



 1996 Mentat Inc. 3/29/96

Mentat DLPI Driver Template
for Open Transport

The Mentat DLPI Driver Template is device independent code which
may be used by STREAMS device driver writers to simplify the task of
writing a DLPI compliant driver which supports

DL_CSMACD

 and

DL ETHER

 media. Under Open Transport this template is provided as a
Shared Library and ANSI C header files.

To use the template, a driver writer needs to supply only hardware
specific code. The DLPI Driver Template provides full support for

• DLPI Version 2.0 Local Management Service Primitives and
Connectionless-mode Service Primitives (Sections 4.1 and 4.3 of the
DLPI 2.0 Specification

1

).
• 802.2 TEST and XID operations (Section 4.4 of DLPI 2.0 Specification

and Section 5 of IEEE 802.2 Standard

2

).
• DIX Ethernet, 802.x, 802 SNAP, and raw IPX encapsulations on a

per-stream basis.
• Promiscuous modes and Multicast.
• Mentat “Fast Path” extension.
• Interface MIB statistics per RFC 1573 and Ethernet MIB statistics per

RFC 1643.
• Mentat Network Monitor extensions.

In particular, the common code efficiently handles all the details of
inbound packet delivery to possibly multiple streams. The hardware
specific code need only present buffers containing received data to the
common code for correct delivery. On outbound packets the hardware
specific code will be handed fully-formed data frames ready to be placed in
hardware transmit buffers.

As a starting point for writing the hardware code, a working loopback
driver is provided in a heavily commented ANSI C source file. The sample

1. Data Link Provider Interface Specification, UNIX International, OSI Work Group,
Revision 2.0.0 (August 20, 1991).
2. Information processing systems—Local area networks—Part 2: Logical link control,
ISO 8802.2: 1989, ANSI/IEEE Std 802.2-1989, IEEE, New York, 1989.

Mentat DLPI Driver Template for Open Transport

2



 1996 Mentat Inc. 3/29/96

driver and this document combine to provide the necessary details on how
to write a STREAMS device driver using the Mentat DLPI Driver Template.

1 Driver Template Overview

The common code for the DLPI Driver Template is provided as an Open
Transport Shared Library. A header file,

dlpiether.h

, defines the interface to
the common code. A separate header file,

dlpiuser.h

, defines the user inter-
face to the driver, including MIB structures and network monitor exten-
sions.

The STREAMS interface to the driver (open, close, put, procedures,
service routines, and

streamtab

 entry) must be supplied in the hard-
ware-specific code. This design was chosen for two reasons. First, this
gives the hardware code control over all its entry points, rather than
having some hidden in the common code. Second, and most importantly,
this permits the hardware code to optimize the main transmit and receive
data paths for its particular hardware architecture.

The common code

1

 provides a small number of entry points called by
the hardware code, for such operations as initialization and inbound
packet delivery. Likewise, the common code expects the hardware code to
provide a small number of functions to perform such actions such as
enabling the hardware and creating address filters for multicast addresses.

The relationship between open streams and the hardware code is main-
tained in data structures defined in

dlpiether.h

. These structures are incor-
porated into structures defined in the hardware code. Most of the fields in
these structures are maintained by the common code, but a few are useful
to and maintained by the hardware code, e.g., the Ethernet address associ-
ated with a board.

The common code handles all the details of the various DLPI binding
semantics for Ethernet, 802.x, 802 SNAP, and raw IPX binding. For
enabling promiscuous mode and multicast addresses, the common code
handles the DLPI semantics and calls the hardware code to perform any
board-specific operations, such as enabling hardware address filtering. The
multicast support will function correctly whether or not the board
provides multicast address filtering.

The key to high performance for data packets is Mentat’s Fast Path
extension to DLPI. The basic idea is to create the necessary frame header

1. We will use“common code” to refer to the DLPI Driver Template code in

dlpiether.c

the Shared Library and

“hardware code” to refer to the hardware specific code you must
write.

Mentat DLPI Driver Template for Open Transport

3



 1996 Mentat Inc. 3/29/96

for packets only once. Once Fast Path has been negotiated for a particular
source/destination address pair, the upper-level protocol can send all data
packets to the driver as

M_DATA

 messages with a complete frame header in
place in front of the actual data. The result is a substantial reduction in
processing overhead for data packets. Both Open Transport’s Appletalk
and TCP/IP protocol stacks make use of this optimization. The mechanism
by which Fast Path is enabled and used by upper level protocol modules is
fully described in Section 6.

The file

loopback.c

 included with the DLPI Driver Template is a working
loopback driver which is heavily commented and designed to be a starting
point for writing hardware-specific driver code. Most features described in
this document are illustrated in this sample driver.

1.1 Principal Data Structures

The common code completely controls the association between open
streams, bound SAPs, and the hardware code. This relationship is shown
in Figure 1.

Figure 1: Data Structures Linking Open Streams, SAPs, and Driver Code

dcl_t structure

SAP B
Device 1

dcl_hw

dcl_t structure

SAP C
Device 1

dcl_hw

dcl_t structure

SAP A
Device 2

dcl_hw

dcl_t structure

SAP A
Device 1

dcl_hw

dcl_t structure

SAP B
Device 2

dcl_hw

3 SAPs for Device 1 2 SAPs for Device 2

dle_t structures

dcl_t bound
to specified SAP

List of open streams for this device.
Note: A stream may be bound to more
than one SAP.

hardware-specific
code/data for Device 1

dle_instance_head

dle_sap_hash_tbl[…]

hardware-specific
code/data for Device 2

dle_instance_head

dle_sap_hash_tbl[…]

Mentat DLPI Driver Template for Open Transport

4



 1996 Mentat Inc. 3/29/96

The instance data for the driver (pointed to by the

queue

’s

q_ptr

field)
includes a

dcl_t

 structure at its beginning. The

dcl_t

 structure has a pointer,

dcl_hw

, to the

 dle_t

 structure for the corresponding hardware code. This
association is established when the hardware code calls the common code’s

dle_open

function. If there are multiple hardware cards (two are shown in
Figure 1) each will have its own

dle_t

 structure.

The common code maintains a hash table,

dle_sap_hash_tbl[…]

in the

dle_t

 structure. This table contains an element (

bind_t

 structure) for each
bound SAP. Each

bind

t structure contains a pointer to the

dcl_t

 structure
of the stream bound to the SAP represented by that

bind_t

 element. Table 3
and Figure 1 (below) provide additional details.

To repeat, the relationship between these structures is fully maintained
by the common code. Most fields in the structures are also maintained by
the common code; a few fields are useful to and maintained by the hard-
ware code, e.g., the Ethernet address associated with a board.

1.2 Common Code Structures

The common code requires the instance data for the device driver to
begin with a

dcl_t

 structure starting at

q_ptr

. If the driver requires addi-
tional per-stream data, these can be added to the instance data following
the

dcl_t

 structure, e.g.,

The common code itself allocates the instance data when

dle_open

 is
called from the stream’s open procedure (see description of

dle_open

 in
Section 2).

The fields of the

dcl_t

 structure are described in the following table.
Unless noted otherwise, these fields may not be altered by hardware code;
in addition, those marked “private” have no function outside of

dlpiether.c

.

Table 1: Fields in the

dcl_t

 Structure

Field Description

dcl_addr_list

List of

dle_addr_t

 structures containing the multi-
cast Ethernet (MAC) addresses associated with this
device instance.

typedef struct mydev_s {
dcl_t mydev_dcl;
int mydev_extra1;
int mydev_extra2;
…

} mydev_t;

Mentat DLPI Driver Template for Open Transport

5



 1996 Mentat Inc. 3/29/96

Hardware code must maintain a

dle_t

 structure for each separate hard-
ware port. Thus, if a card supports four ports, the hardware code will
provide four

dle_t

 structures. If the driver requires additional per-board
data, additional fields can be added to the board data following the

dle_t

structure, e.g.,

The fields of the

dle_t

 structure are described in the following table.
Unless noted otherwise, these fields may not be altered by hardware code;
in addition, those marked “private” have no function outside of

dlpiether.c

;
those marked “hardware” must be maintained by the hardware code as
described in Section 9.

dcl_flags

Private, except for the

F_DCL_RAWMODE_OK

 bit (see

xtra_hdr_len

 discussion in Section 6).

dcl_framing_type

Framing type as set by I_OTSetFramingType

ioctl

.
See

dcl_mac_type

.

dcl_hw

Pointer to

dle_t

 structure for this drivers hardware
code. Hardware-specific driver code should use
this pointer to retrieve per-board data structures.

dcl_mac_type

MAC type as returned by

DL_INFO_ACK

. This is

DL_
ETHER

 unless framing type has been set to
kOTFraming8022 with an

ioctl

, in which case

DL_
CSMACD

 is returned.

dcl_pad[3]

(private)

dcl_rq

This stream’s read-side

queue

.

dcl_sap

The 2-byte SAP from a

DL_BIND_REQ

.

dcl_snap[5]

SNAP header from a hierarchical

DL_SUBS_BIND_
REQ.

dcl_state

DLPI state.

Table 1: Fields in the

dcl_t

 Structure (Continued)

Field Description

typedef struct board_s {
dle_t board_dle;
int board_extra1;
int board_extra2;
…

} board_t;

Mentat DLPI Driver Template for Open Transport

6



 1996 Mentat Inc. 3/29/96

Table 2: Fields in the

dle_t

 Structure

Field Description

dle_bind_list

(private) Pointer to list of all

bind_t

 structures for all

dcl_t

’s associated with this dle_t. See Table 3 and
Figure 1 for details.

dle_bound_count (private) Number of entries in dle_bind_list.

dle_current_addr[6] (hardware) Current physical Ethernet address. This
is the local address used for matching inbound
packets and the source address for outbound
packets.

dle_estatus (hardware) One of two embedded MIB structures;
see Section 8.

dle_factory_addr[6] (hardware) Factory Ethernet address. This value is
returned by DL_PHYS_ADDR_REQ, but otherwise
unused by the common code.

dle_hw (hardware) Structure defining the three hard-
ware-specific functions (start, stop, and reset)
called from common code.

dle_hw_addr_list List of all physical and multicast addresses, with
reference count of streams using them. This list of
addresses is passed to the hardware code “reset”
function whenever the number of multicast
addresses changes.

dle_instance_head Head of the list of all open streams referencing this
dle_t.

dle_intr_active (private) Set to 1 while code is running in interrupt
context (dle_inbound has been called).

dle_istatus One of two embedded MIB structures; see
Section 8.

dle_match_any (private) List of promiscuous binds. See DL_
PROMISCON_REQ discussion in Section 4.

dle_match_any_802 (private) List of promiscuous 802.2 binds.

dle_match_any_
count

Number of dle_match_any entries; passed to hard-
ware “reset” function.

Mentat DLPI Driver Template for Open Transport 7

  1996 Mentat Inc. 3/29/96

All bind information is maintained in bind_t structures stored in the dle_
sap_hash_tbl[…] or in one of the dle_match_xxx lists. These lists are shown
schematically in Figure 1 and the fields of the bind_t are shown in the
following table. Note that the bind_t structure is private to the common
code; it is presented here only to provide a better understanding of how the
common code works.

dle_match_any_
multicast

(private) List of promiscuous multicast binds. See
DL_PROMISCON_REQ discussion in Section 4.

dle_match_any_
multicast_count

Number of dle_match_any_multicast entries;
passed to hardware “reset” function.

dle_match_matched (private) List of binds for packets that have
matched at least one other binding. See DL_
PROMISCON_REQ discussion in Section 4.

dle_min_sdu Minimum transmit size from clients. Set to zero by
dle_init.

dle_refcnt Number of open streams referencing this dle_t.

dle_sap_hash_tbl[64] (private) Hash table of SAP binds; see Figure 1 and
Figure 1.

dle_xtra_hdr_len (hardware) Extra space the hardware code needs in
front of the Ethernet frame header in outbound
M DATA messages.

Table 3: Fields in the bind_t Structure

Field Description

bind_dcl Pointer to the dcl_t structure for the driver instance
which is bound to bind_sap.

bind_flags Bit mask identifying the type of SAP.

bind_hash_next Pointer to the next bind_t in this hash chain.

bind_next Pointer to the next bind_t in the list of all bind_t
structures for this dle_t. List head is dle_bind_list.

bind_sap The SAP value for this bind_t entry.

Table 2: Fields in the dle_t Structure (Continued)

Field Description

Mentat DLPI Driver Template for Open Transport 8

  1996 Mentat Inc. 3/29/96

 Two things are worth noting about the lists in Figure 1.

1. The hash chains in dle_sap_hash_tbl[…] linked by bind_hash_next
will contain a single element for all the commonly used SAP
values. This is ensured by choice of hash function, DLE_SAP_HASH_
VALUE.

bind_sap_next Pointer to the next bind_t with “equivalent” SAP
value. For entries in the hash table, “equivalent”
means the same SAP value (the two “SAP C”
entries in Figure 1). For the various dle_match_xxx
lists, all entries in a list are “equivalent”, so all
entries are connected through this field. For
inbound packets, all streams on the same bind_
sap_next list will get copies of the same packets.

Table 3: Fields in the bind_t Structure (Continued)

Field Description

Figure 2: SAP Hash Table bind_t Lists.

dle_sap_hash_tbl[…]

bind_next

bind_hash

bind_dcl

bind_sap

_next

_next

SAP A

bind_next

bind_hash

bind_dcl

bind_sap

_next

_next

SAP B

bind_next

bind_hash

bind_dcl

bind_sap

_next

_next

SAP C

bind_next

bind_hash

bind_dcl

bind_sap

_next

_next

SAP C
bind_next

bind_hash

bind_dcl

bind_sap

_next

_next

- - -

bind_next

bind_hash

bind_dcl

bind_sap

_next

_next

- - -

dle_match_xxx

dle_bind_list

Mentat DLPI Driver Template for Open Transport 9

  1996 Mentat Inc. 3/29/96

2. Whether a “matching” SAP is found in the dle_sap_hash_tbl[…]
or in one of the dle_match_xxx lists, following the chain through
the bind_sap_next field will give pointers to all streams to which
inbound packets must be delivered. In particular, this design
requires no “special cases” for delivering packets to promiscuous
streams.

2 Common Code Entry Points
dlpiether.c exports nine functions for use by the hardware code.

The remainder of this section describes these functions and summarizes
important points about their use. Additional details are provided in
Section 9.

dle_close
This function must be called from the device close procedure.

Prototype

int
dle_close (

queue_t * q);

Table 4: Common Code Entry Points

Function Description

dle_close Removes a stream from common code structures.

dle_inbound Performs all common code processing of inbound
packets.

dle_inbound_error Delivers bad packets to “interested streams”.

dle_init Informs common code that board is now available.

dle_open Adds a stream to common code structures.

dle_rsrv_ctl 802.2 XID and TEST packet processing.

dle_terminate Informs common code that board is no longer
available.

dle_wput Called from write-side put procedure to process
outbound packets.

dle_wput_ud_error Formats DL_UDERROR_IND messages.

Mentat DLPI Driver Template for Open Transport 10

  1996 Mentat Inc. 3/29/96

Return Value

Returns 0 on success or an error code on failure.

Notes

1. dle_close frees the queue’s instance data and removes this
instance from the list of open instances. Therefore, any references
to instance data fields, e.g., to free a dynamically allocated memory
block, must be done before dle_close is called.

2. If this is the last stream bound to a particular multicast address, the
hardware code “reset” function is called to change the on-board
filter.

3. The dle_refcnt field in the dle_t is decremented.

dle_inbound
dle_inbound is called for every inbound packet. It performs all the
necessary operations for delivering the packet to streams registered
to receive them, including those bound to a particular SAP or for
which multicast and promiscuous modes have been enabled.

Prototype

void
dle_inbound (

dle_t * dle,
mblk_t * mp);

Argument Description

q The queue argument passed to the close proce-
dure, i.e., this module instance’s read-side queue.

Argument Description

dle Pointer to the dle_t structure for this board/port.

mp Message containing the inbound data packet. The
message may contain multiple message blocks.
The Ethernet frame header is assumed to start at
b_rptr of the first message block.

Mentat DLPI Driver Template for Open Transport 11

  1996 Mentat Inc. 3/29/96

Notes

1. For hardware devices, dle_inbound is called from the hardware
code’s inbound interrupt routine in interrupt context. All packets
to be delivered to a stream are placed on the driver’s read-side
service queue for that stream. The operating system will schedule
the service routine to run after the hardware code returns from
interrupt context. A typical service routine is shown in the descrip-
tion of dle_rsrv_ctl below.

2. If multiple streams are to receive the packet, copies of mp are
created with dupmsg.

3. The message format for delivering packets upstream depends
upon the stream’s mode, as defined in the following table:

4. If xtra_hdr_len passed to dle_init is nonzero, it is the responsibility
of the caller to ensure that mp–>b_rptr points at the start of the
Ethernet frame and not any extra data in front of the frame header.

dle_inbound_error
This function is called by hardware code to deliver packets
containing errors to promiscuous streams that have registered to
receive such packets. The function is optional and only required if the
driver wishes to support the optional network monitor extensions
(Section 7).

Mode Message Type Delivered Upstream

Fast Path: DL_IOC_HDR_
INFO ioctl has been issued
on the stream. See
Section 6 for details.

All inbound packets sent to our local
address are passed upstream as
M DATA messages. All inbound
messages for multicast or broadcast
addresses are passed upstream as
M PROTO/DL UNITDATA_IND messages
with dl_group_address properly set.

Raw Mode: I_OTSetRaw-
Mode ioctl with subcom-
mand kOTSetRecvMode
has been issued on the
stream, disabling Fast
Path. See Section 7 for
details.

All inbound packets are passed
upstream as M DATA messages with a
dl_recv_status_t structure inserted in
front of the packet. The ioctl requests
this behavior for normal packets only,
or for both normal and error packets.

Default: Stream just
opened and neither Fast
Path nor Raw Mode has
been set.

All inbound packets are passed
upstream as M_PROTO/DL_UNITDATA_
IND messages.

Mentat DLPI Driver Template for Open Transport 12

  1996 Mentat Inc. 3/29/96

Prototype

void
dle_inbound_error (

dle_t * dle,
mblk_t * mp,
unsigned long flags);

Notes

1. The hardware code need only call this function after being called
in dlehw_address_filter_reset with accept_errors > 0, indicating
that at least one stream has registered to receive error packets.

2. The dlehw_recv_error_flags field in the dle_hw field of the dle_t
structure must be initialized by the hardware code to indicate
which errors can be received by the underlying hardware. The bit
mask values are defined in dlpiuser.h and described in Table 9 of
Section 7.

dle_init
This function must be called from the hardware code’s initialization
routine. It allows the common code to initialize several dle_t fields.

Prototype

void
dle_init (

dle_t * dle,
uint xtra_hdr_len);

Argument Description

dle Pointer to the dle_t structure for this board/port.

mp Message containing the corrupt packet.

flags A bit mask containing the result of OR’ing
together all the values in Table 9 which apply to
the packet. DL_ERROR_STATUS will be set by the
common code.

Mentat DLPI Driver Template for Open Transport 13

  1996 Mentat Inc. 3/29/96

Notes

1. This function must be called once per board (dle_t instance) before
the first stream open of the device is performed. For most drivers
this is most conveniently done from the InitStreamModule
function.

2. Several dle_t fields maintained by the hardware (see Table 10,
Section 9) must also be initialized before the first stream open. It is
strongly recommended that these fields be initialized in Init-
StreamModule prior to calling dle_init.

3. dle_init initializes the following fields of the dle_t structure:

If any of these values is unacceptable, they must be set by the hard-
ware code after calling dle_init.

4. If xtra_hdr_len == 0, M_DATA messages returned from dle_wput
contain a complete Ethernet frame header beginning at b_rptr of
the first block in the message. Some boards may require space in
front of the frame header for other information; for example, ATM
LAN Emulation requires a 6-byte area. dle_wput will allocate xtra_
hdr_len bytes at b_rptr in front of the Ethernet frame header.

dle_open
This function must be called from the device open procedure. It allo-
cates and initializes the fields of the dcl_t structure in the queue’s
instance data.

Argument Description

dle Pointer to the dle_t structure for this board/port.

xtra_hdr_len The number of bytes to be reserved between db_
base and b_rptr in M_DATA messages created by
dle_wput.

Field Value Set by dle_init

dle_istatus.speed 10000000 (10Mbits/second)

dle_istatus.mtu 1514 (frame size including Ethernet header,
but not trailer).

dle_min_sdu 0 (assume hardware or hardware code will
pad short packets as needed).

Mentat DLPI Driver Template for Open Transport 14

  1996 Mentat Inc. 3/29/96

Prototype

int
dle_open (

dle_t * dle,
queue_t * q,
dev_t * devp,
int flag,
int sflag,
cred_t * credp,
int dcl_len);

Return Value

Returns 0 on success or an error code on failure.

Notes

1. dle_open allocates the queue’s instance data (pointed to by the
queue’s q_ptr field). A dcl_t structure must be the first field of the
instance data. The total length to allocate, sizeof(dcl_t) +
sizeof(other_stuff), is passed in the dcl_len argument. There is a
single instance data allocated, and both the read and write queue
q_ptr fields point to it.

2. dle_open adds this queue instance to the list of open instances for
this board. The head of this list is the dle_instance_head field of
the dle argument. Section 9.3 describes the mi_next_ptr function
which may be used to traverse this list.

Argument Description

dle Pointer to the dle_t structure for this board/port.

q The queue argument passed to the open proce-
dure, i.e., this module instance’s read-side queue.

devp Device pointer argument passed to the open
procedure.

flag flag argument passed to the open procedure.

sflag sflag argument passed to the open procedure.

credp credp argument passed to the open procedure.

dcl_len Size of the instance data to be allocated.

Mentat DLPI Driver Template for Open Transport 15

  1996 Mentat Inc. 3/29/96

3. If there are multiple boards/ports, it is the responsibility of the
hardware code to determine the correct dle_t to pass as first argu-
ment.

4. The dle_refcnt field in the dle_t is incremented.

dle_rsrv_ctl
This function is called from the read-side service routine to process
M_CTL messages put on the queue as part of 802.2 XID and Test packet
processing.

Prototype

void
dle_rsrv_ctl (

queue_t * q,
mblk_t * mp);

Notes

dle_inbound is called in interrupt context. XID/TEST packets must be
passed to the driver’s write-side put procedure, but this cannot be
safely done in interrupt context. To resolve this problem, the
XID/TEST logic places an M_CTL message on the read-side service
queue. When the service routine runs, it must call dle_rsrv_ctl to
deliver the message to the put procedure. Code for your read-side
service routine should look like the following (see Section 9.1 for
additional details):

Argument Description

q The read-side queue.

mp Message containing the XID/TEST packet.

Mentat DLPI Driver Template for Open Transport 16

  1996 Mentat Inc. 3/29/96

dle_terminate
dle_terminate must be called by hardware code when the board/port
is no longer available for use. This will normally be done from
TerminateStreamModule.

Prototype

void
dle_terminate (

dle_t * dle);

dle_wput
dle_wput is called by the drivers write-side put procedure to process
all packets received from upstream, except for M_DATA messages.
M DATA messages are assumed to contain packet data with Fast Path
header included, and the hardware code can transmit these directly.

Prototype

mblk_t *
dle_wput (

queue_t * q,
mblk_t * mp);

Argument Description

dle Pointer to the dle_t structure for this board/port.

int driver_rsrv (queue_t * q)
{

mblk_t * mp;

while (mp = getq(q)) {
if (mp->b_datap->db_type == M_CTL)

dle_rsrv_ctl(q, mp);
else if (canputnext(q))

putnext(q, mp);
else

freemsg(mp);
}
return 0;

}

Mentat DLPI Driver Template for Open Transport 17

  1996 Mentat Inc. 3/29/96

Return Values

There are three distinct “return values” from dle_wput:

Notes

1. The M_DATA messages returned from dle_wput are identical to Fast
Path M_DATA messages received from upstream. See Section 6 for
details on how to use Fast Path.

2. Hardware code is responsible for computing the data length of
packets and inserting the length into the 802.3 Length/Type field if
this field is zero on return from dle_wput. (The Length/Type field
are the 2 bytes at offset 12 from the start of the Ethernet frame.) The
sample loopback driver (loopback.c) demonstrates an efficient
way to compute this total while copying data into hardware
transmit buffers.

3. Hardware code must also check for packets which are too long;
dle_wput_ud_error may be called to return an error for packets
which are too long. Short packets must be padded; if not an auto-
matic feature of the hardware, the driver must perform padding
(with zero bytes).

4. The start of the Ethernet frame is &mp–>b_rptr[xtra_hdr_len],
where xtra_hdr_len is the second argument passed to dle_init.

Argument Description

q queue argument from the (write-side) put proce-
dure which is calling dle_wput.

mp Message pointer from the (write-side) put proce-
dure which is calling dle_wput.

Return Value Meaning

NULL The message passed to dle_wput has been
consumed, e.g., it has been freed or a qreply
has already been sent upstream.

non-NULL,
db_type != M_DATA

This message must be sent upstream by the
caller, typically by calling qreply.

non-NULL,
db_type == M_DATA

This message contains a complete data
packet with Ethernet frame beginning at
b rptr + xtra_hdr_len.

Mentat DLPI Driver Template for Open Transport 18

  1996 Mentat Inc. 3/29/96

5. Drivers must be prepared to handle messages containing multiple
mblks.

dle_wput_ud_error
dle_wput_ud_error is used internally by dle_wput to return DL_
UDERROR_IND messages upstream. It is made available to the hard-
ware code as a simple convenience.

Prototype

mblk_t *
dle_wput_ud_error (

mblk_t * mp,
int dlpi_err
int unix_err);

Return Values

Returns a completed DL_UDERROR_IND message to send upstream, or
NULL if an internal error occurred (in which case mp has been freed).

Notes

1. Only DL_UNITDATA_REQ messages and M_DATA Fast Path messages
may be passed to this routine; NULL is returned if another message
type is passed in.

3 Hardware-specific Functions and dlehw_t
The hardware code must supply all STREAMS entry points, e.g.,

streamtab entry, open and close procedures, write-side put procedure, and
read-side service routine. In addition the common code requires three
entry points into the hardware code: a “start” function, a “stop” function,
and a “reset” function. An optional fourth function must be provided if the
driver plans to support the network monitoring feature that allows for

Argument Description

mp Message passed to write-side put procedure which
caused this error condition.

dlpi_err Value to return in the dl_errno field of the DL_
UNITDATA_IND.

unix_err Value to return in the dl_unix_errno field of the DL_
UNITDATA_IND.

Mentat DLPI Driver Template for Open Transport 19

  1996 Mentat Inc. 3/29/96

sending of packets containing errors (see Section 7). These functions are
referenced through function pointers defined within the dle_hw field in the
dle_t. This structure (defined in dlpiether.h) is:

The following paragraphs describe these fields.

dlehw_address_filter_reset
dlehw_address_filter_reset is called from the common code when-
ever a “bind” or “unbind” operation changes the promiscuous setting
or the list of enabled multicast addresses.

Prototype

void
dlehw_address_filter_reset (

void * dle,
dle_addr_t * addr_list,
ulong addr_count,
ulong promisc_count,
ulong multi_promisc_count,
ulong accept_broadcast
ulong accept_errors);

typedef struct dlehw_s {
void (*dlehw_start)(void *);
void (*dlehw_stop)(void *);
void (*dlehw_address_filter_reset)(

void * hw,
dle_addr_t * addr_list,
ulong addr_count,
ulong promisc_count,
ulong multi_promisc_count,
ulong accept_broadcast,
ulong accept_errors);

int (*dlehw_send_error)(
void * hw,
mblk_t * mp,
unsigned long flags);

unsigned long dlehw_recv_error_flags;
} dlehw_t;

Mentat DLPI Driver Template for Open Transport 20

  1996 Mentat Inc. 3/29/96

Notes

1. addr_list contains addr_count dle_addr_t structures:

This list contains all of the multicast addresses currently enabled
on any stream referencing this board/port (dle_t instance).

2. dlehw_address_filter_reset may be called frequently, but only in
response to user actions, and may be intermixed with other board
actions. The hardware code must be prepared to handle this call at
any time, e.g., before or after dlehw_start is called.

3. Board level filters don’t need to be perfect; in fact, except for
processing overhead, the common code functions correctly
whether or not any filtering is done. In particular, if the board has
no hardware filtering capability, all packets should be passed
directly to dle_inbound. In a worst case, this may require enabling
promiscuous mode so that all multicast addresses will be accepted
by the hardware.

Argument Description

dle The same dle_t structure passed as the first argu-
ment to dle_open.

addr_list Head of list of multicast and physical addresses
currently enabled.

addr_count Number of entries in addr_list.

promisc_count Nonzero if promiscuous mode must be enabled.

multi_
promisc_
count

Nonzero if promiscuous multicast mode must be
enabled. (Promiscuous multicast mode means that
all multicast packets, regardless of destination
address, must be accepted.)

accept_
broadcast

Nonzero if broadcast packets must be accepted.

accept_errors Nonzero if at least one stream is registered to
receive error packets in raw mode.

typedef struct dle_addr_s {
struct dle_addr_s dlea_next;
unsigned char dlea_addr[6];

} dle_addr_t;

Mentat DLPI Driver Template for Open Transport 21

  1996 Mentat Inc. 3/29/96

4. If accept_errors is nonzero, the hardware code must call dle_
inbound_error if a corrupt packet is received and the hardware
code supports the network monitor extension for passing corrupt
packets upstream. dlehw_recv_error_flags must be set to indicate
the types of error packets the hardware code can handle.

dlehw_recv_error_flags

This field is a bit mask formed by OR’ing together the values in the
following table (see dlpiuser.h and Section 7) that indicate the type(s)
of errors the hardware is capable of recognizing and reporting.

This field only needs to be set if the hardware code chooses to
support this network monitoring extension. This field is independent
of the dlehw_send_error function.

dlehw_send_error
dlehw_send_error must be provided only if the driver plans to
support the kOTSendErrorPacket primitive in the I_OTSetRawMode
ioctl.

Prototype

int
dlehw_send_error (

void * dle,
mblk_t * mp,
unsigned long flags);

 Value Description

DL_CRC_ERROR Hardware can return CRC error packets.

DL_RUNT_ERROR Hardware can return short packets (< 64
bytes).

DL_FRAMING_ERROR Hardware can return packets with Ethernet
framing errors.

Argument Description

dle The same dle_t structure passed as the first argu-
ment to dle_open.

Mentat DLPI Driver Template for Open Transport 22

  1996 Mentat Inc. 3/29/96

Return Value

Returns 0 on success. If flags requests a type of error packet that the
hardware or hardware code cannot support, EINVAL must be
returned.

Note

1. dlehw_send_error must be provided only if the driver plans to
support the kOTSendErrorPacket primitive in the I_OTSetRaw-
Mode ioctl. If this entry in the dlehw_t structure is NULL, the ioctl
will be failed with EINVAL.

2. If DL_CRC_ERROR is set in flags, then the packet data in mp is
assumed to contain the CRC value as the last four bytes. For other
types of error transmits, the CRC value must be calculated and
appended to the data as for normal packets.

dlehw_start
Hardware initialization function called from the common code at the
time the first “bind” on any stream using the board/port is
performed. “bind” includes enabling of promiscuous modes.

Prototype

void
dlehw_start (

void * dle);

Notes

1. The hardware code should not enable the board to receive packets
until this function is called.

1. dlehw_start is called after possibly calling dlehw_address_filter_
reset in case any physical address or multicast filters changed.

mp The packet to send.

flags Bit mask defining the type of error packet to be
sent. See Table 9 in Section 7 for details.

Argument Description

dle The same dle_t structure passed as the first argu-
ment to dle_open.

Argument Description

Mentat DLPI Driver Template for Open Transport 23

  1996 Mentat Inc. 3/29/96

dlehw_stop
dlewh_stop is called from the common code after the last “unbind”
on any stream using the board/port is performed. “unbind” includes
disabling of promiscuous modes.

Prototype

void
dlehw_stop (

void * dle);

Notes

1. The hardware code must shut off receive interrupts when this
function is called.

2. dlehw_stop is called after possibly calling dlehw_address_filter_
reset in case any physical address or multicast filters changed.

4 Supported DLPI Primitives
This section lists in alphabetic order all the DLPI primitives supported

by the common code. Ambiguities in the DLPI specification and important
implementation details are discussed. It is assumed that the reader has
access to the specification, since the bulk of that information is not repeated
here.

4.1 DL_BIND_REQ

Since only connectionless primitives are supported, dl_service_mode
must be DL_CLDLS and dl_max_conind must be zero. dl_sap values are
treated as shown in Table 5.

Argument Description

dle The same dle_t structure passed as the first argu-
ment to dle_open.

Mentat DLPI Driver Template for Open Transport 24

  1996 Mentat Inc. 3/29/96

The DL_BIND_ACK will always return a dl_addr_length of 8: 6 for Ethernet
(physical) address plus 2 for the SAP. See Section 4.5 for additional infor-
mation on address and SAP lengths.

4.2 DL_DISABMULTI_REQ

The hardware code’s dlehw_address_filter_reset function is called if
there are no other streams referencing the address being disabled.

4.3 DL_ENABMULTI_REQ

The hardware code’s dlehw_address_filter_reset function is called if this
is the first stream to enable the specified address.

4.4 DL_GET_STATISTICS_REQ

The DL_GET_STATISTICS_ACK returned by the common code contains two
structures, dle_interface_status_t and dle_ethernet_status_t at dl_stat_
offset. See Section 8 and dlpiuser.h for more information.

4.5 DL_INFO_REQ

The DLPI specification contains ambiguities in its description of the DL_
INFO_REQ and DL_INFO_ACK. The following summarizes how the common
code resolves these points.

1. dl_addr_length and dl_addr_offset.
Correct DLPI behavior requires that dl_addr_length be returned as
zero prior to binding a DLSAP. However, several protocol imple-
mentations have misused this field and expect dl_addr_length to
be the physical address length (6 for Ethernet) before a DLSAP is

Table 5: SAP Bindings

SAP Value/Range Description

1501 ≤ SAP ≤ 0xFFFF DIX Ethernet SAP.

odd value, SAP ≤ 0xFE Illegal 802.2 Group SAP; DL_SUBS_BIND_REQ is
needed for these SAPS. DL_BADADDR error
returned.

even value, SAP ≤ 0xFE Valid 802.2 SAP.

SAP == 0xAA This is a SNAP stream and a DL_SUBS_BIND_REQ
must follow to specify the 5-byte SNAP header.

SAP == 0xFF IPX binding.

Mentat DLPI Driver Template for Open Transport 25

  1996 Mentat Inc. 3/29/96

bound. Therefore, the common code knowingly violates the DLPI
specification to permit these protocols to work.
When in DL_IDLE state, the length returned depends upon the
current bind state: 13 after a successful SNAP DL_SUBS_BIND_REQ,
8 otherwise.

2. dl_sap_length.

The value returned in dl_sap_length depends upon both state and
the type of bind(s) which have been performed. In DL_UNBOUND
state, the value zero is returned. In DL_IDLE state, the value -2 is
returned after a successful DL_BIND_REQ, and -7 is returned after a
successful SNAP DL_SUBS_BIND_REQ. The SAP length is negative,
showing that the SAP follows the physical address.

3. dl_max_sdu, dl_min_sdu.
The returned value of dl_max_sdu is the number of bytes available
for data, after subtracting out the Ethernet header length, which in
turn depends upon the current bind state: 1492 (1514 – 22) after a
successful SNAP DL_SUBS_BIND_REQ; 1497 (1514 – 17) for 802.2
SAP; 1500 (1514 – 14) otherwise (DIX Ethernet).
dl_min_sdu is returned as zero on the assumption that the hard-
ware will automatically pad short frames to the Ethernet
minimum of 64 bytes (including trailer).

4. dl_qos_xxx fields.
The current implementation does not support QOS fields. Zero is
returned for all of them.

5. dl_provider_style.

Only DL_STYLE1 drivers are supported (the DL_ATTACH_REQ and
DL_DETACH_REQ primitives are not supported). Additional infor-
mation about address formats is given in Section 4.14.

4.6 DL_PHYS_ADDR_REQ

The address returned is taken from the dle_current_addr or dle_factory_
addr fields of the dle_t structure, which are maintained by the hardware
code. Note that DL_SET_PHYS_ADDR_REQ is not currently supported by the
common code.

4.7 DL_PROMISCOFF_REQ

The dl_level field of this request must match that of a previous DL_
PROMISCON_REQ. The corresponding promiscuous behavior (see next
section) is disabled.

Mentat DLPI Driver Template for Open Transport 26

  1996 Mentat Inc. 3/29/96

4.8 DL_PROMISCON_REQ

The common code action depends upon the value of dl_level in the
request and on the current bound state of the stream. The following table
summarizes.

The common code will call dlehw_address_filter_reset if necessary.

4.9 DL_SUBS_BIND_REQ

The common code action depends upon the value of dl_subs_bind_class
in the request. There are two cases:

Table 6: Promiscuous Mode Processing

dl_level state == DL_UNBOUND state == DL_IDLE

DL_PROMISC_
PHYS

All packets are delivered;
both SAP and destination
address are ignored.

Destination address is
ignored, but only packets for
SAPs already bound to this
stream are delivered.
Attempts to bind after
setting this mode will fail.
Stream must bind to all
desired SAPs before issuing
this request.

DL_PROMISC_
SAP

All packets that match any
bound SAP (on any other
stream) are delivered.

All packets for the bound
SAP are delivered. This is
effectively a “no-op”.

DL_PROMISC_
MULTI

All packets for any multicast
destination address are
delivered.

All multicast packets which
match any SAP bound to this
stream are delivered.
Attempts to bind after
setting this mode will fail.
Stream must bind to all
desired SAPs before issuing
this request.

dl_subs_bind_class Action

DL_HIERARCHICAL_
BIND

Hierarchical binds may only be used on streams
bound to the SNAP SAP (0xAA). In addition, only
one subsequent bind per stream is permitted and
the dl_subs_sap_length value must be 5.

Mentat DLPI Driver Template for Open Transport 27

  1996 Mentat Inc. 3/29/96

4.10 DL_SUBS_UNBIND_REQ

The value of dl_subs_sap_length must be 2 or 5 for removing a hierar-
chical or peer bind, respectively.

4.11 DL_UDERROR_IND

The common code returns a DL_UDERROR_IND if

• DL_UNITDATA_REQ address fields are malformed.
• an allocb fails while processing a request.

In addition, the hardware code must return a DL_UDERROR_IND if it
receives a DL_UNITDATA_REQ or M_DATA containing a packet larger than the
driver’s maximum SDU (dle_istatus.mtu).

4.12 DL_UNBIND_REQ

This request removes all bound SAPs, including those specified in DL_
SUBS_BIND_REQ requests.

4.13 DL_UNITDATA_IND

DL_UNITDATA_IND messages are used for all packets for streams in
promiscuous mode and for broadcast and multicast packets on Fast Path
streams; otherwise inbound packets are sent upstream as M_DATA
messages. The source and destination address fields contain the complete
DLSAP, i.e., physical address followed by a complete SAP. The address
length is 8, except for 802 SNAP. For 802 SNAP, the length is 13 and the
5-byte SNAP header is included in both the source and destination address
fields.

DL_PEER_BIND Peer binds may only be used on streams bound to
non-SNAP SAPs. The specified dl_subs_sap_length
must be 2. Subsequent SAP values ≤ 0xFE (802
binds) cannot be mixed on the same stream with
values > 0xFE. Values ≤ 0xFE are 802 values; a
value of 0x00 is a special Open Transport 802
promiscuous mode which causes all 802 packets for
this machine to be delivered to this stream. For 802
binds, the dl_xidtest_flg value from the original DL_
BIND_REQ is inherited by all subsequent peer binds.

dl_subs_bind_class Action

Mentat DLPI Driver Template for Open Transport 28

  1996 Mentat Inc. 3/29/96

4.14 DL_UNITDATA_REQ

The common code is extremely flexible in its processing of DL_UNITDATA_
REQ primitives. This flexibility is mandated by protocols which have
misinterpreted the DLPI specification with regard to address format. Even
though the DLPI specification states clearly that the address is a “the full
DLSAP address returned in the DL_BIND_ACK,” some protocols are known
not to follow this rule and to provide only a 6-byte Ethernet destination
address. The following three cases are supported:

4.15 XID and TEST Primitives.

The common code provides complete support for both XID and TEST
primitives. The semantics are as described in Section 4.4 of the DLPI 2.0
Specification. The various LLC information, SAP values and packet
formats are as specified by IEEE 802.21. Note that the “auto response” flags
in the dl_xidtest_flg field of DL_BIND_REQ impact the operation of these
primitives. In particular, if automatic handling has been set, these primi-
tives are never used.

1. Information processing systems—Local area networks—Part 2: Logical link control,
ISO 8802.2: 1989, ANSI/IEEE Std 802.2-1989, IEEE, New York, 1989.

dl_dest_addr_length SAP Value(s) Used

6
(No SAP specified)

The bound SAP for DIX Ethernet, IPX or 802 SNAP.
For simple 802, the bound SAP is used in both the
DSAP and SSAP fields.

8
(2-byte SAP follows)

The 2-bytes following the 6-byte physical address is
used for DIX Ethernet SAP. For 802, the 2-bytes are
used as the DSAP and the stream’s bound SAP is
used as the SSAP.

13
(5-byte SNP header and

2-byte SAP follows)

The assumption is that this packet uses 802 SNAP
encapsulation. Bytes 12 and 13 are treated as the
DSAP, and bytes 9-11 are the SNAP header. Bytes 6
and 7, which are presumably both 0xAA, are
ignored (0xAA is used for both SSAP and DSAP).

Mentat DLPI Driver Template for Open Transport 29

  1996 Mentat Inc. 3/29/96

5 Driver ioctls
The common code recognizes three M_IOCTL messages as summarized in

the following table.

These M_IOCTLs may be created directly by upper-level modules or as
I STR ioctls from the application. These may not be issued as transparent
ioctls.

6 Mentat Fast Path Extension to DLPI
Mentat has for many years utilized an extension to DLPI in its protocols

and drivers. This extension, called Fast Path, substantially reduces the
processing overhead for data packets being transmitted over a virtual
circuit, e.g., an established TCP connection. Fast Path support in the
common code is completely transparent to the hardware code.

As summarized in Section 1, the basic idea of Fast Path is to create the
necessary frame header for packets only once. To do this, the upper level
module sends an M_IOCTL message with ioc_cmd == DL_IOC_HDR_INFO.
The M_DATA message block attached to this ioctl contains a complete DL_
UNITDATA_REQ identical to what the upper layer would supply for data
packets (Figure 3a).

The common code processes this ioctl and returns an M_IOCACK message
containing the Ethernet Frame Header corresponding to the destination
address in the DL_UNITDATA_REQ. This header is returned in a third
message block as shown in Figure 3b. The DL_UNITDATA_REQ in the second
block is unchanged; it is returned to simplify the task of re-establishing the
sender’s context.

Table 7: Supported I_STR ioctls

Command Description

DL_IOC_HDR_INFO This is the Fast Path ioctl; see Section 6.

I_OTSetFraming-
Type

If the unsigned long argument is kOTFraming8022,
then dcl_mac_type in subsequent DL_INFO_ACK
messages will be set to DL_CSMACD. For any other
argument, DL_ETHER is set. The ioctl return value is
the framing type specified in the argument.

I_OTSetRawMode Enable special network monitoring extensions; see
Section 7.

Mentat DLPI Driver Template for Open Transport 30

  1996 Mentat Inc. 3/29/96

The b_rptr for the third M_DATA points xtra_hdr_len bytes in front of the
Ethernet Header, where xtra_hdr_len is the second argument to dle_init
(Section 2).

After Fast Path negotiation, upper layer modules send data in M_DATA
messages with the layout shown in Figure 3c. Everything between b_rptr
and b_wptr in the returned Fast Path header (second M_DATA in Figure 3b)
must be inserted at the front of subsequent M_DATA messages sent to the
driver. Protocols using Fast Path must ensure that the Fast Path Header
portion of all M_DATAs sent to the driver is “writable”. The hardware code
is free to modify any part of the Fast Path Header; in fact for 802 framing, it
must insert the length of the data into the Length/Type field.

If xtra_hdr_len is nonzero, the hardware code must perform an addi-
tional test before processing M_DATA messages. Drivers must support a
“raw mode” in which complete Ethernet packets are sent from an upper
layer with no knowledge of the xtra_hdr_len bytes. The test involving the
dcl_flags field of the dcl_t structure which is at the start of the driver’s
instance data (see Section 1.2) is shown in the following code fragment:

Figure 3: Fast Path Message Formats

M_IOCTL

DL_IOC_HDR_INFO DL_UNITDATA_REQ

M_DATA

M_DATA

DL_UNITDATA_REQ

M_IOCACK

DL_IOC_HDR_INFO Fast Path Header

M_DATA

a) M_IOCTL message to request Fast Path header.

b) M_IOCACK response with Fast Path header appended.

c) M_DATA as returned from dle_wput or from upper layer with Fast Path header

extra Ethernet Header data

b_rptr

Fast Path Header

Mentat DLPI Driver Template for Open Transport 31

  1996 Mentat Inc. 3/29/96

7 Network Monitor Extensions
The common code provides an extension to standard DLPI semantics

which permits sending and receiving packets containing errors, e.g., CRC
errors. Since such capabilities are a requirement of network monitoring
software, we refer to them as Network Monitor Extensions.

Support of these features is dependent upon the hardware code, since
the underlying hardware must have a mechanism for transmitting and
receiving corrupt packets. Because of the hardware requirements and
because support for network monitors may not be a requirement of many
drivers, this feature is completely optional and hardware code may simply
choose not to implement the necessary support code.

To support the network monitor extensions, the hardware code must
supply a dlehw_send_error function if it will support sending of corrupt
packets. It must set dlehw_recv_error_flags and call dle_inbound_error to
deliver received corrupt packets to registered streams. See Section 2 and
Section 3 for details on these functions. The hardware code may support
either, both, or neither of these features.

7.1 Raw Mode ioctl

Network monitor extensions are accessed by the I_OTSetRawMode ioctl.
This ioctl has two subcommands, one to control which packets to receive
and one to send packets which deliberately contain errors. The structures
and definitions for this ioctl are contained in dlpiuser.h. The subcommands
and related structures are summarized in the following table.

dp = (dcl_t *)q->q_ptr;
...
/* driver write-side put procedure M_DATA processing */
case M_DATA:

if (dp->dcl.dcl_flags & F_DCL_RAWMODE_OK) {
/* raw mode - mp->b_rptr at Ethernet frame */
...

} else {
/* Fast Path - &mp->b_rptr[xtra_hdr_len] is
 * start of Ethernet frame.
 */
...

}

Mentat DLPI Driver Template for Open Transport 32

  1996 Mentat Inc. 3/29/96

In both cases, the ioctl structure defines the subcommand and arguments
to it.

7.2 Receiving Raw Packets

In order for a stream to receive raw packets that include network
headers, an I OTSetRawMode ioctl with a kOTSetRecvMode subcom-
mand must be issued on that stream. The ic_dp field of the strioctl structure
passed as argument to the I_STR ioctl points at a buffer containing a
dl recv_control_t structure:

The dl_primitive field must be set to kOTSetRecvMode.

Once raw mode is set, only packets of the requested type(s), as specified
in the dl_flags field, will be delivered upstream. Each packet will be in an
M_DATA message with a dl_recv_status_t structure inserted in front of the
packet header.

On success, the return value from the OTSetRawMode ioctl is the size of
this dl recv_status_t structure, i.e., the offset to the start of the packet data.

Subcommand ioctl Structure Description

kOTSetRecvMode dl_recv_control_t Enable receipt of raw mode
packets, either normal or both
normal and with errors.

kOTSendErrorPacket dl_send_control_t Request the hardware to send a
packet with specified errors,
e.g., CRC or short packet.

typedef struct dl_recv_control_s {
unsigned long dl_primitive;
unsigned long dl_flags;
unsigned long dl_truncation_length;

} dl_recv_control_t;

typedef struct dl_recv_status_s {
unsigned long dl_overall_length;
unsigned long dl_flags;
unsigned long dl_packet_length_before_truncation;
unsigned long dl_pad;
OTTimeStamp dl_timestamp;

} dl_recv_status_t;

Mentat DLPI Driver Template for Open Transport 33

  1996 Mentat Inc. 3/29/96

The dl_flags field of the dl_recv_control_t structure is used to specify the
type(s) of packets to receive. The value passed in the ioctl is a bit-mask
formed by OR’ing together the desired values from Table 8.

On successful return from the ioctl, dl_flags will be set to show the types
of packets the driver is able to return. In particular, if error packets have
been requested (DL_ERROR_STATUS was set in the ioctl), the return value
will include one or more additional bit values from Table 9. This feature
relies heavily on the capabilities of the underlying hardware; not all drivers
will be able to deliver all types of corrupted packets. The hardware code
sets the driver’s capabilities in the dlehw_recv_error_flags field in the
board’s dle_t structure (see Section 3).

Table 8: Selecting Raw Mode Packets

dl_flags Value Description of Packets Received

DL_NORMAL_STATUS If DL_NORMAL_STATUS is set, then every properly
formatted packet will be passed upstream with a
dl_recv_status_t structure inserted before the actual
packet data. The packet data will include the
complete network header, but will not include the
CRC value. DL_NORMAL_STATUS mode may be set
on any DLPI stream, whether or not the stream is
bound to a particular SAP or whether it is enabled
for promiscuous mode.

DL_ERROR_STATUS If DL_ERROR_STATUS is set, then corrupt packets
will be passed upstream with a dl_recv_status_t
structure inserted before the actual packet. The
types of error packets available (Table 9) will be
indicated by the dl_flags return value. This mode is
only valid for streams that are enabled for
DL PROMISC_PHYS operation. The mode may be set
for any stream, but only promiscuous streams will
actually receive error packets. If DL_ERROR_STATUS
is set, then DL_NORMAL_STATUS must also be set.

DL_TRUNCATED_
PACKET

If DL_TRUNCATED_PACKET is set, then all messages
passed upstream with “receive status” will be trun-
cated to either dl_truncation_length or the
maximum size of packets for the board, whichever
is smaller. DL_TRUNCATED_PACKET is only mean-
ingful in conjunction with DL_NORMAL_STATUS and
DL_ERROR_STATUS. This flag value does not affect
regular DL UNITDATA_IND or Fast Path M_DATA
messages.

Mentat DLPI Driver Template for Open Transport 34

  1996 Mentat Inc. 3/29/96

If DL_TRUNCATED_PACKET is set in the ioctl, dl_truncation_length includes
both the dl_recv_status_t structure and the packet data. For example, if
dl truncation_length is set to 64, then packets passed upstream will contain
24 bytes (==sizeof(dl_recv_status_t)) of status information, followed by 40
bytes of packet data.

Raw Mode Packet Format.

For each raw mode packet sent upstream, the dl_recv_status_t structure
in front of the actual packet identifies the packet characteristics. The
dl flags field (of the dl_recv_status_t structure) indicates the packet type,
DL_NORMAL_STATUS or DL_ERROR_STATUS. If DL_ERROR_STATUS is set,
additional bits from Table 9 will included to identify the error.

If DL_TRUNCATED_PACKET was set in the I_OTSetRawMode ioctl, then it
will also be set in each dl_recv_status_t dl_flags field, and dl_packet_
length_before_truncation will indicate the original size of the packet.

Whether or not the message is truncated, the dl_overall_length field
contains the number of bytes in the full message passed upstream,
including the size of the dl_recv_status_t structure.The packet, truncated if
requested, follows the dl_recv_status_t structure, and the message
containing them is padded to an 8-byte boundary. This format allows
application software to read multiple messages in one read request and to
know where the packet boundaries are located. (Recall that a STREAMS
read operation will pull multiple M_DATA messages from the Stream head
read-side queue until the read request is satisfied.)

The dl_timestamp field is set with OTGetTimeStamp. Note that the
message is typically created at interrupt time, so this time stamp is as accu-
rate as we can get.

Table 9: dl_flags Return Values

dl_flags Value Description

DL_CRC_ERROR CRC error packets are returned.

DL_RUNT_ERROR Short packets (< 64 bytes) are returned.

DL_FRAMING_ERROR Packets with Ethernet framing errors are returned.

DL_BAD_802_3_
LENGTH

802 packets whose Length field doesn’t match the
actual packet length are returned. These error
packets are detected by the common code and are
always available, i.e., if DL_ERROR_STATUS is set,
this bit will always be set in the return value.

Mentat DLPI Driver Template for Open Transport 35

  1996 Mentat Inc. 3/29/96

7.3 Sending Raw packets

Raw packets may be sent using either

• the I_OTSetRawMode ioctl with subcommand kOTSendError-
Packet, or

• simply by passing a plain M_DATA message downstream.

If raw packets will be sent on a stream, then Fast Path must not be used on
the same stream, i.e., no DL_IOC_HDR_INFO ioctl can be issued on that
stream.1

To send normal packets, it is simplest to use M_DATA messages. In this
case, the driver hardware code will transmit the packet without modifica-
tion, i.e., exactly as it is formatted in the message. The driver assumes that
the full network header is already attached to the message. The destination
address will not be changed. The source address may be updated to the
board’s local address if this is done automatically by the underlying hard-
ware. If the length field of an 802.3 header is 0, then the driver will insert
the actual length of the packet in this field. Packets smaller than the
minimum size will be padded with zeros (see Section 9 for hardware code
requirements for processing M_DATA messages).

To send error packets, the I_OTSetRawMode ioctl with subcommand
kOTSendErrorPacket must be used. The ic_dp field of the strioctl structure
passed as argument to the I_STR ioctl points at a buffer containing the full
packet to transmit preceded by a dl_send_control_t structure:

The dl_flags field may contain any combination of values from Table 9.
Which, if any, of these are supported depends upon the hardware code’s
dlehw_send_error function. If this function is not provided, or a request is
made for an error type the driver cannot transmit, the ioctl will fail with
EINVAL. However DL_BAD_802_3_LENGTH is always supported since this is
handled by the common code.

If DL_CRC_ERROR is set in dl_flags, then the packet data is assumed to
contain the CRC value as the last four bytes. For other types of error trans-
mits, the CRC value will be calculated and appended to the data as for
normal packets.

1. Actually this restriction applies only to drivers for which xtra_hdr_len argument to
dle_init is nonzero.

typedef struct dl_send_control_s {
unsigned long dl_primitive;
unsigned long dl_flags;

} dl_send_control_t;

Mentat DLPI Driver Template for Open Transport 36

  1996 Mentat Inc. 3/29/96

The length of the transmitted packet will be exactly the number of bytes
passed as the ioctl data, minus the length of the dl_send_control_t struc-
ture. This length may be smaller or bigger than legal sizes. The destination
and source addresses will not be changed, unless the hardware updates the
source address automatically. The 802.3 length field in the header will not
be updated, even if the value passed is 0.

8 MIB Statistics
The common code defines two structures for maintaining interface statis-

tics. These structures, dle_interface_status_t and dle_ethernet_status_t are
defined and extensively commented in dlpiuser.h. The fields in these struc-
tures correspond to Interface MIB statistics (RFC 1573) and Ethernet MIB
statistics (RFC 1643), respectively.

These two structures are embedded in the dle_t structure as dle_istatus
and dle_estatus. The common code maintains only the receive statistics in
dle_istatus. Since Fast Path packets are not passed to the common code, the
common code cannot update most of the transmit and Ethernet statistics.
Hence these statistics must be maintained by the hardware code. Example
code is given in loopback.c.

The DL_GET_STATISTICS_REQ is used to retrieve these structures. The
format of the returned DL_GET_STATISTICS_ACK is:

The value of length in the TOptionHeader structure is the length of the
TOptionHeader structure plus the length of the status structure that
follows. The level is DLPI_XTI_LEVEL; the option name is one of DL_
INTERFACE_MIB or DL_ETHERNET_MIB.

9 Writing a Driver Using the Template
This section describes how to use the DLPI Driver Template to write a

STREAMS device driver for Apple’s Open Transport. As a starting point,
“hardware code” for a fully operational loopback driver is provided in the
file loopback.c. This file contains all the necessary STREAMS interface code
and provides detailed comments on what needs to be changed for a hard-
ware device driver.

TOptionHeader structure
dle_interface_status_t structure
TOptionHeader structure
dle_ethernet_status_t structure

Mentat DLPI Driver Template for Open Transport 37

  1996 Mentat Inc. 3/29/96

9.1 Checklist for the Hardware Code

Most of the information for writing the hardware code has been
presented in previous sections. The following paragraphs summarize the
key points.

• Additions to dle_t and dcl_t.

The board_t and loop_t structures for the loopback driver require
no fields in addition to those of the dle_t and dcl_t. Most drivers
will need to add board-specific fields to the board_t structure.
However, additions to the streams instance data, loop_t, are gener-
ally not required.
Table 10, a subset of Table 2, contains those fields in the dle_t struc-
ture which must be maintained by the hardware code.

• streamtab and install_info Structures.

Synchronization level in the install_info structure must be SQLVL_
MODULE. Other fields are set as described in the Open Transport
documentation.

• Modify Installation Functions.

Three functions, GetOTInstallInfo, InitStreamModule, and Termi-
nateStreamModule may require additional board-specific code.
Comments in these functions give suggestions.

Table 10: dle_t Fields Maintained by Hardware Code

Field Description

dle_current_addr[6] The boards current Ethernet address is
stored here. This field is initially the same as
dle_factory_addr. This is the address used
by the common code.

dle_estatus Hardware code must increment event
counters defined in this structure.

dle_factory_addr[6] The board’s factory-set address.

dle_hw This structure defines the four hardware
entry points. See Section 3 for details.

dle_istatus The hardware code must maintain the
transmit statistics in this structure. See also
description of dle_init in Section 2.

dle_xtra_hdr_len This field is set from the value passed to
dle_init.

Mentat DLPI Driver Template for Open Transport 38

  1996 Mentat Inc. 3/29/96

• Modify STREAMS open and close routines.
The loopback driver open and close routines simply call dle_open
and dle_close, respectively. Most of the board-specific initializa-
tion is done when the driver is loaded by Open Transport and Init-
StreamModule is called. If additional per-stream data is required,
the necessary fields can be added to the instance data structure
(loop_t for the loopback driver) and initialized at stream open
time.
If there are multiple board_t structures for your driver, the associ-
ated board_t structure must be determined before calling dle_
open. Open Transport functions such as OTFindPortByDev may be
used to determine this association.

• Hardware Start, Stop, Reset Functions.

These functions have been described in Section 3. The loopback
driver versions of these functions contain extensive comments that
show a typical implementation.

• Transmit Code and Write-side Put and Service Procedures.

All message types except M_DATA are passed to dle_wput for
processing. Data to be transmitted will either arrive in write-side
put procedure (loop_wput in the loopback driver) as M_DATAs or
will be returned from dle_wput as an M_DATA. See Section 2 for
details on calling dle_wput, and Section 6 for Fast Path.
For 802 packets, the hardware code must compute the length of the
data and insert it into the Length/Type field of the Ethernet frame
header. The loopback driver provides sample code that efficiently
computes the length while copying data from mblk’s into hard-
ware transmit buffers.
The hardware code must provide for STREAMS flow control.
STREAMS drivers exert flow control placing messages on the
write-side service queue (q_first field is the head), so that the total
length of all queued messages is greater than q_hiwat. By
removing messages with getq, the upstream flow control point
(the first upstream queue with a service routine) will be
back-enabled (the service routine will run) when the total amount
of queued data falls below q_lowat.
The choice on how much data to queue, whether or not a service
routine should be used, etc., depends upon the hardware’s capa-
bilities:
– Can the board transmit directly from message blocks or must

the data be copied to transmit buffers?
– How much data can be queued on the board?

Mentat DLPI Driver Template for Open Transport 39

  1996 Mentat Inc. 3/29/96

– Can the board transmit multiple buffers without driver
intervention?

Whatever design choice is made, it is important that the transmit
interrupt logic and enabling of any service routine overlap to mini-
mize latency.

• Receive Code and Read-side Service Routine.

The receive interrupt handler must be written. The basic logic is
shown in template form in the board_intr function of the loopback
driver. Essentially all that is required is to create a STREAMS M_
DATA message containing the received data and pass it to dle_
inbound for processing.
dle_inbound will call putq for each stream (queue) that must
receive a copy of the message. After return from interrupt, the
read-side service routine of all queues with data will be called. The
service routine must be supplied in the hardware code (no
STREAMS entry points are included in the common code). The
loopback driver’s loop_rsrv routine can be used without change.

• Add Statistics Gathering code.

The interface transmit statistics and the Ethernet statistics must be
maintained by the hardware code. Consult dlpiuser.h to determine
which event counters are required.

9.2 Adding Support for Other DLPI Primitives and ioctls

There are a few DLPI primitives for Local Management (Section 4.1 of
the DLPI Specification) and Connectionless-mode (Section 4.3) which are
not supported by the common code. DL_ATTACH_REQ is not supported
because Open Transport does not support Style 2 DLPI Drivers. Two other
primitives, DL_UDQOS_REQ and DL_SET_PHYS_ADDR_REQ, are not currently
supported by Open Transport protocols and have not been implemented in
the common code. Nonetheless, the design of the common code makes it
fairly easy for the hardware code to add support for these or any other
DLPI primitive the driver might require.

To support additional primitives, the hardware code must process
M PROTO messages for the added DLPI primitive before calling dle_wput.
If the primitive matches an added primitive, dle_wput is not called. Other-
wise the message is just passed to dle_wput.

Driver-specific ioctls are most easily processed after calling dle_wput,
which will return an M_IOCNAK for any unrecognized ioctl. Since only the
message type and ioc_error fields have changed, the hardware code can

Mentat DLPI Driver Template for Open Transport 40

  1996 Mentat Inc. 3/29/96

examine the ioc_cmd field and trailing M_DATA messages and take appro-
priate action. Comments in the loopback driver show how to do this.

9.3 List of Open Modules

A list of driver instances currently open is maintained by the common
code. This list is maintained on a per board basis; the head of the list is
dle instance_head in each board’s dle_t structure. The kernel utility func-
tion mi_next_ptr must be used to traverse this list.

mi_next_ptr
This function is used to traverse the linked list of open module
instances.

Prototype

char *
mi_next_ptr (

char * ptr);

Return Value

Returns a pointer to the instance data of the next module instance in
the linked list. Returns NULL if ptr is from the last instance in the list.

Notes

1. Assuming the instance data is of type dcl_t, the list head variable is
the dle_instance_head field of the dle_t structure dle, and dclp is of
type dcl_t *, then list traversal using this function takes the
following form:
for (dclp = (dcl_t *)dle.dle_instance_head
; dclp
; dclp = (dcl_t *)mi_next_ptr((char *)dclp)) {

...
}

2. This function may not be called from interrupt context.

Argument Description

ptr Pointer to the instance data (q_ptr field) for which
the “next” instance is desired.

