleOff

toggl e f self O self

Sets the value of t oggl edOn on the actuator self to f al se. Any subclass of Act uat or
(such as Toggl e) that maintains an on or off state should specialize act i vat e to call
toggl e(n and t oggl e f, as appropriate.

toggleOn

t oggl en self O self

Sets the value of t oggl edOn on the actuator self to t r ue. Any subclass of Act uat or
(such as Toggl e) that maintains an on or off state should specialize act i vat e to call
toggl eOn and t oggl eX f, as appropriate.

ActuatorController

ActuatorController

RootObject

Collection
IndirectCollection
Controller
TwoDController
ActuatorController

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TwoDControl | er
Component: User Interface

The Act uat or Control | er class manages actuators (objects subclassed from Act uat or)
in the space it controls, including instances of PushBut t on and Toggl e and many of the
Widget Kit classes. This controller is partially responsible for the “feel” aspect of “look
and feel” in these classes.

An Actuat or Control | er object is a collection of the actuators it controls. These
actuators must also be in the space that the controller is controlling. Actuators are either
automatically or manually added to the actuator controller, according to the

whol eSpace instance variable. If whol eSpace is f al se, you can use the methods
defined by Col | ecti on to add and remove objects from the actuator controller. To
ensure that only actuators are added to an actuator controller, the pr ot ocol s instance
variable is set to the Act uat or class. See the Control | er class for descriptions of

whol eSpace, prot ocol s, and other general properties of controllers. See also the
section “Hit Testing” in the User Interface chapter in the ScriptX Components Guide.

An actuator controller maps mouse-down events to the pr ess method on Act uat or
objects. It also maps mouse-move events to the r el ease and press methods as the
mouse moves in and out of a button while the mouse button remains down, and it
maps mouse-up events to the act i vat e method when appropriate.

Act uat or Cont rol | er defines three instance variables: acti vat el nt er est,
presslnterest, and r el easel nt er est. These variables store event interests—the
Actuat or Control | er class is interested only in mouse events.

Corresponding with these interests, the class defines three instance methods:
processActi vat e, processPress, and processRel ease. These methods are event
receivers, and they are associated automatically as receivers for their associated event
interests. For more information, see the “Events and Input Devices” chapter in the
ScriptX Components Guide.

Table 1 shows the correspondence of instance variables and methods defined by
actuator controllers and actuators.

Table 1: How ActuatorController and Actuator objects work together
ActuatorController Actuator
(instance variable) (instance method) (instance method) (instance method) (instance variable)
activatel nterest processActivate activate handl eActi vat e activat eAction
nul ti Activate handl eMul ti Activate nultiActivateAction
presslnterest processPress press handl ePress pressAction
rel easel nterest processRel ease rel ease handl eRel ease rel easeActi on

83

ActuatorController

Note that the Act uat or Control | er class manages both the PushBut t on and Toggl e
classes and many of the Widget Kit classes such as the Generi cButt on classes. The
Act uat or class defines the t oggl edOn instance variable, as well as the t oggl e(h and

t oggl ed f methods. However, it is the Toggl e class that redefines these methods to
behave like toggle buttons. When an actuator controller calls acti vat e on a toggle, it is
not concerned with whether the toggle is currently on or off. The Toggl e class
specializes act i vat e to support these two states.

Table 2 shows the correspondence of instance variables and methods defined by
actuator controllers and toggles, which are a specialized class of actuators.

Table 2: How ActuatorController and Toggle objects work together
ActuatorController Toggle

(instance variable) (instance method) (instance method) (instance method) (instance variable)
activatel nterest processActivate activate handl eActi vat e activateAction

t oggl eOn

toggl ek f

mul tiActivate handl eMul ti Activate nultiActivateAction

presslnterest processPress press handl ePress pressAction
rel easel nt er est processRel ease rel ease handl eRel ease rel easeAction

Toggl e inherits its treatment of mul ti Acti vat e from PushButt on, although toggle
buttons do not respond to multiple clicks in most conventional user interface designs. A
developer might decide to ignore multiple clicks, or to interpret a double click as two
single clicks.

The Act uat or Cont rol | er class has the same interface with Toggl e as with

PushBut t on. The Toggl e class defines the methods t oggl eCn and t oggl e f, and it
specializes the acti vat e and handl eAct i vat e methods, which are defined by

Act uat or or PushBut t on.

Creating and Initializing a New Instance

84

The following script creates a new instance of the Act uat or Control | er class. First
create the control space, and then create the actuator controller:

nySpace := new TwoDSpace boundary: (new Rect x2: 600 y2:400)
nyController := new ActuatorController \

space: nySpace

The variable nyCont rol | er contains an initialized instance of an actuator controller
that operates on actuators in nySpace. The newmethod uses keywords defined ininit.

init

init self [space:space] [whol eSpace:boolean] [enabl ed: boolean]

[target Col | ection: sequence] [menu: @nsuppl i ed | O (none)
self Act uat or Control | er object
nmenu Menu object

The superclass Control | er uses the following keywords:

space: Space object
whol eSpace: Bool ean object
enabl ed: Bool ean object

ActuatorController

The superclass TwoDCont r ol | er defines the following keyword:
target Col | ection: Sequence object (use with caution)

Initializes the Act uat or Control | er object self, applying the keyword arguments to
instance variables of the same name. Use discretion in changing the target collection; for
more information, see the definition of the TwoDCont rol | er class. Do not supply a
value for the nenu keyword; when you create a new Menu instance, the new Menu object
automatically creates a new Act uat or Cont rol | er object and passes itself as the value
of the menu keyword. Do not call i ni t directly on an instance — it is automatically
called by the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:

space: undef i ned

whol eSpace: f al se

enabl ed: true

target Col l ection: (new Array initial Size: 14 growabl e:true)
nenu: @nsuppl i ed

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded nmaxsi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass propri et ored

Inherited from | ndi rect Col | ecti on:
target Col | ection

Inherited from Control | er:

enabl ed space whol eSpace
protocol s

The following instance variables are defined in Act uat or Control | er:

activatelnterest

self. acti vat el nt er est (read-write) MouseEvent

Specifies an event interest that is registered by the actuator controller self. Its value must
be an instance of MouseEvent . This variable defaults to an instance of MouseUpEvent
that is associated with the first mouse button (@wousebut t onl). The release interest is
the matched interest of the activate interest. For more information on matching interests
and mouse events, see the discussion of the mat chedl| nt er est instance variable, as
specialized by MouseUpEvent, in the “Events and Input Devices” chapter in the ScriptX
Components Guide. The processAct i vat e method is the receiver for this interest.

85

ActuatorController

doubleClickTime

self. doubl ed i ckTi ne (read-write) | nt eger

Specifies the threshold of time within which the actuator controller self interprets two
mouse clicks as a multiple click. Each actuator controller stores its own double-click
time. An actuator controller interprets two mouse clicks within the double-click time as
a double click, three mouse clicks within two double-click times as a triple click, and so
forth. When an actuator controller is instantiated, the Act uat or Control | er class
queries the system for the system’s double-click time. Thereafter, a script may modify
this value, but it will not be reflected in the system’s double-click time. Nor does a
change to the system’s double-click time update the value stored by an actuator
controller.

pressinterest

self. pressl nt er est (read-write) MouseEvent

Specifies an event interest that is registered by the actuator controller self. The value
must be an instance of MouseEvent . This variable defaults to an instance of
MouseDownEvent that is associated with the first mouse button (@wousebut t onl). The
pr ocessPr ess method is the receiver for this interest.

protocols (Controller)

self. prot ocol s (read-write) Array

Specifies the required protocols for the actuator controller self. For instances of
Act uat or Cont rol | er, this array contains the classes Act uat or and TwoDPr esent er.
Any object added to an actuator controller must include these two classes among its
superclasses. See the Control | er class for a further description of pr ot ocol s.

releaselnterest

self. rel easel nt er est (read-write) MouseEvent

Specifies an event interest that is registered by the actuator controller self. The value
must be an instance of MouseEvent . This variable defaults to an instance of
MouseMoveEvent that is associated with the first mouse button (@mousebut t onl). The
pr ocessRel ease method is the receiver for this interest.

Instance Methods

Inherited from Col | ecti on:

add for Each iterate
addiany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al nap
chooseAl | get Any ner ge
choosee get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

del eteAl | get Many renmoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngGne hasBi ndi ng set Al l

del et eKeyAl | haskey set Cne
del et ekeyCne i ntersects si ze

del et ene i sEmpty

enpt yQut i sMenber

Inherited from | ndi rect Col | ect i on:
i sAppropri at e(hj ect obj ect Added obj ect Renoved

ActuatorController

Inherited from Control | er:
i sAppr opri at eChj ect tickle

Since an Act uat or Control | er object is an indirect collection, you can also use any
methods defined in the class specified by t ar get Col | ecti on. The target collection is
typically an instance of Array, which inherits from Sequence, so the following instance
methods are redirected to this controller.

Accessible from Li near Col | ecti on:

chooseeBackwar ds fi ndRange get Nt hKey
chooseOr dtne f or EachBackwar ds get O dne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop
Accessible from Sequence:
addFifth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourt h noveToBack setNth
addN h noveToFr ont set Second
addSecond pr epend setThird
addThird pr ependNew sort
append setFifth
appendNew setFirst

The following instance methods are defined in Act uat or Control | er:

processActivate

processActi vat e self interest event O self
self Act uat or Control | er object
interest MouseEvent object, the act i vat el nt er est of self
event MouseEvent object that matches interest

If whol eSpace is t r ue, processAct i vat e looks through the collection of actuators
controlled by the actuator controller self to determine which actuator was hit. If

whol eSpace is f al se, processAct i vat e determines which actuator was hit by
examining the present er instance variable of the event that matched its event interest.

If an actuator was hit, processActi vat e calls acti vat e or mul ti Acti vat e on that
actuator. This invokes the associated menu or triggers the associated action. An actuator
is considered hit if an event that matches the corresponding interest occurs within its
boundary. If no actuator was hit, pr ocessAct i vat e rejects the event.

The processAct i vat e method interprets a set of clicks that occur within the
double-click time as a multiple click, a gesture that is distinct from a series of single
clicks. When processAct i vat e receives the first MouseUpEvent instance, it calls

acti vat e on the actuator. For the second mouse-up, it calls either acti vat e or

mul ti Acti vat e, depending on the time that has elapsed. In this way, two mouse clicks
are interpreted as a single gesture if they are close together in time. For more
information on multiple clicking, see the “User Interface” chapter of ScriptX Components
Guide.

Do not call processAct i vat e from the scripter. It is triggered automatically, and is
visible to the scripter so that it can be specialized. The pr ocessAct i vat e method is the
event receiver for acti vat el nt erest.

87

ActuatorController

88

processPress

processPress self interest event O self
self Act uat or Control | er object
interest MouseEvent object, the pressl nt er est of self
event MouseEvent object that matches interest

If whol eSpace is t r ue, pr ocessPr ess looks through the collection of actuators
controlled by the actuator controller self to determine which actuator was hit. If

whol eSpace is f al se, processPress determines which actuator was hit by examining
the present er instance variable of event.

If an actuator was hit, pr ocessPr ess calls pr ess on that actuator. This invokes the
associated menu or triggers the associated action. An actuator is considered hit if an
event occurs within its boundary that matches the corresponding interest. If no actuator
was hit, then processPress rejects the event.

Do not call processPress from the scripter. It is triggered automatically, and is visible
to the scripter so that it can be specialized. The method pr ocessPress is the event
receiver for presslnterest.

processRelease

processRel ease self interest event O self
self Act uat or Control | er object
interest MouseEvent object, the r el easel nt erest of self
event MuseEvent object that matches interest

Whatever the value of whol eSpace may be, pr ocessRel ease looks through the
collection of actuators controlled by the actuator controller self to determine if an
actuator was hit. If an actuator was hit, pr ocessRel ease calls r el ease on that actuator.
This releases the associated menu or triggers the associated action. An actuator is
considered hit if an event occurs that matches the corresponding interest. If no actuator
was hit, then pr ocessRel ease rejects the event.

Do not call pr ocessRel ease from the scripter. It is called automatically, and is visible to
the scripter so that it can be specialized. The pr ocessRel ease method is the event
receiver for rel easel nt erest.

Array

Array

RootObject

Collection

LinearCollection ImplicitlyKeyedCollection

Sequence

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Sequence

Component: Collections

The Array class provides a collection that stores a list of values as contiguous elements
in one continuous data structure. Since variable assignment in ScriptX is pointer-based,
an array actually contains a list of pointers to objects. With the exception of immediate
objects, elements of an array are stored elsewhere.

The ScriptX language creates an instance of Array automatically when it encounters a
list of elements enclosed by the array literal. For more information, see the ScriptX
Language Guide.

When an Arr ay object is created (with either the newmethod or the obj ect expression),
memory is allocated to support the number of elements designated by i ni ti al Si ze.
Note that i ni tial Si ze is a keyword, not an instance variable. Once an array is
initialized, i ni ti al Si ze becomes a fixed property of that array, and is invisible to the
scripter.

Distinguish between si ze and i ni ti al Si ze. The si ze property is a virtual instance
variable that returns the number of elements currently in the array. Although
initial Size may be large, si ze returns 0 on a newly allocated array, since there are
initially no elements stored in the array.

As you add elements to an array, the array becomes filled. Once it is full, the gr onabl e
keyword determines what happens next. If gr onabl e was set t r ue when the array was
instantiated, then adding elements beyond the number specified by i niti al Si ze
extends the array to encompass a larger block of memory. If gr owabl e is f al se, the
array reports the bounded exception. Think of the growable keyword as an option that
creates a bounded array, with maxSi ze set toi ni tial S ze.

nyArray 1= new Array initial S ze:10 growabl e: fal se
nyArray. bounded

true

nyArray. naxSi ze

10

Typically, appending new elements to the end of an array is very fast. However, when
an array is extended beyond its initial size, the Kaleida Media Player may be forced to
allocate a new memory block and copy the elements of the array into the new block.
This may have implications for performance. As an alternative to large arrays, consider
specifying the ArrayLi st class, a hybrid of Array and Li nkedLi st .

Array specializes several iterative methods that are defined by Col | ecti on and

Li near Col | ecti on to allow for insertion and deletion of items without compromising
the integrity of the iterator. Wholesale rearrangement of the collection is not supported.
Although insertion and deletion will not create an exception, performance can be

89

Array

expected to suffer if there are a large number of changes to the collection during any
iterative process. Developers can be warned, through messages to the console stream, of
changes to the array. Set the global function war ni ngs to tr ue. (The global function
war ni ngs is provided only in ScriptX, and is not included in the Kaleida Media Player.)

Creating and Initializing a New Instance

Instances of the class Array are created in two ways. The first way is to use the method
new which is exemplified in the following script: :

nyArray := new Array \

initial Sze:100 \
growabl e: true

The variable nyArray contains the initialized array. The instance has an initial size of
100 items and can grow beyond 100 items, since it is gr owabl e. The newmethod uses
the keywords defined inini t.

The second way to create an instance of Array is to use the hash sign (#) to create an
array literal:

anotherArray := #(3, 5, 7)

The variable anot her Arr ay contains a growable array of default initial size with three
values in it.

init

init self [initialS ze:integer] [growabl e: boolean] O self
self Array object
initial S ze: I nt eger object
growabl e: Bool ean object

Initializes the Array object self, applying the arguments as follows: The value supplied
with i nitial Si ze is the amount of space to reserve for the initial set of items; it must
be 1 or greater. If gr onabl e is set to f al se, the array cannot be expanded beyond the
size set by i ni ti al Si ze. If grownabl e is set to true, it grows in chunks.

If the array is not growable, then the maxSi ze instance variable contains the value that
is passed in as the value of i ni ti al Si ze. Otherwise, i ni ti al Si ze is used as a basis for
allocating additional chunks of memory. Do not call init directly on an instance—it is
automatically called by the new method.

If you omit an optional keyword, the following defaults are used:
initialSize:20
growable:true

When growabl e is set to t r ue on instantiation, ScriptX may create an Array object
larger (but never smaller) than you specify with i ni tial Si ze, because of its interaction
with the memory manager at initialization time. However, when you set gr ovabl e to
fal se, the value supplied with i ni tial Si ze is actually used and the instance variable
nmaxSi ze is set to that same value.

Class Methods

90

Inherited from Col | ecti on:
pi pe

Array

Instance Variables

Inherited from Col | ecti on:

bounded
iteratord ass

keyEqual Conpar at or

keyUni formty

keyUni form tyd ass

Instance Methods

Inherited from Col | ecti on:

maxSi ze

m nSi ze

nut abl e

nut abl eCopyd ass
proprietored

add for Each
addiany f or EachBi ndi ng
addToCont ent s get Al l
chooseAl | get Any
choosee get KeyAl |
chooseeBi ndi ng get Keyne
del eteAl | get Many
del et eBi ndi ngAl | get One
del et eBi ndi ngGne hasBi ndi ng
del et eKeyAl | hasKey
del et ekeyCne i ntersects
del et eCne i sEmpty
enpt yQut i sMenber
Inherited from Li near Col | ecti on:
chooseneBackwar ds fi ndRange
chooseOr dne f or EachBackwar ds
del et eFi r st get First
del et eLast get Last
del eteN h getMddl e
del et eRange getNth
Inherited from Sequence:
addFifth noveBackwar d
addFi r st noveFor war d
addFourth noveToBack
addNt h noveToFr ont
addSecond pr epend
addThird pr ependNew
append setFifth
appendNew set First

The following instance methods are defined by Array:

chooseOne

si ze

uniformty

uni form tyd ass

val ueEqual Conpar at or

iterate

| ocal Equal
map

mer ge

pi pe

prin
renoveA |
renovene
setAll

set One

si ze

get Nt hKey
get 0 dOne
get Range

| ocal Equal
| ocal LT

pop

set Fourth
set Last
setNth
set Second
set Third
sort

(Collection)

choosene self func arg

self
func

arg

Col | ecti on object

O (none)

An instance of a subclass of Abst ract Functi on

Any object

Calls choose(ne exactly as it is defined by Col | ecti on, except that Array specializes
choose(ne to allow for insertion and deletion of items, but not for rearrangement of
items, during processing of the collection. If you set the global function war ni ngs to

t rue, the compiler will print a warning message to the debug stream when the contents
of the array change during iteration.

91

Array

92

chooseOneBackwards (LinearCollection)
chooseeBackwar ds self func arg O (none)
self ol | ecti on object
func An instance of a subclass of Abst ract Functi on
arg Any object

Calls chooseCneBackwar ds exactly as it is defined by Li near Col | ecti on, except that
Array specializes choosetneBackwar ds to allow for insertion and deletion of items, but
not for rearrangement of items, during processing of the collection. If you set the global
function war ni ngs to true, the compiler will print a warning message to the debug
stream when the contents of the array change during iteration.

forEach (Collection)
for Each self func arg O (none)
self Col | ecti on object
func An instance of a subclass of Abst ract Functi on
arg Any object

Calls f or Each exactly as it is defined by Col | ecti on, except that Array specializes

f or Each to allow for insertion and deletion of items, but not for rearrangement of
items, during processing of the collection. If you set the global function war ni ngs to
true, the compiler will print a warning message to the debug stream when the contents
of the array change during iteration.

forEachBackwards (LinearCollection)
f or EachBackwar ds self func arg O (none)
self ol | ect i on object
func An instance of a subclass of Abst ract Functi on
arg Any object

Calls f or EachBackwar ds exactly as it is defined by Li near Col | ecti on, except that
Array specializes f or EachBackwar ds to allow for insertion and deletion of items, but
not for rearrangement of items, during processing of the collection. If you set the global
function war ni ngs to true, the compiler will print a warning message to the debug
stream when the contents of the array change during iteration.

ArrayList

ArrayList

RootObject

Collection

LinearCollection ImplicitlyKeyedCollection

Sequence

ArrayList

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Sequence

Component: Collections

An Arrayli st object is a list of values, stored as a series of linked memory blocks.
Compared to an Arr ay, Arr ayLi st may be faster for a collection that may grow rapidly,
because the entire collection does not have to be copied when it grows beyond its
original boundaries. Retrieving an object will be slightly slower for an ArrayLi st,
however. As shown in the figure below, each block begins with a header that points to
the next block. Rather than each item being separately linked to the next item, items are
arranged consecutively, with each block linked to the next block.

Item 1
Item 2
Iltem 3 Iltem 5

Item 4 Item 6 - - -
Iltem 7 Item 9
Item 8 Item 10
Item 11
Iltem 12

When you create an ArrayLi st object (with new), you define the size of the first block
with i nitial Si ze. Note, however, that the si ze instance variable will return 0 for a
newly created array list, since it does not contain any objects. As you add items, the first
memory block becomes full; once it is full and you add another item, it allocates a new
block big enough to contain the number of elements specified by gr owSi ze, and places
the new item in the new block. When this block becomes full, additional blocks of the
same size are allocated to extend the array list.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the ArrayLi st
class:

al := new ArraylList \
initial Sze:100 \
growsi ze: 50

The variable al contains the initialized array. The instance is set to have space for 100
items in the initial set of items and to grow beyond that in increments of 50 items. Use
the keyword arguments defined by the i ni t method, shown below.

93

ArrayList

init

init self [initialSize:integer] [grows ze:integer] O (none)
self Arrayli st object
initial Size: I nt eger object

grows ze: I nt eger object

Initializes the ArrayLi st object self, applying the arguments as follows: The
initialSize value is the amount of space to reserve for the initial set of items; it must
be 1 or larger. The value supplied with gr owSi ze is the number of elements to grow by
each time the allocated space for the array is full; gr owSi ze must be a positive number.
If either argument is passed in as a value smaller than 1, it is set to 1. Thus an

ArraylLi st object is never bounded and can always grow by at least 1. Do not call i ni t
directly on an instance—it is automatically called by the newmethod.

If you omit a keyword argument, the following defaults are used:
initial Size: 20
growsi ze: 20
ScriptX may create a larger ArrayLi st object (but never smaller) than you specify with

initial Sizeor growsize, due to its interaction with memory management at
initialization time.

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded nmaxSi ze si ze
iteratord ass m nSi ze uniformty
keyEqual Conpar at or nut abl e uni form tyd ass

keyUni formty
keyUni form tyd ass

nut abl eCopyd ass
proprietored

val ueEqual Conpar at or

Instance Methods

94

Inherited from Col | ecti on:

add for Each iterate
addMany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al l nap
chooseAl | get Any ner ge
choosene get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin
del eteAl | get Many renmoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngGne hasBi ndi ng setAll
del et eKeyAl | hasKey set One
del et ekeyne i ntersects si ze
del et eCne i SEmpty
enpt yQut i sMenber

Inherited from Li near Col | ecti on:
chooseneBackwar ds fi ndRange get Nt hKey
chooseOr dCne f or EachBackwar ds get O dne

ArrayList

del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteNt h getMddl e | ocal LT
del et eRange getNth pop
Inherited from Sequence:
addFifth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourt h noveToBack setNth
addNt h noveToFr ont set Second
addSecond pr epend set Third
addThi rd pr ependNew sort
append setFifth
appendNew set First

95

AudioStream

AudioStream

RootObject

Stream

MediaStream ByteStream

AudioStream

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Medi aSt r eamand Byt eSt r eam
Component: Media Players

The Audi 0St r eamclass provides services for reading streams of digital sound samples.

The methods i sReadabl e and i sSeekabl e return t r ue for an Audi 0St r eaminstance,
and i sSWi t abl e returns false.

Creating and Initializing a New Instance

96

To create an Audi 0St r eaminstance, import a file containing digitized audio data. The
importing process automatically creates either an Audi oSt r eaminstance or a
D gi t al Audi oPl ayer instance to play the audio stream.

The following script shows how to create an instance of Audi 0St r eamby importing an
AITFF file containing digitized sound. The file "gr owl " would reside on the ScriptX
startup directory. To play the digitized sound, you would need to create a

D gi tal Audi oPl ayer object and set its medi aSt r eaminstance variable to the audio
stream.

streaml: = getstream theStartDr "grow " @eadabl e
growl Stream = i nportMdi a thel nport Export Engi ne streant\
@ound @I FF @tream

This script shows an example of how to import an AIFF file as an Audi oSt r eam You can
also import SND and WAVE files in the same manner, in which case you would need to
change the @\ FF argument to @ND or @MAVE as appropriate. For more details of the
arguments to the method i npor t Medi a on the global instance

t hel npor t Expor t Engi ne, please see either the “Media Stream Players” chapter in the
ScriptX Components Guide or the chapter about Importers in the ScriptX Developer’s Guide.

The Audi oSt r eamclass does support the newmethod, which takes a keyword argument
of i nput St r eam which needs to be a byte stream. You would not normally call the new
method on Audi 0St r eamto create a new instance. Instead you would import an audio
stream as described above. However, for the sake of completeness, the following script
illustrates how to create a new instance of the Audi 0St r eamclass by calling the new
method. For this example, you would need to have previously created the byte stream
nySt r eam which should contain digitized audio data.

nyStream : = new Audi oStream \
i nput St ream nyStream

The variable nySt r eampoints to the newly created audio stream, which has the
Byt eSt r eaminstance nySt r eamas its input stream.

The newmethod uses the keywords defined ini nit.

AudioStream

init

init self [inputStream byteStream] O (none)
self Audi oSt r eamobject
i nput St ream Byt eSt r eamobject representing the digitized sound

source

Initializes the Audi oSt r eamobject self, setting i nput St r eamas the data source. Do not
call i nit directly on an instance—it is automatically called by the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:
i nput St ream undef i ned

Instance Variables

Inherited from Medi aSt r eam

dat aRat e rate vari abl eFraneSi ze
i nput St ream sanpl eType
mar ker Li st scal e

The following instance variables are defined in Audi 0Stream

numChannels

self. nunChannel s (read-only) I nt eger

Specifies the number of channels per frame of audio in the stream self —for example, 2
for stereo and 4 for quad.

pitch

self. pitch (read-only) | nt eger

Specifies the pitch of the sound in the stream self. The value returned is a MIDI note
number. This variable is generally meaningful on short, highly controlled sound
samples.

sampleType

self. sanpl eType (read-only) Naned ass

Specifies how the audio data in the stream self is to be presented. The audio stream self
coerces the audio data to be of the correct sample type. Typically, when an audio stream
is used in conjunction with a digital audio player, this instance variable is be set by a
negotiation process between the audio stream and the sound driver that is transmitting
the sound. The values defined by ScriptX are @i nary(f f set and @wosConpl enent .

sampleWidth

self. sanpl eW dt h (read-only) I nt eger
Specifies the width of each sample in bits. Typical values are 8 and 16.

Instance Methods

Inherited from St ream

cur sor next seekFrontt art
flush pl ug set Streaniengt h
i SAt Front pr evi ous st reaniengt h

i sPast End read wite

97

AudioStream

98

i sReadabl e
i sSeekabl e
isWitable

Inherited from Byt eSt r eam
fileln
pi pe
pi peParti al

Inherited from Medi aSt r eam

addMar ker
i sReadabl e

r eadReady
seekFr omQur sor
seekFr onEnd

readByt e
r eadReady
witeByte

i sSeekabl e

wri t eReady

witeString

isWitable

BarnDoor

BarnDoor

RootObject

Presenter

TwoDPresenter

TransitionPlayer

BarnDoor

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TransitionPl ayer
Component: Transitions

The Bar nDoor transition player provides a visual effect similar to two doors opening
from the middle, as shown below. A barn door can be set to open two different ways by
setting the di r ect i on instance variable defined by Transi ti onPl ayer to either of two
values: @pen or @I ose.

@pen

@l ose

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Bar nDoor
class:

nyTransition := new BarnDoor \
duration: 60 \
di rection: @pen \
t ar get : nyShape

The variable nyTr ansi t i on contains the initialized transition. The transition reveals the
image nyShape from the center first, with a barn door effect, and has a duration of 60
ticks.

You determine which space the transition will take effect in by adding this instance into
that space. Then, when you play the transition player, nyShape is transitioned into that
space.

The newmethod uses the keywords defined in i ni t.

99

BarnDoor

init

init self [duration:integer] [direction: name]
[movi ngTar get : boolean | [useCt f screen: boolean | [t ar get : twoDPresenter |

[boundary: stencil | [mast er d ock: clock] [scal e: integer]

O (none)

This method is inherited from Transi ti onPl ayer with no change in keywords—refer
to that class for details. Do not call i ni t directly on an instance—it is automatically

called by the newmethod.

Instance Variables

Inherited from Present er:
pr esent edBy

Inherited from TwoDPr esent er :

bBox

boundary

cl ock

conposi t or

di rect
eventInterests
gl obal Boundary
gl obal Tr ansf orm

Inherited from d ock:

cal | backs
effectiveRate
mast er d ock
of f set

Inherited from Pl ayer:
audi oMut ed
dat aRat e
duration
gl obal Bri ght ness

subPresenters

hei ght
IslnplicitlyD rect
i sTranspar ent
isVisible

needsTi ckl e
position
stationary

t ar get

rate

resol ution
scal e

sl aved ocks

gl obal Cont r ast

gl obal Hue

gl obal PanCx f set
gl obal Sat urati on

Inherited from Transi ti onPl ayer:

aut oSpli ce
backgr oundBr ush
cachedTar get

The following instance variables are defined in Sl i de:

direction

direction
duration
frame

t ar get

transform
wi dt h

wi ndow

X

y
z

ticks
tine
title

gl obal Vol umeC f set
mar ker Li st

stat us

vi deoBl anked

novi ngTar get
t ar get
use f screen

(TransitionPlayer)

self. di rection

(read-write)

Naned ass

Specifies the direction in which the barn door transition self should be applied. Possible

values are @pen and @l ose.

Instance Methods

100

Inherited from TwoDPr esent er :

adj ust d ockMast er
createl nt erestLi st
draw

get Boundar yl nPar ent
hi de

i nsi de

| ocal ToSurf ace
not i f yChanged
recal cRegi on
refresh

show
sur faceTolLocal
tickle

BarnDoor

Inherited from O ock:

addPer i odi cCal | back
addRat eCal | back
addScal eCal | back
addTi neCal | back
addTi meJunpCal | back

Inherited from Pl ayer:

addMar ker

ej ect

f ast For war d

get Mar ker

get Next Mar ker

get Pr evi ousMar ker

pl ayPr epar e

cl ockAdded

cl ockRenoved

ef f ecti veRat eChanged
for EachSl ave

i sAppropri at ed ock

goToBegi n
goToEnd
goToMar ker Fi ni sh
goToMar ker St ar t
pause

pl ay

Inherited from Transi ti onPl ayer:

pause
resune

ti meJunped
wai t Ti ne
wai t Unt i

pl ayPr epar e
pl ayUnpr epar e
pl ayUnt i
resune

rew nd

stop

101

Behavior

Behavior

RootObject

Behavior

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Object System Kernel

The Behavi or class provides the operations common to all classes and metaclasses.
Behavi or is the superclass of Root O ass and Met ad ass.

The following “instance” methods of Behavi or are actually the default class methods
for ScriptX classes and metaclasses. All class methods are metaclass instance methods.
All metaclasses inherit from Root A ass, and Root d ass then inherits from Behavi or.
The distinguished class Met ad ass also inherits directly from Behavi or. The following
methods are factored and pushed up into Behavi or so that Met ad ass can also inherit
these standard class methods, making them available for metaclasses as well.

For example, Behavi or defines the new generic function for creating new instances of
metaclasses in ScriptX. It is considered an instance method of the Behavi or class, while
it is a class method for ScriptX classes.

Note — Root bj ect, Behavi or, and Root A ass define several generic functions that
expose API that is private, and not considered part of the ScriptX Language and Class
Library. Any classes, objects, instance variables, or methods not documented in the
ScriptX Technical Reference Series, or in associated release notes, are not supported by
Kaleida. Since such API is likely to change with future versions of ScriptX, using it in a
title or tool may result in future incompatibilities with Kaleida products.

Instance Methods

102

allinstances

al I I nstances self O Sequence

Returns a sequence of all instances of the class self. Instances of a subclass are
considered to be instances of the given class. See also al | Di rect | nst ances.

canClassDo

cand assDo self generic O Bool ean
self Any class
generic Any generic function

Returns t r ue if the class self implements the given generic function directly. If the class
inherits its implementation from another class, cand assDo returns f al se. Contrast
cand assDo with canbj ect Do (a method defined on Root Cbj ect), which also returns
true if the class inherits its implementation of the generic function.

getDirectSubs

get Di r ect Subs self O Sequence

Returns an array with the direct subclasses of the class self.

Behavior

getDirectSupers

get Di r ect Super s self 0 Sequence

Returns an array with the direct superclasses of the class self. This list is returned in
precedence order. For an explanation of precedence order, see “Multiple Inheritance” in
ScriptX Language Guide.

getSubs

get Subs self 0 Sequence

Returns a collection of all direct and indirect subclasses of the class self. Note that
certain classes in the core classes may not be loaded into memory at startup. These
“loadable” classes do not appear on the list that get Subs returns until they have been
referenced explicitly, and hence loaded into memory.

getSupers

get Supers self 0 Sequence

Returns a collection of all direct and indirect superclasses of the class self. See get Subs
for note about classes that are not loaded into memory at startup.

inflatelnstance

i nfl atel nstance self stream O (object)
self Class of the object to inflate
stream A storage stream containing object information

Initializes and returns instances of the class self upon retrieval from a storage container.
You may override i nfl at el nst ance as a class method, rather than i nfl at e as an
instance method, to perform actions specific to a class upon retrieval and inflation of
instances from the object store. For example, you may want only one instance of a
particular class to be loaded and initialized; this method can check to see if that instance
already exists and return it rather than initializing a new instance. You may also
partially initialize an object within this method, then perform further initialization in
the i nf | at e instance method. See the i nf| at e instance method for more on how to
perform customized initialization upon retrieval from storage.

Note - If you override i nf | at el nst ance by defining a class method in a particular
class, and then create a subclass of that class, you must take certain precautions.
Specifically, you must either expect not to have persistent instance variables in the
subclass, or you must specialize i nf | at el nst ance in the subclass to handle any
instance variables defined by the new subclass. See the chapter “Title Management” in
the ScriptX Components Guide for more information on how objects are added to and
stored in a container.

isDirectSub

i sDirectSub class1 class2 O Bool ean
class1 Any class
class2 Any class

Returns true if class1 is a direct subclass of class2, with no intervening classes.

103

Behavior

104

isMemberOf

i sMenber O theClass myObject O Bool ean
theClass Any class
myObject Any object

Returns t r ue if myObject is an instance of class theClass.

isSub

i sSub self super O Bool ean
self Any class
super Any class

Returns tr ue if self inherits (directly or indirectly) from super.

methodBinding

met hodBi ndi ng self generic O (method)
self Any class
generic Any generic function

Returns the method that implements generic on the class self.

new

new self argl arg2 . . . keyl:valuel key2 :value2 . . . O (object)
self Any class
argl arg2 . . . Any objects
key Keyword defined in the i nit or afterlni t methods
value An object appropriate to the specified key

Allocates memory for a new instance of the class self, and then calls i ni t and
afterlnit on the new instance, supplying all arguments to both of these methods.
Returns the initialized object, regardless of whatinit or afterlnit returns. (Note that
few core classes have an implementation for the af t er I ni t method.)

In this document, the description for each concrete class includes sample code for
creating a new instance of that class.

When you call the newmethod, specify the class name as the first parameter, followed
by the keyword arguments from the i nit and after I nit methods for that class. You
can enter keyword arguments in any order. Optional keywords are indicated in this
manual by square brackets:

init self [data:byteString] [col ormap: colormap] bBox: rect.

All classes inherit the implementation of newdefined in Behavi or. To specialize the
initialization of a class, rather than specialize the newmethod, you specialize the i ni t
and af terl nit methods. For a general description of how i nit and after! nit work,
see “The Creation and Initialization Syntax” on page 19 in Chapter 1, “Information
Common to All Classes.” The ScriptX Language Guide provides a general discussion of
how to define or specialize the i ni t method.

Bitmap

Bitmap

RootObject

Stencil

Class type: ~ Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: St enci |

Component: 2D Graphics

The Bi t map class provides images made up of pixels, each representing a particular
color value in a color space or color map. The area of a bitmap may also be surrounded
by matte pixels and contain invisible pixels, which are by definition not part of the
image produced when the bitmap is rendered. That is, when a bitmap is stroked, filled,
or transferred to a surface, its shape is determined by all pixels except those that have
the matte color or invisible color. When a bitmap is rendered, any rendering previously
performed on the same surface will appear wherever the invisible pixels occur.

Note that Bi t map objects by themselves are not presenters—to display a bitmap, create
an instance of TwoDShape using a Bi t map object as the boundary argument.

When using bitmaps in animation, it’s useful to set their x1 and y1 values for
registration points. To see how this is done, refer to the section “Registration Points” in
the “Animation” chapter of the ScriptX Components Guide.

Note — Bi t map instances aren’t resizeable and thus aren’t suitable for use as the
boundary of TwoDShape objects that must be resized.

Creating and Initializing a New Instance

You would normally create Bi t map objects by importing bitmap files. For details, see
the ScriptX Tools Guide.

Although you should rarely need to create Bi t map objects by calling new on the Bi t map
class, the following information is provided for the sake of completeness.

The following script is an example of how to create a new instance of the Bi t map class:

nyBitmap := new Bitmap \
data: nyString \
col or map: t heDef aul t 8Col or map \
bBox: (new Rect x2:100 y2:100)

The variable nyBi t map contains the initialized bitmap. The bitmap's pixel values are
specified by the data in nyStri ng, its color map is set to system default 8-bit color map,
and its bounding box is 100 pixels by 100 pixels.

init

init self [data:byteString] [col ornap: colormap] [bitsPerPixel : integer]

bBox: rect O (none)
self Bi t map object

dat a: Byt eSt ri ng object

col or map: Col or map object

bi t sPer Pi xel : I nt eger object

105

Bitmap

The superclass St enci | uses the following keyword:
bBox: Rect object

Initializes the Bi t map object self, applying the values supplied with the keywords to the
instance variables of the same names, as follows: dat a sets the source of its data,

col or map sets the color map instance variable used by the bitmap, bi t sPer Pi xel sets
the pixel depth, and bBox sets the area of the bitmap. Do not call i ni t directly on an
instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:
dat a: Storage allocated based on bBox size and col or map
col or map: t heDef aul t 8Col or map
bi t sPer Pi xel : 8 bits

The global constant def aul t Col or map is determined by the pixel depth of the display
system on the underlying hardware platform.

Instance Variables

106

Inherited from Stenci | :
bBox

The following instance variables are defined in Bi t map:

bitsPerPixel

self. bi t sPer Pi xel (read-only) | nt eger

Represents the pixel depth of the bitmap self. This value is set to correspond to the pixel
depth of the color map applied to the bitmap.

colormap

self. col or map (read-write) Col or map

Contains an instance of Col or map to describe the bit-depth and color encoding of pixels
in the bitmap self. Pixel encodings in the data of a bitmap are assumed to represent keys
into this color map, whose values are instances of Col or. By default, this value is set to
t heDef aul t 8Col or map.

You can only change the value of this instance variable to another Col or map of the same
pixel depth.

For more on color maps and bitmaps, see the chapter “2D Graphics” in the ScriptX
Components Guide.

For best performance, you should set a bitmap’s colormap to match that of the window
in which it is being displayed. You may do so by resetting either the window or bitmap
col or map instance variable to match the value of its counterpart.

data

self. dat a (read-write) Byt eString

Specifies an instance of Byt eSt ri ng containing data for the bitmap self. The color
encoding of pixels within this string is defined by the contents of the col or map instance
variable. The length of this data is defined by the si ze instance variable, and the length
of an individual row within the map is defined by the r owByt es instance variable.

Note that you can set the values for individual pixels in a bitmap by setting values in
this byte string. Values used must represent valid indexes into the bitmap’s col or map.
You should not replace the byte string or make other changes to it that affect the
dimensions of the bitmap data.

Bitmap

invisibleColor

self. i nvi si bl eCol or (read-write) Col or or | nt eger

Specifies the Col or object or the Col or map index that should be transparent both
around and within the image area when the bitmap self is transferred or filled. When
the bitmap is rendered, any rendering previously performed on the same surface will
appear wherever invisible pixels occur. This variable provides a means of encoding a
mask into bitmap data.

When setting this value as an integer, be aware that the indexes to the bitmap’s color
map are in the range between 0 and the size of the color map - 1.

When setting this instance variable, if the color isn’t in the bitmap’s color map, an
exception is reported. However, if the bitmap’s color map has a pixel depth greater than
8, ScriptX assumes that all colors are represented, and no error is reported even if the
color map doesn’t actually include the color.

v
. #. = mat t eCol or
H-H - L] i nvi si bl eCol or
Hm
[
% I
[
11 I
HEN [] []

Figure 1: Bitmap’s invisibleColor and matteColor

matteColor

self. mat t eCol or (read-write) Col or or | nt eger

Specifies the Col or object or the Col or map index that should be transparent around the
image of the bitmap self when it is transferred or filled. The mat t eCol or is transparent
only between the boundary rectangle and the image of the bitmap, not within the image
itself. Thus, the boundary of the image represented by the bitmap is defined by pixels of
colors other than the natt eCol or value. When the bitmap is rendered, any rendering
previously performed on the same surface will appear wherever matte color pixels
occur.

When setting this instance variable, if the color isn’t in the bitmap’s color map, an
exception is reported. However, if the bitmap’s color map has a pixel depth greater than
8, ScriptX assumes that all colors are represented, and no error is reported even if the
color map doesn’t actually include the color.

pagingMethod

self. pagi ngMet hod (read-write) (object)

The ScriptX importers, discussed inScriptX Tools Guide, can import compressed bitmaps
and retain the compression. When you use a bitmap that has compressed data, the data
is uncompressed automatically as determined by the value in the bitmap's

pagi ngMet hod instance variable.

The possible values for this instance variable are @nl oad, @i r st Use,
@achUseFr onBt or age, and @achUseFr omvenory. The meanings of each of these
values is discussed in the ScriptX Tools Guide.

107

Bitmap

remapOnDraw

self. r emapOnDr aw (read-write) Bool ean

Determines how pixels are copied from the bitmap self to a surface during the rendering
operations transfer or fill.If remapOnDr awis tr ue, the rendering operation remaps
the colors represented in the bitmap to the color map of the surface performing the
rendering. If this variable is f al se, the rendering operation simply interprets pixel
values in the bitmap as indexes into the surface’s color map. By default, the value is
true.

remapOnSet

self. r emapQOnSet (read-write) Bool ean

Determines how the bitmap self responds to a change in its col or map instance variable.
If remapOSet is t r ue, then changing the color map will result in the pixel values in the
bitmap being reindexed to the appropriate colors in the new color map. If it is f al se,
the bitmap simply interprets existing pixel values as indexes into the new color map. By
default, this value is f al se.

For best performance, you should set a bitmap’s colormap to match that of the window
in which it is being displayed. You may do so by resetting either the window or bitmap
col or map instance variable. If you set the bitmap’s colormap, you should probably set
this variable true before doing so.

rowBytes

self. ronByt es (read-only) I nt eger
Specifies the number of bytes per row within the data of the bitmap self.

size

self. si ze (read-only) | nt eger

Specifies the size of the bitmap’s data string in bytes. This value is always an integer
multiple of r owByt es.

Instance Methods

108

Inherited from Stenci | :

i nsi de onBoundary transform
i nt ersect subtract uni on

The following methods are defined in Bi t nap:

dropData

dropDat a self O (object)
self The Bi t map object.

If a bitmap has been loaded from a container such as a title container or library
container, you can use the dr opDat a method to force the bitmap to drop its data
immediately.

When you make a bitmap purgeable, the garbage collector cleans up the memory that
the bitmap uses. However, this does not happen instantly. It happens as soon as the
garbage collector gets round to it. Before making a bitmap purgeable, you can call

Bitmap

dr opDat a on it, to immediately free up the memory used by the bitmap. When the
garbage collector gets round to cleaning up the object, it completes the cleanup by
freeing the memory occupied by the actual Bi t map object.

If you call dr opDat a on a bitmap that has not been loaded from a container, (that is, you
imported it in the same ScriptX session), you will get an exception.

109

BitmapSurface

BitmapSurface

RootObject

Stencil Surface

BitmapSurface

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Bi t map and Surf ace
Component: 2D Graphics

A Bi t mapSur f ace object provides an area of memory that can be used to both represent
pixel images and perform rendering operations. The pixel image represented by a
bitmap surface can thus be altered using the standard rendering operations defined by
the surface Surf ace.

To alter a bitmap, use the Surf ace method t r ansf er to render the Bi t nap instance on
a Bi t mapSur f ace object. You then render on the bitmap using other rendering
operations and objects; for example, you can stroke a text stencil onto the surface. To
use the resulting image, you transfer the Bi t mapSur f ace object to a Sur f ace object
using the t ransf er method.

Bi t mapSur f ace instances can be used as drawing caches. For example, see the “2D
Graphics” chapter in the ScriptX Components Guide.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Bi t mapSur f ace class:

nyDrawi ngCache : = new BitmapSurface \
col or Map: nyCol ors \
bBox: (new Rect x2:100 y2:100) \
dat a: nyString

The variable nyDr awi ngCache contains the initialized bitmap surface. The surface’s
bounding box is 100 pixels by 100 pixels, its color map is set to system default 8-bit
color map, and its pixel values are specified by the data in nyStri ng.

init
init self bBox:rect [colorMap: colorMap] [data: byteString | O (none)
self Bi t mapSur f ace object
Superclasses of Bi t mapSur f ace use the following keywords:
bBox: Rect object
col or Map: Col or Map object
dat a: Byt eSt ri ng object

Initializes the Bi t mapSur f ace object self. The keyword values are described in the

Bi t map class discussion. Note that because Bi t mapSur f ace inherits from both Bi t map
and Sur f ace, the bBox and boundary instance variables are both set to the rect value
supplied with the bBox keyword. Do not call i ni t directly on an instance—it is
automatically called by the new method.

110

BitmapSurface

If you omit an optional keyword, its default value is used. The defaults are:

col or Map: t heDef aul t 8Col or Map
dat a: Storage allocated based on size of bBox and col or Map

Instance Variables

Inherited from Stenci | :

bBox

Inherited from Bi t map:
bi t sPer Pi xel i nvi si bl eCol or r owByt es
col or Map nmat t eCol or si ze
conpr essi onl nf o remapOnDr aw
dat a r emapOSet

Inherited from Surf ace:
boundary

The following instance variable, inherited from Bi t map, is redefined in Bi t mapSur f ace:

data (BitMap)

self. dat a (read-only) O (none)

Represents that data being rendered by the bitmap surface self. Note that this data may
not necessarily represent the actual pixel data currently being rendered. To assure
correct contents of this instance variable—for example, to perform a screen grab on a
particular display surface—you must first coerce the Bi t mapSur f ace self to a Bi t map.

Instance Methods

Inherited from St encil :

i nsi de onBoundary transform
i nt ersect subt r act uni on

Inherited from Bi t map:
(none)

Inherited from Surf ace:
fill stroke transfer

The following instance methods are defined in Bi t mapSur f ace:

erase

erase self brush O (none)
self Bi t mapSur f ace object
brush Br ush object

Fills the boundary of the bitmap surface self with brush, effectively erasing any previous
rendering on the surface.

111

Blinds

Blinds

Presenter

TwoDPresenter

TransitionPlayer

Blinds
Class type: Loadable class (concrete)
Resides in: [trans. |ib. Works with ScriptX and KMP executables.

Inherits from: TransitionPl ayer
Component: Transitions

The Bl i nds transition player provides a visual effect that causes the target to gradually
appear using vertical (@erti cal) or horizontal (@enet i an) bands as shown below.
The target appears when the transition is played forward, and disappears when played
backward (transition’s rate set to -1).

__ Ll {an| @

Directions: @ertical, @eneti an

Rate: Can play forward or backward.

For a side-by-side illustrations of all transitions, see the Transitions chapter in the
ScriptX Components Guide.

Creating and Initializing a New Instance

112

The following script is an example of how to create a new instance of the Bl i nds class:

nyTransition := new Blinds \
duration: 60 \
direction: @enetian \
t ar get : nyShape

The variable nyTr ansi t i on contains the initialized transition. The transition reveals the
image nyShape from the center first, with a barn door effect, and has a duration of 60
ticks.

You determine which space the transition will take effect in by adding this instance into
that space. Then, when you play the transition player, nyShape is transitioned into that
space.

The newmethod uses the keywords defined in i ni t.

NOTE - For the instance variables and methods, see the Bar nDoor class.

Boolean

Boolean

RootObject

Boolean

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Numerics

The Bool ean class represents the objects t r ue and f al se. Note that Bool ean is not a
subclass of Nunber.

When evaluating an expression to test if it is true or false (such as in an i f statement),
ScriptX recognizes only the f al se object as being false. Anything else is true. Therefore,
1is true, O is true, enpt y is true, undef i ned is true, the t r ue object is true, and so forth.
Therefore, to test if something is true, the surest way is to test that it is not false.

if (x <> false) do <expression>

Test against t r ue only if you are certain that there is no other way the expression can
evaluate to non-false.

ScriptX defines two instances of the Bool ean class, t r ue and f al se, which exist as
global constants. See Chapter 3, “Global Constants and Variables” of this volume.

Since t rue and f al se already exist as global constants, there is no reason to create an
instance of the Bool ean class.

Note — The and, or, and not Boolean operators are part of the ScriptX Language; they
are not generic functions defined by the Bool ean class, nor are they implemented
directly as global functions. Refer to the ScriptX Language Guide for more information.
The xor Boolean operation is defined as a global function (page 54).

113

Bounce

Bounce

RootObject

Collection
IndirectCollection

Controller

TwoDController

Bounce

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TwoDControl | er
Component: Controllers

The Bounce class is a controller that, when used with the Movenent controller, causes
one or more Proj ecti | e objects to bounce off the edges of the container. For each
projectile in the bounce controller’s space, the ti ckl e method looks at whether the
projectile intersects with the edge of the space. If it does, it changes its vel oci ty
instance variable. Note that the bounce controller doesn’t actually move the projectile—
it only changes the value of its vel oci ty instance variable. The Moverent controller
moves the projectile according to the current value of vel oci ty.

You can specify which projectiles are affected by bounce and their initial velocities. See
the Proj ecti | e class for more details. (Bounce is more an example class than a crucial
part of the author’s toolbox.)

A Bounce object is a collection of the Proj ecti | e objects it controls. These projectiles
must also be in the space that the controller is controlling. Projectiles are either
automatically or manually added to the bounce controller, according to the whol eSpace
instance variable. If whol eSpace is f al se, you can use the methods defined by

Col | ection to add and remove objects from the bounce controller. To ensure that only
projectiles are added to a bounce controller, the pr ot ocol s instance variable is set to the
Proj ectil e class. See the Control | er class for descriptions of whol eSpace,

pr ot ocol s, and other general properties of controllers.

Bounce defines the ti ckl e method to check all bounce targets at every tick of the
presenter’s clock.

Creating and Initializing a New Instance

114

The following script is an example of how to create a new instance of the Bounce class,
after creating the space it controls:

nySpace := new TwoDSpace boundary: (new Rect x2:200 y2:200)
nyBounce := new Bounce space: nySpace

The variable nyBounce contains the initialized bounce controller. This instance changes
the direction of projectiles in nySpace when they hit the edge of the space. The new
method uses keywords defined ininit.

Bounce

init

init self [space:space] [whol eSpace:boolean] [enabl ed: boolean]

[target Col | ection: sequence]

self Bounce object

The superclass Control | er uses the following keywords:

space: Space object that holds projectiles
whol eSpace: Bool ean object
enabl ed: Bool ean object

The superclass TwoDCont r ol | er uses the following keyword:

target Col | ection: Sequence object (use carefully)

O (none)

Initializes the Bounce object self, applying the values supplied with the keywords to
instance variables of the same name. Use discretion in changing the target collection; for
more information, see the definition of the TwoDCont rol | er class. Do not calli ni t
directly on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

space: undef i ned
whol eSpace: f al se
enabl ed: true

target Col | ection: (new Array initial Size:4 growabl e:true)

Class Methods

Inherited from Collection:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded naxS ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUniformty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass proprietored

Inherited from | ndi rect Col | ecti on:
target Col | ection

Inherited from Control | er:

enabl ed space whol eSpace

protocol s
protocols (Controller)
self. prot ocol s (read-write) Array

This instance variable initially contains the class Proj ecti | e for the bounce controller
self. This means that any object added to a Bounce controller must have Proj ecti | e as
one of its superclasses. See the Control | er class for further description about this

instance variable.

115

Bounce

Instance Methods

116

Inherited from Col | ecti on:

add f or Each iterate
addvany f or EachBi ndi ng | ocal Equal
addToContent s get Al nap
chooseAl | get Any ner ge
choosee get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngOne hasBi ndi ng setAll

del et eKeyAl | haskey set One
del et eKeyCne i ntersects si ze

del et eOne i SEmpty

enpt yQut i sMenber

Inherited from | ndi r ect Col | ecti on:

i sAppr opri at eChj ect obj ect Added obj ect Renoved

Inherited from Control | er:
i sAppr opri at eChj ect tickle

Since a Bounce controller is an indirect collection, you can also use any methods defined
in the class specified by t ar get Col | ecti on. The target collection is typically an
instance of Ar r ay, which inherits from Sequence, so the following instance methods are
redirected to this controller.

Accessible from Li near Col | ecti on:

chooseneBackwar ds fi ndRange get Nt hKey
chooseOr dne f or EachBackwar ds get 0 dOne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop
Accessible from Sequence:
addFifth nmoveBackwar d setFourth
addFi r st nmoveFor war d set Last
addFourt h noveToBack setNth
addN h noveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort
append setFifth
appendNew set First
The following instance method is defined in Bounce:
tickle (Controller)
tickl e self clock O self
self Bounce object
clock A ock object of the space being controlled

For any moving projectile that intersects the edge of the controlled space, this method
sets a new value for vel oci ty degraded by its value of el asti ci ty (both instance
variables of Proj ecti |l e).

Bounce

When used with the Movenent class, the projectile then changes directions, bouncing off
the edge of the space. Note that this method doesn’t actually move the projectile—this
method only changes the value of its vel oci ty instance variable. The Movenent
controller moves the projectile according to its current value of velocity.

A callback calls this method on the Bounce object self, supplying the space’s clock as the
value for clock. The callback calls this method once every tick of the space’s clock.

For further details, refer to the section “The Ticklish Protocol” in the chapter
“Controllers” in the ScriptX Components Guide.

117

Brush

Brush

RootObject

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root Cbj ect

Component: 2D Graphics

The Br ush class defines properties of the “paint” that is applied when a rendering
operation creates an image on a surface. Some Br ush properties apply to both the fill
and st r oke methods of Surf ace; others apply only to st r oke:

® Properties applicable to both fill and stroke are col or, pattern, and i nkMbde.
® Properties exclusive to stroke are | i neWdth, [ineJoin, nmterLinit, and pattern.

ScriptX provides two global instances of Brush: bl ackBr ush and whi t eBrush. A
synonym for whi t eBr ush is def aul t Br ush. These global instances are defined in the
chapter “Global Constants and Variables.”

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Brush class:

|'i ght Magent aBrush := new Brush \
col or: magent aCol or \
pattern: grayPattern

The variable | i ght Magent aBr ush contains the initialized brush. The instance has a
color of magent aCol or. Its pattern is gr ayPat t er n, which produces a slightly pastel
version of the specified color.

init

init self [color:color] [pattern:pattern] O (none)
self Br ush object
col or: Col or object
pattern: Bi t map object or named ScriptX pattern

Initializes the Brush object self, applying the arguments to the instance variables of the
same name, as follows: col or is set as the Br ush color and the bitmap or named

pat t ern is set as the pattern. Do not call i ni t directly on an instance—it is called
automatically by the new method.

If you omit an optional keyword, ScriptX returns the system global whi t eBr ush with
the following values set:

col or: whi t eCol or

pattern: @l ackPattern

Instance Variables

118

color (Brush)

self. col or (read-write) Col or

Specifies the color to use when filling or stroking with the brush, self.

Brush

inkMode

self. i nkMbde (read-write) | nt eger

Specifies the mixing characteristic used to apply a new paint from the brush self over a
previous image on the destination surface. Note that some i nkMbde settings are
effective only with black or white values for col or; colors other than black or white act
like black with these settings. While the effects produced by i nkMbde can be explained,
they may be easier to interpret visually.

The values of this instance variable may be the following integer constants:

srcCopy - Replace all pixels in the destination surface with the color or pattern of
the brush (0).

srcQ - If the brush color is white, leaves colored pixels in the destination as they
were; if the brush color is not white, applies the source color over all destination
pixels (1).

srcXor — If the brush color is white, leaves colored pixels in the destination as they
were. If the brush color is not white, inverts the color of destination pixels, turning
white to black and non-white to white (2).

srcBi ¢ — If the brush color is white, leaves any colored pixels in the destination as
they were. If the brush color is another color, applies white over any destination
pixels (3).

not Sr cCopy — Replaces all pixels in the destination with the inverse of the color of
the source. If the source color is white, black pixels are applied; if the source is
non-white, white pixels are applied (4).

not SrcQr - If the brush color is non-white, leaves any colored pixels in the
destination as they were. If the brush color is white, inverts the color of destination
pixels, turning white to black and non-white to white (5).

not SrcXor — If the brush color is non-white, leaves any colored pixels in the
destination as they were. If the brush color is white, inverts the color of destination
pixels, turning white to black and non-white to white (6).

not SrcBi ¢ — If the brush color is non-white, leaves any colored pixels in the
destination as they were. If the brush color is white, applies white over any
destination pixels (7).

119

Brush

The effects produced by these settings are shown in the following diagram:

HNEEEEEEEEE [| [] ||
[] []
] [] u
[| [[[] []
] [] 1
] 1] 1
[| HE N
]] u
u]

| [[[[[][] | [[[[[]][]

Source Destination

[J (T[T TT[]]]

[]

]

]

[]

]

]

[]

=
AEEEEEEEEEE
srcCopy srcOr
Copies entire White pixels of
source over source are
destination transparent

1]
EEEEEEEEEEE
not SrcOr

not Sr cCopy
Inverts source
pixels, then copies
entire source over

Inverts source
pixels, then white
pixels of source

i

sr cXor
Black pixels of

source invert black
and white pixels of

destination

n 1]
ENEEEEEEEEN
not Sr c Xor
Inverts source

pixels, then black
pixels of source

e
S manms
et

srcBic

Black pixels of
source erase
pixels of
destination
(black is clear)

llllllllll=
not SrcBi ¢
Inverts source

pixels, then black
pixels of source

destination are made invert black and erase pixels of
transparent white pixels of destination
destination
Figure 2: Ink modes and their effects

lineWidth

self. 1 i neWdt h (read-write) Nunber

Specifies the width of paths rendered by stroke operations. Setting this value to 0 will
produce the smallest line width possible for a particular device.

pattern

self. pattern (read-write) Naned ass or Bi t map

Defines a Bi t map instance used to stroke or fill a stencil. If specified, this bitmap is
rendered as a repeating tiled pattern within the fill area or along the stroke path. The
bitmap supplied must have a square bounding box, and the length of its sides must be
a power of 2 (such as 2, 4, 8, and so on). The maximum size of a pattern is 128 pixels
wide by 128 pixels high, and the maximum value of width by height by bitdepth is 64K.
When a bitmap is used as the pattern of a brush, its matt eCol or and i nvi si bl eCol or
instance variables are ignored.

The named patterns defined in ScriptX are @I ackPattern, @kQ ayPattern,
@rayPattern, @t G aypattern, and @hitePattern.

Note — In Microsoft Windows, the maximum size of a bitmap that can be used as a
pattern for stroking is 8 pixels by 8 pixels.

120

BTree

BTree

RootObject

Collection

LinearCollection ExplicitlyKeyedCollection

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables

Inherits from: Li near Col | ecti on and Expl i ci t| yKeyedCol | ecti on
Component: Collections

The BTr ee class implements a collection of key-value bindings, sorted by key and
stored in a B-tree structure, as shown in the figure below.

B-trees use a comparison function such as ucnp for sorting. A B-tree can use any
comparison function that compares two objects and returns @ef or e, @ane, and
@fter to yield a consistent ordering on keys. Keys that are added to a B-tree must
implement the generic function | ocal LT to allow for comparison with other objects. See
the discussions of comparison in both the “Collections” and the “Object System Kernel”
chapters of the ScriptX Components Guide.

B-trees have a specifiable branching factor or “node size” that is greater than or equal to
3 (whereas binary trees have a node size of 2). Comparatively large branching factors
aid in searching large disk-based indexes because they minimize the disk hits required
to find an entry for a given key.

(node) (node)

[tem1][tem2 |[ltem3 |[ltem4] [Item5][ltem6]| [ltem7][Item8][Item9 |[Item 10|

For additional information on the BTr ee class, see the “Collections” chapter of ScriptX
Components Guide.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the BTr ee class:

nyTQak := new BTree \
br Fact or: 12
cnpFunct i on: ucnp

The variable myTQak contains an initialized instance of a BTr ee. This B-tree has at most
12 branches at each node. The collection sorts key-value pairs by key using the
universal comparison function ucnp, a function defined on page 52 of Chapter 2,
“Global Functions.”

121

BTree

init

init self [brFactor:integer] [cnpFuncti on: function]

self

br Fact or :
cnpFuncti on:

BTr ee object
I nt eger object

Abst r act Funct i on object

O (none)

Initializes the BTr ee object self, applying the arguments as follows: br Fact or specifies
the branching factor of each B-tree node, or the maximum number of items stored at
each node; cnpFuncti on specifies the function that is used as a comparator for keys.
The value of br Fact or must be greater than 2. If you want to specify a branching factor,
you must do so when you first create a BTr ee object; there is no setter function for
changing the value of br Fact or.Do not call i ni t directly on an instance—it is
automatically called by the new method.

If you omit an optional keyword, its default value is used:

br Fact or : 32
cnpFuncti on: ucnp

Instance Variables

brFactor

self. br Fact or

(read-only)

| nt eger

Returns the branching factor with which the B-tree self was created. The branching
factor is the maximum number of items at each node. The valve of brf act or must be

greater than 2.

Instance Methods

122

Inherited from Col | ecti on:

add f or Each

addvany f or EachBi ndi ng

addToCont ent s get Al

chooseAl | get Any

choosene get KeyAl |

chooseeBi ndi ng get Keyne

del eteAl | get Many

del et eBi ndi ngAl | get One

del et eBi ndi ngne hasBi ndi ng

del et eKeyAl | haskey

del et eKeyne i ntersects

del et eOne i SEmpty

enpt yQut i sMenber
Inherited from Li near Col | ecti on:

chooseneBackwar ds fi ndRange

chooseO dOne f or EachBackwar ds

del et eFi r st getFirst

del et eLast get Last

del eteN h getM ddl e

del et eRange getNth

iterate

| ocal Equal
map

ner ge

pi pe

prin
renoveA |
removeOne
setAll

set One

si ze

get Nt hKey
get O dne
get Range

| ocal Equal
| ocal LT

pop

BTreelterator

BTreelterator

RootObject

Stream

Iterator

BTreelterator

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: |terator

Component: Collections

The BTreel terator class is used to iterate over any BTr ee object.

Creating and Initializing a New Instance

A new instance of a B-tree iterator is generally created by calling i t erat e on an
instance of BTr ee.

Instance Variables

Inherited from | terator:
key sour ce val ue

Instance Methods

Inherited from St ream

cur sor next seekFronttart
flush pl ug set Streaniengt h
i SAt Front previ ous streantengt h
i sPast End read wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omQur sor
isWitable seekFr onend
Inherited from | t er at or:
exi se seekKey seekVal ue
renmai nder

123

BufferedStream

BufferedStream

124

RootObject

Stream

ByteStream

BufferedStream

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Byt eStream

Component: Streams

The Buf f er edSt r eamclass defines a general buffered byte stream, allowing ScriptX to
handle chunks of data of various types in memory buffers.

Instance Methods

Inherited from St ream

cursor next seekFrontt art
flush pl ug set Streaniengt h
i SAt Front previ ous streaniength
i sPast End read wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omCur sor
isWitabl e seekFr onEnd

Inherited from Byt eSt r eam
fileln readByt e witeString
pi pe r eadReady
pi peParti al witeByte

ByteCodeMethod

ByteCodeMethod

RootObject

AbstractFunction

ByteCodeMethod

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Abstract Function
Component: Object System Kernel

Every function or method that is defined in the scripter is compiled to create an instance
of Byt eCodeMet hod. By contrast, global functions that are defined in the substrate are
implemented as Pri m tive objects, and methods that implement generic functions, if
defined in the substrate, are implemented as Pri mi ti veMet hod objects.

For more information on ScriptX function dispatch, see the “Object System Kernel”
chapter of the ScriptX Components Guide.

Creating and Initializing a New Instance

You do not define an instance of Byt eCodeMet hod directly. An instance of
Byt eCodeMet hod is create automatically when a function or method definition
expression is compiled in the scripter.

Instance Variables

debuglinfo

self. debugl nf o (read-only) Debugl nf o

Returns the Debugl nf o object that stores debugging information for the
Byt eCodeMet hod object self. The value of debugl nf o can be undef i ned.

Instance Methods

removeDebuginfo

r emoveDebugl nf o self O (none)

Sets the value of the instance variable debugl nf o, defined by the Byt eCodeMet hod
object self, to undef i ned

125

BytePipe

BytePipe

RootObject

Stream
ByteStream
BytePipe

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: ByteStream

Component: Threads

Byt ePi pe objects are a convenient way for threads to pass chunks of data to each other.
An active thread will suspend if it tries to read from a Byt ePi pe object that is empty, or
write to one that is full. (The value of st at us for the suspended thread is @i ti ng.)
Byt ePi pe objects may be unbounded in size, in which case they will never cause a
thread to suspend on writing.

Byt ePi pe objects may be “broken.” Breaking a pipe means that writes are no longer
allowed; an attempt to write to a broken pipe will report the br okenPi pe exception.
Attempting to read from an empty and broken pipe also reports the br okenPi pe
exception.

Byt ePi pe objects implement the ByteStream and Stream protocols. Since they are
non-seekable Byt eSt r eamobjects, ScriptX reports the cant Seek exception when a script
attempts to invoke a method that is implemented only for seekable streams.

Creating and Initializing a New Instance

126

The following script is an example of how to create a new instance of the Byt ePi pe
class:

byp := new BytePipe \
maxSi ze: bufferS ze \
| abel : @ypLabel

The variable byp contains the initialized Byt ePi pe object, maxSi ze is set to the value of
buf f er Si ze, and the initialized object is given a label set to @ypLabel . The new
method uses keywords defined ininit.

init

init self [maxSi ze: integer | [abel : object] O (none)
self Byt ePi pe object
maxSi ze: I nt eger object representing the size of the pipe
| abel : Any object, used as a label

Do not call i ni t directly on an instance—it is automatically called by the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:

nmaxSi ze: 2000
| abel : undefi ned

BytePipe

Instance Variables

broken

self. br oken (read-only) Bool ean
Has a value of t r ue if the byte pipe self has been explicitly broken; otherwise, it is

fal se.

label

self. | abel (read-write) (object)

Specifies a label for the byte pipe self. The label can be any object; it is displayed when
you print the condition, which is useful for debugging.

maxSize

self. maxSi ze (read-only) I nt eger

Specifies the maximum allowed size of the byte pipe self, in bytes.

size

self. si ze (read-only) | nt eger

Specifies the current size of the byte pipe self, in bytes.

Instance Methods

Inherited from St ream

cur sor next seekFrontt art
flush pl ug set Streaniengt h
i SAt Front previ ous streaniength
i sPast End read wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omCur sor
isWitable seekFr onend

Inherited from Byt eSt r eam
fileln readByt e witeString
pi pe r eadReady
pi peParti al witeByte

The following instance methods are defined in Byt ePi pe:

breakPipe

br eakPi pe self O (none)
Breaks the given byte pipe self.

isReadable (Stream)

i sReadabl e self O true

Returns t r ue, since a Byt ePi pe object is always a readable stream. Though it is always
readable, there is not necessarily any information in the pipe to read. Call the method
r eadReady to determine whether or not there is currently information in the pipe to be
read.

127

BytePipe

128

isSeekable (Stream)

i sSeekabl e self O fal se

Returns f al se, since a Byt ePi pe object is always an unseekable stream. For a
discussion of seekable streams, see the definition of the St r eamclass .

isWritable (Stream)

i sWitabl e self O true

Returns t r ue, since a Byt ePi pe object is always a writable stream. Although it is
always writable, it may already be full, or it may be broken. Call the method

w i t eReady to determine whether or not an object can be written to the pipe in its
current state.

isPastEnd (Stream)

i sPast End self O Bool ean

Returns t r ue only when the byte pipe self is broken and empty.

readReady (Stream)

readReady self O I nt eger

Returns the number of bytes in the byte pipe self that are ready to be read out by a
reading thread. When all bytes have been read, this value is 0.

writeReady (Stream)

witeReady self O I nteger

Returns the number of bytes in the byte pipe self that are available to be written into
from a writing thread. If the byte pipe is empty, this returns the maxSi ze (which
defaults to 2000).

ByteStream

ByteStream

RootObject

Stream

ByteStream

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Stream

Component: Streams

The Byt eSt r eamclass provides an abstract implementation of objects that provide
byte-wise access to data for reading and writing. Useful subclasses of Byt eSt r eam
include Menor ySt r eam Rantt r eam ResSt ream Buf f eredStream String, and

Byt ePi pe.

Nul | St reand ass is a subclass of Byt eSt r eam representing a stream containing no
data. It has a single global instance, nul | St r eam which is defined in the “Global
Constants and Variables” chapter.

Instance Methods

Inherited from St ream

cursor next seekFrontt art
flush pl ug set Streaniengt h
i SAL Front pr evi ous st reaniengt h

i sPast End read wite

i sReadabl e r eadReady wri t eReady

i sSeekabl e seekFr onCur sor

isWitable seekFr ontnd

The following instance methods are defined in Byt eStream

fileln
fileln self [debuglnfo:boolean] [nodul e:module] [quiet: boolean] O self
self Byt eSt r eamobject containing file to be compiled
debugl nf o: Bool ean object specifying whether to keep the source
code. If t r ue, the source code is put in the sour ce
instance variable of the debugl nf o object in the
Byt eCodeMet hod object’s debugl nf 0 instance variable.
(Each method or function in the file is turned into a
separate Byt eCodeMet hod object.)
nodul e: Modul ed ass object
qui et : Bool ean object

Compiles the ASCII-format ScriptX source code contained in the byte stream self, into
ScriptX bytecode format and executes the results.

To compile a text file, see the fil el n method defined in the Di r Rep class.

If you omit an optional keyword, its default value is used. The defaults are:

debugl nfo: true
nmodul e: scrat ch
qui et:true

129

ByteStream

130

Note — The fi | el n method is available only within ScriptX. The Kaleida Media Player
doesn’t include the ScriptX bytecode compiler required to execute this function.

pipe

pi pe self theObject O (self)
self Byt eSt r eamobject
stream Byt eSt r eamto be piped

Pipes the contents of stream to self by writing its entire contents.

pipePartial

pi pePartial self stream size O (self)
self Byt eSt r eamobject
stream Byt eSt r eamto be piped
size I nt eger number of bytes in stream to pipe

Pipes part of the contents of stream to self by writing its first size bytes.

read

read self O I nt eger

Reads a byte from the given stream self. If there is not enough data to satisfy the request,
the request will block until there is enough data. It generates a cant Read error if the
stream is not readable.

readByte

readByt e self O I nteger

Reads a byte from the given stream self.

readReady (Stream)

readReady self O I nteger

Returns the number of bytes in the stream self that can be read without blocking. Note
that for filesystem streams, no guarantee can be made about blocking, so this method
usually returns zero.

write

wite self value O (none)
self St r eamobject
value I nt eger object

Writes the integer value as an 8-bit byte to the stream self. The integer should be a value
0 to 255. If the stream is not ready to write the requested size, the request will block
until there is enough space or will report a noSpace error. A cant Wi t e error is
generated if the stream is not writable. Use the method i sWi t abl e to ensure that the
stream is writable.

writeByte

witeByte self value O (none)
self St r eamobject
value I nt eger object

ByteStream

Writes the integer value as an 8-bit byte to the stream self.

writeString

witeString self string O (none)
self St r eamobject
string String object

Writes the given string to the stream self.

131

ByteString

ByteString

ByteStream

Stream

LinearCollection ImplicitlyKeyedCollection

Sequence

ByteString

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Sequence and Byt eSt r eam
Component: Collections

The Byt eStri ng class provides an object representation for an uninterpreted sequence
of bytes. Byt eStri ng also inherits from St r eam and supports write operations. A
Byt eStri ng is not a readable stream, however.

Creating and Initializing a New Instance

132

The following script is an example of how to create a new instance of the Byt eStri ng
class:

obj := new ByteString

The variable obj is initialized to an empty collection of bytes. You can extend the
collection by using the add, append, etc. Col | ecti on methods, or you can extend it by
writing to obj using the St r eammethods.

init

init self [initialSize:integer] [growabl e: boolean] O (none)
self Byt eStri ng object
initial Size: I nt eger object
grovabl e: Bool ean object

Initializes the Byt eSt ri ng object self, applying the arguments as follows: The value
supplied with i ni ti al Si ze specifies the number of bytes initially allocated for the
object and must be a positive integer. Values of 0 or less will be replaced with the
default value. If gr owabl e is f al se, the collection cannot be expanded beyond the size
supplied with i ni ti al Si ze. If gr owabl e is t r ue, it grows in chunks. Do not call i ni t
directly on an instance—it is automatically called by the new method.

If you omit an an optional keyword, its default value is used. The defaults are:
initial Size:20
growabl e: true
ScriptX may create a Byt eStri ng object that is larger than you specify with
initialSize, because of its interaction with memory management at initialization

time. However, when you set gr owabl e to f al se, thei ni ti al Si ze is actually used and
nmaxSi ze is set to that same value.

ByteString

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded maxSi ze si ze
iteratord ass m nSi ze uniformty
keyEqual Conpar at or nut abl e uni form tyd ass

keyUni formty
keyUni form tyd ass

Instance Methods

Inherited from Stream

nut abl eCopyd ass
proprietored

val ueEqual Conpar at or

cursor next seekFrongt art
flush pl ug set Streaniengt h
i SAL Front pr evi ous st reaniengt h
i sPast End read wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omCur sor
isWitabl e seekFr onEnd

Inherited from Byt eSt r eam
fileln readByt e witeString
pi pe r eadReady
pi peParti al witeByte

Inherited from Col | ecti on:
add f or Each iterate
addvany f or EachBi ndi ng | ocal Equal
addToContent s get Al nap
chooseAl | get Any ner ge
choosee get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin
del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngOne hasBi ndi ng setAl
del et eKeyAl | haskey set One
del et eKeyCne i ntersects si ze
del et eOne i SEmpty
enpt yQut i sMenber

Inherited from Li near Col | ecti on:
chooseneBackwar ds fi ndRange get Nt hKey
chooseQr dne f or EachBackwar ds get O dne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteNt h getMddl e | ocal LT
del et eRange getNth pop

133

ByteString

134

Inherited from Sequence:

addFifth

addFi r st

addFourth

addN h

addSecond
addThird

append

appendNew

noveBackwar d
noveFor war d
noveToBack
noveToFr ont
pr epend

pr ependNew
setFifth

set First

set Fourth
set Last
setNth
set Second
set Third
sort

CalendarClock

CalendarClock

RootObject

CalendarClock

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Q ock

Component: Clocks

The Cal endar 4 ock class provides an object that tracks current date and time. The
instance variable dat e holds a Dat e object that can be set or queried using instance
variables of the Dat e class. Every time you query the date object, you get the updated
date and time.

The one instance of Cal endar 4 ock is represented by the global constant

t heCal endar 4 ock. This global is automatically created by the ScriptX runtime
environment at startup, with the r at e and scal e instance variables both set to 1. The
instance t heCal endar Q ock uses the current date and time from the underlying
operating system for its starting value. If you call the newmethod on Cal endar 4 ock,
to request a new instance, the global instance t heCal endar A ock is returned. For a
definition of t heCal endar d ock, see the chapter “Global Constants and Variables.”

Instance Variables

Inherited from d ock:

cal | backs rate ticks
effectiveRate resol ution time
nmast er d ock scal e title
of f set sl aved ocks

The following instance variables are defined in Cal endar A ock:

date

self. dat e (read-only) Dat e
Keeps the current date and time as a Dat e instance.

Don’t expect the ti cks instance variable (inherited from O ock) to reliably represent an
offset from a particular time. Instead, use the value of dat e to represent the current date
and time.

135

CalendarClock

rate (Clock)

self.rate (read-only) Nunber

Inherited from O ock, the r at e instance variable is read-only in the Cal endar d ock
class.

scale (Clock)

self. scal e (read-only) Nunber

Inherited from d ock, the scal e instance variable is read-only in the Cal endar A ock
class.

time (Clock)

self. time (read-only) Ti me

Inherited from O ock, the ti me instance variable is read-only in the Cal endar d ock
class.

Instance Methods

136

Inherited from d ock:

addPeri odi cCal | back cl ockAdded pause
addRat eCal | back ¢l ockRenoved resunme
addScal eCal | back ef fecti veRateChanged ti neJunped
addTi meCal | back for EachSl ave wai t Ti me

addTi meJunpCal | back i sAppropri at ed ock waitUntil

Callback

Callback

RootObject

Callback

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Clocks

The Cal | back class provides an abstract mechanism to handle requests for actions
related to specific events in the life of a clock. There are several concrete subclasses of
Cal | back corresponding to different types of actions:

® Periodi cCal | back — performs actions at specific intervals

® RateCal | back — performs actions when the clock’s rate changes

® Scal eCal | back — performs actions when the clock’s scale changes

® TimeCal | back — performs actions when the clock reaches a certain time
* Ti meJunpCal | back — performs actions when the clock’s time is reset

You won't usually create an instance of one of these callbacks directly. Instead, you add
a callback to a clock using methods defined by the A ock class. Once you have the
callback, you can set its order and the conditions under which the action will be
performed. Callbacks that are specified to be “once only” are performed once, then
discarded; others are recalled repeatedly until explicitly discarded. Use the cancel
method to unschedule a callback. After cancelling a callback, you can schedule it again
by setting the value of its t i me instance variable.

Instance Variables

authorData

self. aut hor Dat a (read-write) Array

Represents the variable argument list for the function in the scri pt instance variable of
the callback self.

condition

self. condi ti on (read-write) Naned ass

Determines the condition under which the callback self will be activated. Valid values
for Scal eCal | back, Rat eCal | back, and Ti neJunpCal | back objects are @ essThan,
@r eat er Than, @qual , @ot Equal , @ essThanQ Equal , @r eat er ThanQr Equal , and
@hange (default).

The default value, @hange, causes the callback self to perform its action with any
appropriate change. Valid values for Ti meCal | back and Peri odi cCal | back objects are:
@ orwar d, @ackwar d, and @i t her (default).

label

self. | abel (read-write) (object)

Defines a label for the callback self, which can be any object useful for identifying the
callback. By default, the value is undef i ned.

137

Callback

onceOnly

self. onceCnl y (read-write) Bool ean

Determines whether the function associated with the callback self will be called just
once (t rue) or will be called repeatedly throughout the life of the clock (f al se).

order

self. or der (read-write) I nt eger

Determines the order of the callback self compared with other callbacks of the same
priority. When callbacks are scheduled at the same time and with the same priority,
those with lower or der values will have their functions invoked first. The default value
is 0.

priority

self.priority (read-write) Naned ass

Determines the priority of the callback self. The value may be one of the predefined
names @yst emor @ser. By default, the value of priority is set to @ser. In most
cases, this value should suffice and the pri ority instance variable should be
considered read-only.

script

self. scri pt (read-write) (function)
Represents the function used to invoke the action specified for the callback self.

Although any global function, anonymous function, or method can be assigned to
scri pt, there are differences in how different classes of functions are dispatched. For
information on functions and function dispatch, see the “Object System Kernel” chapter
of the ScriptX Components Guide.

target

self. t ar get (read-write) (object)

Represents the first argument for the function in the scri pt instance variable of the
callback self.

time

self. time (read-write) Ti me

Indicates the time or time interval at which the callback will fire. To change the time or
time interval at which a callback fires, change the value of its t i ne instance variable.

After cancelling a callback, you can make it active again by setting the value of its t i ne
instance variable. The act of setting the ti ne instance variable is what schedules the
callback.

Instance Methods

138

cancel

cancel self O self

Cancels the callback self, obtained when setting an action for a clock. If the method is
currently performing the function associated with the callback, the function will run to
completion.

Callback

After cancelling a callback, you can make it active again by setting the value of its t i ne
instance variable. The act of setting the ti ne instance variable is what schedules the
callback.

139

CDPlayer

CDPlayer

RootObject

CDPlayer

Class type: Loadable class (concrete)

Resides in: cdend. |'i b. Works with ScriptX and KMP executables.
Inherits from: Pl ayer

Component Media Player

The CDPl ayer class is a loadable extension class provided by Kaleida. The class is a
combination of ScriptX code and C code extensions. The CDPl ayer class lets you play
audio CD in a CD-ROM drive while running ScriptX. You can control the audio CD in
two ways: by using graphical buttons that appear on the screen, or by calling methods
on an instance of CDPl ayer.

CDPl ayer is a subclass of Pl ayer. It supports most of the instance variables and
methods that are common to all subclasses of Pl ayer, such as the instance variables
dur ati on and vol une, and the methods pl ay, st op, pause and f ast f or war d.

Currently, the CDPl ayer class lets you interact with one CD-ROM drive. Each time you
create a new instance of CDP| ayer, it establishes a connection to the same CD-ROM
drive.

How to Load and Use the CDPlayer Class

CDPl ayer is a scripted class that can be loaded dynamically. The script files required to
load the CDPl ayer class and create the graphical button interface for it must reside in a
directory called cdpl ayer in a directory called | oadabl e. The | oadabl e directory must
be in the same directory as the ScriptX application.

To load the CDPI ayer class and the graphical button interface, open the | oadne. sx file
in the | oadabl e/ cdpl ayer directory using the Open Title command in the ScriptX
File menu. This file in turn loads all the other files needed.

Using the Graphical Interface To Play CD Audio

140

When the loading is finished, you should see the graphical button interface with five
active buttons as shown in Figure 4-3. The buttons let you start, stop, pause, rewind and
fastforward the CD in the CD-ROM drive. If you can’t see the graphical button
interface, look behind the ScriptX Listener window in case it’s there.

CD Player

t

rewinds while start/ fast forwards
button is pressed pause while button is pressed

Figure 4-3: The graphical button interface for controlling CD audio

CDPlayer

Using the CDPIlayer Programmatically

To load the CDPI ayer class without loading the graphical button interface, load the file
al oadcda. sx from the | oadabl e/ cdpl ayer directory, then load cdpl ayer. sx.

gl obal tnpDr

tnpDir := spawn theStartDr "Il oadabl e/ cdpl ayer”
fileln tnpDr nane: "al oadcda. sx"

fileln tnmpDir nanme: "cdpl ayer. sx"

Whether the CDP| ayer class was loaded with or without the graphical button interface,
you can play and control CD audio by using methods on an instance of CDPl ayer.

To programmatically play the CD in the drive, do the following;:

1. Create a new instance of CDPl ayer:

gl obal nycd: = new CDPl ayer

2. Call the pl ay method to start it playing:
play nycd

3. To change the volume, set the value of the vol une instance variable. The value must
be an integer between 0 and 255 inclusive, where 0 is the quietest and 255 is the
loudest. (Notice that the meaning of the vol une instance variable for CDPl ayer is
different than it is for other audio players.)

nycd. vol ume := 100

4. Use the methods st op, pause, goToBegi n and €j ect to stop, pause, set the CD
player back to the first track, and eject the disc from the drive, respectively.

Setting the vol une and audi oMut ed instance variables on the Windows platform
requires a specific wiring of the hardware. The audio connector from the CD-ROM
drive needs to be connected to the audio connector on the sound card, as is usually the
case for all internal CD drives. If you are using the line in on your SCSI interface to
connect your CD drive, setting the vol une and audi oMit ed instance variables has no effect.

Instance Variables

Inherited from O ock:

cal | backs rate ticks
ef fectiveRate resol ution tine
mast er d ock scal e title
of f set sl aved ocks
Inherited from Pl ayer:
audi oMt ed gl obal Cont r ast gl obal Vol umeC f set
dat aRat e gl obal Hue mar ker Li st
duration gl obal PanCxf f set stat us
gl obal Bri ght ness gl obal Saturation vi deoBl anked

The following instance variables are defined in CDP| ayer :

track

self. track (read-write) Fi xed

Specifies the current track of the CD Player self.

141

CDPlayer

volume

self. vol une (read-write) Fi xed

Specifies the volume of the CD Player self. The range is 0 - 255. The default value is 60.

Instance Methods

142

Inherited from O ock:

addPeri odi cCal | back cl ockAdded pause
addRat eCal | back cl ockRenoved resune
addScal eCal | back ef fecti veRat eChanged ti neJunped
addTi neCal | back for EachSl ave wai t Ti ne

addTi meJunpCal | back i sAppropri at ed ock waitUntil

Inherited from Pl ayer:

addMar ker goToBegi n pl ayPr epar e
ej ect goToEnd pl ayUnpr epar e
f ast Forward goToMar ker Fi ni sh playUnti |

get Mar ker goToMar ker St ar t rew nd

get Next Mar ker pause stop

get Previ ousMar ker pl ay

The following instance methods are defined in CDPl ayer:

eject

ej ect self O Bool ean

Physically ejects the CD from the CD-ROM hardware associated with the CD player self.
It does not delete the CDP| ayer instance, therefore when you put another disc in the
player, you can continue use the existing CDPl ayer instance to play the new CD.
However, you need to call the goToBegi n method on the CDP| ayer instance to set it
back to the beginning of the CD. The ej ect method sets the st at us instance variable of
the CD player to @] ect ed.

fastForward

fast Forwar d self 0 Bool ean

The CD player selfadvances by ten seconds and continues playing if it was previously
playing. This method is inherited from the class Pl ayer, but behaves slightly differently
for the class CDPl ayer than for other Pl ayer classes. (For other classes, it continues fast
forwarding until you tell it to stop.)

goToNextTrack

goToNext Tr ack self O Bool ean

Sets the seek on the CD to the start of the next track and continues playing if it was
playing.

goToPrevTrack

goToPr evTrack self O Bool ean

Sets the seek on the CD to the beginning of the previous track and continues playing if
it was playing.

CDPlayer

rewind

rew nd self O Bool ean

The CD player self rewinds by ten seconds and continues playing if it was previously
playing. This method is inherited from the class Pl ayer, but behaves slightly differently
for the class CDPl ayer than for other Pl ayer classes. (For other classes, it continues

rewinding until you tell it to stop.)

143

CheckBox

CheckBox

RootObject

Presenter

TwoDPresenter

GenericButton

RadioButton

CheckBox

Class type: Scripted class (abstract)

Resides in: wi dget s. sx| . Works with ScriptX and KMP executables
Inherits from: Radi oBut t on

Component: User Interface

CheckBox is a user interface Widget Kit class that provides a framed button whose
appearance is defined by a stencil object that changes appearance when the button is
selected, a text object that is displayed to the right of the button stencil, and a frame that
encloses both the button stencil and the text. Clicking the mouse anywhere on or within
the check box’s frame selects or deselects the button.

A check box is exactly the same as a radio button except for the appearance of the
button stencil when the check box is selected or not selected.

Three bitmaps give the button stencil different appearances for different mouse events.
These bitmaps are stored in the medi a directory. The check. bnp bitmap provides the
appearance for the button stencil when the check box is not selected; this is square with
a black outline and gray fill. The checkC. bnp bitmap provides the appearance for the
button stencil when the radio button is selected; this is the same as the unselected
appearance but with a black checkmark in the center of the button stencil. The
checkDP. bnp bitmap provides the appearance for the button stencil when the mouse
button has been clicked on the check box but has not yet been released; this is the same
as the unselected appearance but with a black outline of a square inside the edge of the
button stencil.

The clipping boundary of a CheckBox object is calculated automatically as a rectangle
that encompasses the text stencil and the button stencil.

Creating and Initializing a New Instance

144

The following script is an example of how to create a new instance of the CheckBox
class:

nmyCheckBox := new CheckBox \
text:"Check Me" \
frane: (new Frane)

The variable nyCheckBox contains an initialized CheckBox object. The newmethod uses
the keywords defined in i ni t. The initialization of a check box is exactly the same as
the initialization of a radio button.

CheckBox

init

init self [fill:brush] [font:font] [text:string]

[boundary: stencil | [frame: frame] O (none)
self CheckBox object

fill: Br ush object

font: Font object

text: St ring object

boundary: Stenci | object

frane: Fr ane object

Initializes the CheckBox object self, applying the values supplied with the keywords to
the instance variables of the same name. Creates a new Text Stenci | object to display
the specified text in the specified font, and calculates a boundary that encompasses the
text stencil and the button stencil. Do not call i ni t directly on an instance — it is
automatically called by the newmethod.

If you omit one of the keyword arguments, the following defaults are used:

fill:whiteBrush

f ont : t heSyst enfont
text:"Hell o"
boundary: unsuppl i ed
f rame: undef i ned

You should not provide a value for boundary. If you do not provide a value for
boundary, then the boundary of the new CheckBox object is calculated automatically as
a rectangle that encompasses the text stencil and the button stencil.

Instance Variables

Inherited from Act uat or:

enabl ed pressed t oggl edOn
menu

Inherited from Presenter:
pr esent edBy subPresenters t ar get

Inherited from TwoDPr esent er :

bBox hei ght transform
boundary IslnplicitlyD rect wi dth

cl ock i sTranspar ent wi ndow
conposi t or isVisible X

di rect needsTi ckl e y
eventlnterests posi tion z

gl obal Boundary stationary

gl obal Transform t ar get

Inherited from Generi cButt on:

activat eAction pressAction rel easeActi on
aut hor Dat a
Inherited from Radi oBut t on:
fill frame t ext
f ont

145

CheckBox

146

Instance Methods

Inherited from Act uat or:

activate
mul ti Activate

Inherited from TwoDPr esent er :
adj ust d ockMast er
createl nterestList
draw
get Boundar yl nPar ent
hi de

Inherited from Generi cButt on:

activate
mul ti Activate

press
rel ease

i nsi de

| ocal ToSur f ace
not i f yChanged
recal cRegi on
refresh

press

t oggl e:r f
t oggl etn

show
sur f aceTolLocal
tickle

rel ease

CheckerBoard

CheckerBoard

Presenter

TwoDPresenter

TransitionPlayer

Checkerboard
Class type: Loadable class (concrete)
Resides in: [trans. |ib. Works with ScriptX and KMP executables.

Inherits from: TransitionPl ayer
Component: Transitions

The Checker Boar d transition player provides a visual effect that causes the target to
gradually appear using a checkerboard pattern as shown below. The target appears
when the transition is played forward, and disappears when played backward
(transition’s rate set to -1).

Directions: (none)
Rate: Can play forward or backward.

For a side-by-side illustrations of all transitions, see the Transitions chapter in the
ScriptX Components Guide.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Checker boar d
class:

nyTransition := new Checkerboard \
duration: 60 \
t ar get : nyShape

The variable nyTr ansi ti on contains the initialized transition. The transition reveals the
image nyShape in a checkerboard pattern and has a duration of 60 ticks.

You determine which space the transition will take effect in by adding this instance into
that space. Then, when you play the transition player, nyShape is transitioned into that
space.

The newmethod uses the keywords defined in i ni t.

NOTE - For the instance variables and methods, see the Bar nDoor class.

147

ChunkStream

ChunkStream

RootObject

Stream
ByteStream

ChunkStream

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Byt eStream

Component: Media Player

The ChunkSt r eamclass provides a mechanism for treating disjoint chunks of data as a
continuous stream of data. This class was created mainly for use by the class
I nt er| eavedMovi ePl ayer.

An I nterl eavedMovi ePl ayer has an associated byte stream containing interleaved
audio and video data for a movie.When the movie plays, the sound data needs to be
treated as a stream of continuous data and the video data also needs to be treated as a
stream of continuous data. In this case, chunk streams are used to present the audio and
video data as continuous, separate streams. See the description of the

I nt er| eavedMovi ePl ayer class for more details.

Usually a chunk stream acts as an intermediary stream or a buffer between two other
streams, one of which is reading data from the chunk stream and the other that is
writing data into the chunk stream. In the case of an | nt er | eavedMovi ePl ayer, the
stream doing the reading is an Audi oSt reamor a Vi deoSt r eamused as the media
stream for a media player, while the stream doing the writing is a Byt eStr eam
containing interleaved movie data. The chunk stream’s read pointer keeps track of the
place in the stream that is being read, while the write pointer keeps track of the place in
the stream that is being written to.

When the chunk stream is full, no more data can be written into it until some data has
been read, thus freeing up space. You can change how much data a chunk stream can
hold by setting the value of the chunkCapaci t y instance variable.

Chunk streams are created automatically as needed, usually when a movie is imported
as an | nt er| eavedMovi ePl ayer. Users would not usually need to interact directly with
chunk streams.

Instance Variables

148

The following instance variables are defined in ChunkStream

cachelLength

self. cachelLengt h (read-write) I nt eger

Specifies the number of chunks in the chunk stream self that are kept after they are used,
in case they are needed again. For example, if the player using the chunk stream plays
backwards after playing forwards, it will reuse data it has just used. The value of this
instance variable can safely be set to zero.

ChunkStream

chunkCapacity

self. chunkCapaci ty (read-write) | nt eger

Specifies the number of chunks that the chunk stream self can hold before it is full. If
this value is too low, playback quality may suffer. If the value is too high, memory
consumption may be too high.

isFull

self. i sFul | (read-write) Bool ean

Returns t r ue if the chunk stream self is full, or f al se if it is not full. It is full when the
number of queued chunks is equal to the chunk capacity. (That is, the value of the
nurthunks instance variable is the same as the chunkCapaci t y instance variable.)

isSupressed

self. i sSuppr essed (read-write) Bool ean

Specifies whether or not the data in the chunk stream is suppressed. If the value is t r ue,
the data is suppressed and will not be read, usually because the player using the chunk
stream is muted or blanked. If the value is f al se, the data is not suppressed and will be
read.

numChunks

self. nunChunks (read-write) | nt eger

Specifies the number of chunks currently in the chunk stream self. This value cannot
exceed the value of the chunkCapaci ty instance variable.

Instance Methods

Inherited from St ream

cur sor next seekFronft ar t
flush pl ug set Streaniength
i SAt Front previ ous streaniengt h
i sPast End read wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omCur sor
isWitabl e seekFr onEnd

Inherited from Byt eSt r eam
fileln readByt e witeString
pi pe r eadReady
pi peParti al witeByte

149

Clipboard

Clipboard

RootObject

Clipboard

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Title Management

The d i pboar d class represents an area of memory where text can be copied to and
pasted from. The one instance of A i pboar d is represented by the global constant

t heQ i pboar d. This instance is automatically created by the ScriptX runtime
environment at startup.

The clipboard allows the exchange of text between any two places—within a ScriptX
title, between ScriptX titles, and between a ScriptX title and another application. The
current version of the clipboard supports the exchange of only text, and not other kinds
of ScriptX objects.

Operations commonly associated with the clipboard are cut, copy, and paste. These
operations are methods defined on Ti t | eCont ai ner and W ndow These operations have
no specific default implementation; you must implement them for each particular
window. The implementation must include the means by which the user can select
objects for copying or cutting. For more information, refer to the cut Sel ecti on,
copySel ecti on and past eToSel ect i on methods in the Ti t| eCont ai ner and W ndow
classes.

The operating system has a system clipboard, and every application also has its own
clipboard. When using cut Sel ect i on, copySel ecti on, and past eToSel ect i on within
an application, such as ScriptX runtime environment, the local clipboard is used.
However, when you switch applications, the system clipboard is used for transferring
media between applications.

The clipboard will eventually be able to simultaneously hold objects of different media
types, such as text, picture and sound.

When ScriptX is switched out, the ScriptX clipboard tries to coerce its contents to text
and place the text on the system clipboard. Likewise, when ScriptX switches in, the
ScriptX clipboard tries to coerce the contents of the operating system clipboard to text
and place it on the ScriptX clipboard.

Because an instance of 4 i pboar d is created at startup, there is no need to create
another instance.

To understand how the clipboard works, see the “Clipboard” section of the Title
Management chapter in the ScriptX Components Guide.

Instance Variables

150

typeList

self. t ypelLi st (read-only) Array

Returns a list of the different media types currently on the clipboard which you can
paste into your title. This list is empty if nothing is on the clipboard. It is updated every
time an object is cut or copied to the clipboard. This way you can find out what kind of
media is available before doing a paste.

The clipboard can hold media that was cut or copied from either ScriptX or the system
clipboard, whichever clipboard was used most recently. If the media on the clipboard
was copied from within ScriptX, t ypeLi st contains the value @at i ve. If the media

Clipboard

was copied from some other application, its value can only contain @ext (or is empty
if nothing has been copied to the clipboard). These two values have the following
meanings:

@at i ve Look on the ScriptX clipboard for any kind of ScriptX object
@ext Look on the system clipboard for text

These values are mutually exclusive; the list t ypeLi st can contain either @at i ve or
@ext, but not both. These media types determine whether get d i pboar d should look
for data on the system or ScriptX clipboard, and what kind of media to look for.
Clipboard media can come from one of two places: the system clipboard, or the ScriptX
clipboard. If it comes from the ScriptX clipboard, the media is native to ScriptX. If it
comes from the system clipboard, the media is in a system format, not native ScriptX
media.

The system clipboard and ScriptX clipboard work as follows: It is the responsibility of
any application that uses the system clipboard to make its data available to other
applications by converting its media to system-standard types. This must happen
whenever the user switches out of that application. The system clipboard can
simultaneously hold different types of media. When the user switches from one
application to another, whatever media is on the first application’s is converted to
system-standard types (for text, graphics, sound, video) and placed on the system
clipboard. The instance variable t ypeLi st lists the media types for the object currently
on the system clipboard that ScriptX recognizes.

For example, if the system clipboard currently contains text, picture and sound,

t ypeLi st would return @ext, because that’s the only media type currently on the
system clipboard that it recognizes. (As later versions of ScriptX allow more media
types, such as @i ct ur e and @ound, the list t ypeLi st could contain any combination
of @ext, @i cture, and @ound, as well as @at i ve.)

ScriptX does not do any coercion for @at i ve. It only coerces ScriptX objects when it
switches out of ScriptX to another application.

Instance Methods

getClipboard

get d i pboard self type O (object)
self A i pboar d object
type Nare object: @at i ve or @ ext

Returns the object currently on the clipboard self. If this method finds fype in t ypeLi st,
then it returns the object on the clipboard of that type as follows:

e If type is @ext, a Stri ng object is returned from the system clipboard.

o If type is @at i ve, then the native ScriptX object is returned from the ScriptX
clipboard.

If this method does not find fype in t ypeli st, then it returns undef i ned.

The only clipboard coercing ScriptX can do is to coerce text media to a string object
when switching from ScriptX to another application. Note that text that is cut or copied
from the Listener window (in the ScriptX authoring environment) is given the type

@ ext —it is not considered data native to ScriptX.

setClipboard

set A i pboard self newObject O newObject

Clears the contents of the clipboard and then puts newObject on the clipboard.

151

ClippedStencil

ClippedStencil

RootObject

Stencil

ClippedStencil

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: St enci |

Component: 2D Graphics

The A i ppedSt enci | class provides a mechanism for clipping the image in one stencil
with the image in another. This is useful when you want to use a clipped stencil with a
TwoDShape instance, and in other cases where you expect to reuse a particular clipped
image repeatedly.

To use A i ppedSt enci |, you place an image source stencil into the out | i ne instance
variable and the clipping stencil into the cl i p instance variable. You can then render
the A i ppedSt enci | object anytime you want to use the resulting clipped image.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
d i ppedSt enci | class:

nyStencil := new dippedStencil \
outline:imgeStencil \
clip:clipStencil

The variable nySt enci | contains a newly initialized instance of A i ppedSt enci | . Its
outline stencil is i mageSt enci | and its clipping stencil is cl i pStenci | .

init

init self outline:stencil clip:stencil O (none)
self A i ppedSt enci | object
outline: Stenci | object representing the image to be presented
clip: Stenci | object representing the stencil to be clipped

Initializes the A i ppedSt enci | object self, applying the arguments as follows: out | i ne
sets the image to be presented, cl i p sets the stencil used to clip the image. Do not call
i nit directly on an instance—it is automatically called by the new method.

Instance Variables

152

Inherited from Stenci | :
bBox

The following instance variables are defined in O i ppedSt enci | :

ClippedsStencil

clip

self.clip (read-write) St enci |

Specifies the stencil used in rendering operations to clip the image specified by the

out | i ne instance variable. The stencil used to initialize this value may be copied and
converted to a Regi on instance for more efficient clipping. If the St enci | instance
supplied to this instance variable been transformed (so that the x1 and y1 values of its
bBox instance variable are non-zero), that transformation is ignored.

outline

self. outline (read-write) St enci |

Specifies the stencil used as the image source for rendering.

Instance Methods

Inherited from Stenci | :

i nsi de onBoundary transform
i nt ersect subt r act uni on

153

Clock

Clock

RootObject

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Clocks

The A ock class defines objects that keep time in both ticks and in seconds, minutes,
and hours. The time increment marked by a clock’s ticks is determined by its scale and
its effective rate. The “Clocks” chapter in the ScriptX Components Guide describes this
time keeping in greater detail.

In addition to time keeping, A ock objects provide services related to timing. For
example, they can be organized in hierarchies and perform actions at key points in their
timing cycles.

Every clock created is associated with a particular Ti t | eCont ai ner instance. This
enables a whole title to be started, paused, restarted, and stopped in synchronization. If
you don’t supply a specific title for a clock, it is assigned to t heScr at chTi t | e global
object.

One global instance of A ock is created by ScriptX at system startup and is stored in the
global constant t heEvent Ti meSt anpd ock. This instance is used to generate
time-stamps for events; it can be used by titles to generate time values for other
purposes as well. Unless reset, its ti cks value represents milliseconds since the ScriptX
runtime environment started. A script can create other instances of O ock at any time.
Each instance starts with time and rate set to 0. The scale of a clock should be set
explicitly when you create a new clock.

To start a clock, you set its rat e to a value other than 0. To stop a clock, set its rat e to
0. To reset a clock, set its time or ti cks to 0; setting either of these instance variables
resets the other.

Note — When a clock hierarchy is loaded from a storage container, the top clock's rate is
always set to zero—even if the clock was running when it was saved.

Creating and Initializing a New Instance

154

The following script is an example of how to create a new instance of the O ock class:

nyd ock := new dock \
scale:2 \
mast er d ock: nyMast er d ock

The variable nyd ock contains the initialized O ock instance. It has 2 ticks on the face of
the clock, and its mast er d ock is set to be nyMast er A ock. The new clock’s titl e is
automatically set to that of the mast er O ock. By default, the clock is stopped; to start it,
set nyd ock. r at e to a non-zero value —the value 1 causes this clock to run forward at
one tick per second relative to its master clock’s rate).

Clock

init

init self [scale:integer] [masterQ ock:clock] [title:titleContainer] O (none)

self A ock object

scal e: | nt eger object to use as this clock’s scale

nast er A ock: d ock object to use as master for this clock
title: Ti t1 eCont ai ner object that this clock belongs to

Initializes the A ock object self, applying the values supplied with the keywords to the
instance variables of the same name. Do not call i ni t directly on an instance—it is
automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

scale: 1
mast er d ock: undef i ned (the clock is a top clock)
title:theScratchTitl e global instance (or the titl e of the nast er d ock)

Instance Variables

callbacks

self. cal | backs (read-only) Array

An array containing all callbacks associated with the clock self. You don’t add callbacks
to this array directly; instead, use the appropriate methods (such as addRat eCal | back
or addTi meCal | back) to associate a callback with a clock.

effectiveRate

self. ef fecti veRat e (read-only) Nunber

Specifies the effective rate of the clock self, which defines its speed in actual seconds.
The value of ef f ecti veRat e is the product of the values of the r at e instance variable
and the master clock’s ef f ect i veRat e instance variable. This is the same as the
product of the value of r at e for self and r at e for the values of all clocks above self. If a
clock has no master clock, ef f ecti veRat e is the same as r at e.

masterClock

self. mast er d ock (read-write) d ock

Specifies the clock directly above the clock self in the timing hierarchy. If the value is
undef i ned, this clock is a top clock.

offset

self. of f set (read-write) | nt eger

Specifies the ticks between the master clock’s zero time and the clock self’s time,
measured in the master’s scale.

rate

self.rate (read-write) Fi xed

Specifies the speed of the clock self expressed in terms of its master clock’s rate. If you
think of the clock as a wall clock with a face, the rat e is the speed at which the hand
sweeps the face of that clock. If the clock is a top clock, the rat e is the number of ticks
per second. To stop a clock, set its rate to zero; this also stops any slaves belonging to

155

Clock

156

the clock. To start a clock, set its rate to some value other than zero; a positive value
runs forward and a negative value runs backward. When you start a clock by setting its
rate, any slaves will also begin running at their specified rates.

resolution

self. resol ution (read-only) I nt eger

Specifies the resolution of the clock self, the highest number of real ticks per second that
the clock can achieve. This value is based on the capabilities of the underlying hardware
clock.

scale

self. scal e (read-write) I nt eger

Specifies the ticks (which is the number of increments of t i me) in one revolution of the
clock self. If you think of the clock as being a wall clock with a face, the scal e is the
number of tick marks on the face of that clock. Attempting to set the scale to zero causes
ScriptX to report an exception.

slaveClocks

self. sl aved ocks (read-only) Array

An array containing all slave clocks associated with the clock self. You never add clocks
to this array directly; instead, a clock is added to this list when the clock self is set as the
slave clock’s mast er A ock instance variable.

ticks

self. ti cks (read-write) I nt eger

Specifies the current time in the clock self’s ticks. Setting this value resets the time of the
clock and all clocks below it in a timing hierarchy.

time

self. time (read-write) Ti me

Specifies the current time in the hours, minutes, seconds, and ticks of the clock’s self.
Setting this value resets the time of the clock and all clocks below it in the timing
hierarchy.

title

self.title (read-write) Ti t| eCont ai ner

Specifies the Ti t| eCont ai ner instance that the clock self belongs to. You can explicitly
set the value of this instance variable only for top clocks. Setting this variable adds the
clock self to the title container’s t opd ocks array. This enables a whole title to be
started, paused, restarted, and stopped in synchronization. For slave clocks, this value
is set automatically to the ti t| e of the top clock in its hierarchy. Attempting to set this
value explicitly for a slave clock raises an exception. If ti t| e isn’t set explicitly for a top
clock, the value defaults to t heScrat chTi t | e global object.

Clock

Instance Methods

addPeriodicCallback

addPer i odi cCal | back self script target argArray timePeriod O Peri odi cCal | back

self A ock object for which the action is performed

script Funct i on object that performs the actual action

target First argument to the script function

argArray Array object with the arguments to the script function
timePeriod I nt eger object representing the number of ticks

between each action

Creates and returns a callback object for the clock self which will call the function script
periodically at tick intervals represented by timePeriod. The target argument specifies the
first argument to the script function; in the case where script is a generic function, target
is the object whose method will be invoked. The argArray argument is an Array object
whose members represent the list of arguments to the script function. This array takes
the form #(arg2, arg3, ...).

The Peri odi cCal | back instance variable ski pl f Lat e lets you specify what should
happen if the callback falls behind schedule. Set the value for ski pl f Lat e to t r ue if
you want the script function called at exactly the correct time interval; it will be skipped
should the callback fall behind. The default value for ski pl f Lat e is f al se, which
causes the script function to be called regardless of whether it’s behind schedule.

addRateCallback

addRat eCal | back self script target argArray onceOnly O Rat eCal | back
self A ock object for which the action is performed
script Funct i on object that performs the actual action
target First argument to the script function
argArray Array object with the arguments to the script function
onceOnly Bool ean object representing the number of times to

perform the action

Creates and returns a callback object for the clock self that will call the script any time
the rate of the clock self changes. The target argument specifies the first argument to the
script function; in the case where script is a generic function, target is the object whose
method will be invoked. The argArray argument is an Array object whose members
represent the list of arguments to the script function. This array takes the form #(arg2,
arg3, ...).

The script function is called not only when the actual rate of the clock changes, but also
when its effective rate changes (that is, when a clock above it in the timing hierarchy
changes rate). If onceOnly is t r ue, the clock performs the script the first time the clock’s
rate changes and then discards it. If it is f al se, the clock performs the script every time
the rate changes.

addScaleCallback

addScal eCal | back self script target argArray onceOnly O Scal eCal | back
self A ock object for which the action is performed
script Funct i on object that performs the actual action
target First argument to the script function
argArray Array object with the arguments to the script function
onceOnly Bool ean object representing whether to perform the

action once or every time the scale changes

157

Clock

158

Creates and returns a callback object for the clock self that will call the script any time
the scale of the clock self changes. The target argument specifies the first argument to the
script function; in the case where script is a generic function, target is the object whose
method will be invoked. The argArray argument is an Array object whose members
represent the list of arguments to the script function. This array takes the form #(arg2,
arg3, ...). If onceOnly is t r ue, the clock performs the action the first time the clock’s scale
changes and then discards it. If it is f al se, the clock performs the action every time the
scale changes.

addTimeCallback

addTi meCal | back self script target argArray timeValue onceOnly
0 Ti neCal | back

self A ock object for which the action is performed

script Funct i on object that performs the actual action

target First argument to the script function

argArray Array object with the arguments to the script function
timeValue I nt eger object representing the time of the action
onceOnly Bool ean object representing the number of times to

perform the action

Creates and returns a callback object for the clock self that will call the script function
when the clock self reaches the time given in timeValue. The target argument specifies the
first argument to the script function; in the case where script is a generic function, target
is the object whose method will be invoked. The argArray argument is an Array object
whose members represent the list of arguments to the script function. This array takes
the form #(arg2, arg3, ...). If onceOnly is t r ue, the clock performs the action the first time
it reaches the time specified in timeValue, and then discards it. If it is f al se, the clock
performs the action whenever it reaches timeValue time (as when, for example, the
clock’s time is reset to zero and it again runs up to the timeValue time).

addTimeJumpCallback

addTi meJunpCal | back self script target argArray onceOnly
O Ti neJunpCal | back

self A ock object for which the action is performed

script Funct i on object that performs the actual action

target First argument to the script function

argArray Array object with the arguments to the script function
onceOnly Bool ean object representing the number of times to

perform the action

Creates and returns a callback object for the clock self that will call the script any time
the t i me instance variable is set explicitly (not as the regular passage of time). The target
argument specifies the first argument to the script function; in the case where script is a
generic function, target is the object whose method will be invoked. The argArray
argument is an Arr ay object whose members represent the list of arguments to the script
function. This array takes the form #(arg2, arg3, ...). If onceOnly is tr ue, the script
function performs its action the first time the clock’s time is explicitly set. If it is f al se,
the script function performs the action whenever the clock’s time is changed explicitly.

clockAdded

cl ockAdded self master slave O (none)
self A ock being made the new master.
master A ock object that is the master clock
slave a ock object invoking this method

Clock

Invoked by a clock (slave) on its new master (master) when the slave changes its

mast er d ock instance variable. When first called, the self argument is the new master
clock. This method is then called recursively up the timing hierarchy until reaching the
top clock. As implemented in 4 ock, it does no other work.

This method can be overridden to perform class-specific actions related to the new clock
being added to the timing hierarchy. When overriding this method, a O ock subclass
may want to traverse the timing hierarchy below slave to see that all members are of the
appropriate class.

clockRemoved

cl ockRenoved self master slave O (none)
self a ock object being removed as the master
master d ock object that is the former master of slave
slave a ock object invoking this method

Invoked by a clock on its old master self when it changes its mast er 0 ock instance
variable. This method is called recursively on master clocks up the timing hierarchy. As
implemented in O ock, it does no other work and returns undef i ned.

This method can be overridden to enable masters to “clean up” any details when slave
is removed from master.

effectiveRateChanged

ef f ecti veRat eChanged self O (none)

Invoked on the clock self when its effective rate changes—that is, when the clock’s own
rate changes or when the rate of any clock above it in its timing hierarchy changes.
Subclasses of A ock override this method to perform specific actions whenever a clock’s
effective rate changes; the more general alternative is to use the addRat eCal | back
method to assign a specific action to rate changes.

forEachSlave

forEachSl ave self script arg O self
self A ock object
script Funct i on object
arg Any object as an argument to the script.

Calls the Functi on script on each slave of the O ock self. The function script has two
arguments: the slave clock and the arg object.

isAppropriateClock

i sAppropri ated ock self slave O Bool ean
self A ock object to be added to a hierarchy
slave A ock object to be made a slave of self

Tests whether the O ock object self is an appropriate clock to serve as master of the clock
slave. This method returns t r ue when slave is an instance of the same class as self (or a
subclass thereof).

pause

pause self O Bool ean

Stops the clock self, saving its current r at e. After calling pause on a clock, call its r esune
method to restart it. The pause method is invoked automatically on each clock
belonging to a Ti t | eCont ai ner object when that object’s pause method is invoked.

159

Clock

160

If you call pause repeatedly on a clock, you must call r esure the same number of times
to restart it.

resume

resume self O Bool ean

Restarts the clock self at its previous rate after it has been paused through its pause

method. Note that if you call pause on a clock more than once, you need to call r esurre
the same number of times for the clock to actually restart. This method returns f al se if
the clock remains paused after it is called, t r ue if the clock is running after it is called.

timeJumped

ti meJunped self arg2 arg3 O (none)
self A ock object
arg2 An object
arg3 An object

Called on the clock self whenever its time is set explicitly. Override this method—
instead of calling addTi meJunpedCal | back—when creating subclasses of A ock that
should perform specific behavior when their time is set explicitly.

waitTime

wai t Ti e self timeValue O (none)
self A ock object controlling wait-time
timeValue Ti me object representing the duration to wait

Blocks the current thread object waiting on the clock self for the length of time specified
in timeValue. Note that multiple threads may wait on the same clock and that this
method may be called on system clocks such as t heCal endar A ock and

t heEvent Ti meSt anpd ock in code that needs to wait for a particular duration.

Note — Don’t call wai t Ti me on a stopped clock—a clock whose rate or effective rate is
0—or your title may hang indefinitely.

waitUntil

wai tUnti |l self timeValue O (none)
self Q ock object to wait
timeValue Ti me object specifying time to wait until

Blocks the current thread object until the ti ne of self reaches timeValue. If that time has
already passed, this method has no effect. Note that multiple threads may wait on the
same clock and that this method may be called on system clocks such as

t heCal endar A ock and t heEvent Ti meSt anpd ock in code that needs to wait until a
particular time.

Note — Don’t call wai t Unti | on a stopped clock—a clock whose rate or effective rate is
0—or your title may hang indefinitely.

Collection

Collection

RootObject

Collection

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Collections

Col | ecti on is the root abstract class for groups of elements. The elements of a
collection can be sorted or unsorted, and implicitly or explicitly keyed. Some
collections, such as strings, store elements that are not objects. (Although characters in a
string are not objects, the St ri ng class implements the Collection protocol for elements
of a string as if they were.) Some collections can hold objects of any class such as
numbers, strings, bitmaps, or sounds, while others are restrictive. Collections allow you
to supply either a list of single values or a list of key-value pairs. Collections can have a
fixed, variable, or unbounded number of items.

A collection can store its elements in any data structure, such as a linked list, an array, a
hash table, or a B-tree. Each collection class implements its own version of methods that
are required for managing data. See page 176 for a list of methods that a collection
subclass must implement.

Collections can contain almost any object, including other collections. Each subclass of
Col | ecti on responds to the same set of protocols with a similar behavior, but
implements that behavior in a different way. For example, Array, Li nkedLi st,
HashTabl e, and other collection classes all implement the addVany and del et eCne
methods. Each collection has advantages and disadvantages. For example, an array
offers outstanding linear access, but performance in adding and removing elements
decreases as the size gets large. For a comparison of collection classes on various
performance and memory issues, see the “Collections” chapter of the ScriptX
Components Guide.

The enpt y object is a global constant that can be supplied as a key or returned as a
value. For more details, see the description of enpty on the Enpt yd ass.

Note — Never insert the enpt y object into a collection as a value. A number of collection
methods return enpt y to signify that no matching elements were found. Placing the
enpt y object in the collection would cause these methods to behave erratically, and
possibly fail altogether. Some collections report the badVal ue exception if you try to
insert enpty as a value, or badKey if you try to insert is as a key.

The class Col | ecti on provides a default implementation for most of the Col | ecti on
methods. This default implementation is based on using an | t er at or object to get
access to each member of the collection. You can create a subclass of Col | ecti on, and
by implementing a corresponding iterator, your class will inherit a nearly complete
implementation of the collection protocol. Later on, you can specialize some of these
inherited methods using more optimal algorithms.

Generic functions in the Collection protocol that use an iterator depend on the integrity
of that iterator. Any collection that modifies itself can potentially harm the integrity of
its iterator. In particular, note the potential for conflict if a collection is modified by
another thread while it is executing a method such as f or Each or f or EachBi ndi ng. You
can protect the integrity of a collection by creating a Lock object and applying the
method acqui r e to that lock before calling f or Each and then applying r el i nqui sh to
that lock after the completion of the call to f or Each. For more information, see the
discussion of collections and threads in the “Collections” chapter of the ScriptX
Components Guide.

161

Collection

162

Generic functions names in the Collection protocol often have similar component
phrases or words, for example, del et eBi ndi ngCne, del et eKeyOne and del et eCne. The
naming of such generic functions follows this convention: the word “key” signifies that
it matches or returns keys, and the word “binding” signifies that it matches or returns
bindings (key-value pairs). If both “key” and “binding” are missing, the method
matches or returns values.

In the subsequent method descriptions, whenever we say that a value is deleted, it
means that a key-value pair is deleted.

Methods defined in Col | ecti on can be put into the following categories:

Table 4-3:
ADDING DELETING ACCESSING
add del et eAl | get Al l
addMany del et eBi ndi ngAl | get Any
merge del et eBi ndi ngOne get KeyAl |
pi pe del et eKeyAl | get KeyOne

del et eKeyOne get Many

del et eOne get One
SETTING enpt yQut
set Al l renoveAl | GENERAL
set One renoveOne for Each

f or EachBi ndi ng

SEARCHING MATCHING i sSEnpty
chooseAl | hasBi ndi ng i sMenber
chooseOne hasKey iterate
chooseOneBi ndi ng intersects map

These methods are generic functions which can be specialized for subclasses of

Col | ecti on. Which generic function to use depends on what you want to do and what
return value you want. For example, there are various ways to add something to a
collection. Use add to add one item to a collection, and use addMany to add a collection
to another collection. These two generic functions have no return value and are
generally used to populate a collection. Use mer ge if you want to add one collection to
another and have a new collection containing both of them returned. (This does not
alter either of the source collections.) Use pi pe if you want to modify a collection by
adding another one to it and then have that modified collection returned.

The classes Li near Col | ecti on and Sequence provide additional functionality that
depends on the order and positioning of elements, such as getting and setting elements
at particular positions, rearranging elements, and traversing a collection in reverse.

See ScriptX Language Guide for a discussion of generic functions such as f or Each,

f or EachBi ndi ng, f or EachBackwar ds, map, r emove(ne, r enoveAl |, chooseOne,
chooseAl |, chooseeBi ndi ng, and chooseeBackwar ds, which take a function as an
argument and apply that function to each element in a collection.

Collection

Creating and Initializing a New Instance

Because Col | ecti on is an abstract class, you cannot create an instance of it. However,
you can instantiate any concrete subclass of Col | ecti on by calling newon it; new calls
init and then afterlnit. The following script is an example of how to create an
instance of a subclass of Col | ecti on, specifically an instance of the Sort edKeyedAr r ay
class:

nyArray := new SortedKeyedArray \
initial Sze:100 \
keys: #("bird", "mammal ", “"reptile") \
val ues: #("robi n", "dog", "snake")

The variable nyArray contains an initialized instance of Sort edKeyedAr r ay with the
three key-value pairs: ("bi rd", "robi n") ("mammal ", "dog") ("reptil e", "snake").
The newmethod uses the keywords defined in the i ni t method of the particular
subclass of Col | ecti on and the af t er | ni t method of Col | ecti on.

afterlnit

afterinit self [keys: collection] [val ues: collection] O self
self Array object
keys: Col | ecti on object
val ues: Col | ect i on object

Applies the arguments as the initial keys and values in the collection. That is, it adds all
the given key-value pairs as if by calling add collection key wvalue in the order they are
given.

The keywords keys and val ues have no defaults.

Note — The keys and val ues keywords are available to all subclasses of Col | ecti on,
but are omitted from the documentation for brevity. For example, the Array class has
the four keywords: i ni ti al Si ze, gr ovabl e, keys, and val ues, but only the first two
are documented with that class.

Class Methods

pipe

pi pe self other O Col I ection
self d ass object
other Col | ecti on object

Pipe is equivalent to the following:

pi pe (new self) other

This method is a shorthand for the pi pe instance method on a new instance of a given
class.

163

Collection

Instance Variables

164

bounded

self. bounded (read-only) Bool ean

Specifies whether there is an upper or lower limit (or both) on the size of the collection
self.

The instance variable bounded is descriptive only. Specializing the boundedGet t er
method to return t r ue does not modify any actual behavior. It is up to a class or object
that is bounded to redefine its own behavior.

iteratorClass

self.iteratord ass (read-only) (class)

Specifies the class to use for an iterator on the collection self.

keyEqualComparator

self. keyEqual Conpar at or (read-only) (function)

Specifies the function used to test whether two keys in the collection self are the same.
See “Comparison Functions” in the Collections chapter of the ScriptX Components Guide
for a list of built-in functions you can use.

Although any global function, anonymous function, or method can be assigned to
keyEqual Conpar at or, there are differences in how different classes of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

keyUniformity

self. keyUni formty (read-only) Naned ass

Specifies the uniformity of the keys held in the collection self. Possible values for
keyUni f or m t y are @omonSuper ¢l ass and @anmed ass. See the uni f or m t y instance
variable for more information.

The instance variable keyUni f or m ty is descriptive only. Creating a new collection
class that specializes the keyUni f or m t yGet t er method does not modify any actual
behavior. It is up to a class or object that restricts its keys to redefine its own behavior.

keyUniformityClass

self. keyUni form tyd ass (read-only) (class)

Specifies the class referred to by keyUni f orm ty for the collection self. See the
uni f orm t yd ass instance variable for more information.

The instance variable keyUhi f or m t yd ass is descriptive only. Creating a new
collection class that specializes the keyUni f or mi t yQ assGet t er method does not
modify any actual behavior. It is up to a class or object that restricts its keys to redefine
its own behavior.

maxSize

self. maxSi ze (read-only) I nt eger

Specifies the maximum size of the collection self. For most collections, this value is
posl nf . Notable exceptions are the bounded arrays: Si ngl e, Pai r, Tri pl e, and Quad. If
you create an instance of a collection, such as Arr ay, that is not growable, the value of
maxSi ze is set to the value you supply with the keyword i ni ti al S ze.

Collection

The instance variable maxSi ze is descriptive only. Creating a new collection class that
specializes the maxSi zeCet t er method does not modify any actual behavior. It is up to
a class or object that specializes naxSi ze to redefine its own behavior.

minSize

self. m nSi ze (read-only) I nt eger

Specifies the minimum size of the collection self, usually 0. Notable exceptions are
bounded arrays: Si ngl e, Pai r, Tri pl e, and Quad. For these collections, the value of
m nSi ze is set to 1, 2, 3, or 4, respectively.

The instance variable m nSi ze is descriptive only. Creating a new collection class that
specializes the m nSi zeGet t er method does not modify any actual behavior. It is up to
a class or object that specializes m nSi ze to redefine its own behavior.

mutable

self. mut abl e (read-only) Bool ean

Specifies whether or not items in the collection self can be changed using Col | ecti on
methods. For most collections, the value of mut abl e is t r ue. For discrete range classes,
the value of mut abl e is f al se, even though you can change their bounds or increments.
This is because you cannot alter them using Col | ecti on methods. St ri ngConst ant is
another Col | ecti on class that is not mutable. A St ri ngConst ant object must be
coerced to a Stri ng object to be mutable.

The instance variable mut abl e is descriptive only. Creating a new collection class that
specializes the nut abl eGet t er method does not modify any actual behavior. It is up to
the new class to redefine its own behavior.

mutableCopyClass

self. mut abl eCopyd ass (read-only) (class)

Specifies the class to instantiate when making a mutable, unbounded copy of the
collection self. In most subclasses of Col | ecti on, the mutable copy class is the same
class as the collection self. This class is used to create a copy that is mutable and
unbounded, in case the original collection isn’t. The nut abl eCopyd ass instance
variable is required by several other methods defined by Col | ecti on, including
chooseAl |, get Al |, get Many, map, and ner ge.

proprietored

self. propri et ored (read-only) Bool ean

When true, the collection self protects its keys and values by preventing them from
being indirectly altered; it ensures that its keys and values can be modified only by
using “set” methods directly on the collection itself. When f al se, items can be changed
indirectly by anyone that has access to that item in the collection. All collections built-in
to ScriptX have propri et or ed set to f al se except the concrete Range classes, which are
set to true.

For example, given a collection with propri et or ed set to f al se, if it contains the string
“I am here” as its first value, someone can use get Fi rst to get a string object that is a
pointer to the original text. Then any change they make on that string object (not on the
collection) modifies the string that’s in the collection. With propri et or ed set to tr ue,
get Fi r st would have given out a copy of the full string, with no connection to the
original; changing that string would not change the original. The only way then to
change the original string would be to use a “set” method on the collection, such as
set First. (Some “set” methods are set Che and set Al in Col | ecti on, and set Nt h,
set Fi rst, set Last in Sequence.)

165

Collection

166

If propri et or ed is true, then a collection keeps its contents protected by handing out
only copies of its keys or values when they are requested. Likewise, when someone sets
a key or value in the collection, it makes a copy and puts this copy in the collection.

The instance variable propri et or ed is descriptive only. Creating a new collection class
that specializes the propri et or edGet t er method to return t r ue does not modify any
actual behavior. It is up to a new class that is proprietored to redefine its own access
methods.

size

self. si ze (read-only) I nt eger

Specifies the size of the collection self, which may in fact be posl nf, the number
representing positive infinity (for an open-ended range, for example). The generic
function si zeGett er acts as an interface to the generic si ze, also implemented by
collections.

uniformity

self.uniformty (read-only) Naned ass

Specifies whether all possible values in the collection self are of the same class or instead
have a common superclass. In the least uniform collection, all possible values would
have at least one common superclass, that being Root Cbj ect . The uni f or m ty instance
variable can take only one of two values: @ormonSuper cl ass and @aned ass.

e If the value of uni form ty is @onmmonSuper cl ass, all values in the collection are
instances of the class given by uni f orm tyQd ass.

e If the value of uniformty is @aned ass, then all values in the collection are
members of the class given by uni formityd ass.

If a script attempts to add an object of the wrong class to a collection, the add method
should report the badKey exception.

For most collections, uni form ty is set to @onmmonSuper cl ass. Note that the value of
uni form ty is determined as part of the definition of a class or object, not by what is
stored in the collection. For example, if you create an Arr ay object and store only Poi nt
objects in it, the uni f or m ty instance variable is not set to reflect this. A collection has
no way of determining what objects you store in it, unless you define specialized
behavior to do so.

The instance variable uni f or m ty is descriptive only. Creating a new collection class
that specializes the uni f orm t yGet t er method does not modify any actual behavior. A
new class or object that restricts the values it can contain must redefine its own
behavior.

uniformityClass

self. uni form tyd ass (read-only) (class)

Specifies the class referred to by uni form ty (see the definition of uni f or m ty). For
most collection classes, uni f or m t yd ass is set to Root Cbj ect, meaning all values in
the collection must be instances of Root (bj ect . This means any object is allowed. (In
other words, the collection has no uniformity.) Notable exceptions are the concrete
Range classes: for | nt eger Range, the value of uni f or m t yd ass is | nt eger, and for
Nunber Range, it is Nunber.

The value of uni f or m t yQ ass is determined as part of the definition of a class or
object, and is fixed thereafter. It does not change based on what objects are currently in
the collection.

Collection

The instance variable uni f or m t yd ass is descriptive only. Creating a new collection
class that specializes the uni form t yd assGet t er method does not modify any actual
behavior. A new class or object that restricts the values it can contain must redefine its
own behavior.

valueEqualComparator

self. val ueEqual Conpar at or (read-only) (function)

Specifies the function to use to test whether two values in the collection self are the
same. See “Comparison Functions” in the Collections chapter of the ScriptX Components
Guide for a list of the built-in functions you can use.

Although any global function, anonymous function, or method can be assigned to

val ueEqual Conpar at or, there are differences in how different kinds of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

Instance Methods

The following instance methods are defined in Col | ect i on:

add

add self key value O (object)
self Col | ect i on object
key Any object
value Any object

Adds the binding specified by key and value to the collection self, inserting the pair in its
proper position. The return value is the implicit or explicit key. For implicitly keyed
collections, add can cause subsequent keys to change. For sequences, it inserts before
the specified key.

The enpt y object is always a valid key and has meaning as follows. For implicitly keyed
collections, an appropriate key is chosen. For sequences, add with an enpt y key has
append semantics. For explicitly keyed collections, adding with an empty key is the same
as add self value value.

If a collection determines that either the key or value is inappropriate, it reports the
corresponding exception, either badKey or badVal ue. If a bounded collection is already
full, it reports the bounded exception. Bounded collections include Si ngl e, Pai r,

Tri pl e, and Quad, as well as any array object that is initialized with the gr owabl e
keyword set to f al se.

addMany

addMany self another O (none)
self Col | ect i on object
another Col | ecti on object

Adds all the items in another collection as if by calling add on the collection self. For
unkeyed and implicitly keyed collections, addMany uses enpt y as the key. For explicitly
keyed collections, addMany performs the add with all the key-value pairs. If a bounded
collection would grow beyond its maximum size, it reports the bounded exception. The
state of the collection itself after reporting the bounded exception is not specified.

167

Collection

168

addToContents

addToCont ent s self element O Collection
self Col | ect i on object
element Any object

Do not call this method directly from the scripter. It is defined to allow the obj ect
expression in the ScriptX language to work properly. addToCont ent s is called
automatically for each element in the cont ent s section of the obj ect expression, and it
returns the collection self. For more information about the obj ect expression, see
ScriptX Language Guide.

chooseAll

chooseAl | self func arg O Col l ection
self Col | ecti on object
func An instance of a subclass of Abstract Functi on
arg Any object

Iterates over the collection self, calling the function func once for each item in the
collection with the given argument arg.

func value arg

The chooseAl | method iterates through each value in the collection self. Its return value
is another collection containing the list of values for which the function returned tr ue.
The return collection’s class is specified by the value of nut abl eCopyd ass. If the
collection inherits from Li near Col | ecti on, then the items are guaranteed to be
processed in their natural order and the result is a linear collection in which items are
ordered based on their order in the source collection. See the discussion on page 161
concerning generic functions that depend on the integrity of an iterator.

chooseOne

choosee self func arg O (object)
self Col | ecti on object
func An instance of a subclass of Abst ract Functi on
arg Any object

Iterates over the collection self, calling the function func with a value from the collection
and the given argument arg:

func value arg

The chooseOne method calls this function once for each item in the collection until the
function returns t r ue. The return value of choose(ne is the first item for which this
function returns t r ue, or enpt y if no call to this function returns t r ue. If the collection
has a natural order, that is, if it inherits from Li near Col | ect i on, then items are
guaranteed to be processed in that order. See the discussion on page 161 concerning
generic functions that depend on the integrity of an iterator. Note that Arr ay specializes
choose(ne to allow for insertion and deletion of items, although not for wholesale
rearrangement of the collection. See the definitions of chooseOne and other iterative
methods under the Array class.

chooseOneBinding

chooseneBi ndi ng self func arg O (object)
self Col | ecti on object
func An instance of a subclass of Abst ract Functi on
arg Any object

Collection

Iterates over the collection self, calling the function func with a key-value pair from the
collection and the given argument arg:

func key value arg

The chooseOneBi ndi ng method calls this function once for each item in the collection
until the function returns t r ue. Its return value is the first matching item, or enpty if no
call to this function returns t r ue. If the collection has a natural order, that is, if it
inherits from Li near Col | ecti on, then items are guaranteed to be processed in that
order. See the discussion on page 161 concerning generic functions that depend on the
integrity of an iterator.

deleteAll

del eteAl | self value O I nt eger
self ol | ect i on object
value Any object

Deletes all bindings that match the given value from the collection self. Values are
compared using the value comparator function specified in val ueEqual Conpar at or,
an instance variable defined by Col | ecti on. Returns the number of values deleted.
This method does not remove objects from memory, unless normal garbage collection
applies. It just removes them from the collection.

The del et eAl | method reports the bounded exception (and leaves the collection in an
undefined state) if the collection would shrink below the size specified by m nSi ze.

deleteBindingAll

del et eBi ndi ngAl | self key value O I nt eger
self Col | ect i on object
key Any object
value Any object

Deletes from the collection self all bindings (key-value pairs) that match the given key
and value. Returns the number of items deleted. This method does not remove either the
key or value objects from memory, unless normal garbage collection applies. It just
removes them from the collection. It reports the bounded exception (and leaves the
collection in an undefined state) if the collection would shrink below the size specified
by m nSi ze.

deleteBindingOne

del et eBi ndi ngOne self key value O Bool ean
self ol | ecti on object
key Any object
value Any object

Deletes from the collection self at most one item whose binding (key and value) matches
the given key and value. Returns t r ue if an item is deleted; f al se if it is not deleted. If
multiple items match the given key and value, any one of those items (not necessarily the
first one) can be deleted. This method does not remove either the key or value objects
from memory, unless normal garbage collection applies. It just removes them from the
collection. It reports the bounded exception (and leaves the collection in an undefined
state) if the collection would shrink below the size specified by m nSi ze.

169

Collection

170

deleteKeyAll

del et eKeyA | self key O I nt eger
self Col I ection object
key Any object

Deletes from the collection self all items whose keys match the given key. Returns the
number of items deleted. This method does not remove either the key or value objects
from memory, unless normal garbage collection applies. It just removes them from the
collection. It reports the bounded exception (and leaves the collection in an undefined
state) if the collection would shrink below the size specified by m nS ze.

deleteKeyOne

del et eKeyne self key O Bool ean
self Col | ecti on object
key Any object

Deletes from the collection self at most one item whose key matches the given key.
Returns t r ue if an item is deleted; f al se if it is not deleted. If multiple items match the
given key, any one of those items (not necessarily the first one) can be deleted. This
method does not remove either the key or value objects from memory, unless normal
garbage collection applies. It just removes them from the collection. It reports the
bounded exception (and leaves the collection in an undefined state) if the collection
would shrink below the size specified by m nSi ze.

If multiple items have a key that matches the given key, any one of those items, not
necessarily the first one, can be deleted. Only if a collection is also a linear collection is
it guaranteed to be processed in its natural order.

deleteOne

del et ene self value O Bool ean
self Col | ecti on object
value Any object

Deletes from the collection self at most one item whose value matches the given value.
The values are compared using the value comparator function specified by

val ueEqual Conpar at or. The method del et ene returns t r ue if a value was deleted;
otherwise, it returns f al se. This method does not remove either the key or value objects
from memory, unless normal garbage collection applies. It just removes them from the
collection. It reports the bounded exception (and leaves the collection in an undefined
state) if the collection would shrink below the size specified by m nS ze.

If multiple items have a value that matches the given value, any one of those items, not
necessarily the first one, can be deleted. Only if a collection is also a linear collection is
it guaranteed to be processed in its natural order.

emptyOut

enpt yQut self O self

Removes all the items in the collection, leaving the collection empty. This method does
not remove objects from memory, unless normal garbage collection applies. It just
removes them from the collection. The empty collection self is returned. This method can
be called on any mutable collection. It is equivalent to calling r emoveA | self true
undef i ned on the collection self.

Collection

forEach

forEach self func arg O (none)
self Col | ect i on object
func An instance of a subclass of Abst ract Functi on
arg Any object

Iterates over the collection self, calling the function func with a value from the collection
and the given argument arg.

func value arg

The f or Each method calls this function once for each value in the collection. If the
collection has a natural order, that is, if the collection also inherits from
Li near Col | ecti on, then this method processes items in that order.

This method does not return a value, and any return value from func cannot be used, so
it must work by side effect. The f or Each method has no effect on the collection self
unless func is written to do so.

This method is similar to map, except that nap returns a collection. See the description
on page 161 concerning generic functions that depend on the integrity of an iterator.
Note that Array specializes f or Each to allow for insertion and deletion of items,
although not for wholesale rearrangement of the collection. See the definitions of

f or Each and other iterative methods under the Array class.

For a method that calls a function on both the key and the value, see f or EachBi ndi ng,
also defined by Col | ecti on. Li near Col | ecti on defines a related method,

f or EachBackwar ds, that can be used to iterate through elements of a linear collection in
reverse.

forEachBinding

for EachBi ndi ng self func arg O (none)
self Col | ection object
func An instance of a subclass of Abst ract Functi on
arg Any object

Iterates over the collection self, calling the function func with a binding (key-value pair)
from the collection and the given argument arg.

func key value arg

The f or EachBi ndi ng method calls this function once for each item in the collection. For
implicitly keyed collections, it uses the implicit keys for key. If the collection has a
natural order, that is, if the collection also inherits from Li near Col | ect i on, then this
method processes items in that order. See the discussion on page 161 concerning generic
functions that depend on the integrity of an iterator.

getAll

get Al | self key O Coll ection
self Col | ection object
key Any object

Returns a subset of the collection self, where the subset’s keys match the given key. The
get Al | method compares keys using the key comparator function specified by
keyEqual Conpar at or. The return collection’s class is determined by the value of

mut abl eCopyd ass.

171

Collection

172

getAny

get Any self O (object)

Returns an arbitrary item from the collection self. The default implementation for

Col | ecti on itself is simply to get the first element the iterator picks, which for some
collections, such as HashTabl e, may well be the same item every time. For collections
that also inherit from Li near Col | ecti on, get Any uses a hidden Randon®t at e object to
generate the item to pick. In such cases, calling get Any on the same collection multiple
times returns an arbitrary item each time.

When called on a collection whose size is pos| nf (positive infinity), get Any reports the
badKey exception.

getKeyAll

get KeyAl | self value O Li nkedLi st
self Col | ecti on object
value Any object

Returns a collection of all the keys in the collection self whose values match the given
value. The get KeyAl | method compares values using the value comparator function
specified by val ueEqual Conpar at or.

getKeyOne

get KeyCne self value O (object)
self Col | ecti on object
value Any object

Returns one key in the collection self whose value matches the given value, or enpty if
no match is found. The get KeyOne method compares values using the value
comparator function specified by val ueEqual Conpar at or. If multiple items match the
given value, one of those keys is returned. If the collection has a natural order, that is, if
the collection also inherits from Li near Col | ect i on, then this method processes items
in that order.

getMany

get Many self keyCollection O Col l ection
self ol | ect i on object
keyCollection Col | ecti on object

Returns a collection containing every value from the collection self whose key matches
any key in keyCollection, a collection of keys. Returns enpt y if no match is found. The
returned collection’s class is specified by the value of nut abl eCopyd ass, an instance
variable defined by Col | ecti on. If the collection has a natural order, that is, if the
collection also inherits from Li near Col | ecti on, then this method processes items in
that order.

getOne

get One self key O (object)
self Col | ecti on object
key Any object

Returns one value from the collection self whose key matches the key specified by key, or
enpt y if no match is found. The get One method compares keys using the key
comparator function specified by keyEqual Conpar at or. If multiple items match the

Collection

given key, one of those items is returned. If the collection has a natural order, if the
collection also inherits from Li near Col | ecti on, then this method processes items in
that order.

hasBinding

hasBi ndi ng self key value O Bool ean
self Col | ection object
key Any object
value Any object

Returns t r ue if the collection self has a binding (key-value pair) that matches the given
key and wvalue. This method can be used for both implicitly and explicitly keyed
collections. It matches keys and values using the functions that are supplied as the
values of keyEqual Conpar at or and val ueEqual Conpar at or, instance variables defined
by Col | ecti on.

hasKey

hasKey self key O Bool ean
self Col | ecti on object
key Any object

Returns t r ue if the collection self has a key that matches the given key. This method can
be used for both implicitly and explicitly keyed collections. Keys are compared using
the key comparator function specified by keyEqual Conpar at or.

intersects

i ntersects self collection O Bool ean
self Col | ecti on object
collection Col | ecti on object

Returns t r ue if any element is common to both the collections self and collection. Returns
f al se if there are no common elements.

iSEmpty

i SEnpty self O Bool ean

Returns t r ue if the collection self has no items; otherwise, it returns f al se.

isMember

i sMenber self value O Bool ean
self Col | ecti on object
value Any object

Returns t r ue if the collection self contains the value specified by value. The i sMenber
method compares values using the value comparator function specified by
val ueEqual Conpar at or.

iterate

iterate self O Iterator

Creates an iterator that can iterate over the collection self. This iterator is an instance of
the class specified by i t erat or d ass, an instance variable defined by Col | ecti on. See
the discussion on page 161 concerning the integrity of an iterator.

173

Collection

174

localEqual (RootObject)
| ocal Equal self other O Bool ean
self Col | ect i on object
other ol | ect i on object

Returns t r ue if the collection self is of the same class, and has the same size and
elements as the collection other. Note that Li near Col | ect i on defines another version of
| ocal Equal , which all collections that are linear collections inherit.

map
nap self func arg 0 Col l ection
self Col | ect i on object
func An instance of a subclass of Abst ract Functi on
arg Any object

Iterates over the collection self, calling the function func with a value from the collection
and the given argument arg:

func value arg

The map method calls this function once for each value in the collection and returns a
collection containing the results from each of the function invocations, in the order they
were called. If the collection has a natural order, that is, if the collection also inherits
from Li near Col | ecti on, then this method processes items in that order. The return
collection’s class is specified by the value of nut abl eCopyd ass.

This method is very similar to f or Each, except that map returns a collection whereas
f or Each does not.

See the discussion on page 161 concerning generic functions that depend on the
integrity of an iterator.

merge
ner ge self other O Col l ection
self Col | ecti on object
other Col | ect i on object

Merges the collection self and the collection other, copying their values to a new
collection, which is then returned. Unlike addMany, ner ge does not modify self. (With
addMany, the contents of other are added to the original collection self.) The return
collection’s class is specified by the value of nut abl eCopyd ass, an instance variable
defined by Col | ecti on.

pipe

pi pe self other 0 Gl lection
self ol | ecti on object
other Col | ecti on object

Means the same as addMany self other, but returns the collection self. The compiler calls
pi pe when it encounters the pipe operator (|).

prin (RootObject)
prin self format stream O (none)
self ol | ecti on object
format Nared ass object
stream St r eamobject

Collection

Prints the names of the items in the collection self with the format given in format.

ol | ecti on specializes pri n to allow for printing only a limited or truncated version of
the collection. The value of the format argument can be @nador ned, @or nal ,

@onpl et e, or @ebug. Using @or mal truncates printing after the tenth item and then
shows an ellipsis (. ..). If you want to print the complete contents of the collection, use
one of the other standard printing formats (@onpl et e, @ebug, or @nador ned).

removeAll

removeAl | self func arg O I'nt eger
self Col | ecti on object
func An instance of a subclass of Abstract Functi on
arg Any object

Iterates over the collection self, calling the function func with a value from the collection
and the given argument arg:

func item arg

It does this once for each item in the collection; each time the function returns t r ue, the
current item, the item that caused the function to return t r ue, is deleted from the
collection. r enoveAl | returns the number of values deleted. This method does not
remove objects from memory, unless normal garbage collection applies. It just removes
them from the collection.

If the collection has a natural order, that is, if it inherits from Li near Col | ecti on, then
items are guaranteed to be processed in that order. This method is only applicable to
mutable collections. It reports the bounded exception if the collection would shrink
below the size specified in m nSi ze. See the discussion on page 161 concerning generic
functions that depend on the integrity of an iterator.

removeOne

removene self func arg O Bool ean
self ol | ecti on object
func An instance of a subclass of Abst ract Functi on
arg Any object

Iterates over the collection self, calling the function func with a value from the collection
and the given argument arg:

func item arg

It does this once for each value in the collection until the function returns t r ue, then it
stops. When execution stops, the current item, the item that caused the function to return
true, is deleted from the collection. The r enoveOne method returns t r ue if a value was
deleted and f al se if one was not. This method does not remove objects from memory,
unless normal garbage collection applies. It just removes them from the collection.

If the collection has a natural order, that is, if it inherits from Li near Col | ect i on, then
items are guaranteed to be processed in that order. This method is only applicable to
mutable collections. It reports the bounded exception if the collection would shrink
below the size specified in m nSi ze. See the discussion on page 161 concerning generic
functions that depend on the integrity of an iterator.

setAll

set Al self key value O I nt eger
self Col I ection object
key Any object
value Any object

175

Collection

For every item in the collection self whose key matches key, set Al | sets that item’s value
to value. If the key is passed as enpty it means the same as set A | self value value. The
set A | method returns the number of items changed.

If the key or value is inappropriate, set Al | reports the badKey or badVal ue exception.
If there are no matches, the Col | ecti on object remains unchanged.

setOne

set One self key value O value
self ol | ection object
key Any object
value Any object

Sets the value of one item in the collection self whose key matches key to the value given
by value. If the key is passed as enpt y, it means the same as set e self value value.

If there is already a key-value pair that matches key, set One replaces it. If not, it adds
the pair. If the collection has a natural order, that is, if the collection also inherits from
Li near Col | ecti on, then this method processes items in that order. The set Ohe method
returns the value passed in.

If the key or value is inappropriate, set One reports the badKey or badVal ue exception.
In the case of sequences, the only nonexistent key that is appropriate is the first one
beyond the end of the sequence. If a bounded collection is at the size specified by
maxSi ze, then set One reports the bounded exception.

size

si ze self O I nt eger

Returns the size of the collection self. Use the instance variable si ze (that is, the
si zeGet t er method) as the interface for getting the size of a collection. Define a si ze
method to specialize the implementation used to determine the size of the collection.

Subclasses Must Implement

176

Subclasses of Col | ecti on must unconditionally implement the following two methods;
if these methods are not implemented, an exception will be generated when they are
called:

add
iteratord assCetter

For greater efficiency, subclasses of Col | ecti on should implement the following
methods:

equal

i sMenber
renoveA |
renove(ne
si ze

For more efficient keyed collections, subclasses of Col | ecti on should implement the
following methods:

del et eBi ndi ngOne
del et ekeyCne

get Cne

hasKey

hasBi ndi ng

set One

Collection

Subclasses of Col | ecti on that modify default behavior should specialize any
descriptive methods that are affected so that the new subclass interacts properly with
other classes and scripts. The following getter methods in the Collection protocol are
descriptive.

boundedGet t er

keyUni formtyGetter
keyUni form tyd assGetter
naxSi zeGet t er

m nSi zeGet t er

nmut abl eCGet t er
proprietoredGetter
uniformtyGetter

uni formtyd assGetter

177

Color

Color

178

RootObject

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: 2D Graphics

Col or is an abstract superclass for classes that define how to interpret the color values
of pixels within some bitmap, an area of memory, or a display surface. The subclasses of
ol or represent particular color spaces, providing a way to interpret pixel values and
extract the encoded color information.

The RGBCol or subclass of Col or represents a device-independent representation of RGB
and grayscale color spaces. The Col or Map class provides a way to create tables or
palettes of colors by implementing an array that contains Col or instances.

Colormap

Colormap

RootObject

Colormap

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root Chj ect

Component: 2D Graphics

The Col or map class provides an array-like object used to map pixel values in a bitmap
to instances of a particular color space. A Col or map object also defines the pixel
encoding and depth of the values in its sequence. Each value in a Col or Map is an
R@EBCol or object.

Not every possible pixel value for a particular pixel depth will necessarily serve as an
index. The actual color map may have fewer entries than the indices available at that
depth. For example, you could have a color map containing just six colors, while the
pixel depth is eight bits, potentially allowing for 256 entries.

ScriptX provides several default instances of Col or nmap, see Chapter 3, “Global
Constants and Variables”, for more information on displaying images on monitors with
standard pixel depths.

theDefaul t 1Col ormap -- 2 colors

t heDef aul t 2Col ormap -- 4 colors

t heDef aul t 4Col ormap -- 16 colors
t heDef aul t 8Col ormap -- 256 col ors

Although a Col or Map object is not a collection, you can use the collection syntax
colormap[n] to find the nth pixel value in a bitmap.

For example:

nyCol or map[45] . red

returns the value of the r ed instance variable of the RGBCol or that is the 45th value of
the colormap nyCol or nap.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Col or nap
class:

nyMap := new Col ormap \
size: 128 \
bi t sPer Pi xel : 8 \
col or Space: R@&BCol or

The variable nyMap contains the newly initialized color map instance. The number of
entries it can contain is 128, the number of bits per pixel in the colors it represents is 8,
and the color space is RGBCol or.

179

Colormap

init

init self bitsPerPixel:integer [size:integer] [colord ass: rgbColor]

O (none)
self Col or map object
bi t sPer Pi xel : I nt eger object representing the pixel depth
si ze: I nt eger object representing the number of entries
col ord ass: R@BCol or class

Initializes the Col or map object self, applying the arguments as follows: si ze sets the
numbers of entries in the map, bi t sPer Pi xel sets the pixel depth of the map, and
col or d ass represents the color space encoded by the map. Do not call i ni t directly
on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:
size: 1
col or d ass: RGBCol or class
When you create a new Col or map instance, you must also supply a value for the
bi t sPer Pi xel keyword; this value must be either 1, 2, 4, or 8. If you supply a value for

bi t sPer Pi xel but not a size, the value of si ze will be the maximum number of colors
for the particular bit depth.

Table 4-4: Relationship between bits per pixel and maximum size

Bits Per Pixel Maximum Size

1 2

2 4

4 16
8 256

By default, all color values in a new colormap are set to black.

Instance Variables

180

bitsPerPixel

self. bi t sPer Pi xel (read-only) Col or

Represents the bit depth of pixels that map into the color map self. This value reflects
the size (in bits) of the largest potential index value into the color map. For example, a
color map representing 8 bits per pixel could have as many as 28 or 256 entries.

colorSpace

self. col or Space (read-only) Col or subclass

Represents the class whose instances are used as the values in the color map self. By
default, the value is R@BCol or.

size

self. si ze (read-write) Col or

Represents the actual number of entries in the array of the color map self.

Colormap

Instance Methods

containsColor

cont ai nsCol or self testColor Bool ean
self Col or map object
testColor Col or object being tested for

Determines whether the Col or map instance self contains the Col or instance festColor.
Returns tr ue if the color value is in the color map, f al se if not.

copy
copy self Col or map

Creates and returns a new instance of Col or map containing the same values as self.

getNth

getNth self n Col or
self Col or map object
n I nt eger object, index of the color value

Returns the Col or instance whose index value is n in the color map self.

localEqual (RootObject)
| ocal Equal self anotherMap Bool ean
self Col or map object
anotherMap Col or map object

Compares the color maps self and anotherMap and returns t r ue if they contain exactly
the same mapping of pixel values to colors; that is, the same colors are in both maps
and occupy the same position in each.

setNth

setNth self n theColor Col or
self Col or map object
n I nt eger index of the color value
theColor Col or object used as value for the index

Sets the color value for index value n in the color map self.

181

ColorScheme

ColorScheme

RootObject

ColorScheme

Class type: Scripted class (concrete)

Resides in: wi dget s. sx| . Works with ScriptX and KMP executables
Inherits from: Root (bj ect

Component: User Interface

The Col or Schene class provides a set of standard brushes that help determine the
appearance of a widget, a user interface object from the ScriptX widget library. Each of
these brushes, stored in the instance variables dar kBr ushl, dar kBr ush2, | i ght Brush1,
and | i ght Brush2, is used to render some element of one of the widgets.

Creating and Initializing a New Instance

182

The widget library defines several global instances of Col or Schene, which it uses to
determine the appearance of other objects it generates. You only need to define a new
instance of Col or Schene if you plan to modify or specialize the widget classes to
achieve a different appearance.

The following script creates a new instance of Col or Schere:

gl obal nyCQustonBrushes := #(2, 1, 7, 4)
gl obal nyQust onCol or Scherme : = new Col or Scherre \
br ushl ndexAr r ay: nyQust onBr ushes

The global variable nyCQust onCol or Schene contains the initialized Col or Schene object.
The Col or Schene class stores a list of pre-set gray levels in its gr ayLevel s class
variable. When the object nyCust onCol or Schene is instantiated, the script applies the
gray levels in positions 2, 1, 7, and 4, stored in the class variable gr ayLevel s to set the
values of dar kBrush1l, dar kBrush2, | i ght Brushl, and | i ght Br ush2, four instance
variables defined by Col or Schene. For example, if the value of

Col or Schene. graylLevel s[2] is 102, then the instance variable dar kBr ush1 for
nyCQust onCol or Schene will end up containing a Br ush object that is equivalent to the
following:

new Brush col or: (new R@Col or red: 102 green: 102 bl ue: 102)

The newmethod uses keywords defined in i ni t.

init

init self brushl ndexArray: array O (none)
self Col or Schene object
br ushl ndexArr ay: Sequence of | nt eger objects

Initializes the Col or Schene object self, applying the keyword br ushl ndexArray to set
the values of the instance variables dar kBr ushl, dar kBrush2, | i ght Brushl, and
l'i ght Brush2. The keyword br ushl ndexArr ay is required.

ColorScheme

Class Variables

disableBrush

self. di sabl eBrush (read-write) Brush

Specifies a standard brush that is used to determine the disabled appearance of widgets
that are based on the Col or Schene object self. By default, the value of di sabl eBrush is
a Brush object that is equivalent to the following:

obj ect Brush
col or: bl ackCol or, pattern: @rayPattern
settings inkMde: @rcBic

end

grayBrushes

self. gr ayBr ushes (read-write) Array

Specifies an Array object of fixed size that contains a set of standard brushes used by
instances of the class self. The Col or Schene class generates these brushes automatically
when the class is instantiated, using the value of each integer in the sequence

self. grayLevel s to determine which RGBCol or object to set as the color of the
corresponding brush in the sequence self. gr ayBr ushes. For example, if the value of
self. graylLevel s[4] is 153, then the value of self. gr ayBr ushes[4] is equivalent to the
following;:

new Brush col or: (new RECol or red: 153 bl ue: 153 green: 153)

graylLevels

self. graylLevel s (read-write) Array

Specifies a list of arbitrary length that contains | nt eger objects. These integers, which
should be bounded in {0 . . . 255}, are used to set the red, green, and blue levels
that are associated with the RGBCol or object for a standard set of brushes that is stored
in the class variable gr ayBr ushes.

By default, the value of grayLevel s is set to #(51, 102, 136, 153, 187, 204, 221).
Modify the class definition for Col or Schene to change these default settings, or to add
additional gray levels and create additional brush options.

Instance Variables

darkBrush1l

self. dar kBr ushl (read-write) Brush

Specifies a Br ush object, one of four brushes that helps determine the appearance of
widgets that use the color scheme self.

darkBrush?2

self. dar kBr ush2 (read-write) Brush

Specifies a Br ush object, one of four brushes that helps determine the appearance of
widgets that use the color scheme self.

lightBrush1

self. |'i ght Brushl (read-write) Brush

Specifies a Br ush object, one of four brushes that helps determine the appearance of
widgets that use the color scheme self.

183

ColorScheme

lightBrush2

self. | i ght Brush2 (read-write) Brush

Specifies a Br ush object, one of four brushes that helps determine the appearance of
widgets that use the color scheme self.

184

Condition

Condition

RootObject

Condition

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Gate

Component: Threads

Condi t i on objects represent a gate whose st at e instance variable becomes
instantaneously @pen and then @! osed again. A thread can wait on a Condi ti on
object by calling either gat eVai t or acqui r e, which are equivalent, except that
acqui r e is a generic function.

When one or more threads are waiting on a Condi ti on object and its state is made
@pen (either through the gat eQpen global function or the r el i nqui sh method defined
by Gat e), all threads that were waiting on the condition are made active. However, any
threads that subsequently try to acquire the condition must wait until it is again
explicitly opened.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Condi ti on
class:

nyCond := new Condition \
| abel : @ebugl

The variable nyCond contains the initialized condition. The instance’s keyword | abel is
set to @ebugl. The newmethod uses the keywords defined ininit.

init

init self [|abel:object] O (none)
self Condi ti on object
| abel : Any object

Initializes the Condi t i on object self. The value supplied with | abel is applied to the
instance variable of the same name. Do not call i ni t directly on an instance—it is
automatically called by the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:
| abel : undefi ned

Instance Variables

Inherited from Gat e:
| abel state

Instance Methods

Inherited from Gat e:
acquire rel i nqui sh

185

ContinuousNumberRange

ContinuousNumberRange

186

RootObject

ContinuousNumberRange

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Range

Component: Collections

A Cont i nuousNunber Range object represents a continuous range of numbers. It is not a
collection because it does not have a discrete, countable number of elements.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Cont i nuousNunber Range class:

nyRange := new Conti nuousNunber Range \
| ower Bound: 2. 2 \
upper Bound: 7. 4 \
i ncl udesLower: true \
i ncl udesUpper : f al se

The variable nyRange contains an instance of Cont i nuousNunber Range. It incorporates
all possible rational and irrational numbers between 2.2 and 7.4, including the lower
bound but not the upper bound.

0 1 2 3 4 5 6 7 8

< L 4
<€ t t

\/

The newmethod uses the keywords defined in i ni t.

init

init self [|owerBound: number] [upperBound: number]

[i ncl udesLower : boolean] [i ncl udesUpper : boolean | O (none)
self Cont i nuousNunber Range object

| ower Bound: Nunber object

upper Bound: Nurber object

i ncl udesLower : Bool ean object

i ncl udesUoper : Bool ean object

Initializes the Cont i nuousNunber Range object self, applying the arguments as follows:
| over Bound sets the lower numeric bound for the range, and upper Bound sets the
upper boundary value. These two points are not restricted to integers and can be any
kind of real number—integer, fixed, floating, or other.

If i ncl udesLower is true, then the value supplied with | ower Bound is included in the
range; otherwise, all values above but not including | ower Bound are in the range. If

i ncl udesUpper is true, then the value supplied with upper Bound is included in the
range; otherwise, all values below but not including upper Bound are in the range. Do
not call i ni t directly on an instance—it is automatically called by the newmethod.

ContinuousNumberRange

If you omit an optional keyword, its default value is used. The defaults are:

| ower Bound: negl nf
upper Bound: posl nf
i ncl udesLower : true
i ncl udesUpper : true

Instance Variables

Inherited from Range:

i ncl udesLower | ower Bound val ued ass
i ncl udesUpper si ze
i ncr ement upper Bound

Cont i nuousNunber Range defines these instance variables:

size (Range)

self. si ze (read-only) Nurber

Returns nan, indicating that the number of elements in the continuous number range
self is not countable. For a definition of nan, see the chapter “Global Constants and
Variables.”

Instance Methods

Inherited from Range:
wi t hi nRange

187

Controller

Controller

188

RootObject

Collection
IndirectCollection

Controller

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: | ndirectCol | ection
Component: Controllers

The Control | er class is the root abstract class for all controller objects. A controller
object directs the layout or behavior of objects contained in a space, interprets user
input events, or performs other control functions. Built-in controller classes include

I nt er pol at or, Bounce, G avi ty, Movenent (described in the “Controllers” chapter) and
Act uat or Cont rol | er, RowCol umCont rol | er, and others (described in the “User
Interface” chapter).

Each controller is a collection that holds the objects it controls. (It is a collection by
virtue of inheriting from | ndi r ect Col | ect i on.) These objects must also be in the space
that the controller is attached to. Each controller has a space instance variable that
specifies the particular space it is attached to. The controller controls some or all of the
model objects in that space, depending on whether whol eSpace is set to t r ue or f al se.
The controller automatically controls all of the appropriate objects in that space if

whol eSpace is t r ue. The mechanism for this is that the space notifies the controller that
an object has been added to the space. The controller uses i sAppr opri at eChj ect to
determine if it's an appropriate object for it to control, and if so, adds the object to its
collection.

If whol eSpace is f al se, the space no longer notifies the controller when it has an object
added to it. You must explicitly add the object to the controller if you want it to be
controlled

Being collections, controllers provide the Col | ecti on protocol, but the Control | er
class does not define which Col | ecti on subclass is used. This allow each concrete
subclass to store its target objects in the most appropriate way. It is the instance variable
target Col | ecti on that allows you to specify what kind of collection you want to use;
however, the default value for t ar get Col | ecti on is Array because that is currently the
optimal collection for controllers. Therefore, it is recommended that you not specify
another subclass of Col | ecti on for t ar get Col | ecti on unless you have a special and
particular need to do so.

Whenever an object is added to a controller, the object is checked to ensure that its
protocols match those expected by the controller, in its pr ot ocol s instance variable. If
the object does not have the correct protocol, then the object is not added. If the
controller’s whol eSpace is f al se, an exception is thrown; if t r ue, no exception is
thrown.

Controllers also have the option of performing any function when an object is added, by
overriding the obj ect Added method. For example, a controller could enlarge the 2D
space it controls, ensuring it is large enough to hold a certain TwoDPr esent er object
being added to it.

Controller

Creating and Initializing a New Instance

Because Control | er is an abstract class, you cannot create an instance of Control | er,
nor is it useful to call the newmethod on Control | er directly. However, you should call
i ni t from subclasses of Control | er that override i ni t, as described below, to properly
initialize instances of the subclass.

init

init self [space:space] [whol eSpace: boolean] [enabl ed: boolean]

target Col | ecti on: sequence O (none)

self Control | er object

space: Space object containing objects to control

whol eSpace: Bool ean object indicating whether to control all objects
in the space

enabl ed: Bool ean object to enable and disable the controller

Superclass | ndi r ect Col | ecti on uses the following keyword:
target Col | ecti on: Sequence object

Initializes the Control | er object self, applying the values supplied with the keywords
to the instance variables of the same name. Do not call i ni t directly on an instance—it
is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

space: undef i ned
whol eSpace: f al se
enabl ed: true

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded nmaxsi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyQd ass proprietored

Inherited from | ndi rect Col | ect i on:
target Col | ection

The following instance variables are defined in Control | er:

enabled

self. enabl ed (read-write) Bool ean

Specifies whether the controller self is currently controlling its target objects or not. To
turn it on or off, set enabl ed to true or f al se, respectively. The default value for
enabl ed for a new controller is t r ue.

When enabl ed is set to f al se, controller classes that are being tickled (Bounce,
G avity, I nterpol at or, and Mvenent) automatically stop being tickled, and when
enabl ed is set to t r ue, controller classes that are being tickled automatically resume

189

Controller

being tickled. Nothing happens automatically to controller classes where you are
posting events. You have to stop posting events if you are disabled. To do this,
specialize enabl edSet t er to stop posting events when enabl ed is set to f al se and
resume posting events when enabl ed is set to t r ue.

protocols

self. prot ocol s (read-write) Array

Specifies the classes that any object added to the controller self must be a kind of. The
i sAppr opri at e(bj ect method can use this list to tell whether it is appropriate to add
an object to the controller’s list. If the object has all the listed protocols, it is added.

space

self. space (read-write)

Space

Specifies the space that the controller self controls. To determine which objects in that
space are controlled, refer to the whol eSpace instance variable.

wholeSpace

self. whol eSpace (read-write) Bool ean

If true, indicates the controller self should control all appropriate model objects in the
entire space specified by the space instance variable. If f al se, the controller should
control only objects added to the controller explicitly. Unless you specify otherwise, the
default value for whol eSpace for a new controller is f al se.

Instance Methods

190

Inherited from Col | ecti on:

add enpt yQut i sMenber
addMany for Each iterate
addManyVal ues f or EachBi ndi ng nap
chooseAl | get Al l ner ge
choosene get Any pi pe
chooseeBi ndi ng get KeyAl | prin

del et eAl | get Keyne renoveA |
del et eBi ndi ngAl | get Many removeOne
del et eBi ndi ngGne get One setAl
del et eKeyAl | hasBi ndi ng set (ne
del et eKeyne haskey

del et etne i sEmpty

Inherited from | ndi r ect Col | ecti on:

i sAppropri at eChj ect obj ect Added obj ect Renoved

Since a controller is an indirect collection, you can also use any methods defined in the
class specified by t ar get Col | ecti on. The target collection is typically an instance of
Array, which inherits from Sequence, so the following instance methods are redirected
to a controller.

Accessible from Li near Col | ecti on:

chooseneBackwar ds fi ndRange get Nt hKey
chooseO dne f or EachBackwar ds get O dne
del et eFi r st getFirst get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop

Controller

Accessible from Sequence:

addFi fth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourth noveToBack setNth
addN h noveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort
append setFifth

appendNew set Fi rst

The following instance methods are defined in Control | er:

isAppropriateObject (IndirectCollection)

i sAppropri at eChj ect self addedObject O Bool ean
self Control | er object that object is being added to
addedObject Any object being added to the controller

This method is automatically called when an object is added to the controller self. This
method uses i SAKi ndd to tell if addedObject is an instance of the classes in the

prot ocol s list; if the object is a kind of all the protocol classes, the object is added to
the controller’s list, and this method returns t r ue.

tickle

tickl e self clock O self
self Control | er object
clock a ock object of the space being controlled

Do not call ti ckl e directly from the scripter. It is invoked automatically by the space to
which the controller self is attached, through use of a callback on the given clock.

The Control | er class itself does not actually define a method for ti ckl e. Subclasses of
Control | er that perform some repeated action with each tick of the space’s clock
should implement a method for ti ckl e. The ti ckl e method is invoked automatically
on each controller that implements it, with each tick of the space’s clock. For more
information, see “The Ticklish Protocol” in the “Controllers” chapter of ScriptX
Components Guide.

Common Subclass Methods

Control | er subclasses commonly implement the following methods:
enabl edGet t er
enabl edSet t er
i sAppropri at eChj ect
nodel Added
nmodel Renoved
obj ect Added
obj ect Renoved
spaceCetter
spaceSetter
tickle
whol eSpaceCet t er
whol eSpaceSet t er

191

Controller

Accepting and Rejecting Events

If the Control | er subclass can receive events, then it's important to implement the
following so it can accept or reject events (accept events when enabl ed is set to true
and reject events when enabl ed is set to f al se):

enabl edGet t er

enabl edSet t er

Control Space Dependencies

If the Control | er subclass has anything dependent on a control space, such as an event
interest, it’s important to implement the following:

spaceCetter

spaceSetter

192

CostumedPresenter

CostumedPresenter

RootObject

Presenter

TwoDPresenter

CostumedPresenter

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TwoDPr esent er

Component: Spaces and Presenters

The Cost unedPr esent er class represents objects that can be presented in different
ways—objects that “wear” different costumes. A costume can be any other 2D
presenter. Use a Cost umedPr esent er object when you want a presenter that can
completely change its appearance, say from text to bitmap, while retaining properties
such as its position and its connections to other objects such as controllers. A reference
to the costume is stored in the t ar get instance variable.

Think of a costumed presenter as a picture hanging on a wall—the costumed presenter
is the blank place on the wall, and the costume is the picture that is actually presented.

Note that Cost unedPr esent er really implements a kind of delegation. In a sense,

Cost umedPr esent er is to presenters what | ndi rect Col | ecti on is to collections. When
a generic function is called on an instance of Cost umedPr esent er, the instance passes

that function on to its costume. Thus, calling dr awon the instance invokes dr awon its

target presenter. Therefore, the target presenter object is displayed only by way of the

Cost unedPr esent er object.

See the class description of Present er for information about the t ar get instance
variable, which specifies the object that a costumed presenter presents.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Cost unedPr esent er class:

cp := new CostunedPresenter \
target: (new TwoDShape boundary: (new Rect x2:50 y2:50))

The variable cp contains a new instance of Cost unedPr esent er with a rectangle as its
target. The newmethod uses the keyword arguments defined by the i ni t method.
(Note that boundary is omitted because it is ignored.)

init

init self [target: object] O (none)
self Cost unmedPr esent er object

The superclass TwoDPr esent er uses the following keyword:

target: TwoDPr esent er object
stationary: Bool ean object

193

CostumedPresenter

194

Initializes the Cost umedPr esent er object self, setting its appearance by applying the
value supplied with the t ar get keyword to the t ar get instance variable it inherits
from TwoDPr esent er. Do not call i ni t directly on an instance—it is automatically
called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

t ar get : undefi ned
stationary: fal se

Instance Variables

Inherited from Presenter:

creat el nt erestLi st
draw

get Boundar yl nPar ent
hi de

| ocal ToSur f ace
not i f yChanged
recal cRegi on
refresh

pr esent edBy subPresenters t ar get

Inherited from TwoDPr esent er:
bBox hei ght transform
boundary IslnplicitlyD rect wi dth
cl ock i sTranspar ent wi ndow
conposi t or isVisible X
direct needsTi ckl e y
eventlnterests position z
gl obal Boundary stationary
gl obal Transform t ar get

Instance Methods

Inherited from TwoDPr esent er :

adj ust d ockMast er i nsi de show

sur f aceTolLocal
tickle

Curve

Curve

RootObject

Stencil

Curve

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Stenci |

Component: 2D Graphics

The Qur ve class represents Bezier cubic curves. (Postscript and Adobe Illustrator use
cubic Bezier curves.) Users can adjust the control points to make a curve they like.

The geometric shape of a Qurve object is defined by four points (x1, y1), (x2, y2), (x3,

y3), and (x4, y4). The curve starts at (x1, y1) and ends at (x4, y4). The other two points
are control points, which determine that curvature of the curve (they do not lie on the
curve), as illustrated in Figure 4-4.

The curve starts at (x1, y1). At the starting point, it is tangential to the line from (x1, y1)
to (x2, y2). The curve ends at (x4, y4), at which point it is tangential to the line from (x3,
y3) to (x4, y4). The curve is always entirely enclosed by the convex quadrilateral
defined by the four points.

For more information on the mathematics involved in Bezier curves, please see external
mathematical books, such as Fundamentals of Interactive Computer Graphics, written by
J.D. Foley and A. Van Dam, and published by Addison Wesley, 1982.

You can use the get Poi nt method to find the position of a point on the curve along the
distance of the curve. For example, you could find the point half way along the curve, a
tenth of the way along the curve, and so on.

You can use the Qurve class to create editable, single curves. After creating a Qurve
object, you can change the endpoints and the control points. However, you cannot join
curves together, or extend them to include more line segments. If you wish to create
paths that include curves, or paths that include multiple contours, use the Pat h class. A
Pat h object can include any number of line segments, including straight lines, cubic
curves, arcs, splines, and so on. However, a Pat h object cannot be modified in the same
way as a Qur ve object. Although you can always extend a path to include more line
segments, arcs, curves, or splines, you cannot change the points in the path that have
already been created. If you wish to modify the existing part of the path, you need to
empty out the path and build it again from scratch.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Qurve class:

curvel := new Qurve x1:0 y1:0 \
x2:100 y2:250 \
x3:200 y3:250 \
x4:300 y4:0

The variable cur vel points to a new Qur ve object, that starts at the point (0, 0) and
finishes at the point (300, 0). The control points are (100, 250) and (200, 250). Figure 4-4
shows the shape of the curve. The dots indicate the control points.

195

Curve

Figure 4-4: Curvel — The dots indicate the control points

Since a Qur ve object is a St enci |, it must be put in a presenter before it can be viewed.
You must specify a value for the st roke instance variable for the presenter to make the
curve visible. (By default, the stroke value is always undef i ned.) The following code
shows how to display curvel in a window:

w = new W ndow

show w

s := new TwoDShape boundary: curvel stroke: bl ackbrush
append w s

init

init self xLixl yl:yl x2:x2 y2:y2 x3:x3 y3:y3 x4:x4 y4: y4

x1, y1 The x and y values of the starting point of the curve
x2, y2 The x and y values of the first control point

x3, y3 The x and y values of the second control point

x4, y4 The x and y values of the end point of the curve

Initializes the Qurve object.

If you omit any of the optional keywords, ScriptX uses 0 as the default value.

Instance Variables

196

Inherited from Stencil :
bbox

The following instance variables are defined in Curve:

height

self. hei ght (read-write) Fl oat

Returns the height of the Qur ve object self. When the value of hei ght is set, the curve is
rescaled automatically and its width is set accordingly, using the value of r eal Bbox to
determine the object’s new dimensions. The object’s position, that is, its top left corner,
is unchanged in the process.

length

self. l engt h (read-only) Nunber

Returns the length of the curve self.

Curve

realBbox

self. r eal Bbox (read-only) Rect

Returns a Rect object that is the actual bounding rectangle of the curve self, including
its line width. Compare r eal Bbox with bbox, an instance variable that is inherited from
St enci | . The value of bbox reflects the bounding rectangle of the curve’s control
points, including the line width. Hence, the area of the rectangle returned by bbox is
greater than or equal to that of the rectangle returned by r eal Bbox. When the hei ght
or W dt h is rescaled, r eal Bbox rather than bbox is used to determine the curve’s new
dimensions.

width

self. wi dt h (read-write) Fl oat

Returns the width of the Qurve object self. When the value of wi dt h is set, the curve is
rescaled automatically and its width is set accordingly, using the value of r eal Bbox to
determine the object’s new dimensions. The object’s position, that is, its top left corner,
is unchanged in the process.

x1,y1, x2,y2, x3,y3, x4, y4

self. x1 etc. (read-write) Nunber

x1 and y1 specify the x and y values of the starting point of the curve; x2 and y2 specify
the first control point; x3 and y3 specify the second control point; and x4 and y4 specify
the end point of the curve.

Instance Methods
Inherited from St enci | :

i nsi de subt ract
i ntersect transform
onBoundary uni on

The following methods are defined in Curve:

copy
copy self O Qurve

Creates and returns a copy of the Qur ve object self.

getAngle

get Angl e self d O Nurber
self Qur ve object
d Nunber between 0.0 and 1.0 that indicates how far along

the curve to get the angle.

Returns the tangent angle (in radians) on the curve at distance d along the curve.

getCurvature

get Qurvature selfd O Nunber
self Qur ve object
d Nunber between 0.0 and 1.0 that indicates how far along

the curve to get the angle.

197

Curve

198

Returns the curvature of the curve at distance d along the curve. The curvature is
positive if the tangent angle increases, that is, the curve at the point is heading in a
clockwise direction. The curvature is negative if the curve is heading in a
counter-clockwise direction. The curvature is zero if the curve is straight. The inverse of
the curvature gives the radius of the tangential circle.

getPoint

get Poi nt self d O Poi nt
self Qur ve object
d Nunber between 0.0 and 1.0 that indicates how far along

the curve to get the point.

Returns the point that lies on the curve at distance d along the curve. If d is 0, returns
the starting point of the curve. If d is 1, returns the finishing point. If 4 is 0.25, returns
the point that is a quarter of a way along the distance of the curve. If d is 0.5, returns the
point that is half way along the distance of the curve, and so on.

The following code shows how to create a group space containing a previously-created
Qur ve object and also a small round shape. When the group space is displayed in a
window, the small round shape will appear at the point half way along the distance of
the curve.

gl := new G oupSpace

sl := new TwoDShape boundary: curvel stroke:(new brush col or: bl uecol or)
s2 := new TwoDShape boundary: (new oval x2:5 y2:5) fill:blackbrush

pl := getPoint curvel 0.5

s2.X := pl.x

s2.y := pl.y

append gl sl
append gl s2

moveToZero

noveToZer o self O Qurve

Translates the Qur ve object self so that the value of x1 and y1 are 0. (That is, the starting
point of the curve is at (0, 0.)

Date

Date

RootObject

Number
Integer

Largelnteger

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Ti ne

Component: Numerics

The Dat e class represents a date including the second, minute, hour, day of the week,
day of the month, month, and year. When you create an instance of Dat e directly, its
value is fixed over time—it does not change with the passing of time. The global
constant t heCal endar A ock is an instance of Cal endar A ock that keeps track of the
current date and time in its dat e instance variable. Dat e objects are displayed in the
form:

Format: dayOfWeek month day hours: minutes: seconds year

Example: Thu Nov 3 8:52:5 1994

The time within a date is expressed in a 24-hour clock—when it reaches 23:59:59, it
wraps around to 0:0:0. Internally, instances of Dat e are stored as Lar gel nt eger objects
with the units of seconds. All arithmetic operations on a date are performed on this
integer number of seconds.

To convert a date to its integer number of seconds, coerce the date to a large integer:

nyDate as Largelnteger -- displays as an integer

Both the Macintosh and Microsoft Windows have the concept of a base date. Dates are
stored as an offset in seconds from the base date. By default, a new instance of Dat e is
set to the current date. Unfortunately, the base date isn’t the same on each platform.

The Dat e class inherits the seconds, m nut es, hour s and scal e instance variables from
the Ti me class. Note, however, that for the Dat e class, scal e is read-only and its value
is always 1.

The Dat e class has the following properties:

® A Dat e object can be coerced to a String, such as “dl as String”. A Date object
can also be coerced to any other subclass of Nunber, including Ti ne.

® Subtracting two Dat e objects results in a Ti me object representing the time difference
between the two dates.

® Adding or subtracting a Ti me object from a Dat e object results in a date. The result
takes into account the scale of the Ti ne object—that is, the Ti me object in ticks is first
divided by its scale to convert it to seconds before being added to the date.

® Adding or subtracting any subclass of Nunber from a Dat e object will add or
subtract the corresponding number of seconds from the Dat e class.

199

Date

Note that the finest resolution for date is seconds, and the finest resolution for time is
ticks. Date is displayed as 3 values, while time is displayed as 4 values, as shown in the
following table:

Date Time
Format hours: minutes: seconds hours: minutes: seconds: ticks
Example 8:52:5 8:52:5:15

Creating and Initializing a New Instance

200

The following script is an example of how to create a new instance of the Dat e class:

nyDate: = new Date \
year: 1994 \
nont h: @ovenber \
day: 3 \
hours: 8 \
m nutes: 52 \
seconds: 5

The variable nyDat e contains the initialized date with the value Thu Nov 3 08: 52: 05
1994. The newmethod uses the keywords defined ininit.

init

init self [year:integer] [nonth: integer] [day: integer]

[hours: integer | [m nut es: integer] [seconds: integer | O (none)
self Dat e object

year: I nt eger object

mont h: I nt eger object or Named ass object

day: I nt eger object

The superclass Ti ne uses the following keywords:

hour s: I nt eger object
m nut es: I nt eger object
seconds: I nt eger object

Initializes the Dat e object self, applying each of the arguments to the instance variable of
the same name. Do not call i ni t directly on an instance—it is automatically called by
the new method.

If you omit an optional keyword, its current value is used. If you partially specify a
date, the remaining keywords are automatically filled in to reflect their current value.

This example demonstrates default values for keywords on the Dat e class. Suppose that
it is April 28, 1995, and the time is 36 seconds after 3:31 pm. If you create a Dat e object
without specifying any keyword arguments, the Kaleida Media Player returns a Dat e
object with the current date as the value of that object.

global currentDate := new Date -- no keywords
O Fri Apr 28 15:31:36 1995 as Date

Ten seconds later, you create another instance of Dat e, specifying a different month and
year. The Kaleida Media Player returns another Dat e object, whose value reflects the
year and month you supply. The values for day, hour, m nut e, and second are still
determined by default.

Date

gl obal anotherDate := new Date year:1992 nonth:9 -- two keywords
O Mn Sep 28 15:31:46 1992 as Date

Instance Variables

Inherited from Ti ne:

hour s scal e ticks
m nut es seconds

The following instance variables are defined in Dat e:

day

self. day (read-write) | nt eger
Specifies the day of the month as an integer: first day=1; last day=one of 28, 29, 30, or
31.

dayOfWeek

self. dayCf eek (read-write) I nt eger

Specifies the day of the week as an integer: Sunday = 1; Saturday = 7. The day of the
week can also be set with a Named ass object representing the day: @unday, @wonday,
@ uesday, @wednesday, @ hur sday, @r i day, @at ur day.

month

self. mont h (read-write) | nt eger

Specifies the month of the year as an integer: January = 1; December = 12. The month
can also be set with a Nanmed ass object representing the month: @anuary, @ebruary,
@rar ch, @pril, @may, @une, @ul y, @ugust, @ept enber, @ct ober, @ovenber,

@lecenber.
scale (Time)
self. scal e (read-only) I nt eger

Set to 1 for Dat e class and cannot be changed.

year

self. year (read-write) I nt eger

Specifies the year in the common era, such as 1994. The valid range of years is from
1970 to 2039.

Instance Methods

Note — Some of these operations are not meaningful for the Dat e class.

Inherited from Nunber :

abs f1 oor radToDeg
acos frac random
asin i nver se rem

at an In round

at an2 | og sin
ceiling nax sinh

201

Date

202

coer ce mn sgrt
cos nod tan
cosh nor ph t anh
degTor ad negat e trunc
exp power

Inherited from | nt eger :

I ength | ogi cal Op | shift
| ogi cal And | ogi cal Or rshift
| ogi cal Not | ogi cal Xor

Inherited from Ti ne:
addHour s addM nut es addSeconds

The following instance methods are defined in Dat e:

addMonths

addMont hs self months O self
self Dat e object
months I nt eger object

Adds the number of months specified by months to the date self. Note that the result will
always be a valid date. For example, adding 1 month to Jan. 30, 1994 00:00:00 will result
in the date Feb. 28, 1994 00:00:00 (rounding Feb. 30 to the valid date Feb. 28).

addWeeks

add\Weeks self weeks O self
self Dat e object
weeks I nt eger object

Adds the corresponding number of weeks specified by weeks to the date self. Note that
the result will always be a valid date, that is, adding 1 week to Jan. 30, 1994 00:00:00
will result in the date Feb. 6, 1994 00:00:00.

addYears

addYear s self years O self
self Dat e object
years I nt eger object

Adds the corresponding number of years specified by years to the date self. Note that the
result will always be a valid date, that is, adding 1 year to Feb. 29, 1992 00:00:00 (a leap
year) will result in the date Feb. 28, 1993 00:00:00.

Debuglnfo

Debuglnfo

RootObject

Debuglinfo

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Object System Kernel

The class Debugl nf o provides a standard template for storing the debugging
information that is associated with a Byt eCodeMet hod object. All scripted functions and
methods are implemented as bytecode methods.

For more information on ScriptX function dispatch, see the Byt eCodeMet hod class in
this volume and the “Object System Kernel” chapter of the ScriptX Components Guide.

Creating and Initializing a New Instance

You do not define an instance of Debugl nf o directly. When the debugger is active, an
instance of Debugl nf o is created automatically for each instance of Byt eCodeMet hod.

Instance Variables

attributes

selfattri butes (read-write) KeyedLi nkedLi st

Stores a KeyedLi nkedLi st object, currently empty, for use by the tool which generates
the Byt eCodeMet hod object self.

positioninfo

self.posi tionlnfo (read-write) Sort edKeyedAr r ay

Used by the debugger to map bytecode offsets to source code for the Byt eCodeMet hod
object to which the Debugl nf o object self is attached. See also symbol | nf o.

source

self.sour ce (read-write) String

Contains the string that was compiled to create the Byt eCodeMet hod object self. The
value of sour ce can be set to undef i ned.

symbolinfo

self.synbol | nf o (read-write) Sor t edKeyedAr r ay

Used by the debugger to map bytecode offsets to source code for the Byt eCodeMet hod
object to which the Debugl nf o object self is attached. See also posi ti onl nf o.

203

Delegate

Delegate

RootObject

Delegate

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root Cbj ect

Component: Object System Kernel

Del egat e is a class that can be used to represent other objects. All generic functions
called on a Del egat e object are redirected to the object specified by its del egat e
instance variable.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of Del egat e:

candi dat e: = new Del egate \
del egat e: nyNane

The variable candi dat e contains the initialized Del egat e object, which is set to
“delegate” all generic function calls it receives to the object nyNane, which is defined
elsewhere.

init

init self [del egate: object] O (none)
self Del egat e object
del egat e: any object

The keyword argument del egat e is applied to the instance variable of the same name.
Do not call i nit directly on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:
del egat e: undef i ned

Instance Variables

204

delegate

self. del egat e (read-write) (object)

Specifies the object to which all method calls on the delegate self are redirected.

DeltaPathAction

DeltaPathAction

RootObject

Action

DeltaPathAction

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Action

Component: Animation

The Del t aPat hAct i on class represents an action that is a relative change in position for
a presenter. That is, the presenter will be moved by the given amount (instead of to an
absolute position as with a Pat hActi on object).

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Del t aPat hAct i on class:

nyAction := new DeltaPat hAction \
del taPosi tion: (new Point x:50 y:50) \
target Num2 \
time: 100

The variable nyAct i on holds an initialized instance of Del t aPat hAct i on. This instance
specifies that the player’s second target (t ar get Num 2) start moving smoothly from its
position at a time of 10 ticks, to arrive at the point 50,50 at 100 ticks.

init

init self [deltaPosition:point] [targetNuminteger] [tine:integer] O (none)

self Del t aPat hAct i on object
del t aPosi ti on: Poi nt object representing the distance the target is to
move.

Superclass Act i on uses the following keywords:

tar get Num I nt eger indicating which object in the target list of the
player for this Del t aPat hAct i on to apply the action to

time: I nt eger object representing the absolute time to trigger
the action, in ticks, from the beginning of the action list
player

Initializes the Del t aPat hAct i on object self, applying the values supplied with the
keywords to the instance variables of the same name. Do not call i ni t directly on an
instance—it is automatically called by the newmethod.

If you omit an optional keyword, its default is used:
target Num O
time:0
del t aPosi ti on: undefi ned

205

DeltaPathAction

206

Instance Variables

Inherited from Acti on:

aut hor Dat a t ar get Num time
playnly

The following instance variables are defined in Del t aPat hAct i on:

deltaPosition

self. del t aPosi ti on (read-write) Poi nt

Specifies the amount of change in position in the x and y directions for the presenter
when the delta path action self is triggered. These values are in the space’s unit of
measurement and relative to the space’s origin.

Instance Methods

Inherited from Acti on:
trigger

Diamondlris

Diamondilris

Presenter

TwoDPresenter

TransitionPlayer

Diamondlris

Class type: Loadable class (concrete)

Resides in: [trans. |ib. Works with ScriptX and KMP executables.
Inherits from: TransitionPl ayer

Component: Transitions

The Di anondl ri s transition player provides a visual effect that causes the target to
gradually appear from the center (@pen) or from the edges (@l ose) as shown below.
The target appears when the transition is played forward, and disappears when played
backward (transition’s rate set to -1).

@pen

I R)

@l ose

_| jolole

Directions: @pen, @! ose

Rate: Can play forward or backward.

For side-by-side illustrations of all transitions, see the Transitions chapter in the ScriptX
Components Guide.

Creating and Initializing a New Instance

The following is an example of how to create a new instance of the D anondl ri s class:

nyTransition := new Dianmondlris \
duration: 60 \
direction: @pen \
t ar get : nyShape

The variable nyTr ansi t i on contains the initialized transition. The transition reveals the
image nyShape from the center first and has a duration of 60 ticks. You determine which
space the transition will take effect in by adding this instance into that space. Then,
when you play the transition, nyShape is transitioned into that space. The newmethod
uses the keywords defined ininit.

NOTE - For the instance variables and methods, see the Bar nDoor class.

207

DigitalAudioPlayer

DigitalAudioPlayer

208

RootObject

MediaStreamPlayer

DigitalAudioPlayer

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Medi aSt r eanPl ayer
Component: Media Player

The D gi t al Audi oPl ayer class provides functionality for playing digital audio. A
D gi t al Audi oPl ayer instance can be used to play, stop, pause and so on, a digital
sound that is held in the player’s medi aSt r eaminstance variable.

The Di gi t al Audi oPl ayer class provides services for presenting digital sound samples
from an Audi 0St r eamobject, using the methods defined on the Pl ayer class.

The Di gi t al Audi oPl ayer class has local instance variables that hold information
relevant to playing sound, such as pan, pi t ch and vol une.

Creating and Initializing a New Instance

ScriptX provides two ways to create an instance of the Di gi t al Audi oPl ayer class. One
way is to call the newmethod on the class, in which case you must separately import
the sound stream to be played by the new player. The other way is to import a sound
directly into a Di gi t al Audi oPl ayer instance.

The following script shows how to create an instance of Di gi t al Audi oPl ayer by
importing an AIFF file containing digitized sound. The object di tt yPl ayer can be used
to play the sound imported from the file di tty on the ScriptX startup directory.

dittyStream :
dittyPl ayer

getstream theStartDir "ditty" @eadable
i mpor t Medi a t hel nport Export Engi ne dittystream \
@ound @\ FF @l ayer

This script shows an example of how to import an AIFF file as a D gi t al Audi oPl ayer.
You can also import SND and WAVE files in the same manner, in which case you would
need to change the @\ FF argument to @ND or @WVE as appropriate. For more details
of the arguments to the method i nport Medi a on the global instance

t hel npor t Expor t Engi ne, please see either the “Media Stream Players” chapter in the
ScriptX Components Guide or the chapter about Importers in the ScriptX Developer’s Guide.

The following script is an example of how to create a new instance of the
Di gi tal Audi oPl ayer class by calling the newmethod. For this example, you would
need previously to have created the player t opPl ayer and have imported the stream

nyStream

nyPl ayer := new D gital Audi oPl ayer \
medi aStream nyStream \
bufferSi ze: 50 \
nmast er d ock: t opPl ayer

DigitalAudioPlayer

The variable nyPl ayer points to the newly created audio player, which has the

Audi 0St r eaminstance nyAudi oSt r eamas its media stream and the Pl ayer instance

t opPl ayer as its master clock. It allocates space for 50 percent of the data in the media
stream. The object nyPl ayer can now be used to play the sound in the stream
nyStream

The newmethod uses the keywords defined in i ni t.

init
init self [nediaStreamstream] [bufferSize:integer]
[mast er d ock: topPlayer] [title: titleContainer] 0 (none)
self D gi t al Audi oPl ayer object
nedi aSt ream Audi oSt r eamobject containing the source data
buf f er Si ze: I nt eger object representing the percentage of data for

which to allocate space

The A ock superclass uses the following keywords:

nmast er d ock: a ock object to be used as the master player
scal e: (Ignored by D gi t al Audi oPl ayer)
title: Ti t1 eCont ai ner object to which to add the player

Initializes the Di gi t al Audi oPl ayer object self, applying the arguments as follows:
nedi aSt r eamsets the data source for the player, and buf f er Si ze is used to determine
what percentage of data in nedi aSt r eamto allocate buffer space for. The player is
added to the specified ti t| eCont ai ner. Do not call i ni t directly on an instance—it is
automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

nedi aSt r eam undefi ned

bufferSi ze: 50

mast er A ock: undefi ned

scal e: (Determined by the sample rate of the nmedi aSt r eamargument)
title:theScratchTitle

Instance Variables

Inherited from d ock:

cal | backs rate ticks
effectiveRate resol ution tinme
nmast er d ock scal e title
of f set sl aved ocks

Inherited from Pl ayer:

audi oMit ed gl obal Cont r ast gl obal Vol umeCr f set
dat aRat e gl obal Hue mar ker Li st
duration gl obal PanCx f set st at us

gl obal Bri ght ness gl obal Sat urati on vi deoBl anked

Inherited from Medi aSt r eanPl ayer:
franeRat e nedi aStr eam

The following instance variables are defined in Di gi t al Audi oPl ayer:

209

DigitalAudioPlayer

pan

self. pan (read-write) Fi xed

Specifies the placement of the sound played by the digital audio player self in the stereo
spectrum. The value should be in the range 0 to 1.0, where 0 is far left and 1.0 is far
right. Values greater than 1 will be adjusted to 1.0, values less than 0 will be adjusted to
0.

pitch

self. pi tch (read-write) I nt eger

Specifies the current pitch setting for the sound played by the digital audio player self.
The value must be zero or a positive number, where 0 is the lowest pitch. The highest
acceptable value depends on the sound being played.

If you specify an unacceptable number, an exception is reported.

volume

self. vol une (read-write) Fi xed

Specifies the local volume value for the sound controlled by the digital audio player self.
The value is specified in dB (decibels), where a value of 0 dB represents unity gain.
Digital audio players are used to play sounds that were imported into ScriptX, and in
this case unity gain is the volume of the sound when it was imported.

Values less than 0 make the sound quieter, while values greater than 0 increase the
loudness of the sound. The decibel (dB) is a relative measurement; every 6dB drop is
equal to halving the volume, modeling human auditory perception. That is, if the
player’s volume is -6, it plays half as loud as when the volume is 0; if the volume is 12
it plays half as loud as when the volume is -6 and so on.

The actual volume of the sound when it plays is determined by combining the local
volume value with the global volume offset, which is passed down from the master
player if any.

Not all sound managers can support volume values greater than 0. If you supply a
value that is too high, a warning message is printed. If the volume is supplied as a
negative value that is too low for you to be able to hear the sound, the sound will still
play but it will not be audible.

Instance Methods

Inherited from d ock:

addPeri odi cCal | back cl ockAdded pause

addRat eCal | back cl ockRenoved resune

addScal eCal | back ef fecti veRateChanged ti neJunped

addTi meCal | back for EachSl ave wai t Ti ne

addTi meJunpCal | back i sAppropri at ed ock waitUntil
Inherited from Pl ayer:

addMar ker goToBegi n pl ayPr epar e

ej ect goToEnd pl ayUnpr epar e

f ast Forward goToMar ker Fi ni sh playnti |

get Mar ker goToMar ker St art resune

get Next Mar ker pause rew nd

get Previ ousMar ker pl ay stop

210

DigitalVideoPlayer

DigitalVideoPlayer

Presenter

TwoDPresenter

MediaStreamPlayer

DigitalVideoPlayer

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables

Inherits from: Medi aStr eanPl ayer and TwoDPr esent er
Component: Media Players

The D gi t al Vi deoPl ayer class provides video playing capabilities. Because

Di gi tal Vi deoP! ayer is a kind of Present er, the video can be displayed on any
surface (including, potentially, an offscreen bitmap). There may, however, be limitations
on this when hardware accelerators are used that can only send images directly to the
screen.

A Digital Vi deoPl ayer instance has an associated video stream, stored in its
Medi aSt r eaminstance. When a digital video player plays, it plays its associated video
stream.

If the di r ect instance variable of the D gi t al Vi deoPl ayer is set to t r ue, the frames in
the video stream are decompressed directly to the screen. If the di r ect instance
variable is set to f al se, the video stream maintains an offscreen instance of

Bi t mapSur f ace. The individual video frames are decompressed into the bitmap surface
and the contents of the surface are transferred to the screen.

Creating and Initializing a New Instance

Users would not normally create instances of Di gi t al Vi deoPl ayer themselves. If you
have a file containing digitized video that you want to import and play, you should
import the file into ScriptX as a Movi ePl ayer or | nt er| eavedSt r eanPl ayer object.
Both of these can then be used to play a movie.

When a file containing a video or movie (the difference being that a movie usually
contains video and sound) is imported into ScriptX as either a Movi ePl ayer or

I nterl eavedSt reanPl ayer instance, additional player instances are created. A

D gi tal Vi deoPl ayer is created for each video track, and a D gi t al Audi oPl ayer is
created for each audio track. These players are created as subplayers of the

Movi ePl ayer or | nt er| eavedSt r eanPl ayer, which can be used to play the movie. See
the discussion of Movi ePl ayer or I nterl eavedSt r eanPl ayer for information on how
to create a player to play a movie.

The Di gi tal Vi deoP! ayer class does support the newmethod, one of whose arguments
is medi aSt r eam which needs to be a video stream. The only way to actually get a video
stream into ScriptX however, is to import a movie, which creates a

D gital Vi deoPl ayer anyway. Although there is probably no reason why you would
ever want to call the newmethod on the Di gi t al Vi deoPl ayer class directly, an
example is shown here for the sake of completeness.

211

DigitalVideoPlayer

212

The following script is an example of how to create a new instance of the
D gi tal Vi deoPl ayer class by calling the newmethod:

nyPl ayer := new Digital Vi deoPl ayer \
nedi aSt ream vi deoSt reant \
boundary: (new Rect x2:200 y2:200) \
nmast er d ock: t opPl ayer

The variable nyPl ayer points to the newly created video player, which has the

Vi deoSt r eaminstance vi deoSt r eant as its media stream, the Pl ayer instance

t opPl ayer as its master clock, and a rectangular boundary that is to be used as the
screen for the video.

The newmethod uses the keywords defined in i ni t.

init

init self [mediaStream videoStream] [boundary: stencil |

[title: titleContainer] [masterd ock: player] O (none)
self Di gi tal Vi deoPl ayer object
nedi aStream Vi deoSt r eamobject containing the source video data to

be played by this Vi deoPl ayer

The superclass TwoDPr esent er uses the following keywords:

boundary: Stenci | object to use as the boundary for image
displayed by the digital video player
stationary: Bool ean object

The superclass A ock uses the following keywords:

title: Ti t1 eCont ai ner object to add the player to
mast er d ock: Pl ayer object

Initializes the Di gi tal Vi deoPl ayer object self, applying the arguments as follows:
nedi aSt r eamsets the source of video data, mast er d ock sets the player’s master
player, and boundary sets the size and shape of the player’s window. The player is
added to the specified tit| eCont ai ner.

If you omit an optional keyword, its default value is used. The defaults are:

nmedi aSt r eam undef i ned

boundar y: new Rect

stationary:fal se

title:theScratchTitle

mast er d ock: undefi ned (which nmeans the player has no naster player)

Instance Variables

Inherited from d ock:

cal | backs rate ticks
effectiveRate resol ution tinme
nmast er d ock scal e title
of f set sl aved ocks

Inherited from Pl ayer:

audi oMt ed gl obal Cont r ast gl obal Vol umeC f set
dat aRat e gl obal Hue mar ker Li st
duration gl obal PanCX f set st at us

gl obal Bri ght ness gl obal Sat urati on vi deoBl anked

DigitalVideoPlayer

Inherited from Medi aSt r eanP! ayer :
franeRat e nedi aStream

Inherited from Present er:
pr esent edBy subPresenters target

Inherited from TwoDPr esent er :

bBox hei ght transform
boundary IslnplicitlyD rect wi dt h

cl ock i sTranspar ent wi ndow
comnposi t or isVisible X

direct needsTi ckl e y
eventlnterests position z

gl obal Boundary stationary

gl obal Transf orm t ar get

The following instance variables are defined in Di gi t al Vi deoP! ayer:

frame

self. frame (read-write) I nt eger

Specifies the current frame of the video. Use this instance variable to position the player
at a specific frame.

frameRate (MediaStreamPlayer)

self. f rameRat e (read-only) | nt eger

Specifies the frame rate of the video for the current frame. This is not the rate of the
digital video player self, but the rate of the video coming from the stream. The frame
rate may vary throughout the video. (This instance variable is inherited from the class
Medi aSt r eanPl ayer.)

inkMode

self. i nkMbde (read-write) Naned ass

Specifies which transfer, or “ink,” to use to apply the video being played by the digital
video player self to the presenter surface. Valid values are documented in the Brush
class. The ink mode is not used when the player’s di r ect instance variable is set to
true.

invisibleColor

self. i nvi si bl eCol or (read-write) Col or

Specifies the invisible color within the image area of the image presented by the video
player self.

Instance Methods

Inherited from O ock:

addPeri odi cCal | back cl ockAdded pause
addRat eCal | back cl ockRenoved resume
addScal eCal | back ef fecti veRat eChanged ti meJunped
addTi neCal | back f or EachSl ave wai t Ti me

addTi meJunpCal | back i sAppropri at ed ock waitUntil

Inherited from Pl ayer:
addMar ker goToBegi n pl ayPr epar e

213

DigitalVideoPlayer

214

ej ect

f ast Forwar d

get Mar ker

get Next Mar ker

get Previ ousMar ker

Inherited from TwoDPr esent er :

adj ust d ockMast er
createl nt erestLi st
draw

get Boundar yl nPar ent
hi de

goToEnd

goToMar ker Fi ni sh
goToMar ker St ar t
pause

pl ay

i nsi de

| ocal ToSurf ace
not i f yChanged
recal cRegi on
refresh

pl ayUnpr epar e
pl aynti |
resune

rew nd

stop

show
sur f aceTolLocal
tickle

DirRep

DirRep

RootObject

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Files

The Di r Rep class has methods that allow you to create, delete, test, and open text files,
binary files, and directories. Its fi | el n method also lets you compile scripts written in
ScriptX (this method is not available in the Kaleida Media Player).

In addition, it has the creat eDi r method to create D r Rep objects for new directories,
and the spawn method to create D r Rep objects for existing directories. For each
platform that ScriptX supports, there is a file-system-specific subclass of O r Rep to
represent its directories: the Macintosh has HFSDi r Rep, Windows has FATD r Rep.

When you create a D r Rep object, it is always created relative to an existing Di r Rep
object. Several important instances of D r Rep are available for you to use:

® The directory instance variable of title, library, and accessory containers,

® The global constants t heRoot Di r, t heTenpDir, theStartDir, and theScri ptDi r
(the latter is available only in the ScriptX development environment after a script has
been loaded)

By coercing a D r Rep into a sequence, you get a collection of strings representing the
name of each subdirectory in its path. For example, the following code returns a
sequence of strings for the global theStartD r:

theStartDr as Sequence

O #("d","scriptx","players","kmp")

Important — Do not add an instance of Di r Rep to a title container. Di r Rep objects cannot
be saved. Calling updat e on an instance will generate an exception.

In ScriptX, Di r Rep objects cannot be persistent because they represent only a temporary
and transitory state of the system. Directories can be renamed or moved to other
directories or machines with different paths names, aliases, and so forth.

As an alternative to saving an instance of Di r Rep, create a transitory Di r Rep object
based on the position of the directory relative to one of the directories described by the
global constants t heRoot D r, t heTenpDir, theStartDir, and theScriptDr.
Alternatively, use the di rect ory instance variable of a library container. If you require
absolute references to directories, you can save strings or sequences representing
directory paths, and use them to reconstruct the corresponding Di r Rep instance as
needed.

Creating and Initializing a New Instance

You never create an instance of Di r Rep by calling new Instead, you call either
createD r or spawn, depending on whether you want it to represent a new or existing
directory.

® To create a new directory and return an instance of D r Rep that represents it, use
createDir:

215

DirRep

createDir theStartDir "nysubdir"

This creates a directory called nysubdi r located in the directory where ScriptX
resides. If the directory already exists, it creates a different instance of D r Rep for the
same directory.

¢ To create an instance of D r Rep for an existing directory, use the spawn method:

spawn theStartDir "nysubdir"

This returns a D r Rep for the directory called nysubdi r located in the directory
where ScriptX resides. If nysubdi r does not exist, it throws an exception.

Note that the second argument in creat eDi r and spawn can be specified three ways:
® A string containing just the directory name (as shown above)

® A string containing a series of directory names separated by slashes (/):

createDir theStartDir "nysubdir/deepdir"

® A sequence of strings (each string can have slashes):

createDir theStartDir #("nysubdir","deepdir")

When creating a directory that is specific to a particular title, normally you want the
new directory to be relative to the title container’s directory, rather than relative to
theStart D r. You can do this by using the tit| eCont ai ner instance method, as
follows:

tc := new TitleContainer dir:theStartDir path:"nytitle.sxt"
createDir tc.directory "nysubdir"

Also see the “Files” chapter in the ScriptX Components Guide for other examples that
create D r Rep instances and access files.

The Di r Rep class is abstract, meaning you cannot directly create an instance of it.
However, the methods creat eDi r and spawn, as described above, automatically create
instances of the appropriate platform-specific subclass of D r Rep, such as HFSDi r Rep or
FATD r Rep.

Instance Methods

216

createDir

createDi r self path ODrRep
self Di r Rep object
path Sequence or Stri ng object

Creates any new directories in path and returns a new D r Rep instance representing the
directory corresponding to self plus path. If the path already exists, it creates a different
D r Rep instance for the same path. If path specifies an existing file, an exception is
thrown. This method is similar to spawn, except that it creates new directories and
spawn does not.

DirRep

Note — You can’t create a directory directly in t heRoot D r, the global variable for the
file system, since this would be equivalent to creating a new volume, hard disk, or
device.

createFile

createFi | e self path type OString
self Di r Rep object
path Sequence or Stri ng object
type Narred ass object

Creates a text file, binary file or directory (depending on type) in a location relative to
the directory given by self and path, where the last string in path is the name of the file or
directory. If the directories specified in path don’t exist, this method creates them. The
argument fype is one of these names:

@ext — a file with data in ASCII format
@i nary — a file with data in binary format
@li rectory — a directory

If this method succeeds, it returns the filename or directory name as a Stri ng. If it fails
because the specified file already exists, or for any other reason, it raises an exception.

You can create files and directories in any directory by calling cr eat eFi | e on the
instance of a D r Rep representing that directory. The following example creates a new
text file, called nyfi | e, located in the title container’s directory:

createFile tc.directory "nyfile" @ext

delete

del et e self path O (none)
self Di r Rep object
path Sequence or Stri ng object

Deletes the files or subdirectories represented in path from the directory represented by
self. If path represents a directory containing files, this method won't delete the
directory. If path represents a file that is locked or busy, this method won’t delete the
file.

Note — On Windows systems, this method will delete a file even if it has an open stream
on it.

If this method succeeds, it has no return value. If it fails, it reports an exception.

fileln

fileln self name: string [debugl nf o: boolean]

[modul e: module] [qui et : boolean] O self

self Di r Rep object containing file to be compiled

narre: Sequence or Stri ng object representing the path and
source file.

debugl nf o: Bool ean object specifying whether to keep the source

code. If t r ue, the source code is put in the sour ce
instance variable of the debugl nf o object in the

217

DirRep

218

Byt eCodeMet hod object’s debugl nf o instance variable.
(Each method or function in the file is turned into a
separate Byt eCodeMet hod object.)

qui et : Bool ean object

Note — Available only in ScriptX, not the Kaleida Media Player. The KMP doesn’t
include the ScriptX bytecode compiler required to execute this function.

Compiles the ASCII-format ScriptX source code contained in the file represented by path
in the directory represented by self, into ScriptX bytecode format and executes the
results.

To compile a string (or any bytestream not associated with a file), see the fil el n
method in the Byt eSt r eamclass.

If you omit an optional keyword, its default value is used. The defaults are:

debugl nf o: t rue
nodul e: scrat ch
qui et:true

fixNameForOS

fi xNaneFor G5 self filename O ByteString
self Di r Rep object
filename Sequence or Stri ng object

Resolves the string filename to a platform-specific representation appropriate to the host
file system. For example, on a DOS system, this method returns a string that is eight
characters maximum, with an extension of three characters maximum.

This method allows a script to test how instances of a Di r Rep subclass will resolve
filenames passed as arguments. Methods that use this resolution mechanism to act on
specific files include get Fi | eType and get St r eam The string returned by this method
is the platform-specific version of filename.

getContents

get Contents self O Arrayli st

Returns a collection of strings representing the names of files and directories inside the
directory represented by self.

getFileType

get Fi | eType self path 0 Naned ass
self Di r Rep object
path Sequence or Stri ng object

Returns a name representing the file type of the file-system object indicated by path, as
listed below. The file and path represented by path must already exist.

@li rectory — a directory

@ext — a file with data in ASCII format
@i nary — a file with data in binary format
@i tl e - atitle container file

@i brary - a library container file

@ccessory — an accessory container file

DirRep

@ppl i cation — an executable file

@nknown — unknown file

getStream

get St r eam self path mode 0 Stream
self D r Rep object
path Sequence or Stri ng object
mode Narred ass object

Returns a stream to read or write (depending on mode) from the file specified in path
within the directory represented by self. If path contains subdirectory references, this
method resolves them, but doesn’t create missing directories. The value of mode may be
one of three constants: @eadabl e, @vwitabl e, or @eadWi t e. This method doesn’t
create new files; use the creat eFi | € method to do so.

isDir

isDr self path 0 Bool ean
self Di r Rep object
path Sequence or Stri ng object

Returns t r ue if the file-system object represented by the path argument is a directory
within the directory represented by self; otherwise it returns f al se.

isFile

i sFile self path 0 Bool ean
self D r Rep object
path Sequence or Stri ng object

Returns t r ue if the file-system object represented by the path argument is a file;
otherwise it returns f al se. The path argument is interpreted relative to the directory
represented by self.

isThere

i sThere self path 0 Bool ean
self Di r Rep object
path Sequence or Stri ng object

Returns t r ue if the file or directory represented by path exists relative to the directory
self; otherwise it returns f al se.

parentDir

parentDir self OO rRep

Returns a directory representing the parent directory self. If the parent is inaccessible or
does not exist, this method reports an exception.

spawn
spawn self path ODrRep
self Di r Rep object
path Sequence or Stri ng object

Creates a new instance of Di r Rep for the existing subdirectory path relative to the
directory self. If all directories in path do not already exist, this method throws an
exception. The path argument can be a string or a sequence of strings. For example:

219

DirRep

spawn theStartDir “tools”

Returns the D r Rep instance for the Tool s directory inside the ScriptX startup directory.

spawn theStartDir “tool s/ subtool s”

Returns the Di r Rep instance for the Subt ool s directory inside the Tool s directory
inside the ScriptX startup directory.

220

DiscreteRange

DiscreteRange

LinearCollection ImplicitlyKeyedCollection

Sequence

DiscreteRange

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Range and Sequence
Component: Collections

The D scr et eRange class is an abstract class for objects that display range-like behavior
with a noncontinuous increment. Di scr et eRange mixes in Range with Sequence, a
class that inherits from Col | ecti on. This allows a discrete range to be used with an
iterator—for example, a ScriptX f or loop can iterate over values in a discrete range.

Among superclasses of Di scr et eRange, Range has precedence in inheritance. Thus, a
discrete range implements printing, class coercion, the si zeGet t er method, and other
common behaviors as a range rather than as a collection.

Ranges are immutable as collections. The Col | ect i on class defines an instance variable,
nut abl e, that indicates whether elements can be modified. For instances of

D scret eRange, the value of nut abl e is always f al se. Many methods that

D scr et eRange inherits from Sequence and its superclasses are not available to
discrete ranges, since they are immutable as collections.

Nunber Range and | nt eger Range are also immutable as ranges, since they do not define
setter methods for any of their instance variables. However, a subclass of
D scr et eRange can be a mutable range.

Creating and Initializing a New Instance

Calling newon D scr et eRange will create an instance of | nt eger Range or

Nunber Range, depending on the values you supply for the keywords | ower Bound,
upper Bound, and i ncr ement . If the values supplied for all keywords are integers, the
result will be an instance of | nt eger Range. If one or more of the values supplied
contains a decimal point, the result will be an instance of Nunber Range. Note that you
can also call newdirectly on | nt eger Range and Nunber Range to instantiate them.

The following script is an example of how to create a new instance of the Nunber Range
class by calling newon Di scr et eRange.

nyRange := new D screteRange \
| owerBound: (-2 * pi) \
upperBound: (2 * pi) \
increment: (pi / 2)

The variable nyRange contains the initialized number range. The instance contains the 9
numbers from approximately -6.28 to +6.28 at intervals of about 1.57:

-6.283, -4.712, -3.141, -1.570, 0, 1.570, 3.141, 4.712, 6.283
The newmethod uses the keywords defined by the i ni t method.

221

DiscreteRange

init

init self |owerBound: number upperBound: number [increment: number] O (none)

self Nurber Range object
| ower Bound: Nurber object
upper Bound: Nunber object
i ncrenent : Nunber object

Initializes the Nunber Range object self, applying the values supplied with the keywords
to the instance variables of the same name. Do not call i ni t directly on an instance—it
is automatically called by the newmethod.

If you omit an optional keyword, its default value is used. The default value is:
increment:1

For negative increments, reverse | ower Bound and upper Bound—set the starting value to
| ower Bound and the ending value to upper Bound, as in the following example:

nyRever seRange := new D screteRange \
| ower Bound: 5 \
upper Bound: 0 \
increment:-1.0

The variable nyRever seRange contains an initialized instance of Nunber Range. This
instance incorporates the values 5.000000, 4.000000, 3.000000, 2.000000, 1.000000,
0.000000. In the example above, if the increment given had been 1 instead of 1.0, the
result would have been an instance of | nt eger Range containing the values 5, 4, 3, 2, 1,
0.

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded naxS ze si ze
iteratord ass mnSi ze uniformty
keyEqual Conpar at or nut abl e uni form tyd ass
keyUniformty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass proprietored
Inherited from Range:
i ncl udesLower | ower Bound val ued ass
i ncl udesUpper si ze
i ncr ement upper Bound

Instance Methods

Inherited from Col | ecti on:

add for Each iterate
addMany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al l nap
chooseAl | get Any ner ge
choose(ne get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

222

DiscreteRange

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngOne hasBi ndi ng set Al
del et eKeyAl | hasKey set e
del et ekeyCne i ntersects si ze
del et eOne i SEnpty
enpt yQut i sMenber
Inherited from Li near Col | ecti on:
chooseneBackwar ds fi ndRange get Nt hKey
chooseOr dCne f or EachBackwar ds get O dOne
del et eFi rst get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop
Inherited from Sequence:
addFifth moveBackwar d setFourth
addFi r st nmoveFor war d set Last
addFourth nmoveToBack setNth
addN h noveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort
append setFifth
appendNew set Fi rst

Inherited from Range:
wi t hi nRange

223

DisplaySurface

DisplaySurface

224

Stencil Surface

BitmapSurface

DisplaySurface

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Bi t mapSurf ace

Component: 2D Graphics

The D spl aySur f ace class corresponds to a particular graphic device on the platform.
Operations applied to this surface are immediately performed on the device pixel
memory. On operating systems that support windowing, an instance of

D spl aySur f ace may correspond to an operating system window, and the bBox
instance variable represents the coordinates of the surface in screen (or display)
coordinates. You can create instances of D spl aySur f ace directly using the new
method. However, in general you get a display surface by creating a new instance of
W ndow then adding TwoDPr esent er objects to the window. You override the dr aw
method defined in TwoDPr esent er to perform rendering operations on the surface
represented by the window.

Note — Although Di spl aySur f ace inherits mat t eCol or and i nvi si bl eCol or instance
variables from the class Bi t nap, these instance variables are read-only for
D spl aySurf ace.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
D spl aySurf ace class:

nyDi spl ay: = new Di spl aySurface \
bBox: (new Rect x2:100 y2:100)

The variable nyD spl ay contains the new Di spl aySur f ace object. The surface has a
boundary of 100 by 100 and is positioned at the upper-left corner (origin) of the graphic
device.

init
init self [bBox:rect] [colorMp:colorMap] [name:string] O (none)
self D spl aySur f ace object
Superclasses of D spl aySur f ace use the following keywords:
bBox: Rect object
col or Map: Col or Map object
nane: String object

DisplaySurface

Initializes the Di spl aySur f ace object self. The other arguments are described with the
Bi t map class. The Rect object argument to the bBox keyword specifies the size of the
display surface. The x1 and y1 values of this Rect instance specify the offset of the
display surface from the origin of the display device on which it appears. The origin of
a display device is at the upper-left of the screen, while the origin of a b spl aySur f ace
instance is at the upper-left of the Rect instance supplied as the argument to bBox. Do
not call i ni t directly on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default is used. The defaults are:

col or Map: t heDef aul t 8Col or Map
bBox: (new Rect x1:0 yl1:40 x2:600 y2:440)
nare: " Scri pt X D splay Surface"

Instance Variables

Inherited from Stenci | :

bBox

Inherited from Bi t map:
bi t sPer Pi xel i nvi si bl eCol or r owByt es
col or Map nat t eCol or si ze
conpr essi onl nfo r emapOnDr aw
dat a r emapnSet

Inherited from Sur f ace:
boundary

Inherited from Bi t mapSur f ace:
dat a

The following instance variable is defined in D spl aySur f ace:

name

self. nane (read-write) Text or String

The name displayed by the window to which the display surface self belongs.

Instance Methods

Inherited from St encil :
i nsi de onBoundary transform
i ntersect subt r act uni on

Inherited from Bi t map:
get Pi xel Depth

Inherited from Surf ace:
fill stroke transfer

Inherited from Bi t mapSur f ace:
erase

The following instance methods are defined in D spl aySur f ace:

225

DisplaySurface

defaultMatrix

defaul t Matri x self units O TwoDMVat ri x
self D spl aySur f ace object
units Nared ass object: @ nches, @m or @oi nt s

Returns a matrix that represents the coordinate system of the display surface self in the
units specified by units. The value of the units argument can be @ nches, @m or
@oi nt s. Currently, the values returned are based on a ratio of 72 pixels per inch.

You can use the matrix returned by this method to transform a point in display
coordinates into a point on the surface. In ScriptX coordinate systems, coordinates
increase as you move to the right and down.

transform

transf or m self matrix result O self
self Di spl aySur f ace object
matrix TwoDMVat ri x object
result Narred ass object

The t ransf or mmethod, inherited from St enci |, produces no result in the
D spl aySur f ace class.

226

Dissolve

Dissolve

Presenter

TwoDPresenter

TransitionPlayer

Dissolve
Class type: Loadable class (concrete)
Resides in: [trans. |ib. Works with ScriptX and KMP executables.

Inherits from: TransitionPl ayer
Component: Transitions

The D ssol ve transition player provides a visual effect that causes the target to
gradually appear as small, random dots, as shown below. Unlike most transitions, the
transition cannot be played backwards, so the target cannot be gradually hidden using
this transition.

Directions: (none)

Rate: Must be zero or positive. Cannot play backward.

For a side-by-side illustrations of all transitions, see the Transitions chapter in the
ScriptX Components Guide.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Di ssol ve
class:

nyTransition := new Dissol ve \
duration: 60 \
t ar get : nyShape

The variable nyTr ansi t i on contains the initialized transition. The transition reveals the
image nyShape as randomly distributed pixels and has a duration of 60 ticks.

You determine which space the transition will take effect in by adding this instance into
that space. Then, when you play the transition player, nyShape is transitioned into that
space.

The newmethod uses the keywords defined in i nit.

NOTE - For the instance variables and methods, see the Bar nDoor class.

227

DocTemplate

DocTemplate

RootObject

DocTemplate

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Document Templates

The DocTenpl at e class is a parent class of Page, PageH enent, PagelLayer, and
PageTenpl at e. It provides methods and instance variables needed by objects
participating in a document hierarchy.

A “document hierarchy” is a hierarchy of objects in a document. The relationship
between the objects in this kind of hierarchy is a “presented by” relationship. In a
document, a Present er object is presented by a PageEl ement object, which is usually
presented by a PagelLayer object, which is usually presented by a PageTenpl at e, which
is presented by a Page, which is presented by a Docunent , which is presented by a
TwoDSpace such as a W ndow

Instance Variables

228

The following instance variables are defined in DocTenpl at e:

data

self. dat a (read-only) (object)
Specifies data to be displayed by a page element in a document.

When self is a PageE enent instance, this instance variable returns the actual data to be
displayed by the page element.

When self is any other object in a document hierarchy, such as a Docunent, Page,
PageTenpl at e, or PageLayer, it specifies data that can be used by a PageH enent . Only
page elements actually display data.

The dat a instance variable is a simulated instance variable, and its value is calculated
dynamically each time the instance variable is accessed, which usually occurs when a
page opens. This “on the fly” data generation allows the elements of a page in a
document to update their data every time a page opens.

The dat a instance variable gets its value by evaluating the expression in the t ar get
instance variable on self. The value in the t ar get instance variable may be any constant
value, in which case t ar get and dat a are one and the same, or it may be a function that
is evaluated to produce the data.

When a page opens, the changePage method is called on all the PageH enent objects
used on that page. The changePage method on a PageH enent object causes the page
element to update its dat a instance variable to determine what to display. The page
element gets its data by evaluating the expression in its t ar get instance variable
(inherited from Present er.). If that expression makes a reference to the dat a instance
variable of a parent object of the page element (such as a page or document), for
example, then the expression in the tar get instance variable of the appropriate parent
is evaluated.

DocTemplate

The dat a instance variable is defined at the level of DocTenpl at e to make it available to
all classes that inherit from DocTenpl at €, such as Docunent, Page, PageTenpl at e,
PageLayer and PageH enent.

Note that the dat a instance variable is always dynamically evaluated when it is
accessed. Thus you cannot necessarily find the value displayed by a presenter in an
open page by retrieving the value of its dat a instance variable.

Suppose that a page has a Text Present er that displays a randomly-generated wise and
witting saying. When the page opens, the saying is randomly generated, for example,
the text presenter in question says “Look not for cows in Bodfish.”

You might think that if you get the value of the dat a instance variable of the text
presenter, it will return the same saying as is displayed on the page, but this is not the
case. It will randomly generate another saying which could be quite different to the one
displayed.

Instance Methods

findNthParent

findNthParent self templateClass nth O (presenter)
self DocTenpl at e object
templateClass A cl ass whose instances can participate in a document

template hierarchy, such as PageH erent, PageLayer,
PageTenpl at e, Page or Docunent .
nth I nt eger object

This method returns an instance of templateClass that is presenting the DocTenpl at e
instance self.

Use this method instead of fi ndPar ent when the document hierarchy contains
multiple instances of templateClass. This method returns the nth instance of templateClass
above self in the document hierarchy.

For example, suppose a page element el is added to a page layer, | ayer 1, which in turn
is added to a page layer, | ayer 2. In this case:

find\thParent el PagelLayer 1

returns | ayer 1.

find\thParent el PagelLayer 2

returns | ayer 2.

Since DocTenpl at e is never instantiated, this method is called only by its subclasses.

findParent

findParent self templateClass O (presenter)
self DocTenpl at e object
templateClass A cl ass whose instances can participate in a document

template hierarchy, such as PageH erent, PageLayer,
PageTenpl at e, Page or Docunent .

This method returns the instance of templateClass that is presenting the DocTenpl at e
instance self.

For example, if self is a page element and templateClass is Docunent , f i ndpar ent returns
the document containing the page element.

229

DocTemplate

230

If self is a page element and templateClass is Page, then fi ndPar ent returns the page
containing the page element.

If self is a page and templateClass is Docunent, then fi ndPresent er returns the
document containing the page, and so on.

Since DocTenpl at e is never instantiated, this method is called only by its subclasses.

getNthParentData
get Nt hPar ent Dat a self templateClass nth O (object)
self DocTenpl at e object
templateClass A cl ass whose instances can participate in a document
template hierarchy, such as PageH enent, PageLayer,
PageTenpl at e, Page or Docunent .
nth I nt eger object

Use this method instead of get Par ent Dat a when the document hierarchy contains
multiple instances of templateClass. This method returns the value of the dat a instance
variable of the nth such object. The value for the dat a instance variable is obtained
automatically by the system by evaluating the expression in the t ar get instance
variable of the nth such object. This method might be useful in the case where
PagelLayer objects contain other PageLayer objects thus setting up an extended
document hierarchy.

Since DocTenpl at e is never instantiated, this method is called only by its subclasses.

getParentData

get Par ent Dat a self templateClass O (object)
self DocTenpl at e object
templateClass A cl ass whose instances can participate in a document

template hierarchy, such as PageH erent, PageLayer,
PageTenpl at e, Page or Docunent .

Returns the result of evaluating the function in the t ar get instance variable on the
instance of templateClass in the document hierarchy containing the object self. The
argument self is automatically passed into the target function . For an example of
get Par ent Dat a:

get Parent Dat a nyPageE enment Page

returns the resultsof evaluating the t ar get instance variable in the Page object that
contains the page element nyPageH erent . (This is equivalent to calling
nyPage. t ar get nyPage.)

As another example:

get Parent Dat a nyPageEl ement Docunent

returns the result of evaluating the t ar get instance variable in the Docunent object that
contains the page element nyPageEl enent .

This method takes advantage of the fact that under normal circumstances in a
document template hierarchy, a Docunent contains a Page which contains a

PageTenpl at e which contains multiple PageLayer objects, which each contain

PageE enent objects.In this context, the object that presents another object is
considered to be its parent. For example, a Docurrent is the parent of a Page, which is
the parent of a PageTenpl at e, which is the parent of a PageLayer, which is the parent
of a PageHl enent, which is the parent of the presenter object in its el ement instance
variable.

DocTemplate

The get Par ent Dat @ method is a support method that can be called within the
expression in the tar get instance variable of an object in a document template
hierarchy, such as a PageH enent . The get Par ent Dat a method finds the “parent” of self
in self’'s document template hierarchy and returns the value in the parent’s dat a
instance variable. The value in the dat a instance variable is dynamically evaluated
every time it is accessed, using the expression in the tar get instance variable. The
target of an object in a document template hierarchy may be any constant value, or it
may be a function which is evaluated to produce the data.

This method is defined at the level of DocTenpl at e so that it is available to all instances
of subclasses of DocTenpl at e, such as Docunent, PageTenpl at e, Page, PageLayer and
PageH enent . Since DocTenpl at e is never instantiated, this method is called only by
instances of its subclasses.

For more information, see the “Document Templates” chapter in the ScriptX Components
Guide.

231

Document

Document

RootObject
LinearCollection Collection Presenter

TwoDPresenter

ImplicitlyKeyedCollection

Sequence

ArrayList

OneOfNPresenter

Document

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Onhedf NPr esent er
Component: Document Templates

A Docunent object is a collection of Page objects. As a subclass of OneCf NPr esent er, it
displays only one presenter (page) at a time. Because Docunent is a CheCf NPresent er,
it changes its boundary to whatever presenter it is currently playing.

Creating and Initializing a New Instance

232

The following script is an example of how to create a new instance of the Docurrent
class:

nyDocument := new Docunent \
cover:redPl anet \
nare: (new Text string:"The Mars Story")

The variable nyDocunent contains an instance of Docurent that can be graphically
represented by redPl anet, which should be a Present er. The newmethod uses the
keywords defined in i ni t, on the class Docunent .

To make the document useful, you need to append Page objects to it.

init
init self [cover:presenter] [nane:text] [target: objectOrFunction] O (none)
self Docunent object
cover: TwoDPr esent er object
nane: Text object
target: An expression or object that can be used to generate or

point to data for the document

Superclasses of Docunent use these keywords:

boundary: (Ignored by Docunent)
initial Size: (Ignored by Docunent)
growsi ze: (Ignored by Docurrent)
stationary: Bool ean object

Document

Initializes the Docurrent object self, applying the arguments as follows: cover is a
TwoDPr esent er object that is put in the cover instance variable; name is a Text object
that is put in the nane instance variable; t ar get is an object or expression that evaluates
to the data needed by the page elements on a page in the document when the page is
displayed. Do not call init directly on an instance—it is automatically called by the new

method.

If you omit an optional keyword, its default value is used. The defaults are

cover : undefi ned

nane: (Text object with a string of zero length)

t ar get : undef i ned
stationary:fal se

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Present er:
pr esent edBy

Inherited from TwoDPr esent er :

bBox

boundary

cl ock

conposi t or

di rect
eventInterests
gl obal Boundary
gl obal Transf orm

Inherited from Col | ecti on:

bounded

iteratord ass
keyEqual Conpar at or
keyUni formty
keyUni form tyd ass

subPresenters

hei ght
IslnplicitlyD rect
i sTranspar ent
isVisible

needsTi ckl e
position
stationary

t ar get

nmaxSi ze

m nSi ze

nut abl e

nut abl eCopyd ass
proprietored

Inherited from SequenceQur sor :

cur sor

The following instance variables are defined in Docunent :

cover

t ar get

transform
wi dth

Wi ndow

X

y
z

si ze

uniformty

uni form tyd ass

val ueEqual Conpar at or

self. cover

(read-write)

TwoDPr esent er

Specifies a single presenter that is used to represent the document self should the need
arise, much as an icon is associated with a file in a graphical user interface. It is also

similar to the poster provided by QuickTime® movies.

data

self. dat a

(read-only)

(object)

Specifies data that can be used by PageH enent objects in the document to determine
what to present on a page in the document self.

233

Document

The value of dat a is determined by evaluating the t ar get instance variable. The target
of a Docunent object may be any constant value, in which case t ar get and dat a are one
and the same, or it may be a function which is evaluated to produce the data. The data
must make sense to the objects contained within the document. Ultimately, dat a can be
used by the data reference within PageH enent objects.

The value of dat a is calculated each time it is needed, for example, each time a page is
displayed where the page elements on the page refer to the dat a instance variable of
the document.

name

self. nane (read-write) Text

Specifies the name of the document self.

target

self. t ar get (read-write) (object or expression)

This instance variable is inherited from Present er, but is used slightly differently in
Docurrent . The tar get of a document self is an object or function that evaluates to the
value for the dat a instance variable of the document. The value in the t ar get instance
variable of a document is evaluated only if the PageH enent instances on a Page need
to access the dat a instance variable on the document to find out what to present.

Basically, the t ar get instance variable of a document holds an object or expression that
evaluates to data to be used by page elements in the document.

Instance Methods

234

Inherited from TwoDPr esent er :

adj ust d ockMast er i nsi de show
createl nt erestLi st | ocal ToSurf ace sur f aceTolLocal
draw not i f yChanged tickle
get Boundar yl nPar ent recal cRegi on
hi de refresh

Inherited from Col | ecti on:
add for Each iterate
addMany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al l nmap
chooseAl | get Any ner ge
choosene get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin
del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One removeOne
del et eBi ndi ngne hasBi ndi ng setAl |l
del et eKeyAl | hasKey set One
del et ekeyCne i ntersects si ze
del et etne i sEmpty
enpt yQut i sMenber

Inherited from Li near Col | ecti on:
chooseneBackwar ds fi ndRange get Nt hKey
chooseOr dCne f or EachBackwar ds get O dne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop

Document

Inherited from Sequence:

addFi fth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourth noveToBack setNth
addN h noveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort
append setFifth

appendNew set Fi rst

Inherited from SequenceQur sor :
backwar d f orward goTo

Inherited from CheCf NPr esent er :
dr aw goTo

235

DragController

DragController

236

RootObject

Collection
IndirectCollection
Controller

TwoDController

DragController

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TwoDControl | er
Component: User Interface

DragControl | er is a controller class that manages Dr agger objects in the space it
controls. A dragger must be associated with a drag controller before it can be dragged.
A DragControl | er object expects to be attached to model objects that inherit from
TwoDPr esent er, and that mix in the Dragger class. Multiple instances of Dragger can
be attached to a drag controller.

A DragControl | er object is a “ticklish” controller. This means that, like Movenent and
I nt er pol at or, it implements a ti ckl e method that is called with each tick of the
space’s clock. You control how often the controller can update the location of a dragger
by changing the value of scal e on the space’s clock. If the clock’s scale is low, dragging
may appear jumpy. However, there is no benefit to setting the scale any faster than the
compositor’s own scale, since it is the compositor’s scale that determines how often the
screen is updated.

A DragControl | er object is a collection of the Dragger objects it controls. These
draggers must also be in the space that the controller is controlling. Draggers are either
automatically or manually added to the drag controller, according to the value of

whol eSpace, an instance variable defined by Cont r ol | er. If the value of whol eSpace is
true, all Dragger objects in the space are controlled by the given DragControl | er
object. If whol eSpace is f al se, you can use the methods defined by Col | ecti on to add
and remove objects individually from the drag controller. To ensure that only draggers
are added to a drag controller, the prot ocol s instance variable is set to the Dr agger
class. See the Control | er class for descriptions of whol eSpace, pr ot ocol s, and other
general properties of controllers. See also the section “Hit Testing” in the “User
Interface” chapter of the ScriptX Components Guide.

Note — The instance variable dr agl nt er est and the method pr ocessMve, both defined
by DragControl | er in version 1.0 of ScriptX, have been eliminated in version 1.5. With
ScriptX version 1.5, a drag controller polls the mouse device for mouse movements each
time ti ckl e is called rather than waiting to receive mouse move events.

DragControl | er defines the instance variables dr agl nt er est and grabl nt erest.
These variables store event interests—the DragControl | er class is interested only in
mouse events. Corresponding with these interests, the class defines the instance
methods processDrop and process@ ab. These methods are event receivers, and they
are registered automatically as receivers for these event interests. For information on the
event system, see the “Events and Input Devices” chapter in the ScriptX Components
Guide. DragControl | er also implements a method for ti ckl e, which is called with

DragController

each tick of the space’s clock. The ti ckl e method calls bef or eDr ag and then
af t er Drag on the associated dragger. For information on ti ckl e, see “The Ticklish
Protocol” in the “Controllers” chapter of ScriptX Components Guide.

Table 5: How a DragController and a Dragger work together

DragController DragController Dragger Dragger

(instance variable) (instance method) (instance method) (instance variable)

gr abl nt er est process@ ab grab grabAction
tickle bef or eDr ag bef or eDr agActi on
tickle afterDrag af ter DragActi on

dr opl nt er est pr ocessDr op drop dropActi on

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
DragControl | er class, after first creating a space to control:

nySpace := new TwoDSpace (new Rect x2:640 y2:480)
nySchl epper := new DragControl |l er space: nySpace

The variable nySchl epper contains the initialized instance. The newmethod uses the
keywords defined ininit.

init
init self [space:space] [whol eSpace: boolean] [enabl ed: boolean |
[target Col | ection: sequence] O (none)
self DragControl | er object
The superclass Cont r ol | er uses the following keywords:
space: Space object
whol eSpace: Bool ean object
enabl ed: Bool ean object

The superclass TwoDCont r ol | er uses the following keyword:

target Col | ection: Sequence object (use with caution)
Initializes the DragCont r ol | er object self, applying the keyword arguments to instance
variables of the same name. Use discretion in changing the target collection; for more

information, see the definition of the TwoDCont rol | er class. Do not call i nit directly
on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

space: undef i ned

whol eSpace: f al se

enabl ed: true

target Col | ection: (new Array initial Size:14 growabl e:true)

Class Methods

Inherited from Col | ecti on:
pi pe

237

DragController

Instance Variables

238

Inherited from Col | ecti on:

bounded naxSi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass propri et ored

Inherited from | ndi rect Col | ect i on:
target Col | ection

Inherited from Control | er:

enabl ed space whol eSpace
protocol s

The following instance variables are defined in DragControl | er:

currentTarget

self. current Tar get (read-write) Dr agger

Specifies the object that the drag controller self is dragging. If the current target changes
while a drag is in progress, the new object must have the same value in its pr esent edBy
instance variable.

droplinterest

self. dr opl nt er est (read-write) MouseEvent

This event is registered as an interest so that the drag controller self can be notified
when an object it is controlling has been dropped. This event interest must be an
instance of MouseEvent . It defaults to an interest in MouseUpEvent objects that is
associated with the first mouse button (@wousebut t onl). Its event receiver is
processDr op. When a matching event is received, the receiver that registered this
interest calls dr op on the object current Tar get .

grabinterest

self. grabl nt er est (read-write) MouseEvent

This event is registered as an interest so that the drag controller self can be notified
when an object it is controlling has been grabbed. This event interest must be an
instance of MouseEvent . It defaults to an interest in MouseDownEvent objects that is
associated with the first mouse button (@mwousebut t onl). Its event receiver is
process@ ab. When a matching event is received, the receiver calls gr ab on the object
current Tar get .

offset

self. of f set (read-only) Poi nt

Specifies the offset from the origin (0, 0) of the target presenter self to the position within
the target presenter where the presenter was grabbed. This value is expressed in the
local coordinates of the target.

DragController

protocols

(Controller)

self. prot ocol s

(read-write)

Array

Specifies the required protocols for the drag controller self. For instances of
DragControl | er, this array contains the classes Dragger and TwoDPr esent er. Any
object added to a drag controller must inherit from these two classes. See the
Control | er class for a description of prot ocol s.

Instance Methods

Inherited from Col | ecti on:

add f or Each iterate
addvany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al | nmap
chooseAl | get Any ner ge
choosene get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngne hasBi ndi ng setAl |l

del et eKeyAl | haskey set One
del et ekeyCne i ntersects si ze

del et eOne i sEmpty

enpt yQut i sMenber

Inherited from | ndi rect Col | ecti on:

i sAppropri at eChj ect obj ect Added obj ect Renoved

Inherited from Control |l er:
i sAppropri at eChj ect tickle

Since a DragControl | er object is an indirect collection, you can also use any methods

defined in the class specified by t ar get Col | ecti on. The target collection is typically an

instance of Ar r ay, which inherits from Sequence, so the following instance methods are

redirected to this controller.

Accessible from Li near Col | ecti on:

chooseneBackwar ds fi ndRange get Nt hKey
chooseOr dCne f or EachBackwar ds get O dOne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop
Accessible from Sequence:
addFifth moveBackwar d set Fourth
addFi r st nmoveFor war d set Last
addFourth noveToBack setNth
addNt h nmoveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort
append setFifth
appendNew set Fi rst

The following instance methods are defined in DragControl | er:

239

DragController

240

processDrop

processDrop self interest event O (none)
self DragControl | er object
interest MouseEvent object, the dr opl nt er est of self
event MouseEvent object that matches interest

If the controller self is currently dragging an object, it calls dr op on that object. (No
testing is done.)

Do not call pr ocessDr op from the scripter. It is triggered automatically, and is visible to
the scripter so that it can be specialized. The method pr ocessDr op is the event receiver
for dropl nterest.

processGrab

processQ@ ab self interest event O (none)
self DragControl | er object
interest MouseEvent object, the gr abl nt er est of self
event MouseEvent object that matches interest

If whol eSpace is t r ue, pr ocessQ@ ab looks through the collection of draggers controlled
by the drag controller self to determine which dragger was hit. If whol eSpace is f al se,
process@ ab determines which dragger was hit by examining the pr esent er instance
variable of the event.

If a dragger was hit, process@ ab calls gr ab on that object. This triggers the associated
action. A dragger is considered hit if an event occurs within its boundary that matches
the corresponding interest. If no dragger was hit, then processG ab rejects the event.

Do not call process@ ab from the scripter. It is triggered automatically, and is visible to
the scripter so that it can be specialized. The method process@ ab is the event receiver
for grabl nterest.

tickle (Controller)
tickl e self clock 0O (none)
self DragControl | er object
clock a ock object of the space being controlled

The controller’s space calls ti ckl e on the drag controller self, supplying the space’s
clock as the value for clock. It calls ti ckl e once with every tick of the clock.

The drag controller polls the mouse device each time ti ckl e is called. If the mouse has
moved since the last tick of the clock, it calls bef or eDr ag on the associated presenter. It
then changes the presenter’s coordinates in the space, based on how far the mouse has
traveled. (The presenter will appear at the new position after the next compositor cycle.)
After it has changed the presenter’s coordinates, it calls af t er Dr ag. Both bef or eDr ag
and af t er Dr ag are defined by Dr agger.

For more information, see the documentation for the A ock and Control | er classes.
See also “The Ticklish Protocol” in the “Controllers” chapter of the ScriptX Components
Guide.

Dragger

Dragger

RootObject

Dragger

Class type: Core class (abstract, mixin)
Resides in: ScriptX and KMP executables
Inherits from: Root Cbj ect

Component: User Interface

Dragger is an abstract, mixin class with a set of fully implemented methods. Dr agger
must be used in conjunction with DragCont rol | er. Once you set up an instance of
DragControl | er to control a space, you can mix Dr agger into objects in that space to
make them draggable.

In a dragging operation, the user grabs an object, moves it, and finally drops it
somewhere within a space. The moving phase is really a continuous series of small
moves. Dragger has four methods corresponding with the four phases of dragging.

® grab for any operation that occurs prior to dragging

® bef oreDr ag for any operation that occurs at the beginning of each move.
® afterDrag for any operation that occurs at the end of each move

e drop for any operation that occurs when the object is dropped

These methods are not normally called directly from the scripter. They are visible to the
scripter so they can be specialized. Note that gr ab and dr op are each called only once,
at the beginning and end of a complete operation. During a dragging operation, the
associated drag controller polls the mouse device. Each time the mouse moves, this
controller calls bef or eDr ag, then moves the associated presenter, and finally calls

af t er Drag. This allows a script to define an action that occurs both before and after a
model object is moved, and to control how the object moves.

A developer can only change the position of an object within the presentation hierarchy
at the beginning or end of a drag operation. During a drag operation, DragContr ol | er
is limited to changing the location of a model object within that object’s current parent
presenter.

A developer could specialize gr ab (class-level specialization) or define a function in
grabAct i on (instance-level specialization) that moves the object higher in the
presentation hierarchy to get a greater range of movement. To change the space that
defines the range of movement for a Dr agger object, add that object to the new space.

See the DragCont rol | er class for a table that shows how instance variables and
methods defined by DragControl | er correspond with instance variables and methods
defined by Dr agger.

Creating and Initializing a New Instance

You do not create an instance of Dr agger —it is an abstract class. However, you can
create instances of concrete subclasses of Dr agger. Dr agger defines an i ni t method for
initializing these instances.

init

init self O (none)
self Dr agger object

Initializes the Dr agger object self. Do not call i ni t directly on an instance—it is called
automatically by the newmethod.

241

Dragger

Instance Variables

242

afterDragAction

self. af t er DragActi on (read-write) (function)

Specifies the function or method that is called after a drag operation on the dragger self.
This action is invoked only if the mouse has moved since the last time af t er Dr ag was
called. This function has three arguments:

funcNane authorData dragger point

authorData data in the aut hor Dat a instance variable.
dragger the dragger self that the action is attached to.
point the amount that the dragger self has moved since the

last time af t er Dr ag was called.

Although any global function, anonymous function, or method can be assigned to

af t er DragAct i on, there are differences in how different classes of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

authorData

self. aut hor Dat a (read-write) (object)

Supplied as the first argument when the functions defined by gr abAct i on,
bef or eDr agAct i on, af t er DragAct i on, and dr opAct i on are called. Can be any object.

beforeDragAction

self. bef or eDr agAct i on (read-write) (function)

Specifies the function or method that is called before a drag operation on the dragger
self. This action is invoked only if the mouse has moved since the last time bef or eDr ag
was called. This function has the same form and the same three arguments as the one
shown above in af t er DragAct i on. The point argument determines the amount by
which the dragger self will be moved since the last time bef or eDr ag was called. Note
that you can constrain movement by modifying the x and y in point.

Although any global function, anonymous function, or method can be assigned to

bef or eDr agAct i on, there are differences in how different classes of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

dragged

self. dr agged (read-write) Bool ean

Indicates whether or not the dragger self is currently being dragged. A value of true
indicates that self is being dragged; f al se indicates that it is not.

dropAction

self. dr opAct i on (read-write) (function)

Specifies the function or method that is called when a drag operation has been
completed on the dragger self. This function has the same form and the same three
arguments as the one shown above in af t er DragAct i on, except that the third
argument specifies the location of self after the drop occurs.

Dragger

Although any global function, anonymous function, or method can be assigned to
dropActi on, there are differences in how different classes of functions are dispatched.
For information on functions and function dispatch, see the “Object System Kernel”
chapter of the ScriptX Components Guide.

grabAction

self. grabAct i on (read-write) (function)

Specifies the function or method that is called when a drag operation has just begun on
the dragger self. This function has the same form and the same three arguments as the
one shown above in af t er Dr agAct i on, except that the third argument specifies the
offset between the object’s current location and its location when the pointer grabbed it.
It is at this point in a dragging operation, before the model object has actually moved,
that a Dragger object can promote itself to a different presenter in the presentation
hierarchy for a wider range of movement.

Although any global function, anonymous function, or method can be assigned to
grabAct i on, there are differences in how different classes of functions are dispatched.
For information on functions and function dispatch, see the “Object System Kernel”
chapter of the ScriptX Components Guide.

Instance Methods

afterDrag

afterDrag self delta O self
self Dr agger object
delta Poi nt object representing the distance moved

Calls the function or method specified in af t er DragAct i on. The value of delta is the
amount that the Dragger object self has moved since the last time af t er Dr ag was
called. The af t er Dr ag method is automatically called during a drag operation if the
mouse has moved since the last time af t er Dr ag was called. To specify an operation you
want to perform after each drag, you can either override af t er Dr ag (class-level
specialization) or specify a function in af t er Dr agAct i on (instance-level specialization).

beforeDrag

bef oreDr ag self delta O self
self Dr agger object
delta Poi nt object representing the distance moved

Calls the function or method specified in bef or eDr agAct i on. The value of delta is the
amount that the dragger self can move since the last time bef or eDr ag was called. Since
the drag has not yet occurred, it is possible to constrain movement. The bef or eDr ag
method is automatically called during a drag operation if the mouse has moved since
the last time bef or eDr ag was called. To specify an operation you want to perform
before each drag, you can either override bef or eDr ag (class-level specialization) or
specify a function in bef or eDr agAct i on (instance-level specialization).

drop

drop self point O self
self Dr agger object
point Poi nt object, representing the final location

243

Dragger

244

Calls the function or method specified in dr opAct i on. The value of point is the current
location of the dragger self (after the object is dropped). The dr op method is
automatically called when a drag operation has been completed on self. To specify an
operation you want to perform with each drop, you can either override dr op
(class-level specialization) or specify a function in dr opAct i on (instance-level
specialization).

grab

grab self offset O self
self Dragger object
offset Poi nt object

Calls the function or method specified in gr abAct i on. The gr ab method is called when
a drag operation has just begun on the dragger self. The value of offset is a Poi nt object
that indicates the offset between the object’s current location (its origin, in local
coordinates) and the location where the pointer grabbed it. To specify an operation you
want to perform each time an object is grabbed, you can either override gr ab
(class-level specialization) or specify a function in gr abAct i on (instance-level
specialization). If an object should be draggable outside its current presentation space,
then this method can be specialized to move that object higher in the presentation
hierarchy.

EmptyClass

EmptyClass

RootObject

EmptyClass

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Collections

Enpt yd ass is a class that represents an empty key or value. It has a unique instance
called enpt y, which is a global constant used with collections.

Note — Never insert the enpt y object into a collection. A number of collection methods
return enpt y as the value that signals “no matching elements” in the collection. Placing
the enpt y object in the collection would cause these methods to behave erratically, and
possibly fail altogether. Some collections report the badVal ue exception if you try to put
enpt y in them.

Creating and Initializing a New Instance

There is no reason to explicitly create an instance of Enpt yd ass, since the global
instance enpty is automatically created when the ScriptX runtime environment starts
up. See the chapter “Global Constants and Variables” for a definition of the global
instance enpty.

245

Event

Event

RootObject

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root Chj ect

Component: Events

Event is the root abstract class for all types of events. Each Event class serves two
functions in ScriptX: it indicates actual instances of an event, and it is used as a
template to register an interest in a particular event.

Events are used to describe both system and user-defined events. Instances of an Event
subclass are always created and signaled by software, but the event can originate with
either a software or a hardware condition. When an event is generated (for example,
when a mouse button is pressed), an instance of the event is created and the event is
delivered, through the event system, to a particular event receiver.

Events also express event interests. Every subclass of Event maintains a list of interests
that have been registered by event receivers. If an event is used to express an interest,
its event Recei ver instance variable indicates the function, method, or queue that
wants to receive the actual instance of the event. The interest is then registered with the
event class using the addEvent | nt er est method.

Creating and Initializing a New Instance

Although Event is an abstract class, it can be instantiated and it implements an i ni t
method that is called by its subclasses.

init

init self O (none)
self Event object

Initializes the Event object self. Do not call i ni t directly on an instance—it is
automatically called by the newmethod.

Class Variables

246

interests

self.interests (read-write) Col | ection

Specifies a collection of interests posted in objects of the Event class self. You cannot get
or set a value until the class has been instantiated. Normally, a script should not directly
add or remove elements from this collection. Direct modification of this collection on
any event class during event delivery can cause a system crash. Use addEvent | nt er est
and renoveEvent | nt er est to modify the interests collection.

Each class of Event determines which Col | ecti on subclass is used to store event
interests and what techniques are used for searching this collection. Scripted subclasses
are free to override i nt er est s to use any collection. A subclass can also override the
associated methods that search this collection, to arrange event interests in any
appropriate order. By default, interests are stored in an array arranged from minimum
to maximum according to the pri ority instance variable. Event interests of the same

Event

priority are inserted so that the most recently registered interests at a given priority
level come first. Among the core classes, MouseEvent and its subclasses specialize this
mechanism.

numinterests

self. num nterests (read-write) | nt eger

Keeps track of the number of interests currently registered for the Event class self. A
script cannot get or set the value of numi nt er est s for an event class until the class has
been instantiated.

Normally, a script should not set the value of num nt er est s. It is available to the
scripter so that developers who create new Event subclasses can modify the data
structure used for storing event interests. If you modify the i nt er est s collection
directly, without using addEvent | nt er est and r enoveEvent | nt er est, your changes
are not registered in nuni nt er est s.

Note that for the subclasses MouseUpEvent and MouseDownEvent, the value of
num nt er est s is always at least 1, even though no interests may be registered. This is
true for internal reasons, and has no logical effect on program execution.

Note — If you add (or remove) an event interest that has previously been added to (or
removed from) an interests collection, it is not added (removed) again, but the value of
num nt er est s is changed and is no longer accurate.

Class Methods

broadcastDispatch

br oadcast Di spat ch self event O Bool ean
self Event class
event Event object

Do not call br oadcast D spat ch directly from a script. This method contains the rules
for broadcast delivery of event for a given Event subclass. A script calls br oadcast, an
instance method on Event, and the br oadcast method in turn calls

br oadcast O spat ch. To override br oadcast D spat ch is to modify the mechanism for
broadcast delivery of the entire subclass of Event .

signalDispatch

si gnal D spat ch self event rejectable O Bool ean
self Event class
event Event object
rejectable Bool ean object

Do not call si gnal Di spat ch directly from a script. This method contains the rules for
signal delivery of event for the given Event subclass self. The rejectable argument
indicates whether the event is being signaled synchronously (t r ue) or asynchronously
(fal se). A script calls si gnal , an instance method on Event, and the si gnal method in
turn calls si gnal Di spat ch.

Override si gnal D spat ch to modify the mechanism for signal delivery of a subclass of
Event . For example, the class MouseEvent overrides si gnal Di spat ch so that it can
traverse the hierarchy of presenters and examine interests that are stored on presenters
in seeking an event interest that matches the event.

247

Event

Instance Variables

248

Note — The following two phrases are used below to refer to the type of event:

¢ “Interest-only” means the instance self is used as an event interest

® “Event-only” means the instance self holds an actual event

Some instance variables in the event system are overloaded; they have a different
interpretation, depending on whether an Event object represents an event interest or an
actual event.

advertised

self. adverti sed (read-only) Bool ean

Interest-only instance variable. Indicates whether an the event interest self is currently in
the i nt er est s collection maintained by its class or in a presenter’s event | nt erest's
collection. A call to addEvent | nt er est sets adverti sed to true;

renoveEvent | nt er est sets adverti sed to f al se.

authorData

self. aut hor Dat a (read-write) (object)

Interest-only instance variable. Specifies any data you want to associate with the event
interest self. This value is sent as the first argument of a function when a function is
used as an event receiver. The instance variable aut hor Dat a can take any object as its
value.

device

self. devi ce (read-write) I nput Devi ce

Events and event interests. For an event, devi ce specifies the input device, such as a
mouse or keyboard, that sent the event self. When an Event object represents an event,
the value of device is set automatically by the input device that sends the event.

For an event interest, devi ce can be used to specify which input device must send the
event in order for the event interest self to be satisfied. In subclasses of MbuseEvent and
Keyboar dEvent , the value of devi ce is set by default to the main input device, a mouse
or keyboard device, as appropriate. It is not necessary to explicitly set devi ce, unless
some other behavior is desired.

eventReceiver

self. event Recei ver (read-write) (function) or Event Queue

Interest-only instance variable. Specifies the event receiver, either an Event Queue or
Funct i on object, associated with the event interest self. Setting event Recei ver attaches
an interest to a particular receiver. The receiver cannot receive events, however, until
the interest is posted with its event class or presenter by calling addEvent | nt er est .

If the event receiver is a function, it must take three arguments. The first argument will
automatically receive the contents of aut hor Dat a on the associated interest. The second
and third arguments, respectively, receive the event interest and the event itself:

func authorData thelnterest theEvent

You should implement the function to return f al se or @ej ect to pass the event on to
the next event interest, or t r ue or @ccept to swallow the event.

Event

Several ScriptX core classes receive and process events automatically, including

Text Edi t, Scrol | Bar, and Act uat or Control | er. For an example of a method that is
an event receiver, see processEvent, which is defined by Scrol | Bar. For a discussion
of both functions and event queues as event receivers, and for sample scripts, see the
“Events and Input Devices” chapter of the ScriptX Components Guide.

Although any global function, anonymous function, or method can be assigned to
event Recei ver, there are differences in how different classes of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

matchedInterest

self. mat chedl nt er est (read-write) Event or Array

Event-only instance variable. Specifies the event interest or interests that matched the
event self. The return value becomes meaningful once delivery is complete. If the event
is signaled, final delivery is to a single matching interest. If the event is broadcast, it is
delivered to all event interests associated with the class, so nmat chedl nt er est returns
an array of interests that received the event.

Note that mat chedl nt er est is specialized by the MouseUpEvent class. Its setter method
is meant for use with interests in MouseUpEvent .

priority

self.priority (read-write) | nt eger

Interest-only instance variable. Specifies the priority of the event interest self. Priority is
used in storing an event interest on a class’s interest list. To change the priority of an
event interest, a script must explicitly remove it from the class’s interest list, reset its
priority, and then add it back on. Possible values range from 1 to 15, where 1 represents
the highest priority and 15 the lowest.

timeStamp

self. ti meSt anp (read-write) Longl nt eger

Specifies the time at which the event self was sent. The time is taken from the clock
stored in the global variable t heEvent Ti meSt anpd ock. (Note that this clock is created
by the event system upon initialization.)

Instance Methods

accept

accept self O Named ass

Accepts the event self by sending a reply to the waiting event queue with an accept
message. This method is used only if the event receiver is an event queue. Returns
@ccept if the event is accepted and @ej ect if it is rejected.

acquireRejectQueue

acqui r eRej ect Queue self O Event Queue

Returns a reject queue set up to receive accept/reject replies from another thread on the
event self. It gets the queue from the class’s reject queue pool. Every call to

acqui r eRej ect Queue must be balanced by a call to r el i nqui shRej ect Queue. This
method is normally not called from the scripter. A reject queue is a queue with a single
interest that is created automatically when an event is signaled synchronously.

249

Event

250

addEventinterest

addEvent I nt er est self O Event object

Adds the event self to the i nt er est s class variable for the event class. Reports the
exception noEvent Recei ver if the event Recei ver instance variable has not been set.
See also num nt erest s, a class variable defined by Event, which is discussed on
page 247.

broadcast

broadcast self O Bool ean

Delivers the event self to all interested parties. Returns t r ue if any party is interested
and f al se if no party is interested. Mouse and keyboard events cannot be broadcast.

isSatisfiedBy

i sSatisfiedBy self event O Bool ean
self Event object that represents an event interest
event Event object that represents an actual event

Tests whether an event interest is satisfied by an event. Do not call i sSat i sfi edBy
directly from a script. It is called by the event system as a result of calling either si gnal
or broadcast .

By default, i sSati sfi edBy returns t r ue. The method exists to be overriden on
subclasses of Event, so that an author can define further comparisons and conditions
before an event is delivered to an actual receiver. Several subclasses of Event in the core
classes, including MouseEvent and Keyboar dEvent, specialize i sSat i sfi edBy to make
such comparisons.

reject

reject self O Bool ean

Rejects the event self. This will send a reply to the waiting event queue with a reject
message. This method is used only if the event receiver is an event queue.

relinquishRejectQueue

rel i nqui shRej ect Queue self 0 Event Queue

Returns a reject queue that was acquired by the method acqui r eRej ect Queue to the
class’s reject queue pool. This method is normally not called from the scripter. See the
definition of acqui r eRej ect Queue on page 249.

removeEventinterest

renoveEvent | nt er est self O Event subclass

Removes the event self from the i nt er est s class variable for the Event subclass. See
also nuni nt er est s, a class variable defined by Event, which is discussed on page 247.

sendToQueue

sendToQueue self queue O Bool ean
self Event object
queue Event Queue object

Event

Places the event self in the specified queue. Returns tr ue if the event is added to the
queue successfully and f al se if queue is not accessible. If called from a regular thread,
sendToQueue always returns t r ue, unless the queue is inaccessible. If the queue is full,
the thread will block until it can deliver the event.

Note that sendToQueue does not check event interests. It places the event in the queue
automatically, and the receiving queue cannot reject it. sendToQueue only returns f al se
if it is unable to write to the queue. This can happen when the queue is not writable. For
example, a process that is running in another thread may have acquired a lock on the
queue.

signal

signal self rejectable O Bool ean
self Event object
rejectable Bool ean

Delivers the event self to the interested party with the highest priority. If rejectable is

t rue, this method waits until the interested party accepts or rejects the event, and the
event is handled synchronously. If the event is rejected, si gnal delivers it to the next
interested party. If rejectable is f al se, then it does not allow the original party to reject
the event, and the event is handled asynchronously. Returns t r ue if the event is
delivered to one or more parties and f al se if there are no interested parties or if all
parties refuse to handle the event.

251

EventDispatchQueue

EventDispatchQueue

RootObject

Stream

PipeClass

EventQueue

EventDispatchQueue

Class type Concrete

Resides in: ScriptX and KMP executables
Inherits from: Event Queue

Component: Events

Represents a queue of events that will be dispatched sequentially. When queued events
are initially dispatched, they are placed on an event dispatch queue. When the event
reaches the end of such a queue, the event is delivered to any interested parties.

Events are added to and removed from the queue using methods that are defined on
St ream Note that since the Event Di spat chQueue class represents a non-seekable
stream, certain methods that are defined on St r eamreport an exception if called on
Event Di spat chQueue.

ScriptX creates a global instance of Event D spat chQueue, stored in the global variable
t heU Event Di spat chQueue, known informally as the user interface event dispatch
queue. If you create a scripted subclass of QueuedEvent, you can choose to process
events through this queue, or you can create another instance of Event D spat chQueue
and process them separately.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Event Di spat chQueue class:

nyEDQueue : = new Event D spat chQueue

The variable nyEDQuUeue contains a new instance of Event D spat chQueue. The new
method applies the i ni t method defined on Event D spat chQueue, which takes no
keyword arguments.

init

init self O (none)
self Event Di spat chQueue object

Initializes the Event D spat chQueue object self. Do not call i ni t directly on an
instance—it is automatically called by the new method.

Instance Variables

Inherited from Pi ped ass:

br oken maxS ze t hr ead
| abel si ze

252

EventDispatchQueue

The following instance variables are defined in Event D spat chQueue:

dispatchThread

self. di spat chThr ead (read-write) Thr ead
Specifies the thread that reads from the Event D spat chQueue object self.

Instance Methods

Inherited from St ream

cur sor next seekFronft ar t
flush pl ug set Streaniength
i SAt Front previ ous streaniengt h
i sPast End read wite
i sReadabl e r eadReady wr it eReady
i sSeekabl e seekFr omQur sor
isWitabl e seekFr onEnd
Inherited from Pi ped ass:
acqui reQueue isWitabl e r eadReady
br eakPi pe pi peSi ze rel i nqui shQueue
i sPast End pi peS zeQ Fai | wite
i sReadabl e read wr it eNowCr Fai |
i sSeekabl e r eadNowCr Fai | wri t eReady

The following instance methods are defined by Event D spat chQueue.

processEventQueue

processEvent Queue self 0 Bool ean

Do not call this method from the scripter. This method reads events off the event
dispatch queue and delivers them according to the rules of the QueuedEvent class. The
event dispatch queue is the primary queue, through which queued events must pass to
ensure orderly processing by the event system. In general, this method is not
overridden.

253

EventQueue

EventQueue

RootObject

Stream

PipeClass

EventQueue

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Pi ped ass

Component: Events

The Event Queue class enables the use of events as a communications mechanism
between threads in a multithreaded program. An Event Queue object represents a
stream of events that match a particular interest or group of interests. It is legal for the
function that reads from the queue to examine all the events in the queue and process
them in any order.

Events are added to and removed from the queue using methods that are defined by
St ream Note that since the Event Queue class represents a non-seekable stream, certain
methods that are defined by St r eamreport an exception if called on Event Queue.

Each event class holds a collection of event interests, that is used to identify events that
should be placed with a particular receiver. An Event Queue object can be the event
receiver when an event interest is added to the event class’s interest list. An event
receiver is specified by the event Recei ver instance variable defined by Event .

Creating and Initializing a New Instance

254

The following script is an example of how to create a new instance of the Event Queue
class, attaching a thread that has been defined previously:

nyEvent Queue := new Event Queue thread: nyThr ead

The variable nyEvent Queue contains an initialized instance of Event Queue. The thread
myThr ead is the thread that will be activated when an event is placed in the queue—
presumably, its function reads events that are placed in this queue. The newmethod
applies the i nit method on Event Queue.

init

init self [thread: thread] [undefined: undefined] O (none)
self Event Queue object
Superclasses of Event Queue use the following keywords:
t hr ead: Thr ead object associated with the Event Queue object
undef i ned: reserved for future use

Initializes the Event Queue object self, applying the arguments as follows: t hr ead: is a
Thr ead object associated with the Event Queue instance self. This thread is activated
when objects are placed in the queue. Do not call i ni t directly on an instance—it is
automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

t hr ead: undef i ned
undef i ned: undef i ned

EventQueue

Instance Variables

Inherited from Pi ped ass:

br oken maxS ze t hr ead
| abel si ze

Instance Methods

Inherited from St ream

cur sor next seekFronst art
flush pl ug set Streaniength
i SAt Front previ ous streaniengt h
i sPast End read wite
i sReadabl e r eadReady wr it eReady
i sSeekabl e seekFr omQur sor
isWitabl e seekFr onEnd
Inherited from Pi ped ass:
acqui r eQueue isWitabl e r eadReady
br eakPi pe pi peSi ze rel i nqui shQueue
i sPast End pi peS zeQ Fai | wite
i sReadabl e read wr it eNowCr Fai |
i sSeekabl e r eadNowCr Fai | wri t eReady

Note that many inherited methods, defined by Stream are specialized by Pi ped ass.
The Event Queue class applies the method that it inherits from Pi ped ass.

255

Exception

Exception

RootObject

Exception

For all the Excepti on classes, see Appendix B, “Exceptions”.

256

ExplicitlyKeyedCollection

ExplicitlyKeyedCollection

RootObject

Collection

ExplicitlyKeyedCollection

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Col | ection

Component: Collections

Expl i ci t] yKeyedCol | ecti on is an abstract class that implements certain methods
from the Collection protocol in ways that are unique to collections with explicit keys.

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded naxSi ze si ze
iteratord ass m nSi ze uniformty
keyEqual Conpar at or nut abl e uni form tyd ass

keyUni form ty

nut abl eCopyd ass

val ueEqual Conpar at or

keyUni form tyd ass propri et ored

Instance Methods

Inherited from Col | ecti on:

add f or Each iterate
addiany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al nap
chooseAl | get Any ner ge
chooseCne get KeyAl | pi pe
choose(neBi ndi ng get Keyne prin

del eteAl | get Many renmoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngne hasBi ndi ng set Al

del et eKeyAl | haskey set (e
del et eKeyne i ntersects si ze

del et eCne i sEmpty

enpt yQut i sMenber

257

Exporter

Exporter

RootObject

Exporter

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Import and Export

The Exporter class is an abstract class and is not instantiable. | npor t Expor t Engi ne
objects use subclasses of Exporter to export data. Each subclass of Exporter is an
exporter conversion class that converts one specific type of internal data object to a
specific external data format—for example, a bitmap TwoDShape object to the @i ct
format.

An exporter conversion class, or export filter, is a subclass of Expor t er that implements
an expor t ToSt r eammethod.

The current release of ScriptX supports only one exporter, the text exporter.

Creating and Initializing a New Instance

Note — When exporting data, do not create an instance of an Export er subclass directly.
Create an instance of | npor t Expor t Engi ne, then call the export Medi @ method on that
instance. | npor t Expor t Engi ne creates an instance of the proper subclass of Export er
automatically.

init

init self mediaCategory: name inputMedi aType: name

out put Medi aType: name O (none)
self Export er object

nedi aCat egor y: Narred ass object

i nput Medi aType: Narred ass object

out put Medi aType: Naned ass object

Initializes the Export er object self, applying the keyword arguments that specify the
media category, and the types of input and output media. Do not call i ni t directly on
an instance—it is automatically called by the new method.

Instance Variables

258

inputMediaType

self. i nput Medi aType (read-only) Naned ass

Specifies the type of media that the exporter self converts—for example, @i ct, @i ff
or @wave.

mediaCategory

self. medi aCat egory (read-only) Nared ass

Specifies the category of media that the exporter self converts and exports—for example,

@ound.

Exporter

outputMediaType

self. out put Medi aType (read-only) Naned ass

Specifies the type of media that the exporter self exports—for example, @i ct .

Instance Methods

exportToStream

expor t ToSt r eam self source destination O destination
self Expor t er object
source Any object
destination St r eamobject

Returns the destination object that export ToSt r eamcreates. The argument source is the
object to export using the exporter self. The argument destination is the stream to which
to export the data. If the object in source is unknown to the Expor t er, this method
generates the exception unknownd ass.

Some exporters allow for extra arguments beyond those listed above. It is then up to the
individual exporter to interpret those extra arguments.

259

Fan

Presenter

TwoDPresenter

TransitionPlayer

Class type: Loadable class (concrete)

Resides in: [trans. |ib. Works with ScriptX and KMP executables.
Inherits from: TransitionPl ayer

Component: Transitions

The Fan transition player provides a visual effect that causes the target to gradually
appear swept in a clockwise or counter-clockwise fashion, as shown below. The target
appears when the transition is played forward, and disappears when played backward
(transition’s rate set to -1).

_l]vae

Directions: @I ockwi se, @nt i cl ockwi se (yes, really)

Rate: Can play forward or backward.

For a side-by-side illustrations of all transitions, see the Transitions chapter in the
ScriptX Components Guide.

Creating and Initializing a New Instance

260

The following script is an example of how to create a new instance of the Fan class:

nyTransition := new Fan \
duration: 60 \
direction: @l ockwi se \
t ar get : nyShape

The variable nyTr ansi t i on contains the initialized transition. The transition reveals the
image nyShape in a clockwise direction and has a duration of 60 ticks.

You determine which space the transition will take effect in by adding this instance into
that space. Then, when you play the transition player, nyShape is transitioned into that
space.

The newmethod uses the keywords defined ini nit.

NOTE - For the instance variables and methods, see the Bar nDoor class.

Fixed II%!II

Fixed

RootObject

Number

Class type:
Resides in:
Inherits from:
Component:

Core class (concrete, sealed)
ScriptX and KMP executables

Nunber
Numerics

The Fi xed class represents numbers to + 215 (32,768), with 16 bits of fractional
information (1/216).

Creating and Initializing a New Instance

The Fi xed class has no scripter-level newor i ni t method. You create a Fi xed object by
coercing an object that belongs to one of the other Nunber classes.

Instance Methods

Inherited from Nunber :

abs
acos
asin

at an

at an2
ceiling
coerce
cos
cosh
degTor ad
exp

fl oor
frac

i nver se
In

| og
nax
mn
nod
nor ph
negat e
power

radToDeg
random
rem
round
sin

sinh
sqrt

tan

t anh
trunc

261

Flag

RootObject

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Gate

Component: Threads

The Fl ag class represents a a gate whose st at e instance variable remains @pen over a
period of time, until it is explicitly closed (its st at e becomes @/ osed). Threads can
wait on a flag, and when that flag is set to @pen, all threads that were waiting on it are
made active (runnable).

A thread waits on a Fl ag object with either the gat eVai t global function or the
acqui r e method. The two are equivalent, except that acqui r e is a generic function.

Creating and Initializing a New Instance

The following script creates a new instance of the Fl ag class:

flg := new Flag \
| abel : @1 ag_21

The variable f | g contains the initialized flag. The newmethod uses keywords defined in
init.

init

init self [label:object] 0 (none)
self Fl ag object
| abel : Any object

Initializes the Fl ag object self. The value supplied with the keyword | abel is any object
that is displayed when you print, which is useful for debugging. Do not call i ni t
directly on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The default is:
| abel : undefi ned

Instance Variables

Inherited from Gat e:
| abel state

Instance Methods

262

Inherited from Gat e:
acquire relinqui sh

Float

Float

RootObject

Number

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Nunber

Component: Numerics

The Fl oat class represents 64-bit IEEE 754 or larger floating-point numbers.

Creating and Initializing a New Instance

You do not need to explicitly create or initialize an instance of the Fl oat class—simply
use a number the size of a float in a script. Whenever the compiler encounters a number
that cannot be represented as an | mredi at eFl oat object without loss of precisions, it
automatically promotes the number to a Fl oat object. Any floating point constant
represented by seven or more decimal digits is promoted to Fl oat (for example,

1. 234567). The Fl oat class has no scripter-level newor i ni t method.

Instance Methods

Inherited from Nunber :

abs f1 oor radToDeg
acos frac random
asin i nver se rem

at an I'n r ound
at an2 | og sin
ceiling nmax sinh
coerce mn sqrt
cos nod tan
cosh nor ph tanh
degTor ad negat e trunc
exp power

263

FocusEvent

FocusEvent

RootObject

QueuedEvent
FocusEvent

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: QueuedEvent

Component: Events

The FocusEvent class is used to direct input from a particular input device to a given
presenter. For example, it directs characters typed on a keyboard to an instance of
Text Edi t. The target of a focus event is a TWoDPr esent er object that is designated by
the present er instance variable. In this example the target is the Text Edi t instance.
(Although focus events are most commonly used with Text Edi t presenters, the concept
of focus applies to any 2D presenter.)

The current version of the Kaleida Media Player supports two input devices: a
keyboard and a mouse. At present, focus events direct input only from keyboard
devices. The FocusEvent class provides a flexible mechanism for focusing input that
could be extended to support other input devices.

Presenters store interests in their event | nt er est s instance variable. When the user
uses the mouse to click on such a presenter that is interested in focus, the presenter
informs the focus manager. The focus manager is a class that is associated with an input
device, but it is hidden at the scripter level.

The focus manager maintains a private record of which presenter currently has focus. It
sends a FocusEvent object whose f ocusType instance variable is set to @ oseFocus to
the presenter that is losing focus. It sends another FocusEvent object to the new
presenter, with f ocusType set to @ai nFocus.

Among the core classes, the Text Edi t class creates and registers interests in receiving
focus events that relate to keyboard devices. A Text Edi t object is a specialized
presenter that receives keyboard input. When the focus of a keyboard device changes
from one presenter to another, each Text Edi t object that is affected receives a focus
event. In this way, the FocusEvent class is used as a notification device, telling

Text Edi t objects when to add or remove their interests in keyboard events.

Creating and Initializing a New Instance

264

The following script creates a new instance of the FocusEvent class:

pr esbyopi cFocus : = new FocusEvent

The variable pr esbyopi cFocus contains an initialized focus event. The new method
calls the i ni t method, defined by FocusEvent and its superclass, Event . Although the
i ni t method applies no keyword arguments, it is necessary to set the devi ce,

event Recei ver, and present er instance variables before registering a FocusEvent
object as an event interest.

init

init self O (none)

self FocusEvent object

FocusEvent

Initializes the FocusEvent object self. Do not call i ni t directly on an instance—it is
automatically called by the newmethod.

Class Variables

Inherited from Event :
interests num nterest s

Class Methods

Inherited from Event :

acqui r eQueueFr onPool rel i nqui shQueueToPool
br oadcast D spat ch si gnal D spat ch

Instance Variables

Inherited from Event :

adverti sed event Recei ver ti meStanp
aut hor Dat a mat chedl nt er est
devi ce priority

The following instance variables are defined in FocusEvent :

Note — The following two phrases are used below to refer to the type of event:
¢ “Interest-only” means the instance self is used to express an event interest.
¢ “Event-only” means the instance self holds an actual user event.

focusType

self. f ocusType (read-only) Naned ass

Event-only instance variable. Indicates the nature of the change in focus for the
presenter that receives the focus event self. Can take on one of three possible values:

@ oseFocus, @ai nFocus, and @ est or eFocus. If this value is @ oseFocus, a presenter
that formerly had focus has lost its focus and should remove its interests in events that
are generated by the device that sent the event. If this value is @ai nFocus or

@est or eFocus, then the presenter that receives the focus event should add or restore
interests in events generated by that device. The value @ai nFocus indicates that the
presenter itself has gained focus. The value @ est or eFocus indicates that another
object or script, not the presenter itself, caused the presenter to gain focus.

presenter

self. pr esent er (read-write) TwoDPr esent er

Interest-only instance variable. Specifies the presenter that will be the target of a change
in focus by the focus event interest self.

Instance Methods

Inherited from Event:

accept i sSati sfiedBy sendToQueue
acqui r eRej ect Queue rej ect si gnal
addEvent | nt er est rel i nqui shRej ect Queue

br oadcast removeEvent | nt er est

265

FocusEvent

266

The following instance methods are defined in FocusEvent :

broadcast (Event)

br oadcast self O Exception

Reports the cant Br oadcast exception if called on the focus event self.

isSatisfiedBy (Event)

i sSatisfiedBy self focusEvent 0 Bool ean
self Event object that represents an event interest
focusEvent Event object that represents an actual event

Tests whether the event interest self is satisfied by the focus event. Do not call
i sSati sfi edBy directly from a script. It is called by the event system as a result of
calling either si gnal or broadcast.

The class FocusEvent specializes i sSati sfi edBy to test whether the event focusEvent
was sent to the same presenter as the event interest self.

Font

Font

RootObject

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Text and Fonts

The abstract Font class and its concrete subclass Pl at f or nFont provide a way for other
ScriptX objects (such as text presenters) to locate font data. To render fonts, ScriptX uses
the native font technology of the platform on which it is run (Macintosh or Windows).
ScriptX can only use outlines or bitmaps of fonts installed and available on the system.

The Font and Pl at f or nFont classes provide access to a typeface (for example,
Helvetica or New Times Roman). Variations on that typeface (Bold, Italic, Condensed)
are accessed through the use of attributes on the Text or Text Present er classes.

Creating and Initializing a New Instance

Font is an abstract class and cannot be generally instantiated. To create general font
objects, use the Pl at f or nFont class instead. However, the following expression can be
used to create an instance of the default system font (Helvetica on the Macintosh, Arial
on Windows):

nyFont := new Font

The variable nyFont contains a new instance of Pl at f or nfFont .

Class Variables

The following class variable is defined on the Font class:

default

self. def aul t (read-only) Pl at f or nfFont

Specifies the default system font (an instance of Pl at f or nFont).

267

FontContext

FontContext

RootObject

FontContext

Class type: Scripted class (concrete)

Resides in: wi dget s. sx| . Works with ScriptX and KMP executables
Inherits from: Root (bj ect

Component: User Interface

The Font Cont ext class provides a template that can be used to determine the text style
of text label in an object or set of objects in the ScriptX widget library. A Font Cont ext
object incorporates the name of the font, its size, and its leading and descent.

Creating and Initializing a New Instance

The following script creates a new instance of Font Cont ext :

gl obal nyFC := new Font Cont ext \
font Nane: "Pal ati no" \
fontSize:12 \
| eadi ng: 15 \
descent: 4

The global variable nyFC contains the initialized Font Cont ext object. The values
supplied for the keywords f ont Nane, f ont Si ze, | eadi ng, and descent determine the
appearance of widgets whose labels are rendered using nyFCas a font context.

The newmethod uses keywords defined in i nit.

init
init self [font Nane:string] [font S ze: number |
[| eadi ng: number] [descent : number] O (none)
self Font Cont ext object
f ont Nane: String object
font Si ze: Nurber object
| eadi ng: Nurber object
descent : Nurber object

Initializes the Font Cont ext object self, applying the keyword arguments to set the initial
values of instance variables of the same name.

If you omit an optional keyword, its default value is used. The defaults are:

f ont Nane: (applies the system default font)
font Si ze: (varies by platform)

| eadi ng: (varies by platform)

descent : (varies by platform)

Class Variables

268

defaultDescent

self. def aul t Descent (read-write) Nurber

Specifies the default descent for instances of Font Cont ext . When the Font Cont ext
class is initialized, it queries the system to determine the system font, and sets the
default descent accordingly.

FontContext

defaultFont

self. def aul t Font (read-write) St ri ngConst ant

Specifies the default font name for instances of Font Cont ext. When the Font Cont ext
class is initialized, it queries the system to determine the system font, and sets the
default font accordingly.

defaultLeading

self. def aul t Leadi ng (read-write) Nunber

Specifies the default leading for instances of Font Cont ext. When the Font Cont ext
class is initialized, it queries the system to determine the system font, and sets the
default leading accordingly.

defaultSize

self. defaul t Si ze (read-write) Nunber

Specifies the default font size for instances of Font Cont ext . When the Font Cont ext
class is initialized, it queries the system to determine the system font, and sets the
default size accordingly.

Instance Variables

descent

self. descent (read-write) Nunber
Specifies the descent that is used in rendering text in labels that use the Font Cont ext
object self.

font

self. f ont (read-write) Pl at f or nfFont

Specifies the Pl at f or nFont object that is used to render text in labels that use the
Font Cont ext object self.

fontName

self. f ont Narre (read-write) St ri ngConst ant

Specifies the name of the font that is used to render text in labels that use the
Font Cont ext object self.

fontSize

self. font Si ze (read-write) Nunber

Specifies the size of the font that is used to render text in labels that use the
Font Cont ext object self.

leading

self. | eadi ng (read-write) Nunber

Specifies the leading that is used in rendering text in labels that use the Font Cont ext
object self.

269

Frame

Frame

RootObject

Class type: Scripted class (concrete)

Resides in: wi dget s. sx| . Works with ScriptX and KMP executables
Inherits from: Root (bj ect

Component: User Interface

The Fr ane class provides a template that can be used to determine the appearance of an
object or set of objects in the ScriptX widget library. A Fr ane object incorporates
information about how a widget should be drawn to a surface—what its boundary is,
and what brushes are used to render it to a surface. Aspects of this appearance that are
determined by the widget’s frame include the following;:

® The size of the widget, which is set via the boundary keyword at initialization.

® The color of its text label, boundary, drop shadow, and fill, and its appearance when
it is disabled, which are set via the schene instance variable.

Creating and Initializing a New Instance

270

The following script creates a new instance of Frame:

gl obal nyFrame := new Frane \
schene: (new Col or Schene brushl ndexArray: #(1,4,7,5)) \
boundary: (new Rect x2:128 y2:32)

The global variable nyFr ane contains the initialized Fr ane object. The Col or Schene
object that is specified determines the colors of the text label, fill, boundary, and drop
shadow when this Fr ane object is use to draw a widget. The Rect object that is
supplied with the boundary keyword is supplied as an argument to set Boundary, an
instance method defined by Fr ane. It determines the size and layout of an associated
widget’s box.

The newmethod uses keywords defined in i ni t.

init

init self scheme: colorScheme boundary: rect O (none)
self Fr ane object
schene: Col or Schene object
boundary: Rect object

Initializes the Fr ane object self, applying the keyword schene to set the value of the
instance variable schene, and applying the keyword boundary to call set Boundary,
which determines the values of the instance variables t opLef t Pat h and bot R ght Pat h.
All keywords are required.

Frame

Instance Variables

botRightPath

self. bot Ri ght Pat h (read-write) Pat h

Specifies the Pat h object that is used in drawing the bottom and right boundaries of a
widget object to a surface. The Fr ane object self is incorporated into widgets as a
property, and determines the appearance of the widget’s box.

scheme

self. schene (read-write) Col or Schene

Specifies a Col or Schene object that determines which brushes are used in drawing a
widget object to a surface. The Fr ane object self is incorporated into widgets as a
property, and determines the appearance of the widget’s box.

topLeftPath

self. t opLeft Pat h (read-write) Pat h

Specifies the Pat h object that is used in drawing the top and left boundaries of a widget
object to a surface. The Fr ame object self is incorporated into widgets as a property, and
determines the appearance of the widget’s box.

Instance Methods

drawLoweredFrame
dr awLover edFr ane self surface clip transform O Surface
self Fr ane object
surface Sur f ace object, an instance of Bi t nrapSur f ace or
PrinterSurface
clip Stenci | object
transform TwoDlVat ri x object

Draws the paths that create the drop-shadow of a widget object that is drawn using the
Fr ame object self. This path is drawn to the given surface, using the given clip as a
clipping stencil, with a position and orientation determined by the transform matrix.

drawRaisedFrame

dr awRai sedFr ane self surface clip transform O Surface
self Fr ame object
surface Sur f ace object
clip Stenci | object
transform TwoD\Vat ri x object

Draws the paths that create the raised surface of a widget object that is drawn using the
Fr ane object self. This path is drawn to the given surface, using the given clip as a
clipping stencil, with a position and orientation determined by the transform matrix.

setBoundary

set Boundary self boundary 0 Path
self Fr ane object
boundary Rect object

Sets the values of the instance variables t opLef t Pat h and bot R ght Pat h for the widget
frame self, incorporating a drop shadow.

271

FullScreenWindow

FullScreenWindow

272

RootObject
m Presenter Collection

TwoDPresenter

IndirectCollection

TwoDMultiPresenter

TwoDSpace
Window

FullScreenWindow

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: W ndow

Component: Spaces and Presenters

The Ful | Scr eenW ndow class represents a non-modal visible region that fills the screen,
from edge to edge. Technically speaking, an instance of Ful | Scr eenW ndowis actually a
full-screen display surface which has an active region (window) that can be full-screen
or smaller. The active region is the window, which is a clipping region—objects outside
this active region are not visible. The region outside of the window. to the edge of the
screen, is the border. The size of the active region is determined by the boundary
instance variable. The active region is refreshed every tick of the clock; the border
region is drawn once with the brush specified by border Fi | | and, for efficiency, is not
refreshed.

Any kind of window can appear in front of a full-screen window. See the W ndow class
for further details about windows in general.

For a side-by-side description of all window classes, see the “Spaces and Presenters”
chapter in the ScriptX Components Guide.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Ful | Scr eenW ndow class:

nyFul | Screen := new Ful | Scr eenW ndow \
title:rnyTitle

The variable nyFul | Scr een contains an initialized full-screen window. The window
belongs to the title container nyTi t| e, and fills the screen from edge to edge, with no
title bar showing. The newmethod uses keywords defined by the i ni t method.

For a completely full-screen window, you can hide the menu bar by calling;:

hi de theTitl eCont ai ner. syst emvenuBar

FullScreenWindow

init

init self [type:name] [titl e: titleContainer] [centered: boolean] [nane: string |
[composi t or : twoDCompositor | [boundary: stencil] [fill: brush]
[borderFill:brush] [scal e: integer] [stroke: brush] [target: object]

[target Col | ecti on: sequence] O (none)
self Ful | Scr eenW ndow object

borderfill: Br ush object

Superclass W ndow defines the following keywords:

type: Ignored by Ful | Scr eenW ndow

title: Ti t| eCont ai ner object

cent er ed: Bool ean object

nare: Ignored by Ful | Scr eenW ndow

conposi tor: TwoDConposi t or object

Superclasses of W ndow use the following keywords:

boundary: Rect object representing the window perimeter
fill: Br ush object to fill the background

scal e: I nt eger object

st roke: Ignored by Ful | Scr eenW ndow

target: Ignored by Ful | Scr eenW ndow

target Col | ecti on: Sequence object

stationary: Bool ean object

This method is inherited from W ndow with only a few changes to keyword arguments:
borderFi | | (not present in Wndow) is applied to the instance variable of the same
name, and name has no visible effect, since a full-screen window has no title bar. The
cent er ed keyword makes a difference only if the boundary is smaller than the screen—
it centers the boundary on the screen. This is noticeable if you set borderFi |l to

bl ackBr ush, for example. The boundary keyword has a different default behavior—it is
set to the dimensions of the screen.

If you omit an optional keyword, its default value is used. The defaults are:

border Fi | | : undefi ned
boundary: (set to the dimensions of the screen)
stationary:fal se

Refer to the W ndow class for more details about other keywords.

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded naxSi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass propri et ored

Inherited from | ndi rect Col | ect i on:
target Col | ection

Inherited from Present er:
pr esent edBy subPresenters t ar get

273

FullScreenWindow

274

Inherited from TwoDPr esent er :

bBox hei ght transform
boundary IslnplicitlyD rect wi dt h

cl ock i sTranspar ent wi ndow
comnposi t or isVisible X

direct needsTi ckl e y
eventlnterests position z

gl obal Boundary stationary

gl obal Transf orm t ar get

Inherited from TwoDMul ti Present er:
cl ock fill stroke

Inherited from Space:

cl ock pr ot ocol s tickl eLi st
controllers

Inherited from TwoDSpace:
protocol s

Inherited from W ndow:

col or map hasUser Focus title
di spl aySurface nane
fill syst envenuBar

The following instance variables are defined in Ful | Scr eenW ndow:

borderFill

self. borderFi | | (read-write) Brush

If you specify the boundary of the full-screen window self to be smaller than the full
screen, only that smaller area is active—the border Fi | | instance variable specifies the
brush to fill the region outside this active area, as shown below. The border Fi | | brush
is drawn directly to the border, bypassing the compositor. This region extends to the
edge of the desktop. If border Fi | | is undef i ned, the border of the window is not
redrawn.

borderFill

displaySurface (Window)

self. di spl aySur f ace (read-only) D spl aySur f ace

Specifies the display surface onto which the full screen window self is displayed. This
display surface is created automatically when the window is instantiated. For the more
general W ndow class, the dimensions of the window’s own boundary rect coincide with
those of its display surface. In contrast with other window classes, a Ful | Scr eenW ndow
object is associated with a display surface whose boundary is a Rect object that has the
same dimensions as the screen itself.

type (Window)

self. type (read-only) Naned ass

Returns @or nal , always.

FullScreenWindow

Instance Methods

Inherited from Col | ecti on:

add

addvany
addToCont ent s
chooseAl |
choosene
chooseeBi ndi ng
del et eAl |

del et eBi ndi ngAl |
del et eBi ndi ngOne
del et eKeyAl |

del et eKeyCne

del et etne

enpt yQut

f or Each

f or EachBi ndi ng
get Al

get Any

get KeyAl |
get KeyOne
get Many
get e
hasBi ndi ng
hasKey

i ntersects
i SEmpty

i sMenber

Inherited from | ndi r ect Col | ecti on:

i sAppr opri at eChj ect

Inherited from TwoDPr esent er :

adj ust d ockMast er
createl nterestList
dr aw

get Boundar yl nPar ent
hi de

obj ect Added

i nsi de

| ocal ToSur f ace
not i f yChanged
recal cRegi on
refresh

Inherited from TwoDMul ti Present er:

draw
findA | At Poi nt
findA I I nStencil
findFirst At Poi nt

Inherited from Space:
i sAppr opri at eChj ect

Inherited from W ndow:

bri ngToFr ont
cl ear

copy

findFirstlnStencil

i SAppropri at eChj ect

noveBackwar d
noveFor war d

obj ect Added

cut
hi de
past e

iterate

| ocal Equal
map

ner ge

pi pe

prin
renoveA |
removeOne
setAll

set One

si ze

obj ect Renoved

show
sur f aceTolLocal
tickle

noveToBack
rmoveToFr ont
obj ect Added
obj ect Renoved

obj ect Renoved

sendToBack
show

Since any instance of W ndowis an indirect collection, you can also use any methods

defined in the class specified by t ar get Col | ect i on. The target collection is typically an
instance of Ar r ay, which inherits from Sequence, so the following instance methods are
redirected to a full screen window.

Accessible from Li near Col | ecti on:

chooseeBackwar ds
chooseQr dOne

del et eFi r st

del et eLast

del eteNt h

del et eRange

Accessible from Sequence:

addFi fth
addFi r st
addFourth
addN h
addSecond
addThird
append
appendNew

fi ndRange

f or EachBackwar ds
get First

get Last

getMddl e

getNth

noveBackwar d
noveFor war d
noveToBack
noveToFr ont
pr epend

pr ependNew
setFifth

set First

get Nt hKey
get O dne
get Range

| ocal Equal
| ocal LT

pop

set Fourth
set Last
setNth
set Second
set Third
sort

275

GarageDoor

GarageDoor

Presenter

TwoDPresenter

TransitionPlayer

GarageDoor
Class type: Loadable class (concrete)
Resides in: Itrans. |ib. Works with ScriptX and KMP executables.

Inherits from: TransitionPl ayer
Component: Transitions

The Gar ageDoor transition player provides a visual effect that causes the target to
gradually appear horizontally starting either from the center (@pen) or from the top
(@l ose) as shown below. The target appears when the transition is played forward,
and disappears when played backward (transition’s rate set to -1).

@pen

= =)

@l ose

B =)

Directions: @pen, @!| ose

Rate: Can play forward or backward.

For a side-by-side illustrations of all transitions, see the Transitions chapter in the
ScriptX Components Guide.

Creating and Initializing a New Instance

276

The following is an example of how to create a new instance of the Gar ageDoor class:

nyTransition := new GarageDoor \
duration: 60 \
di rection: @pen \
t ar get : nyShape

The variable nyTr ansi t i on contains the initialized transition. The transition reveals the
image nyShape horizontal from the center first and has a duration of 60 ticks. You
determine which space the transition will take effect in by adding this instance into that
space. Then, when you play the transition, nyShape is transitioned into that space.

NOTE - For the instance variables and methods, see the Bar nDoor class.

Gate

Gate

RootObject

Class type: Core class (abstract, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Threads

The Gat e class represents any obstacle to the execution of a thread. When a thread
acquires a gate, the gate’s st at e instance variable is set to @l osed to block the thread
from executing. The thread does not continue execution until the gate’s st at e instance
variable is set to @pen (the gate is relinquished). The three concrete subclasses of Gat e
are Condi ti on, Fl ag, and Lock.

The Gat e class hierarchy is sealed, meaning that gates cannot be subclassed or
specialized. However, gates are often attached to other ScriptX objects, allowing those
objects to behave much like gates. For example, you could attach read and write locks
to any objects in a database implementation, to create a database that is thread safe.

Instance Variables

label

self. | abel (read-write) (object)

Specifies a label for the gate self that is displayed when you print a representation of the
the gate to a stream, such as the console stream. Any object can be used as a label, but
the most useful is generally a string constant. Since gates are used internally by other
classes, such as pipes and event queues, this label is useful for debugging.

State

self. state (read-only) Nared ass

Indicates the current state of the gate self, either @pen or @I osed. If it is @pen, then
threads do not have to pause to acquire the gate. If it is @| osed, then threads will block
if they try to acquire the gate.

Instance Methods

acquire

acqui re self O (none)

Acquires the gate self. This directly translates into gat eVi t self. A thread that calls
acqui r e on the gate blocks until the state of the gate is @pen.

This generic function exists to allow for the definition of classes that behave like Gat e
objects. This can be done by redefining acqui r e to mean acqui r e x where x is a gate
that the class knows about. For an example of a scripted class that adds a gate as an
instance method and defines an acqui r e method, see the discussion of collections and
threads in the “Collections” chapter of the ScriptX Components Guide.

relinquish

relinqui sh self O (none)

Relinquishes the gate self. This translates directly into the global function openGat e self.
(See the discussion of acqui r e for more information.)

277

Generic

Generic

RootObject

AbstractFunction

Generic

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Abstract Function
Component: Object System Kernel

A Generi c object represents a generic function. ScriptX methods are invoked indirectly
through the use of generic functions, allowing for the separation of interface and
implementation. Generic functions allow a single generic name and argument list to
refer to multiple implementations of the given generic function that may exist for
different classes and objects.

Generic functions are called identically to global functions, with the restriction that a
generic must always take the target object as its first positional argument.

For more information on ScriptX function dispatch, see the “Object System Kernel”
chapter of the ScriptX Components Guide.

Creating and Initializing a New Instance

278

You do not define an instance of Generi ¢ directly. An instance of Generi c is created
automatically when a method definition expression is compiled, and no existing generic
has a name binding in the current module for that method.

It is possible to create an instance of Generi ¢ in C, using the Extending ScriptX APL For
information on the extending ScriptX, see the ScriptX Developer’s Guide.

GenericButton

GenericButton

RootObject

Presenter

TwoDPresenter

GenericButton

Class type: Scripted class (abstract)

Resides in: wi dget s. sx| . Works with ScriptX and KMP executables.
Inherits from: TwoDPr esent er and Act uat or

Component: User Interface

The Generi cBut t on class is a user interface Widget Kit class that provides
characteristics that are inherited by all other Widget Kit button classes.

The Generi cBut t on class provides the basic functionality for presenting and
controlling simple buttons as elements of the user interface. (If you need a button that
has different user interaction, see the PushBut t on class.) An actuator controller
associated with the button receives and processes mouse events. When generic buttons
are pressed, released, or activated, they can invoke an action, a function that is defined
by a script.

Creating and Initializing a New Instance

Since Generi cBut t on is an abstract class, do not create an instance of Generi cButt on,
but rather subclass it. Do not call the i ni t method on Generi cButt on directly but use
next Met hod to call i ni t from any subclass of Generi cBut t on that overrides i ni t, to
properly initialize instances of the subclass.

init

init self [enabled:true] [activateAction: function] O (none)
self Generi cBut t on object
enabl ed: Bool ean object
activat eAction: function

Initializes the Generi cBut t on object self, applying the values supplied with the
keywords to the instance variables of the same name.

If you omit one of the keyword arguments, the following defaults are used:

enabl ed: true
act i vat eAct i on: undefi ned

Instance Variables

Inherited from Act uat or:

enabl ed pressed t oggl edn
nenu

Inherited from Present er:
pr esent edBy subPresenters t ar get

Inherited from TwoDPr esent er:
bBox gl obal Regi on transform

279

GenericButton

280

boundary gl obal Transform wi dth
changed hei ght wi ndow
cl ock i mageChanged X
conposi t or isVisible y

di rect position z
eventInterests stationary

gl obal Boundary t ar get

The following instance variables are defined in Generi cBut t on:

activateAction

self. acti vat eActi on (read-write) (function)

Specifies the function that is called when the generic button self is activated. Initially
this instance variable is undef i ned. You can write a function to perform any action.
This function has two arguments:

funcNane authorData self

authorData data in the aut hor Dat a instance variable
self the Gener i cBut t on object self to which the action is
attached

Although any global function, anonymous function, or method can be assigned to

act i vat eAct i on, there are differences in how different classes of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

authorData

self. aut hor Dat a (read-write) (object)

Used as an argument for the function that is specified by act i vat eActi on,
pressAction, and r el easeAct i on. This instance variable can be any object.

pressAction

self. pressActi on (read-write) (function)

Specifies the function that is called when the generic button self is being pressed. The
function has two arguments, as shown above in acti vat eAct i on.

Although any global function, anonymous function, or method can be assigned to
pressActi on, there are differences in how different classes of functions are dispatched.
For information on functions and function dispatch, see the “Object System Kernel”
chapter of the ScriptX Components Guide.

releaseAction

self. rel easeActi on (read-write) (function)

Specifies the function that is called when the generic button self has been pressed and is
released without being activated. Typically, this happens when the user has moved the
mouse pointer away from the button before releasing it. The function has two
arguments, as shown above in acti vat eAct i on.

Although any global function, anonymous function, or method can be assigned to

rel easeAct i on, there are differences in how different classes of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

GenericButton

Instance Methods

Inherited from Act uat or:

activate press t oggl e:r f
mul ti Activate rel ease t oggl etn

Inherited from TwoDPr esent er:

adj ust d ockMast er i nsi de show

createl nterestList | ocal ToSurf ace sur f aceTolLocal
dr aw not i f yChanged tickle

get Boundar yl nPar ent recal cRegi on

hi de refresh

The following instance methods are defined in Generi cButt on:

activate (Actuator)

activate self O self

Tells the generic button self that it has been activated, specializing the act i vat e method
defined by Act uat or. If the Generi cBut t on object self is enabled, act i vat e calls the
function specified by the act i vat eAct i on instance variable. The two arguments to that
function are aut hor Dat a and self.

multiActivate (Actuator)
nul ti Acti vat e self numberOfClicks O self
self Generi cBut t on object
numberOfClicks I nt eger object indicating number of clicks

If the Generi cBut t on object self is enabled, nul ti Acti vat e calls acti vat e and then
calls the mul ti Acti vat e method defined by Act uat or. The Generi cBut t on class does
not define separate actions to take if the user clicks the generic button multiple times,
but a subclass of Generi cBut t on could specialize mul ti Acti vat e to take different
actions for different numberOfClicks mouse clicks that the button receives.

press (Actuator)

press self O self

Tells the generic button self that it has been pressed, specializing the pr ess method
defined by Act uat or. If the Generi cBut t on object self is enabled, pr ess calls the
function specified by the pressAct i on instance variable. The two arguments to that
function are aut hor Dat a and self.

release (Actuator)

rel ease self O self

Tells the generic button self that it has been released, specializing the r el ease method
defined by Act uat or. If the Generi cBut t on object self is enabled, r el ease calls the
function specified by the r el easeAct i on instance variable. The two arguments to that
function are aut hor Dat a and self.

281

Gravity

Gravity

RootObject

Collection
IndirectCollection
Controller

TwoDController

Gravity

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TwoDControl | er
Component: Controllers

The Gravi ty class is a controller that, when used with the Movenent controller, causes
one or more Proj ecti | e objects to accelerate in a specified direction. You can specify
the acceleration and direction of gravity.

For each projectile in the gravity controller’s space, the ti ckl e method incrementally
modifies the velocity of each projectile. Note that the gravity controller doesn’t actually
move the projectile—it only changes the value of its vel oci ty instance variable. The
Movenent controller moves the projectile according to its current value of velocity. See
the Proj ecti | e class for more details.

A Gravi ty object is a collection of the Proj ecti | e objects it controls. These projectiles
must also be in the space that the controller is controlling. Projectiles are either
automatically or manually added to the gravity controller, according to the whol eSpace
instance variable. If whol eSpace is f al se, you can use the methods defined by

Col | ecti on to add and remove objects from the gravity controller. To ensure that only
projectiles are added to a gravity controller, the pr ot ocol s instance variable is set to the
Proj ectil e class. See the Control | er class for descriptions of whol eSpace,

prot ocol s, and other general properties of controllers.

Creating and Initializing a New Instance

282

The following script is an example of how to create a new instance of the @ avi ty class,
after first creating the space it will control:

nySpace := new TwoDSpace boundary: (new Rect x2:200 y2:200)
nyGavity := new Gavity space: nySpace whol eSpace:true

The variable nyQ avi ty contains the initialized gravity controller. This controller is set
to control all model objects in mySpace. The new method uses the keywords defined in
init.

init

init self [space:space] [whol eSpace: boolean] [enabl ed: boolean |
[target Col | ecti on: sequence] O (none)

self G avi ty object

Gravity

The superclass Cont rol | er uses the following keywords:

space: Space object
whol eSpace: Bool ean object
enabl ed: Bool ean object

The superclass TwoDCont r ol | er uses the following keyword:

target Col | ection: Sequence object (use with caution)
Initializes the G avi ty object self, applying the keyword arguments to instance
variables of the same name. Use discretion in changing the target collection; for more

information, see the definition of the TwoDCont r ol | er class. Do not call i nit directly
on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

space: undef i ned

whol eSpace: f al se

enabl ed: true

target Col l ection: (new Array initial Size:4 growabl e:true)

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded naxSi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass propri et ored

Inherited from | ndi rect Col | ecti on:
target Col | ection

Inherited from Control | er:

enabl ed space whol eSpace
protocol s

The following instance variables are defined in Gravi ty:

acceleration

self. accel erati on (read-write) Poi nt

Specifies the rate at which a projectile would be accelerated by the gravity self. The
acceleration has both x and y components, specified as a Poi nt object.

protocols (Controller)

self. prot ocol s (read-write) Array

This instance variable initially contains the class Proj ecti | e for the interpolator self.
This means that any object added to a G avi ty controller must have Proj ecti | e as one
of its superclasses. See the Control | er class for further description about this instance
variable.

283

Gravity

Instance Methods

284

Inherited from Col | ecti on:

add f or Each iterate
addvany f or EachBi ndi ng | ocal Equal
addToContent s get Al nap
chooseAl | get Any ner ge
choosee get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngOne hasBi ndi ng setAll

del et eKeyAl | haskey set One
del et eKeyCne i ntersects si ze

del et eOne i SEmpty

enpt yQut i sMenber

Inherited from | ndi r ect Col | ecti on:

i sAppr opri at eChj ect obj ect Added obj ect Renoved

Inherited from Control | er:

i sAppr opri at eChj ect tickle
Since a G avi ty controller is an indirect collection, you can also use any methods
defined in the class specified by t ar get Col | ect i on. The target collection is typically an

instance of Ar r ay, which inherits from Sequence, so the following instance methods are
redirected to this controller.

Accessible from Li near Col | ecti on:

chooseneBackwar ds fi ndRange get Nt hKey
chooseOr dne f or EachBackwar ds get 0 dOne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop
Accessible from Sequence:
addFifth nmoveBackwar d setFourth
addFi r st noveFor war d set Last
addFourth noveToBack setNth
addNt h noveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort
append setFifth
appendNew set First
The following instance methods are defined in G- avi ty:
tickle (Controller)
tickl e self clock O self
self QG avity class
clock A ock object of the space being controlled

At each tick of the specified clock, this method incrementally modifies the velocity of
each projectile controlled by the gravity controller self. This method modifies the
velocity in the following way (where nyPr oj is the projectile):

nyProj.velocity.x :=
nyProj.velocity.x +

Gravity

(nyProj . accel eration.x * (self. space. cl ock. scal e/ 100))

nyProj.velocity.y :=
nyProj.velocity.y +
(nyProj.acceleration.y * (self. space.cl ock.scal e/ 100))

A callback calls this method on the gravity self, supplying the space’s clock as the value
for clock. The callback calls this method once every tick of the space’s clock.

For further details, refer to the section “The Ticklish Protocol” in the chapter
“Controllers” in the ScriptX Components Guide.

285

GroupPresenter

GroupPresenter

286

Presenter Collection

TwoDPresenter

IndirectCollection

TwoDMultiPresenter

GroupPresenter

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TwoDMl ti Present er
Component: Spaces and Presenters

The G oupPr esent er class represents a group of presenters. It is the same as
TwoDMIl ti Present er but with two differences:

® The boundary of the group presenter is the union of its subpresenters—the group
presenter does not clip its subpresenters. That is, the group presenter’s boundary
grows to include objects that are added to it. A TwoDMul ti Present er instance,
however, has a boundary that is fixed and clips its subpresenters.

® The boundary of the group presenter is a region with the irregular shape made up
by its subpresenters. The boundary is not necessarily a rectangle, as it is with
TwoDMIl ti Presenter.

The stroke of a group presenter outlines the region formed by its subpresenters, as
shown in the following illustration. The fill of a group presenter would not be apparent
unless any of its subpresenters is invisible. When new members are added to a group
presenter, it sorts its subpresenters in their proper z-order, the same as

TwoDMIl ti Presenter .

=
Figure 5: An example of GroupPresenter

In the newand i ni t methods, the target and boundary keywords are ignored. The
value for boundary is discarded. However, the value for t ar get is saved in the t ar get
instance variable and is available for use in any subclass you might create, as a target
for a presenter. For example, you might save a series of numbers to the target, and use
them to determine the heights of bars in a bar chart.

Note — Besides i ni t, a @ oupPr esent er has no additional variables or methods beyond
those it inherits. See TwoDMul ti Pr esent er for its functional interface.

GroupPresenter

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Q oupPresent er class:

nyGoup := new G oupPresenter

The variable nyG oup contains the initialized group presenter. The boundary of this
instance enlarges or reduces to the union of the presenters it contains. The new method
uses the keywords defined in i nit.

For performance reasons, when creating an instance of G oupPr esent er (actually, any
instance of TwoDMIl ti Present er or its subclasses), you should not specify the

target Col | ecti on keyword, so it can create its default collection. Such presenters
require collections that can be traversed quickly when drawing and handing events.
Performance could suffer if you change the value of t ar get col | ecti on to something
other than the default.

init

init self [fill:brush] [stroke:brush] [target: object]

[boundary: region] [target Col | ecti on: sequence] O (none)
self Q oupPr esent er object

fill: Br ush object

st roke: Br ush object

Superclasses of G oupPr esent er use the following keywords:

target: Any object (ignored by & oupPr esent er)
boundary: Regi on object (ignored by G oupPr esent er)
target Col | ecti on: Sequence object (use carefully)
stationary: Bool ean object

Initializes the G oupPr esent er object self, applying the values supplied with the
keywords to instance variables of the same name. The t ar get keyword is ignored by
G oupPr esent er, but you are free to use it in a subclass. The target Col | ection
keyword specifies the kind of collection to create. Do not call i ni t directly on an
instance—it is automatically called by the new method.

If you omit an optional keyword, its default is used. The defaults are:

t ar get : undef i ned

fill:undefined

st roke: undef i ned

boundary: (new Regi on)

target Col l ection: (new Array initial Size: 14 growabl e:true)
stationary: fal se

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded nmaxSi ze si ze
iteratord ass mnSi ze uniformty
keyEqual Conpar at or nut abl e uni form tyd ass

287

GroupPresenter

keyUni formty nut abl eCopyd ass
keyUni form tyd ass proprietored

val ueEqual Conpar at or

Inherited from | ndi rect Col | ect i on:
target Col | ection

Inherited from Presenter:
pr esent edBy subPresenters t ar get

Inherited from TwoDPr esent er :

bBox hei ght transform
boundary IslnplicitlyD rect wi dth

cl ock i sTranspar ent wi ndow
conposi t or isVisible X

di rect needsTi ckl e y
eventlnterests position z

gl obal Boundary stationary

gl obal Tr ansf orm t ar get

Inherited from TwoDMul ti Present er:
cl ock fill stroke

Instance Methods

Inherited from Col | ecti on:

add f or Each iterate
addvany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al nap
chooseAl | get Any ner ge
choosee get KeyAl | pi pe
chooseneBi ndi ng get Keyne prin

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngne hasBi ndi ng setAl |

del et eKeyAl | haskey set One
del et ekeyCne i ntersects si ze

del et eOne i sEmpty

enpt yQut i sMenber

Inherited from | ndi rect Col | ecti on:

i sAppr opri at eChj ect obj ect Added obj ect Renoved

Inherited from TwoDPr esent er:

adj ust d ockMast er i nsi de show

createl nterestLi st | ocal ToSurf ace sur f aceTolLocal
dr aw not i f yChanged tickle

get Boundar yl nPar ent recal cRegi on

hi de refresh

Inherited from TwoDMul ti Present er:

dr aw findFirstlnStencil nmoveToBack
findAl | At Poi nt i SAppropri at eChj ect nmoveToFr ont
findAl I InStencil noveBackwar d obj ect Added
findFirstAt Point noveFor war d obj ect Renoved

Since a G oupPr esent er object is an indirect collection, you can also use any methods
defined in the class specified by t ar get Col | ect i on. The target collection is typically an
instance of Ar r ay, which inherits from Sequence, so the following instance methods are
redirected to a group presenter.

288

GroupPresenter

Accessible from Li near Col | ecti on:

chooseneBackwar ds fi ndRange get Nt hKey
chooseOr dCne f or EachBackwar ds get O dOne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop
Accessible from Sequence:
addFi fth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourth noveToBack setNth
addN h noveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort
append setFifth
appendNew set First

289

GroupSpace

GroupSpace

290

RootObject
m Presenter Collection

TwoDPresenter

IndirectCollection
TwoDMultiPresenter

GroupPresenter

GroupSpace

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Space and @ oupPr esent er
Component: Spaces and Presenters

The G oupSpace class provides a way to group presenters together so that they can
move, receive events and in other ways be treated as a single object.

The G oupSpace class is a combination of the Space and G oupPr esent er classes. It is
essentially a space (with a clock, controllers, and protocols), having the additional
properties of a G oupPr esent er object:

® The boundary of the group space is the union of its subpresenters—the group space
does not clip its subpresenters. That is, the group space’s boundary grows to include
objects that are added to it. In contrast, TwoDSpace has a boundary that is fixed and
clips its subpresenters.

® The boundary of the group space is a region with the irregular shape made up by its
subpresenters. The boundary is not necessarily a rectangle, as it is with TwoDSpace.

The stroke of a group space outlines the region formed by its subpresenters, as shown
in the following illustration. The fill of a group space would not be apparent unless any
of its subpresenters is invisible. When new members are added to a group space, it sorts
its subpresenters in their proper z-order, the same as TwoDMul ti Pr esent er

=

The G oupSpace class is implemented internally as an Arr ay.

In the newand i ni t methods, the target and boundary keywords are ignored. The
value supplied with boundary is discarded. However, the value supplied with t ar get
is saved in the t ar get instance variable and is available for use in any subclass you
might create, as a target for a presenter. For example, you might save a series of
numbers to the target, and use them to determine the heights of bars in a bar chart.

GroupSpace

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the G oupSpace
class: (Note that boundary and t ar get are both omitted because they are ignored.)

nyGoup := new G oupSpace \
fill:whiteBrush \
stroke: bl ackBrush \
scal e: 10

The variable ny@G oup contains an instance of G oupSpace. This instance has a white
background, a black border, and its clock is set to 10 ticks per second. You then add
objects to this group using the methods available to the Array class. The newmethod
uses the keyword arguments defined by the i ni t method.

For performance reasons, when creating an instance of G oupSpace (actually, any
instance of TwoDMIl t i Present er or its subclasses), you should not specify the

target Col | ecti on keyword, so it can create its default collection. Such presenters
require collections that can be traversed quickly when drawing and handing events.
Performance could suffer if you change the t ar get col | ect i on to something other than
the default.

init

init self [fill:brush] [stroke:brush] [scal e:integer]

[target:object] [boundary:region] [targetCollection:sequence] O (none)
self Q@ oupSpace object

fill: Br ush object

stroke: Br ush object

Superclasses of & oupSpace use the following keywords:

scal e: I nt eger object
target: Any object
boundary: Regi on object
stationary: Bool ean object
target Col | ecti on: Sequence object

Initializes the G oupSpace object self, applying the values supplied with keywords to
instance variables of the same name. The t arget Col | ecti on keyword specifies the
kind of collection to create. Do not call i ni t directly on an instance—it is automatically
called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:
t ar get : undef i ned
fill:undefined
st roke: undef i ned
boundary: (new Regi on)
scal e: 24
target Col | ection: (new Array initial Size:14 growabl e:true)
stationary:fal se

Class Methods

Inherited from Col | ecti on:
pi pe

291

GroupSpace

Instance Variables

Inherited from Col | ecti on:

bounded maxSi ze si ze
iteratord ass m nSi ze uniformty
keyEqual Conpar at or nut abl e uni form tyd ass

keyUni formty
keyUni form tyd ass

target Col | ection

Inherited from Presenter:

nut abl eCopyd ass
proprietored

Inherited from | ndi rect Col | ecti on:

val ueEqual Conpar at or

292

pr esent edBy subPresenters target
Inherited from TwoDPr esent er :

bBox hei ght transform

boundary IslnplicitlyD rect wi dt h

cl ock i sTranspar ent wi ndow

comnposi t or isVisible X

direct needsTi ckl e y

eventlnterests position z

gl obal Boundary stationary

gl obal Transf orm t ar get
Inherited from TwoDMIl ti Presenter:

cl ock fill stroke
Inherited from Space:

cl ock protocol s tickl eLi st

controllers
The following instance variables are defined in G oupSpace:

protocols (Space)

self. prot ocol s (read-only) Array

The protocols array for instances of G oupSpace is initialized to contain the class
TwoDPr esent er. This means that any object added to an instance of G oupSpace must
have TwoDPr esent er as one of its superclasses. See the Space class for further
description about this instance variable.

The attribute “read-only” means that you cannot make the pr ot ocol s instance variable
point to a different array—"read-only” does not stop you from adding or removing
items from the array.

GroupSpace

Instance Methods

Inherited from Col | ecti on:

add

addvany
addToCont ent s
chooseAl |
choosene
chooseeBi ndi ng
del et eAl |

del et eBi ndi ngAl |
del et eBi ndi ngOne
del et eKeyAl |

del et eKeyCne

del et etne

enpt yQut

f or Each

f or EachBi ndi ng
get Al

get Any

get KeyAl |
get KeyOne
get Many
get e
hasBi ndi ng
hasKey

i ntersects
i SEmpty

i sMenber

Inherited from | ndi r ect Col | ecti on:

i sAppr opri at eChj ect

Inherited from TwoDPr esent er :

adj ust d ockMast er
createl nterestList
dr aw

get Boundar yl nPar ent
hi de

obj ect Added

i nsi de

| ocal ToSur f ace
not i f yChanged
recal cRegi on
refresh

Inherited from TwoDMul ti Present er:

draw
findA | At Poi nt
findA I I nStencil
findFirst At Poi nt

Inherited from Space:
i sAppr opri at eChj ect

findFirstlnStencil

i SAppropri at eChj ect

noveBackwar d
noveFor war d

obj ect Added

iterate

| ocal Equal
map

ner ge

pi pe

prin
renoveA |
removeOne
setAll

set One

si ze

obj ect Renoved

show
sur f aceTolLocal
tickle

noveToBack
rmoveToFr ont
obj ect Added
obj ect Renoved

obj ect Renoved

Since a G oupSpace object is an indirect collection, you can also use any methods
defined in the class specified by t ar get Col | ecti on. The target collection is typically an
instance of Ar r ay, which inherits from Sequence, so the following instance methods are

redirected to a group space.

Accessible from Li near Col | ecti on:

chooseneBackwar ds
chooseQr d(ne

del et eFi r st

del et eLast

del eteNth

del et eRange

Accessible from Sequence:

addFi fth

addFi r st

addFourth

addN h

addSecond

addThird

append

appendNew

fi ndRange

f or EachBackwar ds
get First

get Last

getMddl e

getNth

noveBackwar d
noveFor war d
noveToBack
noveToFr ont
pr epend

pr ependNew
setFifth

set First

get Nt hKey
get O dOne
get Range

| ocal Equal
| ocal LT

pop

set Fourth
set Last
setNth
set Second
set Third
sort

293

HashTable

HashTable

RootObject

Collection

ExplicitlyKeyedCollection

HashTable

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: ExplicitlyKeyedCol | ecti on
Component: Collections

A HashTabl e object is a collection of key-value pairs, implemented using a
bucket-based hash table data structure.

A hash table has a fixed number of buckets, each of which is conceptually a growable
array. Since the buckets are growable, they can become arbitrarily large without
overflowing. This minimizes the overhead associated with search and retrieval,
however there is overhead associated with adding new items to a hash table, especially
as the number of items stored in any individual bucket grows large. Choose the number
of buckets judiciously to reflect the trade-off between maintenance time when adding
items, search time when retrieving items, and memory requirements.

At initialization, a developer has the option to specify a hash function, using the hasher
keyword. Each bucket must be searched in a linear fashion to retrieve values. An
effective and efficient hash function is one that requires little processing time, while
spreading data stored in the hash table evenly over buckets.

If a hashing function is not supplied when an instance of HashTabl e is created, then all
keys added to a HashTabl e object must implement the hashGf method (see note on
page 295).

Creating and Initializing a New Instance

294

The following script is an example of how to create a new instance of the HashTabl e
class:

nyCor nedBeef Hash : = new HashTabl e \
nunBucket s: 250

The variable nyCor nedBeef Hash contains the initialized hash table, with 250 buckets.
The newmethod uses the keywords defined ini nit.

init

init self [hasher: function] [nunBuckets: integer] O (none)
self HashTabl e object
hasher : Abst r act Funct i on object
nunBucket s: I nt eger object

HashTable

Initializes the HashTabl e object self, applying the values supplied with the keywords as
follows: A table with the number of buckets specified by nunBucket s is created.
Optimal hash distribution depends on the hasher function that is used to return a hash
value for the key value, but using a prime number for nunBucket s is often advisable.
Do not call i ni t directly on an instance—it is automatically called by the new method.

If you omit an optional keyword, the following defaults are used:

hasher : hashCr
nunBucket s: 27

Note — In the core classes, only St ri ng, Naned ass, and | rmedi at el nt eger provide an
implementation of hashC . Scripted classes, and other classes in the core classes, can be
specialized to implement hashCf, or a developer can specialize another function to use
as a hasher. A hasher function can be defined that calls the generic hashC on keys that

implement it, such as names and strings.

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded nmaxSi ze si ze
iteratord ass mnSi ze uniformty
keyEqual Conpar at or nut abl e uni form tyd ass

keyUniformty
keyUni form tyd ass

Instance Methods

Inherited from Col | ecti on:

nut abl eCopyd ass
proprietored

val ueEqual Conpar at or

add f or Each iterate
addMany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al l nmap
chooseAl | get Any mer ge
choosene get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One removeOne
del et eBi ndi ngne hasBi ndi ng setAl |l

del et eKeyAl | haskey set ne
del et ekeyCne i ntersects si ze

del et eOne i sEmpty

enpt yQut i sMenber

295

HashTablelterator

HashTablelterator

RootObject

Stream

Iterator

HashTablelterator

Class type:
Resides in:
Inherits from: |terator

Component: Collections

The HashTabl el t erat or class represents iterators that iterate over any HashTabl e

objects.

Core class (concrete)
ScriptX and KMP executables

Creating and Initializing a New Instance

A new instance of a hash table iterator is generally created by calling i t erat e on an

instance of HashTabl e.

Instance Variables

Inherited from | t erat or:
key

Instance Methods

Inherited from St ream

cur sor
flush

i SAt Front

i sPast End

i sReadabl e
i sSeekabl e
isWitable

Inherited from | t erat or:

exi se
remai nder

296

source

next

pl ug

previ ous

read

r eadReady
seekFr omQur sor
seekFr ontnd

seekKey

val ue

seekFronft ar t
set Streaniength
streaniength
wite

wr it eReady

seekVal ue

HTMLStream

HTMLStream

RootObject

Stream
ByteStream

HTMLStream

Class type: Loadable class (concrete)

Resides in: web. | i b. Works with ScriptX and KMP executables
Inherits from: Byt eStream

Component: Streams

The HTM_St r eamclass implements the parsing of ASCII text data. HTML is a standard
for data transmission over the Internet and the World Wide Web.

HTML tags are delimited by angle brackets, which may enclose multiple starting
elements or a single ending element. In the following example, the anchor tag contains
the HREF starting element. The value of that HREF element is a string, the URL (universal
resource locator) for Apple Computer’s World Wide Web server. In this example, the
text “Apple Computer” is enclosed by the start element and end element. A slash after
the initial angle bracket delimiter indicates an ending element or closing tag.

Appl e Conput er </ A>

The anchor tag thus applies to the text that is enclosed by the start element and the end
element. An HTMLSt r eamobject is a parser that passes through an ASCII text file and
calls one of three functions on each character or element.

When you create an instance of HTM.St r eam you supply three parsing functions as
keyword arguments: st art El enent, endEl enent, and put Char act er. These functions
can be methods defined by a subclass of HTMLSt r eam or they can be primitives (global
functions). Parsing functions are good candidates for using the ScriptX external API that
is described in the “Extending ScriptX” chapter of the ScriptX Tools Guide.

The start El enent function has the following form:

functionNane stream integer [key: value 1*

The first argument is the stream itself. The second argument is an integer, the integer
value of the HTML tag. A complete list of HTML tags and their integer values follows.
Finally, the start El enent function takes a variable-length list of HTML elements. In
the example above, the <A> tag (anchor) has the integer value 0, and is supplied with
one element, the HREF element. The value of this HREF element is supplied to the
start E enent function, assigned to the keyword argument HREF, as a string with the
value "http:// wwwv appl e. cont'. Thus, if start Functi on is a ScriptX function, and
nyHTM_St r eamis an HTMLSt r eamobject that is instantiated with st art Funct i on as the
value supplied for st art E enent, then st art Functi on could be called as follows:

start Functi on nyHTM.Stream O HREF: "http://ww appl e. cont

Keyword arguments to this function correspond to the possible HTML elements for the
given tag. The start function should ignore any elements it does not understand or
implement. (In this way, it does not break as new elements are added to the HTML
standard.)

297

HTMLStream

298

The endHE enent function has the same form as the start El enent function, except that
it does not take keyword arguments. If endFuncti on is a ScriptX function that is used
to instantiate nyHTM_St r eam) then endFunct i on could be called as follows:

endFunction nyHTM.Stream 0O

Finally, the function supplied for put Char act er is called with the stream and the
character, represented as an integer, as arguments:

functi onNane stream integer

ScriptX has no character data type, so integer represents an ASCII character having a
value between 0 and 127. If handl eChar act er is a ScriptX function, supplied as the
value of put Char act er to instantiate nyHTM_St r eam then handl eChar act er could be
called as follows to handle the lowercase “a” character, which has an ASCII value of 97:

handl eChar act er nyHTM.Str eam 97

The following table supplies a list of HTML tags and their integer values in the ScriptX
HTMLSt r eamclass:

A 0 I SI NDEX 44
ABBREV 1 KBD 45
ABSTRACT 2 L 46
ACRONYM 3 LI 47
ADDED 4 LI NK 48
ADDRESS 5 LI STI NG 49
ARG 6 LIT 50
B 7 MARG N 51
BASE 8 NVATH 52
BLOCKQUOTE 9 MENU 53
BCDY 10 NEXTI D 54
BOX 11 NOTE 55
BR 12 a 56
BYLI NE 13 CPTION 57
CAPTI CN 14 OVER 58
CHANGED 15 P 59
aTE 16 PERSON 60
avw 17 PLAI NTEXT 61
QCDE 18 PRE 62
COMMVENT 19 Q 63
DD 20 QUOTE 64
DFN 21 RENDER 65
DR 22 REMOVED 66
oL 23 S 67
Dr 24 SAW 68
EM 25 SELECT 69
FIG 26 STRONG 70
FOOTNOTE 27 SUB 71
FCRM 28 SuP 72
HL 29 TAB 73
H2 30 TABLE 74
H3 31 TD 75
H4 32 TEXTAREA 76
H5 33 TH 77
Ho 34 TI TLE 78
H7 35 TR 79
HEAD 36 T 80

HTMLStream

HR 37 U 81
HTML 38 (VR 82
HTMLPLUS 39 VAR 83
| 40 XWP 84
I MAGE 41 XSCR PTX 85
I M5 42 LAST 86
I NPUT 43

Creating and Initializing a New Instance

The following script creates a new instance of HTM.STr eam

gl obal nyHTM_Parser := new HTM.Parser \
startE ement: start Function \
endHE enent : endFunction \
put Char act er : handl eChar act er

The functions st ar t Funct i on, endFunct i on, and handl eChar act er are assumed to be
defined elsewhere, either as scripted methods on a subclass of HTM.St r eam as global
functions, or as primitives or methods defined in C and bound to ScriptX names
through the ScriptX external API. The newmethod uses keyword arguments defined by
init.

init

init self [startE enent: function] [endH enent: function]
[put Char act er : function]

self HTM_STr eamobject

start H enent : Byt eCodeMet hod or Pri ni tive object
endHE erent : Byt eCodeMet hod or Prim ti ve object
put Char acter: Byt eCodeMet hod or Pri m ti ve object

O (none)

Initializes the HTMLSt r eamobject self, where st art El enent, endE enent, and
put Char act er can each be used to specify a function that is called automatically. Do
not call i ni t directly on an instance—it is called automatically by the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:

start El enent : undefi ned
endH enent : undef i ned
put Char act er : undef i ned

Instance Methods

Inherited from St ream

cursor next seekFrontt art
flush pl ug set Streaniength
i SAt Front previ ous streantengt h
i sPast End read wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omCur sor
isWitable seekFr ontnd

Inherited from Byt eSt r eam
fileln readByt e witeString
pi pe r eadReady
pi peParti al witeByte

299

ImmediateFloat

ImmediateFloat

300

RootObject

Number

ImmediateFloat

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Fl oat

Component: Numerics

The | nmedi at eFl oat class represents floating point numbers that do not require the
range or precision offered by the Fl oat class. Although the | mredi at eFl oat class is
based on the IEEE 32-bit standard for floating point numbers, two bits of the mantissa
are sacrificed to store an object tag, resulting in some loss of precision.

;I'able 6: Characteristics of the ImmediateFloat class
binary size 30 bits, stored in a 32-bit word, omitting the two low-order
bits

storage characteristics 1 bit for the sign, 8 bits for the exponents, and 29 bits for
the mantissa

decimal range +3.4x10%8

decimal precision +1.2 x 108 (six digits)

Floating point numbers that can be represented by the | medi at eFl oat class are not
technically converted into objects. As with the | mredi at el nt eger class, ScriptX
collapses the representation of an immediate object into its own pointer. To the rest of
ScriptX, immediate objects appear in every way like real objects. The term “immediate
float” indicates there is no indirection involved in access to the floating point value
(indirection is required for access to regular objects). The rest of this manual refers to
immediate floats as if they were full-fledged objects.

For information on the automatic conversion and coercion of operands in arithmetic
calculations, see the ScriptX Language Guide.

Creating and Initializing a New Instance

The | nmedi at eFl oat class has no scripter-level newmethod. There is no need to
explicitly create or initialize an instance of the | nmedi at eFl oat class. The compiler
stores a floating point value as an | nmedi at eFl oat object, unless there would be a loss
of range or precision. Floating point constants with less than 6 decimal digits are stored
as immediate floats. Floating point constants with 7 or more decimal digits are stored as
regular floats.

getdass (local g := 1.23456; Q)
O | mredi at eFl oat
getdass (local h :
0 Foat

1. 234567; h)

ImmediateFloat

You can force the compiler to store any number as an immediate float, although this
may involve truncation or lost precision.

Instance Methods

Inherited from Nunber :

abs
acos
asin

at an

at an2
ceiling
coerce
cos
cosh
degTor ad
exp

fl oor
frac

i nverse
In

| og
nax
mn
nod
nor ph
negat e
power

radToDeg
random
rem
round
sin

sinh
sqrt

tan

t anh
trunc

301

Immediatelnteger

Immediatelnteger

RootObject

Number
Integer

Immediatelnteger

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: | nt eger

Component: Numerics

The | nmedi at el nt eger class represents signed integers from 22915229 _ 1 (that is,
-536,870,912 to +536,870,911).

For optimization purposes, integers of this size are never technically made into objects,
with all the associated overhead that object require; they remain integers. For this
reason, | mredi at el nt eger is preferred over Lar gel nt eger whenever possible. To the
rest of ScriptX, these integers appear in every way like objects. This also explains the
term “immediate integer”, which indicates that there is no indirection involved in
accessing the integer (indirection is required when accessing objects). The rest of this
manual refers to immediate integers as if they were full-fledged objects.

Creating and Initializing a New Instance

The | mredi at el nt eger class has no scripter-level newmethod. There is no need for you
to explicitly create or initialize an instance of the | mredi at el nt eger class—simply use
whatever integer you want in a script. Whenever the compiler encounters an integer up
to + 2%, it automatically coerces it to an | medi at el nt eger object. If the integer is
larger, the compiler object converts it to a Lar gel nt eger or Fl oat, as appropriate. The
| edi at el nt eger class has no scripter-level newor i ni t method.

Instance Methods

Inherited from Nunber :

abs f 1 oor radToDeg
acos frac random
asin i nverse rem

at an I'n round
at an2 | og sin
ceiling max sinh
coer ce mn sgrt
cos nmod tan
cosh nor ph tanh
degTor ad negat e trunc
exp power

Inherited from | nt eger :

302

I ength | ogi cal Op I shift
| ogi cal And | ogi cal Or rshift
| ogi cal Not | ogi cal Xor

ImplicitlyKeyedCollection

ImplicitlyKeyedCollection

RootObject

Collection

ImplicitlyKeyedCollection

Resides in:

Inherits from: Col | ecti on
Class type: Abstract
Component: Collections

ScriptX and KMP executables

I npl i citlyKeyedCol | ecti on is the abstract superclass of all collections with implicit

keys.

An “implicit” key is a key that is provided by the collection rather than by the user.
Thus, collections that inherit from | npl i ci t| yKeyedCol | ect i on have their key values

assigned by the collection.

The most common kind of implicitly keyed collection is Sequence, whose keys are the
series of integers 1, 2, 3, and so on. These integers represent ordinal positions of

elements within the collection.

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded

iteratord ass
keyEqual Conpar at or
keyUni formty
keyUni form tyd ass

Instance Methods

Inherited from Col | ecti on:

add

addiany
addToCont ent s
chooseAl |
chooseCne
choose(neBi ndi ng
del eteAl |

del et eBi ndi ngAl |
del et eBi ndi ngne
del et eKeyAl |

del et eKeyne

del et eCne

enpt yQut

nmaxSi ze

m nSi ze

nut abl e

nut abl eCopyd ass
proprietored

f or Each

f or EachBi ndi ng
get Al

get Any

get KeyAl |
get KeyOne
get Many
get One
hasBi ndi ng
haskey

i ntersects
i sEmpty

i sMerber

si ze

uniformty

uni form tyd ass

val ueEqual Conpar at or

iterate

| ocal Equal
map

ner ge

pi pe

prin
renoveA |
renovene
setAll

set One

si ze

303

Importer

Importer

RootObject

Importer

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Import and Export

The | nporter class is an abstract class and is not instantiable. | npor t Expor t Engi ne
objects use subclasses of | nporter to import data. Each subclass of | nporter is an
importer conversion class that converts a stream that has a specific external data format
to a specific type of internal data object—for example, a stream in the @i ct format to a
bitmap TwoDShape object.

An importer conversion class, or import filter, is a subclass of | nporter that
implements an i npor t Fr ont r eammethod.

For full details of how to import media into ScriptX, see the ScriptX Tools Guide.

Creating and Initializing a New Instance

Note — When importing data, do not create an instance of an | nport er subclass
directly. Create an instance of | npor t Expor t Engi ne, then call the i mpor t Medi @ method
on that instance. | npor t Expor t Engi ne creates an instance of the proper subclass of

| npor t er automatically.

init

init self mediaCategory: name inputMedi aType: name

out put Medi aType: name O (none)
self | nporter object

nedi aCat egor y: Narred ass object

i nput Medi aType: Narred ass object

out put Medi aType: Naned ass object

Initializes the | nport er object self, applying the keyword arguments that specify the
media category, and the types of input and output media. Do not call i ni t directly on
an instance—it is automatically called by the i ni t method.

Instance Variables

304

inputMediaType

self. i nput Medi aType (read-only) Naned ass

Specifies the type of media that the importer self converts—for example, @i ct, @i ff
or @ave.

mediaCategory

self. medi aCat egory (read-only) Nared ass

Specifies the category of media that the importer self converts and imports—for
example, @ound.

Importer

outputMediaType

self. out put Medi aType (read-only) Naned ass

Specifies the type of media that the importer self exports—for example, @i ct.

Instance Methods

importFromStream

i npor t Fron®t r eam self source O (object)
self | npor t er object
source St r eamobject

Returns the imported object that i npor t Fr onBt r eamcreates. The arqument source is the
stream to import using the importer self—for example, @i ct . If the stream in source is
unknown to the Export er, this method generates the exception unknownMedi a.

Some importers allow for extra arguments beyond those listed above. It is then up to
the individual importer to interpret those extra arguments. For example, the PICT
importer may have an argument bitDepth to specify the bit depth to convert the image
into.

305

ImportExportEngine

ImportExportEngine

306

RootObject

ImportExportEngine

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Import and Export

The | npor t Expor t Engi ne class provides an interface to Importer and Exporter objects.
To import or export data call the i nport Medi a or expor t Medi a method on

t hel npor t Expor t global instance, which is a pre-defined instance of the

| npor t Expor t Engi ne class.

For full details of how to import media into ScriptX and export media from ScriptX, see
the ScriptX Tools Guide.

Creating and Initializing a New Instance

Note — The global variable t hel npor t Expor t Engi ne is an instance of
| npor t Expor t Engi ne. Thus, a script really has no need to create a new instance of
| npor t Expor t Engi ne.

The following sample script shows how you can create a new, nonstandard instance of
the | npor t Expor t Engi ne class:

nyEngi ne : = new | nport Export Engi ne

The variable nyEngi ne points to the initalized import-export engine. The hew method
uses the keywords defined ininit.

init

init self O (none)
self | npor t Expor t Engi ne object

Initializes the import export engine self. The i ni t method in the | npor t Expor t Engi ne
class has no keyword arguments. Do not call i ni t directly on an instance—it is
automatically called by the new method.

Instance Methods

exportMedia

export Medi a self source destination mediaCategory inputMediaType

outputMediaType O Stream
self | npor t Expor t Engi ne object

source Any internal data object

destination St r eamor Sequence object, as defined by Exporter
mediaCategory Narred ass object

inputMediaType Narmed ass object

outputMediaType Narmed ass object

ImportExportEngine

Exports the media described by the arguments and returns the stream that expor t Medi a
creates. The argument source is the internal data object to export using the

| npor t Expor t Engi ne object self. An Export er defines the type of destination object that
it requires—generally, a St r eamto which to export the data object. However, some
Export er objects require a Sequence as their destination object. The argument
mediaCategory is the category of media to which the data object belongs. The argument
inputMediaType is the media type of the data object being exported. The argument
outputMediaType is the media type to export to the stream. If | npor t Expor t Engi ne
cannot find an Export er object that can export a data object of the required category
and type, and convert that data object to the required external data format, the

expor t Medi a method generates the exception i npor t er Expor t er Not Found.

ScriptX ships with only one exporter, the text exporter.

Some exporters allow extra arguments beyond those listed above. Thus, any keywords
you pass to the expor t Medi a method are passed on to the export ToSt r eammethod in
the exporter. It is then up to the individual exporter to interpret those extra arguments.

importMedia
i mpor t Medi a self source mediaCategory inputMediaType outputMediaType
O (object)
self | npor t Expor t Engi ne object
source St r eamobject or Col | ect i on object, as defined by
| nporter
mediaCategory Nared ass object
inputMediaType Narred ass object
outputMediaType Narred ass object

Imports the media described by the arguments and returns the object that i npor t Medi a
creates, or undef i ned if the method fails to execute. An | nport er object defines the
type of source object that it requires—generally, a St r eamto import using the

| npor t Expor t Engi ne object self. However, some | nport er objects require a

Col | ect i on object that constitutes a path to a file that the Importer converts to a
stream. The argument mediaCategory is the category of media in the stream being
imported. The argument inputMediaType is the type of media in the stream. The
argument outputMediaType is the class of internal data object to which this method
converts the media in the stream. If | mpor t Expor t Engi ne cannot find an | nport er
object that can import a stream that contains data of the required category and type,
and convert that data to the required class of internal data object, the i nport Medi a
method generates the exception i nport er Expor t er Not Found.

Some importers allow extra arguments beyond those listed above. Thus, any keywords
you pass to the i mpor t Medi a method are passed on to the i mpor t Fr onSt r eammethod
in the importer. It is then up to the individual importer to interpret those extra
arguments.

See the ScriptX Tools Guide for a full list of the arguments to i npor t Medi a for importing
different kinds of media.

307

IndirectCollection

IndirectCollection

308

RootObject

Collection

IndirectCollection

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Col | ection

Component: Collections

I ndi rect Col | ecti onis a subclass of Col | ecti on that does not contain any objects, but
instead has an instance variable t ar get Col | ect i on that is a standard collection object.
If you add or delete objects from an instance of | ndi r ect Col | ecti on, they are actually
placed into or removed from the t ar get Col | ecti on object.

Many ScriptX classes inherit from | ndi r ect Col | ecti on, which is often mixed in with
other classes. Indirect collections include classes that are the foundation of ScriptX title
and tool development, such as Ti t| eCont ai ner, W ndow TwoSpace,

TwoDMul ti Presenter, and Control | er.

In effect, the use of | ndi rect Col | ecti on rather than any specific implementation of
Col | ecti on factors out the collection behavior of the class from its other behavior. In a
given title, a developer could create one controller that is an array, another that is a
linked list, and yet another that is a sorted keyed array.

Important — The value of t ar get Col | ecti on for an | ndi rect Col | ecti on object
should always be a built-in ScriptX class. If you want to modify the behavior of an
indirect collection, subclass | ndi rect Col | ecti on and create additional methods. The
target collection cannot be a user-defined subclass of Col | ecti on, nor can it be a
specialized instance of a collection class.

I ndi rect Col | ecti on implements the union of all the protocols associated with all
classes of collections. Any operation performed on an instance of | ndi rect Col | ecti on
is first handled by its specialization in | ndi r ect Col | ecti on and then redirected to the
target Col | ecti on object. (Indirection gives the class its name, the “indirect”
collection.)

This indirection supports a notification protocol. An indirect collection implements
three generic functions: i sAppropri at eChj ect, obj ect Added, and obj ect Renoved.

I ndi rect Col | ecti on itself supplies only placeholders—these methods are meant to be
specialized by subclasses.

Every time you attempt to insert an object into an indirect collection,

i sAppropri at e(hj ect is called automatically. If the method returns t r ue, the process
is allowed to continue. If the method returns f al se, the process is aborted. The other
two methods are called whenever an object is added to or removed from the target
collection.

Notification requires that operations be redirected at the lowest level—for example,
addMany is implemented as multiple calls to the add method. I ndi rect Col | ecti on
automatically redirects all generics that are defined by Col | ecti on,

Li near Col | ecti on, and Sequence.

Some collections are not linear collections or sequences. This creates a potential conflict
that developers should be aware of. For example, linear collections implement the pop
method, which is not defined in the Collection protocol. If the target collection is not a

IndirectCollection

linear collection, an indirect collection still redirects a call to pop to the target collection.
For this reason, canChj ect Do may fail to test an object properly, as in the following
example:

obj ect nylndirectCollection (IndirectCollection)

target Col | ecti on: (new HashTabl e)

contents "google", "zillion", "gazillion"

end

O #<IndirectCollection+ over #(#1="zillion":#1#, #2="gazillion":#2#, \
#3="googl e": #3#) as HashTabl e>

canChj ect Do nyl ndirect Col | ecti on pop

0O true

Although canCbj ect Do returned t r ue, the operation reports an exception when you
attempt to pop an item from the collection. The workaround is to call canChj ect Do
directly on the target collection.

can(oj ect Do nyl ndi rect Col | ection. target Col | ecti on pop
O false

Creating and Initializing a New Instance

In general, you do not create an instance of | ndi r ect Col | ecti on using new but
instead define a subclass of | ndi rect Col | ecti on and create an instance of it. This
subclass can map the target collection’s protocol onto one of its instance variables, as
shown in the example below. You normally override the obj ect Added, obj ect Renoved,
or i SAppr opri at eChj ect methods.

This example defines a class named Def aul t Li st that supplies an instance of

Li nkedLi st as its default target collection, if the t ar get Col | ecti on keyword is
omitted. Of course, one advantage to using an indirect collection is the ease with which
you can substitute one target collection for another.

class Defaul tList (IndirectCollection)
i nst met hods
nmethod init self #rest args #key targetCollection: -> (
if (targetCollection = unsupplied) then (
apply next Method sel f targetCollection: (new LinkedList) args

el se (
apply next Met hod self args
-- Ceate an instance of the above class

nylndirect := new Defaul tList

init

init self targetColl ection: collection O (none)
self I ndi rect Col | ecti on object
target Col | ecti on: Col | ecti on object

Initializes the | ndi rect Col | ecti on object self, applying the value of the

target Col | ecti on keyword to the instance variable of the same name. All methods
defined in the Collection, LinearCollection, and Sequence protocols are redirected to the
collection assigned to the t ar get Col | ecti on keyword. The t arget Col | ecti on
keyword is required, however many subclasses of | ndi r ect Col | ecti on specify a
target collection by default. Do not call i ni t directly on an instance—it is automatically
called by the new method.

309

IndirectCollection

310

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded naxSi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass propri et ored

The following instance variables are defined in | ndi rect Col | ecti on:

targetCollection

self. target Col | ection (read-write) Col | ecti on

Specifies the Col | ecti on instance that the indirect collection self represents.

Instance Methods

Inherited from Col | ecti on:

add f or Each iterate
addvany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al | nmap
chooseAl | get Any ner ge
choosene get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngne hasBi ndi ng setAl |l

del et eKeyAl | haskey set One
del et ekeyCne i ntersects si ze

del et eOne i sEmpty

enpt yQut i sMenber

The following instance methods are defined in | ndi r ect Col | ect i on:

isAppropriateObject

i sAppropri at eChj ect self addedObject 0 Bool ean
self I ndi rect Col | ecti on object
addedObject Any object added to the collection

This method is automatically called when the object addedObject is about to be added to
an indirect collection. It should perform any operations that need to be done before an
object is actually added to the collection. In the | ndi r ect Col | ect i on class this method
always returns t r ue—you can override this method in any subclass of

I ndi rect Col | ecti on you define. If this method returns f al se for addedObject, an
exception is reported and the object is not added to the collection.

This method is called automatically by any generic in the Col | ecti on,
Li near Col | ecti on, or Sequence protocols that adds an object to a collection, such as
add, addN h, pr epend, or set One.

IndirectCollection

objectAdded

obj ect Added self addedKey addedObject O (none)
self I ndi rect Col | ecti on object
addedKey Any object
addedObject Any object

Performs a particular action after the object addedObject is added to the collection self.
The parameter addedKey is the key that can be used to retrieve the addedObject. The
particular action is determined by the implementation of this method in the collection

self.

I ndi rect Col | ecti on defines only an empty placeholder method for obj ect Added—
you typically subclass | ndi rect Col | ecti on and specialize this method in that subclass
to perform the action you want to occur every time an object is added. Note that this
method is called only if the method i sAppr opri at eChj ect has already tested the object
and returned tr ue.

Do not call this method directly—it is called automatically (after
i sAppr opri at e(hj ect) by any method in I ndi rect Col | ecti on that adds an object to
a collection, such as add, addN h, pr epend, and set One.

objectRemoved

obj ect Renoved self removedObject O (none)
self I ndi rect Col | ecti on object
removedObject Any object removed from the collection

Performs a particular action after the removedObject has been removed from the
collection. This method automatically gets called by all methods in

I ndi rect Col | ecti on that can remove the object removedObject from a collection, such
as del et e, del et eNt h, del et eFi rst, or set Cne.

I ndi rect Col | ecti on defines only an empty placeholder method for obj ect Renmoved—
you typically subclass | ndi rect Col | ecti on and specialize this method in that subclass
to perform the action you want to occur every time an object is removed.

Do not call this method directly—it is called automatically by any method in
I ndi rect Col | ecti on that removes an object from a collection, such as del et eCne,
del eteN h, del et eAl |, and r enovene.

311

IndirectCollectionlterator

IndirectCollectionlterator

RootObject

Stream

Iterator

IndirectCollectionlterator

Class type:
Resides in:
Inherits from: |terator

Component: Collections

The I ndirect Col | ectionlterator class represents an iterator that iterates over any

I ndi rect Col | ecti on object.

Core class (concrete)
ScriptX and KMP executables

Creating and Initializing a New Instance

A new instance of an indirect collection iterator is generally created by callingiterate

on an instance of | ndi rect Col | ecti on.

Instance Variables

Inherited from | t erat or:
key

Instance Methods

Inherited from St ream

cur sor
flush

i SAt Front

i sPast End

i sReadabl e
i sSeekabl e
isWitable

Inherited from | t erat or:

exi se
remai nder

312

source

next

pl ug

pr evi ous

read

r eadReady
seekFr omQur sor
seekFr ontnd

seekKey

val ue

seekFronft ar t
set Streaniength
streaniength
wite

wr it eReady

seekVal ue

InputDevice

InputDevice

RootObject

InputDevice

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Input Devices

I nput Devi ce is an abstract class that represents instances of user input devices such as
a keyboard or mouse. Input devices provide an interface to hardware devices installed
in the system. Input devices hide details of device implementation, which are specific to
a given platform, providing a standard interface for each kind of device. Each subclass
of | nput Devi ce keeps its own private list of input devices, with each device having its
own unique device ID.

Creating and Initializing a New Instance

I nput Devi ce is an abstract class, and cannot be instantiated. It does, however,
implement an i ni t method. This i ni t method is applied whenever a subclass of
I nput Devi ce, such as Physi cal Keyboar dDevi ce, is created.

To change the way instances are created and initialized, override the i ni t instance
method as described below. Do not override the new method.

init

init self [enabled:boolean] [devicel D integer] O (none)
self I nput Devi ce object
enabl ed: Bool ean object
devicel D I nt eger object

Initializes the | nput Devi ce self, applying the values supplied with the keywords to the
instance variables of the same name.

If enabl ed is true, the device is enabled. The value of devi cel Dis the identification
number for the device, allowing the system to distinguish different devices that are
connected. It is unique for any particular subclass of | nput Devi ce. Do not call i ni t
directly on an instance—it is called automatically by the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:

enabl ed: true
devi cel D first available ID number for the given | nput Devi ce subclass

Class Methods

getDeviceFromList

get Devi ceFronli st self devicelD O I nput Devi ce
self I nput Devi ce subclass
devicelD Nunber object

313

InputDevice

This is a class method that must be implemented by all subclasses. Use

get Devi ceFronii st to check if a device has been created. This method returns the
previously created instance of the input device self that corresponds to the given
devicelD. It returns enpt y if no instance of the device has been created with the ID
specified by devicelD.

For example, get Devi ceFronLi st MouseDevi ce 1 returns the mouse instance that has
a device ID of 1.

The input device is originally created by using the newmethod, and its devi cel Dis
usually set by default. (See the appropriate subclass of | nput Devi ce.) Thereafter, when
get Devi ceFronli st is called, devicelD is used as a key to search the private list of
devices that the subclass keeps. This private list of devices allows the ScriptX Player
and the title to access the same device instance by referring to it by device ID.

Instance Variables

devicelD

self. devi cel D (read-only) I nt eger

Specifies the device ID for the input device self. As a rule, the value of devi cel Dis a
default integer value that the system supplies. This instance variable is used to
determine which device within a class of input devices generated an event. The ID is
guaranteed to be unique only within each subclass of | nput Devi ce. Device IDs range
from 1 to the number of devices of that type that are available.

enabled

self. enabl ed (read-write) Bool ean

Is true if the device self is allowed to send events; otherwise, it is f al se.

focusable

self.f ocusabl e (read-only) Bool ean

Indicates whether the input device self is focusable and is currently being managed by a
focus manager. The focus manager is stored in the f ocusManager instance variable.

focusManager

self.f ocusManager (read-only) (object)

Indicates the focus manager that is currently managing focus on the input device self. In
ScriptX version 1.1, f ocusManager is set automatically on instantiation for instances of
Keyboar dDevi ce, a subclass of | nput Devi ce. The focus manager for a keyboard device
is an instance of Keyboar dFocusManager.

Subclasses Must Implement

314

In ScriptX, you cannot create a scripted subclass of | nput Devi ce for a new physical
device. Since device interfaces are specific to hardware, such a subclass requires
programming in OIC. You can create a scripted subclass of | nput Devi ce only for a
virtual device that is operated from built-in physical devices and has no connection to
any new physical device.

Integer

Integer

RootObject

Number

Integer

Class type: Core class (abstract, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Nunber

Component: Numerics

The I nt eger class represents numbers without any fractional part. The | nt eger family
of classes includes | medi at el nt eger, Lar gel nt eger, Ti ne, Dat e and Packet Ti rre.

Instance Methods

Inherited from Nunber :

abs f1 oor radToDeg
acos frac random
asin i nver se rem

at an I'n round
at an2 | og sin
ceiling nmax sinh
coerce mn sgrt
cos mod tan
cosh nor ph t anh
degTor ad negat e trunc
exp power

The following instance methods are defined by all subclasses of | nt eger

length

I ength self 0 I nteger

Returns the number of bits needed to represent the integer in two’s complement. Note
that | engt h i is equivalent to the following;:
ceiling (log (if i <0 then -i elsei + 1) 2)

logicalAnd

| ogi cal And self integer O I nt eger
self I nt eger object
integer I nt eger object

Returns the bitwise logical and operation of self and integer.

logicalNot

| ogi cal Not self O I nteger

Returns the bitwise logical not operation of self.

315

Integer

316

logicalOr

| ogi cal O self integer O I nt eger
self I nt eger object
integer I nt eger object

Returns the bitwise logical or operation of self and integer.

logicalXor

| ogi cal Xor self integer O I nteger
self I nt eger object
integer I nt eger object

Returns the bitwise logical exclusive or operation of self and integer.

Ishift

I'shift self numbits O I'nt eger
self I nt eger object
numbits Nunber object

Shifts the bits in the integer self left by the number of bits specified by numbits. The
argument numbits is truncated if it is not an integer. If numbits is positive, shift left. If it
is negative, shift right.

If an | mredi at el nt eger object is shifted and the result is out of range for the class, the
result is not promoted to Lar gel nt eger. However, if a Lar gel nt eger object is shifted
and the result can be stored in an | nnedi at el nt eger object, it is automatically
demoted. This behavior is depicted in the following example.

global r := rshift 1000 1 -- an I mredi atel nteger object
O 500
Ishift r 1 -- now shift it back in the other direction
O 1000

-- exanple where large integer is shifted into |nmediatelnteger range
global g := rshift 1000000000 1

0 500000000
Ishift g 1 -- now shift it back in the other direction

0 -73741824

Note that bit-shift operation may change the value of the sign bit.

rshift

rshift self numbits O I nt eger
self I nt eger object
numbits Nunber object

Shifts the bits in the integer self right by the number of bits specified by numbits. The
argument numbits is truncated if it is not an integer. If numbits is positive, shift right. If
it is negative, shift left. The sign of the result is determined by whether a 0 or a 1 gets
shifted into the sign bit. See the defintion of | shi ft for additional information.

IntegerRange

IntegerRange

LinearCollection

ImplicitlyKeyedCollection
Sequence

DiscreteRange

IntegerRange

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: D scr et eRange

Component: Collections

The I nt eger Range class represents a discrete range of integers. The default is to include
the values at the lower and upper bounds.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the | nt eger Range
class:

nyRange := new | ntegerRange \
| ower Bound: 0 \
upper Bound: 100 \
increment: 5

The variable nyRange contains the initialized integer range. This instance incorporates
every fifth integer from 0 to 100, and is equivalent to the following series in set notation:

{0, 5, 10, 15, . . . 100}
The newmethod uses the keywords defined by the i ni t method.

init

init self | owerBound: integer upper Bound: integer [i ncremnent : integer] O (none)

self I nt eger Range object
| ower Bound: I nt eger object
upper Bound: I nt eger object
i ncrenent : I nt eger object

Initializes the | nt eger Range object self, applying the values supplied with the
keywords to the instance variables of the same name. Do not call i ni t directly on an
instance—it is automatically called by the newmethod.

If the lowerbound is greater than the upperbound and the increment is omitted, the
new range is empty. For negative increments, reverse the | ower Bound and

upper Bound—set the starting value to | ower bound and the ending value to

upper Bound, as in the following example:

init self |owerBound: 10 upperBound: 0 increment:-1

317

IntegerRange

318

The keyword i ncrenent is required for ranges with a negative increment; it is optional
only for ranges with a positive increment.

If you omit an optional keyword, its default value is used. The only default is:

increnent: 1

Class Methods

Inherited from Col | ecti on:

pi pe

Instance Variables

Inherited from Col | ecti on:

bounded

iteratord ass
keyEqual Conpar at or
keyUni form ty
keyUni form tyd ass

Inherited from Range:

i ncl udesLower
i ncl udesUpper
i ncrenent

maxSi ze

m nSi ze

nut abl e

nut abl eCopyd ass
proprietored

| ower Bound
si ze
upper Bound

si ze

uniformty

uni form tyd ass

val ueEqual Conpar at or

val ued ass

The following instance variables are redefined in | nt eger Range:

includesLower (Range)
self. i ncl udesLower (read-only) Bool ean
Returns tr ue.

includesUpper (Range)
self. i ncl udesUpper (read-only) Bool ean
Returns t r ue.

valueClass (Range)
self. val ued ass (read-only) (class)

Returns | nt eger.

Instance Methods

Inherited from Col | ecti on:

add

addMany
addToCont ent s
chooseAl |
choosee
chooseeBi ndi ng
del et eAl |

del et eBi ndi ngAl |
del et eBi ndi ngOne
del et eKeyAl |

f or Each

f or EachBi ndi ng
get Al l

get Any

get KeyAl |

get KeyOne

get Many

get One

hasBi ndi ng
hasKey

iterate

| ocal Equal
map

ner ge

pi pe

prin
renoveA |
removene
setAll

set ne

IntegerRange

del et ekeyCne i ntersects si ze
del et eOne i sEmpty
enpt yQut i sMenber
Inherited from Li near Col | ecti on:
chooseeBackwar ds fi ndRange get Nt hKey
chooseQr dtne f or EachBackwar ds get O dne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop
Inherited from Sequence:
addFifth noveBackwar d set Fourth
addFi r st nmoveFor war d set Last
addFourth noveToBack setNth
addNt h moveToFr ont set Second
addSecond pr epend setThird
addThird pr ependNew sort
append setFifth
appendNew set First

Inherited from Range:
wi t hi nRange

319

InterleavedMoviePlayer

InterleavedMoviePlayer

320

Presenter Collection

TwoDPresenter IndirectCollection

TwoDMultiPresenter

GroupPresenter

MoviePlayer

InterleavedMoviePlayer

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Movi ePl ayer

Component: Media Players

The I nt er | eavedMovi ePl ayer class provides methods for playing interleaved movies
in ScriptX.

When importing a movie into ScriptX, you can choose to import it as an interleaved or
non-interleaved movie. If you intend to play an imported movie from a CD, you should
import it into ScriptX as an | nt er| eavedMovi ePl ayer to preserve the interleaving. If
you intend to play it back from hard disk, then you can import it as a non-interleaved
movie (that is, import it as a Movi ePl ayer) although you will usually get better
performance if you import it as an | nt er | eavedMovi ePl ayer.

When a frame of a movie plays, data is needed for both the video and the audio tracks.
If the data for the tracks are not interleaved, the video data needed for a frame may be
arbitrarily distant on the storage medium from the audio data needed for the same
frame. When playing back movies with non-interleaved data from a hard disk, the extra
search time required to seek to non-sequential positions is relatively small and does not
significantly affect the speed of playback. However, the search time becomes significant
if the movie is played back from a CD.

When the audio and video streams are interleaved, the video data and audio data
required for a frame are located sequentially on the storage medium, thus minimizing
the search time between each frame.

When ScriptX imports a movie file as an interleaved movie, it creates an

I nt er| eavedMovi ePl ayer. The interleaved movie player’s i nt er| eavedSt r eam
instance variable has a Byt eSt r eaminstance containing interleaved sound and video
data for the movie. The importing process also creates Di gi t al Audi oPl ayer instances
that are responsible for playing the sound in the movie, and D gi t al Vi deoPl ayer
instances that are responsible for playing the video in the movie. (See the discussions of
the classes Di gi t al Audi oPl ayer and D gi t al Vi deoPl ayer for more information.)

Just like a Movi ePl ayer instance, an | nt er | eavedMovi ePl ayer instance is a master
player for all the slave players needed to play the movie. To play the movie, call the
pl ay method on the interleaved movie player; to pause the movie call pause on the
interleaved movie player; to stop the movie call st op on the interleaved movie player,
and so on. When an interleaved movie player receives a method such as pl ay, pause,
st op and so on, it calls that method on each of its slave players and thus the movie
plays, pauses, stops and so on.

However, in the case of an | nt er | eavedMovi ePl ayer, the data for the movie starts off
as interleaved data in a Byt eSt r eaminstance, which is created when the movie is
imported into ScriptX.

InterleavedMoviePlayer

To actually be played, sound data must be passed in a stream to a

D gi t al Audi oPl ayer, and video data must be passed in a stream to a

Di gital Vi deoPl ayer. How then does the data pass from the byte stream containing
interleaved data to separate streams that are used as the media streams for

D gi t al Audi oPl ayer and Di gi t al Vi deoPl ayer instances?

D gi t al Audi oPl ayer and D gi t al Vi deoPl ayer instances both play the data in the
stream in their medi aSt r eaminstance variable. However, the stream in a nedi aSt r eam
instance variable is an object that itself has an input stream, which is stored in its

i nput St r eaminstance variable. These input streams hold the actual data. Figure 6
shows the relationships through instance variables of an | nt er | eavedMbvi ePl ayer, its
subplayers (stored in the sl aved ocks instance variable), their media streams, and the
media streams’ input streams.

InterleavedMoviePlayer

slaveClocks
/ instance variable \

DigitalVideoPlayer ‘ DigitalAudioPlayer

medioLTreom medioL’rreom
instance variable instance variable

VideoStream AudioStream

inputStream inputStream
instance variable instance variable

ChunkStream ChunkStream

Figure 6: How interleaved movie players work

When a Vi deoSt r eamor Audi oSt r eamparticipates in the playing of an interleaved
movie, its input stream is a ChunkSt r eaminstance. The class ChunkSt r eamis a
specialized class of St reamthat takes data from disjointed locations in one stream and
turns it into separate continuous streams, as illustrated in Figure 7.

ByteStream containing

| AL | Vi | A2 | V2 | A3 | Ve interleaved movie data

ChunkStream ChunkStream
containing audio | AL | A2 | A3 | | vi | V2 | V3 |comoining video
Figure 7: Chunk streams can be used to separate interleaved data

An interleaved movie player has a callback that transfers data from the bytestream
containing the interleaved data to chunk streams, sending data for video to one chunk
stream and data for sound to another.

As the slave players, such as the Di gi t al Audi oPl ayer and Di gi t al Vi deoPl ayer
instances play, they read the data out of the appropriate chunk streams (going through
the intermediary media streams). As space becomes available in the chunk streams, the
callback on the interleaved movie player transfers more data into the chunk streams.

321

InterleavedMoviePlayer

322

Figure 8 combines Figure 6 and Figure 7 to show how interleaved data stored as a byte
stream in the i nt er | eavedSt r eaminstance variable of the I nt er | eavedMovi ePl ayer
finds its way into separate chunk streams which are the player’s media streams’ input
streams.

The callback on the interleaved movie player transfers data from the interleaved
bytestream to the chunk streams ahead of the time that the slave players need to read
the data from the chunk streams. When a slave player such as a digital audio player
needs to play a frame, it can usually immediately get data from the chunk stream, thus
reducing the access time since no seeking is done when the data is needed.

The callback works its way sequentially along the interleaved byte stream, transferring
data to the chunk streams. If a chunk stream is still full of data when the callback on the
interleaved movie player is ready to write to it, the callback waits for a while, then tries
again to write to the chunk stream.

InterleavedMoviePlayer

slaveClocks interleavedStream
/ instance variable \ ins‘ronw‘
DigitalVideoPlayer ‘ ‘ DigitalAudioPlayer ‘ ‘ ByteStream ‘
L L [A1|vi]A2[v2[A3]v3]
mediaStream mediaStream
instance variable instance variable
VideoStream ‘ ‘ AudioStream ‘
inputStream inputStream
instance variable instance variable
‘ ChunkStream ‘ ‘ ChunkStream ‘

Vilva[va] AL A2 A3

Figure 8: More on how interleaved movie players work

When you want to play an interleaved movie, you don’t have to worry about how the
data gets transferred from the bytestream to the chunk streams. You don’t need to know
anything about chunk streams. All you really need to know to play an interleaved
movie is that you import the movie file to an | nt er | eavedMovi ePl ayer, and then use
the usual player methods to play and control the movie. However, there may be times
when you want to fine tune the transference of data from the bytestream to the chunk
streams to increase movie playback efficiency. In this case, you can modify instance
variables and behavior of the chunk streams. See the discussion of the ChunkSt r eam
class for more details.

InterleavedMoviePlayer

Creating and Initializing a New Instance

To create an | nt er | eavedMovi ePl ayer instance, import a file containing a movie. The
importing process automatically creates the | nt er | eavedMovi ePl ayer instance and all
the other players and streams needed to play the movie.

The following script shows how to create an instance of | nt er| eavedMovi ePl ayer by
importing a Quicktime file containing a digitized movie. The object wal t zMovi e can be
used to play the movie imported from the file wal t z if it was stored on the ScriptX
startup directory.

wal tzStream : = getstreamtheStartDr "wal tz" @eadabl e
wal t zMovi e : = inportMedia thelnportExport Engi ne waltzStream \
@ovi e @uicktime @nterl eavedMovi ePl ayer

This script shows an example of how to import a QuickTime file as an

I nt er| eavedMovi ePl ayer. When importing a QuickTime file as an interleaved movie
player, you can specify optional cont ai ner and copydat a keyword arguments. The
cont ai ner argument indicates a title container in which to store the raw media for the
imported movie. The copydat a argument indicates whether or not to actually copy the
imported movie into ScriptX or not. For more details of the arguments to the method

i npor t Medi a on the global instance t hel mpor t Expor t Engi ne, please see either the
“Media Stream Players” chapter in the ScriptX Components Guide or the chapter about
importers in the ScriptX Tools Guide.

When calling the i npor t Medi @ method to import a movie file into ScriptX as an
interleaved movie, you can specify an optional copyDat a keyword argument to
determine whether or not to copy the movie data into ScriptX. If you don’t copy it in,
you can play the movie directly from the file on the storage medium. In this case, a
machine specific Byt eSt r eamobject is created as the interleaved data stream, and if you
want to save the interleaved movie player to a title container you must take some extra
steps. See the “Importing Media” chapter in the ScriptX Tools Guide for more details.

After creating an | nt er | eavedMbvi ePl ayer instance by importing a movie, append it
to a visible surface such as a W ndowto use as its “screen”. Call its pl ay method to start

it playing.

Instance Variables

Inherited from Col | ecti on:

bounded naxSi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass propri et ored

Inherited from | ndi rect Col | ect i on:
target Col | ection

Inherited from Present er:
pr esent edBy subPresenters t arget

Inherited from TwoDPr esent er :

bBox hei ght transform
boundary IslnplicitlyD rect wi dt h

cl ock i sTranspar ent wi ndow
comnposi t or isVisible X

direct needsTi ckl e y
eventlnterests position z

gl obal Boundary stationary

323

InterleavedMoviePlayer

gl obal Transf orm t ar get
gl obal Boundary position z
gl obal Regi on stationary

Inherited from TwoDMul ti Present er:
fill stroke

Inherited from d ock:

cal | backs rate ticks
effectiveRate resol ution tinme
nmast er d ock scal e title
of f set sl aved ocks

Inherited from Pl ayer:

audi oMt ed gl obal Cont r ast gl obal Vol umeC f set
dat aRat e gl obal Hue mar ker Li st
duration gl obal PanCX f set st at us

gl obal Bri ght ness gl obal Sat urati on vi deoBl anked

Inherited from Movi ePl ayer:
frameRat e

The following instance variables are defined in I nt er | eavedMovi ePl ayer:

interleaved Stream

self.interl eavedStream (read-write) Byt eStream

Specifies the bytestream containing the interleaved movie data for the interleaved
movie player self.

preRollLength

self. preRol | Lengt h (read-write) Nunber

When an | nt er| eavedMovi ePl ayer is first prepared to play (by calling the

pl ayPr epar e method), it reads some amount of data (typically a second's worth) off the
storage device, deinterleaves it, and places it in the chunk streams. This is known as a
"pre-roll" and is used to give the system some amount of leeway or threshold for error.

When you play an | nt er| eavedMovi ePl ayer, it attempts to pass data to its media
streams through their chunk streams at a rate that's equivalent to the amount consumed
by the media streams. If everything goes as it should there should always be the pre-roll
amount of data available in the chunk stream. If the | nt er | eavedMovi ePl ayer slows
down or is late in passing data, for example, if it has to do a seek on the CD,
presentation can still go on temporarily, since there's data in the pipeline. The pre-roll
amount is controlled by the preRol | Lengt h instance variable. (The default is 1 second).

transferRate

self. transf er Rate (read-write) | nt eger

Specifies the rate at which the player self expects to read data from the stream stored in
its i nt er| eavedSt r eaminstance variable. The transfer rate is measured in
bytes/second and defaults to 300K (that is, 300 * 1024) which is the transfer rate for a
double speed CD drive.

Instance Methods

Inherited from Col | ecti on:

add for Each iterate
addiany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al | nap

324

InterleavedMoviePlayer

chooseAl |
choosee
chooseeBi ndi ng
del eteAl |

del et eBi ndi ngAl |
del et eBi ndi ngGne
del et eKeyAl |

del et ekeyCne

del et eOne

enpt yQut

Inherited from TwoDPr esent er :

adj ust d ockMast er
createl nterestLi st
dr aw

get Boundar yl nPar ent

Inherited from TwoDPr esent er :

adj ust d ockMast er
createl nterestList
dr aw

get Boundar yl nPar ent
hi de

Inherited from d ock:

addPer i odi cCal | back
addRat eCal | back
addScal eCal | back
addTi neCal | back
addTi meJunpCal | back

Inherited from Pl ayer:

addMar ker

ej ect

f ast For war d

get Mar ker

get Next Mar ker

get Previ ousMar ker

Since an interleaved movie player is an indirect collection, you can also use any

get Any

get KeyAl |
get Keyne
get Many
get One
hasBi ndi ng
hasKey

i ntersects
i SEnpty

i sMenber

hi de

i nsi de

| ocal ToSurf ace
not i f yChanged

i nsi de

| ocal ToSur f ace
not i f yChanged
recal cRegi on
refresh

cl ockAdded

cl ockRenoved

ef f ecti veRat eChanged
f or EachSl ave

i sAppropri at ed ock

goToBegi n
goToEnd

goToMar ker Fi ni sh
goToMar ker St art
pause

pl ay

ner ge
pi pe

prin
renoveA |
removene
setAll

set ne

si ze

refresh

show

sur f aceTolLocal
tickle

show
sur f aceTolLocal
tickle

pause
resune

ti meJurnped
wai t Ti ne
wai tUnti

pl ayPr epar e

pl ayUnpr epar e
pl ayUnti |
resune

rew nd

stop

methods defined in the class specified by t ar get Col | ecti on. The target collection is
typically an instance of Array, which inherits from Sequence, so the following instance
methods are redirected to this player.

Accessible from Li near Col | ecti on:

chooseeBackwar ds
chooseQr dCne

del et eFi r st

del et eLast

del eteNt h

del et eRange

Accessible from Sequence:

addFifth
addFi r st
addFourth
addN h
addSecond
addThird
append
appendNew

fi ndRange

f or EachBackwar ds
get First

get Last

getMddl e

getNth

noveBackwar d
noveFor war d
noveToBack
noveToFr ont
pr epend

pr ependNew
setFifth

set First

get Nt hKey
get 0 dOne
get Range

| ocal Equal
| ocal LT

pop

set Fourth
set Last
setNth
set Second
set Third
sort

325

InterpolateAction

InterpolateAction

326

RootObject

Action

InterpolateAction

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Action

Component: Animation

I nt er pol at eAct i on class represents an action that determines the destination point
and time for objects controlled by an | nt er pol at or object. An interpolate action, along
with the interpolator controller causes a smooth change in position. In contrast,

Pat hAct i on causes an abrupt change (and does not require a controller). To be
triggered, an instance of | nt er pol at eAct i on needs to be added to the action list of an
action list player, then the player needs to be played.

An I nterpol ator controller is required to move the object; this interpolator must be
added to the action list player’s list of targets. When the interpolate action triggers, all
objects contained in the interpolator move toward the destination point. The targets to
move must be in a space controlled by an | nt er pol at or controller. (See the

I nterpol at or class.)

As shown in the following figure, at a specified time in the action list player, the
interpolate action triggers. The interpolate action’s tri gger method simply passes the
destination point and time to the interpolator at the time specified by the ti me instance
variable. The interpolator controller’s ti ckl e method then causes the target to move.
To continue moving the object, another interpolate action could trigger at 6 ticks,
updating the same interpolator with a new destination time and position.

0 1 2 m 4 5 ActionListPlayer
| } } } } } }
T T T T T T T >
- time = 3
‘ InterpolateAction ‘ destTime = 6

destPosition = 100,100
trigger

Y
‘ Interpolator

‘ destTime = 6
destPosition = 100,100

tickle
\ controlled space
dest Ti ne
..o' dest Posi tion
@
...

oo .
L4 target object

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
I nt er pol at eAct i on class:

InterpolateAction

nyAction := new | nterpol ateAction \
dest Posi ti on: (new Point x:50 y:50) \
dest Ti me: 20 \
target Num2 \
time: 10

The variable nyAct i on holds an initialized instance of I nt er pol at eAct i on. This
instance specifies that, at the player’s time of 10 ticks, the player’s second target
(t ar get Num 2) move smoothly from its position to arrive at the point 50,50 at 20 ticks.

To trigger this action, it first needs to be added to the action list of an action list player;
then the player needs to be played. In addition, the target must be in a space that’s
controlled by an | nt er pol at or controller.

init
init self [destPosition:point] [destTine:integer]
[target Numinteger] [time: time] O (none)
self I nt er pol at eAct i on object
dest Posi ti on: Poi nt object representing the destination position to
which to move the target object
dest Ti ne: | nt eger object representing the time in ticks at which

the target object is to arrive

Superclass Act i on uses the following keywords:

t ar get Num I nt eger object indicating the position of the
I nterpol at or object in the target list of the player
time: | nt eger representing the time in ticks to trigger the
action

Initializes the | nt er pol at eAct i on object self, applying the values supplied with the
arguments to the instance variables of the same name. At the time specified by ti re,
this action will move the target specified by t ar get Numso that it will arrive at the
destination dest Posi ti on at the time specified by dest Ti me. Do not call i ni t directly
on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

dest Posi ti on: undefi ned
dest Ti ne: undef i ned
target Num O

time:0

Instance Variables

Inherited from Acti on:

aut hor Dat a t ar get Num time
playOnly

The following instance variables are defined in | nt er pol at eAct i on:

destPosition

self. dest Posi ti on (read-write) Poi nt

Specifies the destination point in absolute coordinates toward which the target object
should start heading. This destination point is held by the | nt er pol at eAct i on object
self. The x-y coordinates are in the space’s unit of measurement (pixels) and relative to
the space’s origin.

327

InterpolateAction

328

destTime

self. dest Ti me (read-write) | nt eger

Specifies the destination time, in ticks, at which the target object should reach the
destination. This destination time is held by the | nt er pol at eAct i on object self. The
time is measure in the time of the Acti onLi st Pl ayer object.

Instance Methods

Inherited from Acti on:
trigger

The following instance method is defined in I nt er pol at eAct i on:

trigger

trigger self interpolator player O target
self I nt er pol at eAct i on object
interpolator I nt er pol at or object
player Acti onLi st Pl ayer object

Causes the interpolate action self to pass its dest Ti me and dest Posi ti on values to the
I nt er pol at or controller specified by interpolator. This method is called by an
ActionLi st Pl ayer object at the time specified by the ti me instance variable. This
action list player is passed in as the third argument player.

When the action list player calls trigger, the value for interpolator is automatically
determined by taking the t ar get Numinstance variable and finding the object in the
corresponding slot in the player’s target list. If the t ar get Numinstance variable is out of
range (that is, less than 1 or greater than the size of the target list), the value of the
interpolator is enpt y. Also, if there is no interpolator in a certain slot in the target list yet,
the value of interpolator is undef i ned.

Interpolator

Interpolator

RootObject

Collection
IndirectCollection
Controller

TwoDController

Interpolator

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TwoDControl | er
Component: Controllers

The I nt er pol at or class is a controller that moves one 2D presenter objects in a straight
line, smoothly to a specified destination point at a specified destination time. The
destination point and time is determined by an instance of the | nt er pol at eAct i on
class. The object to be moved is the first presenter in the interpolator’s space that has
also been added to the interpolator, as described below. For this interpolator to work,
the presenter must also be added to the targets of an action list player, and the player
must be played.

Note — An interpolator can move only one 2D presenter object.

The interpolator controller’s t i ckl e method actually causes the presenter to move. The
instance of | nt er pol at eAct i on merely specifies where and when the presenters will
arrive.

An | nterpol at or object is a collection containing the TwoDPr esent er objects it can
control—the interpolator controls only the first object in its collection. This presenter
must also be in the space that the controller is controlling. Presenters are either
automatically or manually added to the interpolator controller, according to the

whol eSpace instance variable. If whol eSpace is f al se, you can use the methods
defined by Col | ecti on to add and remove objects from the controller. To ensure that
only 2D presenters are added to an interpolator controller, the pr ot ocol s instance
variable is set to the TwoDPr esent er class. See the Control | er class for descriptions of
whol eSpace, prot ocol s, and other general properties of controllers.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the | nt er pol at or
class, after first creating its control space:

nySpace := new TwoDSpace boundary: (new Rect x2:200 y2:200)
function nyFunc self target clock ->\
(self.target.width := 2 * self.target.width)

nylnterpolator := new Interpolator \
cl ock: mySpace. cl ock \

space: nySpace

329

Interpolator

The variable nyl nt er pol at or contains the initialized interpolator. This interpolator
causes any targets added to the interpolator to move smoothly to their destination
positions, arriving at their destination times. The action list player nyALP controls the
rate of movement. The newmethod uses the keywords defined in i nit.

The interpolator uses the clock supplied with the cl ock keyword to find out how close
it is to dest Ti me of the | nt er pol at eAct i on object.

init

init self [clock:clock] [script:function] [space: space]
[whol eSpace: boolean] [enabl ed: boolean] [target Col | ecti on: sequence]

O (none)
self I nt er pol at or object
cl ock: A ock object
script: A function to run at the destination time
The superclass Cont r ol | er uses the following keywords:
space: Space object containing the targets to be moved
whol eSpace: Bool ean object
enabl ed: Bool ean object

The superclass TwoDCont r ol | er uses the following keyword:
target Col | ecti on: Sequence object (use carefully)

Initializes the | nt er pol at or object self, applying the keyword arguments to instance
variables of the same name, and the clock supplied with the cl ock: keyword is the
clock against which the I nt er pol at eAct i on object’s destination time is determined.
Use discretion in changing the target collection; for more information, see the definition
of the TwoDCont rol | er class. Do not call i ni t directly on an instance—it is
automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

cl ock: undefi ned (If space is defined, the space’s clock is used)
space: undef i ned

whol eSpace: f al se

enabl ed: true

target Col l ection: (new Array initial Size:1 growabl e:true)

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

330

Inherited from Col | ecti on:

bounded naxSi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass propri et ored

Inherited from | ndi rect Col | ect i on:
target Col | ection

Inherited from Control | er:

enabl ed space whol eSpace
protocol s

Interpolator

The following instance variables are defined in | nt er pol at or:

protocols (Controller)

self. prot ocol s (read-write) Array

This instance variable initially contains the class TwoDPr esent er for the interpolator
self. This means that any object added to an interpolator controller must have
TwoDPr esent er as one of its superclasses. See the Control | er class for further
description of this instance variable.

script

self. scri pt (read-write) (function)

Specifies the function that runs at the destination time of each I nt er pol at eAct i on
object controlled by the interpolator self. The interpolator calls this function with the
following arguments, where self is the interpolator, target is the object to be moved, and
clock is the clock of the interpolator’s space (that is, whatever clock was given to the
interpolator when it was created).

nyFunc self target clock

Although any global function, anonymous function, or method can be assigned to
scri pt, there are differences in how different classes of functions are dispatched. For
information on functions and function dispatch, see the “Object System Kernel” chapter
of the ScriptX Components Guide.

Instance Methods

Inherited from Col | ecti on:

add for Each iterate
addMany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al l nap
chooseAl | get Any ner ge
choosee get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

del eteAl | get Many renmoveA |
del et eBi ndi ngAl | get One removeOne
del et eBi ndi ngGne hasBi ndi ng setAll

del et eKeyAl | hasKey set ne
del et ekeyne i ntersects si ze

del et eOne i SEmpty

enpt yQut i sMenber

Inherited from | ndi rect Col | ect i on:
i sAppropri at eChj ect obj ect Added obj ect Renoved

Inherited from Control | er:

i sAppr opri at eChj ect tickle
Since an | nt er pol at or controller is an indirect collection, you can also use any
methods defined in the class specified by t ar get Col | ecti on. The target collection is

typically an instance of Array, which inherits from Sequence, so the following instance
methods are redirected to this controller.

Accessible from Li near Col | ecti on:

chooseeBackwar ds fi ndRange get Nt hKey
chooseQr dtne f or EachBackwar ds get O dne

331

Interpolator

332

del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteNt h getMddl e | ocal LT
del et eRange getNth pop
Accessible from Sequence:
addFifth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourth noveToBack setNth
addNt h noveToFr ont set Second
addSecond pr epend set Third
addThi rd pr ependNew sort
append setFifth
appendNew set First

The following instance methods are defined in | nt er pol at or:

setDestination

set Desti nati on self destPoint destTime O I nterpol at or

self I nt er pol at or object
destPoint Poi nt object
destTime I nt eger object

Sets the destination point destPoint and time destTime any target controlled by the
interpolator self will be moved to.

tickle (Controller)
tickl e self clock O (none)
self I nt er pol at or object
clock A ock object of the space being controlled

For each instance of | nt er pol at eAct i on, this method causes the target presenter to
move smoothly to its destination time and position. This method creates smooth motion
by changing the presenter’s x and y instance variables a small increment of distance
each clock tick.

A callback calls this method on the interpolator self, supplying the space’s clock as the
value for clock. The callback calls this method once every tick of the space’s clock.

Notice that the | nt er pol at or actually moves the presenter; the instance of
I nt er pol at eAct i on merely specifies which presenter to move, and where and when it
will arrive.

For further details, refer to the section “The Ticklish Protocol” in the “Controllers”
chapter in the ScriptX Components Guide.

Iris

RootObject

TwoDPresenter

Presenter

TransitionPlayer

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TransitionPl ayer
Component: Transitions

The I ri s class provides a circular visual effect similar to the iris of a camera opening, as
shown below. You set the iris to open one of two different ways by setting the value of
direction, an instance variable defined by Transi ti onPl ayer, to either @pen or

@l ose.

@pen

@l ose

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the I ri s class:

nyTransition := new Iris \
duration: 60 \
direction: @pen \
target: nyShape \
useCr fscreen: true

The variable nyTr ansi t i on contains the initialized transition. When you play
nyTransi tion, a circular iris opens, causing the presenter nyShape to appear over a
period of 60 ticks. The transition player is set to use an offscreen cache to draw the
presenter more efficiently.

You determine in which space the transition will take effect in by adding this instance to
that space. Then, when you play the transition player, myShape is “transitioned” into
that space.

The newmethod uses the keywords defined ininit.

333

334

init

init self [duration:integer] [direction: name]
[movi ngTar get : boolean | [useCt f screen: boolean | [t ar get : twoDPresenter |
[boundary: stencil | [mast er d ock: clock] [scal e: integer] O (none)

This method is inherited from Transi ti onPl ayer with no change in keywords—refer
to that class for details. Do not call i ni t directly on an instance—it is automatically

called by the newmethod.

Instance Variables

Inherited from Present er:
pr esent edBy

Inherited from TwoDPr esent er :

bBox

boundary

cl ock

conposi t or

di rect
eventInterests
gl obal Boundary
gl obal Tr ansf orm

Inherited from d ock:

cal | backs
effectiveRate
mast er d ock
of f set

Inherited from Pl ayer:
audi oMut ed
dat aRat e
duration
gl obal Bri ght ness

subPresenters

hei ght
IslnplicitlyD rect
i sTranspar ent
isVisible

needsTi ckl e
position
stationary

t ar get

rate

resol ution
scal e

sl aved ocks

gl obal Cont r ast

gl obal Hue

gl obal PanCx f set
gl obal Sat urati on

Inherited from Transi ti onPl ayer:

aut oSpli ce
backgr oundBr ush
cachedTar get

direction
duration
frame

The following instance variables are defined in I ri s:

direction

t ar get

transform
wi dt h

wi ndow

X

y
z

ticks
tine
title

gl obal Vol umeC f set
mar ker Li st

stat us

vi deoBl anked

novi ngTar get
t ar get
use f screen

(TransitionPlayer)

self. di rection

(read-write)

Naned ass

Specifies the direction in which the iris transition self should be applied. Possible values

are @pen and @l ose.

Instance Methods

Inherited from TwoDPr esent er :

adj ust d ockMast er
createl nt erestLi st
draw

get Boundar yl nPar ent
hi de

i nsi de

| ocal ToSurf ace
not i f yChanged
recal cRegi on
refresh

show
sur faceTolLocal
tickle

Inherited from O ock:

addPer i odi cCal | back
addRat eCal | back
addScal eCal | back
addTi neCal | back
addTi meJunpCal | back

Inherited from Pl ayer:

addMar ker

ej ect

f ast For war d

get Mar ker

get Next Mar ker

get Pr evi ousMar ker

pl ayPr epar e

cl ockAdded

cl ockRenoved

ef f ecti veRat eChanged
for EachSl ave

i sAppropri at ed ock

goToBegi n
goToEnd
goToMar ker Fi ni sh
goToMar ker St ar t
pause

pl ay

Inherited from Transi ti onPl ayer:

pause
resune

ti meJunped
wai t Ti ne
wai t Unt i

pl ayPr epar e
pl ayUnpr epar e
pl ayUnt i
resune

rew nd

stop

335

Iterator

Iterator

336

RootObject

Stream

Iterator

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Stream

Component: Collections

Iterator is an abstract class that defines the protocol common to all iterators.

Iterators are the mechanism for stepping through every element of a collection. Every
collection must respond to the i t er at e method by returning an iterator that, at the
least, is capable of retrieving each element of the collection via sequential calls to the
next method.

An iterator has a cur sor method that indicates numerically the current position in the
collection. The collection that is being processed by the iterator can be retrieved using
the iterator’s sour ce instance variable. A newly created iterator’s cursor value is 0, and
the iterator is considered to be positioned before the first item in the collection. When
you call next on the iterator, it takes one step, and we say that it now “points to” an
item in the collection. The iterator’s key and val ue instance variables are used to
retrieve the object from the collection. The val ue instance variable can also be used to
alter the collection, by replacing the item pointed to with a new object.

As an iterator is a kind of a stream, its methods defined in the St r eamclass
(i sAtFront, cursor and i sPast End) are shown in the figure. Like streams, many
iterators support the concept of “seeking” or repositioning the cursor.

Collection Iterator

i sAt Front
Position to get or set first item previ ous moves the iterator in this directior

self.key self.val ue

cur sor —iterator’s current position

00 ~NOUA~WNRE

next moves the iterator in this direction

Position to get or set last item
i sPast End

Figure 9: An iterator’s cursor points to the current item in its collection.

Just because a collection is mutable does not mean that its iterator will allow you to
modify it. For example, If you tried to write the value 6 to the sorted array [1,2,3,4,5]
whose iterator was positioned at element 3, you might end up with [1,2,6,4,5], which
would invalidate the sorted property of the array.

Once you have created an iterator on a collection, the iterator is valid as long as you call
methods on the iterator. All iterator behavior becomes undefined once you modify its
collection “behind the back” of the iterator. That is, modifying any item by calling a
method (such as set Nt h) directly on the collection invalidates the iterator; to continue
iterating, a new iterator must be created (such as with i terat e).

For more details, see the “Collections” chapter in the ScriptX Components Guide.

Iterator

Note — When you create an iterator (or call at Front on it), the cursor is positioned
before the first item of the collection. At this position, getting or setting the key or value
(for example, using the key or val ue instance variables) reports an error. You must call
next (or otherwise move the cursor into the collection) to get a value. This setup
enables the syntax for iteration to gracefully handle an empty collection. You must also
call next after deleting an item via an iterator (the exci se method).

Creating and Initializing a New Instance

Because | t erat or is an abstract class, you cannot create an instance of it. The easiest
way to create an iterator is to call i t erat e on a collection. This will create the correct
iterator subclass to iterate over the collection. However, you can also instantiate any
concrete subclass of | t erat or by calling newon that subclass.

init

init self collection: collection O (none)
self I terator object
col l ection: Col | ecti on object

Initializes the | t er at or object self to iterate over the collection supplied with the
col | ecti on keyword and sets its cursor to 0. Do not call i ni t directly on an instance—
it is automatically called by the newmethod.

Instance Variables

key

self. key (read-only) (object)

Specifies the key at the current cursor position of the iterator self (as shown in Figure 9).
This key is updated every time the cursor moves. If the cursor is at the front of the
collection, key reports er r or Bound.

source

self. sour ce (read-only) Col | ecti on

Specifies the collection object that the iterator self iterates over.

value

self. val ue (read-write or read-only) (object)

Specifies the value at the current cursor position of the iterator self (as shown in
Figure 9). This value is updated every time the cursor moves. If the cursor is at the front
of the collection, val ue reports err or Bound.

This instance variable is read-write or read-only depending on the particular collection
being iterated over—if the values in the collection can be set, then you can write to the
val ue instance variable to change its value.

Instance Methods

Inherited from St ream
cur sor next seekFronttart
flush pl ug set Streaniength

337

Iterator

338

i SAt Front pr evi ous streaniengt h
i sPast End read wite

i sReadabl e r eadReady w i t eReady

i sSeekabl e seekFr omQur sor

isWitabl e seekFr onEnd

The following instance methods are defined in I terator:

excise

exci se self O (none)

Deletes the key-value pair from the source collection pointed to by the cursor of the
iterator self (as shown in Figure 9). After an excise, the iterator is in an undefined state;
you must call a seek method (like seekFronSt art) or the next method to move the
cursor into a known position. Note that the previ ous and seekFr omQur sor methods
should not be used directly after an excise. The exci se method does not delete the key
object and value object themselves (unless normal garbage collection applies); it just
removes them from the collection.

The exception i t er at or Boundary is reported if exci se is called when the iterator’s
val ue and key instance variables are not valid (for example, if the cursor is ahead of the
first item, or if the cursor is more than one position past the end). The exci se method
reports i mmut abl e if the source collection is immutable, or bounded if the source
collection would shrink below nm nSi ze.

remainder

remai nder self O Col l ection

Returns a collection of the items from the source collection between the cursor of the
iterator self and the end of the source collection.

seekKey

seekKey self key O Bool ean
self I'terator object
key Any object

Moves the cursor of the iterator self to the first occurrence of the given key in the source
collection of iterator self. Returns t r ue if the key was found, or f al se if it was not
found (in which case the iterator is left past the end of the collection). If the iterator is
not seekable, seekKey reports not Seekabl e. All built-in collections are seekable. You
can find out if any iterator is seekable by calling i sSeekabl e (from the St r eamclass) on
it.

Iterator

seekValue

seekVal ue self value O Bool ean
self I'terator object
value Any object

Moves the cursor of the iterator self to the first occurrence of the given value in the
source collection. Returns t r ue if the value was found, or f al se if it was not found (in
which case the iterator is left past the end of the collection). If the iterator self is not
seekable, seekVal ue reports not Seekabl e. All built-in collections are seekable. You can
find out if any iterator is seekable by calling i sSeekabl e (from the Streamclass) on it.

Subclasses Must Implement

Subclasses of | t er at or must implement the following:

sour ce (Iterator)

cur sor (Stream

next (Stream

exci se (Iterator)

i sPast End (Stream

val ueGet t er (Iterator)

val ueSet t er (I't erat or) but only if the values are settable

All subclasses for which the source collection is keyed:
keyGet t er (Iterator)

All subclasses which are seekable:

previ ous (Stream
seekFrontt art (Stream
seekFr onEnd (Stream
seekKey (Iterator)

339

IVAction

I[VAction

RootObject

Action

IVAction

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Action

Component: Animation

I VActi on class represents an action that will change a certain instance variable in the
target object to a specified value at a specified time. This is done by specifying the setter
function for the instance variable and its new value. For example, you can change the
width of a 2D presenter to 300 by specifying wi dt hSet t er as the setter function and
val ue to 300.

Creating and Initializing a New Instance

340

The following script is an example of how to create a new instance of the | VActi on
class:

nyAction: = new | VAction \
setterFunction: w dthSetter \
val ue: 300 \
targetNum2 \
tine: 10

The variable nyAct i on holds an initialized instance of | VAct i on. This instance specifies
that, at the player’s time of 10 ticks, the player’s second target (t ar get Num 2) has its
instance variable whose setter function is named wi dt hSet t er change to the value 300.
The newmethod uses the keywords defined in i ni t.

init

init self [setterFunction:generic] [val ue:object]

[target Numinteger] [time: integer] O (none)
self | VAct i on object
set ter Functi on: Generi ¢ object for the setter function of the instance
variable to change
val ue: Any object. This is the value to put in the instance
variable

Superclass Act i on uses the following keywords:

t ar get N\um I nt eger indicating which object in the target list of the
player to apply the action to

time: | nt eger object representing the time in ticks to trigger
the action

Initializes the | VACt i on object self, applying the values supplied with the keywords to
the instance variables of the same name. At the specified t i ne, this action causes the
generic specified by sett er Functi on to be called with the given val ue on the

t ar get Numtarget object. Do not call i ni t directly on an instance—it is automatically
called by the new method.

If you omit an optional keyword, its default is used. The defaults are:
setter Functi on: undefi ned
val ue: undefi ned
target Num O

IVAction

tine:0

Instance Variables

Inherited from Acti on:

aut hor Dat a t ar get Num time
pl ayCnl y

The following instance variables are defined in | VActi on:

setterFunction

self. set t er Functi on (read-write) Generic

Specifies the method (actually, the generic) that sets the instance variable you want to
change in the target object. For example, the setter function for the width instance
variable for a 2D presenter would be set as follows:

nyAction. setterFunction := wdthSetter

value

self. val ue (read-write) (object)

Specifies the value to change the instance variable to.

Instance Methods

Inherited from Acti on:
trigger

The following instance method is defined in | VAct i on:

trigger (Action)
trigger self target player O target
self I VAct i on object
target Any object
player Acti onLi st Pl ayer object

Causes the iv action self to call the generic specified by set t er Funct i on with the
argument given by the val ue instance variable, on the t ar get Numtarget object, as
follows:

self. setter Functi on player. t ar get s self. t ar get Nunj self. val ue

This method is called by an Acti onLi st Pl ayer object at the time specified by the ti nme
instance variable. This action list player is passed in as the third argument player.

When the action list player calls trigger, the value for target is automatically determined
by taking the t ar get Numinstance variable and finding the object in the corresponding
slot in the player’s target list. If the t ar get Numinstance variable is out of range (that is,
less than 1 or greater than the size of the target list), the value of the target is enpt y.
Also, if there is no target in a certain slot in the target list yet, the value of target is
undef i ned.

341

KeyboardDevice

KeyboardDevice

342

RootObject

InputDevice

KeyboardDevice

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: | nput Devi ce

Component: Input Devices

Keyboar dDevi ce is an abstract class that acts as an interface between the ScriptX Player
and the native operating system. A Keyboar dDevi ce instance—that is, an object that
belongs to a subclass of Keyboar dDevi ce—receives keyboard events from the device
driver and sends them to other classes as ScriptX events.

Each key has an associated key string and key code, as shown in the table below. The
key name is the same as the key string, but coerced to Naned ass. When an instance of
a Keyboar dDevi ce subclass generates a keyboard event, it fills in the keycode instance
variable, defined by Keyboar dEvent, to identify the key that was pressed or released.

Key codes are divided into two groups: Unicode and ScriptX.

® Standard Unicode characters are represented by positive key codes (including zero).
For characters with key code 32 or greater, the character is the key name. For
characters with key code between 0 and 32, the key name is not well defined.

® ScriptX “action keys” and modifier keys are represented by negative key codes.
Action keys include functions keys, directional keys, and the keys on a numeric
keypad. They have the key strings shown in Table 7.

ScriptX supports Unicode/ISO 10646 characters. Unicode is a standard set of 65,536
characters, presenting a wide range of characters, glyphs and symbols. ISO 10646 is a
method variable-length encoding standard for Unicode characters that supports a
variety of orderings on the standard Unicode character set. For a description of Unicode
and ISO 10646, see the "Text and Fonts" chapter of the ScriptX Components Guide.

In the table that follows, there are gaps in the key codes, which are reserved for possible
future use. Number and function keys are arranged in ascending order, so that
f2 = f1 + 1and nunpad2 = nunpad + 1.

Table 7: Key codes in ScriptX

Key String Key Code Key String Key Code Key String Key Code
Function Keys Numeric Keypad Directional Keypad

f1 -19 nunpad0 -29 up -40
f2 -18 nunpadl -28 down -41
f3 =17 nunpad2 =27 left -42
fa -16 nunpad3 -26 right -43
f5 -15 nunpad4 -25 horme -44
f6 -14 nunpad5 -24 end -45
f7 -13 nunpad6 -23 pageUp -46
f8 -12 nunpad?7 -22 pageDown -47

KeyboardDevice

Table 7: Key codes in ScriptX (Continued)

Key String Key Code Key String Key Code Key String Key Code

fo -11 nunpad8 =21 i nsert -48

f10 -10 nunpad9 =20 del ete -49

f11 -9

f12 -8 mul tiply -30 Miscellaneous Keys

f13 -7 di vi de =31 cancel -60

f14 -6 add -32 backspace -61

f15 -5 subt r act -33 tab -62
deci mal -34 ent er -63

Modifier Keys nunEnt er -35 escape —64

shift -80 equal s -36 pause —65

control -81 snapshot —66

alt -82 cl ear -67

command -83

caplLock -90

nuniock -91

scrol | Lock -92

Creating and Initializing a New Instance

Normally, you cannot invoke newon an abstract class. However, in the case of the
Keyboar dDevi ce class, the system allows you to do so. In the current release of ScriptX,
this creates an instance of Physi cal Keyboar d.

nyKeyboard : = new KeyboardDevi ce \
devicelD 1 \
enabl ed: true \
aut oRepeat : true

The variable nyKeyboar d contains an initialized instance of a subclass of

Keyboar dDevi ce (Physi cal Keyboar d in Version 1.0 of the Kaleida Media Player). The
newmethod calls the i ni t method defined and Version 1.1 by Keyboar dDevi ce and its
superclasses. These i ni t methods apply several keyword arguments.

init

init self [autoRepeat:boolean] [devicel Dinteger] [enabl ed: boolean] O (none)

self Keyboar dDevi ce object
aut oRepeat : Bool ean object

Superclass | nput Devi ce uses the following keywords:

devi cel D I nt eger object
enabl ed: Bool ean object

Initializes the Keyboar dDevi ce object self, applying the arguments as follows: the

aut oRepeat keyword sets an initial value for the instance variable of the same name.
The devi cel Dkeyword specifies an integer ID number that is unique to a particular
subclass of | nput Devi ce. It allows a title to request a particular keyboard if more than
one keyboard is attached to the system. By default, the Kaleida Media Player normally

343

KeyboardDevice

assigns the first available device ID. The enabl ed value activates the device if set to
true. Do not call i nit directly on an instance—it is automatically called by the new
method.

If you omit an optional keyword, its default value is used. The defaults are:

aut oRepeat : f al se
devicel D 1
enabl ed: true

Class Methods

Inherited from | nput Devi ce:
get Devi ceFr onli st

Instance Variables

Inherited from | nput Devi ce:

devi cel D focusabl e f ocusManager
enabl ed

The following instance variables are defined in Keyboar dDevi ce:

autoRepeat

self. aut oRepeat (read-write) Bool ean

If aut oRepeat is true and the keyboard self has this capability, then the device will
generate events automatically when a key is held down. Setting aut oRepeat to f al se
guarantees that key repeats are not generated. Setting this instance variable to t r ue
does not guarantee that key repeats are generated—key repeats depend on the
capabilities of the underlying operating system and hardware.

focusManager

self. f ocusManager (read-only) Keyboar dFocusManager

Specifies the keyboard focus manager that is managing focus on the device self.

keyModifiers

self. keyModi fiers (read-only) Array

Specifies the current state of the modifier keys, returning a list of active keys as an

Arr ay object. The two kinds of modifier keys are called shift and state keys. A shift key
is active if it is being pressed; a state key is active if it is currently toggled on. Possible
values are @hi ft, @ontrol, @l t. @omand, @apLock, @uniLock, and @cr ol | Lock.

nyKbd. keyMdi fiers -- with shift and control keys down
O #@hift, @ontrol).

Instance Methods

existKkey

exi st Key self keyName O Bool ean
self Keyboar dDevi ce object
keyName Narred ass or | nt eger object

344

KeyboardDevice

Returns true if the keyboard self supports the given key name. KeyNarme may be a key
name taken from the keycode list for keys that ScriptX defines, or an integer for
standard Unicode keys. If t r ue is returned, then the keyboard device is capable of
generating that key. This method must be implemented by all subclasses of

Keyboar dDevi ce. To specify a key name for a key, precede the name you find in Table 7
with @

exi st Key kbrd @untock -- returns true if kbrd supports the NunLock key

getKeyName

get KeyNarre self keyCode O Naned ass
self Keyboar dDevi ce object
keyCode I nt eger object

Returns a Named ass object for the given keyCode for the keyboard device self, where
keyCode is one of the key codes defined by ScriptX. Negative key codes are defined by
ScriptX (see Table 7) and return the key name for that key. Key codes greater than 0
return undef i ned. An invalid or undefined key code also returns undef i ned.

getKeyString

get KeyString self keyCode 0 String
self Keyboar dDevi ce object
keyCode I nt eger object

Returns a string that contains the name for the given keyCode for the keyboard device
self. Unicode characters with key code = 32 will return that character as a string. Key
codes between 0 and 31 are not well defined. Negative key codes are defined by ScriptX
(see Table 7) and return the key string for that key. An invalid or undefined key code
will return undef i ned. Note that a key name is a NameQ ass object, and has a
corresponding entry in the system name table. A key string, unlike a key name, is not
interned as a Naned ass object.

isModifierActive

i shodi fierActive self keyName O Bool ean
self Keyboar dDevi ce object
keyName Narmed ass object representing a modifier key.

Returns tr ue or f al se, depending on whether the modifier key keyName is active on the
Keyboar dDevi ce object self. See the keyModi fi er s instance variable for a list of
possible values.

isModifierlnactive

i shodi fierlnactive self keyName O Bool ean
self Keyboar dDevi ce object
keyName Narmed ass object representing a modifier key.

Returns true or f al se, depending on whether the modifier key keyName is inactive on
the Keyboar dDevi ce object self. See the keyModi fi er s instance variable for a list of
possible values.

Subclasses must implement

Subclasses must implement the following methods:

exi st Key

345

KeyboardDownEvent

KeyboardDownEvent

RootObject

QueuedEvent

KeyboardEvent

KeyboardDownEvent

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Keyboar dEvent

Component: Events

The Keyboar dDownEvent class represents the pressing of a key on a keyboard by a user.
Each occurrence is represented by a different instance.

Some systems represent the gesture of continually pressing a key as a type of event that
is separate and distinct from a single keyboard-down event. In ScriptX, the core classes
define only two concrete classes of keyboard events: Keyboar dDownEvent and

Keyboar dUpEvent . A Keyboar dDevi ce object generates a series of Keyboar dDownEvent
instances if a key is pressed continually. (Some hardware keyboards may not support
this behavior.) For more information, see the class Keyboar dDevi ce.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Keyboar dDownEvent class:

nyKeyDown : = new Keyboar dDownEvent

The variable nyKeyDown contains the initialized instance. To use nyKeyDown as an
interest, you must then specify values for the devi ce and event Recei ver instance
variables. The newmethod takes no arguments. The class Keyboar dDownEvent has no
i ni t method—its initialization is inherited from its superclasses.

Class Variables

Inherited from Event:
interests nunm nterests

Inherited from QueuedEvent :
di spat chQueue

Class Methods

Inherited from Event:

acqui r eQueueFr onPool rel i nqui shQueueToPool
br oadcast Di spat ch si gnal D spat ch

346

KeyboardDownEvent

Instance Variables

Inherited from Event :

adverti sed event Recei ver ti meSt anp
aut hor Dat a nmat chedl nt er est
devi ce priority

Inherited from QueuedEvent :
secondar yD spat chStyl e secondar yRej ect abl e

Inherited from Keyboar dEvent :

keyCode naxKeyCode m nKeyCode
keyModi fiers

Instance Methods

Inherited from Event:

accept i sSati sfiedBy sendToQueue
acqui r eRej ect Queue rej ect si gnal
addEvent | nt er est rel i nqui shRej ect Queue

br oadcast removeEvent | nt er est

Inherited from QueuedEvent :

br oadcast secondar yS gnal si gnal
secondar yBr oadcast

Inherited from Keyboar dEvent :

br oadcast i shodi fierlnactive i sSati sfi edBy
i shodi fierActive

347

KeyboardEvent

KeyboardEvent

RootObject

QueuedEvent

KeyboardEvent

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: QueuedEvent

Component: Events

Keyboar dEvent is a class that represents any kind of keyboard event. Its concrete
subclasses, Keyboar dDownEvent and Keyboar dUpEvent, represent particular kinds of
keyboard events. An instance of one of these subclasses holds the event state:

® Which key was pressed or released

® Which modifier keys were pressed (Shift, Control, Alt, Command, CapLock,
NumULock, or ScrollLock) while the key was pressed or released

Refer to FocusEvent for information on how presenters can gain focus for keyboard
events.

Note — The following two phrases are used below to refer to the type of event:
® “Interest-only” means the instance self is used to express an event interest.
¢ “Event-only” means the instance self holds an actual user event.

Creating and Initializing a New Instance

Since Keyboar dEvent is an abstract class, it is never instantiated, however it has an
i ni t method that is inherited by its subclasses. Its i ni t method has no keyword
arguments.

init

init self O (none)
self Keyboar dEvent object
Initializes the Keyboar dEvent object self.

Class Variables

Inherited from Event:
interests num nterests

Inherited from QueuedEvent :
di spat chQueue

Class Methods

Inherited from Event :
acqui r eQueueFr onPool rel i nqui shQueueToPool

348

KeyboardEvent

br oadcast D spat ch si gnal Di spat ch

Instance Variables

Inherited from Event :

adverti sed event Recei ver ti meStanp
aut hor Dat a mat chedl nt er est
devi ce priority

Inherited from QueuedEvent :
secondar yD spat chStyl e secondar yRej ect abl e

The following instance variables are defined in Keyboar dEvent :

keyCode

self. keyCode (read-write) | nt eger

Event-only instance variable. Specifies the key that was pressed or released. For more
information, see the class Keyboar dDevi ce.

keyModifiers

self. keyModi fiers (read-write) Array

If a Keyboar dEvent instance is used as an interest, keyMbdi f i er s indicates the set of
key modifiers that must be pressed for the interest to be satisfied. If it is used as an
event, it indicates the set of modifiers currently pressed. The two kinds of modifier keys
are called shift and state keys. A shift key is active if it is being pressed. A state key is
active if it is currently toggled on. Possible values for modifier keys are @hi ft,
@ontrol, @l t, @onmand, @apLock, @uniock, and @cr ol | Lock. For additional
information about keys, see the Keyboar dDevi ce class.

nyMouseEvent . keyModi fiers -- suppose the shift key was pressed

0O #(@hift)

nyMousel nterest. keyMdifiers := #(@ontrol, @hift) -- set nodifiers
O #(@ontrol, @hift)

maxKeyCode

self. maxKeyCode (read-write) I nt eger

Interest-only instance variable. Specifies the maximum value for keyCode that can
satisfy the event interest self. The instance method i sSati sfi edBy, defined by Event
but specialized by Keyboar dEvent, compares keyCode with maxKeyCode. The interest
self cannot be satisfied if keyCode is greater than maxKeyCode. If

maxKeyCode = m nKeyCode, then the interest can only be satisfied by a single keyCode
value. By default, maxKeyCode is set to an arbitrarily high value, outside the range of
keyCode values that is supported by any keyboard device.

For example, when creating a key-down interest in the four arrow keys (up, down, left,
right), use these keycode values:

-40
-43

nyKeyboar dDownEvent . maxKeyCode :
nyKeyboar dDownEvent . m nKeyCode :

349

KeyboardEvent

Instance

350

minKeyCode

self. m nKeyCode (read-write) | nt eger

Interest-only instance variable. Specifies the minimum value for keyCode that can
satisfy the event interest self. The instance method i sSati sfi edBy, defined by Event
but specialized by Keyboar dEvent, compares keyCode with m nKeyCode. The interest
self cannot be satisfied if keyCode is less than m nKeyCode. If

m nKeyCode = naxKeyCode, then the interest can only be satisfied by a single keyCode
value. By default, m nKeyCode is set to an arbitrarily low value, outside the range of
keyCode values that is supported by any keyboard device.

Methods

Inherited from Event :
accept i sSati sfiedBy sendToQueue
acqui r eRej ect Queue rej ect si gnal
addEvent | nt er est rel i nqui shRej ect Queue
br oadcast renoveEvent | nt er est

Inherited from QueuedEvent :

br oadcast secondar ySi gnal si gnal
secondar yBr oadcast

The following instance methods are defined in Keyboar dEvent :

broadcast (Event)

br oadcast self O Exception

Reports the cant Broadcast exception if called on the keyboard event self.

isModifierActive

i shodi fierActive self keyName 0 Bool ean
self Keyboar dEvent object
keyName Narred ass object representing a modifier key.

Returns t r ue or f al se, depending on whether the modifier key keyName is active on the
Keyboar dEvent object self. See the keyModi fi er s instance variable for a list of possible
values.

isModifierlnactive

i shodi fierlnactive self keyName 0 Bool ean
self Keyboar dEvent object
keyName Narred ass object representing a modifier key.

Returns true or f al se, depending on whether the modifier key keyName is inactive on
the keyboard event self. See the keyModi i er s instance variable for a list of possible
values.

isSatisfiedBy (Event)
i sSatisfiedBy self event O Bool ean
self Event object that represents an event interest
event Event object that represents an actual event

KeyboardEvent

The method i sSat i sfi edBy tests whether an event interest is satisfied by an event. Do
not call i sSati sfi edBy directly from a script. It is called by the event system as a result
of calling either si gnal or broadcast .

The Keyboar dEvent class specializes i sSati sfi edBy to make several comparisons. It
checks whether the device that generated the event is the same device that the event
interest has registered an interest in. If the interest specifies one or more modifier keys,
then i sSati sfi edBy checks that those keys were pressed when the event occurred. If
the interest sets a particular value or range of values for keyCode by setting the instance
variables maxKeyCode or m nKeyCode, then i sSat i sfi edBy checks that the value of
keyCode for the event is in range.

351

KeyboardFocusManager

KeyboardFocusManager

RootObject

KeyboardFocusManager

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Input Devices

Keyboar dFocusManager is a concrete class that manages focus on one keyboard device.
Since version 1.1 of ScriptX supports only a single, physical keyboard device, there is at
most one instance of Keyboar dFocusManager in the system, accessible through the

f ocusManager instance variable on that device.

Creating and Initializing a New Instance

Normally, you do not create a keyboard focus manager by calling newon the
Keyboar dFocusManager class. An instance of Keyboar dFocusManager is created
automatically when a Keyboar dDevi ce object is instantiated, and it is set to manage
focus on that device. Keyboar dFocusManager defines an i ni t method.

init

init self device O (none)
self FocusManager object
devi ce: Keyboar dDevi ce object

Initializes the Keyboar dFocusManager object self, setting the value of the instance
variable devi ce to the value supplied with the keyword device. Do not call i ni t
directly on an instance—it is called automatically by the newmethod.

All keywords arguments defined by the i ni t method are required.

Instance Variables

device

self.devi ce (read-only) Keyboar dDevi ce

Specifies the Keyboar dDevi ce object that the Keyboar dFocusManager object self is
currently managing focus on.

Instance Methods

forceFocus

forceFocus self presenter O (none)
self Keyboar dFocusManager object
presenter TwoDPr esent er object

352

KeyboardFocusManager

Forces the keyboard focus manager self to send a focus event (with f ocusType set to
@ai nFocus) to presenter, a TWoDPr esent er object. If another presenter has focus, it also
sends a focus event (with f ocusType set to @ oseFocus) to that presenter, informing it
that it is losing focus. If you call f or ceFocus with presenter set to undef i ned, the
presenter that currently has focus loses focus.

353

KeyboardUpEvent

KeyboardUpEvent

RootObject

QueuedEvent

KeyboardEvent

KeyboardUpEvent

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Keyboar dEvent

Component: Events

The Keyboar dUpEvent class represents the release of a key on a keyboard by a user.
Each occurrence is represented by a different instance.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the

Keyboar dUpEvent class:

nyKeyWp : = new Keyboar dUpEvent

The variable nyKeyUp contains the initialized instance. The newmethod takes no
arguments. The class Keyboar dUpEvent has no i ni t method—its initialization is

inherited from its superclasses.

Class Variables

Inherited from Event :
interests

Inherited from QueuedEvent :
di spat chQueue

Class Methods

Inherited from Event :

acqui r eQueueFr onPool
br oadcast D spat ch

Instance Variables

Inherited from Event :

adverti sed
aut hor Dat a
devi ce

Inherited from QueuedEvent :

secondar yD spat chStyl e

Inherited from Keyboar dEvent :

keyCode
354

num nt erests

rel i nqui shQueueToPool
si gnal D spat ch

event Recei ver ti meStanp
nmat chedl nt er est
priority

secondar yRej ect abl e
nmaxKeyCode m nKeyCode

KeyboardUpEvent

keyModi fi ers

Instance Methods

Inherited from Event :

accept i sSati sfiedBy sendToQueue
acqui r eRej ect Queue rej ect si gnal
addEvent | nt er est rel i nqui shRej ect Queue

br oadcast renmoveEvent | nt er est

Inherited from QueuedEvent :

br oadcast secondar ySi gnal si gnal
secondar yBr oadcast

Inherited from Keyboar dEvent :

br oadcast i shodi fierlnactive i sSati sfiedBy
i shodi fierActive

355

KeyedLinkedList

KeyedLinkedList

RootObject

Collection

ExplicitlyKeyedCollection LinearCollection

KeyedLinkedList

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables

Inherits from: ExplicitlyKeyedCol | ection and Li near Col | ecti on
Component: Collections

A KeyedLi nkedLi st consists of objects with three components, a key, a value, and
another KeyedLi nkedLi st object. KeyedLi nkedLi st objects are recursive data
structures, they can be separated into components that are also KeyedLi nkedLi st
objects using the head and t ai | methods. See the discussion in “LinkedList” on
page 385 for more information on recursive data structures.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
KeyedLi nkedLi st class:

nyLi st := new KeyedLi nkedLi st

The variable nyLi st contains the initialized keyed linked list. You can also create a
linked list by using the pound sign (#) shortcut, separating keys from values with a
colon () :

nyList := #("a":1, "b":2, "c":3)

init

init self O self
self KeyedLi nkedLi st object

Initializes the KeyedLi nkedLi st object self, to be an empty list. Do not call i ni t directly
on an instance—it is automatically called by the new method.

Note — Every object that is added to an instance of KeyedLi nkedLi st creates a new
KeyedLi nkedLi st as its new sublist; thus the i ni t method will be called once for each
added object. If you want to create a subclass of KeyedLi nkedLi st, you must be aware
of this behavior. If you want your subclass to have an i ni t method that is only called
once when the entire collection is created, use a subclass of | ndi rect Col | ecti on
setting the t ar get Col | ecti on to a KeyedLi nkedLi st .

Class Methods

Inherited from Col | ecti on:
pi pe

356

KeyedLinkedList

Instance Variables

Inherited from Col | ecti on:

bounded maxSi ze si ze
iteratord ass m nSi ze uniformty
keyEqual Conpar at or nut abl e uni form tyd ass

keyUni formty
keyUni form tyd ass

nut abl eCopyd ass
proprietored

val ueEqual Conpar at or

Instance Methods

Inherited from Col | ecti on:

add for Each iterate
addiany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al l nap
chooseAl | get Any ner ge
choosee get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin
del eteAl | get Many renmoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngGne hasBi ndi ng set Al l
del et eKeyAl | hasKey set e
del et ekeyCne i ntersects si ze
del et eCne i sEmpty
enpt yQut i sMenber

Inherited from Li near Col | ecti on:
chooseneBackwar ds fi ndRange get Nt hKey
chooseOr dne f or EachBackwar ds get 0 dOne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop

The following instance methods are defined in KeyedLi nkedLi st :

head

head self O (object)

Returns the “value” portion of the keyed linked list self.

getKey

get Key self O (object)

Returns the key associated with the current “value” or head of the keyed linked list self.

getList

get Li st self key O KeyedLi nkedLi st

self KeyedLi nkedLi st object
key Any object

Returns the sublist of the keyed linked list self beginning with the element whose key
matches the key value. Returns enpt y if there is no matching key.

357

KeyedLinkedList

358

getListValue

get Li st Val ue self value 0 KeyedLi nkedLi st
self KeyedLi nkedLi st object
value Any object

Returns the sublist of the keyed linked list self beginning with the element whose head
value matches the value parameter. Returns enpt y if there is no matching entry.

setHead

set Head self value O self
self KeyedLi nkedLi st object
value Any object

Sets the “value” portion of the keyed linked list self to value. Equivalent to:

(

local i := iterate self
next i
i.value := value

setKey

set Key self newKey O newKey

self KeyedLi nkedLi st object
newKey Any object

Sets the key associated with the current “value” or head of the keyed linked list self to
newKey.

setTail

set Tai | self newList O self
self KeyedLi nkedLi st object
newList KeyedLi nkedLi st object

Grafts newList onto the keyed linked list self. Similar to addMany self newList, except that
the internal structure of self is modified to point directly to newList.

tail

tail self O KeyedLi nkedLi st

Returns the immediate sublist of self, that is, the KeyedLi nkedLi st excluding the
current head and its key. Returns enpty if the current node is the last element of the
collection.

KeyedLinkedListlterator

KeyedLinkedListlterator

RootObject

Stream

Iterator

KeyedLinkedListlterator

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: |terator

Component: Collections

A KeyedLi nkedLi st | t er at or object iterates over any KeyedLi nkedLi st object.

Creating and Initializing a New Instance

A new instance of a keyed linked list iterator is generally created by calling i t erat e on
an instance of KeyedLi nkedLi st .

Instance Variables

Inherited from | terator:
key sour ce val ue

Instance Methods

Inherited from St ream

cur sor next seekFronttart
flush pl ug set Streaniengt h
i SAt Front previ ous streantengt h
i sPast End read wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omQur sor
isWitabl e seekFr onend
Inherited from | t er at or:
exi se seekKey seekVal ue
renmai nder

359

Label

Label

RootObject

Presenter

TwoDPresenter

Class type: Scripted class (concrete)

Resides in: wi dget s. sx| . Works with ScriptX and KMP executables
Inherits from: TwoDPr esent er

Component: User Interface

The Label class is a presenter that acts as a template for a text label. The ScriptX widget
kit, a set of templates for building user interface objects that have a standard look and
feel, uses the Label class to display text as part of other widgets.

A label incorporates a text stencil, which it renders to a display surface. The properties
of a label are really the properties of this text stencil, together with some additional
information for drawing it inside a colored frame, with a drop shadow.

Creating and Initializing a New Instance

360

The following script creates a new instance of Label :

gl obal nyLabel := new Label \
text:"KALEl DA LI VES!"
boundary: (new Rect x2:160 y2:40)

The variable nyLabel contains an initialized instance of Label , which presents a text
stencil with the string "KALEIDA LIVES!" in a presenter with the given boundary. The
string will be rendered with the default system font, since no value is supplied for f ont .
The newmethod uses the keywords defined in i nit.

init

init self [text:string] [font:font] [boundary: stencil]

[stationary: boolean | O (none)
self Label object

text: String object containing the text to be displayed

font: Pl at f or nFont object

Superclasses of Label use the following keywords:

boundary: Rect object, the boundary of the presenter

target: Ignored by Label

stationary: Bool ean object

Initializes the Label object self, applying the keywords as follows: t ext is applied to set
the string keyword of a Text Stenci | object, which is stored in the instance variable
text Stencil; font is applied to set the platform-specific font of that text stencil; and
boundary is used to set the instance variable of the same name. The t ar get keyword is
ignored. Do not call i ni t directly on an instance—it is called automatically by the new
method.

If you omit an optional keyword, its default value is used. The defaults are:

text: ("untitled")
font: (theSystenfont)

Label

boundary: (a Rect object that spans the given string)
t ar get : undef i ned
stationary:true

Since the default settings are based on platform-specific fonts, appearance may vary
across platforms unless all keyword arguments are fully specified.

Instance Variables

Inherited from Present er:
pr esent edBy subPresenters t ar get

Inherited from TwoDPr esent er :

bBox hei ght transform
boundary IslnplicitlyDirect wi dth

cl ock i sTranspar ent wi ndow
conposi t or isVisible X

di rect needsTi ckl e y
eventlnterests position z

gl obal Boundary stationary

gl obal Transform t ar get

The following instance variables are defined in Label :

alignment

self. al i gnnent (read-write) Naned ass

Specifies how the string that the label self presents should be aligned. Possible values
are @ ushLeft, @enter, and @| ushR ght. The default value is @ent er.

autoResize

self. aut oResi ze (read-write) Bool ean

Specifies whether the label self is resized automatically when the height of the label’s
font is changed.By default, aut oResi ze is set to t r ue.

font

self. f ont (read-write) Pl at f or nfFont
Specifies the Pl at f or nFont object that is used to render the label’s text.

fill

self. fill (read-write) Brush

Specifies the Brush object that is used to fill the label self. The default is the global
constant whi t eBr ush.

text

self. t ext (read-write) String

Specifies the Stri ng object that is the target string of the label’s text stencil.

textStencil

self. text Stenci | (read-write) Text St enci |

Specifies the text stencil, a 2D graphics object, that the label self draws to the display
surface. This stencil draws the string that referenced by the label’s t ext property.

361

Label

textTransform

self. t ext Transform (read-write) TwoDMat ri x

Specifies the TwoDVat ri x object that the Label object self uses internally to render its
text stencil. Although it uses the standard transformation matrix, defined by

TwoDPr esent er and stored in the instance variable gl obal Tr ansf or m for drawing the
label’s frame, a label maintains another matrix in t ext Tr ansf or mto allow its text to be
positioned independently of the frame in which it is drawn.

Instance Methods

Inherited from TwoDPr esent er :

adj ust d ockMast er i nsi de show

createl nterestLi st | ocal ToSurf ace sur f aceTolLocal
dr aw not i f yChanged tickle

get Boundar yl nPar ent recal cRegi on

hi de refresh

362

Largelnteger

Largelnteger

RootObject

Number
Integer

Largelnteger

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: | nt eger

Component: Numerics

The Lar gel nt eger class represents integers to 203 49203 _ 1.

Note — See the | nt eger and Nunber classes for the inherited methods that can be called
on Lar gel nt eger objects.

Creating and Initializing a New Instance

There is no need to explicitly create or initialize an instance of Lar gel nt eger —simply
use whatever integer you want in a script. Whenever the compiler encounters an
integer larger in absolute value than an | nmedi at el nt eger that will fit in a large
integer, it automatically promotes the integer to a Lar gel nt eger object. If the integer
won't fit in a large integer, the compiler promotes it to a Fl oat object. The

Lar gel nt eger class has no scripter-level i ni t method.

Instance Methods

Inherited from Nunber :

abs f1 oor radToDeg
acos frac random
asin i nverse rem
at an I'n round
at an2 | og sin
ceiling max sinh
coerce mn sgrt
cos nod tan
cosh nor ph t anh
degTor ad negat e trunc
exp power

Inherited from | nt eger :
I ength | ogi cal Op I shift
| ogi cal And | ogi cal Or rshift
| ogi cal Not | ogi cal Xor

363

LibraryContainer

LibraryContainer

364

RootObject

Collection
IndirectCollection
StorageContainer

LibraryContainer

Class type: Core class (concrete)

Resides in: ScriptX and ScriptX Player executables
Inherits from: St or ageCont ai ner

Component: Title Management

The Li braryCont ai ner class represents a file on disk that contains a set of loadable
classes and objects, has a start-up script, and is identifiable by name, version, and
copyright. Use an instance of Li braryCont ai ner (for brevity, a library) to organize and
store code and data that is used by a title. Since a library can contain references to
objects that are in other libraries, it can act as both a physical and a logical container.

Li br ar yCont ai ner has two subclasses, Ti t| eCont ai ner and Accessor yCont ai ner,
that are specialized for building interactive programs. An instance of Ti t | eCont ai ner
has a menu bar and clipboard, and maintains a list of its clocks, players, and windows
so the title as a whole can be paused, resumed, muted, opened, saved, and closed. An
instance of Accessor yCont ai ner is a library that can implement the get Accessory
method, a built-in hook for communication with titles.

LibraryContainer

TitleContainer AccessoryContainer

Figure 4-10: The LibraryContainer family of classes

An library is useful for storing classes and objects that can be added dynamically to a
title. Examples of libraries include importers, exporters, transitions, preference files, or
any other useful set of classes and objects. A library can comprise any kind of classes or
objects that the title can use, including user interface items, such as menus, windows,
and pushbuttons. A library can also contain a set of data, such as audio streams or
bitmap objects. When the library is opened, its classes and objects are available to the
title.

The ScriptX Player maintains a collection, accessible via the global variable

t heQpenCont ai ner s, of all currently open library, title, and accessory containers in the
runtime environment. ScriptX also defines several other system globals that identify
open title containers.

A library is not meant to be a stand-alone application. A library is intended to be used
by a title or other library, as shown in the following figure. You cannot open a library
from the operating system as you can a title. Normally you open a title first, which then
loads any libraries and accessories that it needs. It can load them automatically at
start-up time if they are listed in its | i brari es instance variable.

LibraryContainer

myTitle myLibrary
Instance Variables:) o Instance Variables:
libraries iv -
users .) users myTitle
- is persistent -
libraries myLibrary libraries undefined
Members: Members:
myTltle[1] myPlayer myLibrary[1] myObjl
myTitle[2] rewindButton) myLibrary[2] myObj2
users iv
T is transient

When a title opens a library, it calls open and specifies itself as a user of the library
(using the user keyword) to inform the library that the title is using it. Several titles can
be users of the same library—the library keeps a list of its users. The library remains
open as long as it has at least one user. When its last user closes, the library closes and
is automatically saved, unless it was opened in @ eadonl y mode.

Library, title, and accessory containers cannot be embedded in one another. For
example, you cannot add a library to a title. To make a required library part of a title,
you instead specify the title as a user of the library (either with the user keyword when
calling newor open on the library, or by calling the addUser method).

A library container is a collection. It inherits its collection behavior through

I ndi rect Col | ecti on, and its default target collection is an array. You might want to
specify a different target collection, such as an explicitly keyed collection. Add to a
library container any objects that you want saved to the library. You can add objects
explicitly, by using methods defined by Col | ecti on, Li near Col | ecti on, or Sequence
such as add, append, or addiany.

Objects that are added directly to the library’s target collection are called top-level
objects. You can also add objects implicitly, for example, by reference through an
instance variable of a top-level object. A top-level object can also be a collection that
contains other objects. Objects that are added implicitly are automatically added to the
container, and are referred to as subobjects. (If a subobject has already been added to
another storage container, then only a reference is added.) Objects that have been added
to a library container, both top-level objects and subobjects, are called persistent objects,
even if they have not yet been saved to the library container.

When a library is opened, a reference to the objects it contains is brought into memory,
so that those objects can then be referenced by the program. The objects themselves are
not loaded into memory automatically. The library container’s start-up script can be
designed to load any objects that need to be preloaded. Other objects in the library are
loaded into memory as they are used.

Note that open is a class method defined by the Li br aryCont ai ner class, not an
instance method. To open a given instance of Li br ar yCont ai ner, call open on the
Li br ar yCont ai ner class. Indicate the instance of Li br ar yCont ai ner that is to be
opened by referring to the container’s file through the pat h and di r keywords.

Opening a library container causes ScriptX to run the script in the library’s
preStartupAct i on instance variable and to load all libraries referenced in the library’s
own | i brari es instance variable. If a user is supplied, open then calls addUser.
Finally, it prepends the new library to t heQpenCont ai ner s and the library’s path to

t heSear chCont ai ner Li st and runs the script in st art upActi on.

Libraries can only contain ScriptX classes and objects. If you want to load non-ScriptX
code, such as C code, you must use the Loader component. See the chapter “Extending
ScriptX” in the ScriptX Tools Guide.

365

LibraryContainer

366

Creating and Initializing a New Instance

The following script creates an instance of Li br ar yCont ai ner :

nyLib := new LibraryContainer \
dir:nyTitle.directory \
pat h: "M/Li b. sxI " \
name: "My Library" \
user:nyTitle \
target Col | ecti on: (new HashTabl e)

The variable nyLi b contains the initialized library container, which is stored in a new
file called M/Li b. sxl in the directory given by nyTi t| e. di r ect ory. Its name when it is
asked to print is "My Li brary". The nyLi b library container is used by the nyTi t| e title
container, meaning the library container will remain open as long as that title container
is open. The library’s target collection is a hash table, and so its objects can be identified
using explicit keys. The newmethod uses the keywords defined in i ni t.

Note — The convention for naming library container files, valid across all platforms, is to
use the . sx| extension, as shown above (meaning “ScriptX Library”).

init

init self [dir:dirRep] path: collectionOrString [name: string |

[user : libraryContainer] [t ar get Col | ecti on: collection] O (none)
self Li brar yCont ai ner object

dir: Di r Rep object

pat h: Col | ection or String object

nane: String object

user: Li braryCont ai ner object

The superclass | ndi rect Col | ect i on uses the following keyword:
target Col | ecti on: Col | ecti on object

Initializes the Li br ar yCont ai ner object self, creating a new file specified by the di r and
pat h keywords, where di r is an optional directory, and pat h is an optional directory
and required filename. The nane keyword specifies a string that is displayed when
printing the library.

If libraryContainer is supplied with the user keyword, i ni t then calls addUser, where it
prepends the given libraryContainer to self. user s, then adds self to
libraryContainer. | i brari es.

Then i ni t prepends the new library to t heQpenCont ai ner s. Finally, it returns the
newly created library container.

The library container’s collection is specified by the t ar get Col | ecti on keyword. It is
useful to make the target collection an explicitly keyed collection, such as an instance of
HashTabl e, Sort edKeyedArray, or BTr ee, so that each item in the library container can
be identified by a name constant key. For example, if a library contained a pushbutton,
you could access it with | c[@ut t on] . As is true with any collection, do not use strings
as keys—use names or string constants instead.

Do not call i ni t directly on an instance. It is automatically called by the hewmethod.

If you omit an optional keyword, its default value is used, with one exception: If user
is omitted, it is not used, and so has no default. The default values are as follows:
dir:theStartDr
nare: undef i ned
target Col l ection: (new Array initial Size: 14 growabl e: true)

LibraryContainer

Class Methods

Inherited from Col | ecti on:
pi pe

Inherited from St or ageCont ai ner :
open

The following class methods are defined in Li br ar yCont ai ner:

open (StorageContainer)

open self [dir:dirRep] path: collection [mode: name] [user: libraryContainer]
O Li braryCont ai ner

self Li br ar yCont ai ner class

dir: Di r Rep object

pat h: Col | ection or String object

node: Nared ass object: @pdat e or @ eadonl y
user: Li br ar yCont ai ner object that uses self

Opens the library container self, loading it but not its contained objects into memory. If
supplied, the previously-opened title, library, or accessory container specified by the
user keyword is added as a user of self.

If you omit an optional keyword, its default value is used. The exception is user; if
user is omitted it is not used. The defaults are:

dir:theStartDr
node: @eadonl y

To illustrate, the following diagram shows a library container called nyLi brary (shown
on the right) that you want to open. It is used by a library (title, library, or accessory)
container called nyTi t| e (on the left). The following shows how to open nyLi brary
with nyTi t1 e as its user:

nyLibrary := open LibraryGContainer path:"MLIB. SXL" user:nyTitle

This example opens a file named MYLI B. SXL located int heStart D r, and adds nyTitl e
to its user s list. It also adds nyLi brary to the nyTitl e. | i brari es list. The users list
ensures that the library stays open as long as it has users; when you later close nyTi t| e,
the library nyLi br ary automatically closes only if it has no other users.

User of Library (Already Open)

Library Being Opened “mylib.sx|”

myTitle myLibrary
Instance Variables: Instance Variables:
users users myTitle
libraries myLibrary libraries
Members: Members:
myTitle[1] myPlayer myLibrary[1] myObj1
myTitle[2] rewindButton myLibrary[2] myObj2

The open method looks for the file being opened in the location specified by pat h and
di r. If it does not find the file in that location, it next looks in

t heCont ai ner Sear chLi st. This list automatically contains the directory holding the
ScriptX or ScriptX Player executable (added at start-up), and contains the directory
holding each open title container (added when the titles are opened). If the file is not
found, it reports an exception.

367

LibraryContainer

Once it finds the file, the open method opens the file, then calls the function in
preStart upAct i on, which can check that the minimum requirements (such as available
memory) are satisfied and can add paths to t heCont ai ner Sear chlLi st . If this function
returns f al se, then the library is purged, an exception is thrown, and the open method
stops. If the function returns t r ue, execution continues.

The open method then finds and loads each library in the | i brari es instance variable,
and prepends the library container self to each loaded library’s user s list. It looks for
these libraries in t heCont ai ner Sear chlLi st.

Next, if libraryContainer is supplied with the user keyword, open then calls addUser,
which prepends the given libraryContainer to self. user s, and then adds self to
libraryContainer. | i brari es. Then open prepends the new library to

t heQpenCont ai ner s, calls the function in st art upActi on, and finally returns the
newly opened library container. (See the definition of the addUser instance method for
more information.)

If the library is already open, then the open method causes the st art upActi on to run
again, but does not return another instance of the library.

In most cases, calling open on a library container that is already open does not report an
exception. However, if you call open on a library container that has been created (with
new) but has never been closed, an exception is reported. You must close or update a
new library container at least once before you can call open on it.

Instance Variables

Inherited from Col | ecti on:

bounded naxSi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass propri et ored

Inherited from | ndi rect Col | ect i on:
target Col | ection

The following instance variables are defined in Li br ar yCont ai ner:

copyright

self. copyri ght (read-write) String

Specifies a string with copyright information for the library container self.

directory

self. directory (read-only) D rRep

Specifies the directory supplied with the di r keyword in the i ni t or open method of
the library self. This value and the value supplied with the pat h keyword form the
complete path to the library; therefore, this value is the complete directory only if the
pat h keyword contains just the filename. If the pat h keyword includes a subpath, then
that subpath must be concatenated to the value of di rect ory to get the full directory.

This instance variable is transient—the value of di r ect ory is not saved when the
library is closed.

368

LibraryContainer

libraries

self. i braries (read-only) Array

Specifies a collection of the libraries to be opened by the library self. The libraries are
opened in the order specified in this list. Although titles and accessories can be on this
list, they typically are not.

Do not directly add or remove libraries from this list. This list is automatically
maintained through calls to addUser and r enovelser, methods defined in
Li braryCont ai ner.

Any library added to this list automatically gets opened when the library self is opened.
This list should include any libraries that are required by the parent library.

This instance variable is persistent—it is saved when the library container is closed.
This list keeps track internally of the filename of each library so that when self is later
opened, the library files can be opened.

name

self. nanme (read-write) String

Specifies a string that describes the library self. This string is printed when you call
print on the library.

preStartupAction

self. preSt art upActi on (read-write) (function)

Specifies a function that should determine it is okay to load the library self. Typically,
this function should do two things:

® If necessary, add to t heCont ai ner Sear chLi st any locations where the libraries
listed in the | i brari es instance variable might be found.

® Check that minimum requirements for loading this library are satisfied by the
environment—such as color depth and available memory.

A pre-startup function should be quick and small and should not block the thread or
interfere with the thread scheduler. (For example, it should not call wai t Ti ne or
threadCriti cal Up.) Blocking the thread stops event processing, preventing the system
from processing other events.

A preStartupAction function is called by the library’s af t er Loadi ng method, which
is called from | oad, which is called from the open class method. A preSt art upActi on
function should take one argument and return a Bool ean value. The function is called
automatically with the library container self as its only argument:

func self

A preStartupActi on function should return t r ue if it is okay to continue loading this
library; otherwise, it should return f al se. If it returns f al se, the library is purged, an
exception is reported, and execution stops.

Although any global function, anonymous function, or method can be assigned to
preSt art upAct i on, there are differences in how different classes of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

startupAction

self. start upActi on (read-write) (function)

Specifies a function that runs when the Li braryCont ai ner instance self starts up. A
start upActi on function should take one argument and perform whatever tasks are
appropriate when the library is opened. A typical title loads some of its objects from

369

LibraryContainer

370

storage, and creates other objects it needs on the fly. The usual purpose of a startup
function is to determine what objects are available when the library is opened. Some of
these objects may be loaded from the object store, and others are created or initialized
on the fly. The start-up function’s return value is unimportant and is ignored. The
function is called automatically with the library container self as its only argument:

func self

A startup function should be quick and small and should not block the thread or
interfere with the thread scheduler. (For example, it should not call wai t Ti ne or
threadCriti cal Up.) Blocking the thread stops event processing, preventing the system
from processing other events.

When the start-up function loads the libraries in the | i brari es instance variable, it
does not check to see if those libraries have previously been loaded. Since this function
runs after those libraries have been loaded, it should check to see if an instance of the
library self has been opened twice, and if so, purge the most recent instance.

A startupAction function can be designed to load any objects or classes from the
library that the title needs to get started. It can also create any objects that are needed by
the library.

For instances of Ti t | eCont ai ner, this function often creates a window, clock, or player.
Special care needs to be taken if a st art upAct i on function creates a window, clock, or
player. The Wndow O ock, and Pl ayer classes define a ti t| e instance variable, which
is set to t heScrat chTi t| e unless otherwise specified. Ti t| eCont ai ner, a subclass of
Li br ar yCont ai ner, defines the instance variables t opd ocks, t opPl ayer s, and

Wi ndows, which it uses to maintain a list of the windows, clocks, and players that it
manages. If these objects are not properly registered with an associated title, then a
window does not get closed when the title is closed, and a clock or player is not paused
when the title is paused.

Although any global function, anonymous function, or method can be assigned to

st art upActi on, there are differences in how different classes of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

See preStartupActi on for a related startup function. When a library is opened, the
function in st art upAct i on runs only if the preSt art upAct i on function has returned
true.

terminateAction

self. t erm nat eActi on (read-write) (function)

Specifies the function to be invoked when cl ose is called on the library container self,
and the library has no more users. Do not call this function directly—this function is
called automatically from the t er ni nat e method. Write a t er m nat eAct i on function to
accept the library container self as its only argument:

nyTer nFunc self

Write this function to perform whatever cleanup tasks should occur before closing the
library, such as setting global variables to undef i ned. This function cannot include any
interaction with the user (that should be done in the library’s cl ose method).

Although any global function, anonymous function, or method can be assigned to

t er mi nat eAct i on, there are differences in how different classes of functions are
dispatched. For information on functions and function dispatch, see the “Object System
Kernel” chapter of the ScriptX Components Guide.

LibraryContainer

type
self. type

Specifies an array of author-defined names that describe the library self. Each member of
the array should be an instance of Named ass. This array is a convenience for
developers and is not used by ScriptX. A title container could examine this list in its
pre-startup action to determine if the library has the attributes it needs. For example, a
title could inspect this list and load a library based on the presence of certain keywords
or name tokens.

(read-only) Array

You can add or remove names from this list—its “read-only” status means only that you
cannot assign a different array to this instance variable.

users

self. user s

(read-only)

Array

Specifies the array of open library containers that use the library self. Do not directly
add or remove libraries from this list. Use addUser or r enoveUser to modify this list.

For example, if a title opens a library, the title is automatically added to the library’s
user s list. (Likewise, the library is added to the title’s | i brari es list.)

Circular references are not allowed (a uses b which uses ¢ which uses a). The same user
can appear in the array more than once, to simulate a reference count, but, then each
occurrence of user must be removed. (This list is not saved in the storage container.)

This list is transient and is automatically maintained by the i ni t, open, and cl ose
methods in Li br ar yCont ai ner —when these method are called with a value for the

user keyword, they add or remove a library from this list.

version

self. ver si on

(read-write)

Nunber

Specifies the version number of the library self. This is a number (rather than a string) so
versions can be mathematically compared to see which is later.

Instance Methods

Inherited from Col | ecti on:

add f or Each iterate
addMany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al l nmap
chooseAl | get Any ner ge
choosene get KeyAl | pi pe
chooseeBi ndi ng get KeyOne prin

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One removeOne
del et eBi ndi ngne hasBi ndi ng setAl |

del et eKeyAl | hasKey set (ne
del et ekeyCne i ntersects si ze

del et eOne i SEnpty

enpt yQut i sMenber

Inherited from | ndi r ect Col | ecti on:

i sAppropri at ethj ect

obj ect Added

Inherited from St or ageCont ai ner :

cl ose

updat e

request Pur geFor Al | Chj ect's

obj ect Renoved

371

LibraryContainer

372

Since a Li brar yCont ai ner object is an indirect collection, you can also use any
methods defined in the class specified by t ar get Col | ect i on. The target collection is by
default an instance of Array, which inherits from Sequence; in this case, the following
instance methods are accessible:

Accessible from Li near Col | ecti on:

chooseeBackwar ds fi ndRange get Nt hKey
chooseOr dtne f or EachBackwar ds get O dne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteN h getMddl e | ocal LT
del et eRange getNth pop
Accessible from Sequence by redirection:
addFifth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourth noveToBack setNth
addNt h noveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort
append setFifth
appendNew set First

The following instance methods are defined in Li brar yCont ai ner:

addUser

addUser self newlser U (none)
self Li braryCont ai ner object to be used by newUser
newlser Li braryCont ai ner object to be using self

Makes the library container newUser a user of library container self. Checks for circular
references and if none, this method prepends the given newlser to the users instance
variable of the library container self. Then it prepends the library container self to the
I'ibraries list of newUser. In this way, both the libraries have references to each other.
A circular reference exists when a uses b, which uses ¢, which uses a.

For example, if title nyTi t| e wants to start using library nyLi br ary, then the title
should call:

addUser nyLibrary nyTitle

which adds nyTitl e to nyLi b. users and adds nyLi b to nyTitle.libraries.

This method automatically gets called by the i nit and open class methods of

Li br ar yCont ai ner. However, there are a few cases where you would need to call this
method directly. For example, if you open a library, then create a title and realize at
some later point that the title should use the library—at this point you would add the
title as a user (rather than close and re-open the library, specifying the user keyword).

close (StorageContainer)
cl ose self [user: libraryContainer | U Bool ean
self Li br ar yCont ai ner object to close
user: Li braryCont ai ner object currently using self

Conditionally closes the library container self, saves it if it was opened using the
@pdat e node, and makes the library and its contained objects purgeable. The library
container is actually closed only if it has no users other than the one specified with the
user keyword. (Note that the corresponding open method is a class method rather than
an instance method.)

LibraryContainer

To illustrate, the following diagram shows a library container called nyLi brary (shown
on the right) that we want to close. It is being used by a title, accessory, or library
container called nyCont ai ner (on the left). To close nyLi brary, you would call:

cl ose nyLibrary user: nyCont ai ner

This expression removes nmyCont ai ner from nyLi brary. users. If that user s list is
empty, it then closes and saves nyLi brary. Note that if nyLi br ary has other users, it is
not closed. Also notice that it does not attempt to close myCont ai ner.

User of the Library Being Closed Library Being Closed

myContainer myLibrary
Instance Variables: Instance Variables:
users users myContainer
libraries myLibrary libraries undefined
Members: Members:
myContainer[1] myPlayer myLibrary[1] myODbj1
myContainer[2] | rewindButton myLibrary[2] myObj2

The details are as follows. First the cl ose method calls r enoveUser self libraryContainer.
If the self. user s list is empty, this method saves self. | i brari es instance variable, and
calls cl ose on each of its libraries. Then it calls t er m nat e on self, which does several
things including saving the objects in the library self if it was created with newor
opened with @pdat e, and closing the underlying storage container. Then the cl ose
method calls r equest Pur ge on self and all its contained objects to free them for garbage
collection. Finally, it returns tr ue.

However, if the user s list is not empty, the cl ose method returns f al se and does not
close the container. This way, the library container will be closed only if no other
libraries are using it.

If you want to add user interaction, such as confirming whether to close the library,
then override this method in a subclass. While the cl ose method can be called several
times and canceled, t er m nat e and t er m nat eAct i on can be called only once. See

t erm nat e for more details.

If you omit the user keyword, the keyword is not used (it has no default).

If you open a library container using @ eadonl y mode and modify its contents (for
example, with append), then when you call cl ose on it, it will give a write error and
will not close properly.

For details of closing a title container, refer to the cl ose method in Ti t | eCont ai ner.

isAppropriateObject (IndirectCollection)

i sAppropri at eChj ect self addedObject 0 Bool ean

Checks that addedObject, the object added to the library container self, is not a kind of
Li br ar yCont ai ner. Returns tr ue if the object is not a library container and otherwise
returns f al se. This prevents library container from being embedded inside other
library containers.

373

LibraryContainer

374

recurPrin (RootObject)

recurPrin self arg stream state O (none)

Prints out the name of library self, as specified by the nane instance variable.This
method does not print the contents of the library, as you might otherwise expect it to
do, because that would cause the entire library to load. See the r ecur Pri n method in
the Root oj ect class for more details on the arguments.

removeUser
removelser self currentUser U self
self Li braryCont ai ner object to stop being used by
currentUser
currentUser Li braryCont ai ner object to stop using self

Makes the library container currentUser no longer a user of the library container self. It
first removes currentUser from the user s instance variable of the library container self.

Then it removes self from the | i brari es list of currentUser. In this way, cross-references
between the libraries are removed.

terminate

termnate self O self

Do not call this method directly—this method automatically gets called from the cl ose
method. You may need to override t er m nat e in a subclass to perform cleanup. This
method cannot contain any user interaction—do that in the cl ose method. While cl ose
can be called several times and canceled, t er m nat e can be called only once. Once

t er m nat e is called, there is no turning back—the library will close.

You can perform cleanup actions either by overriding this method or by implementing
a terminate function in the library’s t er m nat eActi on. As part of cleanup, you should
set user-defined global variables to undef i ned so the objects they reference can be
removed by the garbage collector.

First, t er m nat e calls the function specified by t er mi nat eAct i on—see the definition of
that instance variable for more details. Next, it removes the library container self from
the global variable t heQpenCont ai ner s list. Then it closes self and its underlying
storage container, which saves the library container self and all of its contained objects if
its mode is @r eat e or @pdat e. Finally, it calls cl ose on each of the libraries in its

I'i braries list with self as a user. The library self and its contents are made purgeable
only after t er m nat e is completed and control has returned to the cl ose method from
which it was called.

Line

Line

RootObject

Stencil

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Stenci |

Component: 2D Graphics

The Li ne class is a subclass of Stenci | optimized for rendering lines, defined by two
points connected by a single straight line segment. In the ScriptX imaging model, the
largest pixel values defining a line are excluded from the resulting image. For example,
if a line is defined with the end points (0,0) and (20,20), the pixel at location 20,20 won’t
be rendered.

Note that Li ne objects are not presenters—to display a line, create an instance of
TwoDShape using a Li ne object as the boundary argument. To set the thickness of a
Li ne instance, set | i neW dt h on the instance of TwoDShape

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Li ne class:

nyLi ne new Line \
\
\

\

X< X -

1.0
1:0
2:50
2:50

<

The variable nyLi ne contains the new Li ne instance. The new method uses the
keywords defined ininit.

init
init self [x1:number] [yl:number] [x2:number] [y2: number] O (none)
self Li ne object
x1: Nunber object
yl: Nurber object
X2: Nunber object
y2: Nunber object

Do not call i ni t directly on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:
x1:0
y1l: 0
x2:1
y2:1

Instance Variables

Inherited from Stenci | :
bBox

375

II!!II Line

The following instance variables are defined in Li ne:

angle

self. angl e (read-write) Nunber

Specifies the angle that X2, y2 makes as a vector from x1, y1. This instance variable
returns the angle in radians. Positive values indicate clockwise rotation, negative values
indicated counterclockwise rotation. A 0 value positions the line horizontally, with y1
and y2 set to the same value. Setting this variable moves point x2, y2, keeping x1, y1
and | engt h constant.

length

self. l engt h (read-write) Nunber

Specifies the length of the line self. Setting this variable moves point X2, y2, keeping x1,
y1 and angl e constant.

x1

self. x1 (read-write) Nunber

Specifies the x coordinate of the first point in the line self.

X2

self. x2 (read-write) Nunber
Specifies the x coordinate of the second point in the line self.

yl

self. yl (read-write) Nunber

Specifies the y coordinate of the first point in the line self.

y2
self. y2 (read-write) Nunber

Specifies the y coordinate of the second point in the line self.

Instance Methods

376

Inherited from Stenci | :

i nsi de onBoundary t ransf orm
i nt er sect subt r act uni on

The following instance methods are defined in Li ne:

copy
copy self 0 Line

Creates and returns a copy of the line self.

moveToZero

nmoveToZer o self O Line

Repositions the line self so that the values of x1 and y1 are 0, adjusting the values of x2
and y2 to maintain the original angle and length.

LinearCollection

LinearCollection

RootObject

Collection

LinearCollection

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Col | ection

Component: Collections

The Li near Col | ecti on class is a mix-in abstract class for collections that support an
ordering of their items, either explicitly or implicitly.

Every linear collection is also a collection. Li near Col | ecti on must be mixed in with
Col | ecti on or one of its subclasses. Since Li near Col | ecti on defines several methods
that are also defined by Col | ecti on to allow for a natural ordering of elements, it must
have precedence over Col | ecti on in the list of superclasses from which a subclass
inherits.

Several of the method definitions for this class refer to the ordinal position of an item in
a collection. For a definition of ordinal position, and of cursor position, which
corresponds to ordinal position, see the Stri ng class.

Instance Methods

chooseOneBackwards

chooseeBackwar ds self func arg O (object)
self Li near Col | ect i on object
func An instance of a subclass of Abst ract Functi on
arg Any object

Calls the function func on values in the linear collection self, starting at the end and
working towards the first item in the collection. This method is analogous to choose(ne,
defined by Col | ecti on. This method includes the argument arg when calling the
function.

func item arg

The chooseteBackwar ds method calls this function once for each item in the
collection until the function returns t r ue. Its return value is the first item on which the
function returns t r ue, or enpty if no call to this function returns t r ue. See the
discussion on page 161 in the class definition of “Collections” concerning generic
functions that depend on the integrity of an iterator. Note that Array specializes
choosetneBackwar ds to allow for insertion and deletion of items, although not for
wholesale rearrangement of the collection. See the definitions of this and other iterative
methods under the Array class.

chooseOrdOne

chooseQ dne self func arg O I nt eger
self Li near Col | ect i on object
func An instance of a subclass of Abst ract Functi on
arg Any object in the linear collection self

377

LinearCollection

378

Similar to choose(ne, an instance method defined by Col | ecti on. It calls the function
func on each item in the collection, supplying the argument arg.

func item arg

The chooseQ dOne method calls this function once for each item in the collection until
the function returns t r ue. Its return value is the ordinal position of the first item on
which the function returns t r ue, or 0 if no call to this function returns t r ue. See the
discussion on page 161 in the class definition of “Collections” concerning generic
functions that depend on the integrity of an iterator.

deleteFirst

del et eFi rst self O (none)
del et eSecond self O (none)
del et eThi rd self O (none)
del et eFourth self O (none)
del eteFi fth self O (none)

These five methods are really macros that expand to del eteN h self 1,

del eteN h self 2 and so on, where self is a Li near Col | ecti on object. These methods
do not remove objects from memory, unless normal garbage collection applies. They only
remove them from the collection.

These methods report the bounded exception (leaving the collection in an undefined
state) if the collection would shrink below the size specified by m nS ze.

deletelLast

del et eLast self O (none)

Removes the last key-value pair from the linear collection self. This method does not
remove objects from memory, unless normal garbage collection applies. It only removes
them from the collection.

This method reports the bounded exception (leaving the collection in an undefined
state) if the collection would shrink below the size specified by m nS ze.

deleteNth

del eteNt h self ordinal O Bool ean
self Li near Col | ecti on object
ordinal I nt eger object

Removes the key-value pair in the position specified by ordinal from the linear collection
self. This method does not remove objects from memory, unless normal garbage collection
applies. It only removes them from the collection. Returns t r ue if a key-value pair was
found at that position and removed, or f al se if the specified ordinal is beyond the last
item in the collection. The del et eNt h method is analogous to del et eOne, defined by
Col | ecti on.

This method reports the bounded exception (leaving the collection in an undefined
state) if the collection would shrink below the size specified by m nS ze.

deleteRange

del et eRange self toMatch O Bool ean
self Li near Col | ecti on object
toMatch Li near Col | ecti on object

LinearCollection

Finds the first range of contiguous values inside the linear collection self that matches
the values in the linear collection toMatch, as if by calling f i ndRange, another method
defined by Li near Col | ecti on. If there is a match, del et eRange removes all those
items from the source collection. This method returns t r ue if a match was found and
removed; otherwise, it returns f al se. This method does not remove objects from
memory, unless normal garbage collection applies. It only removes them from the
collection.

This method reports the bounded exception (leaving the collection in an undefined
state) if the collection would shrink below the size specified by m nSi ze.

findRange

fi ndRange self toMatch O I nt eger
self Li near Col | ecti on object
toMatch Li near Col | ect i on object

Finds the first range of contiguous values inside the linear collection self that matches
the values in the linear collection toMatch. Returns the ordinal number of the number
start of that range, or 0, if no such range was found.

global nyArray := #(1,3,5,7,8) -- An array with five val ues
findRange nyArray #(3,5)

o 2

findRange nyArray #(3,8)

o o

forEachBackwards

f or EachBackwar ds self func arg 0 (none)
self Li near Col | ecti on object
func An instance of a subclass of Abst ract Functi on
arg Qbj ect object

Calls the function func on values in the linear collection self, starting at the end and
working forward, with the argument arg. The f or EachBackwar ds method is analogous
to f or Each, defined by Col | ecti on. For more information, see the definition of

for Each. See the discussion on page 161 in the class definition of “Collections”
concerning generic functions that depend on the integrity of an iterator. Note that
Array specializes f or EachBackwar ds to allow for insertion and deletion of items,
although not for wholesale rearrangement of the collection. See the definitions of this
and other iterative methods under the Array class.

getFirst

get First self O (object)
get Second self O (object)
getThird self O (object)
get Fourth self O (object)
getFifth self O (object)

These methods are really macros that expand to get Nt h self 1, get N h self 2, and so
on, where self is a Li near Col | ecti on object.

379

LinearCollection

380

getLast

get Last self O (object)

Gets the last value of the linear collection self.

getMiddle

get M ddl e self O (object)

Gets the middle value of the linear collection self. For an even-sized linear collection,
get M ddl e gets the next value after the middle value.

getNth

get Nt h self ordinal O (object)
self Li near Col | ecti on object
ordinal I nt eger object representing an ordinal position

Gets the value from the linear collection self at the position specified by ordinal.

getNthKey

get Nt hKey self ordinal O (object)
self Li near Col | ecti on object
ordinal I nt eger object representing an ordinal position

Gets the key from the linear collection self at the position specified by ordinal.

getOrdOne

get O dOne self value O I nteger
self Li near Col | ecti on object
value Any object

Returns the ordinal position for a value of the linear collection self that matches the
given value. The values are matched using the value comparator function specified by
val ueEqual Conpar at or, an instance variable defined by Col | ecti on. Since get O d(ne
creates an iterator and searches a linear collection in its natural order, the first item that
matches is always chosen.

getRange

get Range self start end O Li near Col | ecti on
self Li near Col | ecti on object
start I nt eger object representing an ordinal position
end I nt eger object representing an ordinal position

Gets from the linear collection self another collection containing the values in the ordinal
positions start through end. This method returns another collection that is an instance of
the class specified by the nut abl eCopyd ass, an instance variable defined by

Col | ecti on.

localEqual (RootObject)
| ocal Equal self other O Bool ean
self ol | ect i on object
other Col | ecti on object

LinearCollection

Compares individual items in the linear collection self element by element with items in
the linear collection other. Elements are compared universally. Returns true if self is
locally equal to other. Note that, in contrast with the definition of | ocal Equal that the
Col | ecti on class provides, elements of a linear collection must be in the same order for
| ocal Equal to return true.

global arrayl := #("dog","cat")
global array2 := #("cat","dog")
| ocal Equal arrayl array2

O false

The | ocal Equal method is not usually called directly. It is one four primitives
(conpar abl e, eq, | ocal Equal , and | ocal Lt) that are used to define all ScriptX
comparison functions. For definitions of ScriptX comparison functions, see Chapter 2,
“Global Functions.” For more information on comparison of objects, see the discussion
in the “Object System Kernel” chapter of the ScriptX Components Guide.

localLT (RootObject)

I ocal LT self other O Bool ean

Compares individual items in the linear collection self element by element with items in
the linear collection other. Elements are compared universally. Returns t r ue if self is less
than other.

#(2,5,"dog", "cat")
global array2 := #(2,5, "cat", "dog")
global array3 := #(5,2,"cat", "dog")
global array4 := #("cat","dog", 5, 2)
| ocal LT arrayl array2

gl obal arrayl :

O false

local LT arrayl array3

g true

local LT arrayl array4 -- involves universal conparison of 2 and “cat”
g true

The | ocal Lt method is not usually called directly. It is one four primitives

(conpar abl e, eq, | ocal Equal , and | ocal Lt) that are used to define all ScriptX
comparison functions. For definitions of ScriptX comparison functions, see Chapter 2,
“Global Functions.” For more information on comparison of objects, see the discussion
in the “Object System Kernel” chapter of the ScriptX Components Guide.

pop
pop self O (object)

Removes the first key-value pair from the linear collection self, and returns its value.
This method does not remove objects from memory, unless normal garbage collection
applies. It only removes them from the collection. To perform the complementary push
operation, use the pr epend method.

381

LinearCollectionlterator

LinearCollectionlterator

RootObject

Stream

Iterator

LinearCollectionlterator

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: |terator

Component: Collections

A Linear Col | ectionlterator object iterates over any linear collection.

Creating and Initializing a New Instance

A new instance of a linear collection iterator is generally created by calling i t er at e on
an instance of a subclass of Li near Col | ecti on.

Instance Variables

Inherited from | terator:
key sour ce val ue

Instance Methods

Inherited from St ream

382

cur sor next seekFronttart
flush pl ug set Streaniengt h
i SAt Front previ ous streantengt h
i sPast End read wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omQur sor
isWitabl e seekFr onend
Inherited from | t er at or:
exi se seekKey seekVal ue
renmai nder

LineStream

LineStream

RootObject

Stream

LineStream

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Stream

Component: Streams

Provides a line-oriented, read-only implementation of the Stream protocol. A line
stream acts as a filter, reading properly terminated lines of characters from a source
stream and returning them as Stri ng objects through its r ead method.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Li neSt ream
class:

nyLine := new LineStream \
sour ce: sour ceStream

The nyLi ne variable contains the initialized line stream, which the uses sour ceSt r eam
as its source.

init

init self source: dataSource O (none)
self Li neSt r eamobject
sour ce: St r eamobject

Initializes the Li neSt r eamobject self, applying the arguments as follows: sour ce is the
stream containing the source of data. Do not call i ni t directly on an instance—it is
automatically called by the newmethod.

Instance Methods

Inherited from St ream

cur sor next seekFronttart
flush pl ug set Streaniength
i SAt Front previ ous streantengt h

i sPast End read wite

i sReadabl e r eadReady wri t eReady

i sSeekabl e seekFr omQur sor

isWitabl e seekFr onend

The following instance methods, inherited from the abstract class Stream are
overridden in Li neSt r eamto behave as described:

isReadable (Stream)

i sReadabl e self O Bool ean

Returns t r ue.

383

LineStream

384

isSeekable (Stream)

i sSeekabl e self O Bool ean

Returns f al se.

isWritable (Stream)

i sWitabl e self O Bool ean

Returns f al se.

next (Stream)

next self O Bool ean

If the cursor is positioned at the last line, returns f al se. Otherwise, positions the cursor
at the beginning of the next line and returns tr ue.

read (Stream)

read self 0O String

Reads a properly terminated line of characters as a Stri ng object from the stream self.
Proper line termination characters include carriage return (CR), linefeed (LF) carriage
return and linefeed (CRLF), and null.

LinkedList

LinkedList

RootObject

Collection

LinearCollection ImplicitlyKeyedCollection

Sequence

LinkedList

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Sequence

Component: Collections

The Li nkedLi st class is a recursive data structure consisting of two parts: the head,
which holds a collection value, and the t ai |, which points to another Li nkedLi st . This
structure is diagrammed below:

T }— ey

|

nau nbu HCH

The figure shows a Li nkedLi st containing three elements: the strings "a", "b", and
"c". The head of the list in the figure is the value "a", and the tail is the sublist
#("b","c").

Linked lists are relatively memory efficient, but access can be slow when performing

any operations other than prepending a new value or traversing the list in sequential
order.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Li nkedLi st
class:

Il := new LinkedLi st

The variable | | is set to a list with no elements.

init

init self O (none)
self Li nkedLi st object

Initializes the Li nkedLi st object self, to be an empty list. Do not call i ni t directly on an
instance—it is automatically called by the new method.

Note — Every object that is added to a Li nkedLi st creates a new sublist, and thus the
i ni t method is called repeatedly. If you want to create a subclass of Li nkedLi st, you
must be aware of this behavior. If you want your subclass to have an i ni t method that
is only called once when the entire collection is created, use a subclass of

I ndi rect Col | ecti on setting the tar get Col | ecti on to a Li nkedLi st.

385

LinkedList

Class Methods

Inherited from Col | ecti on:

386

pi pe

Instance Variables

Inherited from Col | ecti on:

bounded
iteratord ass

keyEqual Conpar at or

keyUni formty

keyUni form tyd ass

Instance Methods

Inherited from Col | ecti on:

head

maxSi ze

m nSi ze

nut abl e

nut abl eCopyd ass
proprietored

add for Each
addiany f or EachBi ndi ng
addToCont ent s getAll
chooseAl | get Any
choosee get KeyAl |
chooseeBi ndi ng get Keyne
del eteAl | get Many
del et eBi ndi ngAl | get One
del et eBi ndi ngGne hasBi ndi ng
del et eKeyAl | hasKey
del et ekeyCne i ntersects
del et eCne i sEmpty
enpt yQut i sMenber
Inherited from Li near Col | ecti on:
chooseneBackwar ds fi ndRange
chooseOr dne f or EachBackwar ds
del et eFi r st get First
del et eLast get Last
del eteN h getMddl e
del et eRange getNth
Inherited from Sequence:
addFifth nmoveBackwar d
addFi r st nmoveFor war d
addFourth noveToBack
addNt h nmoveToFr ont
addSecond pr epend
addThird pr ependNew
append setFifth
appendNew set First

The following instance methods are defined in Li nkedLi st :

si ze
uniformty
uni form tyd ass

val ueEqual Conpar at or

iterate

| ocal Equal
map

mer ge

pi pe

prin
renoveA |
renovene
setAll

set One

si ze

get Nt hKey
get 0 dOne
get Range

| ocal Equal
| ocal LT

pop

set Fourth
set Last
setNth
set Second
set Third
sort

head self

self

Li nkedLi st object

Returns the “value” portion of linked list self.

O (object)

LinkedList

setHead

set Head self value O self
self Li nkedLi st object
value any object

Sets the “value” portion of the linked list self to value. set Head is equivalent to the
following;:

(local i :=iterate self
next i
i.value := value

)

tail

tail self O Li nkedLi st
self Li nkedLi st object

Returns the immediate sublist of self, that is, the Li nkedLi st excluding the current
head. Returns enpt y if the current node is the last element of the collection.

setTail

set Tai | self newList O self
self Li nkedLi st object
newList Li nkedLi st object

Grafts newList onto the linked list self. Similar to addMany sel f newLi st, except that
the internal structure of self is modified to point directly to newList.

getListValue

get Li st Val ue self value O LinkedList
self Li nkedLi st object
value any object

Returns the sublist of the linked list self beginning with the element whose head value
matches the value parameter. Returns enpt y if there is no matching entry.

387

LinkedListlterator

LinkedListlterator

RootObject

Stream

Iterator

LinkedListlterator

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: |terator

Component: Collections

A LinkedLi stlterator object iterates over Li nkedLi st objects.

Creating and Initializing a New Instance

You create a new instance of Li nkedLi st |t erat or by calling i t er at e on a Li nkedLi st
object.

For any given collection, the Kaleida Media Player uses the value of the virtual instance
variable i t er at or d ass to determine which iterator to create. Every subclass of

Col | ecti on must implement the i t er at or d assGet t er method. For the Li nkedLi st
class, the value of i terat or d ass is Li nkedLi stlterator.

Instance Variables

Inherited from I terator:
key sour ce val ue

Instance Methods

Inherited from St ream

388

cursor next seekFrontt art
flush pl ug set Streaniengt h
i SAt Front pr evi ous st reaniengt h
i sPast End r ead wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omQur sor
isWitabl e seekFr onEnd
Inherited from I t er at or:
exci se seekKey seekVal ue
remai nder

ListBox

ListBox

RootObject

Presenter

TwoDPresenter

TextPresenter

ListBox

Class type: Scripted class (concrete)

Resides in: wi dget s. sx| . Works with ScriptX and KMP executables
Inherits from: Text Present er

Component: User Interface

Li st Box is a text presenter that presents a list of strings.

Creating and Initializing a New Instance

The following script creates a new instance of Li st Box:

nyLi stBox := new ListBox \
f ont : nyFont Cont ext \
wi dt h: 90 \
list:("Apple","I BM, "Toshi ba")

The variable nyLi st Box contains an initialized instance of Li st Box. It applies the font
context nyFont Cont ext, which must be defined elsewhere, to create a Li st Box object of
width 90, targeting the given list. The presenter’s boundary and target are set
automatically, based on these keyword values.

The newmethod uses the keywords defined in i nit.

init

init self [font:font] [wi dth:integer] [1ist:sequence]

[stationary: boolean] [fill:brush] [stroke: brush | O (none)
self Li st Box object

font: Font Cont ext object

wi dt h: I nt eger object

list: Sequence object

Superclasses of Li st Box use these keywords.

boundary: Rect object, ignored by Li st Box
target: St ri ng object, ignored by Li st Box
stationary: Bool ean object

fill: Br ush object

st roke: Br ush object

Initializes the Li st Box object self, applying the arguments as follows: The f ont
keyword takes a Font Cont ext object, which it uses to set the attributes of the list box.
The wi dt h keyword, together with the attributes set by f ont and the number of items in
the list, is used to determine the list box’s boundary. The | i st keyword takes a
sequence of strings, or items that can be freely coerced to strings, which it uses to set the
target of the list box. The boundary and t ar get keywords are ignored, since the list
box’s boundary and target are set at initialization, based on the values supplied for
font,width, and | i st. A script can set the values of stationary, fill, and stroke at

389

ListBox

initialization; they are applied to instance variables of the same name, defined by
TwoDPr esent er.Do not call i ni t directly on an instance—it is called automatically by
the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:

f ont : t heSyst enfont
wi dt h: 300
list:(#())
stationary: fal se
fill:whiteBrush

st roke: bl ackBrush

Instance Variables

Inherited from Presenter:
pr esent edBy subPresenters t ar get

Inherited from TwoDPr esent er :

bBox hei ght transform
boundary IslnplicitlyD rect wi dth
cl ock i sTranspar ent wi ndow
conposi t or isVisible X
di rect needsTi ckl e y
eventlnterests position z
gl obal Boundary stationary
gl obal Tr ansf orm t ar get

Inherited from Text Present er:
attributes fill sel ect i onFor egr ound
cur sor i nset stroke
cur sor Brush of f set
enabl ed sel ecti onBackgr ound

The following instance variables are defined in Li st Box:

font

self. f ont (read-write) Font Cont ext

Specifies the Font Cont ext object that is used to determine the text attributes of the list
box self.

list

self. li st (read-write) Sequence

Specifies a sequence of strings, or objects that can be coerced to strings, that the list box
self presents.

numLines

self. nunii nes (read-write) | nt eger

Specifies the number of lines of text in the Li st Box self. Do not set the value of
nunli nes. It is determined automatically each time the contents of the list change.

Instance Methods

390

Inherited from TwoDPr esent er :
adj ust d ockMast er i nsi de show

ListBox

creat el nt erestLi st | ocal ToSur f ace sur f aceTolLocal
draw not i f yChanged tickle

get Boundar yl nPar ent recal cRegi on

hi de refresh

Inherited from Text Present er:

calcul ate get O f set For XY pr ocessMuseDown
copySel ection get Poi nt For O f set

The following instance methods are defined in Li st Box:

getListOrdinal

get Li st Ordi nal self string O I'nt eger
self Li st Box object
string String object

Returns the position of the specified string, within the list self. If the item is not found,
get Li st Ordi nal returns 0.

recalcHeight

recal cHei ght self O I nt eger

Returns the height of the Li st Box self, based on the value of nunli nes and the text
attributes of the list box, such as its font, leading, and descent. Specialize r ecal cHei ght
to perform any action that must occur each time the contents of the list are changed.

391

ListSelection

ListSelection

RootObject

Presenter
TwoDPresenter
TwoDShape

ListSelection

Class type: Scripted class (concrete)

Resides in: wi dget s. sx| . Works with ScriptX and KMP executables
Inherits from: TwoDShape

Component: User Interface

The Li st Sel ecti on class is used for creating the rectangular selection that highlights
text in an instance of Scr ol | Box. The ink mode is set to @r cXor to enable the highlight
to quickly reverse the text, displaying it as white text on a dark background.

Creating and Initializing a New Instance

392

The Li st Sel ect i on is automatically created whenever a widget is created that needs it,
such as Scrol | Li st Box and Mul ti Li st Box, so you would not normally need to create
an instance.

The following script is an example of how to create a new instance of the
Li st Sel ecti on class. The par ent keyword argument is required, and determines
which 2D presenter the instance is to be put into.

nyLi stSel := new ListSelection \
parent: nyScrol | Li st Box \
wi dt h: nyScrol | Li st Box.wi dth \
f ont : nyFont

The variable nyLi st Sel contains the initialized list selection rectangle. The rectangle is
put into nyScrol | Li st Box, its width is the same as nyScrol | Li st Box, and its size
makes it fit the specified font. The newmethod uses the keywords defined in i ni t.

init

init self parent:twoDPresenter [fill:brush] [stroke: brush]

[wi dt h: number] [font: fontContext] O (none)
self TwoDsShape object

parent: TwoDPr esent er object

fill: Br ush object

stroke: Br ush object

Wi dt h: Nunber object

font: Font Cont ext object

Initializes the Li st Sel ect i on object self, making self a subpresenter of the par ent
object, and applying the arguments to the instance variables of the same name.

The inherited keywords t ar get and boundary are not shown here because they are not
needed—the list selection’s size is determined by the width and font size. However,
those keywords work the same as with any 2D shape. Do not call i ni t directly on an
instance—it is automatically called by the newmethod.

If you omit an optional keyword, its default is used. The defaults are:
fill:(new Brush col or: bl ackCol or)

ListSelection

st roke: undefi ned
wi dt h: 10

f ont : t heSyst enfont
stationary:fal se

Class Variables

fill

self. fill

(read-write)

Brush

Specifies the color that fills all instances of the Li st Sel ecti on rectangle. This is a class
variable so that all instances of Li st Sel ect i on will have the same color.

Instance Variables

Inherited from Presenter:
pr esent edBy

Inherited from TwoDPr esent er :

bBox

boundary

cl ock

conposi t or

di rect
eventlnterests
gl obal Boundary
gl obal Transform

Inherited from TwoDShape:
fill

Instance Methods

Inherited from TwoDPr esent er :

adj ust d ockMast er
createl nterestlList
dr aw

get Boundar yl nPar ent
hi de

The following instance methods

changeFont

subPresenters

hei ght
IslnplicitlyD rect
i sTranspar ent
isVisible
needsTi ckl e
position
stationary

t ar get

stroke

i nsi de

| ocal ToSur f ace
not i f yChanged
recal cRegi on
refresh

tar get

transform
wi dt h

wi ndow

X

y
z

tar get

show
sur f aceTolLocal
tickle

are defined in Li st Sel ecti on:

changeFont self font lineNum

self

font
lineNum

Li st Sel ecti on object

Font Cont ext object

O (none)

I nt eger representing the line number to be highlighted

Changes the height and position of the Li st Sel ect i on rectangle self based on the size

of the given font and lineNum.

393

ListSelection

selectLine

sel ect Li ne self lineNum doAction O Nunber
self Li st Sel ecti on object
lineNum | nt eger representing the line number to be highlighted
doAction Ignored

Sets the y-value of the Li st Sel ecti on rectangle self, based on the line number lineNum.
The doAction argument is ignored.

394

LoadableGroup

LoadableGroup

RootObject
LoadableGroup
Class type: Core class (concrete)
Resides in: ScriptX and KMP executables

Inherits from: Root (bj ect
Component: Loader

The Loadabl eG oup class represents groups of loadable units that can be loaded by the
Loader component. Each group maintains a load list of units to be loaded whenever the
group is processed by the Loader component, and a unit list of all the units in the

group.

Creating and Initializing a New Instance

Loadabl eG oup instances are created and saved by instances of the Loader class. You
do not instantiate a Loadable Group object directly.

Instance Methods

getHandle

get Handl e self O String

Returns the String representing the complete path to the directory containing the
loadable group. This string can be used in the spawn method called on t heRoot D r
global to create a D r Rep representing the directory where the loadable group file
resides, as the following code demonstrates:

nyQGoupDr := spawn theRootDr (getHandl e nyG oup)

getLoadableUnit

get Loadabl eUni t self name O Loadabl eUni t
self Loadabl eG oup object
name Nared ass object

Checks the unit list of the loadable group self and returns the loadable unit whose name
matches the argument name.

getLoadList

get LoadLi st self O (object)
Returns the load list of the loadable group self.

getUnitList

get Uni t Li st self O (object)

Returns the unit list of the loadable group self.

395

LoadableGroup

initializeGroup

initializeQoup self filePath loadList unitList O Loadabl eG oup
self Loadabl eG oup object
filePath String object
loadList Col | ecti on object
unitList Col | ecti on object

Initializes the loadable group self from the path represented by filePath, the given
loadList, and the given unitList.

396

LoadableUnit

LoadableUnit

RootObject
LoadableUnit
Class type: Core class (concrete)
Resides in: ScriptX and KMP executables

Inherits from: Root (bj ect
Component: Loader

The Loadabl elhi t class defines the atomic units for the Loader component. Units have
a type that indicates how the Loader component should handle them during the load
process. They also have a system and unit version, to prevent version skew and to track
which version is loaded.

Creating and Initializing a New Instance

Loadabl eUni t instances are created and returned by instances of the Loader class.

Instance Variables

entry

self. entry (read-only) (function)
Represents the entry function for the loadable unit self.

Although any global function, anonymous function, or method can be assigned to
entry, there are differences in how different classes of functions are dispatched. For
information on functions and function dispatch, see the “Object System Kernel” chapter
of the ScriptX Components Guide.

exit

self. exi t (read-only) (function)
Represents the exit function for the loadable unit self.

Although any global function, anonymous function, or method can be assigned to exi t,
there are differences in how different classes of functions are dispatched. For
information on functions and function dispatch, see the “Object System Kernel” chapter
of the ScriptX Components Guide.

Instance Methods

clrOnLoadList

cl rOnLoadLi st self O (none)

Clears the loadable unit self from the load list.

getEntry

getEntry self 0 Naned ass

Returns the name of the entry point for the loadable unit self.

397

LoadableUnit

398

getFile

getFil e self O Named ass

Returns a Pai r object representing the Di r Rep subclass instance for the directory and
the Named ass instance for the object file associated with the loadable unit self.

getHandle

get Handl e self O Narmed ass

Returns the name of the loadable unit self.

getSysVers

get SysVers self O I nt eger

Returns the system version of the loadable unit self.

getUnitType

get Uni t Type self O (object)
Returns the type of the loadable unit self.

getUnitVers

get Uni t Vers self O I nt eger

Returns the unit version of the loadable unit self.

initializeUnit

initializeUnit self sourcePath unitName sourceFile entryPoint

sysVersion unitVersion unitType O (object)
self Loadabl eUni t object
source Path D r Rep object
uni t Narre Narred ass object
sourceFil e Narred ass object
ent ryPoi nt Narred ass object
sysVersi on I nt eger object
uni t Ver si on I nt eger object
uni t Type Naned ass object

Initializes the loadable unit self and assigns it the directory representative sourcePath
representing its directory, the name unitName, the list of source files sourceFile, the entry
point entryPoint, the system version sysVersion, the unit version unitVersion, and the type
unitType. The unitType argument can be one of @ oader TypeEpheneral or

@ oader TypeLi nkabl e.

isOnLoadList

i sOnLoadLi st self O Bool ean

Determines whether the loadable unit self is on its group’s load list. Returns t r ue if so,
fal se if not.

setOnLoadList

set OnLoadLi st self O (none)

Sets the loadable unit self on the load list.

LoadableUnitld

LoadableUnitld

RootObject
LoadableUnitld
Class type: Core class (concrete)
Resides in: ScriptX and KMP executables

Inherits from: Root (bj ect
Component: Loader

The Loadabl elni t | d class provides...

Instance of Loadabl eUni t| d are returned by the Loader method | oadMbdul e when it
loads a unit. The Loader methods process and pr ocess@ oup return collections of
these objects, one for each unit loaded successfully. The ScriptX runtime environment
defines four instances of Loadabl eUni t | d as global constants. These globals are
returned by | oadMbdul e to represent loading errors.

Creating and Initializing a New Instance

There is no need to create instances of Loadabl eUni t | d since four global instances
already exist. The global instances | oadabl eUni t I dNul |, | oadabl eni t | dError,

| oadabl elni t | dLoadi ng, and | oadabl eUni t I dl nitErr are defined in the chapter
“Global Constants and Variables.”

Instance Methods

relinquish

relinqui sh self O (none)

Releases the code represented in a loadable unit identified by the loadable unit ID self,
and makes its memory available for garbage collection.

399

Loader

Loader

RootObject

Loader

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Loader

The Loader class is the primary class for the Loader component. It maintains the tables
of currently loading and successfully loaded units. An instance of this class drives the
load and unload operations. It obtains help from Loader Hel per to load units into
platform-specific contexts.

Creating and Initializing a New Instance

The following script creates a new instance of the Loader class:
nyLoader := new Loader
The variabl e nyLoader contains a new instance of the Loader cl ass.

init

init self O (none)
self Loader object

Initializes the Loader object self. Do not call i nit directly on an instance—it is
automatically called by the new method.

Class Methods

400

exportNamedObject

expor t NarredChj ect self name value O value
self Loader class
name Naned ass instance representing the symbol
value Object representing the address of an object to export

Adds the object value with the specified name name to the Loader component’s list of
exported symbols. It returns value.

loaderError

| oader Error self id O Bool ean
self Loader class
id Loadabl eUni t | d object

Checks to see if the loadable unit ID identified by id was successfully loaded by loader
self. Returns t r ue if the id argument equals Loadabl eUni t | dEr r or ; otherwise, it returns
fal se.

Loader

nameToExport

nanmeToExport self name O (object)
self Loader class
name Narmed ass object

Converts the specified NameQd ass object name into an exportable name. Returns the
export value matching the name.

releaseLoadableUnit

rel easelLoadabl elni t self id O Loader Code
self Loader class
id Loadabl eUni t | d object

Releases the loadable unit identified by id. Returns an instance of Loader Code
representing the results of the operation.

unexportNamedObject

unexpor t NarredChj ect self name O (object)
self Loader class
name Narred ass object

Removes the object with the specified name name from the Loader component’s list of
exported symbols.

Instance Methods

getGroup

get G oup self filePath O Loadabl eG oup
self Loader object
filePath St ri ng object for loadable group file

Returns a loadable group in the specified filePath from the loader self. The string filePath
is relative to t heStart Di r, so that passing in "f oo/ bar" access the directory specified
by (spawn theStartDir "foo/bar").

loaderValue

| oader Val ue self id O (object)
self Loader object
id Loadabl eUni t | d object

Returns the value returned from the entry point code in the loader self, for the loadable
unit represented by id. This entry point code is called from within the Loader instance
method | oadMbdul e before it returns the id for the unit.

loadModule

| oadMbdul e self group unit O Loadabl ebnitid
self Loader object
group Loadabl e& oup instance to load from
unit Loadabl eUni t instance to load

401

Loader

402

Loads the specified unit from the group. If successful, returns a Loadabl eUni t1d
instance representing the loaded unit. If unsuccessful, it returns a global instance of
Loadabl eUni t | d indicating the error condition.

processGroup

processQ@ oup self group 0 Col l ection
self Loader object
group Loadabl eG oup object

Processes the group. Returns a collection of loadable unit ids representing the units
successfully loaded. (The collection doesn’t include error instances of Loadabl elni t1d
for units that failed to load.)

process

process self filePath O Collection
self Loader object
filePath Stri ng object for the loadable unit

Processes the loadable group in the file represented by filePath. Returns a collection of
loadable unit ids in the loader self representing the units successfully loaded. (The
collection doesn’t include error instances of Loadabl eUni t | d for units that failed to
load.) The string filePath is relative to t heStart D r, so that passing in " f 0o/ bar " access
the directory specified by (spawn theStartDir "foo/bar").

saveGroup

save@ oup self group O Bool ean
self Loader object
group Loadabl eG oup object

Saves the group (and all loadable units within it) in the loader self, using the name
instance variable of the Loadabl eG oup object as the filename.

LoaderCode

LoaderCode

RootObject
LoaderCode
Class type: Core class (concrete)
Resides in: ScriptX and KMP executables

Inherits from: Root (bj ect
Component: Loader

Instances of Loader Code are returned by r el easeLoadabl eUni t method (defined in
Loader) to indicate the results of the operation.

Creating and Initializing a New Instance

There is no need to create instances of Loader Code since three global instances already
exist. The global instances | oader CodeBad, | oader CodeEr r or, and | oader CodeCk are
defined in the chapter “Global Constants and Variables.”

403

Lock

Lock

RootObject

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Gate

Component: Threads

The Lock class is an object that only one thread may own at any given time. When a
thread acquires a lock, the st at e instance variable is set to @ osed to block the thread
from executing. The thread does not continue execution until the st at e instance
variable is set to @pen (the lock is relinquished).

Thr ead objects can wait on a Lock object, and, when they become active, they are
guaranteed that no other thread that waited on that Lock object is currently active.
Threads wait on a lock with gat eWi t, acqui r e, or one of the combination operations.
(The gat eVi t global function is the same as the acqui r e method on Gat e, except that
acqui r e is a generic function.) Threads allow another waiting thread to acquire the lock
with either the openGat e global function or the r el i nqui sh method on Gat e.

A thread is allowed to acquire the same Lock object multiple times without releasing it.
However, it must relinquish the lock the same number of times it acquired the lock
before another thread can acquire it. A thread can only relinquish locks that it has
acquired. Attempting to relinquish a lock that has another owner throws the

w ongOnaner exception. Attempting to relinquish a lock that no thread owns reports the
not Locked exception. If a thread finishes execution or is killed while it owns a lock, the
lock is automatically released.

It is often convenient, and visually pleasing, to wrap code that is associated with a lock
within a code block, as in the following example. If two threads have access to this
block of code, only one will be able to “do some stuff” at a time—the two threads have
serial access to this code.

acqui re nylLock

(

)
rel i nqui sh nyLock

-- do sone stuff

Creating and Initializing a New Instance

404

The following script is an example of how to create a new instance of the Lock class:

nyLock := new Lock \
| abel : "I ockl"

The variable nyLock contains the initialized lock, with the label "l ock1". The new
method uses the keywords defined in i nit.

init

init self [|abel: object] O (none)
self Lock object
| abel : Any object

Lock

Initializes the Lock object self, where the value supplied with | abel is applied to the
| abel instance variable. Do not call i ni t directly on an instance—it is automatically
called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:
| abel : undef i ned

Instance Variables

Inherited from Gat e:
| abel state

The following instance variable is defined by Lock:

thread

self. t hread (read-only) O Thr ead

Specifies the thread that currently owns the lock self, or undef i ned if the lock currently
has no owner.

Instance Methods

Inherited from Gat e:
acqui re rel i nqui sh

The following instance methods are defined in Lock:

acquire (Gate)

acqui re self O (none)

Acquires the lock self. This directly translates into gat eVéi t self. A thread that calls
acqui r e on a Lock object blocks if another thread already owns the lock; however, if no
other thread owns the lock, then the thread that called acqui r e gets the lock and
continues to run.

relinquish (Gate)

relinqui sh self O (none)

Relinquishes the lock self. This translates directly into the global function gat eQpen self.
If a thread attempts to relinquish a lock that is owned by another thread, ScriptX reports
the wr ongOnaner exception. If a thread attempts to relinquish a lock that is not owned by
any thread, ScriptX reports the not Locked exception.

405

Marker

Marker

RootObject

Marker

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Players

The Mar ker class provides a means of annotating the start and finish times of time
ranges in a media stream. Markers can be attached to either a media stream or a player
and have meaning only within that context.

When a media stream is imported, if it has any existing markers, they are imported
with it as Mar ker instances. For example, Mar ker objects are created from information
in the marker chunk of an AIFF audio file and are added to the mar ker Li st of the
corresponding Audi oSt r eam The nar ker Li st of the Audi oSt r eamis copied to the

D gi t al Audi oPl ayer it is assigned to. Markers can also be created explicitly at any
other time and added to the mar ker Li st of a Medi aSt r eamor Pl ayer instance by using
the addMar ker method.

Note that time ranges for markers can be nested or can overlap each other. For example,
if Mar ker Ahas a start time of 10 and a finish time of 100 and Mar ker B has a start time of
50 and a finish time of 200, these two markers can both be added to a player.

If the start time of the marker is the same as its finish time, then the marker can be used
to mark a point in time rather than a range.

Creating and Initializing a New Instance

406

The following script is an example of how to create a new instance of the Mar ker class:

nyMarker := new Marker \
start:1 \
finish:50 \
| abel :"First narker"

In this example, the variable nyMar ker points to an instance of Mar ker whose start time
is 1 and whose finish time is 50. That is, this marker can be used to mark the range from
tick 1 to tick 50 for a media stream or media stream player.

The newmethod uses the keywords defined in i ni t.

init
init self start:number [finish:number] |abel: string O (none)
self Mar ker object
start: A Nunber indicating the starting value of the marker in
ticks.
finish: A Nunber indicating the finishing value of the marker
in ticks.
| abel : A String to be used as the marker’s label.

Initializes the Mar ker object self, setting the values of the start, fini sh and | abel
instance variables to the corresponding keyword values. Do not call i ni t directly on an
instance—it is automatically called by the hew method.

If you omit an optional keyword, its default value is used. The defaults are:
fini sh: The same as start.

Marker

Instance Variables

finish

self. fini sh (read-write) I nt eger

Specifies the finish of the time range marked by the marker self.

label

self. | abel (read-write) Text

Specifies the name or description of the marker self. The author can search for this label
in the list of markers on a particular media stream or player.

start

self. start (read-write) | nt eger

Specifies the start of the time range marked by the marker self.

407

MediaStream

MediaStream

RootObject

Stream

MediaStream

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Byt eStream

Component: Media Players

The Medi aSt r eamclass defines methods for opening and accessing streams of media
data. Medi aSt r eamencompasses the behavior common to streams of digital media data
of all types, while subclasses such as D gi t al Audi oStreamand Di gi t al Vi deoStream
provide media-specific implementations.

In Medi aSt r eamand its subclasses, a frame represents an individual, coherent piece of
media data. The precise content of a frame depends on the media-specific
implementation provided by subclasses of Medi aSt r eam For a video stream, a frame is
the data necessary to generate a single complete image. For an audio stream, a frame is
a collection of sound samples—one sample per channel of audio (for example, 1 sample
for mono, 2 samples for stereo and 4 samples for quad).

Instance Variables

408

dataRate

self. dat aRat e (read-only) I nt eger

Specifies the number of bytes per second that the stream self needs to read in order not
to skip presenting some of its media.

inputStream

self. i nput St ream (read-write) Byt eSt ream

Specifies the source of the raw media data which the media stream self will interpret as
media. (A Medi aSt reanPl ayer plays its medi aSt r eamwhich in turn has an
i nput St ream)

isChunked

self. i sChunked (read-only) Bool ean

Specifies whether or not the input stream for the stream self is a ChunkStream object.

isSuppressed

self. i sSuppr essed (read-only) Bool ean
Specifies whether or not the data for the stream self is suppressed or not.

For example, if the muted instance variable of a digital audio player is set to true, the
player’s audio stream would be suppressed. If the blanked instance variable of a digital
video player is set to true, the player’s video stream would be suppressed.

MediaStream

markerList

self. mar ker Li st (read-only) Sor t edKeyedAr r ay

Specifies the sequence of markers associated with the media stream self. When a media
file is imported, markers in the media stream are retained. Markers on the player
supersede markers on the media in marker searches begun from the player.

rate

self.rate (read-write) | nt eger

Specifies the portion of the player’s rate that the stream self should be responsible for
emulating (such as by dropping samples of audio or frames of video). Defaults to 1.0
meaning that the media stream should deliver data in the normal fashion.

If this rate is less than 1.0, then the apparent size of the media stream will increase so
that more samples can be read. The additional samples can be generated by
interpolating between existing samples or by repeating some samples. If this rate is
greater than 1.0, then the apparent size will decrease and fewer samples can be read. If
this rate is negative, samples will be returned in reverse order.

Users should not set this instance variable directly. It is set by calling either the
pl ayPr epar e or pl ay method on the player playing the stream self.

sampleType

self. sanpl eType (read-only) | nt eger

Describes the representation used for samples in the stream self. See the individual
Medi aSt r eamsubclasses for a description of the sample types specific to those streams.

scale

self. scal e (read-only) | nt eger

Specifies the number of frames that need to be presented per second to properly present
the media stream self. Players accessing media streams usually adopt this value as their
scale so that all player times can be easily mapped to positions within the media stream.

variableFrameSize

self. vari abl eFr aneSi ze (read-only) Bool ean

Specifies whether the frames in the media stream self are all the same size or whether
they vary in size

If the value is t rue, all the frames are not necessarily the same number of bytes long.

If the value is f al se, every frame of the media (a sound sample, a single picture in an
animation or movie, and so on) is the same number of bytes long.

Instance Methods

Inherited from St ream

cursor next seekFrontt art
flush pl ug set Streaniengt h
i SAt Front pr evi ous streaniengt h

i sPast End read wite

i sReadabl e r eadReady w i t eReady

i sSeekabl e seekFr onCur sor

isWitable seekFr onEnd

409

MediaStream

410

The following instance methods are defined in Medi aSt r eam

addMarker

addMar ker self marker O Mar ker
self Medi aSt r eamobject
marker Mar ker object

Adds the Mar ker object theMarker to the media stream self. The marker is added to the
array in the media stream’s mar ker Li st instance variable. Returns theMarker if the
addition is successful, undef i ned if not. A marker has a start and finish time, and can
be used to mark time ranges on the stream self.

isReadable (Stream)

i sReadabl e self O true

Returns t r ue, since all Medi aSt r eaminstances are intended to be readable.

isSeekable (Stream)

i sSeekabl e self O true

Returns t r ue, since all Medi aSt r eaminstances are intended to be seekable.

isWritable (Stream)

i sWitabl e self O fal se

Returns f al se, since Medi aSt r eaminstances aren’t intended to be writable.

prepareStream

pr epar eSt r eam self paraml param2 O Bool ean

Prepares the media stream self to play by initializing any resources used by the stream.
In media production terms, this may be thought of as “pre-roll.” Subclasses of

Medi aSt r eammay implement pr epar eSt r eamto allocate file streams, acquire hardware
devices, locate codecs, and so on. The Medi aSt r eanPl ayer method pl ayPr epar e calls
this method on the player’s nedi aSt r eam The arguments param1 and param2 are used
differently by the different Medi aSt r eamsubclasses. If not documented in a particular

subclass, they are unused.

unprepareStream

unpr epar eSt r eam self O Bool ean

Releases resources initialized for playing the media stream self by pr epar eSt r eam For
example, subclasses of Medi aSt r eammay implement unpr epar eSt r eamto release file
streams, hardware devices, or codecs claimed by the media stream when initialized. The
Medi aSt r eanP! ayer method pl ayUnpr epar e calls this method on a player’s

medi aSt r eam

MediaStreamPlayer

MediaStreamPlayer

RootObject

MediaStreamPlayer

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: Pl ayer

Component: Media Players

The Medi aSt reanP! ayer class extends the behavior defined in the Pl ayer class to
provide generalized control for playing streams of media. Medi aSt r eanP! ayer
provides methods to deal with the common characteristics of various digital media
types; for example, for dealing with rate and time changes in the playback of digital
media.

In Medi aStreanPl ayer and its subclasses, a frame represents an individual, coherent
piece of media data. The precise content of a frame depends on the media-specific
implementation provided by subclasses of Medi aSt r eanPl ayer. For a video player, a
frame is the data necessary to generate a single complete image. For an audio player, a
frame is a collection of sound samples that fill a single unit of the sampling rate (for
example, the sound samples that occupy 1/44,000 of a second at a 44kHz sampling
rate). An audio frame includes one sample per channel of audio; thus, 1 sample for
mono, 2 samples for stereo and 4 samples for quad.

Note — The inherited st at us instance variable has two additional possible values for
Medi aSt r eanP!| ayer. The value @r esent indicates that media is present but the the
pl ayPr epar e method has not been called on the player so it is not ready to play. The
value @wot Present indicates that media is not present and, thus, the player cannot

play.

Instance Variables

Inherited from O ock:

cal | backs rate ticks
effectiveRate resol ution tine
mast er d ock scal e title
of f set sl aved ocks

Inherited from Pl ayer:

audi oMt ed gl obal Cont r ast gl obal Vol umeC f set
dat aRat e gl obal Hue nar ker Li st
duration gl obal PanCx f set status

gl obal Bri ght ness gl obal Saturation vi deoBl anked

The following instance variables are defined in Medi aStr eanP! ayer:

frameRate

self. frameRat e (read-write) I nt eger

Specifies the number of frames per “second” that the player self plays the frames in its
media stream.

411

MediaStreamPlayer

412

The f r ameRat e reflects the true frame rate of the media while scal e represents the tick
rate used by the player to present that media.

Although the f r anmeRat e instance variable has read-write properties, the only occasion
when you should write to this instance variable is when defining a new class of

Medi aSt r eanPl ayer. In this case, the newmethod or a method that sets the value of the
medi aSt r eaminstance variable might need to access the f r aneRat e instance variable.

mediaStream

self. medi aSt r eam (read-write) Medi aSt r eam
Specifies the stream that the player self will play.
Instance Methods
Inherited from A ock:
addPer i odi cCal | back cl ockAdded pause
addRat eCal | back cl ockRenoved resune
addScal eCal | back ef fecti veRateChanged ti neJunped
addTi meCal | back f or EachSl ave wai t Ti me
addTi meJunpCal | back i sAppropri at ed ock waitUnti |
Inherited from Pl ayer:
addMar ker goToBegi n pl ayPr epar e
ej ect goToEnd pl ayUnpr epar e
f ast Forward goToMar ker Fi ni sh playUnti |
get Mar ker goToMar ker St ar t resunme
get Next Mar ker pause rew nd
get Pr evi ousMar ker pl ay stop

MemoryObject

MemoryObject

RootObject

MemoryObject

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root Cbj ect

Component: Object System Kernel

The Menory(hj ect class provides a template for creating an object that can be shared
between the object world of the Kaleida Media Player and the C world defined by
ScriptX loadable units. A memory object is used to exchange data between ScriptX and
loadable extensions written in C.

Menor yChj ect is documented in the “Extending ScriptX” chapter of the ScriptX Tools
Guide.

413

MemoryStream

MemoryStream

Creating

Instance

414

RootObject

Stream
ByteStream

MemoryStream

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: ByteStream

Component: Streams

The Menor ySt r eamclass defines a subclass of Byt eSt r eamthat represents a growable
buffer in memory. Using an instance of Menor ySt r eam you can store and access
arbitrary sequences of bytes in memory.

and Initializing a New Instance

The following script is an example of how to create a new instance of the Meror ySt r eam
class:

nyStream : = new MenoryStream \
initial Sze:10 \
growsi ze: 10 \
maxSi ze: 100

The variable nySt r eamcontains a new instance of the Menor ySt r eamclass. The initial
size of its memory buffer is 10 bytes, this buffer can grow by 10 bytes at a time, and the
buffer's maximum size is 100 bytes. The newmethod uses keywords defined in i ni t.

init

init self [initialSize:integer] [growS ze:integer] [maxSi ze:integer] O (none)

self Menor ySt r eamobject
initial Size: I nt eger object
growsi ze: I nt eger object
maxSi ze: I nt eger object

Initializes the Menor ySt r eamobject self, applying the arguments as follows:

initial Size represents its starting size, gr owSi ze represents the amount by which it
grows when necessary, and maxSi ze represents the maximum size it can grow to. Do
not call i ni t directly on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default is used. The defaults are:
initial Size:500
growsi ze: 500
naxSi ze: limited by available memory

Methods

Inherited from Stream
cursor next seekFronBt art
flush pl ug set Streaniengt h
i SAt Front pr evi ous st reaniengt h
i sPast End read wite
i sReadabl e r eadReady wri t eReady

MemoryStream

i sSeekabl e seekFr omQur sor
isWitabl e seekFr onEnd
Inherited from Byt eSt r eam
fileln readByt e witeString
pi pe r eadReady
pi peParti al witeByte

The following instance methods are defined in Meror ySt ream

flush (Stream)

f1 ush self O undefi ned

Has no effect on instances of MenorySt ream

isReadable (Stream)

i sReadabl e self O true

Returns t r ue. All memory streams are readable.

isSeekable (Stream)

i sSeekabl e self O true

Returns t r ue. All memory streams are seekable.

isWritable (Stream)

i sWi tabl e self O true

Returns t r ue. All memory streams are writable.

415

Menu

Menu

416

RootObject

Presenter
TwoDPresenter

ScrollingPresenter

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Scrol | i ngPresent er
Component: User Interface

The Menu class creates a selection of choices arranged in rows and columns by a
row-column controller. A menu is a scrolling presenter that expects to contain other
objects, typically actuators. A visible menu is associated with an invoker, which is an
object the user clicks on that causes the menu to pop up. A menu’s invoker is specified
by the i nvoker instance variable. A menu can have more than one invoker; that is,
there can be more than one way to pop up a menu. You can determine where the menu
pops up, either to the right of the invoker, below the invoker, or at the mouse pointer,
using the pl acenment instance variable.

A Menu object has a default RowCol ummCont r ol | er object that organizes the objects it
contains into a single column, and an Act uat or Control | er object that controls the
selection of items from the list. The RowCol utnCont rol | er protocol allows a menu to
grow to contain all of the Act uat or objects, but it prevents it from growing outside the
boundaries of the window. If a Menu object is too long or wide to fit into its window, it
is clipped automatically.

A Menu object has an event interest that pops itself down if a nouseDown happens
outside of itself and it currently does not have a submenu.

The Menu class creates its target presenter automatically, an instance of TwoDSpace. A
menu serves as a proxy for its own space when adding and removing actuators. Any
method calls and variables that a menu does not define itself are redirected to its target
space. This means that the following expressions are equivalent:

nyMenu. t ar get Present er. si ze
nyMenu. si ze

The following expressions also are equivalent, given that cancel But t on is an actuator
that is defined elsewhere:

prepend nyMenu. t arget Presenter cancel Button
prepend nyMenu cancel Button

In the examples above, si ze is an instance variable defined by Col | ecti on, but it is
redirected to the menu because its target presenter, an instance of TwoDSpace, is a
collection. Since TwoDSpace is an indirect collection, it can also apply methods that are
defined for its target collection, which is an instance of Array, by default. The pr epend
method, shown in the second example, is defined by Sequence. (An array is a
sequence.)

Menu

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Menu class:

nyMenu : = new Menu \
pl acerent : @renuDown

The variable nyMenu contains the initialized menu. The value @renuDown specifies that
this menu is a pulldown menu. The newmethod uses keywords defined in i ni t.

To add an item to nyMenu, call an appropriate collection method, which is redirected to
the t ar get Present er:

append nyMenu nyltem

init

init self [placenent:name] [actuatorControll er:actuatorController]
[I'ayout Control | er: rowColumnController] [fill: brush]
[stroke: brush] [horizScroll Bar:scrollBar] [vertScroll Bar: scrollBar |
[boundary: rect] [targetPresenter: twoDSpace] [target: object]

[stationary: boolean] O (none)
self Menu object

pl acenent : Narred ass object

actuatorControl | er: Act uat or Control | er object

| ayout Control | er: RowCol umnCont r ol | er object

The superclass Scrol | i ngPresent er uses the following keywords:
fill: Br ush object

stroke: Br ush object

hori zScrol | Bar : Scrol | Bar object

vert Scrol | Bar: Scrol | Bar object

Superclasses of Scrol | i ngPr esent er use the following keywords:
boundary: Rect object

target Presenter: TwoDSpace object

target: Any object (ignored by Menu)
stationary: Bool ean object

Initializes the Menu object self, applying the values supplied with the keywords to the
instance variables of the same name. The i ni t method automatically creates a

RowCol umnCont r ol | er object and an Act uat or Control | er object attached to the menu
space, or you can specify controllers for your menu using the controller keywords.
Specify undef i ned for the value of the controller keywords if you do not want these
controllers for your menu. Any controller that you specify for the value of the

actuat or Control | er keyword is passed on to the nenu keyword of the

Actuat or Control | er instance. Do not call i ni t directly on an instance—it is
automatically called by the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:

pl acernent : @enuDown

act uat or Control | er: @nsuppl i ed
| ayout Control | er: @nsuppl i ed
fill:undefined

st roke: undefi ned

hori zScrol | Bar: undefi ned

vert Scrol | Bar: undef i ned
boundary: (new Rect x2:0 y2:0)

417

Menu

t ar get Present er : (new TwoDSpace)
t ar get : undef i ned
stationary:fal se

The t ar get Present er keyword, defined by TwoPr esent er, is ignored, since a Menu
object sets its own target presenter. A menu automatically creates an instance of
TwoDSpace to act as its target presenter. The t ar get keyword, defined by Present er, is
also ignored.

Instance Variables

Inherited from Presenter:

pr esent edBy subPresenters t ar get
Inherited from TwoDPr esent er :

bBox hei ght transform

boundary IslnplicitlyD rect wi dth

cl ock i sTranspar ent w ndow

conposi t or isVisible X

di rect needsTi ckl e y

eventlnterests posi tion z

gl obal Boundary stationary

gl obal Transf orm t ar get

Inherited from Scrol | i ngPresenter:
cl i ppi ngSt enci | stroke
fill t ar get Present er
hori zScrol | Bar vert Scrol | Bar
hori zScrol | Bar D spl ayed vert Scrol | Bar O spl ayed

Since a menu acts as a proxy for the instance of TwoDSpace that is its target presenter,
the following instance variables are redirected to this space.

Redirected from Space:

cl ock pr ot ocol s tickl eLi st
control lers

Redirected from Col | ecti on:
bounded maxSi ze si ze
iteratord ass m nSi ze uniformty
keyEqual Conpar at or nut abl e uni form tyd ass

keyUni form ty val ueEqual Conpar at or

keyUni form tyd ass

nut abl eCopyd ass
proprietored

Redirected from | ndi rect Col | ecti on:
target Col | ection

Redirected from TwoDMul ti Presenter:
cl ock fill stroke

The following instance variables are defined in Menu:

418

Menu

actuatorController

self. act uat or Control | er (read-write) Actuat or Control | er

Specifies an Act uat or Cont r ol | er object that will be used to control the selection of
items from the menu self. The class Act uat or Control | er implements a protocol that
allows a menu to pop down where appropriate. Any controller that you specify for the
value of this instance variable is passed on to the nenu keyword of the

Actuat or Control | er instance.

invoker

self. i nvoker (read-only) (object)

Specifies the object that last caused the menu self to pop up. If a menu has more than
one invoker, then only the last object that invoked the menu is maintained in this
instance variable. In most cases, the invoker is a PushBut t on object. To make an
actuator be the invoker of a menu, set the menu instance variable on the Act uat or
object.

This variable is read-only for the class Menu. Subclasses of Menu that set their own
invoker must define a setter method that links that invoker with a Menu object.
Normally, this instance variable is set internally by the popup method.

layoutController

self. | ayout Control | er (read-write) RowCol urmCont rol | er

Specifies an instance of a RowCol utmCont rol | er that will be used to control the
position of items from the menu self. By default, this controller sets up menu items in a
single column.

placement

self. pl acenent (read-write) Nanmed ass

Determines how the menu self will pop up when activated by its invoker. By default,
this value is set to @enuDown, indicating that the menu pops down from its invoker.
Placement can also be set to @enuRi ght, which places the menu to the right of the
invoker, or @enuAt Poi nt er, which places the menu where the user clicks the mouse.

subMenu

self. subMenu (read-only) Menu

Specifies the currently popped up submenu of the menu self if there is one. Thus, self is
a supermenu of subMenu. A menu may have more than one submenu, but only the
currently popped up submenu is maintained in this instance variable. The value of this
instance variable is undef i ned if the menu has no currently popped up submenu.

superMenu

self. super Menu (read-only) Menu

Specifies the menu from which the menu self was invoked. Thus, self is a submenu of
super Menu. The value of this instance variable is undef i ned if the menu has no parent
menu.

targetPresenter (ScrollingPresenter)

self. t ar get Present er (read-write) TwoDSpace

Specifies the presenter to be scrolled inside the scrolling list self. Note that for the Menu
class, this presenter is created automatically, and that it must be an instance of
TwoDSpace.

419

Menu

Instance Methods

420

Inherited from TwoDPr esent er :

adj ust d ockMast er i nsi de show

createl nterestlList | ocal ToSurf ace sur f aceToLocal
draw not i f yChanged tickle

get Boundar y! nPar ent recal cRegi on

hi de refresh

Inherited from Scrol | i ngPr esent er:

handl eHori zScr ol | Bar | ayout
handl eVert Scrol | Bar scrol | To

Since a menu acts as a proxy for the instance of TwoDSpace that is its target presenter,
the following instance methods are redirected to this space.

Redirected from Col | ecti on:

add f or Each iterate
addvany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al nap
chooseAl | get Any ner ge
choosee get KeyAl | pi pe
chooseneBi ndi ng get Keyne prin

del eteAl | get Many r enoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngne hasBi ndi ng setAl |

del et eKeyAl | haskey set One
del et ekeyCne i ntersects si ze

del et eOne i sEmpty

enpt yQut i sMerber

Redirected from | ndi rect Col | ecti on:
i sAppr opri at eChj ect obj ect Added

Redirected from TwoDMul ti Present er:

obj ect Renoved

dr aw findFirstlnStencil noveToBack
findAl | At Poi nt i sAppropri at eChj ect noveToFr ont
findAl | I nStencil noveBackwar d obj ect Added
findFirstAt Poi nt noveFor war d obj ect Renoved

Since a TwoDSpace object is an indirect collection, you can also use any methods defined
in the class specified by t ar get Col | ecti on. The target collection is typically an
instance of Ar r ay, which inherits from Sequence, so the following instance methods are
redirected to this space.

Accessible from Li near Col | ecti on:

chooseeBackwar ds del et eSecond getM ddl e
chooseOr dne del eteThird getNth
del eteFifth fi ndRange get Nt hKey
del et eFi r st f or EachBackwar ds get O dne
del et eFourt h getFifth get Range
del et eLast get First get Second
del eteN h get Fourth getThird
del et eRange get Last pop
Accessible from Sequence:
addFifth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourth noveToBack setNth
addNt h noveToFr ont set Second
addSecond pr epend set Third
addThird pr ependNew sort

Menu

append setFifth
appendNew set Fi rst

The following instance methods are defined in Menu:

calculateSize

cal cul ateSi ze self O Poi nt

Resizes the bounding box of the Menu object self to show all items inside the target
presenter. It returns a Poi nt object that represents the new width and height of the
menu. This method is called automatically by the popup method. Specialize this method
if you do not want the menu to resize in this way.

hide

hi de self O Bool ean

Hides any submenus posted by the menu self, then hides the menu self and sets the
values of i nvoker and super nenu to undef i ned. Returns t r ue if it was successful in
hiding the menus.

place

pl ace self point O self
self Menu object
point Poi nt object

Determines where the menu self should be displayed, based on the menu’s invoker and
on the location of the event that caused the menu to be popped up. This event is an
instance of MouseEvent ; the coordinates of the mouse event with respect to the window
supply the point parameter, which is the x-y location of the pointer when popup was
called. This method is called automatically by the popup method.

This method uses the value of the invoker’s bounds instance variable to calculate the
menu’s position, based on the value of the menu’s pl acenent instance variable and the
value of point. If pl acerment is @enuRi ght, then point is not used and the menu is
placed to the right of the invoker presenter and adjusted if necessary to fit inside of the
composited window area. If pl acenent is @enuDown, then point is not used and the
menu is placed below the invoker presenter and adjusted if necessary to fit inside of the
composited window area. If pl acerent is @enuAt Poi nt er, then the manu’s origin (its
upper left corner by default) is placed at point. If pl acerment does not contain one of
these three values, the Menu class reports the exception i nval i dMenuPl acerent . A
subclass of Menu could define additional placements.

popup
popup self invoker superMenu point O Bool ean
self Menu object
invoker Present er object
superMenu Menu object
point Poi nt object

Sets the i nvoker instance variable to invoker, sets the super Menu instance variable to
superMenu, calls cal cul at eSi ze self, calls pl ace self point, enables the menu'’s

actuat or Control | er, and finally displays the menu self. The value of invoker is the
presenter that was acted on to trigger the menu to pop up. The value of point is the
location of the event that caused the menu to be popped up. This event is an instance of
MouseEvent ; the coordinates of the mouse event with respect to the window supply the
point parameter, which is the x-y location of the pointer when popup was called. This
method returns t r ue if it was successful in presenting the menu.

421

MIDIDriver

MIDIDriver

422

RootObject

MIDIDriver

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root Cbj ect

Component: Media Player

The M DI Dri ver class represents the MIDI devices that exist in the system. When a
M Dl Pl ayer instance prepares to play a MIDI piece, a driver can be provided to it, or it
can choose a default driver.

This class acts as an interface to any MIDI hardware or software supported on the
native system. It supports a simple interface that allows the client to send short (2 or
3-byte) or long (sysex) standard MIDI events.

The M DI Dri ver class cannot be instantiated by the user by calling the new method.
Instead, you use the openM DI Dri ver Li st function to find the available MIDI drivers,
then use the openM D Dri ver function to open a MIDI driver.

The global function get M DI Dri ver Li st returns a list of pairs, where each pair
corresponds to an installed MIDI driver. In each pair, the first element is a string of the
driver’s name, and the second element is a name such as @nt er nal or @xt ernal .

The global function openM Dl Dri ver opens a MIDI driver, which is specified as a pair
whose first element is a string of the driver’s name, and the second element is a name
such as @nternal or @xternal . The function openM Dl Dri ver returns the opened
M DDri ver object if it was successful, or f al se if it was not successful. (Note that just
because a MIDI driver is installed does not mean it can be opened. If a driver for
hardware is installed, but the hardware is not connected, the driver cannot be opened.)

You can use the following code to bind Miri ver to a MIDI driver that works on any
MIDI-capable system. (If no working MIDI driver can be found, Miri ver ends up being
undefined.)

global miList := getMdiDriverList ()

gl obal Miriver := false

for md in mdlist until Miriver do
Miriver := openMdiDriver md

See the Media Players chapter in the ScriptX Components Guide for more information on
finding MIDI drivers.

On any ScriptX platform, MIDI capabilities may be provided by an external card and its
accompanying driver. On MacOS, MIDI is generally implemented through software as
part of QuickTime. Some MacOS systems may be equipped with a hardware device that
loads its own driver, although most consumer systems are not.

Note - To insure cross-platform compatibility when you load an instance of

M Dl Dri ver, set the value of channel Pol yphony and call the pr epar eDri ver method
on it before sending it any messages. (Systems that implement MIDI through hardware
can play MIDI streams without these steps.)

MIDIDriver

Class Methods

midiAvailable

self. m di Avai | abl e O Bool ean

Returns t r ue if MIDI support is available on the system or f al se if not.

Instance Variables

channelPolyphony

self. channel Pol yphony (read-write) Array

Specifies the maximum polyphony per channel for 16 channels. The value must be an
array of 16 elements. The value of each elements indicates the polyphony (number of
voices) for that channel.

You must set this instance variable before calling the prepar eDri ver method on the
M D Dri ver.

Instance Methods

alINotesOff

al | NotesCr f - self O Bool ean

This sends the all-notes-off messages for all channels to the synthesizer to which the
driver self interfaces.

The MIDI protocol encodes music in terms of note-on/note-off events. (It's a bit more
sophisticated than that in reality but that’s the basic principal). These events are sent to
specific channels, each of which might represent a different instrument. There are 16
possible channels.

The all-notes-off message effectively acts as a note-off event for all notes of a channel.
The al | Not esCf f method sends this message to all channels.

prepareDriver

prepareDriver self obj O Bool ean
self M D Dri ver object
obj oj ect that supports the pl ayUnpr epar e method, or
undef i ned.

This method prepares the MIDI driver. If you are directly interacting with the MIDI
driver (rather than going through a MIDI player) you must call this method after setting
the MIDI driver’s channel Pol yphony instance variable, and before sending any
messages to the driver. The obj argument should be an object that supports the

pl ayUnpr epar e method or undef i ned. If you call this method directly, you can usually
pass the obj argument as undef i ned.

sendMIDIEvent

sendM Dl Event self midiEvent event O M D Event
self M D Dri ver object
midiEvent M Dl Event object

This method sends a M DI Event instance to the MIDI driver self. The MIDI event can
represent a standard MIDI message or a sysex message.

423

MIDIDriver

unPrepareDriver

unPr epar eDri ver self O Bool ean

This method frees a driver’s resources (usually the underlying hardware or software
MIDI support) for use by another player. Normally this is handled by the MIDI Player
but if you are accessing the driver directly be sure to unprepare it when you are done.

After callling the unPr epar eDri ver method on a driver, also call the cl oseM DI Dri ver
global function on it to close it if you have completely finished with it.

Global Functions

424

closeMidiDriver

cl oseM di Driver midiDriver (03¢

This function closes a MIDI driver, which is specified as a pair whose first element is a
string of the driver’s name, and the second element is a name such as @nternal or
@xternal .

getMidiDriverList

get M di DriverlList() Array

This function returns a list of pairs, where each pair corresponds to an installed MIDI
driver. In each pair, the first element is a string of the driver’s name, and the second
element is a name such as @nt ernal or @xt ernal .

openMidiDriver

openM di Dri ver midiPair M D Driver orfalse

This function opens a MIDI driver, which is specified as a pair whose first element is a
string of the driver’s name, and the second element is a name such as @nternal or
@xt er nal . The function returns the opened M DI Dri ver, or f al se if the open
operation was unsuccesful.

See the introduction to this chapter, or the Media Players chapter in the ScriptX
Components Guide for more information on finding and opening MIDI drivers.

MIDIEvent

MIDIEvent

RootObject

MIDIEvent

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Media Player

The M Dl Event class represents a MIDI message that can be sent to a MIDI driver. The
messages includes 2-byte, 3-byte, system exclusive and meta- events.

To send a M Dl Event to a MIDI driver, call the sendM Dl Event method on a
M Di Dri ver instance, specifying the event to send.

Creating and Initializing a New Instance

When a MIDI file is imported into ScriptX, the importing process automatically creates
a M Dl St reaminstance containing M DI Event instances. See the discussion of
M Dl Pl ayer for information on importing a MIDI file.

You can also create instances of M Dl Event by calling the new method on the class. The
following script is an example of how to create a new instance of the M Dl Event class:

nyM D Event := new M D Event

In this example, the variable nyM Dl Event points to a new M Dl Event instance. After
creating the MIDI event, you would fill in the instance variables so that the new
instance represents the kind of MIDI event you desire. To play the MIDI event, call the
sendM Dl Event method on a M DI Dri ver, passing the MIDI event as an argument.

init

init self O (none)
self M Dl Event object

Initializes the M Dl Event object self. Do not call i ni t directly on an instance—it is
automatically called by the new method.

Instance Variables

data

self. dat a (read-write) ByteString
Specifies the raw bytes that represent the MIDI event self.

databytel

self. dat abyt el (read-write) | nt eger

Specifies the second byte in the MIDI event self. This instance variable may be modified
even if the event self is not a standard MIDI event (that is, even if it is a sysex- or
meta-event). Note that this byte might be ignored when the MIDI piece plays,
depending on the type of event specified by the status byte.

425

MIDIEvent

426

databyte2

self. dat abyt e2 (read-write) I nt eger

Specifies the third byte in the MIDI event self. This may be modified even if this is not a
standard MIDI event (that is, even if it is a sysex- or meta-event). Note that this byte
might be ignored when the MIDI piece plays, depending on the type of event specified
by the status byte.

length

self. 1 engt h (read-write) I nt eger

Specifies the number of bytes that represent the MIDI event self.

statusByte

self. st at usByt e (read-write) | nt eger

Specifies the first byte in the MIDI event self, also known as the status byte. This byte
determines what type of MIDI event self is.

timeStamp

self. ti meStanp (read-write) I nt eger

Specifies the time (in milliseconds) from the start of the piece that the event self should
be played at. This instance variable is used by a M Dl Pl ayer object to schedule when to
play MIDI events.

MIDIPlayer

MIDIPlayer

RootObject

MediaStreamPlayer

MIDIPlayer

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Medi aSt r eanPl ayer
Component: Media Players

The M D Pl ayer class provides control of playback of MIDI data to a MIDI device.

Note — The current version of ScriptX supports only type 0 MIDI files.

You can only play MIDI on machines equipped with MIDI capability. Some systems
provide MIDI capability through external hardware. MacOS systems supply MIDI
capabilities through software emulation, although some MacOS systems may include a
hardware interface. To insure cross-platform compatibility when you load an instance of
M DI Dri ver, set the value of channel Pol yphony and call the pr epar eDri ver method
on the driver before sending it any messages. (Systems that implement MIDI through
hardware can play MIDI streams without these steps.)

Creating and Initializing a New Instance

To create a M DI Pl ayer instance, import a file containing digitized MIDI data. The
importing process automatically creates a MIDI stream and a M DI Pl ayer instance that
can be used to play the MIDI sound.

The following script shows how to create an instance of M DI Pl ayer by importing a
MIDI file. The object vi ol aPl ayer can be used to play the MIDI sequence imported
from the file vi ol a on the ScriptX startup directory.

violaStream= getstream theStartDir "viola" @eadable
vi ol apl ayer: = inportMedi a thel mport Export Engi ne viol aStream \
@1 D @tandard @l ayer

This script shows an example of how to import a MIDI file as a M D Pl ayer. For more
details of the arguments to the method i nport Medi a on the global instance

t hel npor t Expor t Engi ne, please see either the “Media Stream Players” chapter in the
ScriptX Components Guide or the chapter about importers in the ScriptX Tools Guide.

The M D Pl ayer class also supports the new method. However, users should import
MIDI files to create new M DI Pl ayer instances instead of calling the newmethod on the
M Di Pl ayer class. For the sake of completeness only, an example of using newis given
here:

nyPl ayer := new M D Pl ayer \
nmedi aStream nyM Dl Stream \
mast er d ock: t opPl ayer \
driver:mdiDriverl

427

MIDIPlayer

The variable nyPl ayer points to the newly created MIDI player, which has the
M DI St r eaminstance nyM DI St r eamas its media stream, the Pl ayer instance
t opPl ayer as its master clock, and the M DI Dri ver instance M Dl Dri ver 1 as its driver.

The newmethod uses the keywords defined ini nit.

init

init self [mediaStreamstream] [masterd ock: clock]

[driver: device][titl e: titleContainer] O (none)
self M D M ayer object

nedi aStream M DI St r eamobject

nmast er d ock: d ock object

driver: M D Dri ver object

title: Ti t1 eCont ai ner object to which to add the player.

Initializes the M DI St r eanPl ayer object self, applying the arguments as follows:

medi aSt r eamsets the source of MIDI data, mast er 0 ock sets the player’s master
player, and dri ver sets the driver on which to play. The MIDI device is obtained from
the M Dl Manager. The player is added to the specified ti tle. Do not call i ni t directly
on an instance—it is automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:

nedi aSt r eam (none)

mast er d ock: undefi ned (top clock)
driver: (the default M DI Dri ver)
title:theScratchTitle

Instance Variables

Inherited from O ock:

cal | backs rate ticks
effectiveRate resol ution tine
nast er d ock scal e title
of f set sl aved ocks

Inherited from Pl ayer:

audi oMt ed gl obal Cont r ast gl obal Vol umeC f set
dat aRat e gl obal Hue mar ker Li st
duration gl obal PanCf f set st at us

gl obal Bri ght ness gl obal Sat urati on vi deoBl anked

Inherited from Medi aStr eanPl ayer:
franmeRat e medi aStr eam

The following instance variables are defined in M DI Pl ayer:

driver

self. dri ver (read-write) Sequence

Specifies the list of M DI Dri ver objects to which the MIDI player self is sending MIDI data.

mediaStream

self. medi aSt r eam (read-write) Medi aSt r eam

This instance variable is inherited from the Medi aSt r eanP! ayer class. It specifies the
media stream for the player. Setting this instance variable while the player is playing
may cause the calling thread to block.

428

MIDIPlayer

time

self. time (read-write) Medi aSt r eam

Inherited from the 4 ock class. Indicates the current time of the player self. Setting this
instance variable while the player is playing may cause the calling thread to block.

volume

self. vol une (read-write) Nunber

Specifies the local volume value for the sound controlled by the MIDI player self. The
value is specified in dB (decibels), where a value of 0 dB represents unity gain. Values
less than 0 attenuate the source sound, while values greater then 1 boost the source. dB
is a relative measurement; every —-6dB drop is equal to halving the volume, modeling
human auditory perception.

The actual gain of the sound when it plays is determined by combining the local
volume value with the global volume offset, which is passed down from the master
player if any.

Instance Methods

Inherited from A ock:

addPer i odi cCal | back cl ockAdded pause

addRat eCal | back cl ockRenoved resune

addScal eCal | back ef fecti veRat eChanged ti neJunped

addTi meCal | back f or EachSl ave wai t Ti ne

addTi meJunpCal | back i sAppropri at ed ock waitUnti |
Inherited from Pl ayer:

addMar ker goToBegi n pl ayPr epar e

ej ect goToEnd pl ayUnpr epar e

f ast For war d goToMar ker Fi ni sh pl ayUnti |

get Mar ker goToMar ker St art resume

get Next Mar ker pause rew nd

get Previ ousMar ker pl ay stop

The following instance methods are defined in M DI Pl ayer:

muteChannel

nut eChannel self channel flag O I nt eger
self M Dl Pl ayer object
channel I nt eger object
flag Bool ean object

Mutes the specified channel for the MIDI player self if the flag is set to true. If flag is
f al se, restores the channel to its initial volume. Returns the volume of the channel.

setChannelBank

self

channel
bank

set Channel Bank self channel bank

M DI Pl ayer object
I nt eger object
I nt eger object

O I nt eger

Sets the instrument bank of the specified channel for the MIDI player self. The channel
number should be a value between 1 and 16. The bank should be a 16-bit value.

429

MIDIPlayer

430

setChannelPan

set Channel Pan self channel pan O I nt eger
self M DI Pl ayer object
channel I nt eger object
pan I nt eger object

Sets the pan of the specified channel for the MIDI player self. The channel number
should be a value between 1 and 16. The pan should be a value between 0 and 127.

setChannelProgram

set Channel Proogr am self channel program O I nt eger
self M DI Pl ayer object
channel I nt eger object
program I nt eger object

Sets the program (instrument) of the specified channel for the MIDI player self. The
channel number should be a value between 1 and 16. The program should be a value
between 0 and 127.

setChannelVolume

set Channel Vol ure self channel volume O I nt eger
self M D Pl ayer object
channel I nt eger object
volume I nt eger object

Sets the volume of the specified channel for the MIDI player self. The channel number
should be a value between 1 and 16. The volume should be a value between 0 and 127.

soloChannel

sol oChannel self channel flag O I nt eger
self M D M ayer object
channel | nredi at el nt eger object
flag Bool ean object

Mutes all channels for the MIDI player self except the one specified if flag is true.
Returns them to their initial volume if flag is false. Returns the volume of the channel.

transposeChannel

transposeChannel self channel transposeVal O I nt eger
self M D M ayer object
channel I nt eger object
transposeVal I nt eger object

Transposes the channel of the MIDI player self up or down in pitch by adding
transposeVal to all notes played on the channel. Transposition is cumulative, so that a
subsequent transposition will be relative to the previous. Returns the initial
transposition of the channel.

transposePiece

t ransposePi ece self transposeVal O I nt eger
self M D Pl ayer object
transposeVal I nt eger object

MIDIPlayer

Transposes the MIDI piece played by the MIDI player self up or down in pitch by
adding transposeVal to all notes played on all channels. Transposition is cumulative, so
that a subsequent transposition will be relative to the previous. Returns the initial
transposition of the piece.

431

MIDIStream

MIDIStream

RootObject

Stream
MediaStream
MIDIStream

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Medi aSt ream

Component: Media Players

The M D St reamclass provides services for reading streams of MIDI data. A
M DI St r eamcontains a stream of MIDI events. The r ead method on M DI St r eam
instances reads M Dl Event instances from the stream.

Creating and Initializing a New Instance

432

To create a M DI St r eaminstance, import a file containing an audio stream. The
importing process automatically creates either a M DI St r eaminstance or a M Dl Pl ayer
instance to play the MIDI stream. You can only import MIDI streams into ScriptX on
machines equipped with MIDI capability.

The following script shows how to create an instance of M Dl St r eamby importing a
MIDI file containing MIDI data. The file "RainSong" would reside on the ScriptX startup
directory. To play the imported MIDI, you would need to create a M DI Pl ayer object
and set its medi aSt r eaminstance variable to the MIDI stream.

streaml := getstreamtheStartDr "RainSong" @eadable \
rainStream : = inportMedia thel nportExportEngi ne streantl \
@idi @tandard @tream

This script shows an example of how to import a MIDI file as a M DI St r eam For more
details of the arguments to the method i nport Medi a on the global instance

t hel npor t Expor t Engi ne, please see either the “Media Stream Players” chapter in the

ScriptX Components Guide or the chapter about importers in the ScriptX Developer’s Guide.

The M D St reamclass does support the newmethod, which takes a keyword argument
of i nput St r eam which needs to be a byte stream. However, you would not normally
call the newmethod on M DI St r eamto create a new instance. Instead you would import
a MIDI stream as described above. However, for the sake of completeness, the following
script illustrates how to create a new instance of the M Dl St r eamclass by calling the
new method. For this example, you would need to have previously created the byte
stream nySt r eam which should contain MIDI data.

nyStream : = new Mdi Stream \
i nput St ream nyStream

The variable nySt r eampoints to the newly created MIDI stream, which has the
Byt eSt r eaminstance nySt r eamas its input stream.

The newmethod uses the keywords defined in i nit.

MIDIStream

init

init self [inputStream stream] O (none)
self M DI St r eamobject
i nput St ream Byt eSt r eamobject

Initializes the M DI St r eamobject self, setting the i nput St r eamargument as the source
of data for the MIDI stream. Do not call i ni t directly on an instance—it is
automatically called by the new method.

If you omit an optional keyword, its default value is used. The defaults are:
i nput St r eam undef i ned

Instance Variables

Inherited from Medi aSt r eam

dat aRat e rate vari abl eFraneSi ze
i nput St ream sanpl eType
mar ker Li st scal e

Instance Methods

Inherited from St ream

cursor next seekFrontt art
flush pl ug set Streaniengt h
i SAt Front pr evi ous st reaniengt h
i sPast End read wite
i sReadabl e r eadReady wri t eReady
i sSeekabl e seekFr omCur sor
isWitable seekFr ontnd
Inherited from Medi aSt r eam
addMar ker i sSeekabl e isWitable
i sReadabl e

The following instance methods are defined in M DI Stream

read

read self O M D Event
self M DI St r eamobject

This method is inherited from the class St r eambut is customized for the class
M DI St reamto read and return the next MIDI event in the stream. The timestamp of the
event that’s read is the same as the cursor of the stream.

releaseObject

rel easej ect self midiEvent O (none)
self M DI St r eamobject
midiEvent M Dl Event object

Releases MIDIEvent object from the MIDI stream self. The MIDI event is sent back to the
stream so it can be used again.

433

ModuleClass

ModuleClass

RootObject

ModuleClass

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Root Cbj ect

Component: Object System Kernel

ScriptX modules are instances of Mbdul ed ass. The ScriptX Language Guide documents
the use of modules in ScriptX.

An instance of Mbdul ed ass contains a list of NaneBi ndi ng objects. You can list the
name bindings by coercing the module to any collection class:

(getMbdul e @ubstrate) as Array

A ScriptX program is always running in a module. To get an existing Modul ed ass
object, use the get Mbdul e global function, which is defined on page 35 in Chapter ,
“Global Functions.” To determine which module you are currently in, use the
current Mdul e global function, defined in the same chapter.

When you open ScriptX and open a Listener window, three instances of Mbdul ed ass
are created automatically: @ubst rat e, @cri pt x, and @cr at ch. and The @ubstrat e
module defines all ScriptX names. The @cri pt X module acts as an interface for names
defined in the substrate. Most user-defined modules use the @cri pt x module. The
@cr at ch module, which cannot be saved, is the default module in which a user
program runs, unless it defines and runs in another module.

Although several generic functions defined by Mbdul ed ass are visible in the scripter,
developers should access modules only through the ScriptX language, and through the
global functions get Modul e and cur rent Modul e, to assure compatibility with future
versions of ScriptX.

Creating and Initializing a New Instance

434

You do not create an instance of Modul ed ass directly. It is created automatically by the
system when you use the module definition expression in the ScriptX language, as
described in the ScriptX Language Guide.

MouseCrossingEvent

MouseCrossingEvent

RootObject

QueuedEvent
MouseEvent

MouseCrossingEvent

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: MuseEvent

Component: Events

The MouseQr ossi ngEvent class provides an efficient mechanism to register when the
mouse enters and exits from a 2D presenter. Every TwoDPr esent er object is associated
with an instance of Stenci | that defines its boundary, stored in the instance variable
named boundar y. Each time the mouse travels across the boundary of a presenter that is
visible, the system can potentially generate a mouse-crossing event.

It is possible for the user to jerk the mouse quickly across a presenter so quickly that the
system does not detect a mouse-crossing event. However, once the system has
registered a MouseQr ossi ngEvent object with crossing type set to @nt er, it is
guaranteed to generate the matching event with crossing type set to @eave. On a
particular presenter, mouse-crossing events are uniquely paired and matched. The
mouse cannot enter a presenter again until it has left it.

Like the MouseMoveEvent class, MouseOr ossi ngEvent is dependent on the threshold of
the associated mouse device. The device generates a mouse crossing event only when
the mouse moves a given number of pixels, set by the value of t hr eshol d. See the
instance variable t hr eshol d, defined by the MouseDevi ce class.

Any interest not associated with a presenter has priority over interests that are stored
by presenters. If an interest is not associated with a presenter, then the

MuseCr ossi ngEvent class generates events every time the mouse enters or leaves any
presenter that is visible.

Creating and Initializing a New Instance

The following script creates a new instance of MuseCQr ossi ngEvent :

nyMouseTr ack: = new MuseO ossi ngEvent

The variable nyMbuseTr ack contains an initialized instance of MouseQr ossi ngEvent .
The newmethod calls the i ni t method defined by MouseCr ossi ngEvent .

init

init self O (none)
self MouseCr ossi ngEvent object

Initializes the MouseQr ossi ngEvent object self. Do not call i nit directly on an
instance—it is automatically called by the new method.

435

MouseCrossingEvent

Class Variables

Inherited from Event :
interests

Inherited from QueuedEvent :

di spat chQueue

Class Methods

Inherited from Event :

acqui r eQueueFr onPool
br oadcast D spat ch

Instance Variables

Inherited from Event :
adverti sed
aut hor Dat a
devi ce

Inherited from QueuedEvent :
secondar yD spat chStyl e

Inherited from MouseEvent :
but t ons
di spl ayCoor ds
keyModi fi ers

num nterests

rel i nqui shQueueToPool
si gnal D spat ch

event Recei ver
mat chedl nt er est

ti meStanp

priority

secondar yRej ect abl e
| ocal Coor ds sur f aceCoor ds
present er w ndow
screenCoor ds

MouseQr ossi ngEvent defines the following instance variables:

crossingType

self. cr ossi ngType (read-write) O Naned ass

Indicates whether the mouse was entering or leaving the associated presenter. Takes on
one of two possible values, @nt er or @ eave. A single event is associated with entering
a presenter, and another with leaving.

If any receiver receives an event with cr ossi ngType set to @nt er, then it is guaranteed
to receive the matching event with cr ossi ngType set to @ eave as soon as the mouse
travels back across the presenter’s boundary.

Instance Methods

Inherited from Event :

accept i sSati sfiedBy sendToQueue
acqui r eRej ect Queue rej ect si gnal
addEvent | nt er est rel i nqui shRej ect Queue
br oadcast removeEvent | nt er est

Inherited from QueuedEvent :
br oadcast secondar ySi gnal si gnal

secondar yBr oadcast

Inherited from MouseEvent :

br oadcast
i sBut t onDown

i shodi fierlnactive
i sSati sfiedBy

i sButt onUp
i shodi fierActive

MouseDevice

MouseDevice

RootObject

InputDevice

MouseDevice

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: | nput Devi ce

Component: Input Devices

MouseDevi ce is an abstract class that acts as an interface between the ScriptX Player
and the native operating system. It is the underlying hardware that actually generates
events. A MuseDevi ce instance—that is, an object that belongs to a subclass of
MouseDevi ce—receives mouse events from the device driver and signals them as
ScriptX events.

Since MbuseDevi ce is abstract, it cannot be instantiated. However, calling newon
MouseDevi ce will allow a future release of ScriptX to determine which subclass—
Physi cal Mouse or a virtual counterpart that provides the same functionality—is used
to create the new instance. Since the current release of ScriptX is directed primarily to
desktop computers, a title should assume for now that a physical mouse device is
connected to the system.

Each instance of a subclass of MbuseDevi ce defines the following;:
¢ The current coordinates of the mouse.
® The mouse buttons pressed.

® The shape of the screen image of the mouse pointer and its associated hot spot.

Creating and Initializing a New Instance

Normally, you cannot invoke newon an abstract class. In the case of MouseDevi ce,
however, the system allows you to do so. In the current release of ScriptX it creates an
instance of Physi cal Mouse.

mghty := new MuseDevice \
threshol d: (new Point x:2 y:2)

The variable m ght y contains a the initialized instance of Physi cal Mbuse. The
t hr eshol d keyword is set so that the device sends a MouseMoveEvent only if the mouse
travels 2 pixels in either direction. The newmethod uses the keywords defined ininit.

init
init self [threshold:point] [devicel D integer] [enabled: boolean] O (none)
self MbuseDevi ce object
t hreshol d: Poi nt object
Superclass | nput Devi ce uses the following keywords:
devi cel D I nt eger object
enabl ed: Bool ean object

Initializes the MbuseDevi ce object self, applying the arguments as follows: the
t hr eshol d keyword determines device sensitivity when the mouse is moved. The
devi cel Dspecifies an integer ID number that is unique to a particular subclass of

437

MouseDevice

| nput Devi ce; it allows a title to request a particular mouse if more than one mouse is
attached to the system. The enabl ed keyword indicates whether the device is initially
enabled. Do not call i nit directly on an instance—it is automatically called by the new
method.

If you omit an optional keyword, the following defaults are used:
threshol d: (new Point x:1 y:1)
devi cel Dthe first available ID number is supplied, beginning with 1
enabl ed: true

Class Methods

Inherited from | nput Devi ce:
get Devi ceFronii st

Instance Variables

438

Inherited from | nput Devi ce:
devi cel D focusabl e f ocusManager

enabl ed

The following instance variables are defined in MouseDevi ce:

buttons

self. but t ons (read-only) Array

Specifies the buttons currently being pressed on the mouse self. It returns an array of
mouse buttons that are currently being pressed. The but t ons instance variable is quite
similar to keyModi fi ers, an instance variable on Keyboar dDevi ce.

-- suppose "nyMuse" is two-button nouse with both buttons pressed down
nyMouse. but t ons

O #(@mwuseButtonl, @mouseButton2).

currentCoords

self. curr ent Coor ds (read-only) Poi nt

Specifies the current coordinates in pixels, stated as Kaleida Media Player coordinates,
of the pointer associated with the mouse self. For more information on coordinates, see
“Coordinate Systems” in the "Spaces and Presenters" chapter of the ScriptX Components
Guide.

keyModifiers

self. keyModi fiers (read-only) Array

Specifies the current state of the modifier keys, returning a list of active keys as an
Array object. The two kinds of modifier keys are called shift and state keys. A shift key
is active if it is being pressed; a state key is active if it is currently toggled on. Possible
values are @hi ft, @ontrol, @l t. @ommand, @apLock, @uriLock, and @cr ol | Lock.
For additional information about keys, see the Keyboar dDevi ce class.

nyMouse. keyModi fiers -- with shift and control keys down
O # @hift, @ontrol).

MouseDevice

pointerType

self. poi nt er Type (read-write) Poi nt er or Naned ass

Specifies either a Poi nt er object for a custom pointer or a Named ass value that
corresponds to a system-defined pointer. The pointer supplies a bitmap that indicates
the position of the mouse device self on the screen.

Create an instance of Poi nt er to define a custom pointer, or specify a Named ass value
to use one of the pointers that is defined by the underlying system. Possible Named ass
values are @beam @el p, @wai t, @one (hidden), and @rr ow The ScriptX Player uses
one of the mouse pointers defined by the underlying operating system. For example,
when the value of poi nt er Type is @wai t, Microsoft Windows and OS/2 display an
hourglass, whereas MacOS displays a watch.

Note — The term “cursor” is used in more than one sense with many operating systems,
including both Windows and MacOS. ScriptX uses “pointer” to distinguish the mouse
pointer from a text cursor. A mouse pointer is a bitmap image that represents the mouse
on a screen. A text cursor is a vertical bar that indicates an insertion point within a
block of text.

threshold

self. t hreshol d (read-write) Poi nt

When the mouse self travels at least this number of pixels in the x and y direction from
the position where the most recent MouseMoveEvent object was generated, a new
MouseMoveEvent object is generated. Both x and y must be greater than 0.

Instance Methods

isButtonDown

i sBut t onDown self buttonName 0O Bool ean
self MouseDevi ce object
buttonName Narred ass object

Returns t r ue if the button associated with buttonName on the mouse self is down, where
buttonName may be @wouseBut t onl, @ouseBut t on2, or @wouseBut t on3.

Note the following distinctions: Calling i sBut t onDown on a mouse device indicates the
current state of the device. Calling this method on a mouse event indicates the state of
the mouse at the time that the event occurred. If the event represents an interest, it
indicates a property of that event interest.

isButtonUp

i sButtonUp self buttonName O Bool ean
self MouseDevi ce object
buttonName Nared ass object

Returns tr ue if the button associated with buttonName on the mouse self is up, where
buttonName may be @mouseBut t onl, @ouseBut t on2, or @wouseBut t on3.

Note the following distinctions: Calling i sBut t onUp on a mouse device indicates the
current state of the device. Calling this method on a mouse event indicates the state of
the mouse at the time that the event occurred. If the event represents an interest, it
indicates a property of that event interest.

439

MouseDevice

440

isModifierActive

i shodi fierActive self keyName 0 Bool ean
self MouseDevi ce object
keyName Narmed ass object representing a modifier key.

Returns true or f al se, depending on whether the modifier key keyName is active on the
MouseDevi ce object self. See the keyModi fi er s instance variable for a list of possible
values.

isModifierInactive

i shodi fierlnactive self keyName 0 Bool ean
self MouseDevi ce object
keyName Narmed ass object representing a modifier key.

Returns true or f al se, depending on whether the modifier key keyName is inactive on
the MbuseDevi ce object self. See the keyModi fi er s instance variable for a list of
possible values.

MouseDownEvent

MouseDownEvent

RootObject

QueuedEvent
MouseEvent

MouseDownEvent

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: MuseEvent

Component: Events

The MouseDownEvent class represents occurrences of the user pressing down a mouse
button. Each instance represents a different occurrence.

Creating and Initializing a New Instance

The following script creates a new instance of the MouseDownEvent class:

mnni e := new MuseDownEvent

The variable m nni e contains an initialized instance of MouseDownEvent . The new
method calls the i ni t method defined by MouseDownEvent .

init

init self
self

O (none)

MouseDownEvent object

Initializes the MouseDownEvent object self. Do not call i ni t directly on an instance—it is
automatically called by the newmethod.

Class Variables

Inherited from Event :
interests

Inherited from QueuedEvent :

di spat chQueue

Class Methods

Inherited from Event :

acqui r eQueueFr onPool
br oadcast D spat ch

Instance Variables

Inherited from Event :
adverti sed

num nt erests

rel i nqui shQueueToPool
si gnal D spat ch

event Recei ver ti meStanp

441

MouseDownEvent

442

aut hor Dat a
devi ce

Inherited from QueuedEvent :
secondar yD spat chStyl e

Inherited from MouseEvent :

but t ons
di spl aySurface
keyModi fi ers

Instance Methods

Inherited from Event:

accept

acqui r eRej ect Queue
addEvent | nt er est

br oadcast

Inherited from QueuedEvent :

br oadcast
secondar yBr oadcast

Inherited from MouseEvent :

br oadcast
i sBut t onDown

mat chedl nt er est
priority

secondar yRej ect abl e

| ocal Coor ds
present er
screenCoor ds

i sSati sfiedBy

rej ect

reli nqui shRej ect Queue
renoveEvent | nt er est

secondar yS gnal

i sButt onUp
i sModi fierActive

sur f aceCoor ds
wi ndow

sendToQueue
si gnal

si gnal

i shodi fierlnactive
i sSati sfi edBy

MouseEvent

MouseEvent

RootObject

QueuedEvent

MouseEvent

Class type: Core class (abstract)

Resides in: ScriptX and KMP executables
Inherits from: QueuedEvent

Component: Events

MuseEvent is an abstract class that represents any kind of mouse event. Its subclasses
represent particular kinds of mouse events: MouseMoveEvent,, MouseDownEvent, and
MouseWpEvent . An instance of one of these subclasses holds information about the state
of the event:

® When the event occurred—the Event class itself defines a ti meSt anp instance
variable that is inherited by all events.

® Where the event occurred—its presenter, its display surface, and its x, y position,
both locally within the presenter and in global coordinates.

® How the event occurred—which buttons were pressed or released by the user, or
which buttons were down while the mouse moved.

Note — The following two phrases are used later to distinguish the properties and
behavior of an event from those of an event interest:

® “Interest-only” means the instance self is used to express an event interest.

¢ “Event-only” means the instance self holds an actual user event.

Class Variables

Inherited from Event:
interests num nterests

Inherited from QueuedEvent :
di spat chQueue

Class Methods

Inherited from Event:

acqui r eQueueFr onPool rel i nqui shQueueToPool
br oadcast Di spat ch si gnal D spat ch

Instance Variables

Inherited from Event :

adverti sed event Recei ver ti meStanp
aut hor Dat a nmat chedl nt er est
devi ce priority

Inherited from QueuedEvent :
secondar yD spat chStyl e secondar yRej ect abl e

443

MouseEvent

444

The following instance variables are defined in MouseEvent :

buttons

self. but t ons (read-write) Array

If the mouse event instance self is used as an interest, but t ons indicates the set of
mouse buttons that must be pressed for the interest to be satisfied. Leave empty if any
combination of buttons would satisfy the interest. If it is used as an event, it indicates
the set of buttons currently pressed.

displaySurface

self. di spl aySur f ace (read-write) D spl aySurf ace

An event-only instance variable. Specifies the display surface where the event was
generated. This instance variable is normally set by the MouseDevi ce object that sends
the event, but it can be set from the scripter to allow for playback or simulation of
mouse events.

keyModifiers

self. keyModi fi ers (read-write) Array

If a MouseEvent instance is used as an interest, keyModi fi er s indicates the set of key
modifiers that must be pressed for the interest to be satisfied. If it is used as an event, it
indicates the set of modifiers currently pressed. The two kinds of modifier keys are
called shift and state keys. A shift key is active if it is being pressed. A state key is active
if it is currently toggled on. Possible values for modifier keys are @hi ft, @ontrol,
@l t, @omrand, @apLock, @uniock, and @cr ol | Lock. For additional information
about keys, see the Keyboar dDevi ce class.

nyKeyEvent . keyModi fiers -- suppose the shift key was pressed

O #(@hift)

nyKeyi nt erest. keyModifiers := #(@ontrol, @hift) -- set nodifiers
O #(@ontrol, @hift)

localCoords

self. | ocal Coor ds (read-only) Poi nt

An event-only instance variable. Specifies the x and y coordinates (in pixels) of the
point where the mouse event self was generated. These coordinates are relative to the
upper-left corner of the local coordinates of the presenter specified by the present er
instance variable, and are defined upon delivery of the event. The default value of

| ocal Coor ds, if no event was delivered to an event interest in a concrete subclass of
MouseEvent, is (0,0). See “Coordinate Systems” in the “Spaces and Presenters” chapter
of the ScriptX Components Guide. See also sur f aceCoor ds and scr eenCoor ds. To obtain
the x or y coordinate, treat the result as a point:

sel f.local Coords.x -- the local x coordinate of nouseEvent self
presenter
self. present er (read-write) TwoDPr esent er

If the mouse event self is used as an interest, pr esent er specifies the 2D presenter
within which a mouse event must occur for the event interest self to be satisfied. When
you set this instance variable, the event interest will receive only events that occurred
within the bounds of the presenter. This instance variable should be set before a script
calls addEvent | nt er est .

MouseEvent

If the mouse event self represents an actual event instance, the present er instance
variable is set automatically when the event is matched to an event interest. In this case,
present er should be regarded as a read-only instance variable.

screenCoords

self. scr eenCoor ds (read-only) Poi nt

An event-only instance variable. Specifies the x and y coordinates (in pixels) of the
point where the mouse event self was generated. These coordinates are relative to the
upper-left corner of the Kaleida Media Player and are defined upon delivery of the
event. For the Macintosh, this origin is the corner of the screen; for Microsoft Windows
and OS/2, the origin is the corner of the Kaleida Media Player window (which can be
smaller than the screen).

The default value of scr eenCoor ds, if no event was delivered to an event interest in a
concrete subclass of MouseEvent, is (0,0). With the Ful | Scr eenW ndow class,
screenCoor ds and sur f aceCoor ds are the same. See “Coordinate Systems” in the
“Spaces and Presenters” chapter of the ScriptX Components Guide. See also | ocal Coor ds
and sur f aceCoor ds. To obtain the x or y coordinate, treat the result as a point:

sel f.screenCoords. x -- the global x coordinate of nouseEvent self
surfaceCoords
self. sur f aceCoor ds (read-only) Poi nt

(Shortcut for “display surface coordinates.”) An event-only instance variable. Specifies
the x and y coordinates (in pixels) of the point where the mouse event self was
generated. The coordinates are defined upon delivery of the event. These coordinates
are relative to the upper-left corner of the display surface that receives the mouse event,
which, for all windows except Ful | Scr eenW ndow is the upper-left corner of the
window. However, for instances of Ful | Scr eenW ndow the coordinates are relative to
the upper-left corner of the display surface. (An instance of Ful | Scr eenW ndowis
actually a full-screen display surface, with a smaller-than-full-screen window that is
refreshed each tick of its clock.) For Ful | Scr eenW ndowinstances, scr eenCoor ds and
sur f aceCoor ds are the same.

The default value of sur f aceCoor ds, if no event was delivered to an event interest in a
concrete subclass of MouseEvent, is (0,0). See “Coordinate Systems” in the “Spaces and
Presenters” chapter of ScriptX Components Guide. See also | ocal Coor ds and
screenCoor ds. To obtain the x or y coordinate, treat the result as a point:

sel f.surfaceCoords.x -- the global x coordinate of nouseEvent self
window
self. wi ndow (read-only) W ndow

An event-only instance variable. Returns the window on which the mouse event self
occurred.

Instance Methods

Inherited from Event :

accept i sSati sfiedBy sendToQueue
acqui r eRej ect Queue rej ect si gnal
addEvent | nt er est rel i nqui shRej ect Queue

br oadcast renoveEvent | nt er est

445

MouseEvent

446

Inherited from QueuedEvent :

br oadcast secondar ySi gnal si gnal
secondar yBr oadcast

The following instance methods are defined in MouseEvent :

broadcast (QueuedEvent)

broadcast self O Exception

Reports the cant Br oadcast exception if called on the mouse event self. Mouse events
cannot be broadcast.

isButtonDown

i sBut t onDown self buttonName O Bool ean
self MouseEvent object
buttonName Nared ass object

Returns t r ue for the mouse event self if the button associated with buttonName is down,
where buttonName may be @wouseBut t onl, @ouseBut t on2, or @wouseBut t on3.

Note the following distinctions: Calling i sBut t onDown on a mouse event indicates the
state of the mouse at the time that the event occurred. If the event instance self
represents an interest, i sBut t onDown indicates a property of that event interest. This
method is also defined, with the same syntax, on MouseDevi ce. Calling this method on
a mouse device indicates the current state of the device.

isButtonUp

i sButtonUp self buttonName O Bool ean
self MouseEvent object
buttonName Naned ass object

Returns t r ue for the mouse event self if the button associated with buttonName is up,
where buttonName may be @ouseBut t onl, @mouseBut t on2, or @ouseBut t on3.

Note the following distinctions: Calling i sBut t onUp on a mouse event indicates the
state of the mouse at the time that the event occurred. If the event instance self
represents an interest, it indicates a property of that event interest. This method is also
defined, with the same syntax, on MouseDevi ce. Calling this method on a mouse device
indicates the current state of the device.

isModifierActive

i shodi fierActive self keyName 0 Bool ean
self MouseEvent object
keyName Narred ass object representing a modifier key.

Tests whether a modifier key is active. Returns t r ue or f al se, depending on whether
the modifier key keyName is active on the MouseEvent object self. See the keyModi fi ers
instance variable for a list of possible values.

isModifierlnactive

i shodi fierlnactive self keyName 0 Bool ean
self MouseEvent object
keyName Narred ass object representing a modifier key.

MouseEvent

Tests whether a modifier key is inactive. Returns true or f al se, depending on whether
the modifier key keyName is inactive on the MouseEvent object self. See the
keyModi fi er s instance variable for a list of possible values.

isSatisfiedBy (Event)
i sSatisfiedBy self event O Bool ean
self Event object that represents an event interest
event Event object that represents an actual event

Tests whether the event interest self is satisfied by event. Do not call i sSat i sfi edBy
directly from a script. It is called by the event system as a result of calling either si gnal
or br oadcast . The MouseEvent class specializes i sSati sfi edBy to make several
comparisons. It checks whether the device that generated the event is the same device
that the event interest has registered an interest in. If the interest specifies a particular
button or set of buttons, then i sSati sfi edBy checks that the event occurred on one of
those buttons.

If the matching event is delivered to an interest that is associated with a presenter, as is
usual for mouse events, then i sSati sfi edBy translates the instance variable

| ocal Coor ds for the matching event into the local coordinate system of the presenter to
which the event is being delivered.

Among the classes that are descendants of MouseEvent, the class MouseUpEvent
specializes i sSat i sfi edBy.

447

MouseMoveEvent

MouseMoveEvent

RootObject

QueuedEvent
MouseEvent

MouseMoveEvent

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: MuseEvent

Component: Events

The MouseMoveEvent class represents mouse movements.

Creating and Initializing a New Instance

The following script creates a new instance of the MouseMoveEvent class:

mnni e := new MuseMveEvent

The variable m nni e contains an initialized instance of MouseMbveEvent . The new
method calls the i ni t method defined by MouseMoveEvent .

init

init self
self

O (none)
MouseMoveEvent object

Initializes the MouseMoveEvent object self. Do not call i ni t directly on an instance—it is
automatically called by the newmethod.

Class Variables

Inherited from Event :
interests

Inherited from QueuedEvent :

di spat chQueue

Class Methods

Inherited from Event :

acqui r eQueueFr onPool
br oadcast D spat ch

Instance Variables

Inherited from Event :
adverti sed

448

num nt erests

rel i nqui shQueueToPool
si gnal D spat ch

event Recei ver ti meStanp

MouseMoveEvent

aut hor Dat a mat chedl nt er est
devi ce priority

Inherited from QueuedEvent :
secondar yD spat chStyl e secondar yRej ect abl e

Inherited from MouseEvent :

butt ons | ocal Coor ds sur f aceCoor ds
di spl aySurface present er w ndow
keyModi fi ers screenCoor ds

Instance Methods

Inherited from Event:

accept i sSati sfiedBy sendToQueue
acqui r eRej ect Queue rej ect si gnal
addEvent | nt er est rel i nqui shRej ect Queue

br oadcast renoveEvent | nt er est

Inherited from QueuedEvent :

br oadcast secondar yS gnal si gnal
secondar yBr oadcast

Inherited from MouseEvent :

br oadcast i sButt onUp i shodi fierlnactive
i sBut t onDown i shodi fierActive i sSati sfi edBy

449

MouseUpEvent

MouseUpEvent

RootObject

QueuedEvent

MouseEvent

MouseUpEvent

Class type:

Resides in:

Inherits from: MuseEvent
Component: Events

Core class (concrete)
ScriptX and KMP executables

The MouseUpEvent class represents the user releasing a mouse button.

Creating and Initializing a New Instance

The following script creates a new instance of the MouseUpEvent class:

m ckey := new MuselpEvent

The variable m ckey contains an initialized instance of MouseUpEvent . The newmethod
calls the i nit method defined by MouseUpEvent .

init

init self
self

O (none)
MouseUpEvent object

Initializes the MouseUpEvent object self. Do not call i ni t directly on an instance—it is
automatically called by the newmethod.

Class Variables

Inherited from Event :
interests

Inherited from QueuedEvent :

di spat chQueue

Class Methods

Inherited from Event :

acqui r eQueueFr onPool
br oadcast D spat ch

Instance Variables

Inherited from Event :
adverti sed

450

num nt erests

rel i nqui shQueueToPool
si gnal D spat ch

event Recei ver ti meStanp

MouseUpEvent

aut hor Dat a mat chedl nt er est
devi ce priority

Inherited from QueuedEvent :
secondar yD spat chStyl e secondar yRej ect abl e

Inherited from MouseEvent :

butt ons | ocal Coor ds sur f aceCoor ds
di spl aySurface present er w ndow
keyModi fi ers screenCoor ds

The following instance variables are specialized by the MouseUpEvent class:

matchedInterest (Event)

self. mat chedl nt er est (read-write) MouseDownEvent

If self represents an actual event, the instance variable mat chedl nt er est has the same
meaning as with other Event subclasses, defined by Event .

The MouseWpEvent class specializes mat chedl nt er est for event interests. On event
interests, it specifies an interest in MouseDownEvent that an interest in MouseUpEvent is
paired with. Use nmat chedl nt er est to insure that a particular presenter receives a
MouselWpEvent object when that event is paired logically with the most recent
MouseDownEvent object that was delivered by the MouseDownEvent class. If the user has
dragged the mouse outside of the presenter’s boundary in the time since the mouse
button was pressed, setting nat chedl nt er est overrides the normal delivery
mechanism. This can be used to ensure that the presenter that received a
MuseDownEvent object is able to “clean up” when the mouse button is released.

For a sample script that demonstrates how mat chedl nt er est is used, see “Using the
2D Graphics Component” in the “2D Graphics” chapter of the ScriptX Components
Guide.

Instance Methods

Inherited from Event :

accept i sSati sfiedBy sendToQueue
acqui r eRej ect Queue rej ect si gnal
addEvent | nt er est rel i nqui shRej ect Queue

br oadcast renoveEvent | nt er est

Inherited from QueuedEvent :
br oadcast secondar ySi gnal si gnal
secondar yBr oadcast

Inherited from MbuseEvent :

br oadcast i sButtonUp i shodi fierlnactive
i sBut t onDown i sModi fi erActive i sSati sfiedBy

The following instance methods are specialized by the MouseUpEvent class:

isSatisfiedBy (Event)
i sSatisfiedBy self event O Bool ean
self Event object that represents an event interest
event Event object that represents an actual event

Tests whether the event interest self is satisfied by an event. Do not call i sSat i sfi edBy
directly from a script. It is called by the event system as a result of calling either si gnal
or br oadcast . The MouseUpEvent class specializes i sSat i sfi edBy to make several

451

MouseUpEvent

452

comparisons. It checks whether the device that generated the event is the same device

that the event interest has registered an interest in. If the interest specifies a particular

button or set of buttons, then i sSat i sfi edBy checks that the event occurred on one of
those buttons.

Before a MouseUpEvent object is delivered to any interest stored on another presenter,
i sSati sfi edBy checks to see whether the instance variable mat chedl nt er est for the
interest self is pointing to the last interest processed by the MouseDownEvent class. See
the definition of mat chedl nt er est, defined by the Event class and specialized by
MouseUpEvent .

If the matching event is delivered to an interest that is associated with a presenter, as is
usual for all mouse events, then i sSati sfi edBy translates the instance variable

| ocal Coor ds for the matching event into the local coordinate system of the presenter to
which the event is being delivered.

Movement

Movement

RootObject

Collection
IndirectCollection

Controller

TwoDController

Movement

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: TwoDControl | er
Component: Controllers

The Movenent class is a controller that moves one or more Pr o ecti | e objects
according to their velocity vectors. For each projectile in the controller’s space, the

ti ckl e method calculates the distance it should have moved since the last tick
according to its vel oci ty instance variable. It then moves the projectile that distance.
See the Proj ecti | e class for more details.

A Movenent object is a collection of the Proj ecti | e objects it controls. These projectiles
must also be in the space that the controller is controlling. Projectiles are either
automatically or manually added to the movement controller, according to the

whol eSpace instance variable. If whol eSpace is f al se, you can use the methods
defined by Col | ecti on to add and remove objects from the movement controller. To
ensure that only projectiles are added to a movement controller, the pr ot ocol s instance
variable is set to the Proj ecti | e class. See the Control | er class for descriptions of
whol eSpace, prot ocol s, and other general properties of controllers.

Movenent defines the ti ckl e method to check all movement targets at every tick of the
presenter’s clock.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Movenent
class, after first creating its control space:

new TwoDSpace boundary: (new Rect x2:200 y2:200)
new Movenent space: nySpace

nySpace :
nyMover

The variable nyMover contains the initialized instance of Movenent . This instance

controls the movement of projectiles in nySpace. The newmethod uses the keywords
defined ininit.

init

init self [space:space] [whol eSpace: boolean] [enabl ed: boolean]
[target Col | ecti on: sequence] O (none)
self Moverrent object

453

Movement

The superclass Cont rol | er uses the following keywords:

space: Space object that holds projectiles
whol eSpace: Bool ean object
enabl ed: Bool ean object

The superclass TwoDCont r ol | er uses the following keyword:
target Col | ection: Sequence object (use with caution)

Initializes the Moverrent object self, applying the values supplied with the keywords to
instance variables of the same name. Use discretion in changing the target collection; for
more information, see the TwoDCont rol | er class. Do not call i nit directly on an
instance—it is automatically called by the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:
space: undef i ned
whol eSpace: f al se
enabl ed: true
target Col l ection: (new Array initial Size:4 growabl e:true)

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded naxSi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass propri et ored

Inherited from | ndi rect Col | ecti on:
target Col | ection

Inherited from Control | er:

enabl ed space whol eSpace
protocol s

The following instance variables are defined in Movenent :

protocols (Controller)

self. prot ocol s (read-write) Array

This instance variable initially contains the class Proj ecti | e for the interpolator self.
This means that any object added to a Movenent controller must have Proj ectil e as
one of its superclasses. See the Control | er class for further description of this instance
variable.

Instance Methods

454

Inherited from Col | ecti on:

add f or Each iterate
addiany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al nap

Movement

chooseAl | get Any ner ge
choosene get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One removeOne
del et eBi ndi ngne hasBi ndi ng setAl |

del et eKeyAl | hasKey set (ne
del et ekeyCne i ntersects si ze

del et eOne i SEnpty

enpt yQut i sMenber

Inherited from | ndi rect Col | ect i on:
i sAppropri at eChj ect obj ect Added obj ect Renoved

Inherited from Control | er:
i sAppropri at eChj ect tickle

Since a Movenent controller is an indirect collection, you can also use any methods
defined in the class specified by t ar get Col | ect i on. The target collection is typically an
instance of Ar r ay, which inherits from Sequence, so the following instance methods are
redirected to this controller.

Accessible from Li near Col | ecti on:

chooseneBackwar ds fi ndRange get Nt hKey
chooseQr dne f or EachBackwar ds get O dne
del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteNt h getMddl e | ocal LT
del et eRange getNth pop
Accessible from Sequence:
addFifth noveBackwar d set Fourth
addFi r st nmoveFor war d set Last
addFourth noveToBack setNth
addNt h nmoveToFr ont set Second
addSecond pr epend setThird
addThird pr ependNew sort
append setFifth
appendNew set Fi rst

The following instance methods are defined in Movenent :

tickle (Controller)
tickl e self clock O self
self Moverent object
clock a ock object of the space being controlled

For each projectile in the controller’s space, the ti ckl e method calculates the distance
the projectile should have moved according to its vel oci ty instance variable, then
moves the projectile that distance.

A callback calls this method on the Movenent object self, supplying the space’s clock as
the value for clock. The callback calls this method once every tick of the space’s clock.

For further details, refer to the section “The Ticklish Protocol” in the chapter
“Controllers” in the ScriptX Components Guide.

455

MoviePlayer

MoviePlayer

Presenter Collection

TwoDPresenter IndirectCollection
TwoDMultiPresenter

GroupPresenter

MoviePlayer

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Pl ayer and G oupPr esent er
Component: Media Players

The Movi ePl ayer class provides methods for playing deinterleaved movies in ScriptX.
When ScriptX imports a movie as a deinterleaved movie, it creates separate streams to
contain the audio and video tracks. The importing process also creates appropriate
players to play the streams, such as a D gi t al Audi oPl ayer to play audio and

D gi tal Vi deoPl ayer to play video.

The Movi ePl ayer instance acts as a master player, whose slave players are the players
that play the individual tracks. When you call the pl ay method on a Movi ePl ayer
instance, it calls pl ay on all its slave players to play the tracks of the movie. The t ar get
instance variable of a movie player holds an array of all the slave players that are
needed to play the movie.

When a frame of the movie plays, data is needed from both the video stream and the
audio stream. If the streams are not interleaved, the video data needed for a frame may
be arbitrarily distant on the storage medium from the audio data needed for the same
frame. When playing back movies with non-interleaved data from a hard disk, the extra
search time required to seek to non-sequential positions is relatively small and does not
significantly affect the speed of playback. However, the search time becomes significant
if the movie is played back from a CD.

When the audio and video streams are interleaved, the video data and audio data
required for a frame are located sequentially on the storage medium, thus minimizing
the search time between each frame.

When importing a movie into ScriptX, you can choose to import it as an interleaved or
non-interleaved movie. If you intend to play it back from hard disk, then you can
import it as a non-interleaved movie (that is, import it as a Movi eP ayer.) If you intend
to play the imported movie on a CD, you should import it into an

I nter| eavedStreanP ayer to preserve the interleaving.

The frame rate of a movie player is equal to smallest frame rate of all of its slaves
players. Its boundary is the intersection of the boundaries all its slave players. Its scale
is the smallest scale of all its slaves players.

Creating and Initializing a New Instance

456

To create a Movi ePl ayer instance, import a file containing a movie. The importing
process automatically creates the Movi ePl ayer instance and all the other players and
streams needed to play the movie.

MoviePlayer

The following script shows how to create an instance of Movi ePl ayer by importing a
QuickTime file containing a digitized movie. The object danceMvi e can be used to
play the movie imported from the file dance on the ScriptX startup directory.

danceStream = getstream theStartDr "dance" @eadable
danceMovi e: = i nport Medi a t hel npor t Export Engi ne danceStr eam

@ovi e @ui cktime @l ayer

This script shows an example of how to import an QuickTime file as a Movi ePl ayer.
You can also import AVI files in the same manner, in which case you would need to
change the @ui ckt i ne argument to @vi . For more details of the arguments to the
method i npor t Medi a on the global instance t hel npor t Expor t Engi ne, please see either
the “Media Stream Players” chapter in the ScriptX Components Guide or the chapter
about importers in the ScriptX Tools Guide.

After creating a Movi ePl ayer instance by importing a movie, append it to a visible
surface such as a Wndowto use as its “screen”. Call its pl ay method to start it playing.

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded nmaxSi ze si ze

iteratord ass m nSi ze uniformty

keyEqual Conpar at or nut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass proprietored

Inherited from | ndi rect Col | ect i on:
target Col | ecti on

Inherited from Presenter:
pr esent edBy subPresenters t ar get

Inherited from TwoDPr esent er :

bBox hei ght transform
boundary IslnplicitlyD rect wi dth

cl ock i sTranspar ent wi ndow
conposi t or isVisible X

di rect needsTi ckl e y
eventlnterests position z

gl obal Boundary stationary

gl obal Tr ansf orm t ar get

Inherited from TwoDMul ti Present er:
fill stroke

Inherited from d ock:

cal | backs rate ticks
effectiveRate resol ution tinme
nmast er d ock scal e title
of f set sl aved ocks

Inherited from Pl ayer:
audi oMt ed gl obal Cont r ast gl obal Vol umeC f set

457

MoviePlayer

mar ker Li st
stat us
vi deoBl anked

dat aRat e
duration
gl obal Bri ght ness

gl obal Hue
gl obal PanCX f set
gl obal Sat urati on

The following instance variables are defined in Movi eP ayer:

frameRate

self. frameRat e (read-write) Nunber

The value of the f rameRat e instance variable on a movie player self is equal to smallest
frameRat e on all of its slaves players.

For each media stream player, f raneRat e specifies the number of frames per “second”
that the player self plays the frames in its media stream. The f r aneRat e reflects the true
frame rate of the media while scal e represents the tick rate used by the player to

present that media.

Instance Methods

458

Inherited from Col | ecti on:

add for Each iterate
addMany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al l nap
chooseAl | get Any ner ge
choose(ne get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin
del eteAl | get Many renmoveA |
del et eBi ndi ngAl | get One renoveOne
del et eBi ndi ngGne hasBi ndi ng setAll
del et eKeyAl | hasKey set One
del et ekeyne i ntersects si ze
del et eCne i sEmpty
enpt yQut i sMenber

Inherited from TwoDPr esent er:
adj ust d ockMast er i nsi de show

creat el nt erest Li st
draw

get Boundar yl nPar ent

hi de

| ocal ToSurf ace
not i f yChanged
recal cRegi on
refresh

Inherited from TwoDMul ti Present er:

draw
findAl | At Poi nt

findFirstlnStencil
i sAppropri at eChj ect

sur f aceTolLocal
tickle

noveToBack
noveToFr ont

findAll I nStencil noveBackwar d obj ect Added

findFirst At Poi nt noveFor war d obj ect Renoved
Inherited from A ock:

addPer i odi cCal | back cl ockAdded pause

addRat eCal | back cl ockRenmoved resurme

addScal eCal | back ef fecti veRat eChanged ti neJunped

addTi neCal | back for EachSl ave wai t Ti ne

addTi meJunpCal | back i sAppropri at ed ock wai tUntil
Inherited from Pl ayer:

addMar ker goToBegi n pl ayPr epar e

ej ect goToEnd pl ayUnpr epar e

f ast For war d goToMar ker Fi ni sh pl ayUnti |

get Mar ker goToMar ker St ar t resurme

MoviePlayer

get Next Mar ker
get Previ ousMar ker

pause
pl ay

rew nd
stop

Since a Movi ePl ayer object is an indirect collection, you can also use any methods
defined in the class specified by t ar get Col | ect i on. The target collection is typically an
instance of Ar r ay, which inherits from Sequence, so the following instance methods are

redirected to this player.

Accessible from Li near Col | ecti on:

chooseeBackwar ds
chooseQr d(ne

del et eFi r st

del et eLast

del eteNt h

del et eRange

Accessible from Sequence:

addFifth
addFi r st
addFourth
addNt h
addSecond
addThird
append
appendNew

fi ndRange

f or EachBackwar ds
get First

get Last

getMddl e

getNth

noveBackwar d
noveFor war d
noveToBack
nmoveToFr ont
pr epend

pr ependNew
setFifth

set F rst

get Nt hKey
get O dOne
get Range

| ocal Equal
| ocal LT

pop

set Fourth
set Last
setNth
set Second
set Third
sort

459

MultiListBox

MultiListBox

RootObject

Presenter
TwoDPresenter
ScrollingPresenter
ScrollBox
MultiListBox

Class type: Scripted class (abstract)

Resides in: wi dget s. sx| . Works with ScriptX and KMP executables
Inherits from: Scrol | Box

Component: User Interface

The Mul ti Li st Box class defines a scrollable list of strings, one of which can be selected
at a time, as shown in Figure 4-11. The list can be longer than the visible region, so that
you need to scroll the list to bring the hidden part into view. It comes with an optional
vertical scroll bar that automatically adjusts itself properly for a given amount of text.

Red Rose 4+
Pink Carnation
Yellow Mum

Brown Bark EI
Green lry

Blue MNastertium
Indigo Orchid

liolet liolet

White Lilly 3

Figure 4-11: A MultiListBox object with numColumn set to 2.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
Scrol | i ngPresent er class:

nyMil tiLi stBox := new MiltiListBox \

list:#(#("Red", "Rose"), #("Pink", "Carnation"), \
#("Orange", "Blossom), #("Yellow', "Mni), \
#("Brown", "Bark"), #("Qeen", "lvy")) \

nunCol ums: 2 \

hasScrol | Bar:true \

val ue: 3 \

boundary: (new Rect x2:250 y2:200)

The variable nyMil ti Li st Box contains the initialized multi-scrolling list box shown in
Figure 4-11. The list box contains pairs of strings #("Red", "Rose"), #("Pink",
"Carnation"), etc., and has a vertical scrollbar, which is automatically sized to fit inside
the scrolling box’s boundary of 250 x 200 pixels. The val ue keyword initially selects the
3rd item in the list. The newmethod uses the keywords defined ininit.

460

MultiListBox

init

init self [list:sequence] [hasScrollBar:boolean] [val ue: integer]
[boundary: stencil] [font: fontContext]
[fill:brush] [stroke: brush]

self

nunCol ums:
list:

hasScrol | Bar:
val ue:

font:

Scrol | Li st Box object

O (none)

I nt eger object for the number of columns
Sequence object containing items in the list
Bool ean object indicating if scroll bar is present
I nt eger object indicating initial item selected
Font Cont ext object of items in the list

Superclasses of Mil ti Li st Box use the following keywords:

Rect object for the overall size of the box

Br ush object (ignored by Scrol | Li st Box)

Br ush object (ignored by Scrol | Li st Box)

TwoDPr esent er object (ignored by Scrol | Li st Box)
Scrol | Bar object (ignored by Scrol | Li st Box)
Scrol | Bar object (ignored by Scrol | Li st Box)
Any object (ignored by Scrol | Li st Box)

boundary:

fill:

st roke:

target Presenter:
vertScrol | Bar:
hori zScrol | Bar:
target:

Initializes the Scrol | Li st Box object self, applying the values supplied with the
keywords to the instance variables of the same name. Do not call i ni t directly on an

instance—it is called automatically by the newmethod.

If you omit an optional keyword, its default value is used. The defaults are:

nunCol ums: 2
f ont : t heSyst enfont
hasScrol | Bar: fal se

list:#()
val ue: undefi ned
fill:undefined

st roke: undef i ned

t ar get Present er : undef i ned

Instance Variables

461

Inherited from Presenter:
pr esent edBy

Inherited from TwoDPr esent er:

bBox

boundary

cl ock

conposi t or

di rect
eventInterests
gl obal Boundary
gl obal Regi on

Inherited from Scr ol | Box:

aut hor Dat a

doubl ed i ckActi on
doubl ed i ckTi ne
fill

font

franme

subPresenters

gl obal Tr ansf orm
hei ght
IslnplicitlyDirect
i sTranspar ent
isVisible

needsTi ckl e
position
stationary

| ast Li ne
|'ist

nunki nes
pageAnmount
sel ect Action
sel ect edLi ne

t ar get

t ar get
transform
wi dt h

wi ndow

X

y
z

st epAnmount
target Presenter
val ue

wi dth

MultiListBox

Instance Methods

Inherited from TwoDPr esent er :

adj ust d ockMast er hi de refresh
createl nterestlList i nsi de show

dr aw | ocal ToSur f ace sur f aceToLocal
get Boundar yl nPar ent not i f yChanged tickle

Inherited from Scrol | i ngPresent er:

hand! eHori zScr ol | | ayout scrol | To
handl eVert Scrol |

Inherited from: Scr ol | Box:
downRecei ver
repeat Scrol | Action
sel ect Li ne
upRecei ver

462

NameBinding

NameBinding

RootObject

NameBinding

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Root Cbj ect

Component: Object System Kernel

The NaneBi ndi ng class represents the binding of an object to a variable name within a
particular module. A Modul ed ass object is a collection of name bindings.

(Modul eQ ass does not inherit from Col | ecti on, and it does not implement most of the
ScriptX Collection protocol, so the use of “collection” here is informal. See Mbdul ed ass
for more information.)

463

NameClass

NamecClass

RootObject

NameClass

Class type: Core class (concrete, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Object System Kernel

The Nanmed ass class represents all names used in ScriptX. Names are like strings in that
they can contain any character, but they are different in that they are generally only
stored once, in the system’s name table. You can identify Named ass objects in that they
start with an at (@ sign. Use of names in ScriptX is analogous to enumerated types in
other languages. For instance, the following lines of code create two separate strings
that are equal (=), but not identical (==).

a .= "test"
b := "test"
a==m~> -- returns false

In contrast, the variables below both refer to the identical name (notice the “@ signs).
For these variables, both the equality and the identity tests return t r ue.

a .= @est

b := @est

a=>b -- returns true

Names are used to represent values. For example, a Scrol | Bar object can have one of
two orientations, horizontal or vertical. Rather than representing these with numbers,
they are represented as names: @ori zontal and @erti cal . Prefixing a name token
with the “at” sign is equivalent to calling i nt er nDownCase on the string representation
of the token.

Creating and Initializing a New Instance

464

You can identify Named ass objects in that they start with an “@ sign. There are two
ways to create a Narmed ass instance:

® Type the “at” sign (@ followed by the name:

For mat : @uame
Exanpl e: @est

* To convert a string to a name, call either the i nt ern or i nt er nDowncase class
method on Nanmed ass, passing in the string:

For nat : intern Naned ass "name"
Exanpl e: intern Named ass "test"

Either technique creates and interns the Named ass object @est . In the first case, the
name object is interned at compile time—that is, when your ScriptX code is compiled
into bytecode. In the second case, interning takes place at runtime—i nt er n enters the
name into the system hash table and returns a new name object only if none already
exists.

Naned ass is a special system class used for uniquely identifying symbols. You may not
override its methods, nor can you create subclasses of Naned ass. If you call newon
Naned ass, the i ni t method is invoked on the newly allocated object.

NameClass

init

init self name:string O (none)
self Naned ass class
nane String object

Initializes the Named ass object self, where nane specifies the string to be stored in the
name object. The value supplied with nane is not interned, so that no other name (even
if made up of the identical characters), will ever be identical with it. You should only
call newon Narmed ass in the special circumstances where uniqueness is required. Do
not call i ni t directly on an instance—it is automatically called by the new method.

Class Methods

intern

intern self nameString O Nanmed ass
self Nared ass class
nameString String object

Gets the name table from Named ass, and searches through the table for a name whose
string representation equals nameString. If a match is found, the matching Narmed ass
object is returned. Otherwise, a new entry in the name table is created with the text of
nameString and a new Named ass object is returned. Interning takes place at runtime.

internDowncase

i nt er nDowncase self nameString O Named ass
self Nared ass class
nameString String object

Behaves like i nt er n, except that the nameString is converted to lowercase letters before
it is interned. Case is retained for printing. Interning takes place at runtime.

isinterned

i sinterned self nameString O Naned ass
self Narred ass class
nameString String object

Returns the Named ass object if there is an entry in the name table whose string
representation is equal to nameString; otherwise it returns enpty.

isinternedDowncase

i sl nternedDowncase self nameString O Nanmed ass
self Nared ass class
nameString String object

Behaves like i sl nt er ned, except that the nameString is converted to lowercase letters
before a match is attempted.

465

NameClass

Instance Methods

466

copy (RootObject)

copy self 0 Naned ass

Returns a copy of a the NameQ ass object self, if self is not interned. Otherwise, copy
returns the same object.

hashOf

hashO self O | mredi at el nt eger

Returns a positive | nedi at el nt eger object representing a 29-bit hash value for the
string self. The hashC generic function is most commonly used to hash keys for items
to be stored in a hash table.

stringOf

stringd self O String

Returns a Stri ng object, the equivalent of self as a string.

Number

Number

RootObject

Number

Class type: Core class (abstract, sealed)
Resides in: ScriptX and KMP executables
Inherits from: Root (bj ect

Component: Numerics

The Nunber class represents all of the various types of numbers that can be used in
ScriptX.

The Nunber class has the following four operators:

+ addition
— subtraction
* multiplication
| division
These symbols substitute for substrate methods that are hidden from the scripter level.

ScriptX provides several global numeric constants, which are defined in the “Global
Constants and Variables” chapter of this volume. The constants e, pi, pi Di v2, and
sqrt 2 provide standard values for commonly used mathematical constants. The global
constants nan, negl nf, and posl nf represent infinite and uncountable magnitudes in
ScriptX expressions. They are useful in ranges and comparisons.

Instance Methods

In the following methods, self and num?2 are instances of a subclass of Nunber. All
trigonometric methods require and return values in radians, not degrees.

abs

abs self O Nunber

Returns the absolute value of the number self.

acos

acos self O H oat

Returns the arc cosine of the number self, expressed in radians. The argument self must
also be expressed in radians. See degToRad.

asin

asi n self O H oat

Returns the arc sine of the number self, expressed in radians. The argument self must
also be expressed in radians. The range for self is —1 to +1 inclusive. See degToRad.

atan

atan self O H oat

Returns the arc tangent of the number self, expressed in radians. The argument self must
also be expressed in radians. See degToRad.

467

Number

468

atan2

atan2 self num?2 O H oat

Returns the inverse of the four-quadrant tangent of the numbers self and num?2. The
result is in radians.

ceiling

cei ling self O I nt eger

Rounds the number self up to the next higher integer (toward positive infinity; for
example, 4. 5 becomes 5 and —4. 5 becomes —4. Compare with f| oor.

cos

cos self O H oat

Returns the cosine of the number self, expressed in radians. The argument self must also
be expressed in radians. See degToRad.

cosh

cosh self O H oat

Returns the hyperbolic cosine of the number self. The argument self must be expressed
in radians.

degToRad

degToRad self O H oat

Converts the degree measure self to radians.

exp

exp self O Fl oat
Raises e (2.718 ...) to the power self, which is %/

floor

floor self O I nt eger

Converts the number self to the next lower integer (toward negative infinity). For
example, 4. 5 becomes 4. and —4. 5 becomes —5. Compare with cei | i ng.

frac

frac self O Nurber

Returns the fractional portion of the number self. Also see t runc.

In

I'n self O H oat

Returns the natural logarithm of the number self.

inverse

i nverse self O Fl oat

Returns the inverse of the number self, that is, 1/ self.

Number
log

| og self int O H oat

Returns the logarithm of the number self in base int, which is log ;,; self.

max

max self num?2 O Nunber

Returns the larger of the numbers self or num2.

min

mn self num?2 O Nunber

Returns the smaller of the numbers self or num?2.

mod

mod self num?2 O Nunber

Returns the result of the number self modulo num2, which has the same sign as num?2.
The value for num2 can never be zero. The result of nod is the same as:

self — (floor (self/ num2)* num?2)

For example, mod —1 4 returns 3, and nod —4.5 -2 returns —0. 5.

morph

nor ph self resultClass arg O Nunber
self Nurber object
resultClass Any class name
arg nor mal (reserved for future use)

Returns the result of the number self coerced to the class specified in resultClass. Use
nor mal as the value of arg. For numbers, nor ph is the same as coer ce.

negate

negat e self O Nunber

Returns the negation of the number self.

power

power self num?2 O Fl oat

Raises the number self to the num2 power, which is self "2,

radToDeg

radToDeg self O H oat

Converts the radian measure self to degrees.

rand

rand self O Nunber

Returns a pseudo-random number with a value greater than or equal to 0 and less than
the number self. The random number has the same class as the number self.

469

Number

470

The r and method uses a hidden random state generator to generate the numbers. The
rand method is defined to behave like the following function, where hi ddenRSis a
hidden Randon®t at e generator whose seed is unspecified:

function (rand n -> random hi ddenRS n)

Use the r and method for casual needs of random numbers. The r and method cannot
guarantee to return either the same sequence or a different sequence of numbers every
time after starting ScriptX. For example, if two threads are using r and, then it depends
on the timing of the thread switching which of the two threads gets the next random
number, since the same generator is used for all threads.

If you need repeatability of random numbers you should use the Randon®t at e class,
which allows you to specify a starting seed.

Furthermore, if you need to guarantee non-repeatability of random numbers every time
after starting ScriptX, you should create your own Randonst at e object and seed it with
some changing value, such as date and time.

rem

rem self num?2 O Nunber

Returns the remainder of the number self divided by the number num?2. It has the same
sign as self when num?2 is positive, and the opposite sign when num?2 is negative. The
value for num2 can never be zero.

For example, rem—1 4 results in -1, and rem—4.5 -2 results in -0. 5.

round

round self O Nunber

Rounds the number self to the appropriate integer. Postive numbers are rounded
upward if the fractional part is 0.5 or higher, and downward if it is less than 0.5.
Negative numbers are rounded downward if the fractional part is —0.5 or less, and
upward if it is greater than —0.5. For example, 4.5 becomes 5 and —4.5 becomes -5.
Notice that round is equivalent to the following:

fn roundl x -> (
if x >0 then
if (abs (frac x)) >= 0.5 then return ceiling x
el se return floor x
el se
if (abs (frac x)) >= 0.5 then return floor x
el se return ceiling x
)
-- a nore efficient but |ess readable version of roundl
fn round2 x ->
if xor (abs(frac x) >= 0.5) (x > 0) then floor x else ceiling x

sin

sin self O Fl oat

Returns the sine of the number self, expressed in radians. The argument self must also be
expressed in radians. See degToRad.

Number

sinh

si nh self O FH oat

Returns the hyperbolic sine of the number self. The argument self must be expressed in
radians.

sqrt

sqrt self O Fl oat

Returns the square root of the number self.

tan

tan self O H oat

Returns the tangent of the number self, expressed in radians. The argument self must
also be expressed in radians. See degToRad.

tanh

tanh self O Fl oat

Returns the hyperbolic tangent of the number self. The argument self must be expressed
in radians.

trunc

trunc self O Nunber

Returns the integer portion of the number self; the decimal portion is truncated (hence
its name). See also f r ac.

471

NumberRange

NumberRange

472

e

LinearCollection ImplicitlyKeyedCollection

Sequence

DiscreteRange
NumberRange

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: D scr et eRange

Component: Collections

A Nunber Range object is a discrete range of numbers.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the Nunber Range
class.

nyRange := new Nunber Range \
I owerBound: (-2 * pi) \
upperBound: (2 * pi) \
increment: (pi / 2)

The variable nyRange contains the initialized number range. The instance contains the 9
numbers from approximately -6.28 to +6.28 at intervals of about 1.57:

-6.283, -4.712, -3.141, -1.570, 0, 1.570, 3.141, 4.712, 6.283
The newmethod uses the keywords defined by the i ni t method.

init

init self | owerBound: number upperBound: number [increnent: number]

O (none)
self Nunber Range object
| ower Bound: Nurber object
upper Bound: Nurrber object
i ncrement : Nunber object

Initializes the Nunber Range object self, applying the values supplied with the keywords
to the instance variables of the same name. Do not call i ni t directly on an instance—it
is automatically called by the new method.

If you omit an optional keyword, its default value is used. The only default is:
increment:1

NumberRange

Note — For negative increments, the | ower Bound and upper Bound are reversed—set the
starting value to | ower bound and the ending value to upper Bound. For example:

init self | owerbound: 10 upperBound: 0 increnent:-1
For ranges with negative increments, you must supply an increment; the increment is
optional only for ranges with positive increments.

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Col | ecti on:

bounded naxSi ze si ze
iteratord ass m nSi ze uniformty
keyEqual Conpar at or nmut abl e uni form tyd ass
keyUni formty nut abl eCopyd ass val ueEqual Conpar at or
keyUni form tyd ass proprietored
Inherited from Range:
i ncl udesLower | ower Bound val ued ass
i ncl udesUpper si ze
i ncr ement upper Bound

The following instance variables are redefined in Nunber Range:

includesLower (Range)

self. i ncl udesLower (read-only) Bool ean

Returns true, and cannot be changed.

includesUpper (Range)

self. i ncl udesUoper (read-only) Bool ean

Returns true, and cannot be changed.

valueClass (Range)

self. val ued ass (read-only) (class)

Returns Nunber, and cannot be changed.

Instance Methods

Inherited from Col | ecti on:

add for Each iterate
addvany f or EachBi ndi ng | ocal Equal
addToCont ent s get Al nap
chooseAl | get Any ner ge
choosee get KeyAl | pi pe
chooseeBi ndi ng get Keyne prin

del eteAl | get Many renoveA |
del et eBi ndi ngAl | get One r enoveOne
del et eBi ndi ngne hasBi ndi ng setAl |l

473

NumberRange

474

del et eKeyAl | hasKey

del et ekeyCne i ntersects

del et eOne i SEnpty

enpt yQut i sMenber
Inherited from Li near Col | ecti on:

chooseeBackwar ds fi ndRange

chooseQ dOne f or EachBackwar ds

del et eFi r st get First

del et eLast get Last

del eteN h getMddl e

del et eRange getNth
Inherited from Sequence:

addFifth nmoveBackwar d

addFi r st noveFor war d

addFourth noveToBack

addNt h moveToFr ont

addSecond pr epend

addThird pr ependNew

append setFifth

appendNew setFirst

Inherited from Range:
wi t hi nRange

set ne
si ze

get Nt hKey
get O dne
get Range

| ocal Equal
| ocal LT

pop

set Fourth
set Last
setNth
set Second
set Third
sort

OneOfNPresenter

OneOfNPresenter

LinearCollection Collection

Presenter

TwoDPresenter

ImplicitlyKeyedCollection

Sequence

ArrayList

OneOfNPresenter

Class type: ~ Core class (concrete)

Resides in: ScriptX and KMP executables

Inherits from: SequenceQur sor, Arrayli st and TwoDPr esent er
Component: Spaces and Presenters

A OneI NPresent er object is an ordered list of presenters, only one of which is shown
at a time. A OneCf NPresent er object changes its screen size to contain what it’s
displaying.

For example, the following figure represents an instance of CneCr NPr esent er (not all
instance variables are shown) with four instances of TwoDShape as members—a line,
path, oval, and rectangle. Notice that the subpr esent er s instance variable points to the
one shape that the Onef NPr esent er object currently displays—in this case, nyOval has
the privilege of being displayed.

OneOfNPresenter
Instance Variables:
height 20
width 50
position 100, 100
fill whitePaint
stroke blackPaint
presentedBy undefined
subpresenters o—
Members:
myOneOfN[1] myLine
myOneOfN[2] myPath
myOneOfN[3] myOval |
myOneOfN[4] myRect

The members of an instance of OheCf NPr esent er are held in an ArrayLi st object.
When an array is stored in a storage container, normally, it is stored as one clump,
where all members must be loaded into memory together. This could be a problem if
the members take up a lot of memory, such as full-screen bitmaps. Since only one
presenter is ever meant to be displayed at a time, it does not make sense to require they
all be loaded into memory at once.

To solve this problem, when you add a OheCf NPr esent er instance to a library, title, or
accessory container, the instance automatically adds each of its members (subobjects)
separately to the storage container, using addNewToSt or ageCont ai ner. (If the subobject
has already been added to a storage container, the subobject is not moved.) This enables
the subobjects to be loaded into memory separately. This is a good memory-saving
technique that you can use in cases other than CheCf NPresent er.

475

OneOfNPresenter

Using a OneCr NPr esent er object that holds a set of TwoDMul ti Present er objects, you
can create a multilayered sequence of spaces within spaces—similar to cards and
backgrounds in a HyperCard or ToolBook stack.

ne NPresent er inherits methods from the SequenceCQur sor class for moving about
in the list of subpresenters—methods such as goTo, f or war d and backwar d.

Creating and Initializing a New Instance

The following script is an example of how to create a new instance of the
(neCr NPresent er class:

nyneC N : = new heCt NPresent er

This script creates a new instance of CheCf NPr esent er. You then add objects to this
group using the methods available to the ArrayLi st class. The newmethod uses the
same keyword arguments as i ni t.

After creating an instance of CneCf NPr esent er, you can add a 2D presenter to it, but
then you must call goTo to show it, such as:

append nytheC N nyPresent er
goTo nyheCIN 1

init

init self [initialSize:integer] [growS ze:integer] [stationary: boolean] O

(none)

self Oned NPresent er object
Superclasses of CneCr NPr esent er use these keywords:
initial Sze: I nt eger object

grows ze: I nt eger object

boundary: (ignored by OneCf NPr esent er)
target: (ignored by CneCX NPr esent er)
stationary: Bool ean object

Initializes the OneCf NPr esent er object self, applying the arguments as follows:
initial Size sets the initial number of empty slots in self, gr owSi ze determines the
amount by which self can grow. Do not call init directly on an instance—it is
automatically called by the new method.

If you omit an optional keyword, its default is used. The defaults are:
initial Size:20
grows ze: 20
stationary:fal se

Class Methods

Inherited from Col | ecti on:
pi pe

Instance Variables

Inherited from Presenter:
pr esent edBy subPresenters t ar get

476

OneOfNPresenter

Inherited from TwoDPr esent er :

bBox

boundary

cl ock

comnposi t or

di rect
eventlnterests
gl obal Boundary
gl obal Transf orm

Inherited from Col | ecti on:

bounded

iteratord ass
keyEqual Conpar at or
keyUni formty
keyUni form tyd ass

hei ght
IslnplicitlyD rect
i sTranspar ent
isMisible
needsTi ckl e
position
stationary

t ar get

nmaxSi ze

m nSi ze

nut abl e

nut abl eCopyd ass
proprietored

Inherited from SequenceCur sor :

cursor

transform
wi dt h

wi ndow

X

y
z

si ze

uniformty

uni form tyd ass

val ueEqual Conpar at or

The following instance variables are defined in OheCf NPr esent er :

purge

self. pur ge

(read-write)

Bool ean

When true, causes the currently displayed presenter in the one-of-n-presenter, self, to
be purged from memory when the next presenter is displayed. When f al se, causes the
presenters to remain in memory. The defaultis true.

Set pur ge to t r ue when the presenters are large and memory is tight; set it to f al se
when you want to switch quickly between presenters and memory is not a problem.

Instance Methods

Inherited from TwoDPr esent er :

adj ust d ockMast er
createl nterestList
draw

get Boundar yl nPar ent

i nsi de

| ocal ToSurf ace
not i f yChanged
recal cRegi on

hi de refresh
Inherited from Col | ecti on:

add for Each

addMany f or EachBi ndi ng

addToCont ent s get Al l

chooseAl | get Any

choosene get KeyAl |

chooseeBi ndi ng get Keyne

del et eAl | get Many

del et eBi ndi ngAl | get One

del et eBi ndi ngne hasBi ndi ng

del et eKeyAl | hasKey

del et ekeyCne i ntersects

del et eCne i sEmpty

enpt yQut i sMenber
Inherited from Li near Col | ecti on:

chooseeBackwar ds fi ndRange

chooseQr dne f or EachBackwar ds

show
sur f aceTolLocal
tickle

iterate

| ocal Equal
map

ner ge

pi pe

prin
renoveA |
removene
setAll

set ne

si ze

get Nt hKey
get O dne

477

OneOfNPresenter

478

del et eFi r st get First get Range
del et eLast get Last | ocal Equal
del eteNt h getMddl e | ocal LT
del et eRange getNth pop
Inherited from Sequence:
addFifth noveBackwar d set Fourth
addFi r st noveFor war d set Last
addFourt h noveToBack setNth
addNt h noveToFr ont set Second
addSecond pr epend set Third
addThi rd pr ependNew sort
append setFifth
appendNew set First

Inherited from SequenceCur sor :
backwar d forward goTo

The following instance methods are defined in CheCr NPr esent er :

draw (TwoDPresenter)
draw self surface clip O self
self One NPresent er object
surface D spl aySur f ace object
clip Regi on object for parent’s clip area

Tells the OneCf NPr esent er object self to render its current image onto surface, with
clipping defined by the stencil clip. This method is usually called by the 2D compositor,
which knows what surface the image should be rendering onto.

goTo (SequenceCursor)
goTo self cursor O (object)
self Oned NPresent er object
cursor I nt eger object

Displays the member of the OneCf NPr esent er object self whose position is specified by
cursor. For more information about cursors, see the SequenceQur sor class.

Oval

Oval

RootObject

Stencil

Class type: Core class (concrete)

Resides in: ScriptX and KMP executables
Inherits from: Stenci |

Component: 2D Graphics

Oval is a subclass of St enci | that is used to render ovals and circles, which are a
special case of oval. When an oval is rendered on a display surface, its shape is defined
by the bounding rectangle in which it is inscribed. This bounding rectangle is
represented by its upper-left and lower-right vertices. The boundary of the oval touches
the midpoint of each edge of this bounding rectangle.

Note that Oval objects are n