New Technical Notes ”
M acintosh ®

Developer Support

QT 01 - Inside Macintosh: QuickTime Addendum
QuickTime

Writtenby: Developer Technical Support and QuickTime Engineering December 1994

This Tech Note is an addendum to the Inside Macintosh: QuickTime publication. It will contain
technical details of QuickTime missing in the documentation, updated information, known
problems, workarounds, bug fixes and similar information. The subtitles are based on the
QuickTime Publication with the addition of new ones related to additional information not
present in the documentation.

We assume that developers use QuickTime 1.6.1 or QuickTime 2.0, any older versions are no
longer supported by DTS.

Table of Contents

CHAPTER 2 - MOVIE TOOLBOX
Functions for Getting and Playing Movies

EnterMovies Use and |mplementation
QuickTime Movie Toolbox Globals are Stored in System Heap
Different A5 Worlds with QuickTime?
How to Get Movie Frame Time Parameter for GetMoviePict
PutMovielntoHandle and Data Forks
Embedding Movies (Multiple) Into aMacintosh File
Clipping QuickTime Movie Posters
QuickTime File Audio Retrieva
hintsHighQuality Flag
QuickTime CFM PowerPlug Libraries, Availability, Weak Links
Preroll Movies
CustomGetFilePreview Problem - Missing 'dctb’

Functions that Modify Movie Properties
QuickTime Track and Movie Sound Volume
How to Get the First Video Frame
MCSetClip and Clipping with the Movie Controller
Determining QuickDraw Video Media Pixel Depth
SetMovieDrawingCompleteProc
SetTrackGWorld
GetMovieCoverProcs
Access to Decompressed Images during Playback, GWorlds
Specifying Where aMovieis Pasted Using an Offset, GetTrackMatrix,
SetTrackMatrix
Functionsfor Editing Movies
showUserSettingsDialog Flag
NewMovieFromScrap, Adding the Media L ater
Sound Compression, IMA 4:1

Media Functions
Base MediaHandler
New Extended Features in the Base Media Handler
MediaGetOffscreenBufferSize
MediaSetHints
MediaGetName

Text MediaHandler
New Display Flags
SetTextSampleData

Matrix Functions
QuickTime Rotation and Skew aren’t Implemented
Status of Rotating Matrix Support

CHAPTER 3- IMAGE COMPRESSOR MANAGER
Image Compression Manager Functions

Creating Thumbnail PICTs
DecompressSequenceBeginS
New Monitor Related Playback Calls
GDHasScae
GDGetScale
GDSetScale
How to Tell Whether a Picture is QuickTime-Compressed
QuickTime Fillsin Image Descriptor when Datais Compressed
Decompressing to Partial window, Bug & Workaround
Problems With Matrixes and FDecompresslmage, codecUnimpErr
ImageDescriptionHandles, JPEG Files
PICT, QuickTime-Compressed Testing
OpCode Skipping With Size
Application-Defined Functions
SetSequenceProgressProc

CHAPTER 4 -MOVIE RESOURCE FORMATS
LOOP and User Data Atoms
Getting 'LOOP-y
Sample Code
Inside the User Data Atom
Saving aMovie s Active Selection

QuickTime Dependent File Format
Introduction
Dependent File Overview
New Use of Shared Bit
Dependent Alias Format
Working with Dependent Files
Deeting Dependent Files
Removing Dependent Aliases
Copying Dependent Files
Creating Dependent Files
How About the Finder?
Orphaned Dependent Files
Cross-Platform Movie Files

CHAPTER 2- MOVIE TOOLBOX

Functions for Getting and Playing Movies
EnterMovies Use and I mplementation

Q: The QuickTime 1.0 documentation says | can EnterMovies multiple times, aslong as |
bal ance each EnterMovies with ExitMovies. But the article in issue 13 of develop says, “Don’t
cadl ExitMovies. ExitToShell does this for me.” So now the only cdl | have to use is
EnterMovies. But this seemsto destroy the balance of these routines. What should | do?

A: Theway EnterMovies worksisthat it creates a new QuickTime environment if the current
ab world doesn’t have one already. If the current a5 world already has one from a previous
EnterMovies cal, then nothing is done except that a counter is incremented to keep track of the
number of times EnterMovies has been called. The original reason for this was to account for
DAs which use an application's a5 world. By doing this, if an application has caled
EnterMovies already, the movie toolbox knows that it doesn’t have to reinitialize when the DA
calls EnterMovies. Then, when the DA calls ExitMovies, it decrements the counter and as long
asal EnterMovies and ExitMovies calls are balanced, the Movie Toolbox won't dispose of the
QuickTime world until the last ExitMovies call is made.

The reason we suggest not to cdl ExitMovies is that ExitToShell will automatically cdll
ExitMovies for you. By doing so, you can avoid some of the problems that developers have
had with disposing of movie structures improperly and in the wrong order. Letting ExitToShell
do the final cleanup avoid these problems because the entire a5 world and heap is disposed of
aswell.

But, if you've nested EnterMovies and ExitMovies cals, thisis what we recommend:

1. If you're writing an application, call EnterMovies and don’t call ExitMovies.
Thisway, any external that uses the same a5 world and calls EnterMovies and
ExitMovies will smply increment a counter and then decrement the counter and
do nothing else.

2. If you'rewriting an external that runs under someone else’s application, you have two
choices:

i. Cal EnterMovies and never call ExitMovies. This causes QuickTime to initialize once
during thefirst call to any of your externals.

QT 01 - QuickTime Addendum 1of 26

QuickTime

Macintosh Technical Notes

ii. Call EnterMovies in the beginning of each external and ExitMovies at the end of each
external. This can cause alot of wasted CPU time if the main application (or someone
elsein the a world) didn’t call EnterMovies first because each of the EnterMovies calls
in your externals will require QuickTime to reinitialize. The reason for thisis that you
balance every EnterMovies and the corresponding ExitMovies will dispose of the
QuickTime world. This can be very bad if you external gets called often. On the other
hand, if your external has ainitialization routine and close routine that is called before
and after all your other routines, you can call EnterMovies in the initialization routine,
and then call ExitMoviesin your close routine. Of course, each of the routines called in
between could call either EnterMovies and ExitMovies, or not call either of them at al.
But, this depends on your implementation.

QuickTime Movie Toolbox Globalsare Stored in System Heap

Q: According to the QuickTime Movie Toolbox documentation, “The Movie Toolbox maintains
aset of global variables for every application using it.” How much global memory is required?
Our application is shy on global data space.

A: Theinformation maintained is not kept with the application’s global variables. The handle
created by the EnterMovies call is stored in the system heap, not in the application heap. You
don’t have to worry about how much space to allocate in your application. Thisinitialization
does not affect your A5 world either.

Ent er Movi es initidizes everything, including setting up the necessary data space and
creating ahandletoit.

Different A5 Worlds with QuickTime?

Q: Can we use adifferent A5 world with QuickTime? Our plug-in architecture uses A5 for
global access, but we allow the A5 world to move. QuickTime doesn’t seem to appreciate this
and doesn’t think that EnterMovies has been called after the A5 world moves. We currently
work around this by locking down our A5 world but would rather not. Islocking down the A5
world even good enough?

A: You can use adifferent A5 world with QuickTime. QuickTime allocates a new set of state
variables for each A5 world that's active when EnterMovies is called. However, since
QuickTime uses A5 to identify each QuickTime client, if you move your plug-in's A5 world,
QuickTime will no longer recognize that you’ ve called EnterMovies for that client. So you can
use adifferent A5 world, but you will have to lock the A5 world down.

20f 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

How to Get Movie Frame Time Parameter for GetM oviePict

Q: How do | find the correct time values to pass to GetMoviePict, to get all the sequential
frames of a QuickTime movie?

A: The best way to find the correct time to pass to get movie framesisto cal the
GetMovieNextl nterestingTime routine repeatedly. Note that the first time you call
GetMovieNextInterestingTime its flags parameter should have a value of
nextTimeM ediaSample+nextTimeEdgeOK to get the first frame.

For subsequent calls the value of flags should be nextTimeMediaSample. Also, the
whichMediaTypes parameter should include only tracks with visual information,
VisualMediaCharacteristic or ‘eyes. Check the Movie Toolbox chapter of the QuickTime
documentation for details about the GetM ovieNextInterestingTime call.

PutMovielntoHandle and Data Forks

Q: | save PICTsto my document’s data fork by writing the contents of the PicHandle. To save
movies, do | convert the movie to a handle, and then save that as | would with PICTS? | just
want the file references, not the data itself.

A: To save movies that are suitable for storage in afile, use PutMovielntoDataFork. This
function will store a movie in the data fork of a given file, and you could cdl
NewM ovieFromDataFork to reconstruct the movie for playback or editing.

Y ou should a so read the documentation regarding the Movie Toolbox FlattenMovie procedure,
which creates afile that contains the ‘'moov' resource and the data all in the data fork. The
advantage here is that the movie file you create using FlattenMovie can be read by any other
QuickTime-capable application.

Embedding Movies (Multiple) Into a Macintosh File

Q: Isthere away to embed a QuickTime movie into a Macintosh file containing non-QuickTime
stuff and get the Movie Toolbox to play the movie back correctly? If so, can we pass the same
movie handle to QuickTime for Windows and get it to play back the same data from the same
file?

QT 01 - QuickTime Addendum 3of 41

QuickTime

Macintosh Technical Notes

A: To add QuickTime movie data to non-QuickTime files, just store the movie datain the file
using FlattenMovieDatawith the flattenAddMovieToDataFork flag. Since FlattenMovieData
will simply append to a data fork of afile, you can passit any datafile and it will append the
movie datato that file. QuickTime doesn’t care what' s stored before or after the movie data, as
long as you don'’t reposition the movie data within the datafile. If you do, the movie references
will be incorrect since they aren’t updated when you edit the file. The returned movie (from
FlattenMovieData) will properly resolve to that datafile. Y ou can then save thismovie in the
datafork with PutMovielntoDataFork or in the resource fork with AddMovieResource. If the
movie is saved in the data fork, it can be retrieved by both QuickTime and QuickTime for
Windows with NewM ovieFromDataFork.

You can, in fact, store multiple movies smply by cdling FattenMovieData and
PutMovielntoDataFork several times on the same file. Each FlattenMovieData call appends new
data, assuming the createMovieFileDataCurFile flag isn't set.

See also the article Cross-Platform Compatibility and Multiple-Movie Files by John Wang in
develop #17.

Clipping QuickTime Movie Posters

Q: Our application uses the movie poster asa till framein acell, similar tousingaPICT. If a
user sizesthe cell width so that it’s narrower than the poster, even though we clip the drawing
to the cell size, QuickTime posters draw their full width, writing over whatever isin the way.
Pictures clip through DrawPicture; why doesn’t ShowMoviePoster stay within the clipping
region?

A: ShowMoviePoster, as well as the movie and preview showing calls, uses the movie
clipping characteristics rather than the destination port’s clipping region. You must set the
movi€'s clipping region to obtain the results you want. An easier way to do thisisto get the
picture for the poster by calling GetMoviePosterPict, and then simply use DrawPicture to
display the poster. Because thisis just a picture, the clipping region of the port is honored.
Thisway you don’t need different code for movies and pictures.

QuickTime File Audio Retrieval

Q: How can | retrieve audio from QuickTime files in 1-second chunks? | need a sound
equivaent of GetMoviePict.

A: PutMovielntoTypedHandle will take a movie or a single track from within the movie and
convert it to ahandle in memory of a specified type. Thisway you could take the sound track
and convert it into a handle.

4 0f 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

hintsHighQuality Flag

hintsHighQuality is aflag you may pass to the SetMoviePlayHints and SetMediaPlayHints
routines. It specifies that the given movie or media should render at the highest quality.
Rendering at highest quality may take considerably more time and memory. Therefore, this
mode istypically not appropriate for real-time playback, but is very useful for re-compressing
asit can generate higher quality images.

hintsH ghQual ity = 1<<8

The high-quality mode can be used with other media handlers as well. For example, the Video
Media Handler turns off fast dithering and alows high-quality dithering.

QuickTime CFM PowerPlug Libraries, Availability, Weak Links

The Code Fragment Manager supports the concept of "soft" or "weak" linking. If alibrary is
soft linked, then the Process Manager will go ahead and run your application even if the library
iS missing. This means that the application will not die even if a particular library is not
installed, and the application could disable functionality based on what libraries are available or
not.

MPW PowerPC tools include the MakePEF tool with an additional flag that specifies that the
exported symbols are weak. In this case the runtime architecture will try to resolve the CFM
library, but won't fail if it can't. You can define that the library has weak linking by adding a
magic tilde (~) character at the end of the -l option to MakePEF. For example, to soft link to
QuickTimeLib you would do the following:

MakePEF -1 Qui ckTi neLi b. xcof f =Qui ckTi neLi b~ . ..

Y ou could a'so mark CFM libraries as weak using the Metrowerks PowerPC environment.

In the client program you can test that the CFM library was not loaded and for instance disable
al functionality that depends on the CFM library (for example, no QuickTime CFM libraries
present so "play movies' gets disabled).

Since the library only registersitself with Gestalt once, there's no way to unregister it if the
user movesthelibrary. This particular problem does not have any direct solutions, but there's
an aternative way to determine if the library isloaded.

The solution is to check the address of one of the functionsin the library before calling the
library. The PowerPC Inside Macintosh documentation illustrates the technique:

QT 01 - QuickTime Addendum 50f 41

QuickTime

Macintosh Technical Notes

extern int printf (char *, ...);
...
if (printf == kUnresol vedSynbol Addr ess)
DebugStr(“"\printf is not available.");
el se
printf("Hello, world!\n");

QuickTime has a new Gestalt selector to determine whether it's safe to call the weak-linked
library (gestaltQuickTimeFeatures). This function shows how to initialize QuickTime, for 68k
and PowerPC:

Bool ean I ni t Qui ckTi me(voi d)
{
| ong qt Ver si on;
CBErr ankrr;
#i fdef powerc
| ong gt Feat ur es;
#endi f

anErr = CGestalt(gestaltQuickTime, &qgt\Version);
if (anErr !'= noErr)
return fal se; /1 no QT present

#i f def powerc

/1 Test if the library is registered.
anErr = Gestalt(gestaltQuickTi meFeatures, &qtFeatures);
if (!'((anErr == noErr) && (qtFeatures & (1 <<
gest al t PPOQui ckTi neLi bPresent)))) // not true
return fal se;
#endi f

anErr = EnterMvies();
if (anErr == noErr)
return true;
el se
return fal se; /1 problens initializing QuickTine

Both QuickTime Gestalt selectors are being tested for in the PowerPC case. Y ou need to test
both that QuickTime is present and that the QuickTime library is present.

A simple test to verify that things work properly isto exclude the PowerPlug CFM library from
the extension file, or move it out from the folder while the application that needs the library is
running.

If the application is unable to load the CFM library due to lack of space, the application might
mysteriously die later, so it's important to always check that the libraries are loaded and
available.

6 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

Preroll Movies

It is of utmost importance that you preroll your movies using the PrerolIMovie call. Failing to
do so will introduce playback problems, especially when the movie starts. PrerolIMovie will
fill caches and buffers optimally to prevent initial playback stuttering.

Note that StartMovie will preroll the movie; also, the standard controller prerolls the movie
whenever the user starts a movie using the keyboard or the mouse. In these situations, a
possible second PrerolIMovie cal isredundant and will waste time and resources.

In all other cases, you should preroll the movie. For instance, it is your responsibility to call
PrerolIMovie if you are using SetMovieRate, or if you use McDoAction with mcActionPlay
and arate. Here's an example of how to use PrerolIMovie:

CsErr DoPrerol | Movie(Mvie theMvie)
{

Ti neVal ue aTi neVal ue;

Ti neVal ue aMovi eDur ;

Fi xed aPr ef err edRat €;

CsErr anErr = nobrr;

aTi neVal ue Get Movi eTi me(theMovie, nil);

aMovi eDur Get Movi eDur at i on(t heMovi e) ;
aPreferredRate = Get Movi ePref erredRat e(t heMovi e) ;

anErr = Prerol | Mvi e(theMvie, aTinmeValue, aPreferredRate);

return ankrr;

CustomGetFilePreview Problem - Missing 'dctb’

The system's pop-up CDEF has a problem that is short-circuited if a'dctb’ is present. The
popup menu in the dialog that will navigate through folders is mis-positioned far to the right if
you use CustomGetFilePreview when the "Show Preview" check box is unchecked. This
happens when the DLOG/DITL resource is not associated with a'dctb’ resource, in other
words, when the default color table is specified with ResEdit.

The workaround is to create a 'dctb’ for the dialog.

QT 01 - QuickTime Addendum 7 of 41

QuickTime

Macintosh Technical Notes

Functions that Modify Movie Properties
QuickTime Track and Movie Sound Volume

Q: What do the values of amovie's or track’s volume represent? |s there no way to make a
track louder?

A: The volume is described as a small fract 8:8 and its values go from -1 to 1 with negative
values as place holders. The maximum volume you can get is 0x0100 with the minimum being
0 (or any negative value). The advantage of using negative volumesis that you can turn off
sound while maintaining the level of volume. For example, -1 and O both equate to no volume,
but the -1 implies that 1 should be the volume when sound is turned back on, whereas the 0
does not.

The volume for atrack is scaled to the movie' s volume, and the movie' svolume is scaled to the
value the user specifies for the speaker volume using the Sound control panel. This means that
the movie volume represents the maximum loudness of any track in the movie.

Note that starting with Sound Manager 3.0 you are able to increase the loudness above the
maximum level using the shift key.

How to Get the First Video Frame

Q: Stepping through QuickTime movie video framesin the order they appear in the movieis
simple using GetMovieNextlnterestingTime, except for getting the first frame. If | set the time
to 0 and rate to 1, | get the second frame, not the first. In addition, the video may start later
than at 0. How do you suggest finding thisfirst frame of video?

A: To get the first frame under the conditions you describe, you have to pass the flag
nextTimeEdgeOK to GetMovieNextinterestingTime. What this flag does is make the cal
return the current interesting time instead of the next, if the current timeis an interesting time.
Y ou need to do this because there’ s no way to go negative and then ask for the next interesting
time.

M CSetClip and Clipping with the Movie Controller

Q: | use SetMovieDisplayClipRgnto set my movie clip, but the movie doesn’'t obey my
clipping. Does the movie controller component ignore this clipping?

8of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

The controller uses the display clip for its own purposes, such as for badges. If you want to do
clipping with the movie controller you must use MCSetClip. MCSetClip takes two regions.
The first clips both the movie and the controller. The second clips just the movie, and is
equivalent to the movie display clip. If both clips are set, the controller does the right thing and
merges them as appropriate. If you don’t want one or the other of the clips, set them to zero.

In general, if you are going to do something to a movie that is attached to a controller you must
either do it through the controller, using the action calls, or you must call MCM ovieChanged.
Otherwise, the controller would need to constantly poll the movie to see if its state changed.
Clearly thiswould be slow.

Determining QuickDraw Video Media Pixel Depth
Q: How do | get the pixel depth of the QuickTime video mediafor a given track?

A: To find the video media pixel depth, you’'ll need to retrieve the media s image description
handle. Y ou can use GetM ediaSampleDescription to get it, but this routine needs both the video
media and the track’ s index number. It’s not obvious, but amedia stypeisidentified by its
media handler’ s type. Thus, you can walk through a movie' s tracks by using its indexes until
you find video media, at which point you have both the track index and video media.

The following sample code does the trick:

QT 01 - QuickTime Addendum 9of 41

QuickTime

Macintosh Technical Notes

Medi a Get Fi r st Vi deoMedi a(Movi e cool Mvi e, |ong *trackl ndex)
{
Track cool Track
Medi a cool Medi a
| ong nunmr acks;
CBType medi aType;
nunTracks = Get Movi eTr ackCount (cool Mvi e) ;
for (*tracklndex=1; *trackl ndex<=numilracks; (*tracklndex)++) {
cool Track = Get Movi el ndTr ack(cool Movi e, *trackl ndex);
i f (cool Track) cool Medi a = Get TrackMedi a(cool Track) ;
i f (cool Media) GetMedi aHandl er Descri pti on(cool Medi a,
&nedi aType, nil, nil);
i f (medi aType = M deoMedi aType) return cool Medi a;

I
=

*tracklndex = 0; // tracklndex can't be 0
return nil; /1 went through all tracks and no video

}

short GetFirstVi deoTr ackPi xel Dept h(Movi e cool Movi e)

{
Sanpl eDescri pti onHandl e i nageDescH =

(Sanpl eDescri pti onHandl e€) NewHandl e(si zeof (Handl e)) ;
| ong trackl ndex = 0;
Medi a cool Media = nil;
cool Medi a = Get Fi rst Vi deoMedi a(cool Movi e, & rackl ndex) ;
if (!tracklndex || !cool Media) return -1; // we need both
Get Medi aSanpl eDescri pti on(cool Medi a, trackl ndex, inageDescH);
return (*(1nageDescri pti onHandl e)i mageDescH) - >dept h;
}

Note that QuickTime 2.0 has a new function called GetMovielndTrackType that
does most of the work described in the sample. GetMovielndTrackType lets you
search for all of a movie's tracks that share a given media type or media
characteristic. See the QuickTime 2.0 SDK documentation for more details.

SetM ovieDrawingCompleteProc

SetMovieDrawingCompleteProc lets you set a callback procedure that is called after amovie
has drawn in one or more of its tracks. In this way, your application can be aware of when
QuickTime has drawn frames and when it hasn't. This information is very useful when
combined with SetTrackGWorld (see below).

100of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

pascal void Set Mvi eDrawi ngConpl et eProc(Mvi e t heMvi e, Myvi eDrawi ngConpl et eProcPt r
proc, |ong refCon)

t heMovi e The Movie to set the proc on.
proc Your call back procedure, or nil to renove it.
ref Con Val ue to pass to your callback procedure.

typedef pascal OSErr (*Movi eDrawi ngConpl et eProcPtr) (Mvi e theMvie, |ong refCon);

Errors:
i nval i dMovi e -2010 Your novie reference is bad.

SetTrackGWorld

SetTrackGWorld lets you force atrack to draw into a particular GWorld. This GWorld may be
different from that of the entire movie. After the track has drawn, it calls your transfer
procedure to copy the track to the actual movie GWorld. When your transfer procedure is set,
the current GWorld is set to the correct destination. Y ou can also install atransfer procedure
and set the GWorld to nil. Thisresultsin your transfer procedure being called only as a
notification that the track has drawn—no transfer needs to take place.

QT 01 - QuickTime Addendum 11 of 41

QuickTime

Macintosh Technical Notes

pascal void SetTrackGMrl| d(Track theTrack, CxafPtr port, CGDHandl e gdh,
TrackTransferProc proc, |ong refCon)

t heTr ack The track to set the proc to.

port The port for the track to drawto, or nil to use the movie's
Gnéor | d.

gdh Gevi ce associated with the port, or nil.

proc Returns pointer to your transfer procedure, or nil to remove it.

ref Con Val ue to pass to your transfer procedure.

typedef pascal CSErr (*TrackTransferProc)(Track t, long refCon);

Errors:
i nval i dTr ack -2009 Your track reference is bad.

typedef struct {

QMr | dPtr aw,
GMr | dPtr ef xTr ack;
GMrl dPtr t ween;
short trackStat;
Rect dst;
W ndowPt r wp;

} n8pfx;

typedef struct {
Movi e nv;
Movi eControl | er nctl
Rect mect ;
n8pf x *mef x;
QMrl dPtr backPi ct ;

} nvinfo, *nvPtr;

/* these are the track transfer procedures, all they do is set a flag to */
/* indicate to the drawing conpl etion proc that both tracks are ready */

pascal CSErr Front TrackTransferProc(Track t, nBpfx *nfx)

{
nfx->trackStat |= 1; /! first bit for the front, or main track
return noErr;

}

pascal CSErr Ef xTrackTransferProc(Track t, nBpfx *nfx)

{
nfx->trackStat | = 2; Il second bit for the special effects track
return noErr;

}

pascal CSErr Movi eDrawi ngProc(Myvie m nvPtr nvp) {}

voi d Set UoMovi eEf fect (Movie m WndowPtr wp)

{
Track t;
ngpfx *nfx;
CsErr err;
Rect bounds;
nvPtr nvi;
| ong nuntr acks;
12 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

/* set up the transfer procedures for each track */
/* track 1 is the nain novie track */

/* track 2 is the special effects track */

t = Get Movi el ndTrack(m 1);

Set TrackGmr i d(t, nfx->gw, nil, (TrackTransferProc)FrontTrackTransf er Proc,
(long) nfx);

t = Get Movi el ndTrack(m 2);

Set TrackGMr | d(t, nfx->efxTrack, nil,
(TrackTransfer Proc) Ef xTrackTransferProc, (long) nf/*

set up the routine that actually does the draw ng */

/* this routine is called after the novie tool box draws all the tracks */

/* into the offscreen GMrlds set up above */

Set Movi eDr awi ngConpl et eProc(m (Mvi eDr ani ngConpl et ePr ocPt r) Movi eDr awi ngPr oc,

(long) nvi);
GoToBegi nni ngl Movi e(m) ;

GetMovieCover Procs

GetMovieCoverProcs lets you retrieve the cover procedures that you set
SetMovieCoverProcs.

pascal CBErr Get Movi eCover Procs(Mvi e theMvi e, Mvi eRgnCover Proc *uncover Proc,
Movi eRgnCover Proc *cover Proc, |ong *refcon)

Movi e Movi e reference.
Movi eRgnCover Proc Returns the uncover proc for the novie.
Movi eRgnCover Proc Returns the cover proc for the novie.

| ong Returns the refcon for the cover procedures.
Errors:
i nval i dMovi e -2010 Your novie reference is bad.

Access to Decompressed I mages during Playback, GWorlds

with

Q: Isthere a mechanism that allows us to access each decompressed image prior to display
during playback, so that we could manipulate the image data and then hand it back for display?

A: QuickTime 1.6.1 provides afunction called SetTrackGWorld. SetTrackGWorld lets you
force atrack to draw into a particular GWorld. This GWorld may be different from that of the
entire movie. After the track is drawn, it will call your transfer procedure to copy the track to
the actual movie GWorld. When your transfer procedure is set, the current GWorld is set to the

correct destination.

Y ou could also install atransfer procedure and set the GWorld to nil. This resultsin your
transfer procedure being called only as a notification that the track has drawn and that no

transfer is taking place.

QT 01 - QuickTime Addendum 13 of 41

QuickTime

Macintosh Technical Notes

Inside your transfer procedure you could manipulate the image. Note that calling resource
intensive or time consuming routines in your transfer procedure may have an adverse effect on
the playback performance of the movie that is playing.

Here's an example of atransfer procedure that will keep a counter of number of
timesit has been called, and displays this number in the top |eft corner of the movie:

14 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support

December 1994

pascal

{

CBErr nyTrackTransferProc(Track t, |ong refCon)

Tr ansf er Dat aHandl e nyTDH = (Transf er Dat aHandl e) ref Con ;
QafPtr t heNewrl d ;

QafPtr novi eGMrld ;

Pi xMapHand| e of f Pi xMap ;

Rect novi eBox ;

static |ong index =1 ;

Cxaf Ptr savedWrid ;
@Handl e savedDevi ce ;
Str255 theString ;

novi eGMrld = (GafPtr) ((**nyTDH) . novi eGMri d) ;
theNewdrld = (GafPtr) ((**nyTDH).trackGMr i d) ;
novi eBox = (**nyTDH) . novi eRect ;

of f Pi xMap = Get GNor | dPi xMap((GMrl dPtr)theNewrld) ;
(void) LockPi xel s(of fPi xMap) ;

Get GMrl d(&savedWrl d, &savedDevice);
SetGMrid((CxafPtr)theNeworld, nil) ;

MoveTo (15, 15);
NunfoString (i ndex++, theString);
Drawstring (theString);

/1 copy the inmage fromthe of fscreen port
/1 into the novies port

Set GMrl d(savedWrl d, savedDevice) ;

CopyBi t s(& heNewr | d- >portBits,
&novi eGNr | d->portBits,
& heNewr | d- >port Rect ,
&novi eBox,
sr cCopy,
nil) ;

(voi d) Unl ockPi xel s(of f Pi xMap) ;

/] define a structure to hold all the infornmation we need in the transfer
/'l proc.

typedef struct {

GMr | dPtr novi eGMrld ;
QMrl dPtr trackGMrid ;
Rect novi eRect ;

} TransferData, *TransferDataPtr, **TransferDataHandl e ;

//This has the original

nmovie gWrld, the one we created for the track and a rect

QT 01 - QuickTime Addendum

QuickTime

15 of 41

Macintosh Technical Notes

/1 describing the novie. You can set a novie up to use this in the foll owi ng way:

Tr ansf er Dat aHandl e nyTDH = (Tr ansf er Dat aHandl e€) NewHandl e(si zeof (
TransferData)) ;

Track aTrack = GetFirstTrackd Type(aMvie, Vi deoMedi aType) ;
short trackDepth = Get FirstVi deoTr ackPi xel Depth(aMovie) ;
if(myTDH == nil || aTrack == nil || trackDepth < 0)

return ;

Get TrackD nensi ons(aTrack, &wi dth, &height) ;

trackD mensions. right = Fi x2Long(wi dth);
t rackD mensi ons. bot t om = Fi x2Long(hei ght);

/1l create the novie gWrld

theErr = NewGMNrl d(& heNewdr| d, trackDepth, & rackD mensions, nil,
t heNewWor | dDevi ce, OL) ;

CheckError(theErr, "\pCall to NewGMrld failed");

Get Movi eGMr | d(aMovi e, &movieGMrld, nil) ;

(**nyTDH) . movi eGMr i d
(**nyTDH) . trackGmari d

movi eGMrl d ;
t heNewwr | d ;

Get Movi eBox(aMvi e, &novi eBox) ;
(**nyTDH) . novi eRect = novi eBox

Set TrackGMri d(aTrack, (CafPtr)theNewwrld, nil, nyTrackTransferProc,
(long) nyTDH) ;

Specifying Where a Movie is Pasted Using an Offset, GetTrackMatrix,
SetTrackMatrix

Q: When a user pastes a movie into a movie-controller movie, the added movieisinserted in
the top left corner of the movie. Isthere away for the user to choose where the movieis
pasted, and if not, how can | give the movie controller or Movie Toolbox an offset to use rather
than have the editing operations use the top left corner?

A: When you paste a movie into a movie-controller movie, the movie controller is simply
calling PasteM ovieSelection to insert the source movie. All the characteristics of the movie are
inserted, and therefore the movie isinserted in the top left corner of the movie. There' s no easy
way to specify an offset directly to the movie controller. If you want to change the offset of the
pasted movie, you’'ll have to modify the movie yourself after the paste using Movie Toolbox
commands. Once you’ re done changing the movie, be sure to call MCMovieChanged so that
the movie controller updates correctly.

16 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

The actual modification is ssmple: call GetTrackMatrix, add your offset to the matrix, and call
SetTrackMatrix. The difficulty isin determining which tracks to modify, since the paste may
either create a new track or use an existing one. We recommend doing this by gathering all
track 1Ds before the paste, and then comparing with the track 1Ds after the paste. Since most
movies these days have just a few tracks, this shouldn’t require much overhead. (But be
warned: some movies do have alot of tracks!) To get the track information, you can cal
GetMovieTrackCount and GetMovielndTrack.

Onelast idea: If you don’t mind changing the source movie, an alternative isto simply offset
the source movie before the paste.

QT 01 - QuickTime Addendum 17 of 41

QuickTime

Macintosh Technical Notes

Functions for Editing Movies
showUser SettingsDialog Flag

showUserSettingsDialog is a new flag. When using ether PasteHandlelntoMovie or
ConvertFileToMovieFile to import data into a movie, you can now set the
showUserSettingsDialog flag. This displays the user settings dialog box for that import
operation, if there is one. For example, when importing a picture, this would cause the
Standard Compression dialog box to be displayed so the compression method could be
selected.

showser SettingsDialog = 2

NewM ovieFromScrap, Adding the Media L ater

Q: When my application creates a new media (of text type in this case) for anew track in a
movie created with NewM ovieFromScrap, the dataRef and dataRef Type should be set to nil,
according to the QuickTime documentation. The problem isthat later | want to edit that media
(adding atext sampleto it, for example), but BeginMediaEdits returns the noDataHandler
error(no data handler found). | assume | can get around that by first saving the movie to afile,
but this seems slimy since the movie won’t end up on disk in the end. Any suggestions for a
better approach?

A: You're correct — BeginMediaEdits complains if the movie has been created with
NewMovieFromScrap. Unfortunately, BeginM ediaEdits doesn’t think memory-based movies
are on amediathat will support editing. The workaround is to store the movie in atemporary
file until you're finished editing it.

When you call NewTrackMedia, pass an aliasto anew file in the dataRef parameter instead of
nil. Passing nil (the usual approach) indicates that the movie' s default data reference should be
used, but because your movie came from the scrap and not afile, it has no data reference —
hence the error you’ re getting. By the way, using the handle data handler in QuickTime 2.0
you can create amovie entirely in memory.

Sound Compression, IMA 4:1

Currently the only way to compress sounds using IMA 4:1 compression is to use the Sound
Converter tool that isavailable in the QuickTime SDK.

18 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

Media Functions

Base Media Handler
New Extended Featuresin the Base Media Handler

Three new calls and anew flag extend the Base Media Handler interface. These features
provide higher quality movie playback, but incur a performance penalty. The Text Media
Handler takes advantage of these new calls and provides built-in support for anti-aliased text. It
is achieved through a playback hint to the base media handler, which the Apple Text Media
Handler derives. This hint, hintsHighQuality, has been discussed in the “Movie Toolbox
Enhancements’ section earlier in this Note.

The MediaSetHints and MediaGetOffscreenBufferSize routines were added to the Derived
Media Handler interface to support high-quality mode. Since the Apple Text Media Handler
derives the base media handler, it can use these new calls to support anti-aliased text.

M ediaGetOffscreenBuffer Size

M ediaGetOffscreenBufferSize determines the dimensions of the offscreen buffer. Before the
Base Media Handler alocates an offscreen buffer for your Derived Media Handler, it calls your
M ediaGetOffscreenBufferSize routine. The depth and color table used for the buffer are also
passed. When thisroutine is called the bounds parameter specifies the size that the Base Media
Handler intends to use for your offscreen by default. Y ou can modify this as appropriate before
returning. This capability isuseful if your media handler can draw only at particular sizes. Itis
also useful for implementing anti-aliased drawing as you can request a buffer that islarger than
your destination area and have the Base Media Handler scale the image down for you.

pascal Conponent Result Medi aGet O f screenBuf f er Si ze (Conponent | nstance ci, Rect *bounds,
short depth, CTabHandl e ctab)

ci Conponent instance of a Base Media Handl er.

bounds The boundaries of your offscreen buffer.

dept h Depth of the of fscreen.

ctab Col or table associated with offscreen. You can set it to nil.
Errors:

badConponent | nst ance 0x80008001 Get a new conponent i nstance.

QT 01 - QuickTime Addendum 19 of 41

QuickTime

Macintosh Technical Notes

MediaSetHints

M ediaSetHints implements the appropriate behavior for the various media hints such as scrub
mode and high-quality mode. When an application calls SetMoviePlayHints or
SetMediaPlayHints, your media handler’s MediaSetHints routine is called for each mediain the
movie.

pascal Conponent Result Medi aSet H nts (Conponent | nstance ci, |ong hints)

ci Conponent instance of a Base Medi a Handl er.
hints Al hint bits that currently apply to the given nedia.
Errors:

badConponent | nst ance 0x80008001 Get a new conponent i nstance.

MediaGetName

MediaGetName lets you retrieve the name of the mediatype. For example, the Video Media
Handler will return the string “Video.”

pascal Conponent Result Medi aGet Nane(Medi aHandl er nmh, Str255 name, |ong request edLanguage,
| ong *act ual Language)

mh The Base Medi a Handl er instance.

nane The name of the nedia type.

r equest Language Language you want it to return nanme in.

act ual Language Language it returns the nane in.
Errors:

badConponent | nst ance 0x80008001 Get a new conponent i nstance.

20 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

Text Media Handler
New Display Flags

The display flags control the behavior of the Text Media Handler. The Text MediaHandler is
responsible for rendering the text. These flags provide additional control over the rendering
process. To change the Text Media Handler’ s behavior with these flags, you will normally add
these flags to each text sample. When the Text Media Handler reads each sample, it will also
read the associated flags. The Text Media Handler will then adjust its behavior according to the

display flag.

To add atext sample to the media, you use the routines AddTESample and AddTextSample. To
add display flags to a text sample, you pass them in the displayFlags parameter of these
routines.

enum {

df Cont i nuousScrol | = 1<<9,

df Fl owHori z = 1<<10,
df Dr opShadow = 1<<12,
df Anti Ali as = 1<<13,
df KeyedText = 1<<14

b

df ContinuousScroll is adisplay flag that tells the Apple Text Media Handler to let new samples
cause previous samples to scroll out. df Scrollin and/or df Scroll Out must also be set for thisto
take effect.

dfFlowHoriz isadisplay flag that tells the Apple Text Media Handler to let horizontally
scrolled text flow within the text box. This behavior contrasts with letting text flow asif the
text box had no right edge.

dfDropShadow is adisplay flag that tells the Apple Text Media Handler to support true drop
shadows. Using SetTextSampleData, the position and translucency of the drop shadow is
under application control.

dfAntiAliasisadisplay flag that tells the Apple Text Media Handler to attempt to display text
anti-aliased. While anti-aliased text looks nicer, it incurs asignificant performance penalty.

dfKeyedText isadisplay flag that tells the Apple Text Media Handler to render text over the
background without drawing the background color. This technique is otherwise known as
“Masked Text.”

findTextUseOffset is anew find text flag that instructs FindNextText to look at the value
pointed to by the offset parameter and start the search at that offset into the text sample
indicated by startTime. This allows you to continue a text search from within a given sample,
so that multiple occurrences of the search string can be found within a single sample.

findText Use(ffset = 16

QT 01 - QuickTime Addendum 210of 41

QuickTime

Macintosh Technical Notes

SetTextSampleData

SetTextSampleData allows you to set values prior to calling AddTextSample or AddTESample.
Two types are currently supported: dropShadowOffsetType and
dropShadowTranslucencyType. The first type, dropShadowOffsetType, is the drop shadow
offset. Pass the address of a point for the data parameter. dropShadowTranslucency Type isthe
drop shadow translucency. Pass avalue from 0 to 255, where O is the lightest and 255 is the
darkest.

#def i nedr opShadowd f set Type ' dr po'
#def i nedr opShadowTr ansl ucencyType ' drpt’

pascal Conponent Result Set Text Sanpl eDat a(Medi aHandl er mh, void *data, CSType

dat aType)
mh Ref erence to the Text Media Handler. Coul d use Get Medi aHandl er.
data Pointer to data, defined by dataType paraneter.
dat aType Sets the type of data in the handle. For now, either 'drpo’ or 'drpt'.
Errors:

badConponent | nst ance 0x80008001 Your media reference i s bad.
The following sample code snippet demonstrates the use of Set Text Sanpl eDat a.

short trans = 127;
Point dropOfset;
Medi aHandl er nh;

dropCifset.h = dropCifset.v = 4;
Set Text Sanpl eDat a(nh, (voi d *) &r opCXf f set , dr opShadowCr f set Type) ;
Set Text Sanpl eDat a(nh, (voi d *) & r ans, dr opShadowTr ansl ucencyType) ;

Be sure to turn on the dfDropShadow display flag when you cal AddTextSample or
AddTESample.

If you pass nil for textColor and/or backColor parameters in AddTextSample or
AddTESample, they default to black (for textColor) and white (for backColor).

22 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

Matrix Functions
QuickTime Rotation and Skew aren’t Implemented

Q: We can't apply the rotation and skew effectsto a QuickTime 1.5 movie. We've created an
identity matrix, applied RotateMatrix to the matrix, set the matrix to the movie using
SetMovieMatrix, and played the movie. The movie didn’t rotate but the movieRect rotated and
the movie scaled to the movieRect. Is there anything wrong with what we' re doing?

A: Rotation and skew will give you correct results for matrix operations but they haven’t been
implemented into QuickTime movie playback yet. Scaling and offset transformations now
work with movies and images; rotation and skew are important future directions. Meanwhile,
you can accomplish rotation and skewing by playing a movie to an off-screen GWorld and then
use QuickDraw GX or your own graphics routines to display the rotated or skewed off-screen
GWorld.

Status of Rotating Matrix Support
Q: What' sthe status of RotateMatrix and its use with SetMovieMatrix and SetTrackMatrix?

A: RotateMatrix works fine. But rotating matrixes are not supported for movies or images. So,
although RotateMatrix will give you the correct mathematical result, unless you are using the
matrix to transform something else (as with TransformFixedPoints) it haslittle use.

Rotation is avery important direction that is sure to get more attention in the future.

QT 01 - QuickTime Addendum 23 of 41

QuickTime

Macintosh Technical Notes

CHAPTER 3- IMAGE COMPRESSOR MANAGER

Image Compression Manager Functions
Creating Thumbnail PICTs

Q: How can | display the thumbnail of the PI CT instead of some generic icon when | create
QuickTime PI CT files? Thiswould really help with distinguishing files when someone wanted
to create amovie and had alot of these PICTs around.

A: You need to follow these four steps:

1. Get the thumbnail. You can use ether the MakeThumbnailFromPicture or
MakeThumbnail FromPictureFile routines as listed in the ImageCompression interface file. It
will pass back the PicHandle for the thumbnail. To install into the Finder, you need icon
resources (ICN#, ics#, icl8, ics8, icl4, icsh).

2. Make the thumbnail into a‘'icsx' format to store it as aresource. (Please see Makelcon on
the Developer CD. It is not modified for pichandles so you may have to add a DrawPicture.
Basically, you need to create a GWorld and create the appropriate 16- or 32-bit image.)

3. Add icons to resource. You can use the basic Resource Manager's WriteResource and
AddResource callsto add the resource.

4. Set Finder bits: Stuff icon resources into the file itself with resource ID
kCustomlconResource, and set the hasCustoml con bit.

{ nyd nf oPBRec. i oFl Fndr I nfo. fdFl ags : = BCR(nyd nf oPBRec. i oFl Fndr I nf o. f dFl ags, $0400) }.

DecompressSequenceBeginS

DecompressSequenceBeginS allows you to pass a compressed sample so the codec can do
preflighting before the first DecompressSequenceFrame.

24 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

pascal CBErr DeconpressSequenceBegi nS(| mageSequence *seql D, | mageDescri pti onHandl e
desc, Ptr data, CxafPtr port, GDHandl e gdh, const Rect *srcRect,
Matri xRecordPtr nmatrix, short node, RgnHandl e mask, CodecFl ags fl ags, CodecQ
accuracy, Deconpressor Conponent codec)

seql D Contains a pointer to a field to receive the unique identifier for
thi s sequence returned by the ConpressSequenceBegi n function.

desc Contains a handle to the image description structure that
descri bes the conpressed i nage.

port Points to the graphics port for the destination inage.

gdh Contains a handle to the graphics device record for the
destination i mage.

srcRect Contains a pointer to a rectangl e defining the portions of the
i mage to deconpress.

natrix Points to a matrix structure that specifies howto transformthe
i mage during deconpression.

node Specifies the transfer node for the operation.

nmask Contains a handle to the clipping region in the destination
coordi nate system

flags Contains flags providing further control information.

accur acy Specifies the accuracy desired in the deconpressed i nage.

codec Cont ai ns conpressor identifier.

New Monitor Related Playback Calls

Three additional calls—GDHasScale, GDGetScale, GD SetScale—allow applications to zoom a
monitor. They are considered low-level calls (comparable to SetEntries) that should be used
only when playing back QuickTime movies in a controlled environment with no user
interaction. Also, because this capability is not present on all machines, applications should not
depend on its availability.

The new calls provide a standard way for developers to access the resizing abilities of auser’s
monitor for playback. Effectively, this allows you to have full screen Cinepak playback on
low-end Macintosh computers.

Hardware 200 percent resize is currently available only on the Macintosh LC I, 11vx, Ilvi,
Performa 400, Performa 600, and Color Classic in 16-bit (thousands of colors) display mode
on the 12-inch (512 x 384 pixels) monitors. In the future, other graphic devices may take
advantage of it.

To implement this functionality, the Image Compression Manager actually makes calls to the
video driver for the given device. Video card manufacturers interested in supporting this
functiondity in their cards should send an AppleLink to DEVSUPPORT (Internet:
DEV SUPPORT @applelink.apple.com) for more information.

QT 01 - QuickTime Addendum 25 of 41

QuickTime

Macintosh Technical Notes

GDHasScale

GDHasScal e returns the closest possible scaling that a particular screen device canbesettoina
given pixel depth. It returns scaling information for a particular GDevice for arequested depth.
It allows you to query a GDevice without actually changing it. For example, if you specify
0x20000, but the GDevice does not support it, GDHasScale will return with noErr, and ascae
of 0x10000. Remember, it checks for a supported depth, so your requested depth must be
supported by the GDevice. GDHasScale references the video driver through the graphics
device structure.

For multiple screens, see “Multiple Screens Revealed” in develop #10 to find out how to walk
the GDeviceL ist.

pascal CSErr (DHasScal e(GDHandl e gdh, short dept h, Fi xed *scal e)

gdh A handl e to a screen graphics device.

dept h Pi xel depth of screen device. Use this field to specify which
pi xel depth scaling information should be returned for.

scal e A pointer to a fixed point scale value. On input, this field

shoul d be set to the desired scale value. On output, this field
will contain the closest scale available for the given depth. A
scal e of 0x10000 i ndi cates normal size, 0x20000 indi cates doubl e
si ze, and so on.

Errors:
cDept hEr r The requested depth is not supported.
cDevErr Not a screen devi ce.
control Err Video driver can not respond to this call.
GDGetScale

GDGetScale returns the current scale of the given screen graphics device.

pascal CSErr (DGet Scal e(GHandl e gdh, Fi xed *scal e, short *fl ags)

gdh A handl e to a screen graphi cs devi ce.
scal e Pointer to a fixed point field to hold the scale result.
flags Pointer to a short integer. It returns the status paraneter flags

for the video driver. For now, O is always returned in this field.

Errors:

cDevErr Not a screen devi ce.

control Err Video driver can not respond to this call.

26 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

GDSetScale

GDSetScale sets a screen graphics device to anew scale.

pascal CBErr @Set Scal e(GHandl e gdh, Fi xed scal e, short fl ags)

gdh A handl e to a screen graphi cs devi ce.
scal e A fixed point scale val ue.
flags Al ways pass 0.
Errors:
cDevErr Not a screen devi ce.
control Err Video driver can not respond to this call.

Using QuickTime Dither Tablesin a Codec

Q: How can | use QuickTime fast dither tables provided by the Image Compression Manager to
write acodec? | haven't been able to find any documentation on how to access and use them.
Arethesetables available?

A: For QuickTime 1.0 you could use the MakeDitherTable and DisposeDitherTable callsin
ImageCompression.h. The calls were taken out for QuickTime 1.5 because the format islikely
to change and your code would break in the future. The current dither table format isn't
available for that reason, though the documentation on the QuickTime 1.0 CD describes the
cals, if that helps.

Y ou can use QuickTime to perform the dithering. If you do use QuickTime, you could draw
the image in an off-screen GWorld, using the DrawPictureFile with the dither flag set, and then
compress it with your codec.

QT 01 - QuickTime Addendum 27 of 41

QuickTime

Macintosh Technical Notes

How to Tell Whether a Pictureis QuickTime-Compressed

Q: How can | tell whether or not a picture is QuickTime-compressed?

A: Thekey to your question is“sit in the bottlenecks.” If the picture contains any QuickTime-
compressed images, the images will need to pass through the StdPix bottleneck. Thisisanew
graphics routine introduced with QuickTime. Unlike standard QuickDraw images, which only
cdl StdBits, QuickTime-compressed images need to be decompressed first in the StdPix
routine. Then QuickDraw uses StdBits to render the decompressed image. So, swap out the
QuickDraw bottlenecks, and put some code in the StdPix routine. If it’s called when you call
DrawPicture, you know you have a compressed picture. To determine the type of
compression, you can access the image description using GetCompressedPixMaplnfo. The
cType field of the ImageDescription record will give you the codec type. See the Snippets:
Imaging: Graphics. CollectPictColors snippet and page 46-47 of develop Issue 13 for further
reference on swapping out the bottlenecks.

QuickTime Fillsin Image Descriptor when Data is Compr essed

Q: When | send compressed images over Ethernet, CompressSequenceBegin doesn't fill in the
ImageDescription, which is needed at the other end of the conference link to
DecompressSequenceBegin. Isthisabug?

A: CompressSequenceBegin doesn't actudly modify the handle that you pass. Instead,
QuickTime makes a note of the handle that’ s passed and doesn’t actually modify the contents
until the first call that actually compresses data, such as CompressSequenceFrame. At that
point, the handle will be changed.

If you can postpone dealing with the image descriptor until after the first call that compresses
data, whatever you are writing should work just fine.

Decompressing to Partial window: Bug & Workaround

Q: Under System 7, decompressing directly to awindow that is partially “ off the screen” (that
is, not completely visible) resultsin a-50 (invalid param) QuickTime error. We can special
case when windows are off the screen and decompress into an offscreen GWorld but we
would prefer afix to either QuickTime or System 7.

A: The problem you are having is due to a bug in the Image Compression Manager. It failsto
clear QDError when starting a decompression job and later checksit to seeif it is OK to
continue the operation. Something else is setting QDErT and your call fails.

28 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

The solution that you can implement now consists of clearing QDErr before calling any of the
decompression routines. Y ou can accomplish this by calling QDError (which clears the error
after it passes the current value to you) or zeroing the low mem QDerr (OXD6E) by hand.

Future versions of QuickTime will have the fix and will not require that you work around the
problem.

Problems With Matrixes and FDecompr essl mage, codecUnimpErr

Q: We are having problems related to decompressing a file compressed in the JPEG format
using FDecompressimage. If avalid MatrixRecordPtr is passed to the routine, it returns an
error -84962 (codecUnimpErr). If aparameter of NULL is passed as the MatrixRecordPtr, the
routine works fine? Are matrix operations unsupported with the JPEG codec?

A: FDecompressimage only handles translation and scaling matrixes, so please check to see
whether your matrix is either a trandation of scaling matrix. Any other matrix types are
reported back with the message codecUnimpErr.

When you specify NULL asthe matrix you will get an identity matrix.

ImageDescriptionHandles, JPEG Files
Here are two ways to get access to an ImageDescriptionHandle for a JPEG file:

Case 1: You created thefilein the first place, and thisfileisfor the Macintosh platform only.
In this case you could store the ImageDescriptionHandle in a resource, and when you want to
decompress thefile, read this resource before doing the decompression operation.

Case 2: You read an arbitrary JPEG file generated by any possible platform. The QuickTime
SDK CD has an example of a JFIF translator, JFIF is the interchange format of JPEG files
across computer platforms. Check out the ScanJPEG function in this sample to see how to
scan the file for the image description information that you could then later use in
FDecompressimage.

QT 01 - QuickTime Addendum 29 of 41

QuickTime

Macintosh Technical Notes

PICT, QuickTime-Compressed Testing

If the picture contains any QuickTime-compressed images, the images will need to pass
through the StdPix bottleneck. This is a new graphics routine introduced by QuickTime.
Unlike standard QuickDraw images, which only call StdBits, QuickTime-compressed images
need to be decompressed first in the StdPix routine. QuickDraw uses StdBits to render the
decompressed image. Swap out the QuickDraw bottlenecks and place code in the StdPix
routine. If this code is called when you call DrawPicture, you know you have a compressed
picture. To determine the type of compression, you can access the image description using
GetCompressedPixMaplnfo. The cType field of the ImageDescription record will give you the
codec type.

See the CollectPictColors snippet and “ Inside QuickTime and Component-Based Managers’ in

develop Issue 13, specifically pages 46 and 47, for more information on swapping out the
bottlenecks.

NIM Errata: OpCode Skipping With Size

Thethird bullet on page 3-27 (Inside Macintosh: QuickTime) specifies. "...Itssizeisincluded
in the size for the main opcode, hence it is not included if the QuickTime opcode is skipped.”

However, if the QuickTime opcode is skipped, the sub-opcode is still included (when
DrawPictureis called). Its size does not include the sub-opcode.

300of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

Application-Defined Functions
SetSequenceProgr essProc

SetSequenceProgressProc allows you to set a progress procedure on a Compression or
Decompression Sequence, just asin the past you could have a progress procedure when
compressing or decompressing a still image.

pascal CBErr Set SequenceProgressProc(| mageSequence seql D, ProgressProcRecord
*progr essProc)

seql D Sequence identifier.
progressProc Pointer to a record containing information about the application’s
progress proc.

QT 01 - QuickTime Addendum 3lof 41

QuickTime

Macintosh Technical Notes

CHAPTER 4 -MOVIE RESOURCE FORMATS

'LOOP' and User Data Atoms

It is often desirable for an application to preserve the window position and looping state of a
movie. This chapter describes the “ Apple Sanctified” method of doing this using user data
atoms.

User data atoms allow applications to store custom information which can be easily accessed
using QuickTime Movie Toolbox calls. These user data atoms are text or data which can be
associated and stored in any movie, track, or media. A referenceto the list of user data atoms
for each of these locations can be accessed with the following routines. GetMovieUserData(),
GetTrackUserData(), and GetMediaUserData(). Once areferenceto alist of user data atomsis
obtained, an application can store, retrieve, and manage itemsin the list using the following
routines. GetNextUserDataType(), CountUserDataType(), AddUserData(), GetUserData(),
RemoveUserData(), AddUserDataT ext(), GetUserDataT ext, and RemoveUserDataText(). A
complete description of these routines can be found in Inside Macintosh: QuickTime in the
“Working With Movie User Data” section of chapter 2.

Getting 'LOOP'-y

MoviePlayer™ has defined two movie data atoms which are used to indicate looping and
window location which applications can implement for compatibility with MoviePlayer™.
They are:

'LOOP If this 4 byte user data atom exists in the movie's user
data list, then looping is performed according to its
value: 0 for normal looping and 1 for palindrome looping

'WLOC' Handle to a point record indicating the last saved
window position

Another variation on this which originated before MoviePlayer™ that applications should be
aware of, isthe following:

'LOOP If this zero length data atom exists in the movie's user
datalist, then normal looping is performed.

In summary, if a'LOOP atom exists, then looping should be performed. If the returned data
isalong integer of value 1, then palindrome looping should be performed. Normal looping
should be performed if datareturned is of zero length or if the returned datais along integer of
value 0.

32 0f 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

Sample Code

The following example demonstrates how to get looping information from amovie:

short | oopl nfo; /1 0=no | oopi ng, 1=nor mal | oopi ng, 2=pal i ndr one
/1 1 oopi ng

Handl e t heLoop;

Movi e t heMbvi €;

User Dat a t heUser Dat a;

I ooplnfo = 0;
t heLoop = NewHandl e(0);
t heUser Dat a = Get Movi elser Dat a(t heMovi e) ;
i f (Count UserDat aType(theUserData, 'LOCP)) {

| ooplnfo = 1;

Get User Dat a(t heUser Data, theLoop, 'LOCOP, 1);

i f (GetHandl eSi ze(thelLoop))

if ((** (long **) theLoop) == 1)
| ooplnfo = 2;

}

The following example demonstrates how to add alooping atom to amovieto indicate that user
has selected looping:

Handl e t heLoop;

Movi e t heMovi e;
User Dat a t heUser Dat a;
short t heCount ;

t heLoop = NewHand! e(si zeof (1 ong));
(** (long **) theLoop) = O;
t heUser Dat a = Get Movi elser Dat a(t heMovi e) ;
t heCount = Count User Dat aType(t heUserData, 'LOCFP);
while (theCount--)

RenovelUser Dat a(t heUserData, 'LOCOP, 1);
AddUser Dat a(t heUser Dat a, theLoop, 'LOCP);

The following example demonstrates how to remove alooping atom from a movie to indicate
that looping is not selected:

Movi e t heMovi e;
Wser Dat a t heUser Dat a;
short t heCount ;

t heUser Dat a = Get Movi elser Dat a(t heMovi e) ;
t heCount = Count User Dat aType(t heUser Data, 'LOCFP);
while (theCount--)

RenoveUser Dat a(t heUserData, 'LOCOP , 1);

QT 01 - QuickTime Addendum 330f 41

QuickTime

Macintosh Technical Notes

Inside the User Data Atom

Those of you who parse user data atoms directly by accessing the 'moov' handle rather than
with the appropriate movie toolbox calls, will notice atrailing long integer of value O after all
user dataatomsin thelist. Thisisrequired for backward compatibility with QuickTime 1.0
which has a bug that requires the trailer. The size of the 'udta’ atom does reflect this extra
trailing long integer. QuickTime 1.0 and future versions will automatically handle this when
manipulating user data atoms with the movie toolbox calls.

Saving a Movie’s Active Selection

Q: | have a movie with two video tracks. Track #1—Enabled, Duration=10; Track #2—
Disabled, Duration=20. | set the movi€e's active segment to (0, 10) and saved the movie
resource to a movie file. When | open the movie in MoviePlayer, the movie is played for the
time value of 20, ignoring the active segment and there being one enabled track with a duration
of 10. Short of creating a new movie from a selection of the above mentioned movie, isthere
any way to get MoviePlayer to do what I’ d expect and not ignore the active segment and play
past the enabled track’ s duration?

A: The active selection isn’'t saved along with amovie. Therefore, no application will be able to
restore and play back the active segment. Y ou’ d have to create a new movie from the selection
in order to get MoviePlayer or any other application to play that selection only. If userswill be
using your application to play back the movie, you could store information regarding the active
segment in a user data atom inside the movie. Y ou could then have your application load the
user data atom if it exists inside amovie when it’s opened, to restore the selection. That would
be the only way to save the active movie selection.

34 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

QuickTime Dependent File For mat
Introduction

Dependent files are files that reference other files or are referenced themselves by other files. In
this note, methods of working with QuickTime dependent files, as well as QuickTime's
dependent file format are documented.

This note discusses issues mainly applicable to file management software. Most applications
rely on the Finder for file management techniques such as copying, deleting, and so on. If your
application does not delete or copy files with signatures other than your own and does not
work with QuickTime files, then this note probably does not concern you. On the other hand,
your application may aready create dependent files, and you may wish to adopt QuickTime's
method of tracking them.

Dependent File Overview

A QuickTime movie file may reference more than one file. In acommon scenario, the movie's
data may be stored in one file while the movi€e’ s resource may be stored in another. In fact, a
QuickTime movie file may reference data stored in several files. For example, sound might be
stored in onefile, the video in another, and the movie resource itself in yet another. Logically,
though, these files belong together and, thus, dependent files were created.

Dependent files use customized aliases to refer to the other files.

QuickTime Movie File QuickTime Movie Data File
Resource Fork Resource Fork
Movie Forward Alias
‘alis' -
Movie Resource < Movie Backward Alias
‘moov' ‘alis'
Data Fork Data Fork
Media
B shared Bit X shared Bit

Figure 1—Diagram of Two Dependent Files

QT 01 - QuickTime Addendum 350f 41

QuickTime

Macintosh Technical Notes

Two types of customized aliases are used: forward aliases and backward aliases. Files that
reference other files contain aforward alias to the referenced file. Files that are referenced by
another file contain a backward alias to the referencing file. To enable quick identification of a
dependent file, the “shared” bit of the file's Finder Information is set (Inside Macintosh
Volume VI, page 9-37).

A dependent fileis afile that contains a dependent alias (either a backward or forward alias)
and whose shared bit is set. If both conditions do not exist, then the file is not dependent.

New Use of Shared Bit

The shared bit is bit number 6 of the fdFIdr field of the file's FInfo record. The following
sample code demonstrates the proper method of identifying a dependent file.

CsErr Fil el sDependent (FSSpec *anyFSSpec, Bool ean *i sShar ed)

{
#define sharedBit (1<<6)

CGsErr err;
FIinfo fileFInfo;

err = FSpGet FI nf o(anyFSSpec, & i | eFl nfo);

if (err) return err;

if ((fileFInfo.fdFl ags & sharedBit) & (fileFInfo.fdType !="APPL"))
*isShared = true;

el se
*jisShared = fal se;

return noErr;

}

Previoudly, the shared bit applied only to applications that could be used on a network volume
by multiple users. The new use does not obscure its previous use. If the fileis an application
and the bit is set, then it is available to multiple users and its old meaning is retained. If thefile
isnot an application, and the bit is set then the file may depend on other files.

Dependent Alias For mat

Aliases can be customized in two ways: the userType field can be modified and custom data
can be added after the alias' private data structure (Inside Macintosh Volume V1, page 27-12).

36 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

#bytes Movie Forward Alias #pytes Movie Backward Alias
4| AliasRecord.userType = ‘fore' 4| AliasRecord.userType = 'back '
2| AliasRecord.aliasSize = 4+2+x 2| AliasRecord.aliasSize = 4+2+x
X | Variable-length private data X | Variable-length private data

Dependency data Dependency data
Resource type: 'moov' Resource type: 'moov'
Resource id: 128 Resource id: 128
2 bytes reserved 2 bytes reserved

Fig. 2—Diagram: Movie Forward Alias & Movie Backward Alias From Fig. 1

For dependent aliases, the userType field of the AliasRecord contains a signature that indicates
the direction of the reference. A backward alias has an alias userType of 'back’. A forward
alias has an alias userType of 'fore'.

Custom data can be added to the dependent aliases to provide further identification. The
aliasSize field contains the size of the alias record, and you can jump after the record to add
your custom data.

QuickTime adds 8 bytes after the Alias Record. The first 8 bytes are reserved for QuickTime
and describe the resource type and ID. For movies, the ResType is 'moov'. The final two
bytes are reserved. The custom dataformat is.

struct {
ResType r ef Resour ce; // set to O for non-Qui ckTi me
short r ef Resour cel d; // set to 0 for non-Qui ckTi me
short reser ved; // Always set to O

}s

Y ou should not alter any custom alias that your application did not create. However, you can
use the information to identify and delete dependent aliases.

Working with Dependent Files

All the normal file rules apply to dependent files. Of course, you can delete them and copy
them. But, in certain circumstances, you may need to operate on areferenced or referencing
file's dependent aiases and Finder Information.

QT 01 - QuickTime Addendum 370of 41

QuickTime

Macintosh Technical Notes

Deleting Dependent Files

Deletion of a dependent file means deleting all dependent aliases, clearing the shared bit of
dependent files if necessary, and finally deleting the file itself. Deletion of afile by definition
means deletion of one file, and one file alone. A dependent file deletion also includes the
deletion of the dependent aliases and appropriately setting the shared bit. This three-step
process can be quite complex. Here are the rules.

If QuickTimeisinstalled, use DeleteMovieFile to deete movie files. DeeteMovieFile will
perform the three-step process. QuickTime uses the File Manager to do itsfile handling, but, in
addition, it adds the logic to handle dependent files. Y ou can also use DeleteMovieFile on non-
QuickTime files without any problems.

If QuickTime is not installed or you create your own dependent files, use the File and Alias
Managers to delete dependent files. The use of the File Manager and Alias Manager to delete
QuickTime moviefilesis strongly discouraged. But, lack of QuickTime and creating your own
dependent files are two situations where you will have to perform the deletion yourself.

Since aliases are part of a dependent file, you can not work with dependent files on System 6
without QuickTime. QuickTime installs the Alias Manager on System 6 and DeleteMovieFile
will then be able to work with moviefiles.

Removing Dependent Aliases

For this discussion, target file means the file to be deleted, and the dias file means the file at the
end of the dependent alias. Also, this discussion covers the deletion of atarget file with a
forward dependency alias, because you use the same steps for a backward dependency alias.
You just need to search for a backward dependency alias instead. The seven stepsto delete a
dependent file are asfollows:

1. Openthetarget file.
For the target file you want to delete, you need to delete all dependent aliases. Thus,
first you need to open the target file's resource fork. Be sure to have an FSSpec,
because you will useit in step 4 below.

2. Search thetarget file' sresource fork for forward dependent aliases.
For each aliasin the target file, you need to see if it has a forward dependent alias by
checking the alias’ UserTypefield for ‘fore’. Then you need to retrieve the QuickTime
custom data in order to be sure the target fileisamoviefile. If the custom data contains
'mooVv' in the ResType field, then you know you have a QuickTime dependent file.

3. Searchthediasfile sresource fork for backward dependent aliases.

38 0of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

Resolve the forward dependency alias and open the resource fork. For each aliasin the
file if it isaforward dias, get the custom data from it and compare it to the custom data
you stored away. If it isa'moov’ resource and the resource ID matches, resolve the
adias.

4. Compare FSSpec of the target file and the resolved backward dependent alias.

Y ou now need to be sure you have the correct backward alias. Y ou already have an
FSSpec from the target file. Y ou can create another FSSpec by resolving the backward
alias. Call FSSpecEqual with both of these FSSpecs. If the FSSpecs are equal, you
know you have the correct dependent alias.

5. Remove the backward dependent alias.

Y ou can now remove the alias. Be sure to update your resources correctly and close the
resource file of the aliasfile.

6. Check the shared bit and delete thefile

Asyou perform these operations, be sure to keep track of other dependent aliases for
the aliasfile. If your dependent alias was the only one, then the alias file loses its
dependency and you should clear the shared bit.

7. Déetethetarget file.

Finally, you need to close the resource fork of the source file and delete it.

Copying Dependent Files

Copying a dependent file means creating a new file, and a new set of dependent aliases. In
addition, the shared bit should be checked to be sureit is set.

Creating Dependent Files

Many current applications create dependent files, but they do not do it uniformly. Thus, itis
recommended that you format dependent files like QuickTime dependent files. It is possible
future versions of system software will further exploit this information. In addition, other
applications will be able to understand your files if you support this format.

To create a dependent file, you need to create your files, create the dependent aliases, and set
the shared bit. To create the dependent aliases, use the normal Alias Manager routines. Set the
userType field of the alias to either 'fore' or 'back’. For the custom data for the dependent
aliases, you need to put zero in thefirst 8 bytes after the alias' private data.

QT 01 - QuickTime Addendum 39 of 41

QuickTime

Macintosh Technical Notes

Orphaned Dependent Files

Thus, the Finder without the INIT will not delete dependent files correctly. Fortunately, this
inability is not terribly problematic. It means dependent aliases may be left around in files, and
shared bits may be set incorrectly. These files are called orphaned dependent files. If your
application works with dependent files, you may work with orphaned dependent files. Some
dependent aliases will not be able to be resolved. Y our application should be aware of this
possibility and should be able to handle orphaned dependent files gracefully.

Cross-Platform Movie Files

QuickTime for Windows movies are by definition single forked and self-contained. Therefore,
dependent files do not apply to that platform.

40 of 41 QT 01 - QuickTime Addendum

QuickTime

Developer Technical Support December 1994

Further Reference:

Insde Macintosh, QuickTime

Inside Macintosh, QuickTime Components

QuickTime 2.0 SDK Documentation

QT 2 - Insde Macintosh: QuickTime Components Tech Note
QT 3 - QuickTime for Windows Tech Note

QT 01 - QuickTime Addendum 41 of 41

QuickTime

