
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

QT 01 - Inside Macintosh: QuickTime Addendum
QuickTime

Written by: Developer Technical Support and QuickTime EngineeringDecember
1994

This Tech Note is an addendum to the Inside Macintosh: QuickTime publication. It
will contain technical details of QuickTime missing in the documentation, updated
information, known problems, workarounds, bug fixes and similar information. The
subtitles are based on the QuickTime Publication with the addition of new ones related
to additional information not present in the documentation.

We assume that developers use QuickTime 1.6.1 or QuickTime 2.0, any older versions
are no longer supported by DTS.

Table of Contents

CHAPTER 2 - MOVIE TOOLBOX
Functions for Getting and Playing Movies

EnterMovies Use and Implementation
QuickTime Movie Toolbox Globals are Stored in System Heap
Different A5 Worlds with QuickTime?
How to Get Movie Frame Time Parameter for GetMoviePict
PutMovieIntoHandle and Data Forks
Embedding Movies (Multiple) Into a Macintosh File
Clipping QuickTime Movie Posters
QuickTime File Audio Retrieval
hintsHighQuality Flag
QuickTime CFM PowerPlug Libraries, Availability, Weak Links
Preroll Movies
CustomGetFilePreview Problem - Missing 'dctb'

Functions that Modify Movie Properties
QuickTime Track and Movie Sound Volume
How to Get the First Video Frame

Developer Technical Support December 1994

Macintosh Technical Notes

MCSetClip and Clipping with the Movie Controller
Determining QuickDraw Video Media Pixel Depth
SetMovieDrawingCompleteProc
SetTrackGWorld
GetMovieCoverProcs
Access to Decompressed Images during Playback, GWorlds
Specifying Where a Movie is Pasted Using an Offset, GetTrackMatrix,

SetTrackMatrix
Functions for Editing Movies
showUserSettingsDialog Flag
NewMovieFromScrap, Adding the Media Later

Developer Technical Support December 1994

Macintosh Technical Notes

Sound Compression, IMA 4:1

Media Functions
Base Media Handler

New Extended Features in the Base Media Handler
MediaGetOffscreenBufferSize
MediaSetHints
MediaGetName

Text Media Handler
New Display Flags
SetTextSampleData

Matrix Functions
QuickTime Rotation and Skew aren’t Implemented
Status of Rotating Matrix Support

CHAPTER 3- IMAGE COMPRESSOR MANAGER
Image Compression Manager Functions

Creating Thumbnail PICTs
DecompressSequenceBeginS
New Monitor Related Playback Calls
GDHasScale
GDGetScale
GDSetScale
How to Tell Whether a Picture is QuickTime-Compressed
QuickTime Fills in Image Descriptor when Data is Compressed
Decompressing to Partial window, Bug & Workaround
Problems With Matrixes and FDecompressImage, codecUnimpErr
ImageDescriptionHandles, JPEG Files
PICT, QuickTime-Compressed Testing
OpCode Skipping With Size
Application-Defined Functions
SetSequenceProgressProc

CHAPTER 4 -MOVIE RESOURCE FORMATS
LOOP' and User Data Atoms

Getting 'LOOP'-y
Sample Code
Inside the User Data Atom

Developer Technical Support December 1994

Macintosh Technical Notes

Saving a Movie’s Active Selection

QuickTime Dependent File Format
Introduction
Dependent File Overview
New Use of Shared Bit
Dependent Alias Format
Working with Dependent Files
Deleting Dependent Files
Removing Dependent Aliases
Copying Dependent Files
Creating Dependent Files
How About the Finder?
Orphaned Dependent Files
Cross-Platform Movie Files

Developer Technical Support December 1994

Macintosh Technical Notes

CHAPTER 2 - MOVIE TOOLBOX

Functions for Getting and Playing Movies

EnterMovies Use and Implementation

Q: The QuickTime 1.0 documentation says I can EnterMovies multiple times, as long
as I balance each EnterMovies with ExitMovies. But the article in issue 13 of develop
says, “Don’t call ExitMovies. ExitToShell does this for me.” So now the only call I
have to use is EnterMovies. But this seems to destroy the balance of these routines.
What should I do?

A: The way EnterMovies works is that it creates a new QuickTime environment if the
current a5 world doesn’t have one already. If the current a5 world already has one
from a previous EnterMovies call, then nothing is done except that a counter is
incremented to keep track of the number of times EnterMovies has been called. The
original reason for this was to account for DAs which use an application’s a5 world.
By doing this, if an application has called EnterMovies already, the movie toolbox
knows that it doesn’t have to reinitialize when the DA calls EnterMovies. Then, when
the DA calls ExitMovies, it decrements the counter and as long as all EnterMovies and
ExitMovies calls are balanced, the Movie Toolbox won’t dispose of the QuickTime
world until the last ExitMovies call is made.

The reason we suggest not to call ExitMovies is that ExitToShell will automatically
call ExitMovies for you. By doing so, you can avoid some of the problems that
developers have had with disposing of movie structures improperly and in the wrong
order. Letting ExitToShell do the final cleanup avoid these problems because the
entire a5 world and heap is disposed of as well.

But, if you’ve nested EnterMovies and ExitMovies calls, this is what we recommend:

1. If you’re writing an application, call EnterMovies and don’t call
ExitMovies. This way, any external that uses the same a5 world and calls
EnterMovies and ExitMovies will simply increment a counter and then
decrement the counter and do nothing else.

2. If you’re writing an external that runs under someone else’s application, you have
two choices:

Developer Technical Support December 1994

Macintosh Technical Notes

i. Call EnterMovies and never call ExitMovies. This causes QuickTime to
initialize once during the first call to any of your externals.

Developer Technical Support December 1994

Macintosh Technical Notes

ii. Call EnterMovies in the beginning of each external and ExitMovies at the end of
each external. This can cause a lot of wasted CPU time if the main application
(or someone else in the a5 world) didn’t call EnterMovies first because each of
the EnterMovies calls in your externals will require QuickTime to reinitialize.
The reason for this is that you balance every EnterMovies and the corresponding
ExitMovies will dispose of the QuickTime world. This can be very bad if you
external gets called often. On the other hand, if your external has a initialization
routine and close routine that is called before and after all your other routines,
you can call EnterMovies in the initialization routine, and then call ExitMovies
in your close routine. Of course, each of the routines called in between could call
either EnterMovies and ExitMovies, or not call either of them at all. But, this
depends on your implementation.

QuickTime Movie Toolbox Globals are Stored in System Heap

Q: According to the QuickTime Movie Toolbox documentation, “The Movie Toolbox maintains a set
of global variables for every application using it.” How much global memory is required? Our
application is shy on global data space.

A: The information maintained is not kept with the application’s global variables. The handle created
by the EnterMovies call is stored in the system heap, not in the application heap. You don’t have to
worry about how much space to allocate in your application. This initialization does not affect your
A5 world either.

EnterMovies initializes everything, including setting up the necessary data space and creating a
handle to it.

Different A5 Worlds with QuickTime?

Q: Can we use a different A5 world with QuickTime? Our plug-in architecture uses A5 for global
access, but we allow the A5 world to move. QuickTime doesn’t seem to appreciate this and doesn’t
think that EnterMovies has been called after the A5 world moves. We currently work around this by
locking down our A5 world but would rather not. Is locking down the A5 world even good enough?

Developer Technical Support December 1994

Macintosh Technical Notes

A: You can use a different A5 world with QuickTime. QuickTime allocates a new set of state
variables for each A5 world that’s active when EnterMovies is called. However, since QuickTime
uses A5 to identify each QuickTime client, if you move your plug-in’s A5 world, QuickTime will no
longer recognize that you’ve called EnterMovies for that client. So you can use a different A5 world,
but you will have to lock the A5 world down.

Developer Technical Support December 1994

Macintosh Technical Notes

How to Get Movie Frame Time Parameter for GetMoviePict

Q: How do I find the correct time values to pass to GetMoviePict, to get all the sequential frames of
a QuickTime movie?

A: The best way to find the correct time to pass to get movie frames is to call the
GetMovieNextInterestingTime routine repeatedly. Note that the first time you call
GetMovieNextInterestingTime its flags parameter should have a value of
nextTimeMediaSample+nextTimeEdgeOK to get the first frame.

For subsequent calls the value of flags should be nextTimeMediaSample. Also, the
whichMediaTypes parameter should include only tracks with visual information,
VisualMediaCharacteristic or 'eyes'. Check the Movie Toolbox chapter of the QuickTime
documentation for details about the GetMovieNextInterestingTime call.

PutMovieIntoHandle and Data Forks

Q: I save PICTs to my document’s data fork by writing the contents of the PicHandle. To save
movies, do I convert the movie to a handle, and then save that as I would with PICTs? I just want the
file references, not the data itself.

A: To save movies that are suitable for storage in a file, use PutMovieIntoDataFork. This function
will store a movie in the data fork of a given file, and you could call NewMovieFromDataFork to
reconstruct the movie for playback or editing.

You should also read the documentation regarding the Movie Toolbox FlattenMovie procedure,
which creates a file that contains the 'moov' resource and the data all in the data fork. The advantage
here is that the movie file you create using FlattenMovie can be read by any other QuickTime-
capable application.

Embedding Movies (Multiple) Into a Macintosh File

Q: Is there a way to embed a QuickTime movie into a Macintosh file containing non-QuickTime
stuff and get the Movie Toolbox to play the movie back correctly? If so, can we pass the same movie
handle to QuickTime for Windows and get it to play back the same data from the same file?

Developer Technical Support December 1994

Macintosh Technical Notes

A: To add QuickTime movie data to non-QuickTime files, just store the movie data in the file using
FlattenMovieData with the flattenAddMovieToDataFork flag. Since FlattenMovieData will simply
append to a data fork of a file, you can pass it any data file and it will append the movie data to that
file. QuickTime doesn’t care what’s stored before or after the movie data, as long as you don’t
reposition the movie data within the data file. If you do, the movie references will be incorrect since
they aren’t updated when you edit the file. The returned movie (from FlattenMovieData) will
properly resolve to that data file. You can then save this movie in the data fork with
PutMovieIntoDataFork or in the resource fork with AddMovieResource. If the movie is saved in the
data fork, it can be retrieved by both QuickTime and QuickTime for Windows with
NewMovieFromDataFork.

You can, in fact, store multiple movies simply by calling FlattenMovieData and
PutMovieIntoDataFork several times on the same file. Each FlattenMovieData call appends new
data, assuming the createMovieFileDataCurFile flag isn’t set.

See also the article Cross-Platform Compatibility and Multiple-Movie Files by John Wang in
develop #17.

Clipping QuickTime Movie Posters

Q: Our application uses the movie poster as a still frame in a cell, similar to using a PICT. If a user
sizes the cell width so that it’s narrower than the poster, even though we clip the drawing to the cell
size, QuickTime posters draw their full width, writing over whatever is in the way. Pictures clip
through DrawPicture; why doesn’t ShowMoviePoster stay within the clipping region?

A: ShowMoviePoster, as well as the movie and preview showing calls, uses the movie clipping
characteristics rather than the destination port’s clipping region. You must set the movie’s clipping
region to obtain the results you want. An easier way to do this is to get the picture for the poster by
calling GetMoviePosterPict, and then simply use DrawPicture to display the poster. Because this is
just a picture, the clipping region of the port is honored. This way you don’t need different code for
movies and pictures.

QuickTime File Audio Retrieval

Q: How can I retrieve audio from QuickTime files in 1-second chunks? I need a sound equivalent of
GetMoviePict.

A: PutMovieIntoTypedHandle will take a movie or a single track from within the movie and convert
it to a handle in memory of a specified type. This way you could take the sound track and convert it
into a handle.

Developer Technical Support December 1994

Macintosh Technical Notes

hintsHighQuality Flag

hintsHighQuality is a flag you may pass to the SetMoviePlayHints and SetMediaPlayHints routines.
It specifies that the given movie or media should render at the highest quality. Rendering at highest
quality may take considerably more time and memory. Therefore, this mode is typically not
appropriate for real-time playback, but is very useful for re-compressing as it can generate higher
quality images.

hintsHighQuality = 1<<8

The high-quality mode can be used with other media handlers as well. For example, the Video Media Handler turns off fast dithering
and allows high-quality dithering.

QuickTime CFM PowerPlug Libraries, Availability, Weak Links

The Code Fragment Manager supports the concept of "soft" or "weak" linking. If a library is soft linked, then the Process Manager
will go ahead and run your application even if the library is missing. This means that the application will not die even if a particular
library is not installed, and the application could disable functionality based on what libraries are available or not.

MPW PowerPC tools include the MakePEF tool with an additional flag that specifies that the exported symbols are weak. In this case
the runtime architecture will try to resolve the CFM library, but won't fail if it can't. You can define that the library has weak linking
by adding a magic tilde (~) character at the end of the -l option to MakePEF. For example, to soft link to QuickTimeLib you would do
the following:

MakePEF -l QuickTimeLib.xcoff=QuickTimeLib~ ...

You could also mark CFM libraries as weak using the Metrowerks PowerPC environment.

In the client program you can test that the CFM library was not loaded and for instance disable all functionality that depends on the
CFM library (for example, no QuickTime CFM libraries present so "play movies" gets disabled).

Since the library only registers itself with Gestalt once, there's no way to unregister it if the user moves the library. This particular
problem does not have any direct solutions, but there's an alternative way to determine if the library is loaded.

The solution is to check the address of one of the functions in the library before calling the library. The PowerPC Inside Macintosh
documentation illustrates the technique:

Developer Technical Support December 1994

Macintosh Technical Notes

extern int printf (char *, ...);
// ...
if (printf == kUnresolvedSymbolAddress)
 DebugStr("\printf is not available.");
else

printf("Hello, world!\n");

QuickTime has a new Gestalt selector to determine whether it's safe to call the weak-linked library (gestaltQuickTimeFeatures). This
function shows how to initialize QuickTime, for 68k and PowerPC:

Boolean InitQuickTime(void)
{

long qtVersion;
OSErr anErr;

#ifdef powerc
long qtFeatures;

#endif

anErr = Gestalt(gestaltQuickTime, &qtVersion);
if (anErr != noErr)

return false; // no QT present

#ifdef powerc

// Test if the library is registered.
anErr = Gestalt(gestaltQuickTimeFeatures, &qtFeatures);

 if (!((anErr == noErr) && (qtFeatures & (1 << gestaltPPCQuickTimeLibPresent))
)) // not true

 return false;
#endif

anErr = EnterMovies();
if (anErr == noErr)

return true;
else

return false; // problems initializing QuickTime
}

Both QuickTime Gestalt selectors are being tested for in the PowerPC case. You need to test both that QuickTime is present and that
the QuickTime library is present.

A simple test to verify that things work properly is to exclude the PowerPlug CFM library from the extension file, or move it out from
the folder while the application that needs the library is running.

If the application is unable to load the CFM library due to lack of space, the application might mysteriously die later, so it's important
to always check that the libraries are loaded and available.

Developer Technical Support December 1994

Macintosh Technical Notes

Preroll Movies

It is of utmost importance that you preroll your movies using the PrerollMovie call. Failing to do so will introduce playback problems,
especially when the movie starts. PrerollMovie will fill caches and buffers optimally to prevent initial playback stuttering.

Note that StartMovie will preroll the movie; also, the standard controller prerolls the movie whenever the user starts a movie using the
keyboard or the mouse. In these situations, a possible second PrerollMovie call is redundant and will waste time and resources.

In all other cases, you should preroll the movie. For instance, it is your responsibility to call PrerollMovie if you are using
SetMovieRate, or if you use McDoAction with mcActionPlay and a rate. Here's an example of how to use PrerollMovie:

OSErr DoPrerollMovie(Movie theMovie)
{

TimeValue aTimeValue;
TimeValue aMovieDur;
Fixed aPreferredRate;
OSErr anErr = noErr;

aTimeValue = GetMovieTime(theMovie, nil);
aMovieDur = GetMovieDuration(theMovie);
aPreferredRate = GetMoviePreferredRate(theMovie);

anErr = PrerollMovie(theMovie, aTimeValue, aPreferredRate);

return anErr;
}

CustomGetFilePreview Problem - Missing 'dctb'

The system's pop-up CDEF has a problem that is short-circuited if a 'dctb' is present. The popup menu in the dialog that will navigate
through folders is mis-positioned far to the right if you use CustomGetFilePreview when the "Show Preview" check box is unchecked.
This happens when the DLOG/DITL resource is not associated with a 'dctb' resource, in other words, when the default color table is
specified with ResEdit.

The workaround is to create a 'dctb' for the dialog.

Developer Technical Support December 1994

Macintosh Technical Notes

Functions that Modify Movie Properties

QuickTime Track and Movie Sound Volume

Q: What do the values of a movie’s or track’s volume represent? Is there no way to make a track
louder?

A: The volume is described as a small fract 8:8 and its values go from -1 to 1 with negative values as
place holders. The maximum volume you can get is 0x0100 with the minimum being 0 (or any
negative value). The advantage of using negative volumes is that you can turn off sound while
maintaining the level of volume. For example, -1 and 0 both equate to no volume, but the -1 implies
that 1 should be the volume when sound is turned back on, whereas the 0 does not.

The volume for a track is scaled to the movie’s volume, and the movie’s volume is scaled to the
value the user specifies for the speaker volume using the Sound control panel. This means that the
movie volume represents the maximum loudness of any track in the movie.

Note that starting with Sound Manager 3.0 you are able to increase the loudness above the maximum
level using the shift key.

How to Get the First Video Frame

Q: Stepping through QuickTime movie video frames in the order they appear in the movie is simple
using GetMovieNextInterestingTime, except for getting the first frame. If I set the time to 0 and rate
to 1, I get the second frame, not the first. In addition, the video may start later than at 0. How do you
suggest finding this first frame of video?

A: To get the first frame under the conditions you describe, you have to pass the flag
nextTimeEdgeOK to GetMovieNextInterestingTime. What this flag does is make the call return the
current interesting time instead of the next, if the current time is an interesting time. You need to do
this because there’s no way to go negative and then ask for the next interesting time.

MCSetClip and Clipping with the Movie Controller

Q: I use SetMovieDisplayClipRgn to set my movie clip, but the movie doesn’t obey my clipping.
Does the movie controller component ignore this clipping?

Developer Technical Support December 1994

Macintosh Technical Notes

The controller uses the display clip for its own purposes, such as for badges. If you want to do
clipping with the movie controller you must use MCSetClip. MCSetClip takes two regions. The first
clips both the movie and the controller. The second clips just the movie, and is equivalent to the
movie display clip. If both clips are set, the controller does the right thing and merges them as
appropriate. If you don’t want one or the other of the clips, set them to zero.

In general, if you are going to do something to a movie that is attached to a controller you must
either do it through the controller, using the action calls, or you must call MCMovieChanged.
Otherwise, the controller would need to constantly poll the movie to see if its state changed. Clearly
this would be slow.

Determining QuickDraw Video Media Pixel Depth

Q: How do I get the pixel depth of the QuickTime video media for a given track?

A: To find the video media pixel depth, you’ll need to retrieve the media’s image description handle.
You can use GetMediaSampleDescription to get it, but this routine needs both the video media and
the track’s index number. It’s not obvious, but a media’s type is identified by its media handler’s
type. Thus, you can walk through a movie’s tracks by using its indexes until you find video media, at
which point you have both the track index and video media.

The following sample code does the trick:

Developer Technical Support December 1994

Macintosh Technical Notes

Media GetFirstVideoMedia(Movie coolMovie, long *trackIndex)
{
 Track coolTrack = nil;
 Media coolMedia = nil;
 long numTracks;
 OSType mediaType;
 numTracks = GetMovieTrackCount(coolMovie);
 for (*trackIndex=1; *trackIndex<=numTracks; (*trackIndex)++) {
 coolTrack = GetMovieIndTrack(coolMovie, *trackIndex);
 if (coolTrack) coolMedia = GetTrackMedia(coolTrack);
 if (coolMedia) GetMediaHandlerDescription(coolMedia,
 &mediaType, nil, nil);
 if (mediaType = VideoMediaType) return coolMedia;
 }
 *trackIndex = 0; // trackIndex can't be 0
 return nil; // went through all tracks and no video
}

short GetFirstVideoTrackPixelDepth(Movie coolMovie)
{
 SampleDescriptionHandle imageDescH =
 (SampleDescriptionHandle)NewHandle(sizeof(Handle));
 long trackIndex = 0;
 Media coolMedia = nil;
 coolMedia = GetFirstVideoMedia(coolMovie, &trackIndex);
 if (!trackIndex || !coolMedia) return -1; // we need both
 GetMediaSampleDescription(coolMedia, trackIndex, imageDescH);
 return (*(ImageDescriptionHandle)imageDescH)->depth;
}

Note that QuickTime 2.0 has a new function called GetMovieIndTrackType that does most of the work described in the
sample. GetMovieIndTrackType lets you search for all of a movie's tracks that share a given media type or media
characteristic. See the QuickTime 2.0 SDK documentation for more details.

SetMovieDrawingCompleteProc

SetMovieDrawingCompleteProc lets you set a callback procedure that is called after a movie has drawn in one or more of its tracks. In
this way, your application can be aware of when QuickTime has drawn frames and when it hasn’t. This information is very useful
when combined with SetTrackGWorld (see below).

Developer Technical Support December 1994

Macintosh Technical Notes

pascal void SetMovieDrawingCompleteProc(Movie theMovie, MovieDrawingCompleteProcPtr
proc, long refCon)

theMovie The Movie to set the proc on.
proc Your call back procedure, or nil to remove it.
refCon Value to pass to your callback procedure.

typedef pascal OSErr (*MovieDrawingCompleteProcPtr)(Movie theMovie, long refCon);

Errors:
invalidMovie -2010 Your movie reference is bad.

SetTrackGWorld

SetTrackGWorld lets you force a track to draw into a particular GWorld. This GWorld may be different from that of the entire movie.
After the track has drawn, it calls your transfer procedure to copy the track to the actual movie GWorld. When your transfer procedure
is set, the current GWorld is set to the correct destination. You can also install a transfer procedure and set the GWorld to nil. This
results in your transfer procedure being called only as a notification that the track has drawn—no transfer needs to take place.

Developer Technical Support December 1994

Macintosh Technical Notes

pascal void SetTrackGWorld(Track theTrack, CGrafPtr port, GDHandle gdh,
TrackTransferProc proc, long refCon)

theTrack The track to set the proc to.
port The port for the track to draw to, or nil to use the movie’s GWorld.
gdh GDevice associated with the port, or nil.
proc Returns pointer to your transfer procedure, or nil to remove it.
refCon Value to pass to your transfer procedure.

typedef pascal OSErr (*TrackTransferProc)(Track t, long refCon);

Errors:
invalidTrack -2009 Your track reference is bad.

typedef struct {
GWorldPtr gw;
GWorldPtr efxTrack;
GWorldPtr tween;
short trackStat;
Rect dst;
WindowPtr wp;

} mSpfx;

typedef struct {
Movie mv;
MovieController mctl;
Rect mrect;
mSpfx *mefx;
GWorldPtr backPict;

} mvInfo, *mvPtr;

/* these are the track transfer procedures, all they do is set a flag to */
/* indicate to the drawing completion proc that both tracks are ready */

pascal OSErr FrontTrackTransferProc(Track t, mSpfx *mfx)
{

mfx->trackStat |= 1; // first bit for the front, or main track
return noErr;

}

pascal OSErr EfxTrackTransferProc(Track t, mSpfx *mfx)
{

mfx->trackStat |= 2; // second bit for the special effects track
return noErr;

}

pascal OSErr MovieDrawingProc(Movie m, mvPtr mvp) {}

void SetUpMovieEffect(Movie m, WindowPtr wp)
{

Track t;
mSpfx *mfx;
OSErr err;
Rect bounds;
mvPtr mvi;
long numTracks;

Developer Technical Support December 1994

Macintosh Technical Notes

/* set up the transfer procedures for each track */
/* track 1 is the main movie track */
/* track 2 is the special effects track */
t = GetMovieIndTrack(m,1);

SetTrackGWorld(t, mfx->gw, nil, (TrackTransferProc)FrontTrackTransferProc,
(long) mfx);

t = GetMovieIndTrack(m,2);
SetTrackGWorld(t, mfx->efxTrack, nil,

(TrackTransferProc)EfxTrackTransferProc, (long) mf /*
set up the routine that actually does the drawing */

/* this routine is called after the movie toolbox draws all the tracks */ /*
into the offscreen GWorlds set up above */

SetMovieDrawingCompleteProc(m, (MovieDrawingCompleteProcPtr)MovieDrawingProc,
(long) mvi);

GoToBeginningOfMovie(m);
}

GetMovieCoverProcs

GetMovieCoverProcs lets you retrieve the cover procedures that you set with SetMovieCoverProcs.

pascal OSErr GetMovieCoverProcs(Movie theMovie, MovieRgnCoverProc *uncoverProc,
MovieRgnCoverProc *coverProc, long *refcon)

Movie Movie reference.
MovieRgnCoverProc Returns the uncover proc for the movie.
MovieRgnCoverProc Returns the cover proc for the movie.
long Returns the refcon for the cover procedures.

Errors:
invalidMovie -2010 Your movie reference is bad.

Access to Decompressed Images during Playback, GWorlds

Q: Is there a mechanism that allows us to access each decompressed image prior to display during playback, so that we could
manipulate the image data and then hand it back for display?

A: QuickTime 1.6.1 provides a function called SetTrackGWorld. SetTrackGWorld lets you force a track to draw into a particular
GWorld. This GWorld may be different from that of the entire movie. After the track is drawn, it will call your transfer procedure to
copy the track to the actual movie GWorld. When your transfer procedure is set, the current GWorld is set to the correct destination.

You could also install a transfer procedure and set the GWorld to nil. This results in your transfer procedure being called only as a
notification that the track has drawn and that no transfer is taking place.

Developer Technical Support December 1994

Macintosh Technical Notes

Inside your transfer procedure you could manipulate the image. Note that calling resource intensive or time consuming routines in
your transfer procedure may have an adverse effect on the playback performance of the movie that is playing.

Here's an example of a transfer procedure that will keep a counter of number of times it has been called, and displays
this number in the top left corner of the movie:

Developer Technical Support December 1994

Macintosh Technical Notes

pascal OSErr myTrackTransferProc(Track t, long refCon)
{

TransferDataHandle myTDH = (TransferDataHandle)refCon ;
GrafPtr theNewWorld ;
GrafPtr movieGWorld ;
PixMapHandle offPixMap ;
Rect movieBox ;
static long index = 1 ;
CGrafPtr savedWorld ;
GDHandle savedDevice ;
Str255 theString ;

movieGWorld = (GrafPtr)((**myTDH).movieGWorld) ;
theNewWorld = (GrafPtr)((**myTDH).trackGWorld) ;
movieBox = (**myTDH).movieRect ;

offPixMap = GetGWorldPixMap((GWorldPtr)theNewWorld) ;
(void) LockPixels(offPixMap) ;

GetGWorld(&savedWorld, &savedDevice);
SetGWorld((CGrafPtr)theNewWorld, nil) ;

MoveTo (15, 15);
NumToString (index++, theString);
DrawString (theString);

// copy the image from the offscreen port
// into the movies port

SetGWorld(savedWorld, savedDevice) ;

CopyBits(&theNewWorld->portBits,
&movieGWorld->portBits,
&theNewWorld->portRect,
&movieBox,
srcCopy,
nil) ;

(void) UnlockPixels(offPixMap) ;
}

//---
// define a structure to hold all the information we need in the transfer
// proc.

typedef struct {
GWorldPtr movieGWorld ;
GWorldPtr trackGWorld ;
Rect movieRect ;

} TransferData, *TransferDataPtr, **TransferDataHandle ;

//This has the original movie gWorld, the one we created for the track and a rect

Developer Technical Support December 1994

Macintosh Technical Notes

// describing the movie. You can set a movie up to use this in the following way:

TransferDataHandle myTDH = (TransferDataHandle)NewHandle(sizeof(
TransferData)) ;

Track aTrack = GetFirstTrackOfType(aMovie, VideoMediaType) ;
short trackDepth = GetFirstVideoTrackPixelDepth(aMovie) ;

if(myTDH == nil || aTrack == nil || trackDepth < 0)
return ;

GetTrackDimensions(aTrack, &width, &height) ;

trackDimensions.right = Fix2Long(width);
trackDimensions.bottom = Fix2Long(height);

// create the movie gWorld
theErr = NewGWorld(&theNewWorld, trackDepth, &trackDimensions, nil,

theNewWorldDevice, 0L) ;
CheckError(theErr, "\pCall to NewGWorld failed");

GetMovieGWorld(aMovie, &movieGWorld, nil) ;

(**myTDH).movieGWorld = movieGWorld ;
(**myTDH).trackGWorld = theNewWorld ;

GetMovieBox(aMovie, &movieBox) ;
(**myTDH).movieRect = movieBox ;

SetTrackGWorld(aTrack, (CGrafPtr)theNewWorld, nil, myTrackTransferProc,
(long)myTDH) ;

Specifying Where a Movie is Pasted Using an Offset, GetTrackMatrix, SetTrackMatrix

Q: When a user pastes a movie into a movie-controller movie, the added movie is inserted in the top left corner of the movie. Is there a
way for the user to choose where the movie is pasted, and if not, how can I give the movie controller or Movie Toolbox an offset to
use rather than have the editing operations use the top left corner?

A: When you paste a movie into a movie-controller movie, the movie controller is simply calling PasteMovieSelection to insert the
source movie. All the characteristics of the movie are inserted, and therefore the movie is inserted in the top left corner of the movie.
There’s no easy way to specify an offset directly to the movie controller. If you want to change the offset of the pasted movie, you’ll
have to modify the movie yourself after the paste using Movie Toolbox commands. Once you’re done changing the movie, be sure to
call MCMovieChanged so that the movie controller updates correctly.

Developer Technical Support December 1994

Macintosh Technical Notes

The actual modification is simple: call GetTrackMatrix, add your offset to the matrix, and call SetTrackMatrix. The difficulty is in
determining which tracks to modify, since the paste may either create a new track or use an existing one. We recommend doing this by
gathering all track IDs before the paste, and then comparing with the track IDs after the paste. Since most movies these days have just
a few tracks, this shouldn’t require much overhead. (But be warned: some movies do have a lot of tracks!) To get the track
information, you can call GetMovieTrackCount and GetMovieIndTrack.

One last idea: If you don’t mind changing the source movie, an alternative is to simply offset the source movie before the paste.

Developer Technical Support December 1994

Macintosh Technical Notes

Functions for Editing Movies

showUserSettingsDialog Flag

showUserSettingsDialog is a new flag. When using either PasteHandleIntoMovie or ConvertFileToMovieFile to import
data into a movie, you can now set the showUserSettingsDialog flag. This displays the user settings dialog box for that import
operation, if there is one. For example, when importing a picture, this would cause the Standard Compression dialog box to be
displayed so the compression method could be selected.

showUserSettingsDialog = 2

NewMovieFromScrap, Adding the Media Later

Q: When my application creates a new media (of text type in this case) for a new track in a movie created with NewMovieFromScrap,
the dataRef and dataRefType should be set to nil, according to the QuickTime documentation. The problem is that later I want to edit
that media (adding a text sample to it, for example), but BeginMediaEdits returns the noDataHandler error(no data handler found). I
assume I can get around that by first saving the movie to a file, but this seems slimy since the movie won’t end up on disk in the end.
Any suggestions for a better approach?

A: You’re correct — BeginMediaEdits complains if the movie has been created with NewMovieFromScrap. Unfortunately,
BeginMediaEdits doesn’t think memory-based movies are on a media that will support editing. The workaround is to store the movie
in a temporary file until you’re finished editing it.

When you call NewTrackMedia, pass an alias to a new file in the dataRef parameter instead of nil. Passing nil (the usual approach)
indicates that the movie’s default data reference should be used, but because your movie came from the scrap and not a file, it has no
data reference — hence the error you’re getting. By the way, using the handle data handler in QuickTime 2.0 you can create a movie
entirely in memory.

Sound Compression, IMA 4:1

Currently the only way to compress sounds using IMA 4:1 compression is to use the Sound Converter tool that is available in the
QuickTime SDK.

Developer Technical Support December 1994

Macintosh Technical Notes

Media Functions

Base Media Handler

New Extended Features in the Base Media Handler

Three new calls and a new flag extend the Base Media Handler interface. These
features provide higher quality movie playback, but incur a performance penalty. The
Text Media Handler takes advantage of these new calls and provides built-in support
for anti-aliased text. It is achieved through a playback hint to the base media handler,
which the Apple Text Media Handler derives. This hint, hintsHighQuality, has been
discussed in the “Movie Toolbox Enhancements” section earlier in this Note.

The MediaSetHints and MediaGetOffscreenBufferSize routines were added to the
Derived Media Handler interface to support high-quality mode. Since the Apple Text
Media Handler derives the base media handler, it can use these new calls to support
anti-aliased text.

MediaGetOffscreenBufferSize

MediaGetOffscreenBufferSize determines the dimensions of the offscreen buffer.
Before the Base Media Handler allocates an offscreen buffer for your Derived Media
Handler, it calls your MediaGetOffscreenBufferSize routine. The depth and color table
used for the buffer are also passed. When this routine is called the bounds parameter
specifies the size that the Base Media Handler intends to use for your offscreen by
default. You can modify this as appropriate before returning. This capability is useful
if your media handler can draw only at particular sizes. It is also useful for
implementing anti-aliased drawing as you can request a buffer that is larger than your
destination area and have the Base Media Handler scale the image down for you.

pascal ComponentResult MediaGetOffscreenBufferSize (ComponentInstance ci, Rect *bounds,
short depth, CTabHandle ctab)

ci Component instance of a Base Media Handler.
bounds The boundaries of your offscreen buffer.
depth Depth of the offscreen.
ctab Color table associated with offscreen. You can set it to nil.

Errors:
badComponentInstance 0x80008001 Get a new component instance.

Developer Technical Support December 1994

Macintosh Technical Notes

Developer Technical Support December 1994

Macintosh Technical Notes

MediaSetHints

MediaSetHints implements the appropriate behavior for the various media hints such as scrub mode and high-quality mode. When an
application calls SetMoviePlayHints or SetMediaPlayHints, your media handler’s MediaSetHints routine is called for each media in
the movie.

pascal ComponentResult MediaSetHints (ComponentInstance ci, long hints)

ci Component instance of a Base Media Handler.
hints All hint bits that currently apply to the given media.

Errors:
badComponentInstance 0x80008001 Get a new component instance.

MediaGetName

MediaGetName lets you retrieve the name of the media type. For example, the Video Media Handler will return the string “Video.”

pascal ComponentResult MediaGetName(MediaHandler mh, Str255 name, long requestedLanguage,
long *actualLanguage)

mh The Base Media Handler instance.
name The name of the media type.
requestLanguage Language you want it to return name in.
actualLanguage Language it returns the name in.

Errors:
badComponentInstance 0x80008001 Get a new component instance.

Developer Technical Support December 1994

Macintosh Technical Notes

Text Media Handler

New Display Flags

The display flags control the behavior of the Text Media Handler. The Text Media
Handler is responsible for rendering the text. These flags provide additional control
over the rendering process. To change the Text Media Handler’s behavior with these
flags, you will normally add these flags to each text sample. When the Text Media
Handler reads each sample, it will also read the associated flags. The Text Media
Handler will then adjust its behavior according to the display flag.

To add a text sample to the media, you use the routines AddTESample and
AddTextSample. To add display flags to a text sample, you pass them in the
displayFlags parameter of these routines.

enum {
dfContinuousScroll = 1<<9,
dfFlowHoriz = 1<<10,
dfDropShadow = 1<<12,
dfAntiAlias = 1<<13,
dfKeyedText = 1<<14
};

dfContinuousScroll is a display flag that tells the Apple Text Media Handler to let new samples cause previous samples to scroll out.
dfScrollIn and/or dfScrollOut must also be set for this to take effect.

dfFlowHoriz is a display flag that tells the Apple Text Media Handler to let horizontally scrolled text flow within the text box. This
behavior contrasts with letting text flow as if the text box had no right edge.

dfDropShadow is a display flag that tells the Apple Text Media Handler to support true drop shadows. Using SetTextSampleData, the
position and translucency of the drop shadow is under application control.

dfAntiAlias is a display flag that tells the Apple Text Media Handler to attempt to display text anti-aliased. While anti-aliased text
looks nicer, it incurs a significant performance penalty.

dfKeyedText is a display flag that tells the Apple Text Media Handler to render text over the background without drawing the
background color. This technique is otherwise known as “Masked Text.”

findTextUseOffset is a new find text flag that instructs FindNextText to look at the value pointed to by the offset parameter and start
the search at that offset into the text sample indicated by startTime. This allows you to continue a text search from within a given
sample, so that multiple occurrences of the search string can be found within a single sample.

findTextUseOffset = 16

Developer Technical Support December 1994

Macintosh Technical Notes

SetTextSampleData

SetTextSampleData allows you to set values prior to calling AddTextSample or AddTESample. Two types are currently supported:
dropShadowOffsetType and dropShadowTranslucencyType. The first type, dropShadowOffsetType, is the drop shadow offset. Pass
the address of a point for the data parameter. dropShadowTranslucencyType is the drop shadow translucency. Pass a value from 0 to
255, where 0 is the lightest and 255 is the darkest.

#define dropShadowOffsetType 'drpo'
#define dropShadowTranslucencyType 'drpt'

pascal ComponentResult SetTextSampleData(MediaHandler mh, void *data, OSType
dataType)

mh Reference to the Text Media Handler. Could use GetMediaHandler.
data Pointer to data, defined by dataType parameter.
dataType Sets the type of data in the handle. For now, either 'drpo' or 'drpt'.

Errors:
badComponentInstance 0x80008001 Your media reference is bad.

The following sample code snippet demonstrates the use of SetTextSampleData.

short trans = 127;
Point dropOffset;
MediaHandler mh;

dropOffset.h = dropOffset.v = 4;
SetTextSampleData(mh,(void *)&dropOffset,dropShadowOffsetType);
SetTextSampleData(mh,(void *)&trans,dropShadowTranslucencyType);

Be sure to turn on the dfDropShadow display flag when you call AddTextSample or AddTESample.

If you pass nil for textColor and/or backColor parameters in AddTextSample or AddTESample, they default to black (for textColor)
and white (for backColor).

Developer Technical Support December 1994

Macintosh Technical Notes

Matrix Functions

QuickTime Rotation and Skew aren’t Implemented

Q: We can’t apply the rotation and skew effects to a QuickTime 1.5 movie. We’ve
created an identity matrix, applied RotateMatrix to the matrix, set the matrix to the
movie using SetMovieMatrix, and played the movie. The movie didn’t rotate but the
movieRect rotated and the movie scaled to the movieRect. Is there anything wrong
with what we’re doing?

A: Rotation and skew will give you correct results for matrix operations but they
haven’t been implemented into QuickTime movie playback yet. Scaling and offset
transformations now work with movies and images; rotation and skew are important
future directions. Meanwhile, you can accomplish rotation and skewing by playing a
movie to an off-screen GWorld and then use QuickDraw GX or your own graphics
routines to display the rotated or skewed off-screen GWorld.

Status of Rotating Matrix Support

Q: What’s the status of RotateMatrix and its use with SetMovieMatrix and
SetTrackMatrix?

A: RotateMatrix works fine. But rotating matrixes are not supported for movies or
images. So, although RotateMatrix will give you the correct mathematical result,
unless you are using the matrix to transform something else (as with
TransformFixedPoints) it has little use.

Rotation is a very important direction that is sure to get more attention in the future.

Developer Technical Support December 1994

Macintosh Technical Notes

CHAPTER 3- IMAGE COMPRESSOR MANAGER

Image Compression Manager Functions

Creating Thumbnail PICTs

Q: How can I display the thumbnail of the PICT instead of some generic icon when I create
QuickTime PICT files? This would really help with distinguishing files when someone wanted to
create a movie and had a lot of these PICTs around.

A: You need to follow these four steps:

1. Get the thumbnail. You can use either the MakeThumbnailFromPicture or
MakeThumbnailFromPictureFile routines as listed in the ImageCompression interface file. It will
pass back the PicHandle for the thumbnail. To install into the Finder, you need icon resources (ICN#,
ics#, icl8, ics8, icl4, ics4).

2. Make the thumbnail into a 'icsx' format to store it as a resource. (Please see MakeIcon on the
Developer CD. It is not modified for pichandles so you may have to add a DrawPicture. Basically,
you need to create a GWorld and create the appropriate 16- or 32-bit image.)

3. Add icons to resource. You can use the basic Resource Manager’s WriteResource and
AddResource calls to add the resource.

4. Set Finder bits: Stuff icon resources into the file itself with resource ID kCustomIconResource,
and set the hasCustomIcon bit.

{ myCInfoPBRec.ioFlFndrInfo.fdFlags := BOR(myCInfoPBRec.ioFlFndrInfo.fdFlags, $0400) }.

DecompressSequenceBeginS

DecompressSequenceBeginS allows you to pass a compressed sample so the codec can do preflighting before the first
DecompressSequenceFrame.

Developer Technical Support December 1994

Macintosh Technical Notes

pascal OSErr DecompressSequenceBeginS(ImageSequence *seqID, ImageDescriptionHandle
desc, Ptr data, CGrafPtr port, GDHandle gdh, const Rect *srcRect,
MatrixRecordPtr matrix, short mode, RgnHandle mask, CodecFlags flags, CodecQ
accuracy, DecompressorComponent codec)

seqID Contains a pointer to a field to receive the unique identifier for
this sequence returned by the CompressSequenceBegin function.

desc Contains a handle to the image description structure that describes
the compressed image.

port Points to the graphics port for the destination image.
gdh Contains a handle to the graphics device record for the destination

image.
srcRect Contains a pointer to a rectangle defining the portions of the image

to decompress.
matrix Points to a matrix structure that specifies how to transform the

image during decompression.
mode Specifies the transfer mode for the operation.
mask Contains a handle to the clipping region in the destination

coordinate system.
flags Contains flags providing further control information.
accuracy Specifies the accuracy desired in the decompressed image.
codec Contains compressor identifier.

New Monitor Related Playback Calls

Three additional calls—GDHasScale, GDGetScale, GDSetScale—allow applications to zoom a monitor. They are considered low-
level calls (comparable to SetEntries) that should be used only when playing back QuickTime movies in a controlled environment
with no user interaction. Also, because this capability is not present on all machines, applications should not depend on its availability.

The new calls provide a standard way for developers to access the resizing abilities of a user’s monitor for playback. Effectively, this
allows you to have full screen Cinepak playback on low-end Macintosh computers.

Hardware 200 percent resize is currently available only on the Macintosh LC II, IIvx, IIvi, Performa 400, Performa 600, and Color
Classic in 16-bit (thousands of colors) display mode on the 12-inch (512 x 384 pixels) monitors. In the future, other graphic devices
may take advantage of it.

To implement this functionality, the Image Compression Manager actually makes calls to the video driver for the given device. Video
card manufacturers interested in supporting this functionality in their cards should send an AppleLink to DEVSUPPORT (Internet:
DEVSUPPORT@applelink.apple.com) for more information.

Developer Technical Support December 1994

Macintosh Technical Notes

GDHasScale

GDHasScale returns the closest possible scaling that a particular screen device can be set to in a given pixel depth. It returns scaling
information for a particular GDevice for a requested depth. It allows you to query a GDevice without actually changing it. For
example, if you specify 0x20000, but the GDevice does not support it, GDHasScale will return with noErr, and a scale of 0x10000.
Remember, it checks for a supported depth, so your requested depth must be supported by the GDevice. GDHasScale references the
video driver through the graphics device structure.

For multiple screens, see “Multiple Screens Revealed” in develop #10 to find out how to walk the GDeviceList.

pascal OSErr GDHasScale(GDHandle gdh,short depth,Fixed *scale)

gdh A handle to a screen graphics device.
depth Pixel depth of screen device. Use this field to specify which pixel

depth scaling information should be returned for.
scale A pointer to a fixed point scale value. On input, this field should

be set to the desired scale value. On output, this field will
contain the closest scale available for the given depth. A scale of
0x10000 indicates normal size, 0x20000 indicates double size, and so
on.

Errors:
cDepthErr The requested depth is not supported.
cDevErr Not a screen device.
controlErr Video driver can not respond to this call.

GDGetScale

GDGetScale returns the current scale of the given screen graphics device.

pascal OSErr GDGetScale(GDHandle gdh,Fixed *scale,short *flags)

gdh A handle to a screen graphics device.
scale Pointer to a fixed point field to hold the scale result.
flags Pointer to a short integer. It returns the status parameter flags

for the video driver. For now, 0 is always returned in this field.

Errors:
cDevErr Not a screen device.
controlErr Video driver can not respond to this call.

Developer Technical Support December 1994

Macintosh Technical Notes

GDSetScale

GDSetScale sets a screen graphics device to a new scale.

pascal OSErr GDSetScale(GDHandle gdh,Fixed scale,short flags)

gdh A handle to a screen graphics device.
scale A fixed point scale value.
flags Always pass 0.

Errors:
cDevErr Not a screen device.
controlErr Video driver can not respond to this call.

Using QuickTime Dither Tables in a Codec

Q: How can I use QuickTime fast dither tables provided by the Image Compression Manager to write a codec? I haven’t been able to
find any documentation on how to access and use them. Are these tables available?

A: For QuickTime 1.0 you could use the MakeDitherTable and DisposeDitherTable calls in ImageCompression.h. The calls were
taken out for QuickTime 1.5 because the format is likely to change and your code would break in the future. The current dither table
format isn’t available for that reason, though the documentation on the QuickTime 1.0 CD describes the calls, if that helps.

You can use QuickTime to perform the dithering. If you do use QuickTime, you could draw the image in an off-screen GWorld, using
the DrawPictureFile with the dither flag set, and then compress it with your codec.

Developer Technical Support December 1994

Macintosh Technical Notes

How to Tell Whether a Picture is QuickTime-Compressed

Q: How can I tell whether or not a picture is QuickTime-compressed?

A: The key to your question is “sit in the bottlenecks.” If the picture contains any QuickTime-compressed images, the images will
need to pass through the StdPix bottleneck. This is a new graphics routine introduced with QuickTime. Unlike standard QuickDraw
images, which only call StdBits, QuickTime-compressed images need to be decompressed first in the StdPix routine. Then QuickDraw
uses StdBits to render the decompressed image. So, swap out the QuickDraw bottlenecks, and put some code in the StdPix routine. If
it’s called when you call DrawPicture, you know you have a compressed picture. To determine the type of compression, you can
access the image description using GetCompressedPixMapInfo. The cType field of the ImageDescription record will give you the
codec type. See the Snippets: Imaging: Graphics: CollectPictColors snippet and page 46-47 of develop Issue 13 for further reference
on swapping out the bottlenecks.

QuickTime Fills in Image Descriptor when Data is Compressed

Q: When I send compressed images over Ethernet, CompressSequenceBegin doesn’t fill in the ImageDescription, which is needed at
the other end of the conference link to DecompressSequenceBegin. Is this a bug?

A: CompressSequenceBegin doesn’t actually modify the handle that you pass. Instead, QuickTime makes a note of the handle that’s
passed and doesn’t actually modify the contents until the first call that actually compresses data, such as CompressSequenceFrame. At
that point, the handle will be changed.

If you can postpone dealing with the image descriptor until after the first call that compresses data, whatever you are writing should
work just fine.

Decompressing to Partial window: Bug & Workaround

Q: Under System 7, decompressing directly to a window that is partially “off the screen” (that is, not completely visible) results in a
-50 (invalid param) QuickTime error. We can special case when windows are off the screen and decompress into an offscreen GWorld
but we would prefer a fix to either QuickTime or System 7.

A: The problem you are having is due to a bug in the Image Compression Manager. It fails to clear QDError when starting a
decompression job and later checks it to see if it is OK to continue the operation. Something else is setting QDErr and your call fails.

Developer Technical Support December 1994

Macintosh Technical Notes

The solution that you can implement now consists of clearing QDErr before calling any of the decompression routines. You can
accomplish this by calling QDError (which clears the error after it passes the current value to you) or zeroing the low mem QDerr
(0xD6E) by hand.

Future versions of QuickTime will have the fix and will not require that you work around the problem.

Problems With Matrixes and FDecompressImage, codecUnimpErr

Q: We are having problems related to decompressing a file compressed in the JPEG format using FDecompressImage. If a valid
MatrixRecordPtr is passed to the routine, it returns an error -84962 (codecUnimpErr). If a parameter of NULL is passed as the
MatrixRecordPtr, the routine works fine? Are matrix operations unsupported with the JPEG codec?

A: FDecompressImage only handles translation and scaling matrixes, so please check to see whether your matrix is either a translation
of scaling matrix. Any other matrix types are reported back with the message codecUnimpErr.

When you specify NULL as the matrix you will get an identity matrix.

ImageDescriptionHandles, JPEG Files

Here are two ways to get access to an ImageDescriptionHandle for a JPEG file:

Case 1: You created the file in the first place, and this file is for the Macintosh platform only.
In this case you could store the ImageDescriptionHandle in a resource, and when you want to decompress the file, read this resource
before doing the decompression operation.

Case 2: You read an arbitrary JPEG file generated by any possible platform. The QuickTime SDK CD has an example of a JFIF
translator, JFIF is the interchange format of JPEG files across computer platforms. Check out the ScanJPEG function in this sample to
see how to scan the file for the image description information that you could then later use in FDecompressImage.

Developer Technical Support December 1994

Macintosh Technical Notes

PICT, QuickTime-Compressed Testing

If the picture contains any QuickTime-compressed images, the images will need to pass through the StdPix bottleneck. This is a new
graphics routine introduced by QuickTime. Unlike standard QuickDraw images, which only call StdBits, QuickTime-compressed
images need to be decompressed first in the StdPix routine. QuickDraw uses StdBits to render the decompressed image. Swap out the
QuickDraw bottlenecks and place code in the StdPix routine. If this code is called when you call DrawPicture, you know you have a
compressed picture. To determine the type of compression, you can access the image description using GetCompressedPixMapInfo.
The cType field of the ImageDescription record will give you the codec type.

See the CollectPictColors snippet and “Inside QuickTime and Component-Based Managers” in develop Issue 13, specifically pages 46
and 47, for more information on swapping out the bottlenecks.

NIM Errata: OpCode Skipping With Size

The third bullet on page 3-27 (Inside Macintosh: QuickTime) specifies: "...Its size is included in the size for the main opcode, hence it
is not included if the QuickTime opcode is skipped."

However, if the QuickTime opcode is skipped, the sub-opcode is still included (when DrawPicture is called). Its size does not include
the sub-opcode.

Developer Technical Support December 1994

Macintosh Technical Notes

Application-Defined Functions

SetSequenceProgressProc

SetSequenceProgressProc allows you to set a progress procedure on a Compression or
Decompression Sequence, just as in the past you could have a progress procedure
when compressing or decompressing a still image.

pascal OSErr SetSequenceProgressProc(ImageSequence seqID, ProgressProcRecord
*progressProc)

seqID Sequence identifier.
progressProc Pointer to a record containing information about the application’s

progress proc.

Developer Technical Support December 1994

Macintosh Technical Notes

CHAPTER 4 -MOVIE RESOURCE FORMATS

'LOOP' and User Data Atoms

It is often desirable for an application to preserve the window position and looping
state of a movie. This chapter describes the “Apple Sanctified” method of doing this
using user data atoms.

User data atoms allow applications to store custom information which can be easily
accessed using QuickTime Movie Toolbox calls. These user data atoms are text or
data which can be associated and stored in any movie, track, or media. A reference to
the list of user data atoms for each of these locations can be accessed with the
following routines: GetMovieUserData(), GetTrackUserData(), and
GetMediaUserData(). Once a reference to a list of user data atoms is obtained, an
application can store, retrieve, and manage items in the list using the following
routines: GetNextUserDataType(), CountUserDataType(), AddUserData(),
GetUserData(), RemoveUserData(), AddUserDataText(), GetUserDataText, and
RemoveUserDataText(). A complete description of these routines can be found in
Inside Macintosh: QuickTime in the “Working With Movie User Data” section of
chapter 2.

Getting 'LOOP'-y

MoviePlayer™ has defined two movie data atoms which are used to indicate looping
and window location which applications can implement for compatibility with
MoviePlayer™. They are:

'LOOP' If this 4 byte user data atom exists in the
movie's user data list, then looping is performed
according to its value: 0 for normal looping and 1 for
palindrome looping
'WLOC' Handle to a point record indicating the
last saved window position

Another variation on this which originated before MoviePlayer™ that applications
should be aware of, is the following:

'LOOP' If this zero length data atom exists in the

Developer Technical Support December 1994

Macintosh Technical Notes

movie's user data list, then normal looping is
performed.

In summary, if a 'LOOP' atom exists, then looping should be performed. If the
returned data is a long integer of value 1, then palindrome looping should be
performed. Normal looping should be performed if data returned is of zero length or
if the returned data is a long integer of value 0.

Developer Technical Support December 1994

Macintosh Technical Notes

Sample Code

The following example demonstrates how to get looping information from a movie:

 short loopInfo; // 0=no looping,1=normal looping,2=palindrome
 // looping

 Handle theLoop;
 Movie theMovie;
 UserData theUserData;

 loopInfo = 0;
 theLoop = NewHandle(0);
 theUserData = GetMovieUserData(theMovie);
 if (CountUserDataType(theUserData, 'LOOP')) {
 loopInfo = 1;
 GetUserData(theUserData, theLoop, 'LOOP', 1);
 if (GetHandleSize(theLoop))
 if ((** (long **) theLoop) == 1)
 loopInfo = 2;
 }

The following example demonstrates how to add a looping atom to a movie to indicate that user has selected looping:

 Handle theLoop;
 Movie theMovie;
 UserData theUserData;
 short theCount;

 theLoop = NewHandle(sizeof(long));
 (** (long **) theLoop) = 0;
 theUserData = GetMovieUserData(theMovie);
 theCount = CountUserDataType(theUserData, 'LOOP');
 while (theCount--)
 RemoveUserData(theUserData, 'LOOP', 1);
 AddUserData(theUserData, theLoop, 'LOOP');

The following example demonstrates how to remove a looping atom from a movie to indicate that looping is not selected:

 Movie theMovie;
 UserData theUserData;
 short theCount;

 theUserData = GetMovieUserData(theMovie);
 theCount = CountUserDataType(theUserData, 'LOOP');
 while (theCount--)
 RemoveUserData(theUserData, 'LOOP', 1);

Developer Technical Support December 1994

Macintosh Technical Notes

Inside the User Data Atom

Those of you who parse user data atoms directly by accessing the 'moov' handle rather than with the appropriate movie toolbox calls,
will notice a trailing long integer of value 0 after all user data atoms in the list. This is required for backward compatibility with
QuickTime 1.0 which has a bug that requires the trailer. The size of the 'udta' atom does reflect this extra trailing long integer.
QuickTime 1.0 and future versions will automatically handle this when manipulating user data atoms with the movie toolbox calls.

Saving a Movie’s Active Selection

Q: I have a movie with two video tracks: Track #1—Enabled, Duration=10; Track #2—Disabled, Duration=20. I set the movie’s active
segment to (0, 10) and saved the movie resource to a movie file. When I open the movie in MoviePlayer, the movie is played for the
time value of 20, ignoring the active segment and there being one enabled track with a duration of 10. Short of creating a new movie
from a selection of the above mentioned movie, is there any way to get MoviePlayer to do what I’d expect and not ignore the active
segment and play past the enabled track’s duration?

A: The active selection isn’t saved along with a movie. Therefore, no application will be able to restore and play back the active
segment. You’d have to create a new movie from the selection in order to get MoviePlayer or any other application to play that
selection only. If users will be using your application to play back the movie, you could store information regarding the active segment
in a user data atom inside the movie. You could then have your application load the user data atom if it exists inside a movie when it’s
opened, to restore the selection. That would be the only way to save the active movie selection.

QuickTime Dependent File Format

Introduction

Dependent files are files that reference other files or are referenced themselves by
other files. In this note, methods of working with QuickTime dependent files, as well
as QuickTime's dependent file format are documented.

This note discusses issues mainly applicable to file management software. Most
applications rely on the Finder for file management techniques such as copying,
deleting, and so on. If your application does not delete or copy files with signatures
other than your own and does not work with QuickTime files, then this note probably
does not concern you. On the other hand, your application may already create
dependent files, and you may wish to adopt QuickTime’s method of tracking them.

Developer Technical Support December 1994

Macintosh Technical Notes

Dependent File Overview

A QuickTime movie file may reference more than one file. In a common scenario, the
movie’s data may be stored in one file while the movie’s resource may be stored in
another. In fact, a QuickTime movie file may reference data stored in several files. For
example, sound might be stored in one file, the video in another, and the movie
resource itself in yet another. Logically, though, these files belong together and, thus,
dependent files were created.

Dependent files use customized aliases to refer to the other files.

Movie Forward Alias
 'alis'

Movie Resource
'moov'

QuickTime Movie File

Movie Backward Alias
'alis'

QuickTime Movie Data File

Resource ForkResource Fork

Shared Bit Shared Bit

Data ForkData Fork

Media

Figure 1—Diagram of Two Dependent Files

Developer Technical Support December 1994

Macintosh Technical Notes

Two types of customized aliases are used: forward aliases and backward aliases. Files
that reference other files contain a forward alias to the referenced file. Files that are
referenced by another file contain a backward alias to the referencing file. To enable
quick identification of a dependent file, the “shared” bit of the file’s Finder
Information is set (Inside Macintosh Volume VI, page 9-37).

A dependent file is a file that contains a dependent alias (either a backward or forward
alias) and whose shared bit is set. If both conditions do not exist, then the file is not
dependent.

New Use of Shared Bit

The shared bit is bit number 6 of the fdFldr field of the file’s FInfo record. The
following sample code demonstrates the proper method of identifying a dependent
file.

OSErr FileIsDependent(FSSpec *anyFSSpec,Boolean *isShared)
{

#define sharedBit (1<<6)
OSErr err;
FInfo fileFInfo;

err = FSpGetFInfo(anyFSSpec,&fileFInfo);
if (err) return err;
if ((fileFInfo.fdFlags & sharedBit) && (fileFInfo.fdType != 'APPL'))

*isShared = true;
else

*isShared = false;
return noErr;

}

Previously, the shared bit applied only to applications that could be used on a network volume by multiple users. The new use does not
obscure its previous use. If the file is an application and the bit is set, then it is available to multiple users and its old meaning is
retained. If the file is not an application, and the bit is set then the file may depend on other files.

Dependent Alias Format

Aliases can be customized in two ways: the userType field can be modified and custom data can be added after the alias’ private data
structure (Inside Macintosh Volume VI, page 27-12).

Developer Technical Support December 1994

Macintosh Technical Notes

AliasRecord.userType = 'fore'

Variab le-length private data

AliasRecord.aliasSize = 4+2+x

4

2

x

Dependency data

Movie Forward Alias#bytes

'moov'

128

2 bytes reserved

Resource type:

Resource id:

A liasRecord.userType = 'back'

Variab le-length private data

AliasRecord.aliasSize = 4+2+x

4

2

x

Dependency data

Movie Backward Alias#bytes

'moov'

128

2 bytes reserved

Resource type:

Resource id:

Fig. 2—Diagram: Movie Forward Alias & Movie Backward Alias From Fig. 1

For dependent aliases, the userType field of the AliasRecord contains a signature that indicates the direction of the reference. A
backward alias has an alias userType of 'back'. A forward alias has an alias userType of 'fore'.

Custom data can be added to the dependent aliases to provide further identification. The aliasSize field contains the size of the alias
record, and you can jump after the record to add your custom data.

QuickTime adds 8 bytes after the Alias Record. The first 8 bytes are reserved for QuickTime and describe the resource type and ID.
For movies, the ResType is 'moov'. The final two bytes are reserved. The custom data format is:

struct {
ResType refResource; // set to 0 for non-QuickTime
short refResourceId; // set to 0 for non-QuickTime
short reserved; // Always set to 0
};

You should not alter any custom alias that your application did not create. However, you can use the information to identify and delete
dependent aliases.

Working with Dependent Files

All the normal file rules apply to dependent files. Of course, you can delete them and copy them. But, in certain circumstances, you
may need to operate on a referenced or referencing file’s dependent aliases and Finder Information.

Developer Technical Support December 1994

Macintosh Technical Notes

Deleting Dependent Files

Deletion of a dependent file means deleting all dependent aliases, clearing the shared bit of dependent files if necessary, and finally
deleting the file itself. Deletion of a file by definition means deletion of one file, and one file alone. A dependent file deletion also
includes the deletion of the dependent aliases and appropriately setting the shared bit. This three-step process can be quite complex.
Here are the rules:

If QuickTime is installed, use DeleteMovieFile to delete movie files. DeleteMovieFile will perform the three-step process. QuickTime
uses the File Manager to do its file handling, but, in addition, it adds the logic to handle dependent files. You can also use
DeleteMovieFile on non-QuickTime files without any problems.

If QuickTime is not installed or you create your own dependent files, use the File and Alias Managers to delete dependent files. The
use of the File Manager and Alias Manager to delete QuickTime movie files is strongly discouraged. But, lack of QuickTime and
creating your own dependent files are two situations where you will have to perform the deletion yourself.

Since aliases are part of a dependent file, you can not work with dependent files on System 6 without QuickTime. QuickTime installs
the Alias Manager on System 6 and DeleteMovieFile will then be able to work with movie files.

Removing Dependent Aliases

For this discussion, target file means the file to be deleted, and the alias file means the file at the end of the dependent alias. Also, this
discussion covers the deletion of a target file with a forward dependency alias, because you use the same steps for a backward
dependency alias. You just need to search for a backward dependency alias instead. The seven steps to delete a dependent file are as
follows:

1. Open the target file.

For the target file you want to delete, you need to delete all dependent aliases. Thus, first you need to open the target file’s
resource fork. Be sure to have an FSSpec, because you will use it in step 4 below.

2. Search the target file’s resource fork for forward dependent aliases.

For each alias in the target file, you need to see if it has a forward dependent alias by checking the alias’ UserType field for
'fore'. Then you need to retrieve the QuickTime custom data in order to be sure the target file is a movie file. If the custom
data contains 'moov' in the ResType field, then you know you have a QuickTime dependent file.

3. Search the alias file’s resource fork for backward dependent aliases.

Developer Technical Support December 1994

Macintosh Technical Notes

Resolve the forward dependency alias and open the resource fork. For each alias in the file, if it is a forward alias, get the
custom data from it and compare it to the custom data you stored away. If it is a 'moov' resource and the resource ID
matches, resolve the alias.

4. Compare FSSpec of the target file and the resolved backward dependent alias.

You now need to be sure you have the correct backward alias. You already have an FSSpec from the target file. You can
create another FSSpec by resolving the backward alias. Call FSSpecEqual with both of these FSSpecs. If the FSSpecs are
equal, you know you have the correct dependent alias.

5. Remove the backward dependent alias.

You can now remove the alias. Be sure to update your resources correctly and close the resource file of the alias file.

6. Check the shared bit and delete the file

As you perform these operations, be sure to keep track of other dependent aliases for the alias file. If your dependent alias
was the only one, then the alias file loses its dependency and you should clear the shared bit.

7. Delete the target file.

Finally, you need to close the resource fork of the source file and delete it.

Copying Dependent Files

Copying a dependent file means creating a new file, and a new set of dependent aliases. In addition, the shared bit should be checked
to be sure it is set.

Creating Dependent Files

Many current applications create dependent files, but they do not do it uniformly. Thus, it is recommended that you format dependent
files like QuickTime dependent files. It is possible future versions of system software will further exploit this information. In addition,
other applications will be able to understand your files if you support this format.

To create a dependent file, you need to create your files, create the dependent aliases, and set the shared bit. To create the dependent
aliases, use the normal Alias Manager routines. Set the userType field of the alias to either 'fore' or 'back'. For the custom data for the
dependent aliases, you need to put zero in the first 8 bytes after the alias’ private data.

Developer Technical Support December 1994

Macintosh Technical Notes

Orphaned Dependent Files

Thus, the Finder without the INIT will not delete dependent files correctly. Fortunately, this inability is not terribly problematic. It
means dependent aliases may be left around in files, and shared bits may be set incorrectly. These files are called orphaned dependent
files. If your application works with dependent files, you may work with orphaned dependent files. Some dependent aliases will not be
able to be resolved. Your application should be aware of this possibility and should be able to handle orphaned dependent files
gracefully.

Cross-Platform Movie Files

QuickTime for Windows’ movies are by definition single forked and self-contained. Therefore, dependent files do not apply to that
platform.

Developer Technical Support December 1994

Macintosh Technical Notes

Further Reference:
• Inside Macintosh, QuickTime
• Inside Macintosh, QuickTime Components
• QuickTime 2.0 SDK Documentation
• QT 2 - Inside Macintosh:QuickTime Components Tech Note

• QT 3 - QuickTime for Windows Tech Note

Developer Technical Support December 1994

