
Open Transport Module Open Transport Module
Developer NoteDeveloper Note

PRELIMINARY
Revision 1.5d2

06/18/96

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 1
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Table of Contents

Revision History.. 4

Related Documents.. 4

Module Development for Open Transport...5
Dynamic Loading...6
Building Modules and Drivers..6

Module exports..6
GetOTInstallInfo.. 7
InitStreamModule...11
TerminateStreamModule.. 12

Building Modules with ASLM..13
68K ASLM Modules.. 13
PPC ASLM Modules..14

Building Modules with CFM...17

Working with Port Drivers...18

APIs for Port Drivers...19
OTRegisterPort..19
OTUnregisterPort..24
OTChangePortState...24
OTGetIndexedPort.. 25
OTFindPort..25
OTFindPortByRef...25
OTFindPortByDev.. 25

Registering Port Drivers.. 27

Port Driver Configuration Info..30

Module and Driver Operation..32

Interrupt-Safe functions...32

Secondary Interrupt Services...33

Timer Services...34

Atomic Services...35

Power services... 37

Memory allocation functions...38
OTAllocMem...38
OTFreeMem.. 38
allocb...38
freeb...38
freemsg.. 38
dupb... 38
dupmsg..38
copyb...39
copymsg...39
OTAllocMsg.. 39
OTAllocReadOnlyMsg..39

Open and Close support Code..40
mi_close_comm...40
mi_close_detached.. 41
mi_open_comm... 42

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 2
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

mi_next_ptr..43
mi_open_detached...44
mi_bufcall..45

IOCTL Support functions... 46
mi_copyin.. 47
mi_copyout.. 48
mi_copyout_alloc..48
MI_COPY_CASE...49
mi_copy_done...49
mi_copy_set_rval.. 50
mi_copy_state..50

TPI Support functions...51
mi_tpi_ack_alloc...51
mi_tpi_err_ack_alloc...51
mi_tpi_ok_ack_alloc...51
Other TPI prototypes...52

Synchronization support... 53
IOCTL Messages.. 53

Appendix A- Synchronization..57

Appendix B- Performance hints...60

Appendix C - Random Notes/Warnings...62

Index.. 64

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 3
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Revision History

05/30/95 Some updates for version 1.5 of Open Transport
01/18/95 Updated for 1.1b14
8/28/95 Updated for 1.1b2 (partially - still more to do)
11/28/94 Update for 1.0a2 Open Transport. Changes to ValidateHardware call and removed one timer call.
09/16/94 Update for 1.0d16 Open Transport and new Power calls
07/25/94 Merged with Open Transport Ethernet Developer Note, with additions for PCI Bus development
06/16/94 Minor corrections
05/04/94 Revised for new address formats
02/14/94 Creation

Related Documents

Data Link Provider Interface Specification Unix International, OSI Workgroup

Transport Provider Interface Specification Unix International, OSI Special Interest Group, Revision 1.5 (Date:
92/12/10)

Streams Modules and Drivers Unix® SVR4.2 UNIX Press

Apple Shared Library Manager Developer’s Guide, by ESD Publications, October 4, 1993, Apple Computer, Inc.

Open Transport Client Developer Note

Designing PCI Cards and Drivers for Power Macintosh Computers , Apple Computer, Inc.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 4
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module Development for Open Transport
Open Transport has chosen the STREAMS model for implementing protocols and drivers. This
provides a large amount of flexibility for mixing and matching protocols. It also allows a wide range of
third-party STREAMS modules and drivers to be easily ported to the Open Transport environment.

Part of the flexibility of the STREAMS environment comes from being a messaging interface with only
a few well-defined messages. The most common types of messages are M_DATA (for sending raw
data), M_PROTO (for sending normal commands), and M_PCPROTO (for sending high-priority
commands). Since STREAMS does not define the content of M_PROTO or M_PCPROTO messages, it
is necessary for modules to agree on a message format if they are to communicate.

Open Transport has standardized on the Transport Provider Interface (TPI) message format for most
protocol modules, and the Data Link Provider Interface (DLPI) for most STREAMS hardware drivers.

This document describes what must be done to create STREAMS modules and drivers for Open
Transport. It assumes that you are familiar with the material in the Streams Modules and Drivers for Unix®
SVR4.2 published by Unix Press, as well as the TPI and DLPI specifications (see the Related Documents
section for references).

Open Transport classifies STREAMS modules into three different categories. These are modules,
drivers, and port drivers.

A module is a STREAMS module that expects MODOPEN to be set in the sflags parameter of its open
routine. It is always "pushed" onto other modules, and never "opened" as a driver.

A driver is a STREAMS module that expects 0 or CLONEOPEN to be set in the sflags parameter of its
open routine. It is always "opened" as a driver, and never "pushed" onto other modules. It may be
I_LINKed or I_PLINKed below other drivers

A port driver is a STREAMS module that acts exactly like the driver described above, but it is
"registered" with Open Transport in Open Transport's port registry (see the Open Tpt Client Note for
information on the port registry). This allows several things to happen. First, it is visible in the port
registry for clients to browse. Second, multiple instances of the module are possible. You can register a
single module as several different ports, which allows a single driver to support multiple hardware
devices (one for each port registered). For PowerPC port drivers implemented using CFM, this allows a
separate static data instance for each hardware device, which is very convenient. It also gives each
instance of the driver a unique major device number (See the section on Port Drivers for more
information).

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 5
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Dynamic Loading
Open Transport supports two methods of dynamic loading for STREAMS modules. A STREAMS
module may be written as an Apple Shared Library Manager (ASLM) shared library, or as a CFM shared
library. For 68K STREAMS modules, you must use ASLM. For PowerPC, CFM is the preferred
mechanism, but ASLM may also be used (Note: ASLM will not be available for module loading in Mac
OS 8).

Whenever a STREAMS module or driver is described as exporting a function in this document, it means
to export the function using the named export method of the appropriate DLL. For ASLM, this means
using the "extern" keyword in front of the name of a function in the export file. For CFM, this means
using the -export switch to export the functions when linking a shared library.

For hardware STREAMS drivers that are written on Power Macintosh systems with the Native driver
architecture, the driver must be written to conform with that architecture. This means that the hardware
driver must be written using CFM only. Open Transport will get all of the information it needs from the
System Registry in this case.

Building Modules and Drivers
This section defines the actual steps necessary to build STREAMS modules and drivers for Open
Transport. It will describe any code that needs to be supplied to include the module or driver into the
Open Transport system, but it will not talk about how to write the operational portion of a STREAMS
modules or driver.

WARNING: When building PowerPC version of modules, NEVER set any compiler options that
indicate that structure should be aligned in any way but PowerPC native. Open Transport
includes #pragmas to align all structures that are shared between 68K and PowerPC code to 68K
alignment. However, any structures that are not shared between 68K and PowerPC code (which
includes most of the module-level headers) are aligned to PowerPC standard alignment. If you
override this alignment, your code will not be looking at the fields you think you are. Many of
Open Transport's data structures are common with the Unix world, where a 16-bit field is
followed by a 32-bit field, causing non-optimal alignment on the 32-bit field unless PowerPC
standard alignment is used.

Module exports
In order to use your STREAMS module or driver, Open Transport needs to be able to locate information
about your module. This section will describe those exports.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 6
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

GetOTInstallInfo

When a service requires the use of your driver, Open Transport will automatically load it and install it
into the STREAMS module tables. In order to do this, your module must export a function named either
GetOTInstallInfo or GetOTxxxxxInstallInfo (where xxxxx is the name of the module or driver).

install_info* GetOTInstallInfo(void);

NOTE: The reason for having two different possible names for most of the Open Transport
interface functions is so that you can put more than one STREAMS module in a single shared
library. This is often necessary when a STREAMS module is both a driver and a module.

This function returns the installation information that Open Transport needs to install the driver into the
STREAMS tables.

struct install_info
{

struct streamtab* install_str;
UInt32 install_flags;
UInt32 install_sqlvl;
char* install_buddy;
void* ref_load;
UInt32 ref_count;

};

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 7
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

install_str This is a pointer to the driver's streamtab structure.

install_flags This contains bits to inform Open Transport about some of your capabilities and
needs (see below for the bit definitions).

install_sqlvl This flag is set to the type of reentrancy your driver can handle.
mps_become_writer can be used to insure that only 1 instance of your module is
running for those functions that require exclusivity. Legal values are:

SQLVL_QUEUE Each stream containing your module can be entered
once from the upper queue and once from the lower
queue at the same time. Using
mps_become_writer is very time-consuming with
this sync level.

SQLVL_QUEUEPAIR Each stream containing your module can be entered
from either the upper queue or the lower queue, but
not at the same time. Using mps_become_writer
is very time-consuming with this sync level.

SQLVL_MODULE Your module can only be entered once, no matter
which instance of the module is entered.
mps_become_writer is not needed with this sync
level.

SQLVL_GLOBAL Only 1 STREAMS module or driver can be entered
at any one time. Between all modules that use
SQLVL_GLOBAL, only 1 will be entered at a
time. mps_become_writer is not needed with this
sync level.

SQLVL_SPLITMODULE Your module can be entered once from an upper
queue and once from a lower queue. With this sync
level, the mps_become_writer function is relatively
cheap, and this is the recommended sync level for
network and link-layer drivers. This sync level is
available only in Open Transport 1.5 or later.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 8
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

install_buddy This field is set to the name of a module/driver that needs to be synchronized with
this driver. For modules with SQLVL_MODULE synchronization, it means that
both modules are considered a single module from the point of view of the
synchronization. For other synchronization, it means that if you call
mps_become_writer, you will be synchronized between both sets of modules.
You can make more than 2 modules be install buddies, by creating a "ring" of
buddies (i.e. A has B as a buddy, B has C as a buddy, and C has A as a buddy).
NEVER set up install_buddies that are not in a "ring"-type configuration, or
Open Transport may go into an infinite loop trying to find your "buddies". For
drivers that are registered ports (see the section "Working with Registered
Ports"), you must use the real module name of the port, not the name it is
registered with. In addition, making a registered port driver a writer buddy
means that all instances of the registered port driver are synchronized together,
which can have a detrimental performance impact if the driver synchronization is
set to SQLVL_MODULE.

ref_load This field is used by Open Transport to keep a load reference to the module. It
should be initialized to zero.

ref_count This field is used by Open Transport to keep track of when a driver is first loaded,
and when it is last unloaded. It should be initialized to zero.

The install_flags contain several bits that must be set in order for Open Transport to properly use your
module:

//
// Flags used in the install_flags field
//
enum
{

 kOTModIsDriver = 0x00000001,
 kOTModIsModule = 0x00000002,

 kOTModUpperIsTPI = 0x00001000,
 kOTModUpperIsDLPI = 0x00002000,
 kOTModLowerIsTPI = 0x00004000,
 kOTModLowerIsDLPI = 0x00008000,
//
// This flag says you don't want per-context globals
//
kOTModGlobalContext = 0x00800000,
//
// These flags are only valid if kOTModIsDriver is set.
//
kOTModUsesInterrupts = 0x08000000,
kOTModIsComplexDriver = 0x20000000,
//
// These flags are only valid if kOTModIsModule is set.
//
kOTModIsFilter = 0x40000000

};

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 9
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

These flags have the following meaning:

kOTModIsDriver Set this bit if your STREAMS module is a driver (i.e.
expects CLONEOPEN or 0 in the sflags parameter of the open
routine). This bit or the kOTModIsModule bit MUST be set
for your STREAMS module to be valid.

kOTModIsModule Set this bit if your STREAMS module is a module (i.e.
expects MODOPEN in the sflags parameter of the open
routine). This bit or the kOTModIsDriver bit MUST be set
for your STREAMS module to be valid.

kOTModUpperIsTPI Set this bit if your STREAMS module understands TPI
commands on its upper queue.

kOTModUpperIsDLPI Set this bit if your STREAMS module understands DLPI
commands on its upper queue.

kOTModLowerIsTPI Set this bit if your STREAMS module understands TPI
commands on its lower queue.

kOTModLowerIsDLPI Set this bit if your STREAMS module understands DLPI
commands on its lower queue.

kOTModGlobalContext Set this bit if your driver requires a single static data space
for all instances of the driver. For CFM drivers, Open
Transport normally creates a new static data area for each
hardware device that the driver handles. However, ASLM
does not support this, so drivers using ASLM are not easily
ported to CFM unless this flag is set. This bit is only valid
for STREAMS drivers, not modules (modules never get a
second static data instance).

kOTModUsesInterrupts Set this bit if your driver fields hardware interrupts. This
bit is only valid for STREAMS drivers, not modules. Only
set this bit if you are a driver for a PCI module. If you are
writing a STREAMS driver

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 10
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

kOTModIsComplexDriver Set this bit if your driver has "complex" plumbing needs
and requires a "Configurator" (see the Open Tpt Protocol Dev.
Note and sample code for more information). Basically,
this bit says that just "opening" the driver is not enough for
operation. This bit is only valid for STREAMS drivers, not
modules.

kOTModIsFilter Set this bit if your STREAMS module is a "filter"-type
module (i.e. it does not affect the operation of modules
above or below it, so it is in effect invisible to them). This
bit is only valid for STREAMS modules, not drivers.

If you have a STREAMS module that is both a driver and a module, you must export two
GetOTInstallInfo functions with two different names, using two different streamtabs. This is most
commonly done by appending an "m" to the end of the driver name for the module version (e.g. "ip" is
the driver version of the ip protocol, and "ipm" is the module version of the ip protocol).

InitStreamModule

Whenever Open Transport loads your module or driver for the first time, Open Transport will call an
optional initialization function exported by the module.

NOTE: Instantiating a module for the first time means that the module is currently not loaded
by Open Transport. This can include the module having been used earlier, and then unloaded
because it was no longer in use.

For drivers that support multiple hardware devices, Open Transport treats each hardware device
that the driver supports as though there were multiple drivers. For instance, if a driver supports
both "enet1" and "enet2" devices, the first time "enet1" is used, InitStreamModule will be called
for "enet1". If someone subsequently uses the "enet2" device, InitStreamModule will be called
again for "enet2".

This function must be named either InitStreamModule or InitxxxxxStreamModule (where xxxxx is
the name of the module or driver).

Boolean InitStreamModule(void* systemDependent);

If the InitStreamModule returns false to Open Transport, then the loading of the module will be
aborted and a kENXIOErr error will be returned to the client. Otherwise, the module will be loaded, and
installed into a stream.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 11
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

The systemDependent parameter will be a pointer to a value that depends on the type of driver/module.
For Native drivers that are in the System Registry, this will be a pointer to a PCIInfo structure defined
in OpenTptPCISupport.h. For normal drivers and modules, this parameter will be NULL. For all
registered port drivers it will be the value registered as the contextPtr when the port was registered.

If your device supports changing power usage, the InitStreamModule function should set the power
level for normal operation.

TerminateStreamModule

Whenever Open Transport removes the last instance of a module or driver from the system, Open
Transport will call an optional termination function exported by the module. This function must be
named either TerminateStreamModule or TerminatexxxxxStreamModule (where xxxxx is the name of
the module or driver).

void TerminateStreamModule(void);

If your device supports changing power usage, the TerminateStreamModule function should set the
power level to low power or no power, as appropriate.

Of course, modules and drivers may also use the initialization and termination features of their DLL
technology (both CFM and ASLM allow initialization and termination routines). However, Open
Transport often loads a module or driver just to obtain information about the module. In this case,
InitStreamModule and TerminateStreamModule are not called.

All memory allocations that do not use the Open Transport allocation routines (OTAllocMem and
OTFreeMem) or any interrupt-safe allocators supplied by the interrupt sub-system must be done from
within your initialization and termination routines (i.e. NewPtr, NewHandle, DisposePtr,
DisposeHandle, PoolAllocateResident, and PoolDeallocate may only be called from your initialization
and termination routines).

Once your module has been loaded, all communication with it will be through STREAMS messages,
and the entry points in the streamtab.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 12
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Building Modules with ASLM
In order to build your modules with ASLM, you need to create a .exp file and invoke the
BuildSharedLibrary script from the ASLM SDK.

68K ASLM Modules

For 68K code, your module may be built with any compiler that uses 4 byte integers and has "C" stack-
based calling conventions (Of course, these restrictions only apply to those functions you are exporting
either through the streamtab or to Open Transport). After linking your module into a single object file, a
line similar to the following needs to be executed to create the shared library:

BuildSharedLibrary "MyModuleLib.o" ∂
-lib "MyModule.RSC" ∂
-symdir ":" -symfile OTLib$MyModule -sym on ∂
-clientFile "MyModule.cl.o" ∂
-exp "MyModule.exp" ∂
-restype cd02 -resid 02 ∂
-i "{CIncludes}" -i "{OTIncludes}" ∂
-obj "MyModule" ∂
"{OTLibs}OpenTptModule.o" ∂
"{OTLibs}LibraryManager.o" ∂
"{Libraries}"Interface.o ∂
"{Libraries}"MacRunTime.o

This command will create a file called MyModule.RSC. ASLM places shared libraries into multiple
resources.

-resid ASLM creates several resources for each shared library it creates. This switch
gives a resource ID to those resources. By using different resource IDs for
different shared libraries, you can combine multiple ASLM shared libraries into a
single shared library file.

-restype This switch specifies the resource type that the code will be placed into. By using
different resource types for different shared libraries, you can combine multiple
ASLM shared libraries into a single library file. DO NOT USE 'code' or 'CODE'
as the resource type.

-lib This switch specifies where the output resource file is to go.

-clientFile This switch specifies the client file. You must supply this parameter, but the client
file is unused unless you are exporting other entry points into your module for
your own use (see the ASLM documentation for more details)

-sym on This optional switch specifies that symbols are desired.

-symDir This optional switch specifies where a symbol file should be placed

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 13
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

-symfile This optional switch specifies the name of the symbol file without the .SYM
extension.

-exp This switch locates the export file that tells ASLM the particulars about your
shared library.

-obj This switch tells ASLM where to put the intermediate object files it creates, and
what file name root to use.

The first file on the command line is the object file to make into a shared library. All other files on the
command line are libraries to link with.

PPC ASLM Modules

For PowerPC ASLM libraries, your module can be built with any compiler that outputs standard XCOFF
files. After linking your module into a single object file, a line similar to the following needs to be
executed to create the shared library:

BuildSharedLibrary "MyModuleLib.o" ∂
-powerpc -xcoffSymfile -sym on ∂
-symdir ":" -symfile OTLib$MyModule ∂
-lib "MyModule.RSC" ∂
-clientFile "MyModule.cl.o" ∂
-exp "MyModule.exp" ∂
-restype cd02 -resid 02 ∂
-i {StdCIncludes} ∂
-obj "MyModule" ∂
"{OTLibs}OpenTptModuleLib" ∂
"{OTLibs}LibraryManagerPPC.o" ∂
"{Libraries}"RunTime.o

The switches mean the same thing as in the 68K example, except:

-powerpc Tells the tool that we are building a PowerPC shared library.

-sym on This optional switch specifies that symbols are desired.

-symDir This optional switch specifies where a symbol file should be placed

-symfile This optional switch specifies the name of the symbol file without the .xSYM
(or .xc) extension.

-xcoffSymFile This switch specifies that an xcoff file is desired for symbols instead of a .xSYM
file. ".xc" will be used as the extension for the file in this case.

The first file on the command line is the XCOFF file to make into a shared library. All other files on the
command line are libraries to link with. Both XCOFF and PEF libraries are supported.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 14
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

.exp files for ASLM Modules

An ASLM export file describes how the library is to be created. Below is a sample of what should be
placed in the export file for your module. If you want more details, please refer to the ASLM
documentation.

/*
* Include OpenTptModule.h to get pertinent defines
*/
#include <OpenTptModule.h>

#define kMyModuleName "MyModule" /* "StreamTab" name of module */
#define kMyVersion "1.0" /* Version number of module */

/*
* Just use this verbatim */
Library
{

/*
 * Typically we load modules this way so there are no surprises.
 * This insures that the module, and all other shared libraries
 * that it depends on, are in memory when we load. It insures
 * that the module will not be loaded on a 68000 machine, and that
 * if it is a 68K module, it will not be loaded when running emulated
 * on a Power Macintosh.
 */
flags = noSegUnload, forceDeps, !mc68000, !emulated;
/*
 * Create the name of the library. We use this format,
 * but you can use anything that you want
 */
id = kOTLibraryPrefix kMyModuleName "," kMyVersion;
/*
 * Set up the version number of the library
 */
version = kMyVersion;
/*
 * Always use memory = local.
 */
memory = local;

};

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 15
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

/*
* Change the name of this function set by substituting the real name
* of your module for "MyModule"
*/
FunctionSet Module_MyModule
{

/*
 * The ID for your module MUST look like the following:
 */
id = kOTModulePrefix kMyModuleName "," kMyVersion;
/*
 * The function set for your module can export many functions.
 * However, you must export GetOTInstallInfo
 * (or GetOTxxxxxInstallInfo) by name.
 * If you want an initialization function, it must also be
 * exported by the name InitStreamModule (or InitxxxxStreamModule),
 * and will be called the first time your module is loaded.
 *
 * If you also need a termination function, export a function
 * called TerminateStreamModule (or TerminatexxxxStreamModule),
 * and it will be called before Open Transport unloads your module.
 *
 * NOTE: Don't make these "static" functions in your file, or
 * ASLM can't export them. For C++ clients, make sure
 * that they are declared extern "C".
 */
exports = extern GetOTMyModuleInstallInfo,

extern InitStreamModule,
extern TerminateStreamModule;

};

If you are exporting more than one module from an ASLM library, create additional FunctionSet
declarations (making sure the name following the work FunctionSet is unique) for each module that is
exported. In addition, you need to have named your exports with the "xxxxx" version of the names,
since you have to link your modules together, and each entry point needs a unique name for each
module.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 16
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Building Modules with CFM
Building modules with CFM is simple. Create a CFM shared library and export the functions you need
to support. The ONLY requirement is that the name of your CFM library MUST be
"OTModl$MyModule", where "MyModule" is replaced by the name of your module that is in the
streamtab (it's in the st_rdinit->qi_minfo->mi_idname field).

If you export more than one module from the shared library, you must create a 'cfrg' resource that gives
your library more than one name for the same library:

resource 'cfrg' (0) {
{ /* array memberArray: 2 elements */

/* [1] */
kPowerPC,
kFullLib,
kNoVersionNum,
kNoVersionNum,
kDefaultStackSize,
kNoAppSubFolder,
kIsLib,
kOnDiskFlat,
kZeroOffset,
kWholeFork,
"OTModl$MyModule",
/* [2] */
kPowerPC,
kFullLib,
kNoVersionNum,
kNoVersionNum,
kDefaultStackSize,
kNoAppSubFolder,
kIsLib,
kOnDiskFlat,
kZeroOffset,
kWholeFork,
"OTModl$MyDriver",

}
};

In addition, when exporting multiple modules from the same library, they will all shared the same static
data instance. However, registered port drivers will have separate data instances from all of the other
modules, even if the kOTModGlobalContext flag is set in the install_info.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 17
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Working with Port Drivers

Open Transport maintains a registry of all port drivers in the system. This registry is accessed through a
number of functions, including OTGetIndexedPort, OTFindPort, and OTFindPortByRef. If your
driver is a hardware driver, it should be registered with Open Transport. If it is not registered with Open
Transport, there are several issues that will arise. The first is that your driver will not know which
hardware device it is supposed to be controlling. Even if your driver only controls a single known
hardware device, if it is not in the port registry, it will not be visible to Control Panels and configuration
applications for use by the various protocols in the system, including AppleTalk and TCP/IP.

As a registered port driver, your driver will be able to use the OTFindPortByDev API to discover what
hardware device it is supposed to control when it is instantiated. In addition, depending on the
contextPtr that was stored when the driver was registered, additional information may be available to
the driver.

Open Transport treats each entry in the port registry as though it were a unique and separate streams
driver. Unless the kOTModGlobalContext bit is set or ASLM is being used, an instantiation of a port is
given a separate static data area from all other instantiations of the same stream driver in use by other
ports.

While this feature is valuable for hardware device driver writers, it is potentially useful for protocol
writers as well. For instance, the Apple implementation of the DDP protocol registers a private "pseudo-
port" in the port registry for each different driver that DDP is instantiated on. This gives a separate
instantiation of DDP over each driver, allowing DDP to multihome easily. These pseudo-ports are
registered and unregistered on an as-needed basis, and have the kOTPortIsPrivate bit set so that
Control Panels, etc. are not tempted to display them as legitimate ports.

AppleTalk creates the stream by registering the port, and then opening the stream using the port name
returned in the fPortName field of the OTPortRecord. It then links the appropriate driver underneath the
DDP stream. From that point on, until the port is unregistered, opening a DDP stream using that port
name will result in opening a clone of this DDP stream (as opposed to DDP over some other hardware
device).

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 18
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

APIs for Port Drivers

Open Transport has several APIs for dealing with port drivers. They are described in the following
sections.

OTRegisterPort

Open Transport provides a function, OTRegisterPort, to allow port drivers to be registered with Open
Transport. This function makes the port visible to clients through the various port APIs defined in
OpenTransport.h. It also allows a STREAMS driver to be instantiated multiple times for different
hardware devices.

enum
{

kMaxModuleNameLength = 31,
kMaxModuleNameSize = kMaxModuleNameLength + 1,

kMaxProviderNameLength = kMaxModuleNameLength + 4,
kMaxProviderNameSize = kMaxProviderNameLength + 1,

kMaxSlotIDLength = 7,
kMaxSlotIDSize = 8,

kMaxResourceInfoLength = 31,
kMaxResourceInfoSize = 32

};

/*
 * Values for the fInfoFlags field of OTPortRecord
 */
enum
{

kOTPortIsDLPI = 0x00000001,
kOTPortIsTPI = 0x00000002,
kOTPortCanYield = 0x00000004,
kOTPortCanArbitrate = 0x00000008,
kOTPortIsTransitory = 0x00000010,
kOTPortAutoConnects = 0x00000020,
kOTPortIsSystemRegistered = 0x00004000,
kOTPortIsPrivate = 0x00008000,
kOTPortIsAlias = 0x80000000

};

struct OTPortRecord
{

OTPortRef fRef;
UInt32 fPortFlags;
UInt32 fInfoFlags;
UInt32 fCapabilities;
size_t fNumChildPorts;
OTPortRef* fChildPorts;
char fPortName[kMaxProviderNameSize];
char fModuleName[kMaxModuleNameSize];
char fSlotID[kMaxSlotIDSize];
char fResourceInfo[kMaxResourceInfoSize];
char fReserved[164];

};

OSStatus OTRegisterPort(OTPortRecord* portInfo, void* contextPtr);

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 19
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

A port is registered by filling out the OTPortRecord, and passing it, along with a contextPtr to the
OTRegisterPort function. If you need persistent memory for the contextPtr, use the OTAllocPortMem
and OTFreePortMem functions to allocate and free the memory.

The contextPtr that is registered is the value that is passed to the InitStreamModule function when
the port driver is loaded. It may also be retrieved by the driver by making the call OTFindPortByDev
and retrieving the value from the TPortRecord.

fRef This field must be filled in with the OTPortRef of the port. OTPortRefs must be
unique in the system. If another port is already registered with the same
OTPortRef, Open Transport will assume that this port is an alias for the real port.
This is especially convenient for registering "default" ports (e.g., "ltlkB", and
"ltlk" are both registered to the same OTPortRef on most machines, but on
PowerBooks, quite often "ltlk" is registered to the "ltlkA" OTPortRef, since there
is no PortB LocalTalk. This allows clients to use "ltlk" and get whatever the
default LocalTalk port is). When registering "pseudo-ports", it is permissible to
use OTCreatePortRef(0, kOTPseudoDevice, 0, 0), and Open Transport will
assign a unique OTPortRef to the device (the value will be in this same field when
the OTRegisterPort function returns).

fPortFlags Unused - set to 0

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 20
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

fInfoFlags Set the appropriate bits.

kOTPortIsDLPI

Set this bit if the upper interface to your driver is DLPI.

kOTPortIsTPI

Set this bit if the upper interface to your driver is TPI.

kOTPortCanYield

Set this bit if your driver supports the I_YIELDPORT and I_PROVIDERTYPE IOCTL
messages (if you are a serial port or some other device type that cannot
demultiplex incoming data, you should support these messages and set this bit.
See the section on IOCTL support for a description of the IOCTL messages).

kOTPortCanArbitrate

Set this bit if your driver makes the OTRequestHardwareAccess and
OTReleaseHardwareAccess APIs (available only in versions 1.5 and later). If
you are a serial port or some other device type that cannot demultiplex incoming
data, you should support these APIs. Open Transport will automatically request
and release the hardware access for you if this bit is not set (Ethernet drivers, for
instance). You should normally call OTRequestHardwareAccess at the point in
time where your driver is going to assert ownership of the hardware (for Serial
drivers, this is normally at Bind (qlen > 0) or Connect time.

kOTPortIsTransitory

Set this bit if your driver has offline/online status (PPP over a Modem, for
instance). Drivers that can do this should make the calls:

OTChangePortState(myRef, kOTPortOffline, myReason)
OTChangePortState(myRef, kOTPortOnline, myReason)

to inform Open Transport of the change of state.

kOTPortAutoConnects

Set this bit if your driver automatically goes offline and online “on demand”.
ISDN drivers quite often do this.

kOTPortIsSytstemRegistered

This should only be set by Open Transport. It is set if Open Transport registered
the port from the information in the Name Registry.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 21
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

kOTPortIsPrivate

This bit should be set if you are registering “pseudo-ports” for your own private
purposes. It is informational, and tells Control Panels and other control programs
that they should not display the port. For instance, AppleTalk registers a DDP
“pseudo-port” for every device that AppleTalk is using.

kOTPortIsAlias

This bit is used internally by Open Transport, and should not be set when making
the OTRegisterPort call. It tells Open Transport that this port is an alias record
for another port with the same OTPortRef. This is how Open Transport allows
“serial” to be the name of the “default” serial port - “serial” is registered as the
name of a port with the same OTPortRef as “serialA” or “serialB”, depending on
which port is “default”.

fCapabilities fCapabilities is a bitmap that is defined on a device-by-device basis. Typically,
they define framing options for a protocol or device. If you do not use zero for the
framing flags, then you MUST support the I_OTSetFramingType IOCTL, which
will pass you a 32-bit value with a single bit set, indicating the framing option
desired. If this IOCTL call is made, then your DLPI driver should fill in the
dl_mac_type field of a dl_info_ack_t with a value consistent with the requested
framing type.

For instance, ethernet supports four framing options:

kOTFramingEthernet = 0x01
kOTFramingEthernetIPX = 0x02
kOTFraming8023 = 0x04
kOTFraming8022 = 0x08

Most Ethernet drivers support all but kOTFraming8023 (typically, Ethernet drivers
support kOTFraming8022, which indicates that they can handle full SAP/SNAP
demultiplexing, whereas kOTFraming8023 indicates that they will deliver all
802.3 frames to a single client). If a client requests kOTFraming8022 using the
IOCTL, then DL_CSMACD should be returned in the dl_mac_type field. If a client
requests kOTFramingEthernet or kOTFramingEthernetIPX, then DL_ETHER
should be returned instead. NOTE: Currently, Open Transport does not support
the kOTFraming8023 framing type, so Ethernet drivers must handle full
SAP/SNAP demultiplexing and Test/XID frames in order to work properly with
AppleTalk and TCP/IP.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 22
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

fNumChildPorts
This field contains the number of "child" ports that this port uses. See the
description of the fChildPorts field for more information.

fChildPorts This field is a pointer to an array of OTPortRefs that are "child" ports for the port
being registered. "Child" ports occur when one port driver depends on another.
Typically, a port has 0 or 1 child port. Some examples of "child" ports would be:
1) a modem device almost always has a "child" port that is a serial device; 2) A
pseudo-port (like ddp0, ddp1, etc..) almost always has a "child" port that is either
another pseudo-port, or is a real hardware device.

fPortName This field contains the name of the port. Typically, just leave the first byte of this
field set to '\0', and Open Transport will make up a unique port name. However,
feel free to supply the name you want your port to be known by (but if another
port is already registered with that name, an error will occur and your port will not
be registered). This name is the name that is used to open endpoints and streams
with. If the OTRegisterPort call succeeds, this field will be filled in with the port
name that was assigned.

fModuleName
This field contains the name of the stream module (Of course, stream modules
which use OTRegisterPort are really stream drivers). This should be the
"MyModule" part of the shared library ID "OTModl$MyModule", which should
also be the name of the module stored in the streamtab (st_rdinit->qi_minfo-
>mi_idname field).

fSlotID This field is a 0-terminated string that contains a slot identifier. If this string is a
null-string, Control Panels will use the information from the OTPortRef to
attempt to create a slot identifier string.

fResourceInfo
This field is a 0-terminated string that contains an identifier that will allow Open
Transport to access auxiliary information about your driver (Open Transport
creates shared library ids from this string to be able to find these extra shared
libraries). This string should either be unique to your driver, or should be set to a
null string. See the section on Port Driver Configuration Info for more detail.

fReserved This field should be set to all zeros.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 23
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Note: OTRegisterPort is available as both a kernel and a client API. If the contextPtr is actually a pointer
to memory, under Mac OS 8 it must have been allocated with PoolAllocateGlobal if you are using the
client API and wish the stream module to be able to address the memory. Also, OTRegisterPort copies
all of the information in the OTPortRecord, so the OTPortRecord may be allocated on the stack

OTUnregisterPort

OTUnregisterPort allows a client to unregister a port by name. Unregistering by name is necessary
because it is allowed to register an OTPortRef by several names, creating alias records. The
"contextPtrPtr" parameter will return the value of the contextPtr that was used when registering.
Unregistering a port is normally a permanent affair. If it is possible that the port will be back on-line (as
with PCMCIA Ethernet cards), it is better to use the OTChangePortState API, since while the port was
unregistered, another port may have grabbed the name that was being used.

OSStatus OTUnregisterPort(const char* portName, void** contextPtrPtr);

Note: OTUnregisterPort is available as both a kernel and a client API.

OTChangePortState

OTChangePortState allows you to change the state of a port without unregistering it. You can disable a
port, which causes all streams using the port to be closed down, and causes kENXIOErr errors for
anyone attempting to open the port while it is disabled. You can enable the port, which will cause the
port to be reenabled. For devices that come and go (hot-docking and PCMCIA cards are examples), it is
much better to use OTChangePortState than to Register and Unregister the port, since there is no chance
of the port's name being taken in this case.

Typically, the "why" parameter is kOTPortHasDiedErr, kOTPortWasEjectedErr,
kOTPortLostConnection, or kOTUserRequestedErr. All Open Transport clients are notified when
this call is made, and the "why" parameter is one of the pieces of information given to the clients.

enum
{

kOTPortDisabled = (OTEventCode)0x25000001,
kOTPortEnabled = (OTEventCode)0x25000002,
kOTPortOffline = (OTEventCode)0x25000003, /* OT 1.5 and later */
kOTPortOnline = (OTEventCode)0x25000004, /* OT 1.5 and later */

};

OSStatus OTChangePortState(OTPortRef ref, OTEventCode theChange, OSStatus why);

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 24
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

OTGetIndexedPort

OTGetIndexedPort returns the TPortRecord* corresponding to the index parameter (index = 0.....n).
A NULL is returned if the index is too high. This API is only valid in the kernel (There is a separate and
different API for the client). NOTE: This API returns the actual port record used by OpenTransport. Do
NOT change any information in the TPortRecord.

TPortRecord* OTGetIndexedPort(size_t index);

OTFindPort

OTFindPort returns the TPortRecord* that has the requested portName. This API is only valid in the
kernel (There is a separate and different API for the client). NOTE: This API returns the actual port
record used by OpenTransport. Do NOT change any information in the TPortRecord.

TPortRecord* OTFindPort(const char* portName);

OTFindPortByRef

OTFindPortByRef returns the TPortRecord* corresponding to the specified OTPortRef. This API is
only valid in the kernel (There is a separate and different API for the client). NOTE: This API returns
the actual port record used by OpenTransport. Do NOT change any information in the TPortRecord.

TPortRecord* OTFindPortByRef(OTPortRef)

OTFindPortByDev

OTFindPortByDev returns the TPortRecord* corresponding to the dev_t specified. Only the major
number of the dev_t is used to find the port. This API is only valid in the kernel. NOTE: This API
returns the actual port record used by OpenTransport. Do NOT change any information in the
TPortRecord.

TPortRecord* OTFindPortByDev(dev_t dev)

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 25
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

This function can be used in your module's open routine to obtain the TPortRecord related to your port.
From this record, you can retrieve the "contextPtr" that was stored when the port was registered, as
well as other useful information:

struct TPortRecord
{

OTLink fLink;
char* fPortName;
char* fModuleName;
char* fResourceInfo;
char* fSlotID;
struct TPortRecord* fAlias;
size_t fNumChildren;
OTPortRef* fChildPorts;
UInt32 fPortFlags;
UInt32 fInfoFlags;
UInt32 fCapabilities;
OTPortRef fRef;
struct streamtab* fStreamtab;
void* fContext;
void* fExtra;

};

This function returns the actual TPortRecord used by the system, so don't modify it. The only really
useful fields are the fRef field, which contains the OTPortRef for your module, and the fContext field,
which contains the "cookie" that was saved for the driver when the port was registered. For systems
using the Native driver architecture, this "cookie" will be a pointer to a structure whose first element is
the RegEntryID for the driver (i.e. the "cookie" can be interpreted as a RegEntryIDPtr).

This function is most useful to drivers that handle multiple hardware devices. By using the fRef or
fContext value, the driver can determine which hardware device the Open call is referring to.
WARNING: This function may not be called at interrupt time.

Do not be confused by the similarity between the TPortRecord and the OTPortRecord. An
OTPortRecord is a copy of the TPortRecord specially formatted for client needs. The TPortRecord is
the structure that Open Transport actually keeps in the port registry to keep track of information on
registered ports. Only stream modules and kernel infrastructure have access to the actual TPortRecord.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 26
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Registering Port Drivers
Since it is necessary to have port drivers registered early in the boot process so that the protocol suites
can be up and running at boot time, and there are very few mechanisms on the Macintosh for running
early in the boot process, Open Transport provides an automated way to run your code to register your
port drivers. These code modules are called "port scanners".

Open Transport provides a few default port scanners. On Macintosh systems, Open Transport will
automatically register LocalTalk and serial ports on SCCA and SCCB, as well as any serial ports that are
registered in the Communications Toolbox Resource Manager. On Nubus system, it will also
automatically register all .ENET, .TOKN, and .FDDI drivers (Open Transport has a DLPI "shim" to
interface to these various drivers). On PCI machines with the System Registry, Open Transport
automatically registers all Open Transport drivers that are present in the System Registry (see the
"Designing PCI Cards and Driver for Power Macintosh Computers" for more information on this
feature).

All other drivers must supply a port scanner to register the driver. The port scanner must currently be
built as an ASLM library, because CFM does not provide a mechanism for finding a related group of
shared libraries, like scanners.

You port scanner will export a function called OTScanPorts by name from an ASLM function set with
an InterfaceID of either kOTPortScannerInterfaceID or kOTPseudoPortScannerInterfaceID (more on
these two in a moment). A sample .exp file for the ASLM build is:

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 27
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

/*
Sample .exp file for creating an ASLM
shared library to export an Open Transport
port scanner.

*/

#include "OpenTptModule.h"

#define MyScannerName "myScanner"

Library
{

/*
 * 1) Segments won't be loaded or unloaded.
 * 2) We want any libraries we depend on to be
 * forced to load prior to us loading.
 * 3) We don't run on 68000 processors
 */
flags = noSegUnload, forceDeps, !mc68000;
/*
 * This id can be anything you want
 */
id = kOTLibraryPrefix MyScannerName;
/*
 * Put the appropriate version number here.
 */
version = 1.0;
memory = client;

};

FunctionSet MyScannerFunctionSet
{

/*
 * You must use this InterfaceID
 */
InterfaceID = kOTPortScannerInterfaceID;
/*
 * Your ID can be anything as long as it starts
 * with kOTPortScannerPrefix.
 */
id = kOTPortScannerPrefix MyScannerName ",1.0";
/*
 * You can export other functions, but you must
 * have "extern OTScanPorts" somewhere in the list.
 */
exports = extern OTScanPorts;

};

It is also possible to combine your driver and port scanner into a single ASLM shared library. ASLM
allows multiple FunctionSets to be exported from the same library, so you can export your driver entry
points as one function set, and your scanner as another.

The OTScanPorts function is a C function with the following prototype:

void OTScanPorts(void)

When the OTScanPorts function is called, the scanner should search for the hardware and drivers that it
is responsible for, and call the OTRegisterPort to register each hardware device and associate it with a
driver (see the description for OTRegisterPort earlier in this document for more information).

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 28
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

For some devices, it is necessary to have all of the hardware ports available in the port registery before
registering themselves. Examples of this are the ATMSNAP (ATM Classical IP) or ATMLANE (ATM
LAN emulation) drivers. These drivers are software drivers that talk to ATM hardware drivers. Without
these two drivers, AppleTalk or TCP/IP would be unable to use ATM. These drivers provide a
translation function that allow AppleTalk or TCP/IP to believe that they are operating on a Local Area
Network instead of over a point-to-point link. These drivers need to be registered as ports so that they
show up in the appropriate Control Panels, and also so that they can have separate instances for each
ATM hardware device present.

The problem, of course, is that if they have to register as a driver for each of the hardware devices that
they support, some of the devices might be missed, since the order of running port scanners is
unspecified. To alleviate this problem, you can use the kOTPseudoPortScannerInterfaceID constant.
All port scanners with this interfaceID are guaranteed to run after all the port scanners with the
kOTPortScannerInterfaceID have run.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 29
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Port Driver Configuration Info
Once your port driver is registered with the system, you may want control panels and other programs
which display port information to be able to get port information for you ports, such as icons and name
strings.

When the driver was registered, an fResourceInfo field was supplied. Open Transport will create a
library name from this field by prepending the constant kPortConfigLibPrefix to it (see
OpenTptConfig.h in the Open Transport Protocol Developer SDK).

NOTE: For developers of PCI drivers, the value from the DriverOSRuntimeInfo.driverName
field is moved into the fResourceInfo field (minus any leading "." in the name). In the original
documentation, it said that this field should contain one of the device names found in
OpenTptLinks.h. This is not required. The field can be 0-length (although if it is 0-length, your
driver will not be compatible with 1.0.x version of Open Transport). If you want to be
compatible with Open Transport 1.0.x, but don't have a configuration library for your driver, just
continue putting the generic device name in this field.

Clients who want to get configuration information from your driver can use the API calls in
OpenTptConfig.h:

void OTGetUserPortNameFromPortRef(OTPortRef ref, Str255 friendlyName)

This function calls the configuration library of the port specified, and returns a name in the
friendlyName field. If the friendlyName field returns a 0-length string, then the port does not
provide the functionality.

Boolean OTGetPortIconFromPortRef(OTPortRef, OTResourceLocator* iconLocation)

This function calls the configuration library of the port specified, and returns a true if the port
supplied an iconLocation. If the function returns true, iconLocation can be used to look for the
usual icon-type resources in the specified FSSpec with the specified resource ID.

typedef struct
{

FSSpec fFile
UInt16 fResID

} OTResourceLocator;

In order for your driver to benefit from these API calls, you must export the function the following
functions from a shared library (either ASLM or CFM - Open Transport will find either one):

void OTGetUserPortName(OTPortRecord* port, boolean_p includeSlot, boolean_p include
Port, Str255 name);

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 30
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

This function should return a pascal string that is the name of the port. If includSlot is true,
you should also include information about the slot location. If includePort is true, you should
also include information about which port if your hardware device supports multiple ports.

Boolean OTGetPortIcon(OTPortRecord* port, OTResourceLocator* location)

This function should return an FSSpec and a resource number in the structure pointed to by
location. Clients can use this to open the file with the icons and read them. Return false if no
icons are available for the specified port.

Of course, you only need to export those functions that you care about. Currently, the Open Transport
control panels do not need icons for the port, but that may change in the future.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 31
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Module and Driver Operation
Once your module or driver is installed in a stream and opened, it is ready for action. From that point
on, the driver will respond to messages according to the interface specification(s) (TPI or DLPI) that it
supports.

Drivers have one additional proviso that they must observe. If they are running as a primary interrupt,
they must call the OTEnterInterrupt function prior to making any Open Transport calls, and must call
OTLeaveInterrupt prior to exiting their current interrupt level, and after they have made their final call
to any Open Transport routines.

void OTEnterInterrupt(void);
void OTLeaveInterrupt(void);

It is strongly suggested that for timing services and secondary interrupt services that the appropriate
Open Transport functions be used, since they will adapt to the underlying system. In addition, the Open
Transport secondary interrupt services do not have the restrictions present that some of the equivalent
system services have, since any memory allocations needed are handled up front, keeping this function
from failing at inconvenient times.

Interrupt-Safe functions

Open Transport provides many STREAMS services for module and driver writers. However, not all of
these services may be used at interrupt time.

The following STREAMS functions may be safely called at interrupt time:

allocb adjmsg copyb copymsg dupb

dupmsg esballoc freeb freemsg linkb

msgdsize msgpullup pullupmsg putq rmvb

testb unlinkb datamsg OTHERQ RD

WR bzero bcopy bcmp unlinkb

qenable

Note in particular that the canput function and its variants are not allowed to be called at interrupt time.
In addition, putq may only be called to place an mblk on the lower stream queue. The most common
use for this is to put incoming packets onto the lower stream queue, and then handle the data in the read
service routine. Using the qenable function is a convenient way of scheduling yourself time outside of
your interrupt. The service procedure of the specified queue will be called back at non-interrupt time,
allowing you to process your incoming data. Of course, you can also use
OTScheduleDriverDeferredTask for this purpose.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 32
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

The following Open Transport functions may be safely called at interrupt time:

OTCreateDeferredTask OTDestroyDeferredTask OTScheduleDriverDeferredTask

OTGetClockTimeInSecs OTGetTimeStamp OTSubtractTimeStamps

OTTimeStampInMilliseconds OTTimeStampInMicroseconds OTElapsedMilliseconds

OTElapsedMicroseconds OTAllocMsg OTAllocReadOnlyMsg

OTAllocMem OTFreeMem mi_timer_alloc

mi_timer_free mi_timer mi_timer_cancel

In addition, all of the functions described under "Atomic Services" below may be called at
interrupt time.

Secondary Interrupt Services

There are three functions associated with Open Transport's secondary interrupt services.

typedef void (*OTProcessProcPtr)(void* contextInfo);

This typedef defines the deferred task callback function.

long OTCreateDeferredTask(OTProcessProcPtr proc, long contextInfo)

This function creates a "cookie" (the returned long value) that can be used at a later time to schedule the
function "proc". At the time that "proc" is invoked, it will be passed the same contextInfo parameter
that was passed to the OTCreateDeferredTask procedure.

void OTScheduleDriverDeferredTask(long dtCookie);

This function is used to schedule the deferred procedure corresponding to the dtCookie value. It may
be called multiple times prior to the deferred procedure actually being executed, but the deferred
procedure will only be run once. Once the deferred procedure has run, subsequent calls to
OTScheduleDriverDeferredTask will cause it to be scheduled to run again.

NOTE: OTScheduleDriverDeferredTask was introduced in version 1.1. Prior to version 1.5, it
schedules exactly the same as OTScheduleDeferredTask. Starting with version 1.5, it will insure that
deferred tasks scheduled with OTScheduleDriverDeferredTask run before all other deferred tasks, and
run in a timely manner.

void OTDestroyDeferredTask(long dtCookie);

This function is used to destroy any resources associated with the deferred procedure. It should be
called when you no longer require the deferred procedure.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 33
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Timer Services

Open Transport supplies robust timer services that are synchronized with the STREAMS environment.
Timer services are supported by using special STREAMS messages. The function mi_timer_alloc is
used to create one of these special STREAMS messages:

mblk_t* mi_timer_alloc(queue_t* targetQueue, size_t size);

Calling this function will create a STREAMS timer message of the requested size, that is targeted to the
specified STREAMS queue.

void mi_timer(mblk_t* timerMsg, unsigned long milliSeconds);

This function will schedule the timerMsg (which must be created using mi_timer_alloc) to be placed
on the target STREAMS queue at the specified future time.

void mi_timer_cancel(mbk_t* timerMsg)

This function will cancel an outstanding timer message. The timerMsg will not be destroyed, but will
no longer be delivered to the target queue. It may be rescheduled by using mi_timer at a later time.

void mi_timer_free(mblk_t* timerMsg)

This function cancels and frees the specified timer message (remember, mi_timer_cancel does not free
the message).

Boolean mi_timer_valid(mblk_t* timerMsg)

Timer messages enter the target queue as M_PCSIG messages. Whenever a queue that can receive a
timer message receives an M_PCSIG message, it should call mi_timer_valid, passing the M_PCSIG
message as a parameter. If the function returns true, then the timer message is valid and should be
processed. If the function returns false, then the timer message was either deleted or canceled. In this
case, the correct course of action is to ignore the message (i.e. DON'T free it). WARNING: This function
may not be called at interrupt time, and it may not be called twice on the same timer.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 34
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Atomic Services

Open Transport supplies some atomic services to help reduce the need to disable and enable interrupts.

The first set of services allow atomically setting, clearing and testing of a single bit in a byte. The first
parameter is always a pointer to a single byte, and the second is always a bit number from 0 to 7. The
functions always return the previous value of the bit. Bit zero (0) always corresponds to a mask of 0x01,
and bit seven (7) always corresponds to a mask of 0x80.

Boolean OTAtomicSetBit(UInt8* theByte, size_t theBitNo)

Boolean OTAtomicClearBit(UInt8* theByte, size_t theBitNo)

Boolean OTAtomicTestBit(UInt8* theByte, size_t theBitNo)

The second set of services allow atomically adding (or subtracting by using a negative number) from a
32, 16, or 8 bit variable. The return value is the new value of the variable (at least what is was when the
atomic add was done). Note that an SInt32 is always used as the first parameter. This is to properly
handle different 68K "C" compiler calling conventions. Only the first 8 or 16 bits will be used for the 8
or 16 bit atomic add calls.

SInt32 OTAtomicAdd32(SInt32, SInt32* varToBeAddedTo)

SInt16 OTAtomicAdd16(SInt32, SInt16* varToBeAddedTo)

SInt8 OTAtomicAdd8(SInt32, SInt8* varToBeAddedTo)

The third service is a general compare and swap. It insures that the value at where still contains the
value oVal, and if so, the value nVal is substituted. If the compare and swap succeeds, the function
returns true. Otherwise false is returned.

Boolean OTCompareAndSwapPtr(void* oVal, void* nVal, void** where)

Boolean OTCompareAndSwap32(UInt32 oVal, UInt32* nVal, UInt32** where)

Boolean OTCompareAndSwap16(UInt16 oVal, UInt16* nVal, UInt16** where)

Boolean OTCompareAndSwap8(UInt8 oVal, UInt8* nVal, UInt8** where)

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 35
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

The fourth set of services is an atomic LIFO list. OTLIFOEnqueue and OTLIFODequeue are self-
explanatory. OTLIFOStealList allows you to remove all of the elements from the LIFO list atomically,
so that the elements in the list can be iterated at your leisure by traditional means. OTLIFOReverseList
is for those of us who find that LIFO lists are next-to-useless in networking. Once the
OTLIFOStealList function has been executed, the result can be passed to OTLIFOReverseList to flip
the list into a FIFO configuration. Be aware that OTLIFOReverseList is NOT atomic.

struct OTLink
{

void* fNext;
};

struct OTLIFO
{

void* fHead;
};

void OTLIFOEnqueue(OTLIFO* list, OTLink* toAdd)

OTLink* OTLIFODequeue(OTLIFO* list)

OTLink* OTLIFOStealList(OTLIFO* list)

OTLink* OTReverseList(OTLink* firstInList)

The last set of services is for enqueueing and dequeueing from a LIFO list. It is used internally in the
STREAMS implementation, so we exported it so that you can use it if it proves useful. If you look at
the OTLIFO implementation, it assumes that the structures being linked have their links pointing at the
next link, and so on. Unfortunately, STREAMS messages (mblk_t structures) are not linked this way
internally (the b_cont field does not point to the b_cont field of the next message block, but instead
points to the actual message block itself). These two functions allow creating a LIFO list where the head
pointer of the list points to the actual object, but the "next" pointer in the object is at some arbitrary
offset in the object .

void* OTEnqueue(void** list, void* newListHead, size_t offsetOfNextPtr);

void* OTDequeue(void** theList, size_t offsetOfNextPtr)

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 36
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Power services

For those devices which can change their power usage, the following assumptions are made:

1) The call to ValidateHardware will set the device to either low power or power off, as
appropriate for the device. This is only applicable to drivers using the Native driver
architecture.

2) The call to InitStreamModule will set the device to the power level appropriate to normal
operations.

3) The call to TerminateStreamModule will set the device to either low power or power off,
as appropriate for the device.

In addition, devices which can change their power usage should support the I_OTSetPowerLevel
IOCTL message.

The following describes the four-byte selectors that can be passed in the IOCTL message, and what the
return value should be in the IOCTL ack message:

'psup' Return a value of 1 if the card supports power control, 0 if it does not.

'ptog' Return a value of 1 if the card supports switch between high and low power after
initialization, 0 if it does not.

'psta' Return a value of 1 if the card is in high power mode

'pmx5' Returns the card's maximum power consumption in microwatts from the 5 Volt supply
while in high-power mode

'pmn5' Returns the cards maximum power consumption in microwatts from the 5 Volt supply
while in low power mode.

'pmx3' Returns the card's maximum power consumption in microwatts from the 3.3 Volt supply
while in high-power mode

'pmn3' Returns the cards maximum power consumption in microwatts from the 3.3 Volt supply
while in low power mode.

'splo' Set the card into low power mode. Return a value of 0 if completed successfully, an
OSStatus code if not.

'sphi' Set the card into high power mode. Return a value of 0 if completed successfully, an
OSStatus code if not.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 37
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Memory allocation functions

Open Transport provides several functions for performing memory allocation in STREAMS modules
and drivers. All of these memory allocation functions may safely be called at interrupt time.

OTAllocMem

This function allocates a variable-sized chunk of memory

void* OTAllocMem(size_t sizeToAlloc)

OTFreeMem

This function frees a chunk of memory that was allocated by OTAllocMem.

void OTFreeMem(void* memToFree)

allocb

This function allocates a message block of the requested size, with a requested priority (BPRI_LO,
BPRI_MED, BPRI_HI). STREAMS currently defines that allocb will ignore the priority.

mblk_t* allocb(size_t sizeToAlloc, int pri)

freeb

This function frees a single message block.

void freeb(mblk_t* msgToFree)

freemsg

This function frees the message block passed in as a parameter, as well as all of the message blocks
linked to it through the b_cont field.

void freemsg(mblk_t* msgToFree)

dupb

This function returns a new message block which references the data in the original message block. It
DOES NOT copy the data, and it only duplicates the original message block.

mblk_t* dupb(mblk_t* msgToDup)

dupmsg

This function returns a new message block which references the data in the original message block. It
DOES NOT copy the data. It also duplicates all of the data chained by the b_cont pointer of the
original message block.

mblk_t* dupmsg(mblk_t* msgToDup)

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 38
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

copyb

This function returns a new message block which is an exact copy of the original block. It DOES copy
the data, and it only duplicates the original message block.

mblk_t* copyb(mblk_t* msgToDup)

copymsg

This function returns a new message block which is an exact copy of the original block. It DOES copy
the data. It also duplicates all of the data chained by the b_cont pointer of the original message block.

mblk_t* copymsg(mblk_t* msgToDup)

OTAllocMsg

This function allocates a message block that is a reference to a buffer, and will call you back when the
message block is freed:

typedef void (*EsbFreeProcPtr)(char* arg);

mblk_t* OTAllocMsg(void* buf, size_t size, EsbFreeProcPtr, void* arg)

The callback procedure will be called back with the value “arg” as it’s parameter when all references to
the specified buffer have been freed.

This function works exactly like the STREAMS function esballoc. NOTE: using this function, other
modules are allowed to write into your buffer.

OTAllocReadOnlyMsg

This function allocates a message block that is a reference to a buffer, and will call you back when the
message block is freed:

typedef void (*EsbFreeProcPtr)(char* arg);

mblk_t* OTAllocReadOnlyMsg(void* buf, size_t size, EsbFreeProcPtr, void* arg)

The callback procedure will be called back with the value “arg” as it’s parameter when all references to
the specified buffer have been freed.

This function works exactly like the OTAllocMsg, except that the datab->db_ref field of the mblk_t is
set to 2, which tells other modules that they cannot modify the buffer..

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 39
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Open and Close support Code

Open Transport provides functions for performing several of the common actions required by essentially
all module open and close procedures.

These routines rely on a global variable declared by the module which serves as the head of the list of all
module instances. The typical C declaration is:

static char* gModuleListHead;

The address of this variable is an argument passed to the various routines. The routines assume this
variable is NULL before the first call to mi_open_comm, that this list is manipulated only by the module
declaring the list head, and only by the functions described in this section.

mi_close_comm

This function must be used in a module's close procedure if mi_open_comm was used in the open
procedure. It frees the structures allocated by mi_open_comm and removes the current instance from the
linked list of the module's instances.

int mi_close_comm(char** list_head, queue_t* q);

list_head Address of the global variable that is the module instance list head passed to
mi_open_comm.

q The queue argument passed to the close procedure, i.e., this module instances'
read-side queue.

This function always returns 0.

Notes:

1) Each mi_open_comm needs a matching mi_close_comm (or mi_close_detached).
Using one without the other has unpredictable results.

2) If this was the last instance of this module, list_head will be NULL after
mi_close_comm returns.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 40
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

mi_close_detached and mi_detach

These functions permit a module to preserve its instance data structure after the associated queue has
been closed (deallocated). Typically, the module is a protocol module which must complete an orderly
termination of a remote connection, even though the stream it's in is about to be closed.

void mi_detach(queue_t* q, char* ptr)

void mi_close_detached(char** list_head, char* ptr)

list_head Address of the global variable that is the module instance list head passed to
mi_open_comm.

ptr Pointer to the instance data (q_ptr field) that needs to be kept after the queue is
closed.

q The queue argument passed to the close procedure, i.e., this module instance's
read-side queue.

Notes:

1) mi_detach is called from a module to disassociate the instance data from the
queue and to remove the module from the global list of open modules. This is
normally done from the module close procedure.

2) mi_close_detached is called to release the instance data and perform other
internal cleanup. Note that mi_close_detached must be called; it is not
sufficient simply to call freeb to release the instance data.

3) Your TerminateStreamModule entry point will not be called until all detached
modules have had mi_close_detached called.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 41
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

mi_open_comm

This function performs a number of common initialization actions which are part of most module open
procedures.

int mi_open_comm(char** list_head, size_t size, queue_t* q, dev_t* devp, int flag,
 int sflag, cred_t* credp);

list_head Address of the global variable that is the module instance list head. This variable
must be initialized to NULL at compile or load time, and then never changed
directly, only by passing it as an argument to mi_open_comm functions.

size The number of bytes to allocate for the queue's instance data

q The queue argument passed to the open procedure, i.e., this module instance's
read-side queue.

devp Pointer to the device number. For clone opens, the device number is returned; for
non-clone opens, the device is passed in. This value was passed to you in your
open procedure.

flag Flag from the open system call. This flag is passed to you in your open
procedure.

sflag 0 for a normal device open; CLONEOPEN for a clone open of a device,
MODOPEN for a module open. This flag is passed to you in your open
procedure.

credp Pointer to the credentials structure for the process issuing the open. This
parameter is passed to you in your open procedure. The credp pointer is not
currently used in Open Transport, but it may be at some time. This parameter
describes the privileges of the client that is opening the stream. If you just pass
the value to mi_open_comm, the right things will happen even if Open Transport
starts using the parameter in the future.

This function returns 0 on success. It returns ENXIO on failure.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 42
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Notes:

1) The last five arguments are the same as the arguments to the open procedure
itself.

2) mi_open_comm assumes that list_head is NULL if this is the first open instance of
this module.

3) mi_open_comm assigns a minor device number to the new stream. if sflag is 0, the
minor number specified by the *devp argument is used. Otherwise, for
MODOPEN and CLONEOPEN, a unique minor number >= 10 is assigned
(Device numbers 0 through 9 are reserved for the module writer as special access
codes).

If a given minor number is requested, and another stream already has it open, then
an ENXIO error will be returned.

4) The instance data is allocated to be size bytes (plus an amount for internal
structures. Each queue's q_ptr field is set to point to this same structure; the
internal fields are "hidden" from the module, being located at negative offsets
from q->q_ptr.

5) If a module requires separate instance data for the read an write queues, it must do
this indirectly by allocating its own instance data, and storing a pointer to each in
the shared instance data.

6) A module cannot simply call freeb or OTFreeMem on the instance data created by
mi_open_comm; mi_close_comm or mi_close_detached must be used to free the
instance data and remove the queue from the list of module instances.

7) The device number of the stream is stored into *devp. For MODOPEN, the
original value of *devp is ignored and left unchanged.

mi_next_ptr

This function is used to traverse the linked list of open module instances.

char* mi_next_ptr(char* ptr)

ptr Pointer to the instance data (q_ptr) field for which the "next" instance is desired.

This function returns a pointer to the instance data of the next module instance in the linked list. It
returns NULL if ptr is from the last instance in the list.

If the instance data is of type xx_t, the global list head variable is xx_list_head, and xxp is of type xx_t*,
then list traversal using this function takes the form:

for (xxp = (xx_t*)xx_list_head; xxp != NULL; xxp = (xx_t*)mi_next_ptr((char*)xxp))

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 43
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

mi_open_detached

This function creates an instance data structure and chains it into the list of module instances, without
requiring an existing stream or module instance (queue) with which to associate the instance data.

It is normally called by modules which need to access a module's instance data before an actual stream
has been created. Later, when the module's open routine is called, this floating instance can be used as
the new queue's instance data (mi_open_comm would not be called in this case; the module's open
routine would need to locate the floating instance using its own mechanisms).

char* mi_open_detached(char** list_head, size_t size, dev_t* devp)

This function returns a pointer to the newly created module instance data, or NULL if memory is not
available.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 44
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

mi_bufcall

This function provides a reliable wrapper for the standard STREAMS bufcall function.

void mi_bufcall(queue_t* q, size_t size, int pri)

q The queue to enable when memory is available

size Number of bytes needed (as passed to the failed allocb call)

pri (unused)

Notes:

1) This function may only be used when mi_open_comm and mi_close_comm are
being used in the module open and close procedures.

2) mi_bufcall fixes two problems that exist with the standard bufcall function:

1) bufcall has no provision to ensure that the stream which makes the call has
not closed. If the bufcall callback function is qenable, which is often the case,
the resulting callback will attempt to reference a nonexistent queue. mi_bufcall
ensures that the queue is still valid before performing the callback to qenable.

2) The bufcall call itself may fail because of lack of resources. When
mi_bufcall detects such a failure, it sets a timer and tries again when the timer
fires. This process is repeated until the bufcall succeeds.

3) mi_bufcall uses the module instance list maintained by mi_open_comm and
mi_close_comm to determine if the stream is still open before attempting the
callback. The standard bufcall function is used to schedule the callback; the
ultimate callback function is always qenable on the queue passed to mi_bufcall.
The module writer is responsible for setting appropriate flags in the queue's
instance data, so that the service routine will be able to determine that it has been
called as part of a bufcall callback, if necessary.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 45
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

IOCTL Support functions

The mi_copy facility is a collection of functions which simplifies ioctl processing. These functions
arose because of the need to process both I_STR and TRANSPARENT ioctl forms of the same
command. These function permit both type of ioctl to be processed with the same logic. In this section,
we focus on how the mi_copy facility is used.

To use the mi_copy facility, a module's write-side put procedure calls mi_copyin in response to an
M_IOCTL message. mi_copyin will then perform the necessary processing depending upon the type of
the ioctl. As a result of this processing, regardless of the original ioctl type, an M_IOCDATA message
will be passed to the module's write-side put procedure.

When an M_IOCDATA message arrives in the write-side put procedure, the module must call
mi_copy_state to determine which message is arriving. mi_copy_state returns a value which may be
used in a switch statement whose case labels are defined by the macro MI_COPY_CASE. The sample
below shows a simplified example from a typical module put procedure:

mblk_t* mp1;

switch (mp->b_datap->db_type) {
case M_DATA:

...
case M_IOCTL:

/* Set copyin_size = 1st buffer size per ioc_cmd */
mi_copyin(q, mp, NULL, copyin_size);
return 0;

case M_IOCDATA:
switch (mi_copy_state(q, mp, &mp1)) {
case -1:

return 0;
case MI_COPY_CASE(MI_COPY_IN, 1):

// process copied-in data in mp1
mp2 = mi_copyout_alloc(q, mp, uaddr, ubuflen);
// fill in mp2 with data to copy out to uaddr
mi_copyout(q, mp); // mp is correct here
return 0;

case MI_COPY_CASE(MI_COPY_OUT, 1):
mi_copyout(q, mp); // Copy out the netbuf
return 0;

case MI_COPY_CASE(MI_COPY_OUT, 2):
mi_copy_done(q, mp, 0); // All done
return 0;

}

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 46
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Each M_IOCDATA message has assciated with it a "direction" and a state. The state is a simple count
of the number of M_IOCDATA messages already processed in the direction indicated ("in" or "out").
For example, MI_COPY_CASE(MI_COPY_IN, 1) corrseponds to the first message being copied in. If
this is an I_STR ioctl, this is the data buffer from the original M_IOCTL; If a TRANSPARENT ioctl,
this is the data from an M_COPYIN request. The module needn't care (and can't really tell at this point)
which type of ioctl was issued. Again referring to the previous example, it knows that after calling
mi_copy_state, the message pointed at by mp is the M_IOCTL being processed, and mp1 is the data
buffer.

In a more complex case, there may be multiple buffers to copy in. This is done by calling mi_copyin
and adding additional MI_COPY_IN cases to the mi_copy_state switch.

For each buffer to be copied out, mi_copyout_alloc is called to allocate the buffer before calling
mi_copyout to copy contents of the buffer. If more than one copy out operation is needed,
mi_copy_state and MI_COPY_CASE are used to control what is copied. The example shows two
buffers being copied out: a netbuf structure and the buffer it points to.

Additional details are provided in the prototype descriptions which follow.

mi_copyin

This function is called to copy data from a user buffer into the kernel.

void mi_copyin(queue_t* q, mblk_t* mp, char* uaddr, size_t len);

q The queue argument to the current write-side put procedure from which
mi_copyin is being called.

mp The M_IOCTL or M_IOCDATA message being processed. This message must
not be modified by the module except by calling mi_copy routines.

uaddr The user-space buffer address from which data will be copied. This argument
must be NULL when mi_copyin is called for the original M_IOCTL message;
mi_copyin determines the buffer address from the M_IOCTL message. For
subsequent calls for M_IOCDATA messages, this address must be extracted from
data structures being passed in by the ioctl itself, e.g., buffer addresses from a
netbuf structure.

len The number of bytes to copy-in

This function may be called multiple times to copy-in multiple user buffers. mp is always the message
passed to the put procedure.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 47
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

mi_copyout

This function is called to copy data to a user buffer. Data to be copied out must be stored in message
blocks allocated by mi_copyout_alloc.

void mi_copyout(queue_t* q, mblk_t* mp);

q The queue argument to the current write-side put procedure from which
mi_copyout is being called.

mp The M_IOCTL or M_IOCDATA message being processed. This message must
not be modified by the module except by calling mi_copy routines.

mi_copyout_alloc must be used to allocate the message block into which the data to be copied-out will
be placed. Note, however, that the message pointer returned from mi_copyout_alloc is not passed as an
argument.

mi_copyout_alloc

This function allocates and returns a pointer to a buffer to be copied out by mi_copyout.

mblk_t* mi_copyout_alloc(queue_t* q, mblk_t* mp, char* uaddr, size_t len);

q The queue argument to the current write-side put procedure from which
mi_copyout_alloc is being called.

mp The M_IOCTL or M_IOCDATA message being processed. This message must
not be modified by the module except by calling mi_copy rou;tines.

uaddr The user-space buffer address to which data will be copied.

len The number of bytes to copy-out.

The return value is a pointer to a message block of size len, into which the caller can place whatever
data is to e copied out. NULL is returned if memory cannot be allocated.

Notes:

1) If multiple copy-out operations and buffers are required, they must be allocated in
order from last out to first out. That is, the last buffer allocated will be the first
copied out.

2) You may allocate all copy out buffers at one time, or you may alternate
mi_copyout and mi_copyout_alloc calls

3) Note that mp is the message pointer passed to a subsequent mi_copyout function
call, but the caller puts the data to be copied out into mp1. Internally, mp points
to the first message block in a chain of mi_copyout_alloc'd message blocks.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 48
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

4) Do not free or otherwise manipulate the mblk fields of the message returned by
mi_copyout_alloc.

MI_COPY_CASE

This macro returns a constant which can be used as a case label for a switch statement that switches on
the return value of mi_copy_state.

#define MI_COPY_CASE(dir, count)

dir Direction of current operation. Sepcified as one of the two symbolic constants
MI_COPY_IN or MI_COPY_OUT.

count The number of copy operation s already completed, or equivalently, the number of
the current M_IOCDATA message being processed.

mi_copy_done

This function is called to complete an ioctl which copies nothing out, or as the last case after multiple
copy outs.

void mi_copy_done(queue_t* q, mblk_t* mp, int err);

q The queue argument to the current write-side put procedure from which
mi_copy_done is being called

mp The M_IOCTL or M_IOCDATA message being processed. This message must
not be modified by the module except by calling mi_copy routines.

err The ioctl return value to set into the ioc_error field of the iocblk structure

Notes:

1) If necessary, call mi_copy_done to complete the ioctl. This step is only required
after the last copy-out of a transparent ioctl or for either type of ioctl when
nothing is being copied out to the caller

2) If the ioctl neither copies in nor out any data, only mi_copy_done and optionally
mi_copy_set_rval are required.

3) Your code must provide for calling mi_copy_done for any M_IOCDATA message
that it doesn't expect.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 49
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

mi_copy_set_rval

If the ioctl has a non-zero return value, that return value must be set by this function before the final call
to mi_copyout or mi_copy_done. This function must be called before the last mi_copyout or
mi_copy_done call. If the ioctl neither copies in nor out any data, only mi_copy_done and optionally
mi_copy_set_rval are required.

void mi_copy_set_rval(mblk_t* mp, int rval);

mi_copy_state

This function returns the current internal state and optionally the next message block to process. The
values match those returned by the MI_COPY_CASE macro

int mi_copy_state(queue_t* q, mblk_t* mp, mblk_t* mpp);

q The queue argument to the current write-side put procedure from which
mi_copyxxx is being called

mp The M_IOCTL message being processed

mpp Pointer to mblk_t pointer, into which the pointer to the just-copied data is placed.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 50
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

TPI Support functions

The functions in this section isolate the construction of TPI messages. The functions handle the details
of allocating and formatting messages.

Arguments to all the functions follow the same pattern. "ACK" functions accept a pointer to the TPI
message being ACK's. Message which permit data to be appended through the b_cont field are passed a
trailer_mp argument which is the message block(s) to append. Other arguments correspond to field in
the TPI message being created. The following table summarizes:

mp Functions which return an acknowledgement, some form of T_xxx_ACK
message, are passed the message to be ACK'd in this argument.

IMPORTANT: The message pointed at by this argument is either reused or freed by
the function. Therefore it must not be referenced by the calling code after the
function returns.

trailer_mp If the TPI message supports optional data in attached M_DATA message blocks,
the optional data is passed to the function in this argument.

Other All other arguments are values to be copied into the corresponding field of the
TPI message.

Arguments not following this pattern are described in the individual function descriptions which follow.
On success each function returns a pointer to the completed message; on memory allocation failure, it
returns NULL.

mi_tpi_ack_alloc

mblk_t* mi_tpi_ack_alloc(mblk_t* mp, size_t size, long type)

size Length of ACK message to allocate, typically specified as sizeof(struct
T_xxx_ack).

type The PRIM_type of the ACK message being allocated.

This function fills in only the primitive type; the caller must fill in all other fields.

mi_tpi_err_ack_alloc

mblk_t* mi_tpi_err_ack_alloc(mblk_t* mp, int tlierr, int unixerr)

This function creates a T_ERROR_ACK for the TPI message contained in mp.

mi_tpi_ok_ack_alloc

mblk_t* mi_tpi_ok_ack_alloc(mblk_t* mp)

This function creates a T_OK_ACK for the TPI messaged contained in mp.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 51
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Other TPI prototypes

These are the prototypes for functions whose workings should be obvious:

mblk_t* mi_tpi_conn_con(mblk_t* trailer_mp, char* src, size_t srcLength, char* opt,
size_t optLength);

mblk_t* mi_tpi_conn_ind(mblk_t* trailer_mp, char* src, size_t srcLength, char* opt,
size_t optLength, int seqnum);

mblk_t* mi_tpi_conn_req(mblk_t* trailer_mp, char* dest, size_t destLength, char* opt,
size_t optLength);

mblk_t* mi_tpi_discon_ind(mblk_t* trailer_mp, int reason, int seqnum);

mblk_t* mi_tpi_discon_req(mblk_t* trailer_mp, int seqnum);

mblk_t* mi_tpi_info_req(void);

mblk_t* mi_tpi_ordrel_ind(void);

mblk_t* mi_tpi_ordrel_req(void);

mblk_t* mi_tpi_uderror_ind(char* dest, size_t destLength, char* opt, size_t optLength,
int error)

mblk_t* mi_tpi_unitdata_ind(mblk_t* trailer_mp, char* src, size_t srcLength,
 char* opt, size_t optLength);

mblk_t* mi_tpi_unitdata_req(mblk_t* trailer_mp, char* src, size_t srcLength,
 char* opt, size_t optLength);

For these next four functions, the type parameter is reserved and should be set to 0.

mblk_t* mi_tpi_data_ind(mblk_t* trailer_mp, int flags, int type);

mblk_t* mi_tpi_data_req(mblk_t* trailer_mp, int flags, int type);

mblk_t* mi_tpi_exdata_ind(mblk_t* trailer_mp, int flags, int type);

mblk_t* mi_tpi_exdata_req(mblk_t* trailer_mp, int flags, int type);

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 52
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Synchronization support

The mps_become_writer function is provided to support modules which have SQLVL_QUEUE,
SQLVL_QUEUEPAIR, or SQLVL_SPLITMODULE (version 1.5 or later) set. At some time during
operation, it may become necessary to access a resource that is shared between all instances of the
module. This access must be coordinated so that an instance updating the resource does not collide with
an instance reading the resource (ARP tables are one such example). In order to support this, Open
Transport supplies the mps_become_writer function:

typedef void (*OTWriterProcPtr)(queue_t*, mblk_t*);

void mps_become_writer(queue_t* q, mblk_t* mp, OTWriterProcPtr proc);

This function will lock out all instances of the module owning the queue "q" (and any "writer buddies"
specified in the install_info), and when that is done, call back the function specified by the
OTWriterProcPtr. For the duration of the call, the function has sole access to the variables of the
module.

You should be aware, however, that this function is expensive in terms of time. It requires that each
queue or queue pair in existence be acquired. A new synchronization level, SQLVL_SPLITMODULE,
has been introduced that works almost as well as SQLVL_QUEUE or SQLVL_QUEUEPAIR, but
calling mps_become_writer is much quicker. SQLVL_SPLITMODULE allows you to be inside your
module once from an upper queue and once from a lower queue. If you are writing a module, we highly
suggest that you use this synchronization level once it becomes available (in Open Transport 1.5 and
later). This level allows an upper level protocol to receive a packet, and send a reply without the reply
getting hung up on a queue until the stack unwinds, which reduces gaps on the wire.

IOCTL Messages

This section describes some IOCTL message that Open Transport has defined that you might want to
consider supporting.

These first two IOCTLs are part of Open Transport's arbitration mechanism for ports that cannot
demultiplex incoming data (like serial ports). In order to support these IOCTLs, your driver must be
written with a few things in mind:

1) It should allow any client to open a STREAMS, whether or not there is already a
client using the driver.

2) It should classify STREAMS in one of 3 states - nonused, listening, or connected.
The "connected" state implies that a connection is in progress and data is actively
being transferred, while "listening" implies that the streamis waiting for an
incoming connection request. Only one stream may be in a state other than
nonused.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 53
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

The following IOCTL message complete the support for the arbitration mechanism for non-shareable
ports:

I_OTYieldPort This IOCTL is only issued by Open Transport. It passes a 4-byte value
that is either a 0 or a 1. A "1" tells your driver that it should place the
current "listening" client in a backup position (if there is one), and accept
the next Bind or Connect as the new active client. The driver should return
an ENXIO error if the current client is in the "connected" state, and an
ENOENT error if there is no current client. Otherwise, a 0 value should
be returned. A T_event_ind message should be sent to the current
"listening" client with an EVENT_code of
kOTProviderIsDisconnectedand an EVENT_cookie of NULL (see
tihdr.h for a definition of the T_event_ind message). When the new active
client unbinds (if qlen <> 0) or disconnects (if qlen == 0), the previous
listening client should be restored as the listener and a T_event_ind
message should be sent to the client with an EVENT_code of
kOTProviderIsReconnected and an EVENT_cookie of NULL. This
IOCTL is required to be supported by those drivers that have set the
kOTPortCanYield bit in the install_flags. It should be supported by
all devices which cannot demultiplex incoming data to multiple clients
(like serial ports).

A "0" value indicates that the yield was canceled, and you should restore
the previous client to ownership of the port.

In any case, after receiving a yield request, your driver should set about a
10 second timer. If no one else grabs ownership of the port in that time,
ownership should automatically revert to the previous client. Remember,
you should always send the kOTProviderIsReconnected event indication
whenever you revert back to the previous client.

This IOCTL should be accepted on any queue on the port, since Open
Transport will use a provider supplied by the client that is requesting the
yield.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 54
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

The next set of IOCTL messages can be supported by any stream module or driver if it make's sense to
support it:

I_OTGetMiscellaneousEvent

This IOCTL tells a driver or protocol that the client is interested in any
miscellaneous events (using the T_event_ind message defined by Open Transport)
that the protocol or driver wishes to send up. AppleTalk uses this IOCTL and the
T_event_ind messages to inform clients when routers go up and down, as well as
other kind of incidental messages. The value accompanying the IOCTL data
should be a 4-byte value that is 0, 1, or -1. Any other value is an error. A value of
0 requests that miscellaneous events no longer be delivered. A value of 1 requests
that miscellaneous events be delivered. A value of -1 does not change the mode,
and is just used where the client wants to read the current state.. The return value
of the IOCTL should be a 0 or a 1 reflecting the current or new state of
miscellaneous event delivery. If you don't support the IOCTL, pass it on or NAK
it, as appropriate.

I_OTSetFramingType

This IOCTL is used by registered port drivers that have specified a set of
capability bits in the fCapabilities field of the OTPortRecord. The only time this
IOCTL is needed is if the information in a DL_INFO_REQ or T_INFO_REQ
message is different depending on what capability (most often used to specify a
framing type) is used. For instance, Ethernet can return a dl_mac_type of
DL_CSMACD or DL_ETHER depending on the type of framing chosen. Since the
TCP/IP stack determines whether it should use straight ethernet headers or 802.2
headers based on the dl_mac_type returned from a DL_INFO_REQ, the code that
creates a TCP/IP stack opens the Ethernet driver and sends an
I_OTSetFramingType IOCTL to tell the Ethernet driver which value to put in the
dl_mac_type field (it specifies the bit kOTFraming8022 to get DL_CSMACD,
and kOTFramingEthernet to get DL_ETHER. The return value of this IOCTL is
the current "capability" in effect, (or 0, if no "capability" is in effect.). See the
Open Tpt Ethernet Dev. Note for more information on this IOCTL and it's use.

This IOCTL is also used by Serial and ISDN drivers to select the appropriate
framing types for the link.

The value accompanying the IOCTL data should be a 4-byte value that is either a
single bit, or a -1. -1 is used to read the current "capability" that is in effect, and
any other single-bit value is a request to set the corresponding "capability".

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 55
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

I_OTSetRawMode

This IOCTL is used to deal with "raw" mode packets for DLPI drivers. See the
Open Tpt Ethernet Dev. Note for more information on this IOCTL and it's use.

I_OTNotifyAllClients

This IOCTL requests a module or driver to send a T_event_ind message to all of
it's clients. This IOCTL is sent as an I_STR IOCTL, with 12 bytes of data
corresponding to the structure:

struct OTIOCtlNotifyInfo
{

OTEventCode fCode;
void* fCookie;
UInt32 fNotifyType;

}

enum
{

kOTNotifyAllModules = 0, kOTNotifyInterestedModules = 1,
kOTNotifyControlModules = 2

};

The fNotifyType field tells the module which group of modules should be
notified.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 56
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Appendix A- Synchronization

Synchronization is one of the biggest problems when writing complex protocols and drivers. While the
synch queue levels go a long way to controlling synchronization, performance of a system is enhanced
if you can use less restrictive synchronization mechanisms than SQLVL_MODULE. However, with
this comes the headaches of controlling access to critical resources. The API mps_become_writer
helps with this synchronization, but it has a severe shortcoming - the less restrictive your
synchronization, the longer it takes.

Open Transport has defined a very simple data structure and a couple of routines to go with it, called an
OTGate. An OTGate is associated with a procedure (the OTGateProcPtr), a list of things to process,
and a lock. When you want to process something that deals with a critical resource, call OTEnterGate
with some kind of structure that will tell the gate procedure what to do.

WARNING: This structure MUST be allocated on a
4-byte boundary, or unpredictable results will occur.

typedef Boolean (*OTGateProcPtr)(OTLink*);

struct OTGate
{

OTLIFO fLIFO;
OTList fList;
OTGateProcPtr fProc;
SInt32 fNumQueued;
OTLock fInside;
UInt8 fFiller[3];

};

typedef struct OTGate OTGate;

extern void OTInitGate(OTGate*, OTGateProcPtr proc);
extern Boolean OTEnterGate(OTGate*, OTLink*);
extern void OTLeaveGate(OTGate*);

The gate operates by keeping a LIFO and a simple list, as well as an atomic lock. When you enter the
gate, the link is thrown atomically on the LIFO (unless, of course, the link is NULL) and the atomic
lock is acquired. If it cannot be acquired a false is returned immediately from the OTEnterGate
function. If the lock can be acquired, if the incoming link was NULL, true is returned from the
OTEnterGate function. This allows "locking out" the gate until you call OTLeaveGate.

If the incoming link was not NULL, then the first item on the list is run. If the list is empty, the LIFO is
atomically stolen, reversed, and stored on the list and we loop back around to run the first item on the
list.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 57
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

If the gate procedure returns true, it means it is finished with the link and the lock can be relinquished.
In this case, we loop back around and run the next item on the list. If it returns false, then the gate
procedure wants to manually leave the gate, so we just exit the OTEnterGate function. Then sometime
in the future, a call to OTLeaveGate will be made to relinquish the lock. The call to OTLeaveGate will
once again attempt to run things on the LIFO and the list until they are both empty, at which point, the
lock will be dropped.

Since someone might have queued something up just prior to us dropping the lock, we have to check the
LIFO one last time, and if it is not empty, attempt to acquire the lock and loop back around. If we can't
acquire the lock, then some other thread is taking care of it and we are free to exit the function.

In Apple's AppleTalk implementation, mblk_t*s are used to queue up on the gate.

For instance, whenever we want to add or remove something from a critical list (such as our socket list),
we call:

OTEnterGate(&theListGate, (OTLink*)&mp->b_next);

This calls the gate procedure, which gets passed the mblk_t:

Boolean MyGateProc(OTLink* link)
{

mblk_t* mp = OTGetLinkObject(link, mlbk_t, b_next);
/*
 * Here, we look at the "mp" and do whatever we're supposed to do
*/
return true;

}

The gate procedure returns true if it has completed processing the "link". It returns false if it has
not, and at some later time, the code must call OTLeaveGate when done processing "link". While you
are executing in the gate procedure, you are guaranteed that no one else can be executing the gate
procedure (at least, not for the specified OTGate object).

Different OTGate objects can be set up to protect different resources.

Of course, most lists in networking are searched often, and modified infrequently. Having to go through
the overhead of the gate procedure to look things up is not ideal, and in addition, the flow of control has
to move from the point where you want to search the list to somewhere in the gate procedure (or called
by it).

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 58
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

As long as you remove and add entries to the list in your gate procedure properly (by insuring that you
don't invalidate pointers in the list so that they could point to deleted memory), you can have multiple
readers of the list interrupting a single writer with no problem.

The way to do this is simple:

Boolean inGate = OTEnterGate(&theListGate, NULL);
/* Search the List here */
if (inGate)

OTLeaveGate(&theListGate)

Note that calling OTEnterGate with a NULL link pointer attempts to acquire the gate. It returns true if
it did, and false if it did not. This operation is very fast.

If it did acquire the gate, we have exclusive access to the list (except for possibly other readers). If it
did not, then there is at most 1 writer that we have interrupted, and we know it's safe to scan the list
(assuming you don't invalidate pointers in the list as a writer).

After searching the list, if we "entered" the gate, we need to call OTLeaveGate so that any writers that
are queued up get run.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 59
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Appendix B- Performance hints
1) Don't keep resetting timers for high-frequency events. Let your timer free-run and

modify your timeout algorithms accordingly.

2) Support and use FastPath if at all possible to avoid the allocation of M_PROTOs.

3) Keep your receive path and transmit path as short as possible.

4) Handle your own flow control. This is easily done by always handling data in a "put"
routine, setting your queues high and low water marks to 31 and 16 respectively. To
flow control, do a putq of a 32-byte message onto your queue. To lift flow control, do a
rmvq on your flow control message.

5) If you are a TPI module or driver, support the XTI_SNDBUF, XTI_RCVBUF,
XTI_SNDLOWAT, and XTI_RCVLOWAT options. Use the XTI_SNDBUF and XTI_SNDLOWAT to
set the stream-head high and low water marks, as well as to regulate your own send
window. Use the XTI_RCVBUF option to set your lower queue's high water mark and the
XTI_RCVLOWAT option to set your lower queue's low water mark.

6) For drivers that can selectively disable their own interrupts, spend as long as you can in
your interrupt service routine. This includes allocating mblks for messages, finding the
lower queues to put them on, and then doing a putq on the correct lower queues. Then
check your hardware or transmit queue again. Maybe more message have arrived or
DMA buffers have freed up, allowing you to do more processing without taking another
interrupt.

7) Use large packet sizes, if possible. The larger the packet size, the higher the throughput.
The time it takes to transmit a single packet is all the time there is to go up and down the
stack once if you want to saturate the link.

10 MB - 600 byte packet = 480 µSec
100MB - 600 byte packet = 48 µSec
100MB - 1500 byte packet = 120 µSec
100MB - 8192 byte packet = 655 µSec

8) When writing client applications and test programs, for best performance, modify the
default buffer sizes. The defaults are set for a compromise between speed and memory
usage.

9) Avoid mixed-mode switches like the plague in your send and receive paths. Each
mixed-mode switch costs 25-40 µSec.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 60
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

10) Don't use BCOPY/bcopy for small copies that are of known size. Do the copy inline.

11) Code any operations that have to be done on every byte in the data in assembly
language.

12) If you run out of memory, and aren't in a position to "toss" the data, be sure to disable
the appropriate queue until memory becomes available. You don't want to keep making
the situation worse. Better yet, use the mi_open_comm and mi_bufcall facility to handle
it all automatically for you.

13) If you have your own DMA buffers for incoming data, and aren't restricted by a ring-
type architecture where you can't use free buffers that aren't contiguous in the ring,
consider using esballoc for about 1/2 your DMA buffers. If the client is a high-speed
client, you may get them back before you have to begin copying mblks. This also helps
reduce footprint, by avoiding the duplication of data.

14) As a client, use AckSends and no-copy receives to read the data off of the streamhead.
Of course, on no-copy receives it is crucial that you do something with the data quickly
and release the buffer if you want maximum throughput.

15) Open Transport needs to define a way to appropriately lock down mblks for DMA.
Possibilities: 1) A new "allocbDMA" call that keeps a separate set of mblks that are
already locked down (downside is footprint); 2) A LockMblk and UnlockMblk set of
APIs; 3) An Open Transport memory allocator for DMA-able memory that can be called
at interrupt time, making it feasible to do esballocs on the data. 4) Any suggestions?

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 61
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Appendix C - Random Notes/Warnings
1) The SVR4.2 STREAMS guide states that modules may sleep in their Open and Close

routines (for the MacOS, this means making synchronous I/O calls). In the Open
Transport version of STREAMS, this is not true due to the nature of the Macintosh
Operating System. Open and Close routines may not make synchronous calls. Use the
InitStreamModuleand TerminateStreamModuleare always called at System Task time.
You need to structure your module or driver so that any synchronous operations or calls
to the Macintosh toolbox are done in these routines. Remember that for port drivers,
these entry points will be called for any instance of your driver that is being instantiated
or destroyed, whether or not your shared library is being unloaded.

2) Drivers for hardware that can be ejected or removed (e.g. PCMCIA cards), should call

OTChangePortState(myPortRef, kOTPortDisabled, kOTPortEjected)

so that Open Transport can close down all of the providers that are using the port, and
notify clients that the port has gone away. If the card is reinserted, call

OTChangePortState(myPortRef, kOTPortEnabled, kOTNoError)

to notify all clients that the port is back on-line.

3) Drivers that sit atop connection-oriented links (e.g. PPP sitting atop a modem device),
should also call OTChangePortState if they receive a T_DISCONNECT from the
modem device. In the Close() routine of their driver, or in response to a final Unbind()
call, they should reenable themselves. This allows the upper-level protocols to know that
the link has died,. Steps can then be taking to unbind or close all providers using the link,
and then bringing the link back up, presumably causing an attempt to reestablish the
connect(e.g. redial the phone).

4) Drivers that use OTChangePortState still need to protect themselves from being used.
This can be done by using the M_ERROR message to send an error up to the streamhead, or
it can be done by local state and dealing with the fact that the link below has
disconnected on a message-by-message basis. (If you use M_ERROR, remember to send
another M_ERROR message to clear the error when you are again open for business!)

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 62
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

5) Use care when calling the rmvq function. Unix documentation states that calling rmvq
for a message that is not on the queue is a system panic. Under Open Transport, the rmvq
function will remove the message from whatever queue it is on (or trash location 0 if it’s
not on a queue), and subtract the size of the message from the number of bytes on the
queue. This will cause “canput” to fail when called on your queue, quite probably
causing Macintosh networking to hang.

6) The bcopy routine supplied by Open Transport eventually calls the BlockMoveData trap
supplied by the system (on 68K, this only occurs for transfers > 68 bytes - for less than
68 bytes, it’s faster to do it ourselves in-line). The BlockMoveData routine is not
suitable for moving data into and out of uncached memory (like DMA buffers on some
systems). Use the BlockMoveUncached routine instead.

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 63
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

Index
allocb 38
arbitration 53
ASLM 6
bufcall 45
CFM 6
Close 62
copyb 39
copymsg 39
DLPI 5
dupb 38
dupmsg 38
freeb 38
freemsg 38
GetOTInstallInfo 7
Index 64
InitStreamModule 11, 37, 62
install_flags 9
install_info 7
I_OTGetMiscellaneousEvent 55
I_OTNotifyAllClients 56
I_OTSetFramingType 55
I_OTSetPowerLevel 37
I_OTSetRawMode 56
I_OTYieldPort 54
kOTPortCanYield 54
kOTPortScannerInterfaceID 27, 29
kOTProviderIsDisconnected 54
kOTProviderIsReconnected 54
kOTPseudoPortScannerInterfaceID 27, 29
memory allocations 12
mi_bufcall 45
mi_close_comm 40
mi_close_detached 41
mi_copyin 47
mi_copyout 48
mi_copyout_alloc 48
MI_COPY_CASE 49
mi_copy_done 49
mi_copy_set_rval 50
mi_copy_state 50
mi_detach 41
mi_next_ptr 43
mi_open_comm 42
mi_open_detached 44
mi_timer 34
mi_timer_alloc 34
mi_timer_cancel 34
mi_timer_free 34
mi_timer_valid 34
mi_tpi_ack_alloc 51
mi_tpi_conn_con 52
mi_tpi_conn_ind 52
mi_tpi_conn_req 52
mi_tpi_data_ind 52
mi_tpi_data_req 52
mi_tpi_discon_ind 52
mi_tpi_discon_req 52
mi_tpi_err_ack_alloc 51

mi_tpi_exdata_ind 52
mi_tpi_exdata_req 52
mi_tpi_info_req 52
mi_tpi_ok_ack_alloc 51
mi_tpi_ordrel_ind 52
mi_tpi_ordrel_req 52
mi_tpi_uderror_ind 52
mi_tpi_unitdata_ind 52
mi_tpi_unitdata_req 52
M_DATA 5
M_PCPROTO 5
M_PCSIG 34
M_PROTO 5
Open 62
OTAllocMem 38
OTAllocMsg 39
OTAllocPortMem 20
OTAllocReadOnlyMsg 39
OTAtomicAdd16 35
OTAtomicAdd32 35
OTAtomicAdd8 35
OTAtomicClearBit 35
OTAtomicSetBit 35
OTAtomicTestBit 35
OTChangePortState 62
OTCompareAndSwap16 35
OTCompareAndSwap32 35
OTCompareAndSwap8 35
OTCompareAndSwapPtr 35
OTCreateDeferredTask 33
OTDequeue 36
OTDestroyDeferredTask 33
OTEnqueue 36
OTEnterInterrupt 32
OTFindPortByDev 25
OTFreeMem 38
OTFreePortMem 20
OTLeaveInterrupt 32
OTLIFO 36
OTLIFODequeue 36
OTLIFOEnqueue 36
OTLIFOStealList 36
OTLink 36
OTPortRecord 19
OTRegisterPort 19, 28
OTReverseList 36
OTScanPorts 27, 28
OTScheduleDriverDeferredTask 33
PCMCIA 62
port scanners 27
sleep 62
SQLVL_GLOBAL 8
SQLVL_MODULE 8
SQLVL_QUEUE 8
SQLVL_QUEUEPAIR 8
SQLVL_SPLITMODULE 8
streamtab 12
TerminateStreamModule 12, 37, 62
TPI 5

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 64
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

TPortRecord 26 ValidateHardware 37

Open Tpt Module Note, Rev 1.5d2 06/18/96 page 65
Copyright © 1994-1996 Apple Computer, Inc. All rights reserved.

