ScriptX Components Guide

December 1995 Kaleida Labs

©1995 Kaleida Labs, Inc. All rights reserved.
U. S. Patent Nos. 5,430,875 and 5,475,811. Other patents pending.

This manual, as well as the software described in it, are furnished under license and may only be used
in accordance with the terms of that license. Under the terms of that license: (1) this manual may not
be copied in whole or in part, and (2) this manual may be used only for the purpose of using software
provided by Kaleida Labs, Inc. (“Kaleida”) and creating software products which run on the Kaleida
Media Player. The contents of this manual is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Kaleida of any kind. Kalei-
da assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

“ScriptX”, “Kaleida Media Player”, the “K-man” logo and “ScriptX Language Kit” are Kaleida trade-
marks that may be used only for the purpose of identifying Kaleida products. Your use of Kaleida
trademarks for any commercial purpose without the prior written consent of Kaleida may constitute
trademark infringement and unfair competition under state and federal law. All other products or
services mentioned in this manual are identified by trademarks of the companies who market those
products or services. Inquiries concerning such trademarks should be made directly to those com-
panies.

This manual is a copyrighted work of Kaleida with all rights reserved. This manual may not be cop-
ied, in whole or in part without the express written consent of Kaleida. Under the copyright law,
copying includes photocopying, storing electronically, or translating into another language.

The ScriptX Language and Class Library (“ScriptX”) described in this manual is a copyrighted work
of Kaleida. ScriptX also contains technology described in pending U.S. patent applications. You
may use and copy ScriptX solely for the purpose of creating software products that run on the Kalei-
da Media Player by writing computer source code that is compiled into object code by software pro-
vided by Kaleida. You may not use or copy ScriptX for the purpose of writing computer source code
that is compiled into object code or otherwise executed with software supplied by any other provider
who has not been expressly licensed for that purpose by Kaleida.

For Defense agencies: Restricted Rights Legend. Use, reproduction or disclosure is subject to restric-
tions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at 225.227-7013.

For Civilian agencies: Restricted Rights Legend. Use, reproduction or disclosure is subject to restric-
tions set forth in subparagraphs (a) through (d) of the Commercial Computer Software Restricted
Rights clause at 52.227-19 and the limitations set forth in Kaleida’s standard commercial agreement
for the software described in this manual. Unpublished rights reserved under the copyright laws of
the United States.

Printed in the USA.

Kaleida Labs, Inc.

¢/ o Apple Computer
1 Infinite Loop
Cupertino, CA 95014

Quick Contents

L =3 7= T = PSS 1
Chapter 1 ScriptX Features 3
Chapter 2 Approaching ScriptX 19
Part 1 Higher-Level Components 39
Chapter 3 41
Chapter 4 Spaces and Presenters 41
Chapter 5 Controllers 99
Chapter 6 User Interface i 113
Chapter 7 CloCKS . 143
Chapter 8 Players .. 165
Chapter 9 Media Players i 177
Chapter 10 ANimation ... 197
Chapter 11 Transitions 209
Chapter 12 2D GraphiCs .. oo 233
Chapter 13 Textand FONts 281
Chapter 14 Document Templates, 315
Chapter 15 Printing 353
Chapter 16 Title Management i 369
Part 2 Lower-Level Components 441
Chapter 17 Collections 443
Chapter 18 NUMEIICS .. e 479
Chapter 19 Events and Input Devices 495
Chapter 20 Files . 545
Chapter 21 StreamsS . .. 559
Chapter 22 Memory Management 571
Chapter 23 Threads 581
Chapter 24 Object System Kernel i, 609
Chapter 25 EXceptions 641
Chapter 26 Import and Export 647
Chapter 27 Loader 651
Appendix A Loadable EXtENSIONSccevivieeeiii e 663
APPENIX B GlOSSAIY .eeiiiiiiiiiiiiitteieee ettt 669
10T L= G OO PP 677

ScriptX Components Guide

ScriptX Components Guide

Graphic Overview

Titles and Applications
Tools
.) Visual Media Director C
Debugger Profiler . .
Listener Browser 99 Memory Importers Tool Kit Extensions
r—-————-——-——-——-—=-=-=-—- - - Components below this line are included in the Kaleida Media Player — — — — — — — — -
-
Language , High-Level Components
: Title Management
I
| Title, Library, Accessory, and Storage Containers 15
I
I .
| | Space, Presentation and Control
Bytecode !
Compiler ! Spaces and Presenters Controllers User Interface
| 4 5
I
: Media and Clocks
I Medi -
I Clocks Players edia Animation | Transitions ZD. Text and Document Printing
______ 4. 6 7| Players g o| Graphics ;4| Fonts ;5| Templates;3 14
Low-Level Components
System Services
Bytecode Events & Memory Import
- Files Streams Threads Loader
Interpreter Input Devices 18 20 Management 21 2 Export 26
Object System
Collections 16 Numerics 17 Exceptions 24
Object System Kernel 23
Chapter numbers in this manual are denoted in corners of boxes
Native Operating System

This diagram depicts not only the components that make up ScriptX, but also the organization of
this book. Each box in this diagram represents a separate component, which is documented as a
separate chapter. This diagram arranges the ScriptX components in the following groupings:

Tools — for aiding in the development of ScriptX titles and applications. Some tools are written
in C and others in ScriptX.

Language — for compiling ScriptX scripts into bytecode, which is then interpreted by the Kaleida
Media Player. This component is documented in the ScriptX Language Guide.

Title Management — for creating and managing titles.

Space, Presentation and Control — for defining underlying models, controlling objects in them,
and displaying them for viewing.

Media and Clocks — for playing animation, transitions, audio, video, and movies, displaying text
and graphics, and printing.

System Services — for supporting services common to many operating systems.

Object System — for fundamental collections, numerics and exceptions, as well as the

foundation for the object-oriented and dynamic nature of ScriptX, including multiple inheritance,
first class object system, dynamic binding and incremental compilation.

Notice the Object System sits on the native operating system, such as Macintosh, Power
Macintosh, Windows or OS/2.

ScriptX Components Guide

Vi

Contents

[=3 = T = SO 1
Audience for thiS BOOKcccuuiiiiiiiiicee e 1
SUMMArY Of CONTENLS ...uvviiiiiiiieeiie e 2
Manual CONVENLIONSuviiieiiiiiiee ettt e s e s sbbeee e e ees 2

Chapter 1 SCrPtX FEALUIESuuiiiee et ittt ee e ettt e et e e e e e e et e e e e e e e ennnnees 3

SCrPtX EXECULADIESeviiiiiiie it 5
Titles, Tools and APPlICALIONS.........c.c.uvviiieeeiicciiiee e 6
Design Objectives Of SCHPIX........uiiiiiiiiiieeeee e 6
Categories Of USEr EXPEIIENCE..........uiieiiiiieeiiieee it e et e et ae s sneeeaeaneeee e 7
Modular COMPOSITIONSciiiiiiiiiiiiiiiie e 8
VirtUBI SPACES ...ttt e e e e e a e e aee s 9
Conversational INteracCtioNSc.uvviiiiiiiiiiiiiie e 11
CONSEIUCHIVE EXPEIENCES . ..ciiiiii ittt e srrea e e e 12
MUltitraCk SEQUENCINGeoiiiiiiiie e e e eeeee e 13
KeY SCHPEX FEATUIESoiiiiiiiiiiii ittt e e e e e e e 14
The ScriptX Object-Oriented Programming Modelccccoceveincenennnen. 14
Metaphor-Based Authoring Facilities..........cccccco i, 14
Spaces, Presenters, Controllers, and the Compositorcccceeeeeenineenn. 15
Time-based Media CIaSSESuuvii i 16
Text and Collection SEarching.........cccuuviiiee i 16
Title MaNAGEMENT.....cciiiiiiiiiiiie e e et e e e e e 16
Object SyStem Kernel..... ...t 17

Chapter 2 Approaching SCriptX......iiiiiiiiie e 19
INEFOTUCTION Lo et e e nbee e e e nees 21
Modular COMPOSILIONSeeiiiiiiiiiie i 22

Language Facilities of Modular ComposSitions...........cccceevviiiiiiieniee i, 24
Data Management Facilities of Modular Compositions.............cccceevevvvvneenn. 25
Search-and-Query Facilities of Modular Compositionscccuvvveeeeeiniinns 27
Display and Composition Facilities of Modular Compositions...................... 29
User Interaction Facilities of Modular Compositionscccccoveveeenieeenns 31
VIFUBL SPACES ...ttt ettt e e e 33
Modeling Facilities of Virtual SPaces.........c.ocovvveriiireiiiieie e 35
Composition Facilities of Virtual SpPacesccccccevviiviiieeiee i 36
User Interaction Facilities of Virtual SPaces.........cccccvveieeeiiiieeeiieees e 37

Vii

ScriptX Components Guide

Part 3 Higher-Level Components 39
Chapter 3 Spaces and PreSENterS.. ... iieiee i 41
Classes and INNEIMEANCE.........c.ieeei i 43
CONCEPLUAL OVEIVIBWeeeiiiiieiieeee ettt e e e e e e e e e 45
Model-Presenter-Controller SYStemcooceeeiiiree i 45
How Spaces Work for MOAelingovcvviiiiiiiiiiiiiiiiiiee s 48
Models and Model ObJECESuuuiiiieeiicciiicee e 52
HOW PreSenters WOTK ... 55
PrESENLEN ... et 55
TWODPIESENTET ... ettt 58
A7 [S PERR 59
CoOrdiNate SYSEEIMSuiiiiiiiiee ittt e e e e e bbb eeeeeeenes 65
Properties 0f 2D PreSENtEISuuuiiiiiii ittt 67
Simple Presenters vs. Container PreSENters..........occvvveeeeeeesicciiveeeeeees s 76
SIMPIE PrESENTEIS ..ottt e e e e e e 79
TWODMUIIPIESENLET ...ttt e e e e e e e e e aaaee s 82
TWODSPACE ...t 87
HOW COMPOSItOrS WOTKcoiiiiiiiiiiiee sttt 89
The Modeling/Presentation CYCIe...........cceeeiiiiiiiiiiiiee e 92
SYNChroNizing CIOCKSuuviiiiiiiiiiiiiiiiiice et e e e 95
Spaces and Presenters EXamplesoovoiiiiiiieiiiiiiees e 97
A Simple Notice Window with a Pushbutton...........ccccccooivi i, 98
Chapter 4 CONLrOIEIS covviiii e 99
Classes and INNEMANCE.coiiiiiiie i 101
CONCEPLUAT OVEIVIEWoieiiiiiiiii ettt 102
(7] a1 0] 111 g O =T SO PU PP PP PPPRPN 103
TWODCONIONEr CIaSS......cuiiiiiiie e ettt e e e eae s 103
When to USe CONMIOIIEISuuviiiiieiiiiiiiiiiice et 103
HOW COoNtrollers WOIKcooooiiiiiiiiieeeece et eeaaeaaans 104
Attaching a Controller t0 @ SPACE.......cccuuveiiieeiiiiiiiiie e 104
What is @ CONTOIEI?ceeei i 105
Defining Your OWN CONIOIlEN........c.vvii i 106
The Ticklish ProtoColuuuiiiiiiiiiiiiiiie e 106
Specifying an Object To Be Controlled...........ccccoeeiiieniiiie e 108
PrOOCOIS. ... ittt 109
User Interface Controllers...........uuuvieeiiiiciiiiiiie e 110
Contention AMoNng CONrOlErSeveiiiiieiiie e 110
CoNtroller EXAMPIE.........cooiiiiiiie et 110
The Bouncing Balloooiiiiiiiiieiciiieee e 110

viii

Contents

Chapter 5 USer INTerfacCeuuueiiiiiiiiiiee e 113
Classes and INNEIMANCE..........cceeiii i 115
CONCEPLUAL OVEIVIEBWeeeieiiiiiee ettt e e e e e e e e 116
How User Interface Objects WOrK.........coeveiiiiiiiiiiiiiiiiieeceee e 117

Presenters and User Interface ODJECEScoovvciiiieiieiiiiiiiiecee e, 117
Controllers and User Interface ODJECESccocveiriieieniiiie e 121
Controllers and Hit TESHNGoocviiiiiiie e 121
ACTUBLOIS ... 123
SCrolliNg PrESENLEISuiiiiiiiiie ittt e e e e e e 126
IMIEBINUS ..ttt et e e e e e e e e e e n e e e e e e e anne 127
SCIOI BAS ..t 130
DrAgORIS e 131
How Controllers Manage PreSENnters..........ooceveeiieeeeinieeeeaieeessieeeesseeeeens 131
User Interface EXAMPIESccoiiiiiiiiiiiiiiee e 133
Creating an Instance of SCrollIBar............cocccviiiiiiiiee e 133
Creating @ NEW ACLUBLONceeiiiiiiiiiie et e e e e e e e s s ssiinneeeeeeeaenes 135
Creating a Hierarchical MenuUccooiiiiiiiiie e 137
SCHPEX WIAGEt Kit ... 138
Classes and INNEMTANCEcooiiiiiiiii e 138
Widget Kit EXAMPIE ...vvviiiieiiiiiiiiiiie ettt 140

Chapter 6 ClOCKS ...t 143
Classes and INNENANCE...........coiiiiiiieiiie e 145
CONCEPLUAL OVEIVIEW ..ottt 146
HOW CIOCKS WOTK ...ttt a e 147

SCaAlE AN RALEcii it 147
Reading a CloCK'S TIME.....ccoiiiiiiiiiiiiee st 148
Timing Hierarchies and Synchronization...........cccccceeevieiicciiiieiieeecee e 148
Master and SIave ClOCKS..........uiiiiiiiiiiiie e 148
EffECtiVE RALEeoiiieii e 149
OIS .ttt 151
Synchronizing Clocks in a Hierarchyccccccceiiiiiiiieie e 151
Timing Hierarchies and Clock Behaviorccccccoviviiiiiniiee e 152
Modeling with Timing Hierarchies............ccccccciiiiiiiiiii e, 153
Clocks Created Automatically by SCrptX.....ccccooviiiiiiiiiiiieeee e 153
Clocks and TitleCONtAINEIScoieiiiiiieiieeee e 154
Using Callbacks To Schedule ACLIONSooooiiiiiiiiiiiieieeeee e 154
Types of Callbacks ... 154
Attaching Callbacks to @ ClOCK...........cccvvviiiiiiiiiii i, 155
The Arguments for the Callback-Creation Methodscccccccovviviiieneeenn. 155
CallDACK SCIIPLS ...eiiieiiiiiiiieiie et e e e e e 156

ScriptX Components Guide

Examples of Creating Callbacks............cccceviiiiiiiiiic e 156
Callback CoNAItIONS.......ccoiuiiiiiiiiiie e 158
Priority @and OFdereviii it 158
Synchronization of Periodic Callbackscccccooviiiiiiiiiieiiiiiiiie s 159
Cancelling @ CallDAcKc.eeeiiiiiiiiiiee e 160
Uncancelling a Cancelled Callbackocooveiriiiiiiniic e 160
Callbacks and ClOCK BENAVIOciiiiiiiieiiiiie e 161
Callback EXamPIE ...t 161
(O{gF=T o] (=T S = - V=T PR 165
Classes and INNEIMANCE..........ueeiiieiiceeeee e 167
CONCEPLUAL OVEIVIEWveiiiiiiiiee ettt e 168
HOW Players WOIK.......oeeiiiiee ittt e e e e e e e 169
USING MUIIPIE PIAYEIS ... ettt 170
Specifying Different Start Times For Slave Players.......cc.cccoovcvviiverieeininnns 171
Playing Slave Players at Different Rat€S............cccvvverieeiiiiciiiieeee e, 173
Troubleshooting Hints — The Case of the Stopped Slave Player 173
USING MAIKEIS ..ottt 173
Chapter 8 Media PIAYErSuuuiiiiiiiiiiiiiiiee ettt e e 177
Classes and INNErtANCE..........ccoiiie i 179
CONCEPLUAT OVEIVIEWoieiiiiiiiii ettt 180
How Media Players WOrK ... 181
Start and End of the Media Dataoocvvieiiiieiiiiiiiee e 182
Importing and Saving Media in SCHPEXc..ovviiiiiiiiee e 182
Saving Imported Media to a Title ContaiNercccvvveeieeiiiiiiiiieee s 183
USING Media PIAYEIS ...ttt 186
PlAYING AUIO.....iiiiiiiiiiiiiiie e e s e e e e e e e nannes 186
PlAYING IMOVIES ...cceiiiiiiiiiie ettt e e e e e e e e e e e e e e e e s nnnnes 187
PIAYING MIDI ...t e e e e e e e 190
Creating MIDI EVENtS DIr€CtYccueveiiiiiiiiiiiiie e 191
Chapter 9 ANIMALION ..uiiii e e e 197
Classes and INNErTANCE...........coiiie i 199
CONCEPLUAT OVEIVIEWooiiiiiiiii ittt 200
HOW ANIMAtion WOTKSooiiiiiiiiic et 200
Action List and ACLIONScooueiieiiiiie e 200
ACHION LISt PIaYEr ... ittt e ee e e e e e e inees 201

LI Ve =3) SRR 201

Contents

Setting Up an Unchanging Target LiSt...........ccooveeriieiennrieie e 202
Changing the Target List on the Fly ..o 202
REQIStration POINScoiiiiiiiiiiiiiie e e e 203
ANIMAtion EXAMPIESoooiiiiieiee e 204
A SIMPle FlIPDOOK.coiiii e 204

A Flipbook — Dynamically Changing the Target List..........cccccceeevviiivinnnnn. 205
AnMated Ballc..oviiiiiec e 207
Chapter 10 TranSItiONS ...iccei i e e e e e e e e e e e e 209
Classes and INNEIMANCE...........oeii i 211
CoNCEPLUAL OVEIVIEWuvviiiiiiiii e ittt e e s rr e e e e e e e s e areees 213
HOW TranSitioNSs WOTKcooiiiiiiiiiieece e 213
REVEAIING @ TAIGELvvveiiiiie ittt e s 213

A Transition IS @ ClOCK.........ccuuiiiiiie e 214
Time and Frame of & TranSitioncccceevvieieiiieie e 215
Duration and Smoothness of @ Transitioncccccceeeev i, 215
Using a Transition to Make the Target Disappear..........cccccoevericereeninnenen. 215
Deleting a Hidden PreSENtercuuuoiiiiiiiiiiiee it 216
Splicing the Target into the SPace...........cccveiiiiiieiiiee e 217
Offscreen Cached Targel........ooiciiiiiiiie i 218
[0)V/T T N =T = SRR PRRRN 218
Using the Transitions COMPONENT.............uuvuriiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeaaeinnn 219
Setting UP @ TranSItION.......cciieeiiiiiiiiiie e e e e e e e e e eaeeeeeaes 219
Performing a Transition on an Existing Collection............ccccvvevveeviiiiiineenn. 221
Loadable TranSitiONS.........ceeiii i e e e e e 223
HOW t0 Load TranSitioNSc.uviiiiiiiieiiiieee it 223
What The Transitions LOOK LiK€........cuvvvieiiiiiiiiiiiiiiiceccee e 225
2 Tag] Do) g (OFe] =) UUUT O UPTR I PPPPPRRN 225
BliNds (LOAA@DIE)........uuiiiiieeeieeiiiiee et 225
Checkerboard (Loadable)..........ccuuuiiiiieiiiiiiiiiiiee i 225
Diamondlris (Loadable)c..uuviiieiiiiiiiie e 226
DisS0IVe (LOAADIE)coiiiiiiiiiiiiiee e 226
Fan (LOAdabIe)c..uviiiiiie it 227
GarageDoor (Loadable)..........c.oocuviiiiiie e 227

[IS (0] £=) PP PPPR PP 227
PUSh (LOAADIE) ... 228
RandomChunks (Loadable)...........cccooiiiiiiiiee e 228
ReCtlris (LOAd@DIE)veiiiiieiiiiiiiiiee e 228
RectWipe (LOAdable).........ccoiciiiiiiiee et 229
110 [(@] {2 TP TP T PPUPPPRPT 229
StripSlide (Loadable)covviiiiiiiiiiiie e 230
StripWipe (LOAdable)coiiiiiiiiiiiiiiee e 230

Xi

ScriptX Components Guide

WIPE (COF) eiiiieiiiiiiiie ettt e et e e e e e e st eee e e e e s aaanes 231
Transition EXAMPIEooiiiiiie e 231
A SIMPLE TraNSItION ...veeiiiiiiiiiiiiiee e 231
Chapter 11 2D GraphiCsS ..ccoiiiiiiiiiiieei it e e e 233
Classes and INNEIMANCE..........cceeiii i 235
CONCEPLUAL OVEIVIEBWeeeieiiiiiee ettt e e e e e e e e 237
How 2D Graphics OBJects WOrK.........coccuviiiiieieiiieee e 238
POSItIONING IMAGESceiiiiiiiiiie it 239
POSitioning TWODPIESENIEScoicvieieiiieiie et 239
POSItIONING StENCIISociiiiiieiieii e 240
USING 2D GraphiCS ...eeeieveeiieeeiiiieeesiiee st 243
Drawing Lines, Ovals, Rectangles and Rounded Rectangles.................... 243
Drawing CUNVES ...ttt e et e e e e e e e e e e e e e s nnannes 245
Drawing PathSc.oiiiiiiiiiiee et 246
Drawing TeXt STENCIIS......iiciiiiciiieii e e e 247
Drawing BitMEPScc.vvveeiiieeiiiiiiiiiiiie et e e ee e e e s e ninne 248
ClIPPING SNAPES ..oviiiiiicitiee e e e a e e e e e 251
Specifying Fill and Brush Attributes for Shapescccccccviiiiienninns 251
MOdIfYING SNAPESeviiiiiiie e 252
Rotating and Scaling SteNCIlS...........oooiiiiiiiiie e 253
(070] (o] 41V F=T o 1S3 EUPERRR PP 259
Color Table Manipulation.............ccooeiieiiiiie e 259
Creating New Classes of Graphic Presenters..........cccccceviiiereiiniieee e 261
Boundaries and Global Boundaries...........cccccvviiiiieiiiien e 262
Arguments For the Draw Methodccccveeiiiiiiiiiiii e 263

Fill, Stroke, and Transfer Methodsceeviiiiiiieiiiee e 263

2D GraphiCs EXAMPIESeeeiiiiiieeiiiii e 265
Example — ShadowedSNapecccoooiviiiiiiiiie e 265

o =T a0] o] L=l €] £ To O EPT T PPPPRRRN 271
EXample — StENCIIIZEN ...ucviiiiiicieieee et 274
Chapter 12 TeXt @and FONTSooiiiiiiie i 281
Classes and INNEIMEANCE...........ioii i 283
CoNCEPLUAL OVEIVIEWuvviiiiiiiiee ettt e e e s e s re e e e e e e e e e aareees 284
HOW TeXt WOTKS......oviiiiiiiii 284
String Encoding and UNICOEoiiiiiiiiiiiiiiiiiee i 284
StriNgs @S COlECHONSuviiiieei it 286
SNGS S SrEAIMS ...t s s e e e e e e e enaes 287
StriNGS aNd HEIAtOrSviiiiiiie e a e 288
CUISOr POSILIONS ...oiiiiiiiiiiieiee et e e e 288

Xii

Contents

HOW FONES WOTK ...ttt e 289
0] 1 T PP TOTPTPPRPPRN 289
USING TeXt @NA FONLS ..cooiiiiiiiiiiie e 289
Creating StINGS . .uu i e s sanaaraaeeeeaans 289
CreatiNg FONTS . .uuiiiii e ee e e e e 290
Presenting StrinNgSvvuiiiie e 291
Overview of Text AtrDULES ..o 293
Text and TextStenCil ODJECTS..........ccvviiviie e 295
LiSt OF ALITDULES ... 295
Getting and Setting AttriDULES.........uviiiiei i 296
Setting the Font, Size, Weight, Width, and Style............c..cccoeoiiiiiinennn. 297
Setting the CoOlOr......c.oi e 298
Setting UNAErliNe ... 298
SettiNg LEAAING. ...eiiiiiiiiiiiiiie e 298
Setting AlIGNMENT ... e e e e e e e e e e e 300
Setting INAeNtatioN...........uuiiiiii e 301
SEHNG ACHONS. . eeiiiie it e e e e rr e e e e e e 302
Setting Selections, Insertion Points, and CUrSOrscccccevvvcvvieeeeeeeeiinns 303
Changing Default Values for Selections and CUrsorsccccvvveeeeeeeninnnns 305
Concatenating and Modifying StriNgS........cccueeiieeiiiiiiiiieiee e 305
Searching SIHNGS «..oooiiiiiieee e e 310
USING TEXE ACHONS....uuiiiiiiiee ittt e et e e e e e e e e s e e e e e e nsenees 312
Chapter 13 Document TeMPIatesccvvviiiieeiiiiiiie et 315
Classes and INNEIMANCE...........cooiiiiiiiieeeeee e 317
CONCEPLUAL OVEIVIEWvvviiiiiiee e e i e et e e e e e s e s s e e e e e e e e s e e nnnenneeees 318
How Document Templates WOrKeeeviiiiiiiiiiiiiiiee e 319
DOCUMENTS ... 319
PAgeS ... 320
PageTemplates and PageLayerscccceeirieeeriiieeeisiieeeeseiee e sieee e 320
Page EIEMENTScooiiiiiiiiie e 320
Pages Share Templates........cccuvviiiie i 322
How Does a Page Element Know What to Present?.........cccccceeeeevviiiineenn. 323
Boundaries of Documents, Templates, Layers, and Pagescc........ 326
Fills and Outlines for Pages and Page Layersccccccccveeveieeeeicieee s 327
Using the Document Templates COmMpPoNenteeeevvieeveeiiiieeee e 327
Creating @ DOCUMENL.........ciiiiiiiiiiiiiie et 327
Navigating Through a DOCUMENL.........ccuuiiiiiieeiiiiiiiic e 329
Specifying Things to Happen when a Page Changes...........ccccceeeeeeeiinnns 329
Finding the Presenter of Objects in a Document............coocvvvveveeeeiiiiiiineenn. 330
Using Controllers in @ DOCUMENT..........ccuvviiiiiee i csiieee e e 331
Displaying MoVies 0N @ Pageccuvveiiieiiiiiiie e 332

Xiii

ScriptX Components Guide

Dynamically Updating Presenters that Don’t Use Targetsc.cccoecvveeen. 334
Document Template EXamplesocuveiiiiiiiiiiiie e 336
A SIMPIE DOCUMENT.....eiiiiiiiiiiiiiiiee e e saeeees 336

AN Extended DOCUMENL........c.uuiiiiiiiiee ittt 337
The PagelLayers Used in the DOCUMENT............ccceeiiiieiiiinee e 338
The Code for the EXampPle.........cooiiiiiiiiiiie e 340
Chapter 14 Printing ..t e s e s s reeee e e e e s 353
Classes and INNErTANCE...........coiiiiiiie e 355
CONCEPLUAT OVEIVIEWooiiiiiiiii ettt 355
Putting Print Capability in YOur Title..........coooiiiiieeeeen 356
Printing @ WIiNdOW VIEWcooiiiiiiiiiiiie et a e 357
Printing a Window’s Bitmap IMage.........cccccevveei i 357
Printing EAch PreSenter..........cov oo 360
Printing a TextPresenter to Multiple Pages..........cccccceeeeviiiiiiiien i, 362
Printing a OneOfNPresenter to a Series of Pagesc.cccevveevceeiieeennnnn 365
Other PrintiNg ISSUESuviiiiiieiiiiiiiiiiie ettt e e e e e 367
Chapter 15 Title ManagemeNntcoi i 369
Classes and INNErtANCE...........cooiieiiiii e 371
CONCEPLUAL OVEIVIEW ..ottt 372
StOrage CONTAINET ... e e e e e e 373
11RO TOTRR PR 374

] o] 7= 12 PERRRN 374
ACCESSONY .o 375
Storing ScriptX Code in Storage ContaiNerscccvvveeveeeeiicciiiieeeeeee s 375
SEAMTUP ACLIONS ..t e e e e e e 376
How Storage Containers WOrK...........cueeeieiiiiiiieiiiiieee i 377
Life Cycle of a Stored ODJECt..........ccoviiiiiiiiiiii e 377
Persistent Versus Transient ObJECEScvvieiiiiiiiiiiiie e 378
References ACroSS CONLAINEIS.....c..uiiiiiiiiiiiie e 378
ODbject StOre ProtOCOIuuiiiiiiiiiiiiiiie e 378
Y F-T = Te @] o] =Tox £SO 381
Object Store Helper FUNCLONSuiiiiiiiiiiiiii e 381
Object Store System GIObalscevvveiiiiiiiiiiiie e 382
Performance and OptiMIZationcoocvvieiiieienieie e 382
UsSiNg Storage CONTAINETScouuiiiieiiiiiiee ettt 383
Adding Objects t0 @ CONLAINETcoiiiiiiiiiiee e 383
Choosing a Target COolleCtiONccviieii i 384
Saving Objects to a Container File..........cccccoviiiiiieni e 385
Loading Stored Objects int0 MEMOIYuuvviieiiiiiiieiiie e 386

Xiv

Contents

Modifying and Deleting Objects in a Containercocceevieiiiiiiiincnnnen, 386
Removing Objects from MemOIYoocuviiiiiie e 389
Freeing of Persistent and Transient ObJecCtScccovvvevice e, 390
Saving and Closing @ CONLAINETcciueiiiiiiiiiiiie e 392
How Title Containers WOrKeeiiiiiiiiiieiiieice e 392
Useful Title VariablesS..........cooiiiiiiiie e 393
Opening and Closing SCriptX TitleS........ccouviiiiiiie e 393
The SCratCh TIecco i 397
USING Title CONLAINEISuviiieiiiiiiie et 397
Creating @ Title CONtAINET.........ioiiiiiiiiee et e e 398
Saving and Closing a Title CONtaiNerc.vvvviveeeiiiiiieeeee e 399
Managing Windows, Clocks, and Playersin a Title..........ccccvvveveeiiniiiiinnenn. 400
Pausing, Resuming and Muting @ Title........ccccccoovciiiieiiee e, 405
SYSEM MENU BAI......ciiiiiiiiiiiiiiiiiieeeeeeeeee e 405

(@1 [] o o =1 o [H PP 406
Managing Libraries in @ Titlecceeeiiiiciiiiiiie e 408
Opening Multiple Title CONTAINEISc..coviiiiiiiiiiieee e 410
UsiNg Library CONAINEIS.......c.coiuiiiiiiiiiiiiee it 411
Creating a Library CONtaiNervvviiiiiiiiiiiiieee e 411
Opening and Closing @ LIbrarycccccevieciiiiiiee i seiieeee e e 412
Adding Media to a Library.........cccccciiiiiiiii i 413
USiNG ACCESSONY CONTAINETSvviiieiiiiiiee ettt 414
Creating an AcCeSSOrY CONAINETceuiiiiiiiiiiiee e ieiiieeee e e e ssiiieeee e e e s annaes 416
Opening an ACCESSOIY FilB........ccuiiiiiiie e 418

L@ 10 1111 0o TS o1 10| 0 419
QUIt QUETIES ...vviiiiiee e ettt e ettt e e e e e e st e e e e e e et e e e e e e e s snnaaaeeeeeeaean 419

L 11 1L 1= TS PRSPPIt 420
Title Management EXamples. ... 421
A SIMPLE T oo 421

A Painting Title and LIDrarycooiiiciiiiiiiee e a e 423

A Painting Title and ACCESSOIYcieiiriiieiiriiee it e e 426
Quitting ScriptX Gracefullycccuvviiiiieiiiiiiie e 431
Part 4 Lower-Level Components 441
Chapter 16 CollECHIONS ..iiiiii e e e e e 443
Classes and INNEIMEANCE...........ooii i 445
COoNCEPLUAL OVEIVIEWuvviiiiiiiie e e e i e ettt e e s e s r e e e e e e e e e s nnnraneeees 446
HOW COollECtIONS WOTK ...coeiieeeieieee et 447
Sorted COlECHONSeviiiiiiie et 449

XV

ScriptX Components Guide

CompariSON FUNCHONS..........coiiiiiie e 450
Choosing a Collection Classcoovicviiiiiiieiieee e 452
Arrays and SOMEA AITAYSc.uuvieeiiee ettt e e e e s e e e s seaneees 454
LINKEA LISES...uuiiiiieiiiiiiiiiiiie e ettt e ettt e e e e e et e e e e e e s aaaneee e e e e e ennnnes 456
ATTAY LISES ..ttt e e e e e e e 457

BT TS . e 459

[F= TS T I T o] L= SRR 460
Single, Pair, Triple, QUAMoociiiiiiiie i 461
Collections and THrEAAS........ccciiiiiiiiiiee e e e e e 462
Collections and Load Managementcccoovuereeiiierenirieee e 462
SN treriteee ittt e e e e e e e e e e s e e e a e e e e 464
Y=o [U1=] g [o =T @ o | PR 464
RANGES .. 466

TaTe [T (=To (O] | [=Tod T] o OO PUURR S 469
Subclassing CollEeCtONS.coociiiiiie e 469
1] 21 (0] £ TSP UPPPPPR 470
Using the Collections COMPONENT...........oooiiiiiiiiiiiiiiiieeee e 473
Implementing a LOOKUP Tableoccoiiiiiiiiieeee e 473
Specializing IndirectCollection to Enforce Uniformityccccvvveeeeiiniinnnns 474
Chapter 17 NUMEIICS .uuiiiiiiiiiiiiiiiiie ettt e e e e e e naabraeeeaeeeas 479
Classes and INNENANCE...........coiiuiiiie e 481
CONCEPLUAL OVEIVIEWoeeiiiiiie ettt 482
HOW NUMETICS WOTK ... e e e e s e e e 482
Coercion Of NUMDEIS.......uuiiiii e e e e 483
BOO0I€AN OPEIALIONS ... ueeiiiieiiiiiiiiiiiiee ettt e e e e s a e e e s s e e e e e e s aneeeees 484
Operations 0N NUMDETSccoiiiiiiiiiiie e e e e e e e e 484
Operations 0N INTEOEISuviiiriiee et 485
IMMmediate ODJECES.uiiiiiiiiiiiiiie e 486
Fixed and Floating-Point PrecCiSion...........c.ooiiiiieie e 488
DAates @and TIMESveieiiiiiie ettt e e e 489
NUMENCS EXAMPIE ...vvveeiieieeee et e e e e 491
Net Present Value of a Winning Lottery Ticket........ccccccoviiiiiieenieiiiiiiinenn, 491
Chapter 18 Events and INpUt DEVICEScoeeiiiiiiiiiiiie it 495
Classes and INNEMANCE...........coiiuiiiieiie e 497
CONCEPLUAT OVEIVIEWooiiiiiiiii ittt 499
HOW EVENES WOTK.....uuiiiiiiiieieie ittt e e 500
GeNErating EVENTS ...ttt e e 501
RECEIVING EVENTS ...ttt ee e e s e 503
DisSpatChing EVENIS......cuuiiiiiiiiiiiiiie e e e e 507

XVi

Contents

Matching EVENnt INTErestS.........evviiiiiiiiiie e 508
ACCEPLING AN EVENL....uiiiiiiiiiiiiiiiiee et 510
Flow Diagrams fOr EVENEScoooiiiiieiiiiee et 511
Events and Event Interests—Creating New Classescccccceveevviivvrneenn. 512
HOW INPUt DEVICES WOTK........c i 514
Creating Input Devices and Processing EVENLSccccceeevviiciiiiieniee s 514
Keyboard Devices and Keyboard EVENtS............cccceeiiiieiiiiiiee e, 515
FOCUS EVENIS...ciiiiiiiie e 517
Mouse Devices and MoUSE EVENLScoooiiiiiiiiiiiie e 519
Compatibility ACross PlatfOrms...........coviiiiieiiiiee e 528
Input Devices Of the FULUIE ... 529
Events and Input Devices EXampPleS.........cccovviiiiiiiiiiieee e 530
Selecting Presenters with @ MOUSEccvviviiiee i 530
Processing with an EVent QUEUEcccoooviieieiiieee e 533
FOCUS EVENES ...ciiiiiiiiieeeee e 538
Receiving Mouse Crossing EVENTS........c.coiiiiiiiiiiiieee e 541
Chapter 19 Files and SyStem SEIVICEScciceiiiiciiiiiiie et e e esireee e e e 545
Classes and INNEIMANCE...........oeii i 547
CoNCEPLUAL OVEIVIEWuviiiiiiiiie ettt e e s e e e e e e e e s e aareees 547
HOW FlES WOIK ...t e e e e e 548
Access to Directories and FileS ... 548
ACCESS 10 DALA ... 549
Macintosh ReSOUICE FlEScooiiiiiiiiiiiiie it 549
Using the Files COMPONENT..........uiiiiiiiiiiie e 549
Path REfEIENCES........eiiiiiiiii e 549
Testing Files and DIr€CtOMESccvviiiiiie e 550
Directory Paths s SEQUENCESc.coviiiieiiieiee e 550
NAMING FIlES..uiiiiiii i e e ennes 550
Converting File NameSooo i 551
Creating INStances of DIFREPc.uvvviiiiiiiiiiiiiiee e 551
Navigating DIFECIOMESieeiiiieiiiiiiie e sttt e e e e e e eanaeees 552
File Creationcooi it e e e e 552

File DEIELION. ... e 553
ACCESS 10 STTBAIMSo 553
Open and Save Dialog BOXESccieiiiiiiiiiiiiiee it 555
OPEN DIalog BOX ...ccoeiiiiiiiiiiie et 555
SAVE AS DiIal0G BOX....iuviiiiiiiees ittt et e e a e e 556

[T =T g1 556
Message Dialog BOXES......c.iiiuiiiiiiiie ittt 557

XVii

ScriptX Components Guide

Chapter 20 SErEAIMS ...uuiiiiiiii e e e e e e s bbb e e e e e e 559
Classes and INNEIMANCE..........cceeiii i 561
CONCEPLUAL OVEIVIEBWeeeieiiiiiee ettt e e e e e e e e 562
HOW Stre@ms WOTKouuiiiieiiiiiiee et ee e 564

Stream Subclasses Defined by SCriptX.......cccceeeiiiiciiiieiee e 564
Access TO Streamed Data..........coueeeviiiiiiiiiieeniiiiiieeee e 566
PlUgQiNg SIrEAIMSuviiiiiiie ittt ettt e e e e e e e e e e e nnanees 569
Defining Custom Stream ClaSSeS. ... c.ciiuureeiriiiee e 569

Chapter 21 Memory ManagemeNnt..........coiuuiieiiiieee e e e 571
CONCEPLUAL OVEIVIEW ..ottt 573
How ScriptX Memory Management WOrKSeeeeieiieeinnniiiiiiiiieeeeeeeenn 574

Real-time Incremental ACHVILYooccviiiiiiee e 574
Non-relocating Objects—Organization of MemMoryccccvvvveeveeiiiiinineenn. 575
Tracing Collection—How ScriptX Finds Unused Objects...........ccccvveeeeennn. 576
Memory Management versus Load Management...........occcvvvveeeeenniiinnnnenn. 578
Using Memory Managementcoouuriiaiiiirieee i 579

Chapter 22 THIEAUSuuviiiiii i e e e e 581
Classes and INNEMANCE.coiiiiiiie i 583
CONCEPLUAL OVEIVIEWoiiiiiiiiie ettt 584
HOW Threads WOTK ...t 585

Programming GUIAElINESooooiiiiiiiii e 586
THread FUNCHIONS.oviiie it 587
THre@d STALUS ...t 587
2] [oTe3 (] T PP PPRPTN 591
PIDES 593
LT 1 (T PP PP PP PPPPPPPPPPPPPPPPPN 595
L 1] 11U PRRPP 598
Preemptibilitycei e 599
Using the Threads COMPONENTooiiiiiiiiiiiiiiiie e 603
Thread EXAMPIESccoo i a e 604
ASYNCNIONOUS PrOCESSINGuvviiiiieeeiieiiiiiiitee e e s esiitaereaeeesesniinneeeaeeseansnnnnees 604
A Thread DiSPatCRer........coi it 606

Chapter 23 Object System Kernelcocooviiiiieiii e 609
Classes and INNEIMANCE..........eeeeeiiiicieeeee e 611
CONCEPLUAL OVEIVIEBWveiiiiiiiiie ettt e e e e e e 612
How Classes and ODbjJects WOrK.........cuuvviieeiiiiiiiiiiiiiiieeeee e 612

XVili

Contents

Metaclass Network INtrodUCHIONccvvvviiiiiniiiiiieeee e 613
Metaclass Network Detailsccueviiiiiiiiiiiiieeiee e 613

T 1= 1T 11 o] o SRR 615
FUNCLION DISPALCNuiiiiiiiie i 619
ACCESS t0 VariableSccccee i 624
DEIEGALION ... 625
(070] o)V 1o To [@] o] =] £33 UUR P PPPRRN 626
(0101 (o] 0 1o JK @] o] [T ox £ PSR 628
Comparing ODJECES.......c..uuuiiiiiii i 633
Printing ODJECTS ... e 638
Chapter 24 EXCEPLIONS .oiiiieiiiiiiiiieee ettt e e e e et e e e e e e et e e e e e e e snaaaaaeeeeeanas 641
Classes and INNEIMEANCE...........oiii i 642
HOW EXCEPLONS WOTK ...coeiiiiiiiiiee et e e 644
USING EXCEPLIONSveiiiiiiiiiieie ittt 645
Exceptions in the Kaleida Media Player ... 645
Chapter 25 Import and EXPOIteooiiiiiiiiiiiiie et 647
Classes and INNENANCE...........coiiiiiiie e 649
How Import and EXPOrt WOIKcooiiiiiiiiiiiee e 649
Registering Import and EXport MOAUIEScoovciiiieiiiiiiiiiiieeeee e, 650
Using the Import and EXport COmMpPOoNent..........ccooiuvveeeiiiiiieeeiniieeee s 650
(O gF=T o1 (=] g2 G T I T Vo = S USRS 651
Classes and INNEIMEANCE...........ciii i 653
COoNCEPLUAL OVEIVIEWuvviieiiiiie e e ettt e e s s r e e e e e e e e e s nnnreneeees 654
How the Loader WOrks..............cccooiiiiiiiiiiicc 654
Loadable ODJECTS. ...t 654
ENtry POINE COOE ...ttt et e e e e e e e e e e e e ennnes 656
Loader LiStS ... 656
USING the LOATETeiiiiiiiiiei et 657
How the Loader Works (ContinUed)...........cooooiiiiiiiiiiiiiiieeeiiiiieeeeee e 657
THE LOAA PrOCESS ...oiiiiiiiciiiiiiiie ettt e e e e e ea e 657
SymbOol ACCESSIDILY ... 658
RElINQUISNING ..vviiieeiccece e e e e e 659
EXxception HandliNg........ccoooiiiiiiiiiieeiiiie e 660
LoAder EXAMPIESoeiiiiiiiiiieeiiiii ettt e 661

XiX

ScriptX Components Guide

Appendix A Loadable EXTENSIONS ...c.covciiiiiieieeiiece e 663
Summary of Loadable EXtENSIONSc.uueiiiiiiiiiieiiiiice e 665
C-Loadable EXIENSIONScociiiiiieiiiiiee it 665
Scripted EXIENSIONS.......uuiiiiiiee ittt e e e a e e e e e e e e e e e e e 667
External Command Interface EXIENSION..........cccuuviviiiiiiiieeiiiniiiieieeeee e 667
Loading the External Command EXtENSIONcccceeeiiieeieiiiiee e 667

MCT INTEITACE ...t 667
APPENAIX B GIOSSAIY ..ottt 669
N X et ————————————— 677

XX

Preface

This document is part of the ScriptX Technical Reference Series. This series is
for programmers using ScriptX to develop interactive multimedia tools and
titles to run on the Kaleida Media Player. This series includes the following
documents:

e The ScriptX Components Guide (this manual) provides an overview of ScriptX
architecture, conceptual explanations about the organization of the ScriptX
classes into components, and script examples showing how the classes work
together. It covers ScriptX from the multimedia title, down to the operating
system devices. This manual is essential to anyone designing and building
multimedia titles in ScriptX. It is the companion volume to the ScriptX Class
Reference.

e The ScriptX Class Reference is a detailed reference to the ScriptX class library
that provides, in dictionary form, a complete specification of the classes,
methods, variables, and functions available for building multimedia titles
and tools in ScriptX. It is the companion volume to the ScriptX Components
Guide.

* The ScriptX Language Guide is a practical guide to using the ScriptX
programming language. It provides complete functional descriptions of the
language as well as concrete descriptions of tasks you might do when
actually working with the ScriptX language. Anyone programming in
ScriptX will want to use this book.

e The ScriptX Tools Guide provides information about the ScriptX development
process that is not covered in the other manuals. The first part discusses
how to use the browsers, the Listener and other tools that are supplied with
ScriptX. All users will want to read this part. The second part explains how
to extend ScriptX by loading classes written in C, and discusses
platform-specific issues. Developers who wish to add classes written in C to
ScriptX will want to read the second part. The third part of the ScriptX Tools
Guide discusses how to build additional tools in ScriptX. Tool developers
will want to read the third part.

® The ScriptX Quick Reference summarizes information about the ScriptX
Language and Class Library. It includes the grammar of the language,
listings of components and their classes, and an alphabetical reference to
classes, including class variables, instance variables, and methods.

Audience for this Book

This book is intended for ScriptX programmers, both title developers and tool
developers, who need to understand the fundamental programming concepts
and features provided by the ScriptX architecture and core classes.

- ScriptX Components Guide

Summary of Contents

The ScriptX Components Guide provides a conceptual overview of the ScriptX
architecture, along with detailed discussions of the components implementing
that architecture. The architectural discussion describes the high-level
abstractions in ScriptX, including motivating factors behind the design of
ScriptX, the key features of the architecture, and examples of the types of
applications ScriptX is designed to implement. The component descriptions
provide details to help programmers navigate the architecture, including
discussions of concepts embodied by classes in each component, and annotated
code examples to demonstrate common usage of the component.

After the first two introductory chapters, this book is divided into the
following parts:

Part 1, “High-level Components” describes the motivations behind the design
of ScriptX, its primary differentiating factors from other authoring and
programming tools, and examples of the unique capabilities ScriptX provides
for title and tool development.

¢ “Title Management,” discusses features of ScriptX for managing a title,
including startup, shutdown, interacting with menus, saving and opening
files, and quitting the ScriptX runtime environment.

e “ Presentation, and Control,” discusses the central features of ScriptX for
presenting multimedia models to the user.

* “Media Sources,” describes the various types of media available through
ScriptX, including players for sound and video, the 2D graphics imaging
model, and text handling and font management.

Part 2, “Low-level Components, “System Services,” describes operating
system interface features provided by ScriptX for timing, file and data access,
title storage, and managing memory.

* “Object System,” describes classes implementing the ScriptX object model
and primitive object types.

e “Tools,” describe the facilities provided by ScriptX for importing and
exporting media in various formats.

Note — The Property Manager is no longer supported in ScriptX. Instead, the
syst emQuery function provides access to information about features and
capabilities of the underlying hardware platform. Please see Chapter 2, “Global
Functions,” in the ScriptX Class Reference for more information.

Manual Conventions

This manual is set primarily in Palatino and Avant Garde, except code samples,
method names, and other code-like elements are in Couri er .

Note — Notes to the user look like this.

CHAWPTER

ScriptX Features

ScriptX Components Guide

ScriptX Features

The ScriptX Platform is a rich, dynamic, extensible, cross-platform,
multi-threaded, object-oriented environment that enables you to develop
multimedia titles, tools, and other interactive applications for desktop
computers. This platform contains both a dynamic language and a built-in
library of core classes which are intimately connected.

The Kaleida Platform currently runs on Microsoft Windows, Macintosh 68K,
Power Macintosh, and OS/2. Later, support will be added for other
widely-used hardware and operating system combinations, as well as for
dedicated multimedia devices.

The core classes library defines a wide range of classes designed for title
management, modeling, presenting, controlling, data management, text,
graphics, animation, video, audio, timing, user-interaction, and system
services. ScriptX implements all of these features in software, using hardware
assist when available.

ScriptX Executables

Kaleida ships both a development environment, which enables the creation of
ScriptX multimedia applications, and a runtime executable for their delivery:

¢ The ScriptX Development Environment consists of the ScriptX Language,
the bytecode compiler, for compiling scripts, the bytecode interpreter, and
the core classes library. The compiler compiles ASCII scripts and media into
cross-platform bytecode methods and data which can be stored to a file that
is binary compatible across all platforms. This environment also includes
programming tools for developing and debugging programs at the language
level.

e The ScriptX Player (KMP) is the consumer runtime executable for running
titles and applications developed with ScriptX. It contains the bytecode
interpreter and core classes library.

This book focuses on the components that make up the ScriptX class library
and define the ScriptX development environment.

This chapter examines the objectives that led to the development of ScriptX
and the categories of user interaction that drove many of the architectural
requirements. It then provides a brief overview of the major components of the
ScriptX development environment.

Chapter 2 looks at some hypothetical examples to show how the components
interact from a programmer’s perspective. The remaining chapters look at each
system component in greater detail. The ScriptX Class Reference is the
companion book, which describes the public application programming
interface (API) for all the classes in the core classes library.

ScriptX Components Guide

Titles, Tools and Applications

With ScriptX you can develop multimedia titles, tools, and applications. These
terms have somewhat well-defined meanings. For example, an interactive book
is considered a title, an object inspector is a tool, and a text editor is an
application. However, rather than repeat these terms, throughout this book we
loosely use the term fitle to include tools and applications.

To look at what a title is, it can help to describe the primary model underlying
all ScriptX titles:

A title is composed of objects interacting in, or associated with, multiple,
concurrent spaces in which users can participate.

The three important parts of this model are the objects, spaces and users. While
spaces are simply objects themselves, they provide a location or place for
objects to interact with each other and with the user. A window is the most
obvious example of a space.

The user might just be an arrow that responds to mouse movements, or might
be represented in the title by a surrogate animated or video graphic image.

This model is powerful enough to enable any multimedia presentation to be
constructed and played. Developers can invent new metaphors based on this
model.

Design Objectives of ScriptX

The design and development of ScriptX has been driven by the following
objectives:

e To provide broad, creative range for developers, and thereby a wide variety
of experiences for users

¢ To provide a platform for developing and delivering new forms of
information and entertainment media in a compelling, easy-to-use, and
reliable format

¢ To provide a general-purpose, metaphor-independent scripting language,
built-in media support, and a flexible customization paradigm so that
developers can express the design of their products fully and naturally

e To create a software abstraction of a multimedia engine that enables the
playback of content on a variety of hardware and software platforms

¢ To encourage the adoption of ScriptX as a standard across existing and
emerging markets

To understand what features would meet these objectives, the architects of
ScriptX studied a broad range of information models and user interactions. The
following section describes the major categories of user experiences that they
considered.

ScriptX Features

Categories of User Experience

Each of the following five categories represents an independent experience for
the user, with its own information model and style of user interaction. These
categories together capture a broad range, though not the complete range, of
applications for which ScriptX can be used. We fully expect developers and
authors to reach beyond these specified paradigms, to develop new and
interesting experiences, such as real-time collaboration between users.

ScriptX enables the authoring of a wide range of experiences including, but not
limited to, the following. A single title can contain any number of these
experiences within it. These experiences are described in the next sections:

¢ Modular Composition — A collection of multimedia objects composed in
different groupings, along with a means for users to reorganize those objects
to make their own compositions.

e Virtual Space — A fixed, seamless, multi-dimensional space populated by
objects through which the user navigates.

¢ Conversational Interaction — The user and computer carry on a
conversation—both have initiative, information, and intentions.

e Constructive Experience — A collection of objects with behaviors that
interact when the objects are juxtaposed or connected.

¢ Multitrack Sequencing — A linear stream of multiple, simultaneous tracks of
video, audio, data, scripts and so forth, with which the user can interact.

Each of the features in the above titles is implemented in one or several
components of ScriptX. The following is a brief listing of which components
are responsible for features common to most of these titles:

¢ Dynamic binding through the Object System Kernel, and loading of
extensions to ScriptX through the Loader component

¢ Database management, search, and query through the Text and Collections
components

e User interaction through the User Interface, Events, and Controllers
components

¢ Dynamic screen layout and composition through the Spaces and Presenters
component, the Document Template component, and the Transitions
component

¢ Audio, video and MIDI synchronization and delivery through the Players,
Media Players, and Streams components

* Animation and simulation through the Animation component
¢ Synchronization of objects through the Event and Clock components
* Mouse and keyboard interaction through the Events component

® Simultaneous, independent execution of complex, real-time interactions
through the Threads component

¢ Storage of objects to the underlying file system through the Title
Management, Files, and Streams components

ScriptX Components Guide

e Use of standard dialog boxes such as Open, Save and Print belonging to the
underlying platform through the Title Management component

Modular Compositions

To describe a modular composition, see Figure 1-1, which represents a
collection of beads to form necklaces. This modular composition is a collection
of objects (bowl of beads), and several compositions (catalog page, timeline,
and necklace). It includes tools to enable users to rearrange the compositions.

Each of the compositions is modular—which means that when users encounter
a new composition, such as a book or movie, with different objects, they can
set the objects aside to form new arrangements and compositions.

Modularity is the ability to organize objects and information into well-defined
structures that can be put together in clean, understandable ways. A modular
composition combines these independent structures to give users alternatives
for interacting with objects. Within a composition, the structures require no
direct knowledge of each other and can be independently modified or replaced
to form new or different types of interactions.

Dynamic binding enhances the interactive nature of modular compositions in
the playback environment. Dynamic binding lets users add completely new
elements, authored elsewhere, into the run-time environment without building,
compiling, linking, or quitting the title. This facility lets modular compositions
accept new types of objects to organize in real time. Thus, not only can the
compositional structure be modified, but its content can be as well.

Many types of applications qualify as modular compositions: product catalogs
(interactive shopping); reference material (multimedia database); expanded
books, periodicals and magazines; and buying and selling guides. While
modular compositions can be self-contained titles, they can also be
independent software components designed to perform a specific function
across a variety of contexts. This type of modular composition is known as an
accessory.

ScriptX Features

Professional Publication

Resource of
Objects

Reconstruction Activities

1840 1860 1880 1900 1920

® (]
® @
N e e &
Dynamic ?\ gﬁ Time Line

Composition A

User Created \q
Composition ()

‘\

Composition

User Created
Collection

Figure 1-1: Modular compositions

Virtual Spaces

A metaphor is a collection of authoring abstractions that relates to some aspect
of the real world and gives an author a particular point of view from which to
construct a title. While authoring metaphors are useful, the ScriptX architects
did not want to limit developers to a handful of authoring abstractions. Their
goal was to let developers create new ways of organizing information that
might be more appropriate for the activity at hand. One flexible alternative for
organizing information is a virtual space.

A virtual space is a fixed, multi-dimensional area populated by objects, which
users can navigate. A virtual space might have a real-world counterpart, such
as an underwater canyon, or it might represent some imaginary area, such as a
galaxy in a 3D adventure game. Since the structure of the space is fixed (unlike
a modular composition), users can develop intuitions about how to get around.
Figure 1-2 illustrates a virtual space. The user interface, images, and audio may
provide a perceptually seamless portrayal of the space. This virtual space can
be a metaphor for the physical world that can be enhanced or altered.

One way in which a virtual space can differ from modular compositions is that
it can be time-based. The simulations and animations it contains are driven by
a clock. The unfolding of events might respond to the user, but autonomous
objects (fish) might operate with a mind of their own. Thus, events change
dynamically over time around the user.

ScriptX Components Guide

Figure 1-2: A virtual space

10

ScriptX Features

Conversational Interactions

Conversational interactions are experiences that engage both users and
computers in a conversation—an exchange of information where both have
initiative and intentions. As illustrated in Figure 1-3, computers respond to
users’ requests in real time and might direct users toward a specific goal or
target. In this way, users direct the flow of information, and even the
complexity of the interaction. Examples include interactive books, professional
training, “how-to” guides, tutorials, and help systems.

Characteristics of a good conversational system are high-bandwidth
interaction, the ability of the application to present multiple representations of
information, the ability of the application to initiate, and the ability of the user
to interrupt at any time.

One key feature of successful conversational interactions is their ability to
adapt to a variety of different users. For example, a tutorial might have one
presentation for novices and another for experts. Or a help system might
provide information in several different languages, based on user requests.
ScriptX can define a context that provides the most appropriate representations
to users on demand.

Types of
walkways
O Concrete
O Brick

B Cobblestone
User: U Astro turf

Sue Kaleida

« Lines rustic
« Natural Material
« Big Budget

Figure 1-3: A conversational interaction

11

ScriptX Components Guide

12

Constructive Experiences

In a constructive experience, users combine collections of multimedia objects to
see how they interact when juxtaposed or connected. In Figure 1-4, the bird
pecks at the food (A), which causes the door to open (B), causing the cat to
enter the room (C), which causes the dog to awaken (D).

In rigorous systems, like physical simulations, the objects in the collections
might have well-defined, repeatable behaviors. In other systems, the objects
might have a wide range of unpredictable simple behaviors. That is, they
might respond differently depending on the context.

Examples include retail product modeling and simulation, children’s play
environments (Rube Goldberg contraption), and interactive storytelling.

A feature that makes constructive experiences interesting is the ability for
objects to change their actions over time. Clocks allows different objects to be
synchronized, making this kind of experience run smoothly.

Figure 1-4: A constructive experience

ScriptX Features

Multitrack Sequencing

Multitrack sequencing is a linear stream of multiple simultaneous tracks, as
shown in Figure 1-5, containing text, still images, animation, video, audio,
data, commands, scripts, objects, transitions, and similar media elements. The
tracks either play in a straightforward sequential fashion, or allow the user to
interactively control time jumping and screen layout. For example, the user
could switch between cameras at a sports event or at the production of a
movie.

Personal movies, professional presentations, and video editing fall into this

category.
O O 00 6 oo ool

HEH vieor

H Video 2 -

Bl videos

Qe o '

(O:— Audio 2

Ab Teas '

T o

Behind the
Scene

Lo ()

Figure 1-5: Multitrack sequencing

13

ScriptX Components Guide

Key ScriptX Features

To achieve wide acceptance from hardware manufacturers, tool developers,
title developers, and consumers, ScriptX must be general enough to
accommodate all of the experiences described in the preceding sections and to
adapt to new experiences that emerge in the future. It must define standard
ways to present images, generate sounds, access files, use various media
formats, interact with the windowing environment, and so on. It must also
provide a core of multimedia-specific services and tools. The following sections
describe the components that deliver these features to the ScriptX development
environment in more detail.

The ScriptX Object-Oriented Programming Model

The ScriptX development environment is based on a modular, dynamically
extensible object-oriented programming model. Objects in ScriptX represent all
the framework, from physical devices controlled by hardware to the individual
components of a multimedia piece. Once an object is defined, it can be reused
by any other client in the framework through well-specified interfaces.

A key feature of object-oriented programming is inheritance—the ability to
define new classes of objects by refining existing ones. ScriptX supports
multiple inheritance, allowing developers to fully modularize their programs
and leverage their work across a wide range of uses. Inheritance makes
programming with ScriptX objects easier by allowing developers to build upon
the existing framework and tune the underlying technology to new situations.

For example, a generic player, defined in the Pl ayer class, implements
common player features, such as standard methods for starting and stopping.
Specialized types of players—audio players, video players, and others—are
defined as subclasses of Pl ayer. These subclasses inherit the general player
behavior and adapt that behavior to work with specific media types. For
example, the generic function pl ay will do the right thing when called on a
video player and also do the right thing when called on an audio player. The
name stays the same, but the implementation is changed appropriately for
different subclasses. Thus, a developer can use pl ay with any of the ScriptX
core class players and know that it will do the appropriate thing. If there were
a new media type, the developer could create a new subclass of Pl ayer and
specialize the behavior of pl ay to accommodate that new media type.

The entire ScriptX development environment is itself defined in terms of the
object model. The components of this environment are implemented as groups
of related classes that are easily extensible. All user-written code is assimilated
dynamically into the ScriptX environment and receives the same treatment as
predefined ScriptX objects.

Metaphor-Based Authoring Facilities

The ScriptX language and class library directly support two authoring
paradigms based on well-known metaphors. Metaphor-based authoring
facilities help developers construct particular styles of multimedia interactions.

14

ScriptX Features

Spaces,

The Document Templates metaphor is a full-fledged component of the ScriptX
development environment consisting of built-in classes, spaces, presenters, and
related mechanisms for creating document-centered applications. Titles
constructed using this metaphor resemble traditional books, magazines, annual
reports, catalogs, and other such paper documents. However, by using
underlying ScriptX technology, they can support all types of embedded media
in their layouts—text, images, animation, audio, and video.

The Director Translator Kit is a set of scripted classes that enable the
conversion of Macromedia Director™ titles into ScriptX. The model that drives
this metaphor is a linear stream of multiple simultaneous tracks (channels).
Tracks can contain video, audio, data, commands, scripts, objects, transitions,
and so forth. The tracks present information sequentially and can also respond
in real time to user-selected sequencing.

Presenters, Controllers, and the Compositor

One of the primary goals of the ScriptX architecture is to provide a rich set of
building blocks that allows authors to express their designs in ways that
closely correspond with users’ experience of them.

To that end, the ScriptX development environment includes a suite of
authoring abstractions, some of which are not tied to any specific authoring
technology or metaphor, since high-level abstractions limit the tools available
to an author. With these building blocks, authors can define new tools and
metaphors and can even “mix metaphors” for a richer experience.

The most fundamental authoring abstraction in ScriptX is a space. A space
defines and organizes the behavior of objects. In ScriptX, spaces provide the
environments in which objects live and interact. Two- and three-dimensional
geometric and physical simulation spaces, cards, stacks, cast sheets, system
simulation environments, catalog databases, and maps are all examples of
possible spaces.

Spaces might also define other properties, such as timelines, spatial
relationships, and state monitoring capabilities. Authoring tools and
metaphors can be characterized in terms of spaces and the associated objects
they provide.

In addition to the conceptual framework for organizing objects, available
through spaces, ScriptX provides two special types of abstract interfaces to
objects:

e Presenters provide concrete ways of experiencing objects in a space, such as
through screen graphics or sound effects. They translate the abstract
definition of an object into a form users can see and hear.

e Controllers manipulate objects in spaces. Controller behavior depends upon
the control protocols defined by a space or by an object itself.

It is possible for a single object to be simultaneously represented by a presenter
and manipulated by a controller. Presenters and controllers can be combined
into a single object or can be embodied in many objects.

15

ScriptX Components Guide

16

Compositors are internal media managers that map the audio and graphics of
a title onto presentation hardware and, in doing so, coordinate the output of
many presenters. Whenever a script associates a display surface with a space,
the system creates a compositor to render the presenters contained in those
spaces onto the display surface. The compositor manages the spaces associated
with the display according to well-specified protocols. The compositor defines
the general presentation behavior, and the display surface specializes that
behavior to match its particular functionality.

Time-based Media Classes

Key to a viable multimedia standard is the rich representation of time-based
media. This representation must take into account the interaction among
different media types and different time scales. The object-oriented nature of
ScriptX allows it to encapsulate time and media intuitively and naturally as
objects.

ScriptX time is represented by clock objects that synchronize to the hardware
clocks of the underlying platform. Programmers can use clock instances
directly for synchronizing real-time media within a title; more commonly,
however, they will choose the clock behavior embodied through ScriptX’s
built-in media players, which are special types of clocks.

ScriptX players represent the playback of time-based media, such as digital
video, sound, videodiscs, and VCRs. They have predefined protocols for play,
stop, fast forward, rewind, and other playback operations.

In addition to media players, ScriptX defines a number of media data types,
including text, vector and bitmap graphics, animation, audio, and video. With
a wide range of native media objects to draw from, developers can create a rich
media mix with a minimum of programming.

Text and Collection Searching

Multimedia content often needs fast access to the media resources it uses.
ScriptX addresses this issue with protocols for locating objects in a title. The
Text component provides search-and-retrieval operations for matching strings
and for finding the nth word, sentence, or paragraph in any given text. The
Collection component provides methods for searching and retrieving objects
within any collection.

Title Management

The Title Management component provides the mechanism for loading a title
from a CD, disk drive, server or other storage device, and for saving objects
used by a ScriptX title across multiple user sessions. This component can store
title data, configuration information, and program state in the underlying
storage system so that the data remains available from one invocation of a title
to the next.

ScriptX Features

Object System Kernel

A deep understanding of ScriptX requires an understanding of the Object
System Kernel, which defines the fundamental behavior of classes and objects.
ScriptX objects are defined in terms of classes. Each class is itself an object, an
instance of another class called its metaclass. Together with the metaclasses, the
three root classes Root Obj ect, Behavi or, and Root Cl ass comprise the
metaclass network.

In the core classes, the distinguished class Root Obj ect, root superclass of all
ScriptX classes and objects, defines behaviors that are shared by all objects.
Any method that is defined by Root Obj ect is inherited by all objects in the
system. In Root Cbj ect, ScriptX defines protocols for operations such as
initialization, instance variable access, comparison, copying, coercion between
classes, and printing to a debugging stream.

The Behavi or class defines common operations shared by all classes. In
particular, it defines the method for creating new objects in ScriptX. Through a
metaclass network, similar to Smalltalk, ScriptX implements class variables
and methods. The distinguished class Root Cl ass is the superclass of all
metaclasses and defines the protocol for creating new classes.

Several additional “system” classes are considered to be part of the Object
System Kernel. Among them are the function classes, Del egat e,

Modul eCl ass, and NanmeCl ass. These classes provide essential services that
are used by all other ScriptX objects.

17

ScriptX Components Guide

18

CHAWPTER

Approaching ScriptX

ScriptX Components Guide

20

Approaching ScriptX

Introduction

This chapter presents top-level views of how ScriptX system components
interact within two typical user experiences—a modular composition and a
virtual space. Readers should consider these examples not as strict templates,
but as aids for navigating the ScriptX system when implementing these styles
of titles.

More detailed information on the components that organize the ScriptX class
library appears in the chapters that follow. The ScriptX Class Reference presents
detailed information about the classes that implement these components.

As you can tell from the thickness of this volume, the ScriptX class library is
very comprehensive. It provides a rich assortment of features and functions to
help authors and developers create complex titles and tools.

To orient yourself to the ScriptX class library, consider the conceptual diagram
in Figure 2-1:

Graphics
2D Graphics
Text

Title Management

LibraryContainer
Quit Manager

Simulation, Presentation, Control

Spaces
Presenters
Controllers
Compositor
Timed Behavior Interaction Data Management
Players Ul Objects Object Store
Media Players Input Devices Collections
Animation Events
Transitions
Clocks

Language & Support
System Services
Object System Kernal
Primitives

Figure 2-1: Interplay of components in ScriptX development framework

Figure 2-1 is a simplified overview of the development framework that groups
key components in the architecture in two ways:

¢ By the roles they play in the design and implementation of ScriptX
applications

21

ScriptX Components Guide

¢ By their interrelatedness in performing those roles

From the bottom up, Figure 2-1 organizes the components of the ScriptX
development framework into these natural groupings:

¢ Language facilities, the foundation of every application in ScriptX, and even
of ScriptX itself

¢ Graphics facilities, the geometric shapes and text of applications
* Animation facilities, for adding time-based actions to applications
¢ Interaction facilities, for involving users in applications

¢ Data management facilities, for storing, retrieving, and organizing
application data and for managing run-time memory usage

e Simulation and composition facilities, for defining a model simulation and
presenting that model in ways that users can see and manipulate

* Display management facilities which define the visual presentation and
interaction of applications

¢ Title management facilities, for creating and managing ScriptX titles

This way of thinking about ScriptX is task-oriented and emphasizes the
dynamic nature of ScriptX. The examples that follow discuss the ScriptX
development framework in terms of this organization.

Note, however, that this diagram is a simplification and does not provide a
detailed view of every ScriptX component. The architecture is actually more
complex than this diagram allows. For a more complete picture of the ScriptX
system, see “Graphic Overview” on page v.

Modular Compositions

22

As introduced in Chapter 1, a modular composition is a collection of
independent well-defined structures that provide alternatives for organizing
and interacting with multimedia objects. Modular compositions encompass a
wide range of user experiences, including conversational and constructive
interactions. Interactive shopping catalogs, multimedia periodicals and
reference books, tutorials and self-help guides are all flavors of modular
compositions.

Figure 2-2 looks at a modular publication in its most general form. It groups
the ScriptX components used to implement the modular composition into five
primary categories:

¢ The language and support facilities provide the overall foundation of
ScriptX—its object-oriented programming model. Developers can define
intelligent, active ScriptX objects with context-sensitive behaviors that can
be dynamically assimilated into a run-time environment. The object model
pervades every component of ScriptX.

¢ The data management facilities are those ScriptX components that provide
ways of organizing, partitioning, and storing ScriptX objects so that they can
be easily abstracted and manipulated. The Collections component and the

Approaching ScriptX

storage capabilities of the Title Management component work together to
provide a full range of persistent data structures that can be searched,
iterated over, and operated on as a unit. The Memory Management
component defines mechanisms for pulling saved objects from a file into
memory and freeing them when done.

* The search-and-query facilities, available through the Collection and Text
components, provide the interfaces for locating specific items in the
multimedia database.

¢ The display management facilities represent the metaphor-based classes and
scripts for presenting multimedia information in a unified form that users
can easily navigate. The ScriptX Document Templates component offers a
familiar metaphor for interacting with multimedia. The Spaces, Presenters,
and Controller components provide the building blocks for developers to
define new metaphors more natural to their title’s needs.

e The interaction facilities provide the means for users to directly manipulate
objects within a presentation. Facilities from the User Interface component
provide control mechanisms that are sensitive to user input events, such as
mouse moves and key presses. Developers use the Presenters, Controllers,
and 2D Graphics components to add their own look-and-feel to these
widgets. The Input Devices and Events components encapsulate the
underlying hardware to communicate user-level activity throughout
ScriptX.

To pull the pieces of the modular publication together into an integrated
whole, developers must provide a navigation path for users to experience the
composition. Figure 2-2 illustrates the dynamic structure of a possible modular
publication. The double-stemmed arrow indicates a possible navigation path.
The “data flow” paths indicate the movement of objects across facilities using
built-in and specialized ScriptX operations. The “process flow” indicates the
exchange of program control that occurs during the data query and retrieval
protocol.

23

ScriptX Components Guide

Language Facilities Interaction Facilities
Abstractions of Selections
Fundamental Conceptsin
the Composition o (@)
@)
@) o
0 o A A
9) @) : :
User ceseccsessssenest ot liiiiesesesssscns
Navigation
Y Path
Display Management and Composition Facilities
Data Management H
Facilities Y

Multimedia Database

S
r

Query \L

=P Navigation Path

24

Search and Query Facilities

—>> Process Flow ------3= Data Flow

Figure 2-2: A generalization of a modular composition

To understand further how ScriptX components interact in a modular
composition, consider the following hypothetical situation. Assume you were
implementing an interactive shopping title that would allow users to browse
through mail-order catalogs from leading clothes manufacturers, select
accessories from other sources, and mix and match the pieces to create
complete ensembles for purchase.

The objects of interest in this composition are all types of clothes that a user
might expect to find in such a catalog—dresses, suits, slacks, shirts, blouses,
shoes, ties, purses, and belts. These objects could be called the essential content
objects of the composition. The first task of the developer is to define a rich set
of behaviors and portrayals for these objects so that users’ interactions with
them are interesting.

Language Facilities of Modular Compositions

ScriptX provides an object definition framework that is broad enough for
content objects to have many different portrayals and behaviors in a modular
composition. As the user’s experience changes in the composition, so can the
action and appearance of the content objects.

A key feature of ScriptX is its ability to separate an object’s structure from its
presentation. Developers can model an object directly and present it in
different forms. In ScriptX, objects called presenters are responsible for

Approaching ScriptX

translating the abstract definitions of content objects into forms users can see
and hear. An object can define multiple portrayals —pictures, movies, line
drawings—for different presentation contexts. And it can embody different
behaviors that change with the presentation. The richer the object definition,
the more alternatives for users to experience. For more information about
presenters, see the chapter “Spaces and Presenters.”

In contrast, objects in existing authoring environments have a fixed universe of
behaviors and portrayals. Authors have no way of creating different
abstractions from what is prepackaged with the system. Authors can simulate
more complex behavior, but they cannot directly model this behavior as in
ScriptX.

Subclassing and inheritance provide other avenues for integrating complex
behavior into a composition. Developers can modularize the behavior and
appearance of ScriptX objects across several classes, and then specialize these
behaviors and portrayals through subclassing or combine them through
multiple inheritance.

Examining how users want to use content objects provides some clues about
what information they might contain. For example, users might want to select
clothes by retailer, such as Saks Fifth Avenue or Macy’s. Some might want to
shop by designer—DKNY or Calvin Klein. Some might be more interested in
looking at clothes by category, such as casual, work clothes, or evening wear.
Some might want to shop for clothes of a particular complimentary color or
price range, or match shoes and accessories to an existing outfit. Figure 2-3
show how these influences can be reflected in an object definition. Content
objects can define many ways of selecting and organizing the information.

ScriptX Object

name(]

selectable properties[]

« retailer]

« designer[]

« category[]

* color[]

 price]

small and large portrayals[]
context-specific behaviors[]
general behavior[]

display methods[]

update methods

Figure 2-3: The richer the object definition, the more user alternatives

Data Management Facilities of Modular Compositions

All built-in ScriptX classes transparently incorporate persistence through the
storage part of the ScriptX Title Management component. Persistence means
that objects defined in ScriptX can remain available for a title’s use across
multiple sessions of ScriptX. The storage mechanism provides for bringing
objects into memory from disk when needed, and purged from memory when

25

ScriptX Components Guide

26

done. Whenever a collection is stored, all the objects within it automatically
become persistent, though optimal storage solutions are left to authors and
developers. See the chapter “Title Management” for more information.

The Memory Management component provides facilities for measuring,
monitoring, and calibrating memory usage. By using memory management
operations in conjunction with the storage operations defined by the Title
Management component, you can manage the run-time load of the title to
optimize performance. See the chapter “Memory Management” for more
information.

While persistence provides one ingredient of data access organization in
ScriptX, the developer plays a large role in selecting the right data structures
for different situations, and in managing the comings and goings of objects in
memory. To define efficient means of storing and managing content objects,
developers must consider their possible uses, including future uses. The
ScriptX Collections component provides a broad range of built-in data
structures: arrays, linked lists, hash tables, B-trees, fixed-size sequences, and
byte strings. The section “Which Collection Should I Use?” in the chapter
“Collections” discusses ways of selecting the most appropriate data structure.

All of the built-in collection classes in ScriptX have direct mechanisms for
gaining access to the elements they contain—methods such as chooseOne and
chooseAl | . Developers can hand-craft their search operations by supplying
matching functions for their particular needs.

User Selection Criteria

Search Capability S 7

Hides structure of
underlying data

Collections

Collections of

Objects 1 1

Storage Container

Persistent Objects]]

Figure 2-4: The interaction of components involved in object storage

To understand how these ScriptX components organize data access and
storage, consider our interactive shopping example.

Approaching ScriptX

The ScriptX objects presented by this example define many selectable
properties. Users can view clothing by retailer, by designer, by category, or by
color—or through a combination of categories. These user choices translate
into search criteria for locating the relevant objects in the database, by use of
methods such as chooseOne.

Search-and-Query Facilities of Modular Compositions

The User Interface component in ScriptX allows a developer to display a
selection of text choices to a user, using objects such as pop-up menus,
pushbuttons, or scrolling lists. Developers can specialize all User Interface
widgets for custom use appropriate to a title.

The text choices that a user makes from the top-level interfaces constitute the
selection criteria for locating an object or group of objects in the content
database. Each built-in ScriptX collection has its own methods for navigating,
appropriating, and updating its data.

Text searching is divided into two categories:

¢ Parsing (searching for the nth word, sentence, or paragraph). Parsing is
done by the global function f i ndNt hCont ext . A special feature of this
function is that you can specify any character as a delimiter and search for
the nth word, sentence, or paragraph bounded by that delimiter.

* Matching (searching for a match to a given string). The global function
sear chl ndex searches for a match very efficiently because any text to be
searched has been previously indexed, and the function searches the index
rather than the text itself. An instance of the class St ri ngl ndex provides
the index by automatically generating a signature index for the text
supplied to its st ri ng instance variable. There is no limit to the size of the
text to be indexed.

Figure 2-5 looks at the search-and-query facilities using the interactive
shopping example:

27

ScriptX Components Guide

28

User Selections

——) | Color vi—} Price V¥

Ties I <$10
User Interface Wallets | | < $30
[N
.

> function shoeFunc shoe dumy ->
((shoe. col or = blue) and (shoe.price < 50)

> chooseAl | shoeCol | ecti on shoeFunc undefi ned)

Search expression

> result
Compiled search
Command
Blue Shoes Under $50 |o__bieE|D|°:k|“§|e|:|
. |
M'\%'V\M filter [|
I I |
Blue Shoes |:| |:| |:| I:I |:|

I | iter

Shoe Selection

filter CIC 11010
I I I [
[.

Figure 2-5: A typical ScriptX search-and-query operation

Suppose users can choose to search for shoes or accessories from a menu,
which might cause a panel of buttons to appear. These buttons narrow the
search by color and price, or a combination of the two if both buttons are
pressed. The color button brings up a color palette, while the price button
brings up a menu of price ranges.

A user on a budget trying to find shoes to match a particular outfit would first
select the shoes category from the main menu, then push the col or and

pri ce buttons, and finally click the right shade in the color palette and the
appropriate price category. The expression for executing those choices might be
something like this:

function shoeFunc shoe dummy ->
((shoe.color = blue) and (shoe.price < 50))

chooseAl | shoeCol | ecti on shoeFunc undefi ned

This expression defines the context—shoe—and the criteria—blue color and
moderate price—for the search.

Approaching ScriptX

Once the search for a match begins, the shoe objects are returned in the form of
a selection, which is filtered on the basis of both color and price.

For detailed information on searching, see the “Text and Fonts” and
“Collections” chapters.

Display and Composition Facilities of Modular Compositions

Having a rich assortment of well-defined objects is only interesting if there is
some way for users to experience them. ScriptX provides display management
facilities for presenting multimedia data to users in easy-to-navigate formats
based on some common multimedia authoring metaphors. It also has
composition facilities for creating new formats and metaphors that are more
closely attuned to the experience an author wishes to project.

As Figure 2-6 shows the hypothetical interactive shopping example displays
information to users in three separate formats:

* As pages from a catalog, which can be organized by retailer, designer, or
clothes category (casual, work clothes, evening wear)

e As index cards that display shoes and accessories and can be organized by
color and price

* As a virtual dressing room that shows how user selections work together as
an outfit

29

ScriptX Components Guide

30

Multiple Formats for Experiencing Content Objects

Document Templates Stacks and Cards Author Defined[]

&
L/

Spaces, Presenters, Controllers

N/

2D Graphics, Text and Fonts, Ul Objects

4

Multimedia Database

Figure 2-6: Interaction of display management and composition facilities

The Document Templates component is the basis for the first of these formats,
the catalog pages. Document templates use a book metaphor to orient users to
the interaction. There are four principal structuring mechanisms:

¢ The data, which has an intrinsic structure, such as text divided into
chapters, paragraphs, and sentences

* A page for storing specific data, much like a single page in a paper
document

¢ Page templates, page layers, and page elements, which collectively define
how data is laid out and displayed

e Documents, which organize a sequence of pages

A document contains references to the raw data that it presents and provides
built-in facilities for querying and searching that data.

Developers can specialize the behavior of document templates as necessary.
For example, the interactive shopping title would define multiple page objects,
each presenting the data in a unique graphical layout. To make the layout more
exciting, the pages might embed animations, using facilities from the Players
and Animations components, or incorporate graphical elements from the 2D
Graphics component. It could include pop-up menus or other widgets from the

Approaching ScriptX

User Interface component, to aid in user selection and navigation. Yet the base
functionality of document templates is sufficient to implement a catalog
without specialization.

See the chapter “Document Templates” for more information about the
Document Templates component.

The final interaction in the catalog example—the virtual dressing room—Ilets
users construct their own experience of the catalog data. They can select a pair
of pants from one catalog, a shirt from another, shoes from one index card, and
a tie from another, and then bring them together in an uncluttered virtual
dressing room to see how the pieces look as an outfit. To support this
constructive experience requires a context for organizing the information, ways
of manipulating the information, and mechanisms for displaying the
information. The ScriptX Spaces, Presenters, and Controllers components
define the composition facilities for implementing this experience. The section
“Virtual Spaces” on page 33 provides more complete information about
creating new authoring metaphors with ScriptX.

One important aspect of implementing the virtual dressing room would be
scaling all the different clothes items to the proper relative size. For example, a
skirt on a catalog page might appear in a 2x3” photo, while shoes on a card
might appear in a 3x2” photo. Size in these contexts is relative to the page or
card. When put together in the dressing room, however, these images would be
disproportionate. In this case, the different objects should be sized relative to
each other. Authors can build in this type of scaling as part of the class
definition for the space. The space would pass this information on to the
presenters, who would provide mechanisms for tailoring their graphic
representations of the objects to correspond to the coordinated view of the
outfit. Controllers assigned to the space could allow users to move the objects
around and change the viewing perspective.

All metaphor-based interfaces—whether built-in or scripted—are implemented
through the composition facilities of the Spaces, Presenters, and Controllers
components. The metaphors simply impose a fixed interface structure above
these elements, using graphics, text, and user-interface widgets provided by
the 2D Graphics, Text and Fonts, and User Interface components.

User Interaction Facilities of Modular Compositions

The user interaction facilities include input devices, controllers, presenters, and
events. They let users manipulate content objects directly, which in turn control
the underlying model.

ScriptX offers many built-in ways to present selection choices to a user, such as
pop-up menus, pushbuttons, or scrolling lists. Developers are expected to add
their own look (using the Presenter and 2D Graphics components) and feel
(using the Controller component). While default controllers exist for all User
Interface objects, developers can create interesting new behaviors through
subclassing and specialization. For information about the 2D Graphics and
Presenters components, see the chapters “2D Graphics” and “Spaces and
Presenters” respectively.

31

ScriptX Components Guide

32

User Interface objects let users control which content objects they experience in
a composition. The actual selection process is communicated to the system

through the mouse and keyboard, defined by the Input Devices component, in
conjunction with the ScriptX event system, defined by the Events component.

The default controllers for all User Interface objects hide the operation of input
devices and events, so developers who use these built-in facilities from ScriptX
need not concern themselves with them. The chapters “User Interface” and
“Controllers” describe high-level features provided by ScriptX for user
interaction, while the chapter “Events and Input Devices” covers the
implementation details of these features.

Figure 2-7 shows how the interaction facilities apply to the shopping example:

Input Devices

Virtual input devices to encap- | EREE
sulate underlying hardware t

Controllers (feel)

| |

Presenters, 2D Graphics (look) User Interface

Ties
Wallets

User
Selections

Events

ScriptX System

Figure 2-7: User interaction—direct and programmatic manipulation of data

Approaching ScriptX

Virtual Spaces

The previous part of this chapter described Modular Compositions. Another
kind of title design is Virtual Spaces.

A key goal of ScriptX is to provide the foundation for developers to create new
ways of organizing information to closely reflect the activity at hand. Unlike
today’s metaphor-based authoring frameworks, ScriptX provides
simulation-based building blocks that let developers have real models behind
their scenes, instead of being essentially a movie with a few twists. These
building blocks underlie the concept of virtual spaces.

In its simplest form, a ScriptX space is an empty collection with an associated
clock, and a list of controllers. As you add objects to the space, they can be
controlled by the controllers, whose rate can be controlled by the clock. The
controllers can move the objects, allow them to respond to user interaction, or
whatever. The developer can define criteria which determine what kinds of
objects are allowed into that space, and what happens to them when they enter
and leave.

A virtual space is an imaginary environment created from a ScriptX space,
with a well-defined geometry and physics, that users can view and interact
with. A virtual space might have a real-world counterpart, such as a
department store dressing room, or it might represent some chimerical area,
such as a distant planet in a fantastic galaxy. In any case, the fixed geometry of
the environment lets users intuit how to navigate the area on their own.
Likewise, the physics of the virtual space dictates how its objects will respond
to forces within the environment, both those defined by the space and those
imposed by users.

Virtual spaces need not be sophisticated models of a world. In fact, their
geometry and physics can be very crudely implemented. The department store
dressing room, for example, can be a simple two-dimensional space whose
objects do not directly interact but simply scale proportionately to each other.
Regardless of the complexity of the space, it provides users with reference
points for understanding the range of interactions available to them.

Metaphor-based authoring systems, such as the document templates described
in the preceding modular composition example, are information driven. While
they might be dynamically constructed as the title runs and contain embedded
movies or other time-based animations, their overall composition is static. In a
virtual space, however, the unfolding of events need not be directly under user
control; that is, events can change over time. The simulation can have its own
sense of time that is independent of any specific presentation on a particular
platform.

Figure 2-8 shows a general form of a virtual space. The term model in the
figure means the imaginary world represented by our virtual space. The model
is separate from the presentation that users see, as Figure 2-8 indicates.

33

ScriptX Components Guide

34

Animation Facilities Composition Facilities Interaction Facilities

Controlling the View

= © ©

Presenting the Model

Controlling the Model @

Simulated Environment User's View

Figure 2-8: A generalization of a virtual space

A model is a group of objects within a virtual environment that interact with
each other and with users according to some well-defined geometry and
physics. Objects in the model are known as model objects.

The prime example of a virtual space consists of a three-dimensional
simulation. Special model objects act as “cameras” that translate the simulation
into a form the user can experience. Cameras are implemented through two
different objects:

e Camera model objects that participate in the simulation

e Camera presenter objects that portray their views to users in the
presentation

The cameras generate view projections to provide a three-dimensional feel to
the experience, even though the users’ view is a two-dimensional
approximation of the model, constrained by the limitations of their output
screen.

The model objects themselves obey certain “natural laws” of behavior defined
by the virtual space. Controllers within the model cause objects to behave in
the expected ways as a result of causal events that occur internally to the
simulation, as well as those imposed externally by users.

Figure 2-8 groups the ScriptX facilities used to implement virtual spaces into
three main categories.

¢ Simulation facilities define the structure and behavior of the model and the
objects within it. The Spaces, Controllers, and Clock components provide
the building blocks for defining the model and determining how objects
within it interact over time.

¢ The model comes to life when presented to the user dynamically through
the composition facilities—the interaction of the Spaces, Presenters,
Controller, and Compositor components. Spaces not only organize the
model but provide a basis for viewing it. Presenters translate the abstract
simulation into an externally visible and audible form, and controllers let
users manipulate both the simulation, and their view of it. The compositor
ensures that all composition takes places smoothly on the output devices.

Approaching ScriptX

¢ The interaction facilities let users experience the model through the views
presented to them. Using 2D Graphics component transformations,
developers can specialize User Interface component classes to control the
simulation through the presented views and, potentially, to modify the
views or the action as events unfold.

To understand how a virtual space works, consider the following example.
Your title lets earthbound users explore the surface of a distant moon. A robotic
all-terrain vehicle, equipped with a movable camera eye, serves as their
exploratory capsule. Users can travel across the moon’s surface by driving the
vehicle across the virtual plains, valleys, and mountains or through the
imaginary seas. They can change their camera angle to get different views.
Should they spot anything that requires closer inspection, they can zoom in on
it. They can even operate a mechanical arm of the vehicle to collect a specimen.

The first task of the developer is to create an interesting simulated world that
represents this new moon.

Modeling Facilities of Virtual Spaces

The modeling facilities are those ScriptX components that help you define an
underlying model that can be viewed from different perspectives. A model can
have a timeline, a coordinate system, and equations to determine how
parameters interact. An example would be a simulation of a physical system,
such as a heat exchange between a flame and a beaker of water.

In the most simplistic view, the model consists of these pieces:

* The unseen, underlying space that holds the model itself and has a clock
and coordinate system

¢ The objects that populate the model

¢ Controllers that implement the physical behaviors of the objects in the
model

e The cameras that live within the model, that present a view of the model to
users

In our example, the model is the three-dimensional surface of the moon and
the atmosphere surrounding it. The model objects are the rocks, hills, valleys,
and seas of the moon, plus any extraterrestrial creatures that populate the
landscape.

The Spaces component provides the facilities for defining the basic model
structure. In most cases, you would mix in behavior from the Collections
component to define the qualifications for validating which objects belong to a
space. You can control the physical interaction of the space through Controller
component facilities. Spaces inherit mechanisms from the Clock component to
tie these interactions together into a continuous sequence of events. The
chapters “Spaces and Presenters” and “Clocks” describe the interplay of these
components.

The camera is our moonwalker, with its camera eye. Like the other model
objects, it is constrained by the physics of the model—the lack of gravity, for
example. Yet unlike the other model objects, it perceives the geometry of the

35

ScriptX Components Guide

36

model in a special way, because it is associated with a special 2D presenter that
lives in the presentation space. The camera presenter can translate what it sees
back to the users viewing the model from their output screen. In addition, the
control of our camera model object might be sensitive to direct user
manipulation, whereas users can experience the other model objects only
indirectly through the view provided by the camera eye.

Often more than one camera will exist in the model, to provide different views
on the simulation. For example, one camera might offer a projective view,
while another might show a top-down radar view. Projective cameras can
supply wire frame views, shaded views, perspective views, or orthogonal
views.

Cameras must understand how to transform the geometry of the simulation
into the different presentation forms that users will see. The 2D Graphics
component provides methods for computing the transformations required to
render the objects in the appropriate size and position. Objects from the
Presenter component can be used to compute and form the apparent views and
adjust the sizes and positions accordingly. The chapter “2D Graphics”
describes the 2D Graphics component, while the Presenter component is part
of the “Spaces and Presenters” chapter.

A developer has a lot of latitude in defining a virtual space. The following
questions are the most fundamental:

e [s the virtual space a realistic simulation that immerses the user in a
different world, or a simplistic simulation intended to provide an intuitive
way of navigating the model?

e [s the geometry Euclidean (corresponding to our idea of the world) or
non-Euclidean (mazelike geometries, or independent geometries connected
through some hyperspace)?

¢ Are the physical interactions predictable (again, corresponding to our
common expectations) or magical?

e How does the user experience the space? Are the cameras passive viewers,
or do they directly represent the user in the simulation?

e [s there an avatar, separate from a camera, that represents the user in the
model?

e With respect to the camera, how many views are possible? What controls
will the user have over the views, and what constraints limit the views in
certain situations?

Composition Facilities of Virtual Spaces

The composition facilities let users see what’s happening in the simulation,
control the view, and, in some cases, influence the sequence of events that
occur in the simulation.

Controllers work in concert with the camera presenters to navigate the model
and manipulate model objects. From a presentation perspective, controllers
map their interactions through the cameras’ external views, which serve as the
user’s points of reference. In some cases, these controllers might also directly

Approaching ScriptX

influence the model objects in the simulation. While the cameras’ views show
what users can manipulate, the kinds of manipulations that are possible are
defined by the model itself. Users might be able to change the location, color,
or other properties of the objects that appear in the presentation via controllers
that propagate those changes back to the model. The camera presenters then
display the modified results.

Users can manipulate both the model objects and the cameras through
controllers. Changes to the objects affect the behavior of the simulation, while
changes to the camera affect the users’ orientation to the space.

In our distant moon title, users can control what they see by manipulating the
moonwalker itself or by panning, tilting, and zooming the camera. Both
activities are transmitted to the space through controllers. In conjunction with
the cameras, the controllers understand what objects should be visible in what
locations, and they choose which objects to affect at the appropriate time. If the
user zooms in for a closer look, the controller informs the camera to recompute
the image, showing a magnified view.

Users can also collect specimens for later study. Controllers remove such
objects from the simulation and propagate the ramifications through the
model. For example, if a user “kicks a stone”, a controller might cause the
stone to catapult into space.

For a complete discussion of the components that drive these interactions, see
the chapters “Spaces and Presenters” and “Controllers.”

Our moon exploration title represents time as a continuous stream of events
that begins at some point within the title and runs forward in time. When the
title is played on hardware, however, our moon space becomes simply bit
locations on a screen and time is metered out by built-in hardware clocks. The
simulation is tied to the underlying hardware clocks through their root
presentation space, which inherits from the Clock component. The Compositor
component coordinates the playback of time-based components with the
overall presentation. It guarantees that the presentation occurs smoothly across
different output devices. The chapter “Clocks” describes the clock-compositor
interaction in complete detail.

User Interaction Facilities of Virtual Spaces

A special set of user input controllers are sensitive to user input events, such as
mouse moves and button presses, and act as mediators between the user and
objects they control. In a virtual space, user control of model objects is
constrained by the current views, as described in the preceding section. Using
2D coordinate space and transformations defined by the 2D Graphics
component, developers can specialize the user input controllers to map
interactions through the cameras” views. See the chapter “2D Graphics” for
more information.

User interface controllers, and the whole notion of user interaction, is
discussed in detail in the section “User Interaction Facilities of Modular
Compositions” on page 31.

37

ScriptX Components Guide

38

P A R T

O

N

Higher-Level Components

Titles and Applications

Tools

Title Management

Space, Presentation and Control

LER Media and Clocks

System Services
Object System

Chapter 3: Spaces and Presenters

Chapter 4: Controllers

Chapter 5: User Interface

Chapter 6: Clocks

Chapter 7: Players

Chapter 8: Media Players

Chapter 9: Animation

Chapter 10: Transitions

Chapter 11: 2D Graphics

Chapter 12: Text and Fonts

Chapter 13: Document Templates

Chapter 14: Printing

Chapter 15: Title Management

CHAWPTER

Spaces and
Presenters

ScriptX Components Guide

42

Spaces and Presenters

The Spaces and Presenters component provides the object modeling and
viewing facility for ScriptX. You can model any kind of system in a title and
display it to the user using this component. This model could be a simple slide
presentation, a complex interactive simulation, a virtual space, a media
database retrieval system, or any other model a title needs. The model can be
constructed apart from any presentation, perhaps in its own space, and
displayed through one or more separate presentation spaces, or views.

This chapter describes modeling, as implemented in the Space class, and
presentation, as implemented by Pr esent er and its subclasses. It also
describes the TwoDConposi t or class, which manages the drawing of
presenters to a display surface.

Spaces and presenters use features defined in a number of other ScriptX
components. Collections provide for multiple objects in a model or
presentation, and define the behavior used to add objects to and access objects
in a space. Clocks and Players define the timing behavior available to objects in
a space. The 2D Graphics component provides the fundamental coordinate
system, imaging model and display surface for a 2D space.

Three other components allow the user to manipulate, change and monitor the
model. The Controller component can apply a behavior to many objects—the
“laws” or rules of that space. The User Interface component provides a
standard set of user input controllers and presenters that allow users to
directly manipulate objects in a 2D space and thereby interact with objects in
either the model or 2D space. This component has built-in event-handling to
accept mouse events. Similarly, the Text and Font component provides the
presentation of text and event-handling to accept keyboard events.

Classes and Inheritance

The class inheritance hierarchy for the Spaces and Presenters component is
shown in the following figure.

43

ScriptX Components Guide

44

RootObject RootObject

Presenter

IndirectCollection

TwoDPresenter

TwoDMultiPresenter

TwoDShape
TwoDSpace SequenceCursor
L PushButton CostumedPresenter ArrayList
PagelLayer
Printer — ScrollBar OneOfNPresenter

Window — PageTemplate

—DigitalVideoPlayer

FullScreenWindow GroupPresenter —TransitionPlayer

MoviePlayer —ScrollingPresenter

GroupSpace
P>p —ScrollBar

RootObject —TextPresenter

—Page
TwoDCompositor

—PageElement

The following classes form the Spaces and Presenters component. In this list,
indentation indicates inheritance.

Space - a container class for holding objects, with a clock for timing and
controllers to manipulate the objects.

Present er — the root abstract class for objects that display images and live in
presentation spaces.

TwoDPr esent er — the root abstract class for 2D graphic objects that can
display themselves in a 2D space.

TwoDShape - the class of simple 2D geometric and graphic presenters.

Cost unedPr esent er —a 2D presenter that uses another presenter as its
costume, or appearance.

OneOf NPresent er — an ordered list of 2D presenters, only one of which
is shown at a time.

TwoDMul ti Present er — a 2D presentation container of a fixed size that
can display and clip multiple presenters at once. It has no clock or
controllers.

G oupPresent er — a 2D presentation container that groups multiple
presenters together, without clipping.

G oupSpace - a 2D presentation space that groups other 2D
presenters together so that they can be treated as a single object,
without clipping.

TwoDSpace — a 2D presentation space of fixed size that can display
and clip multiple presenters. It also has a clock and keeps a list of
controllers operating on it.

Spaces and Presenters

W ndow — General purpose window that can handle palette, dialog,
and notice windows as special cases.

Ful | Scr eenW ndow — Full-screen non-modal window

TwoDConposi t or — Manages the rendering of 2D presenters to the window’s
display surface

Conceptual Overview

An authoring metaphor is a model of user interaction in a multimedia
presentation that is based upon familiar objects and behaviors from the
everyday world. A bowl of necklace beads is familiar to users. They know from
their real-world experience that they can pick beads from a bowl and arrange
them. A multimedia title could use necklace beads as a metaphor for arranging
objects in a collection, placing objects in sequential order.

Authoring metaphors are the basis on which a user interacts with a title.
ScriptX supports multiple, concurrent authoring metaphors in a title. Some
metaphors encompass a single gesture or activity, such as turning on a switch
or moving a slider control. Others are global in scope, such as turning the
pages of a book or flipping cards in a stack. A metaphor is useful to the extent
that it feels familiar to a user. Chapter , “ScriptX Features,” describes several
authoring metaphors that are the basis for multimedia title design. ScriptX
developers are free to use well-known metaphors, or to create their own.

Any authoring metaphor can be best understood by separating its constituent
objects into three basic functions, or roles: model, presenter and controller. In

the design phase of a title, it’s useful to analyze what role objects play, to more
clearly define them.

Model-Presenter-Controller System

ScriptX titles are based on interaction between three kinds of objects: models,
presenters, and controllers. The Space family of classes provides the
foundation for models. The Pr esent er family of classes provides the
foundation for presentations, or views. The Cont r ol | er family of classes
provides the ability to manipulate objects in space and time.

Any particular object is a model object, a presenter object, a controller object, or
a combination of the three.

Figure 3-1 shows an example of a model-presenter-controller system. The
model space on the left contains model objects that are presented to the user by
objects in the presentation space (on the right). The user manipulates user
interface objects which can affect both the model and its presentation. The
compositors present the objects to the user via the screen and speaker. The 2D
graphic compositor is represented by the TwoDConposi t or class; the audio
compositor is internal only, and has no representation as a ScriptX class.

45

ScriptX Components Guide

User Input

Keyboard Mouse

===

User Interface Controllers

© © © Compositors Output[]

Hardware

2D Graphic[] Screen
Compositor

2D Presenters
VY - — @

Model Space 2D Space

Audio[]
Compositor Speaker

O o)

© = Controller (for example, Gravity or ActuatorController)

® = Presenter (for example, TwoDShape or PushButton)
@ = Audio object (for example, DigitalAudioPlayer)
M o = Model object (for example, a ball or bead)

Figure 3-1: Example of a model-presenter-controller system

This overview describes models, presenters and controllers, assuming a
separation exists between the model and its presentation. The separation of
model object from presenter object is important because it allows for multiple
presentations of an object, and it allows you to work with the presenters as
separate model objects in their own window. For example, separate presenter
objects allow you to move the view around on the screen without moving the
model itself.

In simpler titles with no distinct, underlying model, the presentation is the
model, with the objects in the model serving as both model objects and
presenter objects.

Models

A model is a group of objects within a conceptual framework that interact with
each other and with the user in some well-defined way. When a model is
strictly separated from its presentation, you have the flexibility of creating
multiple views on the same model.

46

Spaces and Presenters

By subclassing the Space class, you can create a class that provides a useful,
though not necessary, container for a model. The Space class is deliberately
abstract, open and flexible. A space can contain and organize the so-called
model objects. It controls which objects are allowed into the model, performs
actions on objects as they enter, and provides a clock and controllers to control
the objects while they are there. Spaces are designed to allow their objects to be
both time-driven and to respond to user events.

Models are more general than spaces. A model does not have to exist in a
space. Time-based models generally reside in spaces, since a space
conveniently provides a clock. Simulations that can map to physical
coordinates can also be modeled in a space. However, a model could be a
completely mathematical abstraction, even with its own clocks, and have no
need to be contained in a space.

Presenters

Presenters are a second kind of object on which any title depends. Presenters
provide the graphic views the user has of the model. A view of a model
contains a set of presenters shown from a certain perspective. A user can view
objects that exist in an underlying model space only when they are represented
by presenters.

For example, in a model that illustrates the principles of thermodynamics, the
image of a thermometer is a presenter object that can graphically represent the
internal, calculated heat of a flame. In another view, a graph is a presenter that
shows the rising temperature over time. Separating a model from its
presentation allows creating such multiple views on the same underlying
model.

The abstract class Pr esent er is the root class for all presenters.

TwoDPr esent er, its direct subclass, provides the structure for drawing to a
two-dimensional surface, such as a display monitor or a printed page. The
Di gi tal Audi oPl ayer class, which is outside of the Present er family of
classes, provides for the audio portion of a title.

Objects are made visible to a user in a presentation container; the container can
be an instance of TwoDMul t i Present er or any of its subclasses, such as
TwoDSpace, W ndow Gr oupSpace, or PagelLayer. User interface objects live
in this container as well, available for the user to act on.

Whether there is an underlying model or not, the presentation container
provides a framework for displaying the visible content of a title as images
from various visual media. Each presenter has its own 2D graphical coordinate
system with its origin relative to the presenter that contains it. Presenters also
define an event handling structure that enables a user to interact with the title.

Controllers

Controllers can define standard behavior for a group of objects in three ways:
they define the behavior of objects over time, they monitor objects, and they
respond to user events. Controllers provide a uniform way of enforcing the
same behavior on a group of objects. The Cont r ol | er class is the abstract

a7

ScriptX Components Guide

48

representation of all controllers, and has a subclass TwoDCont r ol | er for
operating on objects in 2D spaces. The three ways in which controllers manage
other objects are elaborated here:

¢ Controllers can define time-driven behavior governing objects within a
space. Time-based controllers, also called “ticklish” controllers, implement a
method for t i ckl e, which is called once with each tick of the space’s clock.
The ti ckl e method implements time-based behavior as some periodic
action that is performed at each tick of the clock. For example,
| nt er pol at or, a subclass of TwoDCont r ol | er, can cause objects to move
within the space by moving them incremental distances, calculated at rapid
intervals. See “The Ticklish Protocol” on page 106 in Chapter 4,
“Controllers” for more information on time-based controllers.

e Controllers can also monitor a model. For example, a controller could
monitor the distance between objects and performing some operation based
on proximity for collision detection or magnetic repulsion. Controllers that
monitor objects also implement a t i ckl e method. Bounce is such a
controller—it watches for an intersection between a projectile and the walls
of a container, and when they intersect, it changes the projectile’s direction.

e Controllers can respond to user input. Certain kinds of events, such as
mouse clicks, mouse movements, and keyboard presses, originate with the
user. Controllers make the objects being controlled, such as buttons and
menus, respond to these events. For example, an Act uat or Control | er
object waits for mouse events. When the user presses the mouse over an
actuator (button) it is controlling, it calls pr ess on that actuator. See the
“User Interface” chapter for more information on how user interface
controllers operate on model objects in a space.

Controllers require a space in which to operate—they cannot operate on objects
outside a space. Thus, a model that embodies some set of behavior or natural
laws that all model objects must obey is best implemented in a space. Each
time there is a change of state that drives activity in the space—the clock ticks,
the user presses a mouse button—the controller acts on every object it controls
within the space. See Chapter 4, “Controllers” for more details on how
controllers operate on model objects within a space.

The next two sections—“How Spaces Work for Modeling” and “How
Presenters Work”—describe modeling and presentation as separate,
independent aspects of design.

How Spaces Work for Modeling

A space is an environment with a clock where objects live, interact, and can be
controlled and presented to the user. Spaces are very common in titles—
examples include simulation spaces, cards and stacks, timeline spaces, catalog
databases, and maps.

Spaces are a fundamental component of ScriptX titles, and are used in both
modeling (with Space) and presentation (with TwoDSpace). This section
describes how spaces are used for modeling.

Spaces and Presenters

The Space Class

The Space class represents a container in which objects can interact with each
other and indirectly with the user. The concept of space is part of what gives
ScriptX its flexibility and extensibility as an authoring environment.

The Space class is an abstract class, so any utility is derived by creating a
subclass of it. The Space class by itself is not a collection—it must be mixed in
with a collection so it can hold multiple objects. Subclasses of Space rely on
being mixed in with | ndi r ect Col | ecti on (or one of its subclasses). The

I ndi rect Col | ecti on class is quite flexible in that it can represent any
collection class, through delegation. When you create an instance of the space,
you can select the type of collection most appropriate for the model you are
constructing, as the target collection. Throughout this chapter, the term “space”
(all lowercase) means an instance of a subclass of the Space class, and so is
assumed to be a collection.

You create a space by first subclassing the Space class, mixing in
I ndi rect Col | ecti on, and defining its methods and instance variables. To
create a new class called Model Space:

cl ass Model Space (Space, I ndirectColl ection)
-- define nethods and instance vari abl es
end

To create an instance of this space, you would call new on it, optionally
specifying t ar get Col | ecti on and scal e, such as:

nySpace := new Mdel Space target Col | ection: (new HashTabl e) scal e: 20

This statement creates both a space and a clock, as shown in Figure 3-2. The
tar get Col | ecti on determines what kind of collection nySpace is, and the
scal e determines the resolution of the space’s clock. The clock’s rate is
initially 1. The t ar get Col | ect i on keyword is required for direct subclasses
of Space.

g? Space’s clock

Space

Figure 3-2: Every space that is created has a clock attached to it.

Do not specify t ar get Col | ect i on if the subclass inherits from

TwoDMul ti Present er (or any of its subclasses, such as TwoDSpace,

G oupSpace, W ndow or PagelLayer), unless you have some good reason to
need a different collection data structure. By default, these multi-presenters use
an array as their target collection. Performance could suffer if you set the
target Col | ecti on to something other than the default.

49

ScriptX Components Guide

50

However, when creating an instance of any other subclass of Space that is
strictly a model and not a presentation space (one that does not inherit from
TwoDMul t i Present er), choose whatever t ar get Col | ecti on is most
appropriate for the model you are creating. This collection does not need to be
traversed for drawing or handling events.

The State of a Space

A space has a state represented by four characteristics: members, protocols,
controllers, and a clock, as shown in Figure 3-3:

e members — A space is first and foremost a collection of objects, or members.
Members are objects added to a space.

* protocols — Protocols are used to determine eligibility for membership in a
space. These are kept in the space’s pr ot ocol s instance variable.

e controllers — Controllers define the standard behavior, or natural laws,
governing some or all members of the space. These are kept in the space’s
control | ers instance variable.

¢ clock — A space’s clock drives the model. At each tick, the clock gives a slice
of time to every controller that implements a method for t i ckl e, allowing
the controller to perform some periodic action on its target objects. The
space’s clock is kept in its cl ock instance variable.

mySpace
Instance Variables: Protocols Controllers
clock myClock
controllers S myGravity
protocol ° TwoDPresenter myBounce
Members: Projectile
mySpace[1] myPlayer

mySpace[2] | rewindButton
mySpace[3] | stopButton
mySpace[4] | playButton

Figure 3-3: An instance of a subclass of Space

Protocols

A general description of protocols is included in the “Information Common to
All Classes” chapter of the ScriptX Class Reference.

As implemented in ScriptX, every class represents a protocol. The Space class
defines a pr ot ocol s instance variable, which is a list of classes that you
specify. This list forms the necessary protocols for objects to be added to the
space, and you can add or remove classes from this list to raise or lower the
admissions requirements to the space. This list allows the space to restrict its
membership and allow in only objects created from certain classes. The space
uses | SAKI ndOf to test if the candidate has all protocol classes among its
superclasses before it is admitted to the space. If the candidate does not match
all protocols, it is rejected. Testing against this list is the current means of
protocol-checking in ScriptX (future versions may develop other means).

Spaces and Presenters

For example, if the space were controlling a physical simulation, you might
allow in only objects that were projectiles. You would do this by adding the
Proj ecti| e class to the protocols list. If you further restrict the members to
be 2D presenters, you would also add TwoDPr esent er to the protocols list. In
this case an object would have to be both a projectile and a 2D presenter in
order to be added to the space. You can change these rules for membership at
any time by adding or removing classes from the pr ot ocol s list.

The pr ot ocol s instance variable holds an instance of Ar r ay; therefore, to
add or remove classes from the pr ot ocol s instance variable, use the methods
from Ar r ay. For example, the following code adds the Proj ecti | e class to
the pr ot ocol s instance variable:

append nySpace. protocols Projectile

The order of classes in the pr ot ocol s list doesn’t matter, since an object must
have all classes as its superclasses to be added to the space.

Members of a Space

Add objects to a space just like you would to any collection—using one of the
methods defined by the space’s t ar get Col | ect i on for adding an item to the
collection. These include add, append, pr epend, set One, and so forth.

nySpace := new TwoDSpace
ny@oup := new Q oupPresenter

prepend nySpace nyQ oup

I ndi rect Col | ecti on specializes these methods to call two additional
methods on the space each time an object is added—i sAppr opri at eObj ect
and obj ect Added—as shown in Figure 3-4. Using pr epend as an example,
this flowchart shows the four steps:

1. You call pr epend on the space to add an object.

2. I'ndirect Col | ecti on specializes pr epend and other collection methods
that can add an object to the space to call i sAppropri at eCbj ect, as
implemented by the space, to check that the candidate object conforms to
the protocols for the space. If i sAppropri at eQbj ect returns t r ue, then
the procedure continues.

3. The pr epend method as implemented by the target collection itself is
called. This actually adds the object to the space.

4. The obj ect Added method is called.

The | ndi rect Col | ecti on method obj ect Added iterates over all
controllers listed in the space’s cont r ol | er s instance variable, adding the
object to only those controllers for which the value of whol espace istrue
and whose protocols match. You can specialize obj ect Added to perform any
action you want to occur every time an object is added to the space. For
example, you might center a presenter that is being added in a space, or make
sure that the presenter that is being added is visible, by calling show on it.

51

ScriptX Components Guide

52

The | ndi r ect Col | ect i on method obj ect Renpoved, also shown in

Figure 3-4, is called automatically whenever an object is removed from the
space. This method deletes the object from all controllers. You can specialize
obj ect Renpved to perform any action you want to occur every time an object
is removed from the space.

prepend deleteOne
(in IndirectCollection) (in IndirectCollection)

deleteOne
objectRemoved

Figure 3-4: Methods prepend and deleteOne are specialized in IndirectCollection.

For more general information on the | ndi rect Col | ecti on class, see the
discussion on page 469 of Chapter , “Collections.”

Models and Model Objects

A model is a group of objects within a conceptual framework. A model object is
any object that is a member of that model. Model objects interact with each
other and the user in some well-defined manner.

A model can live in a space, but it doesn’t have to. A space is simply a
convenient and useful container for a model, with a clock and, potentially,
controllers for manipulating the model objects over time. It lets you exclude
certain objects, and possibly modify other objects as they are added, as
described earlier. Each space can be customized to provide an appropriate
environment for its objects, including a coordinate system. This environment
can specify the protocols that an object must have to live in the space.

Most spaces embody some kind of coordinate system by which relationships
between objects can be measured. This can be a 2D or 3D coordinate system, a
timeline, or any other rule by which objects can be measured.

Clocks and Timing

Whenever a space is created, a clock is automatically created for it. This clock
determines the following:

Spaces and Presenters

o At what time clock callbacks execute. A callback executes a function at a
pre-determined time. See the “Clocks” chapter for details about setting up
callbacks.

e How often the Ti ckl i sh controllers act on objects in that space (using the
ti ckl e method). The space schedules the controller callback at every tick
of its clock. When the callback runs, it sequentially invokes the ti ckl e
method on every controller, to perform its periodic action.

In specialized subclasses of Space, the clock can have callbacks that invoke
specialized behavior. For example, where the space is an instance of
TwoDSpace at the top of a presentation hierarchy, the clock has a compositor
callback that determines how frequently the presentation is refreshed.

If a title contains multiple spaces, it will contain multiple clocks—one for each
space. In general, if a space is contained within another space, their clocks
should be synchronized. For presentation spaces, ScriptX does this for you
automatically. For example, if you add presentation space A to another
presentation space B, ScriptX automatically slaves the clock for space B off the
clock for space A, as shown in Figure 3-5. More specifically, when you add a 2D
space to a window, the clock of the 2D space is slaved off the clock of the
window. For a description of the mechanism of how clocks are automatically
slaved, see “Synchronizing Clocks” on page 95.

However, the clocks for non-presentation spaces are not automatically slaved.
This means that if you have a model space to which you add a subspace, you
must set up the master/slave clock relationship yourself.

There are three main benefits to slaving subspace clocks to the top space’s
clock:

* When you slow down, speed up, pause and resume the top space, the other
clocks will follow.

* You can move groups of objects into other spaces and they will still run.

¢ To minimize “temporal aliasing” in a model (described in the section
“Synchronizing Clocks” on page 95).

As shown in Figure 3-5, there may be more than one way to connect clocks,
depending on the needs of the title. The left-hand figure shows a top model
space slaved off the top presentation space. When you stop the presentation,
the model also stops. The right-hand figure shows both top spaces slaved off a
separate title clock, which means you can independently stop either the model
or presentation.

53

ScriptX Components Guide

54

Presentation Clock as the Master Clock Title Clock as the Master Clock
Title Clock Master
Model Space Presentation Space Model Shéce Presemd"'rion Space

Slove {:‘9 .. {:‘9 Master Slave @ @ Slave

Slave {B Slave {:L:} Slave {:L:} Slave {B
I I I I

Subspace Subspace Subspace Subspace

--------------- Dotted lines show master/slave clock relationships

Figure 3-5: Two ways to synchronize the model space and presentation space.

When two clocks have a master-slave relationship, changing the rate of the
parent clock increases or decreases the speed of both clocks. However, the two
clocks can still have different scales and rates—the rate of the master clock
merely acts as a multiplier for the rate of the slave.

Controllers in a Space

Each space maintains a list of controllers that manipulate objects in the space.
To attach a controller to a space, you assign the space to the controller’s space
instance variable. That space in turn automatically adds the controller to its
read-only control | er s instance variable. The space instance variable
determines which space the controller is controlling. It can contain only one
space at a time and thereby ensures that the controller manipulates only one
space at a time.

The following code assigns the space nySpace to the controller
myControl | er, which means that nySpace will then automatically add
myControl | er toits array of controllers:

nyControl | er. space := nySpace

A controller has a whol eSpace instance variable to indicate which objects in a
space are to be controlled by it. If whol eSpace is set to t r ue, the controller
will control all appropriate model objects in the entire space specified by the
controller’s space instance variable. If whol eSpace is set to f al se, the
controller will control only objects which are explicitly added to the controller.
The default value for whol eSpace is f al se.

In addition, when an object is added to a space, if the value of the controller’s
whol eSpace instance variable is t r ue, the space notifies each controller, and
adds the object to the controller only if it is appropriate for that controller. See
the chapter on controllers for information on what makes an object appropriate
for a controller.

Spaces and Presenters

Time-based controllers respond to ticks of the clock by specializing t i ckl e, an
instance method that can be defined by subclasses of Cont r ol | er. Once every
tick of the space’s clock, its periodic callback calls t i ckl e on the space,
causing it to iterate through every one of its controllers that implements a
method for t i ckl e. This allows the controllers to perform some periodic
action on target objects. (Controller actions are always periodic, and they may
also be incremental.)

A controller that needs to be informed or “tickled” each time the clock ticks
should implement a specailization of t i ckl e. Ati ckl e method should run
to completion within a fraction of a tick, since all controllers run once with
every tick. If too much is going on in the model space, so that controllers that
implement t i ckl e cannot finish running before the clock’s next tick, then the
callback skips the next cycle, causing all of the controllers that are attached to
the space to be skipped. Thus, either all controllers attached to the space get
tickled, or none get tickled. (In the same way, the compositor skips if
presentation would start too late.)

When controllers get skipped, it’s up to the particular t i ckl e implementation
as to whether they catch up or not—it could be smart and look at the time of
the space’s clock, or it could be dumb and make the same increment even
when it skips.

Controllers are described in greater detail in the chapter “Controllers.”

How Presenters Work

Presentation is obviously an important part of any title—it is the graphic view
the user has of the model, the stage where a multimedia title and the user meet
and interact. The only way a user can view objects that exist in an underlying
model space is if those objects are represented with presenter objects.

Presenter

While this section uses an example with TwoDPr esent er objects, its main
focus is to describe features that the Pr esent er class provides on its own,
irrespective of TwoDPr esent er.

Perhaps surprisingly, the Present er class does not know anything about
graphics, stencils, brushes, drawing, compositors, display surfaces or
coordinate systems, and has no interest in mouse events. Those are all
functions of TwoDPr esent er. Present er is responsible only for establishing
the presentation hierarchy—it is left up to subclasses to determine what kinds
of objects can be presented and how they are to be presented.

In the current release of ScriptX, Pr esent er has only one direct subclass,
TwoDPr esent er, from which all other presenter subclasses inherit. The
TwoDPr esent er class inherits from and builds on the features of Pr esent er.
In future versions, you might imagine a Thr eeDPr esent er class, also
inheriting from Pr esent er, with its own 3D objects and ways of presenting
them.

55

ScriptX Components Guide

56

Presentation Hierarchy

A complete 2D presentation hierarchy is determined by a top presenter and all
its subpresenters. The Pr esent er class provides a mechanism for establishing
a presentation hierarchy among presented objects in a title. This hierarchy can
be used to determine the order in which the presenters are ordered, accessed,
queried, operated on, and presented. A title can have any number of
presentation hierarchies, as illustrated in the “Title Management” chapter. Each
hierarchy has a window as its top presenter.

An example of a 2D presentation hierarchy is shown in Figure 3-6. This
example has four presenters: instances of W ndow, Movi ePl ayer,

Di gi tal Vi deoPl ayer, and TwoDShape. An instance of W ndow is the top
presenter and contains the other presenters.

A presentation hierarchy is not to be confused with a class inheritance tree. A
presentation hierarchy is an illustration of how presented objects contain other
presented objects.

Top presener

‘ myMoviePlayer ‘ ‘myTwoDShape‘ Subpresenters of Window

A

myVideoPlayer Subpresenter of MoviePlayer

Figure 3-6: A simple presentation hierarchy

A presenter is an instance of a concrete subclass of Pr esent er. Presenters come
in two varieties: ”containers,” which can hold and display other presenters,
and “simple” presenters, which cannot. In general, a container corresponds to
a node of the presentation hierarchy that branches to multiple subpresenters,
while a simple presenter corresponds to a leaf at the end of a branch. (Specific
classes for simple and container presenters are shown in Figure 3-16.)

In the previous example, ny TwoDShape and nyVi deoPl ayer are simple
presenters, while myW ndow and nmyMovi ePl ayer are container presenters—
my W ndow contains myMovi ePl ayer and my TwoDShape, while

nmyMovi ePl ayer contains nyVi deoPl ayer (as well as an instance of the
non-graphic class Di gi t al Audi oPl ayer, not part of the hierarchy).

Simple and container presenters are described further in the section “Simple
Presenters vs. Container Presenters” on page 76 later in this chapter.

Subpresenters

Each presentation hierarchy is made up of a top presenter and any number of
other presenters. The top presenter is always a window. The Pr esent er class
has two instance variables that establish this hierarchy: subpr esent er s and
pr esent edBy.

Spaces and Presenters

Working down the hierarchy, some presenters have so-called subpresenters—a
list of presenters that it presents—held in the subpr esent er s instance
variable. The presenter at the top of a hierarchy (a window) can have any
number of subpresenters, some of them may have subpresenters, and so forth.
Every presenter in a presentation hierarchy is a subpresenter, except for the top
presenter.

Working up the hierarchy, all presenters except the top presenter are contained
within, or presented by, another presenter. This is the presenter that appears
above it in the hierarchy. The pr esent edBy instance variable holds this
presenter. For the top presenter, this value is undef i ned.

While some presenters can have multiple subpresenters, all presenters are
presented by at most one presenter. In other words, while subpr esent ers
can be a list, pr esent edBy is a single value.

Since the subpr esent er s instance variable can hold a list, a presentation
hierarchy can be thought of as lists within lists, nested to any depth. The
previous example is illustrated as lists of lists in Figure 3-6—the top presenter
has two subpresenters, one of which is Movi ePl ayer, which itself has one
subpresenter.

Top presenter Subpresenters
—= [—] === [——]
F myMoviePlayer
myWindow myTwoDShape Y Y myVideoPlayer

Figure 3-7: Subpresenters are lists within lists.

Some subclasses of Pr esent er allow subpresenters, while others do not
because they present only themselves and no other presenters. A presenter
which presents only itself has its subpr esent er s instance variable set to
undef i ned.

An entire presentation hierarchy can be traversed, encountering every one of
its members, by starting at the top and working sequentially downward
through each subpr esent er list. Similarly, starting at any presenter, this
hierarchy can be traversed up to the top presenter using pr esent edBy. This is
one of the fundamental uses of a presentation hierarchy—to provide an orderly
way of visiting every presenter.

The Pr esent er class also has a t ar get instance variable, which can hold a
source object to be presented—either a presenter or a non-presenter object. A
target is not connected directly to the presentation hierarchy, and is
implemented differently by different subclasses.

The Present er class is abstract and does not specify how the presentation
hierarchy is to be used; various subclasses of Pr esent er can implement
different uses. For example, TwoDPr esent er, the root abstract class for the
presentation of all 2D graphics, uses this hierarchy to draw its subpresenters to
a window. In addition, it uses the order of subpresenters to determine the
front-to-back order in which overlapping subpresenters appear. You could
define your own subclass of Pr esent er and give your own meaning to the
presentation hierarchy.

57

ScriptX Components Guide

58

Notice that the Pr esent er class is quite abstract—it specifies only the
presentation hierarchy. The Pr esent er class has no notion of a coordinate
system, no interest in mouse events, and no connection to a display surface
onto which instances can be rendered—these are left to TWoDPr esent er.

TwoDPresenter

The TwoDPr esent er class is the only direct subclass of Pr esent er in the
core classes. The TwoDPr esent er class provides for the display of
two-dimensional objects in ScriptX on 2D graphic devices, such as display
monitors. 2D presenter objects include any of the visual media: text, graphic
shapes, bitmap images, transitions, animation, and video.

A 2D presenter is an instance of a concrete subclass of TwoDPr esent er, and
represents an object that is presented to the user through graphic images.

How the Presentation Hierarchy is Used

The TwoDPr esent er class uses the presentation hierarchy, described
previously, in two specialized ways not encompassed in the Pr esent er class:

e For drawing the presenters in an orderly manner.

The hierarchy organizes the drawing of multiple 2D presenters to a single
display surface attached to a window in a title. This hierarchy provides an
ordered way of calling dr aw on all presenters, ensuring each is presented

exactly once.

The compositor calls dr aw on the top presenter, which in turn calls dr aw on
each successive subpresenter, giving overlapping presenters a front-to-back
visual ordering.

¢ For receiving mouse events. This is described in the Events chapter. When
the user performs a mouse action, the hierarchy enables a search for the
front-most presenter at that location to receive the mouse event.

It is important that a presenter appear only once in the presentation
hierarchy—otherwise, one of the presenters cannot receive events, and time is
wasted drawing the presenter more than once. TwoDMuUl ti Pr esent er and its
subclasses have safeguards to prevent them from containing a presenter more
than once—the obj ect Added method ensures that every time a presenter is
added to a container, the presenter is removed from its previous pr esent edBy
container.

A title can have any number of presentation hierarchies, but needs a window
(display surface) for each one, as shown in Figure 3-8.

Spaces and Presenters

Display Device

s ~

y
‘ ‘/‘> Windows

(. J

Figure 3-8: Every window has its own presentation hierarchy.

Drawing To a Window’s Display Surface

Instances of TwoDPr esent er by themselves are not sufficient for viewing;
they must draw themselves to a display surface in a window, where they are
made visible to the user. TwoDPr esent er defines the generic imaging
function dr aw that the compositor uses to construct image frames by rendering
the presenter to a display surface.

The generic function dr awis central to compositor imaging of all ScriptX
objects. TwoDPr esent er itself does not implement a method for dr aw Each
subclass must implement a dr aw method for any drawing to occur. Every
concrete subclass of TwoDPr esent er should implement its dr aw method in
the manner most efficient for that class. TwoDPr esent er does not manage the
drawing of any of its subpresenters, either—the TwoDMul t i Present er class
specializes TWoDPr esent er to manage subpresenters.

For each presenter in a window, the compositor automatically calls dr aw on
that presenter to tell the presenter to render itself to the window’s display
surface. For more control of on-screen drawing, you can disable the compositor
and explicitly call dr aw so that the presenter is rendered directly to a display
surface. Or, for off-screen drawing, you can call draw on a bitmap surface and
then transfer the off-screen bitmap to a display surface for viewing.

The next section of this chapter describes windows, which act as both a
container space and as the top presenter for the presentation hierarchy. Other
instances of TwoDPr esent er are described later in this chapter. For more
discussion of display surfaces, see Chapter , “2D Graphics.”

Window

Windows are an essential part of any title that has visible objects—all 2D
presenters must be contained in a window to be composited and displayed. A
window is a collection that holds 2D presenters and has a rectangular display
surface on-screen for clipping and displaying them. Every window has a
compositor to orchestrate the drawing of all presenters and a clock for timing.
A window can also have a set of controllers for manipulating objects within it.
The appearance of the window’s title bar and border are defined by the
underlying operating system, as shown in Figure 3-10.

59

ScriptX Components Guide

60

A window object is any instance of the Window family of classes, which
includes W ndow and its specialized subclass, Ful | Scr eenW ndow A
side-by-side comparison of these appears later in this section.

To make an instance of window visible, you create an instance and then call
show on it:

nyWn := new Wndow
show nyWn

The only objects that can be at the top of a presentation hierarchy are instances
of W ndow and its subclasses. When you create a new window, it automatically
creates its own display surface to draw to. A window also automatically
provides a clock to run the 2D compositor. A window is always the top
presenter; in fact, windows cannot be further down in the presentation
hierarchy—they can only be at the top. In other words, you cannot add a
window to another window, as you can with all other presenters. Being at the
top, a window has no parent—that is, its pr esent edBy is undef i ned.

A window forms a rectangular clipping region that allows subpresenters
within its boundary to be displayed, and crops away any parts of
subpresenters outside its boundary.

Any presenters added to the window become its subpresenters. All 2D
presenters are designed to live in windows; this includes user interface objects,
text, video players, 2D shapes and document templates. For further details
about other properties of windows common to 2D space, such as
subpresenters, z-value, clipping, clock, and controllers, refer to “TwoDSpace”
on page 87.

Showing and Hiding a Window

As demonstrated in the previous section, a window’s show method enables the
window’s compositor, sets i sVi si bl e to t r ue, brings the window to the
front, and gives the title and window user focus.

Conversely, the hi de method removes the window from the screen, sets the
window’s hasUser Focus to f al se, gives user focus to the next window
on-screen, disables the window’s compositor, and sets i sVi si bl e to f al se.

hi de nmyWn

A user can also hide a window by clicking in the close box (Macintosh only) or
choosing “Cl ose Tit| e” from the system menu (Macintosh or Windows)—
either way calls hi de on the window. Although people commonly speak of
“closing a window,” these operations call hi de, not cl ose on it (cl ose is a
method for library, title, and accessory containers).

Be sure not to confuse closing a window with closing a title. The Close menu
command closes the title and all its windows. Notice that clicking the close box
is not equivalent to choosing the Close menu command on the File menu.

Spaces and Presenters

The i sVi si bl e instance variable is persistent, which means windows
remember the setting when the title is closed. Therefore, when you open a title,
and then call | oad on a window, it will immediately be displayed if its

i sVi sibleissettotrue—you do not have to also call show on it.

When a window is hidden, it can be garbage collected by dropping all
references to it and making it purgeable—see the section “Freeing a Window
from Memory” in the “Title Management” chapter for details.

Managing Windows in a Title

When a window is added to a title container, it can be managed by that title, or
it can be reassigned to be managed by a different title. Managing windows
includes making sure the windows share user focus with the title, pausing the
compositors for its windows when the title is paused, and closing windows
when the title is closed.

For more on managing a title, see Chapter , “Title Management.” The title
management chapter also describes freeing and saving windows in a title.

Window Subclasses

Windows come in different styles, determined by setting the window’s type
when a window is instantiated. Table 3-1 lists the attributes for each type of
window. A modal window is one that does not allow any action outside the
window until the user hides it—in other words, the user must responds to the
modal window before continuing. Clicking outside a modal window causes a
beep.

The title bar is the horizontal strip along the top of the window, containing a
name. A user moves a window by dragging its title bar.

Note that none of the ScriptX window types uses the underlying operating
system’s scroll bars. To make a window scrollable, you can either add an
instance of Scrol | i ngPresent er to that window, or define your own
scrolling presenter by creating a space and setting up scrollbars to scroll
through that space.

Collection methods are used to add objects to a W ndow object.

Table 3-1: Attributes for the Window family of classes

Type Class Modal? Title Bar Close Box
or Menu?
General W ndow No Yes Yes
Palette W ndow No Yes Yes
Full Screen Ful | Scr eenW ndow No No No
Dialog W ndow Yes Yes No
Notice W ndow Yes No No

61

ScriptX Components Guide

62

The open windows that are managed by a particular title container are listed in
the title container’s wi ndows instance variable. This list is sorted by user
focus—the frontmost window for the title appears first in the list. Conversely,
each window in the list will have its ti t | e instance variable set to the title
container which manages it.

Different types of windows are displayed in different layers, as shown in
Figure 3-9. A palette window always appears in front of a normal window or
full-screen window. A dialog window or notice window always appears in
front of other windows. Within a given layer, windows can appear in either
order, so a notice window can appear either in front of or behind a dialog
window.

Front View Side View Front Middle Rear

Layer Layer Layer

a \% &

or
NoticeWindow

NoticeWindow PaletteWindow Window
DialogWindow FullScreenWindow

Window or
FullScreenWindow

Figure 3-9: Windows are displayed in three different layers.

In Microsoft Windows 3.1, most 2D graphics resources (such as Bi t map,
Brush, Regi on, and W ndow objects) are allocated out of a 64K GDI (Graphics
Device Interface) memory heap. This 64K GDI heap is shared by all Windows
3.1 applications running at any given time. When this heap starts filling up,
many 2D operations in ScriptX will start failing.

The number of ScriptX windows that can be opened at once depends on what
kind of 2D presenter objects you have created in each window and what
portion of the system’s GDI resources are being used by each. It is a good rule
of thumb for a title in Microsoft Windows 3.1 to open at most 5 windows; more
can be opened if they contain simple graphics, fewer if they contain complex
graphics.

Spaces and Presenters

Window Window
HeE==— i = MyTitle
Dialog Window Dialog Window

= MyTitle=—— MyTitle

Notice Window Notice Window

Palette Window Palette Window

=] MyTitle = | MyTitle
Full Screen Window Full Screen Window

Figure 3-10: The appearance of a window is determined by the underlying platform.

63

ScriptX Components Guide

64

Display Surface, Compositor, and Clock

When you create an instance from the W ndow family of classes, a new display
surface, 2D compositor, and clock are automatically created and attached to the
window.

A new display surface is automatically created and connected to the window.
This display surface provides an area of the display screen visible to the user
for the 2D presenters to be drawn to; any presenter drawn to the display
surface is thereby visible to the user. A reference to the display surface is stored
in the di spl aySur f ace instance variable:

nyW ndow. di spl aySurf ace

A new 2D compositor is also created automatically; it orchestrates the drawing
of the presentation hierarchy to the display surface. The window becomes the
top presenter for that 2D compositor. The 2D compositor is held in the
conposi t or instance variable:

nyW ndow. conposi t or

The display surface and 2D compositor are described later in this chapter in
“How Compositors Work” on page 89.

A new clock is automatically created for all spaces, so a window always has a
clock by virtue of being a space. A window’s clock determines the timing for

the compositor and also for any controllers that might be added to the window.
It is held in the cl ock instance variable:

nyW ndow. cl ock

Adding Objects to a Window

In the following example, myW ndow is created as a window with a display
surface of 100 x 100 pixels. It contains a movie player and pushbuttons for
making the movie play or stop, as in Figure 3-11. The movie player and
pushbuttons are subpresenters of the 2D space. (This example assumes you
have previously defined pushbutton presenters myRewi nd, nmy St op, and

nyPl ay.)
nyWndow : = new Wndow boundary: (new Rect x2:100 y2:100)

nyVi deoPl ayer := new Digital Vi deoP ayer \

boundary: (new Rect x2:100 y2:100)
new Pushbutton rel easedPresent er: nyRewi nd
new Pushbutton rel easedPresenter: nyStop
new Pushbutton rel easedPresenter: nyPl ay

rew ndBut t on
st opBut t on
pl ayBut t on

append nyW ndow nyVi deoPl ayer
append nyW ndow rew ndButton
append nyW ndow st opButton
append nyW ndow pl ayButton

show nyW ndow

Spaces and Presenters

Figure 3-11 shows three different views of the same set of objects. The User’s
View is the view the user sees of the instance; the Internal State is a list of the
instance variables and numbers of the window, name (left column) and their
values (right column). The Presentation Hierarchy shows how the presented
objects can contain other presented objects.

User’s View Internal State
myWindow Instance of Window
Instance Variables:
clock myClock
controllers myActuatorController
protocols TwoDPresenter
subpresenters .
Members:
myWindow[1] myMoviePlayer
myWindow[2] rewindButton
myWindow(3] stopButton
myWindow([4] playButton
Subpresenters

Presentation Hierarchy

| myMoviePlayer I | rewindButton l | stopButton l | playButton l

myVideoPlayer

Figure 3-11: Three views of a window.

To do “off-screen” imaging, draw to an instance of Bi t mapSur f ace instead of
Di spl aySur f ace. You could then transfer this image to a display surface.
This technique could be useful when you want to build an image and control
the time at which this image is displayed.

Coordinate Systems

Three different basic coordinate systems exist in a ScriptX display, as shown in
Figure 3-12. For example, when the user clicks the mouse on a presenter, that
point can be returned in the local coordinates of the presenter, the coordinates
of the display surface, or the screen coordinates of the ScriptX Player. For all
three of these, x increases to the right, and y increases downward. These three
coordinate systems have origins located as follows:

e Screen coordinates — origin is located at the upper-left corner of the ScriptX
Player. For the Macintosh, this is always the corner of the screen; however,
for Microsoft Windows and OS/2, the ScriptX Player lives in its own
window that can be made smaller than the screen.

65

ScriptX Components Guide

e Surface coordinates (abbreviation for display surface coordinates) — origin is
located at the upper-left corner of the usable display surface. For all
windows except instances of Ful | Scr eenW ndow this origin is just below
the title bar at the upper-left corner of the window. For instances of
Ful | Scr eenW ndow the origin is the upper-left corner of the display
surface, and the instance variables scr eenCoor ds and sur f aceCoor ds
are identical.

The surface coordinates are used for measuring gl obal Boundary,
gl obal Regi on, and gl obal Transf orm

* Local coordinates — origin is located at the upper-left corner of each 2D
presenter. Also called “presenter coordinates.”

The TwoDPr esent er class has two methods for converting a point between
surface and local coordinates: sur f aceToLocal and | ocal ToSurf ace.

Note that you can hide the menu bar that displays the words File and Edit —
see the Syst emVenuBar class. Doing so on the Macintosh exposes the
previously hidden area behind the menu bar to the user — the rest of the
screen stays as-is.

(0,0) origin of screen coordinates ScriptX Player
File Edit Window

(0,0) origin of surface coordinates Surface

_Fﬁ =—————"Title BarY—————=

(0,0) origin of local coordinates

A“g —— [(60,20) in local coordinates
(160,120) in surface coordinates
(260,220) in screen coordinates

2D Presenter

Figure 3-12: The ScriptX Player with the menu bar showing.

Machine-Specific Screens

In Microsoft Windows and OS/2, the origin of the surface coordinates is
located at the top edge of the system menu bar, but shifts upward when the
system menu bar is hidden. On the Macintosh, the origin remains fixed at the
top of the system menu bar, regardless of whether it is showing or not.

66

Spaces and Presenters

Macintosh Microsoft Windows
KMP smaller than full-screen
s s s s amas b s s s b
File Edlit - "
e File Edit H." 4
- -
- o 15
" e
- o 15
- " "
- o 15
" e
- o 15
- " "
- o 15
" ["
------------------ - o T T T T T T T Ll
------------- Cal i ol o o o R R T T T T T T R ol ol o o ol

Figure 3-13: The Microsoft Windows ScriptX Player has a title bar and is re-sizeable.

Also, in Microsoft Windows, the ScriptX Player itself is located in a movable
window with a title bar, and so can be resized and moved around on the
screen, as shown in Figure 3-13. On this platform, the only way to hide the title
bar is to use an instance of Ful | Scr eenW ndow The Macintosh version of the
ScriptX Player has no title bar.

Properties of 2D Presenters

All 2D presenters have in common the properties described in the following
sections. These properties are implemented as instance variables and include
target,transformboundary, gl obal Boundary, bBox, position,x,y,z,
si ze, wi ndow conposi tor, cl ock, needsTi ckl e, i sTranspar ent,
stationary,and direct.

A 2D Presenter’s Target

In general, the t ar get is the model object that the 2D presenter is providing a
view to. For example, an instance of St ri ng, St ri ngConst ant, or Text is
the target for a Text Present er object, as in Figure 3-14. Instances of these
classes cannot draw themselves—they require a presenter such as

Text Present er to display them.

For TwoDShape, the target is the stencil it is drawing—the oval, rectangle, line,
path, bitmap or region.

In other cases, the t ar get itself is a presenter. For example, the target of
Cost unedPr esent er is a TwoDPr esent er object.

67

ScriptX Components Guide

68

TextPresenter instance

Instance Variables:
target “Hello” e » Hello
height 20
width 50
position 100, 100
fill whiteBrush
stroke blackBrush
presentedBy undefined
subpresenters undefined

Figure 3-14: The target of this Text Pr esent er is an instance of Text .

Not all presenters require a target. The t ar get instance variable is not directly
used by TwoDMul t i Present er, TwoDSpace, or Gr oupSpace—it is available
for use by subclasses. When a target is not needed, t ar get should be set to
undef i ned.

Transform, Position and Size

Each TwoDPr esent er object has a t r ansf or minstance variable that holds a
TwoDMat ri x instance that specifies the presenter’s x-y location and scale. The
2D presenter also has the following instance variables that directly access
values derived from the t r ansf or mmatrix: posi ti on, x, and y. The bBox,
hei ght, and wi dt h instance variables are separate and are not derived from
the t r ansf or mmatrix.

While the transform matrix is capable of rotation for stencils, this operation is
not currently available for 2D presenters. To get this effect, you can create an
instance of TwoDShape and instead rotate its target stencil.

2D presenters use the same basic coordinate system described in the 2D
Graphics component. Every presenter has a local coordinate system with its
own origin (0,0) based on the underlying stencil. If the stencil’s values for x1
and y1 are 0, then the local origin (upper left corner of the presenter) coincides
with the origin, as shown for nySpace in Figure 3-15; otherwise, the stencil’s
upper left corner will be offset from the origin by the stencil’s values for x1
and y 1. The x-axis is positive going to the right and the y-axis is positive going
downward. The unit of measure for 2D presenter coordinate systems is pixels.
As illustrated in Fig. 3-15, the stencil for myMul ti has an x1 value of 3 and a
y1 value of 3, putting the local origin of myMul ti at the point 3,3 in the
coordinate system of nmy Space.

Any presenters in a container are positioned relative to the origin of that
container. For example, the left-hand side of Figure 3-15 shows a 2D space,

my Space, that contains a 2D multipresenter, myMul t i, that holds a rectangle.
(Both the 2D space and 2D multipresenter have x1 and y 1 set to 0.) Notice that
the rectangle is positioned relative to myMil t i, not mySpace. Any
subpresenter of mySpace is positioned relative to the origin of mySpace.
Moving ny Space moves its contents as well.

The right-hand side of the figure shows a 2D space, ny Space, that contains
two rectangles, both of which are positioned relative to mySpace.

Spaces and Presenters

(0,0) mySpace (0,0) mySpace

©.0)

~—— myMulti -<— myRect]

~—1——— myRect ~—1—+— myRect2

Figure 3-15: The local origin of a container is its upper left corner.

Every 2D presenter has an x-y position relative to the origin of the presenter it
is immediately contained in, except windows, which have an x-y position
relative to the origin of the display coordinates. The x-y position is specified by
two instance variables: x and .

The posi ti on instance variable, a Poi nt object representing both x and y, is
a convenient way of accessing both values at the same time. If you were to
move an object by setting first its x value and then its y value, you might see
the object shift twice: first in the x-direction, and then again in the y-direction.
However, by setting the posi ti on instance variable, the object shifts once
diagonally to its proper destination.

The z instance variable specifies the front-to-back position of a 2D presenter,
relative to other overlapping presenters within their parent container. If the 2D
presenter is not contained in an instance of TwoDMul t i Present er or one of
its subclasses, z is ignored.

The bBox instance variable is an abbreviation for “bounding box,” the smallest
rectangle that can fully enclose the presenter. The bBox rectangle is not visible,
but is used in certain operations. The hei ght and wi dt h instance variables
are the dimensions of the 2D presenter’s bounding box.

The boundary is a stencil that describes the perimeter of a presenter. While
bBox is always rectangular, boundary can be non-rectangular, because it can
be any stencil. Each subclass of TwoDPr esent er has its own restrictions on
which shapes are possible. For W ndow and its subclasses, this boundary must
be a rectangle. However, for TwoDMul t i Pr esent er, TwoDSpace, and
TwoDShape, the boundary can be a region or any of the stencils available in
ScriptX, such as a line, oval, rectangle, rounded rectangle, path, or bitmap.

The instance variable gl obal Boundar y contains a rectangle like bBox, except
that its points are specified in surface (window) coordinates. (The presenter’s
global boundary is unrelated to the boundar y instance variable, which is a
stencil.) This rectangle specifies the clip rectangle that is used when drawing to
a surface—only the part of the presenter inside the clip rectangle is drawn.
Likewise, the value of gl obal Tr ansf or mspecifies the transformation matrix
for the 2D presenter. This matrix determines where the 2D presenter is located
in surface (window) coordinates.

69

ScriptX Components Guide

70

Window, Compositor, and Clock

The wi ndow instance variable specifies the window that the 2D presenter is
contained in, either directly or indirectly. If the presenter is not in a window,
this value is undef i ned.

The conposi t or instance variable specifies the 2D graphic compositor used
to draw the 2D presenter to its window. In fact, the 2D compositor is
responsible for drawing all members of a presentation hierarchy to their
window. The compositor and display surface are automatically created when
you create the window. Thereafter, when a presenter is added to a presentation
hierarchy, its value of conposi t or is automatically filled in.

The needsTi ckl e instance variable should be set to t r ue to indicate that the
presenter needs to have its t i ckl e method called with each composite cycle;
otherwise, it should be set to f al se. The 2D graphics compositor maintains a
private list of presenters that need to be tickled, and setting a presenter’s
needsTi ckl e instance variable to t r ue automatically adds the presenter to
this list. By maintaining this list, the compositor avoids having to poll each
presenter in a space.

If you want to create your own t i ckl e method, refer to the entry on
TwoDPresenter in ScriptX Class Reference.

The cl ock instance variable is read-only and specifies the clock used to
control this presenter—it is undef i ned for instances of most core class 2D
presenters. Exceptions include those that inherit from Space and Scr ol | bar.
Thus, cl ock has a value for TwoDSpace, Gr oupSpace, PageLayer, W ndow
and their subclasses.

The compositor is described later in this chapter under “How Compositors
Work” on page 89. The top presenter’s clock is described under “Compositor
Clock” on page 92”.

Notifying the Compositor of Changes

The TwoDPr esent er method not i f yChanged is the mechanism for notifying
the compositor about changes to presenters. This method does two things:

It causes a TwoDPr esent er instance to compute its changed region and
pass this region on to the compositor.

¢ [t provides an optimization hint to the compositor. The first argument to
not i f yChanged is an instance of TwoDPr esent er ; invoking
not i f yChanged indicates that there has been some change to the presenter
specified in this first argument. The second argument is a Bool ean object
indicating whether or not the change involves the presenter’s position or
boundary. Giving t r ue as the second argument indicates that the
presenter’s boundary has changed, the presenter’s position has changed, or
both have changed. Supplying f al se as the second argument tells the
compositor that only the image has changed—neither the position nor the
boundary of the presenter has changed. When only the image has changed,
the compositor can skip several steps and render the presenter more
efficiently. Consequently, calls to not i f yChanged, which may be quite

Spaces and Presenters

costly, are more efficient when the second argument is f al se. The following
code tells the compositor that my TwoDPr esent er has changed only its
image:

noti fyChanged nyTwoDPresenter fal se

In most cases, not i f yChanged gets called automatically. For example, the
setter methods for x, y, wi dt h, hei ght, stroke, fill, and other

TwoDPr esent er properties implicitly call not i f yChanged each time a new
value is set.

There are cases, however, where you must explicitly call not i f yChanged, For
example, if you specialize a presenter so that it makes changes, and those
changes do not automatically call not i f yChanged, you will have to include
an explicit call to not i f yChanged. If not i f yChanged is not called, either
explicitly or implicitly, the changes you implemented will have no effect on
presentation.

You must also call not i f yChanged explicitly when you change an indirect
attribute. An indirect attribute is an attribute of an attribute, rather than an
attribute of an object directly. For example, y is a direct attribute in

“myRect . y” and an indirect attribute in “nmyRect . t ar get . y”. The following
code illustrates this situation:

-- Oeate a window and put a rectangular 2D shape in it

nyWn := new Wndow boundary: (new Rect x2:200 y2:200) fill:whiteBrush
mnyWn.y := 40

show nyWn

nyRect := new TwoDShape target: (new Rect x2:50 y2:50) fill:blackBrush
append nyWn nyRect

nyRect.y := 50

-- Now make the rectangle half as wide by changing its stencil

nyRect.target.x2 := 25 -- Notice this has no effect
show nyWn

noti fyChanged nyRect true -- The shape is now redrawn
show nyWn

In this example, myRect . t ar get is the stencil. Setting the stencil’s width to
25 has no effect on the display until not i f yChanged is invoked because the
stencil’s x value is an indirect attribute of myRect . The following code changes
the width of myW n using a direct attribute, which means that the setter
method for wi dt h will call not i f yChanged automatically:

nyWn.width := 25 -- changes the width and calls notifyChanged

Note — The TwoDPr esent er method not i f yChanged replaces the flags
changed and i mageChanged. ScriptX 1.5 still recognizes changed to allow
for backward compatability, but it just redirects to not i f yChanged.

71

ScriptX Components Guide

72

Re-Drawing the Changed Presenters

At each frame, the display must show all presenters in their most current
state—that is, any changes to presenters since the previous frame must be
drawn to the window. Rather than re-drawing the entire presentation hierarchy
every frame, the system draws only the fewest presenters necessary to meet
this end.

There are basically two kinds of changes that can cause a presenter to be
redrawn:

¢ The presenter itself changes shape, position or image

¢ Another presenter that was in front of it moves away, uncovering more of it

Only presenters meeting one or both of these conditions should be redrawn. To
meet this requirement, the system keeps track of which presenters have
changed (those which have had not i f yChanged called on them), and then
draws only those presenters that intersect the changed presenters.

TwoDPr esent er has two instance variables, i sTranspar ent and
st ati onary, which give hints that the compositor uses when it is trying to be
smart about what to re-draw:

e i sTransparent indicates whether a 2D presenter is transparent, and
therefore, whether presenters or regions of presenters beneath it are visible.
(A presenter is transparent if it does not render all of the pixels
encompassed by its boundary.) Set i sTranspar ent to true if the 2D
presenter is transparent; otherwise, set i sTranspar ent to f al se. If an
object is not visible because it is occluded, then it is not necessary to draw
changes to it. The following code informs the compositor that
my TwoDPr esent er occludes any presenters directly beneath it:

nyTwoDPr esent er. i sTransparent := fal se

When not i f yChanged is called on a transparent presenter, presenters directly
beneath it need to be re-drawn also.

The default value for i sTranspar ent is f al se.

e stationary is set totrue when an instance of TWoDPr esent er satisfies
one or both of the following conditions:

¢ it doesn’t move much

* it occupies a large space
In all other cases, st at i onary should be set to f al se.

A window is an example of a presenter that is stationary because it is large;
objects like scrollbars, pushbuttons, or Text Edi t text are examples of
presenters that are stationary because they are regions that don’t change
location much.

The default value for st ati onary is f al se.

Spaces and Presenters

When st ati onary is set to f al se, the compositor will not spend time
figuring the fewest number of presenters that need to be re-drawn.

Optimizing When a Presenter Is Re-drawn

The compositor uses hints provided by not i f yChanged, i sTranspar ent,
and st ati onary to help optimize drawing.

The following conditions help the compositor decide which presenters should
be re-drawn:

e notifyChanged nmyTwoDPresenter true —Since the second argument
is true, it indicates that the presenter’s position or boundary has changed,
either of which necessitates calculating the area of the presenter that needs
to be redrawn.

e nyTwoDPresenter.stationary := fal se—This indicates that the
presenter is either small or moves a lot, either of which causes the presenter
to be re-drawn completely. If an object is small and moves often, it is
generally cheaper just to re-draw it rather than to calculate the area needing
to be re-drawn and then re-drawing only that specific area. If an object is
large, however, it may be more efficient to calculate the area which has
changed and to re-draw only regions which have changed.

e nyTwoDPresenter.isTransparent := true (and presenters beneath it
have changed)—Since the presenter is transparent, any changes to objects
directly beneath it are visible and therefore need to be re-drawn.

The compositor looks for situations where it does not need to re-draw. In
simplest terms, these are situations in which changes are not visible.

For example, assume there are two presenters, A and B. A is not transparent
and completely covers B, which is beneath it. If B changes, those changes will
not be visible because A occludes B. If only A’s image changes, A needs to be
re-drawn, but the changes to B don’t need to be re-drawn because they are still
not visible. If A moves, however, so that changes to B become visible, then both
A and B need to be re-drawn.

The compositor also tries to draw as little as possible. As mentioned above, it
ends up being more efficient to simply re-draw all small objects, even if the
change affects only a small area. Consequently, if a presenter’s st ati onary
instance variable is set to f al se, it will always be completely re-drawn when
it is visible (when any presenters directly above it are transparent). When a
large object changes, however, it may be worth calculating which regions
changed and re-drawing only those regions.

Improving Drawing Speed with Direct Presenters

Some 2D presenters have certain characteristics that lend themselves to
drawing optimization by the compositor, to speed up performance. To achieve
optimization, it may be important to set the di r ect instance variable on
certain 2D presenters.

73

ScriptX Components Guide

74

The di r ect instance variable should be set to t r ue for video and other
rectangular presenters that have a fixed location and boundary but with
quickly moving images within that boundary. This flag optimizes the drawing
speed by drawing directly to a display surface, bypassing the compositor’s
off-screen frame buffer.

This flag is set to f al se by default for all new presenters. If you want an
instance of Di gi t al Vi deoPl ayer to be di r ect, for example, you must
explicitly set its di rect flag to t r ue.

nyDi gital Vi deoPl ayer.direct := true --causes conpositor to draw
--directly to the display surface

Direct presenters always appear in front of non-direct presenters (and so
override z-ordering). Direct presenters should not overlap other direct
presenters—if they do, then the user will see flickering as they both struggle to
update the overlapped area. Do not use di r ect for video that flies across the
screen or has other presenters overlapping it. Direct presenters are also
restricted to being rectangles.

The major benefit with direct presenters is reducing the amount of drawing
that takes place for each frame. When a non-direct presenter is asked to draw,
it draws the entire presenter within the clip region. In contrast, when a direct
presenter is asked to draw, it can draw just the parts of it that have changed
since the previous frame, with assurance that no other part of the image has
been disturbed by other objects. Since the compositor prevents other presenters
from drawing within direct presenter areas of the display surface, a direct
presenter is the only one allowed to draw to its region of the display surface.

For example, as a direct presenter, a digital video player can do “incremental”
updates at each frame, just redrawing the bits of the surface that have changed.
Similarly, a transition effect can run more efficiently as a direct presenter,
blitting only the part of the image that changes.

The r ef r esh method (defined by TwoDPr esent er) is called on direct
presenters when there is some area of the display surface that has been erased
(for example, by another window moving in front and then moving away). The
direct presenter should respond to this method by entirely redrawing itself
(that is, not doing just an incremental update, but a complete update). The
default behavior of the r ef r esh method is just to call dr aw

Diagnostics for Improving Drawing Speed

ScriptX provides several diagnostic functions that can help you optimize
performance. These are available in the development environment, but not
with the ScriptX Player. The showChangedRegi on instance variable, defined
by TwoDConposi t or, can be set t r ue to mark a red outline around any
subsequently changed regions in the compositor’s window:

nyW ndow. conposi t or. showChangedRegi on := true

Spaces and Presenters

The red outlines accumulate until the window is refreshed (which you can do
by calling r ef r esh on the window or hiding and showing it). You can set
showChangedRegi on to t r ue to help optimize your title to do the least
amount of updating possible. For example, instead of animating by switching
between large bitmaps, an author could have a large bitmap and several
smaller ones that layer on top of it successively.

The war ni ngs function is a diagnostic that displays warnings that can affect
execution of a script or slow performance. The following script demonstrates
how to turn on war ni ngs.

war ni ngs true

A warning is issued when a bitmap transfer occurs with mismatched color
maps. For example, the warning appears when a bitmap image with one
colormap has been added to a window with a different colormap. While this
works, such a mismatch can cause performance to suffer greatly (in a
platform-dependent way). To improve performance, make the window’s
colormap the same as the bitmap’s:

nyW ndow. col ormap : = nyBit map. col or nap

Receiving Mouse Events

A 2D presenter is associated with a region on the display surface, and it can
receive mouse events that occur within that region. Clicking on, moving over,
or dragging a presenter could cause the presenter to change colors, change
images, begin an animation, bring in a new scene, or initiate some other action.

The event | nt er est s instance variable in TwoDPr esent er is a read-only list
of event interests associated with a given 2D presenter. A full description of
this instance variable and how a 2D presenter can receive mouse events is
given in the Events chapter.

Classes like Act uat or Control | er and DragContr ol | er, which inherit
from TwoDCont r ol | er, provide an easy interface to events for presenters.

Subpresenters of TwoDPresenter

As described earlier, every presenter has a subpr esent er s instance variable.
For presenters that have only themselves and no other presenters to display,
the subpr esent er s value is undef i ned; for other presenters, it can contain a
list of presenters to be displayed. The presentation hierarchy is made up of a
window and a network of subpresenters, where a subpresenter can have its
own subpresenters, nested to any level deep. Each list of subpresenters forms a
branch of the presentation hierarchy. Putting a presenter in a subpresenters list
places it in the presentation hierarchy.

If you want to make a presenter be displayed, you can add it to a presenter
container in the presentation hierarchy—the presenter will automatically show
up in the container’s subpresenters list. For example, if you prepend an

75

ScriptX Components Guide

76

instance of TwoDShape to an instance of W ndow the shape is displayed as
part of the window’s presentation hierarchy because a window’s
subpresent er s instance variable points to the window and its contents.

At this point it’s useful to elaborate on the impact that the subpresenters
instance variable can have on the character of a presenter—it distinguishes
between simple presenters and container presenters.

Simple Presenters vs. Container Presenters

Figure 3-16 lists the class trees for “container” presenters and simple
presenters. Container presenters are 2D presenters, such as windows, that can
have multiple subpresenters. This means they can hold and display multiple
2D presenters together. Adding a presenter to a container presenter
automatically adds the presenter to the container’s subpresenters list. This
happens because the subpr esent er s instance variable points to the members
of the presenter container, as shown on the left side of Figure 3-18.

Figure 3-18 compares the two kinds of 2D presenters—" containers,” which can
hold and display other presenters, and “simple” presenters, which can hold
only their targets and can display only one target at a time:

e A “container” presenter is an instance of the TwoDMUI t i Pr esent er family
of classes, which itself is a collection of presenters. The container presenter
itself and all its members are presented (subject to clipping). A container
forms a node in the presentation hierarchy, with its subpresenters below it.
Examples are instances of W ndow TwoDSpace, and Gr oupPr esent er.

e A “simple” presenter inherits from TwoDPr esent er but is not a member of
the TwoDMUI ti Present er family. A simple presenter presents only one
object at a time. Examples are instances of TwoDShape, Text Present er,
and OneOf NPr esent er.

An important attribute of container presenters is that any transform on the
container affects all of its member presenters—the members all transform as a
group. In other words, the x-y coordinate position of all members is relative to
the container. Thus, moving the container moves all of its contained objects. In
addition, its contained objects can be clipped by the container

(TwoDMul ti Present er, TwoDSpace, W ndow) or not clipped
(GroupPresent er, G oupSpace).

Spaces and Presenters 3

Container Presenters Simple Presenters

Collection Presenter

IndirectCollection TwoDPresenter

TwoDMultiPresenter TwoDShape

SequenceCursor

CostumedPresenter ArrayList

OneOfNPresenter

GroupPresenter Player

MoviePlayer

InterleavedMoviePlayer Document

MediaStreamPlayer

DigitalVideoPlayer

Player

TransitionPlayer
DocTemplate
ScrollingPresenter
Pagelayer

ScrollinglList

GroupSpace

TwoDSpace

Window

FullScreenWindow

TextPresenter
ScrollBar DocTemplate

Actuator

Pushbutton

PageElement

DocTemplate

PageTemplate

Figure 3-16: Container presenters inherit from TwoDMultiPresenter, simple presenters
do not.

In general, a container presenter has its own visible features—a window has a
border, fill, and stroke. The members of the window, which are the
subpresenters, determine which additional objects are to be presented, and in
what front-to-back visual order. The order of the objects in the members list is
the order in which they are drawn to the screen, starting with the last object in
the list (in back) and working to the first (in front).

Figure 3-18 compares the internal states of container presenters and simple
presenters. In containers, the subpr esent er s instance variable points to the
members of the container; simple presenters do not have multiple
subpresenters. To simplify the diagram, not all instance variables are shown.

77

ScriptX Components Guide

78

Container Presenter Simple Presenter
Example: TwoDMultiPresenter Example: TwoDShape
User’s View User’s View
TwoDMultiPresenter
MoviePlayer TwoDShape
PushButtons T
2
Container Subpresenters
State Table State Table
Instance Variables: Instance Variables:
target undefined target myOval
height 20 height 20
width 50 width 50
position 100, 100 position 100, 100
fill whiteBrush fill whiteBrush
stroke blackBrush stroke blackBrush
presentedBy undefined presentedBy undefined
subpresenters ° subpresenters undefined
Members:
myMulti[1] myMovie
myMulfi[2] rewindButton
myMulti[3] stopButton
myMulti[4] playButton

Figure 3-17: Comparison of a container and a simple presenter.

For containers, the mechanism for subpresenters is straightforward: the
subpr esent er s instance variable points to the container itself, meaning the
subpresenters are the members in the container. Therefore, any object added to
the container is automatically in its list of subpresenters, where it is part of the
presentation hierarchy, and appears to the user; these multiple objects are
presented together.

For example, a new instance of TwoDSpace is by default an array (because its
target Col | ecti on is an instance of Ar r ay). The subpresenters of the 2D
space are the members of that array. Any object added to the 2D space is
automatically a subpresenter, as the following script shows. In particular, the
shape myBox is a subpresenter of mySpace.

nySpace := new TwoDSpace
nyBox := new TwoDShape boundary: (new Rect x2:50 y2:50) \
fill:blackBrush

prepend nySpace nyBox

Spaces and Presenters

Each concrete subclass of Pr esent er manages how objects are moved into
and out of the subpresenters list. For example, for TwoDMUI t i Pr esent er
(and its subclasses), all of its members are also subpresenters and are displayed
together; however, for OneCOf NPr esent er, only one of its members is moved
into the subpresenters list at a time, and only that object is displayed.

The number of subpresenters that a presenter can have depends on its class.
Presenters that inherit from TwoDMul ti Present er can have multiple
subpresenters, while presenters that don’t inherit from TwoDMul t i Present er
typically have either zero or one subpresenter. Presenters that inherit from
TwoDMul ti Present er are called presentation containers because they can
contain more than one subpresenter at a time.

¢ The simplest non-container presenter, TwoDShape, presents its target
stencil, which is not a presenter, and so subpr esent er s is set to
undefi ned.

* More complex non-container presenters, such as OneCf NPr esent er and
Cost unedPr esent er are themselves not visible, and require one
subpresenter to display. OneOf NPr esent er maintains a list of presenters to
present, but can show only one at a time—only the one that is held in the
subpr esent er s instance variable. Cost unedPr esent er can also change
the object it is presenting—again, the object being presented is the one
currently held in subpr esent ers.

e Container presenters, such as TwoDMul t i Present er, TwoDSpace,
W ndow GroupPr esent er, and Movi ePl ayer, can have multiple
subpresenters, which are displayed together.

If you create a subclass of TwoDPr esent er or Present er rather than
TwoDMWul ti Present er, the resulting class will by default have no
subpresenters—you must add the extra functionality required to handle
subpresenters.

Simple Presenters

The Spaces and Presenters component contains three classes that are simple
presenters: TwoDShape, Cost unedPr esent er, and OneOf NPr esent er.

TwoDShape

The TwoDShape class provides the means for presenting and displaying 2D
graphic objects, such as bitmaps, rectangles, ovals, curves, and other shapes.
TwoDShape objects operate as presenters for 2D graphic objects, using the 2D
compositor.

You create graphics using a stencil and brush technique, as described in
Chapter 11, “2D Graphics.” When creating an instance of TwoDShape, you
specify the appropriate stencil. Among the stencil classes that the TwoDShape
class can present are the Li ne, Rect, RoundRect, Pat h, Oval , Regi on, and
Bi t map.

79

ScriptX Components Guide

80

When a TwoDShape object is asked by the graphics compositor to draw itself,
it renders its stencil onto a surface, using its fill and stroke (outline) brushes.
The stencil determines the area’s shape. One brush can determine the color and
pattern for the fill, while another brush can determine the color, pattern and
line width for the stroke. (These terms are described in Chapter 11, “2D
Graphics.”)

Sample Script for TwoDShape

The following is a sample script for creating a rectangle and displaying it in a
window. The new method on Rect creates the rectangular stencil, which by
itself cannot be added to a window. The new method on TwoDShape specifies
myRect as its target, and sets its fill and stroke (outline). The next two lines
position the shape. After the window is created, the pr epend method adds the
shape to the window.

-- Geate a rectangle stencil
gl obal nyRect := new Rect x2:50 y2:50

-- Oreate a rectangle presenter fromthe stencil and position it
gl obal nyBox := new TwoDShape target:nyRect fill:blackBrush\
st roke: bl ackBrush

nyBox.x := 20

nyBox.y := 20

-- Oeate a w ndow
gl obal nyWndow : = new Wndow boundary: (new Rect x2:300 y2:300)

-- Add the 2D shape to the w ndow
prepend nyW ndow nyBox
show nyW ndow

CostumedPresenter

Cost unedPr esent er is a presenter that by itself is not visible—it needs
another presenter to be its “costume.” The object being presented, or
“costume,” is held in both the t ar get and subpr esent er s instance
variables. Figure 3-18 shows the state of an instance of Cost unedPr esent er.

Use a Cost unedPr esent er object when you want a presenter that can
change appearance, say from text to bitmap, while retaining position
information and connections to other objects, such as controllers. For example,
you can use Cost umedPr esent er to model a picture hanging on a wall—the
costumed presenter represents the blank place on the wall, and its costume is
the picture.

Spaces and Presenters

CostumedPresenter instance

Instance Variables:

target myCostume
height 20
width 50
position 100, 100
fill whiteBrush
stroke blackBrush
presentedBy undefined
subpresenters | myCostume

Figure 3-18: The subpresenter for CostumedPresenter is its costume.

Cost umedPr esent er implements a kind of delegation.Another ScriptX
option for delegation is the Del egat e class, a utility class that is part of the
Object System Kernel. For general information on delgation in ScriptX, see
“Delegation” on page 625 of Chapter 23, “Object System Kernel.”

OneOfNPresenter

OneOf NPresent er is a presenter that contains a list of presenters, only one of
which can be displayed at a time. Figure 3-19 shows the state of an instance of
OneOf NPresent er. While OneOf NPr esent er is a collection, it can display
only one object at a time, so its subpr esent er s instance variable holds a
single item and does not point to a collection.

OneOfNPresenter instance

Instance Variables:
target undefined
height 20
width 50
position 100, 100
fill whiteBrush
stroke blackBrush
presentedBy undefined
subpresenters o———
Members:
myOneOfN1] MyTrout
myOneOfN[2] myCrab
myOneOfN[3] myLobster |+
myOneOfN[4] mySnail

Figure 3-19: The subpresenters for OneOfNPresenter points to a single presenter, not
a list.

OneOf NPr esent er, like Cost unmedPr esent er, also implements a kind of
delegation. OneOf NPr esent er embodies a one-to-many relationship, in
which one member from a collection of presenters is the current presenter. For
general information on delgation in ScriptX, see “Delegation” on page 625 of
Chapter 23, “Object System Kernel.”

81

ScriptX Components Guide

82

TwoDMultiPresenter

TwoDMul ti Presenter is a subclass of TwoDPr esent er that mixes in

I ndi rect Col | ecti on and thereby provides a way of presenting a collection
of TwoDPr esent er objects. TwoDPresenter provides the following features,
beyond the basic functionality of the TwoDPr esent er class:

e ATwoDMil ti Presenter object contains multiple subpresenters—all of
which can be presented at the same time and have positions relative to the
2D multipresenter.

e TwoDMul ti Presenter sorts its subpresenters by their z value, and
displays them front-to-back in this order.

e ATwoDMil ti Presenter object defines properties for boundary, fill,
and st r oke, and uses them to render itself, just as a TwoDShape object
does. However, the boundary forms a clipping region. Any part of a
subpresenter that would be drawn outside this boundary is clipped.

e ATwoDMul ti Presenter ensures that an object appears only once in the
presentation hierarchy. Every time a presenter is added to a container, it is
removed from its previous container, if it has one, as determined by the
value of pr esent edBy.

It is important that a presenter appear only once in the presentation
hierarchy—otherwise, time is wasted drawing the presenter more than once,
and only the first instance that is traversed during event delivery can receive
events. Ensuring that an object cannot be duplicated in the presentation
hierarchy is one of the main features built into TwoDMul t i Presenter.
Whenever you add a member object to an instance of TwoDMul t i Presenter,
it is removed from its previous container.

Containment

TwoDMul ti Present er forms the basis for container presenters. It inherits its
container properties from Col | ect i on, by way of I ndi rect Col | ecti on.
TwoDMul ti Present er classes “contain” their subpresenter objects visually.
TwoDMuUl t i Present er, TwoDSpace, G oupPr esent er, and G- oupSpace
are container presenters, while TwoDShape, Cost unedPr esent er, and
OneOf NPr esent er are not.

Subpresenters within any container share the same x-y coordinate system and
origin as their container. When you move a 2D space, all objects in that space
move with it. Both of these effects are due to the concatenation of matrices
during the presentation cycle.

All presenters that are added to a 2D multipresenter at a location within its
boundary are displayed. Presenters that are added, but appear outside the
multipresenter’s boundary, are clipped by that boundary. Members of the
collection are presented because the subpr esent er s instance variable points
to them (by way of pointing to the object itself), as shown in Figure 3-20.

In this example, an instance of TwoDMUI t i Present er contains a collection of
images, arranged with cars in front and a movie in the background.

Spaces and Presenters

TwoDMul ti Present er is useful when you need to manage multiple

TwoDPr esent er objects, but don’t want the overhead of managing controllers
and a clock that TwoDSpace requires. It’s also a simple way of clipping a
presenter or group of subpresenters.

Figure 3-20 shows three different views of a TwoDMul t i Pr esent er object:

e User’s view — Shows how the user would view and interact with this
instance of TwoDMul ti Present er.

¢ Internal state — Shows the instance variables and member objects.

¢ Presentation hierarchy — Shows the relationship of presenters and
subpresenters

User’s View Internal State
TwoDMultiPresenter
TwoDMultiPresenter Instance Variables:
height 200
width 200
position 100, 100
fill whiteBrush
stroke blackBrush
presentedBy undefined
subpresenters °
Members: ¥
myMulti[1] nearCar
myMulti[2] farCar
myMulti[3] myTree
myMulti[4] myMovie
myMulti[5] movieScreen

Presentation Hierarchy

| myTwoDMultiPresenter I

=

movieScreen I I myMovie I | myTree l | farCar nearCar l

myVideoPlayer

Figure 3-20: Three views of an instance of TwoDMultiPresenter

Creating a TwoDMultiPresenter

To create an instance of TwoDMVuUI t i Present er, call new and supply a value

for the boundar y keyword. For example, to create the TwoDMul t i Present er
instance shown in Figure 3-20, assuming the subpresenters myMovi e, ny Tr ee,
myCar 1 and nmy Car 2 already exist, you first create the multipresenter and then
add its subpresenters to the container individually.

nyMil ti := new TwoDMil ti Presenter \
boundary: (new Rect x2:200 y2:200)
prepend nyMilti novi eScreen

83

ScriptX Components Guide

84

prepend nyMiulti nyMvie
prepend nyMilti nyTree
prepend nyMilti farCar
prepend nyMilti nearCar

For performance reasons, when creating an instance of TwoDMul t i Pr esent er
(or any of its subclasses, such as TwoDSpace, G oupSpace, W ndow or
Pagelayer), you should generally omit the t ar get Col | ect i on keyword
and allow the class to set its target collection by default. Multipresenters
require collections that can be traversed easily for drawing presenters and
handling events. Generally, the default target collection is an instance of

Arr ay, with the keyword i ni ti al Si ze set to some optimal level, given the
expected size of the collection. Performance could suffer if you change the
target collection to something other than the default. Bounded arrays, such as
Pai r, Tri pl e, and Quad, can be specified as a target collection where
appropriate.

Drawing

The dr aw method defined by TwoDMul t i Present er renders its image onto
the display surface of the window, with clipping defined by a clip stencil. The
dr aw method performs three steps when drawing an instance of

TwoDMul ti Presenter:

e Fills the instance, using the Brush object defined by fill, which forms a
background

e Iterates dr aw on each subpresenter

¢ Strokes the instance’s boundary

The boundary is drawn last, because its thickness can overlap presenters
contained inside the instance of TwoDMul ti Present er.

Finding Presenters Within a Container

TwoDMul ti Present er has four methods for finding presenters that it
contains:

e findAll At Poi nt —Finds all objects that intersect the specified point, given
in local coordinates of the 2D multipresenter.

e findFirstAtPoint —Finds the first (front-most) object that intersects the
specified point, given in local coordinates of the 2D multipresenter.

e findAllInStencil —Finds all objects contained in the 2D multipresenter
that intersect the specified stencil.

e findFirstlnStenci| —Finds the first (front-most) object contained in the
2D multipresenter that intersects the specified stencil.

These are useful for determining which objects are located at a specific place in
the TwoDMuUl t i Present er object. For example, you could use

findAl Il nStenci| to determine which presenters are contained inside a
rectangle that the user draws—this allows the user to drag-select objects. When

Spaces and Presenters

the user clicks, you could use fi ndFi r st At Poi nt to do hit detection of the
front-most presenter. The f i ndAl | At Poi nt method will return an array of all
presenters that contain the specified point.

Clipping

TwoDMul ti Present er and many of its principal subclasses within the core
class—TwoDSpace, PageTenpl at e, and W ndow—allow the programmer to
set the multipresenter’s boundary directly. These multipresenters use the
parent presenter’s boundary to clip subpresenters. In this way,

TwoDMul ti Present er extends the meaning of boundar y, an instance
variable defined by TwoDPr esent er.

Several subclasses of TwoDMuUl ti Present er —Gr oupPr esent er,
GroupSpace, PushBut t on, and Toggl e—override this behavior. These
presenters grow to encompass the union of the objects they contain. In these
presenters, the boundary is determined automatically based on the boundary
of subpresenters. The boundar y keyword to the i ni t method is ignored, and
attempting to set the value of boundary reports an exception.

Z-Ordering

When 2D presenters overlap on the screen, their front-to-back display order is
determined by their order in the presentation hierarchy, which is their position
in subpresenters lists. Within a given list, a presenter at the front of the list
(that is, with smaller index number) displays in front of a presenter at the back
of the list. This is because within a subpresenters list, the presenter at the
bottom of the list (the largest index number) draws first, and presenters toward
the top of the list the draw later, and hence, on top. Subpresenters of any
TwoDMul ti Present er class are ordered by z-value, the value of its z instance
variable, as follows.

Initially, and unless you specify otherwise, all presenters have by default a
z-value of 0. Thus, if you never explicitly specify a z-value, all presenters will
have a z-value of 0, and have their front-to-back order determined, as always,
by their order in the list. To add a new presenter in front of other presenters,
you prepend it to the list of subpresenters; to add it behind other presenters,
you append it.

To change the position of a presenter in the front-to-back order, you can either:
¢ Move it directly

e Specify a z value

To move it directly, call noveFor war d, noveBackwar d, moveToFr ont or
noveToBack on it. You can also use collection methods, such as pr epend,
append, or set Nt h, to specify its position in the subpresenters list when you
are adding it to a TwoDMul ti Presenter.

To specify a z value, set the presenter’s z instance variable. Setting this value
actually moves the presenter in the subpresenter list, so that once again the
order of presenters in the list determines their draw order. A higher, more
positive value of z corresponds to a position in front of other presenters.

85

ScriptX Components Guide

86

For example, setting the z-value to 1 moves a presenter in the list ahead of all
presenters with a z-value of 0, and consequently displays it in front of them.

The following table shows this relationship between index numbers in a
subpresenters array, z-values, and visual ordering:

Table 3-2: Relation between index, z-value and visual ordering

Index in subpresenters array: 1 2... n
(from1l to n)

z-val ue: hi gh nedi um | ow
Vi sual ordering: front m ddl e back

The value for z can be any integer from -2,147,483,647 to +2,147,483,648. The
initial z-value for a new presenter is 0.

Setting z-values is the way to set the front-to-back order of presenters so that
this order is an attribute of the presenters themselves. If you want a presenter
to stay in the background, you can give it a negative z-value; then if it gets
moved to another space, it can maintain its z-position.

If you specify a z-value and then use a contradictory method to add the object
to a 2D multipresenter, the z-value takes precedence. For example, if all the
presenters in a 2D multipresenter have a z-value of 0, and you append a
presenter with a z-value of 1, it is inserted in front of all the presenters. You
would expect the append method to insert it at the back, but its z-value is
higher than the other presenters. However, the append method does make
sure that the presenter is inserted at the back of any presenters that have the
same z-value.

Example of PushButton as a TwoDMultiPresenter

As another example, a toggle pushbutton can be created from the Toggl e
class, which is a subclass of Pushbut t on (both are defined in the User
Interface component). PushBut t on in turn inherits from

TwoDMul ti Presenter.

An instance of Toggl e has two states, on and off. In addition, it has a third
visible state that appears when the mouse button is down on it. Thus, it can
display at most three subpresenters simultaneously—one from each of the
following groups:

e pressedPresenter orrel easedPresenter
e toggl edOnPresenter ortoggl edO f Present er

e di sabl edPresent er or undefi ned

For example, a pushbutton can display its r el easedPr esent er,
toggl edOnPresent er, and di sabl edPr esent er. Figure 3-21 shows the
internal state of a typical pushbutton and its view to users.

For more information on Pushbut t on and Toggl e classes, refer to the section
on actuators in the “User Interface” chapter.

Spaces and Presenters

PushButton instance

Combined Bitmaps

Instance Variables:
height 0 @ Pushbutton
width 200
position 100, 100
fill whiteBrush
stroke blackBrush Individual Bitmaps
presentedBy undefined pressedBitmap
pressedPresenter pressedBitmap [« l
releasedPresenter releasedBitmap
toggledOnPresenter onBitmap r @ onBitmap
toggledOffPresenter offBitmap
disabledPresenter dimmedBitmap |+ C} dimmedBitmap
subpresenters .

Figure 3-21: The internal state and user view of a pushbutton that is pressed, on and
dimmed.

TwoDSpace

TwoDSpace is the simplest two-dimensional space for use inside a window.
This class combines the presentation and collection attributes of

TwoDMul ti Present er with the clock, controllers and protocols attributes of
Space. Use a 2D space wherever you want an area within a window to have
its own clock and controllers.

A TwoDSpace object creates an environment where presenter objects can live,
including presenters that display bitmaps, shapes, video images, animations,
text, and other media. A space is an interactive environment, with any object
being potentially clickable or draggable, including windows, toggles,
pushbuttons, scrolling lists and so forth. As the user manipulates objects in a
space, those objects can control objects in that space or any other space—or
even objects that are not in any space. Since it is a subclass of TwoDSpace, the
W ndow class shares all of these attributes.

TwoDSpace inherits its container and presenter features from

TwoDMul t i Present er. Any object successfully added to a TwoDSpace
automatically becomes a subpresenter of the space and is added to the
presentation hierarchy. Each TwoDSpace object has a boundary that is fixed
and clips its subpresenters. Every ScriptX presenter defines two instance
variables that determine its position in the presentation hierarchy. You can
iterate down through this hierarchy by means of the subpr esent er s instance
variable of each pr esent er, or up by means of the pr esent edBy instance
variable. The ordering of subpresenters at any given level in the hierarchy can
be specified by setting their z values.

As with any instance of TwoDMul t i Present er, TwoDSpace implements a
dr aw method that first fills the space, using the brush specified by fi | |, to
form a background. Next, it renders the outline of the space, using the brush
specified by st r oke. Finally, it iterates over all of its subpresenters in the
presentation hierarchy, calling dr aw on each subpresenter.

87

ScriptX Components Guide

88

TwoDSpace inherits its timing and simulation features from the Space class.
Space defines three instance variables—cl| ock, control | ers, and

pr ot ocol s—that a space uses to simulate behavior in an environment over
time. Its clock is used for timing. Its controllers operate on objects that are
added to the space, modifying their behavior over time, or in response to some
other stimulus.

TwoDSpace also inherits from Col | ecti on, by way of

I ndi rect Col | ecti on. A TwoDSpace object is a collection which contains
other objects. | ndi rect Col | ecti on defines a notification protocol for
controlling what objects can be added to a space. A space uses

i sAppropri at eCbj ect to determine which objects are allowed into the
space, based upon the value of pr ot ocol s. It uses its obj ect Added and

obj ect Renpved methods so that it can respond each time an object is added
to or removed from the space. For more information on

I ndi rect Col | ecti on, see page 469 of Chapter , “Collections.”

Presenters in a 2D space are rendered in the reverse order that they appear in
this collection, with the last item in the collection rendered first. When objects
overlap, the first presenters in the collection are displayed in front of the last
presenters in the collection. Thus overlapping objects within a 2D space
present themselves in a manner similar to most drawing programs, with some
objects occluding others.

All TwoDPr esent er objects are designed to live in a 2D space; this includes
instances of subclasses of TWoDPr esent er, such as user interface objects and
2D shapes. A TwoDSpace object cannot be a top presenter, unless it is a
window as well. Thus, it can be contained within another instance of
TwoDSpace. By contrast, a W ndow object, which is a kind of TwoDSpace,
cannot be a subpresenter—a window must be the top presenter in a
presentation hierarchy.

The visible shape of a TwoDSpace object within its parent space is determined
by the value of its boundar y instance variable. This property, defined by
TwoDPr esent er, contains a St enci | object. All presenters within a space are
clipped to the space’s boundary. The position of a 2D space is given by its
t ransf or mmatrix, which includes its x-y position in its parent container.

Protocols

For any instance of TwoDSpace, the pr ot ocol s instance variable is defined to
include the TwoDPr esent er class. This means that obj ect Added checks to
make sure that any object added to the space inherits from TwoDPr esent er. If
not, then obj ect Added prevents the object from being added to the space.

Spaces and Presenters

How Compositors Work

Important — This section, which describes the interaction of the
TwoDConposi t or, Di spl aySur f ace, and W ndow classes, has not been
updated to reflect changes in ScriptX 1.5. For up-to-date information on the
compositor in ScriptX 1.5, see the TwoDPr esent er and TwoDConposi t or
classes in the ScriptX Class Reference.

Every ScriptX window has its own compositor which initiates the drawing of
its presenters. Compositors orchestrate the visual presentation of a title.

Note — The 2D graphic compositor is a low-level part of the presentation
system which manages the drawing of presenters to a window’s display
surface. It can be important to understand the 2D compositor for optimizing a
title’s performance.

Once compositing starts, each presenter in the hierarchy draws its changed
region to the window’s display surface, including those that have moved,
changed image, or changed boundary. The compositor is designed to ensure in
general that regions of the screen that have not been altered do not get
redrawn. The compositor accumulates changes to the window internally.

The window’s presentation hierarchy ensures that presenters are drawn in the
correct order, from background to foreground, building up the composition as
each presenter is drawn. Compositing is just another word for the mechanism
by which presenters are drawn to the screen in an orderly, time-driven manner.
The class that embodies this functionality is TwoDConposi t or.

Introduction to the 2D Compositor

A compositor assembles discrete 2D presenters into a composite image once
every tick of its clock. A 2D compositor is necessary to continually refresh the
graphic images. If a compositor were not present, then any moving image
would erase other images it passes in front of. The background image would
not be restored because it was drawn only once. The compositor handles the
updating of all the images for you, and attempts to do it in an efficient manner,
updating only what has changed since the last drawing cycle.

A compositor works closely with other components in ScriptX, as shown in
Figure 3-22. This diagram has four major components: a presentation hierarchy,
a 2D graphic compositor, a frame buffer, and a window’s display surface. The
compositor initiates the dr aw method on the presenters to render them to the
off-screen frame buffer and then transfer that image to the window’s display
surface.

89

ScriptX Components Guide

90

Top presenter’s[] @
clock

Presentation Hierarchy 2D Graphic[]|

Compositor

Top presenter

Subpresenters ® ® o .,
‘v Display Surface

Frame Buffer[] Display Device

Figure 3-22: Graphic compositor controls the display of the presentation.

As described earlier, the presentation hierarchy is an ordered structure of 2D
presenters. Its purpose is to provide an order to the presenters for capabilities
such as front-to-back ordering in the user’s view, controlling the order in
which events traverse presenters, and providing an ordered way of reaching
every presenter exactly once during the presentation phase. Each presenter in
the presentation hierarchy is capable of presenting itself to the frame buffer or
to the display surface.

The frame buffer is the off-screen area of memory that maps directly to the
display surface. The frame buffer gives the compositor a place to construct the
changed parts of a frame; it is the area where each of the changed presenters
draws itself. A time-based presentation consists of a number of visual frames
per second; a frame is one complete image in this sequence of images. A typical
presentation might run at 10 to 30 frames per second. The frame buffer is not
directly accessible at the scripter level.

The display surface is the visible part of a window where the presenters are
ultimately drawn. The dr awmethod (defined in TwoDPr esent er) operates on
a display surface, not a window. A window is the collection of presenters to be
displayed. When you add presenters to a window, they are displayed on its
display surface. A title can have multiple windows, and, hence, display
surfaces, and they can overlap each other. A display surface is represented by
an instance of the Di spl aySur f ace class, and a window by an instance of the
W ndow class (or its subclass).

The 2D graphic compositor orchestrates the timing and drawing of the
presentation hierarchy onto the display surface during the presentation phase.
There is a separate compositor per display surface. A compositor is represented
by an instance of the TwoDConposi t or class.

Creating a Compositor

You do not create a compositor directly from a script. When you create an
instance of W ndow a compositor is automatically created, and attached to that
window, to manage the compositing of presenters in that window. This
compositor, an instance of TwoDConposi t or, is accessible through the

Spaces and Presenters

W ndow class’s conposi t or instance variable. Each window has its own
compositor and clock—the clock drives timing of both the compositor and the
window’s controllers.

A window and its compositor contain references to each other, and to the
window’s display surface, through instance variables defined by W ndow and
TwoDConposi t or. Although the links between a window, its compositor, its
display surface, and the presenters it contains are sometimes redundant, they
allow for greater speed and flexibility in the mechanisms of modeling and
presentation.

TwoDConposi t or defines the instance variables t opPr esent er and

di spl aySur f ace. These instance variables store references to the window, as
top presenter for a presentation hierarchy, and to its display surface. The

di spl aySur f ace instance variable is writable, but the preferred mechanism
for controlling whether or not the compositor draws to a frame buffer or
directly to the display surface is through the instance variable useCf f Scr een,
a flag that is defined by TwoDConposi t or.

W ndow defines the instance variables conposi t or and a di spl aySur f ace.
These instance variables store references to the window’s associated
compositor and display surface. In addition, each presenter in the presentation
hierarchy, for which the window is the top presenter, defines a conposi t or
instance variable. In other words, every presenter has its own compositor.

If a window needs to be refreshed, the ScriptX Player calls r ef r eshRegi on on
the window automatically, supplying a St enci | object that encompasses the
area of the screen to be refreshed. As defined by W ndow r ef r eshRegi on
calls r ef r eshRegi on on the window’s compositor. For example, if you
change the height of an object, that object’s setter method will automatically
call not i f yChanged, which causes the object to compute its changed region
and pass this region on to the compositor.

During each composite cycle, the compositor maintains an internal record of
changes to the presentation space. It adds the window’s changed region to this
internal structure, which it uses to update the screen during the presentation

phase.

If your presentation space includes an isolated or border region, such as the
border of a Ful | Scr eenW ndow object or some other large window, that you
want to draw to once and then never update, you can reduce memory
requirements by creating a window without a compositor. If a window has no
compositor, less memory is required because no off-screen frame buffer is
created. To create a window without a compositor, specify that its

conposi t or keyword be undef i ned at instantiation:

new W ndow boundary: nyRect conpositor: undefined

If the window’s compositor is undef i ned, you can override r ef r eshRegi on
on W ndow to perform some drawing or update task (for example, to fill the
refresh region with a solid color or pattern). It would be important that no
presenter be allowed to move into this region, for if it did, its image would be
erased.

91

ScriptX Components Guide

92

Compositor Clock

The compositor uses the top presenter’s clock to drive its timing mechanisms.
(The top presenter must be an instance of W ndow and its clock is stored in the
window’s cl ock instance variable. A compositor does not have a clock of its
own.) The compositor is scheduled to update the screen once with every tick of
the window’s clock, but if it has too much work to do for a given cycle, and
consequently does not keep up with the clock, then it takes longer to update
the screen, and the frame rate slows. Thus, increasing the speed of the
window’s clock can speed up the number of frames per second only to the
point where the compositor no longer has any slack time.

Temporarily Disabling the Compositor

TwoDConposi t or defines the instance variable enabl ed, which gives you
control over whether the compositor is running or not. When a compositor is
created, it is enabled by default. Set enabl ed to f al se to stop the compositor.
You might want to disable the compositor if you were constructing an image
and wanted to freeze the display until the image was completed.

nyWndow : = new Wndow nane: "Scri pt X Forever" boundary: nyRect
nyW ndow. conposi tor. enabled := fal se

For all presenters in a window, the compositor automatically calls dr aw to
render the presenter to the window’s display surface. For more control of
on-screen drawing, you can disable the compositor and call the dr aw method
explicitly on each presenter, supplying the window’s display surface as the
second argument to the dr aw method. Or, you can perform off-screen drawing
by calling draw on a bitmap surface, then transfer the off-screen bitmap to a
display surface for viewing.

The compositor has a feature associated with enable/disable that you can take
advantage of. After you disable the compositor, you can remove or add objects
to the presentation hierarchy, and then re-enable the compositor. Because the
compositor was disabled when the objects were changed, the compositor will
not know that any changes have occurred, and the screen will not update until
an object is next moved or changed. This feature is useful for transitions in
collections of presenters. For an example of this technique, refer to the
“Transitions” chapter.

The Modeling/Presentation Cycle

As shown in Figure 3-23, a title alternates between modeling and presentation.
First the model runs and then the results are applied to presenters that are
composited to the output devices. Either phase can take more time than the
other, depending on the complexity of modeling and presentation. In short, the
two parts of the cycle are as follows:

Spaces and Presenters

¢ The model runs, performing calculations, doing comparisons, tickling the
controllers, and running simulations—at some point before presentation
begins, it delivers its results by storing values into variables that are
accessible to presenters. This modeling generally occurs without any direct
presentation.

* The presentation occurs, which causes the modified presenters to draw
themselves to the screen using the updated values supplied by the model.
This is called the presentation, or composition, part of the cycle. The
compositor is the mechanism by which presentation occurs.

5 5 5 5
()] = — O = — (@] = — (@] =
£ g X = 2 = = i) = = o
[0) c Q [0) c Q [0) c Q [0) c
g g 3 g g 3 g g 3 g o
0 = 0 = 0 = 0
= & = & = & = &
0 1 2 3 Window’'s

@ @ @ @ clock ticks

Figure 3-23: The modeling/presentation cycle

Each tick of the window’s clock drives a complete modeling/presentation
cycle. The modeling and presentation run in the same thread, and alternate, as
shown. The modeling runs, and when it’s done the presentation runs, followed
by slack time at the end of each cycle, which is when other threads run. The
slack interval is filled with other operations, like garbage collection. Note that
Figure 3-23 is greatly simplified, as it combines all modeling into one block,
ignores interleaving of other threads that can occur during modeling, and
assumes there is only one compositor running.

Both modeling and presentation are triggered by clock callbacks. Controllers
that have a t i ckl e method also need to be triggered once each tick of the
clock. Each space initially sets up a controller callback to call t i ckl e on its
controllers. Likewise, each compositor initially sets up a composite callback to
draw all of the changed presenters. As a result, at each tick of the window’s
clock, the controller callback tickles all of the window’s “ticklish” controllers
(ones that have defined a t i ckl e method), and then the compositor callback
draws all changed presenters. If a controller callback and a compositor callback
are scheduled to happen at the same time, the controller callback is given
priority.

In a similar manner, if a model or presentation hierarchy contains a sub-space,
that space initially sets up a controller callback on its clock. When the
controller callback triggers, it tickles all controllers in the space that implement
atickl e method before compositing begins.

A single thread manages both controller callbacks and the compositor callback
for all spaces, including spaces in other models and presentation hierarchies.
This thread is labeled the “user priority callbacks” thread. The reason these
callbacks are managed in the same thread is to ensure strict serialization,
meaning that every scheduled controller is tickled at least once before the
compositing begins. The modeling in this thread cannot be interrupted by the
compositor—all scheduled t i ckl e methods run to completion. This means,

93

ScriptX Components Guide

94

however, that while the simulation is being run, no compositing can take place
and, perhaps more significantly, while compositing is taking place, no
simulation can be expected.

This serialization eliminates the temporal aberrations caused when a model is
in an incomplete state during compositing. Note that modeling that occurs
outside of that thread can still have this problem of being interrupted by a
compositor. Such is the case for event processing and independent threads.

Skip Compositing If Late

Once every tick of a window’s clock, its periodic callback calls conposi t € on
the 2D compositor, which then calls dr aw on presenters that need to be
re-drawn. (A presenter needs to be re-drawn if not i f yChanged has been
called on it or it has been newly exposed by movements in other presenters.)
You can specify that a callback not be called if it would call conposi t e later
than its specified time. In this case, if the callback calls conposi t e later than
its scheduled time, the callback skips that cycle. Thus, either all presenters get
drawn or, if late, none get drawn.

The mechanism for doing this is the Per i odi cCal | back instance variable
ski pl f Lat e. Setting it to t r ue causes the compositor to do nothing during a
cycle in which the callback is behind schedule. The compositor does nothing
because the callback will wait for the next appropriate time to call conposi te
instead of trying to catch up by calling conposi t e repeatedly. Note that it is
possible for a callback never to catch up.

Access to ski pl f Lat e is illustrated in the following code:

nyW ndow. cl ock. cal | backs[1] . skiplfLate := true

For the compositor callback, the default value for ski pl f Lat e is tr ue,
whereas, the default for periodic callbacks in general is f al se.

Running Separate Threads

In general, you should not manipulate a model from a separate thread. The
compositor would not be aware of other threads, and would begin its phase at
its normal time, at the next tick, when the modeling in its own thread is
complete. The compositor does not wait for operations from another thread to
be completed. The result could be compositing a state that should never have
existed in the model, where objects appear in unexpected places, like the
robot/ball example in “Temporal Aliasing” on page 96, only to greater degree.

The Modeling Phase

The modeling phase of the compositor’s cycle is a slice of time during which
model objects interact and the controllers manipulate model objects. A title can
contain any number of spaces, each of which can have its own controllers; the
Space class maintains a list of controllers in its cont r ol | er s instance
variable. Each space schedules a periodic callback on its clock to “tickle” its

Spaces and Presenters

contollers at one tick intervals. This callback iterates through the space’s list of
controllers, calling t i ckl e on each controller, beginning with the first
controller in the list. (The order in which the controllers are listed matters only
when one object in the space depends on another object in the space.) It is the
use of controllers which are activated by the space’s clock that makes precise
synchronization possible in ScriptX. For scenes where timing and
synchronization are important, as in a time-based simulation, all model
updates should be managed by controllers.

During the modeling phase, the compositor accumulates a record of changes to
presenters, which it uses to redraw the screen during the presentation phase.
Each time any TwoDPr esent er object’s boundary, image, or position changes,
that presenter calls its not i f yChanged method to inform the compositor that
it should add the changed region to its refresh region. All methods defined in
the core classes that cause a change to the appearance of a presenter call

not i f yChanged automatically.

TwoDMultiPresenter Drawing Order

Instances of TwoDMultiPresenter draw in the same order as other presenters:
e Fill the TwoDVul t i Present er object’s background
e Stroke the TwoDMUI ti Present er object’s outline

e Draw its subpresenters that intersect the changed region (skipping
presenters whose di r ect instance variable is set t r ue)

Note that since the subpresenters are drawn last, they can draw over the
border of the 2D multipresenter.

As with all other presenters that have the instance variable fi | |, the 2D
multipresenter saves time if its fill is undef i ned. If no part of its fill is visible
because its contents cover it, then leave the fill set to undef i ned.

Synchronizing Clocks

Instances of both TwoDSpace and W ndow have clocks that determine at what
rates they are composited. When you put a 2D space into a window, if the two
clocks are not synchronized, visual abberations can occur, such as temporal
aliasing. To prevent aberrations, it’s important that the clock for the 2D space
be slaved off the window’s clock. When you add the 2D space to the window,
this master-slave connection of clocks is automatically made for you.

In other words, to ensure that clock rates are relative to the rate of the top
clock, it is important for “sub-clocks” to be slaved off some top clock. This
synchronizes the clocks at all rates. The following statement makes the
window’s clock be the master of the space’s clock:

nySpace. cl ock. mast erd ock := nyW ndow cl ock

95

ScriptX Components Guide

96

The mechanism for auto-connecting clocks is found in the pr esent edBy
instance variable. Any presenter that is added to or removed from another
presenter has its pr esent edBy instance variable changed; the

present edBySet t er method automatically calls adj ust Cl ockMast er to
connect the new clock as a slave to the next clock above it.

Note that if you have done any customization to the timing hierarchy, that
customization will not be overridden. That is, if you have changed the clock of
the 2D space to be slaved off another clock besides its default, that connection
will not be disturbed.

Not all presenters have clocks; however, all members of the Space family of
classes have clocks, which includes windows, 2D spaces, and group spaces, as
indicated by the presence of a cl ock instance variable.

When a time-driven model does not live in a window, the model should have
its clock connected to the clock hierarchy of the window displaying it. This
connection would not be made automatically, since the model is not in a
presentation hierarchy, and hence has no pr esent edBy instance variable. You
need to make the master-slave connection yourself, as is done in the following
code:

nodel d ock. mast erd ock := nyW ndow. cl ock

However, there may be titles where you want to stop the window’s clock but
continue running the model space; in this case, the model space would have its
own top clock, rather than a clock which is slaved off the window’s clock.

The next section describes how temporal aliasing occurs and the kinds of
effects it causes. For related information, see the earlier section “Clocks and
Timing” on page 52.

Temporal Aliasing

If a title contains one or more objects driven by clocks, an effect called temporal
aliasing can occur. Temporal aliasing is an aberration of the model due to
timing. Temporal aliasing commonly shows up as a jerkiness in the movement
of animations and other time-based effects. In special cases it can cause more
obvious, but still momentary, aberrations.

For example, suppose you have a top space containing a bouncing ball and a
sub-space that is designed to hold just a robot. The robot has legs that enable it
to move around, and an arm that can swing at the ball. It also has a
collision-detection controller that enables it to determine when the ball is near.
Temporal aliasing could show up as a disconnect between the robot and the
ball, where the robot swings at the ball and the ball appears momentarily to
move past the robot’s arm before it bounces off the arm.

Temporal aliasing occurs when the ratio of the scales of two clocks in a title is
not an integer. From the perspective of the compositor’s clock (the window’s
clock), one of the following must be true to avoid temporal aliasing:

e If the compositing clock’s scale is greater than the other clock’s scale,

Spaces and Presenters

compositing clock’s scale / clock scale = integer

e If the compositing clock’s scale is smaller than the other clock’s scale,
clock scale / compositing clock’s scale = integer

Thus, a compositor’s clock scale of 1, 2, 4, or 8 is compatible with a clock scale
of 2 and 4, but a scale of 3, 5, or 7 for the compositor’s clock causes temporal

aliasing.
To ensure that clock rates remain at these ratios as you change the rate of the

top clock, it is important for “sub-clocks” to be slaved off the window’s clock.
This synchronizes the clocks at all rates.

To demonstrate temporal aliasing, Figure 3-24 shows the timing diagram for
the robot/ball example, described earlier, with the ball set to a scale of 3, the
robot set to a scale of 2, and the robot space’s clock slaved off the ball space’s
clock. The shaded regions are the modeling intervals where the robot and ball
controllers run. Temporal aliasing is caused by two effects:

1. The ball goes through two modeling cycles between the first and second
presentation phases.

2. The ball’s modeling phase shifts in time relative to its compositing phase. At
its third presentation phase, the ball is being displayed in a relatively old
state (.33 ticks old). If the ball were moving fast, it could appear to pass the
robot’s arm.

Note that the robot controller’s callback and the compositor’s own callback are
both scheduled to begin at 1 tick. Because controllers have priority over
compositors, the robot’s callback occurs first, followed by the compositing
phase.

| |© - 3= - 3

g} Slo |@ S22 K9] S|o

s |Elg| |8 £(8lE 8| [EE

= oz = ole|8 c olg

S| |0l8| |§ 0l6|8 o 0|8

O |slg| 12 5|2/§ o B|E

= Q|0 3 QT S Q|0

2 olo| |8 ol8[0 3 0|0
| o2 ez = _
\ [\ \
0 66 1 1.33 2 2.66 3 Top presenter’s

@ @ @ @ clock ticks

Figure 3-24: Temporal aliasing due to non-integer ratios of clock scales

Note that Figure 3-24 shows the timing for a single display surface with its
presentation hierarchy. If there were another display surface, then its

compositor callback would be scheduled at each tick of its window’s clock.
Independent compositing blocks would appear in this figure at those times.

Spaces and Presenters Examples

This section gives examples that use classes in the Spaces and Presenters
component.

97

ScriptX Components Guide

98

A Simple Notice Window with a Pushbutton

A W ndow object of type @ot i ce represents a modal window—that is, it does
not allow access to any other windows until it is closed or hidden. Every notice
window requires some mechanism that allows it to close. This example creates
a new class called Cl osabl eNot i ceW ndow that includes a pushbutton that
allows the user to close the window, as shown in Figure 3-25. When a user
clicks on the close button, the window is hidden and then automatically
garbage collected (unless some reference to it still exists in the program).

Close

Figure 3-25: An instance of ClosableNoticeWindow with a close pushbutton.

class d osabl eNoti ceWndow (Wndow) end

nmethod init self {class O osabl eNoti ceWndow} #rest args ->
apply next Method sel f type: @otice args -- calls init on
- - super cl asses

nethod afterlnit self {class O osabl eNoti ceWndow #rest args -> (
apply nextMethod self args -- calls afterlnit on supercl asses

-- create an actuator controller for any pushbuttons in the w ndow
new ActuatorControl | er space:sel f whol espace: true

-- create the pushbutton

local closeButton := new Pushbutton
closeButton.x := 75

closeButton.y := 90

cl oseButton. stroke : = bl ackBrush

-- define the rel eased presenter
local buttonText := new TextPresenter \
boundary: (new Rect x2:50 y2:20) target:"d ose"
setDefaul tAttr buttonText @lignnment @enter
cl oseButton. rel easedPresenter := buttonText

-- define the pressed presenter
cl oseBut t on. pressedPresenter := new TwoDShape \
target: (new Rect x2:50 y2:20) fill:blackBrush

-- define the window to hide when nouse button is rel eased
cl oseButton. activateAction := (notlsed button ->
hi de butt on. pr esent edBy)

-- append the button to the wi ndow and show the w ndow
append sel f cl oseButton
show sel f

)

new d osabl eNoti ceWndow centered: true boundary: (new Rect x2:200
y2: 200)

CHAWPTER

Controllers

ScriptX Components Guide

100

Controllers

The Controllers component defines classes that can monitor and manipulate
model objects in a space. Controllers are themselves non-visible, and can
operate on either visible or non-visible objects.

The concrete controllers described in this chapter (some of which are loadable)
are Bounce, Gravity, | nterpol at or and Movenent . They directly control
the state of model objects in a space without user interaction. For example, you
could attach Bounce and Movenent controllers to a 2D space, then add into
the space a 2D presenter that inherits from Pr oj ect i | e; this object would be
a target of those controllers, and would bounce off the edges of the space.

Controllers can also be driven by user interaction. The User Interface chapter
describes a set of controllers that respond to input events, such as mouse
movements and mouse clicks. These controllers receive and process mouse
events, changing the state of the presenters they control based on user input.

Controllers use features defined in a number of other ScriptX components. The
Spaces and Presenters component provides the fundamental Space family of
classes; a space is the only environment in which a controller can operate. The
Collections component provides a framework that allows a controller to hold
multiple objects, and defines the protocol for adding, setting, removing, and
accessing model objects.

Classes and Inheritance

The class inheritance hierarchy of the Controllers component is shown in the
following figure.

IndirectCollection RootObject

Projectile

Controller

TwoDController

Bounce
Interpolator

—— ActuatorController Legend
Gray box= abstract class
— DragController Black box = concrete class

LayoutController No box = class belongs to another component

101

ScriptX Components Guide

The following classes form the Controllers component. Other controllers are
defined as part of the User Interface component. In this list, indentation
indicates inheritance:

Control | er — the root abstract class for controllers, Control | er
manipulates some or all of the objects in a space.

TwoDControl | er —similar to Control | er but also ensures that objects in
the controller’s collection are in the same order as they appear in the 2D
space, guaranteeing that objects are controlled in their front-to-back order.

Bounce - causes one or more presenters to bounce off the edges of the
container.

G avi ty — causes one or more presenters to accelerate in a specified
direction.

I nt er pol at or — moves one or more presenters to a specified point in a
specified amount of time, along a straight or curved path.

Movenment — moves one or more projectiles a distance calculated from
the object’s velocity vector.

Proj ecti | e — an abstract class that contains instance variables and methods
that need to be controlled by Bounce, Gravi ty, or Movenent .

Conceptual Overview

102

Most any title can be best understood by separating its constituent objects into
three basic functions, or roles: model, presenter and controller. The Space
family of classes provides the foundation for models. The Pr esent er family
of classes provides the foundation for presentations, or views. The

Control | er family of classes provides the ability to control model objects in
time and space. These three roles are described in greater detail in the
“Conceptual Overview” section of the “Spaces and Presenters” chapter.

Controllers can both monitor and manipulate objects in a space. For example, a
Gravi ty controller might look to see how fast an object is moving before
determining how far it should move that object.

Controllers often define “natural laws” governing members of the space. In
physical simulations, controllers can define the force on objects due to gravity.
Controllers can watch the distance between objects and perform some
operation based on proximity, such as collision detection or magnetic
repulsion.

Developers can create their own controllers. The controllers described in this
chapter are sample controllers included basically for demonstration purposes,
and some of them ship with the ScriptX Language and Class Library as
loadable classes rather than in the core classes:

e Bounce - causes presenters to bounce off the edges of their container.
e Gravity — causes presenters to accelerate in a specified direction.

e | nterpol at or — moves presenters to a specified point in a specified
amount of time, along a straight or curved path.

Controllers

e Mbvenent — moves projectiles a distance calculated from the object’s
velocity vector.

Controller Class

The abstract Cont r ol | er class provides the set of instance variables and
instance methods common to all controllers. The instance methods are empty
in Control | er; concrete subclasses provide individual implementations of
these methods.

One key protocol that controllers can implement is the Ticklish protocol. A
controller that implements an instance method for t i ckl e is said to be
“ticklish.” This method is used to specify a repeated action that a controller
performs on its target objects each time the space’s clock ticks.

Atickl e method can perform both monitoring and control activities. For
example, in the Bounce class, a ScriptX loadable class, t i ckl e checks to see if
the object has hit a side of the container. If so, it changes the object’s velocity so
that it moves in a new direction.

The other controller methods, obj ect Added, obj ect Renoved, and

i sAppropri at eCbj ect, along with the pr ot ocol s instance variable,
operate similarly to their counterparts in the Space class. These methods allow
you to determine which objects are added to a controller, and to perform any
specified action when an object is added to a controller or removed from it.

Whenever an object is added to a controller, the object is checked to ensure that
its protocols match those expected by the controller. This means that each
object added must be an instance of or inherit from the classes listed in the
controller’s pr ot ocol s instance variable. If the object does not have the
correct protocol, then the object is not added.

TwoDController Class

The TwoDCont r ol | er class inherits from Contr ol | er and has the same
features of that class but with one difference: it ensures that objects being
controlled are ordered in the controller’s collection in the same order as they
appear in the 2D space. Since this order determines the z-order of objects, it
guarantees that objects are controlled in their front-to-back order.

When to Use Controllers

Since there are many ways to control objects in a space, the question arises—
when should you use a controller? You should use a controller when there is a
single outside force affecting more than one object. For example, you would
use an Act uat or Cont r ol | er when you have several pushbuttons in a space,
since you want them all to operate identically. It doesn’t make much sense to
use a controller unless there is a one-to-many relationship of controller to
objects.

103

ScriptX Components Guide

Imagine a space where a flock of birds is flying. If you used a controller to
control the wing motion of a bird, then all birds would have identical wing
motion. However, if you wanted each bird to have unique wing motion, then a
single controller would not provide the behavior you would want for all birds.
Nor would it make sense to create a separate controller for each bird. In this
case, it would be more appropriate for the class of birds to define the general
motion and have each bird individualize that motion.

It would, however, be appropriate to create a controller that represents the
wind, which blows all birds along relative to the ground. The wind is a force
outside the birds that has an impact on each bird it encounters.

How Controllers Work

104

Controllers operate on objects in spaces. Spaces and controllers work together
closely—to understand controllers, it is important to understand how they
work with spaces.

Attaching a Controller to a Space

Controllers require a space on which to operate—they cannot operate on
objects outside a space. Controllers rely on the space’s clock for their timing.

Each space keeps a list of controllers that manipulate objects in the space. To
attach a controller to a space, you assign the space to the controller’s space
instance variable. The space in turn automatically adds the controller to its
read-only cont r ol | er s instance variable. The space instance variable
determines which space the controller is controlling, and ensures that the
controller manipulates only one space at a time.

Here’s an example of creating a space and attaching the space to the controller
using the space: keyword:

nyWndow : = new Wndow boundary: (new Rect x2:640 y2:440)
nyGavity := new Gavity space: nyW ndow

Thereafter, when an object is added to the space, the space notifies each
controller, and if the controller’s whol eSpace is t r ue, the object is also added
to the controller.

If a controller implements the Ticklish protocol, the controller’s space calls

ti ckl e on that controller each time the space’s clock ticks, allowing the
controller to perform a repeated action. With every tick of the space’s clock, the
space iterates through each of its controllers that implement the Ticklish
protocol, allowing them to perform some periodic action. A t i ckl e method
must run to completion without blocking within in a fraction of a tick, since all
controllers run once every tick. For information on blocking, see the section
“Blocking” on page 591 of Chapter 22, “Threads.”

Note that controllers themselves are not added to the space in the way model
objects are—controllers remain outside the space but are attached to it.
Controllers must eventually have an effect on presenter objects that they
control for their effects to be visible.

Controllers

What is a Controller?

Each controller is a collection that holds the objects it controls. These objects
are its so-called target objects. A controller is a collection by virtue of inheriting
from | ndi rect Col | ecti on. Although controllers provide the Collection
protocol, the Control | er class does not define which Col | ecti on class is
used as a target collection. Each concrete subclass of Cont r ol | er can define
its own target collection to store its target objects in the most appropriate way.
Within the core classes, all indirect collections currently use an array as a their
target collection, and are optimized to work with arrays.

The controller in Figure 4-1 has the two members nyBal | and myOval . These
are the objects that are controlled by the controller. The controller’s space
instance variable specifies the particular space it is attached to—in this case,
the space my Space.

The controller can be disabled by either setting its enabl ed instance variable
to f al se or by removing the controller from the space. In addition, objects can
be added to or removed from a controller, which allows behaviors to be added
to or subtracted from an object over time.

Consider a space that contains four objects, as shown in Figure 4-1. Two of the
objects are projectiles. Notice that the controller myBounce has whol eSpace
set to t r ue, so all appropriate objects in my Space are added to nmyBounce.
This means only nyBal | and nyOval are successfully added to myBounce,
since they are projectiles, and hence satisfy the protocol. Because myBal | and
myOval are members of myBounce, they are being controlled in my Space.

myBounce mySpace
Instance Variables: Instance Variables:
enabled true target undefined
protocols Projectile height 20
wholeSpace true width 50
space [position 100, 100
Members: fill whiteBrush
myBounceld] myBall stroke blackBrush
myBounce[2] myOval presentedBy undefined
subpresenters []
Members: ¥
mySpace[1] myMoviePlayer
mySpace[2] myBall
mySpace[3] myOval
mySpace[4] MyRect

Figure 4-1: The members of myBounce are controlled in mySpace.

Note — The Bounce class has no effect unless mixed in with the Movenent
class. Then an object that inherits from the Proj ecti | e class can bounce off
the sides of its container.

105

ScriptX Components Guide

106

Defining Your Own Controller

If none of the controllers in the core classes performs the task you need, you
can define a subclass of Control | er for that task. In any subclass of
Control | er, you typically specialize the instance methods

i sAppropri at eObj ect, obj ect Added, and obj ect Renoved. If the
controller implements the Ticklish protocol, it should also specialize t i ckl e.
Descriptions of these methods follow.

The Ticklish Protocol

Controllers that implement the Ticklish protocol define a method for ti ckl e.
A controller class can specialize t i ckl e to define an action that a controller
performs at each tick of the space’s clock. The Ticklish protocol is implemented
differently in every concrete subclass of Cont r ol | er that defines a method for
tickl e. A controller that implements this protocol is said to be “ticklish.”

Ati ckl e method can both monitor and control target objects. For example, in
the Bounce class (a ScriptX loadable class), the t i ckl e method monitors
whether the target object has hit a side of the container. If so, it sets a new
value for vel oci ty, taking into account the value of el asti city (both
instance variables of Proj ecti |). The ti ckl e method for the Movenent
class monitors the value of a projectile’s vel oci t y instance variable,
calculates the distance the projectile should have moved with that velocity, and
moves the projectile that distance.

Imagine a space that has a ball and two controllers, a Bounce controller and a
Movement controller. The ball is a 2D shape with the Proj ect i | e class mixed
in, which allows it to be controlled by Bounce and Movenent . The Bounce
class defines a t i ckl e method that calculates the velocity that the ball should
have, based on whether it has hit the edge of the space—it updates its

vel oci ty instance variable, but does not move the object. Movenent defines
amethod for t i ckl e that moves the ball to a point determined by multiplying
its vel oci ty times the length of a tick.

Figure 4-2 shows a greatly simplified flowchart of the operations that occur: the
ti ckl e method for Bounce is called on all of the bounce target objects, then
the t i ckl e method for Movenent is called on all of the movement target
objects, and then the presentation of the objects occurs. Under control of the 2D
compositor, this process draws the changes to the screen, making them visible
to the user. This process is also called compositing. This flowchart shows only
the controllers in relation to the compositing—it ignores everything else that is
going on in the system.

Controllers

|

Tickle all Bounce targets
in the space

l

Tickle all Movement targets
in the space

@ Do presentation

l

Wait til next tick

Figure 4-2: The tickle method is called once on each ticklish controller with every tick.

©

O,

Figure 4-3 demonstrates the same operations as the previous figure, but along a
time line. It shows the frequency at which the two t i ckl e methods are
invoked—once with every tick of the space’s clock, just prior to compositing.
Presentation and compositing are described in Chapter 3, “Spaces and

Presenters.”

Bounce
Movement
Presentation
Bounce
Movement
Presentation
Bounce
Movement
Presentation

|
‘0 1 2 3 ticks of ock
space’s cloc
D D ¥ *

Figure 4-3: Each controller that is ticklish runs a repeated action once each with tick.

The space’s clock determines how often objects in that space are tickled.
Repeated actions are invoked through callbacks on the space’s clock. The space
schedules a callback to run at every tick of its clock. When this callback runs, it
sequentially calls t i ckl e on every controller that implements a ti ckl e
method, beginning with the first controller in the list. In this particular case,
the order in which the controllers are listed is important because Movenent
depends on the velocity set by Bounce, which means that Bounce must
operate before Movenent .

When a title contains multiple spaces, each space schedules its controllers to
run at 1 tick intervals according to its own clock.

To make the ball stop bouncing, you could stop the space’s clock, you could
disable the Bounce and Movenent controllers, or you could remove the ball
from the Bounce and Movenent controllers. The first two choices would stop
all objects in the space. When there are two interdependent controllers

107

ScriptX Components Guide

108

affecting an object, they both need to be turned off or on at the same time;
otherwise, when they are turned on, the object could jump off the screen. You
can define a function that turns them both on or off.

You can implement t i ckl e to manipulate the target objects in several
different ways. It can watch for changes in the target object’s state, it can wait
for events that are related to the model objects, or it can operate periodically.

For more information on how controllers interact with the compositor, see
“The Modeling /Presentation Cycle” on page 92 of Chapter 3, “Spaces and
Presenters.”

Specifying an Object To Be Controlled

A controller can be attached to only one space at a time, and can control only
objects in that space. The controller is a collection that holds the objects to be
controlled.

Once a controller is attached to a space, it can either control all or some of the
objects in the space, depending on the value of the controller’s whol eSpace
instance variable:

e When whol eSpace is set to t r ue, the controller automatically looks at all
the objects in the space, and adds objects with the appropriate protocol to
the controller.

e When whol eSpace is set to f al se, the controller is emptied of its target
objects. Objects in the space are not automatically added to the controller.
You must explicitly add objects to the controller (using Col | ecti on
methods) if you want them to be controlled.

In either case, any time an object is added to a controller, it is tested with
i SAppropri at eObj ect before actually being added.

Adding an object to a controller is quite similar to adding it to a space; since
they both inherit from | ndi rect Col | ecti on, they both use the same
methods.

You add objects to the controller using the collection methods defined for its
tar get Col | ect i on class—methods such as pr epend, append, addFi r st,
and so on. These collection methods are all specialized in

I ndi rect Col | ecti on to call two additional methods on the controller:

i sAppropriateCbj ect and obj ect Added, as shown in Figure 4-4. Using

prepend as an example, this flowchart shows four steps:

1. Call pr epend on the controller to add an object.

2. The pr epend method is specialized in | ndi r ect Col | ecti on to call the
i sAppropri at eObj ect method, as implemented in the controller, to
check if the candidate object conforms to the pr ot ocol s. If
i sAppropri at eCbj ect returns t r ue, then the procedure continues.

3. The pr epend method is called, as implemented in the t ar get Col | ect i on
class. This actually adds the object to the controller, causing the object to
come into the controller’s realm of control.

Controllers

4. The obj ect Added method is called.

The obj ect Added method is automatically called any time an object is added
to a controller. You can specialize obj ect Added in any controller class you
define to perform any action you want to occur every time an object is added.

A controller can use i SAppr opri at eObj ect to reject objects and use

obj ect Added to modify objects that it wants to include. This allows the
controller to impose constraints on objects that it can control. For instance, the
gravity controller might require objects to have a mass instance variable—it
could either reject objects that have no mass, or send them to a more
appropriate space.

The controller’s obj ect Renbved method, also shown in Figure 4-4, is
automatically called whenever an object is removed from the controller. You
can also specialize it to perform any action you want to occur every time an
object is removed from the controller.

The object that has been added to or removed from the controller is
automatically passed as the second argument to the obj ect Added and
obj ect Renoved methods.

The i sAppropri at eObj ect method works with the pr ot ocol s instance
variable as described in the next section.

prepend deleteOne
(in IndirectCollection) (in IndirectCollection)

deleteOne

‘ objectRemoved ‘

Figure 4-4: Methods prepend and deleteOne are specialized in IndirectCollection.

Protocols

A controller restricts the objects that may be added to it by using protocols the
same way a space does. The Cont rol | er class defines a pr ot ocol s instance
variable, which is a list of classes you specify. If the object being added has all
the protocol classes among its superclasses, it is added; otherwise, it is rejected.

For example, if the controller were controlling a physical simulation you might
allow in only objects that were projectiles—you would do this by adding the
Proj ecti| e class to the protocols list. If you wanted to further restrict the

109

ScriptX Components Guide

members to be projectiles that are also 2D presenters, you would add
TwoDPr esent er to the protocols list. Refer to the section “Protocols” in the
“Spaces and Presenters” chapter for more details.

User Interface Controllers

The User Interface component also defines several controllers. Unlike the
controllers defined by this component, which manipulate a target object
automatically with each tick of the clock, user interface controllers respond to
user input. These controllers receive user-generated events and process them,
modifying the state of their target objects. For example, a button is associated
with an actuator controller. This controller receives and processes mouse
events, so that the button knows when it is pressed, released, or disabled. For
more information, see the “User Interface” chapter.

Contention Among Controllers

Imagine you define a Bal | class that mixes Dr agger and Proj ecti | e, and
create an instance of it. You put the ball in a space that is controlled by
Bounce, Gravi ty, Movenent and DragControl | er. You expect the ball to
bounce around in the space, and expect to be able to grab it with the mouse,
drag it around, and let go.

You will find that you cannot drag the ball with the mouse, because the
Movement controller is not designed to release control to the
DragControl | er.

To make these classes work together, in the gr abAct i on method defined in
Dr agger, remove the ball from the Movenent and Gr avi t y controllers. Then
as you mouse-down on the ball and drag it around, the Dr agCont r ol | er will
be in control. In the dr opAct i on method, put the ball back under the control
of the Movenent and Gravity controllers.

Controller Example

110

The following is a complete, working script that demonstrates a few simple
controllers in use.

The Bouncing Ball

The following script demonstrates how controllers work. It demonstrates a
bouncing ball in a space, using three controllers: Gr avi t y, Bounce,
Movenent, and the required mixin class Pr oj ect i | e, which is required by
controllers. (Pr oj ect i | e is not itself a controller.)

Once the space is set up with the controllers and the ball is added, the
Gravi ty controller makes the ball accelerate downward. The Bounce class
calculates its new velocity at each collision with the wall of the space. The
Movement class actually moves the ball to its new position.

Controllers

Figure 4-5: The ball falls due to gravity, then bounces off the space’s edges.

The Projectile

The Bal | class mixes TwoDShape and Proj ecti | e to produce a presenter
that can have a velocity. The Proj ecti | e class has instance variables for

el asticity and vel ocity that Bal | uses. When el asti city issetto0,
the projectile will lose all energy in a collision; when it is set to 1, the projectile
is perfectly elastic and will lose no energy. A value greater than 1 causes the
projectile to gain energy on collision. The r est art method allows you to
restart the ball, once it has run out of energy and stopped bouncing.

-- Make a projectile by defining a class that
-- inherits from both TwoDShape and Projectile
class Ball (TwoDShape, Projectile)

end

-- Method for initializing an instance of Ball
nethod init self {class Ball} #rest args ->
(

apply next Method sel f args

self.x := 50

self.y := 50

self.elasticity := 1

self.velocity := new Point x:-8.0 y:4.0

-- Method to restart the ball bouncing
nmethod restart self {class Ball} ->

(
self.x := 50

self.y := 50
self.velocity := new Point x:-8.0 y:4.0

Set Up the Space and Controllers

This part of the script creates a window, which is a subclass of TwoDSpace,
and then it creates the controllers Gr avi t y, Bounce, and Movenent . For each
controller, it sets whol eSpace to t r ue so that any object added to the space
will automatically be added to the controllers.

-- Set up the w ndow

gl obal nyWndow : = new Wndow boundary: (new Rect x2:400 y2:250)

fill:blackBrush
nyW ndow. x :
nyWndow y :

40
40

111

ScriptX Components Guide

112

show nyW ndow

-- Oeate the controllers
global nyGavity := new Gavity space: nyW ndow
nyQ avi ty. whol eSpace := true

gl obal nyBounce := new Bounce space: nyW ndow
nyBounce. whol eSpace : = true

gl obal nyMyvenent := new Movenent space: nyW ndow
nyMovenent . whol eSpace : = true

Create and Add the Ball

It’s important to add the ball to the space after all the controllers are set up, so
that all controllers can start controlling the ball at the same instant. This script
creates the ball, then adds it to the space

-- Oreate an instance of Ball and add it to the space
global nyBall := new Ball target:(new Oval x2:20 y2:20) fill:whiteBrush
prepend nyW ndow nyBal |

At this point you should see the ball bouncing off the walls of the window.
Since the el asti ci ty instance variable is set to 1, the ball keeps bouncing
without losing energy. Using the code below, you can reset el asticity toa
value less than 1 to see it slow down, and then after it has slowed down, start
it bouncing again:

nyBall.elasticity := 0.8 -- set so that the ball wll |ose energy
-- wait several sedonds and then restart it
restart nyBall

CHAWPTER

User Interface

ScriptX Components Guide

114

User Interface

The User Interface component includes a set of classes, mostly presenters and
controllers, that can be used to create user interface elements. These classes
form all the standard graphical interface controls, including menus, push
buttons, and scroll bars, that embody the desktop metaphor.

This component builds directly on two other components covered in earlier
chapters—Spaces and Presenters, and Controllers. User interface classes also
interact with clocks, and they receive mouse input through the event system.
Much of the underlying complexity of the ScriptX presentation model and
event system are hidden in the user interface classes, yet these classes are
flexible and open, easy to specialize.

The User Interface classes can be put to use in a ScriptX title with very little
programming. Although they define many variables and methods that are
visible to the scripter, most are not meant to be called directly from a script.
This approach allows an author to selectively override any aspect of their
behavior. An author can use classes that the User Interface component defines
as the basis for creating new kinds of user controls.

Classes and Inheritance

The class inheritance for the User Interface component is shown in the
following figure.

RootObject

I

TwoDPresenter

I

IndirectCollection

TwoDMultiPresenter

|
ScrollBar

ScrollingPresenter

PushButton

Legend

Grey box= abstract class

Black box = concrete class

No box = class belongs to another component

|
|
Controller

TwoDController
DragController
ActuatorController
RadioButtonController

RowColumnController

115

ScriptX Components Guide

The following classes form the User Interface component. In this list,
indentation indicates inheritance. Most of the classes in this component inherit
from either TwoDPr esent er or Cont r ol | er. Exceptions are the Act uat or
and Dr agger classes.

Act uat or — an abstract class with the basic protocol for pressing, releasing
and testing the state of push buttons.

PushBut t on — an actuator that presents a button that the user can press to
trigger an action.

Toggl e — an actuator that implements toggles and radio buttons.

Scrol | Bar — a presenter that displays a bar that a user can manipulate (scroll)
to set a numeric value, and to trigger an action each time that value changes.

Scrol I'i ngPresent er — a presenter which allows a user to view a larger
object, scrolling to view all its parts.

Menu — a pull-down or pop-up presenter that presents a list of push buttons
arranged in a row or column layout, allowing the user to make a selection.

Dr agControl | er —a controller that can be attached to model objects that
inherit from Dr agger and TwoDPr esent er, to map mouse events to changes
in the location of the object.

Act uat or Control | er —a controller for actuators that maps mouse events to
release and press calls on actuators.

Radi oBut t onControl | er — an actuator controller that controls actuators
to ensure that only one of a group is selected at a time.

RowCol utmCont rol | er —alayout controller that arranges objects attached to
a space in rows and columns.

Dr agger — an abstract, mixin class with a set of fully implemented methods to
make objects dragable.

Note — See the Text and Fonts component for the Text Edi t class, an
additional user interface class. Just as the classes in the User Interface
component are presenters that automatically receive and process mouse events,
the Text Edi t class is a presenter that receives and processes keyboard events.

Conceptual Overview

116

Think of the objects in the User Interface component as user interface building
blocks that are constructed from simple parts — pieces that are themselves
objects. These “object parts” include presenters, spaces, and controllers. User
interface objects can share parts for a common look or feel. Each of these parts
can be modified or dynamically changed. In some cases, these parts are
supplied automatically; in other cases, they must be supplied by the script that
creates a new object.

User Interface

In general, ScriptX does not give user interface objects any intrinsic
appearance. In most cases, their appearance is defined by the presenters they
manage. For example, when a button is pressed, the PushBut t on class swaps
its r el easedPr esent er for its pr essedPr esent er, and when the button is
disabled, it displays its di sabl edPr esent er. These three presenters,
specified as instance variables for any PushBut t on object, give that button its
appearance.

Each object part separates out one aspect of a user interface object’s behavior.
Change the presenters, and you change the appearance. Change the controller,
and you change the behavior or layout of model objects. User Interface objects
have a modular, object-based design that can be used to make systematic
changes in entire groups or classes of objects. For example, a multimedia title
could create a new kind of menu by redesigning the layout controller that
controls target presenters in the Menu class.

User interface objects are both simple and powerful. A Scr ol | Bar object
manages a set of stencils, a clock, a controller, and a set of interests in mouse
events. Collectively, these objects give an author access to hundreds of instance
variables and methods, providing “hooks” so that the scrolling metaphor can
be extended in an infinite number of ways. ScriptX has the power to create
virtually any appearance or behavior in a user interface. Yet an author can
create and manage scroll bars with very little programming.

How User Interface Objects Work

For every class in the User Interface component (except Scr ol | Bar), there is
an essential relationship between presenters and controllers. Cont r ol | er
classes, such as Act uat or Cont r ol | er, manage presenters, such as

PushBut t on and Menu. Scr ol | Bar, a special case, has characteristics of both
a presenter and a controller.

Every class in this component is an instance of TwoDPr esent er or

Control | er, with two exceptions. The two exceptions, Dr agger and

Act uat or, are designed to be “mixed in” with a TwoDPr esent er class. In
effect, they are building blocks to add significant features to presenters, to
create new kinds of presenters. Indeed, what they really do is make it possible
to create a presenter that is controlled by a DragControl | er or

Act uat or Control | er object.

Presenters and User Interface Objects

ScriptX follows the paradigm, established with SmallTalk, of separating a
model object from its presentation and control. A presenter is a view of some
model object or data that is separate from that data. For more information, see
the section entitled “Model-Presenter-Controller System” on page 45 in the
Spaces and Presenters chapter.

The User Interface component contains several classes of presenters that
display other presenters. For example, a PushBut t on object displays one of
three presenters, stored in the instance variables pr essedPr esent er,

117

ScriptX Components Guide

118

rel easedPr esent er, and di sabl edPr esent er. The Toggl e class
specializes PushBut t on by adding two more presenters: the
t oggl edOnPr esent er and the t oggl edOf f Present er.

A button’s presenters are layered. More than one presenter can be displayed at
a time. Think of these presenters as being superimposed, one on top of another.
The compositor draws the background first, then the middle ground (for a
toggle), and finally the foreground.

Figure 5-1 depicts this layering effect on a Toggl e object. It shows how a
toggle that is currently toggled on, but disabled, is composited to a window.
First, the compositor draws the released presenter, which forms a backdrop.
Next, the toggled-on presenter is superimposed on top. Finally, the disabled
presenter, which forms the foreground, is drawn over the others.

<

< » ()

Disabled Toggle-on Toggle-off Released Pressed
presenter presenter presenter presenter presenter

Figure 5-1: When a Toggle object is composited, several presenters are superimposed
to form a single view.

Objects in the User Interface component know how to size themselves
correctly. Some of these objects calculate their size by calculating the union of
the boundaries of their subpresenters. For example, the boundary of a Toggl e
object is the smallest rectangle that can enclose all of its five presenters.

: |_ U
— _I
Toggle object Boundary of Toggle object

Similarly, a Menu object, together with the layout controller that is associated
with it (a RowCol utmCont r ol | er object), automatically lays out the actuators
that are its subpresenters and sizes the menu’s space correctly to enclose them.

User Interface

< |
1< |
> »>
M |

Actuators Boundary of Menu object

A Scrol | Bar object does the opposite—it lays out and draws all of its stencils
according to its own dimensions. When a scroll bar is attached to a scrolling

presenter, the scrolling presenter sizes the scroll bar correctly to span the sides
of its clipping stencil. The scroll bar, in turn, sizes and lays out its own stencils.

Implications of the Presentation Hierarchy

A single presenter cannot be presented by more than one presenter. Since
presenters are in a strict presentation hierarchy, a given presenter can only be
in one position in the tree. Two presenters cannot share the same
subpresenters.

If several user interface objects share a common look, they do so by defining
separate presenters that individually target the same model objects. Another
approach is to create a subclass that overrides dr aw in the parent class.

Suppose that you want to create two instances of Toggl e with the same
appearance in a space. In Figure 5-2, each toggle presents an 0 graphic with its
toggled-off presenter, a 0 graphic with its toggled-on presenter, and a black
rectangle as its released presenter. The pressed and disabled presenters are
undefined.

In the diagram, one instance of Toggl e is toggled on, and the other is toggled
off. Each Toggl e object defines three separate and unique presenters, all of
which are instances of TwoDShape. Different instances of TwoDShape can
target the same Bi t Map object, allowing the two Toggl e objects to share the
same look. Note that the toggle-on and toggle-off presenters are both layered
on top of the released presenter. In Figure 5-2, the two bitmaps represent data,
while the presenters that target them represent views of that data.

119

ScriptX Components Guide

120

Toggle

Class
(presenter)
TwoDShape / l \ / l \

Class Toggle-on Toggle-off Released Toggle-on Toggle-off Released
(presenter) presenter presenter presenter presenter presenter presenter
Bitmap \\\(/

Class

(stencil)

Figure 5-2: User interface objects that present a common appearance should define
separate presenters that target the same model objects.

A given presenter can only appear once in the presentation hierarchy. While
two separate presenters cannot share or reuse a presenter, a given presenter
can reuse the same presenter in certain circumstances. For a toggle, on and off
represent two mutually exclusive states. For this reason, an instance of Toggl e
can define the same presenter as its t oggl edOnPr esent er and

t oggl edOF f Present er. On and off are mutually exclusive states, so the
toggled-on and toggled-off presenters are never presented at the same time.
However, the same toggle cannot reuse its t oggl edOnPr esent er as its
pressedPr esent er. For more information on sharing or reusing presenters,
see the “Spaces and Presenters” chapter.

Layering of Presenters

Push buttons and toggle buttons inherit their ability to display more than one
presenter at a time from TwoDMul ti Present er, a class which incorporates
the Collection protocol through the class | ndi r ect Col | ecti on. These
classes use z order as a layering device.

When an object is added to or removed from the subpresenters list, its z order
determines its placement within the list. The PushBut t on and Toggl e classes
impose a predetermined z order on their presenters, which is determined at
compile time, but a developer can override this ordering at runtime. For
example, suppose that a developer creates a new class of actuators that inherit
from Toggl e and share a common bitmap as a background theme. If these
actuators add a new presenter, in its own layer, that presenter must set a lower
value of z than other presenters in the subpresenter list if it is to be displayed
behind the others. For more information on ordering subpresenters, see the
discussion of z-ordering that begins on page 85 of the “Spaces and Presenters”
chapter.

User Interface

Controllers and User Interface Objects

Each 2D presenter class in this component is associated with one or more
controllers. In the User Interface component, controllers manage presenters.
For example, an actuator controller calls the pr ess, r el ease, acti vat e, and
mul ti Acti vat e methods on any actuators it controls. The one exception, the
Scrol | Bar class, embodies characteristics of both a 2D presenter and a
controller.

In this component, the 2D presenter classes exist in a number of a discrete
states. For example, a simple push button can be pressed, released, or disabled.
For each state, the push button itself determines which presenter is composited
to the display surface, and which actions are called. But the controller tells the
button when to change its state. It is the controller that manages the
underlying event interests, receiving input from the user.

Note that some presenters in this component have more than one controller
associated with them, each of which is responsible for a different aspect of
behavior or presentation. The Menu class requires a layout controller to arrange
the objects it controls and an actuator controller to manage the actuator
behavior of those objects.

A controller is always attached to a space—it can only control objects that are
attached to its space. In the User Interface component, this space is an instance
of TwoDSpace or Gr oupSpace. To be managed by a controller, a model object
must first be added to its space. And if that controller does not manage all
objects in its space (whol eSpace is f al se), then the model object must be
explicitly added to the list of objects controlled by that controller. For more
information, see “Specifying an Object To Be Controlled” on page 108 in the
“Controllers” chapter of this volume.

Controllers and Hit Testing

Hit testing is the process by which mouse events are matched with a given
presenter in the presentation hierarchy. Act uat or Control | er and

Dr agControl | er perform precision hit testing. These classes can detect that a
mouse click occurred not only within the bounding rectangle of a presenter
they are controlling, but also within the actual image area of its stencil.

The St enci | class defines the i nsi de method, used to determine whether a
given point is inside its image area. If i nsi de returns t r ue for a point within
the bounding box of a stencil, then precision hit testing applies at that point.
For the two presenters depicted in Figure 5-3, all points within the circular
image area are inside the stencil, including points within the star for the
presenter on the right. For more information about St enci | and its
subclasses, see the discussion that begins on page 240 in the “2D Graphics”
chapter.

121

ScriptX Components Guide

122

—

Figure 5-3: Precision hit testing means that hit testing applies only to points that are
inside the image area of a stencil.

Since the PushBut t on and Toggl e classes have multiple presenters, they do
hit testing on a rectangular boundary, the boundary of the smallest rectangle
that encloses all of the object’s presenters. However, it is possible to create a
subclass of Act uat or —a scripted class that inherits from both Act uat or and
TwoDShape—that uses the precision hit testing features of the

Act uat or Control | er class. For an example, see page 135.

Hit Testing Within Subspaces

When the value of whol eSpace is set to t r ue for a user interface controller,
the controller maintains only a single set of event interests, which it associates
with the space as a whole. The controller maintains event interests and
performs hit testing for the space as a whole. Although this usually saves
memory, it can be a source of ambiguity when that space contains another
space, and the contained space has its own attached controllers.

The problem occurs with controller classes, such as DragControl | er and
Act uat or Control | er, that receive and process mouse events. Ambiguity
arises because the controller attached to the contained space stores interests in
mouse events in that space’s event | nt er est s instance variables. (Note that
TwoDSpace inherits from TwoDPr esent er, which defines an

event | nt er est s instance variable for storing interests in mouse events.)

Sands Crater
(TwoDSpace)
Oil slick
Lunar Base Lunar Rover
(TwoDSpace)

Figure 5-4: Hit testing and drag controllers

Figure 5-4 illustrates how this ambiguity can arise. In Figure 5-4, Lunar Base
and Sands Crater are TwoDSpace objects, and Sands Crater is contained in
Lunar Base. The lunar rover and the oil slick are both Dr agger objects, but
they are not controlled by the same drag controller. The lunar rover is

User Interface

controlled by a drag controller that is attached to Lunar Base, while the oil slick
has a drag controller that is attached to Sands Crater. The lunar rover is in front
of Sands Crater in the presentation hierarchy.

Now suppose that we drag the lunar rover so that it is over the oil slick. Since
the lunar rover is the frontmost presenter, we expect that when we grab the
lunar rover, it will be the presenter that responds. The event system searches
for interests in mouse events in depthwise order, beginning with the frontmost
presenter. If all interests were stored on the top presenter, Lunar Base, no
ambiguity would arise. However, since Sands Crater is a separate TwoDSpace
object, its attached controllers associate their event interests with Sands Crater.

If the user clicks on the lunar rover over an area that is also covered by the oil
slick, another Dr agger object, the oil slick ends up being the object that is
grabbed. Since event interests are not stored on the lunar rover, the event
system first searches for interests on the oil slick, which has none, and then on
Sands Crater, where it matches the event with an interest. Since the event
system examined the interest on the oil slick first, it triggers the drag of the oil
slick, and not of the lunar rover.

‘ Lunar Base ‘

N

‘ lunar rover ‘ ‘ Sands Crater ‘

A 4
‘ oil slick ‘

Figure 5-5: The presentation hierarchy for presenters in Figure 5-4

For non-ambiguous hit testing, set the value of whol eSpace to f al se and
add each model object to its controller separately. When whol eSpace is

f al se, the event system itself performs the hit testing, and interests are stored
with the presenter that is to be controlled. Although this uses more memory, it
insures that events are accurately matched and delivered to matching interests.
Setting whol eSpace to t r ue is useful for palettes of controls that have no
subspaces.

Actuators

Act uat or is an abstract class that can be mixed in with other classes to create
a presenter that behaves like a button. In ScriptX titles, actuators commonly
appear in concrete form as PushBut t on and Toggl e objects. Act uat or is not
a TwoDPr esent er class. An author can create a concrete subclass of

Act uat or, but it must inherit from both Act uat or and TwoDPr esent er if it
is to be controlled by an Act uat or Cont r ol | er object.

An actuator implements the actuator protocol. Every actuator responds to the
activate, nultiActivate, press, and r el ease methods. These
correspond to changes in its state. These methods are called automatically by
an actuator controller whenever there is a corresponding change in state. Any
2D Presenter can respond to user input, by posting event interests and

123

ScriptX Components Guide

124

receiving mouse events, but actuators extend the button metaphor much
further. An actuator can respond to user input to show its state—pressed,
released, or disabled.

PushButton

A push button is a user interface element that can have three different and
distinct appearances: pressed, released, and disabled. These three appearances
correspond with three states. Buttons modify their appearance by changing
their presenters, so a push button defines one presenter for each state. Each
presenter should provide visual feedback to the user, indicating the state of the
button. For example, one convention in user interface design is to invert a
graphic image when a button is pressed and lighten or “gray” that image when
the button is disabled.

released

-

Figure 5-6: A button passes between three states.

disabled

The PushBut t on class is flexible enough to create any appearance or behavior
that an author desires in a button. In a children’s title, the released presenter
could be an alert and standing elephant, while the pressed presenter could be
an elephant that is kneeling or bowing. The disabled presenter could display a
sleeping elephant. Some buttons invoke an action only when they are pressed;
others, when they are released.

Most of the methods defined by the PushBut t on class are not meant to be
called from the scripter. They are visible to the scripter so they can be
overridden. In this way, PushBut t on class can be the basis for almost any
kind of behavior that builds upon a button metaphor.

Within the ScriptX core classes, PushBut t on has a specialized concrete
subclass, the Toggl e class. Toggl e modifies PushBut t on by using two
additional states, toggled on and toggled off. These states are associated with
two presenters, the t oggl edOnPr esent er and t oggl edOf f Pr esent er, that
indicate the state of a toggle. A toggle is either on or off at all times. The
toggled-on and -off presenters are layered on top of the pressed and released
presenters. Toggl e specializes the act i vat e method to call either t oggl eOn
or t oggl eOf f, methods on Toggl e. Common applications of Toggl e are
radio buttons and check boxes.

User Interface

Controllers and Buttons

Controllers maintain a list of objects that they manage—objects that are
associated with their space. In the User Interface component, actuator
controllers manage groups of buttons, both as stand-alone elements of a user
interface and as parts of another larger object, such as a menu or scrolling list.
Controllers manage the state of the buttons they control, and thus control their
presentation.

Radio buttons are a convention of graphical user interface design. Press a radio
button, and it goes into its toggled-on state, automatically turning off other
buttons that belong to the same group. Check boxes are a simpler version of
radio buttons, controlled independently. Press a check box, and it toggles on,
but it has no effect on other buttons near it. The Radi oBut t onControl | er
class manages a group of actuators, allowing them to behave as a unit like a
group of conventional radio buttons. An actuator controller can be used with
the Toggl e class to create the behavior of a check box. See “ScriptX Widget
Kit” on page 138 for more about radio buttons and check boxes.

Detecting Multiple Clicks

ScriptX does not explicitly define a double-click or multiple-click mouse event.
A multiple click is a gesture, a series of individual clicks within a given
interval of time. A double click is just a special case of a multiple click—a
multiple click with only two clicks.

Actuator controllers interpret a series of mouse-up events over a given interval
as a multiple click. When an actuator controller detects a multiple click, it calls
mul ti Acti vat e on the actuator it is controlling. A script can specify a
function that will run each time nul ti Acti vat e is called using the

mul ti Acti vat eActi on instance variable.

In graphical user interface design, double clicking is treated as an extension of
single clicking. A common design convention is that a single click selects an
item, while a double click acts on it. In applications that handle editable text, a
single click moves the text cursor, a double click selects an entire word of text,
and a triple click (if defined) may select an entire line or paragraph.

Table 5-1 indicates the sequence of events when a user double clicks on a
mouse button. The actuator controller that is associated with the actuator
receives a series of mouse-down and mouse-up events, recorded in column
one. It responds with the method call in column three. Assuming that the
second mouse-up event is received within a given time, it calls

mul ti Acti vat e after the second click. (Otherwise, it repeats the call to
acti vat e, interpreting the user’s gesture as a pair of single clicks.)

125

ScriptX Components Guide

Table 5-1: A double click gesture is a series of mouse events

Event Event Interest Method Called Scripted Response
MouseDownEvent presslnt erest press pressAction

(Actuat or Control l er) (Act uat or) (Act uat or)
MouseUpEvent activatel nterest activate activat eAction

(Actuat or Control l er) (Act uat or) (Act uat or)
MouseDownEvent pressl nt erest press pressAction

(Actuat or Control | er) (Act uat or) (Act uat or)
MouseUpEvent activatel nterest mul ti Activate nmul ti ActivateAction

(Actuat or Control |l er) (Act uat or) (Act uat or)

By default, an actuator controller is only interested in mouse events that occur
on the first mouse button. A developer can modify the event interests
associated with an actuator controller to detect and respond to events on other
buttons.

Scrolling Presenters

126

A scrolling presenter presents a target presenter, also a 2D presenter, whose
boundary is taller or wider than its own boundary. This target may be an
instance of any TwoDPr esent er class, such as TwoDShape, PageEl enent, or
Text Edi t . In effect, the Scrol | i ngPresent er class gives the user a
mechanism, common to all presenters, for viewing a portion of some larger
presenter. Note that a scrolling presenter cannot have a direct presenter as its
target—a direct presenter is one that draws directly to the screen rather than
through a Bi t mapSur f ace that acts as a frame buffer.

A scrolling presenter derives its appearance, in part, from the objects it
presents, but Scrol | i ngPr esent er, like its target presenter, is itself an
instance of TwoDPr esent er. The TwoDPr esent er class defines methods that
a scrolling presenter uses to draw itself. The following demonstrates the
distinction between the properties and behavior of a scrolling presenter and
those of its target.

-- this sets the scrolling presenter’s stroke
nyScrol | . stroke := bl ackBrush

-- this sets its target’s stroke

nyScrol | . target Presenter. stroke := bl ackBrush

When you create a scrolling presenter, you can supply a horizontal or vertical
scroll bar to allow user control of scrolling. You can bring portions of the target
presenter into view by calling scr ol | To. There is no default scroll bar; you
must specify a Scr ol | Bar object. If present, scroll bars are inset within the
boundary of a scrolling presenter, and they are sized automatically. The region
within the scroll bars is described by a stencil that is stored in the

cl i ppi ngPresent er instance variable defined by Scr ol | i ngPr esent er
and is used to clip the target presenter.

User Interface

Menus

A fundamental feature of object-oriented
programming is the ability of developers to
define new behavior starting with existing,
tested templates. Encapsulation makes
behavior modular, providing well-defined
protocols for interacting with objects and

_ - - Taccessing their data. Inheritance makes it
-7 possible to define new classes of objects,
- based on their differences, from existing
.- classes. Polymorphism lets a space define
accessing their data. Inheritance makes it Ljaeréfsatﬁzrls
Eossible to define new classes of objects, eating titles the target of a
ased on their differences, from existing Its, a scrolling presenter
classes. Polymorphism lets a space define “digital
a single protocol for its model, and allows Crle‘;;ed
developers to create diverse objects that o code assets
a scrolling | respond to that protocol. By creating titles ke, as media
presenter modularly, using media objects, a e title after
developer can quickly build a “digital e of these
backlot” of objects that can be reused .0""-
whereever they may be needed. The .
inherent modularity will make code assets L
as valuable, and as marketable, as media o
assets. As developers create one title after .
Figure 5-7: A scrolling presenter presents a selected portion of a target object,

another 2D presenter, that is potentially much larger than itself.

TwoDSpace is a concrete class that inherits from both TwoDMul t i Pr esent er
and Space, combining the behavior of presenters and spaces. A scrolling
presenter often has a TwoDSpace object as its target, a space to which other
presenters can be appended. It is also possible to attach a controller to this
space. This strategy is used by subclasses of Scrol | i ngPresent er that
present and control multiple items, such as Menu.

Among the document classes, the class TwoDSpace can be instantiated as a
PagelLayer. A scrolling presenter can target a page layer, creating a scrollable
view of a page on a virtual document. To create a page layer that is scrollable,
create a subclass of Scrol | i ngPr esent er that also inherits from

DocTenpl at e, and make the PageLayer object be the target of the new
scripted class.

W ndow also a subclass of TwoDSpace, cannot be the target of a scrolling
presenter, since a W ndow object must always be at the top of its presentation
hierarchy. A script can create a window and append a scrolling presenter of the
same width and height to it.

Subclasses of Scr ol | i ngPr esent er, including the Menu class, present a list
of choices by presenting actuators in the scrolling presenter’s space. This
approach to selecting items from a menu or list is different from what is found
in either the Macintosh and Windows environments. In ScriptX, the menu item
is an actuator, and an actuator is itself an object. It may invoke an action,
defined by a script, when it is pressed or released. Think of the Menu class as a
mechanism for presenting a list of actuators. These actuators have the same
individual characteristics and behavior as any actuator in ScriptX.

Menu is a subclass of Scrol | i ngPr esent er that creates its own target
presenter, a TwoDSpace. An author adds actuators to this space, usually
PushBut t on or Toggl e objects. Since the menu acts as a proxy for its own

127

ScriptX Components Guide

128

target, an author can add objects directly to the menu. In the following
example, MenuOpt i on is a scripted subclass of PushBut t on that presents a
Text Present er object. Cr ane, Egr et , and Her on are MenuQpt i on objects.

nyBi rdMenu : = new Menu pl acenent : @enuDown
-- Orane and Egret are MenuQption objects, instances of PushButton
addMany nyBirdMenu #(COrane, Egret)

Every menu has two controllers that operate on objects in its space. One of
these is an an Act uat or Cont r ol | er object that controls the state of the
objects in the menu; it controls the actuators in the menu and allows the menu
to pop down or out as appropriate. The other is a RowCol utmControl | er
object that controls the layout or position of objects in the menu. By default,
this RowCol utmCont r ol | er object organizes its targets into a single column.

Every menu must have an invoker in order to be displayed. The invoker is
usually an actuator, such as an instance of PushBut t on. A given menu can
have more than one invoker. The invoker instance variable, defined by Menu,
stores only a reference to the most recent invoker. A menu does not maintain
any collection that stores a list of possible invokers. To make an actuator be an
invoker of a menu, set the menu instance variable, defined by the Act uat or
class.

In the following example, pi ckOne is a MenuQOpt i on object, an instance of
PushBut t on. The script makes pi ckOne the invoker of the menu that was
defined above, myBi r dMenu, and then adds an additional actuator to that
menu.

pi ckCne. nenu := nyBirdMenu -- pickCne is a MenuQption button object
addOne pi ckOne.menu Heron -- Heron is another MenuQption button

An Act uat or Control | er object activates a menu by calling the instance
method popup on the Menu object it is invoking. When it calls popup, it
automatically supplies the invoker, setting the i nvoker instance variable on
the menu that was called. If a menu is invoked from another menu, the menu
actuator controller supplies the correct supermenu as an argument to popup.
Otherwise, the value of super Menu is undef i ned.

A menu can use its i nvoker or super Menu instance variables to traverse
backward, to find the original actuator or the top-level menu that caused it to
be invoked. The instance variables i nvoker and super Menu each refer to the
most recent invoker or supermenu. ScriptX places no restrictions on how a
menu is used, so it is quite possible for a given menu to be reused in different
places, to have different invokers and different supermenus under different
circumstances.

A menu can use its subMenu instance variable to traverse forward, to find the
bottom of the hierarchy of currently popped-up menus. The instance variable
subMenu refers to the currently popped-up submenu of the current menu; it is
not a collection. If the current menu has no submenus, or if none of its

submenus is currently popped up, then the value of subMenu is undef i ned.

User Interface

ScriptX places no restrictions on how a menu is used, so it is quite possible for
a given menu to be reused in different places, to have different invokers and
different supermenus and submenus under different circumstances.

In the following diagram, Ci ty is the supermenu of Nei ghbor hood and

St at e is the supermenu of Ci ty. As the user selects first a state, then a city,
and finally a neighborhood, the Act uat or Control | er class calls popup on
the submenu each time a new menu is invoked. A menu controller manages all
of the actuators in its associated space so that they present themselves to the
user correctly. For example, Cal i f or ni a in the St at e menu displays its
pressedPr esent er until the user either makes a selection in the final
submenu, or clicks somewhere outside of the presenters that the menu actuator
controller is controlling.

State City Neighborhood

California [3| san Diego 3

Oregon (3l Sa a 0 Haight-Ashbury

Washington P‘SGnJose D | Nob Hill

San Mateo [A Noe Valley

San Rafael » | Russian Hill

Telegraph Hill

Figure 5-8: A group of super/sub menus

In the figure above, after the user selects Noe Val | ey in the final menu, the
following expressions are equivalent:

Nei ghbor hood. super Menu. super Menu
A ty. super Menu
State

The following expressions are also equivalent:

Nei ghbor hood. super Menu. i nvoker
G ty.invoker
California

ScriptX supports both the “click” and “drag” styles of selecting from a menu, a
design feature it shares with Windows, NextStep, Motif, and many other
graphical-user-interface standards. A developer can modify the style of menu
selection by creating a specialized version of Act uat or Control | er and
setting the act uat or Cont r ol | er instance variable on a menu.

A menu pops up in one of three places: below its invoker, to the right of its
invoker, or at the mouse pointer. A script sets the value of the pl acenent
instance variable, defined by the Menu class. To place the menu anywhere else,
override the pl ace instance method in a subclass. Note that pl acenent is a
property of a Menu object itself, and not of the actuator that acts as its invoker.

129

ScriptX Components Guide

130

A menu’s layout controller is concerned with the location of individual
actuators within its space. The RowCol utmControl | er class is a
specialization of the TwoDCont r ol | er class for use by user interface objects.
RowCol utmCont r ol | er objects control the placement of objects within a
space. RowCol utmCont r ol | er objects may coordinate the layout of many
objects, or they may constrain the placement of individual objects. If a

RowCol utmCont r ol | er controls its entire space, it will attempt to modify the
space to grow or shrink to fit all contained items.

Scroll Bars

A Scrol | Bar object is not associated with a controller. Instead, it acts as its
own controller. Although not explicitly attached to a controller, it shares a
similar design with other objects in the User Interface component. For a code
example that creates an instance of Scr ol | Bar, see page 133.

Presentation and control are separated in the Scrol | Bar class, just as with
other classes in this component. A scroll bar derives its appearance from its fill
and stroke and from the stencils it presents. It indicates that it is disabled by
not drawing its thumb stencil and by drawing its disable brush on top of its
track, increment, and decrement areas. Its increment and decrement stencils
also have counterparts that can be used when these areas are pressed.

A Scrol | Bar object manages a set of event interests. For example, a scroll bar
is interested in mouse-down events that occur over its thumb, increment, and
decrement stencils and its track area when these areas are in their released
state, and it is interested in mouse-move and mouse-up events when these
areas are in their pressed state. A scroll bar adds and removes these interests
dynamically as the user interacts with the scroll bar, so that the underlying
event system is completely hidden from the user.

You can customize a Scr ol | Bar object by modifying its fill and stroke and its
stencils. Your script can draw on a wide range of behavior in a scroll bar with
very little programming. For example, by omitting the increment and
decrement stencils, and by setting the value of pageAnount to 0, a

Scrol | Bar object can serve as a slider control such as a volume or contrast
control.

Dragging the thumb stencil or clicking in the increment, decrement, or track
areas changes the value of a scroll bar. This value can be updated continuously
as the thumb is moved, or it can update only when the mouse button is
released over the thumb, increment, decrement, or track areas. Each time this
value changes, the Scrol | Bar object automatically calls a function specified
by the author, stored in its val ueAct i on instance variable. It calls this
function with three arguments: aut hor Dat a, scr ol | Bar, and val ue. The
first of these is supplied by you, stored in the scroll bar’s aut hor Dat a
instance variable. The second argument is the scroll bar itself. The final
argument is the new value of the scroll bar.

Like other user interface classes, Scrol | Bar defines many instance methods
that are not meant to be called directly. They are visible to you so they can be
overridden in a scripted subclass.

User Interface

Draggers

Dr agger is a mixin class, like several classes defined by other components in
ScriptX. Other mixin classes in the core classes include SequenceCur sor,
DocTenpl at e, and Act uat or, which is also described in this chapter.

A mixin class is never instantiated directly. It is always combined with a base
class. By creating a scripted subclass that inherits from both, a developer can
add features to the base class. In most cases, there are restrictions on what base
classes a mixin class can be joined with. To be controlled by an instance of
DragControl | er, a Dragger object must be a combination of Dr agger and
a TwoDPr esent er class. A dragger is often a simple presenter such as a
TwoDShape, but the Dr agger class can also be combined with more complex
presenters, including any of the presenters in the User Interface component.

To make a DragCont r ol | er object control a given Dr agger object, add the
dragger to the controller’s space. If the value of whol eSpace is t r ue, the drag
controller controls all Dr agger objects in its space. If this value is f al se, then
Dr agger objects must be explicitly added to the drag controller in order to be
controlled by it. A given drag controller may control multiple instances of

Dr agger. This controller manages the location of draggers within a space by
modifying their x and y instance variables as the user moves the mouse.

Note that a dragger can only be controlled if it is in a space with a drag
controller attached. It does not have to be constrained to that space. In its gr ab
method and its gr abAct i on script, a dragger can determine the area it can be
dragged over by changing its space. For example, a dragger could remove
itself from its current space and add itself to the space that contains the current
space, giving itself a greater range of movement.

The Dr agger class divides a dragging operation into four discrete phases, for
which it defines four corresponding methods: gr ab, bef or eDr ag,

af t er Drag, and dr op. The first and last of these methods, gr ab and dr op are
called only once during each drag operation, at the beginning and at the end.
The other two, bef or eDr ag and af t er Dr ag are called continuously as an
object is dragged. An author can specify a function that will be called each time
a Dragger object enters one of these phases.

How Controllers Manage Presenters

User interface objects receive and process events automatically, ultimately
calling a function that is defined by the user. Most developers never have to go
into the internal mechanisms by which controllers manage presenters. The
following section is for advanced users who intend to specialize one of the core
classes in the User Interface component.

In the User Interface component, controller classes maintain event interests and
receive events, while presenter classes respond to their respective controllers.
The DragControl | er and Dr agger classes are typical. Suppose that the user
clicks on a Dr agger object. This click, a mouse-down event, sets off a chain of
method calls. This initial click on a Dr agger object is called grabbing, and it
will place the object under the Dr agCont r ol | er object’s control, allowing the
model object to be dragged around until the mouse button is released.

131

ScriptX Components Guide

132

1. When a script creates a Dr agger object and places it in the control of a drag
controller in that object’s space, the DragCont r ol | er class registers an
interest in mouse-down events, which it stores in its gr abl nt er est
instance variable. As the user clicks the mouse and moves it to various
locations on the screen, this controller adds and removes its interest in
various classes of mouse events, as appropriate. It associates this
gr abl nt er est with an event receiver function, its pr ocessG ab method.

2. The user clicks on the Dr agger object. Since the drag controller registered
an interest in mouse-down events, the pr ocessG ab method automatically
receives this event.

3. The pr ocessGr ab method on Dr agControl | er triggers the gr ab method
on Dr agger. By specializing gr ab, an author could modify the behavior of
an entire subclass of Dr agger objects.

4. The gr ab method on Dr agger calls a scripted function, specified by the
author, stored in the gr abAct i on instance variable, using the value stored
in aut hor Dat a as its argument. This function also receives an additional
argument, a point representing the offset of the mouse pointer that selected
it. This function sets the behavior of a particular instance of Dr agger when
the object is grabbed. The function stored in gr abAct i on runs in the same
thread as gr ab, and returns control to gr ab after it runs.

When gr ab finishes executing, the grab operation is complete. The
DragControl | er regains control. It adds an interest in mouse-up events to
the dragger’s event | nt er est s collection, so that it can be informed when
the user releases the mouse button. It is ready to receive events that are
matched to its dr opl nt er est .

As the mouse moves, the DragCont r ol | er object polls the mouse device,
querying it for its location each time the space’s clock ticks. With each tick of
the clock, the drag controller checks both the mouse’s coordinates and the
event dispatch queue to determine whether the mouse has moved. If the
mouse has moved, it calls bef or eDr ag and af t er Dr ag on the dragger it is
controlling.

The following table shows how instance methods and variables defined by
DragControl | er coincide with instance methods and variables defined by
Dr agger. A DragContr ol | er object automatically processes mouse events
and polls the current mouse device for movement of the mouse. Each time
tickl e is called, it calls bef or eDr ag and then af t er Dr ag, mapping any
events or mouse movements to the corresponding method defined by

Dr agger, and ultimately, to a scripted function that is defined by the
developer.

Table 5-2: How a drag controller and a dragger work together.

DragController DragController Dragger Dragger

(instance variable) (instance method) (instance method) (instance variable)

gr abl nt er est process@ ab grab grabAction
tickle bef or eDr ag bef or eDr agAct i on

User Interface

Table 5-2: How a drag controller and a dragger work together.

DragController DragController Dragger Dragger

(instance variable) (instance method) (instance method) (instance variable)
tickle afterDrag afterDragAction

dr opl nt er est processDr op drop dropActi on

In this table, column one contains an event interest defined by

Dr agCont rol | er. Column two contains either an event receiver or the
generic t i ckl e. Both processGr ab and processDr op are event receivers,
functions that receive an event that matches the interest specified in column
one. The ti ckl e method is not an event receiver. For more information on
ti ckl e, see page 106 of Chapter 4, “Controllers.” Column three contains an
associated method, defined by Dr agger, which the method in column two
calls. Column four contains the name of a function that is called by the
corresponding method in column three. All of these methods and variables can
be defined or specialized at the scripter level to modify the behavior of an
instance of Dr agger, or an entire subclass of Dr agger objects.

Each class in the User Interface component is associated with a corresponding
set of interests, event receivers, and scripted user actions. A table for the

Act uat or Control | er class, equivalent to the one above, can be found in the
ScriptX Class Reference.

User Interface Examples

User Interface objects can serve as building blocks for creating every possible
variation on user interface controls—new styles of buttons, menus, scroll bars,
and other user interface devices. Objects in the User Interface component can
be used, with virtually no coding, by initializing the object and assigning
values to the presenters or stencils that determine its appearance. At the same
time, these objects can be the basis for creating a library of objects, with
different styles and behaviors that can be specified or selected by an author.

Creating an Instance of ScrollBar

This example creates an instance of the Scr ol | Bar class without using any
specialization. All five of the scroll bar stencils are defined (t hunbSt enci |,

i ncrement St enci |, decrenent Stenci |, pressl ncrenent Stenci |, and
pressDecrenent St enci |), as well as the fill and stroke for the enabled
scroll bar appearance and the brush for the disabled scroll bar appearance.

The increment and decrement areas are squares when they are not being
pressed and are circles when they are being pressed. The thumb of the scroll
bar displays the value of the position of the thumb. The text stencil that
displays this value has a bounding box that puts the stencil above the scroll bar
by default; this example shows the transformation applied to the text stencil to
make it visible in the track of the scroll bar.

133

ScriptX Components Guide

134

The stencils are black by default. To change this appearance, you can use
bitmaps for these stencils or you can specialize the dr aw method for
Scrol | Bar.

This example is available in DOCEXMP/ acgui de/ userintf/scrl | bar. sx.
After you run this file through the Listener, enter

sb.enabl ed := fal se

into the Listener to display the disabled appearance of the scroll bar. With the
scroll bar enabled again, observe the behavior of the scroll bar when you click
or hold down the mouse button on the increment and decrement areas and on
the track area of the scroll bar, and when you use the mouse to drag the thumb.

global sq := new Rect x2:20 y2:20

global ov := new Oval x2:20 y2:20

gl obal nyThunmb := new TextStencil \
font:(new platfornfFont name:"Arial" nacintoshNane: "Hel vetica") \
string:"0"

global nyMatrix := new TwoDMatrix ty:15

transf orm nyThunb. bbox nyMatrix @utate

gl obal grayBrush := new Brush color:(new REBCol or red: 128 \
green: 128 bl ue: 128)

object sb (ScrollBar) orientation: @orizontal

increment Stencil:sq, decrenentStencil:sq, thunbStencil:nyThunb

settings

wi dt h: 200

st roke: bl ackBr ush

fill:grayBrush

di sabl eBrush: grayBr ush

pressl ncrement St enci | : ov

pressDecr errent St enci | : ov

st epAount : 2

pageAnmount : 10

val ueAction:(a b ¢ -> b.thunbStencil.string := (c as String))
end

obj ect w (Wndow) nanme:"Scroll Bar Exanple"
settings
wi dt h: 200, hei ght: 40

end

append w sb
show w

This example uses the set ti ngs section of the object definition expression to
set values for several instance variables on instantiation. The setti ngs
notation is especially useful with user interface objects, since they define a
large number of instance variables that often determine much about the look
and feel of the controls they comprise.

The set ti ngs notation is useful for assigning a complete object as the value
of an instance variable, but it cannot be used to set an element such as a
member of a collection. However, a script could create a standard collection of

User Interface

attributes and assign the entire collection on instantiation to all appropriate
objects. This approach is useful for creating a group of objects that share a
common look and feel.

Many titles that use user interface objects use bitmaps, presented by
TwoDShape objects, in connection with user interface controls. Note that
bitmaps cannot be resized. A scroll bar can use bitmaps for its thumb,
increment, and decrement stencils.

Creating a New Actuator

The second code example creates a new class of Act uat or. ScriptX defines two
concrete classes of actuator among the core classes: PushBut t on and Toggl e.
Although an actuator controller is capable of precise hit testing, PushBut t on
and Toggl e both test for hits in their entire bounding rectangle.

Si npl eBut t on is a class that can present any instance of St enci | as a
button, including bitmaps, ovals, and paths. It is capable of precise hit testing
on these objects, even though they are not rectangular in shape.

Si mpl eBut t on is only one of many possible designs for such a button.

class SinpleButton (TwoDShape, Actuator)
instance vari abl es
aut hor Dat a
acti vateAction
pressAction
rel easeActi on
currentState -- either @p or @own
i nstance net hods
method init self #rest args -> (
apply next Method sel f args
self.currentState := @p

end

Every actuator implements the acti vat e, press, and r el ease methods.
These methods are not actually called from the scripter. The Si npl eBut t on
class follows the Actuator protocol so that it can be attached to an actuator
controller. An actuator controller receives mouse events and calls the
associated method on the actuators it manages.

net hod activate self {class SinpleButton} -> (
next et hod sel f
if self.enabled == false then (
return self
)

el se (
self.currentState := @p
self.fill := whiteBrush

handl eActi vate sel f
return self

)

)

nmethod press self {class SinpleButton} -> (
next met hod sel f

if self.enabled == false then (
return self
)

135

ScriptX Components Guide

136

el se (
self.currentState := @own
self.fill := blackBrush

handl ePress sel f
return self
)
)
met hod rel ease self {class SinpleButton} -> (
next net hod sel f

if self.enabled == false then (
return self
)

el se (
self.currentState := @p
self.fill := whiteBrush

handl eRel ease sel f
return self

For brevity, Si npl eBut t on does not specialize mul ti Act i vat e, the method
in the Actuator protocol that handles multiple mouse clicks. Since it does not
define a method for nul ti Acti vat e, it inherits a default implementation
from Act uat or, which does nothing.

Si mpl eBut t on factors its response to act i vat e, press, and r el ease into
two parts: a “handler” method and a scriptable “action” or response. For
example, act i vat e calls handl eAct i vat e, which responds by invoking the
function stored in act i vat eAct i on. This design reflects both PushBut t on
and Toggl e, the two concrete actuator classes in the core classes. Although
there is no reason that Si npl eBut t on must work like PushBut t on, there are
advantages to consistency in design. For example, a method that is written to
override the handl eAct i vat e method defined by PushBut t on could easily
be adapted to specialize Si npl eBut t on. This design also allows for easy
specialization at both the class and instance level.

nmet hod handl eActivate self {class S npleButton} -> (
if self.activateAction <> undefined do (
sel f.authorData := "activate"
(self.activateAction) (self.authorData) self

return self
)
net hod handl ePress self {class SinpleButton} -> (
if self.pressAction <> undefined do (
sel f.authorData := "press"
(sel f.pressAction) (self.authorData) self

return self

met hod handl eRel ease self {class S npleButton} -> (
if self.releaseAction <> undefined do (
self.authorData := "rel ease"
(self.rel easeAction) (self.authorData) self

)

return self

User Interface

To test Si npl eBut t on, we need a window, an actuator controller to control
objects in the window, and an instance of Si npl eBut t on. To demonstrate that
this script is responding to act i vat e, press, and r el ease, define a simple
function called beep. Set acti vat eActi on, pressActi on, and

rel easeActi on to call beep. Although there is no reason that it must be set
up this way, the function signature of an “action” for the Si npl eBut t on class
is the same as that for a PushBut t on or Toggl e object. Thus, a function or
method that could be the acti vat eActi on of a PushBut t on object could
also be the act i vat eAct i on of a Si npl eBut t on object.

obj ect nyWndow (W ndow)
boundary: (new Rect x2:200 y2:200)
settings x:300, y:50

end

show nyW ndow

-- create a controller to control actuators in the w ndow
obj ect nyActuatorController (ActuatorController)
enabl ed: true, space: nyWndow, whol eSpace:true
end
-- create an instance of SinpleButton
obj ect nyButton (S npl eButton)
boundary: (New Oval x2:100 y2:100), stroke: bl ackBrush
settings x:50,y:50
end
append nyWndow nyButton -- append it to the w ndow

-- set up a function for

-- activateAction, pressAction, and rel easeAction
function beep x y -> format debug "beep %\n" x @ornal
nyBut ton. acti vat eAction := beep

nyBut t on. pressAction := beep

nyButton. rel easeAction := beep

A more advanced version of Si npl eBut t on could specialize additional
methods. For example, the enabl edSet t er method, which sets the value of
the enabl ed instance variable defined by Act uat or, could be specialized to
change the appearance of a button when it is disabled. The setter methods for
each of the instance variables could be specialized to perform type checking. A
mul ti Acti vat e method could be implemented along the same lines as
activate, press, and r el ease.

Creating a Hierarchical Menu

The directory codesanp/ hi ar cmen/ contains an example of a hierarchical
menu. The file t ext menu. sx demonstrates how to create a hierarchical text
menu. The file bnpnenu. sx demonstrates how to create a hierarchical menu
that uses bitmaps as its items. The file r eqf i | es/ but t on. sx is a mixin class
that gives any TwoDShape the functionality of a pushbutton. The nedi a
directory contains bitmaps used in bnpmenu. sx. Run the t ext menu. sxt or
brpnenu. sxt files or open the | oadne files in the Listener.

A simpler example of a hierarchical menu is in
docs/ docexnp/ conpgui d/ useri ntf/ menu_eg. sx. Open this file in the
Listener.

137

ScriptX Components Guide

ScriptX Widget Kit

The ScriptX Widget Kit provides a set of simple widgets to save you time
creating your user interface. In general, Widget Kit objects use fewer presenters
and therefore perform better than other User Interface objects, but they are also
less customizable; they are less complex, but also less flexible. For example,
buttons in the Widget Kit derive their appearance from stencils and not from
subpresenters.

Classes and Inheritance

The class inheritance for the ScriptX Widget Kit is shown in the following

figure.
RootObject
Actuator Collection Dragger ColorScheme w ﬁ
\
IndirectCollection Presenter
\
TwoDPresenter

Space

TwoDMultiPresenter TextPresenter ScrollBar ﬁ

TwoDSpace — W SimpleScrollBar
TextEdit TwoDShape
RadioGroup
SmallTextEdit ListSelection
— PushButton ——

| ScrollingPresenter
Toggle ‘

ScrollingTextEdit
Menu
PopUpMenu

GenericButton ScrollBox

RadioButton MultiListBox

CheckBox ScrollListBox

StencilButton

TextButton Legend

Grey box= abstract class
Black box = concrete class

PopUpButton No box = Not a Widgets Kit class

The following classes form the Widget Kit in the User Interface component. In
this list, indentation indicates inheritance. Most of the classes in this
component inherit from TwoDPr esent er.

138

User Interface

Col or Schene — defines various grayed out and stippled appearances. You
should never need to instantiate Col or Scheme yourself.

Font Cont ext — defines two default font contexts. Make a new instance of this
class if you want your widgets to use a different font or type style.

Fr ame — defines the three-dimensional look of the button edges. You should
never need to instantiate Col or Schemne or Fr ame yourself.

Label —implements simple labels. These objects automatically size themselves
to fit the label text.

Generi cButt on — an abstract class that defines common button
characteristics.

Radi oBut t on — displays a filled circle when selected. Radio buttons can be
either selected or not selected (they are on/off buttons, or toggle buttons);
they do not automatically execute functions when they are selected.

CheckBox — displays a check mark when selected. Check boxes can be
either selected or not selected (they are on/off buttons, or toggle buttons);
they do not automatically execute functions when they are selected.

St enci | But t on — displays a bitmap or other stencil on a button. A stencil
button can execute a function when it is selected.

Text But t on — displays text on a button. A text button can execute a
function when it is selected.

PopUpBut t on — can display a PopUpMenu object when it is selected.
PopUpMenu — a Menu object that is the target of a PopUpBut t on object.

Radi oG oup — displays a set of Radi oBut t on objects or CheckBox objects.
Only one Radi oBut t on object or CheckBox object in a group can be selected
at a time.

Li st Sel ect i on —is the default value of the sel ect i on instance variable of
the Scr ol | Box class. You should never need to instantiate Li st Sel ecti on
yourself.

Scrol | Box —is an abstract class that provides basic functionality for scrolled
list box classes.

Mul ti Li st Box — displays a box with a multiple-column scrolled list. Its
l'i st is a collection, and its target is a TwoDMul ti Present er that
consists of one Li st Box for each column (for each element in the list
collection). The collection of lists scroll together.

Scrol | Li st Box — displays a box with a single scrolled list.

Li st Box — is a very simple class that lists non-selectable items in a
non-scrollable box. It is the target of the more interesting and useful
Mul ti Li st Box and Scr ol | Li st Box objects.

Si mpl eScr ol | Bar —is used in Scrol | i ngText Edi t, Mul ti Li st Box, and
Scrol | Li st Box. You could instantiate it by itself to use as a slider for
contrast or volume control, for example.

139

ScriptX Components Guide

140

Smal | Text Edi t — displays a small editable text field such as on a form.

Scrol | i ngText Edi t — displays a scrolled box of editable text.

Widget Kit Example

The example shown in this section demonstrates how to instantiate the widget
kit classes. For detailed information on the instance variables and instance
methods for these classes, see the ScriptX Class Reference.

This example and the title it builds are available online at uti | s/ wi dget s/.
In that directory you will find all the Widget Kit source code, plus the
following files associated with the example described in this section:

medi a — This subdirectory contains text files and other media that are used by
this example. Many of the Widget Kit classes require files in this directory, so
this directory needs to be in the same area with any other script you write that
uses Widget Kit classes.

wdgt est . sx — This is the ScriptX source file that is shown in this section.
Open this file in the Listener to produce a title file. By default, the title file will
be built in the same directory with the ScriptX application (t heStart Di r).

wdgt est . sxt — This is the title that is built when you compile wdgt est . sx
in the Listener. Open this file in the Kaleida Media Player to skip right to the
final result.

This example (and any script you create using the ScriptX Widget Kit) also
requires the widget library file, wi dget s. sx| . You will find this file in the
same directory with the ScriptX application and the Kaleida Media Player
(theSt art Di r). Include it in your script by opening the library as shown at
the top of this example.

The W dget | nt er f ace module referred to at the top of this example is
required by any script that uses the ScriptX Widget Kit. This module is built
into the widget library file, wi dget s.sxl.

When you complile this example, you get a message that a particular

HFSSt r eamobject cannot be made persistent. You can ignore this message.
The object referred to is the text that is imported into the

Scrol I i ngText Edi t object near the end of this example; this text stream is
not supposed to be saved as a persistent object, but rather is media that is read
into the title dynamically. You can change this text (and any of the other media
that are imported into this example) after you have created a title file. The new
media will be used the next time you run the title; you do not have to rebuild
the title to use modified versions of these imported media.

-- file wdgtest.sx
open LibraryContai ner path:"w dgets. sx|"
Modul e test
uses ScriptX, Wdgetlnterface
end
in nmodul e test
gl obal w := new Wndow
w fill := new Brush pattern: (inportD B "medi a/ bkgnd. bnp")
show w
global ac := new ActuatorController space:w whol eSpace:true

User Interface

-- Stencil Button
gl obal bitmapButton := new StencilButton \
stenci | : (i nport DI B "nedi a/ ki con. bnp")
bi t mapButton. position := new Point x:35 y:14
gl obal sbCaption := new Label text:"Stencil Button"
sbCaption. position := new Point x:10 y: 60
append w sbCaption
append w bit mapButt on

-- TextButton

global textB := new TextButton text:"Kaleida!"
textB. position := new Point x:120 y:30

gl obal tbhCaption := new Label text:"TextButton"
tbCaption. position := new Point x:120 y:60
append w tbCaption

append w textB

-- Scroll Li st Box

gl obal wdgclass_list := #("Col or Schene", "FontContext", "Frame", \
"Label ", "GenericButton", "RadioButton", "CheckBox", \
"StencilButton", "TextButton", "PopWButton", "Radi oG oup", \
"Li stBox", "Small TextEdit", "ListSelection", \
"SinpleScrollBar", "ScrollingTextEdit", "ScrollBox", \
"Ml tiListBox", "ScrollListBox", "PopUpMenu")

global slb := new ScrollListBox list:wdgclass_|ist \
boundary: (new Rect x2:135 y2:210) \
hasScrol | Bar: true

slb.x := 10

slb.y := 150

gl obal slbCaption := new Label text:"ScrollListBox"

sl bCaption. position := new Point x:10 y:120

append w sl bCaption

append w slb

-- CheckBox

global cb := new CheckBox text:"Check Me" frane: (new Frane)
cb.x := 170; cb.y := 130

gl obal cbCaption := new Label text:"CheckBox"

cbCaption. position := new Point x:170 y: 100

append w cbCaption

append w cb

-- Radio Button

global rb := new RadioButton text:"n/ O f" frane: (new Frane)
rb.x := 170; rb.y := 210

gl obal rbCaption := new Label text:"Radi oButton"

rbCaption. position := new Point x:170 y: 180

append w rbCaption

append w rb

-- Radio Goup
global rg := new Radi oG oup \
itenkList: #(@ne:"e", @wo: "Two", @hree: " Three")
rg.position := new Point x:170 y:290
gl obal rgCaption := new Label text:"Radi oG oup"
rgCaption. position := new Point x:170 y:260
append w rgCaption
append w rg

-- Smal | Text Edi t

global snall TE : = new Snmal | TextEdit text:("120" as Text) \
boundary: (new Rect x2:35 y2:20)

smal | TE x := 230

smal I TEy := 30

gl obal steCaption := new Label text:"Small TextEdit"

steCaption. position := new Point x:210 y:60

append w steCaption

append w snal | TE

-~ PopUpMenu

141

ScriptX Components Guide

gl obal puMenu := new PopUpMenu \
i st:#(@ne: "one", @wo: "two", @ewWdrds: "A Few Wrds") \
wi dt h: 104 actuatorControl | er:undefined | ayoutControll er:undefined
-- PopWpBut t on
gl obal popWB := new PopUpButton menu: puMenu val ue: @wo
popWB. x := 330
popWB.y := 50
gl obal punCaption := new Label text:"PopUpMenu"
punCaption. position := new Point x:330 y:20
append w puntCapti on
append w popUpB

-- Ml tiListBox
global mb := new MiltilListBox boundary:(new Rect x2:120 y2:120) \
list:#(#(1, @ne), #(2, @wo), #(3, @hree), #(4, @our), \
#(5, @ive), #(6, @i x), #(7, @even))
mb.x = 460
mb.y := 50
gl obal mbCaption := new Label text:"MiltiListBox"
M bCapti on. position := new Point x:460 y:20
append w m bCapti on
append w nib

-- Scrol li ngText Edi t

gl obal TEstream := getStream theScriptDr "media/scrollte.txt" \
@eadabl e

gl obal TEtext := inportMedia thelnportExportEngi ne TEstream @ext \
@SA | text @extEdit

gl obal scroll TE := new Scrol lingTextEdit \
boundary: (new Rect x2:280 y2:160) \
t ext Wdt h: 260 text Hei ght: 600 text: TEtext autoRecal c:fal se

scrol | TE x := 300

scrol | TEy := 200

gl obal scteCaption := new Label text:"ScrollingTextEdit"

scteCaption. position := new Point x:300 y:170

append w scteCaption

append w scrol | TE

global txtPres := scroll TE targetPresenter

global tc := new TitleContainer dir:theScriptDr path:"wdgtest.sxt" \
name: "Wdget Kit Test”

wtitle := tc

append tc (getMdule @est)

tc.startupAction := (tc -> for i in tc do load i; show w
close tc

142

C HAPTETR

Clocks

n ScriptX Components Guide

144

Clocks n

The Clocks component provides facilities for representing time, keeping track
of time, and scheduling and synchronizing timed sequences of actions. The
Clocks component consists of a number of classes, the principal among these
being C ock and Cal | back.

In ScriptX, the modeling and presentation features of a title are organized and
managed by spaces. Each space has a clock to control time-based activities of
the objects it contains. While this chapter discusses how to organize the timing
hierarchy of a model, the more general topic of spaces and modeling are
covered in the chapter “Spaces and Presenters,” earlier in this guide.
Synchronization of time-based media is provided through the Cl ock subclass
Pl ayer and its subclasses—see the chapters “Players” and “Media Players”
for details. To enable an entire title to be started, paused, restarted, and
stopped in synchronization, every clock belongs to a specific title container. See
the chapter “Title Management” for details on title containers and clocks.

Classes and Inheritance

The class inheritance for the Clocks component is shown in the following figure.

RootObject RootObject

L Callback
RateCallBack
Player ScaleCallback

TimeCallback

CalendarClock

PeriodicCallback

Legend
Gray box = abstract class

Black box = concrete class TimeJumpCallback
No box = class belongs fo another component

The following classes form the Clocks component. In this list, indentation
indicates inheritance.

d ock - Defines an object that keeps time and provides a mechanism for
controlling sequences of actions. The ScriptX run-time environment provides a
global instance, t heEvent Ti meSt anpd ock, that can be used to timestamp
events.

Cal endar O ock — Class defining an object that keeps the current date and
time of day. There is one global instance of Cal endar C ock,
t heCal endar C ock.

145

n ScriptX Components Guide

Cal | back — A class defining a mechanism to invoke specific functions at
certain times or events in a clock’s life.

Rat eCal | back — A class whose instances invoke a function when a clock’s
rate changes.

Scal eCal | back — A class whose instances invoke a function when a clock’s
scale changes.

Ti meCal | back — A class whose instances invoke a function when a clock
reaches a certain time.

Peri odi cCal | back — A class whose instances repeatedly invoke a
function at a specific interval.

Ti meJunpCal | back — A class whose instances invoke a function when a
clock’s time jumps (for example, when it is reset).

Conceptual Overview

146

Whether modeling complex systems or presenting media, multimedia titles
need to accommodate and synchronize time-based behavior. For this reason,
the timing facility provided by the Clocks component is a fundamental feature
of the ScriptX programming framework. The key features of this timing facility
are defined by the classes C ock and Cal | back. Clocks provide the basic
timing mechanism for a ScriptX title. Callbacks provide ways for clocks to
invoke actions which can control the behavior of other objects over time.

Spaces, described in the “Spaces and Presenters” chapter of this guide, are the
basic organizing structure of a ScriptX title. Spaces provide an environment in
which other objects can interact for modeling or presentation. To control the
timing of these activities, the ScriptX Space class defines a cl ock instance
variable. Objects inhabiting a space can refer to this clock to control their
behavior over time.

In creating a simulation or presentation, you can create any number of clocks
and link them together in a timing hierarchy, a structure of clocks used to
coordinate related actions. Clocks within a hierarchy can be synchronized, yet
can locally control the time-based behavior of objects that rely on them. Thus,
within a space, you can create clocks to control local behavior of objects, then
connect those clocks to the space’s clock to synchronize behavior between
objects in the space.

Clocks control object behavior through callbacks. You create callbacks by
requesting them from a clock. When you request a callback, you specify the
callback script, a function or method to be called at the appropriate time, and
the first argument to the callback script—usually the object to perform the
action. Within a callback, instance variables specify other details, such as
conditions in which the action is performed and the order in which concurrent
callbacks are triggered.

Clocks n

How Clocks Work

Clocks keep time through their instance variables r at e, scal e, ti ne, and
ti cks. This discussion starts with a look at the meaning of scal e and rat e.

Scale and Rate

To provide flexible control over timed behavior of other objects, each Cl ock
object can have its own sense of time. This sense is determined by the instance
variables r at e and scal e. To understand the meaning and interaction of these
variables, it helps to visualize a standard clock or stopwatch with a circular
face and a single sweep hand.

Scale (ticks)
Rate (speed of hand)

Figure 6-1: Clock scale and rate

As shown in Figure 6-1, the scal e can be thought of as the number of tick
marks on the face of the clock. The r at e can be thought of as the speed of the
hand, or how quickly the hand ticks off the marks on the face.

Here’s a simple example: A clock with a scale of 60 can be thought of as having
60 tick marks on its face. If its rate is set to 0, the clock is stopped. If its rate is
set to 1, the hand sweeps the face once per second, and the clock ticks 60 times
per second. If its rate is set to 5, the hand sweeps the face five times per second,
and the clock ticks 300 times per second.

When a clock is created, its rate is zero, which means it is stopped. To start it,
set its rate to a non-zero value.

Setting the rate of a clock to a positive value makes the clock run forward.
Setting it to a negative value causes the clock to run backwards. The following
code starts a clock ticking at a rate of 1:

-- create a new clock

clockl := new cl ock
-- start the clock ticking
clockl.rate := 1

A media-centric way to think about scale is as frames or samples per second.
This meaning is used in the Medi aSt r eanPl ayer class and its subclasses.
Similarly, the scale of the clock associated with a TwoDSpace instance is set to
24, equivalent to 24 frames per second. This clock is used to drive the
compositor, which controls visual presentation of a title.

147

n ScriptX Components Guide

Reading a Clock’sTime

Each clock keeps its time in two instance variables. The ti cks instance
variable represents the number of elapsed ticks since the clock was first
started—or from the last time it was reset to zero. Clocks also keep a ti me
instance variable, which contains a Ti me object representing local hours,
minutes, seconds, and ticks since the clock was first started. You can reset a
clock at any time by setting either its t i cks or ti ne to zero.

The relationship between ti cks, scal e, and ti me (in local seconds) can be
expressed with the formula:

local seconds = ticks | scale

Elapsed time is determined by the rate: one sweep of the clock corresponds to
one second in local time. Note however that when a clock is in a timing
hierarchy, a clock’s effective rate may be different than its actual rate, which
affects the rate at which the clock sweeps off local seconds. The relationship
between effective rate, local time, and actual time are discussed in the next
section, “Timing Hierarchies and Synchronization.”

In addition to rate, the time kept by a clock in a timing hierarchy may be
affected by another factor—of f set . The of f set instance variable is used to
determine the relationship between the time kept by clocks in a hierarchy. The
next section also discusses offset and its effect on a clock’s local sense of time.

Timing Hierarchies and Synchronization

148

To synchronize complex sequences of interrelated actions, clocks can be
organized in hierarchical structures, referred to here as timing hierarchies.

Master and Slave Clocks

A clock directly above another in a hierarchy is referred to as its master. The
clock below is referred to as the slave. In the simplest hierarchy, with one
master and one slave clock, the rate of the slave is directly controlled by the
master. If the master’s rate is set to 1, the slave runs at its own rate. If the
master’s rate is set to 0, the slave stops. If the master’s rate is set to -1, the slave
runs backwards. In more complex cases, the slave runs at an effective rate,
determined by its relationships to the rates of all clocks above it in a hierarchy.
Effective rate is described in the next section.

The master clock at the top of a timing hierarchy is referred to as the top clock.
The top clock is itself synchronized to an underlying hardware clock known as
the root clock. Since it’s hardware dependent, the root clock isn’t visible or
controllable from ScriptX.

In Figure 6-2, the top clock is the master of clocks a and b, while clock a is the
master of clocks ¢ and d. A clock that is directly controlled by another is
referred to as its slave. In the figure, clocks c and d are slaves of a, which is in
turn a slave of the top clock. Each master can have several slaves, while each
slave has only a single master.

Clocks n

O
5
OOr

—
(e

Figure 6-2: A timing hierarchy

a

Clocks keep track of their position in a timing hierarchy through their
mast er Cl ock instance variable. This instance variable can be set when a clock
is first created using the mast er O ock keyword:

nyd ock := new d ock nasterd ock: nySpace. cl ock

In this example, the new clock is connected as the slave of the clock belonging
to a space.

The clock belonging to a space is created automatically when you create the
space. A space’s clock is always created as a top clock, independent of others.
This makes sense for a space that serves as the container for a whole
presentation or model. However, if you append one space to another, you need
to explicitly set the mast er O ock of the appended space’s clock. For more on
spaces, see the chapter “Spaces and Presenters”. By default, the scal e of a
space’s clock is set to 24.

Effective Rate

As mentioned in the previous section, a clock’s position in a timing hierarchy
affects the global meaning of its local rate and time. When one clock is slaved
to another, the rate of the master clock acts as a multiplier for the slave,
determining the slave clock’s effective rate and actual time by the following
formulas:

effective rate = master’s effective rate * slave’s rate
actual seconds = ticks / (effective rate * scale)

A top clock’s effective rate is its actual rate, the value found in its rate
instance variable. A clock further down the timing hierarchy has an effective
rate that is the multiple of all the rates of clocks above it and its own rate.

Consider the case of a timing hierarchy that uses three separate clocks to keep
track of hours, minutes, and seconds. You could imagine organizing this
hierarchy in a couple of different ways. For example, you could create a
top-down hierarchy as shown in Figure 6-3, with the top clock being the hour
clock, the minute clock as its direct slave, and the second clock as the minute
clock’s slave.

149

n ScriptX Components Guide

150

hourCIockéi::} rate = 1/3600

minuteClock i::} rate = 60

secondCIock{j::} rate = 60

Figure 6-3: A top-down timing hierarchy

The following code would be used to set up this hierarchy:

hourd ock := new d ock

hourd ock.rate := 1.0 / 3600.0

m nuted ock := new d ock nasterd ock: hour d ock
mnuted ock.rate := 60

secondd ock := new dock nasterd ock: m nut ed ock
secondd ock.rate := 60

Remember that r at e is equivalent to the velocity at which the metaphorical
clock sweeps its face. Thus, the hour O ock has its rate set to 1/3600, meaning
it will sweep 1/3600 of its face per second—making a complete sweep once an
hour. The effective rate of the minute clock is 1/3600 * 60 or 1/60 sweeps per
second. The effective rate of the second clock is 1/60 * 60, or 1 sweep per
second.

The same timing effect could be achieved using the bottom-up hierarchy
shown in Figure 6-4, with the secondd ock as the top clock and the
m nut eCl ock and hour O ock as slaves.

secondCIooké‘;::} rate = 1

minuteClock é:::} rate = 1/60

hourCIock{::} rate = 1/60

Figure 6-4: A bottom-up timing hierarchy
The following code would be used to set up this hierarchy:

secondd ock := new O ock

secondd ock.rate := 1

mnuted ock := new dock nasterd ock: secondd ock
mnuted ock.rate := 1.0 / 60.0

hourd ock := new d ock masterd ock: m nut ed ock
hourd ock.rate := 1.0 / 60.0

Clocks n

Offset

Another relationship between a slave clock and its master is expressed by its
instance variable of f set . This value represents the difference between the
ticks of the slave and its master, expressed in ticks of the master. Since master
and slave clocks can run at different rates, of f set specifies this difference at a
specific time: the slave’s time 0. When the slave’s offset is any value other than
0, then the slave’s t i cks value will reach 0 when the value of the master’s

ti cks reaches the of f set value. For example, if you want a slave clock’s

ti cks value to be 0 when the value of ti cks for the master clock reaches
1000, you set the slave’s of f set value to 1000. Setting a slave’s of f set
instance variable will affect the values in its ti cks and t i ne instance
variables. If the offset is positive, these other values will be negative; for
example, setting a clock’s of f set to 10 sets its t i cks to -10. If the offset is
negative, the other values will be positive; that is, setting the of f set to -10
sets its t i cks to 10.

When a slave in a hierarchy has its rate set to 0, the slave won’t run even if its
master is running. If the slave’s rate is subsequently set to some nonzero value,
the clock and its slaves will synchronize to the master using of f set to
determine the relationship of their start time to their master.

In general, the relationship between the time of a master clock and its slave can
be expressed with the following formula:

(slave.time/slave.scale) = (master.time-slave.offset) [master.scale

Setting the offset is only meaningful for a slave clock. If you attempt to set the
offset of a top clock, ScriptX reports an exception.

Synchronizing Clocksin a Hierarchy

A clock with a rate of 0 is stopped. In a timing hierarchy, when a master’s rate
is set to 0, the effective rate of all of its slaves also becomes 0—and they stop
too. This effect allows a single master clock to synchronize the timing of a
whole hierarchy. Using a master clock in this way, the timing hierarchy shown
in the previous examples could be implemented yet another way: with three
slaves and a single control clock to synchronize their starting and stopping.
Figure 6-5 illustrates this third way of implementing the timing hierarchy.

timeController
rate = 1

¢
O O O

secondClock minuteClock hourClock
rate = 1 rate = 1/60 rate = 1/3600

Figure 6-5: A master clock with three slaves

The following code would be used to set up this hierarchy:

151

n ScriptX Components Guide

1562

tineController := new d ock

secondd ock := new O ock nasterd ock:tinmeController
secondd ock.rate := 1

m nuted ock := new A ock masterd ock:tineController
mnutedock.rate := 1.0 / 60.0

hourd ock := new A ock nasterd ock:tinmeController
hourd ock.rate := 1.0 / 3600.0

timeController.rate := 1

When it’s created, the r at e instance variable of t i mneCont r ol | er is set to 0—
the default value for a clock created without a master. Thus, when

secondd ock, m nut eC ock, and hour C ock are connected to

ti meControl | er, their effective rates become 0. Once all the slaves are
connected, t i meCont rol | er is started by setting its r at e instance variable to
1. This changes the effective rates of the other clocks to the actual value in their
r at e instance variables.

Usually, a script sets other instance variables of a clock—its slaves, master,
scale, actions, and so on—before setting its rate. In a timing hierarchy, you set
the rates of the slave clocks to prepare them to keep time, then set the master
clock’s rate to a value other than 0 to start all clocks in the hierarchy.

Timing Hierarchies and Clock Behavior

Certain Cl ock methods and instance variables related to timing are
implemented to take the timing hierarchy into account. When you call these
methods or set these instance variables for a particular clock in the hierarchy,
that clock recursively performs the same action on its slaves (which in turn
propagate the action further down the hierarchy). With objects of the Cl ock
class, this recursion applies to the instance variables r at e, ti me, of f set, and
ti cks. For example, when you explicitly set t i ne for a master clock in a
hierarchy, the action recurses down the hierarchy, setting the t i me instance
variables of all slaves to reflect the new time. Each slave uses the value of its
rat e and of f set instance variables to calculate the new value for its ti me
instance variable.

Generally, a timing hierarchy can be made up of instances of any subclass of
C ock, including Pl ayer, Medi aSt r eanPl ayer, Transi ti onPl ayer, and
and so on. Any methods defined by the O ock class can be invoked with any
of its subclasses without untoward side effects. However, within a single
timing hierarchy all slaves must be of the same class as, or a descendant class
of, their masters. O ock and its subclasses implement the instance methods
cl ockAdded, cl ockRenpved, and i sAppropri at ed ock to check for the
appropriate relationship when clocks are moved around in a hierarchy. These
methods ensure that method calls and instance variable settings that recurse
down the timing hierarchy will be handled properly by all objects.

When a clock’s master clock is changed, it attempts to preserve its effective

rate, adjusting its r at e instance variable if necessary. This assures that actual
ticks per second produced by the clock will remain constant. Thus, if a clock’s
previous effective rate was 4, and the clock is connected to a new master whose

Clocks n

effective rate is 1, the clock’s r at e instance variable is set to 4. If the new
master’s effective rate is 0, the r at e for the new slave is set to 1, regardless of
previous effective rate.

Note — When you load a timing hierarchy from a storage container, the top
clock’s rate is always set to 0, even if the clock was running when stored.

Modeling with Timing Hierarchies

Timing hierarchies are useful for modeling various complex behaviors, and for
coordinating the interaction between those behaviors.

One example, implemented through the Pl ayer class and its subclasses, is the
synchronization of virtual players that control the playback of time-based
media from various sources. Media-specific players provide timed presentation
of audio, video, and animation, using their scale to represent the appropriate
media sampling rate. A master player can control a set of these players as a
single unit, synchronizing their starting, playback, and stopping. For more on
the Media Players component, see the chapter “Media Players.”

Timing hierarchies can also be used to implement complex mechanical models.
For example, the model of an internal combustion engine might use one clock
to drive the crankshaft and pistons, a second to drive camshafts and
distributor, others to drive the fuel pump, oil pump, and other accessories, and
a master clock to control all the others. Another example of a timing model
might be a refinery or other process control system, where distinct parts of the
process require different flow rates, sampling rates, rates of heat exchange, and
5o on.

Timing hierarchies can also be useful for altering the sense of time within a
model. For example, a solar system model might use separate clocks for the
orbits and rotations of planets and moons, while a master clock contracts the
overall sense of time to make motion of the whole visible to the user. Or, an
atomic model might use a timing hierarchy to expand the overall sense of time,
making the motion of individual electrons around the nucleus available for
presentation and interaction in real time.

Clocks Created Automatically by ScriptX

As mentioned previously, every Space object has a ¢l ock instance variable,
and a clock is created for each space when it is created. This clock can be used
as the top clock for all clocks and timing hierarchies in the space, including
player hierarchies managing time-based presentations, hierarchies managing
time-based models, and so on.

A global instance of Cl ock, t heEvent Ti neSt anpC ock, is created at system
start-up. Events use this clock as the source of timestamps that specify the
chronological order in which events are generated. A global instance of

Cal endar d ock, t heCal endar Cl ock, is created at system start-up. This

163

n ScriptX Components Guide

clock’s t i me instance variable contains a Dat e object that always reflects the
current date and time. You cannot create other instances of Cal endar C ock;
instead, use this global instance for current calendar information.

The following code returns the current time and date:

t heCal endar d ock. dat e

The returned value will look something like:

Mon Cct 30 18:08:48 1995 as Date

Clocks and TitleContainers

To store a clock in a title container, you add it or a master clock to a

Ti t1 eCont ai ner. You need only add the top clock to the title; a slave clock is
automatically associated with the title of its master. See the chapter "Title
Management" for more on title containers.

The O ock instance variable t i t | e specifies the Ti t | eCont ai ner instance to
which a clock belongs. (Note that setting this instance variable does not cause
the clock to be stored in the title container.)

Note — Creating clock hierarchies that span title containers isn’t recommended,
since it can lead to inconsistent timing. For example, pausing a title will result
in pausing only part of such a hierarchy.

When you call the Ti t | eCont ai ner methods pause and r esune, the same
methods are automatically called on the active clocks belonging to that title.
The pause and r esune methods “freeze” a title’s clocks, stopping them
without affecting the setting of their r at e instance variables. This enables you
to control the overall operation of a title, without altering the timing
relationships you’ve established in its timing hierarchies.

Using Callbacks To Schedule Actions

To control behavior of objects over time, you attach callbacks to clocks.
Callbacks are objects that call scripted functions at specific events or times in
the life of a clock.

Callbacks can be scheduled to run a script at a specific time, to run a script at
specific intervals, and to run specific scripts whenever the rate, scale, or time of
a clock changes.

Types of Callbacks

A number of specialized callbacks are defined by subclasses of Cal | back.
Each of these can be attached to a clock using an appropriate method, such as
addPeri odi cCal | back and addTi neCal | back.

154

Clocks n

Table 6-1; Callback subclasses

Callback subclass Method to create When the Script runs

the callback

Peri odi cCal | back addPeri odi cCal | back At specified intervals

Ti meCal | back addTi meCal | back At specified time
Rat eCal | back addRat eCal | back When the clock’s r at e is set
Scal eCal | back addScal eCal | back When the clock’s scal e is set

Ti meJunpCal | back addTi neJunpCal | back When the clock’s ti ne is set

The callback classes Peri odi cCal | back and Ti meCal | back are associated
with time changes in the clock as it runs. The other three classes —

Rat eCal | back, Scal eCal | back and Ti meJunpCal | back — are associated
with directly setting a Cl ock object’s instance variables.

The callbacks that are most commonly used in titles are Per i odi cCal | back
and Ti neCal | back. The other callbacks are used in very specific situations
that are not so common.

Attaching Callbacks to a Clock

To add a callback to a clock, you call one of the following methods on the clock
depending on the kind of callback desired.

addPeri odi cCal | back — adds a Peri odi cCal | back that fires
repeatedly, at periodic intervals. The syntax is:

addPer i odi cCal | back clock script target argArray time

addTi neCal | back — adds a Ti neCal | back that fires once at a specified
time. The syntax is:

addTi neCal | back clock script target argArray time onceOnly

addRat eCal | back — adds a Rat eCal | back that fires when the value of
the r at e instance variable of a clock changes. The syntax is:

addRat eCal | back clock script target argArray onceOnly

addScal eCal | back — adds a Scal eCal | back that fires when the value
of the scal e instance variable of a clock changes. The syntax is:

addScal eCal | back clock script target argArray onceOnly

addTi neJunpCal | back — adds a Ti neJunpCal | back that fires when
the t i me instance variable of a clock is specifically set. The syntax is:

addTi neJunpCal | back clock script target argArray onceOnly

The Arguments for the Callback-Creation Methods

The clock argument is the clock to which to attach the callback.

155

n ScriptX Components Guide

156

The script is a function, anonymous function, or method that defines the action
to be invoked by the callback.

The target is the first argument to be passed to the script.

The argArray is an array of the remaining arguments. If no additional
arguments are required, you can pass argArray as an empty array.

For a periodic callback, time is the time interval at which the callback fires. For
a time callback, time is the clock’s time at which the callback fires.

The onceOnly argument is either t r ue or f al se, indicating whether or not the
callback should be cancelled after it has executed the first time. You would
usually pass this as f al se, so that if you restart the clock, the callback fires
each time the clock reaches the appropriate time.

Callback Scripts

The script associated with a callback can be a predefined function, an
anonymous function, or a method. The function or method must take at least
one argument, and can have as many additional arguments as you like.

There are a couple of details to be aware of in defining callback scripts. First,
calls that cause the calling thread to block shouldn’t be made within a callback
script. All callback scripts with the same priority run in the same thread, so any
script that blocks will prevent other callbacks of the same priority from
executing their scripts. See the section on “Blocking” in the “Threads” chapter
for a list of functions that can cause thread blocking. The Pi peCl ass methods
readNowOr Fai | and wri t eNowOr Fai | can be used to pipe data in code that
shouldn’t block.

Second, if a callback script generates an exception when it is invoked, it will be
called again the next time it is scheduled. This means that care must be taken
within callback scripts to trap exceptions in a way that ensures the script isn’t
simply scheduled to fail repeatedly.

Examples of Creating Callbacks

The following examples show how to add simple callbacks to cl ock1:

clockl := new cl ock

Using a Predefined Function for the Callback Script

This example adds a periodic callback to the clock cl ock1. The callback’s
script is a predefined function.

function printTine clockl -> (
format debug "Tick Tock. The clock’s time is %. \n" \
cl ockl.tine @mnador ned

)

-- every 3 ticks, print the clock’s tine
addPeri odi cCal | back clockl printTime clockl #() 3

Clocks n

Using an Anonymous Function for the Callback Script

This example adds a time callback to the clock cl ock1. The callback’s script is
an anonymous function.

-- at time 15, print the real time
addTi neCal | back cl ockl \
(a -> fornat debug "The global tinme is % \n" \
t heCal endar A ock. dat e @nador ned) \
clockl #() 15 false

Using a Method for the Callback Script

This example creates a class called Sl ogan, and and creates an instance of it.
The example adds a periodic callback to to cl ock1. The callback’s script is a
method on the class Sl ogan.

class Sl ogan (Root (hject)
i nstance vari abl es

nyS ogans: #()

nyl ndex: 1
end

net hod pi ckASl ogan self {dass Sl ogan} clockl ->

(
local slogans := self.nyS ogans
local nylndex := self.nylndex
print sl ogans[nyl ndex]
sel f.nylndex :=

if nylndex >= slogans.size then 1 else nylndex + 1

-- create a Slogan object

sloganl := new Sl ogan

append sl oganl.nyS ogans "Better |ate than never"

append sl oganl. nySl ogans "A stitch in tine saves nine"

append sl oganl. nySl ogans "A watched pot never boils"

append sl oganl. nySl ogans "The grass is always greener on the other
si de”

-- print a slogan every 6 ticks
addPeri odi cCal | back cl ockl pi ckASl ogan sl oganl #(clockl) 6

Start the Clock Ticking
-- start the clock ticking
clockl.rate := 1

-- after the clock has been ticking for a while,
-- set it back to the beginning, ready to start over
clockl.tine := 0

157

n ScriptX Components Guide

Callback Conditions

The Cal | back class has a condi ti on instance variable, that helps to
determine the conditions under which a callback should be invoked.

Three kinds of callbacks are triggered by changes to the value of an instance
variable on the callback’s associated clock. These classes are Rat eCal | back,
Scal eCal | back, and Ti meJunpedCal | back.

The Rat eCal | back class has a r at e instance variable; the Scal eCal | back
class has a scal e variable, and the Ti neJunpedCal | back class hasati ne
instance variable. These instance variables are used to compare the value
belonging to the callback with the value of the corresponding instance variable
of the clock itself.

The condi ti on instance variable specifies how to compare the clock’s instance
variable with the callback’s. Valid condi ti on values for these callbacks are
@ essThan, @r eat er Than, @qual , @ot Equal , @ essThanOr Equal ,

@r eat er ThanOr Equal , and @hange (the default).

The following code demonstrates how to set a condition for a Scal eCal | back
instance:

function scaleScript target -> (print "Scale less than 20")

nyScal eCal | := addScal eCal | back nyd ock scal eScri pt
undefined #() false

nyScal eCal | . scale := 20

nyScal eCal | . condition := @essThan

In this example, whenever the scal e instance variable of nyC ock is set to a
value less than 20, the myScal eCal | callback is invoked, causing the
scal eScri pt function to run.

The Peri odi cCal | back and Ti neCal | back classes also use the condition
instance variable to help determine whether to invoke a callback or not at a
particular time. For these two classes, the valid settings for condi ti on are
@ or war d, @ackwar d, and @i t her (the default). The following code
demonstrates how to set a condition on a Ti neCal | back:

function tineScript target ->
(print "Time of 200 running backward")
nyTi meCal | := addTi meCal | back nyd ock tineAction \
undefined #() 200 false
nyTimeCal | . condition := @ackward

In this case, the ti meScri pt function will be called only when the clock
reaches a time of 200 while the clock is running backward.

Priority and Order

The Cal | back class has two instance variables—pri ority and or der —that
determine the precedence of otherwise concurrent callbacks.

158

Clocks n

The pri ority instance variable expresses the thread priority of a callback.
Valid settings for priority are @i gh and @wor mal . These settings correspond
to values defined by the Threads component. For more information on thread
priorities, see the chapter “Threads” in this guide.

In practice, you seldom set a callback’s priority to any value other than
@nor mal . Setting the priority to @i gh may slow overall performance by
interfering with the ScriptX runtime environment.

Another instance variable, or der, can be used to set the order in which
callbacks of a particular priority will have their scripts invoked. Lower order
callbacks have their scripts invoked first, and higher order callbacks have their
scripts invoked later. By default, the order of a callback is 0. You can set the
order of callbacks within a title to ensure that scripts that need to be invoked
first will be.

Note — In the current release of ScriptX, callback order works correctly only for
clocks with integer rates. Fractional rates can lead to inconsistences in the
order in which callback actions are actually performed.

Synchronization of Periodic Callbacks

The Peri odi cCal | back class defines an instance variable, ski pl f Lat e, that
determines how to handle situations when a callback fails to occur within its
scheduled time frame. This instance variable can help avoid a situation where
late callbacks, which take precedence over others, choke overall system
performance.

When ski pl f Lat e is f al se, a periodic callback will have its script called
regardless of whether it is on time or late. Thus, one callback may get out of
sync with its scheduled time and the next one may catch up. On the other
hand, one callback may fall behind and the next fall even further back. There is
no guarantee that such a sequence will ever resynchronize. Instead, it may
aggravate the situation further by preventing other callbacks from executing
their scripts.

When ski pl f Lat e is t r ue, a periodic callback will have its script called only
within its scheduled time period. That is, a periodic callback’s script may begin
execution at any time starting at its scheduled time up until the next time it is
scheduled to be called. However, if the script hasn’t begun execution by the
next time it is scheduled to start, it will be skipped. This avoids the problem of
late callbacks choking system performance.

When creating the function for a periodic callback whose ski pl f Lat e value
will be t r ue, you should provide a mechanism for skipping. For example,
rather than simply assuming the function will be called once for each specified
interval, you should check the clock’s time within the function, then perform
an action appropriate to that time.

159

n ScriptX Components Guide

160

Cancelling a Callback

Once you've created a callback, you can let it run as scheduled, or you can
cancel it explicitly using the Cal | back method cancel . This method allows
the action function to return if it’s in process, then removes the callback from
its clock and returns the cancelled callback. The following code illustrates how
to use the cancel method.

nyCB : = addTi neCal | back nyd ock printlnfo nydock #(nyCbject) 25 false
-- run the clock for a while

-- nowit is tinme to cancel the callback

cancel nyCB

The following code shows how to use the | abel instance variable of a callback
to identify which callback to cancel.

function doStuffFn nyd ock nyChject ->
(
local nyCB := addPeri odi cCal | back nyd ock deepenCol or \
nyd ock #(nyChject) 25
nyCB. | abel := "chbl"
-- do more things in the function if desired

)

-- wite some code that creates the objects clockl and picl

-- create the call back
doStuffFn clockl picl

-- later on, cancel the call back
-- use choosee to find the callback with the apprioriate |abel
cancel (choosetne clockl.callbacks (a b -> a.label = "cbl") 1)

Uncancelling a Cancelled Callback

After a Peri odi cCal | back or Ti neCal | back has been cancelled, you can
reschedule it by putting the desired clock in the callback’s cl ock instance
variable, and putting the invocation time (or time period) in the callback’s

t i me instance variable.

When you cancel a callback, it retains the information about which clock it is
attached to, so you do not need to reset the cl ock instance variable unless you
want to attach it to a different clock. To reschedule a time callback or periodic
callback however, you must set its t i M instance variable, since it is the act of
setting the t i me instance variable that schedules the callback.

For example, if cb1l is a cancelled periodic callback, you can wake it up and
reschedule it so that it fires every 5 ticks as follows:

cbl.tine := 5

Clocks n

Callbacks and Clock Behavior

Setting a clock’s instance variables or calling its methods may affect the
callbacks belonging to a clock. For example, if you attach a time callback to a
clock, then set the clock’s t i me explicitly to jump past the time of the callback,
the action function won’t be invoked. This means you might want to associate
a Ti meCal | back with a Ti meJunpCal | back to assure that required actions
take place even if the clock’s time is set explicitly.

Through the timing hierararchy, other clocks may affect a clock’s callbacks. For
example, you might attach a rate change callback to a clock, then change the
rate of a clock above it in the hierarchy. In this case, the rate callback script for
the lower clock will be invoked—if the change matches the callback conditions.
Similarly, if you set a time jump callback on the lower clock, then change the
time of a clock above it, the lower clock’s time jump action will be invoked—
again, if the condition matches the change.

Callback Example

While clocks can be used for both control of models and the timed playback of
media, much of the functionality needed for media playback is provided
through other components, such as Media Players and Animation. See the
discussions of those components for additional examples of time-based
behavior.

The following example shows how to create a simulation of a kettle heating up
until it boils. This example illustrates the use of callbacks to time a sequence in
ScriptX, where the timing requirements might vary each time the sequence is
enacted. It also demonstrates how you can use one callback to schedule
another, and how to clean up callbacks to prevent callback-proliferation in an
animation that creates callbacks on the fly.

This example uses callbacks as follows:

e It creates a Ti meCal | back to schedule when to start heating up the kettle,
and how many cups of water to heat.

e When the time arrives to start heating the kettle, another Ti neCal | back
schedules when the kettle will actually boil. The time until the boiling
depends on how many cups of water the kettle is heating.

e While the kettle is heating up, a Peri odi cCal | back causes the kettle to
hum continuously.

For the sake of simplicity, in this script, the humming is simulated by
printing out "hum" repeatedly. However, in a more intersting simulation, the
kettle might play a humming sound over and over, or the simulation might
present a visual animation of the kettle rocking back and forth gently on the
stovetop as it heats up.

e When the time arrives for the kettle to actually boil, the periodic callback
that causes the humming is cancelled, and the whi st | e method is called to
make the kettle whistle.

161

n ScriptX Components Guide

162

As with the humming, the whistling action is simulated by printing text, in
this case "Whistle." In a more interesting animation, the whistling might be
simulated by playing a whistling sound, or maybe the humming sound
increases in pitch when the kettle boils. Also, the kettle image might rock
back and forth on the stove top more violently, and give off puffs of steam.

The whi st | e method might also schedule another callback, to make the
animation continue.

Define the Class Kettle

The class Ket t | e has an instance variable that specifies how long a kettle takes
to heat up one cup of water.

class Kettle (Root(bject)
instance vari abl es

heat i ngTi nmePer Cup: 3
end

scheduleKettle method

The schedul eKet t | e method creates the time callback that schedules when
to put the kettle on to start heating. This method simply provides a cover to the
addTi meCal | back function.

-- clockl is the clock

-- cups is the nunber of cups of water to heat

-- t is the nunber of ticks fromnow to start the kettle

-- onceMnly is true or false depending on whether or not you

-- want the callback to cancel itself after its first invocation

net hod schedul eKettle self {class Kettle} \
clockl cups t |abel oncetly ->
(addTi meCal | back clockl putnKettle self #(cups, clockl) \
(clockl.tine + (t as time)) oncetly

)

putOnKettle method

The put OnKet t | e method prints the time when the kettle is put on to heat.
This method calculates how long the kettle will take to boil, based on how
many cups of water are being heated, and how long each cup takes. It
schedules a callback to make the kettle boil, and calls the heat UpKet t | e
method to start the kettle heating.

nmet hod putOnKettle self {class Kettle} cups clockl ->
(
local t := clockl.time
format debug "Putting on the kettle at tine %\n" t @ornal
local tinmePerQup := self.heatingTi nePer Cup
local tineToBoil := (timePerCup * cups) as time

-- create a callback to schedule when the kettle boils
-- the callback will cancel itself after it is invoked

Clocks n

addTi meCal | Back clockl startBoiling self \
#(clockl) (clockl.time + timeToBoil) true

-- start heating the kettle
heat UpKettl e self cl ockl

heatUpKettle method

While the kettle is heating up, it hums. The humming is simulated by printing
out "hum" repeatedly.

-- use the prin nethod as the action for the
-- callback that does the humming
net hod heat UpKettle self {class Kettle} clockl ->

(
print "Starting to heat up the kettle "
local cb := addPeriodicCal | back clockl \
prin "hum\n" #(@nadorned, debug) 1
-- give the callback a label so we can find it later
cb.label := "hunt
)

startBoiling method

When the kettle starts boiling, it stops humming and starts whistling. To stop
the humming, cancel the periodic callback that does the humming. To start
whistling, call the whi st | e method.

-- when the kettle boils, it whistles
nethod startBoiling self {class Kettle} clockl ->

(
local t := clockl.tine
format debug "Starting to boil at time %\n" t @ornal
-- cancel the callback that does the hunm ng
local humB := choose(ne cl ockl. cal | backs \
(a b ->alabel = "hunt) 1
cancel hunCB
-- the kettle whistles
whistle self
)

For simplicity, simulate whistling by printing a whistle message.

net hod whistle self {class Kettle} ->
(print "Wiistle, whistle, whistlel")

163

n ScriptX Components Guide

Run the Kettle Simulation

To run the kettle simulation, create a clock and a kettle. Call the

schedul eKet t | e method to schedule when to start the kettle heating up.
When you call this method, specify how many cups of water to heat.

gl obal clockl := new d ock
clockl.rate := 1

-- put the kettle on in five seconds to heat 3 cups of water
-- since Oncenly (the last argument) is true,
-- the callback will cancel itself after it is invoked

gl obal kettlel := new Kettle
schedul eKettl e kettlel clockl 3 5 "cbl" true

-- schedule the kettle to be put on again in 20 seconds

-- to heat 6 cups of water

-- again, the callback will cancel itself when it is finished
schedul eKettle kettlel clockl 6 20 "cbl" true

164

CHAWPTER

Players

ScriptX Components Guide

166

Players

The Players component contains the abstract Pl ayer class, which provides
facilities for classes that present data in a sequential manner. ScriptX provides
three kinds of players:

* Media player classes provide facilities for presenting media streams, such as
sound and video streams.

e The Acti onLi st Pl ayer class provides facilities for playing an animation
by performing a sequence of actions in a list.

e The Transi ti onPl ayer class provides facilities for presenting an image in
stages so that the image appears gradually.

This chapter discusses concepts and behavior common to all kinds of players.
The following chapters discuss concepts and behavior particular to each kind
of player:

e Chapter 8, “Media Players” for information on the media players classes,
including media stream players and movie players.

e Chapter 9, “Animation” for information on action list players.

e Chapter 10, “Transitions” for information on transition players.

Classes and Inheritance

The class inheritance hierarchy for the Players component is shown in the
following figure.

Clock TwoDPresenter

RootObject

GroupPresenter Lm

MediaStreamPlayer

MoviePlayer
TransitionPlayer Legend

B o = oncats ass
ActionListPlayer No box = class belongs to another compol

The following classes form the Players component. In this list, indentation
indicates inheritance.

Pl ayer —base class that defines the basic methods common to players.

Medi aSt r eanPl ayer — specialized subclass of Pl ayer that presents media
held in an associated media stream. Medi aSt r eanPl ayer has subclasses
specialized to play particular types of media.

167

ScriptX Components Guide

Movi ePl ayer — specialized subclass of Pl ayer that organizes media
stream players to play together to present a movie.

Transi tionPl ayer — subclass of Pl ayer that performs visual transitions
on a presenter. Transi ti onPl ayer has subclasses specialized to present
different kinds of transitions.

Act i onLi st Pl ayer — subclass of Pl ayer that plays an animation by
performing a series of actions.

Mar ker — class whose instances identify important time ranges for a player.

Conceptual Overview

168

The Pl ayer class defines the methods needed to control all kinds of players.
These methods allow you to stop, start and pause the data, and perform other
actions needed to present time-based data.

These methods include:

pl ay
Starts a player presenting its data. The r at e instance variable is set to 1.
pl ayUnti |

Causes the player to present its data until a given time. The r at e instance
variable is set to 1 while the player is playing, then changes to 0 when the
specified time is reached and the player stops.

pause

Stops the player presenting its data by setting its r at e instance variable to
0, and sets its st at us instance variable to @aused.

resune

Resumes the player playing at the same rate it was playing before it was
paused. If you call the pause method on a player multiple times, you must
call the r esune method an equal number of times before it resumes playing.

stop

Stops the player presenting its data, sets the r at e instance variable to 0, and
sets the player’s st at us instance variable to @t opped.

got obegi n

Sets the player’s data back to the beginning by setting the t i me instance
variable to 0. Use this method rather than rewind to set a player back to the
beginning. This method does not change the rate of the player.

got oend

Sets the player to the end of its data by setting the t i me instance variable to
the value in the player’s dur at i on instance variable.

f ast Forward

Speeds up the rate at which the player presents its data to five times the
normal speed.

Players

e rewi nd

Causes the player to present its media in the reverse direction at five times
the normal rate.

e playPrepare

Prepares a player for playing. Some players allocate resources and pre-roll
data during this method. If a player is not prepared before playing, these
operations are done when the pl ay method is called, which may result in a
delay before playing starts.

Some subclasses of Pl ayer have additional methods for controlling specific
kinds of media or sequences, for example, the Di gi t al Audi oPl ayer class
has methods for controlling the volume of sound.

Players inherit the ability to be synchronized from the C ock class. For
example, you could synchronize an Act i onLi st Pl ayer object that plays an
animation with a Di gi t al Audi oPl ayer object that plays a tune so that they
play, stop, and rewind together. Often it makes sense to create a completely
new player whose sole task is to control other players.

A player that controls another player is a “master player.”

How Players Work

Depending on the kind of player, it may work in conjunction with another
object or set of objects that contain the data to be presented. For example, a
digital audio player presents sound data held in an audio stream, and an
action list player performs the actions contained in an action list.

Whether or not a player is presenting its data (that is, playing) depends on its
rate. If its rate is 0, it is stopped. If its rate is other than 0 it presents its media
at the speed and direction specified by the rate. The methods pl ay,

pl ayUnti |, pause, st op, and r ewi nd change the rate of the player.

The local rate is specified by the r at e instance variable, but the actual rate of a
player depends on its effective rate, which takes its master player’s rate into
account, if it has one. See the Chapter 6, “Clocks” for information about how
effective rates are determined.

For a player, the value of the ti me instance variable indicates the current
position in the media presented by the player. You can directly set the value of
the t i me instance variable to change the position of the player’s media. The

t i me instance variable can be set to a number of ticks or to a Ti me value. If the
value is given as a number of ticks, it is interpreted in the scale of the player.
For example, if a player has a scale of 30, and you set its time to 60:

nypl ayer.tine := 60
=>0:0:2:0

The time is set to 2 seconds. (See Chapter 6, “Clocks,” for more information
about scale.)

You could also set the time to 2 seconds as follows:

169

ScriptX Components Guide

nypl ayer.tine := 2 as tine
=>0:0:2:0

nypl ayer.time := 2 * nypl ayer.scal e
=>0:0:2:0

Using Multiple Players

170

Multiple players of all kinds can be synchronized so that they can be controlled
by a single player.

To specify one player as a master player of another, put it in the other player’s
mast er A ock instance variable. (This instance variable is inherited from
Cl ock.)

pl ayer 1. masterd ock := masterPl ayer

When multiple players are slaved to a single master player, you can start all
the players playing in synchronization by calling the pl ay method on the
master player. Similarly you can simultaneously prepare for playing, pause,
stop, fast forward, rewind, set to beginning and set to end all slave players by
calling the appropriate method on the master player.

Setting the value of the t i ne instance variable of a master player also
automatically sets all its slave players to an appropriate value that takes offsets
into consideration. Offsets are discussed in “Specifying Different Start Times
For Slave Players” on page 171.

To make all the slave players play louder, set the value of the

gl obal Vol umeCf f set on the master player. To change the pan of all the slave
players, set the gl obal PanCf f set instance variable on the master player. To
mute the audio of all the slave players, set the audi oMut ed instance variable
on the master player to t r ue.

The effective volume for a slave player is the value of its vol une instance
variable combined with the value of its gl obal Vol uneCf f set instance
variable. So for example, if the local volume of a player is -6 and the global
volume offset is 6, the effective volume is 0. Similarly, the effective pan for a
slave player is the value of its pan instance variable value combined with the
value of its gl obal PanCOF f set instance variable.

The gl obal Vol ume f set, gl obal PanOf f set and audi oMut ed instance
variables only affect players that have a vol une or pan instance variable, such
as digital audio players. Other players are not affected by changes to these
instance variables.

Note — In the current release, the Pl ayer class has instance variables such as
gl obal Bri ght ness, gl obal Contrast, gl obal Hue and

gl obal Sat ur at i on. The intent of these instance variables is that the value on
a master player would affect the effective values for brightness, contrast, hue,
and saturation on its slave players. However, currently no subclasses of

Players

Pl ayer have bri ght ness, contrast, hue, and sat ur ati on instance
variables. Thus changing the value of gl obal Bri ght ness,

gl obal Contrast, gl obal Hue, and gl obal Sat urati on of a player has no
effect. These instance variables have been left on the Pl ayer class in
anticipation of corresponding local instance variables in future releases of
ScriptX.

The following script gives an example of synchronizing two slave players to a
master player.

-- animationPlayer is a pre-defined actionListPl ayer instance
-- tunePlayer is a pre-defined digital Audi oPl ayer instance

-- Oeate a player to use as the naster player
gl obal master := new Pl ayer

-- Make ani mationPl ayer and tunePl ayer be slave players of naster
ani mati onPl ayer. masterd ock := naster
tunePl ayer. nasterd ock := naster

-- prepare to play the sound and anination
pl ayPrepare master 1
goToBegi n mast er

-- start the sound and animation playing together
play master

-- stop both the sound and animation from pl ayi ng
stop master

-- switch off the sound (nake it mute)
mast er. audi oMut ed : = true

-- start the anination playing silently
play master

-- switch the sound back on
nmast er. audi oMuited : = fal se

-- stop the sound and ani mation from pl ayi ng
stop naster

-- set both the sound and aninmation to time 8
master.time := 8

-- resune playing the sound and aninmation fromtinme 8
play master

Specifying Different Start Times For Slave Players

You can specify different start times for slave players that have the same
master player. For example, you might want to play an action list player and a
digital audio player together, but you want the digital audio player to play for
four seconds before the animation begins.

171

ScriptX Components Guide

172

To specify a start time delay for a slave player, set the value of its of f set
instance variable. The value of the of f set instance variable of a slave player is
the amount of time by which the player is delayed relative to its master player.

For example:

nmaster := new Pl ayer

ani mati onPl ayer. mast erd ock := naster
goToBegi n mast er

ani mationPl ayer.of fset := 4

The value of the t i ne instance variable of ani nat i onPl ayer now becomes -4
seconds. When you call the pl ay method on the master player,

ani mat i onPl ayer starts incrementing its clock, but does not start playing its
media until the value in its t i me instance variable reaches 0, which will be
when the value of the t i ne instance variable of its master player is 4 seconds.
(For the rest of this discussion, the time of a player means the value of its t i me
instance variable.)

When you set the value of the of f set instance variable of a slave player, the
value is assumed to be a number of ticks in the scale of the player’s master
player. If you create a direct instance of Pl ayer to use as the master player, its
scale will be 1.

Since the master’s scale is used as the scale for offsets you can use a master
player to establish the main timeline, and then specify offsets for slave players
relative to the main timeline.

If you attempt to set the value of the of f set instance variable of a player that
does not have a master player (or master player) the value is ignored. The
value of the of f set instance variable of all clocks and players that do not have
a master player is always zero.

Players

Playing Slave Players at Different Rates

You can cause players that use the same master player to play at different rates
by specifying values for the r at e instance variables of the slave players, as
illustrated in the following code.

nmaster := new Pl ayer

sl owPl ayer. mast er d ock :
fast Pl ayer. nasterd ock :
sl owPl ayer.rate := 1
fastPlayer.rate := 2
goToBegi n mast er

play master

-- slowPlayer plays at a rate of 1 while
-- fastPlayer plays at a rate of 2

nmast er
sl owPl ayer. mast er A ock

Troubleshooting Hints — The Case of the Stopped Slave Player

If you call the st op method directly on a slave player instead of calling it on
the master player, the slave player stops. It will not start again when you call
the pl ay method on its master player.

The effective rate of a slave player is the value of its r at e instance variable
times the value of its master player’s ef f ect i veRat e instance variable. If you
call the st op method directly on a slave player, its r at e instance variable is set
to 0. Calling pl ay on its master player does not start the slave player playing,
since the effective rate of the slave player remains at 0. (0 times any number is
0).

If you find yourself in this situation, you can fix it by calling pl ay directly on
the slave player once to start it playing, or set the mast er Cl ock of the slave
player over again. When the nast er Cl ock instance variable of a player is set,
the slave player’s effective rate is preserved, unless its rate is 0, in which case
the rate is set to 1.

Using Markers

You may sometimes want to mark certain places in the data controlled by a
player. For example, you may want to mark the beginning of each verse in a
song, or mark specific time points in an animation.

You can use Mar ker instances to identify interesting time points for a player. A
marker is simply an object that has a starting time, a finishing time and a label.
When creating a marker, you must specify a beginning time and a label and
you can optionally specify an ending time.

The Pl ayer class has methods got oMar ker St art and got oMar ker Fi ni sh
that advance or rewind the player to places marked by a marker.

For example, suppose you want to play two short parts of a song played by a
Di gi t al Audi oPl ayer. You can do this by using markers to mark the two
ranges.

173

ScriptX Components Guide

174

To find the start time for the first marker, play the player, and stop it just before
the first word of the first range is played. Get the time of the player:

startl := nyM ayer.time
To find the finish time for the first marker, play the player and stop it as soon

as the you hear the word at the end of the first range. Check the time on the
player:

finishl := nyM ayer.tine

Create the first marker:

markerl := new Marker start:startl finish:finishl \
| abel : " Mar ker 1"

In a similar fashion, find the start and finish times for the second marker and
create the second marker.

Add the markers to the player:

addMar ker nyPl ayer markerl
addMar ker nyPl ayer marker 2

To play the song from the start to the end of the time marked by the first
marker:

goToMarker Start nyPl ayer narkerl
playUntil nyPlayer markerl.finish

To play the part of the song marked by the second marker:

goToMar ker nyPl ayer narker2
playUntil nyPl ayer marker2.finish

Accessing Markers in the Marker List

A player’s mar ker Li st instance variable contains an array of the player’s
markers sorted by start time. You can use a player’s get Pr evi ousMar ker and
get Next Mar ker method to return the marker before or after a given marker
in the player’s marker list.

The following code shows how to play a player from the beginning to the end
of its first marker, then play it from the beginning to the end of its second
marker, without explicitly referring to variables pointing to the markers.

-- nyPlayer is a nmedia player with at |east two markers

-- The first marker is the first elenent in the player’s narker |ist
m : = nyPlayer. narkerlist[1]

-- Play the player fromthe start to end of the first narker
goToNMarker Start nyPlayer m
playntil nyPlayer mfinish

Players

-- Play the player fromthe start to the end of the next marker
m : = get Next Marker nyPlayer m

goToMarker Start nyPlayer m

playUntil nyPlayer mfinish

The start and finish values for a marker are always interpreted in the scale of
the player to which the marker is added. For example, if you add a marker
whose start time is 20 to a player whose scale is 1, then the player reaches the
start of the marker at 20 seconds. However, if the player’s scale is 100, then the
player reaches the start of the marker at one fifth of a second.

Using Marker Labels

A marker can have a label, which is a string stored in its | abel instance
variable. For an example that illustrates the usefulness of marker labels,
suppose you created an animation of the story of Little Red Riding Hood. You
could use markers labelled “Wolf arrives”, “Wolf eats grandma”, “Red riding
hood arrives” and “Woodman saves the day” to identify appropriate times in
the animation as follows.

-- RRPlayer is an actionListP ayer

addhar ker RRPl ayer (new Marker start:10 |abel :"WIf arrives")

addvar ker RRPl ayer (new Marker start:22 |abel:"WIf eats grandma")
addMar ker RRPl ayer (new Marker start:38 |abel:"Redriding hood arrives")
addMar ker RRPl ayer (new Marker start:53 |abel:"Wodnan saves the day")

The following sample script shows how to play the animation from the point at
which the wolf arrives until the end of the animation.

-- use a path expression to find the place where the wolf arrives
gl obal wol f Cones : =

choosee RRP ayer. makelist(v dummy -> v.label = “wolf arrives”) 0
goToMarker Start RRPl ayer wol f cones

playUntil RRPlayer RRPl ayer.duration

175

ScriptX Components Guide

176

CHAPTER

Media Players

n ScriptX Components Guide

178

Media Players n

The Media Players component provides classes for playing media, such as
sound and video. The players in this component build on the functionality
provided by the Pl ayer class, discussed in the previous chapter. Please read
the previous chapter before reading this one.

Classes and Inheritance

The class inheritance hierarchy for the Media Players component is shown in
the following figure.

Clock

L Player

eam MediaStreamPlayer TwoDPresenter

DigitalVideoPlayer

DigitalAudioPlayer

MIDIPlayer TwoDMultiPresenter

MoviePlayer

InterleavedMoviePlayer

Stream RootObject

MIDIEvent

ByteStream

ChunkStream MIDIDriver

MediaStream

AudioStream

Legend

Gray box = abstract class

Black box = concrete class

White box = global instance

No box = claSs belongs to another compon

MIDIStream

VideoStream

The following classes form the Media Players component. In this list,
indentation indicates inheritance.

Medi aSt r eanPl| ayer — specialized subclass of Pl ayer that plays media held
in an associated media stream.

179

n ScriptX Components Guide

Di gi t al Vi deoPl ayer -- subclass of Medi aSt r eanPl ayer that is
specialized to play video. The video is held in a stream containing digitized
video.

Di gi t al Audi oPl ayer -- subclass of Medi aSt r eanPl ayer that is
specialized to play sound. The sound is held in a stream containing
digitized audio.

M DI Pl ayer -- a subclass of Medi aSt r eanPl ayer specialized to play
MIDI sound. The sound is held in a stream containing MIDI data.

Movi ePl ayer -- subclass of Pl ayer that is specialized to play movies. A
Movi ePl ayer object controls other players that play the components of a
movie.

I nterl eavedMovi ePl ayer -- subclass of Movi ePl ayer that is specialized
to play interleaved movies.

Medi aSt r eam— base class that encompasses the common behavior of media
streams; it is used by Medi aSt r eanPl ayer instances.

Audi oSt r eam-- subclass of Medi aSt r eamspecialized for holding a stream
of digitized sound.

M DI St r eam-- subclass of Medi aSt r eamspecialized for holding a stream
of MIDI data.

Vi deoSt r eam-- subclass of Medi aSt r eamspecialized for holding a stream
of digitized video data.

ChunkSt r eam- subclass of Byt eSt r eamthat is used by

I nterl eavedMovi ePl ayer to transfer movie data in a single interleaved
stream to separate audio and video streams. (See the description of
ChunkSt r eamin the ScriptX Class Reference for more information.)

M DI Event - class that holds information about MIDI events, such as the
message, note and velocity for a MIDI event.

M DI Dri ver - class of drivers for MIDI devices.

Conceptual Overview

180

The classes in the Media Players component can be used to present (or play)
media such as movies, video, and sound. The media player classes inherit
methods from the Pl ayer class that are common to all players, such as
methods for playing, stopping, pausing, fast forwarding, and rewinding.

The class Medi aSt r eanPl ayer provides functionality for playing and
controlling a single piece of media contained in a media stream. The classes
Di gi t al Audi oPl ayer, Di gi tal Vi deoPl ayer and M DI Pl ayer play a
single piece of media and inherit from the class Medi aSt r eanP| ayer.

The Movi ePl ayer class uses multiple digital audio players and digital video
players to play a movie. The | nt er| eavedMovi ePl ayer class inherits from
Movi ePl ayer and has added functionality for playing movies whose data is
interleaved in a single stream.

Media Players n

To use digitized media in ScriptX, you must first digitize your data in an
appropriate application outside ScriptX. For example, you might digitize a
movie and store it as a QuickTime file, or digitize a sound and store it as an
AIFF file. After you have created the file containing the digitized media, you
can import it into ScriptX using the Import/Export Engine. See the ScriptX
Tools Guide for full details of importing sound, video and movie data into
ScriptX. Note that for playing MIDI, you can either import an existing MIDI
file into ScriptX, or you can generate MIDI events from within ScriptX.

After importing media into ScriptX, you can save either the media player or
the media stream to a title container. If you do this, you can play the media at
a later time, by opening the title container and accessing the media player or
the media stream. (If you save the stream without the player, you will need to
create a new player to play the stream.) The imported media can be used by
media players on any platform that supports ScriptX.

As mentioned in Chapter 7, “Players”, you can synchronize players so that a
single player can control multiple players, and you can use markers to mark a
time range in the media presented by a media player. See “Using Multiple
Players” on page 170 and “Using Markers” on page 173.

How Media Players Work

Players that inherit from Medi aSt r eanPl ayer play a single piece of media.
They have an instance variable called medi aSt r eamthat points to the

Medi aSt r eamobject controlled by the player. The stream must be an
appropriate kind for the player.

Each media stream in turn has an i nput St r eaminstance variable that points
to the actual stream of data for the media, as illustrated in Figure 8-1.

‘ DigitalVideoPlayer ‘ ‘ DigitalAudioPlayer ‘ ‘ MidiPlayer ‘
medioLTreom medioLtreom medioLtreom
instance variable instance variable instance variable

‘ VideoStream ‘ ‘ AudioStream ‘ MidiStream
inpuTJTrectm inpuTJTreqm inputStream
instance variable instance variable instance variable
‘ ByteStream ‘ ‘ ByteStream ‘ ‘ ByteStream ‘

Figure 8-1: A MediaStreamPlayer has a mediaStream with an inputStream.

A Movi ePl ayer object does not play a single piece of media. Instead, it
controls other players that are each responsible for playing a component of the
movie. Both the t ar get and sl aved ocks instance variables of a movie
player contain an array of the other players needed to play the movie.

An | nterl eavedMovi ePl ayer instance is a specialized Movi ePl ayer that
has an i nt er | eavedSt r eaminstance variable that holds a stream containing
interleaved data for the movie. See the | nt er | eavedMvi ePl ayer section in

181

n ScriptX Components Guide

the ScriptX Class Reference for a detailed discussion of how interleaved movie
players de-interleave their data and send it to separate digital audio and digital
video players.

Start and End of the Media Data

All media players assume that their associated media starts at time zero and
proceeds through the time stored in the player’s dur at i on instance variable .
As for all players, calling the pl ay method on a media player sets its rate to 1
and starts it ticking (that is, the value of the t i me instance variable begins
incrementing.) A media player starts presenting its associated media when its
time is zero and its rate is positive. It finishes presenting its media when its
time reaches the value in its dur at i on instance variable. (If the player is
playing backward, the reverse is true.) When the player passes the end of its
media stream, its clock continues ticking although the media is no longer being
presented.

A player could be in the situation where it has a negative time value but a
forward rate value. In this case, although the player’s clock is ticking it is not
presenting its associated media. When the time reaches 0, the media starts

playing.

Importing and Saving Media in ScriptX

182

To get media into ScriptX, you import it from a file containing digitized media
data, such as as a QuickTime or AVI file containing a digitized movie, an AIFF
file containing digitized sound, or a MIDI file containing MIDI data. To import
a media file into ScriptX, call the i mpor t Medi a method on

t hel mpor t Expor t Engi ne global instance.

The i npor t Medi a takes at least five arguments in addition to self:
e the source file to be imported

¢ the type of media

e the specific file type

e the output class

e an optional keyword argument for the title container in which to save the
media

The actual values for these arguments depend on the kind of media being
imported. The i npor t Medi a methods also takes extra arguments for
importing some kinds of media. See the ScriptX Tools Guide for details and
examples of importing each kind of media.

When importing digitized audio files, digitized video files, and MIDI files, you
can choose whether the importing process should create just a media stream or
whether it should also create an appropriate player to play the stream. For
movies, the importing process always creates a master player (either a

Movi ePl ayer or | nterl eavedMovi ePl ayer instance) along with all the
necessary slave players and streams needed to play the movie.

Media Players n

The following code illustrates how to import an AIFF sound into ScriptX and

play it:
theStream : = getstream thestartdir "songl.aif" @eadabl e
songpl ayer := inportMdia thel nmport ExportEngi ne theStream

@ound @iff @l ayer
pl ay songpl ayer

If you import media as a media stream only, you also need to create a player to
play the media stream. To do this, call the new method on the appropriate
subclass of Medi aPl ayer and set the player’s nedi aSt r eaminstance variable
to the media stream, as illustrated in the following code:

theStream : = getstreamthestartdir "song2.aif" @eadabl e

songStream : = inportMedia thel nportExportEngi ne theStream
@ound @i ff @tream
songPl ayer := new D gital Audi oPl ayer medi aStream songStream

pl ay songPl ayer

Saving Imported Media to a Title Container

If you save the imported media to a title container, you will be able include the
media in your title. The title will be able to run on any machine that supports
ScriptX without needing copies of the original media files.

If you intend to save imported media to a title container, you must specify the
cont ai ner keyword to the i npor t Medi a method. When the media is
imported, the raw data for the media goes into the title container, but no
objects are saved to the title container.

In addition to specifying the cont ai ner keyword for the importing process,
you must also explicitly add the media stream object or media player object (or
an object that refers either of them) to the title container. Close the title
container to store the objects.

You can play the media at a later time on any machine that supports ScriptX. In
future ScriptX sessions, you do not need to import the media again. To access
the media stream or media player, simply open the relevant title container. You
do not need to keep the original media file around, since the media data is
copied directly into ScriptX.

Saving the Media Player

The following code sample illustrates how to import a media file and save the
media player object to the object store. It also shows how to play the media
after quitting from ScriptX and restarting ScriptX.

-- open a title container
tc := new titlecontainer path:"songl.sxt"

-- inport the nedia

theStream : = getstream thestartdir "songl.aif" @eadabl e

songpl ayer := inportMdia thel nport ExportEngi ne theStream
@ound @iff @l ayer container:tc

183

n ScriptX Components Guide

184

-- add the nedia player to the title container
append tc songpl ayer

-- define a startup action for the title container
tc.startWAction := (tc -> songplayer := tc[1])

-- close the title container
close tc

Quit from ScriptX, then launch ScriptX again. If you start ScriptX from the
mysongs. sxt icon you do not need to enter the following;:

open titlecontainer path:"songl.sxt"

In this case, the variable songpl ayer was defined by the title container’s
startup action. To play the song, enter:

pl ay songpl ayer

Saving the Media Stream

The following code sample illustrates how to import a media file and save the
media stream object to the object store. It also shows how to play the media
after quitting from ScriptX and restarting ScriptX.

-- open the title container
tc := new titlecontainer path:"songl.sxt"

-- inport the media

theStream : = getstream thestartdir "songl.aif" @eadabl e

songStream : = inportMedia thel mport Export Engi ne theStream
@ound @i ff @tream container:tc

-- add the nmedia streamto the title container
append tc songStream

-- define a startup action for the title container
tc.startupAction := (tc -> songStream := tc[1])

-- Cose the title container
close tc

Quit from ScriptX, then launch ScriptX again. If you start ScriptX from the
mysongs. sxt icon you do not need to enter the following:

open titlecontainer path:"songl.sxt"

In this case, the variable songst r eamwas defined by the title container’s

startup action. Create a digital audio player to play the song:

gl obal songpl ayer := new di gital Audi oPl ayer nedi aStream songStream
pl ay songpl ayer

Media Players n

Saving Multiple Batch Media to a Title Container

The following sample code illustrates how to import multiple media files and
save them to a title container by saving a list of the media streams. (When you
save an object to a title container, any objects referenced by that object are also
saved.) The code sample also shows how to play the media after quitting from
ScriptX and restarting ScriptX.

-- open a title container
tc := new titl econtainer path:"nysongs.sxt"

-- inport several nedia files

sl := inportMedia thel nportExportEngi ne \
(getstream thestartdir "songl.aif" @eadable) \
@ound @iff @l ayer container:tc

s2 := inportMedia thel nportExportEngi ne \
(getstream thestartdir "song2.aif" @eadable) \
@ound @iff @l ayer container:tc

s3 : = inportMedia thel nportExportEngi ne \

(getstream thestartdir "song3.aif" @eadable) \
@ound @iff @l ayer container:tc

songlist := #(sl, s2, s3)

-- add a list of the media streans to the title container
append tc songli st

-- define a startup action for the title container
tc.startupAction := (tc ->\

songl := tc[1][1] \
song2 := tc[1][2] \
song3 := tc[1][3])

close tc

Quit from ScriptX, then launch ScriptX again. If you start ScriptX from the
mysongs. sxt icon you do not need to enter the following:

open titlecontainer path:"songl.sxt"

In this case, the variables songl, song2 and song3 are defined by the title
container’s startup action. Create a digital audio player to play the songs:

songPl ayer := new digital Audi oPl ayer

-- play songl
songPl ayer . medi aStream : = songl
pl ay songF ayer

-- play song2

stop songPl ayer

songPl ayer . medi ast ream : = song2
got obegi n songP ayer

pl ay songF ayer

-- play song3
stop songPl ayer

185

n ScriptX Components Guide

songPl ayer . medi ast ream : = song3
got obegi n songP! ayer
pl ay songPl ayer

Using Media Players

186

To prepare a media player for playing, call its pl ayPr epar e method. To start
it playing its associated media call its p| ay method. If you call the pl ay
method on an unprepared player, the player’s clock starts ticking immediately
while the player gets prepared to play. When the player is ready, it starts
playing its media from that time. Thus the very beginning of the media might
not play or the media might not be perfectly synchronized with other media.

To stop the media from playing, call the player’s st op method. A player does
not stop playing until the st op method is called, even if it has passed the end
of its media stream.

To set the media back to the beginning, call the player’s got obegi n method.
To move the media to a particular time, set the player’s t i me instance variable
to the desired time. To put the player in a temporarily paused state call its
pause method.

Use the pl ayUnt i | method to play a player until a given time. For example to
play it until the end of its media stream, call pl ayUnti | and pass in the
player’s duration as the time to play until.

-- p is an existing media player
got obegin p
playUntil p p.duration

To change the media stream that a digital audio player, digital video player or
MIDI player plays, set the value of its medi aSt r eaminstance variable to the
desired media stream object.

Playing Audio

To play sound other than MIDI sound in ScriptX, use a Di gi t al Audi oPl ayer
instance whose nedi aSt r eaminstance variable contains an Audi oSt r eam
instance. Digital audio players can play sound media imported from AIFF,
SND, and WAVE audio files. (MIDI sound is discussed in “Playing MIDI” on
page 190.)

The following script demonstrates how to import and play a tune that has been
digitized and saved to a file called di tty. ai f in the same folder as the script.

-- Oreate a title container
tc:= new titlecontainer path:"ditty.sxt"

-- inport the nedia

global tuneStreanl := getstream theScriptDr "ditty.aif" @eadable

gl obal tuneM ayer := inportMdia thelnportExportEngine tuneStreant \
@ound @\ FF @l ayer container:tc

Media Players n

-- Prepare tunePl ayer
pl ayPrepare tunePl ayer 1

-- Start tunePlayer playing
pl ay tuneP ayer

-- Stop the tune from playing
stop tunePl ayer

-- Start playing the tune over again from the begi nni ng
-- This time play it once through to the end

got obegi n tunePll ayer

pl ayPrepare tunePl ayer 1

playUntil tunePl ayer tunePl ayer.duration

-- add tuneplayer to the title container and save the title container
got obegi n tunePl ayer

append tc tunePl ayer

tc.startWAction := (tc -> tunePlayer := tc[1])

close tc

Sound Channel Allocation

When an Audi oSt r eaminstance becomes attached to a

Di gi t al Audi oPl ayer instance, either during the importing process or by
explicitly being put in the player’s nedi aSt r eaminstance variable, the player
locates all appropriate hardware sound channels. When the pl ayPr epar e
method is called on the player, it searches through all the appropriate sound
channels looking for one that is not in use. If all appropriate sound channels
are already in use then the preparing player causes a Di gi t al Audi oPl ayer
instance that is already prepared to become unprepared, thus freeing a sound
channel. This may cause another sound to stop playing.

Playing Movies

The Movi ePl ayer and | nter| eavedMovi ePl ayer classes provide facilities
for playing movies. AMbvi ePl ayer instance plays a movie whose data is
separated into audio and video streams. An | nt er | eavedMovi ePl ayer
instance plays a movie whose data is held in a single interspersed stream. You
use both Movi ePl ayer and | nt er| eavedMovi ePl ayer instances just like
any other players— control them with the pl ay, pl ayUnti |, st op, pause,
got oBegi n, got oEnd, and f ast For war d methods.

A Movi ePl ayer instance controls Di gi t al Audi oPl ayer and

Di gi tal Vi deoPl ayer instances that play together to present the movie. An
I nterl eavedMovi ePl ayer also controls other players, but has the added
complexity that its i nt er | eavedSt r eaminstance variable holds a stream
containing the interleaved movie data.

187

n ScriptX Components Guide

188

When an interleaved movie player plays, it uses chunk streams to pass the
video data in the interleaved stream to a digital video player and to pass the
audio data to a digital audio player. See the section on

I nterl eavedMovi ePl ayer in the ScriptX Class Reference for more details on
how interleaved movie players and chunk streams work.

When importing any movie into ScriptX, you can choose to import it as a
non-interleaved movie or an interleaved movie. To separate the sound and
audio data of a movie into separate streams, import it as a Movi ePl ayer
instance. To preserve the existing interleaving of a movie during importing,
import it as an | nt er | eavedMovi ePl ayer instance.

If the video and audio data for a movie are held in separate streams, the video
data needed for a frame may be arbitrarily distant on the storage medium from
the audio data needed for the same frame, causing an increase in search time
between each frame. When the audio and video data are interleaved into a
single stream, the video data and audio data required for a frame are located
sequentially on the storage medium, thus minimizing the search time between
each frame. When playing non-interleaved movies from a hard disk, the extra
search time required to seek to non-sequential positions is relatively small and
does not significantly affect the speed of playback. However, the search time
becomes significant if the movie is played from a CD. If you intend to play the
imported movie from a CD, you should import it to an

I nterl eavedMovi ePl ayer to preserve the interleaving.

To create a Movi ePl ayer or | nt er| eavedMovi ePl ayer instance, import a
file that contains a digitized movie. You must generate the digitized movie file
outside of ScriptX. ScriptX can import QuickTime and AVI movies. Only
QuickTime movies can be imported as interleaved movies.

Note — This release of ScriptX can import QuickTime movies whether or not
they are compressed, and regardless of what kind of compression was used if
they are compressed. However, only cinepak-compressed movies are
guaranteed to play back successfully on any platform on which ScriptX runs.

In addition to being a player, a Movi ePl ayer or | nter| eavedMovi ePl ayer
instance is also a presenter. To play a movie, append the movie player or
interleaved movie player to a visible window, and call the pl ay method on the

player.

The following script demonstrates how to import and play a movie that is
saved in the file "whal e" in the same folder as the script.

-- create a title container
tc := new titl econtainer path:"whale.sxt"

-- Inport the novie to a MviePl ayer
-- |If you want to preserve the interleaving in the novie,
-- substitute @nterl eavedMovi ePl ayer for @ ayer

gl obal whal estream : = getstream theScriptDr "whal e @eadabl e
gl obal whal epl ayer := inportMedia thelnportExportEngi ne whal estream \
@ovie @uicktime @ ayer container:tc

Media Players n

-- Oreate a window the size of the movie s screen
gl obal w = new wi ndow boundary: (whal epl ayer. bbox)
WX = wy =40

show w

-- Append the novie player to the w ndow
append w whal epl ayer

-- Play the novie
pl ay whal epl ayer

-- Stop the novie
stop whal epl ayer

-- Set the novie to a particular tine

-- then play it again to the end of the novie
whal epl ayer.time := 10

playUntil whal epl ayer whal epl ayer. duration

-- set the novie back to the begi nni ng
got obegi n whal epl ayer

-- append the window to the title container

-- the startup action defines variables for the w ndow and whal epl ayer
-- close the title container

append tc w

tc.startWAction := (tc -> w := tc[1l]; whaleplayer := wW1])

close tc

Note — You cannot use an | nt er | eavedMovi ePl ayer object on a page in a
document if you want the movie to change from page to page. You can use a
Movi ePl ayer that dynamically updates its target when a page in a document
opens. See Chapter 13, “Document Templates” for details on creating pages
and documents.

189

n ScriptX Components Guide

190

Playing MIDI

ScriptX provides two ways to play MIDI sound. One way is to import an
existing MIDI file, and then use a M DI Pl ayer object to play the imported
MIDI data. The other way is to create MIDI events directly in ScriptX and send
them to a MIDI driver. In both