

ScriptX Components Guide

December 1995

©1995 Kaleida Labs, Inc. All rights reserved.

U. S. Patent Nos. 5,430,875 and 5,475,811. Other patents pending.

This manual, as well as the software described in it, are furnished under license and may only be used
in accordance with the terms of that license. Under the terms of that license: (1) this manual may not
be copied in whole or in part, and (2) this manual may be used only for the purpose of using software
provided by Kaleida Labs, Inc. (“Kaleida”) and creating software products which run on the Kaleida
Media Player. The contents of this manual is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Kaleida of any kind. Kalei-
da assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

“ScriptX”, “Kaleida Media Player”, the “K-man” logo and “ScriptX Language Kit” are Kaleida trade-
marks that may be used only for the purpose of identifying Kaleida products. Your use of Kaleida
trademarks for any commercial purpose without the prior written consent of Kaleida may constitute
trademark infringement and unfair competition under state and federal law. All other products or
services mentioned in this manual are identified by trademarks of the companies who market those
products or services. Inquiries concerning such trademarks should be made directly to those com-
panies.

This manual is a copyrighted work of Kaleida with all rights reserved. This manual may not be cop-
ied, in whole or in part without the express written consent of Kaleida. Under the copyright law,
copying includes photocopying, storing electronically, or translating into another language.

The ScriptX Language and Class Library (“ScriptX”) described in this manual is a copyrighted work
of Kaleida. ScriptX also contains technology described in pending U.S. patent applications. You
may use and copy ScriptX solely for the purpose of creating software products that run on the Kalei-
da Media Player by writing computer source code that is compiled into object code by software pro-
vided by Kaleida. You may not use or copy ScriptX for the purpose of writing computer source code
that is compiled into object code or otherwise executed with software supplied by any other provider
who has not been expressly licensed for that purpose by Kaleida.

For Defense agencies: Restricted Rights Legend. Use, reproduction or disclosure is subject to restric-
tions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at 225.227-7013.

For Civilian agencies: Restricted Rights Legend. Use, reproduction or disclosure is subject to restric-
tions set forth in subparagraphs (a) through (d) of the Commercial Computer Software Restricted
Rights clause at 52.227-19 and the limitations set forth in Kaleida’s standard commercial agreement
for the software described in this manual. Unpublished rights reserved under the copyright laws of
the United States.

Printed in the USA.

Kaleida Labs, Inc.

c/o Apple Computer

1 Infinite Loop

Cupertino, CA 95014

 iii

Quick Contents

Preface .. 1

Chapter 1 ScriptX Features

......................................

3

Chapter 2 Approaching ScriptX

.................................

19

Part 1 Higher-Level Components 39

Chapter 3

...

41

Chapter 4 Spaces and Presenters

..............................

41

Chapter 5 Controllers

..

99

Chapter 6 User Interface

......................................

113

Chapter 7 Clocks

...

143

Chapter 8 Players

..

165

Chapter 9 Media Players

......................................

177

Chapter 10 Animation

..

197

Chapter 11 Transitions

...

209

Chapter 12 2D Graphics

..

233

Chapter 13 Text and Fonts

.....................................

281

Chapter 14 Document Templates

...............................

315

Chapter 15 Printing

..

353

Chapter 16 Title Management

...................................

369

Part 2 Lower-Level Components 441

Chapter 17 Collections

...

443

Chapter 18 Numerics

..

479

Chapter 19 Events and Input Devices

...........................

495

Chapter 20 Files

...

545

Chapter 21 Streams

..

559

Chapter 22 Memory Management

...............................

571

Chapter 23 Threads

..

581

Chapter 24 Object System Kernel

...............................

609

Chapter 25 Exceptions

...

641

Chapter 26 Import and Export

..................................

647

Chapter 27 Loader

...

651

Appendix A Loadable Extensions.. 663

Appendix B Glossary .. 669

Index ...677

ScriptX Components Guide

iv

v

ScriptX Components Guide

Graphic Overview

This diagram depicts not only the components that make up ScriptX, but also the organization of
this book. Each box in this diagram represents a separate component, which is documented as a
separate chapter. This diagram arranges the ScriptX components in the following groupings:

•

Tools

– for aiding in the development of ScriptX titles and applications. Some tools are written
in C and others in ScriptX.

•

Language

 – for compiling ScriptX scripts into bytecode, which is then interpreted by the Kaleida
Media Player. This component is documented in the

ScriptX Language Guide

.

•

Title Management

 – for creating and managing titles.

•

Space, Presentation and Control

 – for defining underlying models, controlling objects in them,
and displaying them for viewing.

•

Media and Clocks

– for playing animation, transitions, audio, video, and movies, displaying text
and graphics, and printing.

•

System Services

 – for supporting services common to many operating systems.

•

Object System

 – for fundamental collections, numerics and exceptions, as well as the
foundation for the object-oriented and dynamic nature of ScriptX, including multiple inheritance,
first class object system, dynamic binding and incremental compilation.

Notice the Object System sits on the native operating system, such as Macintosh, Power
Macintosh, Windows or OS/2.

Spaces and Presenters Controllers

Title, Library, Accessory, and Storage Containers

Title Management

Space, Presentation and Control

Events &
Threads

System Services

Collections

Object System Kernel

Object System

ExceptionsNumerics

Bytecode
Interpreter

Clocks

Media and Clocks

2D Text and
Transitions

Files Streams

Native Operating System

Language

Loader

User Interface

Animation

Memory
Management

Media
Players

Input Devices

Fonts
Printing

Graphics

Bytecode
Compiler

Players

Listener

Tools

Browser Debugger MediaProfiler Visual Director
Tool KitMemory Importers

C
Extensions

Titles and Applications

Import
Export

Components below this line are included in the Kaleida Media Player

15

3 4 5

11 126 7 8 9 10 14

18 19 20 21 22 25 26

24

23

1716

Chapter numbers in this manual are denoted in corners of boxes

Low-Level Components

High-Level Components

Document
Templates13

vi

ScriptX Components Guide

 vii

Contents

Preface..1

Audience for this Book ..1

Summary of Contents ...2

Manual Conventions ...2

Chapter 1 ScriptX Features... 3

ScriptX Executables ... 5

Titles, Tools and Applications... 6

Design Objectives of ScriptX...6

Categories of User Experience... 7

Modular Compositions.. 8

Virtual Spaces .. 9

Conversational Interactions .. 11

Constructive Experiences... 12

Multitrack Sequencing .. 13

Key ScriptX Features ..14

The ScriptX Object-Oriented Programming Model 14

Metaphor-Based Authoring Facilities.. 14

Spaces, Presenters, Controllers, and the Compositor 15

Time-based Media Classes .. 16

Text and Collection Searching.. 16

Title Management... 16

Object System Kernel... 17

Chapter 2 Approaching ScriptX.. 19

Introduction ...21

Modular Compositions ..22

Language Facilities of Modular Compositions.. 24

Data Management Facilities of Modular Compositions 25

Search-and-Query Facilities of Modular Compositions 27

Display and Composition Facilities of Modular Compositions...................... 29

User Interaction Facilities of Modular Compositions 31

Virtual Spaces ...33

Modeling Facilities of Virtual Spaces.. 35

Composition Facilities of Virtual Spaces .. 36

User Interaction Facilities of Virtual Spaces... 37

ScriptX Components Guide

viii

Part 3 Higher-Level Components 39

Chapter 3 Spaces and Presenters.. 41

Classes and Inheritance..43

Conceptual Overview ..45

Model-Presenter-Controller System ... 45

How Spaces Work for Modeling ... 48

Models and Model Objects ... 52

How Presenters Work ...55

Presenter .. 55

TwoDPresenter... 58

Window... 59

Coordinate Systems ... 65

Properties of 2D Presenters ... 67

Simple Presenters vs. Container Presenters.. 76

Simple Presenters .. 79

TwoDMultiPresenter ... 82

TwoDSpace .. 87

How Compositors Work.. 89

The Modeling/Presentation Cycle... 92

Synchronizing Clocks ... 95

Spaces and Presenters Examples ..97

A Simple Notice Window with a Pushbutton... 98

Chapter 4 Controllers .. 99

Classes and Inheritance..101

Conceptual Overview ..102

Controller Class .. 103

TwoDController Class... 103

When to Use Controllers .. 103

How Controllers Work ...104

Attaching a Controller to a Space... 104

What is a Controller? .. 105

Defining Your Own Controller... 106

The Ticklish Protocol .. 106

Specifying an Object To Be Controlled... 108

Protocols... 109

User Interface Controllers... 110

Contention Among Controllers ... 110

Controller Example..110

The Bouncing Ball .. 110

Contents

ix

Chapter 5 User Interface ... 113

Classes and Inheritance..115

Conceptual Overview ..116

How User Interface Objects Work...117

Presenters and User Interface Objects .. 117

Controllers and User Interface Objects .. 121

Controllers and Hit Testing ... 121

Actuators .. 123

Scrolling Presenters ... 126

Menus... 127

Scroll Bars .. 130

Draggers... 131

How Controllers Manage Presenters.. 131

User Interface Examples...133

Creating an Instance of ScrollBar... 133

Creating a New Actuator .. 135

Creating a Hierarchical Menu ... 137

ScriptX Widget Kit ...138

Classes and Inheritance ... 138

Widget Kit Example .. 140

Chapter 6 Clocks.. 143

Classes and Inheritance..145

Conceptual Overview ..146

How Clocks Work..147

Scale and Rate ... 147

 Reading a Clock’s Time... 148

Timing Hierarchies and Synchronization...148

Master and Slave Clocks.. 148

Effective Rate ... 149

Offset .. 151

Synchronizing Clocks in a Hierarchy .. 151

Timing Hierarchies and Clock Behavior ... 152

Modeling with Timing Hierarchies... 153

Clocks Created Automatically by ScriptX..153

Clocks and TitleContainers ...154

Using Callbacks To Schedule Actions ..154

Types of Callbacks ... 154

Attaching Callbacks to a Clock ... 155

The Arguments for the Callback-Creation Methods 155

Callback Scripts.. 156

ScriptX Components Guide

x

Examples of Creating Callbacks... 156

Callback Conditions.. 158

Priority and Order ... 158

Synchronization of Periodic Callbacks ... 159

Cancelling a Callback ... 160

Uncancelling a Cancelled Callback .. 160

Callbacks and Clock Behavior.. 161

Callback Example... 161

Chapter 7 Players... 165

Classes and Inheritance..167

Conceptual Overview ..168

How Players Work...169

Using Multiple Players...170

Specifying Different Start Times For Slave Players.................................... 171

Playing Slave Players at Different Rates.. 173

Troubleshooting Hints – The Case of the Stopped Slave Player 173

Using Markers ...173

Chapter 8 Media Players ... 177

Classes and Inheritance..179

Conceptual Overview ..180

How Media Players Work..181

Start and End of the Media Data .. 182

Importing and Saving Media in ScriptX ...182

Saving Imported Media to a Title Container ... 183

Using Media Players ...186

Playing Audio.. 186

Playing Movies ... 187

Playing MIDI ... 190

Creating MIDI Events Directly .. 191

Chapter 9 Animation.. 197

Classes and Inheritance..199

Conceptual Overview ..200

How Animation Works...200

Action List and Actions ... 200

Action List Player.. 201

Target List... 201

Contents

xi

Setting Up an Unchanging Target List.. 202

Changing the Target List on the Fly ... 202

Registration Points ... 203

Animation Examples ...204

A Simple Flipbook... 204

A Flipbook – Dynamically Changing the Target List................................... 205

Animated Ball ... 207

Chapter 10 Transitions .. 209

Classes and Inheritance..211

Conceptual Overview ..213

How Transitions Work ...213

Revealing a Target ... 213

A Transition Is a Clock.. 214

Time and Frame of a Transition ... 215

Duration and Smoothness of a Transition .. 215

Using a Transition to Make the Target Disappear 215

Deleting a Hidden Presenter .. 216

Splicing the Target into the Space.. 217

Offscreen Cached Target ... 218

Moving Target... 218

Using the Transitions Component...219

Setting up a Transition.. 219

Performing a Transition on an Existing Collection...................................... 221

Loadable Transitions...223

How to Load Transitions... 223

What The Transitions Look Like..225

BarnDoor (Core) ... 225

Blinds (Loadable).. 225

Checkerboard (Loadable)... 225

DiamondIris (Loadable) .. 226

Dissolve (Loadable).. 226

Fan (Loadable) ... 227

GarageDoor (Loadable).. 227

Iris (Core).. 227

Push (Loadable) ... 228

RandomChunks (Loadable).. 228

RectIris (Loadable) ... 228

RectWipe (Loadable).. 229

Slide (Core) .. 229

StripSlide (Loadable) .. 230

StripWipe (Loadable).. 230

ScriptX Components Guide

xii

Wipe (Core) .. 231

Transition Example ...231

A Simple Transition .. 231

Chapter 11 2D Graphics .. 233

Classes and Inheritance..235

Conceptual Overview ..237

How 2D Graphics Objects Work... 238

Positioning Images..239

Positioning TwoDPresenters .. 239

Positioning Stencils .. 240

Using 2D Graphics ..243

Drawing Lines, Ovals, Rectangles and Rounded Rectangles.................... 243

Drawing Curves .. 245

Drawing Paths .. 246

Drawing Text Stencils... 247

Drawing Bitmaps .. 248

Clipping Shapes ... 251

Specifying Fill and Brush Attributes for Shapes ... 251

Modifying Shapes ... 252

Rotating and Scaling Stencils... 253

ColorMaps...259

Color Table Manipulation.. 259

Creating New Classes of Graphic Presenters...261

Boundaries and Global Boundaries.. 262

Arguments For the Draw Method ... 263

Fill, Stroke, and Transfer Methods ... 263

2D Graphics Examples ...265

Example – ShadowedShape .. 265

Example – Grid... 271

Example – Stencilizer ... 274

Chapter 12 Text and Fonts.. 281

Classes and Inheritance..283

Conceptual Overview ..284

How Text Works..284

String Encoding and Unicode... 284

Strings as Collections ... 286

Strings as Streams ... 287

Strings and Iterators ... 288

Cursor Positions ... 288

Contents

xiii

How Fonts Work..289

Fonts... 289

Using Text and Fonts ..289

Creating Strings.. 289

Creating Fonts .. 290

Presenting Strings .. 291

Overview of Text Attributes ...293

Text and TextStencil Objects.. 295

List of Attributes.. 295

Getting and Setting Attributes... 296

Setting the Font, Size, Weight, Width, and Style.. 297

Setting the Color... 298

Setting Underline .. 298

Setting Leading... 298

Setting Alignment ... 300

Setting Indentation.. 301

Setting Actions.. 302

Setting Selections, Insertion Points, and Cursors 303

Changing Default Values for Selections and Cursors 305

Concatenating and Modifying Strings... 305

Searching Strings ... 310

Using Text Actions.. 312

Chapter 13 Document Templates ... 315

Classes and Inheritance..317

Conceptual Overview ..318

How Document Templates Work ..319

Documents ... 319

Pages ... 320

PageTemplates and PageLayers ... 320

Page Elements ... 320

Pages Share Templates ... 322

How Does a Page Element Know What to Present?.................................. 323

Boundaries of Documents, Templates, Layers, and Pages 326

Fills and Outlines for Pages and Page Layers ... 327

Using the Document Templates Component ..327

Creating a Document.. 327

Navigating Through a Document.. 329

Specifying Things to Happen when a Page Changes 329

Finding the Presenter of Objects in a Document.. 330

Using Controllers in a Document.. 331

Displaying Movies on a Page ... 332

ScriptX Components Guide

xiv

Dynamically Updating Presenters that Don’t Use Targets 334

Document Template Examples ...336

A Simple Document.. 336

An Extended Document.. 337

The PageLayers Used in the Document... 338

The Code for the Example.. 340

Chapter 14 Printing.. 353

Classes and Inheritance..355

Conceptual Overview ..355

Putting Print Capability in Your Title..356

Printing a Window View ..357

Printing a Window’s Bitmap Image... 357

Printing Each Presenter.. 360

Printing a TextPresenter to Multiple Pages .. 362

Printing a OneOfNPresenter to a Series of Pages 365

Other Printing Issues .. 367

Chapter 15 Title Management ... 369

Classes and Inheritance..371

Conceptual Overview ..372

Storage Container .. 373

Title... 374

Library... 374

Accessory ... 375

Storing ScriptX Code in Storage Containers .. 375

Startup Actions ... 376

How Storage Containers Work..377

Life Cycle of a Stored Object.. 377

Persistent Versus Transient Objects .. 378

References Across Containers... 378

Object Store Protocol ... 378

Shared Objects... 381

Object Store Helper Functions ... 381

Object Store System Globals ... 382

Performance and Optimization ... 382

Using Storage Containers ...383

Adding Objects to a Container.. 383

Choosing a Target Collection ... 384

Saving Objects to a Container File ... 385

Loading Stored Objects into Memory ... 386

Contents

xv

Modifying and Deleting Objects in a Container .. 386

Removing Objects from Memory .. 389

Freeing of Persistent and Transient Objects .. 390

Saving and Closing a Container ... 392

How Title Containers Work ...392

Useful Title Variables.. 393

Opening and Closing ScriptX Titles.. 393

The Scratch Title .. 397

Using Title Containers...397

Creating a Title Container... 398

Saving and Closing a Title Container ... 399

Managing Windows, Clocks, and Players in a Title.................................... 400

Pausing, Resuming and Muting a Title... 405

System Menu Bar ... 405

Clipboard .. 406

Managing Libraries in a Title .. 408

Opening Multiple Title Containers .. 410

Using Library Containers...411

Creating a Library Container .. 411

Opening and Closing a Library ... 412

Adding Media to a Library... 413

Using Accessory Containers ...414

Creating an Accessory Container... 416

Opening an Accessory File... 418

Quitting ScriptX ...419

Quit Queries ... 419

Quit Tasks .. 420

Title Management Examples...421

A Simple Title ... 421

A Painting Title and Library .. 423

A Painting Title and Accessory... 426

Quitting ScriptX Gracefully ... 431

Part 4 Lower-Level Components 441

Chapter 16 Collections .. 443

Classes and Inheritance..445

Conceptual Overview ..446

How Collections Work ...447

Sorted Collections .. 449

ScriptX Components Guide

xvi

Comparison Functions.. 450

Choosing a Collection Class ...452

Arrays and Sorted Arrays ... 454

Linked Lists... 456

Array Lists... 457

B-Trees... 459

Hash Tables ... 460

Single, Pair, Triple, Quad ... 461

Collections and Threads... 462

Collections and Load Management .. 462

Strings .. 464

SequenceCursor... 464

Ranges ... 466

IndirectCollection .. 469

Subclassing Collections.. 469

Iterators ...470

Using the Collections Component...473

Implementing a Lookup Table .. 473

Specializing IndirectCollection to Enforce Uniformity 474

Chapter 17 Numerics ... 479

Classes and Inheritance..481

Conceptual Overview ..482

How Numerics Work ...482

Coercion of Numbers.. 483

Boolean Operations.. 484

Operations on Numbers ... 484

Operations on Integers ... 485

Immediate Objects.. 486

Fixed and Floating-Point Precision... 488

Dates and Times .. 489

Numerics Example ..491

Net Present Value of a Winning Lottery Ticket... 491

Chapter 18 Events and Input Devices.. 495

Classes and Inheritance..497

Conceptual Overview ..499

How Events Work..500

Generating Events.. 501

Receiving Events.. 503

Dispatching Events... 507

Contents

xvii

Matching Event Interests .. 508

Accepting an Event... 510

Flow Diagrams for Events .. 511

Events and Event Interests—Creating New Classes 512

How Input Devices Work...514

Creating Input Devices and Processing Events ... 514

Keyboard Devices and Keyboard Events ... 515

Focus Events.. 517

Mouse Devices and Mouse Events .. 519

Compatibility Across Platforms... 528

Input Devices of the Future .. 529

Events and Input Devices Examples...530

Selecting Presenters with a Mouse .. 530

Processing with an Event Queue ... 533

Focus Events.. 538

Receiving Mouse Crossing Events... 541

Chapter 19 Files and System Services .. 545

Classes and Inheritance..547

Conceptual Overview ..547

How Files Work ...548

Access to Directories and Files .. 548

Access to Data ... 549

Macintosh Resource Files .. 549

Using the Files Component...549

Path References... 549

Testing Files and Directories .. 550

Directory Paths as Sequences ... 550

Naming Files... 550

Converting File Names ... 551

Creating Instances of DirRep ... 551

Navigating Directories .. 552

File Creation ... 552

File Deletion.. 553

Access to Streams.. 553

Open and Save Dialog Boxes ...555

Open Dialog Box .. 555

Save As Dialog Box.. 556

Filenames ... 556

Message Dialog Boxes... 557

ScriptX Components Guide

xviii

Chapter 20 Streams ... 559

Classes and Inheritance..561

Conceptual Overview ..562

How Streams Work ...564

Stream Subclasses Defined by ScriptX.. 564

Access To Streamed Data.. 566

Plugging Streams ... 569

Defining Custom Stream Classes... 569

Chapter 21 Memory Management... 571

Conceptual Overview ..573

How ScriptX Memory Management Works ...574

Real-time Incremental Activity .. 574

Non-relocating Objects—Organization of Memory 575

Tracing Collection—How ScriptX Finds Unused Objects 576

Memory Management versus Load Management 578

Using Memory Management ...579

Chapter 22 Threads ... 581

Classes and Inheritance..583

Conceptual Overview ..584

How Threads Work ...585

Programming Guidelines .. 586

Thread Functions.. 587

Thread Status ... 587

Blocking .. 591

Pipes... 593

Gates .. 595

Priority .. 598

Preemptibility .. 599

Using the Threads Component ...603

Thread Examples ..604

Asynchronous Processing .. 604

A Thread Dispatcher... 606

Chapter 23 Object System Kernel .. 609

Classes and Inheritance..611

Conceptual Overview ..612

How Classes and Objects Work..612

Contents

xix

Metaclass Network Introduction ... 613

Metaclass Network Details ... 613

Initialization... 615

Function Dispatch... 619

Access to Variables .. 624

Delegation .. 625

Copying Objects ... 626

Coercing Objects .. 628

Comparing Objects... 633

Printing Objects .. 638

Chapter 24 Exceptions .. 641

Classes and Inheritance..642

How Exceptions Work ...644

Using Exceptions ..645

Exceptions in the Kaleida Media Player..645

Chapter 25 Import and Export .. 647

Classes and Inheritance..649

How Import and Export Work ..649

Registering Import and Export Modules ... 650

Using the Import and Export Component..650

Chapter 26 Loader ... 651

Classes and Inheritance..653

Conceptual Overview ..654

How the Loader Works..654

Loadable Objects.. 654

Entry Point Code .. 656

Loader Lists .. 656

Using the Loader...657

How the Loader Works (continued)...657

The Load Process .. 657

Symbol Accessibility ... 658

Relinquishing .. 659

Exception Handling... 660

Loader Examples ..661

ScriptX Components Guide

xx

Appendix A Loadable Extensions ... 663

Summary of Loadable Extensions ..665

C-Loadable Extensions .. 665

Scripted Extensions.. 667

External Command Interface Extension..667

Loading the External Command Extension .. 667

MCI Interface .. 667

Appendix B Glossary .. 669

Index ... 677

Preface

1

Preface

This document is part of the ScriptX Technical Reference Series. This series is
for programmers using ScriptX to develop interactive multimedia tools and
titles to run on the Kaleida Media Player. This series includes the following
documents:

• The ScriptX Components Guide (this manual) provides an overview of ScriptX
architecture, conceptual explanations about the organization of the ScriptX
classes into components, and script examples showing how the classes work
together. It covers ScriptX from the multimedia title, down to the operating
system devices. This manual is essential to anyone designing and building
multimedia titles in ScriptX. It is the companion volume to the ScriptX Class
Reference.

• The ScriptX Class Reference is a detailed reference to the ScriptX class library
that provides, in dictionary form, a complete specification of the classes,
methods, variables, and functions available for building multimedia titles
and tools in ScriptX. It is the companion volume to the ScriptX Components
Guide.

• The ScriptX Language Guide is a practical guide to using the ScriptX
programming language. It provides complete functional descriptions of the
language as well as concrete descriptions of tasks you might do when
actually working with the ScriptX language. Anyone programming in
ScriptX will want to use this book.

• The ScriptX Tools Guide provides information about the ScriptX development
process that is not covered in the other manuals. The first part discusses
how to use the browsers, the Listener and other tools that are supplied with
ScriptX. All users will want to read this part. The second part explains how
to extend ScriptX by loading classes written in C, and discusses
platform-specific issues. Developers who wish to add classes written in C to
ScriptX will want to read the second part. The third part of the ScriptX Tools
Guide discusses how to build additional tools in ScriptX. Tool developers
will want to read the third part.

• The ScriptX Quick Reference summarizes information about the ScriptX
Language and Class Library. It includes the grammar of the language,
listings of components and their classes, and an alphabetical reference to
classes, including class variables, instance variables, and methods.

Audience for this Book
This book is intended for ScriptX programmers, both title developers and tool
developers, who need to understand the fundamental programming concepts
and features provided by the ScriptX architecture and core classes.

2

ScriptX Components Guide

Summary of Contents
The ScriptX Components Guide provides a conceptual overview of the ScriptX
architecture, along with detailed discussions of the components implementing
that architecture. The architectural discussion describes the high-level
abstractions in ScriptX, including motivating factors behind the design of
ScriptX, the key features of the architecture, and examples of the types of
applications ScriptX is designed to implement. The component descriptions
provide details to help programmers navigate the architecture, including
discussions of concepts embodied by classes in each component, and annotated
code examples to demonstrate common usage of the component.

After the first two introductory chapters, this book is divided into the
following parts:

Part 1, “High-level Components” describes the motivations behind the design
of ScriptX, its primary differentiating factors from other authoring and
programming tools, and examples of the unique capabilities ScriptX provides
for title and tool development.

• “Title Management,” discusses features of ScriptX for managing a title,
including startup, shutdown, interacting with menus, saving and opening
files, and quitting the ScriptX runtime environment.

• “ Presentation, and Control,” discusses the central features of ScriptX for
presenting multimedia models to the user.

• “Media Sources,” describes the various types of media available through
ScriptX, including players for sound and video, the 2D graphics imaging
model, and text handling and font management.

Part 2, “Low-level Components, “System Services,” describes operating
system interface features provided by ScriptX for timing, file and data access,
title storage, and managing memory.

• “Object System,” describes classes implementing the ScriptX object model
and primitive object types.

• “Tools,” describe the facilities provided by ScriptX for importing and
exporting media in various formats.

Note – The Property Manager is no longer supported in ScriptX. Instead, the
systemQuery function provides access to information about features and
capabilities of the underlying hardware platform. Please see Chapter 2, “Global
Functions,” in the ScriptX Class Reference for more information.

Manual Conventions
This manual is set primarily in Palatino and Avant Garde, except code samples,
method names, and other code-like elements are in Courier.

Note – Notes to the user look like this.

roperty Man-
er component

C H A P T E R

1
ScriptX Features

4

1 ScriptX Components Guide

5

ScriptX Features 1

The ScriptX Platform is a rich, dynamic, extensible, cross-platform,
multi-threaded, object-oriented environment that enables you to develop
multimedia titles, tools, and other interactive applications for desktop
computers. This platform contains both a dynamic language and a built-in
library of core classes which are intimately connected.

The Kaleida Platform currently runs on Microsoft Windows, Macintosh 68K,
Power Macintosh, and OS/2. Later, support will be added for other
widely-used hardware and operating system combinations, as well as for
dedicated multimedia devices.

The core classes library defines a wide range of classes designed for title
management, modeling, presenting, controlling, data management, text,
graphics, animation, video, audio, timing, user-interaction, and system
services. ScriptX implements all of these features in software, using hardware
assist when available.

ScriptX Executables

Kaleida ships both a development environment, which enables the creation of
ScriptX multimedia applications, and a runtime executable for their delivery:

• The ScriptX Development Environment consists of the ScriptX Language,
the bytecode compiler, for compiling scripts, the bytecode interpreter, and
the core classes library. The compiler compiles ASCII scripts and media into
cross-platform bytecode methods and data which can be stored to a file that
is binary compatible across all platforms. This environment also includes
programming tools for developing and debugging programs at the language
level.

• The ScriptX Player (KMP) is the consumer runtime executable for running
titles and applications developed with ScriptX. It contains the bytecode
interpreter and core classes library.

This book focuses on the components that make up the ScriptX class library
and define the ScriptX development environment.

This chapter examines the objectives that led to the development of ScriptX
and the categories of user interaction that drove many of the architectural
requirements. It then provides a brief overview of the major components of the
ScriptX development environment.

Chapter 2 looks at some hypothetical examples to show how the components
interact from a programmer’s perspective. The remaining chapters look at each
system component in greater detail. The ScriptX Class Reference is the
companion book, which describes the public application programming
interface (API) for all the classes in the core classes library.

6

1 ScriptX Components Guide

Titles, Tools and Applications

With ScriptX you can develop multimedia titles, tools, and applications. These
terms have somewhat well-defined meanings. For example, an interactive book
is considered a title, an object inspector is a tool, and a text editor is an
application. However, rather than repeat these terms, throughout this book we
loosely use the term title to include tools and applications.

To look at what a title is, it can help to describe the primary model underlying
all ScriptX titles:

A title is composed of objects interacting in, or associated with, multiple,
concurrent spaces in which users can participate.

The three important parts of this model are the objects, spaces and users. While
spaces are simply objects themselves, they provide a location or place for
objects to interact with each other and with the user. A window is the most
obvious example of a space.

The user might just be an arrow that responds to mouse movements, or might
be represented in the title by a surrogate animated or video graphic image.

This model is powerful enough to enable any multimedia presentation to be
constructed and played. Developers can invent new metaphors based on this
model.

Design Objectives of ScriptX
The design and development of ScriptX has been driven by the following
objectives:

• To provide broad, creative range for developers, and thereby a wide variety
of experiences for users

• To provide a platform for developing and delivering new forms of
information and entertainment media in a compelling, easy-to-use, and
reliable format

• To provide a general-purpose, metaphor-independent scripting language,
built-in media support, and a flexible customization paradigm so that
developers can express the design of their products fully and naturally

• To create a software abstraction of a multimedia engine that enables the
playback of content on a variety of hardware and software platforms

• To encourage the adoption of ScriptX as a standard across existing and
emerging markets

To understand what features would meet these objectives, the architects of
ScriptX studied a broad range of information models and user interactions. The
following section describes the major categories of user experiences that they
considered.

7

ScriptX Features 1

Categories of User Experience

Each of the following five categories represents an independent experience for
the user, with its own information model and style of user interaction. These
categories together capture a broad range, though not the complete range, of
applications for which ScriptX can be used. We fully expect developers and
authors to reach beyond these specified paradigms, to develop new and
interesting experiences, such as real-time collaboration between users.

ScriptX enables the authoring of a wide range of experiences including, but not
limited to, the following. A single title can contain any number of these
experiences within it. These experiences are described in the next sections:

• Modular Composition – A collection of multimedia objects composed in
different groupings, along with a means for users to reorganize those objects
to make their own compositions.

• Virtual Space – A fixed, seamless, multi-dimensional space populated by
objects through which the user navigates.

• Conversational Interaction – The user and computer carry on a
conversation—both have initiative, information, and intentions.

• Constructive Experience – A collection of objects with behaviors that
interact when the objects are juxtaposed or connected.

• Multitrack Sequencing – A linear stream of multiple, simultaneous tracks of
video, audio, data, scripts and so forth, with which the user can interact.

Each of the features in the above titles is implemented in one or several
components of ScriptX. The following is a brief listing of which components
are responsible for features common to most of these titles:

• Dynamic binding through the Object System Kernel, and loading of
extensions to ScriptX through the Loader component

• Database management, search, and query through the Text and Collections
components

• User interaction through the User Interface, Events, and Controllers
components

• Dynamic screen layout and composition through the Spaces and Presenters
component, the Document Template component, and the Transitions
component

• Audio, video and MIDI synchronization and delivery through the Players,
Media Players, and Streams components

• Animation and simulation through the Animation component

• Synchronization of objects through the Event and Clock components

• Mouse and keyboard interaction through the Events component

• Simultaneous, independent execution of complex, real-time interactions
through the Threads component

• Storage of objects to the underlying file system through the Title
Management, Files, and Streams components

8

1 ScriptX Components Guide

• Use of standard dialog boxes such as Open, Save and Print belonging to the
underlying platform through the Title Management component

Modular Compositions

To describe a modular composition, see Figure 1-1, which represents a
collection of beads to form necklaces. This modular composition is a collection
of objects (bowl of beads), and several compositions (catalog page, timeline,
and necklace). It includes tools to enable users to rearrange the compositions.

Each of the compositions is modular—which means that when users encounter
a new composition, such as a book or movie, with different objects, they can
set the objects aside to form new arrangements and compositions.

Modularity is the ability to organize objects and information into well-defined
structures that can be put together in clean, understandable ways. A modular
composition combines these independent structures to give users alternatives
for interacting with objects. Within a composition, the structures require no
direct knowledge of each other and can be independently modified or replaced
to form new or different types of interactions.

Dynamic binding enhances the interactive nature of modular compositions in
the playback environment. Dynamic binding lets users add completely new
elements, authored elsewhere, into the run-time environment without building,
compiling, linking, or quitting the title. This facility lets modular compositions
accept new types of objects to organize in real time. Thus, not only can the
compositional structure be modified, but its content can be as well.

Many types of applications qualify as modular compositions: product catalogs
(interactive shopping); reference material (multimedia database); expanded
books, periodicals and magazines; and buying and selling guides. While
modular compositions can be self-contained titles, they can also be
independent software components designed to perform a specific function
across a variety of contexts. This type of modular composition is known as an
accessory.

9

ScriptX Features 1

Figure 1-1: Modular compositions

Virtual Spaces

A metaphor is a collection of authoring abstractions that relates to some aspect
of the real world and gives an author a particular point of view from which to
construct a title. While authoring metaphors are useful, the ScriptX architects
did not want to limit developers to a handful of authoring abstractions. Their
goal was to let developers create new ways of organizing information that
might be more appropriate for the activity at hand. One flexible alternative for
organizing information is a virtual space.

A virtual space is a fixed, multi-dimensional area populated by objects, which
users can navigate. A virtual space might have a real-world counterpart, such
as an underwater canyon, or it might represent some imaginary area, such as a
galaxy in a 3D adventure game. Since the structure of the space is fixed (unlike
a modular composition), users can develop intuitions about how to get around.
Figure 1-2 illustrates a virtual space. The user interface, images, and audio may
provide a perceptually seamless portrayal of the space. This virtual space can
be a metaphor for the physical world that can be enhanced or altered.

One way in which a virtual space can differ from modular compositions is that
it can be time-based. The simulations and animations it contains are driven by
a clock. The unfolding of events might respond to the user, but autonomous
objects (fish) might operate with a mind of their own. Thus, events change
dynamically over time around the user.

Reconstruction Activities

1840 1860 1880

Time Line

1900 1920

Composition

Professional Publication

TRADING BEADS
�
�
��
��
����
��
������
�
�

User Created

Composition

User Created

Collection

Resource of

Objects

Dynamic

Composition

10

1 ScriptX Components Guide

Figure 1-2: A virtual space

��

�

�

�

�

�

�

�

��
� ���

���

���

������

������

����

�

���
���
���
���
����

���
���

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

���
���
���

11

ScriptX Features 1

Conversational Interactions

Conversational interactions are experiences that engage both users and
computers in a conversation—an exchange of information where both have
initiative and intentions. As illustrated in Figure 1-3, computers respond to
users’ requests in real time and might direct users toward a specific goal or
target. In this way, users direct the flow of information, and even the
complexity of the interaction. Examples include interactive books, professional
training, “how-to” guides, tutorials, and help systems.

Characteristics of a good conversational system are high-bandwidth
interaction, the ability of the application to present multiple representations of
information, the ability of the application to initiate, and the ability of the user
to interrupt at any time.

One key feature of successful conversational interactions is their ability to
adapt to a variety of different users. For example, a tutorial might have one
presentation for novices and another for experts. Or a help system might
provide information in several different languages, based on user requests.
ScriptX can define a context that provides the most appropriate representations
to users on demand.

Figure 1-3: A conversational interaction

User:

Sue Kaleida

A

B

• Lines rustic

• Natural Material

• Big Budget

Types of

walkways
Concrete

Brick

Cobblestone

Astro turf

I think you'd like

cobblestones.

���
���
���

@@@
@@@
@@@

���
���
���

ÀÀÀ
ÀÀÀ
ÀÀÀ

���
���
���

@@@
@@@
@@@

���
���
���

ÀÀÀ
ÀÀÀ
ÀÀÀ

���
���
���

@@@
@@@
@@@

���
���
���

ÀÀÀ
ÀÀÀ
ÀÀÀ

���
���
���

@@@
@@@
@@@

���
���
���

ÀÀÀ
ÀÀÀ
ÀÀÀ

���
���
���

@@@
@@@
@@@

���
���
���

ÀÀÀ
ÀÀÀ
ÀÀÀ

���
���
���

@@@
@@@
@@@

���
���
���

ÀÀÀ
ÀÀÀ
ÀÀÀ

���
���
���

@@@
@@@
@@@

���
���
���

ÀÀÀ
ÀÀÀ
ÀÀÀ

���
���
���

@@@
@@@
@@@

���
���
���

ÀÀÀ
ÀÀÀ
ÀÀÀ

���
���
���

�
�

?

C

����

�����

�����

@@@@

@@@@@

@@@@@

����

�����

�����

ÀÀÀÀ

ÀÀÀÀÀ

ÀÀÀÀÀ

����

�����

�����

@@@@

@@@@@

@@@@@

����

�����

�����

ÀÀÀÀ

ÀÀÀÀÀ

ÀÀÀÀÀ

����

�����

�����

@@@@

@@@@@

@@@@@

����

�����

�����

ÀÀÀÀ

ÀÀÀÀÀ

ÀÀÀÀÀ

����

�����

�����

@@@@

@@@@@

@@@@@

����

�����

�����

ÀÀÀÀ

ÀÀÀÀÀ

ÀÀÀÀÀ

����

�����

�����

@@@@

@@@@@

@@@@@

����

�����

�����

ÀÀÀÀ

ÀÀÀÀÀ

ÀÀÀÀÀ

����

�����

�����

@@@@

@@@@@

@@@@@

����

�����

�����

ÀÀÀÀ

ÀÀÀÀÀ

ÀÀÀÀÀ

����

�����

�����

@@@@

@@@@@

@@@@@

����

�����

�����

ÀÀÀÀ

ÀÀÀÀÀ

ÀÀÀÀÀ

����

�����

�����

@@@@

@@@@@

@@@@@

����

�����

�����

ÀÀÀÀ

ÀÀÀÀÀ

ÀÀÀÀÀ

����

�����

�����
?
�
�

12

1 ScriptX Components Guide

Constructive Experiences

In a constructive experience, users combine collections of multimedia objects to
see how they interact when juxtaposed or connected. In Figure 1-4, the bird
pecks at the food (A), which causes the door to open (B), causing the cat to
enter the room (C), which causes the dog to awaken (D).

In rigorous systems, like physical simulations, the objects in the collections
might have well-defined, repeatable behaviors. In other systems, the objects
might have a wide range of unpredictable simple behaviors. That is, they
might respond differently depending on the context.

Examples include retail product modeling and simulation, children’s play
environments (Rube Goldberg contraption), and interactive storytelling.

A feature that makes constructive experiences interesting is the ability for
objects to change their actions over time. Clocks allows different objects to be
synchronized, making this kind of experience run smoothly.

Figure 1-4: A constructive experience

C

B
A

D

13

ScriptX Features 1

Multitrack Sequencing

Multitrack sequencing is a linear stream of multiple simultaneous tracks, as
shown in Figure 1-5, containing text, still images, animation, video, audio,
data, commands, scripts, objects, transitions, and similar media elements. The
tracks either play in a straightforward sequential fashion, or allow the user to
interactively control time jumping and screen layout. For example, the user
could switch between cameras at a sports event or at the production of a
movie.

Personal movies, professional presentations, and video editing fall into this
category.

Figure 1-5: Multitrack sequencing

Video 1

Video 2

Video 3

Audio 1

Audio 2

Text 1

Data 1

1 2

3 4

VIEW VIEW

VIEW VIEW

I loved you

� �

Behind the

Scene

Th
e band

14

1 ScriptX Components Guide

Key ScriptX Features
To achieve wide acceptance from hardware manufacturers, tool developers,
title developers, and consumers, ScriptX must be general enough to
accommodate all of the experiences described in the preceding sections and to
adapt to new experiences that emerge in the future. It must define standard
ways to present images, generate sounds, access files, use various media
formats, interact with the windowing environment, and so on. It must also
provide a core of multimedia-specific services and tools. The following sections
describe the components that deliver these features to the ScriptX development
environment in more detail.

The ScriptX Object-Oriented Programming Model

The ScriptX development environment is based on a modular, dynamically
extensible object-oriented programming model. Objects in ScriptX represent all
the framework, from physical devices controlled by hardware to the individual
components of a multimedia piece. Once an object is defined, it can be reused
by any other client in the framework through well-specified interfaces.

A key feature of object-oriented programming is inheritance—the ability to
define new classes of objects by refining existing ones. ScriptX supports
multiple inheritance, allowing developers to fully modularize their programs
and leverage their work across a wide range of uses. Inheritance makes
programming with ScriptX objects easier by allowing developers to build upon
the existing framework and tune the underlying technology to new situations.

For example, a generic player, defined in the Player class, implements
common player features, such as standard methods for starting and stopping.
Specialized types of players—audio players, video players, and others—are
defined as subclasses of Player. These subclasses inherit the general player
behavior and adapt that behavior to work with specific media types. For
example, the generic function play will do the right thing when called on a
video player and also do the right thing when called on an audio player. The
name stays the same, but the implementation is changed appropriately for
different subclasses. Thus, a developer can use play with any of the ScriptX
core class players and know that it will do the appropriate thing. If there were
a new media type, the developer could create a new subclass of Player and
specialize the behavior of play to accommodate that new media type.

The entire ScriptX development environment is itself defined in terms of the
object model. The components of this environment are implemented as groups
of related classes that are easily extensible. All user-written code is assimilated
dynamically into the ScriptX environment and receives the same treatment as
predefined ScriptX objects.

Metaphor-Based Authoring Facilities

The ScriptX language and class library directly support two authoring
paradigms based on well-known metaphors. Metaphor-based authoring
facilities help developers construct particular styles of multimedia interactions.

15

ScriptX Features 1

The Document Templates metaphor is a full-fledged component of the ScriptX
development environment consisting of built-in classes, spaces, presenters, and
related mechanisms for creating document-centered applications. Titles
constructed using this metaphor resemble traditional books, magazines, annual
reports, catalogs, and other such paper documents. However, by using
underlying ScriptX technology, they can support all types of embedded media
in their layouts—text, images, animation, audio, and video.

The Director Translator Kit is a set of scripted classes that enable the
conversion of Macromedia Director™ titles into ScriptX. The model that drives
this metaphor is a linear stream of multiple simultaneous tracks (channels).
Tracks can contain video, audio, data, commands, scripts, objects, transitions,
and so forth. The tracks present information sequentially and can also respond
in real time to user-selected sequencing.

Spaces, Presenters, Controllers, and the Compositor

One of the primary goals of the ScriptX architecture is to provide a rich set of
building blocks that allows authors to express their designs in ways that
closely correspond with users’ experience of them.

To that end, the ScriptX development environment includes a suite of
authoring abstractions, some of which are not tied to any specific authoring
technology or metaphor, since high-level abstractions limit the tools available
to an author. With these building blocks, authors can define new tools and
metaphors and can even “mix metaphors” for a richer experience.

The most fundamental authoring abstraction in ScriptX is a space. A space
defines and organizes the behavior of objects. In ScriptX, spaces provide the
environments in which objects live and interact. Two- and three-dimensional
geometric and physical simulation spaces, cards, stacks, cast sheets, system
simulation environments, catalog databases, and maps are all examples of
possible spaces.

Spaces might also define other properties, such as timelines, spatial
relationships, and state monitoring capabilities. Authoring tools and
metaphors can be characterized in terms of spaces and the associated objects
they provide.

In addition to the conceptual framework for organizing objects, available
through spaces, ScriptX provides two special types of abstract interfaces to
objects:

• Presenters provide concrete ways of experiencing objects in a space, such as
through screen graphics or sound effects. They translate the abstract
definition of an object into a form users can see and hear.

• Controllers manipulate objects in spaces. Controller behavior depends upon
the control protocols defined by a space or by an object itself.

It is possible for a single object to be simultaneously represented by a presenter
and manipulated by a controller. Presenters and controllers can be combined
into a single object or can be embodied in many objects.

16

1 ScriptX Components Guide

Compositors are internal media managers that map the audio and graphics of
a title onto presentation hardware and, in doing so, coordinate the output of
many presenters. Whenever a script associates a display surface with a space,
the system creates a compositor to render the presenters contained in those
spaces onto the display surface. The compositor manages the spaces associated
with the display according to well-specified protocols. The compositor defines
the general presentation behavior, and the display surface specializes that
behavior to match its particular functionality.

Time-based Media Classes

Key to a viable multimedia standard is the rich representation of time-based
media. This representation must take into account the interaction among
different media types and different time scales. The object-oriented nature of
ScriptX allows it to encapsulate time and media intuitively and naturally as
objects.

ScriptX time is represented by clock objects that synchronize to the hardware
clocks of the underlying platform. Programmers can use clock instances
directly for synchronizing real-time media within a title; more commonly,
however, they will choose the clock behavior embodied through ScriptX’s
built-in media players, which are special types of clocks.

ScriptX players represent the playback of time-based media, such as digital
video, sound, videodiscs, and VCRs. They have predefined protocols for play,
stop, fast forward, rewind, and other playback operations.

In addition to media players, ScriptX defines a number of media data types,
including text, vector and bitmap graphics, animation, audio, and video. With
a wide range of native media objects to draw from, developers can create a rich
media mix with a minimum of programming.

Text and Collection Searching

Multimedia content often needs fast access to the media resources it uses.
ScriptX addresses this issue with protocols for locating objects in a title. The
Text component provides search-and-retrieval operations for matching strings
and for finding the nth word, sentence, or paragraph in any given text. The
Collection component provides methods for searching and retrieving objects
within any collection.

Title Management

The Title Management component provides the mechanism for loading a title
from a CD, disk drive, server or other storage device, and for saving objects
used by a ScriptX title across multiple user sessions. This component can store
title data, configuration information, and program state in the underlying
storage system so that the data remains available from one invocation of a title
to the next.

17

ScriptX Features 1

Object System Kernel

A deep understanding of ScriptX requires an understanding of the Object
System Kernel, which defines the fundamental behavior of classes and objects.
ScriptX objects are defined in terms of classes. Each class is itself an object, an
instance of another class called its metaclass. Together with the metaclasses, the
three root classes RootObject, Behavior, and RootClass comprise the
metaclass network.

In the core classes, the distinguished class RootObject, root superclass of all
ScriptX classes and objects, defines behaviors that are shared by all objects.
Any method that is defined by RootObject is inherited by all objects in the
system. In RootObject, ScriptX defines protocols for operations such as
initialization, instance variable access, comparison, copying, coercion between
classes, and printing to a debugging stream.

The Behavior class defines common operations shared by all classes. In
particular, it defines the method for creating new objects in ScriptX. Through a
metaclass network, similar to Smalltalk, ScriptX implements class variables
and methods. The distinguished class RootClass is the superclass of all
metaclasses and defines the protocol for creating new classes.

Several additional “system” classes are considered to be part of the Object
System Kernel. Among them are the function classes, Delegate,
ModuleClass, and NameClass. These classes provide essential services that
are used by all other ScriptX objects.

18

1 ScriptX Components Guide

C H A P T E R

2
Approaching ScriptX

20

2 ScriptX Components Guide

21

Approaching ScriptX 2

This chapter presents top-level views of how ScriptX system components
interact within two typical user experiences—a modular composition and a
virtual space. Readers should consider these examples not as strict templates,
but as aids for navigating the ScriptX system when implementing these styles
of titles.

More detailed information on the components that organize the ScriptX class
library appears in the chapters that follow. The ScriptX Class Reference presents
detailed information about the classes that implement these components.

Introduction
As you can tell from the thickness of this volume, the ScriptX class library is
very comprehensive. It provides a rich assortment of features and functions to
help authors and developers create complex titles and tools.

To orient yourself to the ScriptX class library, consider the conceptual diagram
in Figure 2-1:

Figure 2-1: Interplay of components in ScriptX development framework

Figure 2-1 is a simplified overview of the development framework that groups
key components in the architecture in two ways:

• By the roles they play in the design and implementation of ScriptX
applications

Title Management

Simulation, Presentation, Control

LibraryContainer
Quit Manager

Spaces
Presenters
Controllers
Compositor

Language & Support
System Services

Object System Kernal
Primitives

Graphics
2D Graphics

Text

Timed Behavior
Players

Media Players
Animation
Transitions

Clocks

Interaction
UI Objects

Input Devices
Events

Data Management
Object Store
Collections

22

2 ScriptX Components Guide

• By their interrelatedness in performing those roles

From the bottom up, Figure 2-1 organizes the components of the ScriptX
development framework into these natural groupings:

• Language facilities, the foundation of every application in ScriptX, and even
of ScriptX itself

• Graphics facilities, the geometric shapes and text of applications

• Animation facilities, for adding time-based actions to applications

• Interaction facilities, for involving users in applications

• Data management facilities, for storing, retrieving, and organizing
application data and for managing run-time memory usage

• Simulation and composition facilities, for defining a model simulation and
presenting that model in ways that users can see and manipulate

• Display management facilities which define the visual presentation and
interaction of applications

• Title management facilities, for creating and managing ScriptX titles

This way of thinking about ScriptX is task-oriented and emphasizes the
dynamic nature of ScriptX. The examples that follow discuss the ScriptX
development framework in terms of this organization.

Note, however, that this diagram is a simplification and does not provide a
detailed view of every ScriptX component. The architecture is actually more
complex than this diagram allows. For a more complete picture of the ScriptX
system, see “Graphic Overview” on page v.

Modular Compositions
As introduced in Chapter 1, a modular composition is a collection of
independent well-defined structures that provide alternatives for organizing
and interacting with multimedia objects. Modular compositions encompass a
wide range of user experiences, including conversational and constructive
interactions. Interactive shopping catalogs, multimedia periodicals and
reference books, tutorials and self-help guides are all flavors of modular
compositions.

Figure 2-2 looks at a modular publication in its most general form. It groups
the ScriptX components used to implement the modular composition into five
primary categories:

• The language and support facilities provide the overall foundation of
ScriptX—its object-oriented programming model. Developers can define
intelligent, active ScriptX objects with context-sensitive behaviors that can
be dynamically assimilated into a run-time environment. The object model
pervades every component of ScriptX.

• The data management facilities are those ScriptX components that provide
ways of organizing, partitioning, and storing ScriptX objects so that they can
be easily abstracted and manipulated. The Collections component and the

guage facilities

phics facilities

mation facili-

eraction facili-

a manage-
nt facilities

mulation facili-

mposition facil-

play manage-
nt facilities

e management
ities

dular composi-
s

guage facilities

a manage-
nt facilities

23

Approaching ScriptX 2

storage capabilities of the Title Management component work together to
provide a full range of persistent data structures that can be searched,
iterated over, and operated on as a unit. The Memory Management
component defines mechanisms for pulling saved objects from a file into
memory and freeing them when done.

• The search-and-query facilities, available through the Collection and Text
components, provide the interfaces for locating specific items in the
multimedia database.

• The display management facilities represent the metaphor-based classes and
scripts for presenting multimedia information in a unified form that users
can easily navigate. The ScriptX Document Templates component offers a
familiar metaphor for interacting with multimedia. The Spaces, Presenters,
and Controller components provide the building blocks for developers to
define new metaphors more natural to their title’s needs.

• The interaction facilities provide the means for users to directly manipulate
objects within a presentation. Facilities from the User Interface component
provide control mechanisms that are sensitive to user input events, such as
mouse moves and key presses. Developers use the Presenters, Controllers,
and 2D Graphics components to add their own look-and-feel to these
widgets. The Input Devices and Events components encapsulate the
underlying hardware to communicate user-level activity throughout
ScriptX.

To pull the pieces of the modular publication together into an integrated
whole, developers must provide a navigation path for users to experience the
composition. Figure 2-2 illustrates the dynamic structure of a possible modular
publication. The double-stemmed arrow indicates a possible navigation path.
The “data flow” paths indicate the movement of objects across facilities using
built-in and specialized ScriptX operations. The “process flow” indicates the
exchange of program control that occurs during the data query and retrieval
protocol.

d manage-
nt

arch-and-que-
acilities

play manage-
nt facilities

eraction facili-

24

2 ScriptX Components Guide

Figure 2-2: A generalization of a modular composition

To understand further how ScriptX components interact in a modular
composition, consider the following hypothetical situation. Assume you were
implementing an interactive shopping title that would allow users to browse
through mail-order catalogs from leading clothes manufacturers, select
accessories from other sources, and mix and match the pieces to create
complete ensembles for purchase.

The objects of interest in this composition are all types of clothes that a user
might expect to find in such a catalog—dresses, suits, slacks, shirts, blouses,
shoes, ties, purses, and belts. These objects could be called the essential content
objects of the composition. The first task of the developer is to define a rich set
of behaviors and portrayals for these objects so that users’ interactions with
them are interesting.

Language Facilities of Modular Compositions

ScriptX provides an object definition framework that is broad enough for
content objects to have many different portrayals and behaviors in a modular
composition. As the user’s experience changes in the composition, so can the
action and appearance of the content objects.

A key feature of ScriptX is its ability to separate an object’s structure from its
presentation. Developers can model an object directly and present it in
different forms. In ScriptX, objects called presenters are responsible for

Language Facilities

Abstractions of
Fundamental Concepts in

the Composition

Interaction Facilities

Selections

Search and Query Facilities

Data Management
Facilities

Multimedia Database

User
Navigation

Path
Display Management and Composition Facilities

Navigation Path Process Flow Data Flow

Query

ects;content
ntent objects

guage facilities

senters

25

Approaching ScriptX 2

translating the abstract definitions of content objects into forms users can see
and hear. An object can define multiple portrayals —pictures, movies, line
drawings—for different presentation contexts. And it can embody different
behaviors that change with the presentation. The richer the object definition,
the more alternatives for users to experience. For more information about
presenters, see the chapter “Spaces and Presenters.”

In contrast, objects in existing authoring environments have a fixed universe of
behaviors and portrayals. Authors have no way of creating different
abstractions from what is prepackaged with the system. Authors can simulate
more complex behavior, but they cannot directly model this behavior as in
ScriptX.

Subclassing and inheritance provide other avenues for integrating complex
behavior into a composition. Developers can modularize the behavior and
appearance of ScriptX objects across several classes, and then specialize these
behaviors and portrayals through subclassing or combine them through
multiple inheritance.

Examining how users want to use content objects provides some clues about
what information they might contain. For example, users might want to select
clothes by retailer, such as Saks Fifth Avenue or Macy’s. Some might want to
shop by designer—DKNY or Calvin Klein. Some might be more interested in
looking at clothes by category, such as casual, work clothes, or evening wear.
Some might want to shop for clothes of a particular complimentary color or
price range, or match shoes and accessories to an existing outfit. Figure 2-3
show how these influences can be reflected in an object definition. Content
objects can define many ways of selecting and organizing the information.

Figure 2-3: The richer the object definition, the more user alternatives

Data Management Facilities of Modular Compositions

All built-in ScriptX classes transparently incorporate persistence through the
storage part of the ScriptX Title Management component. Persistence means
that objects defined in ScriptX can remain available for a title’s use across
multiple sessions of ScriptX. The storage mechanism provides for bringing
objects into memory from disk when needed, and purged from memory when

name

selectable properties

• retailer

• designer

• category

• color

• price

small and large portrayals

context-specific behaviors

general behavior

display methods

update methods

ScriptX Object

a manage-
nt facilities

rsistence

26

2 ScriptX Components Guide

done. Whenever a collection is stored, all the objects within it automatically
become persistent, though optimal storage solutions are left to authors and
developers. See the chapter “Title Management” for more information.

The Memory Management component provides facilities for measuring,
monitoring, and calibrating memory usage. By using memory management
operations in conjunction with the storage operations defined by the Title
Management component, you can manage the run-time load of the title to
optimize performance. See the chapter “Memory Management” for more
information.

While persistence provides one ingredient of data access organization in
ScriptX, the developer plays a large role in selecting the right data structures
for different situations, and in managing the comings and goings of objects in
memory. To define efficient means of storing and managing content objects,
developers must consider their possible uses, including future uses. The
ScriptX Collections component provides a broad range of built-in data
structures: arrays, linked lists, hash tables, B-trees, fixed-size sequences, and
byte strings. The section “Which Collection Should I Use?” in the chapter
“Collections” discusses ways of selecting the most appropriate data structure.

All of the built-in collection classes in ScriptX have direct mechanisms for
gaining access to the elements they contain—methods such as chooseOne and
chooseAll. Developers can hand-craft their search operations by supplying
matching functions for their particular needs.

Figure 2-4: The interaction of components involved in object storage

To understand how these ScriptX components organize data access and
storage, consider our interactive shopping example.

d manage-
nt

Search Capability

Hides structure of
underlying data

Storage Container

Persistent Objects

Collections

Collections of
Objects

1 2 3 4 5 6 …

User Selection Criteria

27

Approaching ScriptX 2

The ScriptX objects presented by this example define many selectable
properties. Users can view clothing by retailer, by designer, by category, or by
color—or through a combination of categories. These user choices translate
into search criteria for locating the relevant objects in the database, by use of
methods such as chooseOne.

Search-and-Query Facilities of Modular Compositions

The User Interface component in ScriptX allows a developer to display a
selection of text choices to a user, using objects such as pop-up menus,
pushbuttons, or scrolling lists. Developers can specialize all User Interface
widgets for custom use appropriate to a title.

The text choices that a user makes from the top-level interfaces constitute the
selection criteria for locating an object or group of objects in the content
database. Each built-in ScriptX collection has its own methods for navigating,
appropriating, and updating its data.

Text searching is divided into two categories:

• Parsing (searching for the nth word, sentence, or paragraph). Parsing is
done by the global function findNthContext. A special feature of this
function is that you can specify any character as a delimiter and search for
the nth word, sentence, or paragraph bounded by that delimiter.

• Matching (searching for a match to a given string). The global function
searchIndex searches for a match very efficiently because any text to be
searched has been previously indexed, and the function searches the index
rather than the text itself. An instance of the class StringIndex provides
the index by automatically generating a signature index for the text
supplied to its string instance variable. There is no limit to the size of the
text to be indexed.

Figure 2-5 looks at the search-and-query facilities using the interactive
shopping example:

arch-and-que-
acilities

28

2 ScriptX Components Guide

Figure 2-5: A typical ScriptX search-and-query operation

Suppose users can choose to search for shoes or accessories from a menu,
which might cause a panel of buttons to appear. These buttons narrow the
search by color and price, or a combination of the two if both buttons are
pressed. The color button brings up a color palette, while the price button
brings up a menu of price ranges.

A user on a budget trying to find shoes to match a particular outfit would first
select the shoes category from the main menu, then push the color and
price buttons, and finally click the right shade in the color palette and the
appropriate price category. The expression for executing those choices might be
something like this:

function shoeFunc shoe dummy ->
((shoe.color = blue) and (shoe.price < 50))

chooseAll shoeCollection shoeFunc undefined

This expression defines the context—shoe—and the criteria—blue color and
moderate price—for the search.

Object Database

Shoe Selection

Blue Shoes Under $50

Blue Shoes

User Interface

Search expression
> function shoeFunc shoe dummy -> 	
 ((shoe.color = blue) and (shoe.price < 50)

> chooseAll shoeCollection shoeFunc undefined)

> result

User Selections

Belts
Shoes
Ties
Wallets
…

Price
< $10
< $30
< $50
…

Color

filter

filter

filter

Compiled search
Command

29

Approaching ScriptX 2

Once the search for a match begins, the shoe objects are returned in the form of
a selection, which is filtered on the basis of both color and price.

For detailed information on searching, see the “Text and Fonts” and
“Collections” chapters.

Display and Composition Facilities of Modular Compositions

Having a rich assortment of well-defined objects is only interesting if there is
some way for users to experience them. ScriptX provides display management
facilities for presenting multimedia data to users in easy-to-navigate formats
based on some common multimedia authoring metaphors. It also has
composition facilities for creating new formats and metaphors that are more
closely attuned to the experience an author wishes to project.

As Figure 2-6 shows the hypothetical interactive shopping example displays
information to users in three separate formats:

• As pages from a catalog, which can be organized by retailer, designer, or
clothes category (casual, work clothes, evening wear)

• As index cards that display shoes and accessories and can be organized by
color and price

• As a virtual dressing room that shows how user selections work together as
an outfit

play facili-
composition
ities

30

2 ScriptX Components Guide

Figure 2-6: Interaction of display management and composition facilities

The Document Templates component is the basis for the first of these formats,
the catalog pages. Document templates use a book metaphor to orient users to
the interaction. There are four principal structuring mechanisms:

• The data, which has an intrinsic structure, such as text divided into
chapters, paragraphs, and sentences

• A page for storing specific data, much like a single page in a paper
document

• Page templates, page layers, and page elements, which collectively define
how data is laid out and displayed

• Documents, which organize a sequence of pages

A document contains references to the raw data that it presents and provides
built-in facilities for querying and searching that data.

Developers can specialize the behavior of document templates as necessary.
For example, the interactive shopping title would define multiple page objects,
each presenting the data in a unique graphical layout. To make the layout more
exciting, the pages might embed animations, using facilities from the Players
and Animations components, or incorporate graphical elements from the 2D
Graphics component. It could include pop-up menus or other widgets from the

Multimedia Database

Multiple Formats for Experiencing Content Objects

Document Templates Stacks and Cards Author Defined

Metaphor

Spaces, Presenters, Controllers

2D Graphics, Text and Fonts, UI Objects

31

Approaching ScriptX 2

User Interface component, to aid in user selection and navigation. Yet the base
functionality of document templates is sufficient to implement a catalog
without specialization.

See the chapter “Document Templates” for more information about the
Document Templates component.

The final interaction in the catalog example—the virtual dressing room—lets
users construct their own experience of the catalog data. They can select a pair
of pants from one catalog, a shirt from another, shoes from one index card, and
a tie from another, and then bring them together in an uncluttered virtual
dressing room to see how the pieces look as an outfit. To support this
constructive experience requires a context for organizing the information, ways
of manipulating the information, and mechanisms for displaying the
information. The ScriptX Spaces, Presenters, and Controllers components
define the composition facilities for implementing this experience. The section
“Virtual Spaces” on page 33 provides more complete information about
creating new authoring metaphors with ScriptX.

One important aspect of implementing the virtual dressing room would be
scaling all the different clothes items to the proper relative size. For example, a
skirt on a catalog page might appear in a 2x3” photo, while shoes on a card
might appear in a 3x2” photo. Size in these contexts is relative to the page or
card. When put together in the dressing room, however, these images would be
disproportionate. In this case, the different objects should be sized relative to
each other. Authors can build in this type of scaling as part of the class
definition for the space. The space would pass this information on to the
presenters, who would provide mechanisms for tailoring their graphic
representations of the objects to correspond to the coordinated view of the
outfit. Controllers assigned to the space could allow users to move the objects
around and change the viewing perspective.

All metaphor-based interfaces—whether built-in or scripted—are implemented
through the composition facilities of the Spaces, Presenters, and Controllers
components. The metaphors simply impose a fixed interface structure above
these elements, using graphics, text, and user-interface widgets provided by
the 2D Graphics, Text and Fonts, and User Interface components.

User Interaction Facilities of Modular Compositions

The user interaction facilities include input devices, controllers, presenters, and
events. They let users manipulate content objects directly, which in turn control
the underlying model.

ScriptX offers many built-in ways to present selection choices to a user, such as
pop-up menus, pushbuttons, or scrolling lists. Developers are expected to add
their own look (using the Presenter and 2D Graphics components) and feel
(using the Controller component). While default controllers exist for all User
Interface objects, developers can create interesting new behaviors through
subclassing and specialization. For information about the 2D Graphics and
Presenters components, see the chapters “2D Graphics” and “Spaces and
Presenters” respectively.

r interaction
ties

32

2 ScriptX Components Guide

User Interface objects let users control which content objects they experience in
a composition. The actual selection process is communicated to the system
through the mouse and keyboard, defined by the Input Devices component, in
conjunction with the ScriptX event system, defined by the Events component.

The default controllers for all User Interface objects hide the operation of input
devices and events, so developers who use these built-in facilities from ScriptX
need not concern themselves with them. The chapters “User Interface” and
“Controllers” describe high-level features provided by ScriptX for user
interaction, while the chapter “Events and Input Devices” covers the
implementation details of these features.

Figure 2-7 shows how the interaction facilities apply to the shopping example:

Figure 2-7: User interaction—direct and programmatic manipulation of data

Belts
Shoes
Ties
Wallets
…

Price
< $10
< $30
< $50
…

Color

User Interface

User
Selections

Presenters, 2D Graphics (look)

Events

ScriptX System

Controllers (feel)

Input Devices

Virtual input devices to encap-
sulate underlying hardware

C C

33

Approaching ScriptX 2

Virtual Spaces
The previous part of this chapter described Modular Compositions. Another
kind of title design is Virtual Spaces.

A key goal of ScriptX is to provide the foundation for developers to create new
ways of organizing information to closely reflect the activity at hand. Unlike
today’s metaphor-based authoring frameworks, ScriptX provides
simulation-based building blocks that let developers have real models behind
their scenes, instead of being essentially a movie with a few twists. These
building blocks underlie the concept of virtual spaces.

In its simplest form, a ScriptX space is an empty collection with an associated
clock, and a list of controllers. As you add objects to the space, they can be
controlled by the controllers, whose rate can be controlled by the clock. The
controllers can move the objects, allow them to respond to user interaction, or
whatever. The developer can define criteria which determine what kinds of
objects are allowed into that space, and what happens to them when they enter
and leave.

A virtual space is an imaginary environment created from a ScriptX space,
with a well-defined geometry and physics, that users can view and interact
with. A virtual space might have a real-world counterpart, such as a
department store dressing room, or it might represent some chimerical area,
such as a distant planet in a fantastic galaxy. In any case, the fixed geometry of
the environment lets users intuit how to navigate the area on their own.
Likewise, the physics of the virtual space dictates how its objects will respond
to forces within the environment, both those defined by the space and those
imposed by users.

Virtual spaces need not be sophisticated models of a world. In fact, their
geometry and physics can be very crudely implemented. The department store
dressing room, for example, can be a simple two-dimensional space whose
objects do not directly interact but simply scale proportionately to each other.
Regardless of the complexity of the space, it provides users with reference
points for understanding the range of interactions available to them.

Metaphor-based authoring systems, such as the document templates described
in the preceding modular composition example, are information driven. While
they might be dynamically constructed as the title runs and contain embedded
movies or other time-based animations, their overall composition is static. In a
virtual space, however, the unfolding of events need not be directly under user
control; that is, events can change over time. The simulation can have its own
sense of time that is independent of any specific presentation on a particular
platform.

Figure 2-8 shows a general form of a virtual space. The term model in the
figure means the imaginary world represented by our virtual space. The model
is separate from the presentation that users see, as Figure 2-8 indicates.

ual spaces

del

34

2 ScriptX Components Guide

Figure 2-8: A generalization of a virtual space

A model is a group of objects within a virtual environment that interact with
each other and with users according to some well-defined geometry and
physics. Objects in the model are known as model objects.

The prime example of a virtual space consists of a three-dimensional
simulation. Special model objects act as “cameras” that translate the simulation
into a form the user can experience. Cameras are implemented through two
different objects:

• Camera model objects that participate in the simulation

• Camera presenter objects that portray their views to users in the
presentation

The cameras generate view projections to provide a three-dimensional feel to
the experience, even though the users’ view is a two-dimensional
approximation of the model, constrained by the limitations of their output
screen.

The model objects themselves obey certain “natural laws” of behavior defined
by the virtual space. Controllers within the model cause objects to behave in
the expected ways as a result of causal events that occur internally to the
simulation, as well as those imposed externally by users.

Figure 2-8 groups the ScriptX facilities used to implement virtual spaces into
three main categories.

• Simulation facilities define the structure and behavior of the model and the
objects within it. The Spaces, Controllers, and Clock components provide
the building blocks for defining the model and determining how objects
within it interact over time.

• The model comes to life when presented to the user dynamically through
the composition facilities—the interaction of the Spaces, Presenters,
Controller, and Compositor components. Spaces not only organize the
model but provide a basis for viewing it. Presenters translate the abstract
simulation into an externally visible and audible form, and controllers let
users manipulate both the simulation, and their view of it. The compositor
ensures that all composition takes places smoothly on the output devices.

Animation Facilities

Simulated Environment User’s View

Composition Facilities

Controlling the Model

Presenting the Model

Controlling the View

Interaction Facilities

ects:model
del object

mulation facili-

mposition facili-

35

Approaching ScriptX 2

• The interaction facilities let users experience the model through the views
presented to them. Using 2D Graphics component transformations,
developers can specialize User Interface component classes to control the
simulation through the presented views and, potentially, to modify the
views or the action as events unfold.

To understand how a virtual space works, consider the following example.
Your title lets earthbound users explore the surface of a distant moon. A robotic
all-terrain vehicle, equipped with a movable camera eye, serves as their
exploratory capsule. Users can travel across the moon’s surface by driving the
vehicle across the virtual plains, valleys, and mountains or through the
imaginary seas. They can change their camera angle to get different views.
Should they spot anything that requires closer inspection, they can zoom in on
it. They can even operate a mechanical arm of the vehicle to collect a specimen.

The first task of the developer is to create an interesting simulated world that
represents this new moon.

Modeling Facilities of Virtual Spaces

The modeling facilities are those ScriptX components that help you define an
underlying model that can be viewed from different perspectives. A model can
have a timeline, a coordinate system, and equations to determine how
parameters interact. An example would be a simulation of a physical system,
such as a heat exchange between a flame and a beaker of water.

In the most simplistic view, the model consists of these pieces:

• The unseen, underlying space that holds the model itself and has a clock
and coordinate system

• The objects that populate the model

• Controllers that implement the physical behaviors of the objects in the
model

• The cameras that live within the model, that present a view of the model to
users

In our example, the model is the three-dimensional surface of the moon and
the atmosphere surrounding it. The model objects are the rocks, hills, valleys,
and seas of the moon, plus any extraterrestrial creatures that populate the
landscape.

The Spaces component provides the facilities for defining the basic model
structure. In most cases, you would mix in behavior from the Collections
component to define the qualifications for validating which objects belong to a
space. You can control the physical interaction of the space through Controller
component facilities. Spaces inherit mechanisms from the Clock component to
tie these interactions together into a continuous sequence of events. The
chapters “Spaces and Presenters” and “Clocks” describe the interplay of these
components.

The camera is our moonwalker, with its camera eye. Like the other model
objects, it is constrained by the physics of the model—the lack of gravity, for
example. Yet unlike the other model objects, it perceives the geometry of the

eraction facili-

deling facilities

36

2 ScriptX Components Guide

model in a special way, because it is associated with a special 2D presenter that
lives in the presentation space. The camera presenter can translate what it sees
back to the users viewing the model from their output screen. In addition, the
control of our camera model object might be sensitive to direct user
manipulation, whereas users can experience the other model objects only
indirectly through the view provided by the camera eye.

Often more than one camera will exist in the model, to provide different views
on the simulation. For example, one camera might offer a projective view,
while another might show a top-down radar view. Projective cameras can
supply wire frame views, shaded views, perspective views, or orthogonal
views.

Cameras must understand how to transform the geometry of the simulation
into the different presentation forms that users will see. The 2D Graphics
component provides methods for computing the transformations required to
render the objects in the appropriate size and position. Objects from the
Presenter component can be used to compute and form the apparent views and
adjust the sizes and positions accordingly. The chapter “2D Graphics”
describes the 2D Graphics component, while the Presenter component is part
of the “Spaces and Presenters” chapter.

A developer has a lot of latitude in defining a virtual space. The following
questions are the most fundamental:

• Is the virtual space a realistic simulation that immerses the user in a
different world, or a simplistic simulation intended to provide an intuitive
way of navigating the model?

• Is the geometry Euclidean (corresponding to our idea of the world) or
non-Euclidean (mazelike geometries, or independent geometries connected
through some hyperspace)?

• Are the physical interactions predictable (again, corresponding to our
common expectations) or magical?

• How does the user experience the space? Are the cameras passive viewers,
or do they directly represent the user in the simulation?

• Is there an avatar, separate from a camera, that represents the user in the
model?

• With respect to the camera, how many views are possible? What controls
will the user have over the views, and what constraints limit the views in
certain situations?

Composition Facilities of Virtual Spaces

The composition facilities let users see what’s happening in the simulation,
control the view, and, in some cases, influence the sequence of events that
occur in the simulation.

Controllers work in concert with the camera presenters to navigate the model
and manipulate model objects. From a presentation perspective, controllers
map their interactions through the cameras’ external views, which serve as the
user’s points of reference. In some cases, these controllers might also directly

mposition facili-

37

Approaching ScriptX 2

influence the model objects in the simulation. While the cameras’ views show
what users can manipulate, the kinds of manipulations that are possible are
defined by the model itself. Users might be able to change the location, color,
or other properties of the objects that appear in the presentation via controllers
that propagate those changes back to the model. The camera presenters then
display the modified results.

Users can manipulate both the model objects and the cameras through
controllers. Changes to the objects affect the behavior of the simulation, while
changes to the camera affect the users’ orientation to the space.

In our distant moon title, users can control what they see by manipulating the
moonwalker itself or by panning, tilting, and zooming the camera. Both
activities are transmitted to the space through controllers. In conjunction with
the cameras, the controllers understand what objects should be visible in what
locations, and they choose which objects to affect at the appropriate time. If the
user zooms in for a closer look, the controller informs the camera to recompute
the image, showing a magnified view.

Users can also collect specimens for later study. Controllers remove such
objects from the simulation and propagate the ramifications through the
model. For example, if a user “kicks a stone”, a controller might cause the
stone to catapult into space.

For a complete discussion of the components that drive these interactions, see
the chapters “Spaces and Presenters” and “Controllers.”

Our moon exploration title represents time as a continuous stream of events
that begins at some point within the title and runs forward in time. When the
title is played on hardware, however, our moon space becomes simply bit
locations on a screen and time is metered out by built-in hardware clocks. The
simulation is tied to the underlying hardware clocks through their root
presentation space, which inherits from the Clock component. The Compositor
component coordinates the playback of time-based components with the
overall presentation. It guarantees that the presentation occurs smoothly across
different output devices. The chapter “Clocks” describes the clock-compositor
interaction in complete detail.

User Interaction Facilities of Virtual Spaces

A special set of user input controllers are sensitive to user input events, such as
mouse moves and button presses, and act as mediators between the user and
objects they control. In a virtual space, user control of model objects is
constrained by the current views, as described in the preceding section. Using
2D coordinate space and transformations defined by the 2D Graphics
component, developers can specialize the user input controllers to map
interactions through the cameras’ views. See the chapter “2D Graphics” for
more information.

User interface controllers, and the whole notion of user interaction, is
discussed in detail in the section “User Interaction Facilities of Modular
Compositions” on page 31.

er interaction
ities

38

2 ScriptX Components Guide

P A R T O N E

Higher-Level Components

Chapter 3: Spaces and Presenters
Chapter 4: Controllers
Chapter 5: User Interface
Chapter 6: Clocks
Chapter 7: Players
Chapter 8: Media Players
Chapter 9: Animation
Chapter 10: Transitions
Chapter 11: 2D Graphics
Chapter 12: Text and Fonts
Chapter 13: Document Templates
Chapter 14: Printing
Chapter 15: Title Management

Object System

System Services

Titles and Applications

Space, Presentation and Control

Tools

Title Management

Media and ClocksLanguage

C H A P T E R

3
Spaces and
Presenters

42

3 ScriptX Components Guide

43

Spaces and Presenters 3

The Spaces and Presenters component provides the object modeling and
viewing facility for ScriptX. You can model any kind of system in a title and
display it to the user using this component. This model could be a simple slide
presentation, a complex interactive simulation, a virtual space, a media
database retrieval system, or any other model a title needs. The model can be
constructed apart from any presentation, perhaps in its own space, and
displayed through one or more separate presentation spaces, or views.

This chapter describes modeling, as implemented in the Space class, and
presentation, as implemented by Presenter and its subclasses. It also
describes the TwoDCompositor class, which manages the drawing of
presenters to a display surface.

Spaces and presenters use features defined in a number of other ScriptX
components. Collections provide for multiple objects in a model or
presentation, and define the behavior used to add objects to and access objects
in a space. Clocks and Players define the timing behavior available to objects in
a space. The 2D Graphics component provides the fundamental coordinate
system, imaging model and display surface for a 2D space.

Three other components allow the user to manipulate, change and monitor the
model. The Controller component can apply a behavior to many objects—the
“laws” or rules of that space. The User Interface component provides a
standard set of user input controllers and presenters that allow users to
directly manipulate objects in a 2D space and thereby interact with objects in
either the model or 2D space. This component has built-in event-handling to
accept mouse events. Similarly, the Text and Font component provides the
presentation of text and event-handling to accept keyboard events.

Classes and Inheritance
The class inheritance hierarchy for the Spaces and Presenters component is
shown in the following figure.

44

3 ScriptX Components Guide

The following classes form the Spaces and Presenters component. In this list,
indentation indicates inheritance.

Space – a container class for holding objects, with a clock for timing and
controllers to manipulate the objects.

Presenter – the root abstract class for objects that display images and live in
presentation spaces.

TwoDPresenter – the root abstract class for 2D graphic objects that can
display themselves in a 2D space.

TwoDShape – the class of simple 2D geometric and graphic presenters.

CostumedPresenter – a 2D presenter that uses another presenter as its
costume, or appearance.

OneOfNPresenter – an ordered list of 2D presenters, only one of which
is shown at a time.

TwoDMultiPresenter – a 2D presentation container of a fixed size that
can display and clip multiple presenters at once. It has no clock or
controllers.

GroupPresenter – a 2D presentation container that groups multiple
presenters together, without clipping.

GroupSpace – a 2D presentation space that groups other 2D
presenters together so that they can be treated as a single object,
without clipping.

TwoDSpace – a 2D presentation space of fixed size that can display
and clip multiple presenters. It also has a clock and keeps a list of
controllers operating on it.

SequenceCursor

IndirectCollection

ArrayList

Space

TwoDSpace

GroupSpace

GroupPresenter

TwoDShape
TwoDMultiPresenter

TwoDPresenter

Presenter

CostumedPresenter

OneOfNPresenter

TwoDCompositor

RootObject

RootObject RootObject

Page

TextPresenter

DigitalVideoPlayer

ScrollingPresenter

ScrollBar

PushButton

PageElement

MoviePlayer

TransitionPlayer

PageLayer

PageTemplateWindow

FullScreenWindow

ScrollBar

Printer

45

Spaces and Presenters 3

Window – General purpose window that can handle palette, dialog,
and notice windows as special cases.

FullScreenWindow – Full-screen non-modal window

TwoDCompositor – Manages the rendering of 2D presenters to the window’s
display surface

Conceptual Overview
An authoring metaphor is a model of user interaction in a multimedia
presentation that is based upon familiar objects and behaviors from the
everyday world. A bowl of necklace beads is familiar to users. They know from
their real-world experience that they can pick beads from a bowl and arrange
them. A multimedia title could use necklace beads as a metaphor for arranging
objects in a collection, placing objects in sequential order.

Authoring metaphors are the basis on which a user interacts with a title.
ScriptX supports multiple, concurrent authoring metaphors in a title. Some
metaphors encompass a single gesture or activity, such as turning on a switch
or moving a slider control. Others are global in scope, such as turning the
pages of a book or flipping cards in a stack. A metaphor is useful to the extent
that it feels familiar to a user. Chapter , “ScriptX Features,” describes several
authoring metaphors that are the basis for multimedia title design. ScriptX
developers are free to use well-known metaphors, or to create their own.

Any authoring metaphor can be best understood by separating its constituent
objects into three basic functions, or roles: model, presenter and controller. In
the design phase of a title, it’s useful to analyze what role objects play, to more
clearly define them.

Model-Presenter-Controller System

ScriptX titles are based on interaction between three kinds of objects: models,
presenters, and controllers. The Space family of classes provides the
foundation for models. The Presenter family of classes provides the
foundation for presentations, or views. The Controller family of classes
provides the ability to manipulate objects in space and time.

Any particular object is a model object, a presenter object, a controller object, or
a combination of the three.

Figure 3-1 shows an example of a model-presenter-controller system. The
model space on the left contains model objects that are presented to the user by
objects in the presentation space (on the right). The user manipulates user
interface objects which can affect both the model and its presentation. The
compositors present the objects to the user via the screen and speaker. The 2D
graphic compositor is represented by the TwoDCompositor class; the audio
compositor is internal only, and has no representation as a ScriptX class.

46

3 ScriptX Components Guide

Figure 3-1: Example of a model-presenter-controller system

This overview describes models, presenters and controllers, assuming a
separation exists between the model and its presentation. The separation of
model object from presenter object is important because it allows for multiple
presentations of an object, and it allows you to work with the presenters as
separate model objects in their own window. For example, separate presenter
objects allow you to move the view around on the screen without moving the
model itself.

In simpler titles with no distinct, underlying model, the presentation is the
model, with the objects in the model serving as both model objects and
presenter objects.

Models

A model is a group of objects within a conceptual framework that interact with
each other and with the user in some well-defined way. When a model is
strictly separated from its presentation, you have the flexibility of creating
multiple views on the same model.

Model Space

Compositors Output

Hardware

Screen

2D Space

M

M

M

2D Graphic

Compositor

2D Presenters

Audio

Compositor

Audio

C = Controller (for example, Gravity or ActuatorController)

P = Presenter (for example, TwoDShape or PushButton)

A = Audio object (for example, DigitalAudioPlayer)

M = Model object (for example, a ball or bead)

Speaker

A

C

User Input

CC

User Interface Controllers

Keyboard Mouse

P

P

P

47

Spaces and Presenters 3

By subclassing the Space class, you can create a class that provides a useful,
though not necessary, container for a model. The Space class is deliberately
abstract, open and flexible. A space can contain and organize the so-called
model objects. It controls which objects are allowed into the model, performs
actions on objects as they enter, and provides a clock and controllers to control
the objects while they are there. Spaces are designed to allow their objects to be
both time-driven and to respond to user events.

Models are more general than spaces. A model does not have to exist in a
space. Time-based models generally reside in spaces, since a space
conveniently provides a clock. Simulations that can map to physical
coordinates can also be modeled in a space. However, a model could be a
completely mathematical abstraction, even with its own clocks, and have no
need to be contained in a space.

Presenters

Presenters are a second kind of object on which any title depends. Presenters
provide the graphic views the user has of the model. A view of a model
contains a set of presenters shown from a certain perspective. A user can view
objects that exist in an underlying model space only when they are represented
by presenters.

For example, in a model that illustrates the principles of thermodynamics, the
image of a thermometer is a presenter object that can graphically represent the
internal, calculated heat of a flame. In another view, a graph is a presenter that
shows the rising temperature over time. Separating a model from its
presentation allows creating such multiple views on the same underlying
model.

The abstract class Presenter is the root class for all presenters.
TwoDPresenter, its direct subclass, provides the structure for drawing to a
two-dimensional surface, such as a display monitor or a printed page. The
DigitalAudioPlayer class, which is outside of the Presenter family of
classes, provides for the audio portion of a title.

Objects are made visible to a user in a presentation container; the container can
be an instance of TwoDMultiPresenter or any of its subclasses, such as
TwoDSpace, Window, GroupSpace, or PageLayer. User interface objects live
in this container as well, available for the user to act on.

Whether there is an underlying model or not, the presentation container
provides a framework for displaying the visible content of a title as images
from various visual media. Each presenter has its own 2D graphical coordinate
system with its origin relative to the presenter that contains it. Presenters also
define an event handling structure that enables a user to interact with the title.

Controllers

Controllers can define standard behavior for a group of objects in three ways:
they define the behavior of objects over time, they monitor objects, and they
respond to user events. Controllers provide a uniform way of enforcing the
same behavior on a group of objects. The Controller class is the abstract

48

3 ScriptX Components Guide

representation of all controllers, and has a subclass TwoDController for
operating on objects in 2D spaces. The three ways in which controllers manage
other objects are elaborated here:

• Controllers can define time-driven behavior governing objects within a
space. Time-based controllers, also called “ticklish” controllers, implement a
method for tickle, which is called once with each tick of the space’s clock.
The tickle method implements time-based behavior as some periodic
action that is performed at each tick of the clock. For example,
Interpolator, a subclass of TwoDController, can cause objects to move
within the space by moving them incremental distances, calculated at rapid
intervals. See “The Ticklish Protocol” on page 106 in Chapter 4,
“Controllers” for more information on time-based controllers.

• Controllers can also monitor a model. For example, a controller could
monitor the distance between objects and performing some operation based
on proximity for collision detection or magnetic repulsion. Controllers that
monitor objects also implement a tickle method. Bounce is such a
controller—it watches for an intersection between a projectile and the walls
of a container, and when they intersect, it changes the projectile’s direction.

• Controllers can respond to user input. Certain kinds of events, such as
mouse clicks, mouse movements, and keyboard presses, originate with the
user. Controllers make the objects being controlled, such as buttons and
menus, respond to these events. For example, an ActuatorController
object waits for mouse events. When the user presses the mouse over an
actuator (button) it is controlling, it calls press on that actuator. See the
“User Interface” chapter for more information on how user interface
controllers operate on model objects in a space.

Controllers require a space in which to operate—they cannot operate on objects
outside a space. Thus, a model that embodies some set of behavior or natural
laws that all model objects must obey is best implemented in a space. Each
time there is a change of state that drives activity in the space—the clock ticks,
the user presses a mouse button—the controller acts on every object it controls
within the space. See Chapter 4, “Controllers” for more details on how
controllers operate on model objects within a space.

The next two sections—“How Spaces Work for Modeling” and “How
Presenters Work”—describe modeling and presentation as separate,
independent aspects of design.

How Spaces Work for Modeling

A space is an environment with a clock where objects live, interact, and can be
controlled and presented to the user. Spaces are very common in titles—
examples include simulation spaces, cards and stacks, timeline spaces, catalog
databases, and maps.

Spaces are a fundamental component of ScriptX titles, and are used in both
modeling (with Space) and presentation (with TwoDSpace). This section
describes how spaces are used for modeling.

49

Spaces and Presenters 3

The Space Class

The Space class represents a container in which objects can interact with each
other and indirectly with the user. The concept of space is part of what gives
ScriptX its flexibility and extensibility as an authoring environment.

The Space class is an abstract class, so any utility is derived by creating a
subclass of it. The Space class by itself is not a collection—it must be mixed in
with a collection so it can hold multiple objects. Subclasses of Space rely on
being mixed in with IndirectCollection (or one of its subclasses). The
IndirectCollection class is quite flexible in that it can represent any
collection class, through delegation. When you create an instance of the space,
you can select the type of collection most appropriate for the model you are
constructing, as the target collection. Throughout this chapter, the term “space”
(all lowercase) means an instance of a subclass of the Space class, and so is
assumed to be a collection.

You create a space by first subclassing the Space class, mixing in
IndirectCollection, and defining its methods and instance variables. To
create a new class called ModelSpace:

class ModelSpace (Space,IndirectCollection)
-- define methods and instance variables
end

To create an instance of this space, you would call new on it, optionally
specifying targetCollection and scale, such as:

mySpace := new ModelSpace targetCollection:(new HashTable) scale:20

This statement creates both a space and a clock, as shown in Figure 3-2. The
targetCollection determines what kind of collection mySpace is, and the
scale determines the resolution of the space’s clock. The clock’s rate is
initially 1. The targetCollection keyword is required for direct subclasses
of Space.

Figure 3-2: Every space that is created has a clock attached to it.

Do not specify targetCollection if the subclass inherits from
TwoDMultiPresenter (or any of its subclasses, such as TwoDSpace,
GroupSpace, Window, or PageLayer), unless you have some good reason to
need a different collection data structure. By default, these multi-presenters use
an array as their target collection. Performance could suffer if you set the
targetCollection to something other than the default.

Space’s clock

Space

50

3 ScriptX Components Guide

However, when creating an instance of any other subclass of Space that is
strictly a model and not a presentation space (one that does not inherit from
TwoDMultiPresenter), choose whatever targetCollection is most
appropriate for the model you are creating. This collection does not need to be
traversed for drawing or handling events.

The State of a Space

A space has a state represented by four characteristics: members, protocols,
controllers, and a clock, as shown in Figure 3-3:

• members – A space is first and foremost a collection of objects, or members.
Members are objects added to a space.

• protocols – Protocols are used to determine eligibility for membership in a
space. These are kept in the space’s protocols instance variable.

• controllers – Controllers define the standard behavior, or natural laws,
governing some or all members of the space. These are kept in the space’s
controllers instance variable.

• clock – A space’s clock drives the model. At each tick, the clock gives a slice
of time to every controller that implements a method for tickle, allowing
the controller to perform some periodic action on its target objects. The
space’s clock is kept in its clock instance variable.

Figure 3-3: An instance of a subclass of Space

Protocols

A general description of protocols is included in the “Information Common to
All Classes” chapter of the ScriptX Class Reference.

As implemented in ScriptX, every class represents a protocol. The Space class
defines a protocols instance variable, which is a list of classes that you
specify. This list forms the necessary protocols for objects to be added to the
space, and you can add or remove classes from this list to raise or lower the
admissions requirements to the space. This list allows the space to restrict its
membership and allow in only objects created from certain classes. The space
uses isAKindOf to test if the candidate has all protocol classes among its
superclasses before it is admitted to the space. If the candidate does not match
all protocols, it is rejected. Testing against this list is the current means of
protocol-checking in ScriptX (future versions may develop other means).

Controllers

clock

protocol

mySpace[1]

Instance Variables:

mySpace[3]
mySpace[2]

mySpace[4]

myClock

myPlayer

stopButton
rewindButton

playButton

controllers

Members:

myGravity
myBounceTwoDPresenter

Projectile

Protocols

mySpace

51

Spaces and Presenters 3

For example, if the space were controlling a physical simulation, you might
allow in only objects that were projectiles. You would do this by adding the
Projectile class to the protocols list. If you further restrict the members to
be 2D presenters, you would also add TwoDPresenter to the protocols list. In
this case an object would have to be both a projectile and a 2D presenter in
order to be added to the space. You can change these rules for membership at
any time by adding or removing classes from the protocols list.

The protocols instance variable holds an instance of Array; therefore, to
add or remove classes from the protocols instance variable, use the methods
from Array. For example, the following code adds the Projectile class to
the protocols instance variable:

append mySpace.protocols Projectile

The order of classes in the protocols list doesn’t matter, since an object must
have all classes as its superclasses to be added to the space.

Members of a Space

Add objects to a space just like you would to any collection—using one of the
methods defined by the space’s targetCollection for adding an item to the
collection. These include add, append, prepend, setOne, and so forth.

mySpace := new TwoDSpace
myGroup := new GroupPresenter
prepend mySpace myGroup

IndirectCollection specializes these methods to call two additional
methods on the space each time an object is added—isAppropriateObject
and objectAdded—as shown in Figure 3-4. Using prepend as an example,
this flowchart shows the four steps:

1. You call prepend on the space to add an object.

2. IndirectCollection specializes prepend and other collection methods
that can add an object to the space to call isAppropriateObject, as
implemented by the space, to check that the candidate object conforms to
the protocols for the space. If isAppropriateObject returns true, then
the procedure continues.

3. The prepend method as implemented by the target collection itself is
called. This actually adds the object to the space.

4. The objectAdded method is called.

The IndirectCollection method objectAdded iterates over all
controllers listed in the space’s controllers instance variable, adding the
object to only those controllers for which the value of wholespace is true
and whose protocols match. You can specialize objectAdded to perform any
action you want to occur every time an object is added to the space. For
example, you might center a presenter that is being added in a space, or make
sure that the presenter that is being added is visible, by calling show on it.

52

3 ScriptX Components Guide

The IndirectCollection method objectRemoved, also shown in
Figure 3-4, is called automatically whenever an object is removed from the
space. This method deletes the object from all controllers. You can specialize
objectRemoved to perform any action you want to occur every time an object
is removed from the space.

Figure 3-4: Methods prepend and deleteOne are specialized in IndirectCollection.

For more general information on the IndirectCollection class, see the
discussion on page 469 of Chapter , “Collections.”

Models and Model Objects

A model is a group of objects within a conceptual framework. A model object is
any object that is a member of that model. Model objects interact with each
other and the user in some well-defined manner.

A model can live in a space, but it doesn’t have to. A space is simply a
convenient and useful container for a model, with a clock and, potentially,
controllers for manipulating the model objects over time. It lets you exclude
certain objects, and possibly modify other objects as they are added, as
described earlier. Each space can be customized to provide an appropriate
environment for its objects, including a coordinate system. This environment
can specify the protocols that an object must have to live in the space.

Most spaces embody some kind of coordinate system by which relationships
between objects can be measured. This can be a 2D or 3D coordinate system, a
timeline, or any other rule by which objects can be measured.

Clocks and Timing

Whenever a space is created, a clock is automatically created for it. This clock
determines the following:

prepend

objectAdded

isAppropriateObject

true

false

1

2

3

4

deleteOneprepend
(in IndirectCollection) (in IndirectCollection)

objectRemoved

deleteOne

53

Spaces and Presenters 3

• At what time clock callbacks execute. A callback executes a function at a
pre-determined time. See the “Clocks” chapter for details about setting up
callbacks.

• How often the Ticklish controllers act on objects in that space (using the
tickle method). The space schedules the controller callback at every tick
of its clock. When the callback runs, it sequentially invokes the tickle
method on every controller, to perform its periodic action.

In specialized subclasses of Space, the clock can have callbacks that invoke
specialized behavior. For example, where the space is an instance of
TwoDSpace at the top of a presentation hierarchy, the clock has a compositor
callback that determines how frequently the presentation is refreshed.

If a title contains multiple spaces, it will contain multiple clocks—one for each
space. In general, if a space is contained within another space, their clocks
should be synchronized. For presentation spaces, ScriptX does this for you
automatically. For example, if you add presentation space A to another
presentation space B, ScriptX automatically slaves the clock for space B off the
clock for space A, as shown in Figure 3-5. More specifically, when you add a 2D
space to a window, the clock of the 2D space is slaved off the clock of the
window. For a description of the mechanism of how clocks are automatically
slaved, see “Synchronizing Clocks” on page 95.

However, the clocks for non-presentation spaces are not automatically slaved.
This means that if you have a model space to which you add a subspace, you
must set up the master/slave clock relationship yourself.

There are three main benefits to slaving subspace clocks to the top space’s
clock:

• When you slow down, speed up, pause and resume the top space, the other
clocks will follow.

• You can move groups of objects into other spaces and they will still run.

• To minimize “temporal aliasing” in a model (described in the section
“Synchronizing Clocks” on page 95).

As shown in Figure 3-5, there may be more than one way to connect clocks,
depending on the needs of the title. The left-hand figure shows a top model
space slaved off the top presentation space. When you stop the presentation,
the model also stops. The right-hand figure shows both top spaces slaved off a
separate title clock, which means you can independently stop either the model
or presentation.

54

3 ScriptX Components Guide

Figure 3-5: Two ways to synchronize the model space and presentation space.

When two clocks have a master-slave relationship, changing the rate of the
parent clock increases or decreases the speed of both clocks. However, the two
clocks can still have different scales and rates—the rate of the master clock
merely acts as a multiplier for the rate of the slave.

Controllers in a Space

Each space maintains a list of controllers that manipulate objects in the space.
To attach a controller to a space, you assign the space to the controller’s space
instance variable. That space in turn automatically adds the controller to its
read-only controllers instance variable. The space instance variable
determines which space the controller is controlling. It can contain only one
space at a time and thereby ensures that the controller manipulates only one
space at a time.

The following code assigns the space mySpace to the controller
myController, which means that mySpace will then automatically add
myController to its array of controllers:

myController.space := mySpace

A controller has a wholeSpace instance variable to indicate which objects in a
space are to be controlled by it. If wholeSpace is set to true, the controller
will control all appropriate model objects in the entire space specified by the
controller’s space instance variable. If wholeSpace is set to false, the
controller will control only objects which are explicitly added to the controller.
The default value for wholeSpace is false.

In addition, when an object is added to a space, if the value of the controller’s
wholeSpace instance variable is true, the space notifies each controller, and
adds the object to the controller only if it is appropriate for that controller. See
the chapter on controllers for information on what makes an object appropriate
for a controller.

Slave

Subspace

Slave

Model Space

Dotted lines show master/slave clock relationships

Presentation Space

Presentation Clock as the Master Clock

Slave

Subspace

Master

Slave

Subspace

Slave

Model Space Presentation Space

Slave

Subspace

Slave

Title Clock as the Master Clock

Title Clock Master

55

Spaces and Presenters 3

Time-based controllers respond to ticks of the clock by specializing tickle, an
instance method that can be defined by subclasses of Controller. Once every
tick of the space’s clock, its periodic callback calls tickle on the space,
causing it to iterate through every one of its controllers that implements a
method for tickle. This allows the controllers to perform some periodic
action on target objects. (Controller actions are always periodic, and they may
also be incremental.)

A controller that needs to be informed or “tickled” each time the clock ticks
should implement a specailization of tickle. A tickle method should run
to completion within a fraction of a tick, since all controllers run once with
every tick. If too much is going on in the model space, so that controllers that
implement tickle cannot finish running before the clock’s next tick, then the
callback skips the next cycle, causing all of the controllers that are attached to
the space to be skipped. Thus, either all controllers attached to the space get
tickled, or none get tickled. (In the same way, the compositor skips if
presentation would start too late.)

When controllers get skipped, it’s up to the particular tickle implementation
as to whether they catch up or not—it could be smart and look at the time of
the space’s clock, or it could be dumb and make the same increment even
when it skips.

Controllers are described in greater detail in the chapter “Controllers.”

How Presenters Work
Presentation is obviously an important part of any title—it is the graphic view
the user has of the model, the stage where a multimedia title and the user meet
and interact. The only way a user can view objects that exist in an underlying
model space is if those objects are represented with presenter objects.

Presenter

While this section uses an example with TwoDPresenter objects, its main
focus is to describe features that the Presenter class provides on its own,
irrespective of TwoDPresenter.

Perhaps surprisingly, the Presenter class does not know anything about
graphics, stencils, brushes, drawing, compositors, display surfaces or
coordinate systems, and has no interest in mouse events. Those are all
functions of TwoDPresenter. Presenter is responsible only for establishing
the presentation hierarchy—it is left up to subclasses to determine what kinds
of objects can be presented and how they are to be presented.

In the current release of ScriptX, Presenter has only one direct subclass,
TwoDPresenter, from which all other presenter subclasses inherit. The
TwoDPresenter class inherits from and builds on the features of Presenter.
In future versions, you might imagine a ThreeDPresenter class, also
inheriting from Presenter, with its own 3D objects and ways of presenting
them.

56

3 ScriptX Components Guide

Presentation Hierarchy

A complete 2D presentation hierarchy is determined by a top presenter and all
its subpresenters. The Presenter class provides a mechanism for establishing
a presentation hierarchy among presented objects in a title. This hierarchy can
be used to determine the order in which the presenters are ordered, accessed,
queried, operated on, and presented. A title can have any number of
presentation hierarchies, as illustrated in the “Title Management” chapter. Each
hierarchy has a window as its top presenter.

An example of a 2D presentation hierarchy is shown in Figure 3-6. This
example has four presenters: instances of Window, MoviePlayer,
DigitalVideoPlayer, and TwoDShape. An instance of Window is the top
presenter and contains the other presenters.

A presentation hierarchy is not to be confused with a class inheritance tree. A
presentation hierarchy is an illustration of how presented objects contain other
presented objects.

Figure 3-6: A simple presentation hierarchy

A presenter is an instance of a concrete subclass of Presenter. Presenters come
in two varieties: ”containers,” which can hold and display other presenters,
and “simple” presenters, which cannot. In general, a container corresponds to
a node of the presentation hierarchy that branches to multiple subpresenters,
while a simple presenter corresponds to a leaf at the end of a branch. (Specific
classes for simple and container presenters are shown in Figure 3-16.)

In the previous example, myTwoDShape and myVideoPlayer are simple
presenters, while myWindow and myMoviePlayer are container presenters—
myWindow contains myMoviePlayer and myTwoDShape, while
myMoviePlayer contains myVideoPlayer (as well as an instance of the
non-graphic class DigitalAudioPlayer, not part of the hierarchy).

Simple and container presenters are described further in the section “Simple
Presenters vs. Container Presenters” on page 76 later in this chapter.

Subpresenters

Each presentation hierarchy is made up of a top presenter and any number of
other presenters. The top presenter is always a window. The Presenter class
has two instance variables that establish this hierarchy: subpresenters and
presentedBy.

esentation
rarchy

myWindow

myMoviePlayer myTwoDShape

myVideoPlayer

Subpresenters of Window

Subpresenter of MoviePlayer

Top presenter

resenters:def-
tion

57

Spaces and Presenters 3

Working down the hierarchy, some presenters have so-called subpresenters—a
list of presenters that it presents—held in the subpresenters instance
variable. The presenter at the top of a hierarchy (a window) can have any
number of subpresenters, some of them may have subpresenters, and so forth.
Every presenter in a presentation hierarchy is a subpresenter, except for the top
presenter.

Working up the hierarchy, all presenters except the top presenter are contained
within, or presented by, another presenter. This is the presenter that appears
above it in the hierarchy. The presentedBy instance variable holds this
presenter. For the top presenter, this value is undefined.

While some presenters can have multiple subpresenters, all presenters are
presented by at most one presenter. In other words, while subpresenters
can be a list, presentedBy is a single value.

Since the subpresenters instance variable can hold a list, a presentation
hierarchy can be thought of as lists within lists, nested to any depth. The
previous example is illustrated as lists of lists in Figure 3-6—the top presenter
has two subpresenters, one of which is MoviePlayer, which itself has one
subpresenter.

Figure 3-7: Subpresenters are lists within lists.

Some subclasses of Presenter allow subpresenters, while others do not
because they present only themselves and no other presenters. A presenter
which presents only itself has its subpresenters instance variable set to
undefined.

An entire presentation hierarchy can be traversed, encountering every one of
its members, by starting at the top and working sequentially downward
through each subpresenter list. Similarly, starting at any presenter, this
hierarchy can be traversed up to the top presenter using presentedBy. This is
one of the fundamental uses of a presentation hierarchy—to provide an orderly
way of visiting every presenter.

The Presenter class also has a target instance variable, which can hold a
source object to be presented—either a presenter or a non-presenter object. A
target is not connected directly to the presentation hierarchy, and is
implemented differently by different subclasses.

The Presenter class is abstract and does not specify how the presentation
hierarchy is to be used; various subclasses of Presenter can implement
different uses. For example, TwoDPresenter, the root abstract class for the
presentation of all 2D graphics, uses this hierarchy to draw its subpresenters to
a window. In addition, it uses the order of subpresenters to determine the
front-to-back order in which overlapping subpresenters appear. You could
define your own subclass of Presenter and give your own meaning to the
presentation hierarchy.

ubpresent-
s:definition

ubpresenters
stance vari-
le:(Presenter)
resenter

ass:subpre-
nters in-
ance variable

resentedBy
stance vari-
le:(Presenter)
resenter

ass:present-
By instance
riable

Top presenter Subpresenters

myWindow myTwoDShape
myMoviePlayer

myVideoPlayer

58

3 ScriptX Components Guide

Notice that the Presenter class is quite abstract—it specifies only the
presentation hierarchy. The Presenter class has no notion of a coordinate
system, no interest in mouse events, and no connection to a display surface
onto which instances can be rendered—these are left to TwoDPresenter.

TwoDPresenter

The TwoDPresenter class is the only direct subclass of Presenter in the
core classes. The TwoDPresenter class provides for the display of
two-dimensional objects in ScriptX on 2D graphic devices, such as display
monitors. 2D presenter objects include any of the visual media: text, graphic
shapes, bitmap images, transitions, animation, and video.

A 2D presenter is an instance of a concrete subclass of TwoDPresenter, and
represents an object that is presented to the user through graphic images.

How the Presentation Hierarchy is Used

The TwoDPresenter class uses the presentation hierarchy, described
previously, in two specialized ways not encompassed in the Presenter class:

• For drawing the presenters in an orderly manner.

The hierarchy organizes the drawing of multiple 2D presenters to a single
display surface attached to a window in a title. This hierarchy provides an
ordered way of calling draw on all presenters, ensuring each is presented
exactly once.

The compositor calls draw on the top presenter, which in turn calls draw on
each successive subpresenter, giving overlapping presenters a front-to-back
visual ordering.

• For receiving mouse events. This is described in the Events chapter. When
the user performs a mouse action, the hierarchy enables a search for the
front-most presenter at that location to receive the mouse event.

It is important that a presenter appear only once in the presentation
hierarchy—otherwise, one of the presenters cannot receive events, and time is
wasted drawing the presenter more than once. TwoDMultiPresenter and its
subclasses have safeguards to prevent them from containing a presenter more
than once—the objectAdded method ensures that every time a presenter is
added to a container, the presenter is removed from its previous presentedBy
container.

A title can have any number of presentation hierarchies, but needs a window
(display surface) for each one, as shown in Figure 3-8.

59

Spaces and Presenters 3

Figure 3-8: Every window has its own presentation hierarchy.

Drawing To a Window’s Display Surface

Instances of TwoDPresenter by themselves are not sufficient for viewing;
they must draw themselves to a display surface in a window, where they are
made visible to the user. TwoDPresenter defines the generic imaging
function draw that the compositor uses to construct image frames by rendering
the presenter to a display surface.

The generic function draw is central to compositor imaging of all ScriptX
objects. TwoDPresenter itself does not implement a method for draw. Each
subclass must implement a draw method for any drawing to occur. Every
concrete subclass of TwoDPresenter should implement its draw method in
the manner most efficient for that class. TwoDPresenter does not manage the
drawing of any of its subpresenters, either—the TwoDMultiPresenter class
specializes TwoDPresenter to manage subpresenters.

For each presenter in a window, the compositor automatically calls draw on
that presenter to tell the presenter to render itself to the window’s display
surface. For more control of on-screen drawing, you can disable the compositor
and explicitly call draw so that the presenter is rendered directly to a display
surface. Or, for off-screen drawing, you can call draw on a bitmap surface and
then transfer the off-screen bitmap to a display surface for viewing.

The next section of this chapter describes windows, which act as both a
container space and as the top presenter for the presentation hierarchy. Other
instances of TwoDPresenter are described later in this chapter. For more
discussion of display surfaces, see Chapter , “2D Graphics.”

Window

Windows are an essential part of any title that has visible objects—all 2D
presenters must be contained in a window to be composited and displayed. A
window is a collection that holds 2D presenters and has a rectangular display
surface on-screen for clipping and displaying them. Every window has a
compositor to orchestrate the drawing of all presenters and a clock for timing.
A window can also have a set of controllers for manipulating objects within it.
The appearance of the window’s title bar and border are defined by the
underlying operating system, as shown in Figure 3-10.

Display Device

Windows

60

3 ScriptX Components Guide

A window object is any instance of the Window family of classes, which
includes Window and its specialized subclass, FullScreenWindow. A
side-by-side comparison of these appears later in this section.

To make an instance of window visible, you create an instance and then call
show on it:

myWin := new Window
show myWin

The only objects that can be at the top of a presentation hierarchy are instances
of Window and its subclasses. When you create a new window, it automatically
creates its own display surface to draw to. A window also automatically
provides a clock to run the 2D compositor. A window is always the top
presenter; in fact, windows cannot be further down in the presentation
hierarchy—they can only be at the top. In other words, you cannot add a
window to another window, as you can with all other presenters. Being at the
top, a window has no parent—that is, its presentedBy is undefined.

A window forms a rectangular clipping region that allows subpresenters
within its boundary to be displayed, and crops away any parts of
subpresenters outside its boundary.

Any presenters added to the window become its subpresenters. All 2D
presenters are designed to live in windows; this includes user interface objects,
text, video players, 2D shapes and document templates. For further details
about other properties of windows common to 2D space, such as
subpresenters, z-value, clipping, clock, and controllers, refer to “TwoDSpace”
on page 87.

Showing and Hiding a Window

As demonstrated in the previous section, a window’s show method enables the
window’s compositor, sets isVisible to true, brings the window to the
front, and gives the title and window user focus.

Conversely, the hide method removes the window from the screen, sets the
window’s hasUserFocus to false, gives user focus to the next window
on-screen, disables the window’s compositor, and sets isVisible to false.

hide myWin

A user can also hide a window by clicking in the close box (Macintosh only) or
choosing “Close Title” from the system menu (Macintosh or Windows)—
either way calls hide on the window. Although people commonly speak of
“closing a window,” these operations call hide, not close on it (close is a
method for library, title, and accessory containers).

Be sure not to confuse closing a window with closing a title. The Close menu
command closes the title and all its windows. Notice that clicking the close box
is not equivalent to choosing the Close menu command on the File menu.

61

Spaces and Presenters 3

The isVisible instance variable is persistent, which means windows
remember the setting when the title is closed. Therefore, when you open a title,
and then call load on a window, it will immediately be displayed if its
isVisible is set to true—you do not have to also call show on it.

When a window is hidden, it can be garbage collected by dropping all
references to it and making it purgeable—see the section “Freeing a Window
from Memory” in the “Title Management” chapter for details.

Managing Windows in a Title

When a window is added to a title container, it can be managed by that title, or
it can be reassigned to be managed by a different title. Managing windows
includes making sure the windows share user focus with the title, pausing the
compositors for its windows when the title is paused, and closing windows
when the title is closed.

For more on managing a title, see Chapter , “Title Management.”The title
management chapter also describes freeing and saving windows in a title.

Window Subclasses

Windows come in different styles, determined by setting the window’s type
when a window is instantiated. Table 3-1 lists the attributes for each type of
window. A modal window is one that does not allow any action outside the
window until the user hides it—in other words, the user must responds to the
modal window before continuing. Clicking outside a modal window causes a
beep.

The title bar is the horizontal strip along the top of the window, containing a
name. A user moves a window by dragging its title bar.

Note that none of the ScriptX window types uses the underlying operating
system’s scroll bars. To make a window scrollable, you can either add an
instance of ScrollingPresenter to that window, or define your own
scrolling presenter by creating a space and setting up scrollbars to scroll
through that space.

Collection methods are used to add objects to a Window object.

Table 3-1: Attributes for the Window family of classes

 Type Class Modal? Title Bar Close Box
or Menu?

General Window No Yes Yes

Palette Window No Yes Yes

Full Screen FullScreenWindow No No No

Dialog Window Yes Yes No

Notice Window Yes No No

62

3 ScriptX Components Guide

The open windows that are managed by a particular title container are listed in
the title container’s windows instance variable. This list is sorted by user
focus—the frontmost window for the title appears first in the list. Conversely,
each window in the list will have its title instance variable set to the title
container which manages it.

Different types of windows are displayed in different layers, as shown in
Figure 3-9. A palette window always appears in front of a normal window or
full-screen window. A dialog window or notice window always appears in
front of other windows. Within a given layer, windows can appear in either
order, so a notice window can appear either in front of or behind a dialog
window.

Figure 3-9: Windows are displayed in three different layers.

In Microsoft Windows 3.1, most 2D graphics resources (such as Bitmap,
Brush, Region, and Window objects) are allocated out of a 64K GDI (Graphics
Device Interface) memory heap. This 64K GDI heap is shared by all Windows
3.1 applications running at any given time. When this heap starts filling up,
many 2D operations in ScriptX will start failing.

The number of ScriptX windows that can be opened at once depends on what
kind of 2D presenter objects you have created in each window and what
portion of the system’s GDI resources are being used by each. It is a good rule
of thumb for a title in Microsoft Windows 3.1 to open at most 5 windows; more
can be opened if they contain simple graphics, fewer if they contain complex
graphics.

PaletteWindow Window
FullScreenWindow

Front View

NoticeWindow
DialogWindow

Window or

PaletteWindow

DialogWindow

Side View
Front Middle Rear
Layer Layer

or
NoticeWindow

Layer

FullScreenWindow

63

Spaces and Presenters 3

Figure 3-10: The appearance of a window is determined by the underlying platform.

Notice Window Notice Window

MyTitle

Dialog Window Dialog Window

MyTitle
Palette Window Palette Window

Full Screen Window Full Screen Window

MyTitle

Window Window

64

3 ScriptX Components Guide

Display Surface, Compositor, and Clock

When you create an instance from the Window family of classes, a new display
surface, 2D compositor, and clock are automatically created and attached to the
window.

A new display surface is automatically created and connected to the window.
This display surface provides an area of the display screen visible to the user
for the 2D presenters to be drawn to; any presenter drawn to the display
surface is thereby visible to the user. A reference to the display surface is stored
in the displaySurface instance variable:

myWindow.displaySurface

A new 2D compositor is also created automatically; it orchestrates the drawing
of the presentation hierarchy to the display surface. The window becomes the
top presenter for that 2D compositor. The 2D compositor is held in the
compositor instance variable:

myWindow.compositor

 The display surface and 2D compositor are described later in this chapter in
“How Compositors Work” on page 89.

A new clock is automatically created for all spaces, so a window always has a
clock by virtue of being a space. A window’s clock determines the timing for
the compositor and also for any controllers that might be added to the window.
It is held in the clock instance variable:

myWindow.clock

Adding Objects to a Window

In the following example, myWindow is created as a window with a display
surface of 100 x 100 pixels. It contains a movie player and pushbuttons for
making the movie play or stop, as in Figure 3-11. The movie player and
pushbuttons are subpresenters of the 2D space. (This example assumes you
have previously defined pushbutton presenters myRewind, myStop, and
myPlay.)

myWindow := new Window boundary:(new Rect x2:100 y2:100)

myVideoPlayer := new DigitalVideoPlayer \
boundary:(new Rect x2:100 y2:100)

rewindButton := new Pushbutton releasedPresenter:myRewind
stopButton := new Pushbutton releasedPresenter:myStop
playButton := new Pushbutton releasedPresenter:myPlay

append myWindow myVideoPlayer
append myWindow rewindButton
append myWindow stopButton
append myWindow playButton

show myWindow

windows:add-
g objects to

65

Spaces and Presenters 3

Figure 3-11 shows three different views of the same set of objects. The User’s
View is the view the user sees of the instance; the Internal State is a list of the
instance variables and numbers of the window, name (left column) and their
values (right column). The Presentation Hierarchy shows how the presented
objects can contain other presented objects.

Figure 3-11: Three views of a window.

To do “off-screen” imaging, draw to an instance of BitmapSurface instead of
DisplaySurface. You could then transfer this image to a display surface.
This technique could be useful when you want to build an image and control
the time at which this image is displayed.

Coordinate Systems

Three different basic coordinate systems exist in a ScriptX display, as shown in
Figure 3-12. For example, when the user clicks the mouse on a presenter, that
point can be returned in the local coordinates of the presenter, the coordinates
of the display surface, or the screen coordinates of the ScriptX Player. For all
three of these, x increases to the right, and y increases downward. These three
coordinate systems have origins located as follows:

• Screen coordinates – origin is located at the upper-left corner of the ScriptX
Player. For the Macintosh, this is always the corner of the screen; however,
for Microsoft Windows and OS/2, the ScriptX Player lives in its own
window that can be made smaller than the screen.

ser’s view
ternal state

User’s View Internal State

clock

controllers

protocols

Members:

Instance Variables:

myMoviePlayer

rewindButton

stopButton

playButton

myClock

myActuatorController

TwoDPresenter

Instance of Window

myWindow[1]

myWindow[2]

myWindow[3]

myWindow[4]

Subpresenters

Presentation Hierarchy

stopButtonrewindButtonmyMoviePlayer

myWindow

myVideoPlayer

playButton

subpresenters

myWindow

ff-screen
awing

oordinate sys-
ms

creen coordi-
tes
oordi-
tes:screen

66

3 ScriptX Components Guide

• Surface coordinates (abbreviation for display surface coordinates) – origin is
located at the upper-left corner of the usable display surface. For all
windows except instances of FullScreenWindow, this origin is just below
the title bar at the upper-left corner of the window. For instances of
FullScreenWindow, the origin is the upper-left corner of the display
surface, and the instance variables screenCoords and surfaceCoords
are identical.

The surface coordinates are used for measuring globalBoundary,
globalRegion, and globalTransform.

• Local coordinates – origin is located at the upper-left corner of each 2D
presenter. Also called “presenter coordinates.”

The TwoDPresenter class has two methods for converting a point between
surface and local coordinates: surfaceToLocal and localToSurface.

Note that you can hide the menu bar that displays the words File and Edit —
see the SystemMenuBar class. Doing so on the Macintosh exposes the
previously hidden area behind the menu bar to the user — the rest of the
screen stays as-is.

Figure 3-12: The ScriptX Player with the menu bar showing.

Machine-Specific Screens

In Microsoft Windows and OS/2, the origin of the surface coordinates is
located at the top edge of the system menu bar, but shifts upward when the
system menu bar is hidden. On the Macintosh, the origin remains fixed at the
top of the system menu bar, regardless of whether it is showing or not.

urface coordi-
tes
oordi-
tes:surface

window coordi-
tes
oordi-
tes:window

cal coordi-
tes
oordinates:lo-

File Edit Window
ScriptX Player

Title Bar

(0,0) origin of screen coordinates

(0,0) origin of surface coordinates

(0,0) origin of local coordinates

Surface

2D Presenter

(60,20) in local coordinates
(160,120) in surface coordinates
(260,220) in screen coordinates

achine-spe-
c screens

67

Spaces and Presenters 3

Figure 3-13: The Microsoft Windows ScriptX Player has a title bar and is re-sizeable.

Also, in Microsoft Windows, the ScriptX Player itself is located in a movable
window with a title bar, and so can be resized and moved around on the
screen, as shown in Figure 3-13. On this platform, the only way to hide the title
bar is to use an instance of FullScreenWindow. The Macintosh version of the
ScriptX Player has no title bar.

Properties of 2D Presenters

All 2D presenters have in common the properties described in the following
sections. These properties are implemented as instance variables and include
target, transform, boundary, globalBoundary, bBox, position, x, y, z,
size, window, compositor, clock, needsTickle, isTransparent,
stationary, and direct.

A 2D Presenter’s Target

In general, the target is the model object that the 2D presenter is providing a
view to. For example, an instance of String, StringConstant, or Text is
the target for a TextPresenter object, as in Figure 3-14. Instances of these
classes cannot draw themselves—they require a presenter such as
TextPresenter to display them.

For TwoDShape, the target is the stencil it is drawing—the oval, rectangle, line,
path, bitmap or region.

In other cases, the target itself is a presenter. For example, the target of
CostumedPresenter is a TwoDPresenter object.

Macintosh Microsoft Windows

KMP smaller than full-screen

File Edit

File Edit

ScriptX

woDPresent-
class:target

rget instance
able:

woDPresent-

woDPresent-
class:target
ance vari-
e

68

3 ScriptX Components Guide

Figure 3-14: The target of this TextPresenter is an instance of Text.

Not all presenters require a target. The target instance variable is not directly
used by TwoDMultiPresenter, TwoDSpace, or GroupSpace—it is available
for use by subclasses. When a target is not needed, target should be set to
undefined.

Transform, Position and Size

Each TwoDPresenter object has a transform instance variable that holds a
TwoDMatrix instance that specifies the presenter’s x-y location and scale. The
2D presenter also has the following instance variables that directly access
values derived from the transform matrix: position, x, and y. The bBox,
height, and width instance variables are separate and are not derived from
the transform matrix.

While the transform matrix is capable of rotation for stencils, this operation is
not currently available for 2D presenters. To get this effect, you can create an
instance of TwoDShape and instead rotate its target stencil.

2D presenters use the same basic coordinate system described in the 2D
Graphics component. Every presenter has a local coordinate system with its
own origin (0,0) based on the underlying stencil. If the stencil’s values for x1
and y1 are 0, then the local origin (upper left corner of the presenter) coincides
with the origin, as shown for mySpace in Figure 3-15; otherwise, the stencil’s
upper left corner will be offset from the origin by the stencil’s values for x1
and y1. The x-axis is positive going to the right and the y-axis is positive going
downward. The unit of measure for 2D presenter coordinate systems is pixels.
As illustrated in Fig. 3-15, the stencil for myMulti has an x1 value of 3 and a
y1 value of 3, putting the local origin of myMulti at the point 3,3 in the
coordinate system of mySpace.

Any presenters in a container are positioned relative to the origin of that
container. For example, the left-hand side of Figure 3-15 shows a 2D space,
mySpace, that contains a 2D multipresenter, myMulti, that holds a rectangle.
(Both the 2D space and 2D multipresenter have x1 and y1 set to 0.) Notice that
the rectangle is positioned relative to myMulti, not mySpace. Any
subpresenter of mySpace is positioned relative to the origin of mySpace.
Moving mySpace moves its contents as well.

The right-hand side of the figure shows a 2D space, mySpace, that contains
two rectangles, both of which are positioned relative to mySpace.

target

width

position

fill

Instance Variables:

presentedBy

stroke

subpresenters

“Hello”

50

100, 100

whiteBrush

undefined

blackBrush

undefined

height 20

TextPresenter instance

Hello

woDPresent-
class:trans-
m
woDPresent-
class:location
woDPresent-
class:size

ansform in-
nce variable

woDPresent-

woDPresent-
class:trans-
m instance
iable

woDPresent-
class:trans-
m matrix

69

Spaces and Presenters 3

Figure 3-15: The local origin of a container is its upper left corner.

Every 2D presenter has an x-y position relative to the origin of the presenter it
is immediately contained in, except windows, which have an x-y position
relative to the origin of the display coordinates. The x-y position is specified by
two instance variables: x and y.

The position instance variable, a Point object representing both x and y, is
a convenient way of accessing both values at the same time. If you were to
move an object by setting first its x value and then its y value, you might see
the object shift twice: first in the x-direction, and then again in the y-direction.
However, by setting the position instance variable, the object shifts once
diagonally to its proper destination.

The z instance variable specifies the front-to-back position of a 2D presenter,
relative to other overlapping presenters within their parent container. If the 2D
presenter is not contained in an instance of TwoDMultiPresenter or one of
its subclasses, z is ignored.

The bBox instance variable is an abbreviation for “bounding box,” the smallest
rectangle that can fully enclose the presenter. The bBox rectangle is not visible,
but is used in certain operations. The height and width instance variables
are the dimensions of the 2D presenter’s bounding box.

The boundary is a stencil that describes the perimeter of a presenter. While
bBox is always rectangular, boundary can be non-rectangular, because it can
be any stencil. Each subclass of TwoDPresenter has its own restrictions on
which shapes are possible. For Window and its subclasses, this boundary must
be a rectangle. However, for TwoDMultiPresenter, TwoDSpace, and
TwoDShape, the boundary can be a region or any of the stencils available in
ScriptX, such as a line, oval, rectangle, rounded rectangle, path, or bitmap.

The instance variable globalBoundary contains a rectangle like bBox, except
that its points are specified in surface (window) coordinates. (The presenter’s
global boundary is unrelated to the boundary instance variable, which is a
stencil.) This rectangle specifies the clip rectangle that is used when drawing to
a surface—only the part of the presenter inside the clip rectangle is drawn.
Likewise, the value of globalTransform specifies the transformation matrix
for the 2D presenter. This matrix determines where the 2D presenter is located
in surface (window) coordinates.

(0,0) mySpace

(0,0)
myMulti

myRect

myRect1

myRect2

(0,0) mySpace

70

3 ScriptX Components Guide

Window, Compositor, and Clock

The window instance variable specifies the window that the 2D presenter is
contained in, either directly or indirectly. If the presenter is not in a window,
this value is undefined.

The compositor instance variable specifies the 2D graphic compositor used
to draw the 2D presenter to its window. In fact, the 2D compositor is
responsible for drawing all members of a presentation hierarchy to their
window. The compositor and display surface are automatically created when
you create the window. Thereafter, when a presenter is added to a presentation
hierarchy, its value of compositor is automatically filled in.

The needsTickle instance variable should be set to true to indicate that the
presenter needs to have its tickle method called with each composite cycle;
otherwise, it should be set to false. The 2D graphics compositor maintains a
private list of presenters that need to be tickled, and setting a presenter’s
needsTickle instance variable to true automatically adds the presenter to
this list. By maintaining this list, the compositor avoids having to poll each
presenter in a space.

If you want to create your own tickle method, refer to the entry on
TwoDPresenter in ScriptX Class Reference.

The clock instance variable is read-only and specifies the clock used to
control this presenter—it is undefined for instances of most core class 2D
presenters. Exceptions include those that inherit from Space and Scrollbar.
Thus, clock has a value for TwoDSpace, GroupSpace, PageLayer, Window,
and their subclasses.

The compositor is described later in this chapter under “How Compositors
Work” on page 89. The top presenter’s clock is described under “Compositor
Clock” on page 92”.

Notifying the Compositor of Changes

The TwoDPresenter method notifyChanged is the mechanism for notifying
the compositor about changes to presenters. This method does two things:

• It causes a TwoDPresenter instance to compute its changed region and
pass this region on to the compositor.

• It provides an optimization hint to the compositor. The first argument to
notifyChanged is an instance of TwoDPresenter; invoking
notifyChanged indicates that there has been some change to the presenter
specified in this first argument. The second argument is a Boolean object
indicating whether or not the change involves the presenter’s position or
boundary. Giving true as the second argument indicates that the
presenter’s boundary has changed, the presenter’s position has changed, or
both have changed. Supplying false as the second argument tells the
compositor that only the image has changed—neither the position nor the
boundary of the presenter has changed. When only the image has changed,
the compositor can skip several steps and render the presenter more
efficiently. Consequently, calls to notifyChanged, which may be quite

71

Spaces and Presenters 3

costly, are more efficient when the second argument is false. The following
code tells the compositor that myTwoDPresenter has changed only its
image:

notifyChanged myTwoDPresenter false

In most cases, notifyChanged gets called automatically. For example, the
setter methods for x, y, width, height, stroke, fill, and other
TwoDPresenter properties implicitly call notifyChanged each time a new
value is set.

There are cases, however, where you must explicitly call notifyChanged, For
example, if you specialize a presenter so that it makes changes, and those
changes do not automatically call notifyChanged, you will have to include
an explicit call to notifyChanged. If notifyChanged is not called, either
explicitly or implicitly, the changes you implemented will have no effect on
presentation.

You must also call notifyChanged explicitly when you change an indirect
attribute. An indirect attribute is an attribute of an attribute, rather than an
attribute of an object directly. For example, y is a direct attribute in
“myRect.y” and an indirect attribute in “myRect.target.y”. The following
code illustrates this situation:

-- Create a window and put a rectangular 2D shape in it
myWin := new Window boundary:(new Rect x2:200 y2:200) fill:whiteBrush
myWin.y := 40
show myWin

myRect := new TwoDShape target:(new Rect x2:50 y2:50) fill:blackBrush
append myWin myRect
myRect.y := 50
-- Now make the rectangle half as wide by changing its stencil
myRect.target.x2 := 25 -- Notice this has no effect
show myWin
notifyChanged myRect true -- The shape is now redrawn
show myWin

In this example, myRect.target is the stencil. Setting the stencil’s width to
25 has no effect on the display until notifyChanged is invoked because the
stencil’s x value is an indirect attribute of myRect. The following code changes
the width of myWin using a direct attribute, which means that the setter
method for width will call notifyChanged automatically:

myWin.width := 25 -- changes the width and calls notifyChanged

Note – The TwoDPresenter method notifyChanged replaces the flags
changed and imageChanged. ScriptX 1.5 still recognizes changed to allow
for backward compatability, but it just redirects to notifyChanged.

72

3 ScriptX Components Guide

Re-Drawing the Changed Presenters

At each frame, the display must show all presenters in their most current
state—that is, any changes to presenters since the previous frame must be
drawn to the window. Rather than re-drawing the entire presentation hierarchy
every frame, the system draws only the fewest presenters necessary to meet
this end.

There are basically two kinds of changes that can cause a presenter to be
redrawn:

• The presenter itself changes shape, position or image

• Another presenter that was in front of it moves away, uncovering more of it

Only presenters meeting one or both of these conditions should be redrawn. To
meet this requirement, the system keeps track of which presenters have
changed (those which have had notifyChanged called on them), and then
draws only those presenters that intersect the changed presenters.

TwoDPresenter has two instance variables, isTransparent and
stationary, which give hints that the compositor uses when it is trying to be
smart about what to re-draw:

• isTransparent indicates whether a 2D presenter is transparent, and
therefore, whether presenters or regions of presenters beneath it are visible.
(A presenter is transparent if it does not render all of the pixels
encompassed by its boundary.) Set isTransparent to true if the 2D
presenter is transparent; otherwise, set isTransparent to false. If an
object is not visible because it is occluded, then it is not necessary to draw
changes to it. The following code informs the compositor that
myTwoDPresenter occludes any presenters directly beneath it:

myTwoDPresenter.isTransparent := false

When notifyChanged is called on a transparent presenter, presenters directly
beneath it need to be re-drawn also.

The default value for isTransparent is false.

• stationary is set to true when an instance of TwoDPresenter satisfies
one or both of the following conditions:

• it doesn’t move much

• it occupies a large space

In all other cases, stationary should be set to false.

A window is an example of a presenter that is stationary because it is large;
objects like scrollbars, pushbuttons, or TextEdit text are examples of
presenters that are stationary because they are regions that don’t change
location much.

The default value for stationary is false.

73

Spaces and Presenters 3

When stationary is set to false, the compositor will not spend time
figuring the fewest number of presenters that need to be re-drawn.

Optimizing When a Presenter Is Re-drawn

The compositor uses hints provided by notifyChanged, isTransparent,
and stationary to help optimize drawing.

The following conditions help the compositor decide which presenters should
be re-drawn:

• notifyChanged myTwoDPresenter true —Since the second argument
is true, it indicates that the presenter’s position or boundary has changed,
either of which necessitates calculating the area of the presenter that needs
to be redrawn.

• myTwoDPresenter.stationary := false—This indicates that the
presenter is either small or moves a lot, either of which causes the presenter
to be re-drawn completely. If an object is small and moves often, it is
generally cheaper just to re-draw it rather than to calculate the area needing
to be re-drawn and then re-drawing only that specific area. If an object is
large, however, it may be more efficient to calculate the area which has
changed and to re-draw only regions which have changed.

• myTwoDPresenter.isTransparent := true (and presenters beneath it
have changed)—Since the presenter is transparent, any changes to objects
directly beneath it are visible and therefore need to be re-drawn.

The compositor looks for situations where it does not need to re-draw. In
simplest terms, these are situations in which changes are not visible.

For example, assume there are two presenters, A and B. A is not transparent
and completely covers B, which is beneath it. If B changes, those changes will
not be visible because A occludes B. If only A’s image changes, A needs to be
re-drawn, but the changes to B don’t need to be re-drawn because they are still
not visible. If A moves, however, so that changes to B become visible, then both
A and B need to be re-drawn.

The compositor also tries to draw as little as possible. As mentioned above, it
ends up being more efficient to simply re-draw all small objects, even if the
change affects only a small area. Consequently, if a presenter’s stationary
instance variable is set to false, it will always be completely re-drawn when
it is visible (when any presenters directly above it are transparent). When a
large object changes, however, it may be worth calculating which regions
changed and re-drawing only those regions.

Improving Drawing Speed with Direct Presenters

Some 2D presenters have certain characteristics that lend themselves to
drawing optimization by the compositor, to speed up performance. To achieve
optimization, it may be important to set the direct instance variable on
certain 2D presenters.

74

3 ScriptX Components Guide

The direct instance variable should be set to true for video and other
rectangular presenters that have a fixed location and boundary but with
quickly moving images within that boundary. This flag optimizes the drawing
speed by drawing directly to a display surface, bypassing the compositor’s
off-screen frame buffer.

This flag is set to false by default for all new presenters. If you want an
instance of DigitalVideoPlayer to be direct, for example, you must
explicitly set its direct flag to true.

myDigitalVideoPlayer.direct := true --causes compositor to draw
--directly to the display surface

Direct presenters always appear in front of non-direct presenters (and so
override z-ordering). Direct presenters should not overlap other direct
presenters—if they do, then the user will see flickering as they both struggle to
update the overlapped area. Do not use direct for video that flies across the
screen or has other presenters overlapping it. Direct presenters are also
restricted to being rectangles.

The major benefit with direct presenters is reducing the amount of drawing
that takes place for each frame. When a non-direct presenter is asked to draw,
it draws the entire presenter within the clip region. In contrast, when a direct
presenter is asked to draw, it can draw just the parts of it that have changed
since the previous frame, with assurance that no other part of the image has
been disturbed by other objects. Since the compositor prevents other presenters
from drawing within direct presenter areas of the display surface, a direct
presenter is the only one allowed to draw to its region of the display surface.

For example, as a direct presenter, a digital video player can do “incremental”
updates at each frame, just redrawing the bits of the surface that have changed.
Similarly, a transition effect can run more efficiently as a direct presenter,
blitting only the part of the image that changes.

The refresh method (defined by TwoDPresenter) is called on direct
presenters when there is some area of the display surface that has been erased
(for example, by another window moving in front and then moving away). The
direct presenter should respond to this method by entirely redrawing itself
(that is, not doing just an incremental update, but a complete update). The
default behavior of the refresh method is just to call draw.

Diagnostics for Improving Drawing Speed

ScriptX provides several diagnostic functions that can help you optimize
performance. These are available in the development environment, but not
with the ScriptX Player. The showChangedRegion instance variable, defined
by TwoDCompositor, can be set true to mark a red outline around any
subsequently changed regions in the compositor’s window:

myWindow.compositor.showChangedRegion := true

fresh method
woDPresent-

woDPresent-
class:refresh
thod

75

Spaces and Presenters 3

The red outlines accumulate until the window is refreshed (which you can do
by calling refresh on the window or hiding and showing it). You can set
showChangedRegion to true to help optimize your title to do the least
amount of updating possible. For example, instead of animating by switching
between large bitmaps, an author could have a large bitmap and several
smaller ones that layer on top of it successively.

The warnings function is a diagnostic that displays warnings that can affect
execution of a script or slow performance. The following script demonstrates
how to turn on warnings.

warnings true

A warning is issued when a bitmap transfer occurs with mismatched color
maps. For example, the warning appears when a bitmap image with one
colormap has been added to a window with a different colormap. While this
works, such a mismatch can cause performance to suffer greatly (in a
platform-dependent way). To improve performance, make the window’s
colormap the same as the bitmap’s:

myWindow.colormap := myBitmap.colormap

Receiving Mouse Events

A 2D presenter is associated with a region on the display surface, and it can
receive mouse events that occur within that region. Clicking on, moving over,
or dragging a presenter could cause the presenter to change colors, change
images, begin an animation, bring in a new scene, or initiate some other action.

The eventInterests instance variable in TwoDPresenter is a read-only list
of event interests associated with a given 2D presenter. A full description of
this instance variable and how a 2D presenter can receive mouse events is
given in the Events chapter.

Classes like ActuatorController and DragController, which inherit
from TwoDController, provide an easy interface to events for presenters.

Subpresenters of TwoDPresenter

As described earlier, every presenter has a subpresenters instance variable.
For presenters that have only themselves and no other presenters to display,
the subpresenters value is undefined; for other presenters, it can contain a
list of presenters to be displayed. The presentation hierarchy is made up of a
window and a network of subpresenters, where a subpresenter can have its
own subpresenters, nested to any level deep. Each list of subpresenters forms a
branch of the presentation hierarchy. Putting a presenter in a subpresenters list
places it in the presentation hierarchy.

If you want to make a presenter be displayed, you can add it to a presenter
container in the presentation hierarchy—the presenter will automatically show
up in the container’s subpresenters list. For example, if you prepend an

76

3 ScriptX Components Guide

instance of TwoDShape to an instance of Window, the shape is displayed as
part of the window’s presentation hierarchy because a window’s
subpresenters instance variable points to the window and its contents.

At this point it’s useful to elaborate on the impact that the subpresenters
instance variable can have on the character of a presenter—it distinguishes
between simple presenters and container presenters.

Simple Presenters vs. Container Presenters

Figure 3-16 lists the class trees for “container” presenters and simple
presenters. Container presenters are 2D presenters, such as windows, that can
have multiple subpresenters. This means they can hold and display multiple
2D presenters together. Adding a presenter to a container presenter
automatically adds the presenter to the container’s subpresenters list. This
happens because the subpresenters instance variable points to the members
of the presenter container, as shown on the left side of Figure 3-18.

Figure 3-18 compares the two kinds of 2D presenters—”containers,” which can
hold and display other presenters, and “simple” presenters, which can hold
only their targets and can display only one target at a time:

• A “container” presenter is an instance of the TwoDMultiPresenter family
of classes, which itself is a collection of presenters. The container presenter
itself and all its members are presented (subject to clipping). A container
forms a node in the presentation hierarchy, with its subpresenters below it.
Examples are instances of Window, TwoDSpace, and GroupPresenter.

• A “simple” presenter inherits from TwoDPresenter but is not a member of
the TwoDMultiPresenter family. A simple presenter presents only one
object at a time. Examples are instances of TwoDShape, TextPresenter,
and OneOfNPresenter.

An important attribute of container presenters is that any transform on the
container affects all of its member presenters—the members all transform as a
group. In other words, the x-y coordinate position of all members is relative to
the container. Thus, moving the container moves all of its contained objects. In
addition, its contained objects can be clipped by the container
(TwoDMultiPresenter, TwoDSpace, Window) or not clipped
(GroupPresenter, GroupSpace).

77

Spaces and Presenters 3

Figure 3-16: Container presenters inherit from TwoDMultiPresenter, simple presenters
do not.

In general, a container presenter has its own visible features—a window has a
border, fill, and stroke. The members of the window, which are the
subpresenters, determine which additional objects are to be presented, and in
what front-to-back visual order. The order of the objects in the members list is
the order in which they are drawn to the screen, starting with the last object in
the list (in back) and working to the first (in front).

Figure 3-18 compares the internal states of container presenters and simple
presenters. In containers, the subpresenters instance variable points to the
members of the container; simple presenters do not have multiple
subpresenters. To simplify the diagram, not all instance variables are shown.

SequenceCursor

ArrayList

Space

TwoDSpace

GroupSpace

GroupPresenter

TwoDShapeTwoDMultiPresenter

CostumedPresenter

OneOfNPresenter

Container Presenters

Window

PageLayer

Toggle

Pushbutton

ScrollBar

InterleavedMoviePlayer

TextPresenter

TransitionPlayer

DigitalVideoPlayer

Page

PageElement

PageTemplate

TwoDPresenter

DocTemplate

Document

Actuator

MediaStreamPlayer

Simple Presenters

IndirectCollection

Presenter

DocTemplate
ScrollingPresenter

ScrollingList

Menu

MoviePlayer

Player

FullScreenWindow

Player

Collection

DocTemplate

78

3 ScriptX Components Guide

Figure 3-17: Comparison of a container and a simple presenter.

For containers, the mechanism for subpresenters is straightforward: the
subpresenters instance variable points to the container itself, meaning the
subpresenters are the members in the container. Therefore, any object added to
the container is automatically in its list of subpresenters, where it is part of the
presentation hierarchy, and appears to the user; these multiple objects are
presented together.

For example, a new instance of TwoDSpace is by default an array (because its
targetCollection is an instance of Array). The subpresenters of the 2D
space are the members of that array. Any object added to the 2D space is
automatically a subpresenter, as the following script shows. In particular, the
shape myBox is a subpresenter of mySpace.

mySpace := new TwoDSpace
myBox := new TwoDShape boundary:(new Rect x2:50 y2:50) \

fill:blackBrush
prepend mySpace myBox

Simple PresenterContainer Presenter
Example: TwoDShapeExample: TwoDMultiPresenter

Container Subpresenters

User’s View User’s View

TwoDShape

State Table State Table

target

width

position

fill

Instance Variables:

presentedBy

stroke

subpresenters

myOval

50

100, 100

whiteBrush

undefined

blackBrush

undefined

height 20

Instance Variables:
target

width

position

fill

presentedBy

stroke

subpresenters

undefined

50

100, 100

whiteBrush

undefined

blackBrush

height 20

myMulti[1]

myMulti[2]

myMulti[3]

myMulti[4]

myMovie

rewindButton

stopButton

playButton

Members:

TwoDMultiPresenter

PushButtons

MoviePlayer

woDSpace
ss:example

79

Spaces and Presenters 3

Each concrete subclass of Presenter manages how objects are moved into
and out of the subpresenters list. For example, for TwoDMultiPresenter
(and its subclasses), all of its members are also subpresenters and are displayed
together; however, for OneOfNPresenter, only one of its members is moved
into the subpresenters list at a time, and only that object is displayed.

The number of subpresenters that a presenter can have depends on its class.
Presenters that inherit from TwoDMultiPresenter can have multiple
subpresenters, while presenters that don’t inherit from TwoDMultiPresenter
typically have either zero or one subpresenter. Presenters that inherit from
TwoDMultiPresenter are called presentation containers because they can
contain more than one subpresenter at a time.

• The simplest non-container presenter, TwoDShape, presents its target
stencil, which is not a presenter, and so subpresenters is set to
undefined.

• More complex non-container presenters, such as OneOfNPresenter and
CostumedPresenter are themselves not visible, and require one
subpresenter to display. OneOfNPresenter maintains a list of presenters to
present, but can show only one at a time—only the one that is held in the
subpresenters instance variable. CostumedPresenter can also change
the object it is presenting—again, the object being presented is the one
currently held in subpresenters.

• Container presenters, such as TwoDMultiPresenter, TwoDSpace,
Window, GroupPresenter, and MoviePlayer, can have multiple
subpresenters, which are displayed together.

If you create a subclass of TwoDPresenter or Presenter rather than
TwoDMultiPresenter, the resulting class will by default have no
subpresenters—you must add the extra functionality required to handle
subpresenters.

Simple Presenters

The Spaces and Presenters component contains three classes that are simple
presenters: TwoDShape, CostumedPresenter, and OneOfNPresenter.

TwoDShape

The TwoDShape class provides the means for presenting and displaying 2D
graphic objects, such as bitmaps, rectangles, ovals, curves, and other shapes.
TwoDShape objects operate as presenters for 2D graphic objects, using the 2D
compositor.

You create graphics using a stencil and brush technique, as described in
Chapter 11, “2D Graphics.” When creating an instance of TwoDShape, you
specify the appropriate stencil. Among the stencil classes that the TwoDShape
class can present are the Line, Rect, RoundRect, Path, Oval, Region, and
Bitmap.

80

3 ScriptX Components Guide

When a TwoDShape object is asked by the graphics compositor to draw itself,
it renders its stencil onto a surface, using its fill and stroke (outline) brushes.
The stencil determines the area’s shape. One brush can determine the color and
pattern for the fill, while another brush can determine the color, pattern and
line width for the stroke. (These terms are described in Chapter 11, “2D
Graphics.”)

Sample Script for TwoDShape

The following is a sample script for creating a rectangle and displaying it in a
window. The new method on Rect creates the rectangular stencil, which by
itself cannot be added to a window. The new method on TwoDShape specifies
myRect as its target, and sets its fill and stroke (outline). The next two lines
position the shape. After the window is created, the prepend method adds the
shape to the window.

-- Create a rectangle stencil
global myRect := new Rect x2:50 y2:50

-- Create a rectangle presenter from the stencil and position it
global myBox := new TwoDShape target:myRect fill:blackBrush\
stroke:blackBrush

myBox.x := 20
myBox.y := 20

-- Create a window
global myWindow := new Window boundary:(new Rect x2:300 y2:300)

-- Add the 2D shape to the window
prepend myWindow myBox
show myWindow

CostumedPresenter

CostumedPresenter is a presenter that by itself is not visible—it needs
another presenter to be its “costume.” The object being presented, or
“costume,” is held in both the target and subpresenters instance
variables. Figure 3-18 shows the state of an instance of CostumedPresenter.

Use a CostumedPresenter object when you want a presenter that can
change appearance, say from text to bitmap, while retaining position
information and connections to other objects, such as controllers. For example,
you can use CostumedPresenter to model a picture hanging on a wall—the
costumed presenter represents the blank place on the wall, and its costume is
the picture.

81

Spaces and Presenters 3

Figure 3-18: The subpresenter for CostumedPresenter is its costume.

CostumedPresenter implements a kind of delegation.Another ScriptX
option for delegation is the Delegate class, a utility class that is part of the
Object System Kernel. For general information on delgation in ScriptX, see
“Delegation” on page 625 of Chapter 23, “Object System Kernel.”

OneOfNPresenter

OneOfNPresenter is a presenter that contains a list of presenters, only one of
which can be displayed at a time. Figure 3-19 shows the state of an instance of
OneOfNPresenter. While OneOfNPresenter is a collection, it can display
only one object at a time, so its subpresenters instance variable holds a
single item and does not point to a collection.

Figure 3-19: The subpresenters for OneOfNPresenter points to a single presenter, not
a list.

OneOfNPresenter, like CostumedPresenter, also implements a kind of
delegation. OneOfNPresenter embodies a one-to-many relationship, in
which one member from a collection of presenters is the current presenter. For
general information on delgation in ScriptX, see “Delegation” on page 625 of
Chapter 23, “Object System Kernel.”

target

width

position

fill

Instance Variables:

presentedBy

stroke

subpresenters

myCostume

50

100, 100

whiteBrush

undefined

blackBrush

myCostume

height 20

CostumedPresenter instance

OneOfNPresenter instance

Instance Variables:
target

width

position

fill

presentedBy

stroke

subpresenters

undefined

50

100, 100

whiteBrush

undefined

blackBrush

height 20

myOneOfN1]

myOneOfN[2]

myOneOfN[3]
myOneOfN[4]

MyTrout

myCrab

myLobster
mySnail

Members:

82

3 ScriptX Components Guide

TwoDMultiPresenter

TwoDMultiPresenter is a subclass of TwoDPresenter that mixes in
IndirectCollection and thereby provides a way of presenting a collection
of TwoDPresenter objects. TwoDPresenter provides the following features,
beyond the basic functionality of the TwoDPresenter class:

• A TwoDMultiPresenter object contains multiple subpresenters—all of
which can be presented at the same time and have positions relative to the
2D multipresenter.

• TwoDMultiPresenter sorts its subpresenters by their z value, and
displays them front-to-back in this order.

• A TwoDMultiPresenter object defines properties for boundary, fill,
and stroke, and uses them to render itself, just as a TwoDShape object
does. However, the boundary forms a clipping region. Any part of a
subpresenter that would be drawn outside this boundary is clipped.

• A TwoDMultiPresenter ensures that an object appears only once in the
presentation hierarchy. Every time a presenter is added to a container, it is
removed from its previous container, if it has one, as determined by the
value of presentedBy.

It is important that a presenter appear only once in the presentation
hierarchy—otherwise, time is wasted drawing the presenter more than once,
and only the first instance that is traversed during event delivery can receive
events. Ensuring that an object cannot be duplicated in the presentation
hierarchy is one of the main features built into TwoDMultiPresenter.
Whenever you add a member object to an instance of TwoDMultiPresenter,
it is removed from its previous container.

Containment

TwoDMultiPresenter forms the basis for container presenters. It inherits its
container properties from Collection, by way of IndirectCollection.
TwoDMultiPresenter classes “contain” their subpresenter objects visually.
TwoDMultiPresenter, TwoDSpace, GroupPresenter, and GroupSpace
are container presenters, while TwoDShape, CostumedPresenter, and
OneOfNPresenter are not.

Subpresenters within any container share the same x-y coordinate system and
origin as their container. When you move a 2D space, all objects in that space
move with it. Both of these effects are due to the concatenation of matrices
during the presentation cycle.

All presenters that are added to a 2D multipresenter at a location within its
boundary are displayed. Presenters that are added, but appear outside the
multipresenter’s boundary, are clipped by that boundary. Members of the
collection are presented because the subpresenters instance variable points
to them (by way of pointing to the object itself), as shown in Figure 3-20.

In this example, an instance of TwoDMultiPresenter contains a collection of
images, arranged with cars in front and a movie in the background.

83

Spaces and Presenters 3

TwoDMultiPresenter is useful when you need to manage multiple
TwoDPresenter objects, but don’t want the overhead of managing controllers
and a clock that TwoDSpace requires. It’s also a simple way of clipping a
presenter or group of subpresenters.

Figure 3-20 shows three different views of a TwoDMultiPresenter object:

• User’s view – Shows how the user would view and interact with this
instance of TwoDMultiPresenter.

• Internal state – Shows the instance variables and member objects.

• Presentation hierarchy – Shows the relationship of presenters and
subpresenters

Figure 3-20: Three views of an instance of TwoDMultiPresenter

Creating a TwoDMultiPresenter

To create an instance of TwoDMultiPresenter, call new and supply a value
for the boundary keyword. For example, to create the TwoDMultiPresenter
instance shown in Figure 3-20, assuming the subpresenters myMovie, myTree,
myCar1 and myCar2 already exist, you first create the multipresenter and then
add its subpresenters to the container individually.

myMulti := new TwoDMultiPresenter \
boundary:(new Rect x2:200 y2:200)

prepend myMulti movieScreen

TwoDMultiPresenter

myMulti[1]

myMulti[2]

myMulti[3]

myMulti[4]

height

width

position

fill

presentedBy

stroke

subpresenters

nearCar

farCar

myTree

myMovie

200

200

100, 100

whiteBrush

undefined

blackBrush

Members:

Instance Variables:

Presentation Hierarchy

farCarmyTreemyMovie

myTwoDMultiPresenter

myVideoPlayer

nearCarmovieScreen

myMulti[5] movieScreen

Internal State
TwoDMultiPresenter

User’s View

84

3 ScriptX Components Guide

prepend myMulti myMovie
prepend myMulti myTree
prepend myMulti farCar
prepend myMulti nearCar

For performance reasons, when creating an instance of TwoDMultiPresenter
(or any of its subclasses, such as TwoDSpace, GroupSpace, Window, or
PageLayer), you should generally omit the targetCollection keyword
and allow the class to set its target collection by default. Multipresenters
require collections that can be traversed easily for drawing presenters and
handling events. Generally, the default target collection is an instance of
Array, with the keyword initialSize set to some optimal level, given the
expected size of the collection. Performance could suffer if you change the
target collection to something other than the default. Bounded arrays, such as
Pair, Triple, and Quad, can be specified as a target collection where
appropriate.

Drawing

The draw method defined by TwoDMultiPresenter renders its image onto
the display surface of the window, with clipping defined by a clip stencil. The
draw method performs three steps when drawing an instance of
TwoDMultiPresenter:

• Fills the instance, using the Brush object defined by fill, which forms a
background

• Iterates draw on each subpresenter

• Strokes the instance’s boundary

The boundary is drawn last, because its thickness can overlap presenters
contained inside the instance of TwoDMultiPresenter.

Finding Presenters Within a Container

TwoDMultiPresenter has four methods for finding presenters that it
contains:

• findAllAtPoint – Finds all objects that intersect the specified point, given
in local coordinates of the 2D multipresenter.

• findFirstAtPoint – Finds the first (front-most) object that intersects the
specified point, given in local coordinates of the 2D multipresenter.

• findAllInStencil – Finds all objects contained in the 2D multipresenter
that intersect the specified stencil.

• findFirstInStencil – Finds the first (front-most) object contained in the
2D multipresenter that intersects the specified stencil.

These are useful for determining which objects are located at a specific place in
the TwoDMultiPresenter object. For example, you could use
findAllInStencil to determine which presenters are contained inside a
rectangle that the user draws—this allows the user to drag-select objects. When

85

Spaces and Presenters 3

the user clicks, you could use findFirstAtPoint to do hit detection of the
front-most presenter. The findAllAtPoint method will return an array of all
presenters that contain the specified point.

Clipping

TwoDMultiPresenter and many of its principal subclasses within the core
class—TwoDSpace, PageTemplate, and Window—allow the programmer to
set the multipresenter’s boundary directly. These multipresenters use the
parent presenter’s boundary to clip subpresenters. In this way,
TwoDMultiPresenter extends the meaning of boundary, an instance
variable defined by TwoDPresenter.

Several subclasses of TwoDMultiPresenter—GroupPresenter,
GroupSpace, PushButton, and Toggle—override this behavior. These
presenters grow to encompass the union of the objects they contain. In these
presenters, the boundary is determined automatically based on the boundary
of subpresenters. The boundary keyword to the init method is ignored, and
attempting to set the value of boundary reports an exception.

Z-Ordering

When 2D presenters overlap on the screen, their front-to-back display order is
determined by their order in the presentation hierarchy, which is their position
in subpresenters lists. Within a given list, a presenter at the front of the list
(that is, with smaller index number) displays in front of a presenter at the back
of the list. This is because within a subpresenters list, the presenter at the
bottom of the list (the largest index number) draws first, and presenters toward
the top of the list the draw later, and hence, on top. Subpresenters of any
TwoDMultiPresenter class are ordered by z-value, the value of its z instance
variable, as follows.

Initially, and unless you specify otherwise, all presenters have by default a
z-value of 0. Thus, if you never explicitly specify a z-value, all presenters will
have a z-value of 0, and have their front-to-back order determined, as always,
by their order in the list. To add a new presenter in front of other presenters,
you prepend it to the list of subpresenters; to add it behind other presenters,
you append it.

To change the position of a presenter in the front-to-back order, you can either:

• Move it directly

• Specify a z value

To move it directly, call moveForward, moveBackward, moveToFront or
moveToBack on it. You can also use collection methods, such as prepend,
append, or setNth, to specify its position in the subpresenters list when you
are adding it to a TwoDMultiPresenter.

To specify a z value, set the presenter’s z instance variable. Setting this value
actually moves the presenter in the subpresenter list, so that once again the
order of presenters in the list determines their draw order. A higher, more
positive value of z corresponds to a position in front of other presenters.

woDMulti-
esenter
ss:z-ordering
ordering
ont-to-back
dering
acking order

86

3 ScriptX Components Guide

For example, setting the z-value to 1 moves a presenter in the list ahead of all
presenters with a z-value of 0, and consequently displays it in front of them.

The following table shows this relationship between index numbers in a
subpresenters array, z-values, and visual ordering:

The value for z can be any integer from –2,147,483,647 to +2,147,483,648. The
initial z-value for a new presenter is 0.

Setting z-values is the way to set the front-to-back order of presenters so that
this order is an attribute of the presenters themselves. If you want a presenter
to stay in the background, you can give it a negative z-value; then if it gets
moved to another space, it can maintain its z-position.

If you specify a z-value and then use a contradictory method to add the object
to a 2D multipresenter, the z-value takes precedence. For example, if all the
presenters in a 2D multipresenter have a z-value of 0, and you append a
presenter with a z-value of 1, it is inserted in front of all the presenters. You
would expect the append method to insert it at the back, but its z-value is
higher than the other presenters. However, the append method does make
sure that the presenter is inserted at the back of any presenters that have the
same z-value.

Example of PushButton as a TwoDMultiPresenter

As another example, a toggle pushbutton can be created from the Toggle
class, which is a subclass of Pushbutton (both are defined in the User
Interface component). PushButton in turn inherits from
TwoDMultiPresenter.

An instance of Toggle has two states, on and off. In addition, it has a third
visible state that appears when the mouse button is down on it. Thus, it can
display at most three subpresenters simultaneously—one from each of the
following groups:

• pressedPresenter or releasedPresenter

• toggledOnPresenter or toggledOffPresenter

• disabledPresenter or undefined

For example, a pushbutton can display its releasedPresenter,
toggledOnPresenter, and disabledPresenter. Figure 3-21 shows the
internal state of a typical pushbutton and its view to users.

For more information on Pushbutton and Toggle classes, refer to the section
on actuators in the “User Interface” chapter.

Table 3-2: Relation between index, z-value and visual ordering

Index in subpresenters array:
(from 1 to n)

1 2... n

z-value: high medium low

Visual ordering: front middle back

woDMulti-
esenter
ss:example
oggle class
ushButton
ss

87

Spaces and Presenters 3

Figure 3-21: The internal state and user view of a pushbutton that is pressed, on and
dimmed.

TwoDSpace

TwoDSpace is the simplest two-dimensional space for use inside a window.
This class combines the presentation and collection attributes of
TwoDMultiPresenter with the clock, controllers and protocols attributes of
Space. Use a 2D space wherever you want an area within a window to have
its own clock and controllers.

A TwoDSpace object creates an environment where presenter objects can live,
including presenters that display bitmaps, shapes, video images, animations,
text, and other media. A space is an interactive environment, with any object
being potentially clickable or draggable, including windows, toggles,
pushbuttons, scrolling lists and so forth. As the user manipulates objects in a
space, those objects can control objects in that space or any other space—or
even objects that are not in any space. Since it is a subclass of TwoDSpace, the
Window class shares all of these attributes.

TwoDSpace inherits its container and presenter features from
TwoDMultiPresenter. Any object successfully added to a TwoDSpace
automatically becomes a subpresenter of the space and is added to the
presentation hierarchy. Each TwoDSpace object has a boundary that is fixed
and clips its subpresenters. Every ScriptX presenter defines two instance
variables that determine its position in the presentation hierarchy. You can
iterate down through this hierarchy by means of the subpresenters instance
variable of each presenter, or up by means of the presentedBy instance
variable. The ordering of subpresenters at any given level in the hierarchy can
be specified by setting their z values.

As with any instance of TwoDMultiPresenter, TwoDSpace implements a
draw method that first fills the space, using the brush specified by fill, to
form a background. Next, it renders the outline of the space, using the brush
specified by stroke. Finally, it iterates over all of its subpresenters in the
presentation hierarchy, calling draw on each subpresenter.

Combined Bitmaps

dimmedBitmap

onBitmap

pressedBitmap

Pushbutton

Individual Bitmaps

width

position

fill

Instance Variables:

presentedBy

stroke

pressedPresenter

200

100, 100

whiteBrush

undefined

blackBrush

pressedBitmap

height 40

PushButton instance

toggledOnPresenter

releasedPresenter

toggledOffPresenter

onBitmap
releasedBitmap

offBitmap

disabledPresenter

subpresenters
dimmedBitmap

88

3 ScriptX Components Guide

TwoDSpace inherits its timing and simulation features from the Space class.
Space defines three instance variables—clock, controllers, and
protocols—that a space uses to simulate behavior in an environment over
time. Its clock is used for timing. Its controllers operate on objects that are
added to the space, modifying their behavior over time, or in response to some
other stimulus.

TwoDSpace also inherits from Collection, by way of
IndirectCollection. A TwoDSpace object is a collection which contains
other objects. IndirectCollection defines a notification protocol for
controlling what objects can be added to a space. A space uses
isAppropriateObject to determine which objects are allowed into the
space, based upon the value of protocols. It uses its objectAdded and
objectRemoved methods so that it can respond each time an object is added
to or removed from the space. For more information on
IndirectCollection, see page 469 of Chapter , “Collections.”

Presenters in a 2D space are rendered in the reverse order that they appear in
this collection, with the last item in the collection rendered first. When objects
overlap, the first presenters in the collection are displayed in front of the last
presenters in the collection. Thus overlapping objects within a 2D space
present themselves in a manner similar to most drawing programs, with some
objects occluding others.

All TwoDPresenter objects are designed to live in a 2D space; this includes
instances of subclasses of TwoDPresenter, such as user interface objects and
2D shapes. A TwoDSpace object cannot be a top presenter, unless it is a
window as well. Thus, it can be contained within another instance of
TwoDSpace. By contrast, a Window object, which is a kind of TwoDSpace,
cannot be a subpresenter—a window must be the top presenter in a
presentation hierarchy.

The visible shape of a TwoDSpace object within its parent space is determined
by the value of its boundary instance variable. This property, defined by
TwoDPresenter, contains a Stencil object. All presenters within a space are
clipped to the space’s boundary. The position of a 2D space is given by its
transform matrix, which includes its x-y position in its parent container.

Protocols

For any instance of TwoDSpace, the protocols instance variable is defined to
include the TwoDPresenter class. This means that objectAdded checks to
make sure that any object added to the space inherits from TwoDPresenter. If
not, then objectAdded prevents the object from being added to the space.

89

Spaces and Presenters 3

How Compositors Work

Important – This section, which describes the interaction of the
TwoDCompositor, DisplaySurface, and Window classes, has not been
updated to reflect changes in ScriptX 1.5. For up-to-date information on the
compositor in ScriptX 1.5, see the TwoDPresenter and TwoDCompositor
classes in the ScriptX Class Reference.

Every ScriptX window has its own compositor which initiates the drawing of
its presenters. Compositors orchestrate the visual presentation of a title.

Note – The 2D graphic compositor is a low-level part of the presentation
system which manages the drawing of presenters to a window’s display
surface. It can be important to understand the 2D compositor for optimizing a
title’s performance.

Once compositing starts, each presenter in the hierarchy draws its changed
region to the window’s display surface, including those that have moved,
changed image, or changed boundary. The compositor is designed to ensure in
general that regions of the screen that have not been altered do not get
redrawn. The compositor accumulates changes to the window internally.

The window’s presentation hierarchy ensures that presenters are drawn in the
correct order, from background to foreground, building up the composition as
each presenter is drawn. Compositing is just another word for the mechanism
by which presenters are drawn to the screen in an orderly, time-driven manner.
The class that embodies this functionality is TwoDCompositor.

Introduction to the 2D Compositor

A compositor assembles discrete 2D presenters into a composite image once
every tick of its clock. A 2D compositor is necessary to continually refresh the
graphic images. If a compositor were not present, then any moving image
would erase other images it passes in front of. The background image would
not be restored because it was drawn only once. The compositor handles the
updating of all the images for you, and attempts to do it in an efficient manner,
updating only what has changed since the last drawing cycle.

A compositor works closely with other components in ScriptX, as shown in
Figure 3-22. This diagram has four major components: a presentation hierarchy,
a 2D graphic compositor, a frame buffer, and a window’s display surface. The
compositor initiates the draw method on the presenters to render them to the
off-screen frame buffer and then transfer that image to the window’s display
surface.

90

3 ScriptX Components Guide

Figure 3-22: Graphic compositor controls the display of the presentation.

As described earlier, the presentation hierarchy is an ordered structure of 2D
presenters. Its purpose is to provide an order to the presenters for capabilities
such as front-to-back ordering in the user’s view, controlling the order in
which events traverse presenters, and providing an ordered way of reaching
every presenter exactly once during the presentation phase. Each presenter in
the presentation hierarchy is capable of presenting itself to the frame buffer or
to the display surface.

The frame buffer is the off-screen area of memory that maps directly to the
display surface. The frame buffer gives the compositor a place to construct the
changed parts of a frame; it is the area where each of the changed presenters
draws itself. A time-based presentation consists of a number of visual frames
per second; a frame is one complete image in this sequence of images. A typical
presentation might run at 10 to 30 frames per second. The frame buffer is not
directly accessible at the scripter level.

The display surface is the visible part of a window where the presenters are
ultimately drawn. The draw method (defined in TwoDPresenter) operates on
a display surface, not a window. A window is the collection of presenters to be
displayed. When you add presenters to a window, they are displayed on its
display surface. A title can have multiple windows, and, hence, display
surfaces, and they can overlap each other. A display surface is represented by
an instance of the DisplaySurface class, and a window by an instance of the
Window class (or its subclass).

The 2D graphic compositor orchestrates the timing and drawing of the
presentation hierarchy onto the display surface during the presentation phase.
There is a separate compositor per display surface. A compositor is represented
by an instance of the TwoDCompositor class.

Creating a Compositor

You do not create a compositor directly from a script. When you create an
instance of Window, a compositor is automatically created, and attached to that
window, to manage the compositing of presenters in that window. This
compositor, an instance of TwoDCompositor, is accessible through the

Presentation Hierarchy

Top presenter’s

clock

Top presenter

PP PSubpresenters

Frame Buffer

(off screen)

Display Device

Display Surface

2D Graphic

Compositor

P

esentation
rarchy:com-
siting

ame buff-
drawing to

91

Spaces and Presenters 3

Window class’s compositor instance variable. Each window has its own
compositor and clock—the clock drives timing of both the compositor and the
window’s controllers.

A window and its compositor contain references to each other, and to the
window’s display surface, through instance variables defined by Window and
TwoDCompositor. Although the links between a window, its compositor, its
display surface, and the presenters it contains are sometimes redundant, they
allow for greater speed and flexibility in the mechanisms of modeling and
presentation.

TwoDCompositor defines the instance variables topPresenter and
displaySurface. These instance variables store references to the window, as
top presenter for a presentation hierarchy, and to its display surface. The
displaySurface instance variable is writable, but the preferred mechanism
for controlling whether or not the compositor draws to a frame buffer or
directly to the display surface is through the instance variable useOffScreen,
a flag that is defined by TwoDCompositor.

Window defines the instance variables compositor and a displaySurface.
These instance variables store references to the window’s associated
compositor and display surface. In addition, each presenter in the presentation
hierarchy, for which the window is the top presenter, defines a compositor
instance variable. In other words, every presenter has its own compositor.

If a window needs to be refreshed, the ScriptX Player calls refreshRegion on
the window automatically, supplying a Stencil object that encompasses the
area of the screen to be refreshed. As defined by Window, refreshRegion
calls refreshRegion on the window’s compositor. For example, if you
change the height of an object, that object’s setter method will automatically
call notifyChanged, which causes the object to compute its changed region
and pass this region on to the compositor.

During each composite cycle, the compositor maintains an internal record of
changes to the presentation space. It adds the window’s changed region to this
internal structure, which it uses to update the screen during the presentation
phase.

If your presentation space includes an isolated or border region, such as the
border of a FullScreenWindow object or some other large window, that you
want to draw to once and then never update, you can reduce memory
requirements by creating a window without a compositor. If a window has no
compositor, less memory is required because no off-screen frame buffer is
created. To create a window without a compositor, specify that its
compositor keyword be undefined at instantiation:

new Window boundary:myRect compositor:undefined

If the window’s compositor is undefined, you can override refreshRegion
on Window to perform some drawing or update task (for example, to fill the
refresh region with a solid color or pattern). It would be important that no
presenter be allowed to move into this region, for if it did, its image would be
erased.

92

3 ScriptX Components Guide

Compositor Clock

The compositor uses the top presenter’s clock to drive its timing mechanisms.
(The top presenter must be an instance of Window, and its clock is stored in the
window’s clock instance variable. A compositor does not have a clock of its
own.) The compositor is scheduled to update the screen once with every tick of
the window’s clock, but if it has too much work to do for a given cycle, and
consequently does not keep up with the clock, then it takes longer to update
the screen, and the frame rate slows. Thus, increasing the speed of the
window’s clock can speed up the number of frames per second only to the
point where the compositor no longer has any slack time.

Temporarily Disabling the Compositor

TwoDCompositor defines the instance variable enabled, which gives you
control over whether the compositor is running or not. When a compositor is
created, it is enabled by default. Set enabled to false to stop the compositor.
You might want to disable the compositor if you were constructing an image
and wanted to freeze the display until the image was completed.

myWindow := new Window name:"ScriptX Forever" boundary:myRect
myWindow.compositor.enabled := false

For all presenters in a window, the compositor automatically calls draw to
render the presenter to the window’s display surface. For more control of
on-screen drawing, you can disable the compositor and call the draw method
explicitly on each presenter, supplying the window’s display surface as the
second argument to the draw method. Or, you can perform off-screen drawing
by calling draw on a bitmap surface, then transfer the off-screen bitmap to a
display surface for viewing.

The compositor has a feature associated with enable/disable that you can take
advantage of. After you disable the compositor, you can remove or add objects
to the presentation hierarchy, and then re-enable the compositor. Because the
compositor was disabled when the objects were changed, the compositor will
not know that any changes have occurred, and the screen will not update until
an object is next moved or changed. This feature is useful for transitions in
collections of presenters. For an example of this technique, refer to the
“Transitions” chapter.

The Modeling/Presentation Cycle

As shown in Figure 3-23, a title alternates between modeling and presentation.
First the model runs and then the results are applied to presenters that are
composited to the output devices. Either phase can take more time than the
other, depending on the complexity of modeling and presentation. In short, the
two parts of the cycle are as follows:

93

Spaces and Presenters 3

• The model runs, performing calculations, doing comparisons, tickling the
controllers, and running simulations—at some point before presentation
begins, it delivers its results by storing values into variables that are
accessible to presenters. This modeling generally occurs without any direct
presentation.

• The presentation occurs, which causes the modified presenters to draw
themselves to the screen using the updated values supplied by the model.
This is called the presentation, or composition, part of the cycle. The
compositor is the mechanism by which presentation occurs.

Figure 3-23: The modeling/presentation cycle

Each tick of the window’s clock drives a complete modeling/presentation
cycle. The modeling and presentation run in the same thread, and alternate, as
shown. The modeling runs, and when it’s done the presentation runs, followed
by slack time at the end of each cycle, which is when other threads run. The
slack interval is filled with other operations, like garbage collection. Note that
Figure 3-23 is greatly simplified, as it combines all modeling into one block,
ignores interleaving of other threads that can occur during modeling, and
assumes there is only one compositor running.

Both modeling and presentation are triggered by clock callbacks. Controllers
that have a tickle method also need to be triggered once each tick of the
clock. Each space initially sets up a controller callback to call tickle on its
controllers. Likewise, each compositor initially sets up a composite callback to
draw all of the changed presenters. As a result, at each tick of the window’s
clock, the controller callback tickles all of the window’s “ticklish”controllers
(ones that have defined a tickle method), and then the compositor callback
draws all changed presenters. If a controller callback and a compositor callback
are scheduled to happen at the same time, the controller callback is given
priority.

In a similar manner, if a model or presentation hierarchy contains a sub-space,
that space initially sets up a controller callback on its clock. When the
controller callback triggers, it tickles all controllers in the space that implement
a tickle method before compositing begins.

A single thread manages both controller callbacks and the compositor callback
for all spaces, including spaces in other models and presentation hierarchies.
This thread is labeled the “user priority callbacks” thread. The reason these
callbacks are managed in the same thread is to ensure strict serialization,
meaning that every scheduled controller is tickled at least once before the
compositing begins. The modeling in this thread cannot be interrupted by the
compositor—all scheduled tickle methods run to completion. This means,

0 1 2 3 Window’s
clock ticks

M
o

d
e

lin
g

P
re

se
n

ta
tio

n

(s
la

c
k)

M
o

d
e

lin
g

P
re

se
n

ta
tio

n

(s
la

c
k)

M
o

d
e

lin
g

P
re

se
n

ta
tio

n

(s
la

c
k)

M
o

d
e

lin
g

P
re

se
n

ta
tio

n

94

3 ScriptX Components Guide

however, that while the simulation is being run, no compositing can take place
and, perhaps more significantly, while compositing is taking place, no
simulation can be expected.

This serialization eliminates the temporal aberrations caused when a model is
in an incomplete state during compositing. Note that modeling that occurs
outside of that thread can still have this problem of being interrupted by a
compositor. Such is the case for event processing and independent threads.

Skip Compositing If Late

Once every tick of a window’s clock, its periodic callback calls composite on
the 2D compositor, which then calls draw on presenters that need to be
re-drawn. (A presenter needs to be re-drawn if notifyChanged has been
called on it or it has been newly exposed by movements in other presenters.)
You can specify that a callback not be called if it would call composite later
than its specified time. In this case, if the callback calls composite later than
its scheduled time, the callback skips that cycle. Thus, either all presenters get
drawn or, if late, none get drawn.

The mechanism for doing this is the PeriodicCallback instance variable
skipIfLate. Setting it to true causes the compositor to do nothing during a
cycle in which the callback is behind schedule. The compositor does nothing
because the callback will wait for the next appropriate time to call composite
instead of trying to catch up by calling composite repeatedly. Note that it is
possible for a callback never to catch up.

Access to skipIfLate is illustrated in the following code:

myWindow.clock.callbacks[1].skipIfLate := true

For the compositor callback, the default value for skipIfLate is true,
whereas, the default for periodic callbacks in general is false.

Running Separate Threads

In general, you should not manipulate a model from a separate thread. The
compositor would not be aware of other threads, and would begin its phase at
its normal time, at the next tick, when the modeling in its own thread is
complete. The compositor does not wait for operations from another thread to
be completed. The result could be compositing a state that should never have
existed in the model, where objects appear in unexpected places, like the
robot/ball example in “Temporal Aliasing” on page 96, only to greater degree.

The Modeling Phase

The modeling phase of the compositor’s cycle is a slice of time during which
model objects interact and the controllers manipulate model objects. A title can
contain any number of spaces, each of which can have its own controllers; the
Space class maintains a list of controllers in its controllers instance
variable. Each space schedules a periodic callback on its clock to “tickle” its

95

Spaces and Presenters 3

contollers at one tick intervals. This callback iterates through the space’s list of
controllers, calling tickle on each controller, beginning with the first
controller in the list. (The order in which the controllers are listed matters only
when one object in the space depends on another object in the space.) It is the
use of controllers which are activated by the space’s clock that makes precise
synchronization possible in ScriptX. For scenes where timing and
synchronization are important, as in a time-based simulation, all model
updates should be managed by controllers.

During the modeling phase, the compositor accumulates a record of changes to
presenters, which it uses to redraw the screen during the presentation phase.
Each time any TwoDPresenter object’s boundary, image, or position changes,
that presenter calls its notifyChanged method to inform the compositor that
it should add the changed region to its refresh region. All methods defined in
the core classes that cause a change to the appearance of a presenter call
notifyChanged automatically.

TwoDMultiPresenter Drawing Order

Instances of TwoDMultiPresenter draw in the same order as other presenters:

• Fill the TwoDMultiPresenter object’s background

• Stroke the TwoDMultiPresenter object’s outline

• Draw its subpresenters that intersect the changed region (skipping
presenters whose direct instance variable is set true)

Note that since the subpresenters are drawn last, they can draw over the
border of the 2D multipresenter.

As with all other presenters that have the instance variable fill, the 2D
multipresenter saves time if its fill is undefined. If no part of its fill is visible
because its contents cover it, then leave the fill set to undefined.

Synchronizing Clocks

Instances of both TwoDSpace and Window have clocks that determine at what
rates they are composited. When you put a 2D space into a window, if the two
clocks are not synchronized, visual abberations can occur, such as temporal
aliasing. To prevent aberrations, it’s important that the clock for the 2D space
be slaved off the window’s clock. When you add the 2D space to the window,
this master-slave connection of clocks is automatically made for you.

In other words, to ensure that clock rates are relative to the rate of the top
clock, it is important for “sub-clocks” to be slaved off some top clock. This
synchronizes the clocks at all rates. The following statement makes the
window’s clock be the master of the space’s clock:

mySpace.clock.masterClock := myWindow.clock

ocks:syn-
ronizing
woDCompos-
r class:syn-
ronizing
cks

96

3 ScriptX Components Guide

The mechanism for auto-connecting clocks is found in the presentedBy
instance variable. Any presenter that is added to or removed from another
presenter has its presentedBy instance variable changed; the
presentedBySetter method automatically calls adjustClockMaster to
connect the new clock as a slave to the next clock above it.

Note that if you have done any customization to the timing hierarchy, that
customization will not be overridden. That is, if you have changed the clock of
the 2D space to be slaved off another clock besides its default, that connection
will not be disturbed.

Not all presenters have clocks; however, all members of the Space family of
classes have clocks, which includes windows, 2D spaces, and group spaces, as
indicated by the presence of a clock instance variable.

When a time-driven model does not live in a window, the model should have
its clock connected to the clock hierarchy of the window displaying it. This
connection would not be made automatically, since the model is not in a
presentation hierarchy, and hence has no presentedBy instance variable. You
need to make the master-slave connection yourself, as is done in the following
code:

modelClock.masterClock := myWindow.clock

However, there may be titles where you want to stop the window’s clock but
continue running the model space; in this case, the model space would have its
own top clock, rather than a clock which is slaved off the window’s clock.

The next section describes how temporal aliasing occurs and the kinds of
effects it causes. For related information, see the earlier section “Clocks and
Timing” on page 52.

Temporal Aliasing

If a title contains one or more objects driven by clocks, an effect called temporal
aliasing can occur. Temporal aliasing is an aberration of the model due to
timing. Temporal aliasing commonly shows up as a jerkiness in the movement
of animations and other time-based effects. In special cases it can cause more
obvious, but still momentary, aberrations.

For example, suppose you have a top space containing a bouncing ball and a
sub-space that is designed to hold just a robot. The robot has legs that enable it
to move around, and an arm that can swing at the ball. It also has a
collision-detection controller that enables it to determine when the ball is near.
Temporal aliasing could show up as a disconnect between the robot and the
ball, where the robot swings at the ball and the ball appears momentarily to
move past the robot’s arm before it bounces off the arm.

Temporal aliasing occurs when the ratio of the scales of two clocks in a title is
not an integer. From the perspective of the compositor’s clock (the window’s
clock), one of the following must be true to avoid temporal aliasing:

• If the compositing clock’s scale is greater than the other clock’s scale,

97

Spaces and Presenters 3

compositing clock’s scale / clock scale = integer

• If the compositing clock’s scale is smaller than the other clock’s scale,

clock scale / compositing clock’s scale = integer

Thus, a compositor’s clock scale of 1, 2, 4, or 8 is compatible with a clock scale
of 2 and 4, but a scale of 3, 5, or 7 for the compositor’s clock causes temporal
aliasing.

To ensure that clock rates remain at these ratios as you change the rate of the
top clock, it is important for “sub-clocks” to be slaved off the window’s clock.
This synchronizes the clocks at all rates.

To demonstrate temporal aliasing, Figure 3-24 shows the timing diagram for
the robot/ball example, described earlier, with the ball set to a scale of 3, the
robot set to a scale of 2, and the robot space’s clock slaved off the ball space’s
clock. The shaded regions are the modeling intervals where the robot and ball
controllers run. Temporal aliasing is caused by two effects:

1. The ball goes through two modeling cycles between the first and second
presentation phases.

2. The ball’s modeling phase shifts in time relative to its compositing phase. At
its third presentation phase, the ball is being displayed in a relatively old
state (.33 ticks old). If the ball were moving fast, it could appear to pass the
robot’s arm.

Note that the robot controller’s callback and the compositor’s own callback are
both scheduled to begin at 1 tick. Because controllers have priority over
compositors, the robot’s callback occurs first, followed by the compositing
phase.

Figure 3-24: Temporal aliasing due to non-integer ratios of clock scales

Note that Figure 3-24 shows the timing for a single display surface with its
presentation hierarchy. If there were another display surface, then its
compositor callback would be scheduled at each tick of its window’s clock.
Independent compositing blocks would appear in this figure at those times.

Spaces and Presenters Examples
This section gives examples that use classes in the Spaces and Presenters
component.

.66 1.330 1 2

C
o

m
p

o
sit

in
g

C
o

m
p

o
sit

in
g

3

C
o

m
p

o
sit

in
g

2.66 Top presenter’s
clock ticks

Ba
ll

C
o

n
tr

o
lle

r

Ba
ll

C
o

n
tr

o
lle

r

Ba
ll

C
o

n
tr

o
lle

r

Ba
ll

C
o

n
tr

o
lle

r

R
o

b
o

t
C

o
n

tr
o

lle
r

R
o

b
o

t
C

o
n

tr
o

lle
r

R
o

b
o

t
C

o
n

tr
o

lle
r

98

3 ScriptX Components Guide

A Simple Notice Window with a Pushbutton

A Window object of type @notice represents a modal window—that is, it does
not allow access to any other windows until it is closed or hidden. Every notice
window requires some mechanism that allows it to close. This example creates
a new class called ClosableNoticeWindow that includes a pushbutton that
allows the user to close the window, as shown in Figure 3-25. When a user
clicks on the close button, the window is hidden and then automatically
garbage collected (unless some reference to it still exists in the program).

Figure 3-25: An instance of ClosableNoticeWindow with a close pushbutton.

class ClosableNoticeWindow (Window) end

method init self {class ClosableNoticeWindow} #rest args ->
apply nextMethod self type:@notice args -- calls init on

 --superclasses

method afterInit self {class ClosableNoticeWindow} #rest args -> (
apply nextMethod self args -- calls afterInit on superclasses

-- create an actuator controller for any pushbuttons in the window
new ActuatorController space:self wholespace:true

-- create the pushbutton
local closeButton := new Pushbutton
closeButton.x := 75
closeButton.y := 90
closeButton.stroke := blackBrush

-- define the released presenter
local buttonText := new TextPresenter \

boundary:(new Rect x2:50 y2:20) target:"Close"
setDefaultAttr buttonText @alignment @center
closeButton.releasedPresenter := buttonText

-- define the pressed presenter
closeButton.pressedPresenter := new TwoDShape \

target:(new Rect x2:50 y2:20) fill:blackBrush

-- define the window to hide when mouse button is released
closeButton.activateAction := (notUsed button ->

hide button.presentedBy)

-- append the button to the window and show the window
append self closeButton
show self

)

new ClosableNoticeWindow centered:true boundary:(new Rect x2:200
y2:200)

Close

C H A P T E R

4
Controllers

100

4 ScriptX Components Guide

101

Controllers 4

The Controllers component defines classes that can monitor and manipulate
model objects in a space. Controllers are themselves non-visible, and can
operate on either visible or non-visible objects.

The concrete controllers described in this chapter (some of which are loadable)
are Bounce, Gravity, Interpolator and Movement. They directly control
the state of model objects in a space without user interaction. For example, you
could attach Bounce and Movement controllers to a 2D space, then add into
the space a 2D presenter that inherits from Projectile; this object would be
a target of those controllers, and would bounce off the edges of the space.

Controllers can also be driven by user interaction. The User Interface chapter
describes a set of controllers that respond to input events, such as mouse
movements and mouse clicks. These controllers receive and process mouse
events, changing the state of the presenters they control based on user input.

Controllers use features defined in a number of other ScriptX components. The
Spaces and Presenters component provides the fundamental Space family of
classes; a space is the only environment in which a controller can operate. The
Collections component provides a framework that allows a controller to hold
multiple objects, and defines the protocol for adding, setting, removing, and
accessing model objects.

Classes and Inheritance
The class inheritance hierarchy of the Controllers component is shown in the
following figure.

ProjectileController

IndirectCollection

Bounce

Gravity

Interpolator

ActuatorController

DragController

LayoutController

Legend
Gray box= abstract class
Black box = concrete class
No box = class belongs to another component

RootObject

Movement

TwoDController

102

4 ScriptX Components Guide

The following classes form the Controllers component. Other controllers are
defined as part of the User Interface component. In this list, indentation
indicates inheritance:

Controller – the root abstract class for controllers, Controller
manipulates some or all of the objects in a space.

TwoDController – similar to Controller but also ensures that objects in
the controller’s collection are in the same order as they appear in the 2D
space, guaranteeing that objects are controlled in their front-to-back order.

Bounce – causes one or more presenters to bounce off the edges of the
container.

Gravity – causes one or more presenters to accelerate in a specified
direction.

Interpolator – moves one or more presenters to a specified point in a
specified amount of time, along a straight or curved path.

Movement – moves one or more projectiles a distance calculated from
the object’s velocity vector.

Projectile – an abstract class that contains instance variables and methods
that need to be controlled by Bounce, Gravity, or Movement.

Conceptual Overview
Most any title can be best understood by separating its constituent objects into
three basic functions, or roles: model, presenter and controller. The Space
family of classes provides the foundation for models. The Presenter family
of classes provides the foundation for presentations, or views. The
Controller family of classes provides the ability to control model objects in
time and space. These three roles are described in greater detail in the
“Conceptual Overview” section of the “Spaces and Presenters” chapter.

Controllers can both monitor and manipulate objects in a space. For example, a
Gravity controller might look to see how fast an object is moving before
determining how far it should move that object.

Controllers often define “natural laws” governing members of the space. In
physical simulations, controllers can define the force on objects due to gravity.
Controllers can watch the distance between objects and perform some
operation based on proximity, such as collision detection or magnetic
repulsion.

Developers can create their own controllers. The controllers described in this
chapter are sample controllers included basically for demonstration purposes,
and some of them ship with the ScriptX Language and Class Library as
loadable classes rather than in the core classes:

• Bounce – causes presenters to bounce off the edges of their container.

• Gravity – causes presenters to accelerate in a specified direction.

• Interpolator – moves presenters to a specified point in a specified
amount of time, along a straight or curved path.

103

Controllers 4

• Movement – moves projectiles a distance calculated from the object’s
velocity vector.

Controller Class

The abstract Controller class provides the set of instance variables and
instance methods common to all controllers. The instance methods are empty
in Controller; concrete subclasses provide individual implementations of
these methods.

One key protocol that controllers can implement is the Ticklish protocol. A
controller that implements an instance method for tickle is said to be
“ticklish.” This method is used to specify a repeated action that a controller
performs on its target objects each time the space’s clock ticks.

A tickle method can perform both monitoring and control activities. For
example, in the Bounce class, a ScriptX loadable class, tickle checks to see if
the object has hit a side of the container. If so, it changes the object’s velocity so
that it moves in a new direction.

The other controller methods, objectAdded, objectRemoved, and
isAppropriateObject, along with the protocols instance variable,
operate similarly to their counterparts in the Space class. These methods allow
you to determine which objects are added to a controller, and to perform any
specified action when an object is added to a controller or removed from it.

Whenever an object is added to a controller, the object is checked to ensure that
its protocols match those expected by the controller. This means that each
object added must be an instance of or inherit from the classes listed in the
controller’s protocols instance variable. If the object does not have the
correct protocol, then the object is not added.

TwoDController Class

The TwoDController class inherits from Controller and has the same
features of that class but with one difference: it ensures that objects being
controlled are ordered in the controller’s collection in the same order as they
appear in the 2D space. Since this order determines the z-order of objects, it
guarantees that objects are controlled in their front-to-back order.

When to Use Controllers

Since there are many ways to control objects in a space, the question arises—
when should you use a controller? You should use a controller when there is a
single outside force affecting more than one object. For example, you would
use an ActuatorController when you have several pushbuttons in a space,
since you want them all to operate identically. It doesn’t make much sense to
use a controller unless there is a one-to-many relationship of controller to
objects.

104

4 ScriptX Components Guide

Imagine a space where a flock of birds is flying. If you used a controller to
control the wing motion of a bird, then all birds would have identical wing
motion. However, if you wanted each bird to have unique wing motion, then a
single controller would not provide the behavior you would want for all birds.
Nor would it make sense to create a separate controller for each bird. In this
case, it would be more appropriate for the class of birds to define the general
motion and have each bird individualize that motion.

It would, however, be appropriate to create a controller that represents the
wind, which blows all birds along relative to the ground. The wind is a force
outside the birds that has an impact on each bird it encounters.

How Controllers Work
Controllers operate on objects in spaces. Spaces and controllers work together
closely—to understand controllers, it is important to understand how they
work with spaces.

Attaching a Controller to a Space

Controllers require a space on which to operate—they cannot operate on
objects outside a space. Controllers rely on the space’s clock for their timing.

Each space keeps a list of controllers that manipulate objects in the space. To
attach a controller to a space, you assign the space to the controller’s space
instance variable. The space in turn automatically adds the controller to its
read-only controllers instance variable. The space instance variable
determines which space the controller is controlling, and ensures that the
controller manipulates only one space at a time.

Here’s an example of creating a space and attaching the space to the controller
using the space: keyword:

myWindow := new Window boundary:(new Rect x2:640 y2:440)
myGravity := new Gravity space:myWindow

Thereafter, when an object is added to the space, the space notifies each
controller, and if the controller’s wholeSpace is true, the object is also added
to the controller.

If a controller implements the Ticklish protocol, the controller’s space calls
tickle on that controller each time the space’s clock ticks, allowing the
controller to perform a repeated action. With every tick of the space’s clock, the
space iterates through each of its controllers that implement the Ticklish
protocol, allowing them to perform some periodic action. A tickle method
must run to completion without blocking within in a fraction of a tick, since all
controllers run once every tick. For information on blocking, see the section
“Blocking” on page 591 of Chapter 22, “Threads.”

Note that controllers themselves are not added to the space in the way model
objects are—controllers remain outside the space but are attached to it.
Controllers must eventually have an effect on presenter objects that they
control for their effects to be visible.

105

Controllers 4

What is a Controller?

Each controller is a collection that holds the objects it controls. These objects
are its so-called target objects. A controller is a collection by virtue of inheriting
from IndirectCollection. Although controllers provide the Collection
protocol, the Controller class does not define which Collection class is
used as a target collection. Each concrete subclass of Controller can define
its own target collection to store its target objects in the most appropriate way.
Within the core classes, all indirect collections currently use an array as a their
target collection, and are optimized to work with arrays.

The controller in Figure 4-1 has the two members myBall and myOval. These
are the objects that are controlled by the controller. The controller’s space
instance variable specifies the particular space it is attached to—in this case,
the space mySpace.

The controller can be disabled by either setting its enabled instance variable
to false or by removing the controller from the space. In addition, objects can
be added to or removed from a controller, which allows behaviors to be added
to or subtracted from an object over time.

Consider a space that contains four objects, as shown in Figure 4-1. Two of the
objects are projectiles. Notice that the controller myBounce has wholeSpace
set to true, so all appropriate objects in mySpace are added to myBounce.
This means only myBall and myOval are successfully added to myBounce,
since they are projectiles, and hence satisfy the protocol. Because myBall and
myOval are members of myBounce, they are being controlled in mySpace.

Figure 4-1: The members of myBounce are controlled in mySpace.

Note – The Bounce class has no effect unless mixed in with the Movement
class. Then an object that inherits from the Projectile class can bounce off
the sides of its container.

myBounce

mySpace[1]

mySpace[2]

mySpace[3]

mySpace[4]

myMoviePlayer

myBall

myOval

MyRect

Members:

Instance Variables:
target

width

position

fill

presentedBy

stroke

subpresenters

undefined

50

100, 100

whiteBrush

undefined

blackBrush

height 20

mySpace

myBounce[1]

myBounce[2]

myBall

myOval

Members:

Instance Variables:
enabled

wholeSpace

space

true

true

protocols Projectile

106

4 ScriptX Components Guide

Defining Your Own Controller

If none of the controllers in the core classes performs the task you need, you
can define a subclass of Controller for that task. In any subclass of
Controller, you typically specialize the instance methods
isAppropriateObject, objectAdded, and objectRemoved. If the
controller implements the Ticklish protocol, it should also specialize tickle.
Descriptions of these methods follow.

The Ticklish Protocol

Controllers that implement the Ticklish protocol define a method for tickle.
A controller class can specialize tickle to define an action that a controller
performs at each tick of the space’s clock. The Ticklish protocol is implemented
differently in every concrete subclass of Controller that defines a method for
tickle. A controller that implements this protocol is said to be “ticklish.”

A tickle method can both monitor and control target objects. For example, in
the Bounce class (a ScriptX loadable class), the tickle method monitors
whether the target object has hit a side of the container. If so, it sets a new
value for velocity, taking into account the value of elasticity (both
instance variables of Projectile). The tickle method for the Movement
class monitors the value of a projectile’s velocity instance variable,
calculates the distance the projectile should have moved with that velocity, and
moves the projectile that distance.

Imagine a space that has a ball and two controllers, a Bounce controller and a
Movement controller. The ball is a 2D shape with the Projectile class mixed
in, which allows it to be controlled by Bounce and Movement. The Bounce
class defines a tickle method that calculates the velocity that the ball should
have, based on whether it has hit the edge of the space—it updates its
velocity instance variable, but does not move the object. Movement defines
a method for tickle that moves the ball to a point determined by multiplying
its velocity times the length of a tick.

Figure 4-2 shows a greatly simplified flowchart of the operations that occur: the
tickle method for Bounce is called on all of the bounce target objects, then
the tickle method for Movement is called on all of the movement target
objects, and then the presentation of the objects occurs. Under control of the 2D
compositor, this process draws the changes to the screen, making them visible
to the user. This process is also called compositing. This flowchart shows only
the controllers in relation to the compositing—it ignores everything else that is
going on in the system.

107

Controllers 4

Figure 4-2: The tickle method is called once on each ticklish controller with every tick.

Figure 4-3 demonstrates the same operations as the previous figure, but along a
time line. It shows the frequency at which the two tickle methods are
invoked—once with every tick of the space’s clock, just prior to compositing.
Presentation and compositing are described in Chapter 3, “Spaces and
Presenters.”

Figure 4-3: Each controller that is ticklish runs a repeated action once each with tick.

The space’s clock determines how often objects in that space are tickled.
Repeated actions are invoked through callbacks on the space’s clock. The space
schedules a callback to run at every tick of its clock. When this callback runs, it
sequentially calls tickle on every controller that implements a tickle
method, beginning with the first controller in the list. In this particular case,
the order in which the controllers are listed is important because Movement
depends on the velocity set by Bounce, which means that Bounce must
operate before Movement.

When a title contains multiple spaces, each space schedules its controllers to
run at 1 tick intervals according to its own clock.

To make the ball stop bouncing, you could stop the space’s clock, you could
disable the Bounce and Movement controllers, or you could remove the ball
from the Bounce and Movement controllers. The first two choices would stop
all objects in the space. When there are two interdependent controllers

Tickle all Bounce targets

Tickle all Movement targets

Do presentation

 in the space

in the space

Wait til next tick

1

2

3

0 1 2

P
re

se
nt

at
io

n

3 ticks of
space’s clock

B
ou

nc
e

M
ov

em
en

t

1 2 3

P
re

se
nt

at
io

n

B
ou

nc
e

M
ov

em
en

t

P
re

se
nt

at
io

n

B
ou

nc
e

M
ov

em
en

t

108

4 ScriptX Components Guide

affecting an object, they both need to be turned off or on at the same time;
otherwise, when they are turned on, the object could jump off the screen. You
can define a function that turns them both on or off.

You can implement tickle to manipulate the target objects in several
different ways. It can watch for changes in the target object’s state, it can wait
for events that are related to the model objects, or it can operate periodically.

For more information on how controllers interact with the compositor, see
“The Modeling/Presentation Cycle” on page 92 of Chapter 3, “Spaces and
Presenters.”

Specifying an Object To Be Controlled

A controller can be attached to only one space at a time, and can control only
objects in that space. The controller is a collection that holds the objects to be
controlled.

Once a controller is attached to a space, it can either control all or some of the
objects in the space, depending on the value of the controller’s wholeSpace
instance variable:

• When wholeSpace is set to true, the controller automatically looks at all
the objects in the space, and adds objects with the appropriate protocol to
the controller.

• When wholeSpace is set to false, the controller is emptied of its target
objects. Objects in the space are not automatically added to the controller.
You must explicitly add objects to the controller (using Collection
methods) if you want them to be controlled.

In either case, any time an object is added to a controller, it is tested with
isAppropriateObject before actually being added.

Adding an object to a controller is quite similar to adding it to a space; since
they both inherit from IndirectCollection, they both use the same
methods.

You add objects to the controller using the collection methods defined for its
targetCollection class—methods such as prepend, append, addFirst,
and so on. These collection methods are all specialized in
IndirectCollection to call two additional methods on the controller:
isAppropriateObject and objectAdded, as shown in Figure 4-4. Using
prepend as an example, this flowchart shows four steps:

1. Call prepend on the controller to add an object.

2. The prepend method is specialized in IndirectCollection to call the
isAppropriateObject method, as implemented in the controller, to
check if the candidate object conforms to the protocols. If
isAppropriateObject returns true, then the procedure continues.

3. The prepend method is called, as implemented in the targetCollection
class. This actually adds the object to the controller, causing the object to
come into the controller’s realm of control.

109

Controllers 4

4. The objectAdded method is called.

The objectAdded method is automatically called any time an object is added
to a controller. You can specialize objectAdded in any controller class you
define to perform any action you want to occur every time an object is added.

A controller can use isAppropriateObject to reject objects and use
objectAdded to modify objects that it wants to include. This allows the
controller to impose constraints on objects that it can control. For instance, the
gravity controller might require objects to have a mass instance variable—it
could either reject objects that have no mass, or send them to a more
appropriate space.

The controller’s objectRemoved method, also shown in Figure 4-4, is
automatically called whenever an object is removed from the controller. You
can also specialize it to perform any action you want to occur every time an
object is removed from the controller.

The object that has been added to or removed from the controller is
automatically passed as the second argument to the objectAdded and
objectRemoved methods.

The isAppropriateObject method works with the protocols instance
variable as described in the next section.

Figure 4-4: Methods prepend and deleteOne are specialized in IndirectCollection.

Protocols

A controller restricts the objects that may be added to it by using protocols the
same way a space does. The Controller class defines a protocols instance
variable, which is a list of classes you specify. If the object being added has all
the protocol classes among its superclasses, it is added; otherwise, it is rejected.

For example, if the controller were controlling a physical simulation you might
allow in only objects that were projectiles—you would do this by adding the
Projectile class to the protocols list. If you wanted to further restrict the

prepend

objectAdded

isAppropriateObject

true

false

1

2

3

4

deleteOneprepend
(in IndirectCollection) (in IndirectCollection)

objectRemoved

deleteOne

110

4 ScriptX Components Guide

members to be projectiles that are also 2D presenters, you would add
TwoDPresenter to the protocols list. Refer to the section “Protocols” in the
“Spaces and Presenters” chapter for more details.

User Interface Controllers

The User Interface component also defines several controllers. Unlike the
controllers defined by this component, which manipulate a target object
automatically with each tick of the clock, user interface controllers respond to
user input. These controllers receive user-generated events and process them,
modifying the state of their target objects. For example, a button is associated
with an actuator controller. This controller receives and processes mouse
events, so that the button knows when it is pressed, released, or disabled. For
more information, see the “User Interface” chapter.

Contention Among Controllers

Imagine you define a Ball class that mixes Dragger and Projectile, and
create an instance of it. You put the ball in a space that is controlled by
Bounce, Gravity, Movement and DragController. You expect the ball to
bounce around in the space, and expect to be able to grab it with the mouse,
drag it around, and let go.

You will find that you cannot drag the ball with the mouse, because the
Movement controller is not designed to release control to the
DragController.

To make these classes work together, in the grabAction method defined in
Dragger, remove the ball from the Movement and Gravity controllers. Then
as you mouse-down on the ball and drag it around, the DragController will
be in control. In the dropAction method, put the ball back under the control
of the Movement and Gravity controllers.

Controller Example
The following is a complete, working script that demonstrates a few simple
controllers in use.

The Bouncing Ball

The following script demonstrates how controllers work. It demonstrates a
bouncing ball in a space, using three controllers: Gravity, Bounce,
Movement, and the required mixin class Projectile, which is required by
controllers. (Projectile is not itself a controller.)

Once the space is set up with the controllers and the ball is added, the
Gravity controller makes the ball accelerate downward. The Bounce class
calculates its new velocity at each collision with the wall of the space. The
Movement class actually moves the ball to its new position.

111

Controllers 4

Figure 4-5: The ball falls due to gravity, then bounces off the space’s edges.

The Projectile

The Ball class mixes TwoDShape and Projectile to produce a presenter
that can have a velocity. The Projectile class has instance variables for
elasticity and velocity that Ball uses. When elasticity is set to 0,
the projectile will lose all energy in a collision; when it is set to 1, the projectile
is perfectly elastic and will lose no energy. A value greater than 1 causes the
projectile to gain energy on collision. The restart method allows you to
restart the ball, once it has run out of energy and stopped bouncing.

-- Make a projectile by defining a class that
-- inherits from both TwoDShape and Projectile
class Ball (TwoDShape, Projectile)
end

-- Method for initializing an instance of Ball
method init self {class Ball} #rest args ->
(

apply nextMethod self args
self.x := 50
self.y := 50
self.elasticity := 1
self.velocity := new Point x:-8.0 y:4.0

)

-- Method to restart the ball bouncing
method restart self {class Ball} ->
(

self.x := 50
self.y := 50
self.velocity := new Point x:-8.0 y:4.0

)

Set Up the Space and Controllers

This part of the script creates a window, which is a subclass of TwoDSpace,
and then it creates the controllers Gravity, Bounce, and Movement. For each
controller, it sets wholeSpace to true so that any object added to the space
will automatically be added to the controllers.

-- Set up the window
global myWindow := new Window boundary:(new Rect x2:400 y2:250)
fill:blackBrush

myWindow.x := 40
myWindow.y := 40

112

4 ScriptX Components Guide

show myWindow

-- Create the controllers
global myGravity := new Gravity space:myWindow
myGravity.wholeSpace := true

global myBounce := new Bounce space:myWindow
myBounce.wholeSpace := true

global myMovement := new Movement space:myWindow
myMovement.wholeSpace := true

Create and Add the Ball

It’s important to add the ball to the space after all the controllers are set up, so
that all controllers can start controlling the ball at the same instant. This script
creates the ball, then adds it to the space

-- Create an instance of Ball and add it to the space
global myBall := new Ball target:(new Oval x2:20 y2:20) fill:whiteBrush
prepend myWindow myBall

At this point you should see the ball bouncing off the walls of the window.
Since the elasticity instance variable is set to 1, the ball keeps bouncing
without losing energy. Using the code below, you can reset elasticity to a
value less than 1 to see it slow down, and then after it has slowed down, start
it bouncing again:

myBall.elasticity := 0.8 -- set so that the ball will lose energy
-- wait several sedonds and then restart it
restart myBall

C H A P T E R

5
User Interface

114

5 ScriptX Components Guide

115

User Interface 5

The User Interface component includes a set of classes, mostly presenters and
controllers, that can be used to create user interface elements. These classes
form all the standard graphical interface controls, including menus, push
buttons, and scroll bars, that embody the desktop metaphor.

This component builds directly on two other components covered in earlier
chapters—Spaces and Presenters, and Controllers. User interface classes also
interact with clocks, and they receive mouse input through the event system.
Much of the underlying complexity of the ScriptX presentation model and
event system are hidden in the user interface classes, yet these classes are
flexible and open, easy to specialize.

The User Interface classes can be put to use in a ScriptX title with very little
programming. Although they define many variables and methods that are
visible to the scripter, most are not meant to be called directly from a script.
This approach allows an author to selectively override any aspect of their
behavior. An author can use classes that the User Interface component defines
as the basis for creating new kinds of user controls.

Classes and Inheritance
The class inheritance for the User Interface component is shown in the
following figure.

er Interface
ponent

er Interface
ponent:inher-
ce diagram

Menu

PushButton

TwoDPresenter

Presenter

IndirectCollection

Collection

ScrollBar

Legend
Grey box= abstract class
Black box = concrete class
No box = class belongs to another component

RootObject

Toggle

TwoDMultiPresenter

ScrollingPresenter

ActuatorController

RadioButtonController

DragController

RowColumnController

Controller

TwoDController

Actuator Dragger

116

5 ScriptX Components Guide

The following classes form the User Interface component. In this list,
indentation indicates inheritance. Most of the classes in this component inherit
from either TwoDPresenter or Controller. Exceptions are the Actuator
and Dragger classes.

Actuator – an abstract class with the basic protocol for pressing, releasing
and testing the state of push buttons.

PushButton – an actuator that presents a button that the user can press to
trigger an action.

Toggle – an actuator that implements toggles and radio buttons.

ScrollBar – a presenter that displays a bar that a user can manipulate (scroll)
to set a numeric value, and to trigger an action each time that value changes.

ScrollingPresenter – a presenter which allows a user to view a larger
object, scrolling to view all its parts.

Menu – a pull-down or pop-up presenter that presents a list of push buttons
arranged in a row or column layout, allowing the user to make a selection.

DragController – a controller that can be attached to model objects that
inherit from Dragger and TwoDPresenter, to map mouse events to changes
in the location of the object.

ActuatorController – a controller for actuators that maps mouse events to
release and press calls on actuators.

RadioButtonController – an actuator controller that controls actuators
to ensure that only one of a group is selected at a time.

RowColumnController – a layout controller that arranges objects attached to
a space in rows and columns.

Dragger – an abstract, mixin class with a set of fully implemented methods to
make objects dragable.

Note – See the Text and Fonts component for the TextEdit class, an
additional user interface class. Just as the classes in the User Interface
component are presenters that automatically receive and process mouse events,
the TextEdit class is a presenter that receives and processes keyboard events.

Conceptual Overview
Think of the objects in the User Interface component as user interface building
blocks that are constructed from simple parts — pieces that are themselves
objects. These “object parts” include presenters, spaces, and controllers. User
interface objects can share parts for a common look or feel. Each of these parts
can be modified or dynamically changed. In some cases, these parts are
supplied automatically; in other cases, they must be supplied by the script that
creates a new object.

trollers:user
face

aces:user in-
ce
senters:user
face

117

User Interface 5

In general, ScriptX does not give user interface objects any intrinsic
appearance. In most cases, their appearance is defined by the presenters they
manage. For example, when a button is pressed, the PushButton class swaps
its releasedPresenter for its pressedPresenter, and when the button is
disabled, it displays its disabledPresenter. These three presenters,
specified as instance variables for any PushButton object, give that button its
appearance.

Each object part separates out one aspect of a user interface object’s behavior.
Change the presenters, and you change the appearance. Change the controller,
and you change the behavior or layout of model objects. User Interface objects
have a modular, object-based design that can be used to make systematic
changes in entire groups or classes of objects. For example, a multimedia title
could create a new kind of menu by redesigning the layout controller that
controls target presenters in the Menu class.

User interface objects are both simple and powerful. A ScrollBar object
manages a set of stencils, a clock, a controller, and a set of interests in mouse
events. Collectively, these objects give an author access to hundreds of instance
variables and methods, providing “hooks” so that the scrolling metaphor can
be extended in an infinite number of ways. ScriptX has the power to create
virtually any appearance or behavior in a user interface. Yet an author can
create and manage scroll bars with very little programming.

How User Interface Objects Work
For every class in the User Interface component (except ScrollBar), there is
an essential relationship between presenters and controllers. Controller
classes, such as ActuatorController, manage presenters, such as
PushButton and Menu. ScrollBar, a special case, has characteristics of both
a presenter and a controller.

Every class in this component is an instance of TwoDPresenter or
Controller, with two exceptions. The two exceptions, Dragger and
Actuator, are designed to be “mixed in” with a TwoDPresenter class. In
effect, they are building blocks to add significant features to presenters, to
create new kinds of presenters. Indeed, what they really do is make it possible
to create a presenter that is controlled by a DragController or
ActuatorController object.

Presenters and User Interface Objects

ScriptX follows the paradigm, established with SmallTalk, of separating a
model object from its presentation and control. A presenter is a view of some
model object or data that is separate from that data. For more information, see
the section entitled “Model-Presenter-Controller System” on page 45 in the
Spaces and Presenters chapter.

The User Interface component contains several classes of presenters that
display other presenters. For example, a PushButton object displays one of
three presenters, stored in the instance variables pressedPresenter,

uatorControl-
lass
trollers:user
face

senters:user
face
sent-
shared

118

5 ScriptX Components Guide

releasedPresenter, and disabledPresenter. The Toggle class
specializes PushButton by adding two more presenters: the
toggledOnPresenter and the toggledOffPresenter.

A button’s presenters are layered. More than one presenter can be displayed at
a time. Think of these presenters as being superimposed, one on top of another.
The compositor draws the background first, then the middle ground (for a
toggle), and finally the foreground.

Figure 5-1 depicts this layering effect on a Toggle object. It shows how a
toggle that is currently toggled on, but disabled, is composited to a window.
First, the compositor draws the released presenter, which forms a backdrop.
Next, the toggled-on presenter is superimposed on top. Finally, the disabled
presenter, which forms the foreground, is drawn over the others.

Figure 5-1: When a Toggle object is composited, several presenters are superimposed
to form a single view.

Objects in the User Interface component know how to size themselves
correctly. Some of these objects calculate their size by calculating the union of
the boundaries of their subpresenters. For example, the boundary of a Toggle
object is the smallest rectangle that can enclose all of its five presenters.

Similarly, a Menu object, together with the layout controller that is associated
with it (a RowColumnController object), automatically lays out the actuators
that are its subpresenters and sizes the menu’s space correctly to enclose them.

Disabled
presenter

Toggle-on
presenter

Toggle-off
presenter

Released
presenter

Pressed
presenter

Toggle object Boundary of Toggle object

119

User Interface 5

A ScrollBar object does the opposite—it lays out and draws all of its stencils
according to its own dimensions. When a scroll bar is attached to a scrolling
presenter, the scrolling presenter sizes the scroll bar correctly to span the sides
of its clipping stencil. The scroll bar, in turn, sizes and lays out its own stencils.

Implications of the Presentation Hierarchy

A single presenter cannot be presented by more than one presenter. Since
presenters are in a strict presentation hierarchy, a given presenter can only be
in one position in the tree. Two presenters cannot share the same
subpresenters.

If several user interface objects share a common look, they do so by defining
separate presenters that individually target the same model objects. Another
approach is to create a subclass that overrides draw in the parent class.

Suppose that you want to create two instances of Toggle with the same
appearance in a space. In Figure 5-2, each toggle presents an ✘ graphic with its
toggled-off presenter, a ✔ graphic with its toggled-on presenter, and a black
rectangle as its released presenter. The pressed and disabled presenters are
undefined.

In the diagram, one instance of Toggle is toggled on, and the other is toggled
off. Each Toggle object defines three separate and unique presenters, all of
which are instances of TwoDShape. Different instances of TwoDShape can
target the same BitMap object, allowing the two Toggle objects to share the
same look. Note that the toggle-on and toggle-off presenters are both layered
on top of the released presenter. In Figure 5-2, the two bitmaps represent data,
while the presenters that target them represent views of that data.

Actuators Boundary of Menu object

senters:pre-
ation hierar-

sentation hi-
chy

120

5 ScriptX Components Guide

Figure 5-2: User interface objects that present a common appearance should define
separate presenters that target the same model objects.

A given presenter can only appear once in the presentation hierarchy. While
two separate presenters cannot share or reuse a presenter, a given presenter
can reuse the same presenter in certain circumstances. For a toggle, on and off
represent two mutually exclusive states. For this reason, an instance of Toggle
can define the same presenter as its toggledOnPresenter and
toggledOffPresenter. On and off are mutually exclusive states, so the
toggled-on and toggled-off presenters are never presented at the same time.
However, the same toggle cannot reuse its toggledOnPresenter as its
pressedPresenter. For more information on sharing or reusing presenters,
see the “Spaces and Presenters” chapter.

Layering of Presenters

Push buttons and toggle buttons inherit their ability to display more than one
presenter at a time from TwoDMultiPresenter, a class which incorporates
the Collection protocol through the class IndirectCollection. These
classes use z order as a layering device.

When an object is added to or removed from the subpresenters list, its z order
determines its placement within the list. The PushButton and Toggle classes
impose a predetermined z order on their presenters, which is determined at
compile time, but a developer can override this ordering at runtime. For
example, suppose that a developer creates a new class of actuators that inherit
from Toggle and share a common bitmap as a background theme. If these
actuators add a new presenter, in its own layer, that presenter must set a lower
value of z than other presenters in the subpresenter list if it is to be displayed
behind the others. For more information on ordering subpresenters, see the
discussion of z-ordering that begins on page 85 of the “Spaces and Presenters”
chapter.

Toggle-on
presenter

Toggle-off
presenter

Released
presenter

Toggle-on
presenter

Toggle-off
presenter

Released
presenter

Toggle
Class
(presenter)

TwoDShape
Class
(presenter)

Bitmap
Class
(stencil)

senters:layer-

senters:z-or-

121

User Interface 5

Controllers and User Interface Objects

Each 2D presenter class in this component is associated with one or more
controllers. In the User Interface component, controllers manage presenters.
For example, an actuator controller calls the press, release, activate, and
multiActivate methods on any actuators it controls. The one exception, the
ScrollBar class, embodies characteristics of both a 2D presenter and a
controller.

In this component, the 2D presenter classes exist in a number of a discrete
states. For example, a simple push button can be pressed, released, or disabled.
For each state, the push button itself determines which presenter is composited
to the display surface, and which actions are called. But the controller tells the
button when to change its state. It is the controller that manages the
underlying event interests, receiving input from the user.

Note that some presenters in this component have more than one controller
associated with them, each of which is responsible for a different aspect of
behavior or presentation. The Menu class requires a layout controller to arrange
the objects it controls and an actuator controller to manage the actuator
behavior of those objects.

A controller is always attached to a space—it can only control objects that are
attached to its space. In the User Interface component, this space is an instance
of TwoDSpace or GroupSpace. To be managed by a controller, a model object
must first be added to its space. And if that controller does not manage all
objects in its space (wholeSpace is false), then the model object must be
explicitly added to the list of objects controlled by that controller. For more
information, see “Specifying an Object To Be Controlled” on page 108 in the
“Controllers” chapter of this volume.

Controllers and Hit Testing

Hit testing is the process by which mouse events are matched with a given
presenter in the presentation hierarchy. ActuatorController and
DragController perform precision hit testing. These classes can detect that a
mouse click occurred not only within the bounding rectangle of a presenter
they are controlling, but also within the actual image area of its stencil.

The Stencil class defines the inside method, used to determine whether a
given point is inside its image area. If inside returns true for a point within
the bounding box of a stencil, then precision hit testing applies at that point.
For the two presenters depicted in Figure 5-3, all points within the circular
image area are inside the stencil, including points within the star for the
presenter on the right. For more information about Stencil and its
subclasses, see the discussion that begins on page 240 in the “2D Graphics”
chapter.

trollers:user
face

trollers:hit
ng
testing

de method
ncil)
ncil class:in-
method

122

5 ScriptX Components Guide

Figure 5-3: Precision hit testing means that hit testing applies only to points that are
inside the image area of a stencil.

Since the PushButton and Toggle classes have multiple presenters, they do
hit testing on a rectangular boundary, the boundary of the smallest rectangle
that encloses all of the object’s presenters. However, it is possible to create a
subclass of Actuator—a scripted class that inherits from both Actuator and
TwoDShape—that uses the precision hit testing features of the
ActuatorController class. For an example, see page 135.

Hit Testing Within Subspaces

When the value of wholeSpace is set to true for a user interface controller,
the controller maintains only a single set of event interests, which it associates
with the space as a whole. The controller maintains event interests and
performs hit testing for the space as a whole. Although this usually saves
memory, it can be a source of ambiguity when that space contains another
space, and the contained space has its own attached controllers.

The problem occurs with controller classes, such as DragController and
ActuatorController, that receive and process mouse events. Ambiguity
arises because the controller attached to the contained space stores interests in
mouse events in that space’s eventInterests instance variables. (Note that
TwoDSpace inherits from TwoDPresenter, which defines an
eventInterests instance variable for storing interests in mouse events.)

Figure 5-4: Hit testing and drag controllers

Figure 5-4 illustrates how this ambiguity can arise. In Figure 5-4, Lunar Base
and Sands Crater are TwoDSpace objects, and Sands Crater is contained in
Lunar Base. The lunar rover and the oil slick are both Dragger objects, but
they are not controlled by the same drag controller. The lunar rover is

Bounding box

Image area

oDSpace
s:hit testing
oleSpace in-
ce variable

ntroller)
ntroller
s:wholeSpace
ance variable
io buttons
ggle class
shButton
s

Lunar Base
(TwoDSpace)

Sands Crater
(TwoDSpace)

Oil slick

Lunar Rover

123

User Interface 5

controlled by a drag controller that is attached to Lunar Base, while the oil slick
has a drag controller that is attached to Sands Crater. The lunar rover is in front
of Sands Crater in the presentation hierarchy.

Now suppose that we drag the lunar rover so that it is over the oil slick. Since
the lunar rover is the frontmost presenter, we expect that when we grab the
lunar rover, it will be the presenter that responds. The event system searches
for interests in mouse events in depthwise order, beginning with the frontmost
presenter. If all interests were stored on the top presenter, Lunar Base, no
ambiguity would arise. However, since Sands Crater is a separate TwoDSpace
object, its attached controllers associate their event interests with Sands Crater.

If the user clicks on the lunar rover over an area that is also covered by the oil
slick, another Dragger object, the oil slick ends up being the object that is
grabbed. Since event interests are not stored on the lunar rover, the event
system first searches for interests on the oil slick, which has none, and then on
Sands Crater, where it matches the event with an interest. Since the event
system examined the interest on the oil slick first, it triggers the drag of the oil
slick, and not of the lunar rover.

Figure 5-5: The presentation hierarchy for presenters in Figure 5-4

For non-ambiguous hit testing, set the value of wholeSpace to false and
add each model object to its controller separately. When wholeSpace is
false, the event system itself performs the hit testing, and interests are stored
with the presenter that is to be controlled. Although this uses more memory, it
insures that events are accurately matched and delivered to matching interests.
Setting wholeSpace to true is useful for palettes of controls that have no
subspaces.

Actuators

Actuator is an abstract class that can be mixed in with other classes to create
a presenter that behaves like a button. In ScriptX titles, actuators commonly
appear in concrete form as PushButton and Toggle objects. Actuator is not
a TwoDPresenter class. An author can create a concrete subclass of
Actuator, but it must inherit from both Actuator and TwoDPresenter if it
is to be controlled by an ActuatorController object.

An actuator implements the actuator protocol. Every actuator responds to the
activate, multiActivate, press, and release methods. These
correspond to changes in its state. These methods are called automatically by
an actuator controller whenever there is a corresponding change in state. Any
2D Presenter can respond to user input, by posting event interests and

Sands Crater

oil slick

Lunar Base

lunar rover

uator class
tons

eck boxes
io buttons
ggle class
shButton
s

124

5 ScriptX Components Guide

receiving mouse events, but actuators extend the button metaphor much
further. An actuator can respond to user input to show its state—pressed,
released, or disabled.

PushButton

A push button is a user interface element that can have three different and
distinct appearances: pressed, released, and disabled. These three appearances
correspond with three states. Buttons modify their appearance by changing
their presenters, so a push button defines one presenter for each state. Each
presenter should provide visual feedback to the user, indicating the state of the
button. For example, one convention in user interface design is to invert a
graphic image when a button is pressed and lighten or “gray” that image when
the button is disabled.

Figure 5-6: A button passes between three states.

The PushButton class is flexible enough to create any appearance or behavior
that an author desires in a button. In a children’s title, the released presenter
could be an alert and standing elephant, while the pressed presenter could be
an elephant that is kneeling or bowing. The disabled presenter could display a
sleeping elephant. Some buttons invoke an action only when they are pressed;
others, when they are released.

Most of the methods defined by the PushButton class are not meant to be
called from the scripter. They are visible to the scripter so they can be
overridden. In this way, PushButton class can be the basis for almost any
kind of behavior that builds upon a button metaphor.

Within the ScriptX core classes, PushButton has a specialized concrete
subclass, the Toggle class. Toggle modifies PushButton by using two
additional states, toggled on and toggled off. These states are associated with
two presenters, the toggledOnPresenter and toggledOffPresenter, that
indicate the state of a toggle. A toggle is either on or off at all times. The
toggled-on and -off presenters are layered on top of the pressed and released
presenters. Toggle specializes the activate method to call either toggleOn
or toggleOff, methods on Toggle. Common applications of Toggle are
radio buttons and check boxes.

shButton
s

released

pressed

disabled

ggle class

125

User Interface 5

Controllers and Buttons

Controllers maintain a list of objects that they manage—objects that are
associated with their space. In the User Interface component, actuator
controllers manage groups of buttons, both as stand-alone elements of a user
interface and as parts of another larger object, such as a menu or scrolling list.
Controllers manage the state of the buttons they control, and thus control their
presentation.

Radio buttons are a convention of graphical user interface design. Press a radio
button, and it goes into its toggled-on state, automatically turning off other
buttons that belong to the same group. Check boxes are a simpler version of
radio buttons, controlled independently. Press a check box, and it toggles on,
but it has no effect on other buttons near it. The RadioButtonController
class manages a group of actuators, allowing them to behave as a unit like a
group of conventional radio buttons. An actuator controller can be used with
the Toggle class to create the behavior of a check box. See “ScriptX Widget
Kit” on page 138 for more about radio buttons and check boxes.

Detecting Multiple Clicks

ScriptX does not explicitly define a double-click or multiple-click mouse event.
A multiple click is a gesture, a series of individual clicks within a given
interval of time. A double click is just a special case of a multiple click—a
multiple click with only two clicks.

Actuator controllers interpret a series of mouse-up events over a given interval
as a multiple click. When an actuator controller detects a multiple click, it calls
multiActivate on the actuator it is controlling. A script can specify a
function that will run each time multiActivate is called using the
multiActivateAction instance variable.

In graphical user interface design, double clicking is treated as an extension of
single clicking. A common design convention is that a single click selects an
item, while a double click acts on it. In applications that handle editable text, a
single click moves the text cursor, a double click selects an entire word of text,
and a triple click (if defined) may select an entire line or paragraph.

Table 5-1 indicates the sequence of events when a user double clicks on a
mouse button. The actuator controller that is associated with the actuator
receives a series of mouse-down and mouse-up events, recorded in column
one. It responds with the method call in column three. Assuming that the
second mouse-up event is received within a given time, it calls
multiActivate after the second click. (Otherwise, it repeats the call to
activate, interpreting the user’s gesture as a pair of single clicks.)

trollers:actu-
object

dioButton-
troller class

uble-clicking
tiple-clicking
uators:dou-
clicking
uators:multi-
clicking

126

5 ScriptX Components Guide

By default, an actuator controller is only interested in mouse events that occur
on the first mouse button. A developer can modify the event interests
associated with an actuator controller to detect and respond to events on other
buttons.

Scrolling Presenters

A scrolling presenter presents a target presenter, also a 2D presenter, whose
boundary is taller or wider than its own boundary. This target may be an
instance of any TwoDPresenter class, such as TwoDShape, PageElement, or
TextEdit. In effect, the ScrollingPresenter class gives the user a
mechanism, common to all presenters, for viewing a portion of some larger
presenter. Note that a scrolling presenter cannot have a direct presenter as its
target—a direct presenter is one that draws directly to the screen rather than
through a BitmapSurface that acts as a frame buffer.

A scrolling presenter derives its appearance, in part, from the objects it
presents, but ScrollingPresenter, like its target presenter, is itself an
instance of TwoDPresenter. The TwoDPresenter class defines methods that
a scrolling presenter uses to draw itself. The following demonstrates the
distinction between the properties and behavior of a scrolling presenter and
those of its target.

-- this sets the scrolling presenter’s stroke
myScroll.stroke := blackBrush
-- this sets its target’s stroke
myScroll.targetPresenter.stroke := blackBrush

When you create a scrolling presenter, you can supply a horizontal or vertical
scroll bar to allow user control of scrolling. You can bring portions of the target
presenter into view by calling scrollTo. There is no default scroll bar; you
must specify a ScrollBar object. If present, scroll bars are inset within the
boundary of a scrolling presenter, and they are sized automatically. The region
within the scroll bars is described by a stencil that is stored in the
clippingPresenter instance variable defined by ScrollingPresenter
and is used to clip the target presenter.

Table 5-1: A double click gesture is a series of mouse events

Event Event Interest Method Called Scripted Response

MouseDownEvent pressInterest
(ActuatorController)

press
(Actuator)

pressAction
(Actuator)

MouseUpEvent activateInterest
(ActuatorController)

activate
(Actuator)

activateAction
 (Actuator)

MouseDownEvent pressInterest
(ActuatorController)

press
(Actuator)

pressAction
(Actuator)

MouseUpEvent activateInterest
(ActuatorController)

multiActivate
(Actuator)

multiActivateAction
(Actuator)

ollingPresent-
ass

127

User Interface 5

Figure 5-7: A scrolling presenter presents a selected portion of a target object,
another 2D presenter, that is potentially much larger than itself.

TwoDSpace is a concrete class that inherits from both TwoDMultiPresenter
and Space, combining the behavior of presenters and spaces. A scrolling
presenter often has a TwoDSpace object as its target, a space to which other
presenters can be appended. It is also possible to attach a controller to this
space. This strategy is used by subclasses of ScrollingPresenter that
present and control multiple items, such as Menu.

Among the document classes, the class TwoDSpace can be instantiated as a
PageLayer. A scrolling presenter can target a page layer, creating a scrollable
view of a page on a virtual document. To create a page layer that is scrollable,
create a subclass of ScrollingPresenter that also inherits from
DocTemplate, and make the PageLayer object be the target of the new
scripted class.

Window, also a subclass of TwoDSpace, cannot be the target of a scrolling
presenter, since a Window object must always be at the top of its presentation
hierarchy. A script can create a window and append a scrolling presenter of the
same width and height to it.

Subclasses of ScrollingPresenter, including the Menu class, present a list
of choices by presenting actuators in the scrolling presenter’s space. This
approach to selecting items from a menu or list is different from what is found
in either the Macintosh and Windows environments. In ScriptX, the menu item
is an actuator, and an actuator is itself an object. It may invoke an action,
defined by a script, when it is pressed or released. Think of the Menu class as a
mechanism for presenting a list of actuators. These actuators have the same
individual characteristics and behavior as any actuator in ScriptX.

Menus

Menu is a subclass of ScrollingPresenter that creates its own target
presenter, a TwoDSpace. An author adds actuators to this space, usually
PushButton or Toggle objects. Since the menu acts as a proxy for its own

A fundamental feature of object-oriented
programming is the ability of developers to
define new behavior starting with existing,
tested templates. Encapsulation makes
behavior modular, providing well-defined
protocols for interacting with objects and
accessing their data. Inheritance makes it
possible to define new classes of objects,
based on their differences, from existing
classes. Polymorphism lets a space define
a single protocol for its model, and allows
developers to create diverse objects that
respond to that protocol. By creating titles
modularly, using media objects, a
developer can quickly build a “digital
backlot” of objects that can be reused
whereever they may be needed. The
inherent modularity will make code assets
as valuable, and as marketable, as media
assets. As developers create one title after
another, the number and value of these
code assets will continue to grow.

accessing their data. Inheritance makes it
possible to define new classes of objects,
based on their differences, from existing
classes. Polymorphism lets a space define
a single protocol for its model, and allows
developers to create diverse objects that
respond to that protocol. By creating titles
modularly, using media objects, a
developer can quickly build a “digital
backlot” of objects that can be reused
whereever they may be needed. The
inherent modularity will make code assets
as valuable, and as marketable, as media
assets. As developers create one title after

the target of a
scrolling presenter

a scrolling
presenter

cu-
ts:scrolling
enters

ge lay-
scrolling pre-
ers

ndow
s:scrolling

nu class

128

5 ScriptX Components Guide

target, an author can add objects directly to the menu. In the following
example, MenuOption is a scripted subclass of PushButton that presents a
TextPresenter object. Crane, Egret, and Heron are MenuOption objects.

myBirdMenu := new Menu placement:@menuDown
-- Crane and Egret are MenuOption objects, instances of PushButton
addMany myBirdMenu #(Crane, Egret)

Every menu has two controllers that operate on objects in its space. One of
these is an an ActuatorController object that controls the state of the
objects in the menu; it controls the actuators in the menu and allows the menu
to pop down or out as appropriate. The other is a RowColumnController
object that controls the layout or position of objects in the menu. By default,
this RowColumnController object organizes its targets into a single column.

Every menu must have an invoker in order to be displayed. The invoker is
usually an actuator, such as an instance of PushButton. A given menu can
have more than one invoker. The invoker instance variable, defined by Menu,
stores only a reference to the most recent invoker. A menu does not maintain
any collection that stores a list of possible invokers. To make an actuator be an
invoker of a menu, set the menu instance variable, defined by the Actuator
class.

In the following example, pickOne is a MenuOption object, an instance of
PushButton. The script makes pickOne the invoker of the menu that was
defined above, myBirdMenu, and then adds an additional actuator to that
menu.

pickOne.menu := myBirdMenu -- pickOne is a MenuOption button object
addOne pickOne.menu Heron -- Heron is another MenuOption button

An ActuatorController object activates a menu by calling the instance
method popup on the Menu object it is invoking. When it calls popup, it
automatically supplies the invoker, setting the invoker instance variable on
the menu that was called. If a menu is invoked from another menu, the menu
actuator controller supplies the correct supermenu as an argument to popup.
Otherwise, the value of superMenu is undefined.

A menu can use its invoker or superMenu instance variables to traverse
backward, to find the original actuator or the top-level menu that caused it to
be invoked. The instance variables invoker and superMenu each refer to the
most recent invoker or supermenu. ScriptX places no restrictions on how a
menu is used, so it is quite possible for a given menu to be reused in different
places, to have different invokers and different supermenus under different
circumstances.

A menu can use its subMenu instance variable to traverse forward, to find the
bottom of the hierarchy of currently popped-up menus. The instance variable
subMenu refers to the currently popped-up submenu of the current menu; it is
not a collection. If the current menu has no submenus, or if none of its
submenus is currently popped up, then the value of subMenu is undefined.

wColumnCon-
er class

oker instance
able (Menu)
nu class:in-

er instance
able

pup method
nu)
nu class:pop-

method

bMenu in-
ce variable
nu)
nu class:su-

Menu instance
ableperMenu in-
ce variable
nu)
nu class:su-

Menu instance
able

129

User Interface 5

ScriptX places no restrictions on how a menu is used, so it is quite possible for
a given menu to be reused in different places, to have different invokers and
different supermenus and submenus under different circumstances.

In the following diagram, City is the supermenu of Neighborhood and
State is the supermenu of City. As the user selects first a state, then a city,
and finally a neighborhood, the ActuatorController class calls popup on
the submenu each time a new menu is invoked. A menu controller manages all
of the actuators in its associated space so that they present themselves to the
user correctly. For example, California in the State menu displays its
pressedPresenter until the user either makes a selection in the final
submenu, or clicks somewhere outside of the presenters that the menu actuator
controller is controlling.

Figure 5-8: A group of super/sub menus

In the figure above, after the user selects Noe Valley in the final menu, the
following expressions are equivalent:

Neighborhood.superMenu.superMenu
City.superMenu
State

The following expressions are also equivalent:

Neighborhood.superMenu.invoker
City.invoker
California

ScriptX supports both the “click” and “drag” styles of selecting from a menu, a
design feature it shares with Windows, NextStep, Motif, and many other
graphical-user-interface standards. A developer can modify the style of menu
selection by creating a specialized version of ActuatorController and
setting the actuatorController instance variable on a menu.

A menu pops up in one of three places: below its invoker, to the right of its
invoker, or at the mouse pointer. A script sets the value of the placement
instance variable, defined by the Menu class. To place the menu anywhere else,
override the place instance method in a subclass. Note that placement is a
property of a Menu object itself, and not of the actuator that acts as its invoker.

Arizona

California

Washington

Oregon

San Diego

San Francisco

San Mateo

San Jose

San Rafael

Haight-Ashbury

Nob Hill

Russian Hill

Noe Valley

Telegraph Hill

State City Neighborhood

cement in-
ce variable
nu)
nu
s:placement
ance variable

130

5 ScriptX Components Guide

A menu’s layout controller is concerned with the location of individual
actuators within its space. The RowColumnController class is a
specialization of the TwoDController class for use by user interface objects.
RowColumnController objects control the placement of objects within a
space. RowColumnController objects may coordinate the layout of many
objects, or they may constrain the placement of individual objects. If a
RowColumnController controls its entire space, it will attempt to modify the
space to grow or shrink to fit all contained items.

Scroll Bars

A ScrollBar object is not associated with a controller. Instead, it acts as its
own controller. Although not explicitly attached to a controller, it shares a
similar design with other objects in the User Interface component. For a code
example that creates an instance of ScrollBar, see page 133.

Presentation and control are separated in the ScrollBar class, just as with
other classes in this component. A scroll bar derives its appearance from its fill
and stroke and from the stencils it presents. It indicates that it is disabled by
not drawing its thumb stencil and by drawing its disable brush on top of its
track, increment, and decrement areas. Its increment and decrement stencils
also have counterparts that can be used when these areas are pressed.

A ScrollBar object manages a set of event interests. For example, a scroll bar
is interested in mouse-down events that occur over its thumb, increment, and
decrement stencils and its track area when these areas are in their released
state, and it is interested in mouse-move and mouse-up events when these
areas are in their pressed state. A scroll bar adds and removes these interests
dynamically as the user interacts with the scroll bar, so that the underlying
event system is completely hidden from the user.

You can customize a ScrollBar object by modifying its fill and stroke and its
stencils. Your script can draw on a wide range of behavior in a scroll bar with
very little programming. For example, by omitting the increment and
decrement stencils, and by setting the value of pageAmount to 0, a
ScrollBar object can serve as a slider control such as a volume or contrast
control.

Dragging the thumb stencil or clicking in the increment, decrement, or track
areas changes the value of a scroll bar. This value can be updated continuously
as the thumb is moved, or it can update only when the mouse button is
released over the thumb, increment, decrement, or track areas. Each time this
value changes, the ScrollBar object automatically calls a function specified
by the author, stored in its valueAction instance variable. It calls this
function with three arguments: authorData, scrollBar, and value. The
first of these is supplied by you, stored in the scroll bar’s authorData
instance variable. The second argument is the scroll bar itself. The final
argument is the new value of the scroll bar.

Like other user interface classes, ScrollBar defines many instance methods
that are not meant to be called directly. They are visible to you so they can be
overridden in a scripted subclass.

ollBar class

131

User Interface 5

Draggers

Dragger is a mixin class, like several classes defined by other components in
ScriptX. Other mixin classes in the core classes include SequenceCursor,
DocTemplate, and Actuator, which is also described in this chapter.

A mixin class is never instantiated directly. It is always combined with a base
class. By creating a scripted subclass that inherits from both, a developer can
add features to the base class. In most cases, there are restrictions on what base
classes a mixin class can be joined with. To be controlled by an instance of
DragController, a Dragger object must be a combination of Dragger and
a TwoDPresenter class. A dragger is often a simple presenter such as a
TwoDShape, but the Dragger class can also be combined with more complex
presenters, including any of the presenters in the User Interface component.

To make a DragController object control a given Dragger object, add the
dragger to the controller’s space. If the value of wholeSpace is true, the drag
controller controls all Dragger objects in its space. If this value is false, then
Dragger objects must be explicitly added to the drag controller in order to be
controlled by it. A given drag controller may control multiple instances of
Dragger. This controller manages the location of draggers within a space by
modifying their x and y instance variables as the user moves the mouse.

Note that a dragger can only be controlled if it is in a space with a drag
controller attached. It does not have to be constrained to that space. In its grab
method and its grabAction script, a dragger can determine the area it can be
dragged over by changing its space. For example, a dragger could remove
itself from its current space and add itself to the space that contains the current
space, giving itself a greater range of movement.

The Dragger class divides a dragging operation into four discrete phases, for
which it defines four corresponding methods: grab, beforeDrag,
afterDrag, and drop. The first and last of these methods, grab and drop are
called only once during each drag operation, at the beginning and at the end.
The other two, beforeDrag and afterDrag are called continuously as an
object is dragged. An author can specify a function that will be called each time
a Dragger object enters one of these phases.

How Controllers Manage Presenters

User interface objects receive and process events automatically, ultimately
calling a function that is defined by the user. Most developers never have to go
into the internal mechanisms by which controllers manage presenters. The
following section is for advanced users who intend to specialize one of the core
classes in the User Interface component.

In the User Interface component, controller classes maintain event interests and
receive events, while presenter classes respond to their respective controllers.
The DragController and Dragger classes are typical. Suppose that the user
clicks on a Dragger object. This click, a mouse-down event, sets off a chain of
method calls. This initial click on a Dragger object is called grabbing, and it
will place the object under the DragController object’s control, allowing the
model object to be dragged around until the mouse button is released.

agger class
agController
s

ents:control-

132

5 ScriptX Components Guide

1. When a script creates a Dragger object and places it in the control of a drag
controller in that object’s space, the DragController class registers an
interest in mouse-down events, which it stores in its grabInterest
instance variable. As the user clicks the mouse and moves it to various
locations on the screen, this controller adds and removes its interest in
various classes of mouse events, as appropriate. It associates this
grabInterest with an event receiver function, its processGrab method.

2. The user clicks on the Dragger object. Since the drag controller registered
an interest in mouse-down events, the processGrab method automatically
receives this event.

3. The processGrab method on DragController triggers the grab method
on Dragger. By specializing grab, an author could modify the behavior of
an entire subclass of Dragger objects.

4. The grab method on Dragger calls a scripted function, specified by the
author, stored in the grabAction instance variable, using the value stored
in authorData as its argument. This function also receives an additional
argument, a point representing the offset of the mouse pointer that selected
it. This function sets the behavior of a particular instance of Dragger when
the object is grabbed. The function stored in grabAction runs in the same
thread as grab, and returns control to grab after it runs.

When grab finishes executing, the grab operation is complete. The
DragController regains control. It adds an interest in mouse-up events to
the dragger’s eventInterests collection, so that it can be informed when
the user releases the mouse button. It is ready to receive events that are
matched to its dropInterest.

As the mouse moves, the DragController object polls the mouse device,
querying it for its location each time the space’s clock ticks. With each tick of
the clock, the drag controller checks both the mouse’s coordinates and the
event dispatch queue to determine whether the mouse has moved. If the
mouse has moved, it calls beforeDrag and afterDrag on the dragger it is
controlling.

The following table shows how instance methods and variables defined by
DragController coincide with instance methods and variables defined by
Dragger. A DragController object automatically processes mouse events
and polls the current mouse device for movement of the mouse. Each time
tickle is called, it calls beforeDrag and then afterDrag, mapping any
events or mouse movements to the corresponding method defined by
Dragger, and ultimately, to a scripted function that is defined by the
developer.

Table 5-2: How a drag controller and a dragger work together.

DragController DragController Dragger Dragger

(instance variable) (instance method) (instance method) (instance variable)

grabInterest processGrab grab grabAction

tickle beforeDrag beforeDragAction

133

User Interface 5

In this table, column one contains an event interest defined by
DragController. Column two contains either an event receiver or the
generic tickle. Both processGrab and processDrop are event receivers,
functions that receive an event that matches the interest specified in column
one. The tickle method is not an event receiver. For more information on
tickle, see page 106 of Chapter 4, “Controllers.” Column three contains an
associated method, defined by Dragger, which the method in column two
calls. Column four contains the name of a function that is called by the
corresponding method in column three. All of these methods and variables can
be defined or specialized at the scripter level to modify the behavior of an
instance of Dragger, or an entire subclass of Dragger objects.

Each class in the User Interface component is associated with a corresponding
set of interests, event receivers, and scripted user actions. A table for the
ActuatorController class, equivalent to the one above, can be found in the
ScriptX Class Reference.

User Interface Examples
User Interface objects can serve as building blocks for creating every possible
variation on user interface controls—new styles of buttons, menus, scroll bars,
and other user interface devices. Objects in the User Interface component can
be used, with virtually no coding, by initializing the object and assigning
values to the presenters or stencils that determine its appearance. At the same
time, these objects can be the basis for creating a library of objects, with
different styles and behaviors that can be specified or selected by an author.

Creating an Instance of ScrollBar

This example creates an instance of the ScrollBar class without using any
specialization. All five of the scroll bar stencils are defined (thumbStencil,
incrementStencil, decrementStencil, pressIncrementStencil, and
pressDecrementStencil), as well as the fill and stroke for the enabled
scroll bar appearance and the brush for the disabled scroll bar appearance.

The increment and decrement areas are squares when they are not being
pressed and are circles when they are being pressed. The thumb of the scroll
bar displays the value of the position of the thumb. The text stencil that
displays this value has a bounding box that puts the stencil above the scroll bar
by default; this example shows the transformation applied to the text stencil to
make it visible in the track of the scroll bar.

tickle afterDrag afterDragAction

dropInterest processDrop drop dropAction

Table 5-2: How a drag controller and a dragger work together.

DragController DragController Dragger Dragger

(instance variable) (instance method) (instance method) (instance variable)

134

5 ScriptX Components Guide

The stencils are black by default. To change this appearance, you can use
bitmaps for these stencils or you can specialize the draw method for
ScrollBar.

This example is available in DOCEXMP/acguide/userintf/scrllbar.sx.
After you run this file through the Listener, enter

sb.enabled := false

into the Listener to display the disabled appearance of the scroll bar. With the
scroll bar enabled again, observe the behavior of the scroll bar when you click
or hold down the mouse button on the increment and decrement areas and on
the track area of the scroll bar, and when you use the mouse to drag the thumb.

global sq := new Rect x2:20 y2:20
global ov := new Oval x2:20 y2:20
global myThumb := new TextStencil \

font:(new platformFont name:"Arial" macintoshName:"Helvetica") \
string:"0"

global myMatrix := new TwoDMatrix ty:15
transform myThumb.bbox myMatrix @mutate
global grayBrush := new Brush color:(new RGBColor red:128 \

green:128 blue:128)

object sb (ScrollBar) orientation:@horizontal
incrementStencil:sq, decrementStencil:sq, thumbStencil:myThumb
settings
width:200
stroke:blackBrush
fill:grayBrush
disableBrush:grayBrush
pressIncrementStencil:ov
pressDecrementStencil:ov
stepAmount:2
pageAmount:10
valueAction:(a b c -> b.thumbStencil.string := (c as String))

end

object w (Window) name:"Scroll Bar Example"
settings
width:200, height:40

end

append w sb
show w

This example uses the settings section of the object definition expression to
set values for several instance variables on instantiation. The settings
notation is especially useful with user interface objects, since they define a
large number of instance variables that often determine much about the look
and feel of the controls they comprise.

The settings notation is useful for assigning a complete object as the value
of an instance variable, but it cannot be used to set an element such as a
member of a collection. However, a script could create a standard collection of

135

User Interface 5

attributes and assign the entire collection on instantiation to all appropriate
objects. This approach is useful for creating a group of objects that share a
common look and feel.

Many titles that use user interface objects use bitmaps, presented by
TwoDShape objects, in connection with user interface controls. Note that
bitmaps cannot be resized. A scroll bar can use bitmaps for its thumb,
increment, and decrement stencils.

Creating a New Actuator

The second code example creates a new class of Actuator. ScriptX defines two
concrete classes of actuator among the core classes: PushButton and Toggle.
Although an actuator controller is capable of precise hit testing, PushButton
and Toggle both test for hits in their entire bounding rectangle.

SimpleButton is a class that can present any instance of Stencil as a
button, including bitmaps, ovals, and paths. It is capable of precise hit testing
on these objects, even though they are not rectangular in shape.
SimpleButton is only one of many possible designs for such a button.

class SimpleButton (TwoDShape, Actuator)
instance variables

authorData
activateAction
pressAction
releaseAction
currentState -- either @up or @down

instance methods
method init self #rest args -> (

apply nextMethod self args
self.currentState := @up

)
end

Every actuator implements the activate, press, and release methods.
These methods are not actually called from the scripter. The SimpleButton
class follows the Actuator protocol so that it can be attached to an actuator
controller. An actuator controller receives mouse events and calls the
associated method on the actuators it manages.

method activate self {class SimpleButton} -> (
nextmethod self
if self.enabled == false then (

return self
)
else (

self.currentState := @up
self.fill := whiteBrush
handleActivate self
return self

)
)
method press self {class SimpleButton} -> (

nextmethod self
if self.enabled == false then (

return self
)

136

5 ScriptX Components Guide

else (
self.currentState := @down
self.fill := blackBrush
handlePress self
return self

)
)
method release self {class SimpleButton} -> (

nextmethod self
if self.enabled == false then (

return self
)
else (

self.currentState := @up
self.fill := whiteBrush
handleRelease self
return self

)
)

For brevity, SimpleButton does not specialize multiActivate, the method
in the Actuator protocol that handles multiple mouse clicks. Since it does not
define a method for multiActivate, it inherits a default implementation
from Actuator, which does nothing.

SimpleButton factors its response to activate, press, and release into
two parts: a “handler” method and a scriptable “action” or response. For
example, activate calls handleActivate, which responds by invoking the
function stored in activateAction. This design reflects both PushButton
and Toggle, the two concrete actuator classes in the core classes. Although
there is no reason that SimpleButton must work like PushButton, there are
advantages to consistency in design. For example, a method that is written to
override the handleActivate method defined by PushButton could easily
be adapted to specialize SimpleButton. This design also allows for easy
specialization at both the class and instance level.

method handleActivate self {class SimpleButton} -> (
if self.activateAction <> undefined do (

self.authorData := "activate"
(self.activateAction) (self.authorData) self

)
return self

)
method handlePress self {class SimpleButton} -> (

if self.pressAction <> undefined do (
self.authorData := "press"
(self.pressAction) (self.authorData) self

)
return self

)
method handleRelease self {class SimpleButton} -> (

if self.releaseAction <> undefined do (
self.authorData := "release"
(self.releaseAction) (self.authorData) self

)
return self

)

137

User Interface 5

To test SimpleButton, we need a window, an actuator controller to control
objects in the window, and an instance of SimpleButton. To demonstrate that
this script is responding to activate, press, and release, define a simple
function called beep. Set activateAction, pressAction, and
releaseAction to call beep. Although there is no reason that it must be set
up this way, the function signature of an “action” for the SimpleButton class
is the same as that for a PushButton or Toggle object. Thus, a function or
method that could be the activateAction of a PushButton object could
also be the activateAction of a SimpleButton object.

object myWindow (Window)
boundary:(new Rect x2:200 y2:200)
settings x:300, y:50

end
show myWindow

-- create a controller to control actuators in the window
object myActuatorController (ActuatorController)

enabled:true, space:myWindow, wholeSpace:true
end
-- create an instance of SimpleButton
object myButton (SimpleButton)

boundary:(New Oval x2:100 y2:100), stroke:blackBrush
settings x:50,y:50

end
append myWindow myButton -- append it to the window

-- set up a function for
-- activateAction, pressAction, and releaseAction
function beep x y -> format debug "beep %*\n" x @normal
myButton.activateAction := beep
myButton.pressAction := beep
myButton.releaseAction := beep

A more advanced version of SimpleButton could specialize additional
methods. For example, the enabledSetter method, which sets the value of
the enabled instance variable defined by Actuator, could be specialized to
change the appearance of a button when it is disabled. The setter methods for
each of the instance variables could be specialized to perform type checking. A
multiActivate method could be implemented along the same lines as
activate, press, and release.

Creating a Hierarchical Menu

The directory codesamp/hiarcmen/ contains an example of a hierarchical
menu. The file textmenu.sx demonstrates how to create a hierarchical text
menu. The file bmpmenu.sx demonstrates how to create a hierarchical menu
that uses bitmaps as its items. The file reqfiles/button.sx is a mixin class
that gives any TwoDShape the functionality of a pushbutton. The media
directory contains bitmaps used in bmpmenu.sx. Run the textmenu.sxt or
bmpmenu.sxt files or open the loadme files in the Listener.

A simpler example of a hierarchical menu is in
docs/docexmp/compguid/userintf/menu_eg.sx. Open this file in the
Listener.

138

5 ScriptX Components Guide

ScriptX Widget Kit
The ScriptX Widget Kit provides a set of simple widgets to save you time
creating your user interface. In general, Widget Kit objects use fewer presenters
and therefore perform better than other User Interface objects, but they are also
less customizable; they are less complex, but also less flexible. For example,
buttons in the Widget Kit derive their appearance from stencils and not from
subpresenters.

Classes and Inheritance

The class inheritance for the ScriptX Widget Kit is shown in the following
figure.

The following classes form the Widget Kit in the User Interface component. In
this list, indentation indicates inheritance. Most of the classes in this
component inherit from TwoDPresenter.

dget Kit:inher-
ce diagram

RadioButton

CheckBox

StencilButton

PopUpButton

TextButton

ListBox

TextEdit

SmallTextEdit

SimpleScrollBar

TextPresenter ScrollBar

ListSelection

TwoDShape

ScrollingTextEdit

Actuator

TwoDPresenter

Presenter

ColorScheme FontContext Frame

IndirectCollection

Collection

GenericButton

Label

ScrollBox

ScrollListBox

MultiListBox

ScrollingPresenter

Menu

Legend
Grey box= abstract class
Black box = concrete class
No box = Not a Widgets Kit class

PopUpMenu

RootObject

Space

RadioGroup

TwoDSpace

Dragger

Toggle

PushButton

TwoDMultiPresenter

139

User Interface 5

ColorScheme – defines various grayed out and stippled appearances. You
should never need to instantiate ColorScheme yourself.

FontContext – defines two default font contexts. Make a new instance of this
class if you want your widgets to use a different font or type style.

Frame – defines the three-dimensional look of the button edges. You should
never need to instantiate ColorScheme or Frame yourself.

Label – implements simple labels. These objects automatically size themselves
to fit the label text.

GenericButton – an abstract class that defines common button
characteristics.

RadioButton – displays a filled circle when selected. Radio buttons can be
either selected or not selected (they are on/off buttons, or toggle buttons);
they do not automatically execute functions when they are selected.

CheckBox – displays a check mark when selected. Check boxes can be
either selected or not selected (they are on/off buttons, or toggle buttons);
they do not automatically execute functions when they are selected.

StencilButton – displays a bitmap or other stencil on a button. A stencil
button can execute a function when it is selected.

TextButton – displays text on a button. A text button can execute a
function when it is selected.

PopUpButton – can display a PopUpMenu object when it is selected.

PopUpMenu – a Menu object that is the target of a PopUpButton object.

RadioGroup – displays a set of RadioButton objects or CheckBox objects.
Only one RadioButton object or CheckBox object in a group can be selected
at a time.

ListSelection – is the default value of the selection instance variable of
the ScrollBox class. You should never need to instantiate ListSelection
yourself.

ScrollBox – is an abstract class that provides basic functionality for scrolled
list box classes.

MultiListBox – displays a box with a multiple-column scrolled list. Its
list is a collection, and its target is a TwoDMultiPresenter that
consists of one ListBox for each column (for each element in the list
collection). The collection of lists scroll together.

ScrollListBox – displays a box with a single scrolled list.

ListBox – is a very simple class that lists non-selectable items in a
non-scrollable box. It is the target of the more interesting and useful
MultiListBox and ScrollListBox objects.

SimpleScrollBar – is used in ScrollingTextEdit, MultiListBox, and
ScrollListBox. You could instantiate it by itself to use as a slider for
contrast or volume control, for example.

140

5 ScriptX Components Guide

SmallTextEdit – displays a small editable text field such as on a form.

ScrollingTextEdit – displays a scrolled box of editable text.

Widget Kit Example

The example shown in this section demonstrates how to instantiate the widget
kit classes. For detailed information on the instance variables and instance
methods for these classes, see the ScriptX Class Reference.

This example and the title it builds are available online at utils/widgets/.
In that directory you will find all the Widget Kit source code, plus the
following files associated with the example described in this section:

media – This subdirectory contains text files and other media that are used by
this example. Many of the Widget Kit classes require files in this directory, so
this directory needs to be in the same area with any other script you write that
uses Widget Kit classes.

wdgtest.sx – This is the ScriptX source file that is shown in this section.
Open this file in the Listener to produce a title file. By default, the title file will
be built in the same directory with the ScriptX application (theStartDir).

wdgtest.sxt – This is the title that is built when you compile wdgtest.sx
in the Listener. Open this file in the Kaleida Media Player to skip right to the
final result.

This example (and any script you create using the ScriptX Widget Kit) also
requires the widget library file, widgets.sxl. You will find this file in the
same directory with the ScriptX application and the Kaleida Media Player
(theStartDir). Include it in your script by opening the library as shown at
the top of this example.

The WidgetInterface module referred to at the top of this example is
required by any script that uses the ScriptX Widget Kit. This module is built
into the widget library file, widgets.sxl.

When you complile this example, you get a message that a particular
HFSStream object cannot be made persistent. You can ignore this message.
The object referred to is the text that is imported into the
ScrollingTextEdit object near the end of this example; this text stream is
not supposed to be saved as a persistent object, but rather is media that is read
into the title dynamically. You can change this text (and any of the other media
that are imported into this example) after you have created a title file. The new
media will be used the next time you run the title; you do not have to rebuild
the title to use modified versions of these imported media.

-- file wdgtest.sx
open LibraryContainer path:"widgets.sxl"
Module test

uses ScriptX, WidgetInterface
end
in module test
global w := new Window
w.fill := new Brush pattern:(importDIB "media/bkgnd.bmp")
show w
global ac := new ActuatorController space:w wholeSpace:true

141

User Interface 5

-- StencilButton
global bitmapButton := new StencilButton \

stencil:(importDIB "media/kicon.bmp")
bitmapButton.position := new Point x:35 y:14
global sbCaption := new Label text:"StencilButton"
sbCaption.position := new Point x:10 y:60
append w sbCaption
append w bitmapButton

-- TextButton
global textB := new TextButton text:"Kaleida!"
textB.position := new Point x:120 y:30
global tbCaption := new Label text:"TextButton"
tbCaption.position := new Point x:120 y:60
append w tbCaption
append w textB

-- ScrollListBox
global wdgclass_list := #("ColorScheme", "FontContext", "Frame", \

"Label", "GenericButton", "RadioButton", "CheckBox", \
"StencilButton", "TextButton", "PopUpButton", "RadioGroup", \
"ListBox", "SmallTextEdit", "ListSelection", \
"SimpleScrollBar", "ScrollingTextEdit", "ScrollBox", \
"MultiListBox", "ScrollListBox", "PopUpMenu")

global slb := new ScrollListBox list:wdgclass_list \
boundary:(new Rect x2:135 y2:210) \
hasScrollBar:true

slb.x := 10
slb.y := 150
global slbCaption := new Label text:"ScrollListBox"
slbCaption.position := new Point x:10 y:120
append w slbCaption
append w slb

-- CheckBox
global cb := new CheckBox text:"Check Me" frame:(new Frame)
cb.x := 170; cb.y := 130
global cbCaption := new Label text:"CheckBox"
cbCaption.position := new Point x:170 y:100
append w cbCaption
append w cb

-- Radio Button
global rb := new RadioButton text:"On/Off" frame:(new Frame)
rb.x := 170; rb.y := 210
global rbCaption := new Label text:"RadioButton"
rbCaption.position := new Point x:170 y:180
append w rbCaption
append w rb

-- Radio Group
global rg := new RadioGroup \

itemList:#(@one:"One", @two:"Two", @three:"Three")
rg.position := new Point x:170 y:290
global rgCaption := new Label text:"RadioGroup"
rgCaption.position := new Point x:170 y:260
append w rgCaption
append w rg

-- SmallTextEdit
global smallTE := new SmallTextEdit text:("120" as Text) \

boundary:(new Rect x2:35 y2:20)
smallTE.x := 230
smallTE.y := 30
global steCaption := new Label text:"SmallTextEdit"
steCaption.position := new Point x:210 y:60
append w steCaption
append w smallTE

-- PopUpMenu

142

5 ScriptX Components Guide

global puMenu := new PopUpMenu \
list:#(@one:"one",@two:"two",@fewWords:"A Few Words") \
width:104 actuatorController:undefined layoutController:undefined

-- PopUpButton
global popUpB := new PopUpButton menu:puMenu value:@two
popUpB.x := 330
popUpB.y := 50
global pumCaption := new Label text:"PopUpMenu"
pumCaption.position := new Point x:330 y:20
append w pumCaption
append w popUpB

-- MultiListBox
global mlb := new MultiListBox boundary:(new Rect x2:120 y2:120) \

list:#(#(1,@one), #(2,@two), #(3,@three), #(4,@four), \
#(5,@five),#(6,@six),#(7,@seven))

mlb.x := 460
mlb.y := 50
global mlbCaption := new Label text:"MultiListBox"
mlbCaption.position := new Point x:460 y:20
append w mlbCaption
append w mlb

-- ScrollingTextEdit
global TEstream := getStream theScriptDir "media/scrollte.txt" \

@readable
global TEtext := importMedia theImportExportEngine TEstream @Text \

@ASCIItext @TextEdit
global scrollTE := new ScrollingTextEdit \

boundary:(new Rect x2:280 y2:160) \
textWidth:260 textHeight:600 text:TEtext autoRecalc:false

scrollTE.x := 300
scrollTE.y := 200
global scteCaption := new Label text:"ScrollingTextEdit"
scteCaption.position := new Point x:300 y:170
append w scteCaption
append w scrollTE
global txtPres := scrollTE.targetPresenter

global tc := new TitleContainer dir:theScriptDir path:"wdgtest.sxt" \
name:"Widget Kit Test"

w.title := tc
append tc (getModule @test)
tc.startupAction := (tc -> for i in tc do load i; show w)
close tc

C H A P T E R

6
Clocks

144

6 ScriptX Components Guide

145

Clocks 6

The Clocks component provides facilities for representing time, keeping track
of time, and scheduling and synchronizing timed sequences of actions. The
Clocks component consists of a number of classes, the principal among these
being Clock and Callback.

In ScriptX, the modeling and presentation features of a title are organized and
managed by spaces. Each space has a clock to control time-based activities of
the objects it contains. While this chapter discusses how to organize the timing
hierarchy of a model, the more general topic of spaces and modeling are
covered in the chapter “Spaces and Presenters,” earlier in this guide.
Synchronization of time-based media is provided through the Clock subclass
Player and its subclasses—see the chapters “Players” and “Media Players”
for details. To enable an entire title to be started, paused, restarted, and
stopped in synchronization, every clock belongs to a specific title container. See
the chapter “Title Management” for details on title containers and clocks.

Classes and Inheritance

The class inheritance for the Clocks component is shown in the following figure.

The following classes form the Clocks component. In this list, indentation
indicates inheritance.

Clock – Defines an object that keeps time and provides a mechanism for
controlling sequences of actions. The ScriptX run-time environment provides a
global instance, theEventTimeStampClock, that can be used to timestamp
events.

CalendarClock – Class defining an object that keeps the current date and
time of day. There is one global instance of CalendarClock,
theCalendarClock.

Clocks component

Clocks component:class hierarchy

Clock

RootObject

CalendarClock

Player

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

RateCallBack

ScaleCallback

TimeCallback

Callback

TimeJumpCallback

RootObject

PeriodicCallback

Clock class

CalendarClock class

146

6 ScriptX Components Guide

Callback – A class defining a mechanism to invoke specific functions at
certain times or events in a clock’s life.

RateCallback – A class whose instances invoke a function when a clock’s
rate changes.

ScaleCallback – A class whose instances invoke a function when a clock’s
scale changes.

TimeCallback – A class whose instances invoke a function when a clock
reaches a certain time.

PeriodicCallback – A class whose instances repeatedly invoke a
function at a specific interval.

TimeJumpCallback – A class whose instances invoke a function when a
clock’s time jumps (for example, when it is reset).

Conceptual Overview

Whether modeling complex systems or presenting media, multimedia titles
need to accommodate and synchronize time-based behavior. For this reason,
the timing facility provided by the Clocks component is a fundamental feature
of the ScriptX programming framework. The key features of this timing facility
are defined by the classes Clock and Callback. Clocks provide the basic
timing mechanism for a ScriptX title. Callbacks provide ways for clocks to
invoke actions which can control the behavior of other objects over time.

Spaces, described in the “Spaces and Presenters” chapter of this guide, are the
basic organizing structure of a ScriptX title. Spaces provide an environment in
which other objects can interact for modeling or presentation. To control the
timing of these activities, the ScriptX Space class defines a clock instance
variable. Objects inhabiting a space can refer to this clock to control their
behavior over time.

In creating a simulation or presentation, you can create any number of clocks
and link them together in a timing hierarchy, a structure of clocks used to
coordinate related actions. Clocks within a hierarchy can be synchronized, yet
can locally control the time-based behavior of objects that rely on them. Thus,
within a space, you can create clocks to control local behavior of objects, then
connect those clocks to the space’s clock to synchronize behavior between
objects in the space.

Clocks control object behavior through callbacks. You create callbacks by
requesting them from a clock. When you request a callback, you specify the
callback script, a function or method to be called at the appropriate time, and
the first argument to the callback script—usually the object to perform the
action. Within a callback, instance variables specify other details, such as
conditions in which the action is performed and the order in which concurrent
callbacks are triggered.

Callback class

RateCallback class

caleCallback class

imeCallback class

eriodicCallback class

imeJumpCallback class

Clock classCallback class

pace class:and clocks

ming hierarchy

cripts:for callbacks

147

Clocks 6

How Clocks Work

Clocks keep time through their instance variables rate, scale, time, and
ticks. This discussion starts with a look at the meaning of scale and rate.

Scale and Rate

To provide flexible control over timed behavior of other objects, each Clock
object can have its own sense of time. This sense is determined by the instance
variables rate and scale. To understand the meaning and interaction of these
variables, it helps to visualize a standard clock or stopwatch with a circular
face and a single sweep hand.

Figure 6-1: Clock scale and rate

As shown in Figure 6-1, the scale can be thought of as the number of tick
marks on the face of the clock. The rate can be thought of as the speed of the
hand, or how quickly the hand ticks off the marks on the face.

Here’s a simple example: A clock with a scale of 60 can be thought of as having
60 tick marks on its face. If its rate is set to 0, the clock is stopped. If its rate is
set to 1, the hand sweeps the face once per second, and the clock ticks 60 times
per second. If its rate is set to 5, the hand sweeps the face five times per second,
and the clock ticks 300 times per second.

When a clock is created, its rate is zero, which means it is stopped. To start it,
set its rate to a non-zero value.

Setting the rate of a clock to a positive value makes the clock run forward.
Setting it to a negative value causes the clock to run backwards. The following
code starts a clock ticking at a rate of 1:

-- create a new clock
clock1 := new clock
-- start the clock ticking
clock1.rate := 1

A media-centric way to think about scale is as frames or samples per second.
This meaning is used in the MediaStreamPlayer class and its subclasses.
Similarly, the scale of the clock associated with a TwoDSpace instance is set to
24, equivalent to 24 frames per second. This clock is used to drive the
compositor, which controls visual presentation of a title.

clocks:keeping time with
time and clocks

Clock class:rate instance variable
rate instance variable:(Clock)
Clock class:scale instance variable
scale instance variable (Clock)

Rate (speed of hand)
Scale (ticks)

lock instance variable: (TwoDSpace)
woDSpace class:clock instance variab

148

6 ScriptX Components Guide

 Reading a Clock’s Time

Each clock keeps its time in two instance variables. The ticks instance
variable represents the number of elapsed ticks since the clock was first
started—or from the last time it was reset to zero. Clocks also keep a time
instance variable, which contains a Time object representing local hours,
minutes, seconds, and ticks since the clock was first started. You can reset a
clock at any time by setting either its ticks or time to zero.

The relationship between ticks, scale, and time (in local seconds) can be
expressed with the formula:

local seconds = ticks / scale

Elapsed time is determined by the rate: one sweep of the clock corresponds to
one second in local time. Note however that when a clock is in a timing
hierarchy, a clock’s effective rate may be different than its actual rate, which
affects the rate at which the clock sweeps off local seconds. The relationship
between effective rate, local time, and actual time are discussed in the next
section, “Timing Hierarchies and Synchronization.”

In addition to rate, the time kept by a clock in a timing hierarchy may be
affected by another factor—offset. The offset instance variable is used to
determine the relationship between the time kept by clocks in a hierarchy. The
next section also discusses offset and its effect on a clock’s local sense of time.

Timing Hierarchies and Synchronization

To synchronize complex sequences of interrelated actions, clocks can be
organized in hierarchical structures, referred to here as timing hierarchies.

Master and Slave Clocks

A clock directly above another in a hierarchy is referred to as its master. The
clock below is referred to as the slave. In the simplest hierarchy, with one
master and one slave clock, the rate of the slave is directly controlled by the
master. If the master’s rate is set to 1, the slave runs at its own rate. If the
master’s rate is set to 0, the slave stops. If the master’s rate is set to -1, the slave
runs backwards. In more complex cases, the slave runs at an effective rate,
determined by its relationships to the rates of all clocks above it in a hierarchy.
Effective rate is described in the next section.

The master clock at the top of a timing hierarchy is referred to as the top clock.
The top clock is itself synchronized to an underlying hardware clock known as
the root clock. Since it’s hardware dependent, the root clock isn’t visible or
controllable from ScriptX.

In Figure 6-2, the top clock is the master of clocks a and b, while clock a is the
master of clocks c and d. A clock that is directly controlled by another is
referred to as its slave. In the figure, clocks c and d are slaves of a, which is in
turn a slave of the top clock. Each master can have several slaves, while each
slave has only a single master.

variable
ock)
variable
ock)

clocks

ave clocks

149

Clocks 6

Figure 6-2: A timing hierarchy

Clocks keep track of their position in a timing hierarchy through their
masterClock instance variable. This instance variable can be set when a clock
is first created using the masterClock keyword:

myClock := new Clock masterClock:mySpace.clock

In this example, the new clock is connected as the slave of the clock belonging
to a space.

The clock belonging to a space is created automatically when you create the
space. A space’s clock is always created as a top clock, independent of others.
This makes sense for a space that serves as the container for a whole
presentation or model. However, if you append one space to another, you need
to explicitly set the masterClock of the appended space’s clock. For more on
spaces, see the chapter “Spaces and Presenters”. By default, the scale of a
space’s clock is set to 24.

Effective Rate

As mentioned in the previous section, a clock’s position in a timing hierarchy
affects the global meaning of its local rate and time. When one clock is slaved
to another, the rate of the master clock acts as a multiplier for the slave,
determining the slave clock’s effective rate and actual time by the following
formulas:

effective rate = master’s effective rate * slave’s rate

actual seconds = ticks / (effective rate * scale)

A top clock’s effective rate is its actual rate, the value found in its rate
instance variable. A clock further down the timing hierarchy has an effective
rate that is the multiple of all the rates of clocks above it and its own rate.

Consider the case of a timing hierarchy that uses three separate clocks to keep
track of hours, minutes, and seconds. You could imagine organizing this
hierarchy in a couple of different ways. For example, you could create a
top-down hierarchy as shown in Figure 6-3, with the top clock being the hour
clock, the minute clock as its direct slave, and the second clock as the minute
clock’s slave.

top clock

a b

c d

ock class:masterClock in-
nce variable
asterClock instance vari-
e:(Clock)

ffective rate

lock class:rate instance variable
ate instance variable:(Clock)
ffective rate
locks:effective rate

150

6 ScriptX Components Guide

Figure 6-3: A top-down timing hierarchy

 The following code would be used to set up this hierarchy:

hourClock := new Clock
hourClock.rate := 1.0 / 3600.0
minuteClock := new Clock masterClock:hourClock
minuteClock.rate := 60
secondClock := new Clock masterClock:minuteClock
secondClock.rate := 60

Remember that rate is equivalent to the velocity at which the metaphorical
clock sweeps its face. Thus, the hourClock has its rate set to 1/3600, meaning
it will sweep 1/3600 of its face per second—making a complete sweep once an
hour. The effective rate of the minute clock is 1/3600 * 60 or 1/60 sweeps per
second. The effective rate of the second clock is 1/60 * 60, or 1 sweep per
second.

The same timing effect could be achieved using the bottom-up hierarchy
shown in Figure 6-4, with the secondClock as the top clock and the
minuteClock and hourClock as slaves.

Figure 6-4: A bottom-up timing hierarchy

 The following code would be used to set up this hierarchy:

secondClock := new Clock
secondClock.rate := 1
minuteClock := new Clock masterClock:secondClock
minuteClock.rate := 1.0 / 60.0
hourClock := new Clock masterClock:minuteClock
hourClock.rate := 1.0 / 60.0

hourClock rate = 1/3600

minuteClock rate = 60

secondClock rate = 60

ming hierarchy:setup

secondClock rate = 1

hourClock rate = 1/60

minuteClock rate = 1/60

ming hierarchy:setup

151

Clocks 6

Offset

Another relationship between a slave clock and its master is expressed by its
instance variable offset. This value represents the difference between the
ticks of the slave and its master, expressed in ticks of the master. Since master
and slave clocks can run at different rates, offset specifies this difference at a
specific time: the slave’s time 0. When the slave’s offset is any value other than
0, then the slave’s ticks value will reach 0 when the value of the master’s
ticks reaches the offset value. For example, if you want a slave clock’s
ticks value to be 0 when the value of ticks for the master clock reaches
1000, you set the slave’s offset value to 1000. Setting a slave’s offset
instance variable will affect the values in its ticks and time instance
variables. If the offset is positive, these other values will be negative; for
example, setting a clock’s offset to 10 sets its ticks to -10. If the offset is
negative, the other values will be positive; that is, setting the offset to -10
sets its ticks to 10.

When a slave in a hierarchy has its rate set to 0, the slave won’t run even if its
master is running. If the slave’s rate is subsequently set to some nonzero value,
the clock and its slaves will synchronize to the master using offset to
determine the relationship of their start time to their master.

In general, the relationship between the time of a master clock and its slave can
be expressed with the following formula:

(slave.time/slave.scale) = (master.time-slave.offset) /master.scale

Setting the offset is only meaningful for a slave clock. If you attempt to set the
offset of a top clock, ScriptX reports an exception.

Synchronizing Clocks in a Hierarchy

A clock with a rate of 0 is stopped. In a timing hierarchy, when a master’s rate
is set to 0, the effective rate of all of its slaves also becomes 0—and they stop
too. This effect allows a single master clock to synchronize the timing of a
whole hierarchy. Using a master clock in this way, the timing hierarchy shown
in the previous examples could be implemented yet another way: with three
slaves and a single control clock to synchronize their starting and stopping.
Figure 6-5 illustrates this third way of implementing the timing hierarchy.

Figure 6-5: A master clock with three slaves

The following code would be used to set up this hierarchy:

 variable
lock)

zing

hourClock
rate = 1/3600

timeController

secondClock
rate = 1

minuteClock
rate = 1/60

rate = 1

152

6 ScriptX Components Guide

timeController := new Clock
secondClock := new Clock masterClock:timeController
secondClock.rate := 1
minuteClock := new Clock masterClock:timeController
minuteClock.rate := 1.0 / 60.0
hourClock := new Clock masterClock:timeController
hourClock.rate := 1.0 / 3600.0
timeController.rate := 1

When it’s created, the rate instance variable of timeController is set to 0—
the default value for a clock created without a master. Thus, when
secondClock, minuteClock, and hourClock are connected to
timeController, their effective rates become 0. Once all the slaves are
connected, timeController is started by setting its rate instance variable to
1. This changes the effective rates of the other clocks to the actual value in their
rate instance variables.

Usually, a script sets other instance variables of a clock—its slaves, master,
scale, actions, and so on—before setting its rate. In a timing hierarchy, you set
the rates of the slave clocks to prepare them to keep time, then set the master
clock’s rate to a value other than 0 to start all clocks in the hierarchy.

Timing Hierarchies and Clock Behavior

Certain Clock methods and instance variables related to timing are
implemented to take the timing hierarchy into account. When you call these
methods or set these instance variables for a particular clock in the hierarchy,
that clock recursively performs the same action on its slaves (which in turn
propagate the action further down the hierarchy). With objects of the Clock
class, this recursion applies to the instance variables rate, time, offset, and
ticks. For example, when you explicitly set time for a master clock in a
hierarchy, the action recurses down the hierarchy, setting the time instance
variables of all slaves to reflect the new time. Each slave uses the value of its
rate and offset instance variables to calculate the new value for its time
instance variable.

Generally, a timing hierarchy can be made up of instances of any subclass of
Clock, including Player, MediaStreamPlayer, TransitionPlayer, and
and so on. Any methods defined by the Clock class can be invoked with any
of its subclasses without untoward side effects. However, within a single
timing hierarchy all slaves must be of the same class as, or a descendant class
of, their masters. Clock and its subclasses implement the instance methods
clockAdded, clockRemoved, and isAppropriateClock to check for the
appropriate relationship when clocks are moved around in a hierarchy. These
methods ensure that method calls and instance variable settings that recurse
down the timing hierarchy will be handled properly by all objects.

When a clock’s master clock is changed, it attempts to preserve its effective
rate, adjusting its rate instance variable if necessary. This assures that actual
ticks per second produced by the clock will remain constant. Thus, if a clock’s
previous effective rate was 4, and the clock is connected to a new master whose

lock class:rate instance variable
ate instance variable:(Clock)
ffective rate
locks:effective rate
ming hierarchy:and rates

lock class:hierarchies and behavior
ming hierarchy:and clock behavior

lock class:hierarchies and behavior
ming hierarchy:and clock behavior

153

Clocks 6

effective rate is 1, the clock’s rate instance variable is set to 4. If the new
master’s effective rate is 0, the rate for the new slave is set to 1, regardless of
previous effective rate.

Note – When you load a timing hierarchy from a storage container, the top
clock’s rate is always set to 0, even if the clock was running when stored.

Modeling with Timing Hierarchies

Timing hierarchies are useful for modeling various complex behaviors, and for
coordinating the interaction between those behaviors.

One example, implemented through the Player class and its subclasses, is the
synchronization of virtual players that control the playback of time-based
media from various sources. Media-specific players provide timed presentation
of audio, video, and animation, using their scale to represent the appropriate
media sampling rate. A master player can control a set of these players as a
single unit, synchronizing their starting, playback, and stopping. For more on
the Media Players component, see the chapter “Media Players.”

Timing hierarchies can also be used to implement complex mechanical models.
For example, the model of an internal combustion engine might use one clock
to drive the crankshaft and pistons, a second to drive camshafts and
distributor, others to drive the fuel pump, oil pump, and other accessories, and
a master clock to control all the others. Another example of a timing model
might be a refinery or other process control system, where distinct parts of the
process require different flow rates, sampling rates, rates of heat exchange, and
so on.

Timing hierarchies can also be useful for altering the sense of time within a
model. For example, a solar system model might use separate clocks for the
orbits and rotations of planets and moons, while a master clock contracts the
overall sense of time to make motion of the whole visible to the user. Or, an
atomic model might use a timing hierarchy to expand the overall sense of time,
making the motion of individual electrons around the nucleus available for
presentation and interaction in real time.

Clocks Created Automatically by ScriptX

As mentioned previously, every Space object has a clock instance variable,
and a clock is created for each space when it is created. This clock can be used
as the top clock for all clocks and timing hierarchies in the space, including
player hierarchies managing time-based presentations, hierarchies managing
time-based models, and so on.

A global instance of Clock, theEventTimeStampClock, is created at system
start-up. Events use this clock as the source of timestamps that specify the
chronological order in which events are generated. A global instance of
CalendarClock, theCalendarClock, is created at system start-up. This

lock class:storing hierarchies
ming hierarchy:and storage con-
ners

with

d by

created

obal con-

onstant
nstance

154

6 ScriptX Components Guide

clock’s time instance variable contains a Date object that always reflects the
current date and time. You cannot create other instances of CalendarClock;
instead, use this global instance for current calendar information.

The following code returns the current time and date:

theCalendarClock.date

The returned value will look something like:

Mon Oct 30 18:08:48 1995 as Date

Clocks and TitleContainers

To store a clock in a title container, you add it or a master clock to a
TitleContainer. You need only add the top clock to the title; a slave clock is
automatically associated with the title of its master. See the chapter "Title
Management" for more on title containers.

The Clock instance variable title specifies the TitleContainer instance to
which a clock belongs. (Note that setting this instance variable does not cause
the clock to be stored in the title container.)

Note – Creating clock hierarchies that span title containers isn’t recommended,
since it can lead to inconsistent timing. For example, pausing a title will result
in pausing only part of such a hierarchy.

When you call the TitleContainer methods pause and resume, the same
methods are automatically called on the active clocks belonging to that title.
The pause and resume methods “freeze” a title’s clocks, stopping them
without affecting the setting of their rate instance variables. This enables you
to control the overall operation of a title, without altering the timing
relationships you’ve established in its timing hierarchies.

Using Callbacks To Schedule Actions

To control behavior of objects over time, you attach callbacks to clocks.
Callbacks are objects that call scripted functions at specific events or times in
the life of a clock.

Callbacks can be scheduled to run a script at a specific time, to run a script at
specific intervals, and to run specific scripts whenever the rate, scale, or time of
a clock changes.

Types of Callbacks

A number of specialized callbacks are defined by subclasses of Callback.
Each of these can be attached to a clock using an appropriate method, such as
addPeriodicCallback and addTimeCallback.

lock class:and title containers
tleContainer class:and clocks

allback class

s of
nstances

155

Clocks 6

The callback classes PeriodicCallback and TimeCallback are associated
with time changes in the clock as it runs. The other three classes —
RateCallback, ScaleCallback and TimeJumpCallback — are associated
with directly setting a Clock object’s instance variables.

The callbacks that are most commonly used in titles are PeriodicCallback
and TimeCallback. The other callbacks are used in very specific situations
that are not so common.

Attaching Callbacks to a Clock

To add a callback to a clock, you call one of the following methods on the clock
depending on the kind of callback desired.

• addPeriodicCallback — adds a PeriodicCallback that fires
repeatedly, at periodic intervals. The syntax is:

addPeriodicCallback clock script target argArray time

• addTimeCallback — adds a TimeCallback that fires once at a specified
time. The syntax is:

addTimeCallback clock script target argArray time onceOnly

• addRateCallback — adds a RateCallback that fires when the value of
the rate instance variable of a clock changes. The syntax is:

addRateCallback clock script target argArray onceOnly

• addScaleCallback — adds a ScaleCallback that fires when the value
of the scale instance variable of a clock changes. The syntax is:

addScaleCallback clock script target argArray onceOnly

• addTimeJumpCallback — adds a TimeJumpCallback that fires when
the time instance variable of a clock is specifically set. The syntax is:

addTimeJumpCallback clock script target argArray onceOnly

The Arguments for the Callback-Creation Methods

The clock argument is the clock to which to attach the callback.

Table 6-1: Callback subclasses

Callback subclass Method to create
the callback

When the Script runs

PeriodicCallback addPeriodicCallback At specified intervals

TimeCallback addTimeCallback At specified time

RateCallback addRateCallback When the clock’s rate is set

ScaleCallback addScaleCallback When the clock’s scale is set

TimeJumpCallback addTimeJumpCallback When the clock’s time is set

156

6 ScriptX Components Guide

The script is a function, anonymous function, or method that defines the action
to be invoked by the callback.

The target is the first argument to be passed to the script.

The argArray is an array of the remaining arguments. If no additional
arguments are required, you can pass argArray as an empty array.

For a periodic callback, time is the time interval at which the callback fires. For
a time callback, time is the clock’s time at which the callback fires.

The onceOnly argument is either true or false, indicating whether or not the
callback should be cancelled after it has executed the first time. You would
usually pass this as false, so that if you restart the clock, the callback fires
each time the clock reaches the appropriate time.

Callback Scripts

The script associated with a callback can be a predefined function, an
anonymous function, or a method. The function or method must take at least
one argument, and can have as many additional arguments as you like.

There are a couple of details to be aware of in defining callback scripts. First,
calls that cause the calling thread to block shouldn’t be made within a callback
script. All callback scripts with the same priority run in the same thread, so any
script that blocks will prevent other callbacks of the same priority from
executing their scripts. See the section on “Blocking” in the “Threads” chapter
for a list of functions that can cause thread blocking. The PipeClass methods
readNowOrFail and writeNowOrFail can be used to pipe data in code that
shouldn’t block.

Second, if a callback script generates an exception when it is invoked, it will be
called again the next time it is scheduled. This means that care must be taken
within callback scripts to trap exceptions in a way that ensures the script isn’t
simply scheduled to fail repeatedly.

Examples of Creating Callbacks

The following examples show how to add simple callbacks to clock1:

clock1 := new clock

Using a Predefined Function for the Callback Script

This example adds a periodic callback to the clock clock1. The callback’s
script is a predefined function.

function printTime clock1 -> (
format debug "Tick Tock. The clock’s time is %*. \n" \

clock1.time @unadorned
)

-- every 3 ticks, print the clock’s time
addPeriodicCallback clock1 printTime clock1 #() 3

script instance vari-

acks
back scripts for

157

Clocks 6

Using an Anonymous Function for the Callback Script

This example adds a time callback to the clock clock1. The callback’s script is
an anonymous function.

-- at time 15, print the real time
addTimeCallback clock1 \

(a -> format debug "The global time is %* \n" \
theCalendarClock.date @unadorned) \
clock1 #() 15 false

Using a Method for the Callback Script

This example creates a class called Slogan, and and creates an instance of it.
The example adds a periodic callback to to clock1. The callback’s script is a
method on the class Slogan.

class Slogan (RootObject)
instance variables

mySlogans: #()
myIndex:1

end

method pickASlogan self {Class Slogan} clock1 ->
(

local slogans := self.mySlogans
local myIndex := self.myIndex
print slogans[myIndex]
self.myIndex :=

if myIndex >= slogans.size then 1 else myIndex + 1
)

-- create a Slogan object
slogan1 := new Slogan
append slogan1.mySlogans "Better late than never"
append slogan1.mySlogans "A stitch in time saves nine"
append slogan1.mySlogans "A watched pot never boils"
append slogan1.mySlogans "The grass is always greener on the other
side"

-- print a slogan every 6 ticks
addPeriodicCallback clock1 pickASlogan slogan1 #(c1ock1) 6

Start the Clock Ticking
-- start the clock ticking
c1ock1.rate := 1

-- after the clock has been ticking for a while,
-- set it back to the beginning, ready to start over
clock1.time := 0

158

6 ScriptX Components Guide

Callback Conditions

The Callback class has a condition instance variable, that helps to
determine the conditions under which a callback should be invoked.

Three kinds of callbacks are triggered by changes to the value of an instance
variable on the callback’s associated clock. These classes are RateCallback,
ScaleCallback, and TimeJumpedCallback.

The RateCallback class has a rate instance variable; the ScaleCallback
class has a scale variable, and the TimeJumpedCallback class has a time
instance variable. These instance variables are used to compare the value
belonging to the callback with the value of the corresponding instance variable
of the clock itself.

The condition instance variable specifies how to compare the clock’s instance
variable with the callback’s. Valid condition values for these callbacks are
@lessThan, @greaterThan, @equal, @notEqual, @lessThanOrEqual,
@greaterThanOrEqual, and @change (the default).

The following code demonstrates how to set a condition for a ScaleCallback
instance:

function scaleScript target -> (print "Scale less than 20")
myScaleCall := addScaleCallback myClock scaleScript

undefined #() false
myScaleCall.scale := 20
myScaleCall.condition := @lessThan

In this example, whenever the scale instance variable of myClock is set to a
value less than 20, the myScaleCall callback is invoked, causing the
scaleScript function to run.

The PeriodicCallback and TimeCallback classes also use the condition
instance variable to help determine whether to invoke a callback or not at a
particular time. For these two classes, the valid settings for condition are
@forward, @backward, and @either (the default). The following code
demonstrates how to set a condition on a TimeCallback:

function timeScript target ->
(print "Time of 200 running backward")

myTimeCall := addTimeCallback myClock timeAction \
undefined #() 200 false

myTimeCall.condition := @backward

In this case, the timeScript function will be called only when the clock
reaches a time of 200 while the clock is running backward.

Priority and Order

The Callback class has two instance variables—priority and order—that
determine the precedence of otherwise concurrent callbacks.

allback class:condition instance variable
ndition instance variable (Callback)

ock class:callbacks for

allback class: priority instance variable
riority instance variable:(Callback)
allback class: order instance variable
rder instance variable (Callback)

159

Clocks 6

The priority instance variable expresses the thread priority of a callback.
Valid settings for priority are @high and @normal. These settings correspond
to values defined by the Threads component. For more information on thread
priorities, see the chapter “Threads” in this guide.

In practice, you seldom set a callback’s priority to any value other than
@normal. Setting the priority to @high may slow overall performance by
interfering with the ScriptX runtime environment.

 Another instance variable, order, can be used to set the order in which
callbacks of a particular priority will have their scripts invoked. Lower order
callbacks have their scripts invoked first, and higher order callbacks have their
scripts invoked later. By default, the order of a callback is 0. You can set the
order of callbacks within a title to ensure that scripts that need to be invoked
first will be.

Note – In the current release of ScriptX, callback order works correctly only for
clocks with integer rates. Fractional rates can lead to inconsistences in the
order in which callback actions are actually performed.

Synchronization of Periodic Callbacks

 The PeriodicCallback class defines an instance variable, skipIfLate, that
determines how to handle situations when a callback fails to occur within its
scheduled time frame. This instance variable can help avoid a situation where
late callbacks, which take precedence over others, choke overall system
performance.

When skipIfLate is false, a periodic callback will have its script called
regardless of whether it is on time or late. Thus, one callback may get out of
sync with its scheduled time and the next one may catch up. On the other
hand, one callback may fall behind and the next fall even further back. There is
no guarantee that such a sequence will ever resynchronize. Instead, it may
aggravate the situation further by preventing other callbacks from executing
their scripts.

When skipIfLate is true, a periodic callback will have its script called only
within its scheduled time period. That is, a periodic callback’s script may begin
execution at any time starting at its scheduled time up until the next time it is
scheduled to be called. However, if the script hasn’t begun execution by the
next time it is scheduled to start, it will be skipped. This avoids the problem of
late callbacks choking system performance.

When creating the function for a periodic callback whose skipIfLate value
will be true, you should provide a mechanism for skipping. For example,
rather than simply assuming the function will be called once for each specified
interval, you should check the clock’s time within the function, then perform
an action appropriate to that time.

allback class: order instance variable
rder instance variable (Callback)

eriodicCallback class: skipIfLate in-
nce variable
ipIfLate instance variable (Periodic-

allback)

160

6 ScriptX Components Guide

Cancelling a Callback

Once you’ve created a callback, you can let it run as scheduled, or you can
cancel it explicitly using the Callback method cancel. This method allows
the action function to return if it’s in process, then removes the callback from
its clock and returns the cancelled callback. The following code illustrates how
to use the cancel method.

myCB := addTimeCallback myClock printInfo myClock #(myObject) 25 false
-- run the clock for a while
-- now it is time to cancel the callback
cancel myCB

The following code shows how to use the label instance variable of a callback
to identify which callback to cancel.

function doStuffFn myClock myObject ->
(

local myCB := addPeriodicCallback myClock deepenColor \
myClock #(myObject) 25

myCB.label := "cb1"
-- do more things in the function if desired

)

-- write some code that creates the objects clock1 and pic1

-- create the callback
doStuffFn clock1 pic1

-- later on, cancel the callback
-- use chooseOne to find the callback with the apprioriate label
cancel (chooseOne clock1.callbacks (a b -> a.label = "cb1") 1)

Uncancelling a Cancelled Callback

After a PeriodicCallback or TimeCallback has been cancelled, you can
reschedule it by putting the desired clock in the callback’s clock instance
variable, and putting the invocation time (or time period) in the callback’s
time instance variable.

When you cancel a callback, it retains the information about which clock it is
attached to, so you do not need to reset the clock instance variable unless you
want to attach it to a different clock. To reschedule a time callback or periodic
callback however, you must set its time instance variable, since it is the act of
setting the time instance variable that schedules the callback.

For example, if cb1 is a cancelled periodic callback, you can wake it up and
reschedule it so that it fires every 5 ticks as follows:

cb1.time := 5

allback class: cancel
ethod
ancel method (Call-
ck)

161

Clocks 6

Callbacks and Clock Behavior

Setting a clock’s instance variables or calling its methods may affect the
callbacks belonging to a clock. For example, if you attach a time callback to a
clock, then set the clock’s time explicitly to jump past the time of the callback,
the action function won’t be invoked. This means you might want to associate
a TimeCallback with a TimeJumpCallback to assure that required actions
take place even if the clock’s time is set explicitly.

Through the timing hierararchy, other clocks may affect a clock’s callbacks. For
example, you might attach a rate change callback to a clock, then change the
rate of a clock above it in the hierarchy. In this case, the rate callback script for
the lower clock will be invoked—if the change matches the callback conditions.
Similarly, if you set a time jump callback on the lower clock, then change the
time of a clock above it, the lower clock’s time jump action will be invoked—
again, if the condition matches the change.

Callback Example

While clocks can be used for both control of models and the timed playback of
media, much of the functionality needed for media playback is provided
through other components, such as Media Players and Animation. See the
discussions of those components for additional examples of time-based
behavior.

The following example shows how to create a simulation of a kettle heating up
until it boils. This example illustrates the use of callbacks to time a sequence in
ScriptX, where the timing requirements might vary each time the sequence is
enacted. It also demonstrates how you can use one callback to schedule
another, and how to clean up callbacks to prevent callback-proliferation in an
animation that creates callbacks on the fly.

This example uses callbacks as follows:

• It creates a TimeCallback to schedule when to start heating up the kettle,
and how many cups of water to heat.

• When the time arrives to start heating the kettle, another TimeCallback
schedules when the kettle will actually boil. The time until the boiling
depends on how many cups of water the kettle is heating.

• While the kettle is heating up, a PeriodicCallback causes the kettle to
hum continuously.

For the sake of simplicity, in this script, the humming is simulated by
printing out "hum" repeatedly. However, in a more intersting simulation, the
kettle might play a humming sound over and over, or the simulation might
present a visual animation of the kettle rocking back and forth gently on the
stovetop as it heats up.

• When the time arrives for the kettle to actually boil, the periodic callback
that causes the humming is cancelled, and the whistle method is called to
make the kettle whistle.

allback class: and
ock behavior
lock class:callbacks
d behavior

allback class:exam-
e
lock class:Callback
ample
ettle example

162

6 ScriptX Components Guide

As with the humming, the whistling action is simulated by printing text, in
this case "Whistle." In a more interesting animation, the whistling might be
simulated by playing a whistling sound, or maybe the humming sound
increases in pitch when the kettle boils. Also, the kettle image might rock
back and forth on the stove top more violently, and give off puffs of steam.

The whistle method might also schedule another callback, to make the
animation continue.

Define the Class Kettle

The class Kettle has an instance variable that specifies how long a kettle takes
to heat up one cup of water.

class Kettle (RootObject)
instance variables

heatingTimePerCup:3
end

scheduleKettle method

The scheduleKettle method creates the time callback that schedules when
to put the kettle on to start heating. This method simply provides a cover to the
addTimeCallback function.

-- clock1 is the clock
-- cups is the number of cups of water to heat
-- t is the number of ticks from now to start the kettle
-- onceOnly is true or false depending on whether or not you
-- want the callback to cancel itself after its first invocation

method scheduleKettle self {class Kettle} \
clock1 cups t label onceOnly ->

(addTimeCallback clock1 putOnKettle self #(cups, clock1) \
(clock1.time + (t as time)) onceOnly

)

putOnKettle method

The putOnKettle method prints the time when the kettle is put on to heat.
This method calculates how long the kettle will take to boil, based on how
many cups of water are being heated, and how long each cup takes. It
schedules a callback to make the kettle boil, and calls the heatUpKettle
method to start the kettle heating.

method putOnKettle self {class Kettle} cups clock1 ->
(

local t := clock1.time
format debug "Putting on the kettle at time %*\n" t @normal
local timePerCup := self.heatingTimePerCup
local timeToBoil := (timePerCup * cups) as time

-- create a callback to schedule when the kettle boils
-- the callback will cancel itself after it is invoked

163

Clocks 6

addTimeCallBack clock1 startBoiling self \
#(clock1) (clock1.time + timeToBoil) true

-- start heating the kettle
heatUpKettle self clock1

)

heatUpKettle method

While the kettle is heating up, it hums. The humming is simulated by printing
out "hum" repeatedly.

-- use the prin method as the action for the
-- callback that does the humming
method heatUpKettle self {class Kettle} clock1 ->
(

print "Starting to heat up the kettle "

local cb := addPeriodicCallback clock1 \
prin "hum \n" #(@unadorned, debug) 1

-- give the callback a label so we can find it later
cb.label := "hum"

)

startBoiling method

When the kettle starts boiling, it stops humming and starts whistling. To stop
the humming, cancel the periodic callback that does the humming. To start
whistling, call the whistle method.

-- when the kettle boils, it whistles
method startBoiling self {class Kettle} clock1 ->
(

local t := clock1.time
format debug "Starting to boil at time %*\n" t @normal

-- cancel the callback that does the humming
local humCB := chooseOne clock1.callbacks \

(a b -> a.label = "hum") 1
cancel humCB

-- the kettle whistles
whistle self

)

For simplicity, simulate whistling by printing a whistle message.

method whistle self {class Kettle} ->
(print "Whistle, whistle, whistle!")

164

6 ScriptX Components Guide

Run the Kettle Simulation

To run the kettle simulation, create a clock and a kettle. Call the
scheduleKettle method to schedule when to start the kettle heating up.
When you call this method, specify how many cups of water to heat.

global clock1 := new Clock
clock1.rate := 1

-- put the kettle on in five seconds to heat 3 cups of water
-- since OnceOnly (the last argument) is true,
-- the callback will cancel itself after it is invoked

global kettle1 := new Kettle
scheduleKettle kettle1 clock1 3 5 "cb1" true

-- schedule the kettle to be put on again in 20 seconds
-- to heat 6 cups of water
-- again, the callback will cancel itself when it is finished
scheduleKettle kettle1 clock1 6 20 "cb1" true

C H A P T E R

7
Players

166

7 ScriptX Components Guide

167

Players 7

The Players component contains the abstract Player class, which provides
facilities for classes that present data in a sequential manner. ScriptX provides
three kinds of players:

• Media player classes provide facilities for presenting media streams, such as
sound and video streams.

• The ActionListPlayer class provides facilities for playing an animation
by performing a sequence of actions in a list.

• The TransitionPlayer class provides facilities for presenting an image in
stages so that the image appears gradually.

This chapter discusses concepts and behavior common to all kinds of players.
The following chapters discuss concepts and behavior particular to each kind
of player:

• Chapter 8, “Media Players” for information on the media players classes,
including media stream players and movie players.

• Chapter 9, “Animation” for information on action list players.

• Chapter 10, “Transitions” for information on transition players.

Classes and Inheritance
The class inheritance hierarchy for the Players component is shown in the
following figure.

The following classes form the Players component. In this list, indentation
indicates inheritance.

Player – base class that defines the basic methods common to players.

MediaStreamPlayer – specialized subclass of Player that presents media
held in an associated media stream. MediaStreamPlayer has subclasses
specialized to play particular types of media.

Players com-
onent

RootObject
TwoDPresenter

Player

MediaStreamPlayer
Marker

Clock

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another compon

MoviePlayer

TransitionPlayer

ActionListPlayer

GroupPresenter

yers compo-
:inheritance
ram

ayer class

ediaStream-
yer class

168

7 ScriptX Components Guide

MoviePlayer – specialized subclass of Player that organizes media
stream players to play together to present a movie.

TransitionPlayer – subclass of Player that performs visual transitions
on a presenter. TransitionPlayer has subclasses specialized to present
different kinds of transitions.

ActionListPlayer – subclass of Player that plays an animation by
performing a series of actions.

Marker – class whose instances identify important time ranges for a player.

Conceptual Overview
The Player class defines the methods needed to control all kinds of players.
These methods allow you to stop, start and pause the data, and perform other
actions needed to present time-based data.

These methods include:

• play

Starts a player presenting its data. The rate instance variable is set to 1.

• playUntil

Causes the player to present its data until a given time. The rate instance
variable is set to 1 while the player is playing, then changes to 0 when the
specified time is reached and the player stops.

• pause

Stops the player presenting its data by setting its rate instance variable to
0, and sets its status instance variable to @paused.

• resume

Resumes the player playing at the same rate it was playing before it was
paused. If you call the pause method on a player multiple times, you must
call the resume method an equal number of times before it resumes playing.

• stop

Stops the player presenting its data, sets the rate instance variable to 0, and
sets the player’s status instance variable to @stopped.

• gotobegin

Sets the player’s data back to the beginning by setting the time instance
variable to 0. Use this method rather than rewind to set a player back to the
beginning. This method does not change the rate of the player.

• gotoend

Sets the player to the end of its data by setting the time instance variable to
the value in the player’s duration instance variable.

• fastForward

Speeds up the rate at which the player presents its data to five times the
normal speed.

oviePlayer
assransitionPlayer class

ActionListPlayer class

Marker class

lay method (Player)
layer class:play method

layUntil method (Player)
layer class:playUntil method

ause method (Player)
layer class:pause method

esume method (Player)
layer class:resume method

top method (Player)
layer class:stop method

otoBegin method (Player)
layer class:gotoBegin method

otoEnd method (Player)
layer class:gotoEnd method

astForward method (Player)
layer class:fastForward method

169

Players 7

• rewind

Causes the player to present its media in the reverse direction at five times
the normal rate.

• playPrepare

Prepares a player for playing. Some players allocate resources and pre-roll
data during this method. If a player is not prepared before playing, these
operations are done when the play method is called, which may result in a
delay before playing starts.

Some subclasses of Player have additional methods for controlling specific
kinds of media or sequences, for example, the DigitalAudioPlayer class
has methods for controlling the volume of sound.

Players inherit the ability to be synchronized from the Clock class. For
example, you could synchronize an ActionListPlayer object that plays an
animation with a DigitalAudioPlayer object that plays a tune so that they
play, stop, and rewind together. Often it makes sense to create a completely
new player whose sole task is to control other players.

A player that controls another player is a “master player.”

How Players Work
Depending on the kind of player, it may work in conjunction with another
object or set of objects that contain the data to be presented. For example, a
digital audio player presents sound data held in an audio stream, and an
action list player performs the actions contained in an action list.

Whether or not a player is presenting its data (that is, playing) depends on its
rate. If its rate is 0, it is stopped. If its rate is other than 0 it presents its media
at the speed and direction specified by the rate. The methods play,
playUntil, pause, stop, and rewind change the rate of the player.

The local rate is specified by the rate instance variable, but the actual rate of a
player depends on its effective rate, which takes its master player’s rate into
account, if it has one. See the Chapter 6, “Clocks” for information about how
effective rates are determined.

For a player, the value of the time instance variable indicates the current
position in the media presented by the player. You can directly set the value of
the time instance variable to change the position of the player’s media. The
time instance variable can be set to a number of ticks or to a Time value. If the
value is given as a number of ticks, it is interpreted in the scale of the player.
For example, if a player has a scale of 30, and you set its time to 60:

myplayer.time := 60
=>0:0:2:0

The time is set to 2 seconds. (See Chapter 6, “Clocks,” for more information
about scale.)

You could also set the time to 2 seconds as follows:

ewind method (Player)
layer class:rewind method

layPrepare method (Player)
layer class:playPrepare method

layers component:master player
master player

ayer class:how players work

me instance variable:(Player)
layer class:time instance variable

170

7 ScriptX Components Guide

myplayer.time := 2 as time
=>0:0:2:0

myplayer.time := 2 * myplayer.scale
=>0:0:2:0

Using Multiple Players
Multiple players of all kinds can be synchronized so that they can be controlled
by a single player.

To specify one player as a master player of another, put it in the other player’s
masterClock instance variable. (This instance variable is inherited from
Clock.)

player1.masterClock := masterPlayer

When multiple players are slaved to a single master player, you can start all
the players playing in synchronization by calling the play method on the
master player. Similarly you can simultaneously prepare for playing, pause,
stop, fast forward, rewind, set to beginning and set to end all slave players by
calling the appropriate method on the master player.

Setting the value of the time instance variable of a master player also
automatically sets all its slave players to an appropriate value that takes offsets
into consideration. Offsets are discussed in “Specifying Different Start Times
For Slave Players” on page 171.

To make all the slave players play louder, set the value of the
globalVolumeOffset on the master player. To change the pan of all the slave
players, set the globalPanOffset instance variable on the master player. To
mute the audio of all the slave players, set the audioMuted instance variable
on the master player to true.

The effective volume for a slave player is the value of its volume instance
variable combined with the value of its globalVolumeOffset instance
variable. So for example, if the local volume of a player is -6 and the global
volume offset is 6, the effective volume is 0. Similarly, the effective pan for a
slave player is the value of its pan instance variable value combined with the
value of its globalPanOffset instance variable.

The globalVolumeOffset, globalPanOffset and audioMuted instance
variables only affect players that have a volume or pan instance variable, such
as digital audio players. Other players are not affected by changes to these
instance variables.

Note – In the current release, the Player class has instance variables such as
globalBrightness, globalContrast, globalHue and
globalSaturation. The intent of these instance variables is that the value on
a master player would affect the effective values for brightness, contrast, hue,
and saturation on its slave players. However, currently no subclasses of

synchronizing:players
Player class:synchronizing players

asterclock instance variable:(Player)
ayer class:masterClock instance variable
ave players
aster player

lobalVolumeOffset instance variable (Play-
)

Player class:globalVolumeOffset instance
ariable

udioMuted instance variable (Player)
layer class:audioMuted instance variable

an instance variable (DigitialAudioPlayer)
igitalAudioPlayer class:pan instance vari-
e

olume instance variable (DigitalAudioPlay-

igitalAudioPlayer class:volume instance
riable

obalBrightness instance variable (Player)
obalContrast instance variable (Player)
obalHue instance variable (Player)
obalSaturation instance variable (Player)
layer class:globalBrightness instance vari-
le
layer class:globalContrast instance variable
layer class:globalHue instance variable
layer class:globalSaturation instance vari-
le

171

Players 7

Player have brightness, contrast, hue, and saturation instance
variables. Thus changing the value of globalBrightness,
globalContrast, globalHue, and globalSaturation of a player has no
effect. These instance variables have been left on the Player class in
anticipation of corresponding local instance variables in future releases of
ScriptX.

The following script gives an example of synchronizing two slave players to a
master player.

-- animationPlayer is a pre-defined actionListPlayer instance
-- tunePlayer is a pre-defined digitalAudioPlayer instance

-- Create a player to use as the master player
global master := new Player

-- Make animationPlayer and tunePlayer be slave players of master
animationPlayer.masterClock := master
tunePlayer.masterClock := master

-- prepare to play the sound and animation
playPrepare master 1
goToBegin master

-- start the sound and animation playing together
play master

-- stop both the sound and animation from playing
stop master

-- switch off the sound (make it mute)
master.audioMuted := true

-- start the animation playing silently
play master

-- switch the sound back on
master.audioMuted := false

-- stop the sound and animation from playing
stop master

-- set both the sound and animation to time 8
master.time := 8

-- resume playing the sound and animation from time 8
play master

Specifying Different Start Times For Slave Players

You can specify different start times for slave players that have the same
master player. For example, you might want to play an action list player and a
digital audio player together, but you want the digital audio player to play for
four seconds before the animation begins.

layer class:setting offsets for slave players
lave players:different start times
layers component:see also Player class

$nopage>

172

7 ScriptX Components Guide

To specify a start time delay for a slave player, set the value of its offset
instance variable. The value of the offset instance variable of a slave player is
the amount of time by which the player is delayed relative to its master player.

For example:

master := new Player
animationPlayer.masterClock := master
goToBegin master
animationPlayer.offset := 4

The value of the time instance variable of animationPlayer now becomes -4
seconds. When you call the play method on the master player,
animationPlayer starts incrementing its clock, but does not start playing its
media until the value in its time instance variable reaches 0, which will be
when the value of the time instance variable of its master player is 4 seconds.
(For the rest of this discussion, the time of a player means the value of its time
instance variable.)

When you set the value of the offset instance variable of a slave player, the
value is assumed to be a number of ticks in the scale of the player’s master
player. If you create a direct instance of Player to use as the master player, its
scale will be 1.

Since the master’s scale is used as the scale for offsets you can use a master
player to establish the main timeline, and then specify offsets for slave players
relative to the main timeline.

If you attempt to set the value of the offset instance variable of a player that
does not have a master player (or master player) the value is ignored. The
value of the offset instance variable of all clocks and players that do not have
a master player is always zero.

layer class:offset instance variable
ffset instance variable:(Player)

173

Players 7

Playing Slave Players at Different Rates

You can cause players that use the same master player to play at different rates
by specifying values for the rate instance variables of the slave players, as
illustrated in the following code.

master := new Player
slowPlayer.masterClock := master
fastPlayer.masterClock := slowPlayer.masterClock
slowPlayer.rate := 1
fastPlayer.rate := 2
goToBegin master
play master
-- slowPlayer plays at a rate of 1 while
-- fastPlayer plays at a rate of 2

Troubleshooting Hints – The Case of the Stopped Slave Player

If you call the stop method directly on a slave player instead of calling it on
the master player, the slave player stops. It will not start again when you call
the play method on its master player.

The effective rate of a slave player is the value of its rate instance variable
times the value of its master player’s effectiveRate instance variable. If you
call the stop method directly on a slave player, its rate instance variable is set
to 0. Calling play on its master player does not start the slave player playing,
since the effective rate of the slave player remains at 0. (0 times any number is
0).

If you find yourself in this situation, you can fix it by calling play directly on
the slave player once to start it playing, or set the masterClock of the slave
player over again. When the masterClock instance variable of a player is set,
the slave player’s effective rate is preserved, unless its rate is 0, in which case
the rate is set to 1.

Using Markers
You may sometimes want to mark certain places in the data controlled by a
player. For example, you may want to mark the beginning of each verse in a
song, or mark specific time points in an animation.

You can use Marker instances to identify interesting time points for a player. A
marker is simply an object that has a starting time, a finishing time and a label.
When creating a marker, you must specify a beginning time and a label and
you can optionally specify an ending time.

The Player class has methods gotoMarkerStart and gotoMarkerFinish
that advance or rewind the player to places marked by a marker.

For example, suppose you want to play two short parts of a song played by a
DigitalAudioPlayer. You can do this by using markers to mark the two
ranges.

layer class:playing slaves at different rates
lave players:different rates

layer class:stop method

Marker
ass:using
arkers
layer

ass:marking
me ranges

otoMarkerStart method (Player)
layer class:gotoMarkerStart method
otoMarkerFinish method (Player)
layer class:gotoMarkerFinish method

Marker class:forwarding players to a marker

174

7 ScriptX Components Guide

To find the start time for the first marker, play the player, and stop it just before
the first word of the first range is played. Get the time of the player:

start1 := myPlayer.time

To find the finish time for the first marker, play the player and stop it as soon
as the you hear the word at the end of the first range. Check the time on the
player:

finish1 := myPlayer.time

Create the first marker:

marker1 := new Marker start:start1 finish:finish1 \
label:"Marker 1"

In a similar fashion, find the start and finish times for the second marker and
create the second marker.

Add the markers to the player:

addMarker myPlayer marker1
addMarker myPlayer marker2

To play the song from the start to the end of the time marked by the first
marker:

goToMarkerStart myPlayer marker1
playUntil myPlayer marker1.finish

To play the part of the song marked by the second marker:

goToMarker myPlayer marker2
playUntil myPlayer marker2.finish

Accessing Markers in the Marker List

A player’s markerList instance variable contains an array of the player’s
markers sorted by start time. You can use a player’s getPreviousMarker and
getNextMarker method to return the marker before or after a given marker
in the player’s marker list.

The following code shows how to play a player from the beginning to the end
of its first marker, then play it from the beginning to the end of its second
marker, without explicitly referring to variables pointing to the markers.

-- myPlayer is a media player with at least two markers

-- The first marker is the first element in the player’s marker list
m := myPlayer.markerlist[1]

-- Play the player from the start to end of the first marker
goToMarkerStart myPlayer m
playUntil myPlayer m.finish

Marker class:creating markers

layer class:markerList instance variable
markerList instance variable (Player)layer class:getNextMarker method
etNextMarker method (Player)
layer class:getPreviousMarker method
etPreviousMarker method (Player)

Marker class:accessing markers in a player’s
arker list

175

Players 7

-- Play the player from the start to the end of the next marker
m := getNextMarker myPlayer m
goToMarkerStart myPlayer m
playUntil myPlayer m.finish

The start and finish values for a marker are always interpreted in the scale of
the player to which the marker is added. For example, if you add a marker
whose start time is 20 to a player whose scale is 1, then the player reaches the
start of the marker at 20 seconds. However, if the player’s scale is 100, then the
player reaches the start of the marker at one fifth of a second.

Using Marker Labels

A marker can have a label, which is a string stored in its label instance
variable. For an example that illustrates the usefulness of marker labels,
suppose you created an animation of the story of Little Red Riding Hood. You
could use markers labelled “Wolf arrives”, “Wolf eats grandma”, “Red riding
hood arrives” and “Woodman saves the day” to identify appropriate times in
the animation as follows.

-- RRPlayer is an actionListPlayer
addMarker RRPlayer (new Marker start:10 label:"Wolf arrives")
addMarker RRPlayer (new Marker start:22 label:"Wolf eats grandma")
addMarker RRPlayer (new Marker start:38 label:"Red riding hood arrives")
addMarker RRPlayer (new Marker start:53 label:"Woodman saves the day")

The following sample script shows how to play the animation from the point at
which the wolf arrives until the end of the animation.

-- use a path expression to find the place where the wolf arrives
global wolfComes :=
chooseOne RRPlayer.makeList(v dummy -> v.label = “wolf arrives”) 0
goToMarkerStart RRPlayer wolfcomes
playUntil RRPlayer RRPlayer.duration

Marker class:using labels
Marker class:label instance variable
abel instance variable (Marker)

176

7 ScriptX Components Guide

C H A P T E R

8
Media Players

178

8 ScriptX Components Guide

179

Media Players 8

The Media Players component provides classes for playing media, such as
sound and video. The players in this component build on the functionality
provided by the Player class, discussed in the previous chapter. Please read
the previous chapter before reading this one.

Classes and Inheritance
The class inheritance hierarchy for the Media Players component is shown in
the following figure.

The following classes form the Media Players component. In this list,
indentation indicates inheritance.

MediaStreamPlayer – specialized subclass of Player that plays media held
in an associated media stream.

Media Play-
rs compo-
ent

Media Play-
rs compo-
ent:inheritan
e diagram

TwoDPresenter

MoviePlayer

InterleavedMoviePlayer

MIDIPlayer TwoDMultiPresenter

Clock

Legend
Gray box = abstract class
Black box = concrete class

No box = class belongs to another compon

DigitalVideoPlayer

DigitalAudioPlayer

AudioStream

Stream

MIDIStream

VideoStream

ByteStream

Player

ChunkStream

MediaStream

RootObject

MIDIEvent

MIDIDriver

White box = global instance

MediaStreamPlayer

MediaStreamPlayer class

180

8 ScriptX Components Guide

DigitalVideoPlayer -- subclass of MediaStreamPlayer that is
specialized to play video. The video is held in a stream containing digitized
video.

DigitalAudioPlayer -- subclass of MediaStreamPlayer that is
specialized to play sound. The sound is held in a stream containing
digitized audio.

MIDIPlayer -- a subclass of MediaStreamPlayer specialized to play
MIDI sound. The sound is held in a stream containing MIDI data.

MoviePlayer -- subclass of Player that is specialized to play movies. A
MoviePlayer object controls other players that play the components of a
movie.

InterleavedMoviePlayer -- subclass of MoviePlayer that is specialized
to play interleaved movies.

MediaStream – base class that encompasses the common behavior of media
streams; it is used by MediaStreamPlayer instances.

AudioStream -- subclass of MediaStream specialized for holding a stream
of digitized sound.

MIDIStream -- subclass of MediaStream specialized for holding a stream
of MIDI data.

VideoStream -- subclass of MediaStream specialized for holding a stream
of digitized video data.

ChunkStream – subclass of ByteStream that is used by
InterleavedMoviePlayer to transfer movie data in a single interleaved
stream to separate audio and video streams. (See the description of
ChunkStream in the ScriptX Class Reference for more information.)

MIDIEvent - class that holds information about MIDI events, such as the
message, note and velocity for a MIDI event.

MIDIDriver - class of drivers for MIDI devices.

Conceptual Overview
The classes in the Media Players component can be used to present (or play)
media such as movies, video, and sound. The media player classes inherit
methods from the Player class that are common to all players, such as
methods for playing, stopping, pausing, fast forwarding, and rewinding.

The class MediaStreamPlayer provides functionality for playing and
controlling a single piece of media contained in a media stream. The classes
DigitalAudioPlayer, DigitalVideoPlayer and MIDIPlayer play a
single piece of media and inherit from the class MediaStreamPlayer.

The MoviePlayer class uses multiple digital audio players and digital video
players to play a movie. The InterleavedMoviePlayer class inherits from
MoviePlayer and has added functionality for playing movies whose data is
interleaved in a single stream.

DigitalVideoPlayer class

DigitalAudioPlayer class

MIDIPlayer class

MoviePlayer class

nterleavedMoviePlayer class

MediaStream class

AudioStream class

MIDIStream class

ideoStream class

ChunkStream class

MIDIEvent class

MIDIDriver class

181

Media Players 8

To use digitized media in ScriptX, you must first digitize your data in an
appropriate application outside ScriptX. For example, you might digitize a
movie and store it as a QuickTime file, or digitize a sound and store it as an
AIFF file. After you have created the file containing the digitized media, you
can import it into ScriptX using the Import/Export Engine. See the ScriptX
Tools Guide for full details of importing sound, video and movie data into
ScriptX. Note that for playing MIDI, you can either import an existing MIDI
file into ScriptX, or you can generate MIDI events from within ScriptX.

After importing media into ScriptX, you can save either the media player or
the media stream to a title container. If you do this, you can play the media at
a later time, by opening the title container and accessing the media player or
the media stream. (If you save the stream without the player, you will need to
create a new player to play the stream.) The imported media can be used by
media players on any platform that supports ScriptX.

As mentioned in Chapter 7, “Players”, you can synchronize players so that a
single player can control multiple players, and you can use markers to mark a
time range in the media presented by a media player. See “Using Multiple
Players” on page 170 and “Using Markers” on page 173.

How Media Players Work
Players that inherit from MediaStreamPlayer play a single piece of media.
They have an instance variable called mediaStream that points to the
MediaStream object controlled by the player. The stream must be an
appropriate kind for the player.

Each media stream in turn has an inputStream instance variable that points
to the actual stream of data for the media, as illustrated in Figure 8-1.

Figure 8-1: A MediaStreamPlayer has a mediaStream with an inputStream.

A MoviePlayer object does not play a single piece of media. Instead, it
controls other players that are each responsible for playing a component of the
movie. Both the target and slaveClocks instance variables of a movie
player contain an array of the other players needed to play the movie.

An InterleavedMoviePlayer instance is a specialized MoviePlayer that
has an interleavedStream instance variable that holds a stream containing
interleaved data for the movie. See the InterleavedMoviePlayer section in

media:creating
igitizing data

Media Players component:synchronizing
ayers

mediaStream instance variable (MediaS-
eamPlayer)
MediaStreamPlayer class:mediaStream in-
ance variable

nputStream instance variable (MediaS-
eam)
MediaStream class:inputStream instance

riable

AudioStream

DigitalAudioPlayer

ByteStream

DigitalVideoPlayer

VideoStream

ByteStream

mediaStream
instance variable

mediaStream
instance variable

inputStream
instance variable

inputStream
instance variable

MidiStream

MidiPlayer

ByteStream

mediaStream
instance variable

inputStream
instance variable

MoviePlayer class:slaveClocks instance vari-
le
laveClocks instance variable (MoviePlayer)

MoviePlayer class:target instance variable
arget instance variable :MoviePlayer)

nterleavedMoviePlayer class:interleaved-
ream instance variable
nterleavedStream instance variable (Inter-
avedMoviePlaye)r

182

8 ScriptX Components Guide

the ScriptX Class Reference for a detailed discussion of how interleaved movie
players de-interleave their data and send it to separate digital audio and digital
video players.

Start and End of the Media Data

All media players assume that their associated media starts at time zero and
proceeds through the time stored in the player’s duration instance variable .
As for all players, calling the play method on a media player sets its rate to 1
and starts it ticking (that is, the value of the time instance variable begins
incrementing.) A media player starts presenting its associated media when its
time is zero and its rate is positive. It finishes presenting its media when its
time reaches the value in its duration instance variable. (If the player is
playing backward, the reverse is true.) When the player passes the end of its
media stream, its clock continues ticking although the media is no longer being
presented.

A player could be in the situation where it has a negative time value but a
forward rate value. In this case, although the player’s clock is ticking it is not
presenting its associated media. When the time reaches 0, the media starts
playing.

Importing and Saving Media in ScriptX
To get media into ScriptX, you import it from a file containing digitized media
data, such as as a QuickTime or AVI file containing a digitized movie, an AIFF
file containing digitized sound, or a MIDI file containing MIDI data. To import
a media file into ScriptX, call the importMedia method on
theImportExportEngine global instance.

The importMedia takes at least five arguments in addition to self:

• the source file to be imported

• the type of media

• the specific file type

• the output class

• an optional keyword argument for the title container in which to save the
media

The actual values for these arguments depend on the kind of media being
imported. The importMedia methods also takes extra arguments for
importing some kinds of media. See the ScriptX Tools Guide for details and
examples of importing each kind of media.

When importing digitized audio files, digitized video files, and MIDI files, you
can choose whether the importing process should create just a media stream or
whether it should also create an appropriate player to play the stream. For
movies, the importing process always creates a master player (either a
MoviePlayer or InterleavedMoviePlayer instance) along with all the
necessary slave players and streams needed to play the movie.

Media Players component:duration instance
riable
uration instance variable:media players)

edia Players component:importing media
mporting media
mportMedia method (ImportExportEngine)

edia:importing

183

Media Players 8

The following code illustrates how to import an AIFF sound into ScriptX and
play it:

theStream := getstream thestartdir "song1.aif" @readable
songplayer := importMedia theImportExportEngine theStream\

@sound @aiff @player
play songplayer

If you import media as a media stream only, you also need to create a player to
play the media stream. To do this, call the new method on the appropriate
subclass of MediaPlayer and set the player’s mediaStream instance variable
to the media stream, as illustrated in the following code:

theStream := getstream thestartdir "song2.aif" @readable
songStream := importMedia theImportExportEngine theStream\

@sound @aiff @stream
songPlayer := new DigitalAudioPlayer mediaStream:songStream
play songPlayer

Saving Imported Media to a Title Container

If you save the imported media to a title container, you will be able include the
media in your title. The title will be able to run on any machine that supports
ScriptX without needing copies of the original media files.

If you intend to save imported media to a title container, you must specify the
container keyword to the importMedia method. When the media is
imported, the raw data for the media goes into the title container, but no
objects are saved to the title container.

In addition to specifying the container keyword for the importing process,
you must also explicitly add the media stream object or media player object (or
an object that refers either of them) to the title container. Close the title
container to store the objects.

You can play the media at a later time on any machine that supports ScriptX. In
future ScriptX sessions, you do not need to import the media again. To access
the media stream or media player, simply open the relevant title container. You
do not need to keep the original media file around, since the media data is
copied directly into ScriptX.

Saving the Media Player

The following code sample illustrates how to import a media file and save the
media player object to the object store. It also shows how to play the media
after quitting from ScriptX and restarting ScriptX.

-- open a title container
tc := new titlecontainer path:"song1.sxt"

-- import the media
theStream := getstream thestartdir "song1.aif" @readable
songplayer := importMedia theImportExportEngine theStream\

@sound @aiff @player container:tc

edia Players component:saving media
aving:media
edia:saving

mporting media:container keyword
ontainer keyword:for importing media

edia Players component:saving media
yer example

aving:media players

184

8 ScriptX Components Guide

-- add the media player to the title container
append tc songplayer

-- define a startup action for the title container
tc.startUpAction := (tc -> songplayer := tc[1])

-- close the title container
close tc

Quit from ScriptX, then launch ScriptX again. If you start ScriptX from the
mysongs.sxt icon you do not need to enter the following:

open titlecontainer path:"song1.sxt"

In this case, the variable songplayer was defined by the title container’s
startup action. To play the song, enter:

play songplayer

Saving the Media Stream

The following code sample illustrates how to import a media file and save the
media stream object to the object store. It also shows how to play the media
after quitting from ScriptX and restarting ScriptX.

-- open the title container
tc := new titlecontainer path:"song1.sxt"

-- import the media
theStream := getstream thestartdir "song1.aif" @readable
songStream := importMedia theImportExportEngine theStream\

@sound @aiff @stream container:tc

-- add the media stream to the title container
append tc songStream

-- define a startup action for the title container
tc.startupAction := (tc -> songStream := tc[1])

-- Close the title container
close tc

Quit from ScriptX, then launch ScriptX again. If you start ScriptX from the
mysongs.sxt icon you do not need to enter the following:

open titlecontainer path:"song1.sxt"

In this case, the variable songstream was defined by the title container’s
startup action. Create a digital audio player to play the song:

global songplayer := new digitalAudioPlayer mediaStream:songStream
play songplayer

edia Players component:saving media
eam example
ediaStream class:saving media streams

aving:media streams

185

Media Players 8

Saving Multiple Batch Media to a Title Container

The following sample code illustrates how to import multiple media files and
save them to a title container by saving a list of the media streams. (When you
save an object to a title container, any objects referenced by that object are also
saved.) The code sample also shows how to play the media after quitting from
ScriptX and restarting ScriptX.

-- open a title container
tc := new titlecontainer path:"mysongs.sxt"

-- import several media files
s1 := importMedia theImportExportEngine \

(getstream thestartdir "song1.aif" @readable) \
@sound @aiff @player container:tc

s2 := importMedia theImportExportEngine \
(getstream thestartdir "song2.aif" @readable) \
@sound @aiff @player container:tc

s3 := importMedia theImportExportEngine \
(getstream thestartdir "song3.aif" @readable) \
@sound @aiff @player container:tc

songlist := #(s1, s2, s3)

-- add a list of the media streams to the title container
append tc songlist

-- define a startup action for the title container
tc.startupAction := (tc -> \

song1 := tc[1][1] \
song2 := tc[1][2] \
song3 := tc[1][3])

close tc

Quit from ScriptX, then launch ScriptX again. If you start ScriptX from the
mysongs.sxt icon you do not need to enter the following:

open titlecontainer path:"song1.sxt"

In this case, the variables song1, song2 and song3 are defined by the title
container’s startup action. Create a digital audio player to play the songs:

songPlayer := new digitalAudioPlayer

-- play song1
songPlayer.mediaStream := song1
play songPlayer

-- play song2
stop songPlayer
songPlayer.mediastream := song2
gotobegin songPlayer
play songPlayer

-- play song3
stop songPlayer

edia Players component: saving batch me-
 example

aving:batch media

186

8 ScriptX Components Guide

songPlayer.mediastream := song3
gotobegin songPlayer
play songPlayer

Using Media Players
To prepare a media player for playing, call its playPrepare method. To start
it playing its associated media call its play method. If you call the play
method on an unprepared player, the player’s clock starts ticking immediately
while the player gets prepared to play. When the player is ready, it starts
playing its media from that time. Thus the very beginning of the media might
not play or the media might not be perfectly synchronized with other media.

To stop the media from playing, call the player’s stop method. A player does
not stop playing until the stop method is called, even if it has passed the end
of its media stream.

To set the media back to the beginning, call the player’s gotobegin method.
To move the media to a particular time, set the player’s time instance variable
to the desired time. To put the player in a temporarily paused state call its
pause method.

Use the playUntil method to play a player until a given time. For example to
play it until the end of its media stream, call playUntil and pass in the
player’s duration as the time to play until.

-- p is an existing media player
gotobegin p
playUntil p p.duration

To change the media stream that a digital audio player, digital video player or
MIDI player plays, set the value of its mediaStream instance variable to the
desired media stream object.

Playing Audio

To play sound other than MIDI sound in ScriptX, use a DigitalAudioPlayer
instance whose mediaStream instance variable contains an AudioStream
instance. Digital audio players can play sound media imported from AIFF,
SND, and WAVE audio files. (MIDI sound is discussed in “Playing MIDI” on
page 190.)

The following script demonstrates how to import and play a tune that has been
digitized and saved to a file called ditty.aif in the same folder as the script.

-- Create a title container
tc:= new titlecontainer path:"ditty.sxt"

-- import the media
global tuneStream1 := getstream theScriptDir "ditty.aif" @readable
global tunePlayer := importMedia theImportExportEngine tuneStream1 \

@sound @AIFF @player container:tc

edia Players component:using media play-
s

udio files:importing and playing
aying:audio
igitalAudioPlayer class:using
ND files
FF files

WAV files

187

Media Players 8

-- Prepare tunePlayer
playPrepare tunePlayer 1

-- Start tunePlayer playing
play tunePlayer

-- Stop the tune from playing
stop tunePlayer

-- Start playing the tune over again from the beginning
-- This time play it once through to the end
gotobegin tunePlayer
playPrepare tunePlayer 1
playUntil tunePlayer tunePlayer.duration

-- add tuneplayer to the title container and save the title container
gotobegin tunePlayer
append tc tunePlayer
tc.startUpAction := (tc -> tunePlayer := tc[1])
close tc

Sound Channel Allocation

When an AudioStream instance becomes attached to a
DigitalAudioPlayer instance, either during the importing process or by
explicitly being put in the player’s mediaStream instance variable, the player
locates all appropriate hardware sound channels. When the playPrepare
method is called on the player, it searches through all the appropriate sound
channels looking for one that is not in use. If all appropriate sound channels
are already in use then the preparing player causes a DigitalAudioPlayer
instance that is already prepared to become unprepared, thus freeing a sound
channel. This may cause another sound to stop playing.

Playing Movies

The MoviePlayer and InterleavedMoviePlayer classes provide facilities
for playing movies. AMoviePlayer instance plays a movie whose data is
separated into audio and video streams. An InterleavedMoviePlayer
instance plays a movie whose data is held in a single interspersed stream. You
use both MoviePlayer and InterleavedMoviePlayer instances just like
any other players— control them with the play, playUntil, stop, pause,
gotoBegin, gotoEnd, and fastForward methods.

A MoviePlayer instance controls DigitalAudioPlayer and
DigitalVideoPlayer instances that play together to present the movie. An
InterleavedMoviePlayer also controls other players, but has the added
complexity that its interleavedStream instance variable holds a stream
containing the interleaved movie data.

ound channel allocation
AudioStream class:sound channel allocation
DigitalAudioPlayer class:sound channel allo-

tion

ovie files:importing and playing
aying:movies
oviePlayer class:using
terleavedMoviePlayer class:using

188

8 ScriptX Components Guide

When an interleaved movie player plays, it uses chunk streams to pass the
video data in the interleaved stream to a digital video player and to pass the
audio data to a digital audio player. See the section on
InterleavedMoviePlayer in the ScriptX Class Reference for more details on
how interleaved movie players and chunk streams work.

When importing any movie into ScriptX, you can choose to import it as a
non-interleaved movie or an interleaved movie. To separate the sound and
audio data of a movie into separate streams, import it as a MoviePlayer
instance. To preserve the existing interleaving of a movie during importing,
import it as an InterleavedMoviePlayer instance.

If the video and audio data for a movie are held in separate streams, the video
data needed for a frame may be arbitrarily distant on the storage medium from
the audio data needed for the same frame, causing an increase in search time
between each frame. When the audio and video data are interleaved into a
single stream, the video data and audio data required for a frame are located
sequentially on the storage medium, thus minimizing the search time between
each frame. When playing non-interleaved movies from a hard disk, the extra
search time required to seek to non-sequential positions is relatively small and
does not significantly affect the speed of playback. However, the search time
becomes significant if the movie is played from a CD. If you intend to play the
imported movie from a CD, you should import it to an
InterleavedMoviePlayer to preserve the interleaving.

To create a MoviePlayer or InterleavedMoviePlayer instance, import a
file that contains a digitized movie. You must generate the digitized movie file
outside of ScriptX. ScriptX can import QuickTime and AVI movies. Only
QuickTime movies can be imported as interleaved movies.

Note – This release of ScriptX can import QuickTime movies whether or not
they are compressed, and regardless of what kind of compression was used if
they are compressed. However, only cinepak-compressed movies are
guaranteed to play back successfully on any platform on which ScriptX runs.

In addition to being a player, a MoviePlayer or InterleavedMoviePlayer
instance is also a presenter. To play a movie, append the movie player or
interleaved movie player to a visible window, and call the play method on the
player.

The following script demonstrates how to import and play a movie that is
saved in the file "whale" in the same folder as the script.

-- create a title container
tc := new titlecontainer path:"whale.sxt"

-- Import the movie to a MoviePlayer
-- If you want to preserve the interleaving in the movie,
-- substitute @interleavedMoviePlayer for @Player

global whalestream := getstream theScriptDir "whale" @readable
global whaleplayer := importMedia theImportExportEngine whalestream \

@movie @quicktime @Player container:tc

189

Media Players 8

-- Create a window the size of the movie’s screen
global w:= new window boundary:(whaleplayer.bbox)
w.x := w.y := 40
show w

-- Append the movie player to the window
append w whaleplayer

-- Play the movie
play whaleplayer

-- Stop the movie
stop whaleplayer

-- Set the movie to a particular time
-- then play it again to the end of the movie
whaleplayer.time := 10
playUntil whaleplayer whaleplayer.duration

-- set the movie back to the beginning
gotobegin whaleplayer

-- append the window to the title container
-- the startup action defines variables for the window and whaleplayer
-- close the title container
append tc w
tc.startUpAction := (tc -> w := tc[1]; whaleplayer := w[1])
close tc

Note – You cannot use an InterleavedMoviePlayer object on a page in a
document if you want the movie to change from page to page. You can use a
MoviePlayer that dynamically updates its target when a page in a document
opens. See Chapter 13, “Document Templates” for details on creating pages
and documents.

190

8 ScriptX Components Guide

Playing MIDI

ScriptX provides two ways to play MIDI sound. One way is to import an
existing MIDI file, and then use a MIDIPlayer object to play the imported
MIDI data. The other way is to create MIDI events directly in ScriptX and send
them to a MIDI driver. In both cases, you must have a machine capable of
playing MIDI.

This section first discusses how to import and play existing MIDI data, and
then discusses how to generate and send your own MIDI events. This section
does not attempt to teach the MIDI specification.

Note – This release of ScriptX supports only type 0 MIDI files.

Playing Existing MIDI Data

To play existing MIDI data in ScriptX, use a MidiPlayer instance whose
mediaStream instance variable contains a MidiStream instance. A MIDI
stream contains a series of MIDIEvent objects, which are initially created by
importing a standard MIDI file.

You can optionally choose which MIDI device to use to play the MIDI sound
by setting the driver instance variable of the MIDIPlayer object. See
“Finding a MIDI Driver” on page 192 for information on how to find MIDI
drivers. If you do not specify a MIDI driver, the player uses a default one.

The following script demonstrates how to import and play a hypothetical MIDI
file called harp.mid that resides in the same folder as the script.

-- create a title container
tc := new titlecontainer path:"harp.sxt"
global stream1 := getStream theScriptDir harp.mid @readable
global harpPlayer := importMedia theImportExportEngine stream1 \

@MIDI @standard @player container:tc

-- play the MIDI tune
play harpPlayer

-- append the player to the title container and close the container
stop harpPlayer
gotobegin harpPlayer
append tc harpPlayer
tc.startUpAction := (tc -> harpPlayer := tc[1])
close tc

tandard MIDI Files:see MIDI files
nopage>
IDI files:playing

IDI files:importing
aying:standard MIDI files
IDIPlayer class:using

191

Media Players 8

Creating MIDI Events Directly

You can create MIDI events from within ScriptX. For example, you could create
a piano program that displays a piano keyboard on the screen. Each time a
user clicks on a key on the keyboard, the program plays an appropriate note by
generating and playing a MIDI event.

The following list summarizes the steps involved in generating and playing
MIDI events:

• Create and initialize a MIDI event.

• Find a MIDI driver.

• Prepare the MIDI driver.

• Send the MIDI event to the MIDI driver.

• When you have finished using the MIDI driver, unprepare it and close it.

MIDI events are represented in ScriptX as instances of the class MIDIEvent.

Creating a MIDI Event

To create a MIDI event, call the new method on the class MIDIEvent. Initialize
the new MIDI event by setting its instance variables statusByte,
datatbyte1, databyte2 and data. You can either set the statusByte,
databyte1 and databyte2 instance variables or set the data instance
variable.

The statusByte instance variable holds a byte (that is, a number between 0
and 256 inclusive) that specifies the MIDI message. For example, 144 (which is
0x8f + 1) indicates a note-on message to channel 1; 145 (which is 0x8f + 2)
indicates a note-on message to channel 2; 128 (which is 0x7f + 1) indicates a
note-off message to channel 1; 129 (which is 0x7f + 2) indicates a note-off
message to channel 2; and so on. Please see the external MIDI specification for
a complete list of all MIDI messages.

The databyte1 and databyte2 instance variables hold data that depends on
the value in the statusByte instance variable. For example, if the value in the
statusByte instance variable represents a note-on message, then the
databyte1 instance variable should hold a byte specifying the note being sent
and the databyte2 instance variable should hold a byte specifying the
velocity of the note.

The data instance variable holds a ByteString object, where the first element
specifies the status byte, and the second and third bytes specify the additional
data needed for that message. Additional bytes specify additional information
for system-exclusive messages.

When you specify values for the statusByte, databyte1 and databyte2
instance variables of a MIDI event, the byte string in the data instance variable
is updated, and vice versa.

Most standard MIDI devices can understand short MIDI messages, which
consist of the status byte, and the first and second data bytes. Long MIDI
messages, known as system-exclusive messages, have additional data bytes,

IDIEvent class

IDIEvent class:creating MIDI events
IDIEvent class:playing MIDI events
atusByte instance variable (MIDIEvent)
atabyte1 instance variable (MIDIEvent)
atabyte2 instance variable (MIDIEvent)
ata instance variable (MIDIEvent)

IDIEvent class:statusByte instance variable
IDIEvent class:databyte1 instance variable
IDIEvent class:databyte2 instance variable
IDIEvent class:data instance variable

IDI messages:long
IDI messages:short
IDI messages:system exclusive

ystem exclusive MIDI messages

192

8 ScriptX Components Guide

and these messages can only be understood by specific devices. To specify
additional databytes for a long MIDI message in ScriptX, you must set the
value of the data instance variable of a MIDIEvent object.

The following two fragments of code illustrate how to create and initialize a
MIDI event.

• Initialize the MIDI event by specifying values for the statusByte,
databyte1 and databyte2 instance variables:

midievent1 := new MidiEvent
midievent1.statusByte := 0x8f + 1 -- note on for channel 1
midievent1.databyte1 := 54 -- note
midievent1.databyte2 := 94 -- velocity

• Initialize the MIDI event by specifying a byte string for the data instance
variable:

midievent1 := new MidiEvent
dataString := new ByteString
append dataString 0x8f + 1 -- note on for channel 1
append dataString 54 -- note
append dataString 94 -- velocity
midievent1.data := dataString

Finding a MIDI Driver

When ScriptX starts up on a MIDI-capable machine, it creates MIDI drivers.
When ScriptX starts up on a machine that is not capable of playing MIDI, it
does not create any MIDI drivers.

To find a MIDI driver, use the getMIDIDriverList and openMIDIDriver
global functions. The function getMIDIDriverList returns a list of “MIDI
driver” pairs. Each pair consists of a string of the name of the driver and a
symbol for the location of the driver.

For example:

global Mlist := getMidiDriverList()

might return:

#(#("MIDIManager", @internal))

The openMidiDriver function opens a MIDI driver specified by a MIDI
driver pair. The function returns the opened MIDIDriver object if it was
succesful, or false if it was not.For example:

global Mdriver := openMidiDriver (getFirst (getMidiDriverList ())

opens the first MIDI driver returned by the function getMidiDriverList.
The following code:

global Mdriver := openMidiDriver #("MIDIManager", @internal)

IDIDriver class
IDIDriver class:finding a driver
etMIDIDriverList function
penMIDIDriver function

193

Media Players 8

opens the internal MIDI driver called MIDI Manager regardless of where it is
in the list of MIDI drivers.

To open a MIDI driver regardless of what platform is being used, use the
following code, which iterates over all the MIDI drivers until it successfully
opens one. (If no MIDI driver is found or successfully opened, Mdriver ends
up being undefined.)

global MDriver := false
for md in (getMidiDriverList ()) until Mdriver

do Mdriver := openMidiDriver md

Prepare the MIDIDriver

You must do two things to prepare the MIDI Driver. You must do these things
in order:

1. Set the value of the MIDI Driver’s channelPolyphony instance variable.

The value of this instance variable must be set to an array of 16 elements,
representing the polyphony (number of voices) per channel for 16 channels.
For example:

MDriver.channelPolyphony := #(3, 1, 0, 5, 0, 0,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0)

which means that the maximum polyphony for channel 1 is 3; for channel 2
is 1; for channel 4 is 5; and for channel 7 is 2. For all other channels, the
polyphony is 0 (that is, those channels can’t play.)

2. Call the prepareDriver method on the MIDI Driver. (Do not call
prepareDriver before you have set the channel polyphony.) The
prepareDriver takes a second argument, but you can pass this as
undefined when calling the method directly. For example:

prepareDriver Mdriver undefined

Sending the MIDIEvent to the MIDIDriver

To send a MIDI event to a MIDI device, call the sendMIDIEvent method on
the MIDI driver for the device. For example:

sendMIDIEvent Mdriver midievent1

Closing the MIDI Driver

When you have finished using a MIDI driver, unprepare it by calling its
unprepareDriver method, then close it by calling the closeMidiDriver
global function. For example:

hannelPolyphony instance variable (MIDID-
er)
IDIDriver class:channelPolyphony instance
riable

IDIEvent class:sending events to a driver
IDIDriver class:playing MIDI events

endMIDIEvent method (MIDIDriver)
IDIDriver class:sendMIDIEvent method
oseMIDIDriver function
nprePareMIDIDriver method (MIDIDriver)

194

8 ScriptX Components Guide

unprepareDriver Mdriver
closeMidiDriver Mdriver

MIDI Player Example

The following script illustrates how to play a sequence of MIDI notes.

The following script defines functions to send note-on, note-off, and
change-program messages. The example uses the waitTime method on a clock
to make the system wait before sending the note-off event. (If you want to send
a series of MIDI events, you could create a clock and set up callbacks to send
the MIDI events at appropriate times.)

-- get a list of all the midi drivers
global mdList := getMidiDriverList ()

global Mdriver := false

-- Find a working Midi Driver
-- openMidiDriver returns the opened driver
-- if the Midi Driver is successfully opened,
-- otherwise returns false
for md in mdlist until Mdriver do

Mdriver := openMidiDriver md

-- if no driver was successfully opened, print a warning
if (not Mdriver) do print "This script will not work.
There is no working Midi Driver."

-- set the maximum number of voices per channel
mdriver.channelPolyphony := #(1, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0)

-- prepare the Midi driver
prepareDriver Mdriver undefined

-- Create a clock to use to time the notes
global c := new clock
c.scale := 10
c.rate := 1

-- define a function to send a note on message
fn sendNoteOn driver channel note vel ->
(

local e := new MidiEvent
e.statusByte := 0x8f + channel
e.databyte1 := note
e.databyte2 := vel
sendMidiEvent driver e

)

-- define a function to send a note off message
fn sendNoteOff driver channel note vel ->
(

local e := new MidiEvent
e.statusByte := 0x7f + channel

195

Media Players 8

e.databyte1 := note
e.databyte2 := vel
sendMidiEvent driver e

)

-- send a program change message to determine which
-- instrument a channel should play as
-- prog is from 1 to 128
fn sendProgram driver channel prog ->
(

local e := new MidiEvent
e.statusByte := 0xbf + channel
e.databyte1 := prog
sendMidiEvent driver e

)

-- set the instrument for channel 1
-- then play a sequence of notes on channel 1
sendProgram mdriver 1 5
for i in 40 to 70 do (

sendnoteon mdriver 1 i 200
sendnoteoff mdriver 1 i 200
waittime c 1)

-- set the instrument for channel 7
-- then play a sequence of notes on channel 7
sendProgram mdriver 7 120
for i in 40 to 70 do (

sendnoteon mdriver 7 i 200
sendnoteoff mdriver 7 i 200
waittime c 1)

-- unprepare the midi driver then close it
unPrepareDriver Mdriver
closeMidiDriver Mdriver

196

8 ScriptX Components Guide

C H A P T E R

9
Animation

198

9 ScriptX Components Guide

199

Animation 9

The Animation component allows you to create and play sequences of actions
that take place over time. These sequences can be used to create animation as
well as to control or annotate other presentation elements such as video tapes
and music.

A key class of the Animation component is the ActionListPlayer class. It
implements a non-thread-based model of action representation and processing.
It is well-suited for converting sequences from other multimedia systems.
Every action associated with an action list player has its own specific trigger
time.

The techniques described in this chapter are not the only way to perform
animation in ScriptX. You can also use controllers. For example, the Controllers
chapter describes an animated

This chapter describes the Animation component and includes two examples at
the end.

Classes and Inheritance
The class inheritance hierarchy for the Animation component is shown in the
following figure.

The following classes form the Animation component. In this list, indentation
indicates inheritance.

Action – an abstract superclass that defines a time and a target object.

Animation
mponent

nimation
mponent:in-
ritance dia-
am

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

SortedArray

ActionList

DeltaPathAction

InterpolateAction

PathAction

ShapeAction

Action

ScriptAction

TargetListAction

TimeAction

RootObject

ActionListPlayer

Player

IVAction

200

9 ScriptX Components Guide

DeltaPathAction – holds information about relative position change.

InterpolateAction – changes the destination point and time of an
Interpolate controller object.

IVAction – changes a specified instance variable on the target object to a
given value.

PathAction – holds information about absolute position change.

ScriptAction – holds a function to run at given time.

ShapeAction – holds information about shape changes.

TargetListAction – calls a function at a certain time and replaces a
specified target object in the target list with the return value of that function.

TimeAction – makes an action list player go to a specified time.

ActionList – a list of Action objects, sorted by time.

ActionListPlayer – a subclass of Player that plays an ActionList object.

Conceptual Overview
The Animation component provides a means for creating timed sequences in
ScriptX. The ActionListPlayer class represents a player of actions that
affect a target list. Each action has a trigger time, and can operate on any or all
of the targets. The action can set instance variables, call functions or methods,
add or delete objects, or perform any other operation.

How Animation Works
An ActionListPlayer object implements a list of actions to be executed in
sequence; each action has its own absolute time, target object to act on, and
type of action.

Action List and Actions

As shown in Figure 9-1, action list players involve a number of related classes
that must work together. When you play an action list player, it triggers a
sequence of actions over time. Each action has a specific trigger time and target
associated with it.

This component includes classes for a list of actions (ActionList), a list of
target objects (the targets instance variable in ActionListPlayer),
time/target pairs (Action objects), and a set of possible actions (the Action
subclasses).

The subclasses of Action (listed previously in “Classes and Inheritance”)
represent the possible types of actions that can happen at a particular time:
changing a bitmap (ShapeAction), making relative or absolute position
changes (DeltaPathAction, PathAction), moving along a curve to a

nimation
mponent:
w it works

ctionListPlay-
class

Action class

hapeAction
ass

201

Animation

9

specified point (

InterpolateAction

), changing a time (

TimeAction

), or
performing a general script (

TargetListAction

,

ScriptAction

). The

TargetListAction

 is a specialized

ScriptAction

 used to add or remove
objects from the

targets

 list.

For example, using a

ShapeAction

 object you can specify that at 10 seconds
from the start of the sequence, the bitmap being shown by a

TwoDShape

 object
will change.

Figure 9-1: An action list player has one action list and a list of targets.

Each

Action

 object contains the absolute time it will trigger. An

ActionList

object contains a list of

Action

 objects, sorted by time, which is the order they
will be triggered. An

ActionListPlayer

 object plays back the action list and
allows for operations such as pause, rewind, and speed control.

Action List Player

You can fast-forward or rewind an

ActionListPlayer

 object. These
correspond to setting the time on the

ActionListPlayer

 object, for example,
given a player

alp

, the following statement sets the time of the player to 50:

alp.time := 50

This means “go to time 50”, and performs either a fast-forward or rewind
depending on where you started from—all actions are performed up to the
specified time, none are skipped.

Fast-forward simply plays all actions quickly up to the specified time.
However, rewinding is not so simple. Rewinding is accomplished by
rewinding to the very beginning of the action list and fast forwarding to the
specified time; this process can be slow for long action lists, but is necessary to
reconstruct the state.

Target List

The target list is specified by the

targets

 instance variable of

ActionListPlayer

:

alp.targets

meAction
ss

argetListAc-
n class
criptAction

ass

bounded

size

minSize

Members:

Instance Variables:

scriptAction1

scriptAction2

scriptAction3

scriptAction4

false

4

0

Instance of ActionList

myList[1]

myList[2]

myList[3]

myList[4]

posInfmaxSize

targets[1]

targets[2]

targets[3]

Instance of ActionListPlayer

actionList

authorData

rewindScripts

rate

Instance Variables:

undefined

empty

0

targets

myAlp myList

202

9

ScriptX Components Guide

Put only those objects onto the target list that you want to control with actions.
You can put any ScriptX objects on the list. They can be 2D presenters, stencils,
controllers, collections, or anything else. If an object is never acted on by an
action, then leave it off this list.

If you want several target objects to be treated as a single unit that can be
easily moved or modified as a group, add them to a

GroupPresenter

 object,
then add this object to the target list.

There two ways to add objects to a target list: statically, where you add objects
to the list before starting the action list player, and never remove them; and
dynamically, where you add objects to the list as it is playing and remove them
while it is rewinding. The following two sections describe these two
techniques.

Setting Up an Unchanging Target List

The simplest way to use an action list player is to add objects to the target list
initially, before playing it, and don’t add or remove objects thereafter. To
provide animation, change properties of the objects on the target list: location,
shape, any instance variable, or any function that can be run. For example, to
initially hide an object and then show it once the action list player begins, first
add the object to the target list, then create a function to hide the object at time
0 and show it at time 1 tick:

alp.targets[1] := new TwoDShape target:(new Oval x2:80 y2:80)

global hideShape := new ScriptAction script:(a t p -> hide t) \
targetNum:1 time:0

global showShape := new ScriptAction script:(a t p -> show t) \
targetNum:1 time:1

These two script actions hide and then show the first object in the target list (as
given by

targetNum:1

). The script is an anonymous function with three
arguments

a

 (the script action),

t

 (the target), and

p

 (the action list player), as
specified in the

ScriptAction

 class in

ScriptX Class Reference

.

The example “A Simple Flipbook” on page 204 shows this technique in greater
detail.

Changing the Target List on the Fly

Another technique for action list players is to add targets to the target list as it
plays forward and remove those targets as you rewind. If you rewind to a
point in time where a target object does

not

 exist, you must make sure that
object is disposed of during the rewind—otherwise, the object will still be there
when it shouldn’t be.

You can do this by adding objects to the target list using a

TargetListAction

 object and specifying a dispose function during rewind
using the

rewindScript

 instance variable, defined in that class. When you
create a target list action, you should provide both a script to create the object,

ewindScript
stance vari-
le (TargetLis-
ction)
argetListAc-
n class:re-
ndScript
stance vari-
le

203

Animation

9

and the

rewindScript

 function for disposing the object. The rewind script
has the same arguments as the

ScriptAction

 script. If you want it to remove
the target without adding another object, the function should return

undefined

; for example:

myAction.rewindScript := (action target player ->
deleteone target.presentedBy target
undefined

)

An array called

rewindScripts

 (defined in

ActionListPlayer

) is an
initially empty array that gets filled up with dispose functions as the action list
player plays. Then, during any rewind, all the rewind scripts are executed
before playing the action list player from the beginning of the action list.

The example “A Flipbook – Dynamically Changing the Target List” on
page 205 shows this technique in greater detail.

Registration Points

When animating a sequence of bitmaps or other stencils, it is often useful to
move their 0,0 origin of each bitmap from the default upper left corner to a
more meaningful place on the bitmap. You can then line up all the bitmaps at
their 0,0 points. For example, if you have a person walking across the screen,
you could put the registration point at the center of their hips.

In addition, if you set up several bitmaps with their 0,0 points set to
meaningful places, you could simply switch between the bitmaps and their
origins would all coincide. It’s common to switch between different-sized
bitmap targets of a 2D shape this way. The 2D shape that holds the bitmaps
would stay in the same place, but the bitmaps would be correctly aligned.

To set a registration point of a stencil, in general, set

x1

 and

y1

 to negative
values. To center a stencil, set those values to half the width and height.

For example, suppose

myBitmap

 is a bitmap, and, like most bitmaps, has its
origin at its top-left corner:

myBitmap := new Bitmap data:myData bBox:(new Rect x2:100 y2:100)

➯

[0, 0, 100, 100] as Rect

You can change this bitmap to have its 0,0 point at some other more interesting
point, such as its center, by first making a translation matrix and then
transforming the bitmap with it:

t := translate identityMatrix -50 -50
transform myBitmap t @mutate

Now the origin is at the bitmap’s center, and the top-left corner is no longer
0,0:

myBitmap.bBox

➯

[-50, -50, 50, 50] as Rect

ewindScripts
stance vari-
le (ActionList-
ayer)
ctionListPlay-
class:rewind-
ripts instance
riable

204

9

ScriptX Components Guide

Improving Animation by Setting Garbage Collection

If you are trying to get smooth animation in ScriptX, you should consider the
effect the Garbage Collector is having. For an animation with a frame rate of
30 fps, each frame takes 33 milliseconds. The

setGCincrement

 function
determines the amount of time the garbage collector runs before it yields to the
next thread. The default value for

setGCincrement

 is 20 milliseconds.
Therefore, whenever the Garbage Collector runs, you are going to lose most of
a frame (because the 20 milliseconds of Garbage Collector will take up much of
a frame’s time). You might try setting the Garbage Collector increment lower
(such as 10 ms) to get smoother animation.

Animation Examples

This section contains three examples of action list players—the first two change
the shape of a 2D shape, and a more elaborate example that uses an
interpolator controller to move a circle.

A Simple Flipbook

The following action list player creates a 2D shape and uses

ShapeAction

 to
change its shape over time, as in Figure 9-4. Compared to the next example,
this script is simple in that the shape is added to the target list before the
animation begins playing, and the contents of the target list does not change
either during play or rewind. However, properties of objects in the target list
do change; in particular, the 2D shape’s target changes from an oval to a
rounded rectangle, to a rectangle.

Figure 9-2: Changing a shape over time

The action list consists of six actions:

hideShape

 at time 0,

showShape

 and

makeOval

 at time 1 tick,

makeRect

 at time 30 ticks and

makeRoundRect

 at
time 60 ticks. The

hideShape

 and

showShape actions make the shape
disappear and reappear without actually removing the target myShape from
the target list alp.targets.

-- Filename: animshp1.sx
-- Create a window
global myWindow := new Window boundary:(new Rect x2:200 y2:200)
myWindow.y := 40
show myWindow

nimation:gar-
ge collection

arbage collec-
r:animation

onListPlayer
:sample script

mation compo-
sample script

0 1 60 ticks

hideShape showShape
makeOval

makeRoundRect makeRect

30

205

Animation 9

-- Create the ActionList and ActionListPlayer
global al := new ActionList
global alp := new ActionListPlayer actionList:al scale:30 targetCount:24

-- Create a blue circle and add it to the window and targets list
global myShape := new TwoDShape target:(new Oval x2:80 y2:80)
myShape.fill := new Brush color:blueColor
myShape.x := 60
myShape.y := 60
append myWindow myShape

-- Puts the shape on the target list
alp.targets[1] := myShape

-- Set an action to hide the shape at time 0
global hideShape := new ScriptAction script:(a t p -> hide t) targetnum:1 time:0

-- Set an action to show the shape at time 1
global showShape := new ScriptAction script:(a t p -> show t) targetnum:1 time:1

-- Set an action to set the shape to an oval
global makeOval := new ShapeAction targetNum:1 time:1 \

shape:(new Oval x2:80 y2:80)

-- Set an action to change its shape
global makeRoundRect := new ShapeAction targetNum:1 time:30 \

shape:(new RoundRect x2:80 y2:80 rx:30 ry:30)

-- Set another action to change its shape
global makeRect := new ShapeAction targetNum:1 time:60 \

shape:(new Rect x2:80 y2:80)

-- Append actions to the ActionList
append al hideShape
append al showShape
append al makeOval
append al makeRoundRect
append al makeRect

-- Play the ActionListPlayer
play alp

-- To play again, type: goToBegin alp

A Flipbook – Dynamically Changing the Target List

This example produces an animation identical to the previous example, but
uses the TargetListAction class to add targets to the target list while it is
playing, and a rewind script to remove targets from the list. These actions are
illustrated in Figure 9-4. Use this technique when you want to define an action
that occurs on rewind, to undo what occurred during play. This technique
dynamically adds and removes objects from the target list, while the previous
example keeps the target list constant. Normally, you would use this technique

argetListAc-
n class:sample
ript

206

9 ScriptX Components Guide

only if you couldn’t do what you want to do with the previous technique, since
this technique is more involved, requiring you to keep track of what’s on the
target list over time.

The new method called on TargetListAction puts the shape on the target
list. This statement is equivalent to alp.targets[1] of the previous example,
but also defines a rewindScript to empty the targets.

Figure 9-3: Changing a shape over time

-- Filename: animshp2.sx
-- Create a window
global myWindow := new Window boundary:(new Rect x2:200 y2:200)
myWindow.y := 40
show myWindow

-- Create the ActionList and ActionListPlayer
global al := new ActionList
global alp := new ActionListPlayer actionList:al scale:30 targetCount:24
alp.authorData := myWindow

-- Script to create a blue circle
function createCircle action target player ->
 (

 local myShape := new TwoDShape target:(new Oval x2:80 y2:80)
 myShape.fill := new Brush color:blueColor
 myShape.x := 60
 myShape.y := 60
 append player.authorData myShape
 myShape

)

function emptyOutTargets action target player ->
(

emptyOut player.authorData
emptyOut player.targets

)

-- Set action to create and add the circle to the targets
global addCircleToTargets := new TargetListAction targetNum:1 time:1 \

script:createCircle rewindScript:emptyOutTargets

-- Set an action to change its shape
global makeRoundRect := new ShapeAction targetNum:1 time:30 \

0 1 60

addCircleToTargets makeRoundRect makeRect

30

myShape myShape myShape

Rewinding calls

ticks

(empty)
targets

"emptyOutTargets"

207

Animation 9

shape:(new RoundRect x2:80 y2:80 rx:30 ry:30)

-- Set another action to change its shape
global makeRect := new ShapeAction targetNum:1 time:60 \

shape:(new Rect x2:80 y2:80)

-- Append actions to the ActionList
append al addCircleToTargets
append al makeRoundRect
append al makeRect

-- Play the ActionListPlayer
play alp

-- To play again, type: goToBegin alp

Animated Ball

The following action list player creates a circle and moves it three times,
returning it to where it started, then loops continuously, as in Figure 9-4. This
script uses the technique of keeping the target list unchanged.

Figure 9-4: Animated ball

This example demonstrates how targets do not have to be presenters—they can
be any ScriptX object. An interpolator controller appears as the only object on
the target list. The shape is added to this interpolator, to enable the interpolator
to move the shape. As shown in Figure 9-4, the controller is given three
different destination points by adding interpolator actions to the action list.
The animation loops back with an instance of TimeAction at time 200 which
jumps back to time 0.

Figure 9-5: Moving a shape over time using interpolator actions

onListPlayer
:sample script

mating ball script
mation compo-
sample script

(400, 300)

(400, 30)(20, 30)

0 75 200125 ticks

(400, 300) (400, 30) (20, 30)
InterpolateAction InterpolateAction InterpolateAction TimeAction

(jump to time 0)

208

9 ScriptX Components Guide

-- Filename: animatin.sx
-- Create the yellow window
global myWindow := new Window boundary:(new Rect x2:500 y2:400)
myWindow.fill := new Brush color:yellowColor
myWindow.y := 40
show myWindow

-- Create the ActionList and ActionListPlayer
global al := new ActionList
global alp := new ActionListPlayer actionList:al scale:30
alp.authorData := myWindow

-- Create a red circle
global myShape := new TwoDShape target:(new Oval x2:80 y2:80)
myShape.fill := new Brush color:redColor
myShape.x := 20
myShape.y := 30
prepend myWindow myShape

-- Create an interpolator controller for the window
global myInterp := new Interpolator space:myWindow clock:alp
append myInterp myShape

-- Put the interpolator on the target list
alp.targets[1] := myInterp

-- Create Interpolate actions and append them to the action list
-- Interpolate from time 0 to 75 ticks
append al (new InterpolateAction targetNum:1 time:0 \

destPosition:(new Point x:400 y:300) destTime:75)

-- Interpolate from time 75 to 125 ticks
append al (new InterpolateAction targetNum:1 time:75 \

destPosition:(new Point x:400 y:30) destTime:125)

-- Interpolate from time 125 to 200 ticks
append al (new InterpolateAction targetNum:1 time:125 \

destPosition:(new Point x:20 y:30) destTime:200)

-- At time 200 jump to time 0
append al (new TimeAction time:200 destTime:0)

-- Play the action list player
play alp

-- To increase its rate, try: alp.rate := 2

C H A P T E R

10
Transitions

210

10 ScriptX Components Guide

211

Transitions 10

The Transitions component provides the capability for visual effects when
adding a 2D presenter to a window, 2D space, or other kind of 2D
multipresenter. Examples of transitions include wipe, slide, barn door, and iris.
When a transition is played, it performs a series of renderings to gradually
cause the target presenter to appear.

This chapter describes the classes provided with the ScriptX core classes. Other
transition classes are available as loadable classes, and are described later in
this chapter: blinds, checkerboard, diamond iris, dissolve, fan, garage door,
push, random chunks, rect iris, rect wipe, strip slide, and strip wipe.

See the section “What The Transitions Look Like” on page 225 to see examples
of each one.

Classes and Inheritance

The class inheritance hierarchy for the Transitions component is shown in the
following figure.

ransitions
omponent

oadable
ansitions
ansi-

ons:loadable

ansitions
mpo-
nt:inherit-
ce diagram

Blinds

Checkerboard

DiamondIris

Dissolve

TransitionPlayer
TwoDPresenterPlayer

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

Fan

GarageDoor

Push

RandomChunks

RectIris

RectWipe

StripSlide

StripWipe

BarnDoor

Iris

Slide

Wipe

Loadable TransitionsCore Transitions

212

10 ScriptX Components Guide

The following classes form the Transitions component. In this list, indentation
indicates inheritance.

TransitionPlayer – an abstract player class that sets the speed and
boundary, and produces the individual frames of the transition.

BarnDoor (core) – reveals the target presenter by opening two vertical
doors from the middle or from the edges.

Blinds (loadable) - reveals the target presenter by opening vertical or
horizontal bands.

Checkerboard (loadable) - reveals the target presenter in a checkerboard
pattern.

DiamondIris (loadable) - reveals the target presenter using a diamond
opening.

Dissolve (loadable) - reveals the target presenter gradually as small,
random dots.

Fan (loadable) - reveals the target presenter by sweeping in a clockwise or
counter-clockwise fashion.

GarageDoor (loadable) - reveals the target presenter horizontally from the
cente ror edges.

Iris (core) – reveals the target presenter with a circular iris opening from
the center or from the edges.

Push (loadable) - reveals the target presenter by pushing it on-screen from
the given direction.

RandomChunks (loadable) - reveals the target presenter in random-size
squares, rectangles, columns or rows.

RectIris (loadable) - reveals the target presenter in a rectangular opening.

RectWipe (loadable) - reveals the target presenter in a rectangular wipe
from any of four corners.

Slide (core) – reveals the target presenter by sliding it left, right, up, or
down onto the screen.

StripSlide (loadable) - reveals the target presenter by sliding strips
together from the side.

StripWipe (loadable) - reveals the target presenter by wiping it into view
with either horizontal or vertical strips.

Wipe (core) – reveals the target presenter by wiping it onto the screen,
wiping left, right, up or down.

213

Transitions 10

Conceptual Overview

A common effect in multimedia titles is to gradually transition an image in or
out of a scene, as shown in Figure 10-3. This visual effect adds to the continuity
of a title, in contrast to the visually abruptness when an object is suddenly
added or deleted. ScriptX supplies the built-in transitions as subclasses of
TransitionPlayer: Wipe, Slide, BarnDoor, and Iris. ScriptX also offers many
loadable transitions that are not part of the core classes, including dissolve,
checkerboard, blinds, diamond iris and strip wipe.

These subclasses provide the mechanisms for transitioning from one frame to
the next, producing the individual frames of the transition, and setting the
speed and boundary of the transition.

Figure 10-1: A 60-tick wipe transition from left to right

Since they operate over time, transitions are implemented as players—you can
perform any player operations on a transition: play, pause, stop, rewind, fast
foward, go to beginning, and go to end. In addition, transitions inherit from
TwoDPresenter so that they can be added to any presentation collection, such
as a window, group presenter or 2D multi-presenter.

Every transition operates in a window, or other 2D multipresenter, and has a
target, which is the presenter that is being transitioned into that space. At each
frame of the player, the transition renders a new image, revealing more of the
target.

How Transitions Work

This section describes in general how transitions work. A step-by-step
description of how to set up and use a transition, as well as a full, working
sample script is included at the end of this chapter in the section “Using the
Transitions Component.”

Revealing a Target

A transition is a visual effect that gradually adds a 2D presenter to a window
or other kind of presentation collection. The 2D presenter being revealed by the
transition is specified by the target instance variable. In the following
example, myOval is the target being revealed.

global myOval := new TwoDShape target:(new Oval x2:200 y2:200) \
stroke:blackBrush

global myWipe := new Wipe duration:30 direction:@right \

ansition-
ayer class

ansitions:il-
tration

0 ticks 20 ticks 40 ticks 60 ticks

backward
forward

ansi-
ns:how they

ork

214

10 ScriptX Components Guide

target:myOval scale:30

When a transition is played, it performs a series of renderings to gradually
cause the target presenter to appear. Most transitions have a direction—the
wipe in Figure 10-3 has its direction instance variable set to @right, which
makes it travel from left to right. The transition is limited in area, occurring
only within the boundary of the target presenter. The target presenter can be
any 2D presenter—a text presenter, a still image, an animation, or a video
image.

You place a transition in a presentation hierarchy in the position where you
want its 2D presenter to appear. In other words, if you want a bitmap of a car
to appear in front of a background roadway but behind a fence, you would
place the transition in the hierarchy where you want the car to appear.

Performance and smoothness of transitions can be improved by setting the
direct instance variable to true. This causes the transition to bypass the
frame buffer and be drawn directly to the screen. The tradeoff is that the object
being transitioned will appear in front of any other overlapping objects, if any.
Dissolve is a direct transition, and its target will be drawn in front of any other
objects in its window. All transitions except Dissolve have direct set to false
by default. Dissolve must have direct set to true (setting direct to
false causes an exception to be thrown when it is played). If the transition or
its target is a direct presenter, the target should not have any other objects in
front of it.

You can transition a presenter out of a space by setting the presenter as the
target and setting the transition’s rate to a negative value, which plays the
transition backwards, as described later in “Using a Transition to Make the
Target Disappear.”

To perform a transition on an entire window, create a 2D multi-presenter (or
other presentation container) the same size as the window and perform the
transition on that.

Transitions are not automatically coupled with audio effects. If you want the
audio to fade in as an image is gradually appearing, you must set up that
audio transition yourself, for example, as a script that increases the volume
over time.

A Transition Is a Clock

TransitionPlayer inherits eventually from Clock, which means it keeps
track of its own time. Transitions are master clocks by default—when you
create a transition, its masterClock instance variable is undefined, and it
remains that way when you add it to a presentation (it is not made a slave of
the window’s clock). When you add a master clock either directly or indirectly
to a title, it gets added to the title’s topClocks instance variable. This allows
the transition to pause when you pause the title.

215

Transitions 10

Time and Frame of a Transition

A transition inherits the time and rate instance variables from the Clock
class. It also inherits from Player methods such as play (sets rate to 1),
stop (sets rate to 0), goToBegin (sets time to 0) and goToEnd (sets time to
duration).

When a transition is playing forward (normally, rate is set to 1), the visual
effect starts when time is equal to 0, and ends when time is equal to
duration. Therefore, if you wanted to insert a delay of 30 ticks before the
transition, you could initially set time to –30.

The frame instance variable specifies what frame the transition is currently at.
It ranges from a value of 0 at the start to duration at the end of the transition.
Thus, if the duration is set to 30 ticks, when a transition reaches the end, the
value of frame will be 30.

When you first create a transition, it is stopped (rate is 0), time is 0 and
frame is 0. When you play a transition (set rate to 1), the value of both time
and frame begin incrementing—the value of frame stops incrementing when
its value reaches duration, while time continues incrementing. For example,
if duration is set to 30, although the visual effect ends at frame 30, time
keeps on incrementing. To play the transition over again, call goToBegin on it,
which sets time to 0—it will play immediately, since its rate is still 1.

Duration and Smoothness of a Transition

A transition’s duration in ticks is specified by its duration instance variable,
where there are scale number of ticks in a second (if the transition’s clock is a
master clock, which they are by default). In other words, the length of time in
seconds that a transition takes is equal to the duration instance variable
divided by the scale instance variableof the transition player. For example, a
transition with duration set to 60 and scale set to 30 will take 2 seconds.

The smoothness of a transition is equal to the scale times the length of the
transition. For example, a wipe transition with a length of 2 seconds and a
scale of 30 frames per second has 60 overall steps from start to finish. The more
steps to the the transition, the smoother the transition will appear.

Using a Transition to Make the Target Disappear

In all transitions, the target appears as the transition is played forward. If, on
the other hand, you want the target to disappear, you can play the transition
backwards, as in Figure 10-3, by setting its rate to a negative number. The
transition will play backward even though the rest of the title is playing
forward because you are setting the rate of the transition to a negative value
but leaving the rate of the window’s clock set to a positive value.

Transitions that have a random element to them cannot be played backwards,
including Dissolve and RandomChunks.

ransition-
ayer
ass:time in-
ance vari-
ble
me instance

ariable:(Tran-

ransition-
ayer
ass:frame in-
ance vari-
ble
ame in-

ance vari-
ble:(Transitio
Player)

uration in-
nce vari-
le:
ansitionPlay-

ansition-
ayer
ass:duration
tance vari-

ansi-
ons:played
ackwards

216

10 ScriptX Components Guide

Figure 10-2: The same wipe transition shown earlier, but played backwards.

For example, to play a transition backward, first stop it, go to its end, and then
set its rate to –1:

stop myWipe
goToEnd myWipe
myWipe.rate := -1

This causes the target to disappear, with the visual effect going the opposite
direction—a wipe with direction set to @right would go to the left instead
of the right. However, this transition does not delete the hidden presenter—
this is described in the next section.

Therefore, you can create a loop that causes a presenter to alternately transition
in and out by creating a callback that reverses the transition’s rate when frame
is equal to duration, and another callback at time 0 to reverse the rate again.

Another way to transition an existing presenter out of a space is to specify the
background image as the target and transition in the background, in front of
the presenter.

Deleting a Hidden Presenter

There are two cases where a presenter can become hidden during a transition:

• When transitioning forward, an object can become hidden behind the target
that is being revealed, as in Figure 10-3.

• When transitioning backward, the target is no longer visible, but the
transition player still exists in the presentation hierarchy, as in Figure 10-3.

In both of these cases, just because the object is hidden does not mean that it
has been removed from the presentation hierarchy (that is, window). If you
want the hidden object to be deleted, you must explicitly delete it yourself—
the transition does not remove it for you.

Figure 10-3: The new square covers up the star.

The following script shows how to set up a callback to delete the star after
transitioning in the square. The first expression creates the wipe transition,
which has the square as its target. Next the wipe is prepended to the star’s

217

Transitions 10

presentation collection. Then a function named delObj is created to delete an
object. The addTimeCallback method sets the delObj function to execute
when the transition is complete, at the time determined by
myTransition.duration. (If you were playing the transition backward, you
would set the function to execute when the value of time is 0.)

Then playPrepare is called to prepare the transition, and play is called to
start the wipe. When the transition’s time reaches wipe.duration, it calls the
function delObj on star, deleting it.

global myWipe := new Wipe direction:@right duration:30 target:square scale:30
prepend star.presentedBy myWipe
function delObj objToDel -> (deleteOne objToDel.presentedBy objToDel)
addTimeCallback myWipe delObj star #() myWipe.duration false
playPrepare myWipe 1
play myWipe

Splicing the Target into the Space

When you set up a transition in a window, the window holds the transition,
which holds the 2D presenter, as shown on the left side of Figure 10-4. When
you play the transition, the 2D presenter is displayed in the window. By
default, when the transition is done, it stays in the window and is not
deleted—this corresponds to the autoSplice instance variable being set to
false. The advantage of keeping the transition is that you can play the
transition again, perhaps with a new target, or play the transition backwards to
remove the target.

However, when the transition is done, if you no longer want or need it, you
can remove the transition from the window and “splice” the 2D presenter in its
place, as shown on the right side of Figure 10-4. You can either do this yourself
using addTimeCallback, or set autoSplice to true. Either way
automatically splices in the 2D presenter at the completion of the transition.

Figure 10-4: Removal of TransitionPlayer from Window when autosplice is true.

ransitionPlay-
class:au-
Splice
stance vari-
ble
utoSplice in-

ance variable
ansitionPlay-
)

Before Playing Transition

Target

Window

TransitionPlayer

After Transition with AutoSplice True

TwoDPresenter

Target

Window

TwoDPresenter

Arrow indicate ”has an instance variable referring to”

218

10 ScriptX Components Guide

Offscreen Cached Target

The useOffscreen instance variable is a Boolean that allows you to control
whether an offscreen bitmap copy of the target is made, which is then
transitioned into the presenter. Using an offscreen bitmap can be more efficient
and produce smoother transitions in certain circumstances, but uses more
memory, than not using an offscreen bitmap. With useOffscreen set to true,
the offscreen bitmap is assigned to the cachedTarget instance variable. A
cache is an area of memory where a bitmap snapshot of the image is held. This
bitmap is created either when you play the transition, or when you call
playPrepare. Call playPrepare prior to calling play, when
synchronization is important, so that the work of creating the bitmap is done
ahead of time.

The useOffscreen instance variable is false by default, to conserve
memory. If memory is tight and the target is large, you may want to set
useOffscreen to false so it does not create a cached target.

Keep useOffscreen set to false if the target presenter is:

• Static and simple

• Large and memory is tight (not enough memory for a cached bitmap)

Set useOffscreen to true if the target presenter is:

• Static and complex, composed of many objects

Transitions with useOffscreen set to false do not work well for direct
presenters, such as video (which is a direct presenter by default). For video you
should either set its direct instance variable to false, or freeze its motion by
setting useOffscreen to true.

The invisibleColor and matteColor instance variables may need to be set
in order for the cached target to appear without a rectangular border around it;
these instance variables are defined in the Bitmap class.

Note – Setting useOffscreen to true might yield better performance even
for simple targets.

The backgroundBrush instance variable specifies the brush used for the
background of the cached target, which is a bitmap surface. Set this brush
when transitioning a white target to something other than white, and use its
color for the invisible color. For targets that are not white, background brush
does not need to be set. The example in the next section demonstrates
backgroundBrush.

Moving Target

The movingTarget instance variable specifies whether the entire region that
has been redrawn since the start of the transition is updated with each frame.
If the value of movingTarget is true, then a target presenter that is changing

ransitionPlay-
class:useOff-
reen instance

ariable
seOffscreen
stance vari-
ble (Transition-
ayer)
ransitionPlay-

ass:cached-
rget instance

ariable
achedTarget

stance vari-
ble (Transition-

ransition-
ayer-
ass:backgrou
dBrush in-
ance variable
ackground-
ush instance

ariable (Transi-
onPlayer)

ransitionPlay-
class:moving-
rget instance

ariable
movingTarget
stance vari-
ble (Transition-
ayer)

219

Transitions 10

is updated with each frame. For example, if a transition player is being used to
add a movie player to a space, and the value of movingTarget is true, then
the movie is updated with each frame.

By default, the value of movingTarget is false. When movingTarget is
false, only the part of the target presenter that actually changes with each
frame is updated. For example, if the target presenter is drawn in with a wipe,
the Wipe transition player updates only the new strips that are shown.

Using the Transitions Component

This section explains how to set up a transition and gives two examples of how
you can use transitions in your scripts.

Setting up a Transition

The following steps show how to set up a transition, using Wipe as an
example. When you play the wipe transition myWipe, it gradually makes the
target presenter myOval appear in the space myWindow.

1. Create an instance of the transition, which can be any subclass of
TransitionPlayer. Then set the duration and any other unique attributes
that particular effect might have. The duration in seconds of this transition
is 1 second (duration divided by scale).

global myWipe := new Wipe duration:30 \
direction:@right \
target:myOval \
useOffscreen:true \
scale:30

myWipe.backgroundBrush := redBrush

Setting the value of useOffscreen to true means that the transition will
make an offscreen copy of the target before playing the transition.

At this point you could also set myWipe.autoSplice to true, if you
wanted (as shown in Figure 10-4). When autoSplice is set true, the target
presenter would replace the TransitionPlayer object at the end of the
transition.

2. Add the transition to the space where you want the target to appear.

prepend myWindow myWipe

3. Since you had set useOffscreen to true in step 1, you have the option of
preparing the effect by creating the offscreen bitmap (cachedTarget):

playPrepare myWipe 1

4. Set the color in the cachedTarget bitmap that you want to be invisible.
The offscreen bitmap created in the previous step looks identical to the
target except for transparency and matte effects. The bitmap has a white

ansitions:set-
g up

220

10 ScriptX Components Guide

rectangle enclosing the image, which looks fine for transitions over a whole
space. However, if this rectangle is unsuitable, and you want it hidden, you
can specify that the color white be made invisible by setting the
invisibleColor instance variable (defined on the Bitmap class) to
whiteColor. However, if you want your target to be white, you will need
to set the background brush to some other color, and use that color for your
invisible color. For targets that are not white, background brush doesn’t
need to be set, but can be set to produce interesting effects. (Note that this
step must be done after playPrepare.)

myWipe.cachedTarget.invisibleColor := redColor

5. Play the transition. The target is transitioned into the space as follows: The
transition player keeps track of time and tells the effect where it should be at
each moment. By virtue of being in the space, the transition player is told by
the compositor to draw, which in turn tells the transition effect to draw,
which draws a different amount of the cached target each time.

play myWipe

By virtue of being a clock, a transition has a time instance variable. After
the wipe transition plays to completion, its time instance variable continues
incrementing.

6. After the transition is complete, since autoSplice is false (the default),
the TransitionPlayer object remains in the space exactly as it was at the
start of the transition, and can be replayed by calling:

goToBegin myWipe

This sets the transition’s time instance variable to 0, and since the
transition’s rate is still 1, it begins playing again immediately.

If autoSplice were set to true in step 1, the target presenter would
replace the TransitionPlayer object, and you would not be able to
re-play the transition using goToBegin.

If, at the end of the transition, you want to remove a presenter from the space
(perhaps because the new presenter completely covers it), you can remove it by
writing a time callback with a function that deletes the object at the
appropriate time. Refer to “Deleting a Hidden Presenter” on page 216 for more
details.

Making the Target Disappear

In the previous example, the oval appears as the transition is played. To make
the oval disappear, you can simply play the transition backwards.

For example, to play previous transition backward, stop it, go to its end, and
set its rate to –1:

stop myWipe
goToEnd myWipe

utoSplice in-
nce vari-
le
ansitionPlay-

ansition-
ayer
ass:au-
Splice in-
nce

ansi-
ons:making
e target dis-
ppear

221

Transitions 10

myWipe.rate := -1

This causes the oval to disappear with a wipe effect from right to left, the
opposite as before.

Even though the oval disappears from view, the transition is not removed from
the window. To remove the transition, write a function to delete it from the
window, and call addTimeCallback on the transition to trigger that function
after the transition has played, as described in “Deleting a Hidden Presenter”
on page 216.

Performing a Transition on an Existing Collection

With the technique shown so far, the target is a separate object to be added or
deleted—it is either absent at the start and transitioned in (when playing
forward) or present at the start and transitioned out (when playing backward).
What do you do if you simply want to perform a transition on an entire
collection that is not being added or removed? Using the previous technique,
you would have to make a deep copy of the collection, transition it in, then
delete the original collection. It is not only difficult to make a deep copy of a
collection of presenters, but it also wastes time and memory when all you want
to do is modify the existing objects. This technique can be useful for
performing a transition on a card in a cards-and-stacks title.

The following technique shows you how to perform a transition on an existing
collection by fooling the compositor. It is particularly useful when altering a
complex presenter or presentation collection, such as a 2D multi-presenter, 2D
space, group presenter, or group space.

In short, the technique is as follows:

1. Set up the window as you want it to appear before the transition begins.
Then disable the compositor to prevent it from updating the window when
the following change happens.

2. Remove the presentation collection from the window, make the collection
the target of a new transition, and add the transition back into the window
with autoSplice set true.

3. Set the changed flag of the transition to false to again fool the compositor,
so it doesn’t realize a change has been made.

4. Enable the compositor.

5. Change the contents of the presentation collection as you wish.

6. Prepare the transition, then set direct of the transition to true.

7. Play the transition.

Figure 10-5 illustrates this technique—it depicts a 2D multi-presenter that
contains some bitmaps that transition from daylight to nighttime. Here, the
colors in the bitmaps are changed and a car is removed and replaced by a
motorcycle. The 2D multi-presenter is contained inside a window.

ansi-
ons:technique
r altering an

xisting collec-
on

222

10 ScriptX Components Guide

Figure 10-5: Performing a wipe transition on an existing collection.

The following example is an extremely simplified version of Figure 10-5—it has
a window that contains a 2D multi-presenter and a rectangle. The transition
uses a wipe to change the background fill, remove the rectangle and replace it
with an oval. This technique avoids having to create a second 2D
multi-presenter as the transition’s target.

1. Start out with the original 2D multi-presenter in a window:

myWindow := new Window
show myWindow
global myMulti := new TwoDMultiPresenter \

boundary:(new Rect x2:400 y2:300) \
fill:(new Brush color:yellowColor)

prepend myWindow myMulti
global myBox := new TwoDShape target:(new Rect x2:300 y2:200) \

fill:(new Brush color:greenColor)
myBox.x := 50
myBox.y := 50
prepend myMulti myBox

Disable the compositor. This does not delete the 2D multi-presenter from
memory—it merely removes it from the window.

myWindow.compositor.enabled := false

2. Remove the 2D multi-presenter from the window, then create the transition
player, set its target to myMulti, set autoSplice to true, and add the
transition player to the window. Because the transition has not yet been
played, its target will not be visible. Once the transition is played, its target
will be revealed.

deleteOne myWindow myMulti
global myWipe := new Wipe duration:30 direction:@right scale:30
myWipe.target := myMulti
myWipe.autoSplice := true
prepend myWindow myWipe

3. Set the changed flag false for the transition. This prevents the compositor
from knowing that you changed the transition.

myWipe.changed := false

4. Enable the compositor. Even though it is enabled, the compositor does not
think the screen needs to be refreshed. Do not move any objects in the window,
because that would cause myMulti to be erased.

223

Transitions 10

myWindow.compositor.enabled := true

5. Make whatever changes you want to the 2D multi-presenter. Any changes
you make will not appear until you play the transition.

myMulti.fill := new Brush color:redColor
deleteOne myMulti myBox
global myOval := new TwoDShape target:(new Oval x2:300 y2:200) \

fill:blackBrush
myOval.x := 50
myOval.y := 50
prepend myMulti myOval

6. Prepare the transition and set direct to true. Setting direct after
playPrepare causes the original 2D multi-presenter to remain visible until
the transition is done. (If you want the original 2D multi-presenter to disappear
at the start of the transition, you can omit that statement or move it earlier.)

playPrepare myWipe 1
myWipe.direct := true

7. Play the transition:

play myWipe

Calling play causes the transition to replace the old contents of the 2D
multi-presenter with its new contents. In this case, the rectangle is replaced by
the oval, and the background fill changes color.

Loadable Transitions

This section describes the loadable transition classes provided with ScriptX.
These classes are C code extensions to ScriptX. The loadable transition classes
enable you to create new instances of transitions not available in the core
classes, and are alternatives to the built-in transitions.

All loadable transition classes are subclasses of TransitionPlayer. The
loadable transitions support the instance variables and methods in
TransitionPlayer, such as the instance variables duration and
direction, and the methods play, stop, pause and rewind.

How to Load Transitions

The loadable transition classes are written in C and saved as C library files. You
can load them seamlessly into the ScriptX runtime environment. To load the
transition classes, execute the following expression:

process (new Loader) "loadable/trans"

224

10 ScriptX Components Guide

As shown in Figure 10-6, the transition files resides in a machine-specific
directory (mac or win) within the trans directory in the loadable directory.
The loadable directory must be in the same directory as the ScriptX
application. Each machine-specific folder contains the following three files:

• group is the text file with load instructions.

• ltrans.lib is the C library file of machine-independent loadable transitions.

Machine-independent means the C source file is the same for all platforms, but is compiled for the

specific platform.

• mdltrans.lib is the C library file of machine-dependent loadable transitions.

Figure 10-6: Loadable transitions are located in the "loadable" directory.

This previous expression for loading the transitions that contains the process
method is equivalent to the following series of expressions:

-- Create a new instance of Loader
global myLoader := new Loader

-- Runs the text file "group" in "loadable" directory, "trans" subdirectory
global myGroup := getGroup myLoader "loadable/trans"

-- Gets the machine-independent loadable unit named "ltrans" from myGroup
global unit1 := getLoadableUnit myGroup "ltrans"

-- Loads unit1 from myGroup, returns ID if successful
global firstID := loadModule myLoader mygroup unit1

-- Gets the machine-dependent loadable unit named "mdltrans" from myGroup
global unit2 := getLoadableUnit myGroup "mdltrans"

-- Loads unit2 from myGroup, returns ID if successful
global secondID := loadModule myLoader mygroup unit2

loadable

trans

Directory of loadable units

Transitions subdirectory

Machine-specific subdirectories

Machine-specific files

mac

group mdltrans.libltrans.lib

win

group mdltrans.libltrans.lib

225

Transitions 10

What The Transitions Look Like

BarnDoor (Core)

The target gradually appears as vertical doors open from the center (@open) or
from the edge (@close) when playing forward. To make the target disappear
instead, set the transition’s rate to -1.

Directions: @open, @close

Blinds (Loadable)

The target gradually appears as vertical (@vertical) or horizontal
(@venetian) bands when playing forward. To make the target disappear
instead, set the transition’s rate to -1.

Directions: @venetian, @vertical

Checkerboard (Loadable)

The target gradually appears using a checkerboard effect when playing
forward, as shown below. To make the target disappear instead, set the
checkerboard’s rate to -1.

Directions: (none)

Rate: Can play forward or backward.

@close

@open

226

10 ScriptX Components Guide

DiamondIris (Loadable)

The target gradually appears using a diamond effect. To make the target
disappear instead, set the transition’s rate to -1. The @open and @close
directions playing forward are shown below:

Directions: @open, @close

Rate: Can play forward or backward.

Dissolve (Loadable)

The target gradually appears as small, random dots, as shown below. Dissolve
cannot be played backward.

The dissolve transition has certain restrictions not found in other transitions.
During the dissolve transition, all clocks freeze. In addition, the duration of the
dissolve transition is not adjustable—the duration instance variable is
ignored; the dissolve progresses as fast as the processor allows. The duration of
the transition is shorter on faster machines.

When you create an instance of Dissolve, you must set the useOffscreen
keyword to true. A cache is made of the target presenter—the cache is a
frozen image of the target used for the duration of the dissolve.

The direct instance variable is automatically set to true for dissolve. With
direct set to true, the cached target is drawn directly to the window, in front
of other presenters it might overlap.

If another window can possibly overlap in front of the dissolve region, you
should call playPrepare on the dissolve transition before playing it—this will
prevent the front window from being overwritten by the dissolve.

Directions: (none)

Rate: Must be zero or positive. Cannot play backward.

@open

@close

227

Transitions 10

Fan (Loadable)

The target gradually appears, swept in a clockwise or counter-clockwise
fashion. To make the target disappear instead, set the fan’s rate to -1. The
@clockwise direction playing forward is shown below:

Directions: @clockwise, @anticlockwise

Rate: Can play forward or backward.

GarageDoor (Loadable)

The target gradually appears horiztonally starting either from the center or
from the top and bottom edges. To make the target disappear instead, set the
transition’s rate to -1. The @open and @close directions playing forward are
shown below:

Directions: @open, @close

Rate: Can play forward or backward.

Iris (Core)

Has an effect like the iris of a camera opening, as shown below. You set the iris
to open one of two different ways by setting the value of direction to either
@open or @close.

@open

@close

228

10 ScriptX Components Guide

Push (Loadable)

The target gradually appears, as if pushed onto the screen from the given
direction. To make the target disappear instead, set the push’s rate to -1. The
@left direction playing forward is shown below:

Directions: @right, @left, @up, @down

Rate: Can play forward or backward.

RandomChunks (Loadable)

The target gradually appears as random-size squares, rectangles, columns, or
rows. To make the target disappear instead, set the transition’s rate to -1. The
@rects direction playing forward is shown below:

Directions: @squares, @rects, @columns, @rows

Rate: Must be zero or positive. Cannot play backward.

RectIris (Loadable)

The target gradually appears either from the center outward or from the edges
inward. The iris’s ratio of width-to-height is the same as the target’s
width-to-height. To make the target disappear instead, set the transition’s rate
to -1. The @open and @close directions playing forward are shown below:

@close

@open

229

Transitions 10

Directions: @open, @close

Rate: Can play forward or backward.

RectWipe (Loadable)

The target gradually appears, wiped into view toward the given direction. To
make the target disappear instead, set the transition’s rate to -1. The
@southeast direction playing forward is shown below:

Directions: @northeast, @southeast, @southwest, @southeast

Rate: Can play forward or backward.

Slide (Core)

The presenter slides onto the screen. You specify the direction in which the
target slides by setting the direction to @left, @right, @up, and @down, as
shown below. For example, @left means the target image slides onto the
screen moving to the left.

@open

@close

230

10 ScriptX Components Guide

StripSlide (Loadable)

Two parts of the target gradually slide together toward the center from
opposite sides. To make the target disappear instead, set the transition’s rate to
-1. The @horizontal direction playing forward is shown below:

Directions: @horizontal, @vertical

Rate: Can play forward or backward.

StripWipe (Loadable)

The target gradually appears, wiped into view with either horizontal or
vertical strips. To make the target disappear instead, set the transitions’s rate to
-1. The @horizontal direction playing forward is shown below:

@right

@left

@up

@down

231

Transitions 10

Directions: @horizontal, @vertical

Rate: Can play forward or backward.

Wipe (Core)

The target is drawn incrementally onto the screen. You specify the direction in
which the transition occurs by setting its direction instance variable to
@left, @right, @up, or @down, as shown. For example, @left means that the
target image wipes onto the screen from right to left.

Transition Example

The following is a complete, working example that demonstrates a simple
transition.

A Simple Transition

The following script creates a window, displays a red rectangle, then creates an
oval and wipes the oval into view from left to right in front of the rectangle, as
shown in Figure 10-7. To play the transition again, type: goToBegin myWipe.

@right

@left

@up

@down

ansition-
ayer
ass:sample
ipt
ansi-
ns:sample
ipt

232

10 ScriptX Components Guide

Figure 10-7: The oval is wiped into view

For demonstration purposes, this transition sets useOffscreen to true,
meaning that it creates a cached target, to show how invisibleColor must
be set to the same value as backgroundBrush. (In this example you would
normally leave useOffscreen set to false, because the target being
transitioned in is simple enough to run without a cache.)

-- Set up a window
global myWindow := new Window boundary:(new Rect x2:400 y2:400)
myWindow.y := 40
show myWindow

-- Create a red rectangle
global redBrush := new Brush color:redColor pattern:blackPattern
global myRect := new TwoDShape target:(new Rect x2:300 y2:300) fill:redBrush
 myRect.x := 50
 myRect.y := 50
append myWindow myRect

-- Create a white circle
global myOval := new TwoDShape target:(new Oval x2:200 y2:200) \
 fill:whiteBrush stroke:blackBrush
 myOval.x := 100
 myOval.y := 100

-- Make the transition
global myWipe := new Wipe duration:30 direction:@right target:myOval scale:30 \
 useOffscreen:true
myWipe.backgroundBrush := redBrush
prepend myWindow myWipe

-- Prepare the transition by creating the cached target
playPrepare myWipe 1

play myWipe

--To play again, type: goToBegin myWipe

C H A P T E R

11
2D Graphics

234

11 ScriptX Components Guide

235

2D Graphics 11

The 2D Graphics component provides the classes that enable you to draw
images to a surface, be it a visible surface such as a window’s display surface,
or an offscreen surface.

The ScriptX imaging system uses a stencil-and-paint brush imaging metaphor.
The stencil is the image to be rendered, and the paint brush indicates the color
and pattern to render it with. In addition, each stencil must be presented by a
presenter.

The predefined stencils provided by ScriptX included rectangles, rounded
rectangles, lines, ovals, text stencils, curves, and paths. Paths can consist of any
number of lines, curves, and splines, and can be open-ended or closed. The
predefined stencils also include bitmaps, which are images that you generate in
an external program, such as a paint, photo-editing, or scanning program. You
bring bitmaps into ScriptX by using the importer.

Each kind of image is represented as a subclass of Stencil, such as Rect,
RoundRect, Line, and Bitmap. Paint brushes are represented by Brush
objects, that have color, pattern, and inkmode attributes. Stencils are presented
by 2D presenters, such as TwoDShape objects, which presents a single stencil.

Stencil objects work in close conjunction with TwoDPresenter objects. This
chapter talks about the TwoDPresenter class and the TwoDShape class as
much as is necessary to explain how to present stencils to a surface. The
TwoDPresenter class is discussed in detail in Chapter 3, “Spaces and
Presenters.”

Classes and Inheritance
The class inheritance hierarchy for the 2D Graphics component is shown in the
following figure.

D Graphics:
e Two D

raphics
wo D Graph-

s component
raphics facili-
s:see also 2D

raphics com-
nent

$nopage>

236

11 ScriptX Components Guide

The following classes form the 2D Graphics component. In this list, indentation
indicates inheritance.

Surface – An abstract rendering plane that defines the basic drawing operations:
fill, stroke, and transfer.

BitmapSurface – A surface representing an area of memory that can be
drawn onto.

DisplaySurface – A surface representing a drawing area on the screen of
a particular graphic device. In windowing environments, represents a
window.

Point – A point in a 2D coordinate system, used for positioning or rendering.

Stencil – An image to be rendered onto a surface.

Bitmap – A stencil containing pixel values that either map to colors in a
particular color space or color map, or that map to colors directly. Bitmaps
can also define an invisible value and a matte value for transparent pixels.

ClippedStencil – A stencil representing two stencils—one of which is
used to clip the other.

Curve – A stencil representing a cubic Bézier curve.

Line – A stencil that represents a straight line.

Oval – A stencil that represents an oval or circle.

TextStencil

Curve

Path

Oval

Rect

Stencil

Bitmap

BitmapSurface

DisplaySurface

Surface

Line

RoundRect

Region

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

RootObject RootObject

Point

TwoDMatrix

Brush

Colormap

Color

RGBColor

RootObject

ClippedStencil

wo D Graph-
s compo-
nt:inheritance
agram

urface class

itmapSurface
ass

DisplaySurface
ass

oint class

tencil class

itmap class

ippedStencil
ss

Curve class

ineclass

val class

237

2D Graphics 11

Path – A stencil representing a general path made of straight lines, arcs,
curves, and splines. Paths may be continuous or discontinuous, and open or
closed.

Rect – A stencil representing a rectangle with right-angle corners.

RoundRect – A stencil representing a rectangle with rounded corners.

Region – A stencil representing an arbitrary geometric shape.
Transformations performed on other kinds of stencils often return Region
objects.

TextStencil – A stencil representing non-editable text defined by a font
and a character string.

Brush – A combination of parameters and objects, such as color, pattern,
transfer mode, and line-width, used in stroking or filling stencils onto a
surface.

Color – A generalized representation of color.

RGBColor – A color subclass representing any RGB or grayscale color value.

Colormap– An array of Color objects that can be used as mappings from pixel
values in a Bitmap instance to a particular color space.

TwoDMatrix – An affine matrix for manipulating 2D coordinates, providing
both affine transformations—translation, scaling, and rotation—and non-affine
transformations.

Conceptual Overview
In the ScriptX imaging model, the form or shape of an image is defined by a
stencil. Like a physical stencil, a ScriptX stencil represents a potential image. To
actually draw the image, you render the stencil to a surface. This rendering is
done by a presenter, which determines what brush (paint) to use to fill the
image and paint its outline. The stencil-and-paint brush model is illustrated in
Figure 11-1.

ath class

Rect class

RoundRect class

gion class

extStenci classl

rush class

Color class

RGBColor class

Colormap class

woDMatrix class

ging model

238

11 ScriptX Components Guide

Figure 11-1: The ScriptX imaging model

How 2D Graphics Objects Work

For simple images, you use a TwoDShape object to present a Stencil object,
such as a Rect, Line, or Oval. A TwoDShape object has a boundary instance
variable that specifies the stencil to be rendered. A TwoDShape object also has
a fill instance variable that holds the brush for filling the stencil, and a
stroke instance variable that holds the brush for painting the stencil’s outline.

To display a TwoDShape on the screen, add it to a visible space, such as a
window, or any other kind of space or presenter that is ultimately embedded in
a window.

The following code shows how to display an oval that is 100 pixels wide by 50
pixels high in a window. The oval is filled in white and has a black outline (or
stroke). The top left corner of the rectangle that completely encloses the oval
(that is, its bounding box) is positioned at the point (50, 50) in the window.

-- create and show the window
global w := new window
show w

-- create the oval stencil
global oval1 := new oval x2:100 y2:50

-- create a presenter to present the stencil
global shape1 := new TwoDShape boundary:oval1 \

fill:whiteBrush stroke:blackBrush

-- position the presenter
shape1.x := 50
shape1.y := 50

stencil

surface

position

brush
paint

image

hapes:displaying
mages:see also shape

239

2D Graphics 11

-- add the presenter to the window
prepend w shape1

The presenter of a stencil determines where the stencil is drawn, and what
brushes are used to fill it and paint its outline. The stencil itself simply
determines the kind of image to be drawn, and also its position relative to its
presenter’s coordinate system. (See “Positioning Images” on page 239 for more
information on coordinate system’s.)

Each window has a compositor (specifically, an instance of the class
TwoDCompositor) that is responsible for keeping the visible contents of the
window up to date. Whenever a presenter in the window changes in any way,
for example, its position or fill changes, the compositor calls the draw method
on the presenter. The draw method in turn calls the fill, stroke, and/or
transfer methods to render stencils to the surface of the window. The
invocation of the draw method, and subsequent invocations of fill, stroke,
and transfer all happen automatically behind the scenes as needed. You
never need to call the draw method directly.

The predefined presenter class TwoDShape presents a single stencil. If you
want to create a new subclass of TwoDPresenter that draws stencils in a
special way, you need to define the draw method for your new class. For
example, if you want a class called ShadowedShape that draws a shape with a
shadow, then you would need to define the draw method to call the fill
method to render the shadow, call the fill method again to render the shape,
and call the stroke method to render the outlines.

“Creating New Classes of Graphic Presenters” on page 261 delves into details
on how to define the draw method for new subclasses of TwoDPresenter.

Positioning Images
A stencil is usually presented by a presenter, which may be presented by
another presenter (and so on) until finally it is presented by a window. Each
stencil and each presenter has its own coordinate system, which is mapped to
the presenter that is presenting it.

The origin of all coordinate systems in ScriptX is the top left corner. X values
increase to the right, and y values increase going down. Coordinates in ScriptX
can be specified with integer or floating point values. Units in the default
ScriptX coordinate system represent screen pixels. Each point in a coordinate
system actually represents an area of one pixel extending down and to the
right of the specified coordinates.

Positioning TwoDPresenters

The x and y instance values of a presenter determine its position in the object
that is presenting it, be it a window or another kind of presenter. The
position instance variable also indicates the position of the presenter as a
Point object that has x and y values. You can use either the x and y instance

woDPresenter class

hapes:positionin

oordinate systems

resenters: positioning

240

11 ScriptX Components Guide

variables or the position instance variable, to change the position of a
presenter. If the position instance variable changes, the x and y values are
changed automatically and vice versa.

The following four code samples each move the TwoDShape object to the
position (100, 40) in the coordinate system of the object that is presenting it.
Example 1 moves the shape in one step, but also creates a new object. (For
optimum performance, you should try to minimize the number of unnecessary
objects that get created.)

Example 2 and Example 3 each move the shape in two steps and do not create
any extra objects. Example 3 is preferred just because it involves less typing.

Example 4 has the effect of moving the shape in one step, since it stops the
window from updating until the move has finished. All TwoDPresenter
objects have a window instance variable that indicates the window that
currently contains the presenter. Setting the window’s compositor’s enabled
instance variable to false prevents the compositor from updating the
window. Setting it to true switches the compositor back on.

-- Example 1
myShape.position := new Point x:100 y:40

-- Example 2
myShape.position.x := 100
myShape.position.y := 40

-- Example 3
myShape.x := 100
myShape.y := 40

-- Example 4
myShape.window.compositor.enabled := false
myShape.x := 100
myShape.y := 40
myShape.window.compositor.enabled := true

Positioning Stencils

Most stencils have x1, y1, x2, and y2 instance variables. The x1, y1, x2, and
y2 values of a stencil determine its position within the coordinate system of
the presenter that is presenting it. The point x1, y1 is the top left corner of the
stencil in the coordinate system of its presenter. The point x2, y2 is the bottom
right corner.

The width of a stencil is always determined by (x2 - x1), and its height is
always determined by (y2 - y1). As a general rule, when creating stencils,
you can let x1 and y1 default to zero, and use x2 and y2 to indicate the width
and height of the stencil. There may be times however, when you may want to
set x1 and y1 to non-zero values to achieve results that require the stencil to be
offset from the origin of its coordinate system.

tencils:positioning
tencils: see also shap

241

2D Graphics 11

Note – Bitmap stencils do not have x1, y1, x2, and y2 instance variables.
Instead, they have a bbox instance variable, that specifies the bounding box for
the bitmap. All discussions regarding x1, y1, x2, and y2 instance variables for
stencils in this chapter apply to the x1, y1, x2, and y2 instance variables of the
bounding box of a bitmap, rather than to a bitmap itself.

Figure 11-2, Figure 11-3, Figure 11-4, and Figure 11-5 show the position of a
stencil relative to its presenter, for different values of x1, y1, x2, and y2 values
of the stencil. In all four figures, the x-axis and y-axis lines indicate the origin
of the TwoDshape, shape1, although you would not really see these in the
window.

Figure 11-2 shows a TwoDShape, shape1, displayed in a window. Both the x
and y values of the shape are 50. The boundary of the 2D shape is a Rect
object whose x1 and y1 values are both zero, which means that the top left
corner of the Rect is positioned at the top left corner of the presenter. The
stencil is positioned at (0,0) in the presenter’s coordinate system, and at (50, 50)
in the window’s coordinate system.

Figure 11-2: Top left corner of the stencil and origin of its presenter coincide

In Figure 11-3, the shape is still positioned at (50, 50) in the window. However,
the x1 and y1 values of the stencil are no longer zero. The x1 value is 20 and
the y1 value is 20. The top left corner of the stencil is now positioned at the
point (20, 20) in the presenter’s coordinate system, and at the point (70, 70) in
the window’s coordinate system.

The intersection of the
horizontal and vertical lines
indicate the origin of the
coordinate system for the
TwoDShape, shape1.

shape1.x := 50

shape1.y := 50

shape1.boundary := new Rect \

x1: 0 \

y1: 0 \

x2: 100 \

y2: 50

(0,0) for shape1

242

11 ScriptX Components Guide

Figure 11-3: Top left corner of the stencil is right and down from its presenter’s origin

In Figure 11-4, the shape is still positioned at (50, 50) in the window. Now, the
x1 value of the stencil is –20 and the y1 value is 50. The top left corner of the
stencil is positioned at the point (–20, 50) in the presenter’s coordinate system,
and at the point (30,100) in the window’s coordinate system.

Figure 11-4: Top left corner of the stencil is left and down from its presenter’s origin

For stencils other than Rect objects, the x1, y1, x2, and y2 values determine
the position and size of the bounding box, that is, the smallest rectangle that
completely contains the image. Figure 11-5 shows the position of an Oval
instead of a Rect. In this figure, the bounding box of the oval is shown by a

The intersection of the
horizontal and vertical lines
indicate the origin of the
coordinate system for the
TwoDShape, shape1.

shape1.x := 50

shape1.y := 50

shape1.boundary := new rect \

x1: 20 \

y1: 20 \

x2: 120 \

y2: 70

(0,0) for shape1

(20,20)

The intersection of the horizontal
and vertical lines indicate the
origin of the coordinate system
for the TwoDShape, shape1.

shape1.x := 50

shape1.y := 50

shape1.boundary := new rect \

x1: –20 \

y1: 50 \

x2: 80 \

y2: 100

(-20,50)

(0,0) for shape1

243

2D Graphics 11

box with a dashed line, although you would not really see the bounding box.
Notice that the bounding box for the Oval in Figure 11-5 is the same shape and
position as the Rect in Figure 11-4.

Figure 11-5: An oval and its bounding box

Using 2D Graphics
The use of the classes in the 2D Graphics component is closely connected with
the use of the TwoDPresenter subclasses, since stencils need to presented by
presenters.

Drawing Lines, Ovals, Rectangles and Rounded Rectangles

Use the Line, Oval, Rect, and RoundRect subclasses of Stencil to specify
lines, ovals, rectangles, and rounded rectangles respectively.

When creating new instances of Line, Oval, Rect and RoundRect, you can
specify the x1, x2, y1, and y2 values. For RoundRect, specify the rx and ry
values to indicate the x and y radius of the corners.

When using lines, it is easy to forget that the line width is not determined by
an instance variable on the Line object. Instead, it determined by the value of
the lineWidth instance variable of the brush in the fill or stroke instance
variable of the presenter presenting the line.

The following code creates a line, rectangle, oval, and rounded rectangle and
displays them in a window.

-- create a line
global line1 := new Line x2:100 y2:100
lineShape:= new TwoDShape boundary:line1 \

fill:(new brush color:blackColor)
lineShape.fill.linewidth := 10

The intersection of the horizontal
and vertical lines indicate the
origin of the coordinate system
for the TwoDShape, shape1.

shape1.x := 50

shape1.y := 50

shape1.boundary := new Oval \

x1: -20 \

y1: 50 \

x2: 80 \

y2: 100

(-20,50)

(0,0) for shape1

wo D Graphics:

shapes:position-
ng
Line class:using
Oval class:using
Rect class:using
RoundRect
lass:using
TwoDShape
lass:using

244

11 ScriptX Components Guide

lineShape.x := 100
lineShape.y := 100

-- create a rectangle
global rect1 := new Rect x2:80 y2:60
rectShape:= new TwoDShape boundary:rect1 stroke:blackBrush \

fill:(new brush color:(new RGBcolor red:50 blue:50 green:50))
rectShape.x := 10
rectShape.y := 10

-- create an oval
global oval1 := new Oval x2:60 y2:100
ovalShape:= new TwoDShape boundary:oval1 stroke:blackBrush \

fill:(new brush color:(new RGBcolor red:125 blue:125 green:125))
ovalShape.y := 100
ovalShape.x := 10

-- create a rounded rectangle
global roundRect1 := new RoundRect x2:100 y2:80 rx:30 ry:30
roundRectShape := new TwoDShape boundary:roundRect1 stroke:blackbrush \

fill:(new brush color:(new RGBcolor red:220 blue:220 green:220))
roundRectShape.x := 110
roundRectShape.y := 10

global w := new window
w.width := 220
w.height := 220
show w

prepend w lineShape
prepend w rectShape
prepend w ovalShape
prepend w roundRectShape

Figure 11-6 shows the results.

245

2D Graphics 11

Figure 11-6: Rectangle, RoundedRectangle, Oval and Line

Drawing Curves

You can use the Curve class to create editable, single curves. After creating a
Curve object, you can change the endpoints and the control points.

The Curve class represents Bézier cubic curves. (Postscript and Adobe
Illustrator use cubic Bézier curves.) Users can adjust the control points to make
a curve they like.

The geometric shape of a Curve object is defined by four points (x1, y1), (x2,
y2), (x3, y3), and (x4, y4). The curve starts at (x1, y1) and ends at (x4, y4). The
other two points are control points, which determine that curvature of the
curve (they do not lie on the curve), as illustrated in Figure 11-7.

The curve starts at (x1, y1). At the starting point, it is tangential to the line from
(x1, y1) to (x2, y2). The curve ends at (x4, y4), at which point it is tangential to
the line from (x3, y3) to (x4, y4). The curve is always entirely enclosed by the
convex quadrilateral defined by the four points.

For more information on the mathematics involved in Bézier curves, please see
external mathematical books, such as Fundamentals of Interactive Computer
Graphics, written by J.D. Foley and A. Van Dam, and published by Addison
Wesley, 1982.

You can use the getPoint method to find the position of a point on the curve
along the distance of the curve. For example, you could find the point halfway
along the curve, a tenth of the way along the curve, and so on.

The following code example shows how to create the curve shown in
Figure 11-7.

Curve class:using

246

11 ScriptX Components Guide

curve1 := new Curve x1:0 y1:0 \
 x2:100 y2:250 \
 x3:200 y3:250 \
 x4:300 y4: 0

s := new TwoDShape boundary:curve1 stroke:blackbrush

Figure 11-7: Curve1 – The dots indicate the control points

Drawing Paths

You can use the Path class to build multi-segmented, multi-contoured paths or
shapes. A path can include straight lines, arcs, curves, and splines. A path can
have multiple contours (or subpaths). A path can be open or closed. Figure 11-8
shows some sample paths.

Figure 11-8: Sample paths

You can specify the value for the fill instance variable of a presenter that
presents a closed path. However, specifying a fill value for a presenter that
presents an open path may lead to unpredictable consequences.

If a path that crosses itself is filled, the filling toggles each time a line is
crossed, as illustrated in Figure 11-9, which shows an unfilled path and the
same path filled.

ath class:using

An open path with

a single contour

An closed path with

a single contour

A path with

multiple contours

247

2D Graphics 11

Figure 11-9: If a path crosses itself, filling alternates each side of a crossed line.

To create a new path, call the new method on the class Path. The Path class
behaves a little differently than other ScriptX classes. To build the path, you
must call a sequence of methods, instead of providing keywords to the new
method and setting instance variables on the new object, as you would with
most other classes. After building a path, you can add new segments (such as
lines, curves, arcs, or splines) to it, but you cannot modify existing parts of the
path.

After calling the new method on the class Path, you need to specify the
starting point of the path by calling its moveTo method. This starting point
becomes the “current point.” When a path is extended by drawing a line, an
arc, a curve or a spline, the extension is always drawn starting from the current
point. After a path is extended, the end of the path becomes the new current
point.

To move the current point to another position without drawing the connecting
line, use the moveTo method. The point to which the path is moved becomes
the starting point for a new contour (or subpath).

You can use the closePath method to draw a line from the current point to
the starting point for the current contour (or subpath).

When you make changes directly to a Path object, the presenter presenting the
path does not update to show the changes. To update the appearance of the
shape when the path changes, call notifyChanged true on the presenter.

See the description of the Path class in the ScriptX Class Reference for full
details and examples of how to add lines, arc, curves, and splines to a path.

Drawing Text Stencils

The TextStencil class is another subclass of Stencil. It provides
non-editable text for use in drawings as callouts or labels.

Figure 11-10:The TextStencil class provides non-editable text

extStencil class:using

248

11 ScriptX Components Guide

You would use a TwoDshape that has a TextStencil as its boundary instead
of using a TextPresenter that has a Text object as its target, when you
want the behavior of a TwoDShape when displaying text.

To create an instance of TextStencil, call the new method and give the font
and string keyword arguments. For example:

textSten := new TextStencil \
font:(new PlatformFont name:"Arial") \
string:"Information"

If the string is a Text object that already has font and font size attributes, these
characteristics will be retained if the font keyword is omitted. However, if the
font keyword argument is also passed, it overrides the font setting on the
Text object.

Note – Unlike Text objects, a TextStencil object cannot change its
attributes for various character. It has only one set of attributes (font and size).
Hence, the TextStencil will copy the attributes of a Text at the location 0.

Note – Text stencils can be transformed with matrices (for example, they can
be rotated and scaled) but once you transform a text stencil, it is converted to a
Region object and you cannot get it back to the original form.

Drawing Bitmaps

The Bitmap class represents bitmap images. Normally you create new Bitmap
instances by importing bitmaps, instead of by calling the new method on the
class Bitmap.

To import a bitmap, you need to create a Stream object that points to the file
containing the picture, and then call the importMedia method on the global
importer instance, theImportExportEngine, telling it which stream to
import.

The following code shows how to import a picture saved in a file called
fluke.kic and convert it to a Bitmap object in ScriptX. The data for the
bitmap is saved in the title container tc.

stream1 := getStream theScriptDir "fluke.kic" @readable
flukebm := importMedia theImportExportEngine stream1 \

@image @kic @bitmap container:tc
fluke1 := new TwoDShape boundary:flukebm

For details on the arguments to importMedia, see the “Importing” chapter in
the ScriptX Tools Guide.

Currently, ScriptX can import images saved in pict, dib, bmp, or kic format.
(KIC is Kaleida’s own Image Compression format.)

itmap class:using

249

2D Graphics 11

MatteColor and InvisibleColor

Bitmap objects have matteColor and invisibleColor instance variables.

The value in the matteColor instance variable indicates the color that is to be
transparent in the bitmap’s matte area, which is the area between the bitmap’s
bounding box and the actual image. The color in this area is usually a single
color, most often white, although it could be another color such as gray or
black. Any pixel in the matte area that uses the color indicated in the matte
instance variable will be transparent, that is, images underneath will show
through it.

If the matteColor instance variable is undefined, or is set to any color other
than the one actually used in the matte area, the matte area will be solid; that
is, it will not be transparent.

The value in the invisibleColor instance variable indicates a color that will
be transparent anywhere in the region occupied by the bitmap. Any pixel in
the bitmap that uses the invisibleColor will be transparent.

Figure 11-11 shows a bitmap of a whale’s tale as it appears when the bitmap’s
matteColor and invisibleColor are undefined. Figure 11-12 shows the
impact of setting the matteColor and invisibleColor to various values.
Figure 11-12 illustrates that the invisible color only affects pixels that have
exactly the specified color.

Figure 11-11:A bitmap of a whale tail with matteColor and invisibleColor undefined

Bitmap Compression

The ScriptX importers, discussed in the ScriptX Tools Guide, can import
compressed bitmaps and retain the compression.

When you use a bitmap that has compressed data, the data is uncompressed
automatically as determined by the value in the bitmap’s pagingMethod
instance variable. The possible values for this instance variable are @onload,
@firstUse, @eachUseFromStorage, and @eachUseFromMemory. The
meanings of each of these values is discussed in the ScriptX Tools Guide. and the
Bitmap description in ScriptX Class Reference. You can change the value of this
instance variable when desired.

Bitmap class:mat-
Color instance

ariable
Bitmap class:invisi-
eColor instance
ariable
matte instance vari-
ble (Bitmap)
nvisibleColor in-
ance variable (Bit-

ompression:of bit-
aps

Bitmap class:com-
ession

250

11 ScriptX Components Guide

Figure 11-12:Effects of matteColor and invisibleColor on the whale tail bitmap

flukebm.mattecolor := whitecolor

notifyChanged fluke1 true

flukebm.invisiblecolor := whitecolor

notifyChanged fluke1 true

w.fill := whitebrush

flukebm.invisiblecolor := blackcolor

notifychanged fluke1 true

Notice that the white area surrounding the
circle have become invisible, that is, you can
see the background through it.

Notice that all white pixels have become
invisible, both in the actual picture and in the
matte area. You can see the background
through them.

Notice that all black pixels have become
invisible, both in the actual picture and in the
matte area. You can see the background
through them. (The background has been
changed to white.)

251

2D Graphics 11

Freeing Bitmap Data

If a bitmap has been loaded from a container such as a title container or library
container, you can use the dropData method to force the bitmap to drop its
data immediately.

When you make a bitmap purgeable, by calling makePurgeable on it, the
garbage collector cleans up the memory that the bitmap uses. However, this
does not happen instantly. It happens as soon as the garbage collector gets
around to it. Before making a bitmap purgeable, you can call dropData on it,
to immediately free up the memory used by the bitmap. When the garbage
collector gets around to cleaning up the object, it completes the cleanup by
freeing the memory occupied by the Bitmap object.

If you call dropData on a bitmap that has not been loaded from a container,
(that is, you imported it in the same ScriptX session), you will get an exception.

Bitmaps and Colormaps

Bitmap objects use ColorMap objects. The discussion of color maps is fairly
lengthy, so it is presented in its own section, “ColorMaps” on page 259.

Clipping Shapes

If you want to draw a part of a stencil, rather than the whole stencil, you can
use a ClippedStencil object.

ClippedStencil has clip and outline instance variables, that each take
another stencil as their value. The outline stencil is the stencil to draw, and the
clip stencil is the stencil to use as the clipping region.

For example, to draw the bottom half of an oval:

clipSten := new ClippedStencil \
clip:(new rect x1:0 y1:75 x2:200 y2:150) \
outline:(new oval x2:200 y2:150)

shape1 := new TwoDShape boundary:clipSten \
fill:(new brush color:blueColor)

When shape1 is added to a visible space such as a window, it displays the
bottom half of an oval that would be 200 pixels wide by 150 pixels high if it
were drawn in full.

Specifying Fill and Brush Attributes for Shapes

A Stencil object simply defines a shape. It says nothing about the color and
pattern of the shape, or the color and pattern of its border.

To become visible, a stencil must be rendered by a 2D presenter, such as a
TwoDShape object. Most 2D presenters have fill and stroke instance
variables that each hold a Brush object. The value in the fill instance

Bitmap class:free-
g data

data:freeing bitmap
ata
reeing:bitmap data
dropping:bitmap
ata
dropData method
Bitmaps)
eleasing:bitmap
ata

hapes:clipping
tencils:clipping
lipping stencils

ClippedStencil
ass:using

lling shapes
hapes:filling
hapes:stroking

outlines:of shapes

252

11 ScriptX Components Guide

variable indicates what brush to use to fill in the shape rendered by the
presenter. The value in the stroke instance variable indicates what brush to
use to paint the outline of the shape.

Each Brush object has color, lineWidth, pattern, and inkMode instance
variables.

The lineWidth value is an integer indicating the width of the line or the
outline of the shape. The default value is 1 pixel. The pattern instance
variable indicates the brush’s pattern, and the inkMode specifies the mixing
characteristics used to apply the brush over a previous image. See the ScriptX
Class Reference for more details of the pattern and inkMode values. By
default, a brush uses a solid pattern and has an ink mode that completely
covers any underlying image.

The color instance variable indicates the color of the brush. The value is an
RGBColor object, that has red, green, and blue instance variables, that have
values between 0 to 255 inclusive, where 255 indicates maximum saturation of
that color.

ScriptX has several pre-defined colors, including blueColor, cyanColor,
yellowColor, whiteColor, blackColor, magentaColor, greenColor, and
redColor. You can use these when you want the colors they provide. For
example, shape1 represents a red square that has a green outline.

shape1 := new TwoDShape boundary:(new Rect x2:100 y2:100) \
fill:(new brush color:redColor) \
stroke:(new brush color:greenColor)

You can also create new instances of the class RGBColor and specify the red,
green, and blue values as desired. For example:

shape2 := new TwoDShape boundary:(new Rect x2:100 y2:100) \
fill:(new brush color:(new RGBColor red:100 blue:50 green:20)) \
stroke:(new brush color:(new RGBColor red:200 blue:100 green:40))

ScriptX provides two pre-defined brushes: blackBrush and whiteBrush,
which paint in black and white respectively, with a linewidth of 1 pixel. If you
want to use another color, you must use one of the pre-defined Color objects,
or create your own RGBColor instance.

Modifying Shapes

If you change the value of an instance variable on a presenter, such as a
TwoDShape, the presenter immediately redraws the thing it is presenting. For
example, if you change the width, height, x, y, stroke, or fill instance
variables, the shape immediately updates on the screen. However, if you make
an indirect change to the presenter, it does not redraw itself on the screen. An
indirect change is defined as a change to an instance variable on an object that
is used by the presenter.

Brush class
olor instance vari-

ble (Brush)
neWidth instance

ariable (Brush)
pattern instance
ariable (Brush)
nkMode instance
ariable (Brush)

RGBColor class
olors: predefined

hapes:modifying
modifying shapes
TwoDShape
ass:see also
hapes <$nopage>

253

2D Graphics 11

For example, if you change the value of the x1, y1, x2, or y2 instance variables
of the boundary of a TwoDShape, or you change the lineWidth instance
variable of the brush used by the stroke or fill, the shape does not change.
After making an indirect change, you can call the notifyChanged method on
the presenter, to tell the compositor to redraw the presenter. For example:

-- make the shape a bit redder
shape1.fill.color.red := shape1.fill.color.red + 20

-- increase the width of the shape’s outline
shape1.stroke.linewidth := 5

-- now update the presenter on the screen
notifyChanged shape1 true

Rotating and Scaling Stencils

You can perform transformations such as rotation and scaling on stencils by
transforming them using 2D matrixes. In computer graphic systems,
transformations are represented by a matrix that maps one coordinate system
to another. To represent transformations in a ScriptX title, you use instances of
the TwoDMatrix class.

This chapter limits its discussion of transformations and 2D matrices to
explaining how to use them to rotate and scale stencils. For more details of the
class TwoDMatrix see the ScriptX Class Reference.

To create a matrix that can perform a transformation, start by making a
mutable copy of the default matrix, identityMatrix, and perform a
sequence of operations on it, such as rotating, scaling, or translating it.

After performing the desired operations on the matrix, you then use the matrix
to transform the stencil.

Transforming a Stencil

To use a matrix to transform a stencil, call transform on the stencil,
specifying the matrix and also specifying either @create or @mutate,
depending on whether you want the operation to return a new stencil or
destructively modify the original stencil.

You can transform any kind of stencil with a matrix, and this example uses a
Path stencil. The following code creates the lightening bolt stencil to use in the
example:

global lightningBolt := new Path
moveTo lightningBolt 0 0
lineTo lightningBolt 100 60
lineTo lightningBolt 40 30
lineTo lightningBolt 60 30
closePath lightningBolt

notifyChanged
ethod (TwoD-
resenter)

tencils:rotating
nd scaling
hapes:rotating

nd scaling
otating:stencils
otating:shapes
caling:stencils
caling:shapes

TwoDMatrix class

entityMatrix global constant
woDMatrix)
woDMatrix class:identityMatrix
bal constant

ransforming:sten-
s
tencils:transform-
g

ghtningBolt exam-
e

254

11 ScriptX Components Guide

The following code increases the length of the lightning bolt stencil by 1.5
times, and rotates it 45 degrees in a clockwise direction about the origin, which
is at its top left corner.

lightningTransform := mutableCopy identityMatrix
lightningTransform := scale lightningTransform 1.5 1
lightningTransform := rotate lightningTransform 45 @degrees
global newBolt := transform lightningBolt lightningTransform @create

This code would effectively perform a sequence of transformations on the path,
resulting in the rotated image shown in Figure 11-13.

Figure 11-13:Scaling followed by rotation

There are a couple of things to note from this example. First, note that the
bounding box of a stencil is redefined as the stencil is transformed. Even
though an image is rotated, its bounding box remains rectangular, with sides
parallel to the original coordinate system.

It’s important to note that the order of matrix operations affects the results. For
example, rotation followed by scaling produces different results than scaling
followed by rotation. This can be demonstrated by reversing the order of
transformations in the previous example:

lightningTransform := rotate (mutableCopy identityMatrix) 45 @degrees
lightningTransform := scale lightningTransform 1.5 1
transform lightningBolt lightningTransform @mutate

The result is the scaled image shown Figure 11-14.

Figure 11-14:Rotation followed by scaling

mutableCopy meth-
d (TwoDMatrix)

Original image Scaled Rotated

Rotated ScaledOriginal image

255

2D Graphics 11

Translating a Matrix

To translate a matrix, specify the amount to move in the x direction and the
amount to move in the y direction. You usually move presenters by specifying
values for their x and y, or their position, instance variables, rather than by
performing translations on their stencils. However, there are times when you
may need to translate a matrix after performing another operation on it, to get
it back to where you want it. For example, a matrix rotates about its origin,
which is in the top left corner of its coordinate system, so if you want to rotate
it about its center, you need to translate the matrix as well as rotate it, as
discussed in “Rotating a Matrix” on page 255.

Scaling a Matrix

When scaling a matrix, you specify the x scale factor and the y scale factor.
Scaling occurs relative to the origin of the stencil. (Don’t forget that (0,0) is at
the top left corner of the stencil’s coordinate system, not in the middle.) If you
want to zoom a stencil about its center, you need to scale the matrix, and
translate the scaled matrix to the left and up by an appropriate amount.

You can zoom the stencil about its center by translating the scaled matrix to the
right by half the difference in width, and translating it up by half the difference
in height. The code below zooms a stencil about its center:

-- create a matrix to use for transforming
matrix := mutableCopy identityMatrix

-- n is the scaling factor
-- to double the size of the stencil, set n to 2
-- to triple it, set to n to 3, and so on
n := 3

xoffset := (sten1.bbox.x1 + sten1.bbox.x2) * (n - 1)) / 2
yoffset := (sten1.bbox.y1 + sten1.bbox.y2) * (n - 1)) / 2

-- scale the matrix
scale matrix n n

-- translate it
translate matrix (- xoffset) (- yoffset)

-- sten1 is a Stencil object whose x1 and y1 are zero

-- transform the stencil
transform sten1 matrix @mutate

Rotating a Matrix

When rotating a matrix, specify the number of degrees or radians to rotate by,
and also specify @degrees or @radians as appropriate. Rotation rotates a
coordinate system around its origin (don’t forget 0, 0 is in the top left corner),
with a positive rotation angle representing clockwise rotation and a negative
angle representing counterclockwise rotation.

ranslating:matrices
TwoDMatrix class:trans-
ting

2D Matrtix: see TwoDMa-
x class <$nopage>
ranslating:matrices

Scaling:matrices
TwoDMatrix class:scaling
Scaling:matrices

Rotating:matrices
TwoDMatrix class:rotat-
g

Rotating:matrices

256

11 ScriptX Components Guide

Rotating About the Origin of a Stencil

Figure 11-15 and Figure 11-16 demonstrate that if you transform a stencil with
a rotated matrix, the stencil is rotated about its origin, which is in the top left
corner of the coordinate system.

In both figures, the small black dot shows the top left corner of the stencil. The
black outline shows the bounding box of the TwoDShape that presents the
stencil.

In Figure 11-15, the fluke bitmap is in its original state. In Figure 11-16, it is
rotated by 45 degrees. You see that in Figure 11-16, the bitmap is rotated about
the top left corner of the bitmap in its original state.

The following code creates the objects displayed in the figures:

global flukebm := importMedia theImportExportEngine \
(getstream thescriptdir "fluke.pic" @readable) \
@image @pict @bitmap

global fluke1 := new TwoDShape boundary:flukebm

global w := new window; show w
w.width := 350
w.height := 250
fluke1.x := 150
fluke1.y := 50
append w fluke1

-- add the black dot to show the origin
global p := new TwoDShape \

boundary:(new oval x1:-5 x2:5 y1:-5 y2:5) \
fill:blackbrush stroke:blackbrush

p.x := fluke1.x
p.y := fluke1.y

rotate1 := mutableCopy IdentityMatrix
rotate rotate1 45 @degrees

-- Figure 11-16 shows the results of changing
-- fluke1’s boundary to the rotated bitmap
fluke1.boundary := transform flukebm rotate1 @create

Rotating:about a stencil’s
rigin

257

2D Graphics 11

Figure 11-15:Fluke bitmap before 45 degree rotation

Figure 11-16:Fluke bitmap after 45 degree rotation

258

11 ScriptX Components Guide

Rotating About the Center of a Stencil

If you want to rotate a stencil about its center, you need to translate the matrix
used to do the transformation, in addition to rotating it. First translate it, then
rotate it, then translate it again.

The following code shows how to rotate the fluke bitmap introduced in the
previous example 45 degrees around its center. The result is shown in
Figure 11-17.

-- Get the center of the boundary (Bitmap).
global centerPt := new Point
centerPt.x := (fluke1.bbox.x1 + fluke1.bbox.x2)/2
centerPt.y := (fluke1.bbox.y1 + fluke1.bbox.y2)/2

rotate2 := mutableCopy IdentityMatrix
translate rotate2 (-centerPt.x) (-centerPt.y)
rotate rotate2 45 @degrees
translate rotate2 centerPt.x centerPt.y
fluke1.boundary := transform flukebm rotate2 @create

Figure 11-17:Fluke bitmap after 45 degree rotation about the center

Transformation Hints for Smoother Animation

Transforming matrices is a computation-intensive task so it can take a
noticeable amount of time to perform. If you wish to achieve smooth animation
by transforming a bitmap, you will often get better results by creating bitmaps
for each stage in the transformation ahead of time and then swapping in the
bitmaps during the animation.

Rotating:about a stencil’s
enter

animation:transforming
nts

smoother animation
nts:for bitmaps

hints:for smoother bitmap
nimation
Bitmap class:animation
nts

259

2D Graphics 11

Each rotation of a stencil, particularly for a bitmap, results in a small
degradation of image quality. For one or two rotations, this is not usually
significant, but if you rotate the same bitmap several times, the resulting loss in
image quality can be significant. Therefore, it is often better to make a copy of
the original bitmap at each transformation (that is, specify @create rather
than @mutate when transforming the stencil).

Note however, that both these approaches create more objects and hence
require more memory, so you need to weigh the pros and cons of each
approach for each situation.

ColorMaps
DisplaySurface, BitmapSurface, and Bitmap objects use color maps.

A DisplaySurface is a surface that is used for drawing to the screen. Each
window has a display surface. A BitmapSurface is an offscreen area you can
render stencils to. You can build up an image on a BitmapSurface and then
transfer it to a display surface.

Color Table Manipulation

The pixel values in a Bitmap object’s data instance variable are most often
used as indices into an array of color values, referred to as a color map. For
example, a pixel of an 8-bit image might have a value of 100, which is an index
to a particular color. Color maps are represented in the ScriptX imaging model
by the Colormap class.

The Colormap class provides an array-like object used to map pixel values in
a bitmap to instances of a particular color space. A Colormap object also
defines the pixel encoding and depth of the values in its sequence. Each value
in a ColorMap is an RGBColor object.

Although a ColorMap object is not a collection, you can use the collection
syntax colormap[n] to find the nth pixel value in a bitmap.

For example:

myColormap[45].red

returns the value of the red instance variable of the RGBColor that is the 45th
value of the colormap myColormap.

Each Bitmap, BitmapSurface, and DisplaySurface object has a Colormap
instance variable. This variable lets you set the Colormap instance associated
with a particular rendering surface or bitmapped image. When you change the
Colormap associated with a bitmap, you change the meaning of the pixels in
the bitmap. The ScriptX imaging system can handle this change in one of two
ways. It can try to remap the old pixel values to the corresponding colors in the
new color map, or ignore the change and simply use the pixel values as indices
into the new map. In the first case, the results are better, but the process takes
time and can produce inconsistencies in specific colors, as when a color in the
original map isn’t in the new map. In the second case, unless the two maps

Color tables
Colormap class

splaySurface class:Colormap
tance variable

olormapinstance variable: (Dis-
ySurface)
tmapSurface class:color map
tance variable

olormapinstance variable :(Bit-
pSurface)
tmap class:Colormap instance
iable
olormapinstance variable :(Bit-
p)

260

11 ScriptX Components Guide

contain identical colors in identical positions, the results are almost always
likely to be incorrect—unless, of course, this technique is being used
intentionally to create an interesting visual effect.

Whenever a window is created, the value of the Colormap instance variable on
the window’s DisplaySurface is set by default to represent the palette
installed in hardware when the display surface has focus. The definition of
focus depends on the underlying windowing system. However, the display
surface with focus is generally that for the window that received the last
mouse-down event. Like other subclasses of Bitmap, DisplaySurface can
change the content of its Colormap instance variable. However, note that it
may not be possible to exactly match the values in a custom Colormap to the
underlying hardware palette through this variable, because some systems
reserve certain positions in their color maps for specific colors.

 The remapOnDraw Flag

The BitmapSurface and Bitmap classes have an instance variable
remapOnDraw that indicates how to handle differences between an instance’s
color map and the color map of a destination DisplaySurface instance. The
value is either true or false. This variable is checked when the transfer
operation transfers bits from one bitmap surface to another surface (such as a
BitmapSurface or DisplaySurface). It is also checked when a fill
operation transfers bits from a bitmap to a surface.

When this value is true (the default value), the imaging system attempts to
find matches in the color map of the destination surface for the colors
originally represented in the source bitmap. When the value is false, the
rendering operation simply uses the pixel values from the bitmap as indices
into the color map for the surface, regardless of the validity of the results.

The setting of the remapOnDraw flag would have an effect in a case where you
imported a Bitmap instance that had a Colormap value different than that of
the display surface to which it is rendered.

For example, suppose you import a bitmap called MyBitmap that has its own
colormap, and display it in a window as shown by the code below:

w := new window
show w
mySurface := w.displaySurface

myBitmap := -- use the importer to import a bitmap
myPic := new TwoDShape boundary:myBitmap
append w myPic

When the bitmap is rendered to the display surface of the window, the
rendering operation looks at pixel values in myBitmap, looks up the
corresponding colors in myBitmap.colormap, then attempts to find color
matches in mySurface.colormap. If it can do so, it renders each pixel using
this remapping. If it can’t do this directly, it finds a close match for a pixel’s
original color. This remapping applies only for the rendering operation—the
pixel values in the source bitmap remain the same, and it retains its original
color map.

splaySurface class:remapOn-
aw instance variable
mapOnDraw instance vari-
e:(DisplaySurface)
tmapSurface class:remapOn-

aw instance variable
mapOnDraw instance variable
tmapSurface)
tmap class:remapOnDraw in-
nce variable
mapOnDraw instance vari-
e:(Bitmap)
olormapclass

261

2D Graphics 11

The remapOnSet Flag

Another instance variable of Bitmap and BitmapSurface is remapOnSet. Its
value, which is also a Boolean, is false by default. This variable should be
set to true when you want to permanently change the pixels in the bitmap to
match their color mapping in the new color map. The same mechanism applies
as discussed for remapOnDraw: the rendering operation looks at pixel values
in the bitmap, looks up corresponding colors in its color map, then tries to find
color matches in the new color map. If it can do so, it changes the value in each
pixel using this remapping. If it can’t do this directly, it finds a close match for
the pixel’s original color. This remapping is permanently applied to the pixels
in the bitmap.

If this instance variable is false, the bitmap’s pixel data will be left
unchanged, and used as indices into the new color map, regardless of the
validity of the results.

 Hardware Palette Changes

The PaletteChangedEvent class defines the mechanism to notify all
DisplaySurface instances when the hardware palette changes. Events of the
PaletteChangedEvent class include a colormap instance variable
representing the new palette. A change in bit-depth is equivalent to a palette
change.

Instances of TwoDCompositor express interests in PaletteChangedEvent
for their display surfaces. When the palette changes for a screen, the palette
changed event is broadcast to every TwoDCompositor for that screen. A
TwoDCompositor instance uses an instance of BitmapSurface to perform
cached drawing, and changes the Colormap instance variable for this cache
whenever it receives a PaletteChangedEvent.

 The Default Colormaps

The global Colormap instances theDefault1Colormap,
theDefault2Colormap, theDefault4Colormap, and
theDefault8Colormap are used in instances of Bitmap, BitmapSurface,
and DisplaySurface created without a value specified for their Colormap
instance variable. The specific global used depends on the color space
supported by the underlying display hardware. The bit depth of this color map
is equivalent to that of the palettized screen with the highest bits per pixel. If
no such palettized color screen exists on a particular system, this value is the
bit-depth of the direct color screen with the maximum depth.

Creating New Classes of Graphic Presenters
If you use the predefined subclasses of Stencil and TwoDPresenter that
come with ScriptX, you do not need to worry about how the stencils are
rendered to the surface of a window. The subclasses of TwoDPresenter, such
as TwoDShape, take care of rendering for you. To draw an image in a window,
you create a TwoDShape, tell it what stencil to use as its boundary, and use the

emapOnSet instance variable
DisplaySurface)
BitmapSurface class:remapOn-
et instance variable
emapOnSet instance vari-
ble:(BitmapSurface)
Bitmap class:remapOnSet in-
ance variable
emapOnSet instance variable

Bitmap)
Colormapclass

aletteChangedEvent class
woDCompositor class:Pal-
eChangedEvent interests

DisplaySurface class:Pal-
eChangedEvent interests

heDefault1Colormap global constant
heDefault2Colormap global constant
heDefault4Colormap global constant
heDefault8Colormap global constant
Colormapclass:default color map global con-
ants

woDPre-
nter:creat-

g
bclasses

262

11 ScriptX Components Guide

append or prepend method to put it in a visible space such as a window (or
any 2D space that is in a presentation hierarchy in a window.) To change the
characteristics of the image, you set instance variable values on the presenter,
such as fill, stroke, x, y, width, and height. If you want to change the
image completely, change the boundary of the TwoDShape.

Whenever you make a change to a presenter in a visible space, the compositor
takes care of redrawing the presenter. If you close the window and open it
again, or cover it up by another window and then uncover it, the compositor
redraws the window.

Behind the scenes, the compositor calls the draw method on a presenter to
make it redraw itself when necessary. Usually the draw method calls the
methods fill, stroke, and transfer on the window’s display surface to
render the stencil to the surface.

If you confine yourself to using the predefined subclasses of TwoDPresenter,
you do not need to learn about how to use the fill, stroke, and transfer
methods. However, if you want to define new subclasses of TwoDPresenter
that have their own special ways of drawing shapes, you need to understand
how to use these methods. For example, to define a class of shape that always
draws itself with a shadow, you would need to create a subclass of
TwoDPresenter with a specialized draw method that draws the shadow and
the stencil.

The details of how the compositor works are discussed in Chapter 3, “Spaces
and Presenters.” What you need to understand here, is that when you define
your own class of TwoDPresenter, you need you define the draw method to
draw itself as desired. The compositor takes care of calling the draw method
whenever necessary. You never need to call draw, but you do not need to
define it.

Boundaries and Global Boundaries

Another thing you need to know when creating your own subclass of
TwoDPresenter is that the global boundary of a presenter determines the
presenter’s clipping region. The image drawn by the presenter is clipped by
the presenter’s clipping region. If you make sure that the boundary instance
variable is initialized appropriately, the globalBoundary instance variable
will be taken care of automatically.

The value of the boundary instance variable of a presenter is the boundary
within the presenter’s local coordinate system. The value of the
globalBoundary instance variable is the boundary of the presenter in the
window’s coordinate system. For example, if a presenter’s boundary is:

[0, 0, 200, 200] as Rect

and the presenter’s position is:

[50, 50] as Point

then the presenter’s global boundary is:

[50, 50, 250, 250] as Rect.

omposi-
r:what it
es behind
e scenes
ll meth-
:(Surface)
troke meth-
:(Surface)
ansfer
ethod:(Sur-
ce)
raw meth-
:(TwoDPre-
nter)

oundary in-
ance vari-
le
woDPre-
nter)
lobalBound-
y instance
riable
woDPre-
nter)
hapes:boun
ries versus

obal bound-
es

263

2D Graphics 11

If the value of the boundary instance variable changes, the globalBoundary
changes automatically when it is needed. Therefore you need to define your
TwoDPresenter subclass to take care of computing its boundary as needed,
and you don’t usually need to worry about computing the globalBoundary.

The global boundary is updated when it needs to be used, and not before then.
For example, if you create a TwoDShape and change its boundary before you
put it in a window, the global boundary is not computed because it is not
needed yet. It will be computed when you put the TwoDShape in a window.

If you want to force the recalculaton of the global boundary, you can call the
presenter’s recalcRegion method. For example:

t := new TwoDShape boundary:(new rect x2:100 y2:100)
➯ [0, 0, 100, 100] as Rect

t.boundary
➯ [0, 0, 100, 100] as Rect

t.globalboundary
➯ [0, 0, 0, 0] as Rect

recalcregion t
➯ OK

t.globalboundary
➯ [0, 0, 150, 100] as Rect

Arguments For the Draw Method

The draw method of a presenter is always called with three arguments, which
are supplied automatically. These are:

self – the presenter object.

surface – the surface to draw to.

clip – the clipping region to use, which defaults to the presenter’s global
boundary.

The boundary may be further clipped as necessary depending on where the
presenter is located and what it is presented by. For example, a TwoDShape in
a TwoDSpace will be clipped if any part of the TwoDShape extends beyond the
edge of the TwoDSpace.

Notice that the arguments do not include the stencil to be drawn, the brush to
fill it with, or the brush to stroke it with. These things should all be computed
within the draw method.

Fill, Stroke, and Transfer Methods

Every window has a displaySurface instance variable that holds the
DisplaySurface object for the window, which is the area on screen that the
window uses. The draw method can use the methods fill, stroke and
transfer to render shapes on the window’s display surface.

raw meth-
:arguments

r

ll meth-
:using
troke meth-
:using
ansfer
ethod:using

264

11 ScriptX Components Guide

Using the Fill and Stroke Methods

The fill method of a surface renders a stencil to the surface by filling it in
using a given brush. The stroke method renders the outline of a stencil to a
surface using a given brush. Both the fill and stroke methods take the
following arguments:

surface – the surface to draw to.

stencil – the stencil to render.

clip – the stencil to use as the clipping region.

matrix – the 2D matrix to use to position the stencil.

brush – the brush to use for the rendering operation.

The following bullets discuss how the draw method can arrive at each of these
arguments.

• The surface argument that is passed to the draw method can be passed
directly on to fill and stroke.

(When the compositor's useOffscreen flag is true, surface is the
compositor’s offscreen surface. If useOffscreen is false, surface is the
window’s display surface.)

• The clip argument that is passed to the draw method can be passed directly
on to fill and stroke, unless you want to change the clipping region.

The clip defaults to the global boundary of the presenter, clipped as
appropriate depending on the location of the presenter and the kind of
presenter that is presenting it.

• The draw method must generate the value for stencil.

For example, the class TwoDShape uses the presenter’s boundary as the
stencil as well as for its clip. A better approach for your own subclass of
TwoDPresenter is to use the inherited target instance variable to hold
the target stencil. This enables the presenter to use a different stencil for its
clipping region than for its target.

• The draw method must generate the value for matrix.

All TwoDPresenter objects have a globalTransform instance variable,
whose value is a TwoDMatrix object that can be used to position the
presenter’s target when it is drawn. You can often use the value in the
presenter’s globalTransform matrix as the matrix to pass to fill and
stroke.

• The draw method must generate the value for brush, which must be a Brush
object.

265

2D Graphics 11

Using the Transfer Method

Currently ScriptX defines two classes of surfaces: DisplaySurface and
BitmapSurface. A DisplaySurface represents a drawing area on the
screen. A BitmapSurface represents an area in memory that can be drawn to.
You can use bitmap surfaces to assemble images offscreen, and then transfer
them to other bitmap surfaces or to the display surface of a window.

The transfer method transfers the contents of one surface to another surface.
Currently, you can transfer the contents of a bitmap surface to another surface,
but you cannot transfer the contents of a display surface to another display
surface. The transfer method takes the following arguments:

surface – the surface to draw to.

surfaceToCopy – the surface whose contents are to be copied.

clip – the stencil to use as the clipping region.

matrix – the 2D matrix to use to position the source image.

When calling the transfer method on a surface from inside a draw method,
you can generate the values for surface, clip, and matrix in the same way as
described for the fill and stroke methods. The draw method must generate
the value for the surfaceToCopy argument.

2D Graphics Examples

Example – ShadowedShape

The following example shows the definition for a new subclass of
TwoDPresenter, called ShadowedShape, which has its own definition for
draw. Whenever a shadowed shape appears on the screen, you see both the
shape and its shadow.

Notice that ShadowedShape is a subclass off of TwoDPresenter, not
TwoDShape. TwoDShape uses its boundary as both its target and its clipping
stencil, and ShadowedShape needs to have its target be different from its
clipping stencil.

ShadowedShape Class (short version)

The class ShadowedShape uses its inherited target instance variable to hold
the stencil defining the main shape (that is, the shape without its shadow.)

The fill and stroke instance variables hold the brushes for filling in the
shape and for painting its outline. The shadowFill and shadowStroke
instance variables hold the brushes for filling in the shadow and painting the
shadow’s outline. The shadowXoffset and shadowYoffset instance
variables hold the x and y offsets for the shadow.

DisplaySurface
ass
ansfer meth-
:using

BitmapSurface
ass

Examples:Shad-
wedShape class
hort version)

266

11 ScriptX Components Guide

For simplicity, this example creates ShadowedShape as a direct subclass of
TwoDShape, and uses actual instance variables. However, it would be better to
use virtual instance variables for fill, stroke, shadowFill, and so on. Then
you could override setter methods for each, so that if the user changes the
values of the instance variables, the image updates automatically on the screen.
For example, if the user change the fill, the image immediately redraws with
the new fill.

However, you cannot override setter methods for instance variables defined on
a class, but you can override setter methods for inherited instance variables.
Therefore you would need to create an intermediate superclass that defines the
instance variables, and create ShadowedShape as a subclass of that superclass.
See “Improved ShadowedShape Class” on page 268 for a complete class
definition of the “improved” ShadowedShape class.

The code below shows the simplified version of ShadowedShape, that does
not update automatically when you make changes to its instance variables.

class ShadowedShape (TwoDPresenter)
instance variables

fill:whitebrush
stroke:blackbrush
shadowFill:(new brush color:bluecolor)
shadowStroke:blackbrush
shadowXoffset:5
shadowYoffset:-5

end

ShadowedShape Init Method

Notice that the init method (which gets called automatically immediately
after the object is created) sets the value of the boundary instance variable to
be a Rect object that is big enough to contain both the shape and its shadow.
This is important because the boundary determines global boundary, which
determines the clipping region for the shape.

method init self {class ShadowedShape} #rest args #key \
 target:(new Rect x2:50 y2:50) ->
(

local boundary := new Rect \
 x2:(target.width + abs (self.shadowXoffset)) \
 y2:(target.height + abs(self.shadowYoffset))
 apply nextMethod self boundary:boundary target:target args
)

267

2D Graphics 11

ShadowedShape Draw Method

The draw method draws a shape and its shadow (although it actually draws
the shadow first, then paints the shape over the top of the shadow.) The
shadow uses the same stencil as the shape, but is offset to the left or right and
up or down to create a shadow effect.

The draw method for ShadowedShape does several things. It figures out
which brushes to use for filling and stroking the shadow, and which to use for
filling and stroking the shape. It paints the outline of the shadow on to the
surface, fills in the shadow on the surface, then paints the outline of the shape
to the surface, and fills in the shape on the surface. Notice that it uses the
shape’s globalTransform matrix to position the shadow and the shape.
Notice also that it translates the matrix (moves it) to the right before drawing
the shadow, and then moves it back to its original x position and down a bit
before painting the shape. Finally, the draw method restores the
globalTransform to its original state so that it is ready for next time.

The draw method defined here only works accurately for shadows that fall to
the right and top of the shape, that is, the x offset is positive and y offset is
minus. Shadows that fall in other directions are clipped since they fall outside
the boundary. (The improved class definition handles shadows in all
directions.)

method draw self {class ShadowedShape} surface clip ->
(
 -- get the offsets for the shadow

local xval := self.shadowXoffset
 local yval := self.shadowYoffset

-- get the transform matrix
local matrix := self.transform

 -- translate the matrix to the right

-- to position the shadow to the right
translate matrix xval 0

-- render the shadow to the surface
fill surface self.target clip matrix self.shadowFill

 -- draw the outline of the shadow
stroke surface self.target clip matrix self.shadowStroke

 -- translate the matrix to position the shape
 translate matrix (- xval) (- yval)

-- render the shape to the surface
fill surface self.target clip matrix self.fill

 stroke surface self.target clip matrix self.stroke

 -- restore the matrix back to its original state

translate matrix 0 yval
)

268

11 ScriptX Components Guide

Test the ShadowedShape Class

To use the ShadowedShape class, create an instance of it, specifying the target
stencil to use as the main shape. Put the shape in a visible space such as a
window. If you make changes to it, such as changing its fill, you must call
notifyChanged on it to update the image on the screen.

global w := new window
w.height := 300
w.width := 400
show w

global shape1 := new ShadowedShape \
target:(new oval x2:100 y2:100)

shape1.fill := new Brush color:magentaColor

shape1.x := 20
shape1.y := 20
prepend w shape1

Improved ShadowedShape Class

The improved version of the BetterShadowedShape class creates an
intermediatry subclass of TwoDShape, called BetterShadowedShapeSuper.
The sole purpose of this class is to define instance variables such as fill,
shadowedFill, and so on, so that a subclass can override the setter methods
for the instance variables.

BetterShadowedShapeSuper has one subclass, BetterShadowedShape,
that defines setter and methods for instance variables that can be changed by
users, such as fill, shadowFill, and so on. The setter methods call
notifyChanged to tell the compositor that the shape has changed and needs
to be redrawn.

The setter and getter methods for the shadowXOffset and shadowYoffset
instance variables also recompute the boundary.

The draw method also handles drawing the shadow in any direction. If the
shadow falls to the right, the draw method moves the positioning matrix to the
right before drawing the shadow, and move it back to the left before drawing
the shape.

If the shadow falls to the left, the draw method moves the matrix to the right
before drawing the shape, and moves it back to the left afterward.

If the shadow falls to the top, draw moves the matrix down before drawing the
shape, and moves it back to the center afterward.

If the shadow falls to the bottom, draw moves the matrix down before drawing
the shadow, and move it back up before drawing the shape.

-- class definitions
class BetterShadowedShapeSuper (TwoDPresenter)

instance variables

Examples:Shad-
wedShape class
mproved version)

269

2D Graphics 11

fill
stroke:blackbrush
shadowFill:(new brush color:bluecolor)
shadowStroke:blackbrush
shadowXoffset:5
shadowYoffset:-5

end

class BetterShadowedShape (BetterShadowedShapeSuper)
end

-- init method
method init self {class BetterShadowedShape} #rest args #key \
 target:(new Rect x2:50 y2:50) ->
(

local boundary := new Rect \
 x2:(target.width + abs (self.shadowXoffset)) \
 y2:(target.height + abs(self.shadowYoffset))
 apply NextMethod self boundary:boundary target:target args
)

-- draw method
method draw self {class BetterShadowedShape} surface clip ->
(
 local xval := self.shadowXoffset
 local yval := self.shadowYoffset

if (self.fill != undefined)
 do

(local matrix := self.transform

 -- fill the shadow and stroke its outline
 local xvala, yvala
 xvala := if xval < 0 then 0 else xval
 yvala := if yval > 0 then yval else 0
 translate matrix xvala yvala
 fill surface self.target clip matrix self.shadowFill

stroke surface self.target clip matrix self.shadowStroke

 -- now draw the target
 translate matrix (- xval) (- yval)
 fill surface self.target clip matrix self.fill
 stroke surface self.target clip matrix self.stroke

 -- restore the global transform
 xvala := if xval >= 0 then 0 else xvala := xval
 yvala := if yval <= 0 then yval else 0
 translate matrix xvala yvala
)
)

-- updateBoundary
method updateBoundary self {class BetterShadowedShape} ->

270

11 ScriptX Components Guide

(local target := self.target
self.boundary := new Rect \

 x2:(target.width + abs (self.shadowXoffset)) \
 y2:(target.height + abs(self.shadowYoffset))
)

-- Setter and Getter Methods
method heightSetter self {class BetterShadowedShape} value ->
(self.target.height := value

updateBoundary self
notifyChanged self true

)

method widthSetter self {class BetterShadowedShape} value ->
(self.target.width := value

updateBoundary self
notifyChanged self true

)

method heightGetter self {class BetterShadowedShape} ->
(self.target.height
)

method widthGetter self {class BetterShadowedShape} ->
(self.target.width
)

method fillSetter self {class BetterShadowedShape} value ->
(nextMethod self value

notifychanged self true
value

)

method strokeSetter self {class BetterShadowedShape} value ->
(nextMethod self value

notifychanged self true
value

)

method shadowfillSetter self {class BetterShadowedShape} value ->
(nextMethod self value

notifychanged self true
true

)

method shadowStrokeSetter self {class BetterShadowedShape} value ->
(nextMethod self value

notifychanged self true
value

)

method shadowXoffsetSetter self {class BetterShadowedShape} value ->
(nextMethod self value

271

2D Graphics 11

updateBoundary self
notifychanged self true
value

)

method shadowYoffsetSetter self {class BetterShadowedShape} value ->
(nextMethod self value

updateBoundary self
notifychanged self true
value

)

Example – Grid

This example describes the Grid class, which is defined as a subclass of
TwoDPresenter. The draw method of the Grid class renders horizontal and
vertical lines to make a grid.

Define The Grid Class

The Grid class has instance variables that users can change to specify
characteristics of the grid.These include instance variables that specify the
number of vertical lines (numOfVertLines); the number of horizontal lines
(NofHorizLines); the brush to use for the vertical lines (vertBrush); the
brush to use for the horizontal lines (horizBrush); the brush to use to fill the
background (fill); and the brush to use to paint the outline (stroke).

In addition, Grid has four instance variables that are needed by the draw
method, and users should not change these. They are matrixv and matrixh,
which are the matrices that position the vertical and horizontal lines
respectively; and linev and lineh, which are the lines to use for rendering
vertical and horizontal lines respectively.

The draw method could create these matrices and lines on the fly, but that
would result in excessive and unnecessary object creation, which would keep
the garbage collector busy cleaning up the extra objects whenever the grid was
drawn.

class grid (TwoDPresenter)
instance variables

NofHorizLines:20
numOfVertLines:20

linev :(new line x1:0 y1:0 x2:0 y2:100)
lineh: (new line x1:0 y1:0 x2:100 y2:0)

matrixv:(mutablecopy identityMatrix)
matrixh:(mutablecopy identityMatrix)
horizBrush:(new Brush \

color:(new RGBColor \
red:150 blue:150 green:150))

Examples:Grid
ass
Grid class

272

11 ScriptX Components Guide

vertBrush:(new Brush \
color:(new RGBColor \

red:150 blue:150 green:150))

stroke:(new brush color:blackColor)
fill:(new brush color:whitecolor)

end

Define the Draw Method

The draw method draws the grid by rendering horizontal and vertical lines. It
draws the vertical lines by drawing a single vertical line, then moving the line
and drawing it again, and so on. The horizontal lines are drawn in a similar
fashion.

method draw self {class Grid} surface clip ->
(

-- get the matrix that determines the grid’s position
local globalTrans := self.globalTransform

-- fill in the area
local fillBrush := self.fill
if isdefined fillBrush do
fill surface self.bbox clip globalTrans fillBrush

-- get the brushes and the lines to use
local horizBrush := self.horizBrush
local vertBrush := self.vertBrush

local linev := self.linev
linev.y2 := self.height
local lineh := self.lineh
lineh.x2 := self.width

-- horizTrans is the distance between horizontal lines
horizTrans := self.height / self.NofHorizLines

--vertTrans is the distance between vertical lines
vertTrans := self.width / self.numOfVertLines

-- initialize the matrices that position the lines
local matrixv := self.matrixv
setTo matrixv globalTrans

local matrixh := self.matrixh
setTo matrixh globalTrans

-- draw the vertical lines
-- move the positioning matrix to the right
-- after drawing each line
for i in 1 to (self.numOfVertLines - 1)
do
(translate matrixv vertTrans 0

fill surface linev clip matrixv vertBrush
)

273

2D Graphics 11

-- draw the horizontal lines
-- move the positioning matrix to down
-- after drawing each line
for i in 1 to (self.NofHorizLines - 1) do
(translate matrixh 0 horizTrans

fill surface lineh clip matrixh horizBrush
)

-- draw the outline of the grid
local strokeBrush := self.stroke
if isdefined strokeBrush do

stroke surface self.bbox clip globalTrans strokeBrush
)

Create and Display a Grid

To display a grid, simply create an instance of Grid and put it in a visible
space such as a window.

w := new Window
w.width := 500
w.height := 400

show w

global grid1 := new Grid boundary:(new Rect x2:200 y2:100)

append w grid1

grid1.x := 50
grid1.y := 50

-- change the width and height
grid1.width := 200
grid1.height := 200

-- change the number of vertical lines
grid1.numOfVertLines := 10
grid1.NofHorizLines := 10
notifyChanged grid1 true

Improving the Grid Class

To improve the Grid class, you could define setter and getter methods for all
the instance variables that can be changed by users (such as fill and
numOfVertLines and so on), so that the grid updates immediately when they
are changed. See the “2D Graphics Examples” on page 265 for examples of
defining such setter and getter methods.

Since each Grid object uses its default boundary (which you specify when
creating an instance of Grid) the boundary is recalculated automatically and
correctly whenever the width and height of a grid change. Thus you would not
need to define setters methods for the width and height instance variables.

274

11 ScriptX Components Guide

Example – Stencilizer

The Stencilizer class that is discussed in this section acts like a paint
program. If you put a Stencilizer object in a window, you can paint in the
area of the stencilizer by pressing and dragging the mouse.

When you press the mouse down in the area of the stencilizer, or you move the
mouse around in the stencilizer, the stencilizer draws a stencil to the
stencilizer’s offscreen drawing cached, which is a BitmapSurface, and then
immediately notifies the compositor that the stencilizer has changed. Behind
the scenes, the compositor calls the stencilizer’s draw method, which transfers
the contents of the offscreen bitmap surface back to the window’s display
surface.

This level of indirection is needed so that the stencilizer will draw itself
properly whenever needed. If the mouseEvent objects drew directly to the
window instead of to the stencilizer’s drawing cache, the results of the
drawing would be lost if the window was closed or covered, or if the
stencilizer was moved about in or removed from the window.

Stencilizer Class Definition

A Stencilizer instance paints by drawing stencils to a BitmapSurface
called the drawing cache. The draw method of Stencilizer first transfers the
contents of the drawing cache to the screen.

In addition to demonstrating 2D graphics and 2D presenters, the
Stencilizer class demonstrates interactive use of mouse events. A
Stencilizer instance creates event interests when it is initialized to catch
mouse events in its area. It defines instance methods to receive mouse events—
these methods create stencils along the brush stroke as the user drags with the
mouse.

The Stencilizer class defines several instance variables representing 2D
graphics objects. The drawingCache instance variable is a BitmapSurface
instance used to cache previous drawings. The strokeClass instance variable
provides a way to set the shape of the brush stroke; it can be one of the
Stencil subclasses Oval, Rect, or Line. The currentBrush is the brush to
use for this stroke.

The Stencilizer class defines the mouseDown, mouseMoved, and MouseUp
instance variables that hold the MouseEvent objects that are needed to detect
mouse actions. In the stencilizer’s initial state, the MouseDown event is waiting
for the mouse to be pressed down. When the mouse is pressed down, the
MouseMoved and MouseUp events are brought into action, to detect when the
mouse is moved or when it is released. When you let the mouse up, the
MouseMoved and MouseUp events are temporarily relieved from duty, since
they will not be needed until the mouse is pressed down again.

The mouseDown, mouseMoved, and MouseUp event objects call the fill
method to render a stencil (determined by the strokeClass) to the
stencilizer’s drawing cache.

Examples:Sten-
lizer class
Stencilizer class

itmapSurface class:using
tencilizersample script

275

2D Graphics 11

(For more on event handling, see Chapter 18, “Events and Input Devices in this
manual).

class Stencilizer (TwoDPresenter)
instance variables

drawingCache -- bitmap for caching previous strokes
strokeClass -- class of Stencil used in the brushStroke
currentBrush -- Brush instance now used to fill thebrushStroke
strokeWidth -- Half the width of the brush stroke
mouseDown -- event interests managed by theStencilizer
mouseMoved
mouseUp

end

RenderStroke Method

The Stencilizer class’s renderStroke method creates a stencil at the
current mouse point. The brush and kind of stencil are determined by values in
the currentBrush and strokeClass instance variables.

After rendering the stencil to the offscreen drawing cache, the renderStroke
method calls notifyChanged on the stencilizer, to tell the compositor that the
stencilizer has changed. This causes the compositor to call the stencilizer’s
draw method behind the scenes.

-- renderStroke
method renderStroke self {class Stencilizer} theInterest theEvent ->
(

-- get the current mouse point
local thisPoint := theEvent.localCoords
local pointx := thisPoint.x
local pointy := thisPoint.y
local strokeWidth := self.strokeWidth

-- create a stencil
local thisStencil := (new self.strokeClass \

x1:(pointx - strokeWidth)\
y1:(pointy - strokeWidth) \
x2:(pointx + strokeWidth) \
y2:(pointy + strokeWidth))

-- render the stencil to the bitmap surface
fill self.drawingcache \

thisStencil \
self.boundary \
identityMatrix \
self.currentBrush

-- call notifyChanged to tell the compositor
-- that the stencilizer has changed
notifyChanged self true

-- accept the event
@accept

)

276

11 ScriptX Components Guide

BeginStroke and EndStroke Methods

The Stencilizer class defines methods that are invoked by mouse events.
The beginStroke method is invoked when the mouse is pressed down in the
area of the stencilizer. The renderStroke method is invoked after the mouse
has been pressed down and is moved. The endStroke method is invoked
when the mouse is released.

The mouseDown event invokes the beginStroke method, which puts the
mouseMove and mouseUp events on duty, and then calls renderStroke to
render the stroke. The mouseUp event invokes the endStroke method, which
takes the mouseMove and mouseUp events off duty, and then calls
renderStroke. The mouseMove event simply renders the stroke; it does not
need to manage events, so it calls renderStroke directly.

-- beginStroke
-- this method handles mouse down events
method beginStroke self {class Stencilizer} theInterest theEvent ->
(

-- put the mouseMoved and mouseUp events on duty
addEventInterest self.mouseMoved
addEventInterest self.mouseUp

-- render the stroke
renderStroke self theInterest theEvent

)

-- endStroke
-- this method handles mouse up events
method endStroke self {class Stencilizer} theInterest theEvent ->
(

-- remove the mouseMoved and mouseUp events from duty
removeEventInterest self.mouseMoved
removeEventInterest self.mouseUp

-- render the stroke
renderStroke self theInterest theEvent

)

Initializing a Stencilizer Instance

Initializing a Stencilizer instance consists largely of setting default values
for instance variables defining the brush stroke, setting up the drawing cache,
and defining mouse-event interests for interactive painting. Each event interest
identifies the presenter (self) interested in the event, a method for receiving
the event, and the author data to pass to the function (again, self). The init
method for Stencilizer is as follows:

-- this method initializes the Stencilizer

nt receivers functions
useDownEvent class:receiv-
nction for
useMoveEvent class:receiv-
nction for
useUpEvent class:receiver
tion for

277

2D Graphics 11

method init self {class Stencilizer} #rest args ->
(

apply nextMethod self args

-- define the brush characteristics
self.currentBrush := new Brush color:redColor
self.strokeWidth := 4
self.strokeClass := Oval
-- make the drawing cache be fairly big
self.drawingCache := new BitmapSurface \

bbox:(new rect x2:600 y2:400)

local theMouseDevice := new MouseDevice

-- set up the mouse event interests
self.mouseDown := new MouseDownEvent
self.mouseDown.eventReceiver := beginStroke
self.mouseDown.authorData := self
self.mouseDown.device := theMouseDevice
self.mouseDown.presenter := self

self.mouseMoved := new MouseMoveEvent
self.mouseMoved.eventReceiver := renderStroke
self.mouseMoved.authorData := self
self.mouseMoved.device := theMouseDevice
self.mouseMoved.presenter := self

self.mouseUp := new MouseUpEvent
self.mouseUp.eventReceiver := endStroke
self.mouseUp.authorData := self
self.mouseUp.device := theMouseDevice
self.mouseUp.presenter := self

-- make sure stencilizer gets mouse up, even outside its boundary
self.mouseUp.matchedInterest := self.mouseDown

-- at the beginning, put the mouseDown event on duty
addEventInterest self.mouseDown

)

The Stencilizer Draw Method

The Stencilizer class’s draw method simply transfers the contents of the
drawing cache to the specified surface, and then paints the outline of the
stencilizer.

The renderStroke method discussed previously uses the identityMatrix
to position the stencil on the drawing cache. The draw method, however, uses
the stencilizer’s globalTransform value as the matrix to position the
transferred image. This ensures that if the stencilizer has been moved to a
location other than (0,0) in the window, it will be drawn correctly at the new
position.

The draw method transfers the bitmap surface used as the drawing cache to a
destination surface, rather than directly filling and stroking stencils to the
surface. Thus the draw method needs to use the stencilizer’s

tencilizer sample script
woDPresenter class:draw method
aw method (TwoDPresenter)

278

11 ScriptX Components Guide

globalBoundary value as the clipping region, rather than using the clip
value that is passed in to it. Since the draw method does not use the clipping
region that is passed to it, it will not be clipped properly if it is put in a
TwoDMultipresenter, such as a TwoDSpace.

Thus you should not embed a Stencilizer object inside another presenter
that does clipping. You can however put a Stencilizer object inside another
presenter that does not do clipping, such as a GroupSpace.

-- draws the contents of the Stencilizer‘s drawing cache to a surface
-- this method is called automatically by the compositor
method draw self {class Stencilizer} theSurface clip ->
(

-- transfers the drawing cache to the surface
transfer theSurface \

self.drawingCache \
self.globalBoundary \
self.globalTransform

-- draw the outline of the stencilizer's area
stroke theSurface \

self.boundary \
self.globalBoundary \
self.globalTransform \
blackbrush)

Testing the Stencilizer

The following script creates and displays an instance of Stencilizer in a
window.

-- set up a simple example of the stencilizer class
global myWindow := new Window \

boundary:(new Rect x2:400 y2:300) \
name:"ScriptX Stencilizer"

global myStencilizer := new Stencilizer \
boundary:(new Rect x2:300 y2:250)

append myWindow myStencilizer
myWindow.x := 50
myWindow.y := 50
show myWindow

When the stencilizer window appears, you can set instance variables of
myStencilizer to change the results of painting. To change the color of the
brush stroke, set myStencilizer.currentBrush to blackBrush or some
other Brush instance. To change the shape of the brush, set
myStencilizer.strokeClass to either the Rect or Line class (it’s Oval by
default). To change the width of the brush, set
myStencilizer.strokeWidth to an integer value such as 1, 5, or 10. (Note
that the strokeWidth value is actually half the stroke width.)

279

2D Graphics 11

You can change the position of the stencilizer, and you can change its width
and height. The stencilizer acts as a viewing frame for an underlying canvas
(the drawing cache). If you increase the size of the stencilizer, you will see
more of the canvas. If you decrease the size of the stencilizer, you will see less
of the canvas.

Resizing the stencilizer does not resize the drawing cache, since it is a separate
BitmapSurface object. Also, if you make the stencilizer bigger than its
drawing cache, you will not be able to paint in the region of the stencilizer that
extends beyond the drawing cache.

You can clean the stencilizer’s slate by giving it a new BitmapSurface to use
as its drawing cache.

If you remove the stencilizer from its current window, and put it in another
one, it will draw itself correctly.

280

11 ScriptX Components Guide

C H A P T E R

12
Text and Fonts

282

12 ScriptX Components Guide

283

Text and Fonts 12

This chapter describes the Text and Fonts components. Text provides for the
display, editing, and formatting of text, including paragraph formatting. The
Fonts component provides access to the font glyphs and metrics.

To present text, ScriptX defines two classes: TextPresenter and TextEdit.
Both inherit from the class TwoDPresenter, part of the ScriptX spaces and
presenters hierarchy.

Classes and Inheritance
The class inheritance hierarchy for the Text and Fonts components is shown in
the following figure.

The following classes form the Text and Fonts components. In this list,
indentation indicates inheritance.

String – a sequence of characters stored with variable-length encoding.

StringConstant – an immutable string.

Text – a searchable string of characters and a set of style attributes.

TextPresenter – a presenter for the display of String, StringConstant,
and Text objects, which inherits from the class TwoDPresenter.

TextEdit – a subclass of TextPresenter that provides selection and
editing services through the mouse and keyboard.

Font – an abstract class providing access to a typeface.

xt and Fonts
mponent<$star-

ge>
nts, see Text
 Fonts compo-
t
ings see Text
 Fonts compo-
t

xt, see Text
 Fonts compo-
t

xt compo-
t:inheritance

gram

Sequence

String

StringConstant

ByteStream

Text

TwoDPresenter

TextPresenter

TextEdit

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

RootObject

Font

PlatformFont

StringIndexStringIndex

SearSearchIndexSearchContext

ring class
ringConstant
ss
xt class
xtPresenter

ss
xtEdit class
nt class
nt class see
o Text and
ts component

atformFont
ss
xt and Fonts

mponentText
ss
xt and Fonts

mponentString
ss
xt and Fonts

mponentString-
nstant class

284

12 ScriptX Components Guide

PlatformFont – a concrete subclass of Font providing access to the font
technology of the underlying system.

StringIndex – a signature index providing fast searching of text

SearchContext – an object with information about where to search in a
StringIndex object

Conceptual Overview
The Text component provides facilities for the creation, manipulation, and
presentation of text. These include string encoding, text formatting, text
editing, and string searching capabilities. Text can be used to create specialized
multimedia objects such as annotations and hypertext links. There are no
restrictions on the length of a string in ScriptX.

The Fonts component provides a mechanism that allows ScriptX classes, such
as those in the Text component, to locate and process font data provided by the
underlying system.

The core classes of strings include three concrete classes—String,
StringConstant, and Text—that represent a series of characters. String
provides the basic behavior for character storage and encoding,
StringConstant is a class of strings that cannot be modified, and Text is a
string class with additional methods for managing character attributes and
selections.

Theses three string classes are not presenters. In order to be presented on
screen, they must be the target of a TextPresenter or TextEdit object. An
ASCII representation of a string can be printed to a debugging console or
stream. See Chapter 3, “Spaces and Presenters” for more information on how
presentation takes place.

Strings are both collections and streams. Although individual characters are
not themselves objects, a string is a collection in which each character is an
element. In the methods that String inherits as a collection, the focus is on
access to individual elements. String also inherits from Stream, from which
it derives many methods for processing a linear stream of data. Because of its
dual heritage as a collection and a stream, there are often several ways to
perform an operation on a string.

How Text Works

String Encoding and Unicode

The String class, which is the superclass of both StringConstant and
Text, allows strings to be stored as a sequence of 31-bit unsigned integers,
each of which represents a character in the Unicode or ISO 10646 standards.
Unicode conformance allows ScriptX to display text in every major written
language, and to accommodate variations in how different languages display
and order individual characters.

xt and Fonts
mponent:text
resentation
tartrange>
xt and Fonts

mponentText
ss
xt and Fonts

mponentString
ss
xt and Fonts

mponentString-
nstant class

xt class
ring class
icode

O 10646
riable-length
oding, text

TF encoding
ring encoding
tartrange>

285

Text and Fonts 12

Unicode is a standard for encoding characters and symbols used in all major
writing systems, including languages that are written with non-Roman
alphabets or ideographic symbols (Arabic, Chinese, Hebrew, Japanese, Korean,
and others). In standard Unicode, the lower 16 bits encode character data.
Integers from 1 to 127 represent the ASCII character set. (The ASCII character 0
cannot appear within a string.) Integers above 128 encode special characters
and characters in non-Roman alphabets.

The original Unicode standard imposed a rigid ordering on characters, to
which some nations objected. For example, the Chinese and Kanji writing
systems share many ideographic symbols, but these symbols have different
meanings and are ordered differently in Chinese and Japanese. ISO 10646
extends Unicode beyond 16 bits to allow for different national standards on the
ordering of characters. National committees will be allocated 16-bit subspaces,
which they can partition individually.

ISO 10646 permits the definition of thousands of additional character sets,
should the need arise. As new standards are released, ScriptX may
accommodate an additional 15 bits of information for each Unicode character.
In practice, the value of the 15 high bits will usually be 0.

Since 31-bit integers are demanding of memory and storage, ScriptX
implements variable-length encoding through the File System Safe Unicode
Translation Format (UTF). UTF encoding is transparent to other scripts and
objects. Each character is stored as a sequence of 1 to 6 bytes. Every byte in a
sequence is either an initial byte or a trailing byte. The high-order bits of the
initial byte indicate the number of bytes in the sequence that follows. All
trailing bytes begin with binary 10 in the two high-order bits. Table 12-1 shows
the format of UTF characters of varying length.

Any byte in the sequence can be easily identified as part of a single byte or
multibyte sequence. If the high-order bit is 0, the sequence is one byte in length
and represents an ASCII character. Thus, a ScriptX String object stores text
from languages written in Roman alphabets very efficiently, with all ASCII
characters encoded in a single byte.

Special characters such as accents and ligatures, and characters from
non-Roman alphabets such as Greek, Cyrillic, Hebrew, and Arabic are encoded
in 2-byte sequences. Ideographic symbols that are used in written languages
such as Japanese, Chinese, and Korean, can be encoded mostly in 3-byte
sequences.

Table 12-1: UTF encoding of strings

Length Initial
Byte

Trailing Bytes…

1 byte
2 bytes
3 bytes
4 bytes
5 bytes
6 bytes

0xxxxxxx
110xxxxx
1110xxxx
11110xxx
111110xx
1111110x

10xxxxxx
10xxxxxx
10xxxxxx
10xxxxxx
10xxxxxx

10xxxxxx
10xxxxxx
10xxxxxx
10xxxxxx

10xxxxxx
10xxxxxx
10xxxxxx

10xxxxxx
10xxxxxx 10xxxxxx

ring encoding
ndrange>

286

12 ScriptX Components Guide

Strings as Collections

String inherits from Sequence, one of the classes that provides the collection
protocol. Because strings are collections, many methods that operate on
individual elements of a collection can be used to access and modify individual
characters of a string. (It should be noted, however, that elements of a string
are not themselves objects.)

A ScriptX expression must return an object; therefore, when an element of a
string is assigned to a variable, the variable is actually assigned an integer
which represents the Unicode value of the character. The result is that a string
behaves as if it were a collection of 31-bit unsigned integers.

The following code demonstrates that when working with strings as
collections, each character is considered an element in that collection, and each
of those elements is represented as an integer value corresponding to a
Unicode value.

getNth "foo" 2

➯ 111 -- the Unicode integer value for the character "o"

str := "remove the spaces" as String
deleteAll str 32 -- 32 is the space character
print str

➯ "removethespaces"

An alternate method is to use the element access construct:

str[2]

➯ 101 -- the Unicode integer value for the character "e"

You can find the integer value of any single character using the element access
expression with a string of that character:

"r"[1]

➯ 114

" "[1]

➯ 32

To coerce an integer into a string of one character, use one of the following
functions. The first version of intToString is based on the collection
behavior of a string. The second version uses the writeByte method defined
by Stream, described in the next section. The two versions are almost identical
in performance.

-- a collection version of intToString
function intToString val -> (

local str := "" as String
append str val -- a Sequence method
return str

)
-- a stream version of intToString
function intToString val -> (

local str := "" as String
writeByte str val

xt and Fonts
mponent:creat-
new instances
ing literals

lections: and
ngs
xt and Fonts

mponent-
ngs as collec-
s

287

Text and Fonts 12

return str
)
intToString 32

➯ " "

intToString 114

➯ "r"

Since strings inherit from Collection, you can access the size instance
variable to find the length of a string:

str := "this is a sample string" as String
str.size

➯ 23 -- str contains 23 elements

Methods which work on collections also work on strings. See the section on
concatenating and modifying strings for more examples.

Strings as Streams

Because strings also inherit from streams, they can be treated as write-only,
non-seekable streams.

Since String objects and Text objects are writable streams, methods that
write to streams can operate on them. For example, the prin method, used to
display the ASCII representation of an object, expects a stream as its last
argument. By substituting a string for that argument, the result of the prin
method is placed into that string:

str := "Rectangles look like: " as String
prin (new Rect) @normal str
print str

➯ "Rectangles look like: [0, 0, 0, 0] as Rect"

The most common stream method used on strings is the writeByte method,
which can append a single character to a string (the collection method append
can perform this same operation):

str2 := "foo" as String
writeByte str2 102; print str2

➯ "foof"

One conceptual difference between a stream and a collection is that with a
stream, there is the concept of current position. This current position is called a
cursor, and is continually updated as a script processes data in a stream.

Table 12-2: Behavior of String classes as streams

String Class isReadable isWritable isSeekable

String false true false

StringConstant false false false

Text false true false

eams:and
ngs
xt and Fonts

mponent-
ngs as streams

288

12 ScriptX Components Guide

Strings and Iterators

Iterators, which are defined in the Collections component, are streams that a
script uses in order to perform an operation on each member of a collection.
Since String inherits from Sequence, a script can iterate over the elements of
a string by creating an instance of SequenceIterator, which is readable,
writable, and seekable. (String and Text objects are only writable without an
iterator.) The following script adds a new method to the String class, using
an iterator to pass through each element in the stream:

method getUpperCase self {class String} -> (
local lowers := new NumberRange lowerBound:97 upperBound:122
local upperCaser := getFirst "a" - getFirst "A"
-- make it handle string constants by coercing them to strings
if self.mutable = false do self := self as String
local myIterator := iterate self -- creates an iterator
repeat while (next myIterator) do (

if (withinRange lowers myIterator.value) do (
myIterator.value := myIterator.value - upperCaser

)
)
return self

)
getUpperCase ("GHoBi" as String)
➯ "GHOBI"

Iterators are useful for functions and methods that process text. A string is not
readable or seekable as a stream. By using an iterator, a script can perform
additional stream operations, such as previous and seekFromCursor. For
more information on iterators, see page 470 of the “Collections” chapter.

Cursor Positions

Ranges of characters in strings, as used in the string methods, selections, and
text attributes, are expressed as cursor positions. Cursor positions occur
between characters, with position 0 indicating the beginning of the string
(before the first character). This is different from the ordinal position of each
character (as used in collections), which occurs directly on the character itself.
Figure 12-1 illustrates the difference between cursor and ordinal positions.
Note that a single character is also a range of two cursor positions.

Figure 12-1: Cursor And Ordinal Positions

xt and Fonts
mponent: cur-

positions
xt at-
utes:cursor po-
ons

H E L L O

0 1 2 3 4 5

1 2 3 4 5

cursor position

ordinal position

289

Text and Fonts 12

How Fonts Work

Fonts

Font scaling and rendering in ScriptX takes place by accessing the font
technology of the underlying platform and the fonts that have been installed
on that system. ScriptX provides two classes, Font and PlatformFont, that
allow other ScriptX objects to access and use the available installed fonts and
font technology.

To get access to a particular font family such as Helvetica, Times New Roman,
Caslon Antique, etc., use an instance of the concrete class PlatformFont.

The PlatformFont object provides access to the font family specified by the
name keyword. To use variations of that font family (for example: bold, italic,
or condensed) use the attributes defined by the TextPresenter or Text
classes. Text attributes are described in “Overview of Text Attributes” on
page 293. The use of fonts in ScriptX is also described in more detail in that
section.

Using Text and Fonts

Creating Strings

Strings can be created in various ways. The simplest way to create a string is
through the use of a string literal, that is, by simply typing the string in a script
surrounded by double quotes:

"this is a string"

Special Unicode characters outside the standard ASCII character set can be
specified in a string literal using the \<nnnn> notation. The Hexadecimal
number represented by nnnn is any valid Unicode/ISO 10646 character.

global myStringConstant := "ScriptX\<2122>" -- 0x2122 is "trademark" in
 -- Unicode

➯ "ScriptX\<2122> -- ASCII representation in the debugging stream

Note that in the ASCII printed representation of the string (as in the ScriptX
listener window), special Unicode characters may not appear or may look like
garbage. The special characters appear in their proper form when the string is
displayed by a presenter. Which special characters are available depends on
the underlying platform on which ScriptX is running. A ScriptX text presenter
displays non-ASCII characters correctly, provided that the underlying
operating system interprets them correctly and matches them with an
appropriate font glyph. The following script displays the StringConstant
object myStringConstant in a new window, with the trademark symbol.

global myWindow := new Window boundary:(new Rect x2:200 y2:200)
show myWindow; myWindow.y := 40
object myBoundary (Rect) x2:100, y2:25 end

290

12 ScriptX Components Guide

global myTextPresenter := new TextPresenter boundary:myBoundary \
target:myStringConstant fill:whiteBrush stroke:blackBrush

-- now the non-ASCII trademark symbol shows up correctly
append myWindow myTextPresenter
show myWindow

String literals actually create instances of the class StringConstant. You can
then coerce those objects into instances of String or Text using the as
expression:

global myString := "This is another string" as String

You can also create instances of String, StringConstant, and Text using
the new method with the string keyword:

global theText := new Text string:"this is a text string"

Since StringConstant objects are immutable, a method that tries to modify
an instance of StringConstant will produce an exception. The easiest way to
avoid an exception is to coerce the StringConstant object into a String
object.

Creating Fonts

Since Font is an abstract class, you do not create Font objects directly. It is
possible to use the method new with Font, but that will create a
PlatformFont object which is set to the default system font. If you want to
specify a font, you must create an instance of PlatformFont, using the new
method and the appropriate keywords. The possible keywords are name,
macintoshName, windowsName, and os2Name. If you use the name keyword,
the use of any of the other keywords is optional. In other words, you can use
one, two, three, or four keywords in any combination as long as name is one of
them. If you do not use the name keyword, you must use all of the
platform-specific keywords.

If you supply the name of a platform-specific font and that font is available on
the platform being used, it takes precedence over the font supplied for the
name keyword. If you did not specify platform-specific fonts, or the ones you
specified are not available, ScriptX will try to use the font you supplied for the
name keyword, if you supplied one. Otherwise, it will use the default font for
that platform.

When ScriptX is attempting to use the font supplied for name, it searches for a
matching string and uses the first one it finds. For example, if you give
“Times” for name, the font used could be “Times”, “Times Roman”,
“Times New Roman”, or any other font beginning with “Times” that is
available on that platform, depending on which one was encountered first. For
this reason, it is advisable to supply a platform-specific font if you want a
specific font on a particular platform. If the font supplied for name is not
found, ScriptX uses the default font for that platform.

291

Text and Fonts 12

fnt := new PlatformFont macintoshName:"Times" \
windowsName:"Times New Roman" os2Name: "Times"

If both the generic name and a platform-specific name are used in the same
new statement, the platform-specific name is used if ScriptX is being run on
that platform. Otherwise, the generic name is used. For example, if ScriptX is
being run on the Macintosh, this new method returns an instance of the font
named Optima:

fnt := new PlatformFont name:"Times" macintoshName:"Optima"

However, the following expression on the Macintosh version of ScriptX returns
an instance of the font named Times (windowsName is ignored)

fnt := new PlatformFont name:"Times" windowsName:"Optima"

If the named font is not found, ScriptX uses the default system font. You can
also get access to the default system font by using the default class variable,
defined on the Font or PlatformFont classes:

PlatformFont.default

➯ PlatformFont@0x11337a8 -- the address of a PlatformFont object

Presenting Strings

To present a string on screen, you need a text presenter. The ScriptX Core
Classes define two presenters for text, TextPresenter and TextEdit.
Generally, the TextPresenter class displays static text, while the TextEdit
class displays text that the user can modify. The TextEdit class provides
additional behavior for setting insertion points and selections within the
displayed text using a mouse, and for inserting and deleting text using the
keyboard.

Both the TextPresenter and TextEdit classes use an instance of the
String class (generally a Text object) as their target. The target of a text
presenter is the text that the presenter is actually presenting. The overall
appearance of that text is defined by the presenter through the use of text
attributes, such as font, color, amount of space between lines, etc. “Overview of
Text Attributes” on page 293 describes text attributes and how to use them.

Any text which will be used as the target of a text presenter should always end
with a carriage return. If it does not, the method calculate will not operate
on it correctly. The description of calculate included in the definition of the
class TextPresenter in the ScriptX Class Reference gives examples and more
information.

Although there is no limit to the length of a String object, there is a limit to
the amount of text that can be displayed in a text presenter at any one time.
TwoDPresenter objects are limited to 32K in height (and width), and since
TextPresenter and TextEdit objects inherit from TwoDPresenter, they

xt and Fonts
mponent:text
resentation
ndrange>
xt and Fonts

mponenttext-
sentation<star-
ge>
xt and Fonts

mponentText-
senter class
xt and Fonts

mponentTextE-
class
xtEdit class
xtPresenter

ss

292

12 ScriptX Components Guide

also have a 32K limit. For example, if you have some 12 point text with a
leading of 1 (1 point of space between lines), you can display up to 2520 lines
worth of that text (32K / (12 +1)).

Creating New Instances of TextPresenter and TextEdit

The TextPresenter and TextEdit classes are subclasses of
TwoDPresenter and are created in much the same way that other presenters
are. Text presenters, in particular, require two initialization keywords,
boundary and target.

myTP := new TextPresenter \
boundary:(new Rect x2:300 y2:300)\
target:"This is a string"

The boundary keyword requires a Stencil object which defines the shape
and size of the text presenter. In the current ScriptX release, that boundary
must be an instance of the class Rect.

The target keyword specifies the actual characters that are to be presented,
that is, a String, StringConstant, or Text object. Whereas a
TextPresenter object can have any of the three string types as its target, a
TextEdit object requires that its target be a Text object. This is the case
because a TextEdit object needs a string with attributes in order to do any
editing. Since String and StringConstant objects do not have attributes,
you cannot change the appearance of individual characters within either of
them.

The TextPresenter class defines two other initialization keywords: fill
and stroke. Both require a Brush object. Through inheritance, those
keywords are available to the TextEdit class as well. The fill keyword
defines the color and pattern of the text presenter’s background; the stroke
keyword defines the color, pattern, and width of the boundary of the text
presenter.

Setting Other Instance Variables

The offset instance variable is a cursor position (as opposed to an ordinal
position), and the text which follows it will appear starting at the top left
corner of the presenter. By default, the offset is 0, meaning the presenter
displays the text starting at the first character. Changing the presenter’s
offset has the effect of scrolling the text in the presenter such that the
character after the given offset is at the top left corner.

The inset instance variable is used to set off text from the edges of the text
presenter. If, for example, the stroke of the boundary is several points thick,
you would need to set the inset so that the text is not covered by the boundary.
The value of the inset instance variable is a Point object, in which the x
value of that object determines the horizontal (left to right) inset in pixels, and
the y value determines the vertical (upper to lower) inset.

xt and Fonts
mponent:creat-
new instances

xtPresenter
ss: instance
ables of
xtPresenter

ss: see also
t and Fonts

mponent

293

Text and Fonts 12

The selectionForeground and selectionBackground instance variables
define the appearance of selected portions of text. Note that both
TextPresenter and TextEdit objects can have selections, but only
TextEdit objects can make a selection using the mouse. The values of both
selectionForeground and selectionBackground are instances of the
Brush class. See “Setting Selections, Insertion Points, and Cursors” on
page 303 for more details.

The cursor and cursorBrush instance variables define the shape and
appearance of the cursor marking the current insertion point. See “Setting
Selections, Insertion Points, and Cursors” on page 303 for more details on
defining a cursor.

Overview of Text Attributes
Text attributes define how text is to be displayed and formatted in a text
presenter. Text attributes are contained in a keyed linked list of key-value pairs,
where the key is the name of an attribute (such as @style or @size) and the
value is the value of that attribute (such as @italic or 14).

When you create a TextPresenter object, its attributes are automatically
initialized to a set of default values. These default values can subsequently be
set to new values if you want to change them. The values to which the
attributes of the text presenter are set (either automatically at initialization or
explicitly by the programmer) become the default values for the string being
presented. Because of this, you can think of the attributes of a text presenter as
a template for the appearance of the text it presents. These attributes apply to
the target text globally, meaning that if the @size attribute is 12, then all
characters in the target string will have a point size of 12. If the presenters’s
@weight attribute is @bold, then all charcters are bold, and so on. If the target
is a String object or a StringConstant object, the appearance is
determined completely by the attributes of the presenter.

When the target of a text presenter is a Text object, the appearance of the text
can be changed because Text objects, unlike String and StringConstant
objects, have attributes. A Text object is created with its default attributes all
set to undefined; as a result, its attributes are set to those of its presenter at
initialization. Initially, then, all three types of strings are displayed with the
attributes of their presenters, which is why the attributes of a text presenter can
be thought of as the default attributes for the string it is presenting. With Text
objects, however, you can change the values of attributes, and any change
made in a Text object attribute overrides the attribute setting of its presenter.
Additionally, in a Text object you can specify a particular character or range of
characters where the change takes effect. This differs from text presenters,
where attributes affect all characters and cannot be set to affect just certain
ones.

A TextPresenter object is the appropriate presenter when you want to
display textual material that will not be changed by the user. A String or
StringConstant object is the appropriate target for a TextPresenter
object when you want all of the characters being presented to share the same
attributes (those of the text presenter). You need to use a Text object as the

xt and Fonts
mponent:text-
sentation<$en-
nge>

xt and Fonts
mponent:fonts

nt class
atformFont
ss
xt and Fonts

mponentFont
ss
xt and Fonts

mponentPlat-
mFont class

xt attributes
tartrange>
xt and Fonts

mponentat-
utes <$star-
ge>
ributes:of text,
 text attributes
xt and Fonts

mponentat-
utes see also
 attributes

294

12 ScriptX Components Guide

target of a presenter if you want some text indented or underlined or a
different size or a different style, etc. And if you want the user to be able to
select text and modify it using the keyboard or a mouse, then you need a
TextEdit object as the presenter with a Text object as its target text.

In summary, text attributes are available in a text presenter (a TextPresenter
object or a TextEdit object) and in a Text object serving as a presenter’s
target. The attributes of the text presenter determine the overall look of the
text; individual attributes defined by a Text object override the attributes of
the text presenter for specific characters (for example, to make a particular
word bold or to center a title). Because String and StringConstant objects
do not have attributes, the appearance of individual characters within them
cannot be changed. Also, String and StringConstant objects cannot be
used as the target of a TextEdit object; the target must be a Text object.

Figure 12-2: Attributes of TextPresenter and Text

 New instances of TextPresenter or its subclasses are created with a set of
default attributes to determine a simple look for text. You can see what those
default attributes are by calling the method getDefaultAttrs on a
newly-created instance of TextPresenter and then supplying the result as
an argument to prin.

tp := new TextPresenter target:"foo" boundary:(new Rect)
prin (getDefaultAttrs tp) @complete debug -- print them all

➯ #(@font:PlatformFont@0x12b6b28, @size:12, @weight:@regular,
@width:@normal, @style:@roman, @leading:13, @alignment:@fill,
@indent:0, @indentFromEnd:0, @paraIndent:0, @brush:Brush@0x1290548,
@underline:0)

Attributes defined by a Text object must be set explicitly for a range of
characters using the setAttr or setAttrFromTo methods. You can also
query the attributes for a specific character or character range by using the
methods getAttr and getAttrs.

theText := "this is some Text" as Text
-- turn the first word bold
setAttrFromTo theText @weight 0 4 @bold
-- make the last word 18 points
setAttrFromTo theText @size 13 17 18
-- set the first three words to a new font
setAttrFromTo theText @font 0 13 (new PlatformFont name:"Times")
-- query stuff
getAttrs theText 3

Est domus in terris, clara quae
voce resultat. Ipsa domus resonat,
tacitus sed non sonat hospes. Ambo
tamen currunt, hospes simul et
domus una

overall text appearance defined
by attributes of TextPresenter
object

Appearance of individual characters
defined by attributes of Text object
(target)

xt attributes:at-
utes instance
ables

xt attributes:
erence be-
en Text and
tPresenter

xt at-
utes:methods
defining
tAttrFromTo
hod (Text)
tAttr method
xt)
tAttrs method
xt)
tAttr method
xt)
tAttrRange
hod (Text)

295

Text and Fonts 12

➯ #(@weight:@bold, @font:PlatformFont@0x12e51a8)

getAttrs theText 8

➯ #(@font:PlatformFont@0x12e51a8)

getAttrs theText 14

➯ #(@size:18)

The Text class also defines a getAttrRange method that, given a text object,
an attribute key, and a cursor position, returns the range of text for which that
attribute applies:

getAttrRange theText @size 15

➯ 13 to 15 -- the point size is 15 from cursor position 13 to 15

The default attributes of Text objects are defined by the
defaultAttributes class variable (initialized to undefined by default).
You can modify that class variable and create a template for new instances of
Text, but doing so is not normally recommended. Setting
defaultAttributes affects all new Text objects, so if another title is
running, you will change the default attributes for any new Text objects in
that title in addition to those in your own title.

Text and TextStencil Objects

A TextStencil object is not part of the Text and Fonts Component, but it is
related because it must be supplied with a String object for its string
instance variable. Instances of the class TextStencil can be used to display
text as an image (for example, to put labels and callouts on illustrations and
user interface controls). To do this, you need to create an instance of
TwoDShape using a TextStencil object as the stencil argument. If the
TextStencil object’s string is a Text object, and if its font and size attributes
have been set, then whatever those attributes are set to at cursor position 0 will
be carried over to the TextStencil object. In this case, you do not need to
specify a font or size when you create a TextStencil object. If you do specify
a font or size, each one will override that of the Text object.

TextStencil objects are similar to TextPresenter objects in that their
attributes affect all their text and cannot be set to affect only certain characters.
They are different, however, in many ways. TextPresenter objects can have
a multitude of attributes, whereas TextStencil objects have only font and
size as attributes. Also, TextStencil objects are not presenters; in order to be
displayed, they must be the stencil argument for a TwoDShape object.

List of Attributes

There are several attributes available for Text and TextPresenter objects.
The attributes for both classes are the same except that TextPresenter does
not use the @action attribute. Table 12-3 summarizes the attributes available
to both, and each attribute is described in greater detail on the following pages.

xt at-
utes:summary
xt and Fonts

mponentat-
utes:summary
of

296

12 ScriptX Components Guide

Getting and Setting Attributes

TextPresenter attributes govern the appearance of the presenter’s target
string. The values for all attributes can be accessed using the method
getDefaultAttrs. By using this method on a newly-created instance of
TextPresenter, you can see a listing of the default values with which the
attributes instance variable was automatically initialized:

global tp := new TextPresenter target:"test" boundary: (new Rect)
getDefaultAttrs tp

➯ #(@font:PlatformFont@0x12b6b28, @size:12, @weight:@regular,
@width:@normal, @style:@roman, @leading:13, @alignment:@fill,
@indent:0, @indentFromEnd:0, @paraIndent:0, @brush:Brush@0x1290548,
@underline:0)

You can change the values for attributes by using the method
setDefaultAttr, which takes the arguments self, the name of the attribute,
and the value to which the attribute is to be set.

setDefaultAttr tp @size 18

To see what the attribute @size is now set to, you can use the method
getDefaultAttr, as demonstrated in the following code:

Table 12-3: Text Attributes

Attribute Possible values

@action AbstractFunction object (that is, a function or method)

@brush Brush object

@font Font object

@size Number object

@weight @extraLight, @light, @regular, @medium,
@demiBold, @bold, @extraBold, @heavy (currently,
only @light, @medium, and @bold are available)

@width @condensed, @normal, @expanded

@style @roman, @italic, @oblique

@underline 0, 1 (for future compatibility with numeric values)

@leading Number object

@paraLeading Number object

@firstLineLead
-ing

Number object

@alignment @flush, @flushLeft, @flushToEnd,
@flushRight, @fill, @center, @tty

@paraIndent Number object

@indent Number object

@indentFromEnd Number object

xt at-
utes:setting
aults
xt and Fonts

mponentat-
utes:defaults

297

Text and Fonts 12

getDefaultAttr tp @size

➯ 18

Since TextEdit inherits from TextPresenter, TextEdit objects are
initialized with the same default attributes as TextPresenter objects. This is
demonstrated in the following code:

global myText := new Text string:"testing"
global myTE := new TextEdit target:myText boundary: (new Rect)
prin (getDefaultAttrs myTE) @complete debug -- to print them all

➯ #(@font:PlatformFont@0x12b6b28, @size:12, @weight:@regular,
@width:@normal, @style:@roman, @leading:13, @alignment:@fill,
@indent:0, @indentFromEnd:0, @paraIndent:0, @brush:Brush@0x1290548,
@underline:0)

Setting the Font, Size, Weight, Width, and Style

The @font, @size, @weight, @width and @style attributes determine the
family name, size, and variation of the font with which this text is displayed.

The @font attribute specifies the font family this text uses. The value for the
@font attribute is an instance of the class PlatformFont, and the specified
font must be installed on the system for it to be available. “Overview of Text
Attributes” on page 293 describes how to create new instances of the
PlatformFont class.

setDefaultAttr thePresenter @font \
(new PlatformFont macintoshName:"Avant Garde" \

windowsName:"Arial" os2Name:"Times Roman")

The @size attribute specifies the size of the current font in points (one point is
1/72 of an inch), measured from the baseline of the font to the baseline of the
line of text above it. Note that the actual size of font glyphs (characters) may
vary from font to font even though the point size may be the same (for
example, an x in 12 point Avant Garde is different from an x in Times Roman).

setDefaultAttr thePresenter @size 18

The @weight, @width and @style attributes are used to access variations of
a particular font, for example, bold, italic, or condensed. ScriptX attempts to
use an installed variation of a font family before constructing one.

The @weight attribute specifies the "boldness" of the text and can have one of
eight values: @extraLight, @light, @regular, @medium, @demiBold,
@bold, @extraBold, and @heavy.

setDefaultAttr thePresenter @weight @bold

298

12 ScriptX Components Guide

Note – In the current version of ScriptX, @extraLight is equivalent to
@light, @regular is equivalent to @medium, and @demiBold, @extraBold,
and @heavy are all equivalent to @bold.

The @width attribute specifies how closely the letters in the font are spaced (as
defined by the font itself). The @width attribute can have one of three values:
@condensed, @normal, and @expanded.

setDefaultAttr thePresenter @width @normal

The @style attribute determines the obliqueness (italics) of the font, and can
have one of three values: @roman, @italic, or @oblique.

setDefaultAttr thePresenter @style @italic

Note – In the current version of ScriptX, @italic is equivalent to @oblique.

Setting the Color

The @brush attribute determines the color of the text which it affects. The
@brush attribute contains an instance of the Brush class. Note that although
Brush objects can contain a pattern, that pattern is ignored.

setDefaultAttr thePresenter @brush \
(new Brush color:blueColor)

setAttrFromTo theText @brush 0 50 \
(new Brush color:blueCOlor)

Setting Underline

The @underline attribute can have one of two values: 0 or 1. The 0 value
specifies that the text does not have an underline; 1 specifies that it does.

setDefaultAttr thePresenter @underline 1

Note – Future versions of ScriptX will use the @underline attribute to specify
the distance away from the text the underline should appear, in points. This is
why the values for @underline are numeric rather than true and false.

Setting Leading

Text leading determines the spacing between lines of text. There are three
forms of leading attributes: @leading, @paraLeading, and
@firstLineLeading. All three contain a number representing points.

xt at-
utes:@under-

299

Text and Fonts 12

The @leading attribute determines the spacing between lines of text within a
paragraph, from baseline to baseline. Text leading in ScriptX is independent of
the size of the font, and, in fact, if you set the @leading attribute to be less
than the @size attribute, the lines of text will run together. Typically, the value
of leading is set slightly larger than the size of the text.

setDefaultAttr thePresenter @size 12
setDefaultAttr thePresenter @leading 14

Figure 12-3: Leading

The @paraLeading attribute determines the baseline to baseline spacing
between paragraphs in the text presenter (where the end of a paragraph is
defined as a linefeed or carriage return). If @paraLeading is smaller than the
@leading attribute (or empty), @leading is used instead.

setDefaultAttr thePresenter @leading 12
setDefaultAttr thePresenter @paraLeading 14

Figure 12-4: Paragraph Leading

The @firstLineLeading attribute determines the spacing between the first
line of text in a text presenter and the top of the text presenter. Without first
line leading, parts of the first line of text may be cut off at the top of the
presenter. If the @firstLineLeading attribute is smaller than @leading, or
undefined, the value of @leading is used instead. If the line at the top of the
text presenter is also the beginning of a paragraph, and the value of
@firstLineLeading is smaller than @paraLeading, the value of
@paraLeading is used instead.

setDefaultAttr thePresenter @leading 12
setDefaultAttr thePresenter @firstLineLeading 14

Figure 12-5: First Line Leading

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat
hospes. Ambo tamen currunt, hospes simul
et domus una

leading

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat
hospes. Ambo tamen currunt, hospes simul
et domus una

Secretum finis Africae manus idolum age
primum et septimum de quator

paragraph
leading

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat
hospes. Ambo tamen currunt, hospes simul et
domus una

first line
leading

300

12 ScriptX Components Guide

The distance beween baselines in text is actually determined by testing the
following values, in the order given below:

@firstLineLeading – if it is the first line in the text presenter and the
value is set and non-zero

@paraLeading – if it is the first line in a paragraph and the value is set and
non-zero

@leading – if the value is set and non-zero

@size – if the value is set and non-zero

The first of these four tests to succeed determines the distance between
baselines. (A value of 0 for any of these properties is the same as the property
not being set.)

Setting Alignment

Whereas leading determines the spacing between lines in the vertical direction,
alignment determines the arrangement of those lines in the horizontal
direction. The @alignment attribute can have one of seven values: @flush,
@flushLeft, @flushToEnd, @flushRight, @fill, @center, and @tty.

The @flush and @flushLeft values for the @alignment attribute, which are
equivalent, arrange the lines of text so that they are aligned along the left edge:

setDefaultAttr thePresenter @alignment @flush

Figure 12-6: Flush Left Alignment of Text

The @flushToEnd and @flushRight values are equivalent and arrange the
lines of text so that they are aligned along the right edge:

setDefaultAttr thePresenter @alignment @flushRight

Figure 12-7: Flush Right Alignment of Text

The @fill value adjusts the whitespace between words in the lines so that
both the left and right margins are aligned:

setDefaultAttr thePresenter @alignment @fill

xt at-
utes:@align-
nt
xt at-
utes:justtifica-
 see alignment

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat
hospes. Ambo tamen currunt, hospes simul et
domus una

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat

hospes. Ambo tamen currunt, hospes simul et
domus una

301

Text and Fonts 12

Figure 12-8: Fill Alignment of Text

The @center value adjusts the white space around either side to center the
line within the presenter:

setDefaultAttr thePresenter @alignment @center

Figure 12-9: Center Alignment of Text

And, finally, the @tty alignment, which is intended to be used for code
samples in a monospaced font such as Courier, aligns the text along the left
margin, does not wrap at the right margin without a carriage return, and
allows tab characters to be represented as four spaces (tabs are ignored in all
other forms of text presentation).

setDefaultAttr thePresenter @alignment @tty

Figure 12-10:TTY Alignment of Text

Setting Indentation

Indentation determines the marginal indents of the text from both sides of the
presenter. There are three indentation attributes: @indent, @indentFromEnd,
and @paraIndent. All three indentation attributes contain a number
representing points.

Note that all the indentation attributes are independent of the inset instance
variable, a property of TextPresenter. The inset specifies the distance of the
text from the presenter’s boundary. The three indentation attributes indent the
text away from that inset.

The @indent attribute specifies the indentation of the left side of the text from
the edge of the text presenter, but does not affect the first line of text:

setDefaultAttr thePresenter @indent 4

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat
hospes. Ambo tamen currunt, hospes simul et
domus una

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat

hospes. Ambo tamen currunt, hospes simul et
domus una

class SampleClass (RootObject)
instance vars a, b, c
instance methods
method fluff self -> (

print "fluff!"
)

end

302

12 ScriptX Components Guide

Figure 12-11:Left Indent

The @indentFromEnd attribute specifies the indentation of the right side of
the text from the edge of the text presenter:

setDefaultAttr thePresenter @indentFromEnd 4

Figure 12-12:Right indent

Finally, the @paraIndent attribute specifies the indentation of the first line of
text in each paragraph. The @paraIndent attribute can be greater than
@indent for an indented first line, or less than the @indent value for an
"out-dented" first line.

setDefaultAttr thePresenter @paraIndent 4

Figure 12-13:Paragraph Indent

Setting Actions

The @action attribute is available only on ranges of characters in Text
objects, and contains a function or method object which is executed when a
point in this range of text is selected in a text presenter. Examples might be a
hypertext link or an annotation that plays a sound.

The function that this attribute holds must be defined with three arguments,
which are passed by the text presenter to the function. You do not need to use
those arguments in the body of that function, but the function must be defined
to include them:

• The TextPresenter (or TextEdit) object that was clicked on

• The range of characters with the same @action attribute

• The offset from the beginning of the text that received the mouse click

For example, the following function turns the text presenter that receives the
mouse click to "inverse video": the fill of the presenter is turned black and the
text itself is turned white.

function inverse thePresenter theRange theOffset -> (

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat
hospes. Ambo tamen currunt, hospes simul
et domus una

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat
hospes. Ambo tamen currunt, hospes simul
et domus una

Est domus in terris, clara quae voce resultat.
Ipsa domus resonat, tacitus sed non sonat
hospes. Ambo tamen currunt, hospes simul et
domus una

xt at-
utes:@action
xt and Fonts

mponentac-
s for hypertext
xt and Fonts

mponentlinks
hypertext

303

Text and Fonts 12

thePresenter.fill := blackBrush
setDefaultAttr thePresenter @brush whiteBrush

)

“Using Text Actions” on page 312 provides more detail on text actions.

Setting Selections, Insertion Points, and Cursors

A selection is a character or range of characters that has been highlighted for
editing (cutSelection, copySelection, pasteToSelection) or for other
operations. The selectionForeground and selectionBackground
instance variables, defined on TextPresenter (and therefore available to
TextEdit and other subclasses of TextPresenter) hold an instance of the
Brush class and determine the color of the selection. The value of the
selectionForeground variable determines the appearance of the selected
text itself, and the value of selectionBackground determines the
appearance of the space around the selection. If selectionBackground is
undefined (or is the same color as the fill of the presenter), the whitespace
between characters does not appear to be selected, even if it is.

Figure 12-14:Selection Foreground and Background

The selection itself, that is, which characters within the target are selected, is
defined by the presenter’s target. The Text class has a selection instance
variable which can hold one of three values: empty, representing no selection;
a single integer, representing a single cursor position; or a range (a
NumberRange object) representing a range of cursor positions. Only Text
objects can hold selections; TextPresenter objects that use instances of
String or StringConstant as their target cannot display selected text.

In TextEdit objects, selecting text with the mouse changes the values of the
selection instance variable on the target. You can also set the value of a
target’s selection in a script, and the selection appears in the presenters that
present that target.

Selections have an appearance only when the selection instance variable
holds a range of cursor positions. If the selection instance variable holds a
single cursor position, that selection is considered to be a single insertion point
at which additional text can be inserted into the target. Insertion points can be
graphically represented in a presenter by defining the shape and appearance of
a cursor.

xt attributes
ndrange>
xt and Fonts

mponentat-
utes <$en-
nge>

xt and Fonts
mponentcur-
s
xt and Fonts

mponentinser-
 point <$star-
ge>
xt and Fonts

mponentcaret
 cursor

pristina nuda tenemusStat rosa nomine, nomina

selection background

selection foreground

304

12 ScriptX Components Guide

Figure 12-15:A cursor

In TextPresenter or TextEdit objects, the appearance of the cursor is
determined by the cursor and cursorBrush instance variables. The cursor
variable holds a Stencil object representing the shape and location of the
cursor (typically an instance of Rect or Line); the cursorBrush variable
determines the color and pattern of the cursor. Both must be defined, and the
selection in the target must be set, for the cursor to appear.

Once a cursor has been defined, clicking the mouse at a given point in the text
in a TextEdit object causes that cursor to appear and assigns the offset of that
insertion point to the selection instance variable in the target. You can also
set the insertion point of a target’s selection instance variable in a script,
and the cursor appears at that position.

The registration point of the cursor (that is, the place it is drawn), is at the
baseline of the line of text, and at the midpoint between two characters. For
this reason, it is common to define the cursor’s stencil to draw some points
back from the center (the negative x direction) or below the baseline (the
positive y direction), depending on the effect needed.

theTextPresenter.cursor := \
(new Rect x1:-1 y1:-10 x2:5 y2:1)

Figure 12-16:Cursor Position

When both the appearance of the selection and a cursor are defined, and a
range of text is selected, the cursor appears at the end of the selection.

Figure 12-17:Selections and Cursors

nuda tenemusStat rosa pristina nomine, nomina

cursor

Stat rosa pristina nomine, a

x1:-1, y1:-10

x2:5, y2:1

selection

cursor

nuda tenemusStat rosa pristina nomine, nomina pristina

305

Text and Fonts 12

Changing Default Values for Selections and Cursors

New instances of TextPresenter and TextEdit are automatically
initialized with default values for the instance variables cursor,
cursorBrush, selectionBackground, and selectionForeground.
(Default values for the instance variable attributes are discussed under
"Getting and Setting Attributes".) The default for cursor is undefined
(which means that no cursor is displayed), the default for cursorBrush is
blackBrush, the default for selectionBackground is blackBrush, and
the default for selectionForeground is a Brush object with color:
redColor. These can be accessed and set to new values using the standard
getter and setter methods. The following code shows that the default color of
the cursor for the newly-created TextEdit object is black
(Brush@0x119edb0) and then changes the color of the cursor to cyanColor.

global te := new TextEdit target: ("text string" as Text) \
boundary: (new Rect)

te.cursorBrush

➯ Brush@0x119edb0

te.cursorBrush := (new Brush color: cyanColor)

Concatenating and Modifying Strings

There are many ways to add to a string or to delete from a string because you
can use Collection and Stream methods as well as methods which are
defined in String. The Collection and Stream methods used below are
generic functions, which means that their implementation can be specialized
for subclasses. Since strings inherit from LinearCollection and Sequence,
generic functions called on strings will use the LinearCollection and
Sequence implementations. For instance, a method like forEach will process
the elements of a string in sequential order.

In general, the methods which are the most useful and the easiest to use are
those which have been defined for String. These include the operators + and
– (for string arithmetic) and the method insertAt. In addition, the global
function format allows you to print text using variables.

Adding a String to Another String

The following methods and functions add a string to another string:

• Operator +

Perhaps the easiest way to concatenate strings is to use the language operator
+ (addition). The + operator combines its two operands into a single string:

"this " + "and that"

➯ "this and that"

xt and Fonts
mponent:cur-
s:setting de-
ts
xt and Fonts

mponentselec-
s:setting de-
ts

xt and Fonts
mponentstring
hmetic

306

12 ScriptX Components Guide

The result of both the + and - operations is an instance of the class String,
regardless of the class of either of the operands. (The - operator is described
later, in the section on deleting characters and strings.)

• insertAt allows you to add a String object to another String object at a
particular insertion point. One of the features of this method is that if you
use it to insert a Text object into another Text object, it will insert both the
characters and the attributes associated with those characters. Note that
both the text being inserted and the text into which it is being inserted must
be Text objects in order to preserve the attributes of the inserted text. No
other method will preserve attributes. In other words, if you want to add
formatted text to another string, you must use insertAt, and both strings
must be Text objects.

The following code creates a Text object with all characters in bold typeface
and adds it to the end of a string:

global myText := new Text string: "is bold text."
setAttr myText @weight 0 @bold
global myFirstText := "What gets added here " as Text
insertAt myFirstText myText myString.size

➯ "What gets added here is bold text."

In order to see that “is bold text” is indeed bold, you need to create a text
presenter and put it in a window to display the newly modified string:

global tp := new TextPresenter \
boundary:(new Rect x2:320 y2:480) \
target:myString \
stroke:blackBrush

tp.x := 20
tp.y := 40
global win := new Window boundary:(new Rect x2:640 y2:480)
append win tp
show win

• format is a global function which allows you to append text using
variables.

global i := "1000"
global myString:= "The results are: " as String
format myString "%* rounded to the nearest 10" i @unadorned

➯ "The results are: 1000 rounded to the nearest 10"

-- the style @unadorned removes the quotation marks from "1000"

• addMany appends one collection (in this case a string) to another. It modifies
the first argument instead of returning a value, so in the following example,
print is called to show the resulting string.

global str := "this is a sample string" as String
addMany str " thing"; print str

➯ "this is a sample string thing"

• writeString appends one string to another string

307

Text and Fonts 12

global txt := "Some words" as String
global str := " with some more added"
writeString txt str--adds str to the end of txt

➯ "Some words with some more added "

Adding One Character to a String

The following Collection and Stream methods add one character at a time.
Note that the character to be added must be given as an integer which
represents the Unicode value of the character.

• writeByte adds one character to the end of a string.

global txt := "Some word" as String
writeByte txt "s"[1] --adds "s" at the end of txt

➯ "Some words"

writeByte txt 32 --adds a space to the end of txt

➯ "Some words "

• append adds the given value to the end of a sequence and returns the key
(in the case of a string, the key is the ordinal position) at which the value
was inserted.

global s := new String string:"This is incomplet"
append s 101

➯ 18 -- the appended "e" is the eighteenth character

s

➯ "This is incomplete"

• appendNew adds the given value to the end of a sequence only if that value
does not already appear in the sequence. It returns empty if a string already
contains the given Unicode value; otherwise, it returns the ordinal position
where value was added.

appendNew s "x"[1]

➯ 19

s

➯ "This is incompletex"

appendNew s "x"[1]

➯ empty

• prepend adds one Unicode value (character) to the beginning of a sequence
and returns the key (in this case, the ordinal position) at which the value
was inserted.

global myString := "mall is better" as String
prepend myString 115

➯ 1

myString

➯ "small is better"

308

12 ScriptX Components Guide

• prependNew adds one Unicode value (character) to the beginning of a
sequence only if that value does not already appear in the sequence. It
returns empty if a string already contains the given value; otherwise, it
returns the ordinal position where value was added.

prependNew myString "x"[1]

➯ 1

myString

➯ "xsmall is better"
prependNew myString "x"[1]

➯ empty -- returns empty because there is already an "x" in myString

• add inserts the given character at the ordinal position specified. (Note that
insertAt will do the same thing, and since it is a method specifically for
strings, you can supply one or more characters as a string instead of the
Unicode value for a character.) The methods addNth, addFirst,
addSecond, addThird, addFourth, and addFifth are similar to add and
can also be used, but, as stated before, using insertAt is easier.

global anotherString := "This was complete yesterday." as String
add anotherString 18 "d"[1]

➯ 18 -- the return value is the ordinal position (key)

anotherString -- see what anotherString contains now

➯ "This was completed yesterday."

Deleting a Character or a String

There are many ways to delete a character or a string. The following are those
that are most useful:

• – operator. Using the language operator – (subtraction) is an easy way to
delete a string. The – operator removes the second string from the first. If
the second string is not present in the first, the first string is returned
unchanged.

"bacon, lettuce, tomato, and sprouts" - ", and sprouts"

➯ "bacon, lettuce, tomato"

"bacon, lettuce, tomato, and sprouts" - "with mayo"

➯ "bacon, lettuce, tomato, and sprouts"

• deleteOne removes the first occurrence of the given character (which must
be expressed as the integer representing its Unicode value), returning true
if successful and false otherwise.

global ourString := "bats, balls, gloves, mitts" as String
deleteOne ourString "s"[1]

➯ true

ourString
"bat, balls, gloves, mitts"

309

Text and Fonts 12

• deleteAll removes all occurrences of the given character (which must be
expressed as the integer representing its Unicode value) and returns the
number of characters deleted.

global myString := "girls, boys, cats, dogs"
deleteAll myString "s"[1] --removes all four occurrences of "s"

➯ 4

myString

➯ "girl, boy, cat, dog"

• deleteNth removes the nth character in a string, returning true if it was
successful and false otherwise.

deleteNth myString 12

➯ true

myString
"girl, boy, at, dog"

• deleteFirst, deleteSecond, deleteThird, deleteFourth,
deleteFifth, and deleteLast all remove the character in the designated
position.

deleteLast myString

➯ "girl, boy, at, do"
deleteThird myString

➯ true

myString

➯ "gil, boy, at, do"

• deleteRange removes the string supplied, returning true if the string was
successfully deleted and false if it was not found.

global yourString := "Do you like my sample text?" as String
deleteRange yourString " sample"

➯ true

yourString

➯ "Do you like my text?"

• emptyOut clears out the entire string, leaving an empty string

emptyOut yourString

➯ OK

yourString
"" -- yourString is now an empty string

310

12 ScriptX Components Guide

Searching Strings

Searching with Global Functions

You can search strings using two global functions, findNthContext and
searchIndex, and also with various collection methods.

• findNthContext global function allows you to parse strings.

With findNthContext you can search for the nth word, sentence, or
paragraph. You can also define your own delimiter and search for the nth set of
characters bounded by that delimiter.

The following code segment illustrates searching for the fifth word in a string:

global str := "first, second, third, fourth, fifth"
global args := #(str, 5, 0, str.size) as Quad
findNthContext args @word

➯ true

copyFromTo args[1] args[3] args[4] -- show the result

➯ "fifth"

You set your own delimiter by supplying an anonymous function with the
Unicode value of the character you want to be the delimiter. The following
code searches for the second set of characters bounded by a colon (“:”) Notice
that spaces are included.

--first find out the Unicode value for ":"
":"[1]

➯ 58

global myStr := "name: year or date:age:occupation:address"
args := #(myStr, 2, 0, myStr.size) as Quad
findNthContext args (r -> r == 58)

➯ true

copyFromTo args[1] args[3] args[4]

➯ " year or date"

• searchIndex allows you to search for a match to a string

The global function searchIndex is very fast because it actually searches a
signature index, which is created when you create an instance of the class
StringIndex. It conserves memory if the text is saved to disk because it
brings only the (smaller) index into memory while searching. In addition to a
StringIndex object, you must also create a SearchContext object, which
will be used as one of the parameters to searchIndex, telling it where in the
index to begin searching. You create the first instance of SearchContext,
which is used to search for the first occurrence of a given string, by calling the
global function initialSearchContext. (You never call new to create a
SearchContext object.) The function searchIndex uses this
SearchContext object as a parameter and also creates one as a return value.
If you want to search for the second occurrence of the same string, you use the

311

Text and Fonts 12

SearchContext object returned by the first call to searchIndex as a
parameter. To search for the next occurrence, you supply searchIndex with
the SearchContext object it returned on the previous call.

-- create a StringIndex object
global strIndex := new StringIndex \

string:"Her thermal underwear is here in her bag."

-- create a SearchContext object. The second argument indicates where
-- in the string to begin the search (as a cursor position)
global sc0 := initialSearchContext strIndex 0

-- search for the first occurrence of "her". "true" means that the
-- match must be a whole word ("her" embedded within another word will
-- not be considered a match)
global sc1 := searchIndex strIndex "her" sc0 true
-- verify the return value
copyFromTo sc.string sc.startOffset sc.endOffset

➯ "Her"

-- search for the second occurrence of "her" as a whole word
global sc2 := searchIndex strIndex "her" sc1 true

See the entry in ScriptX Class Reference for examples of how to search for
multiple occurrences of a match in one string or in many strings. The string
you want to match must be at least three characters long and cannot contain
white space. This means that searchIndex will search for only one word.

Searching with Collection Methods
• findRange allows you to search for any number of words or characters as

a string, but you can search for only the first occurrence of that string. The
return value is the ordinal position of the first character of the match, or 0 if
there is no match.

global myString := "You might as well smile."
findRange myString "might as well"

➯ 5

findRange myString "might as well frown"

➯ 0

• Various collection methods can be used to access the nth character in a
string. The simplest is the collection access construct ([]). Since a string is
really a collection of Unicode values, the return value is an integer. The
following code accesses the fifth element in myString and converts the
resulting integer to a string by using the function intToString defined in
the section “Strings as Collections” on page 286.

myString[5]

➯ 109

intToString 109

➯ "m"

312

12 ScriptX Components Guide

The following methods return the character at the position indicated in their
names: getFirst, getSecond, getThird, getFourth, getFifth, getNth,
getMiddle, getLast.

-- find the middle character (Unicode value) and convert it to a string
getMiddle myString

➯ 115
intToString 115
"s"

• getKeyOne and getOrdOne allow you to get the ordinal position of the
first occurrence of a character. The first occurrence is returned because
strings inherit from LinearCollection, which means that getKeyOne
and getOrdOne process items in order. If the character does not occur in
the string, the return value for getKeyOne is empty; getOrdOne returns 0
if the character does not occur.

global s := "Where have all the flowers gone?"
getKeyOne s "e"[1]

➯ 3

getKeyOne s "x"[1]

➯ empty

getOrdOne s "e"[1]

➯ 3

getOrdOne s "z"[1]

➯ 0

Using Text Actions

A text action is defined as a "hot spot" within presented text that, when clicked
with the mouse, performs some operation. The ability to set hot spots and
execute a particular function when they are clicked is integrated into the Text,
TextPresenter, and TextEdit classes.

The TextPresenter class defines an instance variable, enabled, which
determines whether or not the presenter accepts text actions. If enabled is
true, when the presenter receives a mouse down event, it checks for a value of
the @action attribute at that cursor position within the target text.

The @action attribute, defined only on instances of Text, contains the actual
function or method that is executed when the action hot spot is selected. A
target can have as many actions over as many ranges of text as are necessary.
Because only instances of class Text can have attributes, presenters that use
String or StringConstant objects as their targets cannot execute actions.

The function or method the @action attribute contains is passed three
arguments when the action is activated (and therefore, that function must have
been defined to take these three arguments):

• The TextPresenter (or TextEdit) object that was clicked on

• The range of characters currently being presented by the presenter

313

Text and Fonts 12

• The offset from the beginning of the text that received the mouse click

You do not have to use any of these arguments in the body of your function.

Here is a simple example of how to create a text action. It assumes that you
already have a window available on which to display this text presenter (see
Chapter 3, “Spaces and Presenters” for more information).

First, define the function that determines what happens when the action is
clicked. In this example, the function playSnd causes an imported sound file
contained in the global variable theSound to start playing:

function playsnd textPres rng offset -> (
play theSound

)

Note that although the function did not use any of its three arguments, it has to
be defined to include them.

Now, create the text presenter that will display the target text (contained in the
global variable theText). Also, set the enabled instance variable to true in
the text presenter, so that that presenter can accept mouse clicks:

global tp := new TextPresenter \
boundary:(new Rect x2:300 y2:300) \
target:theText

tp.enabled := true

Now that you have a text presenter, append it to the space so that it can be
displayed. Here, the space is contained in the variable theSpace:

append theSpace tp

Finally, create the actual “hot spot” in the target text and link the playSnd
function to it by using the setAttrFromTo method. This method assigns the
@action attribute to a range of text (here, cursor positions 50 to 59):

setAttrFromTo theText @action 50 59 playSnd

When you click at the appropriate spot in the text, the playSnd function is
activated and the sound is played.

xt and Fonts
mponent<$en-

ge>

314

12 ScriptX Components Guide

C H A P T E R

13
Document Templates

316

13 ScriptX Components Guide

317

Document Templates 13

The Document Templates component is a set of classes for implementing
on-screen, multi-media documents. These documents consist of one or more
pages, where each page can use one or more layouts to present information.
The presented information itself can be dynamically determined each time a
page is displayed. Documents can incorporate all types of media in their
layouts—text, images, animation, audio, and video.

The document template classes facilitate the construction of titles (or parts of
titles) using a document metaphor. Some titles constructed using this metaphor
may be similar to traditional paper documents, consisting of a sequence of
pages, where each page displays certain information. You could also create
“virtual documents” where the contents of a page change each time the page is
displayed, depending, for example, on choices you made in a previous page.

One example of the use the Document Templates component is to create titles
that use a card metaphor, consisting of a stack of cards that you can navigate
through by using pushbuttons, menus, and active links. Each card in the stack
would be a page in a document, and could display text, pictures, movies,
pushbuttons, and animations.

Classes and Inheritance
The class inheritance hierarchy for the Document Templates component is
shown in the following figure.

cument Tem-
es component
cuments:see
ument class
opage>
cuments:see
ument Tem-
tes compo-
 <$nopage>
cument Tem-
es compo-
: see also
ument class,
e class, and
eElement
s <$nopage>

ument Tem-
s compo-
card
phor

d metaphor

cument Tem-
es compo-
:inheritance
ram

OneOfNPresenter

RootObject

TwoDSpace

PageTemplate

PageLayer

Document

Legend
Grey box = abstract class
Black boxr = concrete class
No box = class belongs to anoth

TwoDPresenter

TwoDMultiPresenter

Page

PageElement

DocTemplate

component

318

13 ScriptX Components Guide

The following classes form the Document Templates component. In this list,
indentation indicates inheritance.

Document – a collection of pages.

DocTemplate – an abstract class that is a superclass of Page, PageElement,
PageLayer, and PageTemplate, allowing them all to inherit the
getParentData and findParent methods.

PageElement – represents a single visual element within the final, rendered
page.

PageLayer – a collection of PageElement objects and presenter objects. A
page layer defines the design of a layer of information for a page.

PageTemplate – a collection of PageLayer objects. A page template
contains one or more design layers for a page.

Page – a page in a document. The appearance of the page is determined by
the page template or page layers that it uses. A document displays one Page
at a time, much like one page in a book is open at a time.

Conceptual Overview
The Document Templates component provides classes that allow you to build
documents that contain pages. The layout or design of a page can be separated
from the data or objects to be laid out on the page. This separation of data and
design allows you to use the same design for multiple pages that present
different information but have a common layout. Alternatively, the same data
can be presented with several different layouts, giving the user different views
of the data.

The separation of data and design makes it possible to revise either the data or
the layout independently. In a well-designed title, data can be maintained
separately, and it can be modified without requiring changes in coding or
design of the page. Revise the layout and you can present the same old data
with a brand new look.

Figure 13-1: Three pages using the same design to present different information.

ocument
ss

ocTemplate
ss

ageElement
ss

ageLayer
ss

ageTemplate
ss

age class

esign:of docu-
nts
ocument
mplates com-
nent:docu-
nt design

Spinner
dolphins can
leap right out
of the water
and spin

London’s old
fruit market is
now a great
place to buy
jewelry.

We offer
raspberry,
strawberry,
and
pineapple
flavors.

319

Document Templates 13

Figure 13-2: Three pages using different designs to present the same information.

Each page in a document can have multiple layers of design. Each layer can
contain multiple design elements.

Figure 13-3: A page layer

How Document Templates Work
The Document Templates component provides classes for building documents
consisting of pages that contain layers of design elements. These classes are
Document, Page, PageTemplate, PageLayer, and PageElement.

Documents

A document is a container for pages. When a Document object is first created,
it is an empty array. After creating a document, you can append Page objects
to it.

A Document object can be thought of as containing and organizing the pages
of the document. It can have a label and a bitmap that can be used to represent
the document. The Document object can also contain references to the raw data
that the document will present.

Bottlenosed dolphins
live in the Pacific and
Atlantic oceans.

Bottlenosed
dolphins live
in the Pacific
and Atlantic
oceans.

Bottlenosed

Dolphins

Bottlenosed
dolphins live
in the Pacific
and Atlantic
oceans.

Layer

Element with video

Element with animation

Element with bitmap

Text

cument class

320

13 ScriptX Components Guide

To display a document, it must be appended to a visible space, such as a
window.

Pages

A Document object can display one Page object at a time. A page uses one or
more layers that define its layout. Each page layer contributes elements to the
design of the page.

A very simple page might have a single page layer that specifies a black
rectangular border for the page, and a rectangular text presenter that displays
text.

A more complicated page might use several page layers—one that defines
static background design, one that defines header and footer design, one that
defines the page number design, and one that defines the design for the text
and images to be displayed on that page.

Each Page object has a frame instance variable, whose value determines the
design of the page. The value is either a single PageLayer object, or a
PageTemplate object, which is a collection of PageLayer objects. If a page
uses multiple layers, its frame is a PageTemplate that contains the layers. If
the page uses a single layer, its frame is a single PageLayer object.

A page can contain references to the information it displays. See “How Does a
Page Element Know What to Present?” on page 323 for more information on
storing data on a page.

PageTemplates and PageLayers

A page template holds one or more page layers in front-to-back order. A page
layer acts as a layer of design containing the elements that a user actually sees
on the page.

Pages can share the same set of design elements, such as background art or a
set of controls, by using the same set of page layers. For example, in an
electronic version of a paper document, each page would use a page template
containing multiple page layers. Each layer would contain one or more design
elements that define some aspect of the page. Certain layers, such as running
heads, folios, or chapter titles, might be common to many pages, while others
might be unique to a single page. A page template is very similar to a single
master page in Quark XPress® or FrameMaker®, and to a layer in Adobe
Illustrator®.

Page Elements

A page layer contains one or more design elements, represented by
PageElement and Presenter objects. If the content or appearance of the
design element varies from one page to another, (such as a variable footer) the
element can be represented by a presenter embedded in a PageElement

ge class
geTemplate
s
geLayer class
ges:see Page
s <$nopage>

ge
s:frame in-
ce variable
me instance
able:(Page)

geTemplate
s
geLayer class

geElement
s

321

Document Templates 13

object. If the content of the design element never varies from one page to
another (such as a company logo), it can be represented directly by a
Presenter object.

PageElement objects contain layout and content information for text boxes,
image boxes, and other presenters that render information on a page. Each
page element defines a particular presenter that appears on the page.

Each PageElement object has a presenter instance variable that specifies the
presenter for that element, and a target instance variable that determines the
target (or data) for the presenter. For example, if a page element’s presenter is
a TextPresenter object, its target would be the string (or an expression that
returns the string) to be presented by the text presenter.

When creating a PageElement instance, you specify its presenter. This
presenter is then permanently associated with that page element. For example,
when creating a PageElement to display text, you would specify its presenter
as a TextPresenter object. When creating a PageElement to display a
bitmap, you would specify its presenter as a TwoDShape object.

Figure 13-4: A sample page.

When creating a page element, you can supply either a specific target for the
presenter, or an expression that gets evaluated when the page is displayed. For
example, a presenter that shows the page number of a page must re-evaluate
its target instance variable each time the page is displayed. In this case, the
value in the page element’s presenter instance variable would be a text
presenter, and the value in its its target instance variable would be an
expression that evaluates to the current page.

You can place presenters directly on a page layer when the the presenter’s
target does not change from page to page. For example, if you want a company
logo to appear on each page, add a TwoDShape object whose target is a bitmap
of the logo to the page layer. The logo does not change, no matter what page it
is on. However, if you want a page to display an icon whose image depends on
the page being displayed, add a page element containing a TwoDShape object
to the page layer. When a page is displayed, the target for the TwoDShape
object is dynamically evaluated.

ageElement
ass:presenter
stance variable
resenter in-
ance variable
ageElement)
ageElement

ass:target in-
ance variable
arget instance
riable:(Pag-

Element)
age ele-
ents:see Pag-
Element class

nopage>

Page

PageTemplate

PageLayer

PageElement

PageElement

PageElement

PageElement

322

13 ScriptX Components Guide

Note – This discussion simplifies the hierarchy of templates that make up the
page. It describes how the PageTemplate, PageLayer, and PageElement
classes can be used to create an electronic counterpart of a conventional
document. But ScriptX actually has few restrictions. It is possible for a
PageTemplate to contain another PageTemplate, for a PageLayer to hold
PageTemplate objects or other PageLayer objects. A title developer is free to
combine these templates in unconventional ways—to reuse elements or even to
extend the document metaphor.

Pages Share Templates

For multiple pages that use the same template (stored in the frame instance
variable of the page) , multiple Page objects are created, one for each page in
the document. In this case, only a single template object (be it a
PageTemplate or PageLayer) is used, and hence only one instance of each
page layer, page element and presenter used in the template is needed.

For example, suppose twenty pages in a document use the same template.
Each page is represented by a separate Page instance, so there are twenty Page
objects. However, there is only one PageTemplate instance, and there is only
one instance of each presenter and page element used by the template.

Figure 13-5: Multiple Page objects can share a single template

mplates:pages
re templates
ge class:shar-
emplates

Gray whales
migrate from
Alaska to Baja
every year.

Blue whales are
baleen whales.
Their tongues
can be as big as
elephants.

Here you see three separate Page instances and what looks like three
different TextPresenter instances.

Actually what you see is three individual Page instances, and a single
PageLayer instance containing a single PageElement instance
containing a single TextPresenter. The TextPresenter has a different
target on each page.

Right whales
were once
considered the
"right" whales to
hunt.

323

Document Templates 13

How Does a Page Element Know What to Present?

When a page is displayed, all the presenters (whether they are embedded
inside page elements or not) on all the layers used by the page are displayed.

Each time a page is displayed, the system evaluates the expression in the
target instance variable of each page element on that page to determine the
target (or data or content). The resulting data is presented by the presenter
associated with the page element.

The value of the target instance variable can be a hardwired value (such as a
string constant, a number, a specific bitmap and so on) or it can be an
expression that references data elsewhere.

For example, in a document that displays glossary definitions, the target of a
page element could be an expression that evaluates to the text contained in the
definition instance variable of the nth Glossary instance in a list, where n
is the current page number.

Where Should the Data be Stored?

Sometimes it makes sense to store data, or expressions that generate the data,
for a document on the document itself. For example, suppose you want every
page to show the date and time the document was last opened. In this case,
you could have an instance variable on the document, such as
DateLastOpened, that contained the date and time the document was most
recently opened.

In other cases it makes sense to store the data, or expression that generate the
data, on the page. For example, if a document displays different text on each
page, then each page could store the text that it displays.

And finally, in cases where a design element always displays the same data
(such as company logos or string constants) it makes sense to store the data
directly on the page element. However, in these cases, it makes more sense to
use the presenter directly instead of embedding it inside a page element.

You can use the target instance variable on a Document, Page,
PageTemplate, PageLayer, or PageElement object to store raw data or to
store an expression that retrieves or generates data. Depending on the structure
of the document, a page element might figure out what its target is by referring
to the target instance variable of the page or document that contains it. (A
page element could also refer to data stored on the page layer or page template
that contains it but such situations are less common.)

The target instance variable of a page or a document (or also a page layer or
page template) is evaluated if a page element referring to it is rendered when a
page opens. If the target instance variable of a page or a document is not
referred to by any page elements, it is never evaluated (in which case there’s
no point in giving it a value.)

ageElement
ss:specifying
get data
rget instance
riable:(Pag-
ement)

ageElement
ss:frame in-
nce variable

ata:for pages

324

13 ScriptX Components Guide

What Should the Target Instance Variable Contain?

The value of a page element’s target instance variable should be a suitable
target for the page element’s presenter, or an expression that returns such a
target. For example, if the page element’s presenter is a TwoDShape, then the
value of the target instance variable should be a stencil or an expression that
returns a stencil. For example:

element1.target := (new rect x2:200 y2:200)
element1.target := (self -> getNextStencil (stencilList))

The value of the target instance variable of a document or page can be a
single value, an array of values, or an expression that returns a single value or
an array of values.

page1.target := "Spam"
page2.target := (self - > pickRandomSlogan(55))
page3.target := #("red", "green", blue")
page4.target := (self -> #(whitefn(self), pinkfn(self), yellowfn(self))

If the value of the target instance variable of a page element, page layer, page
template, page or document is an anonymous function, it takes a single
argument of the object in question (often referred to as self).

getParentData

All classes that inherit from DocTemplate, including Page, PageElement,
PageLayer and PageTemplate have a method called getParentData, that
can be extremely useful for evaluating the target data for a page element. The
getParentData method gets the value returned by the expression in the
target instance variable on the specified parent class, which can be
PageLayer, PageTemplate, Page or Document.

For example:

page1.target := "First Wonderful Page"
page2.target := "Second Excellent Page"
page3.target := "Third Incredible Page"

labelElement := new PageElement \
presenter:(new TextPresenter \

boundary:(new rect x2:200 y2:200)
target:" " -- required here but ignored

target:(self -> getParentData self Page)

When a page containing labelElement is displayed, labelElement gets the
value returned by the expression in the target instance variable on the
current page. Thus when page1 is displayed, labelElement’s target is "First
Wonderful Page"; when page2 is displayed, it is "Second Excellent Page" and
for page3 it is "Third Incredible Page."

etParentData
thod

ocTemplate)
ocTemplate
ss:getParent-
ta method
age class:get-
rentData
thod
ageElement
ss:getParent-
ta method
ageTemplate
ss:getParent-
ta method
ageLayer
ss:getParent-
ta method

325

Document Templates 13

For another example of the use of getParentData:

doc1 := new Document
doc1.target := "Tales of Sinbad"

bookTitleElement := new PageElement \
presenter:(new TextPresenter \

boundary:(new rect x2:200 y2:200)
target:" " -- required here but ignored

target:(self -> getParentData self Document)

In this case, when a page containing the the element bookTitleElement is
displayed, bookTitleElement gets the value returned by the expression in
the target instance variable of the document. For document doc1, it will be
"Tales of Sinbad."

Multiple Page Elements can get Data from a Page or Document

If the target instance variable of a document or page holds data for multiple
page elements, then its value should be a collection of values or an expression
that returns such a collection. In this case, each page element should know
which element in the collection it is interested in. For example:

page3.target := #("Mark", "Plumber", 4155556666)
page4.target := (self -> #(self.person.name, \

self.person.occupation, \
self.person.phone))

nameElement.target := (self - > (getFirst getParentData self Page))
occuElement.target := (self -> (getSecond getParentData self Page))
phonElement.target := (self -> (getThird getParentData self Page))

Storing Data Independently from the Document

Often it is a good idea to store the data to be displayed in a document on a
completely different set of objects than the objects that make up the document.
For example, if you had a clothing database, you could use a set of objects to
represent the items in the database, and then create a document to display
information about the clothing objects. If the information in the database
changes, each page automatically gets the latest information when it opens.

The following code shows an example of creating objects to hold data about
clothing items, and creating pages that get data from the clothing items. Each
page can display four page elements: one that displays the code for the
clothing item, one that displays the price, one the color and one the
description. For a more complete example, see “An Extended Document” on
page 337.

class ClothingItem (RootObject)
instance variables

code
price
color
description

end

326

13 ScriptX Components Guide

class ClothingPage (Page)
instance variables

clothingItem
end

dress1 := new clothingItem
dress1.code := "DressA1"
dress1.price := 20
dress1.color := "Red"
dress1.description := "Flowing knee-length cotton dress"

dress2 := new clothingItem
dress2.code := "DressB2"
dress2.price := 25
dress2.color := "Blue"
dress2.description := "Easy care crepe dress with belt"

-- clothingTemplate is a predefined PageTemplate
page1 := new ClothingPage \

frame:clothingTemplate \
boundary:clothingTemplate.boundary

page1.clothingItem := dress1
page1.target := (self -> #(self.clothingItem.code, \

self.clothingItem.price, \
self.clothingItem.color, \
self.clothingItem.description)

page2 := new ClothingPage \
frame:clothingTemplate \
boundary:clothingTemplate.boundary

page2.clothingItem := dress2
page2.target := (self -> #(self.clothingItem.code, \

self.clothingItem.price, \
self.clothingItem.color, \
self.clothingItem.description)

Boundaries of Documents, Templates, Layers, and Pages

The pages within a document do not need to all be the same size and shape.
Each page determines its own size and shape through the value in its
boundary instance variable. When creating a new page, you should supply
the boundary keyword argument to the new method. If a page does not have
a suitable value in its boundary instance variable, that page may appear blank
when displayed.

The boundary of a document is always the boundary of the current page. The
new method for the class Document optionally takes a boundary keyword
argument by virtue of the fact that Document is a subclass of TwoDPresenter.
However, for the class Document, the boundary keyword argument is neither
necessary nor useful. If it is supplied it has no effect.

For the new methods for the classes PageTemplate and PageLayer, the
boundary keyword argument is necessary. If you do not supply a boundary
for a page layer, the page layer will never be visible. If you do not supply a
boundary for a page template, pages that use that template may not be visible.

ocument
mplates com-
nent:bound-
es

boundary instance vari-
ble:(Document)
boundary instance vari-
ble:(Page)
boundary instance vari-
ble:(PageLayer)
boundary instance vari-
ble:(PageTemplate)
Document class:boundary in-
ance variable

Page class:boundary instance
ariable
PageTemplate class:bound-
ry instance variable

ame instance
iable:(Page)
age
ss:frame in-
nce variable

327

Document Templates 13

If the boundary of a page layer extends beyond the boundary of the template
containing the layer or the page displaying the layer, the presenters in the
excluded area will be clipped (that is, they will not be visible).

A good rule of thumb for simple documents is to ensure that a page has exactly
the same boundary as the page layer or page template in its frame instance
variable. Also ensure that all layers in the page are either the same size as, or
are completely contained by, the boundary of the page.

The following code creates page1, which uses the same boundary as its frame.

-- template1 is a predefined page template
page1 := new page frame:template1 boundary:template1.boundary

Fills and Outlines for Pages and Page Layers

Page layers and page templates have fill and stroke instance variables,
whose values determine the background color and outline color respectively of
the layer or the template. Pages do not have fill and stroke instance
variables.

To give a page layer a visible border or fill, set its stroke or fill instance
variable to the desired brush, such as blackBrush. To give a page template a
visible border or fill, set its stroke or fill instance variable to the desired
brush. To give a page a visible border or fill, ensure that the page’s template, or
one of the layers in its template, has the same boundary as the page, and has a
value in its stroke or fill instance variable as desired. Note that the fill of
the template will only be visible if none of the layers have a fill; and the stroke
of the templatew will only be visible if none of the layers has a stroke.

When a page opens, the fill and stroke of a page template are drawn before the
fill and stroke of its page layers. The layers are drawn starting with the last one
and ending with the first one. If a layer does not have a fill or stroke, the fill or
stroke of the layer underneath is visible.

Using the Document Templates Component
This section discusses how to create a Document, and explores some of the
issues of creating a document, such as how to add movies to a page.

Creating a Document

The following steps summarize the tasks involved in creating and displaying a
document.

1. Create one Presenter or PageElement object for each design element to
be displayed on a page. Create a Presenter object if the content of the
element is to be the same on every page, and create a PageElement object
if the content is to vary from page to page.

Also set the x and y instance variables of each Presenter and
PageElement objects to set its position within its page layer.

Document Templates compo-
ent:fills and outlines
PageLayer class:fill instance
ariable
PageTemplate class:fill in-
ance variable

PageLayer class:stroke in-
ance variable

PageTemplate class:stroke in-
ance variable
ill instance variable:(PageLay-
r)
ill instance variable:(Page-
emplate)
stroke instance vari-
ble:(PageLayer)
stroke instance variable: (Pag-
Template)
outlines:in document tem-
ates

borders:in document tem-

ocument
mplates com-
nent:using

ocument
ss:creating a
cument

328

13 ScriptX Components Guide

When creating a new page element, supply the presenter and a target
keyword arguments. The presenter is the presenter that renders the
displayed information, and the target is an expression that evaluates to
the object to be rendered by the presenter when the page is displayed.

element1 := new PageElement \
presenter :(new TwoDShape) \
target: (e -> getfirst (getParentData e Page)) \
x: 50
y: 150

element2 := new PageElement \
presenter :(new TextPresenter \

boundary:(new rect x2:100 y2:50) \
-- target is a required keyword arg for
-- text presenter, although here it will be
-- ignored since the target of the element
-- overrides it
target:"") \

target: (e -> getsecond (getParentData e Page)) \
x: 50
y: 50

element3 := new TwoDshape target:LogoBitmap

2. Create one or more PageLayer objects. Each PageLayer represents a layer
of design for a page.

Append the PageElement and Presenter objects to a PageLayer object.
(Each page element can be appended to only one page layer.)

boundaryRect := new rect x2:200 y2:400
layer1 := new PageLayer boundary:boundaryRect
append layer1 element1
append layer1 element2
append layer1 element3

3. Optionally, create PageTemplate objects to contain multiple PageLayer
objects. Note that a single PageLayer can be appended to multiple
PageTemplate objects.

template1 := new PageTemplate boundary:boundaryRect
append template1 layer1
append template1 layer2

4. Create a Document object.

Depending on the needs of the pages and page elements used in the
document, you may need to supply an object or expression for the target
instance variable on the document.

doc1 := new Document

5. Append Page objects to the document.

ageElement
ss:appending
ge elements
a page layer

329

Document Templates 13

For each page, specify a value for the frame keyword argument, which can
be a PageTemplate or a PageLayer object. Also give a value for the
boundary keyword argument that determines the shape and size of the
page.

Depending on the needs of the page elements for the page, you may need to
supply an object or expression for the target instance variable on the page.
The following example uses a subclass of Page, called MyPageSubclass,
that has an instance variable DataObject which points to an object that
stores data.

--MyPageSubclass is a subclass of Page
-- that has a dataObject instance variable
append doc1 (new MyPageSubclass boundary:boundaryRect \

frame:template1 \
target:(p -> #(p.DataObject.Picture,\

 p.DataObject.Heading))

6. Append the document to an open window to view it. Use the goto method
to view a page.

w := new window
show w
append w doc1
-- Display the first page of the document
goto doc1 1

Navigating Through a Document

After a document has been created and opened in a visible space, you can
navigate through it using its goto, forward and backward methods.

To display the next or previous Page object in a document, call the document’s
forward or backward method respectively. To display a specific page, call the
document’s goto method.

Specifying Things to Happen when a Page Changes

When you call the goto, forward or backward method on a document, the
current page closes and another page opens. Each time a page opens, the
document calls the changePage method on the page to be opened, which calls
changePage on its page template, which calls changePage on all its page
layers, which each call changePage on all its page elements.

As part of the changePage process, each page element evaluates the
expression in its target instance variable to find what it should be presenting.
If the target instance variable contains a call to the getParentData method,
then the expression in the target instance variable of the appropriate parent
is evaluated.

Finally the page opens, and each page element on the page presents the object
returned by the expression in its target instance variable.

age class:ap-
nding pages
a document

ocument
ss:appending
cuments to a
ndow

ocument
ss:navigating
ough docu-
nts
age class:go-
 back or for-
rd a page
avigat-
:through doc-
ents
ocument
ss:goTo
thod
ocument
ss:forward
thod
ocument
ss:backward
thod

oto method:
ocument)
rward meth-
(Document)

ackward
thod (Docu-
nt)

ngePage
od:
Template)
e
:changeP-

method
eElement
:changeP-

method
eTemplate
:changeP-

method
eLayer
:changeP-

method

330

13 ScriptX Components Guide

You may want to modify the actions that occur when a page opens. For
example, you might want a sound or movie to start playing automatically
when a page opens.

To modify the behavior when a page opens, create a subclass of Page and
specialize its changePage method. Be sure that the customized definition for
changePage includes a call to nextmethod, since the inherited definition
takes care of evaluating and updating the targets for all the page element
objects on the page. The changePage method takes two arguments: self and
newpage.

For example, the following code specializes the changePage method for a
class called MusicalPage so that when the page opens, a tune starts playing.

class MusicalPage (Page)
instance variables

tune
end

method changePage self {class MusicalPage} newpage ->
(-- call nextmethod to get default behavior

nextMethod self newpage

local mytune := self.tune
gotobegin mytune
playPrepare mytune 1.0
playUntil mytune mytune.duration

)

Similarly, to customize the behavior of individual PageElement objects when
a page opens, create subclasses of PageElement and customize their
changePage method, being sure to include a call to nextmethod.

Finding the Presenter of Objects in a Document

When defining the expression to determine the target data for a PageElement,
it can be useful to refer directly to the Page or Document containing the
PageElement.

You can use the findParent method of an instance of DocTemplate to find
which instance of a specified class is ultimately presenting it. For example, you
can find which document is presenting a page element; which document is
presenting a page; which page is presenting a page element, and so on. In this
context, the "parent" of an object in a document hierarchy is the object that is
presenting it (or contains it).

For example, to find the Page of a PageElement, call the findParent
method on the pageElement instance and specify Page as the presenter class
to look for.

p := findParent pageElement Page

To find the document presenting a page element:

d := findParent pageElement Document

angePage
hod:example
nition

ocument
mplates com-
nent:finding
 presenter of
resenter

esentedBy in-
nce vari-
e:(object in a
cument)
age
ss:findParent
thod
ageElement
ss:findParent
thod
ageTemplate
ss:findParent
thod
ageLayer
ss:findParent
thod

ndParent
thod

ocTemplate)
ocTemplate
ss:findParent
thod

331

Document Templates 13

To find the document presenting a page:

d := findParent page Document

To find the page containing a pushbutton:

p := findParent pushbutton.presentedBy Page

Since a PushButton object does not inherit from DocTemplate, it does not
have a findParent method. However, if the pushbutton is embedded in a
page element, its presentedBy instance variable points to the page element,
which does have a findParent method. If the pushbutton has been directly
added to a page layer, its presentedBy instance variable points to a page
layer object (which also has a presentedBy method).

For another example, suppose a page element is intended to display the
current page. In this case, the value in the presenter instance variable of the
page element would be a text presenter. The expression in the target instance
variable of the page element would be an anonymous function that finds the
value of the cursor instance variable of the document that contains the page
element. This anonymous function could be:

(self ->
local thisdoc := findParent self Document
thisdoc.cursor

)

Using Controllers in a Document

You may want to add pushbuttons or other actuators to a page to control an
element of the page. For example, you might want a page containing an
InterleavedMoviePlayer object to have a pushbutton that can be used to
start and stop the movie.

When using a pushbutton in a document, if the button’s appearance does not
change from page to page, you can simply add the button to a page layer. If the
button’s appearance changes from page to page, put it in a page element and
add that element to the page layer.

Whether you add a button (or any other actuator) directly to a page layer, or
first put it inside a page element, you also need to create an
ActuatorController to control the layer. To do this, create an actuator
controller, and specify the page layer as the controller’s space. (See Chapter 4,
“Controllers” for a discussion of using controllers to control actuators.) The
following code gives an example of using a button on a page layer.

-- create a page layer
pageLayer1 := new PageLayer boundary:(new rect x2:200 y2:400)

-- create an actuator controller for the page layer
controller1 := new ActuatorController space:pageLayer1

-- create a pushbutton

ocument
mplates com-
nent:finding
ge numbers
age
ss:finding
ge number

uator
s:actuators in
ments

shButton
s: pushbut-
in documents

cument
s:actuators
controllers in
ments

ge class:actu-
s on a page
ntroller
s:using con-
ers in docu-
ts
shButton
s:using in doc-
nts

332

13 ScriptX Components Guide

pushbutton1 := new pushbutton releasedpresenter:upIcon \
pressedpresenter:downIcon

-- Place the pushbutton directly on the page layer
append pageLayer1 pushbutton1

-- Alternatively put the pushbutton inside a page element
-- on the page layer
pageElement1 := new pageElement presenter:pushbutton1
append pageLayer1 pageElement1

You can call a method on a presenter embedded in a page element by calling
the method on the page element itself. So if you want a button’s
activateAction method to call a method on another presenter that is
embedded in a page element on the same page, you can define the
activateAction to call the method on the page element, which will pass it
on to its presenter.

For details on how to make a pushbutton change its appearance from page to
page, see “Dynamically Updating Presenters that Don’t Use Targets” on
page 334.

Displaying Movies on a Page

This section gives some hints on playing movies on a page in a document.

Pages in a document can contain either MoviePlayer or an
InterleavedMoviePlayer instances. However, it is better to use interleaved
movie players, since they play back much more smoothly from a CD than do
movie players. (The use of MoviePlayer objects instead of
InterleavedMoviePlayer objects is very much discouraged in all
circumstances.)

However, an InterleavedMoviePlayer cannot change which movie it plays
from page to page. An InterleavedMoviePlayer always plays the same
movie, due to the complexity of passing deinterleaved data from the player’s
interleaved stream to the player’s slave players.

Therefore, to create page layers that contain movies that can change from page
to page, you need to take a couple of extra steps. You can use a GroupSpace
as a page element’s presenter, and add the movie to the group space. Define
the target setter method for the group space to append the given value to the
group space.

When the page changes, the page element figures out which movie to play, and
tries to put that value in the group space’ s target instance variable.
However, the targetSetter method intercepts the target data, and adds it to
the group space instead.

This specific steps are:

1. Create a subclass of GroupSpace, called say, MovieGroupSpace.

class MovieGroupSpace (GroupSpace)
end

ocument
ss:movies in a
cument
age
ss:movies on
age
ageElement
ss:movies in a
ge element
oviePlayer
ss:movies in a
cument
terleaved-
viePlayer
ss:movies in a
cument

333

Document Templates 13

2. Define target setter and getter methods for the subclass. The setter
method empties out the group space, and adds the given value to it. The
getter method returns the first item in the space, which will be the
interleaved movie player.

method targetSetter self {class MovieGroupSpace} value ->
(emptyout self

 prepend self value
)

method targetGetter self {class MovieGroupSpace} ->
(self[1])

3. Create a page element whose presenter is an instance of the
MovieGroupSpace subclass. Define the target expression to return an
InterleavedMoviePlayer appropriate to the current page.

movieElement := new pageElement \
presenter: (new MovieGroupSpace) \
target: (e -> getMovieForThisPageFn e)

The advanced example later in this chapter gives a complete example of how
to use movies in a document.

Playing the Movie

The purpose of displaying a movie on a page is to be able to play it when the
page is open. The movie could perhaps start playing automatically as soon as
the page opens, or it could be played under user control through the use of
buttons on the page.

See “Displaying Movies on a Page” on page 332 for a coded example of how to
use pushbuttons to play and stop a movie on a page.

To make the movie start playing automatically when the page opens, create a
subclass of Page and modify the changePage method on the new subclass.
Don’t forget to call nextMethod in the definition for changePage, since the
inherited definition takes care of updating the information for all the page
elements on the page.

The following code defines a changePage method for a subclass of
PageElement, so that when the page opens, the movie starts playing
automatically. This example assumes that the movie is the first item in a group
space which has been embedded in a page element, as discussed above.

class MoviePageElement (PageElement)
end

method changePage self {class MoviePageElement} newPage->
(

-- do the default behavior
nextMethod self newPage

-- the page element’s presenter is a group space

angePage
hod:example
nition

334

13 ScriptX Components Guide

-- containing the interleaved movie player
local movie := self.presenter[1]
-- make sure the movie is stopped and rewound
stop movie
gotoBegin movie

-- prepare the movie, then play it
playPrepare movie 1.0
playUnti movie movie.duration

)

Dynamically Updating Presenters that Don’t Use Targets

This section discusses how to add presenters to a page so that they update each
time a page opens, in situations where the presenter does not usually use its
target instance variable.

For example, the classes GroupSpace, ScrollingPresenter, and
PushButton inherit the target instance variable from the Presenter
superclass, but they ignore it when deciding what to present. The previous
section discussed how you can use a GroupSpace to present a movie in a page
element. This section here looks at how you can use ScrollingPresenter
and PushButton objects in a document, in such a way that they can change
appearance from page to page. Although these classes are discussed as
examples, the general theory discussed here applies to all kinds of objects.

This section does not explain how to use scroling presenters and pushbuttons.
See Chapter 5, “User Interface” for information on these presenters.

Create a subclass of the desired presenter class and define a setter method for
the target instance variable. This method should do something with the
target value so that it helps determine the appearance of the presenter.
Remember that the presenter’s target instance variable will always be
dynamically evaluated when the page element is displayed. (See the ScriptX
Language Guide for information on using and defining setter and getter
methods.)

Changing the Target of a Scrolling Presenter

Suppose you want to use a scrolling text presenter to display different text on
different pages in a document. In this case, the target instance variable of
each page in the document should return the desired text for that page.

Here you would create a subclass of ScrollingPresenter and define a
targetSetter method that passes the input value on to the target instance
variable of the scrolling presenter’s targetPresenter. (Scrolling presenters
let you scroll the presenter in their targetPresenter instance variable.)

You would then embed an instance of the specialized scrolling presenter class
in a page element. When the page element is displayed on a page, it will
automatically find the target data, and will try to put that data in the target
instance variable of its presenter. However, the targetSetter method will
intercept the target data, and pass it on to the text presenter instead. For
example:

crollingPre-
nter class:us-
 in documents
ocument
mplates com-
nent:using
olling pre-
nters

335

Document Templates 13

page1.target := ("Springer Spaniels are very friendly dogs although \
they need a lot of exercise. They are very intelligent and \
highly trainable, and usually get on very well with other \
dogs. They come in colors of liver and white, or black and white. \
They can also be tri-colored with liver, black and white. They \
come in two main varieties: field and show. The field dogs tend \
to be shorter and sturdier, and the show dogs tend to have \
more feathery hair. One famous Springer Spaniel is Millie, a \
previous resident of the White House.")

-- Make a subclass of scrollingpresenter

class ScrollingPresenterForPage (ScrollingPresenter)
end

-- Define the setter method for the scrollingpresenter's target iv
-- to pass on the text to the targetpresenter.

method targetsetter self {class ScrollingPresenterForPage} value -> \
(self.targetPresenter.target := value)

-- Create an instance of scrollingPresenter
-- assume that scrollbar1 has already been defined as a scrollbar

ScrollingPresenter1 := new ScrollingPresenterForPage \
vertScrollBar:scrollbar1 \

 boundary:(new Rect x2:450 y2:300) \
targetPresenter:(new textPresenter \

boundary:(new rect x2:400 y2:900))

-- Put the scrolling presenter in a page element
global scrollingElement := new pageElement \

presenter:ScrollingPresenter1 \
target:(self -> getParentData self Page)

-- add scrollingElement to a page layer and so on.

Changing a PushButton’s Appearance from Page to Page

For another example, consider the case of pushbuttons. When a pushbutton is
released, its appearance is determined by the presenter in its
releasedPresenter instance variable. When it is pressed, its appearance is
determined by the presenter in its pressedPresenter instance variable.

The following example illustrates how you would set up a pushbutton whose
appearance can change from page to page in a document.

-- page1 and page2 are instances of a customized subclass of Page
-- that has upPresenter and downPresenter instance variables

page1.target := #(self.upPresenter, self.downPresenter)
page2.target := #(self.upPresenter, self.downPresenter)

class PushButtonForPage (PushButton)
end

ushButton
ss:using in
cuments
ocument
mplates com-
nent:using
sh buttons

336

13 ScriptX Components Guide

method targetsetter self {class PushButtonForPage} valueList -> \
(

self.releasedPresenter := valueList[1]
self.pressedPresenter := valueList[2]

)

button1 := new PushbuttonForPage
button1.activateAction := (authordata button -> doSomething())

pushElement1 := new pageElement \
presenter:button1
target:(self getParentData self page)

-- add pushElement to a page layer and so on

Document Template Examples
This section presents two example scripts, one for creating a simple document
and one for creating a document that uses several different layers of design.

A Simple Document

The following script demonstrates how to create a very simple document.

The document in this example has two pages, that both simply display their
page number, which is "hardwired" into the target instance variable for the
page. The frame for each page is a single page layer.

(The next example shows how to dynamically calculate the page number on
the fly.)

-- Create the boundary for the pages
pageRect := new Rect x2:300 y2:360

-- Create a line to appear across the top of each page.
theLine := new twoDshape boundary:(new line x1:0 x2:300 y1:0 y2:0)
theLine.stroke := new brush color:redcolor

-- Position the line near the top of the page
theLine.y := 50

-- Create a text box to hold the page number appear on each page.
textBounds := new Rect x2:50 y2:20
pageNumberBox := new TextPresenter boundary:textBounds \

target:("" as Text)
pageNumberElement := new PageElement \

presenter:pageNumberBox target:(e -> getParentData e Page)

-- Center the page number element near the bottom of the page
pageNumberElement.x := 250
pageNumberElement.y := 30

ocument
mplates com-
nent:simple
ample
ocument
ss:simple ex-
ple
ample
ipt:simple
cument tem-
te example

337

Document Templates 13

-- Create a page layer and make its outline be blue
layer1 := new PageLayer boundary:pageRect
layer1.stroke := new brush color:bluecolor

-- append the line and the page number box to the page layer
append layer1 pageNumberElement
append layer1 theLine

-- Create a document and append two pages to it
theDocument := new Document

page1 := new Page boundary:pageRect \
frame:layer1 target:("Page 1" as text)

page2 := new Page boundary:pageRect \
frame:layer1 target:("Page 2" as text)

append theDocument page1
append theDocument page2

-- Create a window that is slightly bigger than the first
-- page in the document.

w := new window
w.fill := whitebrush
w.height := page1.boundary.height + 50
w.width := page1.boundary.width + 50

show w

-- Append the document to the window.
-- Center the document in the window.
append w theDocument
theDocument.x := 25
theDocument.y := 25

-- Open the second page
goto theDocument 2

An Extended Document

The following example code creates a document with two alternative page
layouts, one for displaying text and a picture, and one for displaying text and
playing a movie. These two layouts, referred to as the Definition PageTemplate
and the Movie PageTemplate, are illustrated in Figure 13-6. Code for this
example is provided on the ScriptX CD in the doctempl folder.

This example shows how to combine PageLayer objects into PageTemplate
objects, how to play movies in a document, and how to place active buttons on
a page. It illustrates how to separate the data displayed in the document from
the document design. The data is stored in other objects, so the document
layout is completely separate from the data.

The document can be used to display the data stored in any object that
conforms to the following criteria:

ocument
mplates com-
nent:ad-
nced example
ocument
ss:advanced
ample
ample
ipt:advanced
cument tem-
te example

338

13 ScriptX Components Guide

• It has a heading instance variable whose value is a Text object with a
shortish string.

• It has a description instance variable whose value is a Text object.

• It has either a picture instance variable whose value is a Bitmap object, or
a movie instance variable whose value is a suitable target for a movie
player.

• It has a copyright instance variable whose value can be an empty string or
can contain copyright information.

The example code shows how to create the page elements, page layers, and
page templates needed for the document. It also provides a function that
creates a document. When calling the function, you must supply a list of
objects containing text and pictures, and a list of objects containing text and a
movie target. The function creates an appropriate page in the document for
each object in the input lists.

The PageLayers Used in the Document

The Definition page template and the Movie page template share page layers.
The layers are described below.

The background layer contains:

• A page element for the heading.

• A page element for the bar on the right which is a pushbutton that moves
the document forward a page.

• A page element for the bar on the left which is a pushbutton that moves the
document back a page.

• A page element for the colored background box for the page number.

• A page element for the page number.

The definition layer contains:

• A page element for the text description.

The picture layer contains:

• A page element for the picture.

The movie layer contains:

• A page element for the movie player that manages the movie.

• Pushbuttons that can be used to play and stop the movie.

• Two TwoDShape objects for two colored boxes to use as shadows for the
buttons that control the movie.

• A page element containing a text presenter that displays copyright
information.

339

Document Templates 13

Figure 13-6: A sample Definiton page and Movie page

Definition page

Movie Page
This PageElement shows
the heading text.

This is a pushbutton.
When clicked, it displays
the next page.

This PageElement
shows a picture.

This PageElement shows
the heading text.

This is a pushbutton.
When clicked, it displays
the next page.

This PageElement
shows a movie.

This is a pushbutton.
When clicked,it stops the
movie.

This is a pushbutton.
When clicked, it displays
the previous page.

This PageElement
shows thedescirption
text.

This PageElement
shows the description
text.

This box shows the
current page number.

This is a pushbutton.
When clicked, it displays
the previous page.

This is a pushbutton.
When clicked, it starts
the movie playing.

This box shows the
current page number.

This PageElement shows
copyright information

340

13 ScriptX Components Guide

The Code for the Example

The remainder of this chapter discusses the code for the example. You can find
the code in the doctempl folder on the ScriptX CD.

Define Some Customized Colors

The document uses some customized colors, so define them at the start of the
script.

---<<<
-- Document Templates Example

-- Define some custom colors

global constant blueBrush := new brush color: blueColor
global constant skyBlueBrush := new brush \

color: (new RGBColor red:80 green:180 blue:250)
global constant darkerBlueBrush := new brush \

color:(new RGBColor red:20 green:120 blue:250)
global constant otherBlueBrush := new brush \

color:(new RGBColor red:140 green:180 blue:250)
global constant greenBrush := new brush color: greenColor
global constant middleGreenBrush:= new brush \

color:(new RGBColor red:160 green:250 blue:160)

Make the Background Layer

The background layer contains the elements that appear on every page. These
include the pushbuttons at the left and right that move the document to the
next and previous page, a text presenter for the page number, and a text
presenter for the heading.

The pushbuttons that move the document backward or forward a page do not
really need to be put inside PageElement instances. Although the
activateAction function for each pushbutton is evaluated each time the
pushbutton is pushed, the target of the pushbutton is always the same, (that is,
the images used to display the button do not change from page to page.)

However, the pushbuttons for moving through the pages are put inside
PageElement instances in this example, to show you how to do it. When
adding PageElement instances containing pushbuttons or other objects
controlled by a controller, you have to take additional steps to ensure that the
controller works with the page element. The example illustrates these steps.

Further on in the example, you will see how to add pushbuttons to a page
without putting the pushbuttons inside PageElement instances.

341

Document Templates 13

-- Make the background layer.
-- This layer contains the outline of the page, the bars
-- on the left and right that let you move through the document,
-- and also text presenters for the page heading and the page number.
-- pageWidth and pageHeight are the width and height of the page.

-- the margin is the distance between the edge of the page
-- and the back page/forward page buttons
-- the innerMargin is the margin at which contents other
-- than the back/forward buttons start

function makeMargin pageWidth -> (pageWidth * 0.1)
function makeInnerMargin pageWidth -> (pageWidth * 0.22)

function makeBackgroundLayer pageWidth pageHeight ->
(

local margin := makeMargin pageWidth
local innerMargin := makeInnerMargin pageWidth

-- the smallwidth is the width of the back and forward
-- buttons and the pageNumber element
local smallwidth := (innermargin - margin) * 0.66

local smallRect := new rect x1:0 y1:0 x2:smallwidth y2:smallwidth

-- Create a Text Presenter that holds the pagenumber
local pageNumberText := (new TextPresenter \

boundary: smallRect stroke:greenBrush \
fill: middleGreenBrush \
target: ("" as Text))

pageNumberText.inset := new point x:0 y:2
setDefaultAttr pageNumberText @font \

(new PlatformFont name:"Palatino")
setDefaultAttr pageNumberText @size 12
setDefaultAttr pageNumberText @alignment @center

-- Find the page number.
-- The document's cursor indicates
-- the current position in the doc
local pageNumberElement := new pageElement\

presenter: pageNumberText \
target: (e -> (findParent e Document).cursor as Text)

pageNumberElement.x := (pageWidth - smallWidth) / 2
pageNumberElement.y := pageHeight - (margin + smallWidth)

-- Create the Text Presenter for the heading
local headingText := (new TextPresenter \

boundary: (new rect \
x2:(pageWidth - (2 * innerMargin)) y2:35) \

stroke: blackBrush target: ("" as Text) \
fill: skyBlueBrush)

headingText.inset := new point x:10 y:10
setDefaultAttr headingText @font \

(new PlatformFont name:"Helvetica")
setDefaultAttr headingText @size 18

akeBack-
oundLayer
mple function

342

13 ScriptX Components Guide

setDefaultAttr headingText @alignment @center

local headingElement := new pageElement presenter: headingText \
target: (e -> getfirst (getParentData e SpecialPage))

headingElement's x := innerMargin
headingElement's y := margin

-- Create the forward and backward page buttons
local buttonrect := new rect x2:smallwidth \

y2:(pageHeight - (2 * margin))

local forwardUp := new twoDshape boundary: buttonRect \
fill: skyBlueBrush stroke: otherBlueBrush

local forwardDown := new twoDshape boundary: buttonRect \
fill: darkerBlueBrush

local backwardUp := new twoDshape boundary: buttonRect \
fill: skyBlueBrush stroke: otherBlueBrush

local backwardDown := new twoDshape boundary: buttonRect \
fill: darkerBlueBrush

local forwardButton := new pushbutton \
releasedPresenter:forwardUp \
pressedPresenter: forwardDown

local backwardButton := new pushbutton \
releasedPresenter:backwardup \
pressedPresenter: backwarddown

-- When a pushbutton is pressed, its activateAction function is called
-- with the arguments pushbutton.authordata and pushbutton.
-- Here we want to find the document containing the pushButton,
-- so call findParent on the object that is presenting the pushbutton

forwardButton.activateAction := \
(a b -> forward (findParent (b.presentedBy) Document))

backwardButton.activateaction := \
(a b -> backward (findParent (b.presentedBy) Document))

-- put the push buttons inside page elements
local forwardButtonElement := new pageelement \

presenter: forwardButton
forwardButtonElement.x := (pageWidth - (margin + smallwidth))
forwardButtonElement.y := margin

local backwardButtonElement := new pageelement \
presenter:backwardButton

backwardButtonElement.x := margin
backwardButtonElement.y := margin

-- Create a pagelayer that holds background information
local bkgdLayer := new pagelayer \

boundary:(new rect x2:pageWidth y2:pageHeight)

bkgdLayer.stroke := blueBrush
append bkgdLayer pageNumberElement
append bkgdLayer forwardButtonElement
append bkgdLayer backwardButtonElement
append bkgdLayer headingElement

343

Document Templates 13

-- Make an actuator controller to control
-- the buttons in the background layer
local docController := new actuatorController space:bkgdLayer

append doccontroller forwardButtonElement
append doccontroller backwardButtonElement

-- return the background layer
bkgdLayer

)

Make the Definition Layer

The definition layer contains a text presenter that displays a description that
varies depending on the page displayed.

-- Make the definition layer, which contains text definition

function makeDefinitionLayer pageWidth pageHeight->
(

local margin := makeMargin pageWidth
local innerMargin := makeInnerMargin pageWidth

-- Create the Text Presenter that presents the info
local infoText := (new TextPresenter \

boundary: (new rect x2: (pageWidth - (2 * innerMargin)) y2: 80) \
stroke:blackbrush target:("" as Text))

infoText.inset := new point x:10 y:10
setDefaultAttr infoText @font \

(new PlatformFont name:"Palatino")
setDefaultAttr infoText @size 12
setDefaultAttr infoText @leading 14
setDefaultAttr infoText @alignment @flush

-- put the info text presenter into a page element
local infoElement := new pageElement presenter : infoText \

target: (e -> getsecond (getParentData e SpecialPage))
infoElement.x := innerMargin
infoElement.y := innermargin + 15

-- create a page layer
local definitionLayer := new pagelayer \

boundary:(new rect x2:pageWidth y2:pageHeight)
append definitionLayer infoElement

-- return the definition page layer
definitionLayer

)

akeDefinition-
yer sample
ction

344

13 ScriptX Components Guide

Make the Picture Layer

The picture layer displays a picture that varies from page to page.

-- Make the picture layer
function makePictureLayer pageWidth pageHeight ->
(

local margin := makeMargin pageWidth
local innerMargin := makeInnerMargin pageWidth

-- Create the box that displays the picture
local picPresenter := \

new TwoDShape fill:blackbrush stroke:blackbrush

local picElement := \
new pageElement presenter: picPresenter \

target: (e -> getThird (getParentdata e SpecialPage))
picElement.x := innerMargin
picElement.y := 160 + margin

-- Make a page layer for the picture
local pictureLayer := new pagelayer \

boundary:(new rect x2:pageWidth y2:pageHeight)

-- add the picture element to the picture layer
append pictureLayer picElement

-- return the picture layer
pictureLayer

)

Make Supporting Classes for the the Movies

This example uses InterleavedMoviePlayer objects to play movies. Since
interleaved movie players cannot change their target, we use a group space to
hold the interleaved movie player. However, the GroupSpace class does not
use its target instance variable, so we need to do a little more work.This
involves creating a subclass of GroupSpace (called MovieGroupSpace).
Define the target setter and getter methods on the subclass to make the
group space behave as if it switches its target from one interleaved movie
player to another when a page changes.

class MovieGroupSpace (GroupSpace)
end

-- define the target setter for MovieGroupSpace
-- so that when you add a value to the target iv
-- it effectively adds the target to the group

method targetSetter self {class MovieGroupSpace} value ->
(emptyout self

akePicture-
yer sample
ction

ovie-
oupSpace
ss
rgetSetter
thod: (Movie-

oupsSpace)
rgetGetter
thod: (Movie-

oupSpace)

345

Document Templates 13

 prepend self value
)

-- define the getter to return the
-- first element in the group space, which should always
-- be an interleaved movie player
method targetGetter self {class MovieGroupSpace} ->
(self[1])

If you change a page while a movie on the page is playing, the movie should
stop playing immediately. To implement this behaviour, the document needs to
keep track of what movie is playing at any time. To this end, we define a
subclass of Document, called MyDocument, that has a currentMovie
instance variable.

class MyDocument (Document)
instance variables
 currentMovie
end

The value of the document’s currentMovie instance variable always
indicates which movie, if any, is currently playing.When a movie starts or
stops playing, the value of this instance variable is updated as appropriate.
When a page changes, if the document’s currentMovie instance variable has
a value, the movie is stopped and the value of currentMovie becomes
undefined. (See page 349 for a definition of the appropriate changePage
method.)

The user starts and stops the movie on a page by using pushbuttons. This
example creats a subclass of PushButton that has a movieElement instance
variable. Each pushbutton needs to know what movie player it is controlling,
so its movieElement instance variable keeps track of that information. The
movieElement instance variable holds the PageElement containing the
movie group space. The interleaved movie player is always the first element in
the movie group space.

The playMovie method plays the movie on the page, and the stopMovie
method stops the movie. Both these methods illustrate how the page element
acts as a proxy for its presenter. In the method definitions,
thisMovieElement is a page element. However, the code:

thisMovieElement[1]

returns the first item in the page element’s presenter, not the first item in the
page element itself. (The page element is not even a collection.)

yDocument
ss

346

13 ScriptX Components Guide

-- Make a class for the Pushbutton that controls the movie
class MoviePushbutton (PushButton)

instance variables
movieElement

end

-- Define the methods used by the movie button
method playMovie button {class MoviePushButton} ->
(

-- the button’s movieElement is a page element
-- whose presenter is a movie group space

-- the movie is the first item in the group space
-- notice that we access the group space by accessing the page element
local movie := thisMovieElement[1]

stop movie
gotobegin movie
playprepare movie 1
play movie

-- keep track of which movie is currently playing
local doc := findparent thisMovieElement.presentedBy Document
doc.currentMovie := movie

)

method stopMovie button {class MoviePushButton} ->
(

-- the button’s movieElement is a page element
-- whose presenter is a movie group space
local thisMovieElement := button.movieElement

-- the movie is the first element in the group space
-- notice that we access the group space by accessing the page element
local movie := thisMovieElement[1]

stop movie
gotobegin movie
playprepare movie 1

-- no movie is currently playing
local doc := findparent thisMovieElement.presentedBy Document
doc.currentMovie := undefined

)

Make the Movie Layer

The movie layer contains the elements and presenters for displaying a movie,
and buttons for controlling the movie.

The user starts and stops the movie on a page by using pushbuttons. In this
example, each pushbutton is added directly to a page layer without being
embedded in a PageElement instance. (However, if the appearance of the

ovie-
oupSpace
ss
ayMovie
thod (Movie-
oupSpace)
opMovie
thod (Movie-
oupSpace)

347

Document Templates 13

pushbutton depends on the page being displayed, you would need to put it in
a PageElement.) Each button is an instance of MoviePushButton, which has
an instance variable movieElement that contains the page element that
provides access to the movie.

function makeMovieLayer pageWidth pageHeight ->
(

local margin := makeMargin pageWidth
local innerMargin := makeInnerMargin pageWidth
local buttonWidth := 35
local buttonHeight := buttonWidth * 0.75

local movieElement := new pageElement \

presenter: (new MovieGroupSpace) \
target: (e -> (getNth (getParentdata e SpecialPage) 3))

movieElement.x := innerMargin
movieElement.y := 160 + margin

-- Create the Movie Control Buttons
local movieButtonRect := new rect x2: buttonWidth y2: buttonHeight

local playUp := new textPresenter boundary: movieButtonRect \
fill: otherBlueBrush stroke: BlueBrush \
target: ("Play" as Text)

playUp.inset := new point x:0 y:4
setDefaultAttr playUp @font (new PlatformFont name:"Helvetica")
setDefaultAttr playUp @alignment @center

local playdown := new twoDshape \
boundary:movieButtonRect fill:darkerBlueBrush

-- Create the pushbutton to play the movie.
local playButton:= new MoviePushbutton \

releasedPresenter: playUp pressedPresenter: playDown
playButton.movieElement := movieElement

-- When a push button is pressed,
-- its activateAction function is called with the arguments
-- pushbutton.authorData and pushbutton.
-- Here we want to call the playMovie function on the pushbutton

playButton.activateAction := (a b -> playMovie b)

playButton.x := innerMargin
playButton.y := (pageHeight - margin - playbutton.height)

-- make the shadow for the playButton
local playShadow := new twodshape fill: darkerBlueBrush \

stroke: darkerBlueBrush target: movieButtonRect
playShadow.x := playButton.x + 2
playShadow.y := playButton.y - 2

-- make the stop button
local stopUp := new textPresenter boundary:movieButtonRect \

fill: otherBlueBrush stroke: BlueBrush target: ("Stop" as Text)

akeMovie-
yer sample
ction

348

13 ScriptX Components Guide

setDefaultAttr stopUp @font (new PlatformFont name:"Helvetica")
setDefaultAttr stopUp @alignment @center
stopUp.inset := new point x:0 y:4

local stopDown := new twoDshape boundary: movieButtonRect \
fill: darkerBlueBrush

local stopButton := new MoviePushbutton \
releasedPresenter: stopUp pressedPresenter: stopDown

stopButton.movieElement := movieElement
stopButton.activateaction := (a b -> stopMovie b)
stopButton.x := (pageWidth - (innerMargin + buttonWidth))
stopButton.y := pageHeight - stopbutton.height - margin

-- make the shadow for the stop button
local stopShadowButton := new twoDshape fill: darkerBlueBrush \

stroke: darkerBlueBrushh target: movieButtonRect
stopShadowButton.x := stopButton.x + 2
stopShadowButton.y := stopButton.y - 2

-- make a box to show any required copyright notices
local copyRightBox := new TextPresenter \

boundary:(new rect \
x2: (pagewidth - innermargin) y2:15) \
target:""

setdefaultAttr copyRightBox @font (new PlatformFont name:"Times")
setdefaultAttr copyRightBox @size 11

-- put the copy right text presenter into a page element
local copyrightElement := new pageElement presenter: copyRightBox \

target: (e -> (getNth (getParentdata e SpecialPage) 4))

copyrightElement.x := innermargin
copyrightElement.y := pageheight - 20

-- Make a page layer for the movie page
local movieLayer := new PageLayer \

boundary:(new rect x2:pageWidth y2:pageHeight)
append movieLayer movieElement
append movieLayer playButton
append movieLayer stopButton
append movieLayer playShadow
append movieLayer stopShadowButton
prepend movieLayer copyrightElement

-- Make an actuator controller to control the buttons on the movieLayer

local movieController := new actuatorController space:movieLayer
append movieController playButton
append movieController stopButton

-- return the movie layer
movieLayer

)

349

Document Templates 13

Make a Page Subclass that Points to Data Objects

The new subclass of Page, called SpecialPage, has an instance variable
dataObject whose value is an object containing data for the page.

Define the changePage method on SpecialPage to stop the current movie,
if a movie is playing.

-- Make a new Page subclass that points to the object
-- holding data for the page
class SpecialPage (Page)

instance variables
dataObject

end

-- define the changePage method for specialPage so
-- that whenever the page changes, if a movie is
-- playing, it stops automatically
method changePage self {class SpecialPage} newpage ->
(

-- find the document containing the page
local doc := findparent self document

-- if the document’s currentMovie instance variable
-- has a value, stop the currentMovie and set the
-- current movie to undefined.

if (doc.currentMovie != undefined)
do (stop doc.currentmovie

doc.currentMovie := undefined
)

-- Do the default changePage behavior
nextMethod self newpage

)

Make a Page Template

The function makeTemplate makes a template containing each of the page
layers in a list of layers that is passed to the function.

This function is used later to create the definition template and the movie
template.

-- makeTemplate makes a page template from a list of page layers
-- Call this function with a list of the layers that make up the template
-- It uses the boundary of the first layer in the list as the boundary
-- for the page template

function makeTemplate layerList ->
(

local template1 := new pageTemplate boundary:layerlist[1].boundary

pecialPage
ss

hangePage
thod:(Spe-
lPage)

akeTemplate
mple function

350

13 ScriptX Components Guide

for i in layerList do append template1 i
template1

)

Make Movie Pages and Definition Pages

A movie page displays a heading, description and movie, and has buttons to
control the movie.

The appendMoviePage function adds a movie page to a document. The doc
argument must be an existing document. The dataObject argument must be
an object that has Text values in its heading and description instance
variables, and whose movie instance variable contains an interleaved movie
player. The copyRightInfo instance variable of the dataObject contains
copyright information, or an empty string if there is no appropriate copyright
information.

The template argument must be a "movie page template", that is, an object
returned by the function makeTemplate, whose input collection is a
background layer, a definition layer and a movie layer.

A definition page displays a heading, description and bitmap.

The appendDefinitionPage function adds a definition page to a document.
The doc argument must be an existing document. The dataobject argument
must be an object that has Text values in its heading and description instance
variables, and a bitmap in its picture instance variable. The template
argument must be a "definition template", that is, an object returned by the
makeTemplate function whose input collection is a background layer, a
definition layer and a picture layer.

The necessary layers can be created by the functions makeBackgroundLayer,
makeDefinitionLayer and makeMovieLayer as appropriate.

Note that you can use a single template object for multiple pages, you do not
need to create a new template for each page.

function appendMoviePage doc dataobject template ->
(

-- The new page has the same boundary as its template
local newPage := new specialPage frame:template \

boundary:(template.boundary)

-- Set the value of the page's dataObject instance variable
newPage.dataObject := dataObject

-- Set the target of the page to be an anonymous function that
-- returns an array of the heading, description, movie, and
-- copyright info which are found on the dataObject
newPage.target := (p -> #(p.dataObject.heading,

p.dataObject.description,
p.dataObject.movie,

ppendMovieP-
e sample
ction

351

Document Templates 13

p.dataObject.copyrightInfo))
append doc newPage
-- return the new page
newPage

)

function appendDefinitionPage doc dataObject template ->
(

-- The new page has the same boundary as its template
local newPage := new specialPage frame:template \

boundary:(template.boundary)
newPage.dataObject := dataObject

-- Set the target of the page to be an anonymous function that
-- returns an array containing the heading, description
-- and picture, which are found on the dataObject
newPage.target:= (p -> #(p.dataObject.heading,

p.dataObject.description,
p.dataObject.picture))

append doc newPage
-- return the new page
newPage

)

Make a Document

The function makeDocument makes a document containing movie pages
and/or definition pages.

The arguments to the function makeDocument are the page width, page
height, a list of objects containing data for definition pages and a list of objects
containing data for movie pages.

You need to create the definitionObjectList and the movieObjectList
collections yourself.

The makeDocument function is an example function that illustrates how to
create a document containing both definition pages and movie pages. You
should modify this function to suit your needs.

The makeDocument function uses the makeBackgroundLayer,
makeDefinitionLayer, makeMovieLayer and makePictureLayer
functions already defined to make the page layers. It uses the makeTemplate
function to make page templates containing the page layers. Then it creates a
document and adds one definition page for every object in the
definitionObjectList, and adds one movie page for every object in the
movieObjectList.

After creating a document with function makeDocument you would need to
append the returned document to an open window to make it visible.

ppendDefini-
nPage sample
ction

352

13 ScriptX Components Guide

See the file MakeDoc.sx in the folder doctempl in the folder that contains the
sample code for this manual, for an example of creating the
definitionObjectList and movieObjectList collections by importing
media, and for calling makeDocument to create a document. The file
MakeDoc.sx also shows how to save the document to a title container.

-- Example function that creates a document
-- You would modify this to suit your needs

function makeDocument pageWidth pageHeight \
definitionObjectList movieObjectList ->

(
-- Make the page layers
local bkgdLayer := makeBackgroundLayer (pageWidth, pageHeight)
local definitionLayer := makeDefinitionLayer (pageWidth, pageHeight)
local movieLayer := makeMovieLayer (pageWidth, pageHeight)
local pictureLayer := makePictureLayer (pageWidth, pageHeight)

-- Make the page templates
local glossaryTemplate := \

makeTemplate #(pictureLayer, definitionLayer, bkgdLayer)
local movieTemplate := \

makeTemplate #(movieLayer, definitionLayer, bkgdLayer)

-- Create the document and append pages to it.
-- Note that we create an instance of the MyDocument subclass of Document.
-- Instances of MyDocument know what movie they are currently playing.
local doc := new MyDocument
for i in definitionObjectList do

appendDefinitionPage doc i glossaryTemplate

for i in movieObjectList do
appendMoviePage doc i movieTemplate

-- return the document
doc

))

akeDocu-
nt sample
ction

C H A P T E R

14
Printing

354

14 ScriptX Components Guide

355

Printing 14

The Printing component is a separate loadable extension that provides the
basic building blocks you need to write custom printing methods for your title.
You can design custom printing methods to:

• Print a Window view to a page

• Print a TextPresenter object to a series of pages

• Print a OneOfNPresenter (and therefore a Document) to a series of pages

Classes and Inheritance
The class inheritance hierarchy for the Printing component is shown in the
following figure.

The Printing component consists of the following classes.

PrinterSurface – provides the low-level mechanism for rendering stencils

PrinterSpace – prints out the state of a presentation hierarchy

For information on the other classes shown in this figure, see Chapter 3,
“Spaces and Presenters,” and Chapter 11, “2D Graphics,” in this guide.

Conceptual Overview
Printing is implemented similar to the way the 2D graphics subsystem is
implemented. In 2D graphics you usually have a Window instance with various
presenters attached to it and an underlying DisplaySurface. In 2D graphics,
a draw method on a TwoDPresenter instance calls a fill or stroke
method on a stencil, and all of these methods are passed the
DisplaySurface object, on which the stencil is rendered.

RootObject

Surface Presenter Space

PrinterSpace

PrinterSurface
TwoDPresenter

TwoDMultiPresenter

TwoDSpace

PageLayer

Window

IndirectCollection

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

356

14 ScriptX Components Guide

The PrinterSpace and PrinterSurface classes in the Printing component
are analogous to the Window and DisplaySurface classes used for screen
display. Each PrinterSpace object has a PrinterSurface object associated
with it. As with the screen-based classes, the use of PrinterSurface is
discouraged; in most cases, you should use only the PrinterSpace class.
Whenever necessary, instance variables and methods from the
PrinterSurface class are mirrored in the PrinterSpace class.

The PrinterSurface class, like its screen counterpart, DisplaySurface,
implements fill, stroke, and transfer methods to render stencils to the
printer. The printing loadable extension adds methods to the individual
Stencil classes to actually perform the rendering.

A PrinterSpace instance, like a Window instance, can be made the parent
space of a presentation hierarchy. The printFrame method on PrinterSpace
can then be used to take a snapshot of the presentation. As with any
TwoDSpace, a PrinterSpace instance has a fixed boundary and clips its
subpresenters. Since a title may use a Window that is a different size from the
PrinterSpace page, you have to be careful when you print the presentation
hierarchy associated with a Window. The section “Printing a Window View” on
page 357 describes issues and options associated with this task.

Putting Print Capability in Your Title
The mechanism you use to put printing into your ScriptX title is similar to the
mechanism used for cut, copy, and paste: You have the option of enabling or
disabling the feature in the title’s menu, and you can provide an
implementation of the feature at the TitleContainer or Window level.

The standard mechanism for a user to choose to print from an application is
the Print menu item. The SystemMenuBar class (an instance of which is
associated with each TitleContainer instance) provides a mechanism for
enabling and disabling individual menu items. The identifiers that the
SystemMenuBar class accepts for enabling and disabling items are @cut,
@copy, @paste, @clear, @open, @close, and @print. The @print identifier
enables or disables the printing-related menu options. On the Macintosh, this
includes the Print and Page Setup menu items. On Windows, this includes
Print and Print Setup. See Chapter 3, “Title Management,” in this guide for
information about the system menu bar.

The printing-related menu options are disabled by default in a ScriptX title (the
value of the SystemMenuBar key @print is false). To enable the
printing-related menu options, enter, for example:

enableitem thetitlecontainer.systemmenubar @print

If a user chooses the Print menu item, the printTitle method is invoked on
the title container that has user focus. The default implementation of
printTitle invokes the printWindow method on the topmost window of
the title. The default implementation of printWindow does nothing. You can
create a subclass of TitleContainer and specialize the printTitle method,
or you can create a subclass of Window and specialize the printWindow

he Printing
mponent
not yet im-
emented

n
S/2.

357

Printing 14

method to provide an implementation of printing for your title. (Recall that the
print global function has different functionality and is not part of the Printing
component.)

The classes needed for printing are part of a loadable extension. You can load
the printing extension dynamically in your implementation of the
printTitle or printWindow method or while the title is starting up. The
following is an example of how to load the printing extension while your title
is starting up:

if (not isdefined PrinterSpace) do \
 (process (new loader) "loadable/printing")

The if condition ensures that you do not load this extension more than once,
since loading any extension more than once causes ScriptX to throw an
exception. You may not need to do this check during title startup, but you need
to do it if you load the printing extension in either the printTitle or
printWindow method.

For more information on working with loadable extensions, see Chapter 12,
“The ScriptX Loader,” in the ScriptX Tools Guide.

In summary, do the following to incorporate printing into your title:

1. Enable the printing menu options using the TitleContainer class’s menu
bar.

2. Provide an implementation of printTitle or printWindow that uses the
printing classes PrinterSpace or PrinterSurface.

Printing a Window View
A window view is made up of all the presenters it contains, as arranged in
their presentation hierarchy. A window view does not include what is clipped
or hidden.

Printing a window view can be accomplished in one of two ways:

1. Print the offscreen bitmap used by the window’s compositor. This involves a
two-step process (see the following section):

a. TwoDPresenter instances render themselves to the offscreen bitmap

b. The bitmap is transferred to the printer, possibly with scaling

2. Have the individual TwoDPresenter instances in the presentation
hierarchy (and, thereby, the Stencil instances they contain) render
themselves directly to the printer. This may provide better results, especially
if scaling is involved.

Printing a Window’s Bitmap Image

This is a good example of how you might use the PrinterSurface class. In
most cases, you should use the PrinterSpace class.

358

14 ScriptX Components Guide

This code is an excerpt from the example file:
DOCEXMP/acguide/printing/winprin1/mywin.sx

class MyWindowClass (Window)
end

method printWindow self {class MyWindowClass} -> (
 local surface, scaleFactor, myTransform, oldRate

 -- Create PrinterSurface.
 surface := new PrinterSurface

 -- Calculate the ratio of our width and height to
 -- that of the surface. The minimum of the two ratios
 -- is what we will use to scale our bitmap.
 scaleFactor := min (surface.boundary.width / self.boundary.width) \
 (surface.boundary.height / self.boundary.height)

 -- Create a transformation matrix that represents the scaling.
 myTransform := mutableCopy identityMatrix
 scale myTransform scaleFactor scaleFactor

 -- Display the printer dialog box and see if we should continue.
 if (printerDialog surface) do (
 -- Stop the window's clock to halt the presentation
 oldRate := self.clock.rate
 self.clock.rate := 0

 -- Transfer the window's offscreen representation
 -- to the PrinterSurface with the appropriate scaling.
 transfer surface (snapshot self undefined) \
 surface.boundary myTransform

 -- Restart the window's clock.
 self.clock.rate := oldRate

 -- Flush the document.
 flushDocument surface
)
)

This example starts by creating a new PrinterSurface. Invoking the new
method on the PrinterSurface class without passing any keyword
arguments gives you a PrinterSurface instance that represents the default
printer device. By using the deviceName keyword argument, you can create a
PrinterSurface that represents other available printer devices on the
system. You can obtain a list of device names by calling the global function
getPrinterNameList; note that on some platforms, printer selection is
carried out outside the scope of an application and only the currently chosen
printer is listed.

In general, the PrinterSurface and PrinterSpace classes should only be
instantiated in a printTitle or printWindow method; that is, instances
should not be stored or maintained across invocations of these methods.

359

Printing 14

Next, this example obtains the factor by which you need to scale the
compositor’s bitmap to display it on the printer with the best possible fit
between the bitmap and the printer surface. This is done by calculating the
ratio of the width of the window to the width of the printer surface and the
height of the window to the height of the printer surface. The minimum of the
two ratios is the amount used to scale the bitmap (keeping its aspect ratio) to
best fit on the printed page. A TwoDMatrix instance (myTransform) is created
to represent this transformation.

Then this example invokes the printerDialog method on PrinterSurface.
This displays a machine-specific dialog box to get printer job settings, such as
the number of copies and the range of pages to print. The dialog box also
confirms whether printing should proceed. A Boolean value returned from this
method determines whether to continue the print operation. Alternatively, you
could display a custom dialog box for the application.

If the printer dialog box returns true, this example stops the window’s clock
and, hence, freezes the state of the presentation. Note that this assumes there
are no clocks outside the window’s hierarchy that are used to change the
presentation. In other words, all clocks used in the presentation should be
slaved off the window’s clock.

Finally, the transfer method on the printer surface is used to print a bitmap
representation of the window to the printer. Note that the example makes use
of the snapshot method on the window, which returns an offscreen
representation of the window. The clipping region represents the entire
printable area of the printed page, and the transformation matrix is used to do
the scaling.

The flushDocument method on PrinterSurface is used to indicate the end
of the printing job. At this point, any spooled printer commands are sent to the
printer.

This procedure for printing a window’s view is not always the ideal solution.
This is often most obvious when dealing with text. If the offscreen bitmap
needs to be scaled (as is often the case), the bitmap representation of the text
also gets scaled, often resulting in undesirable artifacts. The procedure
described above should be used when:

1. Your presentation hierarchy uses features not supported by the printing
engine. For example, if you use presenters that have non-rectangular clip
regions or invisible colors (neither of which is supported by the printing
system), this procedure might be your best option.

2. Your application is sensitive to the variability in the rendering of stencils by
different printer drivers.

In most other cases, a better option is to incorporate the scaling operation into
the actual rendering of the stencils, as shown in the next section.

360

14 ScriptX Components Guide

Printing Each Presenter

Every TwoDPresenter instance has a transform instance variable — a
TwoDMatrix instance that specifies a transformation for the contents of the
TwoDPresenter object. For a TwoDMultipresenter object, the
transformation applies to all the TwoDPresenter objects contained by the
TwoDMultipresenter object. By modifying the transform instance variable
of the top presenter of a presentation hierarchy, you can apply a transformation
to the entire hierarchy while it renders itself to a printer. The following is an
example of how that might be done.

This code is an excerpt from the example file:
DOCEXMP/acguide/printing/winprin2/mywin.sx

class MyWindowClass (Window)
end

method printWindow self {class MyWindowClass} -> (
 local p, scaleFactor, oldRate, tmpArray, tmpSpace

 -- Create a PrinterSpace object.
 p := new PrinterSpace

 -- Calculate the ratio of the width and height of the PrinterSpace to
 -- the width and height of the Window. The minimum of the two
 -- ratios will be used to scale the bitmap.
 scaleFactor := min (p.boundary.width / self.boundary.width) \
 (p.boundary.height / self.boundary.height)

 -- Create a GroupPresenter to hold the items in the Window.
 -- The transform goes on the GroupPresenter.
 tmpSpace := new GroupPresenter
 scale tmpSpace.transform scaleFactor scaleFactor
 prepend p tmpSpace

 -- This array holds all the items in the Window.
 -- It is needed because the following cannot be done:
 -- for i in self do
 -- prepend p i
 -- This is because we cannot iterate over the items
 -- in the Window while we're deleting them from it.
 tmpArray := new Array
 for i in self do
 append tmpArray i

 -- Display the printer dialog box to determine whether to continue.
 if (printerDialog p) do (
 -- Stop the Window's clock so nothing will change.
 oldRate := self.clock.rate
 self.clock.rate := 0
 self.compositor.enabled := false

 -- Move everything over to the PrinterSpace.
 for i in tmpArray do
 prepend tmpSpace i

361

Printing 14

 -- Take a snapshot of the presentation.
 printFrame p

 -- Put everything back.
 for i in tmpArray do
 prepend self i

 -- Restart the Window's clock and re-enable the compositor.
 self.compositor.enabled := true
 self.clock.rate := oldRate

 -- Flush the document.
 flushDocument p
)
)

This script starts out looking similar to the previous example, except that it
creates a PrinterSpace instance. As with the PrinterSurface class,
creating a new PrinterSpace without specifying a deviceName gives you a
representation of the default printer. Besides the deviceName keyword, you
can use the surface keyword to specify a PrinterSurface for the
PrinterSpace instance to use.

Note that several of the instance variables and methods of PrinterSpace
used in this example (printerDialog and flushDocument, for example) are
similar to those that exist in the PrinterSurface class. This obviates the need
to use the PrinterSurface class when you are dealing with a
PrinterSpace object.

After calculating the factor by which you need to scale to best fit into the
PrinterSpace object’s boundary, this example creates a GroupPresenter
instance to hold the presentation hierarchy. The boundary of the
GroupPresenter instance accommodates all presenters in the hierarchy. The
transform is added to the GroupPresenter object rather than to the
PrinterSpace object, since you want to clip to the boundary of the
PrinterSpace object, not to the scaled version of the boundary.

After confirming whether printing should continue, the example moves the
presentation hierarchy (actually, all the direct subpresenters of the Window) to
the GroupPresenter and takes a snapshot of the presentation using the
printFrame method. Note that the compositor is disabled while the hierarchy
is moved to the PrinterSpace, so this process is not visible on the screen.

Note – This operation is computationally expensive: Moving a presentation
hierarchy involves losing cached information used by the compositor, rescaling
clocks in the presentation hierarchy, and recalculating other presentation
information.

The same method can be used to build presentation hierarchies on-the-fly,
specifically for printing. In the Autofinder demo, for example, you can print
the entire contents of the Map scene containing the location of the cars if the

362

14 ScriptX Components Guide

Detail window is not displayed. If the Detail window is displayed, you can
print a presentation hierarchy consisting of a bitmap for the car, a short
description of the car, and user notes about the car.

Printing a TextPresenter to Multiple Pages

Another common use for a printing engine is to print several pages of
formatted text.

In ScriptX, you can print text using the TextPresenter and PrinterSpace
classes. The procedure to print text is summarized as follows:

1. Create a PrinterSpace instance and sets its margins.

2. Append the TextPresenter object to the PrinterSpace object, and set
the boundary of the TextPresenter object to the boundary of the
PrinterSpace object. The TextPresenter object lays out its text based
on this boundary.

3. Query for the offset of the last completely visible character on the page,
using the getLastVisibleOffset method on the TextPresenter
object. This offset defines where to start printing the next page.

4. Modify the height of the TextPresenter object to display only completely
visible lines. The height is obtained by using the getPointForOffset
method on the TextPresenter object, using the offset from the previous
step.

5. Print the page using the printFrame method on the PrinterSpace
object.

6. Reset the height of the TextPresenter object and modify its offset
instance variable to lay out the next page.

7. Continue until all the pages are printed.

The previous two examples printed out only a single page. To print multiple
pages, use the flushPage method as shown in this section.

There are two ways to print a subrange of a set of text pages:

• Send all the pages in the set to the print engine, and allow the print engine
to print the correct subrange of pages according to what the user selected in
the print dialog box. In this case, the print engine still processes all the
pages for printing, even though it actually prints only the correct subrange.

• Send only the subrange of pages that the end user specified in the print
dialog box to the print engine. Your application has better performance in
this case since you avoid unnecessary processing by the print engine. The
example in this section shows this kind of implementation.

Consider the following example. This code is an excerpt from the example file:
DOCEXMP/acguide/printing/textprn/textprin.sx

363

Printing 14

method printText self {class TextPresenter} margin units -> (
 local p, oldX, oldY, oldBoundary

 -- Create a new PrinterSpace and set its margins.
 p := new PrinterSpace
 setMargin p margin units

 -- Record the old dimensions and location and attach
 -- the TextPresenter to the printer
 oldBoundary := self.boundary
 self.boundary := p.boundary
 oldX := self.x; oldY := self.y
 self.x := self.y := 0
 append p self
 recalcRegion p

 -- Set the context to be the PrinterSurface. The TextPresenter
 -- might be queried for metric information before it's told to draw.
 setContext self p.surface p.globalBoundary

 if (printerDialog p) do (
 local firstPage, lastPage, \
 newOffset, pageNum
 local defaultPageHeight := self.height

 -- Record the page range from printerDialog in local variables.
 -- Set the printerDialog variables back to their default values.
 -- The script will send only the specified subrange of pages to
 -- the print engine, telling the print engine to print all of
 -- those pages.
 firstPage := p.firstPage
 p.firstPage := 1
 lastPage := p.lastPage
 p.lastPage := @all

 self.offset := newOffset := 0
 pageNum := 1

 -- While there is still text to be printed out:
 repeat while (newOffset < self.target.size) do (

 self.offset := newOffset

 -- Get the offset of the last visibly complete character on this page
 -- The text for the new page will start right after it.
 newOffset := (getLastVisibleOffset self)

 -- Get the position of this character and change the height
 -- of the presenter to match that. Note that the point information
 -- is returned in global coordinates
 local lastXY := getPointForOffset self newOffset
 self.height := (lastXY.y - self.globalboundary.bbox.y1) /
 self.globaltransform.d

 -- If the current page is within the correct
 -- range, then print it
 if ((pageNum >= firstPage) and \

364

14 ScriptX Components Guide

 ((lastPage = @all) or (pageNum <= lastPage))) do (

 -- Take a snapshot of the current page.
 printFrame p

 -- Flush the current page and move on to a new one.
 flushPage p
)

 pageNum := pageNum + 1
 newOffset := newOffset + 1
 -- Restore to standard height
 self.height := defaultPageHeight
)

 flushDocument p
)

 emptyout p
 self.offset := 0
 self.x := oldX; self.y := oldY
 self.boundary := oldBoundary
)

This example first creates a PrinterSpace instance and sets its margins. The
setMargin method accepts a collection of four values and a name that
represents the units of those values. For example,

setMargin p #(1, 1, 1, 1) @inches

sets the margins of p to one inch on each side. Setting the margins effectively
changes the boundary instance variable of the PrinterSpace instance so that
it is correctly offset and clipped on the printed page. A list of accepted units
names is provided in the description of PrinterSpace in the ScriptX Class
Reference.

This example uses the setContext method on TextPresenter. This is used
to provide the TextPresenter with a context (a target surface and a clip) for
text metric calculations if the TextPresenter object is not drawn. This
method enables you to call methods like getOffsetForXY and
getLastVisibleOffset if you skip pages in the text.

This script looks at the firstPage and lastPage instance variables of the
PrinterSpace instance before printing. The default values of these variables
are 1 and @all, which tell the print engine to print all pages in the set sent to
it. These instance variables may be set to other values by the end user during
the printerDialog method. If the script does nothing with these values, then
the print engine uses them to print the subrange specified by the end user, if
any. This example instead saves these values, sets them back to their defaults,
and then uses the saved values to send only the user-defined subrange of
pages to the print engine. The script (rather than the print engine) accepts the
responsibility for printing out the correct page range. This increases the
printing performance of the application.

365

Printing 14

This example uses the flushPage method to indicate a page break. Call
flushPage for every page of the text that is actually printed.

Another issue to address is the resolution (dot-pitch) of the printer device.
Although the underlying device could be anything from a 72dpi dot-matrix
printer to a 300dpi laser printer, it is often important that the results of a print
job look relatively similar on each device, at least in terms of layout if not
quality. To accomplish this, by default the transform instance variable of a
PrinterSpace object is always set in such a way as to simulate a 72dpi
device. In other words, the default coordinate space in which you deal with a
PrinterSpace is a 72dpi point space, irrespective of the dot-pitch of the
underlying device. The transform instance variable does the necessary
scaling to the pixel space of the underlying PrinterSurface.

In the first two examples, resolution was not much of an issue. Those examples
scaled the presentation space to best fit into the boundary of a printed page
and applied their own transform to do the scaling. Different sized pages would
yield different results in terms of the scaling of the presenters. For example, the
fonts in a block of text in the presentation space would be scaled to different
sizes on differently sized pages.

In the third example, resolution is more important. The layout, but not the size
of the font, needs to change on different pages. The default transform on the
PrinterSpace object accomplishes this by ensuring that you are always
dealing with the same coordinate space. In other words, you do not have to
worry about the resolution of the device — just be aware that scaling may be
occurring. “Resolution and Scaling” on page 367 discusses dealing with printer
devices in their own coordinate spaces.

Printing a OneOfNPresenter to a Series of Pages

Titles that probably benefit most from printing capabilities are online
documents. The Document classes in ScriptX provide a framework for building
such documents. The following example shows how the concepts from the
previous sections can be used to print out pages of a document. It defines new
subclasses of Document and Window and provides implementations of
printDocument and printWindow to render them to a printer. This code is
an excerpt from the example file:
DOCEXMP/acguide/printing/docprn/docprint.sx

in module docModule

class MyDocumentClass (Document)
end

method printDocument self {class MyDocumentClass} -> (
 local p, scaleFactor, myTransform, oldTransform, \
 oldPosition, oldPresentedBy

 -- Create a PrinterSpace
 p := new PrinterSpace
 myTransform := mutableCopy identityMatrix

366

14 ScriptX Components Guide

 oldPresentedBy := self.presentedBy
 prepend p self

 -- Start the document and see if we should continue
 if (printerDialog p) do (
 local firstPage, lastPage, i, n

 -- Record the firstPage and lastPage
 firstPage := p.firstPage
 p.firstPage := 1
 lastPage := p.lastPage
 p.lastPage := @all

-- Clip the page range to the extent of the document
 if ((lastPage = @all) or (lastPage > self.size)) do

 lastPage := self.size

 -- Record the old state of the Document, so that we can reset it
 oldPosition := self.cursor
 oldTransform := self.transform

 for i := firstPage to lastPage do (
 -- If this page is in the correct page range
 -- Go to that page and find out how best to
 -- scale it. Since different pages can have
 -- different boundaries, we have to do it everytime.
 goto self i
 scaleFactor := min (p.boundary.width / \
 self.boundary.width) \
 (p.boundary.height / \
 self.boundary.height)

 -- Set the transform based on the scaling factor
 reset myTransform
 scale myTransform scaleFactor scaleFactor
 self.transform := myTransform

 -- Take a snapshot of the page
 printFrame p

 -- Move on to the next page
 flushPage p
)

 -- Flush the document
 flushDocument p

 -- Reset the state of the document
 goto self oldPosition
 self.transform := oldTransform
)

 prepend oldPresentedBy self
)

class MyWindowClass (Window)
end

367

Printing 14

method printWindow self {class MyWindowClass} -> (
 local doc := self[1]
 self.compositor.enabled := false

 printDocument doc

 self.compositor.enabled := true
)

This example incorporates concepts from the previous two examples. The
Document is printed out by attaching it to a PrinterSpace instance and
iteratively going to and taking a snapshot of each page. Note that the scaling is
carried out differently for each page, since the pages in a Document can have
different boundaries. The firstPage and lastPage instance variables are
used to determine the range of pages to print.

These examples are meant to serve as just that — examples. They provide some
of the basic functionality you might need to put printing into a title. The
expectation is, however, that you will eventually be able to build more
sophisticated implementations that better serve the needs of your title.

Other Printing Issues

Resolution and Scaling

As mentioned earlier in this chapter, a PrinterSpace object is set up, by
default, to operate in a 72dpi point scale, irrespective of the resolution of the
underlying device. This is accomplished by applying a scaling transform
(stored in the transform instance variable of the PrinterSpace) to do the
coordinate space conversion. The transform instance variable can be
modified, however. For example, changing it to an identity matrix allows you
to deal with the PrinterSpace in the pixel space of the device. If you want to
perform some other type of affine transformation, however, be aware that you
could disturb the scaling components in the matrix.

You can query the physical resolution of the print device by using the
physicalResolution instance variable on a PrinterSurface. This returns
a Pair consisting of two numbers that represent the horizontal and vertical
resolution in dots per inch. The PrinterSurface class also has an
availableResolutions instance variable that consists of an array of
available resolutions for the printer. Many Apple printers, for example, can
work at different resolutions. The availableResolutions instance variable
tells you which resolutions the physicalResolution instance variable can
be set to.

While the physicalResolution instance variable on PrinterSurface tells
you the physical resolution of the underlying print device, the
effectiveResolution instance variable on PrinterSpace represents the
effective resolution of the space represented by the PrinterSpace. In other
words, it takes into account the transform applied to the space. For example, if
the transform instance variable of the PrinterSpace is the identity matrix,

368

14 ScriptX Components Guide

the effective resolution of the PrinterSpace space is the same as that of the
underlying device. If the transform instance variable performs a 2x scaling,
the effective resolution is half that of the device.

Bitmaps need to be at the printer resolution to look good. A scale factor of 4X
often works better than other scale factors.

Graphics Features That Don't Print Well

Several features that can be used for screen graphics do not translate well to a
printer. For example, non-rectangular clip regions and invisible colors do not
always work well for a printer. Transfer modes other than srcCopy are not
recommended.

C H A P T E R

15
Title Management

370

15 ScriptX Components Guide

371

Title Management 15

The Title Management component is a title’s functional interface to the
underlying file system and desktop interface. It provides the capability to start
and quit the ScriptX Player, and open and close ScriptX titles. It provides
access to system resources such as a menu bar, the clipboard, and the open and
save dialog boxes. It also provides for distinct ScriptX libraries and accessories
to support titles.

This chapter begins with a conceptual overview. It then describes opening and
closing titles, creating title containers, managing objects in a title, managing
windows, pausing a title, using the system menu bar and clipboard, using
libraries and accessories, and quitting a title and ScriptX. It describes the
storage container classes StorageContainer, TitleContainer,
LibraryContainer, and AccessoryContainer, and the supporting classes
SystemMenuBar and Clipboard. Finally, this chapter shows several
examples of using the Title Management component.

Classes and Inheritance
The class inheritance hierarchy for the Title Management component is shown
in the following figure.

The following classes form the Title Management component. In this list,
indentation indicates inheritance.

StorageContainer – represents a general purpose file for the storage of
objects. You do not need to work directly with StorageContainer instances
to manage your titles. Instead, work with title containers, library containers, and
accessory containers, which are storage containers by inheritance.

TitleContainer
Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to

RootObject RootObject

SystemMenuBar

Clipboard

LibraryContainer

StorageContainer

IndirectCollection

AccessoryContainer

Collection

another component

372

15 ScriptX Components Guide

LibraryContainer – represents a collection or library of loadable objects
and has prestartup, startup, and terminate actions. A library can be
identified by name, version, and copyright. An instance of this class can hold
media objects, ScriptX modules or classes, and other objects to be used by
titles and other libraries.

TitleContainer – represents an interactive multimedia title or tool
that a user can open and close independent of other ScriptX applications.

AccessoryContainer – represents a set of classes and instances that can
be dynamically added to a running title to supplement the title with data
or behavior.

SystemMenuBar – provides the ability to control the appearance of the
ScriptX Player menu bar presented by the native operating system.

Clipboard – represents an area of memory where text can be copied to and
pasted from, for moving text from one title or application to another.

Conceptual Overview
ScriptX titles and tools manage three basic kinds of container files: titles,
libraries, and accessories. The three kinds of containers are represented by the
TitleContainer, LibraryContainer, and AccessoryContainer classes,
as shown in Figure 15-1. Each of these container objects can hold a loadable set
of objects and classes, but each kind of container has a different purpose. A
complete ScriptX title typically comprises one title container and several
library containers, and it may include a number of accessory files.

Figure 15-1: Titles, libraries, and accessories are represented by their corresponding
containers.

Note that the organization of files in a title differs from the inheritance
hierarchy of the classes that represent those files. In the inheritance hierarchy,
TitleContainer and AccessoryContainer both inherit from
LibraryContainer, which inherits from StorageContainer. In a title that
runs with the ScriptX Player, the TitleContainer file is the top-level file, the
user’s entry point. This title file draws on resources from library and accessory
files, and an end-user product generally does not include any
StorageContainer files.

TitleContainer and AccessoryContainer specialize
LibraryContainer for different purposes. This specialization is summarized
in “Classes and Inheritance” on page 371, and also in the discussion of “Title”
on page 374. The two subclasses inherit much of their functionality from

AcsyFile.sxaLibrFile.sxl

LibraryContainer instance AccessoryContainer instance

TitlFile.sxt

TitleContainer instance

373

Title Management 15

LibraryContainer, and they share a similar mode of operation. For
example, each of these container classes implements an open, close, update,
and terminate method and defines the instance variables
preStartupAction, startupAction, and terminateAction.

Note – Even though TitleContainer and AccessoryContainer objects
are LibraryContainer objects by inheritance, the term “library” by
convention is used in the narrower sense shown in Figure 15-1 to refer to files
that contain code or media objects used by a title.

The following terminology is used in the remainder of this chapter:

title – the complete multimedia application that the end user experiences

title file – a file that holds a TitleContainer object, from the user launches
the title application

title container – a TitleContainer object

library – a set of code or media objects that is used by a title without any
direct action by the end user

accessory – a container object that the end user can add to a running title

The title file is the focal point for the user, since the user starts a ScriptX title by
opening the title file in the ScriptX Player. The title should automatically load
any libraries it needs. If a required library is not present, the developer can
define the preStartupAction script that either continues or stops the title.
As the title runs, the user can open accessories that supplement the title.

In addition to title, library, and accessory files, you can create a general purpose
storage file. Storage files are instances of the StorageContainer class. They
have more limited capabilities than the other three types of container files. For
example, they lack the startup and shutdown mechanisms defined by the
LibraryContainer protocol. In the title development process, you normally do
not create storage containers directly.

Storage Container

An instance of StorageContainer represents a general purpose storage file.
This kind of storage file has more limited capabilities than the other three types
of container files. The StorageContainer class defines important
functionality that library containers inherit, such as the open class method and
the close, update, and requestPurgeForAllObjects methods.

Unlike a TitleContainer file, a StorageContainer file cannot be opened
by the user at the system level, and it cannot have user focus. It has no list of
players and clocks, and it has no explicit relationship with other containers,
such as libraries and accessories.

The StorageContainer class is sealed and cannot be subclassed. You may
want to create an instance of a StorageContainer if you need a file that does
not require the additional functionality of LibraryContainer or

374

15 ScriptX Components Guide

TitleContainer. For example, you may want to use StorageContainer
objects in a ScriptX tool. (A tool is a program that assists a ScriptX developer in
creating a title.)

Title

A title is a complete, stand-alone, interactive ScriptX program. From the
perspective of a user, a title is composed of objects interacting over time in
multiple, concurrent spaces, in which a user can participate. As described in
Chapter 1, “ScriptX Features,” most titles implement one or more design
metaphors such as modular compositions, virtual spaces, conversational
interactions, constructive experiences, and multitrack sequencing.

A title container is the ScriptX object (an instance of TitleContainer) that
maintains the high-level organization of a title, including the container file in
which objects are stored. In particular, a title container is a collection of ScriptX
media, code, and data objects that make up a title. A title container also defines
startup and shutdown activities for a title through its prestartup, startup, and
terminate actions, and it provides access to system resources such as the
system menu bar and clipboard. A title container maintains a list of the
libraries that it uses in its libraries instance variable. A title container also
maintains a list of its windows, top clocks, and top players so that the title as a
whole can be paused, resumed, muted, opened, and closed.

A title runs in the ScriptX Player. A title container can hold either a title or a
stand-alone tool. A title can use libraries and accessories, but in general a title
does not use other titles.

Much of the remainder of this chapter describes how a ScriptX title works: how
it opens and closes and how it gains access to system resources, including the
system menu bar and the clipboard.

Library

A library is a ScriptX resource file that can provide any kind of code, media, or
data objects to a title. Although a library is a separate file, it cannot run alone in
the ScriptX Player—it must be accessed from a title. One library can be shared by
more than one title. When a title uses a library, the title automatically opens and
closes the library. A library can use accessories and other libraries.

There are several ways to use libraries, depending on their contents:

• Code libraries can contain importers, exporters, transitions, classes, or
functions that extend the capabilities of ScriptX. Libraries might supply fixes
or version upgrades to a title. Another possible use of a code library is to
supply a set of user interface controls, such as pushbuttons and popup
menus, that share a common look and feel.

• Media libraries can contain video streams, audio streams, graphic images,
animation, and text. A large title that has natural, metaphorical divisions
could organize its media objects into libraries. For example, detailed models
of the Earth and Moon might be saved as two separate libraries, since a user
would be at only one place at a given time.

375

Title Management 15

• Data libraries can supply updated numerical information to be presented by
the title. A library could contain user preferences and user-created data or
media. For example, a game might save the user’s name, score, and position
to a data library.

There are many different reasons why you might provide a library rather than
include the library’s contents directly in a title. Both titles and libraries allow
developers to group, manage, and load stored objects effectively. Libraries also
allow developers to update and distribute content separately from titles. In
addition, a library can be reused by different titles.

A library container is the ScriptX object (a LibraryContainer instance) that
maintains the high-level organization of a library, including the container file
to which objects are stored. Like a title container, a library container is a
collection of objects that defines its own startup and shutdown activities
through a startup action and a terminate action. A library container also
maintains a list of the titles or libraries that use it in its users instance variable
and a list of other libraries that it uses, in its libraries instance variable.

Accessory

An accessory is a ScriptX resource file that a user can add dynamically to a
running title. It is intended for incrementally adding data or behavior to titles.
Like a library, it may be usable in one or many titles. The main difference
between an accessory and a library is that a user can directly open an accessory
from the ScriptX Player File menu using Open Accessory. Examples of
accessories include a tape measure that can be used to measure the size of
objects, or an inspector that can analyze the state of objects.

An accessory container is the ScriptX object (an AccessoryContainer
instance) that maintains the high-level organization of an accessory, including
the container file to which objects are stored. It is a collection of objects, and
has all of the capabilities of a library container, but is uniquely identified as an
accessory so that a user can open or close it from within a title.

Storing ScriptX Code in Storage Containers

When ScriptX source code is compiled, the results of compilation are ScriptX
objects: instances of RootClass or ByteCodeMethod and global instances of
other objects. These code objects can be saved in storage containers. Although
it is possible to store individual classes, methods, functions, and so forth to
storage containers, the process would be very tedious, and prone to error.

A much easier technique exists for storing ScriptX code. ScriptX code is always
compiled in a module. (If you do not declare that your program is being
compiled in a particular module, it is compiled in the Scratch module, a
default module which cannot be saved.)

Modules are really collections of name bindings. (Indeed, the ModuleClass
class, although it does not inherit from Collection, implements several
generic functions from the Collection protocol.) In effect, every code object that
is compiled in a module is a subobject of the module itself.

376

15 ScriptX Components Guide

In this respect, a module acts as a container for all the code objects that are
compiled in it. Adding a module to a title container is a convenient way to add
all of the classes, instances, global variables, and global functions that are
defined in that module to a title.

Note – ScriptX variables are saved with the module that provides their
definition, not the module in which they are declared. When you add a ScriptX
module to any library container, it also adds all the other modules it uses and
any modules that also use it. By storing a module, you are effectively also
storing everything that touches or is touched by that module. See the
“Modules” chapter of the ScriptX Language Guide for more information.

Only a variable that is owned by a module is saved in a storage container
when you save the module to the container. A variable is owned by the module
that defines it. Only one module owns each variable. A variable that is owned
by the Scratch module is transient, and is not saved when the module is
saved. Only a variable that is owned by a module is saved when the module is
saved and can be exported (shared). Variables owned by a module are global to
only that module and any modules to which that variable is exported. For
more information about modules, see the ScriptX Language Guide.

One possible structure for a ScriptX title and its associated files is to store only
modules in the title container itself, using library containers to store data and
media objects.

Unlike other persistent objects, modules must be explicitly loaded from
containers. Typically, all modules in a container are loaded by the container’s
startup action.

Startup Actions

Library containers (LibraryContainer, TitleContainer, and
AccessoryContainer objects) implement a mechanism that allows a
developer to specify a function that runs when the container is opened. The
preStartupAction and startupAction instance variables, which are
inherited from LibraryContainer, store these functions.

A startup action can be used to preload objects for performance reasons. For
example, a title could preload a large bitmap into memory so that there is
minimal latency when the user requests that it be displayed. Or a title could
preload objects that are used in its first scene to minimize the time the user
waits for the first window to be populated. As a rule, objects do not need to be
preloaded. Objects load automatically when a method is called on them.

Modules are a special case. It is common for a title, library, or accessory to
contain a module, and these modules are usually loaded in the container’s
startup action. Since modules act as containers for compiled code, to save a
module to a container is to save all classes and functions that are compiled in
that module. Modules need to be loaded when the container is opened, so that
the title’s code objects are all accessible, as in the following example:

-- myTC stores a module with the explicit key @myModule:
myTC.startupAction := (tc -> load myTC[@myModule])

377

Title Management 15

For more information on modules, see the “Modules” chapter of the ScriptX
Language Guide. Startup actions are described in more detail in the sections
“The Title Startup Sequence” on page 394, “Opening and Closing a Library” on
page 412, and“Opening an Accessory File” on page 418.

How Storage Containers Work
From the point of view of memory management, there are two kinds of objects
in a ScriptX program: stored objects and allocated objects. Objects that are
saved in containers are called stored objects or persistent objects because they
live on disk even when the title is not running. Objects that live only in
memory and do not exist when the title is not running are called allocated
objects or transient objects.

Life Cycle of a Stored Object

The purpose of any storage container (including titles, libraries, and
accessories) is to store objects so that they can be used again. The life cycle of a
stored object has two phases: When you create an object, it is a transient object.
You make it persistent by putting it in a storage container. After you save it to
disk, it can be purged from memory. Thereafter, each time you use the object,
its most recently updated version is reloaded into memory automatically.

Storage containers are collections. Since StorageContainer inherits from
IndirectCollection, any objects that you put in a storage container by
calling a collection method (such as add) are added to the target collection of
that storage container. The target collection itself is accessible through the
storage container’s targetCollection instance variable.

global tc := new TitleContainer path:"myTitle.sxt" name:"myTitle"
global win := new Window name:"Welcome to My Title"
prepend tc win -- Window win is a target collection object in tc.

A storage container contains (stores) all the objects that are elements of its
target collection, and also any objects that are reachable from those target
collection objects. Objects that are reachable from target collection objects are
called subobjects. Subobjects include elements of collections and instance
variables of a target collection object. For example, if you store an array and a
pushbutton in a storage container, the array’s elements and the pushbutton’s
subpresenters are all subobjects of the container’s target collection.

An object can only be stored in one container. If you attempt to store an object
in a second container, only a reference to the first container is actually stored in
the second container. At any give time, the system contains either zero or one
instance of any stored object.

When you open a storage container, you can reference any objects in the
container. However, objects do not automatically load into memory just
because you opened the container that stores them. A stored object is loaded
into memory when you call a method on it.

378

15 ScriptX Components Guide

Objects can only be accessed by calling a function or method on them. Note
that this can happen even if you do not explicitly call a method on the object.
Whenever an object is used, explicitly or implicitly, in any expression, the
object is loaded automatically if it is not already in memory. For example,
suppose that an object is referenced by a ScriptX variable. If you enter the
variable’s lexical name in the Listener, the Listener to displays its value. To
display the value, it calls the global function print on the object, and the
print function calls that object’s method for prin.

Not every operation on an object requires that the object be brought into
memory. The identity test (==) test does not load an object into memory, since
comparing storage locations does not require knowledge of the object’s
contents. (Two objects that have the same location in memory or in the object
store must be the same object.) The identity test really does not examine an
object—it only examines its pointer.

Persistent Versus Transient Objects

Not all objects used in a ScriptX need to be stored objects. If an object requires
more time and resources to load than to create, you might want to create it
dynamically when you need it rather than storing and then reloading it. If your
title is delivered through a medium with low bandwidth, such as a CD–ROM
or the Internet, it may be much faster to create objects on the fly. Buttons,
menus, and other small user interface objects are good candidates for this.

Make sure the state you are saving is part of the run-time state and is not
associated with authoring-time. The ScriptX language defines qualifiers for
instance variables that override the normal storage behavior of objects. See the
discussion of the readOnly, transient, and reference qualifiers in the
ScriptX Language Guide.

References Across Containers

An object can only be stored in one container. When you attempt to store it in
another container, only a reference to the first container is stored in the second
container. Thus, when you use the object from the second container, the first
container (where the object is actually stored) is inflated to memory
automatically, an effect you may not have intended.

Be careful that you do not add an object that was already added to another
container. This can easily happen if the object you are adding is a subobject of
an object that has already been added to another container, since adding an
object to a container automatically adds all of its subobjects to that container.

Object Store Protocol

Every ScriptX class defines or inherits a set of methods that allow instances to
be stored and retrieved from the object store. Together these generic functions
comprise the Object Store protocol. The default implementation for each of
these generics, which include inflate, deflate, update, load, and

379

Title Management 15

afterLoading, is inherited from RootObject, the root system class. With
the exception of afterLoading, it is unusual for developers to specialize the
generic functions in the Object Store protocol in scripted classes.

A protocol is an informal group of properties and behaviors that work together
to accomplish some set of tasks. The Object Store protocol is one of the
fundamental “sets of behaviors,” inherited from RootObject, that are
common to all objects.

This section describes these Object Store generic functions, for which all objects
in the system define or inherit a method. The Object Store protocol is
supplemented by a set of helper functions and system globals that provide
additional information about objects and the state of the system as a whole.
These global functions and variables are defined in sections that follow.

The load Method

The load method basically calls an object and does nothing. It touches the
object, and thus causes it to be loaded automatically into memory. The process
of loading an object is often referred to as object inflation.

It is not usually necessary to call load. A stored object is loaded into memory
automatically, unless it is already in memory, when it is supplied as the
argument of a function or method. In certain cases you might want to preload
a group of objects, such as the set of objects required to open a scene.

In general you should avoid preloading objects. The exception to this rule is
modules, which act as containers for stored code objects.

The update method

If you modify a persistent object, whether it is a member of the container’s
target collection or a subobject, call update on the object to store the modified
version back to the storage container. If the object is a subobject of some other
object in the same container, you can call update on the parent object.
Alternatively, you can call update on the container file itself. For a code
example, see the section, “Saving Objects to a Container File” on page 385.

It is a good habit to save objects each time you modify them. If you modify an
object without updating it, your modifications are lost and the original object is
loaded the next time the object is loaded from storage. When an object is
loaded from storage, ScriptX loads the most recently updated version.

When you close a storage container, all objects in the container are
automatically saved to storage if the container was opened in @update mode,
which is the default. This includes all target collection objects and any
subobjects that are reachable through the target collection.

When a title container uses a library or accessory, objects in the library or
accessory continue to be saved and stored as persistent objects in their original
container. When you save the title, it saves pointers to any libraries or
accessories it uses, and it reports an error if those files are not present. Saving a

380

15 ScriptX Components Guide

title does not automatically save the libraries and accessories that the title is
using. You must save those library and accessory containers separately if you
want to save changes to them.

The inflate and deflate Methods

Whenever a persistent object is needed from the object store, inflate is called
automatically to load the object. When an object is saved, the update method
calls deflate automatically.

Since inflate is called each time an object is brought in from storage, it is
analogous to init. You can specialize inflate and deflate to perform
custom object storage management, but this is rarely necessary and is not
encouraged. Contact Apple Developer Services if you feel you need to
specialize inflate and deflate. To perform some action each time an object
is retrieved from the object store, a better strategy is to specialize
afterLoading.

The canStore Method

The canStore method is called automatically by the system when it traces
through a network of objects, to determine which objects should be stored.
Although it is possible to specialize canStore, the ScriptX language provides
higher-level hooks for overriding the normal storage characteristics of objects
that are far easier to implement. See the transient qualifier in the ScriptX
Language Guide.

The afterLoading Method

After an object is loaded into memory, the system calls afterLoading on the
object automatically. Your script should never call afterLoading explicitly; it
is visible to the scripter so that it can be specialized to perform some task that
is required whenever an object is loaded into memory. The default
implementation of afterLoading, which is defined by RootObject, does
nothing.

The answer to a popular analogy question on the ScriptX Aptitude Test (SAT)
goes, “afterLoading is to inflate as afterInit is to init.” In this
respect, afterLoading is analogous to afterInit, which is called
automatically after initialization. A typical application of afterLoading
would be to load member objects of a collection or subpresenters of a
multipresenter such as PushButton.

Object inflation takes place in two steps: The object’s inflate method
initializes transient objects referred to by the inflated object’s instance
variables. Its afterLoading method provides a place to access and
manipulate those instance variables. The afterLoading method is invoked
automatically on an object after it has been loaded from a storage container by
the inflate method. Override afterLoading to perform custom
initialization on the object being inflated (loaded) and its subobjects.

381

Title Management 15

When you close a storage container, close calls update on the container
automatically. All persistent objects in the container that have been loaded in
memory become purgeable.

Shared Objects

Shared objects are an exception to several object storage rules. Shared objects
define their own instance methods for inflate, rather than inheriting the
default version of inflate from RootObject. ScriptX has two categories of
shared objects: immediate objects and interned objects.

Immediate objects are numbers (ImmediateInteger and ImmediateFloat)
that are not full-fledged objects. Since immediate objects “collapse” into their
own pointers, they are not allocated separate storage either in the ScriptX heap
or in the object store. For more information, see “Immediate Objects” on
page 486 of Chapter 17, “Numerics.”

Interned objects are stored in a system table and referenced by value. Two
interned objects that have the same value are the same object. ScriptX defines
one class of objects that can be interned, the NameClass class. For more
information on NameClass objects, see the definition of the NameClass class
in the ScriptX Class Reference.

Unlike other stored objects, which can be stored in only one container, shared
objects can be stored in more than one container. Other persistent objects do
not load until you call a method on them. Shared objects that are persistent are
loaded into memory as soon as they are referenced. Shared objects want to live
in a transient space even though they are stored.

Object Store Helper Functions

The following global functions are useful for managing storage containers.
They are described in detail in the ScriptX Class Reference.

canRequestPurge – queries whether an object is a persistent object, so that
you can legally call requestPurge on it. (An object that is transient cannot be
purged.)

getStorageContainer – returns the StorageContainer instance in which
a given object is stored, or will be stored the next time the container is updated.
It returns undefined if the object is not persistent.

isInMemory – indicates whether or not an object is in memory. isInMemory
can be called on any object, either stored or allocated.

isPurgeRequested – confirms whether you have called requestPurge on
an object.

requestPurge – purges a stored object from memory. The function
requestPurge can only be called on persistent objects.

382

15 ScriptX Components Guide

Object Store System Globals

The following global variables provide useful state information for managing
storage containers. They are described in detail in the ScriptX Class Reference.

objectStoreMessages – prints messages to the stream specified by
objectStoreMessagesStream whenever a storage container is loaded from
or saved to. Which messages are printed depends on which flags are set. See
the ScriptX Class Reference for more information.

objectStoreMessagesStream – specifies which stream object store
messages are sent to. By default, these messages are sent to the Listener.

rarelyInflatedClasses – Is a collection of classes whose instances are
rarely loaded. These classes and their children should be moved to the end of a
storage file to improve loading performance.

theContainerSearchList – specifies a collection of DirRep instances that
represent directory search paths for resolving references between objects stored
in StorageContainer files. When any title, library, or accessory container is
opened, its directory is automatically added to this list. A title can add items to
and remove items from this collection.

theOpenContainers – specifies all open storage containers, including
library, title, and accessory containers. Containers are listed in the order in
which they were opened, with the most recently opened container listed first in
the collection.

Performance and Optimization

To preload an object is to bring it into memory from the object store before it is
actually needed in the title. ScriptX allows a title to perform load management,
to determine the timing with which objects are brought into memory. Load
management techniques can be used to make smoother transitions in a
program, for example, by bringing in a large media object before it is actually
needed.

Performance is partly perception. Scene transitions can be carefully staged, so
that the screen appears busy while other objects are being loaded. Putting up a
splash screen can hide some of the time taken to preload objects.

You can preload objects used in your title’s first scene in its startup action. A
class or object’s afterLoading method can be specialized to preload its
subobjects. Preloading can run in the background—the title can activate a load
operation in another thread.

Never assume that preloading objects improves performance. Preloading also
takes time, and the net result may be worse. In general you get the best overall
performance by not loading objects until they are actually needed, which
means allowing them to load automatically as you use them. The payoff for
preloading is greatest when you can switch active load management tasks into
idle time.

383

Title Management 15

Modules, which are really collections of code objects, are a special case in that
they should always be preloaded. Generally, a title container should load all of
its modules in its startup action.

-- the title container myTitle is a collection of modules
myTitle.startupAction := (myTitle -> for i in myTitle do load i)

Storage Reorganizer

Reorganization of objects on the storage medium can also improve
performance. On some media, especially on CD–ROM, seek time is quite large.
To minimize latency, use the Storage Reorganizer to make sure that objects are
loaded in a consistent order.

The ScriptX Storage Reorganizer can improve performance if objects tend to
have some locality in their loading order. For example, a pushbutton and its
subpresenters, each of which is stored separately, are all needed at once when
the pushbutton appears in a scene. By reorganizing the disk so that objects that
are used together can be loaded together, you can minimize the number of
seeks required to load a scene.

The loading order of individual objects does not have to be exactly the same. It
is more important that groups of objects that are used together, such as all the
objects needed to open one scene, are consistently loaded at the same time. See
the “Title Analysis Tools” chapter of the Development Tools User's Guide for
information about using the Storage Reorganizer.

Using Storage Containers
The examples in this section demonstrate how to manage objects in a container.
They apply equally to all storage containers (including title, library, and
accessory containers), although each of the examples in these features only one
of the container classes.

Adding Objects to a Container

A storage container is a collection. Its target collection, by default, is an array,
but other collection classes are commonly used, especially the explicitly keyed
collections. Use collection methods such as add, append, and prepend, to add
objects to a container. (append and prepend are defined by Sequence, and
apply to sequences such as arrays and linked lists.)

global tc := new TitleContainer \
path:"myTitle.sxt" \
name:"myTitle"

global win := new Window name:"Welcome to My Title"
prepend tc win -- Window win is a target collection object in tc.

After creating a new container, you should explicitly add to the title container
all the objects that you want saved in it that are not subobjects of objects you
have already added to it. You can add subobjects of target collection objects,

384

15 ScriptX Components Guide

but it is not necessary to do so to save those objects in the container. You may
want to add some subobjects explicitly so that they can be accessed directly as
members of the container’s target collection.

In the following example, library container myLibe contains two target
collection objects, both of which are arrays. Elements of those arrays are
subobjects. Only the two arrays were explicitly added to the title container, but
all the elements of each target collection array are also saved in the title
container. Notice that there is only one of each object in memory; the object is
not copied when it is added to the title container.

This example is extremely simplified to demonstrate adding objects and their
subobjects to a container. In usual practice, title containers should consist only
of modules, library containers consist of class definitions and media, and
accessory containers consist of stand-alone tools and other title add-ons.

global myLibe := new LibraryContainer \
path:"myTitle.sxt" \
name:"My Title"

➯ <LibraryContainer named "My Title">
global a := #("ScriptX", "is", "so", "cool")
➯ #("ScriptX", "is", "so", "cool")
append myLibe a
➯ 1
myLibe[1] == a -- there is only one version of this array in memory
➯ true
a := #(7,28,95) -- reuse the global object
➯ #(7, 28, 95)
prepend myLibe a -- add more objects to the title container
➯ 1
myLibe.targetcollection
➯ #(#(7, 28, 95), #("ScriptX", "is", "so", "cool"))

In the previous example, append and prepend are used to add objects to a
container whose target collection is Array by default. The following example
demonstrates use of the add method in a container that has been defined to
have an explicitly keyed target collection.

Choosing a Target Collection

A storage container’s target collection can be any ScriptX collection, but
explicitly keyed collections are the usual choice, since they allow objects to be
“named.” The core classes supply several explicitly keyed collections:
KeyedLinkedList, SortedKeyedArray, BTree, and HashTable. Each of
these classes places some restrictions on what objects can be used as keys. For
example, hash tables can only be used with keys that implement a hashing
function, such as names and strings.

In practice, it is best to restrict the choice of keys to objects of a single class. The
best choice is usually a NameClass object (a ScriptX interned name such as
@Maydene or @Sandra). NameClass objects can be sorted and compared
more efficiently than strings.

This example creates a title container with a hash table as its target collection:

385

Title Management 15

global tch := new TitleContainer \
path:"myTitleH.sxt" \
name:"HashTitle" \
targetCollection:(new HashTable)

➯ <TitleContainer named "HashTitle">

add tch @car "sedan"

➯ @car

add tch @pet "cat"

➯ @pet

tch.targetcollection -- examine the target collection

➯ #(@car:"sedan", @pet:"cat") as HashTable

tch[@car] -- retrieve an individual object

➯ "sedan"

Saving Objects to a Container File

To save an added object to the container’s underlying system file, call update
on the object or, to save all of the container’s objects (its target collection
objects and all of their subobjects), call the StorageContainer method
update on the container. To save all the container’s objects and close the
container, call close on the container. It is unnecessary to call update on the
container before you close it, since close calls update automatically if the
container was opened in @update mode.

When you save a single object, that object and all of its subobjects are saved to
the file. The object on which you are calling update must be a persistent
object. You can only call update on an object that has previously been added
to a storage container.

update myLibe[1] -- update target collection object

➯ #(7, 28, 95)

update myLibe[2][4] -- update only a subobject

➯ "cool"

When you save a storage container, all of its objects (all of its target collection
objects plus all subobjects of those objects) are saved to the file.

update tc -- update the entire storage container

Note – Saving an entire storage container can be very time-consuming,
depending on the number and kinds of objects that are in the container. You
may want to get into the habit of saving individual objects instead, especially
when only a few of the container’s objects have changed.

See also “Modifying and Deleting Objects in a Container” on page 386 for more
examples of update.

386

15 ScriptX Components Guide

Loading Stored Objects into Memory

Objects are loaded into memory on demand, when a method is called on them.
Calling a method on a object in a container’s target collection does not
automatically load subobjects of that object. Calling a method on a subobject of
some target collection object brings only the subobject into memory, not the
entire target collection object.

An object can be the parent of an entire tree of subobjects. For example, an
instance of PushButton has several subpresenters, including a pressed,
released, and disabled presenter. Each of these subobjects can in turn have
subobjects. For example, the released presenter of a button may be a text
presenter that presents a Text object.

The following example uses the library container that was defined in the
section “Adding Objects to a Container” on page 383, to demonstrate which
target collection objects and subobjects are in memory as various objects in the
container are retrieved from the object store.

global myLibe := open LibraryContainer \
path:"myLibe.sxt" \
mode:@update

➯ <LibraryContainer value of theTitleContainer named "My Title">

isInMemory myLibe[2]

➯ false

myLibe[2][1]

➯ "ScriptX"

isInMemory myLibe[2][1]

➯ true

isInMemory myLibe[2][4]

➯ false

myLibe[2][4]

➯ "cool"

isInMemory myLibe[2][4]

➯ true

isInMemory myLibe[2][2]

➯ false

myLibe[2]

➯ #("ScriptX", "is", "so", "cool")

isInMemory myLibe[2][2]

➯ true

Modifying and Deleting Objects in a Container

ScriptX objects are stored in blocks of space in storage containers. Large objects
may be chained over several non-contiguous blocks. Each object in a container
has an entry in the container’s data index.

387

Title Management 15

When an object is deleted from a container, the space it occupied can be used
for another object of the same size or smaller. The size of a container file never
decreases. Although unused space in a container can be reused by another
object, it cannot be recovered.

When a new object is added to a container, the file does not necessarily
increase in size. A newly created or modified object may be stored in space that
has been reclaimed. However, the logical size of the container’s data index
always increases. (The physical size of the data index increases in arbitrary
blocks.) The space for an index entry (which requires 4 bytes) cannot be
recovered.

If no space that is large enough can be reclaimed, the container grows in
increments of 4096 bytes. (The size of a physical block in a container is
arbitrary and may change in future versions of ScriptX.)

To recover unused space while setting to null all index entries that are no
longer valid, use the Storage Reorganizer. The Storage Reorganizer is a
post-production tool that rebuilds storage containers, and rearranges objects in
the container for optimal retrieval. If you provide no profile file, the Storage
Reorganizer can serve as a simple compactor. See the “Title Analysis Tools”
chapter of the Development Tools User's Guide for more information.

Modifying Persistent Objects

The following example, a continuation of the previous example, demonstrates
the use of update.

tc[2] -- load a container object from storage
➯ #("ScriptX", "is", "so", "cool")
tc[2][3] := "way" -- modify a subobject
➯ "way"
tc[2] -- Show that the subobject is modified in the container.

index body

index unused space

index unused spacebody

index unused spacebody unused spacebody

388

15 ScriptX Components Guide

➯ #("ScriptX", "is", "way", "cool")
requestPurge tc[2] -- Purge without saving (updating).
➯ undefined
isInMemory tc[2] -- Show that the object has been purged from memory.
➯ false
tc[2] -- Reload the container object from storage.
➯ #("ScriptX", "is", "so", "cool")
-- The modification made above is lost because
-- no update was done before the changed object was purged.
tc[1] -- Load another container object from storage.
➯ #(7, 28, 95)
tc[1] := #(10,3,95) -- Modify the object.
➯ #(10, 3, 95)
close tc -- Closing the container also updates the container.
➯ true
tc := undefined -- Make sure the container is purged from memory.
➯ undefined
-- Re-open the container.
tc := open TitleContainer path:"myTitle.sxt" mode:@update
➯ <TitleContainer value of theTitleContainer named "My Title">
tc.targetcollection -- Confirm that its contents were saved.
➯ #(#(10, 3, 95), #("ScriptX", "is", "so", "cool"))

Deleting Persistent Objects

Just as you use collection methods to add objects to a container, you can use
the various forms of the delete collection methods to delete objects from a
container’s target collection. If you cannot delete a subobject directly, try
creating a lower level binding to that object as shown in the example below.

deleteOne tc tc[1]
➯ true
update tc
➯ OK
close tc
➯ true
tc := undefined
➯ undefined
tc := open TitleContainer path:"myTitle.sxt" mode:@update
➯ <TitleContainer value of theTitleContainer named "My Title">
tc.targetcollection
➯ #(#("ScriptX", "is", "so", "cool"))
tc[2]
➯ empty
deleteOne tc tc[1][3]
➯ false
tc[1]
➯ #(#("ScriptX", "is", "so", "cool"))
global a := tc[1]
➯ #("ScriptX", "is", "so", "cool")
deleteOne a a[3]
➯ true
x
➯ #("ScriptX", "is", "cool")
tc[1]
➯ #(#("ScriptX", "is", "cool"))

389

Title Management 15

Note – Be careful when you delete a target collection object, since all of its
subobjects are deleted also.

These delete methods have the same effect on the container’s target collection
as they have on other collections: Deleted objects are no longer members of the
collection and cannot be referenced through the collection, but they are still
held in storage. Thus, it is still valid for other objects to reference these deleted
objects, even though the specified storage container collection cannot.

Removing Objects from Memory

When ScriptX runs there are two separate worlds of objects: the “persistent”
(stored) world and the “transient” (non-stored) world. When you are finished
using an object, or if you are temporarily not using it, you may want to remove
it from memory to free up that memory for other objects to use. How you do
this with stored and transient objects is quite different:

• With a stored object, you can “purge” it from memory, and recover it later
from storage. A small part of the object, its handle, remains in memory so
that all references to the object can be maintained.

• However, with transient objects, you can free them for garbage collection,
but then must create new instances if you need them again.

Transient objects are fairly easy to understand and use—you free them by
simply dropping all references to them. They will be freed in the next cycle of
the garbage collector. Be aware that transient objects cannot be recovered once
they have been removed from memory since they have not been stored in any
container.

However, if you were to drop all references to a stored object, there would be
absolutely no way to load it back into memory from storage, because you
would not have a reference to it. So, instead of dropping references, you can
free a stored object by “purging” it, using the requestPurge function.

Presenters are a special case of object, in that the process of displaying them
prevents them from being garbage collected, even if they are not assigned to
any variable or otherwise explicitly referenced. For example, if you have an
displayed, empty, transient window with no other references to it, when you
hide it, it will automatically be garbage collected. See the memory management
section of this document for more information.

In previous releases of ScriptX, you needed to call requestPurge (formerly
named makePurgeable) on a stored object in order to free it from memory.
You no longer need to do this. In fact, you should be cautious in your use of
requestPurge for two important reasons:

• The requestPurge global function, like the update method, operates on a
tree of objects: the named object and all of its subobjects. Be sure you know
what you are calling requestPurge on.

• You may use the object again between the time you call requestPurge on
it and the time it is actually removed from memory. In this case, you may be
using the object in an unknown state.

390

15 ScriptX Components Guide

An example of when to use requestPurge is to free a large, static object that
has no subobjects but is itself a subobject of an object that cannot be freed from
memory yet because it is still being used. In most cases you should simply
allow the system to remove the object from memory automatically when the
object is no longer being used.

Calling requestPurge on an object registers a request to remove that object
from memory, but an object will not be removed from memory while it is still
in use. The object that you called requestPurge on, and any subobjects that
are not being used, will be freed from memory in the first garbage collection
cycle that runs after the object you called requestPurge on is no longer being
used.

If a subobject of the object you called requestPurge on is still being used by
some object other than the object you called requestPurge on, then that
subobject and all of its subobjects will remain in memory and will not be
garbage collected.

If you call requestPurge on an object and then use the object again before
the object is actually removed from memory, then the request to remove that
object from memory is cancelled. In this case you will be using the object in
whatever state it was in when you called requestPurge on it, which may be
different from the state that is stored in the container. So you need to be very
careful in your use of requestPurge. For example, do not make a habit of
purging all objects in a scene when you transition to a new scene. This can
cause problems if your user transitions to a new scene and then quickly
changes back to the previous scene before the garbage collector has had a
chance to remove the scene’s objects from memory. If you allowed your user to
modify some objects in the scene, but your intention is to re-load the
unmodified scene from storage each time the user transitions into it, then you
may not get the results you want; the user may transition into a scene and find
some old, changed objects and some freshly loaded objects. Forcing a full
garbage collection cycle between scenes is not a good solution to this for
performance reasons.

Note – Know what you are calling requestPurge on. In general, you should
only call requestPurge on static objects (objects that do not change state
during the title). Be extremely cautious about calling requestPurge on a tree
of objects such as a scene or a window.

Note that requestPurge only applies to persistent objects (objects that have
been added to some storage container). Use the global function
canRequestPurge to test whether you can use requestPurge on a
particular object.

Freeing of Persistent and Transient Objects

The following gives more detail into how objects can be stored and loaded
from storage. All objects have two parts: a handle which points to its body. The
handle is a kind of pointer to the body and is always 32 bits; the body is the
rest of the object. When you drop all references to the handle of any object, the
handle and body are automatically garbage collected.

391

Title Management 15

Figure 15-2: All objects have a handle and a body. The body can be freed
when you call requestPurge. The handle and body can both be
freed only by dropped all references to both.

Essentially there are two separate worlds of objects: the “persistent” (stored)
world and the “transient” (non-stored) world:

• A transient object is created when calling new. If there are no references to it,
it is automatically garbage collected. Because the object is not stored, the
handle and body are always garbage collected together, as a pair.

• Stored objects are brought into memory from a storage container. A handle to
a top-level object loaded from a container cannot be garbage collected, since
the container holds onto it. (If you remove the object from the top level, then
its handle can be garbage collected if there are still no other references to it.)
A subobject can be garbage-collected if it is no longer reachable from core
objects.

If you want to keep the handle of a stored object in memory (to maintain all its
current references), but free its body, call requestPurge on the object.
Requesting purge marks the object for the garbage collector to remove it from
memory during the next cycle. It will likely be purged by the end of the next
complete garbage collection cycle. (When all references are dropped from an
object’s handle, the entire object is garbage-collected at the next cycle; when an
object is purged, its body is freed but not its handle.)

When you have a complete network of the persistent objects that can reach
each other, and call requestPurge on all those objects in the network, both
the bodies and handles for all those objects will be garbage collected.

Any method call on a stored object after it has been marked as purgeable will
have one of two results (the one chosen is determined by garbage collector
latency and substrate reference optimization):

• If the object was actually removed from memory, it will be reloaded from
the storage container before the method is called on it

• If the object has not been removed from memory, the purge “bit” will be
cleared and the method will be called on the original object still in memory

You must be prepared to deal with either case. The first case can happen if the
method call happened before the complete garbage collector cycle ran, or if in
the substrate some code has a direct reference to the object’s body.

To reiterate, the purpose of requestPurge is to maintain references to the
object so that you can again pull it into memory (otherwise, you could just
drop all references to it).

BodyHandletc[1]

variable
reference

Object

Pointer

392

15 ScriptX Components Guide

Saving and Closing a Container

ScriptX provides two ways to save a container: the update method, which
saves objects and keeps the container open, and the close method, which
saves objects and closes the container. Libraries and accessories typically are
closed automatically when the title that is using them closes, so you do not
need to call close on them explicitly.

When you close or update the container, it saves (writes to storage) all objects
that belong to the specified container (both target collection objects and
subobjects of those target collection objects).

The update method saves a container without closing it. After you have
created a container and added objects to it, you can update it (save it), add,
delete, and change objects in it, and then update again.

update tc -- Saves the title container without closing it.

If what you are adding uses a lot of memory, you may want to purge it from
memory before you add the next object. For this procedure, see “Removing
Objects from Memory” on page 389 or “Adding Media to a Library” on
page 413. The procedure is the same for a title, library, or accessory.

To save and close a title container, call close on it:

close tc -- Saves and closes the title container.

Calling close on a storage container automatically calls update on that
container; you do not need to call both.

How Title Containers Work
A title container provides the startup activities for a title through a startup
action, close activities through a terminate action, and access to system
resources such as the ScriptX menu bar and clipboard. A title container also
maintains a list of its windows, top clocks, and top players so the title as a
whole can be paused, resumed, muted, opened, and closed.

When you create an instance of TitleContainer, it automatically creates a
file for the title to be stored in. The user can open this file from the operating
system (by double-clicking on its icon, for example) or from the ScriptX Player.

A title container is a collection that holds objects that can be loaded into
memory and holds the startup action that is run when the user opens the title
container file. A title container can include any kind of objects: visible objects,
such as a window and pushbuttons, or nonvisible objects, such as clocks,
controllers, classes, and functions. A title must display objects in windows
(which are top presenters). The startup action can load these objects into
memory and then initiate some action, such as opening a window or starting a
player. See “The Title Startup Sequence” on page 394.

Once a title is started, the global variable theTitleContainer holds the
instance of the title container that has user focus.

393

Title Management 15

Useful Title Variables

The following global variables are useful for managing titles and are described
in more detail in the ScriptX Class Reference.

theContainerSearchList – This global variable is a collection of DirRep
instances that represent directory search paths for resolving references between
objects stored in separate StorageContainer files. When any title, library, or
accessory container is opened, its directory is automatically added to this list.
A title can add items to and remove items from this collection.

theOpenTitles – This global variable is a collection of all open title
containers, generally ordered by focus priority, which is the same order in
which they appear visually on-screen.

theTitleContainer – This global variable represents the title container that
currently has user focus. This means the system menu bar for this title
container is visible (if the value of isVisible, an instance variable it defines,
is set to true), and the title’s frontmost window, if any, has user focus. This
value is updated when the user (or a script) selects a title, making it active.

Opening and Closing ScriptX Titles

When your customers obtain a ScriptX Player title, they receive a title file on
disk (often a CD-ROM). When they open this title file, it is important for
ScriptX to have a systematic way to load objects from disk storage into
memory and get the title running. Objects are automatically loaded into
memory as they are used. You may want to preload some objects (such as those
for the first scene) to make the display of your title’s first screen as smooth as
possible (see “Loading Stored Objects into Memory” on page 386).

The startupAction instance variable holds a function the developer writes
that specifies which objects to load at startup. This instance variable is
implemented by LibraryContainer class and inherited by
TitleContainer.

In general, a title container holds all the objects and classes defined in the title,
as shown in Figure 15-1. (Likewise, a library container holds the objects in a
library, and an accessory container holds the objects in an accessory.) A title
container is central to the startup sequence when a title is opened. Notice that
a title is a kind of storage container, which is automatically and transparently
managed as you manage your title container. In general, you can ignore the
storage container and work only with the title container.

Figure 15-3: The title container contains the objects that make up the title

Storage Container

Start the title
from the
operating
system

Object

Title Container

Object Object

394

15 ScriptX Components Guide

The Title Startup Sequence

The title startup sequence is the process of loading a ScriptX title and any
associated libraries and accessories into memory from storage.

Before a title can open, the ScriptX Player must be running. If the user tries to
open a ScriptX title when the ScriptX Player is not running, the operating
system determines whether or not to automatically start the ScriptX Player.
Currently, that is the case in all supported platforms.

A user can open a ScriptX title potentially several different ways, each of which
invokes the class method open:

• From the operating system, by selecting the title file and choosing Open
from the system or file menu, or by double-clicking on the title file.

• From the ScriptX Player, by choosing Open Title from the File menu and
selecting the title file.

• From within another ScriptX title, by some user action that invokes the
open method on the title container

When a title opens, the following steps occur:

1. The ScriptX Player loads into memory, if it is not already loaded. The mouse
pointer changes to the @wait icon (a wrist watch on MacOS, an hourglass
on Windows and OS/2) while the ScriptX Player is loading.

2. The ScriptX Player opens the title file, appends the value supplied with the
dir keyword to theContainerSearchList, and then loads into memory
the TitleContainer instance but none of its contents. The mouse pointer
changes to an arrow.

3. After the container is loaded, the function specified by the instance variable
preStartupAction runs. This step is skipped if open was called on a title
that was already loaded.

The prestartup action function, which is supplied by the developer, can
check the environment for minimum system requirements, such as color
depth and available memory. It can add paths to the container search list
(which is stored in the global variable theContainerSearchList) for
locating libraries that will be loaded in the next step (this global variable is
a list of directories where the library files can be found).

The prestartup function must return true or false.

• If it returns false, an exception is reported, the title is purged, and the
startup sequence aborts.

• If it returns true, the startup sequence continues.

If the prestartup function requires more than a few seconds, change the
mouse pointer to the wait icon for the duration of the function:

(new MouseDevice).pointerType := @wait

395

Title Management 15

4. All libraries in the title container’s libraries instance variable are loaded
into memory in the order in which they appear in this list. The system calls
addUser on the title for each library container to add that title to the
library’s users list and add the library to the title’s libraries list.

The libraries instance variable is the list of libraries that the developer
has determined the title needs A developer can add a library to a title by
specifying a user for the library when calling new or open, or by calling
addUser directly. Libraries can contain any loadable classes or instances
that support the title. The title searches automatically for libraries in
directories specified in theContainerSearchList, which contains at least
the title’s directory and theStartDir. As each library is loaded, its
directory is added to the container search list, if it is not already there,
making it easier to find related files.

Each library has its own startup sequence that it goes through when it is
loaded, including adding the title to its users instance variable and
running its own prestartup and startup actions. The users list ensures that
the library won’t be purged from memory while it is still being used.

5. The directory in which the container was found is copied to the directory
instance variable. The value is either the value that was supplied with the
dir keyword or, if the container was not found there, the container’s
directory taken from theContainerSearchList (the container’s
directory was added to theContainerSearchList when the container
was opened).

6. The title is prepended to the global variable theOpenContainers.

7. The script stored in the startupAction instance variable runs.

This function performs any other tasks you want to occur at startup. If the
title’s targetCollection is an explicitly keyed collection, you can define
the startup function to access items in the title container by their item
number (tc[1]), or key (tc[@text]). You can define global functions,
variables, and constants used throughout the life of the title, determine the
order in which other objects or files are loaded, and open windows, start a
player, or perform any other startup task. You can also open one or more
libraries that were previously loaded in step 4.

You may want to prevent the startup action from being run more than once
if open is called on the library by more than one title. To do this, define a
startup flag that is initially false, enclose the startup statements in a
conditional, and set the flag to true once the startup function has been run.

When loading related files, you can use theStartDir to refer to the
directory where the currently running ScriptX Player is located, or the
directory instance variable to refer to the directory where an open title,
library, or accessory is located. (For development only, you can use
theScriptDir to refer to the directory where the last opened script is
located.)

In some cases, you may want to use the startup script to preload objects into
memory (explicitly call the load method on them). You may want to do this
to set up a scene to avoid waiting for each object to be loaded as a method is

396

15 ScriptX Components Guide

called on it. Keep in mind that subobjects of objects that you call load on
are not loaded into memory unless you call load or some other method on
them. Objects are loaded into memory when a method is called on them. In
general you get best performance when you do not preload objects but
instead allow them to load automatically as they are needed. One case when
you need to preload objects is to load the modules in a title container (see
“Loading Stored Objects into Memory” on page 386).

8. The title container is given user focus by setting its hasUserFocus instance
variable to true. This means its system menu bar is made visible, and its
frontmost window is made active.

9. The global variable theTitleContainer is assigned this instance of
TitleContainer.

10. The title container is prepended to the global variable theOpenTitles.

Once a ScriptX title is open, if the user goes back to the operating system and
tries to open the title again, what happens depends on the operating system
and is no different for ScriptX than for other programs. In Microsoft Windows,
this action does nothing, since Windows will try to start another instance of
ScriptX from the executable file, which is not possible. On the Macintosh, this
action brings the currently running version of that title forward and gives it
user focus.

The Title Close Sequence

The title close sequence is the process of closing a ScriptX title (and its
associated libraries and accessories, if any), saving them to storage, and
purging them from memory. Again, the title container is the focal point of the
close sequence, in that closing a title container closes the libraries and
accessories that it is using (if no other titles are using them). A title is closed
ultimately by invoking the close method on the title container.

A user can close a title two ways, both of which invoke the close method:

• From the ScriptX Player, by choosing the Close menu item from the File
menu. This works on all title containers except the Scratch title, where this
menu item closes only the single window that is currently active. (The
Scratch title is described later.)

• From within a ScriptX title, by a user interface action that invokes the
close method on the title container.

Note – Closing the windows of a title does not close the title.

When a title is closed, the following steps occur:

1. The close method is called. If the user keyword is supplied with a library,
then removeUser is called to notify the library that the title is no longer
using it.

2. If the title has any users (that is, if its users list is not empty), then the
close method aborts.

lose (menu
mmand)

397

Title Management 15

3. Otherwise, the close method makes the title and all of its contained objects
purgeable, and then calls the title’s terminate method.

4. The terminate method does the following:

a. Calls the function specified by the title’s terminateAction instance
variable.

b. Removes the title from the global variable theOpenContainers list.

c. Calls close on each of the libraries in the title’s libraries list.

d. Calls hide on all of the title’s windows listed in windows, calls
playUnprepare on all players in topPlayers, calls pause on all
clocks in topClocks, and calls close on each accessory in its
accessories instance variable.

e. Calls update on itself.

5. The close method returns true to indicate the title did close down.

When you open a library container and use its objects in a title container, even
though the objects become an integral working part of the title, they continue
to be saved to their own library container, not to the title container.

For more details about saving and closing, refer to the section “Saving and
Closing a Container” on page 392.

The Scratch Title

During development and playback of a title, a developer may want to
temporarily create windows, clocks, and players that are not associated with
any explicit title. For this purpose, the ScriptX development environment uses
a scratch title that is automatically created at startup and cannot be saved. This
scratch title is held in the global constant theScratchTitle. This scratch title
is not present in the ScriptX Player.

When you create a new window, clock, or player and omit the title keyword,
the object is added to the scratch title. You cannot add objects explicitly to the
scratch title using collection methods as you can do with other storage
containers. Although in general you cannot have the same object in two
different title containers, you can put an object from the scratch title into a
developer-defined title by calling a collection method on the object and the
developer-defined title; you cannot save an object in two different storage
containers (objects in the scratch container are not saved).

Using Title Containers
The following sections describe how to create, save, and close a title container,
how titles manage their windows, how to pause, resume and mute a title. They
also describe the menu bar, clipboard, managing libraries and opening
multiple title containers.

398

15 ScriptX Components Guide

Creating a Title Container

To create a title container, call new on the TitleContainer class, supplying
the filename and directory where you want it saved.

Note – The extension .sxt is the convention for naming a title container file.

The default target collection of any container is an Array. To make it easier to
retrieve objects, set the target collection to an explicitly keyed collection, such
as HashTable or KeyedLinkedList. “Choosing a Target Collection” on
page 384 demonstrates use of a HashTable.

The following script creates a title container, tc, and saves it to the filename
myTitle.sxt in the directory theStartDir. Note that theStartDir
represents the directory where the ScriptX Player is running. The global
variable theStartDir is defined in the ScriptX Class Reference.

If this is a read-only device, such as a CD-ROM drive, the title container cannot
be created unless you set the dir keyword to specify a read-write directory.
(For a more complete sample script that demonstrates the TitleContainer
class, see page 421.)

This example script creates a window, shows it, and prepends it to the title
container. Finally, it creates a startup action—an anonymous function that runs
when the title container is opened. At startup, this function loads the first item
in the container, which is the window. This window is displayed automatically
because it was showing when the title container was saved.

global tc := new TitleContainer \
dir:theStartDir \
path:"myTitle.sxt"

global myWindow := new Window
show myWindow
prepend tc myWindow
tc.startupAction := (t -> load t[1])
close tc -- Closes and saves the title container

Calling new on TitleContainer creates the file named myTitle.sxt in the
directory theStartDir on disk, visible to the user through the native
operating system. The user can double-click on the file icon named
myTitle.sxt to start the title.

Figure 15-4 demonstrates the relationships between the title container, its
startup action, and the window myWindow. Other instance variables are not
shown.

399

Title Management 15

Figure 15-4: The title container holds a startup script and a window.

Saving and Closing a Title Container

TitleContainer implements two methods that save the title: update, which
saves objects and leaves the container open, and close, which saves objects
and closes the container. When you close or update a title container, it saves
(writes to the object store) all objects that belong to the specified title, including
target collection objects and subobjects of those target collection objects.

To update a title container without closing it, call update on it.

update tc -- saves tc without closing it

Once you have created a title container and added objects to it, you can update
it repeatedly, adding, deleting, and modifying the objects it contains as you go.
If you are adding a large object to a container, you might want to update the
container and purge the object from memory before you add the next object.
For more discussion of this procedure, see the sections “Removing Objects
from Memory” on page 389” and “Adding Media to a Library” on page 413.
The procedure is the same for a title, library, or accessory.

To save and close a title container, call close on it:

close tc -- save tc and close it

To confirm that your user really wants to close the title, create a subclass or
specialized instance of TitleContainer and override close as follows. Pass
a new Boolean argument (withDialog in this example) into the method.

• If withDialog is true, the showCloseDialog method opens a dialog box
and asks “Okay to close title?”

• If withDialog is false, showCloseDialog closes the title without the
dialog box.

startupAction

Instance Variables:

tc[1]

Members:

tc[2] empty

windows

tc (TitleContainer)

myWindow (Window)

title

isVisible

hasUserFocus

Members:

Instance Variables:

true

true

tc.startupAction (Function)

(tc -> load tc[1])

myWindow[1]

myWindow[2]

myWindow[3]

myPlayer

myBall

myShape

400

15 ScriptX Components Guide

The nextMethod expression calls the default implementation of close,
defined by TitleContainer. The function showCloseDialog, not
implemented here, should create a dialog box that allows the user to confirm
that she wants to close the title.

class MyTitleClass (TitleContainer) end

method close self {class MyTitleClass} #rest args \
#key withDialog:(true) -> (

if (withDialog) do (
if not showCloseDialog() do

return false
)
return (apply nextMethod self args)

)

Each time close is canceled, it should return the title to the same state it was
in when the user selected Close. Therefore, a close method should not release
memory or perform any nonrecoverable operations. Use the terminate
method and terminateAction instance variable for actions that release
memory and are nonrecoverable.

Managing Windows, Clocks, and Players in a Title

A ScriptX title container can manage windows, clocks, and players. The
following section demonstrates window management in a title. Most of this
discussion (except for showing, hiding, and closing) applies similarly to clocks
and players in a title.

Managing Windows in a Title

After a window is loaded into memory from a title container, it can be
managed by that title. It can also be reassigned so that it is managed by a
different title. A title manages windows as follows:

• Windows close automatically when the title is closed.

• Windows are not automatically opened when the title is opened. They can
be opened in the title’s startup action.

• A window shares user focus with the title that manages it. That is, if the title
has user focus, its frontmost window has user focus; if the title does not
have user focus, none of its windows can have user focus. When the user
clicks on a window, the window’s title container, including its system menu
bar, gets user focus.

• The cutSelection, copySelection, pasteToSelection,
printTitle, and clearSelection methods, when called on a title
container, are passed on to its frontmost window.

• When the title is paused or resumed, the compositors for its windows are
paused or resumed.

401

Title Management 15

TitleContainer defines a windows instance variable that determines which
windows it is managing. Similarly, Window defines a title instance variable
that indicates which title is managing the window. A window is managed by a
title if that title is the value of the window’s title instance variable.

A title container’s windows instance variable and a window’s title instance
variable are interrelated. They provide a cross-reference between a title and the
windows that are managed by that title. A window’s title list always
contains one and only one item. The default value of title is the scratch title,
which can be referenced by the global constant theScratchTitle.

myWindow.title -- returns the title that manages myWindow

A title container’s windows list contains as many windows as are managed by
that title. The value of windows can be empty. A window can be on many
windows lists in one ScriptX session, but it can be on only one windows list at
any given time. (Only one title at a time manages any given window).

myTitle.window -- returns list of windows managed by myTitle

A window’s title instance variable is set automatically when the window is
added to a title (see “Adding Objects to a Container” on page 383). The value
of title can also be assigned explicitly. Operations on windows such as show,
hide, bringToFront, and sendToBack cause the window’s title to gain user
focus. (The global variable theTitleContainer stores a reference to the title
that has user focus.) Similarly, operations such as pause and resume on the
window’s clock cause the window’s title to gain user focus. (Window inherits
from TwoDSpace, which defines a clock instance variable.)

The title’s windows list is transient. It is not saved with the title. It is
automatically maintained by the system and should not be set
programmatically. A window gets added to a title’s windows list automatically
when the window’s title instance variable is set to that title.

A window’s title instance variable can be set in one of the following ways:

• By adding the window to the title’s target collection.

• By explicitly setting the window’s title instance variable:

myWindow := new Window title:myTitle
-- or
myWindow.title := myOtherTitle

The title container’s windows list is sorted by focus priority—by the order in
which the user would see the windows on the screen if they were all showing.
Therefore, to access the frontmost window of the frontmost title container,
enter the following:

theTitleContainer.windows[1]

402

15 ScriptX Components Guide

Do not add or delete windows directly in the windows list of the title. Allow
the title to manage this list automatically. You can rearrange the title’s
windows by calling bringToFront or sendToBack, methods defined by
Window.

A window is not necessarily saved to the title that manages it. A window can
be on a title’s windows list but not on the title’s targetCollection list (see
the example below). Windows that are stored in the title container’s target
collection, either directly or as subobjects, are saved automatically with the
title.

Note – Assigning the value of title for a window does not cause that title to
store the window—it does not make that window part of that title container. A
window must be explicitly added to a title container.

Managing Clocks in a Title

Clocks and players, like windows, can be managed by a title. (Note that
Player inherits from Clock.) Clocks can be “slaved” in a hierarchy, so that all
clocks in the hierarchy are synchronized with the top clock. A ScriptX title can
manage the top clocks and players in such hierarchies. The mechanisms by
which a title manages clocks and players are the same as for windows.
TitleContainer defines the instance variables topClocks and
topPlayers, which it uses to maintain a list of the clocks and players the title
is managing. Clock defines a title instance variable, which indicates which
title is managing the clock if it is a top clock. For more information, see the
section “Pausing, Resuming and Muting a Title” on page 405.

To save a clock to a title container, you need to add the clock to the title
container (see “Adding Objects to a Container” on page 383). If you set the
title instance variable on the clock, but do not add the clock to the title
container, the clock will not be put in the title container.

After you add the clock to the title container, the clock’s title instance
variable shows which title the clock is in, and the title’s topClocks instance
variable lists the clock.

If you reassign a clock’s title instance variable to a different title container
object, the clock’s title instance variable changes to the new title container
and the title container’s topClocks instance variable adds the clock to its list,
but the clock is not added to the new title container’s target collection and it is
not removed from the original title’s target collection.

global tc := new TitleContainer path:"clktest.sxt" name:"Clock Test"
➯ <TitleContainer named "Clock Test">
global c1 := new Clock
➯ Clock@0x1133668
tc.targetcollection -- The clock has not yet been added.
➯ #()
tc.topClocks
➯ #()
c1.title -- By default, the clock is in the Scratch title.
➯ <TitleContainer named "Scratch Title">

403

Title Management 15

append tc c1
➯ 1
c1.title -- The append changes the title instance variable.
➯ <TitleContainer named "Clock Test">
tc.targetcollection
➯ #(Clock@0x1133668)
tc.topClocks
➯ #(Clock@0x1133668)
tc.startupAction := (tc ->

c1 := tc[1]
print "The clock's time is now"
print c1.time
c1.rate := 1)

➯ #<ByteCodeMethod anonymous@0x113403c of 1 argument>
close tc
➯ true
tc := undefined
➯ undefined
tc := open TitleContainer path:"clktest.sxt"
➯ "The clock's time is now"
➯ 0:0:0:0 as Time
➯ <TitleContainer named "Clock Test">

Window Management Example

This example shows the two cases when a window and a title are related
(when a window is added to and operated on by a title, and when
window.title is explicitly set), and it shows that a window can be managed
by a title and still not be a member of that title.

global win1 := new Window
➯ #<Window over #()>
win1.title
➯ <TitleContainer value of theScratchTitle named "Scratch Title">
global tc1 := new TitleContainer path:"Title1.sxt" name:"Title1"
➯ <TitleContainer named "Title1">
tc1.windows
➯ #()
show win1
➯ #<Window over #()>
tc1.windows
➯ #()
prepend tc1 win1
➯ 1
win1.title
➯ <TitleContainer named "Title1">
tc1.windows
➯ #(#<Window over #()>)
global win2 := new Window title:tc1
➯ #<Window over #()>
win2.title
➯ <TitleContainer named "Title1">
tc1.windows
➯ #(#<Window over #()>, #<Window over #()>)
global tc2 := new TitleContainer path:"Title2.sxt" name:"Title2"
➯ <TitleContainer named "Title2">

404

15 ScriptX Components Guide

tc2.windows
➯ #()
tc2.targetCollection
➯ #()
-- Note the difference between windows and targetCollection:
tc1.windows
➯ #(#<Window over #()>, #<Window over #()>)
tc1.targetCollection
➯ #(#<Window over #()>)
prepend tc2 win2
➯ 1
tc2.windows
➯ #(#<Window over #()>)
tc1.windows
➯ #(#<Window over #()>)
win2.title
➯ <TitleContainer named "Title2">
win1.title
➯ <TitleContainer value of theTitleContainer named "Title1">

Closing a Window

A user can close a window by clicking in the close box in the window frame or
by choosing Close from the system menu (not from the ScriptX or ScriptX
Player File menu). This calls hide on the window. Although people commonly
speak of “closing a window,” these operations call hide, not close on the
window (close is for library containers).

The hide method, when called on a window, removes the window from the
screen, sets the window’s hasUserFocus to false, gives user focus to the
next window onscreen, and disables the window’s compositor.

Be sure not to confuse closing a window with closing a title. Notice that
clicking the close box is not equivalent to choosing the Close command on the
File menu. The Close command on the File menu closes the title and all its
windows.

Freeing a Window from Memory

A window that is hidden (closed, from an end user point of view) is not freed
from memory. To recover the memory being used by the window, stop using
the window (make sure no methods are being called on the window or any of
its subobjects). In general, you need to empty the window, hide the window,
and undefine (or set to some other value) any variables whose value is the
window. The window will then be freed from memory in the next garbage
collection cycle. See “Removing Objects from Memory” on page 389 for more
information.

405

Title Management 15

Pausing, Resuming and Muting a Title

A title’s topClocks instance variable is a list of all of the top clocks currently
in memory that the title is managing. If a clock or player is “managed” by a
title, then the clock’s or player’s title instance variable is set to that title, and
the title’s topClocks list contains that clock or player. Compare “Managing
Windows in a Title” on page 400.

A top clock is a clock or player at the top of a timing hierarchy: its
masterClock is undefined. When you call pause or resume on the title
container, it in turn calls that method on the clocks and players in topClocks,
causing their slave clocks and players to pause or resume.

A title’s topPlayers instance variable also contains a list of all of its top
players currently in memory. When you set audioMuted to true for the title
container, it sets audioMuted to true for all topPlayers and all players
slaved off of the players in topPlayers.

System Menu Bar

Each title has its own menu bar that appears at the top of the ScriptX Player, as
shown in Figure 15-5. The menu bar is specified by the systemMenuBar
instance variable in TitleContainer. This menu bar is created automatically
as an instance of SystemMenuBar when you create a new instance of
TitleContainer. When a title has user focus, its menu bar is displayed,
replacing the previously displayed menu bar.

This menu bar has a default appearance, which you can modify slightly. You
can hide or show the menu bar and enable or disable its menu items. You
cannot add or delete options from the menus. The following shows how to
disable a menu option:

disableItem myTitle.systemMenuBar @open

If you want two titles to have exactly the same menu bar, you can assign the
same menu bar to both of them. Then, for example, whatever menu item is
disabled for one title is also disabled for the other title:

myTitle2.systemMenuBar := myTitle1.systemMenuBar

The location and appearance of the system menu bar is platform-dependent, as
shown in Figure 15-5. On the Macintosh, the menu bar is always located at the
top of the screen. In Windows and OS/2, the menu bar is located below the
ScriptX title bar (which is at the top of the screen only when the ScriptX
window is “maximized”).

406

15 ScriptX Components Guide

Figure 15-5: Menu bars appear in different places in different operating systems

Clipboard

The Clipboard class represents an area in memory that can hold text, so that
text can be copied or pasted from one location to another. ScriptX defines just
one instance of Clipboard, represented by the global constant
theClipboard. Because the ScriptX Player automatically creates this
clipboard at startup, there is no need to create another instance.

The clipboard allows the exchange of text between any two places—within a
ScriptX title, between ScriptX titles, or between a ScriptX title and another
application.

To put data on the clipboard, use setClipboard:

setClipboard theClipboard "I am on the clipboard."

➯ "I am on the clipboard."

The clipboard supports the transfer of any ScriptX objects within a title or
between titles, as the @native type. The current version of ScriptX supports
only text from other applications, specified by the @text type.

To find out what kind of data is available from the clipboard, use the
typeList instance variable, which is defined by Clipboard:

theClipboard.typeList

➯ #(@native)

Once you know what kind of data is on the clipboard, you can ask for it by
calling getClipboard on the clipboard:

getClipboard theClipboard @native

➯ "I am on the clipboard."

The Cut, Copy, and Paste menu commands are standard user operations
associated with the clipboard. These correspond to methods defined in
TitleContainer and Window. When the user chooses Cut, for example,
ScriptX calls cutSelection on the current title container, which calls

ScriptX

Windows and OS/2 menu barMacintosh system menu bar

system menu bar

File Edit Window

407

Title Management 15

cutSelection on its frontmost window. You must provide an
implementation for these methods for each particular window. For example,
the copySelection method would eventually call setClipboard and
pasteToSelection would call getClipboard. The implementation must
include how the user can select objects for copying or cutting. For more
information, refer to the cutSelection, copySelection, and
pasteToSelection methods in the TitleContainer and Window classes
in the ScriptX Class Reference.

The operating system has its own clipboard, and every application also has its
own clipboard. When using cutSelection, copySelection, and
pasteToSelection within an application, such as the ScriptX Player, the
local clipboard is used. However, when you switch applications, the system
clipboard is used to transfer data between applications.

When the ScriptX Player is switched out, the ScriptX clipboard attempts to
coerce its contents to text and place the text on the system clipboard. Likewise,
when the ScriptX Player switches in, the ScriptX clipboard attempts to coerce
the contents of the operating system clipboard to text and place it on the
ScriptX clipboard.

The following scenario demonstrates how data types are typically handled
with the clipboard between applications. If you were to copy data from another
application, such as Macromedia Director®, to a ScriptX title, it would work as
shown in Figure 15-6:

1. In Director, for example, copy the data from a document to its clipboard.
The data remains in native Director data type.

2. Switch out of Director into the ScriptX Player (or ScriptX). The data is
coerced to a system-standard media type, such as text, picture, or sound,
and placed on the system clipboard (which overrides any data previously
on the system clipboard).

From the ScriptX Player, if you query the clipboard typeList, you get
@text, because that’s the only data type on the system clipboard that
ScriptX currently recognizes.

3. In the ScriptX Player, paste the data from its clipboard into the title. At this
time, the data is transferred from the system clipboard into the ScriptX
clipboard and title.

Similarly, when copying data from the ScriptX Player to another application,
the data is coerced to system data types when switching out of the ScriptX
Player.

408

15 ScriptX Components Guide

Figure 15-6: Copying data from another application to a ScriptX title

When switching out of an application (as in step 2 above), it is the
responsibility of that application to make its clipboard data (text, graphics,
sound, video) available to other applications by converting it to
system-standard types. The system clipboard can simultaneously hold different
types of media. The instance variable typeList lists the media types for the
objects currently on the system clipboard that ScriptX recognizes (currently
@text).

Clipboard media can come from only two places: the system clipboard or the
ScriptX clipboard. If it comes from the ScriptX clipboard, the media is native to
ScriptX, causing typeList to return @native. If it comes from the system
clipboard, the media is not native ScriptX media (because any ScriptX object
put onto the system clipboard is coerced to system text), causing typeList to
return the appropriate type, such as @text (the only data type that ScriptX
currently supports).

Managing Libraries in a Title

Use a library container’s users instance variable to manage the relationship
between a title and a library that the title needs to use. You can modify the
library’s users list by using the user keyword to new, open, or close or by
calling the addUser or removeUser methods.

When you specify that a title is a user of a library, the title is prepended to the
library’s users instance variable, and the library is prepended to the title’s
libraries instance variable, as shown in the following example:

global myTitle := new TitleContainer path:"myTitle.sxt" name:"myTitle"
➯ <TitleContainer named "myTitle">
myTitle.users
➯ #()
myTitle.libraries
➯ #()
global myLib := new LibraryContainer path:"myLib.sxl" user:myTitle
➯ <LibraryContainer named undefined>
myLib.users

Clipboard

Director
data

convert

copySelection

Director Kaleida Media PlayerSystem

pasteToSelection

Title

Clipboard

System
data types

@text

Document

Clipboard

ScriptX
data

409

Title Management 15

➯ #(<TitleContainer named "myTitle">)
myLib.libraries
➯ #()
myTitle.users
➯ #()
myTitle.libraries
➯ #(<LibraryContainer named undefined>)

Making a title container be a user of a library has two important effects:

• Since the library is on the title’s libraries list, the library is automatically
opened when the title is opened, if it is not already open, and closed when
the title is closed, if no other title is still using it. See “The Title Startup
Sequence” on page 394 and “The Title Close Sequence” on page 396.

• Since the title is on the library’s users list, the library will stay open as long
as the title is open (if you don’t intervene by calling removeUser or close
on the library explicitly while the title is still open). This feature is to protect
against the library being closed by another title while your title is still using
it. For example, suppose two titles are running simultaneously and both
titles use the same library. When the first title is closed, it will attempt to
close all the libraries on its libraries list, but it won’t be able to close the
library that is still being used by the second title because that library’s
users list is not yet empty.

The users instance variable is transient: It is not saved with the library, since
a library cannot close until its users list is empty anyway. Only titles that are
currently using the library are on that list; they are added to the users list
when the title opens and removed from the list when the title closes.

The libraries instance variable is persistent. It is saved with the title, and
the libraries it refers to are opened and closed automatically when the title is
opened and closed.

If for some reason you want to open and close a library manually in the middle
of a title and do not want the system to do it automatically, you must be careful
to manage the users and libraries lists correctly to get the correct behavior
described above. When you open the library, either specify the title as user in
open or call addUser right after you open the library. Then be sure to call
removeUser right before you close the library, or specify the title as user in
close.

Figure 15-7 shows the relationship between titles and the libraries they use,
between users and libraries.

410

15 ScriptX Components Guide

Figure 15-7: The title container myTitle depends on the library myLibrary.

Opening Multiple Title Containers

The ScriptX Player allows multiple titles to be open at the same time.
Figure 15-8 shows this schematically. Each title has its own visual and audio
portion. The visual portion of a title is composed of windows, each with its
own presentation hierarchy. Each presentation hierarchy is composed of all the
objects displayed in that window. Windows and presentation hierarchies are
described in greater detail in Chapter 3, “Spaces and Presenters.”

The global variable theTitleContainer holds a reference to the title that
has user focus. The system menu bar and windows of theTitleContainer
title are in front of those of other titles. All open title containers, library
containers, and accessory containers have a reference listed in the global
variable theOpenContainers. All windows that are managed by a title
container have a reference in the windows instance variable of that title
container (see “Managing Windows in a Title” on page 400). All objects in a
window are held in the subpresenters instance variable of that window.

When you create a new title container, it does not have user focus (its system
menu bar does not appear) until you add a window to the title and display it.
In contrast, when you open an existing title container, it automatically gains
user focus.

Figure 15-8: Each title has its own visual and audio portions.

name

libraries

myTItle[1]

Instance Variables:

myTitle[3]

myTitle[2]

"myTitle"

myLibrary

myPlayer

stopButton

rewindButton

users

Members:

myTitle

name

libraries

myLibrary[1]

Instance Variables:

myLibrary[3]

myLibrary[2]

"myLibrary"

undefined

myObj1

myObj3

myObj2

users myTitle

Members:

myLibrary

transient

persistent
instance variable

instance variable

libraries

users

myTitle1

Presentation

Titles

Hierarchies

Windows

AudioVisual

myTitle2

AudioVisual

Kaleida Media Player

411

Title Management 15

Using Library Containers
In contrast to a title container, a library container has no menu bar or clipboard
and cannot be paused, resumed, or muted. Instead, a library container
supports a title container by providing media or code objects for the title. A
library can be defined to automatically open and close when a title or library that
uses it opens and closes (see “Managing Libraries in a Title” on page 408).

Like a title container, a library container is a collection that holds classes and
instances that can be loaded into memory and has both a prestartup action and
startup action that are run when the file is opened. A library container can
include any kinds of classes or instances—visible objects, such as a window
and pushbuttons, or nonvisible objects, such as clocks, controllers, modules,
classes and functions.

A library container cannot have user focus. Any windows or presenters it
contains must be managed by some title. If you do not specify a title container
for a library container, the default title container theScratchTitle is used.

When deciding whether a library container should contain an instance or a
class, you should take into account whether or not the library will be shared.
For example, it would not normally make sense for the same instance of a 2D
presenter to be used by multiple titles, since it can be in only one presentation
hierarchy at a time. It would be better for the library to contain the class, and
for each title to make its own instance. (Note that instances of Bitmap and
other graphics primitives are not 2D presenters, and so have no such restriction
and can be shared.)

Creating a Library Container

Creating a library container is similar to creating a title container. Call new on
the LibraryContainer class and supply at least the filename to which you
want it saved. You may also want to provide a directory and specify a title as a
user of the library (see “Managing Libraries in a Title” on page 408). To make it
easier to retrieve objects, set the target collection to a keyed collection, such as
HashTable or KeyedLinkedList (the default target collection is an Array).
The following example creates a library container, creates a new class called
Room, prepends the new class to the library container and closes the library
container.

Note – The extension .sxl is the filename convention for a library container.

global myLib := new LibraryContainer \
path:"myLib.sxl"

class Room (Array) end -- create a new class called "Room"
prepend myLib Room
close myLib

412

15 ScriptX Components Guide

In the first statement, calling new on LibraryContainer creates the file
named myLib.sxl in the theStartDir directory on disk, visible to the user
in the operating system. Unlike title files, users cannot double-click on the file
icon named myLib.sxl to open the library. A library can be opened only from
within a title. The close method saves and closes the library container.

Using an explicitly keyed collection for the target collection allows the items in
the library to be accessed by name. The following example is the same as the
previous example except that it uses a hash table for the target collection:

global myLib := new LibraryContainer \
path:"myLib.sxl \
targetCollection:(new HashTable)

class Room (Array) end
add myLib @RoomClass Room
close myLib

When you want to get the Room class from the library, you can access it with
myLib[@RoomClass].

If a library container supplies a window, clock, or player to a title, you need to
take an extra step to relate those objects to the title that manages them (see
“Managing Windows, Clocks, and Players in a Title” on page 400). These
objects all have a title instance variable that determines which title manages
them. In general, you should set the title instance variable of windows to
the title. If the clock or player is a top clock or player, you should set its title
instance variable to the title, as described in “Pausing, Resuming and Muting a
Title” on page 405. It is not necessary to set the title instance variable if the
clock or player is slaved off a top clock or player.

You may not know all the titles that might want to use a library, so to avoid
variable name conflicts between containers, it is generally good programming
practice to ensure the library has its own namespace by giving the library its
own module. Its module can also provide a convenient container for storing
and retrieving code objects that are compiled in that module. For more
information about modules, see the ScriptX Language Guide.

Opening and Closing a Library

You can define a library to open and close along with a title that uses it, or you
can open and close a library independent of when a title opens and closes.
There are some advantages to allowing the system to automatically open and
close a library along with a title that uses it, so you will want to take steps to
preserve these advantages if you open and close a library manually.

Recall that a title is a library (TitleContainer inherits from
LibraryContainer), and see “Managing Libraries in a Title” on page 408 for
details on opening and closing libraries automatically and manually.

A TitleContainer object has some specialized behavior that a
LibraryContainer object does not have. A library cannot have user focus
and theTitleContainer and theOpenTitles global variables do not
change when you open a library. A library is not intended to be opened
directly but rather to be used within a title.

413

Title Management 15

Adding Media to a Library

Libraries are useful for storing media, such as video streams, audio streams,
graphic images, and text. You can store any kind of objects in a library, but they
are especially useful for storing large objects, and media objects usually are
large. If the objects you are loading are very large, you probably want to purge
them from memory whenever you are not using them to avoid running out of
memory. You may want to preload some objects or keep some objects loaded
that you are not currently using, but will be using again shortly, to avoid
latency times.

You can import media from many standard data types and append the data to
a library container, title container, or accessory container. For more detailed
information on importing media, see the ScriptX Tools Guide.

Importing Media

To import media, use importMedia, a generic function defined by the
ImportExportEngine class and specialized by each importer. Many of the
importers for media classes define a container keyword argument, which is
required for saving certain kinds of media to a container. Media falls into two
groups:

• Non-compressed bitmaps. These do not require a container keyword, and
must fit entirely into memory.

• Compressed bitmaps, audio, and video. If you want to save this media to a
container, you must specify the container keyword when you call
importMedia. Omit the keyword if you are not saving the media. The size
of these files can be greater than will fit into memory—the importer can
import the data in pieces and save them to the container you specify.

The container keyword specifies the library, title, or accessory container
where you want to save the data. Whether the container keyword is
supplied or not, you must separately append the media to the library, title, or
accessory container.

For example, to import into memory a black-and-white PICT image from a file
named bitmap.pict, call getStream and importMedia:

global myPictStream := getStream theStartDir "bitmap.pict" @readable
global myPict := importMedia theImportExportEngine myPictStream \

@image @pict @bitmap

The getStream method opens a stream from the file bitmap.pict. The
importMedia method imports the stream into memory. The next section
shows how to save the PICT image to disk and purge it from memory.

414

15 ScriptX Components Guide

Saving and Purging Media

If you import a series of large files to a container, you may need to release each
one from memory after it has been saved to storage and whenever you are not
using it to make room for the next file in memory. The following sample script
shows how to do that, using the media myPict imported from the previous
script:

global myPictStream := getStream theStartDir "bitmap.pict" @readable
global myPict := importMedia theImportExportEngine myPictStream \

@image @pict @bitmap

global myLib := new LibraryContainer \
path:"myPict.sxl" \
targetCollection:(new HashTable)

add myLib "myPict" myPict
update myPict
-- use myPict here
requestPurge myPict

The following describes the steps shown in this example:

1. The importMedia method imports a copy of the bitmap.

2. The new method creates the library container as a hash table.

3. The add method adds the bitmap with the key "myPict" to the library
container.

4. The update method saves a copy of the bitmap to the library file.

At this point the bitmap is saved, and we want to release the bitmap from
memory so that we can import the next bitmap.

5. The global function requestPurge prepares the bitmap for garbage
collection.

Using Accessory Containers
An accessory is a set of code, data, and media objects that can be dynamically
added to a running title. An instance of AccessoryContainer is meant to be
opened from within a title and its objects added to the title. It is intended to
incrementally add data or functionality to titles.

Like a title and a library, an accessory has both a prestartup action and startup
action that run when the file is opened. Like a library, an accessory may be
used in only one title or in many titles.

A library container cannot have user focus. Any windows or presenters it
contains must be managed by some title. If you do not specify a title container
for a library container, the default title container theScratchTitle is used.

Recall that an accessory is a library (AccessoryContainer inherits from
LibraryContainer). An AccessoryContainer object has some specialized
behavior that a LibraryContainer object does not have. An accessory

415

Title Management 15

cannot have user focus and values of the global variables
theTitleContainer and theOpenTitles do not change when you open an
accessory. An accessory is not intended to be opened as a stand-alone program
but rather to be used within a title. A user can directly open an accessory from
the ScriptX File menu, but not a library. An accessory is a program that a user
chooses to add to a title, while a library is something a title itself opens.

Examples of accessory containers include a tape measure that can be used to
measure the size of objects, or an object inspector that can analyze the state of
objects in a title. The accessory container is an ideal vehicle for adding value
incrementally to an existing multimedia title.

In addition to what it inherits from LibraryContainer, the
AccessoryContainer class defines one additional method, getAccessory,
that returns a collection of objects that the title can use. The TitleContainer
class defines three methods for handling accessories:
isAppropriateAccessory, addAccessory, and removeAccessory.

The default implementation of addAccessory does nothing. The scratch title,
the default title that is always open and cannot be opened or closed, cannot use
accessory objects. It is only useful to open an accessory inside a
developer-defined title. It is up to the developer to specialize addAccessory
at the class or instance level to make use of accessory objects.

The responsibility for determining which accessories are suitable in a title rests
with the title. Specialize isAppropriateAccessory to determine which
accessories to accept or reject.

An accessory can be written to interact in various ways with titles. It might
work with only one title at a time or with any number of titles. It might remove
itself from its current title if another title tries to add it, or it might create a new
instance of its objects for that second title.

As with a library container, when you decide whether an accessory container
should contain a particular instance or class, you should consider whether or
not the accessory will be shared. Presenters cannot be Instances of Bitmap and
other graphics primitives are not presenters, so they can be shared.)

As with a library container, you must take special care if an accessory container
supplies a window, clock, or player to a title. These objects define a title
instance variable, which determines which title manages them. The
TitleContainer class in turn defines the instance variables windows,
topClocks, and topPlayers to manage interaction with windows, clocks,
and players. For more information, see the section “Managing Windows,
Clocks, and Players in a Title” on page 400.

It is good programming practice to insure that an accessory has its own
namespace by giving the accessory its own module. You might not know all
the titles that would want to use an accessory, so to avoid conflicts in variable
names between containers, compile the accessory in its own module. For more
information on modules, see the ScriptX Language Guide.

416

15 ScriptX Components Guide

Creating an Accessory Container

In general, to create an accessory, subclass TitleContainer to override
addAccessory and isAppropriateAccessory, and subclass
AccessoryContainer to override getAccessory. When the accessory is
opened, these methods get called automatically or not, depending on how the
accessory is opened:

• If the user chooses the accessory from the Open Accessory menu command:

• The open method is called on the accessory with theTitleContainer
as its user.

• The isAppropriateAccessory method is called. If it returns true, it
calls addAccessory. Otherwise, the accessory is not added to the title,
but is left open.

• If the user opens the accessory through some user interface action that is
built into the program, these methods do not get called automatically, but
you can script for them.

The following example describes how to set up an accessory, assuming the user
uses the Open Accessory menu command, as illustrated in Figure 15-9.

Figure 15-9: Opening an accessory calls a sequence of methods.

This example creates a subclass of the AccessoryContainer class called
SimpleAccessory, which overrides getAccessory to return a list of
accessory objects to be used by the title container. In this case, it returns a list
that contains a circle.

Then the example creates an instance of SimpleAccessory. This creates a file
on disk, visible to the user in the operating system. The name of the file,
simple.sxa, is supplied with the path keyword. By default, the accessory is
saved in the theStartDir directory. The user cannot double-click on the
operating system file icon named simple.sxa to start the accessory; this
feature is available only for titles, not accessories.

Note – The extension .sxa is the convention for the filename of an accessory
container.

class SimpleAccessory (AccessoryContainer)
end

Open Accessory...

File

addAccessory

getAccessory

Instance of Instance of

User chooses
“Open Accessory”

Open Title...

Close

SimpleAccessorySimpleTitle

nextMethod

getAccessory

to add to
the title

returns objects

417

Title Management 15

method getAccessory self {class SimpleAccessory} -> (
-- Create a circle
local myCircle := new TwoDShape target:(new Oval x2:50 y2:50) fill:blackBrush

-- Create the list to be returned by getAccessory
local accList := new HashTable
add accList @circle myCircle
accList

)

-- Create an instance of the accessory, then close and save it
global ac := new SimpleAccessory path:"simple.sxa" name:"Simple Accessory"
close ac

After executing this script, the accessory container is created. Next, the title
container must be able to handle the accessory. The following script creates a
subclass of TitleContainer called SimpleTitle. It overrides the
addAccessory method to put the object returned by getAccessory (which
in this case is a circle) into its window.

The first line in the body of addAccessory contains nextMethod, which calls
addAccessory on the superclass TitleContainer, which calls
getAccessory on the accessory. The call to nextMethod returns the same list
that getAccessory returns. The prepend method uses the key @circle to
get the circle from the list of accessories and adds that circle to the window.

-- Define a subclass of TitleContainer
class SimpleTitle (TitleContainer)
end

-- Get the objects from the accessory
method addAccessory self {class SimpleTitle} accContainer -> (

local accList := nextMethod self accContainer

-- Add the @circle item from the accessory to the frontmost window
prepend theTitleContainer.windows[1] accList[@circle]

)

-- Create the title container and add the window to it
global tc := new SimpleTitle dir:theScriptDir path:"simple.sxt"

-- Create a window and add it to the title container
global myWin := new Window
show myWin
append tc myWin

-- At startup, load the objects in the title container
tc.startupAction := (tc -> forEach tc load undefined)

418

15 ScriptX Components Guide

After you execute this title container script, the title container window is open.
You can then test the accessory by choosing Open Accessory from the File
menu and selecting simple.sxt, which causes the circle from the accessory to
appear in the window.

Opening an Accessory File

This section summarizes the procedure to open an accessory container.

The user selects an option to open a particular accessory, either by choosing
Open Accessory from the File menu, or by performing some other user
interface action in the title that calls open on the AccessoryContainer class.

If the user did not choose Open Accessory, but instead performed some other
action in the title, then the title must be responsible for calling open,
isAppropriateAccessory, and addAccessory.

The Open Accessory menu command:

1. Calls open on the AccessoryContainer class, supplying the value of the
global variable theTitleContainer as its user.

• The open class method loads the accessory container into memory, but
none of its contents.

• The open class method then calls the function in preStartupAction,
loads all files listed in its libraries instance variable, and makes the
accessory a user of each library.

• If the user keyword is supplied with open, this method then calls
addUser on the supplied title container with the library as its new user.

• The open method then adds a reference to the accessory to the list
maintained by theOpenContainers global variable, and calls the
function specified by startupAction, as defined by the developer.

2. Calls isAppropriateAccessory on theTitleContainer.

• The title container’s isAppropriateAccessory method checks to see
whether the accessory is compatible with the title, to determine whether
to load the objects contained in the accessory container.

• If isAppropriateAccessory returns true is returned, the system
calls addAccessory.

• If isAppropriateAccessory returns false is returned, the accessory
is not added, but is left open.

3. The addAccessory method calls getAccessory on the accessory. The
getAccessory method should be specialized to return a collection of
objects added to the title. Specialize addAccessory to do whatever is
needed with the objects from this collection to start the accessory—create
new objects, add presenters to windows, or start clocks and players.

419

Title Management 15

Quitting ScriptX
To quit the ScriptX Player, call the global function quit. When the user quits
the ScriptX Player, the Quit Manager takes control before the entire object
system shuts down. The Quit Manager gives a developer an opportunity to run
one or more scripted tasks before closing the system.

Quit queries and quit tasks are ScriptX functions that run automatically before
the ScriptX Player shuts down. When a user quits, ScriptX does not
automatically inform title containers. If your title or accessory needs to be
informed of an impending shutdown, you can use quit queries and tasks to
notify the open titles to clean up, save data, and close. In addition, they can
save preferences or state information, show a credits screen, play an audio
message, or release resources of the underlying operating system.

By default, the quit process has no user interaction. If you want to prompt
users about saving their work, or if you want to make sure they want to quit,
you would do that in a quit query.

Any object or process can create quit queries or tasks, and there are no explicit
limits on the number that can be installed. Objects that exist outside the title
container framework may need to create a query or task to ensure that they are
saved, closed, and disposed of properly. In general, if your title installs quit
queries or tasks, it should remove them when it closes.

The user quits the ScriptX Player by choosing Quit (MacOS) or Exit (Windows
and OS/2) from the File menu, or by performing some other user interface
action that calls the global function quit. When the user quits, the system first
runs all quit queries. If all queries return true, it runs all quit tasks. Both quit
queries and quit tasks run in LIFO (last-in, first-out) order. To add or remove
quit queries and quit tasks, use the global functions installQuitQuery,
installQuitTask, deinstallQuitQuery, and deinstallQuitTask.

It is often important to perform a query when closing a title (as opposed to
when quitting the ScriptX Player), such as asking the user “Okay to close
title?” To do this, you should create a subclass of TitleContainer and
override the close method. For more information, see the section “Saving and
Closing a Container” on page 392.

The following two sections describe the differences between quit queries and
quit tasks.

Quit Queries

A quit query is a function that determines whether or not it is okay to quit. It
should return true to continue quitting, or false to abort the quit process. A
quit query should not take any action that is final, such as to purge objects from
memory or set useful variables to undefined—that should be done later by a
quit task.

A typical use of a quit query is to display a dialog that the asks the user, “Okay
to quit?” as shown in Figure 15-13. If the quit query returns false, shutdown
is aborted, and execution returns to the ScriptX Player. A quit query is the
appropriate place to ask if the user wants to save changes to a file.

420

15 ScriptX Components Guide

You would probably install a quit query that asks “Okay to quit?” immediately
at the startup of a title, so that at any later time when the user chooses Quit
(MacOS) or Exit (Windows and OS/2), a prompt would appear.

Figure 15-10:A dialog box called by a quit query.

The point of separating quit queries from quit tasks is that only quit queries
should allow the user to abort the quit process. If the user answers “No” to the
previous question and attempts to quit again, the Quit Manager will repeat all
quit queries from the beginning. Thus, a quit query may run several times
before the system shuts down. You should write queries so the user can run
them repeatedly. Quit tasks should run only once, with no turning back.

The global function installQuitQuery allows you to assign a function to be
run when the user quits the ScriptX Player. You should write it to take one
argument and to return true or false. The following example is taken from the
full, working sample script in the section “Quitting ScriptX Gracefully” on
page 431.

function quitQueryFunc notUsed -> (
deinstallQuitQuery myQuery
local myWindow := new YesNoWindow centered:true \

boundary:(new Rect x2:200 y2:120)
show myWindow
false -- Necessary so ScriptX will not quit yet

)

global myQuery := installQuitQuery quitQueryFunc undefined

The global function installQuitQuery takes two arguments: the name of
the function to call (quitQueryFunc) and its first argument (undefined). It
returns a unique integer that you can use later to deinstall the quit query:

deinstallQuitQuery myQuery

Quit queries can be challenging to debug because an error in the quit query
function may prevent ScriptX from quitting at all. You then have to either
remove the quit query to allow you to quit, or quit ScriptX using some
technique defined by the operating system or hardware.

Quit Tasks

Quit tasks run only after all quit queries have run successfully and have
returned true. A typical use of a quit task is to save preference or state
information that can be restored when the ScriptX Player starts up again. Once
quit tasks begin running, shutdown is imminent and cannot be aborted. Each
quit task runs once and has no return value.

Okay to quit?

Yes No

421

Title Management 15

The following script creates a function called putAway to close a library
container. The installQuitTask global function adds a quit task that will
call putAway on a library container called prefsFile.

function putAway libraryName -> (
if (isAKindOf libraryName LibraryContainer) do (

close libraryName
)

)
global myPrefs := installQuitTask putAway prefsFile

The global function installQuitTask returns an integer that uniquely
identifies the quit task. This integer can be used anytime after installing the
quit task to remove the quit task:

deinstallQuitTask myPrefs

Quit queries do not suspend the thread system, but quit tasks do. Processes
that run in other threads, such as callbacks or animations, remain active until
all quit queries return true. When the quit queries have finished and the quit
tasks begin running, the ScriptX Player suspends the thread scheduler. From
that point, only quit tasks can run until the system shuts down. Quit tasks are
the logical place to clean up, to discard references, and to let go of hardware
resources.

Title Management Examples
You use the Title Management component for the high-level organization and
file storage of titles, libraries, and accessories. In the title development process,
once you have written the scripts that create the windows, add 2D presenters,
add the interactivity, and import the media, you use the Title Management
component to store the compiled code as files that can be run by the ScriptX
Player.

The following working scripts are included in this section:

• A Simple Title (page 421)

• A Painting Title and Library (page 423)

• A Painting Title and Accessory (page 426)

• Quit Dialog Box (page 431)

A Simple Title

The following two scripts demonstrate how to display the text “Hello, world”
in a window, as shown in the following figure, and store it in a title container.
(The ScriptX Quick Start Guide contains an example very similar to this one.)

422

15 ScriptX Components Guide

Figure 15-11:A simple title composed of a window with text.

Displaying Text in a Window

First, create a window and add the text “Hello, world” to it.

-- Filename: simple.sx
-- Create a window and show it
global myWindow := new Window boundary:(new Rect x2:400 y2:300)
myWindow.y := 40
show myWindow

-- Create text and add it to the window
global myText := new TextPresenter target:"Hello, world" \
 boundary:(new Rect x2:200 y2:50)
append myWindow myText

At this point you could center the text, or add other objects to the window, if
you wanted.

Saving the Title to Disk

The next step is to create a title container, append the window to it, write the
startup script that loads the window on startup, and close the title container.
Closing a new title container automatically saves it. Notice that the filename
ends in .sxt, indicating that it contains a title container.

The startup script, tc.startupAction, is defined as an anonymous function
with one argument, t, that represents the title container. At startup, this
function is executed, which loads into memory the first item in the title
container, which is the window. The window is automatically displayed when
it is loaded, since it was showing (isVisible was true) when the title
container was closed.

-- Create a title container. Notice the filename ends in .SXT
-- indicating it contains a title container.
global tc := new TitleContainer dir:theScriptDir path:"SIMPLE.SXT"

-- Move the window to the title container (from the scratch title)

Hello, world

423

Title Management 15

prepend tc myWindow

-- Include the startup script, which is an anonymous function
tc.startupAction := (t -> load t[1])

-- Close the title container
close tc

Closing the title container updates the container to include any changes, then
closes the file on disk.

Testing the Simple Title

To test that the window has indeed been stored properly, execute the previous
script in ScriptX, which creates one file: simple.sxt. Then quit ScriptX and
do the following:

Open up the file simple.sxt in ScriptX. You can do this by selecting the
file in the operating system and choosing Open from the File menu, or by
double-clicking on its icon.

This should start ScriptX, and run startupAction, which loads the first item
of the title container into memory, making the original window appear.

When you are done, choose Close from the File menu to close the title.

A Painting Title and Library

This is a simple example of a title container that depends on a library
container. To run this example requires a bitmap file named Gauguin.bmp
(this can be any bitmap file in Windows DIB format).

The title container has a module that defines a window that displays a bitmap,
as shown in Figure 15-12. The bitmap is stored separately in a library container
file. The title container is set up to automatically open and close the library file
when the title is opened and closed.

424

15 ScriptX Components Guide

Figure 15-12:The title provides the window; the library provides the bitmap.

Creating the Title File

The following script creates a module that defines a window and puts a 2D
shape in the window, to eventually hold a bitmap. Then the script creates a
title container file called painting.sxt, adds the module to the title
container, and creates a startup action script for the title. This startup script
loads the module, then gets a bitmap from the library and assigns the bitmap
to the target instance variable of the 2D shape.

-- Filename: painting.sx

-- Create the window
global myWindow := new Window boundary: (new Rect x1: 0 y1: 40 x2: 400 y2: 300)
myWindow.name := "Gauguin"
show myWindow

--
-- Create and append a TwoDShape to the window
global myShape := new TwoDShape
append myWindow myShape

--
-- Create the title container and add the window to it
global tc := new TitleContainer dir:theScriptDir path:"painting.sxt" \

name:"Painting Title"
append tc myWindow

-- Define the startup action
tc.startupAction := (

-- Load all objects in the title container
tc -> forEach tc load undefined

-- Get the library container
local myLC := chooseOne theOpenContainers \

(v a -> v.name = "Painting Library") 0

-- Assign the first bitmap in the library to the target

425

Title Management 15

-- of the 2D shape in the frontmost window
tc.windows[1][1].target := myLC[1]

)

Creating the Library File

The following script imports the bitmap file Gauguin.bmp into a bitmap
object, which is appended to a library file called painting.sxl. The library is
then created with the user:tc keyword argument, which causes the library
container lc to be added to the libraries instance variable of the title
container tc. The libraries instance variable is saved when tc is closed.
Later when the title container is opened, this reference is used to automatically
open the library container.

For the title container’s libraries instance variable to save the library, it is
important that the title container be open when the library container is created,
and that the title container be saved (closed) before the library container is
closed.

function getPict fileName -> (
local myStream := getStream theScriptDir fileName @readable
local myImage := importMedia theImportExportEngine myStream @image @dib \

@bitmap colormap:defaultColormap
myImage

)

global p1 := getPict "GAUGUIN.BMP"

-- Create the library, and append the picture to it
-- Note that this library uses the title container tc defined previously
global lc := new LibraryContainer dir:theScriptDir path:"painting.sxl" \

name:"Painting Library" user:tc
append lc p1

-- Close the title container and then the library container
close tc
close lc

Testing the Painting Title and Library

To test that the title and library containers work together properly, execute the
previous scripts in ScriptX—two files are created: painting.sxt and
painting.sxl. Then quit and do the following:

Open up the file painting.sxt in the ScriptX Player. This should load the
title container and library container into memory, and run startupAction,
which displays the window and the painting bitmap from the library
container.

426

15 ScriptX Components Guide

When you are done, choose Close from the File menu to close the title along
with its associated library.

A Painting Title and Accessory

This example is a modification of the previous example—it includes an
accessory that allows the user to scale the bitmap smaller or larger by moving
the mouse left or right. To exit the accessory, click the mouse, and the bitmap is
left at its scaled size.

The following description emphasizes the differences from the previous
example. To run this example requires the same bitmap file named
Gauguin.bmp from the previous example.

This example creates three files: a title container, the same library container as
the previous example, and an accessory container.

Creating the Title File

As in the previous example, the following script creates a window and puts a
2D shape in the window—the 2D shape will later hold a bitmap.

Unlike the previous example, this example creates a subclass of
TitleContainer called ExtendableTitleContainer, in which the
method addAccessory is overridden. This method first calls nextMethod,
which calls addAccessory on its superclass TitleContainer, which calls
getAccessory on the accessory and returns a list of objects from the
accessory, which is assigned to the variable accList.

The prepend method gets the item in accList whose key is @text, and adds
it to the window in the title container that is holding the accessory container.

The removeAccessory method removes the objects that were added in
addAccessory.

The terminateAction instance variable is assigned the function
closeAccessory that is defined to close the accessory.

The startupAction is identical to the previous example.

-- Filename: paintacc.sx

--- Create the window
global myWindow := new Window boundary: (new Rect x1: 0 y1: 40 x2: 400 y2: 300)
myWindow.name := "Gauguin"
show myWindow

-- Create and append a TwoDShape to the window
global myShape := new TwoDShape
append myWindow myShape

-- Define a subclass of TitleContainer
class ExtendableTitleContainer (TitleContainer)

427

Title Management 15

end

-- Get the objects from the accessory
method addAccessory self {class ExtendableTitleContainer} accContainer -> (

local accList := nextMethod self accContainer

-- Add the @text item from the accessory to the frontmost window
prepend accContainer.windowHoldingAccessory accList[@text]

)

-- Remove the objects from the accessory (Undo what addAccessory did)
method removeAccessory self {class ExtendableTitleContainer} accContainer -> (

local myText := chooseOne accContainer.windowHoldingAccessory \
(v a -> isAKindOf v TextPresenter) 0

if myText = undefined do exit with myText
deleteOne accContainer.windowHoldingAccessory myText.target
nextMethod self accContainer

)

-- Create the title container and add the window to it
global tc := new ExtendableTitleContainer dir:theScriptDir path:"painting.sxt" \

name:"Painting Title"
append tc myWindow

-- Define the title's startup action
tc.startupAction := (tc ->

-- Load all objects in title container
forEach tc load undefined

-- Get the painting library
local myLC := chooseOne theOpenContainers \

(v a -> v.name = "Painting Library") 0

-- Assign the bitmap to the 2D shape’s target in the frontmost window
tc.windows[1][1].target := myLC[1]

)

Creating the Library File

The following library script is identical to the previous example. This script
creates the library, then closes both the title and library containers.

function getPict fileName -> (
local myStream := getStream theScriptDir fileName @readable
local myimage := importMedia theImportExportEngine myStream @image @dib \

@bitmap colormap:defaultcolormap
myimage

)

global p1 := getPict "GAUGUIN.BMP"

-- Create the library, and append the picture to it
-- Note that this library uses the title container tc defined previously

428

15 ScriptX Components Guide

global lc := new LibraryContainer dir:theScriptDir path:"painting.sxl" \
name:"Painting Library" user:tc

append lc p1

-- Close the title container and then the library container
close tc
close lc

Creating the Zoom Accessory File

The following accessory script allows the user to scale the bitmap smaller or
larger by moving the mouse left or right.

First, it creates a subclass of AccessoryContainer called ZoomAccessory
so that the getAccessory method can be overridden. The class defines
instance variables mouseMoveInterest and mouseDownInterest, which
hold the event interests so that they can be removed later with
removeInterest. The windowHoldingAccessory instance variable holds
the window, in case the accessory is used on several windows in a given title at
the same time.

The removeAccEventInterests method removes the two event interests,
for mouse move and mouse down. The callRemoveAccessory method is
needed only to change the number and order of arguments. It is called by the
mouse down event, which passes in three arguments.

The getAccessory method finds the first 2D shape in the frontmost window,
then gets the bitmap from its boundary instance variable. The scaleIt
function scales the bitmap up or down based on the x value of the mouse. The
mouse-move event calls the scaleIt function on the 2D shape whenever the
mouse moves anywhere in the window.

The mouse down event calls the callRemoveAccessory function, which
calls removeAccessory on the title to remove the accessory when the mouse
button is pressed.

A text presenter is defined with the string “To zoom, move mouse left or right.
Click to stop.” This text is added to a hash table named accList—this list holds
the items to be passed to the title container as a return value from
getAccessory. A hash table is a keyed, unsorted collection that can be
searched quickly. The text presenter is given the key @text.

The terminate method is overridden to remove the mouse event interests
from the MouseMoveEvent and MouseDownEvent classes. Because
interests is a class variable, it is not discarded when the title and accessory
are closed.

Finally, the last lines of the script create an instance of the accessory container,
save it to a file named painting.sxa, and close it.

--- Create an accessory container which must be added by the user
class ZoomAccessory (AccessoryContainer)

429

Title Management 15

instance variables
mouseMoveInterest -- Only reason for these ivs is they
mouseDownInterest -- hold onto objects so those objects
windowHoldingAccessory -- can later be removed

end

-- Remove event interests MouseEvent classes
method removeAccEventInterests self {class ZoomAccessory} interest event -> (

if (self.mouseMoveInterest != undefined) do
removeEventInterest self.mouseMoveInterest

if (self.mouseDownInterest != undefined) do
removeEventInterest self.mouseDownInterest

)

-- This method is needed only to change the number and order of arguments
method callRemoveAccessory self {class ZoomAccessory} interest event -> (

removeAccessory theTitleContainer self
)

-- Method called by addAccessory from the title
method getAccessory self {class ZoomAccessory} -> (

-- Locate the bitmap in the title
self.windowHoldingAccessory := theTitleContainer.windows[1]
local myShape := chooseOne self.windowHoldingAccessory \

(v a -> isAKindOf v TwoDShape) 0
local myBitmap := myShape.boundary

-- Scale the image
function scaleIt theTwoDShape interest event -> (

if (event.screenCoords.x > 1) do (
local myScale := 2 * event.screenCoords.x / theTwoDShape.width
local myMatrix := scale (new TwoDMatrix) myScale myScale
transform myBitmap myMatrix @mutate
theTwoDShape.changed := true
theTwoDShape.x := (theTwoDShape.presentedBy.width \

- theTwoDShape.width)/2
theTwoDShape.y := (theTwoDShape.presentedBy.height \

- theTwoDShape.height)/2
)

)

-- Set up the mouse move event
self.mouseMoveInterest := new MouseMoveEvent
self.mouseMoveInterest.authorData := myShape
self.mouseMoveInterest.presenter := undefined
self.mouseMoveInterest.device := new MouseDevice
self.mouseMoveInterest.eventReceiver := scaleIt

addEventInterest self.mouseMoveInterest

-- Set up the mouse down event
self.mouseDownInterest := new MouseDownEvent
self.mouseDownInterest.authorData := self
self.mouseDownInterest.presenter := undefined
self.mouseDownInterest.device := new MouseDevice
self.mouseDownInterest.eventReceiver := callRemoveAccessory

addEventInterest self.mouseDownInterest

430

15 ScriptX Components Guide

-- Add text to the accessory
local myText := new TextPresenter boundary:(new Rect x2:400 y2:20) \

target:" To zoom, move mouse left or right. Click to stop."
 setDefaultAttr myText @alignment @center

myText.fill := whitebrush

-- Create the list to be returned by getAccessory
local accList := new HashTable
add accList @text myText
accList

)

-- Remove the event interests when title is closed
method terminate self {class ZoomAccessory} -> (

removeAccEventInterests self undefined undefined
nextMethod self

)

global ac := new ZoomAccessory dir:theScriptDir path:"painting.sxa" \
name:"Painting Accessory"

close ac

One minor flaw in this program is that in the unlikely event that two titles
opened this accessory, and if the user were to close the first title while the
accessory is active, then the first title’s window would not be freed from
memory even after both titles were closed. This is because the mouse event
interests would not have been deleted, since close does not call
removeAccessory on an accessory if another user exists.

Testing the Title and Accessory

To test that the accessory container works properly, execute the previous
scripts in ScriptX, which creates three files: painting.sxt, painting.sxl,
and painting.sxa. Then quit and do the following:

1. Open up the file painting.sxt in the ScriptX Player.

This should load the title container and library container into memory, and
run startupAction, which displays the window with the painting in it.

2. Choose Open Accessory from the File menu in the ScriptX Player, select
painting.sxa from the list and press the Open pushbutton.

This should open the accessory, causing the following text to appear at the
top of the window: “To zoom, move mouse left or right. Click to stop”.

3. Move the mouse back and forth, left and right. The accessory should cause
the bitmap to get smaller as you move left and larger as you move right.
When the bitmap is the size you want it, click the mouse—the bitmap will
stay at that size and the accessory is removed.

When you are done, choose Close from the File menu to close the title along
with its associated library (and accessory, if it’s not already removed).

431

Title Management 15

Quitting ScriptX Gracefully

By default, when a user closes a ScriptX title or quits the ScriptX Player, the
system shuts down immediately. The Quit Manager provides a mechanism for
a developer to override this behavior. Quit queries and quit tasks are functions
that run before the system shuts down. They can be added and removed
dynamically. For a general discussion of the Quit Manager, see the section
“Quitting ScriptX” on page 419.

The following example demonstrates a typical quit query. Each title container
can install its own quit queries, so that it has a chance to clean up, save data, or
even suspend the quit process.

Figure 15-13:The quit query function in this example opens a dialog box.

Flow of the Script

The following diagram gives a general overview of the quit process, which this
sample script implements.

Figure 15-14:Diagram of functions called by the ScriptX Quit Manager.

For the user to quit ScriptX, the global function quit must be called. Quitting
can be initiated through menu or keyboard commands, or it may be part of the
programmatic interface of a title. The global function quit initiates the Quit

No Yes

Okay to close title?

User Runs Title(s)

No Yes

Okay to close title?

okayToCloseTitle ?

System Shutdown

User Chooses Quit or Exit

YesNoWindow

SafeTitleContainer

Quit queries:

quit query

quit query

mySafeTitle.quitQueryID

quit query

Quit tasks:

quit task

quit task

Quit Manager

432

15 ScriptX Components Guide

Manager, which runs a series of functions. Quit queries run before quit tasks,
and must return true. If any quit query returns false, the quit process is
suspended. After all the quit queries have returned true, the Quit Manager
runs quit tasks. Once it begins running quit tasks, shutdown can no longer be
aborted. A developer can install or remove both quit queries and quit tasks.

In the following example, the title container installs a quit query, maintaining a
record of its unique integer ID so that it can remove the quit query as well, if
the title closes before the user quits the ScriptX Player. In addition to defining
a quit query, this example also overrides close, a method defined by
TitleContainer and its parent classes, to remove the title’s quit query when
the title is closed without quitting ScriptX.

The script defines three classes:

• SafeTitleContainer, a subclass of TitleContainer, that intercepts the
user’s calls to close and quit to bring up the “Okay to close title?” dialog
box.

• YesNoWindow, a subclass of Window that queries the user and includes
“Yes” and “No” pushbuttons.

• InterfaceButton is a user interface object, derived from PushButton.

Calling either close or quit prompts the user, through a dialog box, to
indicate whether she wants to close the current title. If the user clicks No, then
execution returns to the previously active title. This dialog box is one of a
number of possible uses for quit queries. Another application of quit queries is
to update objects or save state information, such as a current game score.

The following sections describe the script in detail.

Application of Modules

Typical ScriptX programs use a module with each container file that stores
code objects. The module itself acts as a container, and it provides namespace
protection. Since this example demonstrates how multiple titles share the
resources of the Quit Manager, each title is created and compiled in a separate
module. Each title container’s module uses both the ScriptX module and
QuitQueryExample. The classes which all the titles share are compiled in
QuitQueryExample.

module QuitQueryExample
uses ScriptX
exports SafeTitleContainer, InterfaceButton

end
in module QuitQueryExample

Defining the Dialog Box

InterfaceButton, the first class defined in the script, defines a simple text
button for user interaction.

433

Title Management 15

class InterfaceButton (PushButton)
class variables

buttonBoundary:(new Rect x2:60 y2:20)
instance variables

text
instance methods

method init self #rest args #key \
buttonText: -> (

if isAKindOf buttonText String then (
self.text := buttonText

) else (
report badParameter #(buttonText, init,

self, "not a string")
)
apply nextMethod self \

releasedPresenter:(new TextPresenter \
boundary:InterfaceButton.buttonBoundary \
target:(self.text) \
stroke:blackBrush) \

pressedPresenter:(new TwoDShape \
target:InterfaceButton.buttonBoundary \
fill:blackBrush) \

args
)
method afterInit self #rest args #key \

action: -> (
setDefaultAttr self.releasedPresenter @alignment @center
if isAKindOf action AbstractFunction then (

self.activateAction := action
) else (

report badParameter #(action, afterInit,
self, "not a function")

)
)

end

YesNoWindow defines instance variables for the three presenters that it
displays: textQueryPresenter, yesButton, and noButton. Other instance
variables include a controller and for its buttons: actuatorController and
buttonBoundary. This script presents an instance of YesNoWindow in a
separate thread, allowing the window to block and wait for a response from
the user. To handle synchronization between threads, YesNoWindow defines
the instances variables theLock, a Lock instance, and startPipe and
finishPipe, instances of PipeClass.

class YesNoWindow (Window)
instance variables

actuatorController
textQuery
textQueryPresenter
yesButton
noButton
theResult:false
theLock:(new Lock)
startPipe:(new PipeClass size:1)
finishPipe:(new PipeClass size:1)

end

434

15 ScriptX Components Guide

For performance reasons, this script creates the dialog window on the fly,
rather than creating and restoring a persistent object from the object store. The
title requires an instance of YesNoWindow only intermittently, when quit is
called, and it must present the window and all the objects it contains quickly.

In its init method, YesNoWindow sets the value of the type keyword to create
a notice window, a modal dialog window that has various names on the
different native ScriptX platforms.

method init self {class YesNoWindow} #rest args ->
apply nextMethod self type:@notice args

The afterInit method sets up the window and the presenters it displays.
This afterInit method does not actually display the window. It depends on
another calling function to make the window visible.

method afterInit self {class YesNoWindow} #rest args \
#key question: xPosition: yPosition: -> (

apply nextMethod self args
self.actuatorController := new ActuatorController \

space:self \
wholeSpace:true

if isAKindOf question String then
self.textQuery := question

else
report badParameter #(question, afterInit,

self, "not a string")
self.textQueryPresenter := new TextPresenter \

boundary:(new Rect x2:260 y2:20) \
target:(self.textQuery)

self.yesButton := new InterfaceButton \
buttonText:"Yes" \
action:(a b -> (

if a.title != theScratchTitle then (
a.theResult := true

) else (
a.theResult := false

)); hide a;
write a.finishPipe a.theResult)

self.yesButton.authorData := self
self.noButton := new InterfaceButton \

buttonText:"No" \
action:(a b ->

a.theResult := false
hide a;
write a.finishPipe a.theResult)

self.noButton.authorData := self

-- center the text, so it looks good
setDefaultAttr self.textQueryPresenter @alignment @center

-- position the three presenters, based on window's dimensions
local buttonHeight := (self.height * 0.75) as ImmediateInteger
local buttonCenter := (self.width * 0.50) as ImmediateInteger
self.yesButton.y := buttonHeight
self.noButton.y := buttonHeight

435

Title Management 15

self.yesButton.x := buttonCenter + 10
self.noButton.x := (buttonCenter - self.noButton.width) - 10
self.textQueryPresenter.x := buttonCenter -

(self.textQueryPresenter.width / 2)
self.textQueryPresenter.y := (self.height * 0.30) as

ImmediateInteger

-- position self
self.x := xPosition
self.y := yPosition

-- add the three presenters
append self self.yesButton
append self self.noButton
append self self.textQueryPresenter

)

The instance method askForYesOrNo is designed to run as a thread’s control
function. By running askForYesOfNo in a separate thread, the calling
function can block and wait for user response without suspending other
ScriptX processes. Note that afterInit defines an activate action for the yes
and no buttons that writes to the windows finishPipe instance variable. The
reading thread, which is running askForYesOrNo, blocks until it receives
input from the user. When askForYesOrNo is able to read from the pipe, it
relinquishes the lock and returns a result to the original calling function.

method askForYesOrNo self {class YesNoWindow} -> (
acquire self.theLock
write self.startPipe true -- unblocks calling thread
show self
local myResult := read self.finishPipe -- block
relinquish self.theLock -- unblocks calling thread
return myResult

)

Defining the “Safe” Title Container

SafeTitleContainer defines a title container that intercepts calls to close
the title or quit the ScriptX Player, in order to display the previous dialog box.
Its quitQueryID instance variable stores the unique ID of a quit query, so that
it can be installed and removed as the title opens and closes. A well-behaved
title should “clean up” when it closes, removing its quit query and any objects
it has installed in the system. In this example, _quitQueryID is the physical
slot used for storage, and quitQueryID is its virtual interface. Note that
_quitQueryID is defined with the transient qualifier, since it contains only
run-time information. (A quit query’s unique ID applies only to the current
ScriptX session.)

class SafeTitleContainer (TitleContainer)
instance variables

transient _quitQueryID
instance methods

method quitQueryIDGetter self ->
self._quitQueryID

436

15 ScriptX Components Guide

method quitQueryIDSetter self value ->
if getClass value == ImmediateInteger then

self._quitQueryID := value
else

report badParameter #(value, quitQueryIDSetter,
self, "not an immediate integer")

method okayToCloseTitle self -> (
bringToFront self
local buildText := "Is it OK to quit the title " +

self.name + "?"
local a := new YesNoWindow \

boundary:(new Rect x2:300 y2:100) \
question:buildText \
title:self \
xPosition:50 \
yPosition:50

local modalProcess := new Thread \
func:askForYesOrNo \
arg:a

read a.startPipe
acquire a.theLock
print "I was here five"
local b := modalProcess.result
return b

)
method close self #rest args -> (

if okayToCloseTitle self then (
deinstallQuitQuery self.quitQueryID
apply nextMethod self args

)
)
method startupActionGetter self -> (

-- make sure only a single quit query is installed
if self.quitQueryID = undefined do

self.quitQueryID :=
installQuitQuery okayToCloseTitle self

nextMethod self
)

end

SafeTitleContainer specializes close, first calling okayToCloseTitle
to allow then user to validate his choice. If the user chooses to close the title,
close removes the query, by calling the global function
deinstallQuitQuery on its stored ID.

SafeTitleContainer specializes the accessor method
startupActionGetter so that okayToCloseTitle is installed as a quit
query each time the title opens. Note that it specializes this instance variable as
an accessor method in such a way that the startupAction can still be set by
another script.

SafeTitleContainer specializes close to remove its quit query when the
title closes, but its quit query does not “remove itself” from the queue when
the user quits. The title should not assume that the user will continue with the
quit process. Each quit query should behave as if it were one of many. A quit
query or quit task cannot anticipate that it will run in any particular order with
respect to other functions that run at quit time. Since any quit query in the

437

Title Management 15

queue could return false, suspending the process, a given quit query might
have to run again, the next time the Quit Manager is called. The role of quit
queries and quit tasks is limited to putting the container in a safe state before
the system shuts down.

Note – A quit query or quit task should be tested in an environment with
multiple containers.

The instance method okayToCloseTitle acts as the calling function for the
quit query. In doing so, it spawns a separate thread. This allows the title to
display a “modal” dialog box and suspend user input, without suspending
other active processes. Note the use of a lock and two pipes (instances of
PipeClass) for synchronization. The startPipe pipe is necessary to prevent
a race condition, and assures that the dialog box and its contents show before
the calling function blocks and waits for a response.

Building the Title

This final part of the script puts it all together by creating two title containers,
each of which is compiled in a separate module. The title containers “Ross’s
Peccadillos” and “Wade’s Follies” do nothing but open a window and display
buttons so that can you test close and quit.

module QuitQueryTest1
uses ScriptX
uses QuitQueryExample

end
in module QuitQueryTest1

object mySafeTitle (SafeTitleContainer)
dir:theStartDir
path:"quitqone.sxt"
name:"Wade's Follies"

end

open TitleContainer path:"quitqone.sxt"
object myWindow (Window)

title:mySafeTitle
name:mySafeTitle.name

end
object buttonController (ActuatorController)

space:myWindow, wholeSpace:true, enabled:true
end
object myCloseButton (InterfaceButton)

buttonText:"Close"
action:(a b -> new Thread \

func:(c -> close c) arg:a)
settings

x:420, y:360
end
myCloseButton.authorData := myWindow.title
object myQuitButton (InterfaceButton)

buttonText:"Quit"
action:(a b -> new Thread func:(c -> quit()))

438

15 ScriptX Components Guide

settings
x:500, y:360

end
myQuitButton.authorData := myWindow.title
append myWindow myCloseButton
append myWindow myQuitButton
add mySafeTitle 1 myWindow
show myWindow

Now, create a second title in order to test the quit queries in a multiple
environment.

module QuitQueryTest2 uses ScriptX, QuitQueryExample end
in module QuitQueryTest2

object mySafeTitle (SafeTitleContainer)
dir:theStartDir
path:"quitqtwo.sxt"
name:"Ross's Peccadillos"

end
open TitleContainer path:"quitqtwo.sxt"
object myWindow (Window)

title:mySafeTitle
name:mySafeTitle.name

end
object buttonController (ActuatorController)

space:myWindow, wholeSpace:true, enabled:true
end
object myCloseButton (InterfaceButton)

buttonText:"Close"
action:(a b -> new Thread \

func:(c -> close c) arg:a)
settings

x:420, y:360
end
myCloseButton.authorData := myWindow.title
object myQuitButton (InterfaceButton)

buttonText:"Quit"
action:(a b -> new Thread func:(c -> quit()))

settings
x:500, y:360

end
myQuitButton.authorData := myWindow.title
append myWindow myCloseButton
append myWindow myQuitButton
add mySafeTitle 1 myWindow
show myWindow

Every ScriptX title should be designed so that it can coexist with other titles,
provided that sufficient system resources are available. Although these two
titles define a quit button that invokes the Quit Manager directly, as well as a
close button, a title’s quit button should be defined so that it only closes the
title itself. The quit dialog in this example is really protection against quit
queries, written by other developers, that may not be well-behaved.

439

Title Management 15

Note – The current version of Script contains a bug that prevents quit queries
from receiving mouse or keyboard input if quit is called from the
EventDispatchQueue thread (which receives and processes events from
input devices). This script will not work properly if you invoke quit from the
system menu or keyboard.

To test this example, first compile the script in ScriptX. You can test it by
calling the global function quit from the scripter, or by clicking on one of the
quit buttons. Test every possible combination of quitting and closing, in every
possible order. If you use the scripter for testing, note that each title is
compiled in a separate module. Each title should be able to close
independently, without disturbing other titles, and each title should be able to
recover if any other title attempts to close it.

440

15 ScriptX Components Guide

P A R T T W O

Lower-Level Components

Chapter 16: Collections
Chapter 17: Numerics
Chapter 18: Events & Input Devices
Chapter 19: Files
Chapter 20: Streams
Chapter 21: Memory Management
Chapter 22: Threads
Chapter 23: Object System Kernel
Chapter 24: Exceptions
Chapter 25: Import/Export
Chapter 26: Loader

Object System

System Services

Titles and Applications

Space, Presentation and Control

Tools

Title Management

Media and ClocksLanguage

C H A P T E R

16
Collections

444

16 ScriptX Components Guide

445

Collections 16

The Collections component defines objects that store and manage other objects,
so that objects can be grouped together, arranged, and sorted. A collection
allows a set of objects or data to be processed as a single entity. The collection
classes include some of the basic ScriptX data structures.

Collections are used by many other components. They are one of the
fundamental building blocks of the ScriptX Player. Anywhere a list, array, or
sequence of objects is needed, a particular collection class is available to serve
the need. For example, TwoDMultiPresenter and Controller manage
collections of objects. The Collections component defines two main categories
of classes: collections and iterators.

A collection is an object that maintains a set of data, often a list of other objects.
Items in a collection are called elements, items, members, key-value pairs, or
bindings. Each collection provides methods for managing its elements.
Collections are the basic classes that implement protocols for group behavior.
They can have a fixed, variable, or unbounded number of items. Items in a
collection can be sorted or unsorted. Some collections can hold objects of any
class, others restrict the classes of their keys or values, and some collection
classes hold elements that are not objects.

An iterator is a mechanism for stepping through each item in a collection in an
orderly fashion. An iterator is an object that manages elements of a collection
as a stream. Many operations on collections require a script to process each
element, often in some natural order. By creating an iterator, a script has access
to methods in the Streams component that are useful for sequentially
processing and manipulating the elements of a collection. If a collection has a
natural order, its iterator always processes items in that order. For more
information on streams, see Chapter 20, “Streams.”

Classes and Inheritance
Class inheritance for the Collections component is shown in this figure:

ollections com-
nent
ollections<star-
nge>

ctions:defini-

s (collections)
ents (collec-

value pairs
bers (collec-

erator:defini-
n

ollections
mponent:in-
ritance dia-
am

446

16 ScriptX Components Guide

Conceptual Overview
The Collections component defines two main categories of classes: collections
and iterators.

 A collection is an object that maintains a set of data, often a list of other objects.
Items in a collection are called elements, items, members, key-value pairs, or
bindings. Each collection provides methods for managing the data or objects it

IndirectCollection

Controller

Range

DiscreteRange

NumberRange

IntegerRange

ContinuousNumberRange

Array

ArrayList

SortedArray

Single

Sequence

LinkedList

ImplicitlyKeyedCollection ExplicitlyKeyedCollection

BTree

KeyedLinkedList

SortedKeyedArray

HashTable

TwoDMultiPresenter

Pair

RootObject

Quad

Triple

ByteString

String

ByteStream

EmptyClass

RootObject

BTreeIterator

HashTableIterator

KeyedLinkedListIterator

LinearCollectionIterator

LinkedListIterator

SequenceIterator

Stream

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

Collection

SequenceCursor

Iterator

LinearCollection

LibraryContainer

collections:def-
inition
collec-

tions:items
collections:ele-

ments
key-value pairs
collec-

tions:members

447

Collections 16

contains. Collections are the basic classes that implement protocols for group
behavior. Collections can have a fixed, variable, or unbounded number of
items. Items in a collection can be sorted or unsorted. Some collections can
hold objects of any class, others restrict the classes of their keys or values, and
some collection classes hold elements that are not objects.

The ScriptX Player factors the root behavior of collections between two abstract
classes: Collection and LinearCollection. Collection inherits from
Container, and provides the root behavior of all the concrete collection
classes. Collection defines the basic methods for adding, processing, and
removing elements, for gaining access to each key and value. Collections that
have a natural order, collections that can be processed sequentially, inherit
from LinearCollection as well as from Collection. LinearCollection
is a mix-in class that defines methods for processing elements in order, for
rearranging elements within a collection.

Each element in a ScriptX collection can be identified by using a key. This key
may or may not be stored in the collection itself. For collections that inherit
from ImplicitlyKeyedCollection, this key is simply the element’s
position within the collection. For example, with the Array class, it is the
integer offset for each object in the array. Other collections, subclasses of
ExplicitlyKeyedCollection, store their key explicitly. This key can be any
object, but it is usually some object on which the collection can be conveniently
and systematically ordered.

An iterator is a mechanism for stepping through each item in a collection in an
orderly fashion. An iterator is an object that manages elements of a collection
as a stream. Many operations on collections require a script to process each
element, often in some natural order. An iterator is a stream that is readable,
writable, and seekable. By creating an iterator, a script has access to methods in
the Streams component that are useful for sequentially processing and
manipulating the elements of a collection. If a collection has a natural order, its
iterator always processes items in that order.

Iterator is an abstract class that inherits from Stream and provides the root
behavior for all iterators. Iterators can be created explicitly. They are generated
automatically by for loops in the ScriptX language, and also by generic
functions such as forEach and map that all collections implement. For more
information on ScriptX for loops and their application to collections, see
Chapter 4, “Conditional and Loops,” in the ScriptX Language Guide. For more
information on streams, see Chapter 20, “Streams.”

How Collections Work
A collection is an aggregation of objects. (Some collection classes, such as
String and NumberRange, do not actually contain objects, although methods
such as getOne that retrieve an element from these collections return an
object.) The objects within a collection can be of any type of object: numbers,
strings, bitmaps, pushbuttons, presenters, or other collections.

Collections are not the only classes that store other objects—it is common for a
class to define instance variables that store other objects. In C++ terminology,
such variables are called members. Collections are distinct in that the base

erator:defini-
n

ollections:ob-
ts contained

448

16 ScriptX Components Guide

collection classes defined by ScriptX make no semantic distinction between
elements. For example, any of the four elements of a Quad can contain any
object. This differs from other classes that contain more than one object. For
example, in a Point object, one item intrinsically represents the x position and
another item represents the y position.

The LinearCollection mix-in class denotes that items of a collection will
always be visited in the same order until a new item is added or an old one
deleted. Some collections, such as Array and LinkedList, have a natural
order. Others, such as HashTable, do not. LinearCollection factors out
behavior for ordinal operations—operations that can only be performed on
collections that have a natural order.

The ScriptX collection classes define several different abstract types of
collections. All of the collection classes are keyed, that is, each item in the
collection has a corresponding key. A key is any object (often an integer or
string) that is paired with, or bound to, a value, either explicitly or implicitly.
Thus, we often refer to an item in a collection as a key-value pair.

Collections with explicit keys are those in which the key is an explicit member
of the collection. An explicit key can be any object—such as an integer, a string,
a date, or even another collection. As with other collections, a value can be any
type of object. In addition, keys need not be the same kinds of object as values.

Note that in unsorted collections with explicit keys, the order of the keys
themselves isn’t important. For example, if you wanted to keep track of who
parks in the parking lot, you could build an explicitly keyed collection in
which the keys are the names of drivers, and values the names of cars.

Collections with implicit keys are those in which the keys are automatically
assigned by the collection rather than by the user. Thus, collections that are
subclasses of ImplicitlyKeyedCollection have their key values assigned
by the collection. The most common kind of implicitly keyed collection is
Sequence, whose keys are the series of positive integers 1, 2, 3, and so on. In
sequences, the key is simply the position of the item in the sequence; you can
use that position to access the value. For example, you could use a sequence to
represent a queue of tasks:

The ScriptX collection hierarchy contains several abstract classes that
implement the behavior of these different types of collections.

Every collection is either an explicitly keyed or and implicitly keyed collection,
as shown in Figure 16-1. LinearCollection defines additional methods that
allow a script to access items through their position in the list.

ey
ollections:key

ey-value pairs
ollec-
ns:key-value
r
nding
ollec-
ns:binding
xplicit keys

Jim

Ranger

Mike

Buick

Karen

Cabriolet

Greg

Isuzu

Ross

Miata

Felicia

Saab

Jim

Ranger

Harvey

Integra

Karen

Cabriolet

Greg

Isuzu

Ross

Miata

Felicia

Saab

2

Eat

1

Feed

3

Wash

5

Call

6

Go to

4

Do
dog dishes laundry Momdinner bed

mplicit-
KeyedCollec-
n class
xplicti-

KeyedCollec-
n class

449

Collections 16

LinearCollection is mixed into both implicitly- and explicitly-keyed
collections to provide access through position. Sequence, a subclass of both
ImplicitlyKeyedCollection and LinearCollection, provides access by
position without explicit keys.

Figure 16-1: Classes that define the Collection protocol

A linear collection has a natural order. Items in a linear collection are generally
processed in that order. Most generic functions that depend on the ordering of
items are defined by LinearCollection, rather than by Collection. Note
that while a script can have access to the nth item in a linear collection, the
LinearCollection class does not define methods for adding an item in a
particular position, or for changing the position of an item. The Sequence
protocol defines additional methods that determine the position of an item in a
collection, such as addNth, moveToFront, and sort.

Sorted Collections

The sorted collections are BTree, SortedKeyedArray, and SortedArray.
Sorted collections are those in which the items in the collection are maintained
in sorted order. The order of the sorting is specified by a sort function. During
sorting, the collection compares one item against another, using this function to
determine the order of the items. This function enables a collection to sort its
members alphabetically, numerically, forwards, backwards, or by any criterion
you can devise. You specify a “less than” function in the new method of
SortedArray and SortedKeyedArray collections.

Note – Developers will generally want to create their own sorting functions for
sorted collections that are heterogenous (contain more than one kind of object),
since the default sorting function sorts items by class and then by value.

Collection

LinearCollection

ImplicitlyKeyedCollection ExplicitlyKeyedCollection

BTree

KeyedLinkedList

SortedKeyedArray

HashTable

Array

ArrayList

SortedArray

Sequence

orted collec-
ns
ollec-
ns:sorting

450

16 ScriptX Components Guide

An explicitly keyed collection can be sorted either by key or by value,
depending on the sort function that is supplied. However, an implicitly keyed
collection can be sorted only by value, because the keys are a result of the sort.

When an item is added to a sorted collection, it is automatically inserted in its
proper sorted position. Although you can access the items of a sorted collection
by their position in the list (first, second, third), that position is subject to
change based on any items that are added or deleted.

Note – Sorted collections insert an item in its proper position automatically. Do
not insert items manually, rearrange items by script, or modify keys. To modify
the key of an item, remove it from the collection, change the key, and explicitly
add it back to the collection.

Comparison Functions

Comparing for “Equal”

Some of the generic functions implemented by collections compare keys or
values. For example, isMember tests to see if an object is in the collection, and
getOne compares keys to retrieve the appropriate value. The instance
variables valueEqualComparator and keyEqualComparator return the
functions that are used to compare values and keys, respectively. Typically, this
is the ueq function (universal equal). The function ueq can compare any two
objects, and is guaranteed to return a value without reporting an exception.
However, ueq requires that two objects be of the same class to return true.
You may wish to create collection classes that use different equality tests.
Table 16-2 lists three global functions, defined by ScriptX, that can be used as
equal comparators.

Table 16-1: ScriptX equal comparators

For example, suppose you want to create an instance of HashTable that uses
strings as keys. StringConstant and String are separate classes in ScriptX.
The following expression returns false because "foobar" is a string constant,
while "foo" + "bar" evaluates to String.

ueq "foobar" ("foo" + "bar")

➯ false

You might want a hash table in which strings and string constants can be
equal. You can specialize HashTable to relax the key equal comparator, to use
a different equals function, as shown in the following example.

Function Comment

eq returns true if two objects are identical

equal used when the isComparable and localEqual methods can
perform the equality testing

ueq guaranteed to return a value; returns true if two objects are of the
same class and pass the localEqual test

omparison
ctions

ollec-
ns:compari-
n functions

451

Collections 16

myHash := object (HashTable)
instance methods

method keyEqualComparatorGetter self -> equal
end

Comparing for “Less Than”

When sorting, comparison functions must be used to compare items two at a
time to determine if one item is “less than” the other. ScriptX has two
mechanisms for sorting items in a collection:

• Use a class that keeps its items sorted, SortedArray or
SortedKeyedArray, and pass in the “less than” function when you
instantiate the class with the optional keyword argument ltFunction.
These classes default to ult (universal less than). Here’s an example of a
sorted array with a custom sort function:

mySortedArray := new SortedArray \
ltFunction:(x y -> (x as String) < (y as String))

• Use a subclass of Sequence and call the sort method on the instance of
the collection, which takes a less-than function as its second argument.
Here’s an example of a sorted array with a custom sort function:

myArray := new Array
sort myArray (x y -> (x as String) < (y as String))

The less-than function is used to provide a consistent ordering of items. ScriptX
allows you to specify functions as comparators for collections, so that you can
either built-in comparison functions, as shown in Table 16-2, or write your
own. In either case, a “less than” function should take two values as
arguments, and return true if value1 should sort before value2. The previous
two examples use this function:

(x y -> (x as String) < (y as String))

You might want to use custom comparison functions in place of built-in
functions if you’re putting unusual objects into a sorted collection. For
example, how does one sort an array of instances of PushButton? Since the
PushButton class does not specialize localLT, the generic comparator for
objects, the built-in comparison functions would report an exception.

If you specify your own “less than” function, that function can determine what
aspect of a button you want to compare. For example, you might compare and
order buttons according to text in the button’s label, the button’s position on
the display, or the order in which the button appears in the title. There are two
approaches to creating a comparison function. You can create a new global
function, such as the global comparison functions in the ScriptX Class Reference.
You can also specialize the generic functions in the Comparison protocol, so
that existing global comparison functions are able to compare new classes of
objects.

452

16 ScriptX Components Guide

Table 16-2: ScriptX less than comparators

The following is a list of variables and methods in the Collections component
that explicitly specify a comparison function.

For discussion of the Comparison protocol, see “Comparing Objects” on
page 633 of Chapter 23, “Object System Kernel.” See also the discussion of
comparison operators in the ScriptX Language Guide.

Choosing a Collection Class
Given that all classes that inherit from Collection store and manipulate
multiple items, you may have questions about which one is optimal to use for
any one situation. Choosing the best collection is a key to performance. Since
ScriptX is an object-based system, it is possible to switch one collection for
another that shares the same protocols.

One way to determine which collection class to use is by looking at the
inheritance tree at the start of this chapter. The following flowchart,
Figure 16-2, illustrates the process of exploring the inheritance tree. If you want
either a discrete or continuous range, use those classes. Otherwise, start at
Collection and move down the tree, making a decision at each branch.

Function Comment

lt use when you want to safely compare comparable objects; reports
an exception if you pass in incomparable objects

localLt a method defined for all objects, one of the four primitives from
which all comparison functions are defined

ult Use a “universal” less-than comparator when you want to
consistently compare anything. Note that ult reports an exception
if it is used to compare two objects of the same class, and that class
does not specialize localLT.

Instance Methods

SortedArray
 new self initialSize:integer growable:boolean ltFunction:ltfunction

SortedKeyedArray
 new self initialSize:integer growable:boolean ltFunction:ltfunction

Sequence
 sort self ltFunction

Instance Variables

Collection
 self.valueEqualComparator

KeyedCollection
 self.keyEqualComparator

ollec-
ns:which to
e

453

Collections 16

Figure 16-2: Flowchart for selecting a collection class.

Even if you follow the preceding flowchart to an endpoint, you may still be
faced with a choice. Each class of collection implements a different data
structure. The choice of which collection to use in a particular application
involves understanding tradeoffs between performance in various operations
and efficient use of memory. Select a collection based upon how you intend to
use the collection. In a well-designed object-based system, it is easy to switch
from one collection class to another, since all collections implement a common
set of methods. The following list summarizes the major issues in choosing a
collection.

1. Inserting items. How fast can new items be inserted into a collection. For
most classes, it is easy to either append or prepend an item to a collection.
Some collections must rearrange other elements each time an item is
inserted in the middle of the collection.

2. Deleting items. How fast can items be removed from a collection? The
issues are the same as for inserting items.

3. Linear access. How quickly can you access elements of the collection in
sequential order?

4. Linear access in reverse. How fast is linear access in reverse order?

5. Random access by key. How quickly can you obtain access to a randomly
choose element, given its key?

6. Random access by value. How quickly can you obtain access to a randomly
choose element, given its value?

7. Size and performance. How does performance vary with size? Does
performance of any operations decrease as the collection grows large?

Explicit or
Implicit Key?

Sorted or
Unsorted?

SortedKeyedArray
BTree

HashTable
KeyedLinkedList

ExplicitImplicit

Sorted Unsorted

Sorted or
Unsorted?

SortedArray Array
ArrayList

Sorted Unsorted

LinkedList
Single

Pair
Triple

ByteString
Quad

Start

454

16 ScriptX Components Guide

8. Memory requirements. How much memory, in addition to what is required
for the key and the value, does the collection require for other structures,
such as indexes?

Keep in mind that ScriptX is an untyped language, and that assignment is
always by pointer. In more structured languages, data structures such as arrays
must contain homogeneous elements. ScriptX collections contain pointers to
objects. With the exception of immediate objects, the object itself is stored
elsewhere. (For a discussion of immediate objects, see page 490 of Chapter 17,
“Numerics.”)

Since ScriptX collections contain pointers, linear structures of large objects are
quite flexible in ScriptX. Programmers who are accustomed to a language that
has explicit data types, such as C or Pascal, will want to rethink their strategies
for choosing a data structure. For example, the trade-off in ScriptX between
using an array and a linked list often favors an array in cases where a
developer might choose a linked list in other languages.

Some collection classes give a programmer additional options, determined at
initialization, that affect performance and memory requirements. For example,
the Array class allows a script to determine whether an array is growable, and
what its initial size will be. The discussion that follows summarizes the
advantages and disadvantages of each of the collection classes, offering
strategies for using them efficiently.

Arrays and Sorted Arrays

An array stores its items contiguously and uses a simple linear search to locate
an item. When an item is inserted anywhere except at the end of the array,
existing items must be moved to keep them contiguous. This process can be
slow. The bigger the array, and the closer to the beginning it is inserted, the
longer this move takes. However, random access to items by key is fast because
items in an array are contiguous. The ScriptX Player can retrieve the nth item
by directly computing its location.

Array, SortedArray, and SortedKeyedArray are linear collections. The
methods that these classes inherit from LinearCollection, such as getNth
and deleteNth, allow access to items by position. Note that for sorted arrays,
that position may change each time an item is inserted or deleted, since the
items are sorted after each change.

There are three built-in concrete array classes:

• Array – the basic implementation of an array. Array inherits from
Sequence and, therefore, uses implicit keys.

• SortedArray – an array in which the values are always sorted.
SortedArray also inherits from Sequence.

• SortedKeyedArray – an array of key-value pairs which is always sorted
by key. SortedKeyedArray inherits from ExplicitlyKeyedCollection
and LinearCollection.

rays
rray class
ortedArray
ss
ortedKeyedAr-
y class

nearCollection class
nearCollection class:getNth method
nearCollection class:deleteNth method
etNth method (LinearCollection)
eleteNth method (LinearCollection)

455

Collections 16

Many of the ScriptX Player’s internal data structures use arrays by default. For
example, all of the subclasses of Controller and TwoDMultiPresenter that
are defined in the core classes specify an array as a target collection. Although
a developer can use a different target collection, an array is usually optimal for
operations that require fast linear and sequential access to elements of the
collection.

Sorted arrays, like unsorted arrays, offer fast linear access. Inserting items into
a sorted array is considerably slower, since the entire collection must be
rearranged each time an item is added. However, random access is much faster
than with unsorted arrays.

Sorted arrays are ideal for smaller and relatively static collections, where
satisfactory performance on random access is required. SortedKeyedArray
and SortedArray objects search for a random element using a “binary chop”
algorithm—they divide the collection in half and then divide one subcollection
in half, continuing until a matching object is found. The efficiency of this
algorithm is proportional to log2n, where n is the size of the collection.

Note – An object cannot be used as a key when a key-value pair is added to an
instance of SortedKeyedArray unless that object implements localLT.
Similarly, an object cannot be added as a value to an instance of SortedArray
unless that object implements localLT. The default implementation of
localLT, defined by RootObject, reports an exception. For more
information, see the discussion of comparison that begins on page 450.

Both SortedArray and SortedKeyedArray allow a script to set a
comparison function at initialization by setting the ltFunction keyword.

Table 16-3: Performance characteristics of the Array class

Inserting items slow, except when the element is appended to the
collection.

Deleting items slower, depending on the size of the collection, and the
position of the element that is being deleted

Linear access fastest

Linear access in reverse fastest

Random access by key fast, however the implicit key may have no useful
meaning

Random access by value slower, depending on the size of the collection, and the
position of the element

Memory requirements each element requires a pointer. Blocks of memory are
added in increments, set by the initialSize keyword.

Size and performance performance on any operation that requires a linear
search decreases as an array grows larger

Table 16-4: Performance characteristics of the SortedArray class

Inserting items slow, depending on the size of the collection, and the
position of the element that is being added

Deleting items slow, depending on the size of the collection, and the
position of the element that is being deleted

456

16 ScriptX Components Guide

SortedKeyedArray objects arrange key-value pairs according to an explicit
key. Its performance parallels that of SortedArray, except that random access
to by value is much slower. (The ScriptX core classes do not currently include a
class of explicitly-keyed array that sorts itself by value.)

Linked Lists

A linked list is a sequence of items, in which each item is linked to the next. The
items are not necessarily contiguous. When a new item is inserted between two
items, the link is broken between them. New links are created between the new
item and each of the existing items. This technique does not require moving
any items, therefore adding items in a linked list can be quite fast.

However, searching for an item in a linked list is slow, because when
traversing a linked list, the searching program must follow links from item to
item.

There are two concrete linked list classes:

• LinkedList: a single-linked list of objects. LinkedList inherits from
Sequence.

Linear access fastest

Linear access in reverse fastest

Random access by key fast, however the implicit key may have no useful
meaning

Random access by value faster than Array, although still dependent on the size
of the collection and the position of the element

Memory requirements same as Array

Size and performance performance on any operation that requires rearranging
the collection decreases as the array grows larger

Table 16-5: Performance characteristics of the SortedKeyedArray class

Inserting items slow, depending on the size of the collection, and the
position of the element that is being deleted

Deleting items slow, depending on the size of the collection, and the
position of the element that is being deleted

Linear access fastest

Linear access in reverse fastest

Random access by key fast, although still dependent on the size of the
collection and the position of the element

Random access by value slower, depending on the size of the collection, and the
position of the element (same as Array)

Memory requirements each element requires a pointer for the key and a
pointer for the value. Blocks of memory are added in
increments, set by the initialSize keyword.

Size and performance performance on any operation that requires rearranging
the collection decreases as the array grows larger

Table 16-4: Performance characteristics of the SortedArray class

nkedList
ss
eyedLinkedLi
class

457

Collections 16

• KeyedLinkedList: an unsorted linked list of key-value pairs. The order of
the key-value pairs is not determined. KeyedLinkedList inherits from
ExplicitlyKeyedCollection.

In other systems, linked lists are a useful data structure when inserting and
deleting items is a priority. Since ScriptX collections actually store pointers to
elements, linked lists offer very little that the ArrayList class cannot do
better, and with less overhead for memory allocation and management.

If you create a scripted subclass, note that the classes LinkedList and
KeyedLinkedList have recursive data structures. Each value added to the
collection causes a new instance of the class to be created. If you create a
subclass of LinkedList and override the init method, you must address the
fact that your init method will be invoked for each object added to the list.
This is not the same behavior for init in the Array or HashTable classes,
where init is invoked only once for the lifetime of the collection.

Array Lists

Think of the ArrayList class as a hybrid of Array and LinkedList, a class
that sacrifices some performance advantages of an array to gain others. Arrays
offer excellent performance at linear access and random access by implicit key.
But as an array grows large, adding and deleting values becomes more and
more cumbersome. An array list can be thought of as a series of subarrays
linked together—a linked list of arrays.

A script determines the size of each subarray by setting the initialSize
keyword when an instance of ArrayList is created. Thereafter, a script knows
nothing about how elements are arranged between subarrays—subarrays are
an implementation detail that is completely transparent to the scripter.

Table 16-6: Performance characteristics of the LinkedList and KeyedLinkedList
classes

Inserting items fast, provided you are already at the position where you
want to insert an item

Deleting items fast, provided you are already at the position where you
want to delete an item

Linear access fast, but slower than arrays

Linear access in reverse very slow, especially as the collection grows large

Random access by key very slow, dependent on position in the collection

Random access by value very slow, dependent on position in the collection

Memory requirements proportional to size, but each element requires more
overhead than for an array

Size and performance performance on most operations decreases as the array
grows larger

rrayList class

458

16 ScriptX Components Guide

Figure 16-3: An array list containing 21 elements, with initial size 8

As you add and delete elements, the array list rearranges only the subarray
that contains the element. It can add and delete new subarrays in the middle as
well as at the end of the collection.

Figure 16-4 depicts the array list in Figure 16-3 after several changes. First, the
original item 4 has been deleted. Next, two new items have been inserted after
the original item 12, which is now item 11. Inserting two new items causes the
ArrayList object to split its second subarray, putting the elements after the
insert into a new subarray. Implicit keys are renumbered automatically,
preserving the order of the collection.

Figure 16-4: An array list after items have been inserted and deleted

Note that these operations do not affect the contents of the third subarray,
which becomes the fourth subarray after several items are added. Items 18
through 22, although renumbered, remain in their original positions. Although
there is empty space at the end of each subarray in Figure 16-4, this empty
space is invisible to the scripter, which knows nothing about how an array list
organizes its elements. An array list recovers this empty space when it is saved
to the object store.

ArrayList places an upper limit on the overhead associated with adding and
deleting items in arrays. For large collections, this gives it a performance
advantage over Array on these operations, for which it sacrifices performance
in both linear and random access.

Table 16-7: Performance characteristics of the ArrayList class

Inserting items depends on the initial size of the array list, slower as the
initial size grows large

Deleting items depends on the initial size of the array list, slower as the
initial size grows large

Linear access slower than Array, slightly faster than LinkedList

item 19item 17 item 18 item 20 empty empty emptyitem 21

item 3item 1 item 2 item 4 item 6 item 7 item 8item 5

item 11item 9 item 10 item 12 item 14 item 15 item 16item 13

item 20item 18 item 19 item 21 empty empty emptyitem 22

item 3item 1 item 2 item 4 item 6 item 7 emptyitem 5

item 10item 8 item 9 item 11 empty empty emptyempty

item 14item 12 item 13 item 15 item 17 empty emptyitem 16

459

Collections 16

B-Trees

BTree, short for balanced tree, is an explicitly keyed collection whose items
are sorted and indexed by key. You gain access to an element of a B-tree by
traversing the tree. For large collections, random access to elements in a B-tree
generally requires fewer steps than access to elements of an array or linked list
of the same size.

The ScriptX Player implements a B-Tree in which all nodes are either branching
nodes or terminal nodes, and all terminal nodes are at the same level.
Branching nodes store pointers to nodes at the next level down. Terminal
nodes store a pointer to the value as well as the key. This facilitates fast
retrieval. At any given level, all nodes are double-linked. Since nodes are
double-linked, linear access is fast, comparable to ArrayList, although not
quite as fast as Array. (This assumes that all terminal nodes are in memory.)

When you create a new BTree object, you can specify a comparison function at
initialization (using the keyword argument cmpFunction). This function
determines the ordering of keys as elements are added to the collection.This
function is analgous to the comparator function (specified using the
ltFunction keyword) for SortedKeyedArray, except that it returns one of
@before, @same, or @after rather than a Boolean value. The default value
for cmpFunction is ucmp (universal comparison). The implications of
specifying a comparison function are the same in all ordered collections.

The default comparison function (ucmp) is guaranteed to compare any two
keys without returning an exception, provided that those keys are objects that
implement localLT. Of course, the comparison that ucmp makes is
meaningless, unless the two keys are objects of the same class. As a
replacement for ucmp, you can specify any function that returns @before,
@same, or @after to create a consistent ordering of elements.

Note – An object cannot be used as a key when a key-value pair is added to a
BTree unless that object implements localLT. The default implementation of
localLT, defined by RootObject, reports an exception. For more
information, see the discussion of comparison that begins on page 450.

Linear access in reverse slower than Array, but much faster than LinkedList

Random access by key slower than Array, but much faster than LinkedList

Random access by value slow, depending on the size of the collection, and the
position of the element

Memory issues blocks of memory are added in increments, set by the
initialSize keyword. As items are inserted and
deleted, the number blocks and the amount of empty
space increases

Size and performance insertion and deletion can be much faster than for
Array in large collections

Table 16-7: Performance characteristics of the ArrayList class

460

16 ScriptX Components Guide

A program should not explicitly change the key of any element in a BTree
object, except by removing it from the collection, setting its key, and inserting
that element back into the collection. To guarantee the integrity of the sort
order, always use the generics defined by Collection and
LinearCollection to add, delete, or modify items in the collection.

B-trees differ from binary trees in that they have a specifiable branching factor
that is greater than two. Figure 16-5 depicts a B-tree with a branching factor set
to 4. (In most real applications, the branching factor should be much larger
than 4.) A script determines the branching factor by setting the brFactor
keyword at initialization. When a BTree object searches for a random key, it
must perform a linear search at each node. Thus, the optimal branching factor
increases as the size of the collection increases.

Figure 16-5: A BTree object

Since each terminal node in a BTree object is itself a top-level object, a
terminal node is brought into memory only when it is needed. Branching
nodes are automatically brought into memory as embedded objects. This
makes the BTree class ideal for use with large, disk-based databases. For more
information on top-level and embedded objects, see the section “Collections
and Load Management” on page 462.

Hash Tables

The HashTable class stores unsorted items sparsely. It uses a hashing
technique, which can be fast, to locate an item. The hash table is a fixed-size
array of “buckets” that contain key-value pairs. Hashing provides access to a
bucket in the table directly by arithmetically transforming a key that locates
the bucket. Therefore, no searching is involved in locating a bucket.

Table 16-8: Performance characteristics of the BTree class

Inserting items fast

Deleting items fast

Linear access fast, comparable to ArrayList

Linear access in reverse fast, comparable to ArrayList

Random access by key fast, even on large collections

Random access by value very slow, requires a linear search

Memory requirements ideal for large collections, since only the branching
nodes must be in memory

Size and performance very little performance degradation as size increases

ArturoAlison Andrew Assaf Bob empty emptyBill Charlie Cheng ClaytonChao

Jim Ross WadeDoug

Bob Clayton DougAssaf

David Diane DougDan

Terminal nodes

Branching nodes

HashTable class
hashing
collections:hashing

461

Collections 16

In a large collection, computing the hash value and looking in the bucket is
faster than looking through all of the items of an array or linked list. Any
number of key-value pairs can be put in a bucket, so some searching may be
needed once the proper bucket is located. ScriptX allows you to determine the
number of buckets at initialization. Although the items in a hash table have
explicit keys, they are unsorted.

Each time you add a key-value pair, the key is “hashed” to determine which
bucket that key-value pair goes into. Then, the key-value pair is inserted into
that bucket. A good hashing function is one that returns a value quickly, with
little computational overhead, and that balances items in the collection evenly
between buckets.

Note – If you do not designate a hashing function using the hasher keyword,
any object used as a key must implement or inherit a hashOf method. For
more information, see the definition of HashTable in the ScriptX Class
Reference.

Single, Pair, Triple, Quad

In addition to the classes listed in previous sections, the Collections component
also includes the following classes, which inherit from Sequence.

• Single – a sequence that always contains one item.

• Pair – a sequence that always contains two items.

• Triple – a sequence that always contains three items.

• Quad – a sequence that always contains four items.

These classes are created with a fixed size. You cannot add or delete elements,
but you can set their values. Since the number of elements never changes, an
element always retains the same implicit key. Since they are bounded, Single,
Pair, Triple, and Quad each offer a slight performance advantage over an
array of the same size.

Table 16-9: Performance characteristics of the HashTable class

Inserting items fast, provided that the number of elements in a bucket
is small

Deleting items fast, provided that the number of elements in a bucket
is small

Linear access not a linear collection, no linear ordering

Linear access in reverse not a linear collection, no linear ordering

Random access by key fast, even on large collections

Random access by value very slow, requires a linear search

Memory issues large, since in the current implementation of
HashTable, all buckets must be in memory

Size and performance very little performance degradation as size increases

ngle class
air class
riple class
uad class

462

16 ScriptX Components Guide

Collections and Threads

ScriptX developers should be aware of the possibility for thread conflict when
more than one thread has access to a collection. For example, the Collection
methods forEach and forEachBinding create an iterator. If a thread is
suspended while iterating over a collection, and if another thread modifies the
collection before the initial thread has a chance to resume and finish the
operation, the results can be disastrous.

One solution is to allow access to a collection only within one thread. But this
may be unsuitable for many programs. Another solution is to invoke methods
that depend on the integrity of the collection only within code that is not
preemptible, by using the global functions threadCriticalUp and
threadCriticalDown to protect the critical code segments. The most general
solution is to attach a gate to the thread, as in the LockedArray class, which is
defined below.

class LockedArray (Array)
inst vars lock
instance methods
method init self #rest args -> (

apply nextMethod self args
self.lock := new Lock

)
method acquire self -> acquire self.lock
method relinquish self -> relinquish self.lock
method add self key value -> (

acquire self
nextMethod self key value
relinquish self

)
method deleteOne self value -> (

acquire self
nextMethod self value
relinquish self

)
-- specialize other methods here

end

The LockedArray class only specializes a very minimal part of the
Collection protocol. To create a robust locked array that cannot be
accidently modified by two threads at once, specialize every method that can
potentially modify the collection. Note that IndirectCollection is not
suitable for creating a “locked” collection, since the objectAdded and
objectRemoved methods are not called until after the object is added or
removed.

For more information, see “Gates” on page 595 and “Preemptibility” on
page 599 in Chapter 22, “Threads.”

Collections and Load Management

Since ScriptX includes both a real-time incremental garbage collector and an
object store, a program is not required to perform explicit memory
management. A ScriptX program can reference an object without knowing
whether it is in main memory, or on a storage device. If the object is on a

reads: collections<$startrange>
ock class<$startrange>
ollections:locks<$startrange>
ollection class:forEach method
ollection class:forEachBinding method
rEach method (Collection):Collection class
rEachBinding method (Collection):Collec-
n class

readCriticalUp function

irectCollection class:objectAdded method
irectCollection class:objectRemoved meth-

ectAdded method (IndirectCollection):Indi-
Collection class
ectRemoved method (IndirectCollection)

reads: collections<$endrange>
ock class<$endrange>
ollections:locks<$endrange>

463

Collections 16

storage device, it is automatically retrieved and brought into main memory.
However, given the performance demands of real-time media playback, you
might want to manage the loading and purging of objects. An object that is in
main memory is accessible almost immediately. Objects on a hard disk,
CD-ROM, or network device are available only with some latency.

When you call load on a ScriptX collection, only the collection’s internal data
structure is actually loaded into memory. A collection is really a container that
stores references to its member objects. Your program can reference these
member objects without being concerned about where they reside—in main
memory or on a storage device. Member objects are loaded on demand.

Members of a collection are not loaded when the collection itself is loaded,
unless you call the global function loadDeep. A call to loadDeep causes the
collection to iterate through its member objects, bringing those objects into the
ScriptX heap, and any objects they refer to as well. Of course, loadDeep can
have unintended consequences, so it should be used with caution. For
example, if a member object contains a reference to a module, any object that
has a name binding in that module, or in any other module that is used by that
module, is also brought into main memory.

Among the ScriptX collection classes are several that load only necessary
internal structures when you access a member object. For the LinkedList and
KeyedLinkedList classes, only the “head” of the list is brought into memory
when the collection is referenced. When you search for an item, each internal
node is brought in as the program iterates through the list. Figure 16-6 depicts
a ScriptX linked list after it has been loaded into memory. Note that only the
head of the list is initially in main memory.

A HashTable object appears internally as an array of arrays, otherwise known
as buckets. Each bucket is an array that contains references to individual
objects. Buckets are loaded into memory only on demand. Thus, to load a few
items from a hash table requires that only a relatively small part of the entire
data structure be brought into memory. Similarly, the BTree class loads its
branching nodes, but not its leaf nodes. In this way, both HashTable and
BTree provide data storage that requires relatively little main memory until
objects are actually needed.

All ScriptX array classes, including Array, SortedArray,
SortedKeyedArray, and ArrayList, are loaded in their entirety whenever
they are referenced in a program. Figure 16-6 depicts a ScriptX array after it
has been loaded into memory. Note that only the array’s internal data structure
is initially in main memory, and not its member objects. A call to load (or any
other reference to the collection) causes the ScriptX Player to load references to
member objects, but not the objects themselves. A call to loadDeep brings in
both the array’s internal structures and the member objects themselves,
including any other objects referenced by member objects.

464

16 ScriptX Components Guide

Figure 16-6: An array and a linked list, after each has been loaded but before elements
of the collection have been accessed.

Once a ScriptX program has referenced a member object in a collection,
internal structures such as buckets (HashTable), nodes (LinkedList and
KeyedLinkedList), or leaf nodes (BTree) remain in memory until the
collection as a whole is garbage collected or purged.

Strings

The ByteString class, which inherits from both Sequence and Stream,
stores a series of integers between 0 and 255. In contrast with the String class,
a byte string can contain an ASCII nul character. ByteString objects are
useful for manipulating machine-specific structures. For text strings, see the
String class in the chapter “Text and Fonts.”

SequenceCursor

SequenceCursor is an abstract mixin class. It is designed to be mixed in with
a subclass of Sequence to give the user a “cursor” into the sequence and
control over that cursor. In a sense, it is an iterator, but a SequenceCursor
object keeps its cursor pointing to the same item even when items are added or
deleted, and it does the “right thing” when the current item is deleted.

For example, if the cursor is pointing to item 15 and a previous item is deleted,
such as item 10, then the cursor continues to point to the same item, which is
now item 14. Conversely, if the cursor is pointing to item 15 and a value is
inserted at any previous item, then the cursor will continue pointing to the
same item, which is item 16. If the cursor is pointing to item 15, and that item
is deleted, the cursor will point to the new item 15.

You can navigate through the sequence with the goTo method. The goTo
method takes as an argument an ordinal position in the sequence; when called,
goTo points the cursor at that position. The goTo method contains the
fundamental implementation for SequenceCursor; the instance variable
cursor and the methods forward and backward all rely on the goTo
method.

1

2

3

4

4

3

2

1

in memory (RAM)

on disk

Linked List Array

yteString
ss

equenceCur-
r class

oto method:
equenceCur-
r)
equenceCur-
r class:goTo
thod

465

Collections 16

One of the benefits of SequenceCursor is that the goTo method runs every
time an item is deleted or its value is changed. Subclasses need only override
goTo to gain control of a SequenceCursor object’s behavior. You would
typically override goTo as follows:

method goTo self ordinal -> (
apply nextmethod goTo self ordinal
-- your own title’s implementation that happens with every "goTo"

)

SequenceCursor is used by OneOfNPresenter. It allows you to go forward,
go backward, and go directly to any presenter.

Another benefit of SequenceCursor is that it allows you to use collection
methods directly on the collection (such as deleteNth), rather than limiting
you to the smaller set of iterator operations.

SequenceCursor is a true mix-in class, in that it provides all of the
functionality you need for adding a cursor to a sequence—you don’t have to
implement the functionality. When you create a new class and mix
SequenceCursor in to a Sequence subclass (using the class keyword), you
should mix SequenceCursor in ahead of the Sequence subclass

class ArrayCursor (SequenceCursor, Array) end

This allows the ArrayCursor class to implement the version of methods such
as deleteNth and add that SequenceCursor defines, overriding methods of
the same name, defined by Array. Note that ArrayCursor still uses the same
keyword arguments as Array.

The following script mixes SequenceCursor with Array to create a new class
called ArrayCursor. It then creates an instance, appends three items to it,
goes to the third item, returns the cursor and current item, prepends a fourth
item and gets the current item again. Notice the cursor continues to point to
the same item even as items are added ahead of it.

class ArrayCursor(SequenceCursor, Array) end

-- create an instance and add 3 strings to it
seqObj := new ArrayCursor initialSize:6
append seqObj "bear"
append seqObj "cat"
append seqObj "dog"
goTo seqObj 3 -- go to the third item
seqObj.cursor

➯ 3

getNth seqObj (seqObj.cursor)

➯ "dog"

prepend seqObj "amoeba" -- add another item at beginning
-- it still points to the same item
getNth seqObj (seqObj.cursor)

➯ "dog"

equenceCur-
r class:sam-
 script

466

16 ScriptX Components Guide

Ranges

A range is an ordered set of values, usually numbers, ranging between a lower
and upper bound. The core classes include three concrete subclasses of Range
that incorporate numeric values: ContinuousNumberRange, NumberRange,
and IntegerRange. The latter two inherit from Range through
DiscreteRange, an abstract class that mixes in Range with Sequence. A
developer is not restricted to ranges that belong to these classes. A scripted
subclass of Range could specify a range of times or dates. A developer could
even define ranges that incorporate non-numeric values, such as strings.

ScriptX implements range literals. When the ScriptX compiler evaluates a
range literal, it automatically creates an instance of the appropriate subclass of
Range. The following are examples of range literals; for more information, see
“Range Literals” in the ScriptX Language Guide.

30 to 100 by 5 -- creates a discrete range
1.4 exclusive to 5.7 inclusive continuous -- continuous range

Each range has a value class, which specifies a class to which elements within
the range must belong. For example, the value class of an IntegerRange
object is Integer.

Only discrete ranges are collections, but all ranges are similar in how they
incorporate their elements. Unlike collections, in which each element is a
separate object, a range stores only information about its upper and lower
bounds, and its increment. If the value of increment is @continuous, then a
range includes every possible value between lowerBound and upperBound as
an element. A range that is not continuous is discrete. A range may or may not
include its upper and lower bounds.

A script can use the withinRange method, defined by Range, as a test of set
membership. For discrete ranges, the isMember method, defined by
Collection, is equivalent to withinRange.

The size property of a range is implemented as a virtual instance variable that
indicates the number of elements it incorporates. Although discrete ranges also
inherit a definition of size from Collection, their behavior as a range takes
precedence. Since ranges do not actually contain their elements, their method
of determining the value of size differs. A collection reports the actual
number of elements it contains. A range calculates and reports the number of
elements it incorporates. For a range whose elements are uncountable, such as
a continuous number range, or a range whose elements are countable but
infinite, the size property is not defined.

A range is immutable if none of its properties can be changed. Otherwise, it is
mutable. Instances of ContinuousNumberRange are always immutable. The
DiscreteRange class inherits a definition of mutable from Collection, but
mutable has a different interpretation. A collection is mutible if its elements
can be modified. Since a range does not store every element that it
incorporates, to change a range is to change the properties of its boundaries, or
the value of its increment.

ange class

anges: of
mbers

nges:literals

ze instance
riable
ange)
ange

ass:size in-
ance variable

anges:muta-
e
anges:immu-
ble

467

Collections 16

Continuous Ranges

A continuous range incorporates all values between the lower and upper
bounds. Figure 16-7 depicts a continuous number range with a lower bound of
0.8 and an upper bound of 6.6. In this range, the value of includesLower is
true, while the value of includesUpper is false.

Figure 16-7: A continuous number range includes all possible points between its
bounds.

The upper and lower bounds of a range are subject to the imprecision of
floating point numbers, as this code example demonstrates. It first creates an
instance of ContinuousNumberRange that includes the lower bound but
excludes the upper bound. It then tests for membership in the range, using the
withinRange method.

myRange := new ContinuousNumberRange \
lowerBound:2.2 \
upperBound:7.4 \
includesLower:true \
includesUpper:false

-- now perform some tests of membership in the Listener window
withinRange myRange myRange.lowerBound

➯ true

withinRange myRange myRange.upperBound

➯ false

-- these tests illustrate floating point imprecision
withinRange myRange 2.19999998

➯ true

withinRange myRange 7.39999998

➯ false

The ScriptX Player runs on many platforms, with several different processors,
in configurations both with and without a floating point coprocessor. The
examples above were produced on a Macintosh Quadra 840, a system that
implements the IEEE 80-bit floating point standard. Most computer systems in
use today use a lower-precision (64-bit) standard. Floating point output may
vary slightly when the ScriptX Player runs on different platforms.

The global constants posInf, negInf, and nan are commonly used with
continuous number ranges to indicate infinite or uncountable values. They do
not have a value or magnitude in the same sense that other numbers do. These
constants are useful for tests of comparison and set membership. For more
information, see the “Numerics” chapter of the ScriptX Components Guide, and
the “Global Constants and Variables” chapter of this volume.

anges:contin-
us
ontinuous-
mberRange

ass

0 1 32 54 6 7 8

468

16 ScriptX Components Guide

Discrete Ranges

A discrete range contains a countable sequence of ordered values, separated by
the range’s increment. Figure 16-8 depicts a discrete range with a lower bound
of 1.2, an upper bound of 6.2, and an increment of 1.25. The size of this range
is 5.

Figure 16-8: A number range is a range with discrete numeric values

A ScriptX for loop can iterate over elements of a discrete range. The following
code sample creates the range that is depicted in Figure 16-8 and iterates over
elements of the range to print out their values.

global myNumberRange := new NumberRange \
lowerBound:1.2 upperBound 6.2 increment:1.25

for i in myNumberRange do print i

The increment of a discrete range can be negative. If so, then the value of
lowerBound should be greater than the value of the upperBound. Since
discrete ranges are sequences, they are also linear collections. A loop that
iterates over the values in a discrete range is guaranteed to access every value
in an orderly and sequential manner.

The NumberRange class creates a range of elements that belong to a given
subclass of Number, consistent with the values of lowerBound, upperBound,
and increment. In this way, a script can create a range of integers, floats,
times, dates, or any other subclass of Number. The following script creates a
range or sequence of times separated by 20 minutes, collecting the elements
into an array.

object beginTime (Time)
settings hours:8, minutes:30 -- set to 8:30

end
object endTime (Time)

settings hours:17, minutes:30 -- set to 17:30 (that’s 5:30 pm!)
end
object timeInterval (Time)

settings hours:0, minutes:20 -- a 20 minute time interval
end
-- create a number range whose elements are instances of Time
object timeRange (NumberRange)

lowerBound:beginTime upperBound:endTime increment:timeInterval
end
object myArrayOfTimes (Array) -- an array to collect them into
end
-- now collect the elements of the Range into the array
for i in timeRange collect into myArrayOfTimes i

anges:dis-
ete
iscreteR-
ge class

0 1 32 54 6 7 8

469

Collections 16

Although the NumberRange class automatically sets the values of
includesLower and includesUpper to true, instances of NumberRange
sometimes do not technically include their upper bound. The following script
creates an instance of NumberRange that illustrates this seeming contradiction.

global myNumberRange := new NumberRange \
lowerBound:3.1 upperBound 6.4 increment:1.0

myNumberRange.includesUpper -- this will return true in listener window
➯ true
withinRange myNumberRange myNumberRange.upperBound -- yet this returns false!
➯ false

In this script, the upper bound is best interpreted as the highest potential value
in the range. The range itself is a sequence of floating point values in which the
lower bound is the starting value, but the size of this range is 4 and its
increment is 1.0, so its greatest value will be the best floating point
approximation of 6.1 on any given platform.

IndirectCollection

The IndirectCollection class is provided to allow you to implement
special notification methods that take action when a collection is modified. The
notification methods are isAppropriateObject, objectAdded, and
objectRemoved. The isAppropriateObject method is invoked when a
new object is about to be inserted into the collection. The objectAdded and
objectRemoved methods are called after an object has been inserted into or
deleted from the collection, respectively.

An IndirectCollection object does not actually store the objects inserted
into the collection. Instead, it points to its target, stored in the
targetCollection instance variable, which is an instance of a Collection
classes. The target collection actually holds the elements of the collection. The
IndirectCollection class merely overrides any methods that can
potentially modify the collection so that the notification methods can be called.
Then, the target collection object is called to do the actual work of the method.

Subclassing Collections

You may need to create a subclass of one of the built-in collection classes for an
application you are building. You will need to examine the behavior and
inheritance path of your proposed superclass carefully before you proceed, as
there are a few pitfalls you might encounter.

The classes LinkedList and KeyedLinkedList are recursive data structures;
each value added to the collection causes a new instance of the class to be
created. If you create a subclass of LinkedList and override the init routine,
you must deal with the fact that your init routine will be invoked for each
object added to the list. This is not the same behavior for init in the Array or
HashTable classes, where init is invoked only once for the lifetime of the
collection.

directCollec-
n class

ollec-
ns:subclass-
g

470

16 ScriptX Components Guide

Another issue is the choice of methods to override. The collection protocol
defines a large number of operations, some of which have default
implementations in the Collection class itself. Others have specific
implementations in the collection subclass. One possible problem that can arise
is that you may not get complete coverage of the methods if you don’t override
the appropriate ones.

For example, if you want to create a subclass of Array that prints a message
every time a new object was added, you might choose to override the append
method. This would miss any objects added using addNth, however. You may
want to examine your target superclasses using the getDirectGenerics call,
to check the actual implementation for each class. Alternatively, you can make
use of IndirectCollection, which has special case behavior for adding and
removing objects.

Iterators
An iterator is the mechanism that allows a collection to step through every one
of its items in an orderly fashion. Each subclass of the Iterator class is
designed to iterate over a particular kind of collection—for example, a
LinkedListIterator iterates over a LinkedList object.

An iterator accesses objects in a collection, one item at a time, and makes it
possible to access all items of that collection, regardless of their order (even if
they have no explicitly-defined order). Iterators are not guaranteed to return
the items in any particular order, nor will they necessarily return the items in a
repeatable manner unless the collection inherits from the LinearCollection
class. An iterator is guaranteed, however, to visit every item in the collection
exactly once when you step from one end to the other (using next or
previous).

Some collection operations, such as deleteAll, are implemented using
temporary iterators. An iterator is temporarily created to perform the
operation, and is then discarded. If you explicitly create an iterator on a
collection, that iterator is invalidated if you modify any items in the collection
through the collection’s own protocol.

When using collections from the core classes, note that each Collection class
implements methods, such as forEach, forEachBinding, and map, which
operate on all of its member items. If possible, use these methods, rather than
creating an iterator to step through the entire collection. These methods in the
core classes are often highly optimized for the collection’s own particular data
structure.

Iterators provide the Stream protocol for use with collections. You can delete
and overwrite keys and values, just as with collection protocols, but iterators
do not allow you to add members.

Each collection object knows which iterator it works with it. This information
is stored in the iteratorClass instance variable. When you call iterate on
a collection object, it creates a new iterator of the appropriate class, setting the
iterators source instance variable to itself.

erator

erator class

eratorClass
tance vari-
e (Collection)
ollection
ss:iterator-

ass instance
riable

471

Collections 16

Figure 16-9: Collaboration between iterators and collections.

An iterator has a cursor that keeps track of its current position in the collection
by pointing between items, as shown in Figure 16-10. When you call next on
the iterator, it takes one step, stepping just past the next item in the collection.
Even though the cursor technically points between items, for convenience we
often say that the cursor “points to” the item containing key and value, since
that item is the one that is currently available and ready to be operated on. As
an iterator is a kind of a stream, its methods on the Stream class (atFront,
cursor and pastEnd) are shown in the figure.

Figure 16-10:An iterator’s cursor points to the current item in its collection.

Just because a collection is mutable does not mean that its iterator is writable
(with write on Stream). For example, If you tried to write the value 6 to the
sorted array [1, 2, 3, 4, 5], you might end up with [1 ,2 ,6 ,4 ,5], which
invalidates the array, since it is no longer sorted.

Sequence

LinearCollectionIterator

HashTableIterator

LinkedListIterator

KeyedLinkedListIterator

LinearCollection

HashTable

LinkedList

KeyedLinkedList

SequenceIterator

BTreeIterator BTree

A has a reference to BKey

A B

erator:kind of
tream
tream
ss:also see
ra-
<$nopage>

Position to get or set first item

Collection

cursor – iterator’s current position
self.key self.value

atFront

pastEnd

Iterator

previous moves

next moves Position to get or set last item

the iterator in this direction

the iterator in this direction

472

16 ScriptX Components Guide

Using Iterators

Here are some examples that show how to use an iterator in ScriptX. In each
example, c is any collection, and i is its iterator.

The feature described in the previous note enables the following syntax for
iteration, which gracefully handles an empty collection:

--Define iterator i on collection c
i := iterate c
repeat while (next i) do (

v := i.value
k := i.key
-- do something interesting

)

This next script is identical to the previous one in function, except that it
doesn’t assign the key of i to k: (read is defined in Stream)

i := iterate c
repeat while (v := read i) != empty do (

-- do something mind boggling
)

Similarly, the excise method leaves the cursor such that next should be
called before any other iteration operations are called. Thus, the following loop
works well:

i := iterate c
repeat while (next i) do (

excise i
)

Most iterators in the system are seekable, so you can run them in reverse:

i := iterate c
seekFromEnd i 0
repeat while (cursor i > 0) do (

v := i.value
-- do something amazingly interesting
previous i

)

You can even seek through iterators arbitrarily:

i := iterate c
repeat while true do (

val := read i
if (grottyTest val) then (

seekFromStart i 3
-- something profound

)
else (

-- something equally profound
)

)

erator
ss:sample
ipt

erate method
ollection)
ollection
ss:iterate
thod

xcise method
erator)
erator
ss:excise
thod

ollections<en-
ange>

473

Collections 16

Using the Collections Component
Since collections underlie many other components of ScriptX, there are many
collection examples in other chapters. Here is a list of useful collection scripts
in other chapters of this volume.

Implementing a Lookup Table

A function lookup table is a generally useful technique in programming. It is
an easy way to implement dynamic behavior, since entries in the table can be
modified while the program runs. A program can even switch from one lookup
table to another.

In this example, the lookup table can be any explicitly keyed collection, but a
hash table is generally the best choice, especially if the table is large, since it
offers fast random access. A lookup table is generally not processed in linear
order. For efficiency reasons, it uses NameClass objects as keys. The values are
anonymous functions. Anonymous functions provide a kind of “wrapper”
around a generic or global function that is defined elsewhere, allowing it to be
stored in a collection and called with a very general syntax. For information
about anonymous functions, see the ScriptX Language Guide. This script creates
a hash table and adds several entries.

object lookupTable (HashTable) end
add lookupTable @groink (a b -> processGroink a b)
add lookupTable @ululate (a b -> processUlulate a b)
add lookupTable @giggle (a b -> processGiggle a b)

By contrast, the source table must be a linear collection, since it will be
processed in order. This script creates a source table, several specialized
instances of objects. It stores those objects in the source table.

object kiwi (Rect)
x2:100, y2:100
instance variables

name:"evelina", activity:@groink
end

object aussie (PageElement)
presenter:(new TextPresenter boundary:(new Rect x2:50 y2:100) \

target:("gudday mate" as String))
instance variables

name:"mathilda", activity:@ululate
end

object texan (MouseUpEvent)
x2:100, y2:100
instance variables

name:"georgia", activity:@giggle
end

object sourceTable (LinkedList) end
append sourceTable kiwi
append sourceTable texan
append sourceTable aussie

474

16 ScriptX Components Guide

The ActivityReader class represents a process rather than a type of data. It
defines an iterative method, readTable, that processes each object in a source
collection. In this example, the ActivityReader class also defines simple
methods for each activity.

global readTable
class ActivityReader (RootObject)

instance methods
method readTable self source table -> (

if not isAKindOf table ExplicitlyKeyedCollection do
report badParameter #(table, self, readTable,

"Expected an explicitly keyed collection")
if isAKindOf source LinearCollection then (

local i := iterate source
repeat while (next i) do (

if hasKey table (i.value.activity) then
table[i.value.activity] self i.value

else
report generalError "missing table entry"

)
)
else (

report badParameter #(source, self, readTable,
"Expected a linear collection")

)
)
method processGroink self obj ->

format debug "Object %1, of class %2, just groinked.\n" \
#(obj.name, (getClass obj))

method processUlulate self obj ->
format debug "Object %1, of class %2, just ululated.\n" \

#(obj.name, (getClass obj))
method processGiggle self obj ->

format debug "Object %1, of class %2, just giggled.n" \
#(obj.name, (getClass obj))

end
global myActivityReader := new ActivityReader
readTable myActivityReader sourceTable lookupTable

The two final lines of this script create an instance of ActivityReader,
calling the readTable method on the reader with the source and lookup
tables as parameters.

Specializing IndirectCollection to Enforce Uniformity

This example creates a subclass of IndirectCollection that enforces
uniformity of keys and values. UniformCollection could be used in any
application where type validation is required.

The Collection protocol includes a number of “descriptive” instance variables.
These variables have no functional behavior, but they indicate properties of a
collection that other objects in the system might want to query. They are
implemented as virtual instance variables, and can be specialized at either the
instance or class level. The UniformCollection class specializes four getter

475

Collections 16

methods that are defined by Collection: uniformityGetter,
uniformityClassGetter, keyUniformityGetter, and
keyUniformityClassGetter. By default, a uniform collection uses the
generic function getClass to test both keys and values that are added to the
collection. Specializing uniformityGetter or keyUniformityGetter in a
class or instance to return @commonSuperclass changes the acceptance
criteria to use the generic function isAKindOf.

Note that indirect collections redirect certain methods to the target collection.
An indirect collection does not otherwise test whether a method can be called
on its target collection. For example, if the target collection is a Quad object, a
bounded array with 4 elements, the indirect collection itself does not report an
exception when a script attempts to add a fifth element. It is up to its target
collection to report such errors. However, there is no reason a developer cannot
specialize IndirectCollection to detect such errors before the method is
redirected to the target collection.

The following script creates the UniformCollection class:

class UniformCollection (IndirectCollection)
instance vars

keyType -- class to which keys must belong
valueType -- class to which values must belong

instance methods
method init self #rest args #key keyType: valueType: -> (

apply nextMethod self args
if isAKindof self.targetCollection \

ImplicitlyKeyedCollection then (
self.keyType := @implicit

)
else (

if keyType = unsupplied then
report keywordRequired @keytype

else if isAKindOf keyType Behavior then
self.keyType := keyType

else
report badParameter #(keyType, init, self,

"keyType must be a class.")
)
if valueType = unsupplied then

report keywordRequired @valueType
else if isAKindOf valueType Behavior then

self.valueType := valueType
else

report badParameter #(valueType, init, self,
"valueType must be a class.")

)
-- keyUniformityGetter and uniformityGetter can be
-- specialized at the class or instance level
method keyUniformityGetter self -> @sameClass
method keyUniformityClassGetter self -> self.keyType
method uniformityGetter self -> @sameClass
method uniformityClassGetter self -> self.valueType
method isAppropriateObject self addedObject -> (

case (self.uniformity) of
@sameClass: (

476

16 ScriptX Components Guide

if (getClass addedObject == self.valueType) then
return true

else
return false

)
@commonSuperclass:(

if (isAKindOf addedObject self.valueType) then
return true

else
return false

)
otherwise:

report generalError \
"inappropriate value for uniformity"

end
)
method add self key value -> (

if self.keyType == @implicit then (
nextMethod self key value

)
else (

case (self.keyUniformity) of
@sameClass: (

if (getClass key == self.keyType) then
nextMethod self key value

else
report badkey (#(self, key) as Pair)

)
@commonSuperclass:(

if (isAKindOf key self.keyType) then
nextMethod self key value

else
report badkey (#(self, key) as Pair)

)
otherwise:

report generalError \
"inappropriate value for keyUniformity"

end
)

)
end

Note that in this example, UniformCollection specializes only the add
method, for the sake of brevity. In a more robust implementation,
UniformCollection could specialize other methods that can add new
objects to the target collection, such as append, applying the appropriate test
to the key.

The first test script tests the UniformCollection class by creating an
instance of UniformCollection with an Array object as its target collection.

-- test of UniformCollection class
global myArray := new UniformCollection \

targetCollection:(new Array initialSize:10) \
valueType:String

method uniformityGetter self {object myArray} -> @commonSuperClass
add myArray empty ("Grok" as String)
add myArray 1 "Voodoo"

477

Collections 16

After the test script runs, myArray contains two items, a string and a string
constant. Specializing uniformityGetter at the instance level relaxes the
“appropriate object” criteria, allowing any instance of a subclass of String to
be added to the collection.

myArray

➯ #<UniformCollection+ over #("Voodoo", "Grok")>

In the next test, myBTree does not specialize uniformityGetter. Only
actual String objects can be added to the collection.

global myBtree := new UniformCollection \
targetCollection:(new BTree) \
keyType:NameClass \
valueType:String

add myBtree @elephant ("Trunk" as String)
-- test that you cannot add a StringConstant value to myBTree
guard (

add myBtree @pig "Snout"
print "this line should not print!"

)
catching

all: (
print "attempt to give a pig a snout foiled"
add myBtree @pig ("Tail" as String)
caught undefined

)
end

Within the guard construct, the attempt to add a string constant value
("Snout") fails. The guard construct catches the exception, and adds a proper
String object to the collection.

myBTree

➯ #<UniformCollection over #(@elephant:"Trunk", @pig:"Tail") as Btree>

478

16 ScriptX Components Guide

C H A P T E R

17
Numerics

480

17 ScriptX Components Guide

481

Numerics 17

The Numerics component contains the classes that represent numbers, Boolean
values, and random number generators.

ScriptX is a pure object system, meaning that every expression in the ScriptX
language returns an object. In some object systems, the base numeric data
types such as integer and float are not themselves objects. In ScriptX, all
numeric data types are objects. Developers use the same methods for saving,
coercing, comparing, printing, and retrieving numbers that they use for all
other classes of objects.

Classes and Inheritance

The class inheritance hierarchy for the Numerics component is shown in the
following figure:

The following classes form the Numerics component. In this list, indentation
indicates inheritance.

Number – Abstract class for representing all types of numbers.

Fixed – Numbers to ± 215 (±32,768) with 16 bits of fractional info (1/216).

Float – Floating-point numbers, for numbers larger (either in integer size
or decimal precision) than Fixed.

ImmediateFloat – Floating-point numbers that do not require the range
or precision offered by the Float class.

Integer – Numbers without any fractional or decimal part.

Number

Integer

ImmediateInteger

Date

RandomState

Boolean

Time

Fixed

Float

LargeInteger

RootObject

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

ImmediateFloat

RootObject

482

17 ScriptX Components Guide

ImmediateInteger – Integers to ± 229 (536,870,912).

LargeInteger – Integers to ± 263.

Time – Represents a fixed time in hours, minutes, seconds, and ticks.

Date – Represents a fixed date with the day, month, and year.

Boolean – Represents the values true and false.

RandomState – A random state generator for random numbers.

Conceptual Overview

The Number subclasses (except Date and Time) are not usually created by
calling the generic function new. Instead, whenever the compiler encounters a
numeric value in a script, it automatically coerces it to the appropriate Number
object. Utility routines convert numeric values to and from number objects.
You must explicitly create Date and Time objects with new or object.

Numeric operations are of two types: methods defined in the Number family of
classes, and operators defined by the language (such as +, –, *, and /) that
translate into private methods.

How Numerics Work

ScriptX implements five storage classes for numeric values, offering a range of
tradeoffs for precision, storage, and processing requirements. For efficiency
reasons, all the numeric classes are sealed and should not be subclassed.
(“Sealed” is defined in the Glossary at the end of this manual.)

Although the ScriptX Player implements five number classes, a developer can
usually depend on ScriptX to coerce any value to a numerics class that offers
the desired precision and range. The result of an operation is promoted
transparently if the class of the operands lacks the precision or range to store
the results.

Although there are times when a programmer may want to be aware of how a
number is stored, you can generally ignore type at the scripter level. Many
programmers may be accustomed to languages which distinguish between
integer and floating-point division, such as C and C++. In ScriptX, integers are
automatically promoted to floating-point before they are divided.

Table 17-1: The Number Classes

Numerics class Precision

ImmediateInteger 1-bit sign, 29-bit integer (-536,870,912 to 536,870,911)

LargeInteger 1-bit sign, 63-bit integer

Fixed 1-bit sign, 15-bit integer, 16-bit fractional

ImmediateFloat 1-bit sign, 21-bit mantissa, 8-bit exponent

Float 1-bit sign, at least 52-bit mantissa, at least 11-bit exponent
(64-bit IEEE 754)

483

Numerics 17

If you are developing a title that depends on high floating-point precision, you
should be aware of the following.

• The ScriptX Player runs on many low-end machines that lack a
floating-point coprocessor. Since these target systems must emulate
floating-point operations with integer arithmetic, their performance may lag
significantly. Developers need to be aware of the performance of their title
on a low-end target machine. The Fixed class can be used to avoid
floating-point operations.

• Although the ScriptX Player currently prefers systems that implement the
established 64-bit IEEE 754 floating-point standard, there may be slight
differences in precision across platforms.

Coercion of Numbers

A script can coerce numbers between types using the coercion construct as, for
example: 12.3 as Fixed. Of course, coercion may result in loss of precision.
For more information on coercion, see the ScriptX Language Guide.

ScriptX automatically converts numbers to the class that offers the optimal
storage for the level of precision that is needed. For example, when you
multiply an Integer object and a Float object, the integer is automatically
converted into a float. In other words, for multiplication there is a notion of the
class with higher precision that should be used to contain the result.

x := 2 as ImmediateInteger
y := 2.75 as ImmediateFloat
z := x * y
➯ 5.5
getClass z
➯ ImmediateFloat

Implicit conversion matches message parameters to function and method
parameters. In the following example, even though it is passed by reference, y
is automatically promoted to Float within the function cosineSquared.

function cosineSquared x -> (1 - (sin x * sin x))
y := 1 as ImmediateInteger
cosineSquared y
➯ 0.291926581726429

Implicit conversion occurs when there is an overflow. The result is
automatically promoted to a wider class, that is, a class capable of containing
it. For example, ImmediateInteger overflows to LargeInteger.

x := 536870911; y := 536870911 -- the largest immediate integer
z := x + y
➯ 1073741822 -- it returns a large integer

ScriptX automatically promotes a result for greater precision as well as range.

a := 1.4652 as ImmediateFloat
b := 2.25 as ImmediateFloat
c := a * b
➯ 3.29669988155365

484

17 ScriptX Components Guide

getclass c
➯ Float

When the result of an operation fits in a smaller class, objects can be demoted
as well as promoted.

x := 5.5 as ImmediateFloat
y := 2.75 as Float
z := x / y
➯ 2
getClass z
➯ ImmediateInteger

Boolean Operations

ScriptX defines a Boolean class. The Boolean class is associated with five
operations: and, or, xor, not, and eq. Some of these operations are called with
operator syntax, and others with function syntax. Two of these operations, xor
and eq, are defined as global functions, while and, or, and not are defined as
operators in the ScriptX language.

x := true
y := false
x and y -- operator syntax
false
x or y -- operator syntax
true
xor x (x or y) -- function syntax
false

The Boolean class has two global instances, true and false. Since true and
false are system constants, it is never necessary to create a new instance.

Operations on Numbers

Since ScriptX numbers are objects, all operations on numbers are method calls
on objects. The ScriptX language contains the following four operators that can
operate on objects in the Number class. These symbols substitute for substrate
methods that are hidden from the scripter level.

a + b -- addition
a - b -- subtraction
a * b -- multiplication
a / b -- division

Other operations on numbers use method syntax. ScriptX defines most
numeric operations on the Number class, even those that return a meaningless
result on some subclasses of Number. Values are promoted internally to a class
that can perform the operation. For example, a Date object is promoted to
Float and returns a floating-point value when the sin method is called on it.

485

Numerics 17

ScriptX defines several numeric constants, including e, pi, piDiv2, and
sqrt2. In addition, ScriptX defines three infinite constants: posInf, negInf,
and nan, where nan is interpreted as an “uncountable” number. Operations
that cannot return a finite value automatically overflow to return one of these
infinite constants. For more information on numeric constants, see the “Global
Constants and Variables” chapter of the ScriptX Class Reference.

exp 11356.6 -- e11356.6

➯ posInf

Table 17-2 lists mathematical functions that comprise the Number protocol.

Some operations on numbers may report the result as Float, even though it
could be converted back to an integer.

x := 4 -- an integer value
y := ln (exp x) -- ln and exp are inverse operations
➯ 4.0
getClass y
➯ Float

Note – There may be differences across platforms in when conversion between
integer and floating-point classes takes place.

Operations on Integers

The Integer class defines three bit operations: length, lshift, and rshift.
Bit operations are defined to be independent of the number of bits in the actual
representation of integers. The length method returns the number of bits
needed to represent an integer in two’s complement.

length 536870911 -- the largest immediate integer

Table 17-2: Operations defined by the Number class

abs absolute value max maximum

acos arc cosine min minimum

asin arc sine mod modulus

atan arc tangent negate negate

atan2 inverse arc tangent power power of

ceiling round up to integer radToDeg radians to degrees

cos cosine rand random number

cosh hyperbolic cosine rem remainder

degToRad degrees to radians round nearest integer

exp exponent sin sine

floor round down to integer sinh hyperbolic sine

frac fractional part sqrt square root

inverse inverse (1/x) tan tangent

log logarithm tanh hyperbolic tangent

ln natural logarithm trunc integer part

486

17 ScriptX Components Guide

➯ 30

length 0

➯ 2

length 2

➯ 3

Bit shift operations are logical, not arithmetic. They are defined as if integers
were stored in two’s complement form. It is likely that every platform on
which the ScriptX Player ever runs will use two’s complement numbers
internally, but all that matters is that these functions operate as if they were
two’s complement. Note the effect in the following example of shifting an
immediate integer to the right, and then to the left, into the sign bit.

x := 536870911 -- largest immediate integer
y := rshift x 1

➯ 268435455 -- low-order bit is on; one bit was shifted out and lost

z := lshift y 1

➯ 536870910 -- one bit was shifted out and lost

a := lshift z 1

➯ -4 -- shifted into the sign bit

b := lshift a 1

➯ -8

c := rshift b 1

➯ 536870908 -- now the sign bit is off again

Note – ScriptX does not have unsigned data types.

The Integer class also defines four bitwise logical operations: logicalAnd,
logicalOr, logicalXOr, and logicalNot. A “bitwise” operation on two
integers applies the logical operation to the first bit of the first and second
integers, putting the result into the first bit of the resulting integer, then
continues to the second bit, and so on.

logicalAnd 16 15

➯ 0

logicalOr 16 15

➯ 31

logicalXOr 16 15

➯ 31

Immediate Objects

An immediate object is a ScriptX object that “collapses” into the upper 30 bits
of its own pointer. ScriptX defines two classes of immediate objects:
ImmediateInteger and ImmediateFloat. These classes can save storage
and decrease allocation overhead in applications that do not require the range
or precision of LargeInteger and Float. For technical specifications of the
ImmediateFloat and ImmediateInteger classes, see their respective class
definitions in the ScriptX Class Reference.

487

Numerics 17

In ScriptX, the two low-order bits of a pointer comprise an object tag,
indicating whether the remaining 30 bits contain a pointer to a full-fledged
ScriptX object, an instance of one of the two immediate classes, or a
non-pointer. Figure depicts both a regular object, in which the high 30 bits
points to an object somewhere in the ScriptX Heap, and an immediate object.

Figure 17-1: ScriptX pointers

Since a regular object requires additional storage for a class tag and for
memory management, even the simplest regular objects require at least 16
bytes of storage. In addition, a regular object requires incremental time in each
garbage collector cycle for tracing. An immediate object requires only the 4
bytes that would otherwise be occupied by its pointer. Since space for an
immediate object is allocated directly within its own pointer, it imposes no
overhead on the garbage collector. Of course, ImmediateInteger and
ImmediateFloat are sealed classes, like other Number classes. But in every
other respect, they are just like any other class in the ScriptX core classes.

For most purposes, developers can ignore the existence of immediate objects.
Even though they are not full-fledged objects, immediate objects define all the
operations that can be performed on regular objects. ScriptX determines
transparently whether an object should be an immediate or a regular object.
When a number is assigned to an untyped variable, ScriptX automatically
creates an instance of the appropriate class of Number. For example, a positive
or negative integer that is within range automatically creates an instance of
ImmediateInteger.

getClass ((power 2 29) - 1) -- the largest possible immediate integer

➯ ImmediateInteger

getClass (power 2 29)

➯ LargeInteger

Similarly, a floating-point constant with six or fewer decimal digits is assigned
automatically to an ImmediateFloat object. A constant that requires higher
precision is automatically assigned to a Float object.

getClass (3.14159) -- six significant digits of pi

➯ ImmediateFloat

getClass (3.14159265) -- more than six digits of pi

➯ Float

object tagpointer

Regular object

object tagdata

Immediate object

488

17 ScriptX Components Guide

It is not necessarily better to store a floating-point value as an
ImmediateFloat object. The advantage of the ImmediateFloat class is in
memory allocation. An immediate object requires only four bytes of storage. A
regular Float object requires 32 bytes in memory, not counting the 4 bytes for
its pointer. Although immediate float values impose less overhead for
allocation, they offer less precision. Calculations with ImmediateFloat
values also pay a performance penalty, since all floating-point values must be
converted into a machine-specific format for calculation. While the
ImmediateFloat class is preferred for allocation-intensive applications where
its lower precision is adequate, the Float class may be more efficient for use
with calculation-intensive applications. This trade-off is machine-dependent.

Equality comparators work differently for immediate objects. For other classes,
the global function eq returns false if two objects are not the same object.
Immediate objects are incorporated into their own pointers, so two immediate
objects that have the same value appear to be pointers to the same object. The
global function eq tests whether two variables point to the same object. It does
this by testing whether or not their pointers are identical. That’s why eq works
differently with immediate objects. The following example illustrates this
paradox.

global a := 7.0 -- a is an ImmediateFloat object
global b := 7.0 -- b is an ImmediateFloat object
a == b -- equivalent to eq a b

➯ true

A Float object is a full-fledged object, so eq returns false.

global a := 7.0 as float -- coerce to Float
global b := 7.0 as float -- coerce to Float
a == b -- equivalent to eq a b

➯ false

The global function eq is equivalent to ==, the ScriptX identity operator. For
more information on comparison, see “Comparing Objects” on page 633.

Fixed and Floating-Point Precision

Note that the ScriptX Player runs on a variety of platforms, and under a variety
of processor configurations, each of which has its own internal representation
of floating-point numbers. Float and ImmediateFloat values are converted
into machine-specific values for calculation purposes. For example,
68040-based Macintosh systems use an 80-bit standard internally, while
PowerPC-based processors use a 64-bit standard. Developers should be aware
that there may be slight differences in the precision of the same process
running on different platforms under the ScriptX Player.

The Fixed class offers a compromise between the greater range of Float and
ImmediateFloat and the low processor overhead of integer arithmetic.
Numeric values that are stored as Fixed objects are not really floating-point
values. ScriptX performs basic addition, subtraction, and multiplication on

489

Numerics 17

Fixed objects using integer routines. These calculations on Fixed objects will
have identical results on any platform that runs the ScriptX Player, provided
that they do not overflow and require a Float value.

Since fixed values use 16 bits to encode the fractional part of a number, they
are accurate to five significant digits after the decimal point. Since a Fixed
object is not an immediate object, each fixed value requires a full 16 bytes in
memory, plus the four bytes for its body pointer. And because a fixed value is
a full-fledged object, it adds incrementally to the garbage collector’s overhead.

Figure 17-2: A Fixed object stores its data in 32 bits

Only integer arithmetic can be performed on fixed values. For long division,
fixed values are converted internally to Float and the result is promoted to
Float. Operations that require floating-point arithmetic, such as the
exponential, logarithmic, or transcendental functions, cause a Fixed object to
be promoted automatically to the Float class.

global x, y, z, w
x := 5.2 as fixed
y := 5.3 as fixed
z := 5.2/5.3 -- calculation is performed internally on float
➯ 0.981124877929688
getClass z -- result is promoted to float
➯ float
w := sin x

➯ ➯ -0.8834560855154513

getClass w
➯ float

Dates and Times

The current version of the ScriptX Player uses the date and time facilities of the
underlying operating system. On both OS/2 and Windows, the system clock
reckons time in ticks since January 1, 1970, with an ending date of December
31, 2105. The Macintosh also maintains a tick count in an integer format, but
with a different base date, January 1, 1904, and ending date, December 31,
2039.

The ScriptX Player sacrifices range for compatibility, using the beginning date
from OS/2 and Windows, and the ending date for Mac/OS. Thus, ScriptX
Player time begins on January 1, 1970, and ends on December 31, 2039. In a
future release, the ScriptX Player will probably implement its own date and
time package, with a wider format for a much wider range of dates.

Both the Clocks and Players components make use of the Time class. When the
ScriptX Player starts up, it creates two global instances of Clock:
theEventTimeStampClock returns a Time object that is used to timestamp

sign bit integer part

a Fixed object’s data

fractional part

31 0

490

17 ScriptX Components Guide

events as they occur, while theCalendarClock is an instance of
CalendarClock, and it returns a Date object which indicates the current date
and time.

Time objects store time internally as a long integer, together with a scale. The
scale instance variable, defined by Time, specifies the number of ticks per
seconds. The following equations demonstrate the relationships between the
instance variables of a Time object. The example begins by taking the current
time from theEventTimeStampClock. The instance variable ticks, defined
by this clock, records the number of ticks since the ScriptX Player started up.

global theTicks := theEventTimeStampClock.ticks
global theScale := theEventTimeStampClock.scale
global hours := floor(theTicks/(60 * 60 * theScale))
global minutes := floor((theTicks - (hours * 60 * 60 * theScale)) /

(60 * theScale))
global seconds := floor((theTicks - (hours * 60 * 60 * theScale) -

(minutes * 60 * theScale))/theScale)

The Time class defines several instance methods—addHours, addMinutes,
and addSeconds—which add the corresponding number of units to the time,
taking into account the scale of the Time object. Although these methods
accept a non-integer value, they truncate it and operate on only the integer
part. A simple addition or subtraction operation adds or subtracts the
corresponding number of ticks. Time objects cannot be multiplied into or
divided by each other. An arithmetic operation on two Time objects with
different scales returns a Time object with a scale equal to that of the first
operand.

global a := new time
a.scale := 1000
addHours a 500

➯ 500:0:0:0 as Time

global b := new time
b.scale := 100
addHours b 400

➯ 400:0:0:0 as Time

global c := a + b

➯ 900:0:0:0 as Time

c.scale

➯ 1000

Although Date inherits from Time, it has its own internal storage format. A
Date object stores each element of a date—month, day, hour, and so forth—in
a byte, except for the year, which is stored as a short integer. To other ScriptX
objects, a date is a large integer. However, when a date is saved to or retrieved
from the object store, it uses its specialized internal format to maintain a
representation of itself that is platform-independent.

Date inherits the instance variables seconds, minutes, hours, and scale
from Time. Date also defines dayOfWeek, dayOfMonth, month, and year.
For the Date class, scale is read-only and is always 1. In addition to the

491

Numerics 17

instance methods defined by Time, the Date class defines methods for adding
days, months, and years to a date. Note the behavior of addMonths in the
following example.

object myDate (Date)
year:1996, month:@January, day:31, hours:8

end

➯ Wed Jan 31 08:28:54 1996 as Date

addmonths myDate 1

➯ Thu Feb 29 08:28:54 1996 as Date -- leap year

addmonths myDate 1

➯ Fri Mar 29 08:28:54 1996 as Date

A Date object can be coerced to a string. It can also be coerced to any other
numerics class, including Time. The resulting magnitude represents the
number of seconds since the base date, and is platform dependent.

theCalendarClock.date as String -- platform independent

➯ "Mon Feb 19 14:31:04 1996"

theCalendarClock.date as Time -- platform dependent

➯ 807662:31:33:0 as Time

theCalendarClock.date as LargeInteger -- platform dependent

➯ 2907585141

Certain arithmetic operations are permitted on dates. Subtracting one Date
object from another results in a Time object representing the time difference
between the two dates. You can add or subtract a Time object from a Date
object, and the result will take into account the scale of the Time object.
Adding or subtracting any number from a Date object adds or subtracts the
corresponding number of seconds. Addition is prohibited for the Date class.

Numerics Example

The following example demonstrates the Numerics component.

Net Present Value of a Winning Lottery Ticket

The numeric classes are sealed, meaning that it is impossible to create a
subclass or specialize a method. Numeric objects are often elements of
collections or instance variables that belong to other objects.

An object-oriented system can create classes of objects that perform
mathematical calculations on themselves. Objects can also be designed to
perform the range and type checking that a robust mathematical program
requires. Other features that can be built into objects include printing and data
conversion. In this sample script, a list of individual payments on a winning
lottery ticket knows how to print a listing of itself, report its total payout, and
calculate its net present value. Individual payments are also objects that
perform type checking.

492

17 ScriptX Components Guide

Net present value is one of the fundamental techniques used to value financial
assets such as stocks, bonds, and mortgages. The following example calculates
the net present value of a winning lottery ticket. The California Lottery, like
other state and national lotteries, publicizes the total amount that is paid out in
winnings over a period of years. To win a $20 million prize is really to earn $1
million per year for 20 years.

The net present value of the winning ticket is its equivalent value as a
lump-sum payment, received today. From the point of view of the California
Lottery Commission, it is the amount of money the commission must set aside
to meet future obligations on that ticket. The exponential function “discounts”
a future payment back to the present. The discount rate could be thought of as
an interest rate or growth rate—it is the growth rate of money that is earning
continuously compounded interest. The following mathematical formula
discounts each payment from time t to the present.

PV0 = xt e
-rt

where r is the discount rate, expressed per units of time, and t is the time at
which the payment xt is received. The following script implements this
operation in ScriptX, but in a procedural style. It performs no type or error
checking. This example returns the present value of a single payment of $1
million received on July 1, 2000, as of July 1, 1995, discounted at 10%.

function presentValue dollars discountRate beginDate endDate -> (
local conversion := (60 * 60 * 24 * 365.25)
local x := endDate as LargeInteger/conversion
local y := beginDate/conversion
return dollars * exp(negate(discountRate * (x - y)))

)
object date95 (Date) year:1995, month:@july end
object date00 (Date) year:2000, month:@july end
global pv := presentValue 1000000 0.10 date95 date00

➯ 577048.5628947

Since numeric values are object-based in ScriptX, we can use ScriptX to create a
truly object-oriented program that calculates net present value. First we define
the Payment class. A payment is a simple collection, an ordered pair of values
where the first value must be a Date object, and the second a Number,
representing an amount due. Payment specializes the add method to check
that objects are of the correct type as they are added.

class Payment (Pair)
instance methods

method add self key myValue -> (
-- specialize the add method to do type checking
if ((self.size = 0) and (not getClass myValue = Date)) do (

format debug "first element not a date\n" undefined @normal
)
if ((self.size = 1) and (not isAKindOf myValue Number)) do (

format debug "second element not a number\n" undefined @normal
)

493

Numerics 17

apply nextMethod self key myValue
)
method presentValue self today discountRate -> (

if not isAKindOf discountRate Number do (
format debug "third arg not a number\n" undefined @normal

)
-- handles dates that have already been converted to large integer
if (getClass today = Date) then (

-- there are (60 * 60 * 24 * 365.25) seconds in a year
local secondsPerYear := 31557600
local y := (today as LargeInteger)/secondsPerYear
local z := (self[1] as LargeInteger)/secondsPerYear
-- return the present value of the payment
return (self[2] * exp (negate(discountRate * (z - y))))

) else (
format debug "second arg not a date\n" undefined @normal

)
)
method prin self arg stream -> (

prin "You will receive $" @unadorned debug
prin self[2] @unadorned debug; prin " on " @unadorned debug
prin (self[1] as String) @unadorned debug
prin "\n" @unadorned debug

)
end -- Payment

The PaymentList class stores a collection of Payment objects. It is
implemented as an indirect collection because the IndirectCollection class
provides a protocol for examining objects when they are added to and
removed from a collection. An indirect collection automatically calls
isAppropriateObject before an object is added to its target collection. The
PaymentList class specializes isAppropriateObject to allow only
instances of Payment to be added to its target collection.

The target collection is set by script in this example. Since it is a sorted array,
members of the collection are automatically inserted in sort order. Payment
objects are pairs in which the first element is always a date, so members of the
collection are sorted by date as they are added to a PaymentList object.
Although an insertion sort creates overhead when elements are added to the
collection, it allows for the faster access and retrieval.

class PaymentList (IndirectCollection)
instance methods

method init self #rest args -> (
apply nextMethod self targetCollection:(new SortedArray) args

)
-- this method is called automatically before an object is added
-- object does not get added to the collection unless it returns true
method isAppropriateObject self addedObject -> (

-- check that it is the right kind of object
if not isAKindOf addedObject Payment then (

format debug "not a pair\n" undefined @normal
return false

) else (

494

17 ScriptX Components Guide

return true
)

)
-- this method is called automatically after an object is added
method objectAdded self key obj -> (

format debug "Your total is %*\n" (self.total) @normal
)
-- total is an example of a virtual instance variable
method totalGetter self -> (

local sum := 0
forEach self (x -> sum := sum + x[2]) undefined
return sum

)
-- generic prin takes care of all printing functions
method prin self arg stream -> (

forEach self (x->prin x @unadorned debug) undefined
)
method netPresentValue self discountRate -> (

local sum := 0 -- initialization
local today := theCalendarClock.date
-- calls function, defined inline, on each member of collection
forEach self (x -> sum := \

sum + presentValue x today discountRate) undefined
return sum

)
end -- PaymentList

The method netPresentValue calls every member of the PaymentList
collection, passing the discount rate and the current date as arguments. Since
the value of theCalendarClock.date is continuously being updated, it
saves a local copy of the date before it begins. A date is a kind of large integer,
but it is stored internally in a more complex format so that it can be saved to
the object store as a platform-independent format. For this reason, developers
should avoid operations that require a date to be continuously updated or
changed. For example, a Date object should not be used as if it were a clock.

Now we are ready to test the PaymentList class by adding objects. The test
script adds 20 payments to a payment list, representing annual payments of
$1 million on a winning lottery ticket.

-- create an instance, and then add some data to it
object myWinnings (PaymentList) end
for i in 1 to 20 do (

add myWinnings empty (new Payment \
values:#(new Date year:(1995 + i) month:@january,1000000))

)
-- these tests are a function of the current date
netPresentValue myWinnings 0.06 -- present value at 6% discount rate

➯ 11088641.504961

netPresentValue myWinnings 0.10 -- present value at 10% discount rate

➯ 7965826.92870522

C H A P T E R

18
Events and
Input Devices

496

18 ScriptX Components Guide

497

Events and Input Devices 18

Events are objects that represent a change in state, a change that occurs at an
instant in time. Some events are initiated by the system or the user: a key is
pressed, the mouse moves, a colormap is changed. ScriptX also allows for the
creation of new classes of events. Any object, script, or function can create an
event, or post interests in events and receive them.

The Events component has two roles in ScriptX. One role is to receive and
process system events—events that originate with underlying hardware
devices. These events are often initiated either directly or indirectly by the user.
The event system provides interfaces to input devices such as a mouse or
keyboard. Through events, ScriptX receives real-time input from the user.
Input devices, and the classes of events that they generate, are covered later in
this chapter.

Events have a second role—to serve as a notification system, typically between
processes that run in different threads. Of course, objects can communicate
without the event system, but the event system allows for much greater
indirection. A title can define its own events and set up an arbitration
mechanism that delivers them to interested receivers.

Think of the event mechanism as a tool kit that allows a programmer to set up
communication between independent processes. Through the event system,
threads can send out messages without knowing which thread will receive
them. Furthermore, an event receiver can respond to an event without
knowing anything about the process that generated it. Events are an internal
messaging system that can be used to create complex simulations and
behaviors.

Events are the foundation for many other components of ScriptX. The core
classes provide several built-in mechanisms for receiving and processing
events. For example, the TextEdit class automatically receives and processes
keyboard events. The User Interface component defines a variety of presenters
and controllers, such as ScrollBar and ActuatorController, that receive
and process mouse events, giving the ScriptX Player common user interface
elements such as buttons, menus, and scroll bars. Using these classes, an
author can create a title without descending into the underlying event system.
The event system is a low-level component of ScriptX, accessible to developers
who want to create their own user interface elements.

Time-based messaging is not part of the ScriptX Events component. State
changes that are based on reaching a given point in time are handled by the
CallBack classes, defined by the Clocks component.

Classes and Inheritance
The class inheritance hierarchy for the Events component is shown in the
following figure.

498

18 ScriptX Components Guide

The following classes form the Events component. In this list, indentation
indicates inheritance.

Event – root abstract class for all events

PaletteChangedEvent – an event that the system broadcasts to indicate a
change in the color map on the underlying hardware.

QueuedEvent – describes both system and user-defined events that pass
through a primary dispatch queue to be delivered sequentially and
chronologically.

FocusEvent – an event that the system signals to indicate a change in
input focus.

KeyboardEvent – an abstract class that represents all keyboard events.

KeyboardDownEvent – represents the pressing of a key on a keyboard
by a user. The key code is passed as an instance variable.

KeyboardUpEvent – represents the release of a key on a keyboard by a
user. The key code is passed as an instance variable.

MouseEvent – an abstract class that represents all mouse events.

MouseDownEvent – represents the pressing of a mouse button.

MouseUpEvent – represents the release of a mouse button.

MouseCrossingEvent – indicates that the mouse has crossed the
boundary of a presenter.

Event

PaletteChangedEvent

QueuedEvent

KeyboardEvent

KeyboardDownEvent

MouseEvent

MouseDownEvent

MouseUpEvent

MouseCrossingEvent

KeyboardUpEvent

InputDevice

KeyboardDevice

PhysicalKeyboard

MouseDevice

PhysicalMouse

FocusEvent

RootObject RootObject

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

EventQueue

EventDispatchQueue

PipeClass

MouseMoveEvent

KeyboardFocusManager

RootObject

Pointer

499

Events and Input Devices 18

MouseMoveEvent – represents a mouse movement by the user.

EventQueue – a pipe that receives and stores events.

EventDispatchQueue – a pipe that receives queued events in a primary
event queue so that they can be dispatched sequentially to their final event
receivers. It performs its own dispatching in its own thread.

InputDevice – abstract class that represents instances of user input devices
such as a keyboard or mouse.

KeyboardDevice – abstract class that defines the properties of all keyboard
devices.

PhysicalKeyboard – represents a keyboard by communicating with the
keyboard driver, which in turn receives key events from the actual
keyboard.

MouseDevice – abstract class that defines the properties of mouse devices.

PhysicalMouse – represents a mouse by communicating with the
mouse driver, which in turn receives mouse-move and mouse button
events from the actual hardware mouse.

KeyboardFocusManager – manages focus on a keyboard device.

Pointer – defines the appearance of the mouse pointer.

Conceptual Overview
ScriptX has an event system because it is a system-level as well as an
application-level multimedia development environment. The platforms that
ScriptX supports have their own event management systems. For example, in
the Windows environment, events are called messages. The InputDevice
classes translate events, sent by hardware devices in the protocols of the
underlying system, into ScriptX events, and sends them to interested parties
using methods that ScriptX defines.

Unlike some operating systems, ScriptX does not have a centralized event
manager that dispatches events. The event system is really the collective
behavior of the event classes, together with related classes like event queues
and input devices.

Think of an event as an electronic form letter that is sent from one process to
another. You could also think of an event as being a snapshot of some state
change in the system. ScriptX supports a hierarchy of events, all of them
inheriting from the abstract class Event. Each subclass of Event creates a
specialized version of this form letter or snapshot. The Events component
provides a dispatch and delivery mechanism that routes events to interested
parties. ScriptX also allows developers to define new classes of events.

Every event has both a sender and a receiver. The sender can be a process that
is managed by the system or by an external device, such as a mouse, but it can
also be a process that is defined within a program. The receiver is any object or
script that needs to be notified of the change in state that the event represents.

500

18 ScriptX Components Guide

Instances of each event class serve two purposes in ScriptX. One is to represent
an actual event. The other is to act as an event interest, a template for an event
receiver. The following description shows how the class MouseDownEvent
defines both actual mouse events and interests in mouse events.

1. Event. Suppose the user presses a mouse button. The mouse device detects
this action and sends a mouse-down event. A mouse event is like a snapshot
of the mouse at a particular moment in time. Its instance variables indicate
the state of the mouse at the moment when the event was generated. For
example, the instance variable buttons on all classes of MouseEvent stores
a list of buttons that were down when the event occurred. The sender of a
mouse event is usually an instance of MouseDevice, a subclass of
InputDevice.

2. Event interest. Interests, though also instances of an event class, do not
represent an actual event. Instead, they serve as a proxy or template for an
event receiver. Event interests are matched with events in the delivery
process. Suppose that a process is interested in receiving mouse-down
events, but only if certain buttons are down. The instance variable buttons
is used to match mouse buttons on this template with mouse buttons on an
actual mouse-down event. In this way, the interested process is notified only
of those mouse-down events it is interested in receiving.

An event records a change in state, but is not itself a state change. An event
that is sent is not necessarily received. Suppose that a tree falls in the forest. An
observer, standing in the forest with a camera and tape recorder, receives the
event. Does the tree still fall if the observer was paying too much attention to
bears to take notice? Even if nobody sees the tree fall, we expect that another
observer, passing through the forest the following day, would see a fallen tree.

What does this say about the ScriptX event system? There can be a change in
state without the corresponding event being received, or even sent. If the user
presses the mouse button at a time when no process is interested in mouse
events, the mouse is still down. An event is an observation or notification of a
change in state, a picture of a small part of the system (such as the state of an
attached mouse) at the instant when some change occurred. The event system
is the mechanism that sends a record of this change to any processes that want
to be informed of it.

How Events Work
Events go through a three-stage delivery mechanism in ScriptX. Events are
matched with event interests, and a reference to the event itself passes from
sender to receiver. The following list summarizes this mechanism, which is
covered in greater detail later in the chapter.

1. Dispatch. A process that generates an event sends it out by calling one of
three methods: signal, broadcast, or sendToQueue. These methods,
which are sometimes specialized by particular subclasses of Event, provide
the rules for event delivery. At this stage in the delivery process, the sender
is concerned only with what interests are registered on a particular class of
events. If an event is broadcast, it is sent to all interested and satisfied

501

Events and Input Devices

18

receivers. If it is signaled, it is delivered to only one receiver, the satisfied
receiver that has the highest priority. If it is sent to a particular queue, the
interest list is ignored and the event is placed directly in that queue.

2.

Matching.

The second stage applies to events that are delivered with the

signal

 method. The event system

matches

 the event with potential
interests. The

signal

 method calls the

isSatisfiedBy

 method on the
event interest that has the highest priority. This method, which is not called
directly from the scripter, is a crucial part of event delivery.

isSatisfiedBy

 determines whether the event can satisfy the interest,
often by comparing particular instance variables on the template and the
event itself. If

isSatisfiedBy

 returns

false

, then the

signal

 method
calls

isSatisfiedBy

 on the interest with the next highest priority, until a
matching interest is found, or until all interested parties have been checked.

3.

Acceptance.

If an event is signaled asynchronously, the delivery mechanism
has a third stage—acceptance or rejection of the event. After an event has
been delivered to a matching receiver, the receiver (either a function or
queue) is activated immediately. It returns

@accept

 or

@reject

 to indicate
its acceptance of the event. If it rejects the event, the dispatching method
regains control and attempts to deliver the event to other interested parties.

As you read the remainder of this chapter, keep in mind that there are always
two points of view on the event system—that of the sender and that of the
receiver. A script interacts with the event system both to send events and to
receive them.

In the ScriptX event system, an event cannot be delivered unless a receiver has
registered an interest in receiving it, and a receiver does not receive events
unless it has registered an interest in them. But the underlying action that
caused the event to be sent out is separate from and distinct from the event
system. For example, a

PhysicalMouseDevice

 object keeps track of the
current state of a mouse that is connected to the system. If the first button on
this mouse is pressed and no interest has been registered with the class

MouseDownEvent

, then no event is delivered. But if a program calls the
method

isButtonDown

 on the mouse device before the user releases the
button, the device still reports that the mouse button is down.

Generating Events

Events come from three potential sources in ScriptX, however there is nothing
distinct about the three.

1.

User.

 Some events originate directly with the user, interacting with the
program through an input device. ScriptX defines a set of input device
classes, covered later in this chapter. Input devices act as interfaces with
hardware devices. These devices send an event to indicate a change in the
state of an input device that is controlled by the user, such as a keyboard.

2.

System.

 Events also originate with the native operating system. For
example, the ScriptX Player uses the

PaletteChangedEvent

 class to
broadcast changes in the color map associated with a monitor that is
attached to system.

502

18

ScriptX Components Guide

3.

Program.

A developer can create new scripted event classes and use them
internally in a title or tool. Events can be used to set up communication
between threads.

Events, whether generated by the user, the system, or the program, are created
and dispatched using the same method calls. Any class of event can be
simulated by software. Thus, a script can create and send a mouse event,
although an input device would normally do so.

Most events that originate with the user, including all classes of events that are
signaled by input devices, belong to a specialized branch of the

Event

 class
hierarchy. The class

QueuedEvent

 is the abstract superclass of

MouseEvent

,

KeyboardEvent

, and other event classes that originate with input devices.
Queued events pass through a primary queue before they are sent to a
receiving queue or function.

This primary queue insures that queued events are processed in a sequential
and orderly manner. For example, a

MouseUpEvent

 can never be processed
before the

MouseDownEvent

 that it is paired with. The primary event queue,
an instance of the specialized class

EventDispatchQueue

, is actually of little
consequence for title and tool developers. Although a developer can create a
scripted subclass of

QueuedEvent

, classes that are created by script can
generally be regular events. Regular events, since they are processed in fewer
steps, offer a performance advantage over queued events. Queued events are
covered in greater detail later in this chapter.

Sources of User Input

ScriptX creates interfaces to hardware input devices through the input device
classes. These classes, subclasses of

InputDevice

, store information about a
hardware device that is connected to the computer. The input device classes
receive events from the native operating system and translate them into
ScriptX events.

As shown in Figure 18-1, a

 hardware device

is an actual input device connected
to the computer that a user can touch and feel. A

device driver

 is a component of
the native operating system that receives signals from a hardware device and
passes them on to the ScriptX Player. For example, the device driver for a
mouse passes mouse coordinates and mouse button events from the hardware
mouse to the ScriptX Player.

Figure 18-1: Receiving input from a hardware device.

Suppose the user presses a key. The

PhysicalKeyboard

 object that represents
the device receives a keydown event from the native operating system. It
updates its instance variables, generates a ScriptX

KeyboardDownEvent

Operating SystemHardware Keyboard

Keyboard

Driver

ScriptX Player

Keyboard

Device

ScriptX Title

Instance of

PhysicalKeyboard

503

Events and Input Devices

18

object, and signals this event to any event receivers that have posted an interest
in such events.

PhysicalKeyboard

 is a subclass of

KeyboardDevice

, an
abstract class that defines most of the properties and behaviors of keyboard
devices. For example, the instance variable

keyModifiers

 on the class

KeyboardDevice

 stores the current state of modifier keys such as the Shift
and Control keys.

Receiving Events

Any function, method, or queue can receive and process any class of event. A
script indicates which classes of events a particular receiver is interested in by
creating an event instance to act as an interest and calling

addEventInterest

on that instance to register it with the event subclass. Each

Event

 subclass
maintains a collection of interests. The following code fragment creates a new
event interest of the scripted class

SchreklichEvent

, assigns the function

getNewEvent

 as its receiver, and posts it as an interest with the

SchreklichEvent

 class.

class SchreklichEvent (Event) -- class definition, creates a new event class
end
global meinEvent := new SchreklichEvent -- create new event interest
-- set the function getNewEvent as its receiver
-- the receiver must already be defined and it must be an
-- instance of EventQueue or AbstractFunction
meinEvent.eventReceiver := getNewEvent
-- add it to the collection of interests, which is maintained by the class
addEventInterest meinEvent

Each event class defines an

interests

 class variable, a collection in which it
stores a list of interests that are active. The class uses its collection of interests
as templates to match events with event receivers. The class itself is responsible
for both the interest matching mechanism and the event delivery system.

ScriptX provides for two distinct types of event receivers. The first is a receiver
function. (A method can be an event receiver function.) A function receives
events directly, since it is called within the thread in which the event was
delivered. Events that originate with input devices, including mouse and
keyboard events, are generally received by functions for performance reasons.

The other type of receiver is an event queue, a specialized form of pipe. An
event queue is useful when the sender and receiver are in different threads.
ScriptX is an open environment, one which allows a programmer to add new
objects to existing titles. Event queue receivers offer another option for
interprocess communication in such titles.

Figure 18-2 illustrates the flow of communication and control as an event
passes from sender to receiver. Event classes store and match event interests.
Each class defines its own mechanism for delivering events to receivers, either
functions or event queues.

504

18

ScriptX Components Guide

Figure 18-2: Event flow from senders to receivers.

Event Receiver Functions

Generally, a function is the fastest and the simplest event receiver. To receive
events through a function, a program must create an event instance that acts as
an interest. It sets the value of the

eventReceiver

 instance variable on this
interest, and any other variables that may apply, and then calls

addEventInterest

, adding it to the interests list that is maintained for that
particular event class.

A function that acts as a receiver takes three arguments. The first argument
takes the contents of the instance variable

authorData

 on the interest that
matched the event. This variable can store any object. The second and third
arguments receive the matched event interest and the actual event,
respectively.

When a function receives events, it is called directly, in the same thread from
which it was sent. A function that receives events should run briefly without
blocking and return a value. It returns

@accept

 or

@reject

 to indicate
whether or not the event was accepted. If a receiver function initiates a process
that requires a long period of execution time, a good strategy is to activate
another thread that runs the process. The following code fragment indicates
the general format for an event receiver function. Note that

addEventInterest

 reports an exception if no receiver has been specified.

-- getNewEvent is a typical event receiver function
-- note that getNewEvent calls a function in another thread so that it can
-- execute and return quickly. This is good behavior for an event receiver.
function getNewEvent authorData interest event -> (

case event of
SchreklichEvent: (

-- the next line spawns a new thread using the ”&“ operator
-- not necessary, but good behavior if it takes a while to run.
fangenWirBitteAn(authorData) &
@accept

Event ReceiversEvent ClassesEvent InstancesEvent Generation

Event Generation

Receiver Function

Receiver Event

Queue

Receiver Function

Receiver Event

Queue

GrokEvent

GrokEvent

Event Interests

VoodooEvent

VoodooEvent

GrokEvent

VoodooEvent

Event Interests

505

Events and Input Devices

18

)
-- insert more event types here
otherwise:

@reject -- rejects events it is not familiar with
end -- case

)
class SchreklichEvent (Event) -- class definition, creates a new event class
end
-- now create an instance of SchreklichEvent to act as an interest
meinEvent := new SchreklichEvent
meinEvent.eventReceiver := getNewEvent -- set the receiver
-- the authorData instance variable is used as an argument
meinEvent.authorData := "Anne has been bitten by Fangenveer!"
addEventInterest meinEvent -- add it to collection of interests

function fangenWirBitteAn data -> (
print data

)

In the previous example, the second argument to the receiver function, which
stores an event interest, is ignored, but it could be very useful in a more
complex program. The same receiver function can be called on to process
different classes of events. Even if it processes events of only one class, a given
receiver may be associated with many different interests in that class.

Keep in mind that an event receiver function does not poll; once it is set up to
receive events of a given class, the event class itself delivers those events.
Under no circumstance should a receiving function block—if the function
blocks, it blocks the delivering thread. For more information, see “Blocking” on
page 591 of the “Threads” chapter.

In most cases, developers will want to use functions rather than event queues
to receive events. Functions offer a considerable performance advantage. Since
receiver functions run in the same thread from which the event was sent, there
is no inherent difference between synchronous and asynchronous event
delivery to a function receiver. For synchronous delivery of a regular event,
functions are several times faster than queues. For synchronous delivery of a
queued event, a function receiver is many orders of magnitude faster.

Event Queues

An event queue is an alternative mechanism for receiving events. Developers
who plan to use an event queue in their scripts should begin by reviewing the
section on “Pipes” on page 593 in the “Threads” chapter.

Although function receivers have a performance advantage over event queues,
queues can be used to set up interprocess communication between separate
threads within a title. ScriptX is an open environment, in which a developer
can create a title that accepts new objects. Objects that respond to a common
set of events can communicate through the event system using event queues
without knowing anything else about each other.

506

18

ScriptX Components Guide

An event queue, like an event receiver function, becomes an event receiver
when it is assigned to the

eventReceiver

 instance variable. The following
script creates a new class of events, called

EarthQuakeEvent

. It creates an
event queue called

myQueue

 and an instance of

EarthQuakeEvent

 called

myQuake to act as an event interest. It sets the event queue as the event
receiver for myQuake. Finally, it registers myQuake as an event interest.

class EarthQuakeEvent (Event) -- class definition
instance variables magnitude

end
myQueue := new eventQueue -- create an new queue
myQuake := new EarthQuakeEvent -- create an instance of EarthQuakeEvent
myQuake.eventReceiver := myQueue -- set the queue as a receiver
addEventInterest myQuake -- add it to the interest list

Although we speak informally of “delivering” an event to an event queue, the
event is actually processed by an underlying thread that reads from the queue.
The class EventQueue defines several methods, but they are not normally
called at the scripter level. A queue’s “behavior” is really the logic embodied in
its underlying thread function. This function maintains event interests, accepts
and rejects events, sets priorities, and responds to the event itself. For an
example of a thread function that reads from an event queue, see the
EventDispatcher sample script, which begins on page 534 of this chapter.

EventQueue inherits most of its scripter-visible methods and instance
variables from PipeClass, in the Threads component. A pipe is a mechanism
for communication between threads. When you deliver an event to a queue,
you write to a pipe. The thread that wakes up and processes the event reads
from the pipe. The class EventQueue inherits many powerful features from
PipeClass. For example, a thread can use the acquireQueue method
defined by PipeClass to gain low-level access to the queue, perhaps to look
ahead at objects in the queue. To understand event queues, see the sections
“Pipes” on page 593 and “Blocking” on page 591 of the “Threads” chapter.

Event queues are more restrictive than pipes. A PipeClass object is a conduit
for any kind of object. Any thread can write any object to the pipe, providing
there is room in the pipe. An event queue acts as a conduit only for Event
objects, and the function that reads from it has some actual control, through the
interest mechanism, over which events are placed on the queue. (A script can
override the event delivery system using the sendToQueue method.)

Unlike the PipeClass class from which it inherits, an event queue is not a
passive conduit. It has all the capabilities of an event receiver function. As a
receiver, it is associated with its own event interests. A particular queue can be
a receiver for many different event classes. If an event queue does not have
event interests, it will not receive events. Event interests can be added or
removed at any time, and their priorities can be varied within the framework
of the given event class. A thread that reads from an event queue can accept
and reject events, if they are delivered synchronously. A function accepts and
rejects events by returning the NameClass objects @accept or @reject. An
event queue does the equivalent by calling accept or reject on the event.

507

Events and Input Devices 18

An event queue acts as a storage bin that accepts an event, keeping it in order
until it can be processed by the underlying thread’s function. In most cases, the
event is processed immediately when the thread runs, but there is nothing to
prevent a developer from using the queue to store events for future use.

Dispatching Events

Event dispatch is the first of three phases in the event delivery mechanism,
which is summarized at the beginning of the section “How Events Work” on
page 500. In the dispatch phase, the delivery method searches through the
collection of event interests, which is managed by the event class. It does not
actually examine or compare the event with event interests—this operation
comes in the next phase, event matching.

Note – Subclasses of InputDevice, such as MouseDevice and
KeyboardDevice, create their own classes of events automatically. Instances
of FocusEvent and PaletteChangedEvent are also generated automatically.
You only need to be concerned with dispatch mechanisms on event classes that
you create for your own programs.

Dispatch should be considered from the point of view of the event receiver as
well as the sender. A receiver can filter out unwanted events at each of the
three delivery stages. It can reject or ignore an event that has been delivered,
but significant processing time may be involved. Since adding and removing
event interests can be done with so little overhead, it is often most efficient for
a receiver to actively managing its event interests.

Consider the performance trade-offs in a particular program. In one situation,
there may be very few events, and a large number of receivers that are
constantly changing their interests. In such a program, it might be more
efficient to have these receivers post their interests continuously, using the
matching and acceptance phases of the event delivery mechanism to filter out
unwanted events. At the other extreme, imagine a program that generates a
large number of events while it runs, with event interests that are quite static.
In such a program, it would be more efficient to add and remove event
interests.

Any object, function, or script can generate and send events. Once created, an
Event object is the only copy of itself. We say that an event has been delivered
and received, but it actually sits in the same fixed memory location from the
moment of creation until the moment when the garbage collector reclaims its
memory. The function or queue that “receives” an event receives only a
reference to it.

To send an event is to tell the event to deliver itself. The event places itself in
the proper queues, or it calls a matching receiver with itself as one of three
arguments. The actual method used to deliver the event will vary, depending
on the nature of the event. Three delivery methods are available:

1. Broadcast—the event is placed on event queues for all threads that have
registered an event interest in the event that has occurred, using the method
broadcast.

508

18 ScriptX Components Guide

2. Message-passing—the event is targeted only to a specific event queue, using
the method sendToQueue. This method applies only to event queues. To
target a receiver function, call the function directly. If an event is sent to a
specific queue, it bypasses the matching and acceptance phases of the event
delivery system.

3. Token-passing—the event is delivered to only one event receiver by using
the method signal, but that queue or function is not specified. When
signal is called, the event is delivered either synchronously or
asynchronously.

The signal method requires an additional argument, a Boolean value that
represents either synchronous delivery (true) or asynchronous delivery
(false). The receiver does not need to reply if the event is delivered
asynchronously. But if an event is delivered synchronously, the receiver needs
to accept or reject the event. If an event is not accepted, it goes to the event
interest with the next highest priority.

Synchronous delivery to a function event receiver is virtually as fast as
asynchronous delivery. Synchronous delivery to an event queue bears a
significant performance penalty because the thread that generated the event
blocks while waiting for a reply. This penalty is especially large with queued
events.

Advanced users can specialize the event delivery mechanism at either the
instance or class levels. The instance methods signal and broadcast call the
class methods signalDispatch and broadcastDispatch. A title developer
does not normally call these methods, which define the delivery mechanism at
the class level. These methods can modify the event, to some degree, as it is
delivered. For example, when an event instance is delivered to a receiver, its
matchedInterest instance variable, formerly undefined, may be modified to
point to the matching event interest.

Since the event delivery mechanism modifies properties of the event itself, an
event receiver should never assume that a copy of an event remains the same
as the original. The ScriptX Player itself does not make copies of an event—the
original event instance is passed by reference from sender to receiver. Suppose
that a high priority receiver makes its own local copy of an event and then
rejects it, so that the event instance is delivered to another receiver. Once an
event has been delivered, a local copy may no longer be valid. For example,
when a MouseEvent object is delivered, its localCoords instance variable is
updated to reflect the coordinate system of the presenter which receives it.

Matching Event Interests

Event matching is the second of three phases in the event delivery mechanism,
which is summarized at the beginning of the section “How Events Work” on
page 500. Events that are sent directly to a queue bypass this phase in delivery.
Events that are delivered by the signal or broadcast methods, however, can
be examined in more detail.

In the matching process, an event class can examine the properties of an event,
comparing them with the corresponding properties of an event interest. For
example, each KeyboardEvent subclass can check that an event occurred on a

509

Events and Input Devices 18

particular key, or with a particular modifier. Event classes define their own
mechanisms for storing interests, matching interests to events, and delivering
events to interested receivers. In effect, an event interest matches incoming
events with itself, using the rules that are defined by its class.

Each Event subclass, by storing and matching its own interests, acts as an
arbitration and dispatch mechanism, connecting events that have the desired
properties with receivers. This does not mean that the event subclass is the sole
determinant of who receives an event. Event receivers set their own priority.
It is also possible for a process that generates an event to look ahead and
examine the collection of interests stored on that event class before it sends an
event.

Event interests are held in a data structure that is associated with each Event
subclass. Implementation of this data structure is not specified in ScriptX; it
can be optimized for a particular class. A default version, defined in the Event
class, is available for event types which do not have critical requirements.
Figure 18-3 illustrates the default data structure, stored in the class variable
interests on objects of the Event class and its subclasses.

Figure 18-3: Default data structure used to store event interests.

In the default implementation, event interests are stored in buckets. The event
class uses the priority instance variable to place an event interest in the
proper bucket (the default is 7). Each bucket is a collection, with the most
recent event interest at the top of the stack.

Interest collections change over time. Event receivers are usually interested
only in particular events, and their event interests may change dynamically.
For example, an actuator controller might only be interested in instances of
MouseDownEvent. Once the mouse is down, it becomes interested in
MouseMoveEvent. When the button is released, it becomes interested once
again in MouseDownEvent, but is no longer interested in MouseMoveEvent.

The signal and broadcast methods, covered in the previous section, call the
instance method isSatisfiedBy to search for an interest that matches a
given event. By overriding isSatisfiedBy, a developer can modify the
interest matching process. By overriding other methods on the Event class, a
developer can modify the entire interest storage and matching system for a
subclass of Event.

High priority Low priority

1 2 3 4

Highest priority

= an event interest that has been registered by a particular event queue

Lowest priority

First interest at

priority 7

(stack)

5 6 7 8 9 10 11 12 13 14 15

510

18 ScriptX Components Guide

When is a more specialized data structure required? Some interest collections
are designed to avoid a linear search through all possible interests. For
example, the class MouseEvent has specialized techniques for interest
management. MouseEvent subclasses search through interests based on the
presentation hierarchy, in depth-wise, front-to-back order. Thus, a mouse-click
is received first by the presenter that sits directly under the mouse pointer. In
addition, the class MouseUpEvent specializes the instance variable
matchedInterest, which is defined by Event, to insure that an instance of
MouseUpEvent is delivered to the same presenter that received the most
recent instance of MouseDownEvent. For more information on how presenters
store mouse events, see the section “Storing Interests in Mouse Events on
Presenters” on page 521. For more information on the matchedInterest
instance variable, as specialized by MouseEvent, see “Matched Interests” on
page 525.

A program might need to know about all mouse events. ScriptX provides a
mechanism for trapping every mouse event before it reaches this top-most
presenter. If a MouseEvent interest does not set its presenter instance
variable, it has priority over other interests that do. This allows objects such as
tools to intercept mouse events. Presumably, such a high-priority receiver will
register and react to the event, and then reject it, so that the top-most presenter
receives it.

Accepting an Event

Acceptance is the final phase in the event delivery mechanism, which is
summarized at the beginning of the section “How Events Work” on page 500.
It applies only to events that are signaled synchronously.

When an event is signaled, the event’s class searches through its collection of
interests to find the matching interest that has the highest priority. If it finds a
match, then the event is delivered to the function or event queue associated
with that event interest. If the event was delivered asynchronously, delivery is
complete, and no reply is needed. If the event was delivered synchronously,
the signal method waits for a reply.

Note – If an event is delivered synchronously and isSatisfiedBy returns
true, event delivery is not necessarily final. Calling signal on the event
activates the thread that reads from the receiving queue, or it executes the
receiving function. The receiver then accepts or rejects the event.

With synchronous delivery, the function or queue that registered the matching
interest has an opportunity to examine the event, and perhaps reject it, passing
it on to another interest with lower priority. A function receiver is activated
immediately, in the same thread. It accepts or rejects the event by returning
@accept or @reject.

The acceptance mechanism for synchronous events is more complex when the
receiver is a queue. When an interest that is registered by an event queue states
that it is satisfied by an event, signal asks for the reject queue of the event.
Reject queues are created automatically by the event class. This creates an
event queue with a single interest, a reply interest for the event. The signal

511

Events and Input Devices 18

method places the event on the satisfied interest’s event queue and reads from
the reply queue. The sending thread now blocks waiting for a reply. The
receiver’s thread is awakened because there is an event in its queue. If the
event has been signaled as rejectable, the receiver may choose whether or not
to accept the event.

An event queue receiver accepts this event by calling accept, with the event
as the first argument. This method call signifies that this interest will take the
event and that the event should not be placed in any other queue. If the
receiver calls reject on the event, then the event class searches for the next
best match for the event (in its interest list) and delivers the event. This
continues until some event queue calls accept or until all interests have been
processed. If no interest is found, or if no interest accepts the event, the event is
discarded and the space it occupies in memory is reclaimed by the garbage
collector.

Flow Diagrams for Events

Figure 18-4 illustrates event handling for regular events. A regular event is one
that inherits from Event, but not from QueuedEvent. Regular events are
delivered directly to the final receiver, a queue or function, after being matched
with event interests.

Figure 18-4: Flow diagram of event handling with an event queue.

A queued event differs from an event in that all queued events are funneled
through the event dispatch queue to assure orderly handling.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

An event is created
then signaled.

An event queue has registered an event interest with priority 4
in events of class User. It will accept the event if presenter = P.

Since presenter = P, the event queue that
registered the event interest accepts the event.
The event is then sent to the event queue.

The event will be processed
the next time the thread is
scheduled to run

Event User

instance vars:

timestamp = #

priority = undef

x = 50; y = 126

presenter = P

Event User

instance vars:

timestamp = #

priority = 4

x = #; y = #

presenter = P

Match

Event queue
Thread

512

18 ScriptX Components Guide

Figure 18-5: Flow diagram of queued event handling with an event queue

Events and Event Interests—Creating New Classes

This section is for developers who want to create their own classes of events.
As a developer, you create objects and scripts that approach the ScriptX event
system as both a sender and a receiver. If your script creates events, you do not
want to overload the system, and any potential receivers, with unwanted
messages. If you create an event receiver, you don’t want to intercept messages
that should be left for other receivers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A queued event of
class MouseMoveEvent
is created and signaled

An event queue has registered an event interest with priority 4
in events of class MouseMoveEvent. It will accept the event if
presenter = P.

The event will be processed
the next time the thread is
scheduled to run.

The event queue that registered an event interest in
MouseMoveEvent accepts the event. The event is
then sent to the secondary event queue.

When the event reaches the head of the event
dispatch queue, the thread that dispatches queued
events pops it from the queue and matches it against
event interests in MouseMoveEvent.

Event Interest
instance vars:
timestamp = #
priority = 4
presenter = P
matchedInterest =

Event Instance
instance vars:
timestamp = #
priority = undef
presenter = P
matchedInterest =

Match

Secondary
event queue

Event
dispatch queue

Thread

The event is appended to
the event dispatch queue.

Thread

513

Events and Input Devices 18

All of the visible mechanisms defined by the event system, such as the signal,
broadcast, and isSatisfiedBy methods, are really default mechanisms. A
scripted subclass of Event, or of any particular event subclass, is free to
override these methods to provide additional functionality.

Since a given event class creates both events and event interests, a script that
creates a new subclass of Event automatically creates a mechanism for
sending and receiving that class of event.

Event classes serve a dual role in ScriptX. Many of the instance variables
defined by Event and its subclasses are overloaded—they have one meaning if
the object represents an event, another if it represents an event interest. For
example, you can designate a presenter when any mouse event is used as an
interest. But when the event represents an actual event instance, presenter is
maintained automatically, by the MouseEvent class. Many properties of events
apply only when the object is registered as an interest. ScriptX reports an
exception if an event is used as both an interest and an event.

Suppose that a script creates a new instance of some subclass of Event. What
makes an Event object represent an event, and what makes it represent an
interest? Any instance of Event can potentially become either an event or an
event interest. A developer must approach the event system from both
directions.

If the Event instance is to be used as an actual event, it must be sent out to
interested receivers. The methods signal, broadcast, and sendToQueue
and provide alternative delivery systems. Sending an event to interested
receivers is what makes an event an actual event.

If the Event instance is to be used as an interest, it must be registered as an
interest with its class. When an event acts as an interest, it acts as a template,
belonging to an event receiver. This template is registered with the event class,
allowing the receiver to be matched with and receive actual events.

Many instance variables on the event classes are read-write. Setting a new
value makes sense only if the event is used as an interest, not if it serves as an
event. When the event represents an actual event, these variables are
maintained by the class itself. They should not be modified.

If an event is to become an interest, its eventReceiver and authorData
instance variables are set. An event interest must have a receiver—otherwise, it
cannot be delivered. authorData is an optional parameter. It is used as an
argument when an actual event instance is delivered to the event receiver.
Finally, the event itself is registered as an interest by calling the method
addEventInterest on the event instance. This posts the interest on the
class’s interest list.

Events are generally matched and processed quickly, existing as objects only
momentarily. Event interests, on the other hand, can be stored and saved
almost indefinitely while a program is running. Instances of Event can be
saved to and retrieved from the object store, allowing a program to manage a
set of predefined interests. Event interests can be added to or removed from
interest lists as a program runs with very little overhead.

514

18 ScriptX Components Guide

In the Event class, the interests class variable represents a collection that is
publicly visible. A script can examine this collection before posting new
interests. It is also easy to check whether there are interests posted, and at what
priorities, before it sending an event.

How Input Devices Work
Input devices are objects that serve as interfaces between hardware and other
ScriptX classes. Input devices are event generators. They detect events that are
initiated by the user, such as mouse and keyboard events. They translate these
events, which originate with the underlying operating system, into Event
objects—objects that the ScriptX Player can receive and process.

This section is for developers who need direct access to input devices and the
classes of events that they generate, perhaps to create new user interface
elements. Most title developers will find that existing classes meet their needs.

ScriptX provides a range of presenters and controllers that receive keyboard
and mouse events automatically. The classes ScrollBar,
ActuatorController, DragController, and others that are defined by the
User Interface component, receive and process mouse events automatically,
creating a range of objects that implement common user interface elements.
The TextEdit class, defined by the Text and Fonts component, acts as a
presenter that can receive and process keyboard events. Each of these classes
creates an InputDevice object, if one is not already present, to act as an
interface with the native operating system.

Before you create a new user interface element, consider the objects that are
built into the core classes. For example, a PushButton object is a really a
group of simple presenters (a TwoDMultiPresenter object) with an attached
controller (an ActuatorController object). This architecture makes it
possible to separate appearance from implementation. Modify its presenters,
and you change the appearance. Modify the controller, and you change the
behavior.

Creating Input Devices and Processing Events

To receive events directly from a keyboard, mouse, or other input device, you
must first create an instance of the corresponding input device class. ScriptX
does not automatically create instances of input devices. The InputDevice
object creates an instance of the appropriate event for each event that it
receives from the operating system. It signals those events to the appropriate
receivers.

When you create a new input device, the ScriptX Player resolves the new
device instance with existing instances of that class. For example, if a
TextEdit object is already set up to receive and process keyboard events,
creating a new KeyboardDevice object will be resolved to create a reference
to the existing keyboard device.

515

Events and Input Devices 18

ScriptX is capable of supporting multiple instances of input devices; however,
this feature has little practical application for current titles. As ScriptX
encompasses joysticks and other input devices, title developers will be able to
use the instance variables enabled and deviceID, both defined on
InputDevice, to create interactive titles for two or more users. Each
InputDevice subclass maintains a list of instances; a script has access to this
list through the class method getDeviceFromList.

To receive events from an input device, a title must first create an object that
will act as an interface to the device driver. This object is an instance of the
class that represents the device. In a ScriptX title, an input device object is
always an instance of one of the subclasses of InputDevice. For example, a
hardware mouse is represented by an instance of PhysicalMouse.

Next, the title must create an event receiver and post interests for that receiver
in the classes of events that are associated with the device. As event receivers,
functions enjoy a major performance advantage over event queues in
processing queued events, especially if those events are delivered
asynchronously.

A process can also poll an input device directly. For example, a process can ask
the mouse device for its current coordinates. Polling of input devices can only
be done from a thread that can block. For example, it would not be appropriate
to call a function that polls for keyboard activity from a callback thread.

Receiving mouse events requires more memory than polling a mouse device,
but it is a better way of handling mouse movements when a script requires that
instances of MouseMoveEvent be processed asynchronously with other
queued events. The event dispatch queue insures that events are processed in
an orderly manner. If a script is recognizing a gesture, or if it is engaged in
some operation that does not require tight integration with the compositor,
then it is easier and more efficient to receive mouse events.

Keyboard Devices and Keyboard Events

KeyboardDevice is an abstract class that acts as an interface between the
ScriptX Player and the native operating system. A KeyboardDevice
instance—that is, an object that belongs to a subclass of KeyboardDevice—
receives keyboard events from the device driver and sends them to other
classes as ScriptX events.

An upcoming release of ScriptX will allow the ScriptX Player to substitute a
virtual device for a physical input device that is not available. Although they
are not implemented in the current release of ScriptX, developers need to be
aware of virtual devices. For more information on virtual devices, see the
section beginning on page 529 entitled “Input Devices of the Future.”

Although KeyboardDevice is an abstract class, you create a new instance of
any KeyboardDevice subclass by calling new on the KeyboardDevice class
itself. The class automatically creates an instance of the appropriate concrete
subclass. Since the current release of ScriptX is directed primarily to desktop
computers, a title should assume for now that a physical keyboard is
connected to the system.

516

18 ScriptX Components Guide

Key Codes

Each key has an associated key code. A complete table is given with the
definition of the class KeyboardDevice in the ScriptX Class Reference. When a
KeyboardDevice object generates a keyboard event, it fills in the keycode
instance variable, defined by KeyboardEvent, to identify the key that was
pressed or released.

Key codes are divided into two groups: Unicode and ScriptX.

• Standard Unicode characters are represented by positive key codes
(including zero). For characters with key code 32 or greater, the character is
the key name. For characters with key code between 0 and 32, the key name
is not well defined.

• ScriptX “action keys” and modifier keys are represented by negative key
codes. Action keys include functions keys, directional keys, and the keys on
a numeric keypad.

ScriptX supports Unicode/ISO 10646 characters. Unicode is a standard set of
65,536 characters, presenting a wide range of characters, glyphs and symbols.
ISO 10646 is a method variable-length encoding standard for Unicode
characters that supports a variety of orderings on the standard Unicode
character set. For a description of Unicode and ISO 10646, see the section
“String Encoding and Unicode” on page 284 in Chapter 12, “Text and Fonts.”

An event interest in keyboard events can specify a range of key codes that it is
interested in receiving by modifying the instance variables maxKeyCode and
minKeyCode, defined by the class KeyboardEvent.

Modifier Keys

Modifier keys, which include shift keys and state keys, fall into a special
category. State keys, such as CapLock, NumLock, and ScrollLock, are toggled
on and off. Shift keys, such as the Shift, Option or Alt, Control, and Command
keys, are considered active when they are being actively pressed.

Keyboard devices generate an event when a modifier key is pressed. They also
continuously monitor the state of modifier keys. Whenever a keyboard event is
generated, the state of the seven modifier keys is recorded in the
keyModifiers instance variable for that event.

Note the distinction between the instance variable keyModifiers, defined by
KeyboardDevice, and the instance variable keyModifiers, defined by
KeyboardEvent. The former represents the state of the modifier keys at
present. The latter represents a snapshot of the state of the modifier keys when
an event was generated, when a key was pressed or released.

For each key name there is a corresponding name token, that is, a NameClass
object. Use getKeyName, a method defined by KeyboardDevice, to get the
name token for any given key code. The system name is always the key name
with an “@” symbol before it. System names provide a convenient syntax for
checking the values of the modifier keys.

myDevice := new KeyboardDevice

517

Events and Input Devices 18

isModifierActive myDevice @shift -- returns true or false
myDevice.keyModifiers -- returns an array

On an event interest, keyModifiers designates a state that will satisfy that
interest, so that the keyboard event can be delivered to the associated receiver.
The isSatisfiedBy method, specialized by the KeyboardEvent class,
matches keyModifiers on an event with keyModifiers on an event interest
before delivering the event to a receiver.

Focus Events

Suppose that a user is typing at the keyboard, and that several different
TextEdit presenters that are attached to a ScriptX window. Each of these
presenters has an interest in receiving keyboard events. The presenter that is
the current target of keyboard events is said to have focus. If our title was a
database application, and if each TextEdit presenter was a field on a database
layout, we might say that the presenter with focus is the current field.

Focus events are generated by a focus manager. A focus manager is an invisible
class that is closely associated with an input device, such as a keyboard device.
For the KeyboardDevice class, focus events are used to direct input to a
particular event receiver, usually associated with an instance of TextEdit. A
FocusEvent object is an event with several specialized instance variables that
are visible to the scripter. The instance variable presenter, which must be an
instance of TwoDPresenter, is set by event interests. The instance variable
focusType, used only on focus events, takes on three possible values:
@loseFocus, @gainFocus, and @restoreFocus.

The focus manager for the keyboard device maintains a private record of
which event receiver currently has focus. When another receiver requests
focus, it informs the current receiver that it is losing focus. It does this by
sending this presenter a FocusEvent object with the value of focusType set
to @loseFocus. Upon losing focus, a receiver modifies its presenters to show
that it is inactive, and removes its interests in receiving keyboard events.

The keyboard device also informs the new event receiver that it is gaining
focus. It sends this new receiver a FocusEvent object too, setting focusType
to either @gainFocus or @restoreFocus. The distinction between these two
values is minor. Some programs might want to make a distinction as to how
focus was obtained. If a receiver gains focus through user manipulation, the
value of focusType is @gainFocus. If the change in focus is initiated by a
third party, such as another script or object, then the value of focusType is
@restoreFocus. Upon gaining focus, a receiver might perform an
initialization, modify its presenters to show that it is active, and add its
interests in receiving keyboard events.

Figure 18-6 demonstrates the focus mechanism, while hiding some of the
underlying detail. The programmer’s objective is to have one and only one
TextEdit object have an interest in events of the KeyboardDownEvent class
at any given time. In this diagram, a ScriptX window contains several
TextEdit objects, presenters that are interested in gaining focus and receiving
keyboard events. Roger Kaputnik, a user from Global Village, is entering
personal information into these presenters. As he types, the underlying ScriptX

518

18 ScriptX Components Guide

program allows only one presenter at a time to have focus. Roger finishes
entering his city, and he wants to move on to state—Global Village is in World
Federation. Here is a step-by-step summary of what happens.

1. The keyboard device sends a focus event to the presenter that currently has
focus to tell it that it is losing focus.

2. The FocusEvent class delivers the focus event to the Addr: presenter.

3. The Addr: presenter responds by removing its interests from the interests
list maintained by the KeyboardDownEvent class.

4. The keyboard device sends a focus event to notify the City: presenter that
it is gaining focus.

5. The FocusEvent class delivers the focus event to the City: presenter.

6. The City: presenter adds its interests to the interests list maintained by the
KeyboardDownEvent class.

Figure 18-6: Focus events notify presenters that they are gaining or losing focus

A sample script that demonstrates the focus mechanism is available at the end
of this chapter, on page 538.

Note – A focus event is not like a valve—it does not direct a flow of events to
a particular receiver. It is a notification device. Event receivers are responsible
for adding and removing their own event interests. Well-behaved receivers
might be expected to add and remove interests on cue, but it is up to the
program to supply this logic. (The TextEdit class does this automatically.)
Focus events are only delivered to interested receivers. If a new receiver adds
an interest in keyboard events, but does not add an interest in focus events, it
can receive keyboard events even though it is not registered with the focus
event mechanism.

Interests:

presenter “Name:”

presenter “Addr:”

presenter “City:”

presenter “State:”

Interests:

presenter “Addr:”

presenter “City:”

FocusEvent class Window

KeyboardDownEvent class

TextEdit object “Name:”

 Roger Kaputnik

TextEdit object “Addr:”

 One Infobahn

TextEdit object “City:”

 Global Village

TextEdit object “State:”

 World Federation

1

4

2

5

3

6

KeyboardDevice instance

519

Events and Input Devices 18

Mouse Devices and Mouse Events

MouseDevice is an abstract class that acts as an interface between the ScriptX
Player and the native operating system. A MouseDevice instance receives
mouse events from the device driver and sends them to other classes as ScriptX
events. As with keyboard events, developers should note that a future version
of ScriptX will allow for virtual devices.

Mouse events are geographic in that they occur at a given location on the
screen as well as at a point in time. The MouseEvent class adds several
instance variables to handle the location of an event. Each mouse event
maintains its own location in two different coordinate systems. The instance
variable surfaceCoords stores a point representing the Kaleida Media Player
coordinates where the event occurred. The instance variable localCoords
expresses the location of the event in the local coordinate system of the
presenter associated with the interest that receives the event. For information
on screen coordinates, see the section “Transform, Position and Size” on
page 68 in Chapter 3, “Spaces and Presenters”.

The delivery system modifies a mouse event as it is being delivered. Until a
mouse event is delivered to a receiver, usually a presenter or a controller that is
managing objects in some presenter, the localCoords instance variable points
to the origin and has no meaning. Each time an event is delivered to a receiver,
its localCoords instance variable is revised. If the receiver accepts the event,
then its local coordinates are cast in stone. They will remain unchanged until
the event is eliminated by the garbage collector. This means that a copy of the
mouse event will no longer be valid. If a mouse event is delivered to an
interest that is not associated with a presenter, the class sets localCoords in
the coordinate system of the top presenter. In many cases, the top presenter
does not coincide with the coordinates of the display surface where the event
occurred.

Note the distinction between the instance variable currentCoords, defined
by MouseDevice, and the instance variable surfaceCoords, defined by
MouseEvent. The former represents the location of the mouse at present. The
latter represents the actual location of the mouse when a mouse event was
generated.

Mouse Pointer

The mouse pointer is a movable bitmap image, with its associated mask, that
represents the position of the mouse on a display surface. ScriptX allows a
program to use the standard mouse pointers that are defined by the underlying
operating system. Alternatively, a ScriptX mouse device can be associated with
its own custom pointer, an instance of Pointer, and this pointer can be
changed dynamically as the program runs. The value of pointerType, an
instance variable defined by MouseDevice, determines the appearance of the
mouse pointer.

To create a custom mouse pointer, define an instance of Pointer, setting the
values of bitmap, mask, and hotSpot to create a pointer of the desired
appearance. Set the value of pointerType, which is defined by
MouseDevice, to reference the custom Pointer object.

520

18 ScriptX Components Guide

Note – Distinguish between the mouse pointer and the text cursor. The mouse
pointer refers to a movable bitmap that represents the position of the mouse on
a display surface. The text cursor, also known as the insertion caret, represents
the current insertion point in text.

When a ScriptX program uses pointer types that are defined by the underlying
system, the appearance of the mouse pointer varies across platforms. For
example, on a Windows or OS/2 system, the mouse pointer appears as an 16 x
16 hourglass icon when the value of pointerType is @wait. When the value
of pointerType is @wait on MacOS, the pointer is a 16 x 16 watch icon.

Mouse Buttons and Modifier Keys

A mouse device supports events on three different buttons, each of which has
a system name: @mouseButton1, @mouseButton2, and @mouseButton3. The
mouse event classes specialize isSatisfiedBy to match events and interests
to a particular button or set of buttons, if the interest specifies them.
Implementation of buttons by the mouse event classes is similar to the
implementation of modifier keys by the keyboard event classes.

Note the distinction between the instance variable buttons, defined by
MouseDevice, and the instance variable buttons, defined by MouseEvent.
The former represents the current state of the mouse buttons, as maintained by
the device. The latter represents the state of the mouse buttons when an event
was generated. If the mouse event is used as a template, it represents a desired
state.

The handling of modifier keys by the mouse device and mouse event classes
really parallels that of the corresponding keyboard classes. Mouse devices, like
keyboard devices, track which modifier keys are active or inactive. Mouse
events, like keyboard events, report which modifier keys were down when an
event occurred. An event receiver can specify that it is interested only in events
that occurred while certain modifier keys were pressed or released by setting
the keyModifiers instance variable.

Mouse devices, and the gestures that are associated with them, are not
standard across platforms. Since the ScriptX Player is designed to function
with many operating systems, consider the needs and habits of users in
different computing environments in designing a user interface. For example,
many ScriptX users do not have a second or third mouse button. Modifier keys
can be used to define alternative gestures for clicking on these buttons.

Presenters and Interests in Mouse Events

The class TwoDPresenter incorporates all presenters that can be displayed on
a display surface, including 2D shapes, video and animation players, user
interface objects, and text presenters. Every TwoDPresenter instance has an
eventInterests instance variable, used to store interests in mouse events.

521

Events and Input Devices 18

In effect, a TwoDPresenter object can be programmed to behave like a button
and receive mouse input. Interests are attached to the presenter itself, not to
the event class. In this way, interests in mouse events follow the presenter
when it is moved around, even when it is moved to a new space.

Although presenters maintain their own interests in mouse events, the storage
mechanism is transparent to the scripter. addEventInterest is a generic that
every event class understands. A script calls addEventInterest on a mouse
event interest, just as on any other interest. On a mouse event, if the
presenter instance variable is not undefined, then the interest is attached to
the presenter itself.

Interests in mouse events can leave their presenter instance variable
undefined. If they define no presenter, they are stored with the event class
itself, using the default mechanism for events. When a mouse event is sent by
the signal method, the event class first searches for matching interests in its
own interest collection. This allows a program to define an interest that has a
higher priority than any presenter. If no interests that are stored by the class
are satisfied by and accept this event, it continues by searching the
presentation hierarchy.

Storing Interests in Mouse Events on Presenters

Every instance of TwoDPresenter, when it is displayed in a window, is
associated with a region on that window’s display surface. If a mouse event
occurs within that region, the presenter can receive and process that event. A
presenter can advertise an interest in a particular class of mouse events. Then,
when the user performs that mouse action within the boundary of the
presenter, only that presenter responds. In other words, when the event
matches the interest that the presenter has advertised, the presenter receives
the event and performs a specified action.

You can design presenters to be sensitive to only certain events. Clicking on,
moving over, or dragging a presenter could cause it to change colors, change
images, start an animation, bring in a new scene, or whatever you can imagine.

Setting up a Presenter to Receive Mouse Events

To make a presenter receive mouse events requires that you create an instance
of a subclass of MouseEvent, fill in its instance variables as an interest, and
add this interest to the presenter’s list of interests, as shown in the following
steps. A complete example is shown later in this chapter in the section
“Selecting Presenters with a Mouse” on page 530.

1. Create the mouse event interest – Make a new instance of the appropriate
MouseEvent subclass and fill in its instance variables, as follows:

myMD2 := new MouseDownEvent

Assign values to the instance variables of the mouse event interest:

myMD2.presenter := myShape
myMD2.device := myMouse

522

18 ScriptX Components Guide

myMD2.eventReceiver := selectFunction

This fills in the values of myMD2, as shown in the lower right corner of
Figure 18-7. Possible instance variables that can be assigned for a mouse
event interest include presenter, device, eventReceiver, buttons,
priority, matchedInterest, and authorData. Note that as with all the
event classes, the meaning of several of these instance variables differs for
events and event interests.

2. Add the interest to the interest list – Add the interest to the appropriate
interest list by calling addEventInterest on the interest itself:

addEventInterest myMD2

The MouseEvent class specializes addEventInterest to examine its
presenter instance variable to determine where the interest should be
stored. Since myMD2 specifies a presenter (myShape), addEventInterest
stores the event interest in the collection defined by the presenter’s
eventInterests instance variable, as shown in Figure 18-7. The
TwoDPresenter class defines eventInterests, an instance variable, as a
read-only list of event interests associated with a given 2D presenter. It can
store any instance of MouseEvent that is defined as an interest.

Now the presenter is set up to receive a mouse-down event.

Matching a Mouse Event

When the user presses the mouse button down on myShape, the
MouseDownEvent class goes through the three steps shown in Figure 18-7 to
find an interest that matches the particular mouse-down event. These steps are
as follows:

1. Match in Class – The MouseDownEvent class first looks in its interests
class variable for a mouse-down event interest that matches the event.
Interests in this list have presenter set to undefined, which means the
class will try to match them first before the events are sent to presenters in
the presentation hierarchy. A match occurs if the interest and event have the
same mouse device and the same specified mouse buttons

These two conditions are considered the interest’s “template.” If there’s no
match, the MouseDownEvent class continues looking for a match with the
next interest. If there is a match, one of two things happens:

• If eventReceiver contains a reference to a function, it runs, performing
the operation you envisioned. If the function returns true, the event is
“swallowed” and the rest of these steps are skipped. If it returns false,
the event continues on to the next interest looking for another match.

• If eventReceiver refers to an event queue, the thread that reads from
the queue awakens and its function immediately accepts or rejects the
event.

523

Events and Input Devices 18

2. Search Presenters – If no interest that is stored in the MouseDownEvent
class’s own interest list accepts and “swallows” this event, the class searches
through the presentation hierarchy (as described in Figure 18-7), seeking the
front-most presenter whose boundary contains the display coordinates of
the event. Front-most means that if presenters overlap at the point the
mouse event occurred, they are tested in order of front to back.

3. Match in Presenter – When the class finds a presenter to test, it compares
the event to interests held in the presenter’s eventInterests instance
variable. Once again, a match occurs if the interest and event specify the
same mouse device and the same mouse buttons

In this example, an interest in myShape satisfies the event if the user clicked
with the proper mouse button within the boundary of myShape. The
function referred to by eventReceiver is called and the matching process
continues, exactly as in the first step.

If this presenter does not swallow the event, the process alternates between
searching in step 2 and testing for a match in step 3, until the event is
accepted and “swallowed,” or until the entire presentation hierarchy has
been traversed.

524

18 ScriptX Components Guide

Figure 18-7: Three steps to search for and match mouse event interests.

MouseEvent classes search through the presentation hierarchy in a very
specific manner to find an interest whose template matches the current event.
Figure 18-7 shows the search order for a hierarchy that has 9 presenters. (The
presenters are arranged left-to-right as they appear in the subpresenters list.)

Suppose the user clicks on presenter 8. The mouse event itself maintains the
coordinates of the mouse click. The event system searches through the
presentation hierarchy to find the front-most presenter at that location. If the
mouse click is not within the boundary of presenter 1, it skips that presenter;
otherwise it checks each of its subpresenters. It performs the same test for each
subpresenter, going one level deeper each time the click is within a
subpresenter’s boundary. The search continues in this manner until it finds the
deepest presenter for a particular branch that contains the event’s coordinates.
It then compares the event to the mouse interests in the presenter’s
eventInterests instance variable by calling isSatisfiedBy on those event
interests.

target
Instance Variables:

myOval

position 100,100

eventInterests

interests
Class Variables:

numInterests 20

eventReceiver

device

buttons

presenter

Instance Variables:
selectFunction

myMouse

@mouseButton2

authorData self

myMD2 interest
Instance of MouseDownEvent

MouseDownEvent class

myMM1

myMU1

myMD1

myShape presenter

MouseMoveEvent

MouseUpEvent

MouseDownEvent

myMM2

myMU2

myMD2

key value

2

interests

eventInterests

Search Presenters – Searches through the presentation hierarchy for the front-most presenter

1

1 15

1 15

3

myMD1 interest
Instance of MouseDownEvent

Match in Class – Tests the event for a match in the interests class variable

Match in Presenter – Tests the event for a match in the presenter’s eventInterests instance

whose boundary contains the mouse event.

variable.

eventReceiver

device

buttons

presenter

Instance Variables:
myReceiver

myMouse

@mouseButton1

undefined

authorData self

525

Events and Input Devices 18

Figure 18-8: Search order for event matching through a presentation hierarchy.

In any presentation hierarchy, when two presenters overlap, one that is deeper
down in the tree appears in front of the other. As a consequence, searching in a
bottom-up manner allows the MouseEvent class to search through presenters
from the front of the display surface towards the back. Thus, when a user clicks
at a point on the screen where two or more presenters overlap, the presenter in
front is the first to process the event. When that presenter is finished processing
the event, it can either swallow the event, preventing it from continuing, or let
it continue along to the next presenter in the hierarchy.

Note that this “bottom-up” order in which ScriptX traverses the presentation
hierarchy to compare events and event interests is roughly opposite to the
top-down order that is used when the compositor draws presenters on the
display surface.

To optimize this search, the presentation hierarchy should be comprised of
collections that are easily searched, such as arrays. Instances of
TwoDMultiPresenter and its subclasses default to such an optimized
collection as their target collection.

The eventInterests instance variable is normally defined only when a
program calls addEventInterest on a subclass of MouseEvent.
TwoDPresenter defines a generic function, createInterestList which can
be specialized by a developer to create and store interests in new kinds of
events. For example, a developer could specialize createInterestList to
support a new kind of hardware device, such as a pen device. You should call
createInterestList on a 2D presenter only if eventInterests is
undefined on that presenter. Note that eventInterests is a read-only
instance variable.

Matched Interests

Suppose a given presenter receives an instance of MouseDownEvent. What
happens if the user drags the mouse away from that presenter before releasing
it? The user could drag the mouse outside the boundary of the presenter
entirely, or she could drag it into the boundary of another interested presenter
that might intercept the event and receive it with higher priority.

Presentation HierarchyUser’s View

1

2

3 4

5

6 7
8 9

PP8 9

PP3 4 PP6 7

PP

Top presenter1

2 5

P
Background

Foreground

526

18 ScriptX Components Guide

The following diagram illustrates the problem of matching interests on mouse
events. Suppose the user has just clicked the mouse at point A on Abbott, a
TwoDPresenter instance that targets an oval, and has an interest in
mouse-down events. Costello, another instance of TwoDPresenter, partially
covers Abbott. If the user drags the mouse to point B and if Costello is
interested in mouse-up events, then Abbott’s interest will receive the event
first. If the user continues dragging the mouse, without releasing the button, to
point C, then neither Abbott nor Costello receives the associated event.

If a presenter needs to receive a mouse-up event that is associated with the
most recent mouse-down event, the script should set the matchedInterest
instance variable on its interest in the class MouseUpEvent to point to the
matching event interest registered with the MouseDownEvent class.

This mechanism overrides the normal delivery of mouse-up events—it insures
that the same presenter receives matching mouse-down and mouse-up events.
Matched interests can be used to allow a presenter, such as a push button or
menu, to clean up or undo actions that began when they received a
mouse-down event. In the diagram above, this means that if you press the
mouse button at point A and then release it at B or C, Abbott still receives the
associated mouse-up event.

Note – The matchedInterest instance variable, although writable, is an
event-only instance variable on other Event subclasses. This use of
matchedInterest by the MouseUpEvent class is specialized.

Mouse Crossing Events

The MouseCrossingEvent class provides an efficient mechanism to register
when the mouse enters and exits from a 2D presenter. Every TwoDPresenter
object has a boundary instance variable, which points to a Stencil object.
Each time the mouse travels across the boundary of a presenter that is visible,
the system can potentially generate a mouse crossing event. A typical use of
MouseCrossingEvent is to allow a presenter to modify its appearance as the
mouse travels over it.

The crossingType instance variable has two possible values: @enter and
@leave. A single event is associated with entering a presenter, and another
with leaving. If any receiver receives an event with crossingType set to
@enter, then it is guaranteed to receive the matching event with
crossingType set to @leave as soon as the mouse travels back across the
presenter’s boundary.

A

C

B

Abbott

Costello

527

Events and Input Devices 18

In the following diagram, Groucho and Karl are overlapping presenters,
siblings in the presenter hierarchy, each of which targets an instance of Oval.
Karl is in front of Groucho, meaning that Karl is drawn on top of Groucho
when presenters in this space are composited. Suppose that Groucho and Karl
have each registered interests in receiving mouse crossing events. As the user
moves the mouse in a straight line from A to F, the system generates mouse
crossing events at points B, C, and E. Note that no event is generated at point
D, since Karl is the frontmost presenter.

The following describes what happens at point C in this diagram. Karl is the
frontmost presenter, so the event system first generates a
MouseCrossingEvent object with the value of crossingType set to @leave.
This event passes through the primary dispatch queue and is delivered to
Groucho. Next, the system generates another MouseCrossingEvent with
crossingType set to @enter. This event passes through the primary queue
and is delivered to Karl. The primary queue assures that the mouse cannot
enter Karl before it leaves Groucho. However, it does not assure that these two
events are delivered atomically. The thread system can switch while these
events are being processed.

In the following diagram, Groucho, Harpo, and Chico are overlapping
presenters, each of which targets an instance of Rect. Harpo is a subpresenter
of Groucho. Groucho and Chico are siblings in the presenter hierarchy. The x2
boundaries of Groucho and Harpo are coterminous with the x1 boundary of
Chico. All three presenters have registered interests in mouse crossing events.
As the user moves the mouse in a straight line from A to F, the system
generates mouse crossing events at points B, C, D, and E.

The following description applies to points C and D in this diagram. When the
mouse reaches point C, it does not leave Groucho in order to enter Harpo.
Since Harpo is a subpresenter of Groucho, the event system generates a mouse
crossing event with the value of crossingType set to @enter for Harpo. At
this point, two events with crossingType set to @enter are extant that have
not been matched with leave events. When the mouse crosses three presenter

D

F

A
B

C

E
Groucho

Karl

D

F

A
B

C

E

Groucho

Chico

Harpo

528

18 ScriptX Components Guide

boundaries at point D, it first generates a leave event for Harpo, and then a
leave event for Groucho. Only then does the system generate an enter event for
Chico. For a script that demonstrates mouse crossing events, see the example
“Receiving Mouse Crossing Events” on page 541.

Note – It is possible for the user to jerk the mouse across a presenter so quickly
that the system does not detect a mouse crossing event. However, once the
system has registered a MouseCrossingEvent object with crossing type
@enter, it is guaranteed to generate the matching event with crossing type
@leave. On a particular presenter, mouse crossing events are uniquely paired
and matched. The mouse cannot enter a presenter again until it has left it.

As with all mouse events, any interest not associated with a presenter (its
presenter instance variable is undefined) has priority over interests that are
stored by presenters. If there is an interest that is not associated with a
presenter, then the MouseCrossingEvent class generates events every time
the mouse enters or leaves any presenter that is visible in the window. (This
can have a noticeable effect on performance if the number of presenters is
large.)

Polling and Mouse Devices

An alternative to tracking mouse movements by waiting to receive events is to
poll the mouse device directly. To poll a device is to query it continuously for
some change in state. Since ScriptX is a multi-threaded system, a process that
runs in one thread can continuously poll for changes in the state of a device.

Polling of input devices must always be done from a thread that can block.
(The MouseDevice class defines accessor methods that block while waiting on
theUIEventDispatchQueue. See the definition of screenCoords, an
instance variable defined by MouseDevice, in the ScriptX Class Reference.)

Polling is an alternative to blocking, which is implicit to the event handling
system. Blocking places fewer demands on the system, but is constrained by
the throughput of the queued event delivery mechanism. (For additional
reading on blocking, see the “Threads” chapter of this volume.)

Compatibility Across Platforms

Version 1.0 of the ScriptX Player assumes that a mouse and a keyboard are
physically attached to the system. Since this version of the ScriptX Player is
designed primarily with desktop computers in mind, developers can count on
these basic input capabilities for current titles.

Keep in mind that input devices are not standardized across hardware
platforms. For example, Windows can operate without a mouse, but when a
mouse is attached to a Windows-based computer, it is generally a two-button
mouse. The Macintosh requires a mouse with at least one button. Some
vendors sell a Macintosh mouse or trackball with additional buttons that can
be customized by the user, but there are no standards or user interface

529

Events and Input Devices 18

guidelines that dictate what this extra button should do. Keyboards are close to
standardization; however, users of the Windows, OS/2, Macintosh, and Unix
operating systems have different expectations for how they should perform.

A carefully designed title reflects the differences in how particular modifier
keys or mouse buttons are used across the various hardware platforms on
which the ScriptX Player runs. Title developers should create a user interface
that is comfortable and accessible to users on all platforms.

Certain keyboards, especially those on computer systems sold for use in homes
and classrooms, do not support a full extended keyboard. For example, many
keyboards are not equipped with function keys or with cursor control keys
such as page up and page down. To determine that a particular keyboard
supports a given key, use the existKey instance method, which is defined on
the class KeyboardDevice.

It is always good form to check the system for an input device that meets your
needs before you actually use it. A title can call systemQuery to assure that it
has access to a keyboard or mouse.

Performance is also a compatibility issue. ScriptX receives events from input
devices through the underlying operating system and processes them at a
speed that is dependent on underlying hardware. What happens when a user
flicks a mouse across a large screen, passing over hundreds of pixels along the
way? A high-performance system will signal many more mouse-move events
than a low-performance system. When the MouseMoveEvent class signals
events, it actually looks ahead at the primary dispatch queue to see if there are
other MouseMoveEvent instances ahead of it in the primary dispatch queue.
The class does not signal a new event until the old one is removed from the
primary event queue. The same issue applies to autoRepeat, which is an
instance variable on KeyboardDevice.

Input Devices of the Future

As the field of multimedia develops, consumers will want multimedia players
that do not require a desktop computer. Watch for a future version of the
ScriptX Player to run on a console connected to a television set. As the ScriptX
Player moves into “form factors” outside the realm of the desktop computer,
ScriptX will evolve to encompass new input devices, such as a digital joystick.

Of course, a console that sits on a television monitor may not be attached to a
physical keyboard. A future version of ScriptX will get around this problem by
creating a virtual keyboard, a software emulation of a keyboard that can be
operated with a mouse or joystick. Thus, a title does not need to be concerned
about whether a physical keyboard exists.

ScriptX will provide virtual counterparts of a keyboard and mouse so that title
developers are assured of basic input capabilities. If an input device does not
exist in hardware or if the hardware implementation does not meet the
author’s requirements, a virtual device, with identical functionality, will be
created for the author’s use.

530

18 ScriptX Components Guide

Although you can create an instance of PhysicalKeyboard or
PhysicalMouse, it is better to create a KeyboardDevice or MouseDevice
object. Although the latter classes are abstract, they determine automatically
what hardware devices are connected to the system. In a future release of the
ScriptX Player, calling new on KeyboardDevice or MouseDevice will
automatically create an instance of the appropriate concrete class, either a
physical device or a virtual representation of it.

Events and Input Devices Examples
The following example scripts demonstrate events and input devices:

• Selecting Presenters with a Mouse

• Processing with an Event Queue

• Focus Events

• Receiving Mouse Crossing Events

Event handling is already built into several ScriptX core classes, such as
ScrollBar, ActuatorController, DragController, and TextEdit. Thus,
it is possible to create a ScriptX title without ever descending into the
underlying event system. But the events system offers many hooks for
specializing existing classes. A common use of the Events component is to
create a new subclass of Event for communication within a title. Another
application is to create a new user interface object, such as an instance of
Controller that receives user events.

Selecting Presenters with a Mouse

This example creates a mixin class called Selectable, which demonstrates
how to make specific presenters respond to mouse events. This class is mixed
in with 2D shapes to make them “selectable” in a primitive way. When a user
clicks on a 2D shape, the shape is moved in front of other presenters in the
window and momentarily highlighted (with a heavy bounding box). This is a
short example; it would be easy to imagine different and more elaborate ways
of highlighting and selecting objects, and extending this script to implement
them.

After creating the Selectable class, this example creates “event receiver”
methods that are called when the event is received and matched. Each mouse
event has its own method that it calls. A mouse button down event causes the
2D shape to move to the front and become highlighted. A mouse button up
event causes the highlight to disappear. It then creates an initialization method
which sets up and adds the mouse event interests to the event system.

Finally, this example creates a window, which is a 2D space, and adds two
shapes to the window.

531

Events and Input Devices 18

Figure 18-9: Selecting a presenter with the mouse.

The Selectable Class

The Selectable class has two instance variables and three methods. The
instance variables mouseDown and mouseUp are declared in this script; the
methods are the event receiver and initialization methods described next.
These instance variables are used only while setting up the mouse event
interests, until the interests are added to the interest lists using
addEventInterest.

-- A mixin class
class Selectable (RootObject)

instance variables
mouseDown -- For setting up an interest in mouse-down events
mouseUp -- For setting up an interest in mouse-up events
selectionBox -- Appears around the presenter to highlight it

end

Event Receiver Methods

This script defines two methods that are called in response to particular mouse
events: mouseDownSelect and mouseUpSelect. The first method moves the
shape to the front of the window and highlights it with a bounding rectangle
when the mouse button is pressed. This method then removes the interest in
mouseDown and adds an interest in mouseUp. It returns true so the event will
be swallowed by the event system and not passed on to any other presenters.

The mouseUpSelect method deletes the bounding rectangle when the mouse
button is released, removes the interest in mouseUp, adds an interest in
mouseDown, then returns true for the same reason as the previous method.

-- Define the method that is called when mouse-up occurs
method mouseDownSelect self {class Selectable} theInterest theEvent ->
(

-- Move the 2D presenter to the front of its container
moveToFront self.presentedBy self

-- Create a selection rectangle that just fits the 2D presenter
self.selectionBox := new TwoDShape

self.selectionBox.target :=(new Rect x2:self.bBox.x2 y2:self.bBox.y2)
self.selectionBox.stroke := new Brush color:yellowColor
self.selectionBox.x := self.x
self.selectionBox.y := self.y

532

18 ScriptX Components Guide

self.selectionBox.stroke.linewidth := 2
prepend self.presentedBy self.selectionBox

-- Now we're interested only in mouse-up events
removeEventInterest self.mouseDown
addEventInterest self.mouseUp
@accept -- must accept for event to be swallowed

)

-- Define the method that is called when mouse-up occurs
method mouseUpSelect self {class Selectable} theInterest theEvent ->
(

deleteOne self.presentedBy self.selectionBox

-- now we're interested only in mouse-down events
removeEventInterest self.mouseUp
addEventInterest self.mouseDown
@accept -- must accept for event to be swallowed

)

Initialization Method

This method first calls on its superclass (RootObject) to initialize the new
object. It then creates instances of a mouse-down and mouse-up event interest.
Each event interest has eventReceiver and authorData, which specifies the
method to call (mouseDownSelect or mouseUpSelect) if the incoming
mouse event matches the interest. It also has a mouse device to respond to and
a presenter to respond to.

The presenter for mouseDown is self, which indicates the method is called for
a mouse-down only within the boundary of the presenter. The
matchInterest instance variable for mouseUp ensures the shape receives the
mouseUp, even if the user drags off the shape before releasing the mouse
button.

Note that this init method must be positioned after the event receiver
methods, since this method refers to them.

method init self {class Selectable} #rest args ->
(

apply nextMethod self args -- call init on superclass

-- set up the mouse event interests
self.mouseDown := new MouseDownEvent
self.mouseDown.eventReceiver := mouseDownSelect
self.mouseDown.authorData := self
self.mouseDown.device := new MouseDevice
self.mouseDown.presenter := self

self.mouseUp := new MouseUpEvent
self.mouseUp.eventReceiver := mouseUpSelect
self.mouseUp.authorData := self
self.mouseUp.device := self.mouseDown.device

533

Events and Input Devices 18

self.mouseUp.presenter := self
self.mouseUp.matchedInterest := self.mouseDown

-- Initially, we're interested in mouse-down events
addEventInterest self.mouseDown

)

Testing the Selectable Class

The following script creates a window, then creates and prepends black and
red rectangle shapes into the window. Note that the shapes are created by
mixing together Selectable and TwoDShape.

Once you’ve run this script, use the mouse to click on the rectangle that is in
background. It should move to the front and be highlighted with a heavy
bounding rectangle only so long as the mouse button is down.

-- Set up a simple example of black and red rectangles in a window
global myWindow := new Window boundary:(new Rect x2:300 y2:300)

myWindow.x := 40
myWindow.y := 40
show myWindow

-- Create the black rectangle
object myBlackRect (Selectable, TwoDShape)
end

myBlackRect.target := new Oval x2:100 y2:100
myBlackRect.fill := blackBrush
myBlackRect.x := 75
myBlackRect.y := 75
prepend myWindow myBlackRect

-- Create the red rectangle
object myRedRect (Selectable, TwoDShape)
end

myRedRect.target := new Rect x2:100 y2:100
myRedRect.fill := new Brush color:redColor
myRedRect.x := 125
myRedRect.y := 125
prepend myWindow myRedRect

For another script that demonstrates how to receive mouse events, adding and
removing interests as appropriate, see “Example – Stencilizer” on page 274 of
Chapter 11, “2D Graphics.”

Processing with an Event Queue

The following example creates a class called EventDispatcher. This script
expands upon the Dispatcher class, defined on page 607 in the “Threads”
chapter. As you study this section, compare EventDispatcher with

534

18 ScriptX Components Guide

Dispatcher. The Dispatcher class creates a regular thread that runs at high
priority, waiting for function calls. The EventDispatcher class is similar,
except that it waits for events to pop through an event queue. Both of these
classes maintain a private list of operations they know how respond to. Like
the Dispatcher class, EventDispatcher is useful as a quick responder.
When an event appears in its queue, it runs briefly at high priority, responding
to the event and then blocking. Although it could respond in its own thread, it
is really designed so that it can activate some other thread that runs at normal
priority.

class EventDispatcher (RootObject)
instance variables

interestList -- KeyedLinkedList
thread -- a thread for responding to user actions
eventQueue -- use this queue to receive events

instance methods
method init self #rest args -> (

self.interestList := new KeyedLinkedList
-- note that the event queue replaces the condition
-- in the Dispatcher class, in the Threads chapter
-- the queue itself acts as a gate
self.eventQueue := new EventQueue thread:(self.thread)
self.thread := new Thread func:dThreadFn arg:self priority:@system
apply nextMethod self args

)
end -- (Dispatcher class definition)

The Dispatcher class uses a Condition object as a gate. Its thread waits on
this condition when it has nothing to process. EventDispatcher does not
explicitly define a gate, but an event queue creates a gate internally that
performs an analogous role. Dispatcher defines the pleaseDo method,
which activates its thread. EventDispatcher defines no pleaseDo method
because this behavior is embodied in its event queue. Placing an event in an
EventDispatcher event queue is analogous to calling pleaseDo on a
Dispatcher object.

EventDispatcher defines an instance variable, interestList, with which
it maintains a private list of its event interests, together with associated data.
Although this collection is defined as a KeyedLinkedList, it could be any
linear collection. In this script, the event interest itself is used as a key, with its
authorData instance variable storing a function or method. The value of the
key stores an object that is used as an argument for this function whenever the
function is called. In ScriptX, KeyedLinkedList is suitable for relatively small
collections where frequent additions and deletions are expected. Since events
do not implement a method for localLt, they cannot be used as keys for
sorted collections such as SortedKeyedArray or BTree.

To maintain this collection, EventDispatcher defines methods for adding
and removing event interests. These methods maintain the contents of
interestList, as well as adding and removing event interests on the
interests collection, a class variable of the event subclass itself. The

535

Events and Input Devices 18

interestList collection is heterogenous, unlike the collection each event
class maintains. It maintains a list of many kinds of event interests, but it may
also store several instances of the same class.

method addInterest self {class EventDispatcher} eventClass func data -> (
-- check that func is a kind of function
if isAKindOf func AbstractFunction then (

-- check that eventClass is a class, and that it inherits from Event
if isAKindOf eventClass RootClass and isSub eventClass Event then (

local newInterest
newInterest := New eventClass
newInterest.authorData := func
newInterest.eventReceiver := self.eventQueue
newInterest.priority := 2
addEventInterest newInterest
add self.interestList newInterest data

) else (
format debug "Second argument must be an event class!/n" \

undefined @normal
)

) else (
format debug "Third argument must be a function or generic!/n" \

undefined @normal
)

)
method removeInterest self {class EventDispatcher} eventClass -> (

-- check that eventClass is currently defined
-- and that the event dispatcher has as an interest in it
if isAKindOf eventClass RootClass and isSub eventClass Event then (

local i := iterate self.interestList
repeat while (next i) do (

if (getClass i.key = eventClass) do (
removeEventInterest i.key
excise i -- this deletes it from the collection
exit -- remove only the first occurrence

)
)

) else (
format debug "Second argument must be an event class!/n" \

undefined @normal
)

)

Like Dispatcher, the EventDispatcher class creates its own thread. This
thread runs a control function that is similar in form to the dispatcher’s control
function. Structured as an infinite loop, this process blocks while waiting for
events to be placed in its queue. When an event is placed in its queue, it
immediately becomes active. (A system-priority thread runs immediately when
it becomes active.)

function dThreadFn dispatcher -> (
local myEvent := undefined

536

18 ScriptX Components Guide

local data := undefined
repeat while (myEvent := read dispatcher.eventQueue) do (

-- figure out how the event was delivered and
-- get the data that goes with the associated interest
if isAKindOf (myEvent.matchedInterest) Event then (

-- must have been delivered by signal method
accept myEvent
data := dispatcher.interestList[myEvent.matchedInterest]
-- call the function with event and data as arguments
(myEvent.matchedInterest.authorData) myEvent data

) else (
-- event could not have been signaled, so see if broadcast
-- if matchedInterest is undefined, it must have been delivered
-- using the sendToQueue method
if myEvent.matchedInterest <> undefined then (

-- matchedInterest can have one of three values
-- it can be an event, an array of events, or undefined
-- it must have been delivered by broadcast method
-- get an iterator for the array of matching interests
-- this next line creates a sequence iterator i
local i := iterate (myEvent.matchedInterest)
local myClass := getClass myEvent
-- now iterate through the matchedInterest collection
repeat while (next i) do (

-- make sure it is one of our own interests
-- see if the matching interest is in our own list
-- if not, then go on to the next matched interest
if getOne dispatcher.interestList (i.value) = empty do (

continue -- so skip and go on to the next
)
data := dispatcher.interestList[i.value]
-- call the function with event and data as arguments
(i.value.authorData) myEvent data
-- excise it in case there were other event interests
-- in our own private list.
-- this only removes it from the collection of interests
-- that matched the current event. It is still
-- registered as an interest to receive future events.
excise i
exit

) -- end repeat
) else (

-- must have been delivered by sendToQueue method
format debug "not interested in this event!\n" undefined @normal
myEvent := undefined
continue -- ignore this event, go back and wait for another

)
)
-- reset it so the thread will block until the next event comes along
myEvent := undefined

)
)

This thread function recovers data from both the event and the event interest it
was delivered to. If we were only interested in receiving an event, we could get
away with a far less complicated thread function. When an event receiver
function receives an event, it receives the associated interest as well, as a third

537

Events and Input Devices 18

parameter. An event queue does not automatically receive the associated event
interest, so it must recover this interest itself, if it needs it. An event, once it has
been delivered, stores a pointer to the matching interest in its
matchedInterest instance variable.

When the function dThreadFn receives an event, it first checks whether the
event was delivered by the signal, broadcast, or sendToQueue methods.
Since it cannot observe the delivery mechanism directly, it looks at the value of
matchedInterest. If the matched interest is an event, it must have been
signaled. If it is an array, it must have been broadcast. Since sendToQueue
bypasses the interest matching system, it leaves the value of
matchedInterest as undefined. The most interesting case is when an event
is broadcast, since the script must determine which element of the array
contains the matching interest. The function dThreadFn modifies the
matchedInterest collection, removing its matching interests as it finds them.

To test the EventDispatcher class, create an instance of the class and add
some event interests to it. Then create some new event classes, some instances
of those classes, and some associated functions. Send the event dispatcher
some events using the signal, broadcast, and sendToQueue methods.

-- now create three new classes of events to test it with
class GrokEvent (Event) end
class VoodooEvent (Event) end
class EarthQuakeEvent (Event) end
-- create an instance of EventDispatcher
global gDispatcher := new EventDispatcher
-- the init method on Dispatcher automatically creates a thread
-- define some functions that will be called
global fn func1 myEvent x -> (

format debug "Function 1 just got a %* event " (getClass myEvent) @normal
format debug "and its argument is %*.\n" x @normal

)
global fn func2 myEvent x -> (

format debug "Function 2 just got a %* event " (getClass myEvent) @normal
format debug "and its argument is %*.\n" x @normal

)
global fn func3 myEvent x -> (

format debug "Function 3 just got a %* event " (getClass myEvent) @normal
format debug "and its argument is %*.\n" x @normal

)
-- now create some interests in the three kinds of events
-- add them to the interest list, with their associated functions and arguments
addInterest gDispatcher GrokEvent func1 "moof"
addInterest gDispatcher VoodooEvent func2 "foo"
addInterest gDispatcher EarthQuakeEvent func3 "7.1"
addInterest gDispatcher EarthQuakeEvent func1 "8.7"

-- create some events and send them
global myGrokEvent := new GrokEvent
global myVoodooEvent := new VoodooEvent
global prittyBigOne := new EarthQuakeEvent
global rillyBigOne := new EarthQuakeEvent
signal myGrokEvent true
signal myVoodooEvent true

538

18 ScriptX Components Guide

broadcast prittyBigOne
broadcast rillyBigOne

To test the event dispatcher thoroughly, we need to create a competing event
receiver and some associated interests. This receiver “competes” in the sense
that it registers interests in the same event classes, but without using the
addInterest and removeInterest methods defined by
EventDispatcher. The event dispatcher must be able to sort its own interests
out from those of other event receivers when it searches through the
matchedInterest collection.

-- create an event receiver and associated event interests
function eventEater event interest data -> (

format debug "eventEater just received an event. \n" undefined @normal
format debug "authorData: %* \n" event @normal
format debug "Interest: %* \n" interest @normal
format debug "Event: %* \n" data @normal

)
global shakeInterest := new EarthQuakeEvent
shakeInterest.authorData := "No function at all!"
shakeInterest.priority := 1 -- this one has higher priority
shakeInterest.eventReceiver := eventEater
addEventInterest shakeInterest
global rattleInterest := new EarthQuakeEvent
rattleInterest.authorData := "Definitely not a function!"
rattleInterest.priority := 3 -- this one has lower priority
rattleInterest.eventReceiver := eventEater
addEventInterest rattleInterest

-- now create some more events and signal them
global mightyOne := new EarthQuakeEvent
global awesomeOne := new EarthQuakeEvent
global giantOne := new EarthQuakeEvent
broadcast mightyOne
broadcast awesomeOne
sendToQueue giantOne gDispatcher.eventQueue

In the previous segment, the function eventEater registered two event
interests, one of which was at a lower priority than our dispatcher’s event
queue. As you experiment with this script, change the relative priorities of the
various event interests. Note that the event dispatcher, which runs in its own
thread, tends to process events after the function receiver, which runs in the
same thread as the process that sent the event.

Focus Events

This script demonstrates how to receive and process focus events. The
TextEdit class handles focus events automatically, but handling of focus
events can easily be added to another presenter class. This script creates the
FocusedPresenter class, which forces the keyboard focus manager to give it
focus whenever it receives a mouse-down event. The script creates three

539

Events and Input Devices 18

instances of FocusedPresenter and attaches them to the window. Each
focused presenter maintains interests in both focus and mouse-down events.
The presenters indicate when they gain or lose focus by changing color.

class FocusedPresenter (TwoDShape)
class variables

focusManager:((new KeyboardDevice).focusManager)
instance variables

mouseInterest
focusInterest

instance methods
method init self #rest args -> (

apply nextMethod self args
self.focusInterest := new FocusEvent
self.focusInterest.authorData := self
self.focusInterest.device := new KeyboardDevice
self.focusInterest.presenter := self
self.focusInterest.eventReceiver := processFocus
addEventInterest self.focusInterest
self.mouseInterest := new MouseDownEvent
self.mouseInterest.authorData := self
self.mouseInterest.presenter := self
self.mouseInterest.eventReceiver := processMouse
addEventInterest self.mouseInterest

)
-- event receiver for focus events
method processFocus self interest event -> (

if (event.focusType = @loseFocus) then (
-- we lost focus, so show that it is disabled
event.presenter.fill := whiteBrush

) else (
-- we gained focus, so be colorful!
local fillcolor := new RGBColor \

red:(rand 255) green:(rand 255) blue:(rand 255)
event.presenter.fill := new Brush color:fillcolor
@accept -- accept the event

)
)
-- event receiver for mouse events
method processMouse self interest event -> (

forceFocus FocusedPresenter.focusManager self
@accept -- accept the event

)
end

object firstRect (FocusedPresenter)
boundary:(new rect x2:200 y2:50), fill:whitebrush, stroke:blackbrush
settings x:50, y:50

end
object secondRect (FocusedPresenter)

boundary:(new rect x2:200 y2:50), fill:whitebrush, stroke:blackbrush
settings x:50, y:150

end
object thirdRect (FocusedPresenter)

boundary:(new rect x2:50 y2:250), fill:whitebrush, stroke:blackbrush
settings x:100, y:25

540

18 ScriptX Components Guide

end

-- now set up a window
object myWindow (Window)

boundary:(new Rect x2:400 y2:300), fill:whitebrush
settings x:16, y:40

end
append myWindow firstRect -- add it to the space
append myWindow secondRect -- add it to the space
append myWindow thirdRect -- add it to the space
show myWindow

TextEdit objects register interest in focus events and respond to changes in
focus automatically. The following script creates three TextEdit objects and
adds them to a window. As you edit in one of the three presenters, it gains
focus, and the one that previously had focus automatically loses focus.

object myWindow (Window)
boundary:(new Rect x2:600 y2:300), fill:whitebrush
settings x:16, y:40

end
object myCursor (Line) x2:0, y2:16 end
global testString1 := new Text string:"edit me, pretty please!"
global testString2 := new Text string:"oh no, edit me!"
global testString3 := new Text string:"please, edit me first!"
object textBox1 (TextEdit)

boundary:(new Rect x2:384 y2:60)
target:testString1, stroke:blackBrush
settings x:128, y:64, cursor:myCursor

end
setDefaultAttrs textBox1 @alignment @flush
object textBox2 (TextEdit)

boundary:(new Rect x2:384 y2:60)
target:testString2, stroke:blackBrush
settings x:128, y:128, cursor:myCursor

end
setDefaultAttrs textBox2 @alignment @flush
object textBox3 (TextEdit)

boundary:(new Rect x2:384 y2:60)
target:testString3, stroke:blackBrush
settings x:128, y:192, cursor:myCursor

end
setDefaultAttrs textBox3 @alignment @flush
append myWindow textBox1
append myWindow textBox2
append myWindow textBox3
show myWindow

With the TextEdit class, focus is transparent to the scripter. Each time you
select one of the three text strings to edit, the TextEdit object that is
presenting it gains focus, and the one that was previously selected loses focus.

541

Events and Input Devices 18

Receiving Mouse Crossing Events

Mouse crossing events come in two flavors. The instance variable
crossingType, defined by the MouseCrossingEvent class, can take on two
values: @enter and @leave. This script sets up a class of presenter that
receives and processes mouse crossing events, however its form could be
applied to any type of mouse event. It uses a method as an event receiver.

The script that follows builds on an earlier script in that it demonstrates how
mouse events can be registered by presenters, and delivered to presenters
within a presentation hierarchy. For background, see the section “Selecting
Presenters with a Mouse” on page 530.

The program first creates a window in which to demonstrate mouse crossing
events, and two instances of Brush. It uses greenBrush to show that a
presenter has just received an event with the value @enter, and redBrush to
show that it has received an event with the value @leave.

-- first create a window with default settings
object myWindow (Window)

boundary:(new rect x2:600 y2:300)
settings x:20, y:40

end
show myWindow

global greenBrush := new Brush color:greenColor
global redBrush := new Brush color:redColor

The EnterPresenter class is a stock version of TwoDMultiPresenter, with
the addition of a single property, the instance variable mci, to store an event
interest. It also adds a method to receive these events, colorMe.
EnterPresenter specializes the init method to create an interest in
MouseCrossingEvent, which it registers as an event interest.

class EnterPresenter(TwoDMultiPresenter)
instance variables

mci -- an interest in mouse crossing events
instance methods

method init self #rest args -> (
apply nextMethod self args
-- create a mouse crossing event and set its properties
-- so that it can be used as an event interest
self.mci := new MouseCrossingEvent
self.mci.presenter := self
self.mci.authorData := self
self.mci.eventReceiver := colorme
self.mci.device:= new MouseDevice
-- register it as an event interest
addEventInterest(self.mci)

)
-- this method will receive mouse crossing events
method colorme self match myEvent -> (

542

18 ScriptX Components Guide

if (myEvent.crossingType = @enter) then (
self.fill := greenBrush -- green if you enter

) else (
self.fill := redBrush -- red if you leave

)
print myEvent.crossingType
@accept -- accept the event, since asynchronous

)
end

Next, the script creates six instances of EnterPresenter and adds them to
the window. The first five of these presenters will be siblings on the
presentation hierarchy, since they are prepended to the window at the same
level. The final instance, insideShape, is prepended to the fifth presenter, so
it becomes its child presenter. For more information on the presentation
hierarchy, see “Presentation Hierarchy” on page 56 in Chapter 3, “Spaces and
Presenters.”

-- make some overlapping presenters that will receive
-- mouse crossing events and add them to the window
object shape1 (EnterPresenter)

boundary:(new rect x2:240 y2:260), stroke:blackBrush
settings x:20, y:20

end
prepend myWindow shape1
object shape2 (EnterPresenter)

boundary:(new rect x2:340 y2:260), stroke:blackBrush
settings x:240, y:20

end
prepend myWindow shape2
object shape3 (EnterPresenter)

boundary:(new rect x2:180 y2:140), stroke:blackBrush
settings x:80, y:20

end
prepend myWindow shape3
object shape4 (EnterPresenter)

boundary:(new rect x2:180 y2:120), stroke:blackBrush
settings x:240, y:20

end
prepend myWindow shape4
object shape5 (EnterPresenter)

boundary:(new rect x2:200 y2:120), stroke:blackBrush
settings x:360, y:20

end
prepend myWindow shape5

-- make one more to put inside the last one
object insideShape (EnterPresenter)

boundary:(new rect x2:100 y2:100), stroke:blackBrush
settings x:100, y:50

end
-- put insideShape inside shape5 to show how
-- mouse crossing events works with the presentation hierarchy
-- note that it will be clipped by shape5

543

Events and Input Devices 18

prepend shape5 insideShape

The window displays the six presenters as overlapping rectangles, drawing
their borders with the Brush instance blackBrush. Initially, they are not filled
in. Drag the mouse over these presenters and observe how they change color
as they receive mouse crossing events. The colorMe instance method, defined
by EnterPresenter, also prints the crossing type to the Listener window.

544

18 ScriptX Components Guide

C H A P T E R

19
Files and System
Services

546

19 ScriptX Components Guide

547

Files and System Services 19

The Files component provides a platform-independent interface for working
with files in ScriptX. Two abstract classes form the core of this interface:
DirRep and RootDirRep. Instances of these classes represent the directories
of any supporting platform’s file system.

Along with the Streams component, the Files component provides access to the
data in a file. In general, you access a file using methods defined by the
DirRep class, then open a Stream instance on the file and use Stream
methods to access the data.

One class in the Files component, ResBundle, defines an interface to
Macintosh resource files.

Classes and Inheritance
The class-inheritance hierarchy for the Files component is shown in the
following figure.

The following classes form the Files component. In this list, indentation
indicates inheritance.

DirRep – Represents a directory. Each operating system that supports ScriptX
has a file-system specific subclass of DirRep to handle platform-dependent
implementation details.

RootDirRep – Represents the root directories for operating systems that
use volumes or drives to represent individual storage devices. ScriptX
includes a file-system-specific subclass of RootDirRep on each such
platform to handle platform-dependent implementation details.

ResBundle – Represents a resource file in the Macintosh file system.

Conceptual Overview
Most file systems are organized hierarchically—for example, files are organized
by directories on DOS and by folders on the Macintosh. This hierarchical
structure provides commonality between file systems: to find a file, you specify

Files component

Files component:inheritance diagram

RootDirRep

(Platform-specific DirReps)

(Platform-specific RootDirReps)

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

RootObject

ResBundle

RootObject

DirRep

DirRep class

RootDirRep class

ResBundle class

548

19 ScriptX Components Guide

the name of the file and the directory path where that file resides. In ScriptX,
this behavior is implemented abstractly through a single class—DirRep—that
defines common operations that can be performed on directories. Subclasses of
DirRep are implemented in file-system-specific ways to match the specific
features of each host.

ScriptX assumes that all host file systems provide certain standard directories.
ScriptX defines three global constants to represent these directories:
theRootDir, theStartDir, and theTempDir. A fourth global,
theScriptDir, is available only in the development system, not in the
ScriptX Player. The global constant theRootDir represents the root directory
of the host file system. If the operating system requires a volume or drive for
each storage device, theRootDir is an instance of the system-specific subclass
of RootDirRep. Otherwise it is an instance of the system-specific subclass of
DirRep. The global theTempDir represents a directory that scripts can use for
temporary file storage. The global constant theStartDir represents the
directory used by the ScriptX or ScriptX Player executable.

To represent a specific directory, a script uses one of the global instances of
DirRep to create the new representative. Two DirRep instance methods,
createDir and spawn, are useful for this purpose. Scripts can use either of
these methods to create new instances of DirRep at any time. The difference is
that createDir is used to create a new directory, actually changing your disc
and returning a DirRep object which represents the new directory. The
method spawn, on the other hand, is used to access a directory that already
exists; it returns a DirRep object which points to the already-existing directory
and does not change your disc. A script can call the same methods on the
directory representatives it creates to create yet other instances.

How Files Work
All operations on directories and files are performed through instances of
DirRep and its subclasses. When you create an instance of DirRep, ScriptX
automatically returns a subclass of DirRep that is appropriate for the
underlying platform and its particular file system. This subclass of DirRep
handles platform-dependent implementation details transparently, which
means that you can operate on directories and files using DirRep methods
without worrying about features specific to the host file system.

Access to Directories and Files

DirRep objects represent specific directories in a file system. A DirRep object
can represent a directory path, but not a file.

Almost all the DirRep instance methods are of the form methodName(object,
path, ...). To access a file through a DirRep object, you create the object to
represent a specific directory, then operate on that directory through the
DirRep methods. The path argument specifies the file or subdirectory in the
directory that you want to work with. This argument can be a String object

DirRep class:global instances
heRootDir global variable
heStartDir global variable

heTempDir global variable

549

Files and System Services 19

or an ordered collection of String objects. When an ordered collection is
passed as the path, the method automatically traverses the directories
represented in the collection in order.

Access to Data

To read, write, and seek data in a file, a script interacts with a Stream object
representing the data. To obtain a Stream object for a specific file, a script calls
getStream on a DirRep object. Typically, the DirRep object represents the
path to the file, while the path argument to the getStream method is a string
specifying the name of the file to access. Alternately, the path argument can also
be a collection of strings representing a path and filename.

Macintosh Resource Files

The ResBundle class provides a platform-dependent representative of
Macintosh resource files. ResBundle provides a number of methods for
accessing the resources contained in a resource file. Data for a resource is
represented by a ResStream instance. See the “Streams” chapter for more on
opening resource files and accessing resources.

Note – Code that uses instances of ResBundle and ResStream is necessarily
platform-specific to the Macintosh. It is intended to support Macintosh-based
tools that provide access to media in resource files. It is not recommended for
use in a title designed to run on any platform that supports ScriptX.

Using the Files Component
To use a file, you generally start with one of the global DirRep instances
defined by the ScriptX runtime environment and then use DirRep methods to
access specific subdirectories and files. The following examples demonstrate
the effects of invoking various DirRep methods on these global instances.

Path References

Most instance methods of DirRep accept sequences of strings to represent
paths and filenames. These methods also accept a string that uses the slash
character, “/” as a separator. For example, the following two statements use
the createFile method do the same thing:

createFile theTempDir "dirA/dirB/file" @binary
createFile theTempDir #("dirA","dirB","file") @binary

The following two statements use createFile to create a text file named “a
file”:

createFile theTempDir "a file" @text
createFile theTempDir #("a file") @text

irRep class:getStream method
etStream method (DirRep)

ResBundle class
ResStream class
Macintosh:resource files

irRep class:createFile method
reateFile method (DirRep)
ath separator character
rectories:and paths

irRep class:createFile method
reateFile method (DirRep)

550

19 ScriptX Components Guide

Despite appearances, the following two statements are not the same. Both
create text files, but the first creates a file fob inside the directory fib, while
the second creates a file called fib/fob:

createFile theTempDir "fib/fob" @text
createFile theTempDir #("fib/fob") @text

Testing Files and Directories

The DirRep methods isDir, isFile, and isThere provide quick and easy
ways to test for file types and file and directory existence. These will not report
exceptions unless something is terribly wrong.

isThere theStartDir "testing"
isDir theStartDir #("testing")
isFile theRootDir "yabba/dabba/doo"

The DirRep method getFileType returns a symbol specifying the type of
the object.

createFile theStartDir #("example") @text
getFileType theStartDir "example"
=> @text

The method getFileType will report an exception if the specified path does
not exist:

delete theStartDir "example"
getFileType theStartDir "example"

Directory Paths as Sequences

To retrieve the path to a particular directory, you coerce its DirRep to a
Sequence. For example, you can coerce the global instance theStartDir
and then use the sequence returned as the path argument to another DirRep
method:

s:= theStartDir as sequence

➯ #("HardDisk", "ScriptX 1.5 Folder", "Apps")

getFileType theRootDir s

➯ @directory -- theStartDir is a directory

This set of operations returns @directory, since theStartDir is a directory

Naming Files

It is highly recommended that you use file names which contain eight
characters or less followed by a dot and an extension of three characters or less
(xxxxxxxx.xxx). This ensures that your file name will work on all platforms
because it follows the most restrictive naming requirements.

Below are examples of file names following the recommended 8.3 convention:

irRep class:isDir method
Dir method (DirRep)
irRep class:isType method
Type method (DirRep)
irRep class:isThere method
There method (DirRep)

irRep class:as Sequence
aths as sequences
equence class:

551

Files and System Services 19

myTitleH.sxt -- a title file
myLib.sxl -- a library file
myNeatAc.sxa -- an accessory file
myStats.dat
Chaptr12.txt

Converting File Names

To be portable, DirRep objects try to do something reasonable with all
possible file names. Every platform has a file name converter that takes any
string and turns it into a valid filename for the host platform. For example, if
you give a file a name with more than eight characters, that name will have to
be converted to a name with eight characters or less in order to be used on a
Windows platform. This conversion is done by the instance method
fixNameForOS. On the Macintosh, filename conversion is simple (for
example, it changes “:” into “-”). Under Windows, the converter performs
many character remappings and then abbreviates to arrive at a filename with
eight characters and a three-character extension.

As an example of filename conversion, consider the following use of the
fixNameForOS method:

fixNameForOS theStartDir "This is a test"

On the Macintosh, the above call returns the string “This is a test.” Under
Windows, it returns “THISIATT.”

Note – The fixNameForOS method isn’t symmetrical. As an example,
consider the previous result. The string “This is a test,” applied on Windows
produces “THISIATT.” However, applying “THISIATT” to the same method on
the Macintosh won’t restore the original string.

The best practice, however, is to simply eliminate the need for fixNameForOS
by always using the 8.3 format to name files.

Creating Instances of DirRep

There are two methods that return new instances of DirRep: spawn and
createDir.

The createDir method creates a new directory and returns an instance of
DirRep which represents its entire path. This method actually changes your
disc. Since createDir will create all non-existing directories in a path
supplied to it, it may create more than one directory.

For example, the following code returns a DirRep instance for the directory
bottom, creating, in the process, the top, middle, and bottom directories:

s:=createDir theTempDir #("top","middle","bottom")

irRep class:fixNameForOS method
xNameForOS method (RootDirRep)
e name manipulation

irRep class:spawn method
pawn method (DirRep)
irRep class:createDir method
reateDir method (DirRep)
irRep class:creating instances

552

19 ScriptX Components Guide

The method spawn also creates a new DirRep instance, but that instance
represents an already-existing directory. Since spawn does not create any new
directories, it does not change your disc. If a call to spawn has a pathname
containing a directory that does not exist, it will fail.

Given that createDir created the directories top and middle, spawn can be
used to create a DirRep instance for either of them. For example, the following
code succeeds:

u:=spawn theTempDir #("top","middle")

On the other hand, given that the directory path left/right/center
doesn’t yet exist, a call to spawn will fail:

t:=spawn theTempDir #("left","right","center") -- fails
t:=createDir theTempDir #("left","right","center") -- succeeds

Navigating Directories

There are a number of DirRep methods that help you figure out where you are
and how to get to where you want to go.

As mentioned earlier, the class coercion as Sequence returns a full pathname
to a DirRep. This may cause problems on systems that allow ambiguous
paths, such as the Macintosh.

The parentDir method returns a DirRep instance for the parent of the given
DirRep instance.

(parentDir theStartDir) asSequence -- succeeds
parentdir theRootDir -- fails because theRootDir has no parent

The first statement should return a valid sequence; however, the second
statement reports an exception, since the theRootDir global has no parent
directory.

The getContents method returns a list of the entries in the passed DirRep.

getContents theStartDir

Note – ScriptX is UTF based, but currently the Listener window isn’t;
therefore, filenames that have meta-characters don’t show up properly in the
Listener window. They are, however, being stored correctly and will work
properly.

File Creation

The methods createDir and createFile are the standard ways to create
files and directories with DirReps. Note that createFile will create a
directory when @directory is given as its third argument. Both createDir
and createFile create intermediate directories if needed.

ectories:navigating
s:navigating

Rep class:parentDir method
rentDir method (DirRep)

irRep class:createDir method
reateDir method (DirRep)
irRep class:createFile method
reateFile method (DirRep)
es:creating
reating:files

553

Files and System Services 19

The first example creates a text file afile inside the directory is inside the
directory this.

createFile theTempDir "this/is/afile" @text

The next example creates a directory called /ouch/.

createDir theTempDir #("/ouch/")

The next example creates a directory called smarts inside the directory
/ouch/.

createFile theTempDir #("/ouch/","smarts") @directory
getFileType theTempDir #("/ouch/","smarts") -- should return @directory

File Deletion

The DirRep delete method deletes directories or files. If you attempt to
delete a directory which contains files or subdirectories, neither the files, nor
the subdirectories, nor the directory will be deleted. For example, the following
code will not delete anything because the directory ouch contains the
subdirectory smarts:

delete theTempDir #("/ouch/") -- no deletion

The following invocations of delete are successful, however, because the last
item is either a file or a directory with nothing in it:

delete theTempDir #("/ouch/","smarts") -- deletes the subdirectory
--"smarts”
delete theTempDir #("/ouch/") -- deletes the empty directory "/ouch/"
delete theTempDir "this/is/afile" -- deletes the file "afile"
delete theTempDir "this/is" -- deletes the empty subdirectory "is"

On the Macintosh, if a file is in use, the file won’t be deleted.

Note – On Windows systems, due to a limitation in MS-DOS, the delete
method will delete a file even if it has a stream open on it.

Access to Streams

Creating a file does not give you access to its contents. You must use the
getStream method to get the primary stream for a file. The term primary stream
applies to the contents of the data fork of a Macintosh file, as well as to the
ordinary contents of files under MS-DOS and Unix. The term allows for the fact
that alternate interfaces may provide access to other streams for files.
Currently, only the ResBundle class provides such an interface, by allowing a
script to open a stream for each resource when multiple resources are present
in a Macintosh resource file.

ectories:deleting
s:deleting
Rep class:delete method
ete method (DirRep)

irRep class:getStream method
etStream method (DirRep)
es:accessing
ccessing files

554

19 ScriptX Components Guide

Note that getStream doesn’t create new files. The following code
demonstrates how to create files and open streams on them:

createFile theTempDir #("myFile") @text
s := getStream theTempDir "myFile" @writable
writeString s "Zoicks! Powee! Kablam!"
s

➯ "Zoicks! Powee! Kablam!"

streamLength s

➯ 22

plug s -- closes the stream s and also the file "myFile"
delete theTempDir "myFile"

The following sample code creates a DirRep instance representing the path
“/common/photos/london,” then opens a stream on the file “picadilly”
(which already exists in the subdirectory “/london”) and reads a byte:

myRep := spawn theRootDir ”/common/photos/london“
myStream := getStream myRep “picadilly” @readable
myByte := readByte myStream

Note that the DirRep methods recognize only the “/” (slash) character as a
directory separator. However, they also accept collections of strings,
recognizing each entry in the collection as a distinct subdirectory, with the final
entry recognized as either a subdirectory or file name. This means that a
collection of subdirectory names can be used in place of the string in the
previous example:

myPath := #(”common”,”photos”,”london“)
myRep := spawn theRootDir myPath
myStream := getStream myRep “picadilly” @readable
myByte := readByte myStream

As another example, a script could create a collection representing an entire
path, including filename, then use that collection in the getStream method to
open the file:

myFilePath := #(”common”,”photos”,”london“,”picadilly”)
myStream := getStream theRootDir myFilePath @readable
myByte := readByte myStream

In this example, the last entry in the collection is interpreted as the name of the
file to open.
On Windows, due to the way that DOS handles files, data written into a
file by a writable stream cannot be read unless the file is first
closed. A workaround is to use the plug method to close the stream
(and the underlying file), and then to use getStream to get a new
readable stream for the file. For example, the following code properly
writes to, then reads from, the file “newFile.txt”:

createFile theStartDir "newFile.txt" @text
outStream := getStream theStartDir "newFile.txt" @writablewriteString
outStream "HELLO"
plug outStream
inStream := getStream theStartDir "newfile.txt" @readable

555

Files and System Services 19

Open and Save Dialog Boxes
This section offers a brief discussion of how a title uses the open and save
dialog boxes, defined by the underlying operating system, to open and save
files in ScriptX. The file types you can open and save include:

The platforms on which the ScriptX Player runs have some standard user
interface elements, such as the dialog boxes that are used for opening and
saving files. ScriptX allows a developer to use these dialog boxes from within a
ScriptX title or tool. Two global functions, presentOpenFilePanel and
presentSaveFilePanel are the means by which a title or tool displays the
Open and Save As dialog boxes defined by the underlying operating system.
These functions allow the developer to select a file to open or to name a file to
save, but it is up to the title to actually open or save a file.

Open Dialog Box

The following script demonstrates how to open a file from within a ScriptX
title using the global function presentOpenFilePanel. The single argument
is an array containing NameClass objects designating the types of files to be
displayed as options in the Open dialog box. The possible file types are those
listed above.

presentOpenFilePanel #(@title, @binary)

This function call will cause an Open dialog box native to the underlying
system to be displayed. It will offer as possible selections only files which
contain TitleContainer objects and files which contain binary data because
those are the file types specified in the argument to presentOpenFilePanel.
If @unknown or any unknown value is specified in the argument, the Open
dialog box allows any file type to be selected. The function returns an array
containing the full path of the file selected. If the user clicks Cancel (no file is
selected), the function returns undefined.

The title itself is responsible for opening the file which is returned by
presentOpenFilePanel. To open a title container, library container, or
accessory container, use the open method. To open any other kind of file (text
or binary), use the DirRep and Stream methods getStream and read.

@title A ScriptX file containing a TitleContainer object

@library A ScriptX file containing a LibraryContainer object

@accessory A ScriptX file containing an AccessoryContainer object

@binary A file containing binary data

@text A file containing ASCII text

@unknown The file type is not specified

556

19 ScriptX Components Guide

Save As Dialog Box

The Save As dialog box is generated by the global function
presentSaveFilePanel and can save any type of file previously listed. This
function takes two arguments, a string giving the prompt, which will appear
near the file entry field, and a string which will appear as the default filename
in the file entry field when the dialog box first opens. The following script
shows how to create a Save As dialog box:

presentSaveFilePanel "Save As" "filename"

➯ #("music", "composers", "Mozart")

The function displays a Save As dialog box with the prompt “Save as” and the
default filename “filename” in the file entry field. It returns an array specifying
the complete path to the file, including the name of the file. In this example, the
user typed in “Mozart” as the filename. If the user clicks Cancel instead of OK
or Save (depending on the platform), the function returns undefined.

The title itself is responsible for saving the file returned by
presentSaveFilePanel. To save a title container, library container, or
accessory container, use the update method. To save any other kind of file
(text or binary), use the DirRep and Stream methods, as follows:

• To save to a new file, use createFile, getStream, write, and plug
methods

• To save to an existing file, use getStream, write, and plug methods

If your title creates a file, and you want to put that file in the directory where
the title container is located, use the title’s directory instance variable. This
helps keep files neatly located in one place.

Filenames

Although file panels are a cross-platform implementation of standard file
dialog boxes, they do not impose cross-platform solutions for file naming. Each
operating system that runs the ScriptX Player imposes different restrictions on
the length of filenames and on the characters they can contain. A call to
presentOpenFilePanel or presentSaveFilePanel returns a filename
that is legal in the current environment and for the current directory. It is up to
the developer to impose restrictions to make filenames compatible on other
platforms.

Note – If your title can create files that ScriptX titles on other platforms may
need access to, it should address the issue of filename compatibility. For
example, version 3.1 of Microsoft Windows limits filenames to filename.ext
(8 characters followed by a period and a 3-character-extension for file type),
while MacOS limits filenames to 31 characters.

557

Files and System Services 19

Message Dialog Boxes

The global function presentMessagePanel provides the ability to display a
dialog box with a developer-supplied message. Its syntax is as follows:

presentMessagePanel message icon button-list default-ix cancel-ix

• message - a String object which is the text to display

• icon - NameClass object, which can be one of @warning, @critical,
@information, or @none

• button-list - Array object containing 1, 2, or 3 String objects to be used
as button names

• default-ix - ImmediateInteger object which is the index of the button
that is the default (the button selected if the user hits the return key)

• cancel-ix - ImmediateInteger object which is the index of the button
that is to be returned by the cancel key

Example

presentMessagePanel "Format your disk" @warning #("Format", "No") 2 2

This code presents a dialog box with the icon that indicates a “warning”
message and the message “Format your disk”. It has two buttons, one labeled
“Format” and one labelled “No”. In this example “No” is both the default
button and the cancel button.

558

19 ScriptX Components Guide

C H A P T E R

20
Streams

560

20 ScriptX Components Guide

561

Streams 20

The ScriptX Streams component provides a standardized interface for working
with linear sequences of data elements. The abstract class Stream provides the
protocol for this interface, which applies to linear sequences of objects. Another
abstract class, ByteStream, extends Stream behavior by defining methods for
accessing linear sequences of bytes. Other components in ScriptX provide
task-specific implementations of the behavior defined by these Stream classes.

For all platforms that support ScriptX, there are platform-specific subclasses of
ByteStream that provide byte-oriented access to files on the host file system.
The Iterator class implements streamed access to objects in collections.
Classes in other components of ScriptX provide content-specific
implementations of stream behavior. For example, the AudioStream class
provides access to streams of audio data, and VideoStream provides access to
streams of video data.

In addition to methods defined by Stream and ByteStream, the Streams
component provides a number of functions that are used to format and print
objects to streams. These are described more fully in the “Output” section of
the chapter “Working With Objects” in the ScriptX Language Guide.

Classes and Inheritance

The class inheritance hierarchy for the Streams component is shown in the
following figure.

treams component

treams component:inheritance
agram

Stream

LineStream

ByteStream

MemoryStream

RamStream

(Platform-specific ByteStreams)

ByteString (see Collections)

BytePipe (see Threads)

ObjectStoreStream

RootObject

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another componentMediaStream

LineStream

BufferedStream

562

20 ScriptX Components Guide

The following classes form the Streams component. In this list, indentation
indicates inheritance.

Stream – An abstract class representing data as linear sequences of elements
and defining behavior to read, write, and seek elements in the stream.

ByteStream – A class of objects that represent streams of bytes and provide
the ability to read bytes from or write bytes. Subclasses of ByteStream
provide platform-specific implementations of this behavior, to enable access
to data in files on each platform that supports ScriptX. Subclasses of
ByteStream in other components—MediaStream, AudioStream,
VideoStream—add format-specific behavior to ByteStream.

MemoryStream – A class of objects representing a variable-size stream of
bytes in memory.

RamStream – A class of objects representing a fixed-size stream of bytes
in memory.

LineStream – A class of objects whose data elements are lines of
characters represented in a system-independent way.

BufferedStream – Defines a general buffered byte stream, allowing
ScriptX to handle chunks of data of various types in memory buffers.

Conceptual Overview

A stream represents a linear sequence of uniform data elements. Streams in
ScriptX are represented by concrete subclasses of the Stream class. The data
elements in a ScriptX stream are usually objects.

To provide access to individual data elements, most streams provide a cursor to
keep track of their current position. When a stream is first opened, the current
position is at the beginning of the stream, and the cursor is set to 0. In this
position, the stream is ready for access to the first data element. As shown in
Figure 20-1, the cursor may be thought of as being positioned “just before” the
data element ready to be accessed. As you move through the stream, accessing
its data, the cursor is updated to reflect the current position in the stream.

Figure 20-1: Cursor position is just before the current data element

Depending on the type of data and the purpose of the stream, a stream may be
read-only, write-only, or read-write. For example, data from an input port would
be represented by a read-only stream, data going to an output port would be
represented by a write-only stream, and the pixel data for an editable bitmap
would be represented by a read-write stream.

ream class

yteStream class

MemoryStream class

amStream class

neStream class

neStream class

ream:defined

ream:cursor
ursor:in a stream

data

element

1

data

element

2

data

element

3

0 1 2 3Cursor position

Data Stream

ream:read-only
ream:write-only
ream:read-write

563

Streams 20

Figure 20-2: Readable and writable streams

The read and write operations, shown in Figure 20-2, give you access to the
element just past the cursor. After the element is accessed, the cursor is placed
beyond that data element and just before the next element in the stream.

Data in a stream may be intended for access any number of times or just once.
For example, a stream representing pixel data for an editable bitmap would
allow access to any of its data elements at any time, while a stream
representing the input buffer of an I/O port would contain changing data, so
reaccessing a particular data element wouldn’t be possible.

Figure 20-3: Seekable and nonseekable streams

As shown in Figure 20-3, there are two types of streams: seekable and
nonseekable. A seekable stream allows you to set the cursor to any position in a
stream and access the data element at that point. A nonseekable stream provides
one-way access to data. The cursor can be moved forward in a nonseekable
stream, but not back. Once a particular position in the stream has gone by, you
can’t access the data element at that position.

data

element

1

data

element

2

Returns the

current element

Positions cursor

before next element

Positions cursor

before next element

Reading from a Stream Writing to a Stream

data

element

1

data

element

2

Adds/replaces

current element

Positions cursor

in either direction

Seekable Stream

(bidirectional)

data

element

1

data

element

2

Positions cursor forward to

next element only

Nonseekable Stream

(unidirectional)

data

element

1

data

element

2

ream:seekable
ream:non-seekable

564

20 ScriptX Components Guide

How Streams Work

The Stream class provides an abstract representation of the standard ways to
access streams of data. Subclasses of Stream are customized for both a
particular data source and a particular data type. For example, the ScriptX
ByteStream class redefines Stream methods for access to streams of bytes.
Further, ScriptX defines a number of stream subclasses for a variety of data
types and data sources.

Creating instances of these ScriptX-defined streams is discussed in this section,
followed by a description of standard techniques for accessing data in streams.
Finally, this section lists the methods to override when creating customized
subclasses of Stream for specific purposes.

Stream Subclasses Defined by ScriptX

Among the streams defined by ScriptX are file-system-specific subclasses of
ByteStream for each operating system that supports the ScriptX runtime
environment. These classes recognize files as their data source and bytes as
their data type. ScriptX also defines the ByteStream subclasses
MemoryStream, to represent variable-sized memory buffers, and RamStream,
to represent fixed-size memory buffers. The Iterator class defines
stream-oriented access to the objects in a collection. The ObjectStoreStream
class provides a kind of stream to use for storing arbitrary data in a storage
container. The ResStream class represents individual resources in a Macintosh
resource file.

Streams for Files

To create a stream for a file, you use the DirRep method getStream. This
method returns an instance of a file-system-specific subclass of ByteStream.

myText := getStream theStartDir "file.txt" @readable

The stream returned by this method can be used for byte-oriented access to
data in a file. A stream created with the getStream method can be opened in
one of three modes: @readable (read-only), @writable (write-only) or
@readWrite, for both. You use Stream methods to read and write data in a
file.

Streams for Memory Buffers

Scripts can create streams to represent memory buffers using instances of the
MemoryStream or RamStream class.

To create a fixed-size memory buffer, you create a new RamStream object and
specify its maximum size.

myBuffer := new RamStream maxSize:1012

tream class:subclasses of

treams:and files
es:and streams
etStream method (DirRep)

DirRep class:getStream method
tream class:file access

ream:read-only
ream:write-only
ream:read-write

amStream class:creating in-
nces
emoryStream class:creating in-
nces

565

Streams 20

Note – In the current release of ScriptX, optimal buffer sizes are 2n-12 (as in the
example, where n is 10), since the ScriptX memory manager takes 12 bytes of
any allocated block for its own uses.

To create a growable memory buffer, you create a new MemoryStream object
and specify its initial size, grow size, and maximum size.

myBuffer := new MemoryStream initialSize:500 \
growSize:128 maxSize:1012

Memory buffers created as instances of either RamStream or MemoryStream
are readable, writable, and seekable.

Streamed Access to Collections

The Stream subclass Iterator provides streamed access to collections.
Subclasses of Collection use the iteratorClass instance variable to
determine the particular Iterator subclass appropriate to accessing their
data elements. An iterator for a particular collection can be acquired through
its iterate method.

MyIterator := iterate MyCollection

Iterators are readable, writable, and seekable.

Streams for Object Storage

An object store stream is intended to store certain types of data in specific
storage containers. The ObjectStoreStream class provides an abstract
stream for data storage containers, with subclasses providing
storage-system-specific implementations of this capability.

To store arbitrary data in a container, you first write the data to the stream,
then store the object referring to that data in the container. To create an object
store stream, you use the function newObjectStoreStream. This function
returns either a buffered or unbuffered storage stream, depending on the size
of the buffer you specify.

myStorageStream := newObjectStoreStream 1012 myContainer

This code example returns a buffered stream with a buffer size of 1012.

myStorageStream := newObjectStoreStream 0 myContainer

This code example returns an unbuffered stream.

For more on object storage, see the “Object Store” chapter in this guide.

erator class:creating instances

ObjectStoreStream class:creat-
g instances

566

20 ScriptX Components Guide

Streams for Macintosh Resource Files

 The ResBundle class defined in the Files component represents Macintosh
resource files. The ResStream class defines behavior for streamed access to
data for a specific resource. To get a stream for a resource, you first create a
ResBundle instance for the resource file, then request a particular resource
from that file.

myBundle := new ResBundle dir:theStartDir path:"MyResources"
myStream := getOneStream myBundle type:"snd " name:"elvisTrak"

This code first creates a ResBundle instance, myBundle, for the resource file
MyResources in the ScriptX startup directory. It then requests a stream from
myBundle for the sound resource named elvisTrak. In most cases, the next
step in this process would be to give this stream to the importer, which would
then import the data and return a media stream appropriate to the data.

sndStream := importMedia theImportExportEngine myStream @sound @snd
@audioStream

Note – The ResBundle and ResStream are platform-specific to the
Macintosh and are probably most useful in platform-specific tools. Titles
should save and retrieve data in a platform-independent way. If a title must
use the ResBundle and ResStream classes, it should include alternative code
allowing access to corresponding data in a platform-independent way.

Media Streams

The MediaStream class, a subclass of ByteStream, defines additional
methods and instance variables for use in media playback. Subclasses of
MediaStream implement this behavior for specific types of media, including
audio, video, and MIDI. These streams are designed for use with
corresponding media players. Media streams and media players are discussed
in the “Media Players” chapter of this Guide. The discussion of importers in
the ScriptX Tools Guide describes how to import media streams.

Access To Streamed Data

To read, write, and seek data in a stream, you interact with the Stream object
representing that data. Whatever data elements the stream represents—bytes in
a file, bytes in memory, objects in a collection—the methods for data access are
the same.

Reading and Writing Data

To read data in a stream, you invoke the stream’s read method. This method
positions the cursor just past the current data element and returns that
element. You could use the read method in a loop to read bytes of information

esBundle class:creating instanc-

Macintosh:resource files
esStream class:creating instanc-

data:accessing

streams:and data
data:and streams
read method (Stream)
Stream class:read method
write method (Stream)
Stream class:write method

567

Streams 20

from the stream for a file, converting the bytes to a string of characters in the
process. The following code opens a stream on a file, creates an empty string,
then copies all the bytes from the stream to the string :

myTextStream := getStream theStartDir "file.txt" @readable
myString := " " as String
for i in (1 to (streamlength myTextStream)) do (

myString[i] := (read myTextStream)
)

A more efficient way to read lines of text from a file is to use the LineStream
class, as in the following example:

myTextStream := getStream theStartDir "file.txt" @readable
myLines := new LineStream source:myTextStream
myString := new String
repeat while ((i := read mylines) != empty) do addmany mystring i

Note that the read method is implemented by LineStream to return lines of
text from a file as strings, minus their terminating characters (such as LF, CR or
CR/LF). If you wish to add the new line character (\n) to each line, you need
to explicitly do so while reading from the file. For example:

repeat while ((i := read mylines) != empty) do (
addmany mystring i -- add the unterminated line
addmany mystring "\n" -- add the new line character

)

To write data to a stream, you invoke the stream’s write method. The write
method writes one data element at the cursor position, replacing the previous
element at that position, if any. It then repositions the cursor just past that
element. You could use the write method in a loop to write a string of
characters to a file using the following code:

myString := "some character string"
myTextStream := getStream theStartDir "file.txt" @writable
for i in (1 to (size myString)) do (

write myTextStream myString[i]
)

You would use similar code with an iterator to read objects from or write
objects to a collection. You could also use such code to transfer bytes of data
between a file and a memory buffer represented by a MemoryStream or
RamStream instance.

When a writable stream is associated with an external device, such as a file or
serial port, you need to be sure that any data you’ve written to the stream is
actually transferred to the device. To do so, you call the flush method.
Plugging a stream, discussed in the next section, closes a stream and implicitly
flushes its data.

streams:and data
data:and streams
read method (Stream)
Stream class:read method
write method (Stream)
Stream class:write method

568

20 ScriptX Components Guide

Note – On Windows systems, due to the way that DOS handles files, data
written into a file by a writable stream cannot be read unless the file is closed
first. A work around is to use the plug method to close the file, then use
getStream to get a new readable stream. For example, the following code
properly writes to, then reads from, the file “newfile.txt”:

createFile theStartDir "newfile.txt" @text

outStream := getStream theStartDir "newfile.txt" @writable

writeString outStream "HELLO"

plug outStream

inStream := getStream theStartDir "newfile.txt" @readable

Seeking Data

As mentioned earlier, a stream’s cursor determines the current position in the
stream. The cursor is positioned just before the data element that will be
affected by the next read or write operation. When you first open a stream,
the cursor’s position is 0, just before the first data element. To find the current
cursor position for a stream, you call the cursor method.

To choose which data element to access, you position the cursor in a stream.
Use the isSeekable method to test whether or not the cursor can be
positioned in a stream. Most ScriptX streams are seekable, including streams
for files, streams for memory buffers, and the iterators for collections.

There are three Stream methods that explicitly position the cursor within a
stream. The seekFromStart method positions the cursor relative to the
beginning of its stream, while seekFromEnd positions it relative to the end,
and seekFromCursor positions it relative to its current position. To position
the cursor using these methods, you specify the stream and the relative
position. For example, to write data at the end of a file, you would position the
cursor at the end of the stream representing that file as follows:

myStream := getStream theStartDir "MyFile" @writable
seekFromEnd myStream 0

You can use positive or negative values to specify the position of the cursor. In
the following example, the cursor is moved toward the front of the stream, 100
bytes before its current position:

seekFromCursor myStream -100

To move the cursor a single data element at a time, you use the next and
previous methods. The next method moves the cursor forward one data
element and returns true. If you call next with the cursor at the end of the
stream, it returns false. Similarly, the previous method moves the cursor
back one data element and returns true until it is at the front of the stream,
when it returns false.

streams:and data
data:and streams
sSeekable method (Stream)
Stream class:isSeekable method
seekFromStart method (Stream)
Stream class:seekFromStart method
seekFromEnd method (Stream)
Stream class:seekFromEnd method
seekFromCursor method (Stream)
Stream class:seekFromCursor method

569

Streams 20

While the next and previous methods can only place the cursor within the
bounds of the data elements, the seek methods can place the cursor at any
position, including beyond the beginning or end of the data. The isAtFront
and isPastEnd methods let you test the position of the cursor.

The streamLength method always returns the actual number of data
elements in the stream, regardless of the cursor position.

Plugging Streams

Streams are often transient, used to transfer data elements from one place to
another, then discarded. The plug method lets you discard a stream,
performing any cleanup necessary to make the stream ready for disposal. For
example, streams for data files must flush any data that hasn’t yet been written
to the file, close the file, and dispose of any file handles acquired from the
underlying operating system. This work is performed by the plug method.
When you call plug on a stream, the stream object is invalidated.

Defining Custom Stream Classes

Developers can define subclasses of Stream for handling specific kinds of data
elements. You may need a customized iterator for a specialized collection
subclass, or a customized buffer for storing specific types of data. In some
cases, the task of creating a customized stream subclass may be beyond the
capabilities of ScriptX alone: for example, to create a stream to represent a
serial device or a printer, you will have to use the C-language API described in
“Extensions to ScriptX” in the ScriptX Developer’s Guide. However, in other
cases, you can simply implement the appropriate behavior in ScriptX.

The Stream class defines methods that should be implemented to enable
different types of access to data. The following tables list the methods that
must be implemented by various types of Stream subclasses:

Table 20-1: Methods implemented by all Stream subclasses

Method Implementation

isAtFront Return true if cursor is at 0

isPastEnd Return true if cursor is greater than stream length

isReadable Return true if stream is readable, false otherwise

isWritable Return true if stream is writable, false otherwise

isSeekable Return true if stream is seekable, false otherwise

next Position cursor at next data element. Return true if cursor is
within the stream, false if cursor is at end of stream

plug Release stream resources, void stream object and contents

streams:closing
Stream class:plug method
plug method (Stream)

Stream class:subclassing

Stream class:subclassing

570

20 ScriptX Components Guide

Table 20-2: Methods implemented by readable Stream subclasses

Method Implementation

isReadable Return true

read Return the current data element. Position the cursor at the next
data element

readReady Return the number of data elements that can be read without
blocking

Table 20-3: Methods implemented by writable Stream subclasses

Method Implementation

isWritable Return true

write Place specified data element at current position. Position the
cursor at next data element

writeReady Return number of data elements that can be written without
blocking

Table 20-4: Methods implemented by seekable Stream subclasses

Method Implementation

cursor Return current position

isSeekable Return true

previous Position cursor at previous data element. Return true if cursor
is within the stream, false if cursor is at beginning of stream

seekFromCursor Position cursor at offset specified from current position

seekFromEnd Position cursor at offset specified from end of data

seekFromStart Position cursor at offset specified from beginning of data

setStreamLength Set number of data elements in the stream. If the value is less
than the current length, remove extra elements. If value is
greater than current length, add null elements.

streamLength Return the number of data elements in the stream

tream class:methods for reading

Stream class:methods for writing

Stream class:methods for seeking

C H A P T E R

21
Memory
Management

572

21 ScriptX Components Guide

573

Memory Management 21

Memory management is a major source of complexity in software. In
conventional programming environments, a developer must explicitly
deallocate chunks of memory when they are no longer needed. ScriptX is
designed to deallocate and reclaim unused memory automatically. Developers
need to be aware of memory use when optimizing a title. When you make an
object available for garbage collection—by dropping all references to it or
calling requestPurge on it—the garbage collector then automatically
reclaims the memory.

Memory management is built into ScriptX at the lowest level. The Memory
Management component uses no classes, but it does offer several global
functions. These functions extend internal hooks and diagnostic reports to the
scripter level.

Memory management functions are useful for tuning performance, and for
diagnosis, testing, and debugging. This chapter covers the theory and use of
memory management in ScriptX. For definitions of memory management
functions, see the “Global Functions” chapter of the ScriptX Class Reference.
ScriptX provides additional memory management functions that are not
intended for use in titles or tools. These functions are listed in the ScriptX Tools
Guide.

Conceptual Overview
ScriptX allows developers to work, at least in theory, as if they had an infinite
supply of memory at their disposal. This allows for a more natural style of
programming. An independent process, the garbage collector, runs
asynchronously in the background in its own thread while a title is running.
The garbage collector reclaims memory that was assigned to objects.

Of course, no computer system has an infinite memory. As a ScriptX title runs,
it continually allocates memory for objects, generally by calling the method
new or by loading existing objects into memory from the object store. Memory
is always a limited resource, in ScriptX as in any operating environment. A
well-designed program makes objects available when they are needed, and
allows their space in memory to be reclaimed when they are no longer
necessary. ScriptX replaces memory management with load management. The
concept of load management is discussed later in this chapter.

Think of the rate of memory allocation as a flow over time. The garbage
collector works continuously to balance this flow. It must deallocate memory as
fast as it is allocated, or the program will eventually run out of memory. If it
works too hard, if it collects garbage more than necessary, it wastes processor
time that could be used by other threads in the title.

574

21 ScriptX Components Guide

Although the garbage collector is designed to work automatically, the global
functions in this chapter allow you to override certain operations. At times, a
title developer may want to force garbage collection, or control the amount of
time that is allocated to this process.

Garbage collection has evolved in parallel with object-oriented programming.
In object-oriented systems, the need for garbage collection is profound because
conventional memory management techniques create complex interfaces
between objects. ScriptX has a conservative, non-relocating, real-time
incremental garbage collector that implements a tracing algorithm. Each of
these terms has a specific meaning in computer science that is explained below.

How ScriptX Memory Management Works
This section describes the operation of the ScriptX garbage collector.

Real-time Incremental Activity

The garbage collector is called a real-time, incremental collector because it runs
asynchronously with respect to other processes, in its own thread. What is
meant by “real-time” and “incremental?” The garbage collector does not
actually run at the same time as other processes. (This may change in the
future for ScriptX in multi-processing environments.) Instead, the collector’s
processing time is interleaved with that of other active threads. In that sense,
we can call it an incremental collector. Each time it runs, it does a little more
garbage collecting, searching through the ScriptX memory space for objects
that are still in use. It completes this search over many increments, and then
starts over.

What would it mean to have a garbage collector that does not operate in real
time? Such a collector would wait until the system was out of memory. It
would then suspend every other process, run to completion, and restore
control to the system. And ScriptX will do just that as a last resort if it runs out
of memory. Of course, this causes an interruption, such as a jitter in the
presentation of sound, video, or animation. Such an interruption could be
jarring, though certainly less jarring than allowing the system to crash.

The ScriptX global function garbageCollect bypasses the real-time,
incremental approach. It runs the garbage collector from its current stage in the
cycle to completion, reclaiming all unused memory. Title developers should be
aware that the ScriptX system calls garbageCollect automatically if it runs
out of memory, but this function can be useful at other times.

Each time it runs, the garbage collector runs for a fixed time slice, measured in
milliseconds, known as its increment. This increment is not the same time slice,
determined by the scheduler, that other threads in ScriptX receive. The garbage
collector has its own fixed increment, which can be adjusted dynamically.

575

Memory Management 21

Figure 21-1: The garbage collector runs for an increment, a tiny slice of processor time,
and then yields to other processes. Over many increments, it completes a
cycle, tracing every object in memory.

The garbage collector’s increment can be adjusted by a global function,
setGCIncrement, which takes a single integer argument that represents time
in milliseconds. This function acts, it effect, like a throttle, increasing or
decreasing the time that the garbage collector runs each time it is scheduled.
Although the target length of an increment is fixed by setGCIncrement, there
are slight variations in practice, a result of differences in timing. Note that
performance also depends on the number and priorities of other threads that
are active, and on the speed of the central processor. Developers can use
setGCIncrement for testing, diagnosis, and performance tuning.

Non-relocating Objects—Organization of Memory

When the Kaleida Media Player starts up, it requests one or more large blocks
of contiguous memory from the native operating system. On Mac/OS,
Windows 95, and OS/2, it uses a block of memory that lives in the application
heap. In Windows 3.1 it is drawn from the global heap, which is shared by all
application programs.

The garbage collector does not manage all of ScriptX application memory. A
portion is used by the Kaleida Media Player itself to store code and system
data. On some operating systems, such as the Apple Macintosh, the operating
system also makes use of application memory to provide system services.

The remaining memory—that which is used to store objects—is managed by
the garbage collector. We call this zone the ScriptX heap. Some objects stay
around as long as the ScriptX Player is running, so the garbage collector
doesn’t waste time trying to reclaim their memory. These objects are stored in
static memory. Other objects are temporary or transitory, used briefly and then
discarded. These objects are stored in dynamic memory.

increment

cycle

576

21 ScriptX Components Guide

Figure 21-2: A generalized map of how ScriptX uses memory.

Memory management is handle-based. Each underlying object has a fixed
master pointer that doesn’t move, so the integrity of a reference is guaranteed.

Tracing Collection—How ScriptX Finds Unused Objects

On a 32-bit microcomputer, a handle is a location in memory (4 bytes) that
contains an address elsewhere in memory. The garbage collector identifies
memory that is not in use by tracing all possible references to objects. Any
value that points to a valid address is marked as a possible reference. In this
respect, the garbage collector is said to be conservative.

The garbage collector begins its search by checking for references to other
objects in registers, stacks, and global data. Collectively, these memory
locations are known as the root set. It will check for references to still more
objects in any objects that it identifies. As it executes, the garbage collector
traces and marks every possible reference in every possible tree that originates
in the root set. Figure 21-3 depicts this process, showing how references that
originate in the root set may contain references to other objects in memory.
When it finishes its cycle, the garbage collector will have reached every
possible live object in memory. Any object that has not been traced is
reclaimed.

ScriptX reclaims memory each time the garbage collector completes a cycle. No
memory is actually reclaimed until the garbage collector finishes tracing all
possible references from the root set.

static
memory

dynamic
memory

unused
memory

operating
system

applications
ScriptX heap

577

Memory Management 21

Figure 21-3: Tracing references from the root set.

The garbage collector searches some objects such as stacks conservatively. As a
drawback of being conservative, the garbage collector identifies some
references that are not really references. For example, a thread’s stack might
contain values that are easily mistaken for pointers. Although it is possible to
create a pernicious program that confuses the garbage collector, this problem is
of little consequence in normal programs.

ScriptX does not count references, unlike garbage collectors in some
object-oriented environments. This allows the garbage collector to reclaim
circular structures, groups of objects in memory that point only to each other.

Although a garbage collector allows a developer to program, at least in theory,
as if memory did not matter, the use of a tracing collector has the following
implications:

• Variables are references to objects. The garbage collector cannot reclaim
space if there is an active reference to an object. When an object is assigned
to a variable, assignment creates a reference to that object. Global variables
are active for as long as a program runs. Local variables are active only
while the block in which they are declared is active. If a variable is declared
local, then the garbage collector is able to reclaim its memory when it is no
longer needed. It is good programming practice to declare all variables as
local or global, and to use local variables when at all possible.

• Variables can be unassigned, so that the objects they point to in memory can
be released, allowing the memory to be reclaimed for other uses. Set the
value of a global variable to undefined when it is no longer needed.

Registers Stacks Global Data

Non-static memory

578

21 ScriptX Components Guide

• Objects are often embedded in other objects. This means that setting a
variable to undefined does not guarantee that the object it was holding
onto will be garbage collected. For example, an event interest that has been
added to a collection of interests is a member of a collection. If that interest
is assigned to a variable, setting the value of the variable to undefined
does not remove that event interest from the interests collection. Only if the
interest is also removed from the collection can its memory be recovered.

Garbage collection is suited to an object-oriented style of programming. It is
possible to write a procedural program using ScriptX. A procedural program
generally ends up assigning many global variables. Even though explicit
memory management is not required, a procedural program written in ScriptX
requires a great deal of implicit memory management. An object-oriented style
of programming takes care of many of these tasks.

For information on the scope and extent of variable assignments, see Chapter 2
of the ScriptX Language Guide.

Memory Management versus Load Management

In conventional programming environments, a program must explicitly
allocate and deallocate every chunk of memory that it uses. A program that
fails to release memory as it runs will eventually fail as it uses all available
memory. Memory management requires a programmer to be an accountant.

In ScriptX, the analogous process is load management. Although a title does
not keep track of every allocation it makes, it must be sure that objects are
available in memory when they are needed. Since memory is a scarce resource,
a title must also indicate when an object is no longer needed, so that its
memory can be reclaimed. Load management requires a programmer to be a
choreographer.

ScriptX performs load management through the object store. The
StorageContainer class provides a virtual container through which groups
of otherwise unrelated objects can be moved into and out of memory as a unit.
LibraryContainer specializes StorageContainer to provide for startup
and shutdown activities, as well as management by titles. Storage containers
are collections of objects. When a storage container is opened, a program has
access, by reference, to any objects it contains. Objects can be loaded into
memory before they are needed by calling load, although this is usually
unnecessary.

Multimedia titles are built around an authoring metaphor. Every authoring
metaphor is constructed of logical elements, such as characters, scenes,
locations, cards, or pages. By building storage containers that correspond to the
elements of its authoring metaphor, a title can selectively load objects into
memory and release them from memory. For example, suppose that a character
is associated with a given set of bitmap images whenever the value of its mood
instance variable is @happy. These objects and their associated presenters can
be loaded and unloaded as a unit in that character’s “happy mood” storage
container.

579

Memory Management 21

It is possible to pre-load objects when need is imminent. For example, suppose
that the happy character also suffers from arachnophobia, a morbid fear of
spiders. When a spider appears on the scene, the value of mood must instantly
change to @panic. In a real-time multimedia title, this change of state must be
sudden, or it will not be convincing to the user. A title could preload the
objects it needs for this panic state by loading all objects in the character’s
“panic attack” storage container whenever a spider is about to enter a scene.

A ScriptX program should release objects from memory when they are no
longer needed. An object that is purgeable is kept in memory only if there is
room for it. This allows a ScriptX program to make optimal use of what
memory is available on a given system. For example, if a bird character in the
title removes every spider from the scene, the program can call requestPurge
on all objects in the character’s “panic attack” storage container.

For more information, see the StorageContainer class in the ScriptX Class
Reference.

Using Memory Management
This section describes the basic rules for allocating and deallocating memory in
ScriptX. For tips and techniques on how to optimize memory use in your title,
refer to the chapter “Optimizing for Speed and Memory” in the ScriptX Tools
Guide.

How to Allocate Memory

Any time a new object is created or type is declared, either explicitly by a script
or implicitly as a side effect, memory is allocated. Thus, the following script
allocates memory, not only for the window itself, but for structures that the
window creates implicitly, such as its boundary rectangle:

global w := new Window
show window

How to Release an Object From Memory

There are two ways to release an object from memory, depending on whether
it’s a persistent (stored) or transient (non-stored) object. Releasing a persistent
object is called “purging” the object.

To release a stored object from memory, you need to do several things:

• Hide it if it’s a presenter.

• Call requestPurge on it.

• Stop calling any methods on it.

To release a transient object from memory:

• Drop all references to the object. To drop references, you must also drop
references that are implicit within the program. An object’s memory cannot
be reclaimed if another object is still using it. For example, if the object is a

580

21 ScriptX Components Guide

presenter, hide it so that it is no longer in a presentation hierarchy. If it is an
event interest, remove it from any interest lists it may be a member of.
Reassign any variables that point to the object so they point to other objects,
such as the undefined object.

For example, given the window that was created earlier, to free it you must
hide it and set the variable w to undefined:

hide w
w := undefined

The window w will be removed from memory during the garbage collector’s
next cycle.

Visual Memory

Visual Memory is a tool for examining memory that is managed by the garbage
collector. Choose Visual Memory from the File menu in the ScriptX menus to
view a visual map of the ScriptX heap. Visual Memory is described in the
ScriptX Tools Guide. This tool is not available in the ScriptX Player.

C H A P T E R

22
Threads

582

22 ScriptX Components Guide

583

Threads 22

Every time the ScriptX authoring environment or the ScriptX Player runs, it
creates a number of system threads, which run concurrently. Many titles and
tools create additional threads. Threads provide a mechanism for managing
interaction with the user and presenting media from multiple sources. A title
might play a tune, run an animation, search a database, and respond to a
mouse event, all at the same time. Each of these processes can be managed by
a different thread.

By using threads, a script can manage multiple events and behaviors
modularly, rather than through modifications to a main program loop. The
ScriptX runtime environment includes a scheduler, which runs invisibly. The
scheduler is responsible for allocating time to the various threads.

The Threads component includes several classes that are used as
communication and control mechanisms. Pipes are structures through which
data can be passed between threads. Gates are controls that allow a thread to
suspend or block while waiting for an event, for control of a resource, or for
another thread to finish some critical task.

A ScriptX title or tool runs using the services of the system threads, and it can
create others as it runs. Some of these threads, such as the garbage collector,
run asynchronously and invisibly. Others are created automatically to provide
system services for objects in other ScriptX components. For example, the two
callback threads serve clocks, players, and the compositor. Thus, a developer
can create a multi-threaded title without explicitly creating threads.

Although it is possible to develop a title without explicitly creating a thread,
the Threads component provides a rich set of tools that developers can use to
improve the flow of control in their titles. This chapter is recommended for
developers who need to create their own threads, pipes, and gates.

Classes and Inheritance
The class inheritance hierarchy for the Threads component is shown in the
following figure.

584

22 ScriptX Components Guide

The following classes form the Threads component. In this list, indentation
indicates inheritance. Note that the Thread and Gate classes, with their
subclasses, are sealed. A sealed class is a class that cannot be specialized or
subclassed.

Thread – an independent thread of execution.

Gate – represents any obstacle to the execution of a thread; when a thread is
unable to acquire a gate, it blocks until the gate is opened (relinquished).

Condition – represents a condition that becomes instantaneously true and
then false again.

Flag – represents a condition or state that remains true over a period of
time.

Lock – represents a resource that only one thread can own at any time.

BytePipe – a convenient way for threads to pass chunks of data around.

PipeClass – a convenient way for threads to pass objects around.

Conceptual Overview
A thread represents an independent process or flow of control in a program.
Each thread is associated with a control function, which it calls when it begins
running. This control function, specified by the func instance variable in the
Thread class, is a series of expressions which run until the thread yields,
finishes executing, or is stopped by the scheduler.

When you create a thread, it is immediately active unless you specify
otherwise, but it won’t actually begin running until it is scheduled to run, as
determined by its priority. Technically, only one thread actually runs at a
time on current platforms. The current thread is indicated by the global
variable theRunningThread.

Threads take turns running. A thread’s priority determines its share of
processing time. Of course, the ScriptX Player manages threads of its own,
some of them at system priority, including threads that control such critical
processes as clocks and garbage collection (memory management).

Thread

PipeClass

BytePipe

RootObject RootObject

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

Gate

Flag

Condition

Lock

Stream

ByteStream

585

Threads 22

When a title starts up, it begins running from the thread indicated by the
global variable theMainThread. On Macintosh and Windows versions of the
ScriptX Player, this thread contains the main event loop. Although a title
begins running in the main thread, it may use other threads. For example, a
callback runs in a separate thread. The main thread remains in existence,
though not necessarily active, for as long as ScriptX is running. To destroy the
main thread is to quit the runtime environment.

Note – In current versions of ScriptX, the Kaleida Media Player runs with the
services of several system threads. For a list of these threads, run the script,
for x in (allInstances Thread) do print x. Future versions of
ScriptX may not use the same set of system threads. For this reason, ScriptX
code should never depend on any property (such as status or priority) of
any system thread. These Thread properties are visible to the scripter for
testing and debugging, but should not be used in actual tools and titles. For
more information, see the Thread class in the ScriptX Class Reference.

Threads can be created and destroyed at will. The main thread has no special
control or authority over other threads. In ScriptX, no central authority is
responsible for creation and destruction of threads, and no component
manages control mechanisms such as gates and pipes. The ScriptX thread
system is really the collective behavior of the thread component classes as a
whole. Threads run independently—except for the scheduler, they manage
themselves.

Terminology

block – to suspend activity while waiting on a gate. When a thread blocks, the
gate acts as an external barrier. When the barrier is removed, the thread can
run again.

gate – a control mechanism that represents a global state in a program, used to
synchronize activities between threads.

pipe – a data structure that acts as a conduit for exchanging information
between threads.

preemptible – interruptable by the scheduler. A thread that is not preemptible
yields only voluntarily.

thread – an independent process that runs concurrently with other processes.

How Threads Work
A script can create many threads, which run asynchronously, each one running
its own function. The script can manage under what conditions each thread
becomes active using gates.

When threads need to wait for some event or state, they suspend themselves.
Within a thread—that is, within its control function—a number of functions
and methods can be called to make the thread suspend until an event such as a

586

22 ScriptX Components Guide

mouse click or a clock tick. (See sample scripts in the Events chapter of ScriptX
Language Guide.) Thus, the Thread component is intimately tied with other
components, including Events, Clocks, Players, and Controllers.

Much of the discussion in this chapter is really about communication and
synchronization between threads. This communication occurs, either directly
or indirectly, through gates and pipes. Gates and pipes make it possible to use
ScriptX to create very complex simulations. Gates and pipes are also built into
or embodied in other ScriptX classes. For example, EventQueue (see Events
chapter of ScriptX Language Guide) is a subclass of PipeClass, while
CallBack (see Clocks chapter of ScriptX Language Guide) uses both threads
and gates internally.

Programming Guidelines

This chapter places strong emphasis on programming guidelines. ScriptX is
permissive. It gives you plenty of rope; you can hang yourself if you want to.

Developers must always be aware, in using the Threads component, of the
potential for conflicts between threads. Multi-threaded titles can be very
difficult to modify and debug if they are not designed carefully. They have a
potential for several kinds of errors that do not exist in programs that execute
in a single thread. The following is a list of common execution problems in
multi-threaded systems.

1. Stack overflow. Every thread runs with a stack. A script determines how
much stack space is allocated for a thread when the thread is instantiated.
The default size is dependent on the hardware platform. ScriptX has a stack
sniffer to detect overflow conditions. Graceful recovery from a stack
overflow is not always possible. Most overflows result from too much
recursion, often because of a circular reference. Stack overflows are common
in single-threaded systems too.

2. Resource conflict. What happens when two threads both require the same
resources? Threads may compete for access to a peripheral device, for a lock
on a global variable, for a set of locks to enable an operation.

a. Deadlock. If a thread is unable to run because another thread has
claimed a resource that it needs, the conflict is called a race condition. If
neither thread is able to run, the conflict is called deadly embrace or
deadlock. Multi-threaded titles should be designed to resolve deadlocks.

b. Concurrency. In multi-threaded titles, two or more threads must often
share a resource, such as a global variable. What happens when one
process is preempted at a critical point in time, while it is working with a
local copy of that global variable? Developers need to use pipes and
gates in a multi-threaded title to avoid concurrency problems. If a group
of expressions must execute as a unit, a script should temporarily
suspend preemption using the global functions threadCriticalUp and
threadCriticalDown.

3. Starvation and thrashing. Every computer system has at least two limited
resources: execution time and memory. From time and memory, an
operating system defines other resources, which can also be in short supply.

587

Threads 22

For example, Microsoft Windows has a limited supply of file handles; the
Macintosh, a limited supply of window pointers. Peripherals have a
restricted pathway for moving data in and out of memory. If a process is
unable to obtain a resource, it is said to be starved. If an entire system makes
impossible demands on resources, it is said to thrash. ScriptX has the
potential to thrash or starve the system if a title creates too many threads.

Thread Functions

A thread’s control function is called just once, when the thread begins running.
Two instance variables on the Thread class, func and arg, store the thread’s
function and its argument. As the thread runs, this function may call other
functions and methods, or it may call itself recursively. A thread is an
independent process that runs asynchronously with other processes, so it
maintains its own stack. Thus, it is able to stop and start.

Some thread functions finish execution and return a value, or yield voluntarily
before their time slice ends. A thread that has finished execution can be
restarted and run again. Often, a thread’s function is in the form of an infinite
loop, so that it calls a series of expressions continuously, never running to
completion.

A Thread object can return a value in one of three ways. The global function
threadExit is the usual technique for exiting from the running thread. This
function is equivalent to calling threadReturn (an instance method of
Thread) on the running thread. If the thread is running in the top level of its
control function, the ScriptX return expression and the method
threadReturn are equivalent.

The return value can be any object—often it is a Boolean value or undefined.
For example, it may be the result of a database search that was processed by
the thread, in the background. This value remains available in the thread’s
result instance variable until the next time the thread returns a value.

When a thread is finished executing, the value of its status instance variable
is @done. The thread will remain in existence as long as there is an active
reference to it, such as by assignment to a global variable. A thread that has
finished executing can be restarted by another thread. If there are no active
references to a thread, the garbage collector eliminates it and reclaims its
memory.

Thread Status

A thread will always be in one and only one of the following states, as given
by the status instance variable defined by the Thread class:

Table 22-1: Thread status in ScriptX

Status Meaning

@starting the thread is in the process of starting for the first time

@active the thread is runnable, but not running

@inactive the thread is not runnable, but it isn’t waiting on anything

588

22 ScriptX Components Guide

It is helpful to think of the eight possible values of the instance variable
status defined by Thread as states through which a thread passes as a
program is running. Figure 22-1 illustrates how the status of a thread changes
with method and function calls. (The diagram depicts only calls that constitute
good programming practice in a multi-threaded environment.)

Figure 22-1: States of a Thread object.

A script cannot directly set the status instance variable on a thread. In some
cases, a function or method call explicitly determines a thread’s status. In other
situations, status can only be changed indirectly. For example, if a thread is
waiting on a gate, the only way to change its status is to open the gate. Of
course, the gate may be under the control of another thread. Once the gate is

@running the thread is currently executing

@waiting the thread is not runnable; it is waiting on a gate

@done the thread is finished executing

@killed the thread was killed

@restart the thread is in the process of restarting

Table 22-1: Thread status in ScriptX

Status Meaning

@running@active

@starting

@killed

@inactive

@waiting

threadActivate

threadKill

threadDeactivate

threadIdle
threadYield

threadYieldTo

threadExit
threadReturn

@done

@restart

threadDeactivate

threadRestart

threadRestart

threadRestart

acquire

gateWait
gateWaitAfterOpening

lockMany
lockNowOrFail

threadWait
waitTime (Clock)
waitUntil (Clock)

589

Threads 22

opened, the thread becomes active, but only the scheduler can make an active
thread actually run. The following list is a more detailed summary of each of
the eight states.

1. Starting. If you create a thread, its status has the initial value @starting.
This status is transitory, for initialization only—you will rarely observe a
thread in this state. While a thread is starting, it is allocated memory,
including a stack in which to run. Its result instance variable is initially set
to undefined. After a Thread object is started, it becomes immediately
active, unless you set the value for the keyword argument startInactive
to true when you create the thread.

2. Active. A thread’s status must be @active before it can run. An active
thread has a stack, and it may have current references to other objects. The
result instance variable, defined on the Thread class, remains undefined
until it is explicitly changed, usually by the thread itself when it exits and
returns a value. If the thread has been restarted, it retains the result from its
previous execution until the next time it returns a value. Any number of
threads can be active, limited only by available memory. Keep in mind that
when an active thread actually runs, it may be preempted at almost any
stage of execution. Thus, an active function may be virtually anywhere in its
function. Never assume that preemption will occur at any particular point in
the execution cycle. If the logical flow of control does not allow for
preemption at some point, use the global functions threadCriticalUp
and threadCriticalDown.

3. Inactive. An active thread’s status can be made @inactive at any time, or
a running thread may make itself inactive. A thread that is inactive retains
its stack and all of its properties, but it cannot actually run until it has been
made active again. Think of the stack, and any references to objects, as being
frozen until the thread is made active again. Any number of threads can be
inactive, limited only by available memory.

4. Running. Only the scheduler can change a thread’s status to @running. On
current versions of the ScriptX Player, only one thread is actually running at
any point in time. A thread’s status must be active before it runs. Each time
a thread runs, it executes its function from where it left off the last time it
ran. The script determines how often an active thread runs relative to other
threads by using the priority instance variable, but a script should never
assume that active threads will run in any particular order. If complex
synchronization is needed, it can be achieved using gates and pipes. If a
thread is preemptible, it can be interrupted at any stage while it is running.
When the thread is preempted, its status becomes active, and remains so
until the scheduler runs the thread again (or until the status of the thread is
explicitly changed by another thread). The running thread can always refer
to itself using the global variable theRunningThread. As a rule, a running
thread manages itself. Thus, a running thread can move itself into any other
status (except @starting, which is of no real consequence). A running
thread can yield to any active thread by calling the global function
threadYieldTo.

5. Waiting. If a thread is blocked, then its status is @waiting. A thread is said
to block when it is stopped by a barrier to execution, such as a gate or pipe.
The waiting thread is quite similar to an inactive thread in that its stack and

590

22 ScriptX Components Guide

its properties are frozen, suspended in time. However, there is no explicit
function or method call on the thread itself that will make a waiting thread
active. The only way to activate a waiting thread is to unblock it by
removing the barrier on which it is blocked. This barrier could be a gate, or
the thread could be trying to read from an empty pipe, or write to a pipe
that is full. When the thread becomes unblocked, it becomes active again,
but it does not actually execute until its turn comes up in the scheduler. In
other words, a thread that has been unblocked does not necessarily run
immediately; its turn may be scheduled before or after other active threads.

6. Done. If a thread exits or returns, then its status is @done. When the thread
exits or returns, it throws away its stack. Thus, the thread whose status is
@done can only be restarted. When it is restarted, it will retain its properties,
but it will start over again with a new stack. The return value from the
thread’s function is put in its result instance variable. This value can be
any object. Keep in mind that ScriptX does not reinitialize this variable if the
thread is restarted. A thread that is done will persist for as long as there is a
reference to it elsewhere. For example, if a thread is assigned to a global
variable, that constitutes an active reference. This reference can be cleared
by assigning the value undefined to the variable. When there is no longer
a reference to a thread, the garbage collector will remove it and recover any
memory it was using.

7. Killed. A thread that has the status @killed is similar to a thread whose
status is @done, except that it has no new return value. (Actually, the thread
may still have a return value left over from a previous execution.) The
thread can still be restarted, and it will persist until there is no longer a
reference to it.

8. Restart. If you restart a thread, its status is briefly @restart before it
becomes active. Like starting, restart is a transitory state that is rarely
observed. These two states are almost identical; in a future version of
ScriptX, they may even be merged. Restarting is equivalent to starting in
that the thread starts over with a new stack. When it runs again, the thread
will begin execution at the beginning of its controlling function. However,
the result instance variable is not reinitialized; it may retain a value left
over from a previous execution.

Think of the state-flow diagram above as representing good programming
practice. ScriptX allows you to call many functions and methods that are
outside the scope of this diagram, operations that would be illegal in many
other programming environments. For example, a developer can call
threadReturn, threadKill, and threadRestart on a thread that is not
running. If these operations are used incorrectly, they are an invitation to
deadlock, data corruption, and disaster.

A good rule of thumb for programmers is that threads should manage
themselves. Of course, a thread must be started or activated by another thread.
But once a thread is active, it should be allowed to finish. If another thread kills
or restarts a thread that is active, it may throw away the only reference to a
global variable, or leave data in an inconsistent state. If a thread has to be
killed, build logic into it so that it knows how and when to kill itself.

591

Threads 22

ScriptX will let you live dangerously. If you would rather not live on the edge,
follow these guidelines when using threads.

• Never kill, exit, or return from a thread that is not running. These operations
throw away the thread’s stack, and they can eliminate references to other
objects.

• Never restart another thread unless it has finished execution.

• The only method you should call on a thread that is active, but not running,
is threadDeactivate. The only method that you should call on an
inactive thread is threadActivate.

Blocking

A thread that blocks is in suspended animation. It retains its stack, but it is
unable to run until it becomes active again. It can be activated only by
unblocking it, by opening the gate that it is waiting on. This gate may be one
that is explicitly defined by a script, or one that is defined internally by another
ScriptX class, such as CallBack, EventQueue, PipeClass, or BytePipe.

Think of blocking as an alternative to polling. In single-threaded operating
systems, an application waits for events by polling. Each time an application
runs through its main program loop, it polls the operating system to see if any
new events have been generated. In the Mac/OS operating system,
applications poll for events by calling the functions getNextEvent or
waitNextEvent. In the Windows environment, the equivalent functions are
GetMessage and PeekMessage. (In OS/2, which features fully preemptive
multitasking, a process sleeps until a message is delivered to it.)

To create a more efficient program, use blocking instead of polling. Polling
wastes execution time because the process has to keep asking the system for
new messages or events. Blocking means that a process sleeps until it is
awakened externally.

There are several situations in ScriptX where you do not want to use a method
or function that can cause a thread to block.

1. Instances of Callback, defined in the Clocks component, are scheduled by
one of two threads that the system defines, the system callback thread and
the user callback thread. If an operation that is initiated by a callback blocks,
every other callback that is scheduled in the same thread is unable to run.

2. Instances of ScriptAction and TargetListAction, defined in the
Animation component, should not schedule any operations that might block
a thread. If a function that was scheduled on an action list blocks, it
suspends every action that follows.

3. In subclasses of Controller and TwoDPresenter, the tickle method
must not block.

4. In subclasses of TwoDPresenter, the draw method must not block.

Table 22-2 lists operations that can cause a thread to block.

592

22 ScriptX Components Guide

Table 22-2: Methods and functions on which a thread can block.

Operation Type

closeStorageContainer global function

fastForward method on Player, blocks with
MIDI/Interleaved Stream Player

gateWait global function

gateWaitAfterOpening global function

goToBegin method on Player, blocks with
MIDI/Interleaved Stream Player

goToEnd method on Player, blocks with
MIDI/Interleaved Stream Player

loadAllObjects method on StorageContainer

lockMany global function

lockNowOrFail global function

openStorageContainer global function

pause method on Player, blocks with
MIDI/Interleaved Stream Player

play method on Player, blocks with
MIDI/Interleaved Stream Player

playUntil method on Player, blocks with
MIDI/Interleaved Stream Player

read method on Stream, can block with a pipe

restoreLockState global function

rewind method on Player, blocks with
MIDI/Interleaved Stream Player

signal method on Event, blocks if
rejectable is true and event receiver
is an event queue

stop method on Player, blocks with
MIDI/Interleaved Stream Player

storeAllObjects method on StorageContainer

threadIdle global function

threadInterrupt method on Thread

threadProtect method on Thread

threadRestart method on Thread

threadReturn method on Thread

threadUnProtect method on Thread

threadWait method on Thread

threadYield method on Thread or global function

threadYieldTo method on Thread or global function

waitTime method on Clock, creates a callback

waitUntil method on Clock, creates a callback

write method on Stream, can block with a pipe

593

Threads 22

The following list gives a heuristic explanation of why some of these
operations can fail.

1. When an event is delivered synchronously, when it is rejectable and the
event receiver is an event queue, the thread that delivered the event must
block while waiting for a response.

2. Both the MIDI and interleaved stream players create two threads to read
from one stream of data. The activities of these threads are synchronized by
a lock. Note also that players are often synchronized in a clock hierarchy, so
that a call to goToBegin on a master clock could block another player
indirectly.

3. Loading an object into memory, or saving an object that is already in
memory, can block a thread. If it is necessary to refer to an object in memory,
check that it is available first, using the global function isInMemory.

Note – Methods and functions from the list above may block intermittently. In
some circumstances, a given operation may be completed without any thread
having to block. In other circumstances, perhaps with a different processor or
memory configuration, the same operation may fail. An operation that creates
only a jitter on one system may create a jarring interruption on another. Avoid
using these operations with callbacks and script actions even when they seem
to work.

Polling of input devices can only be done from within threads that can block.
For example, a process that continuously monitors and reacts to the position of
the mouse should not start running within a callback thread. Normally, a
program should spawn a new thread to run such a process.

Pipes

A pipe is a conduit of data that is used to exchange information between
threads. Think of a pipe as a first-in, first-out queue. Any threads that use the
pipe will always write to one end and read from the other. ScriptX provides
two classes of pipe. Objects of the BytePipe class are used to pass chunks of
data. Objects of the PipeClass class are used to pass objects.

Pipes also act as a control mechanism. Threads often block while waiting for
some external event or object, such as a mouse click or a piece of information.
Although this logic could be coded into the thread itself, without the use of
pipes, pipes provide a built-in mechanism that is both efficient for the system
and convenient for the title developer.

Pipes allow the scheduler to run a thread only when it has data to run. If a
thread is waiting to read from a pipe, its status instance variable will be set
automatically to @waiting until the pipe is no longer empty.

In Figure 22-2, two threads are set up to communicate through a pipe. The
writing thread has a function, written as a loop, that calls write on the pipe,
putting objects into the pipe. The reading thread has a function, written as a
loop, that calls read on the pipe.

594

22 ScriptX Components Guide

Figure 22-2: The reading thread runs as its function processes data from the pipe. The
writing thread is also runnable.

As long as the pipe is not broken, if there is nothing for the reading thread to
read, it blocks and will wait for the next item, as shown in Figure 22-3. In this
way, the writing thread can continue sending objects to the reading thread
without any exceptions being reported.

Figure 22-3: The reading thread runs out of data and it blocks. The writing thread is still
runnable, and it continues to fill the pipe each time it runs.

When a thread blocks while reading from or writing to a pipe, as in
Figure 22-4, it is waiting on a gate. Pipes use gates internally. For information
on gates, see the next section of this chapter.

Figure 22-4: The pipe is full, so the writing thread is blocked. The reading thread is
runnable and it continues to empty the pipe each time it runs.

A pipe can be broken, as in Figure 22-5, by calling its breakPipe method.
Once the pipe is broken, a writing thread can no longer write to it. If any
thread attempts to write to the pipe, the pipe will report an exception.

Figure 22-5: The pipe is broken, so the writing thread cannot write to it. The reading
thread is runnable until the pipe is empty.

writing thread reading thread

pipe

writing thread reading thread

pipe

gate

writing thread reading thread

pipe

gate

writing thread reading thread

pipe
break

595

Threads 22

The reading thread can continue to read from the pipe until it is empty. If the
reading thread attempts to read from a pipe that is empty and broken, it will
report an exception. Note that the writing thread itself is not blocked. Although
it cannot write to a broken pipe, it could write to some other pipe.

Events and threads interact through pipes via the EventQueue class, which is
a subclass of PipeClass. An event queue is like an electronic mailbox, used to
notify a thread of an action elsewhere in the system to which the thread must
respond. A thread blocks while waiting for an event to pop through an event
queue.

Gates

Gates represent global states in a ScriptX program. Gates are controls that
allow a thread to block while waiting for an event, for control of a resource, or
for another thread to finish some critical task. Many ScriptX titles, even those
with multiple threads, do not require a developer to explicitly define gates.
Other ScriptX components, including Clocks, Players, Events, and User
Interface Objects, make use of gates internally. For example, callbacks in the
Clocks component can be used to trigger very complex animation sequences.

Gates are useful for the title developer who requires specialized access to the
Threads component, perhaps to create simulations that require synchronization
of several concurrent processes.

The Gate class and its subclasses are sealed. This means that it is impossible to
add instance variables and methods to the gate classes, or to create subclasses.
To attach a gate to some other object, add the gate as a specialized instance
variable of that object, or create a new subclass with the gate as an instance
variable.

The Gate class itself is abstract; gates are instantiated as Lock, Condition, or
Flag objects. Threads interact strongly with gates, and pipes make use of gates
internally. Threads may suspend themselves based on the state of gates that
they use.

Table 22-3: Gates in ScriptX

Gate class Possible states Applications

Lock @open, @closed
the thread instance
variable stores the lock’s
current owner.

represents a resource or operation that
only one thread can own at once.

Condition @open, @closed represents a transitory state that
becomes instantaneously true and
then false again.

Flag @open, @closed represents a state that holds over a
period of time

596

22 ScriptX Components Guide

Locks

The Lock class represents a resource that only one thread is permitted to work
with at a time. A thread must acquire a lock, which it can do only if any
previous owner that acquired the lock has called relinquish on the lock. A
thread may acquire a lock any number of times. When it relinquishes the lock,
each call to acquire must be balanced by a call to relinquish.

ScriptX provides the global function lockMany to prevent resource conflicts. In
the following sample script, Socrates and Plato are sharing a dinner at the First
Circle restaurant, but they only have one pair of chopsticks. Each chopstick is
attached to a lock. If Socrates and Plato try to acquire the chopsticks in a
different order from each other, they deadlock. (In the classic “Dining
Philosophers” example, Socrates and Plato are sitting at a round table, and
they each attempt to acquire the chopstick on their left.) The solution is to use
the function lockMany to acquire both chopsticks, allowing the two
philosophers to share both utensils and food.

c1 := new Lock label:@chopstick_left
c2 := new Lock label:@chopstick_right
function fresser who -> (

repeat while true do (
lockMany c1 c2
format debug "%* is eating now.\n" who empty
relinquish c1; relinquish c2
threadYield()

)
)
thread1 := callInThread fresser "Socrates" @user
thread2 := callInThread fresser "Plato" @user

One common application of locks is to protect the integrity of data. Without an
explicit protection mechanism, it is possible for two threads to modify a set of
data at the same time. For an example of attaching a lock to a collection, see
“Collections and Threads” on page 462 in Chapter 16, “Collections.”

Conditions

The Condition class represents a global state that is temporary or transitory, a
state that becomes instantaneously true and then false again. Use a condition to
coordinate or synchronize two or more threads. A thread waits on a condition
with either the acquire method or the gateWait function. When the
condition becomes open, any threads that are waiting on it are made active. In
contrast with a lock, which can only be owned by a single thread, multiple
threads can be made active when a condition is opened.

Conditions are like automatic doors—they close immediately after they have
opened. Suppose two threads are waiting on a condition at once. When that
condition becomes @open, both become active. The condition is then
automatically reset to @closed. Any subsequent threads that try to acquire
the condition must wait until it is again @open.

597

Threads 22

In this code sample, the main thread creates and manages a condition called
door. Dick, Jane, and Sally are threads that each attempt to acquire the
condition. Since door is a condition, it remains open only momentarily, until
waiting threads have been made active.

door := new Condition label:@automatic
function user who -> (

acquire door -- wait on the gate
format debug "%* is out the door\n" who empty

)
thread1 := callInThread user "Dick" @user
thread2 := callInThread user "Jane" @user

Before opening the door, check the status of these two threads.

thread1.status

➯ @waiting -- Dick is waiting to get through the door

thread2.status

➯ @waiting -- Jane is waiting to get through the door

Now, open the door.

relinquish door -- relinquish momentarily opens the door

➯ "Dick" is out the door

➯ "Jane" is out the door

If you create another thread, the gate is already closed.

thread3 := callInThread user "Sally" @user
thread3.status

➯ @waiting -- Sally is still waiting! The door is shut.

Sally’s thread is not created until after the main thread has relinquished the
door. Dick and Jane make it through the door because they were already
waiting when it opened. Sally must wait until the door is again opened.

Flags

The Flag class is similar to Condition, except that it represents a state which
remains true over a period of time. Whereas a condition closes automatically, a
flag remains open until it is explicitly closed.

Flags are like traffic lights. Suppose two threads are waiting on a flag. When
that flag becomes @open, both threads become active. Since the flag remains
open until it is explicitly closed, any subsequent threads that attempt to
acquire the flag remain active.

In the following code sample, Calvin and Hobbes both make it through the
light. And so does Suzy, even though she was not waiting when the light
changed.

light := new Flag label:@trafficLight
function redLight -> light.state := @closed

598

22 ScriptX Components Guide

function greenLight -> light.state := @open
function driver who -> (

acquire light
format debug "%* made it through\n" who empty

)
redLight() -- the flag is closed
car1 := callInThread driver "Calvin" @user -- Calvin thread
car2 := callInThread driver "Hobbes" @user -- Hobbes thread

At this point, both the Calvin and Hobbes threads are waiting on the traffic
light. Open the gate by calling greenLight.

greenLight() -- the flag is open, and remains open

➯ "Calvin" made it through

➯ "Hobbes" made it through

Create another thread that runs the driver function. The flag is still open, so
this driver will make it through also. A flag remains open until it is explicitly
closed.

car3 := callInThread driver "Suzy" @user -- Suzy thread

➯ "Suzy" made it through

Priority

Threads run for fixed time slices, as determined by the scheduler. The
scheduler is a neutral arbiter. Its role is to apportion fixed time slices to active
threads, based on their priority. If a thread yields or blocks, perhaps to wait on
a pipe or gate, the scheduler passes control to another thread, which begins to
run with a new full time slice. The length of a time slice varies with the
underlying hardware platform.

How often a thread is scheduled to run—what precedence it has in the
scheduler—is determined by its priority instance variable. All threads have
a priority level, and this level can be dynamically changed. The two priority
levels are @user and @system. Within the @user priority level, runnable
threads are executed in round robin fashion. A newly created thread at system
priority runs immediately—in effect, the @system priority level is an interrupt
priority. User priority threads run less often than system priority threads, but
they are not starved.

If you create a thread by calling the new method on one of the thread classes,
its priority will be set to @user by default. When the main thread in a title is
initialized, its priority is also @user by default, but the developer is free to
change its priority level. The global function callInThread requires the
script to pass a priority level as its third argument.

Title developers should be aware that many critical system tasks run in their
own threads. Some of these threads, such as those that manage the main clock
and elements of the user interface, must run at a system priority level. ScriptX
gives the developer complete freedom to manage thread priorities.

599

Threads 22

To keep a title running smoothly, it is a good idea to use system priority
threads sparingly, and only for tasks that will quickly block or run to
completion. Attempting to run too many threads at system priority will
“thrash” the system. (Too many threads at any priority level can thrash the
system.)

For example, ScriptX has a garbage collector, a process that automatically
deallocates memory when an object is no longer in use. The ScriptX garbage
collector runs in its own thread, which runs at @system priority in the current
version of the system. If a title developer creates a large number of threads
with that run at system priority, these threads could conceivably exhaust all
available memory before the garbage collector has a chance to run.

To assure that a multi-threaded title runs smoothly follow these guidelines:

• Use the @system priority level only for threads that perform critical tasks,
and that finish executing or block quickly. If possible, leave the @system
priority level to the ScriptX Player.

• An excellent strategy for creating a system that is both responsive to the
user and conservative in its use of processing cycles it to define a single
system-priority thread that manages the title’s interface. It can communicate
with other threads that are set to run at user priority.

Preemptibility

A thread that is preemptible can be forced to yield to another thread before it
runs to completion. A thread that has been preempted returns to the list of
active threads until its next turn to run. A thread that is not preemptible has no
fixed time slice—it runs until it blocks or yields control to another thread
voluntarily, perhaps by exiting and returning a value.

The scheduler is not concerned with preemptibility when it schedules an active
thread to run—it runs threads based on their priority. Preemptibility
determines whether a running thread can be interrupted if it has not returned
or blocked. If the thread is preemptible, it will be interrupted at the end of a
regular time slice to allow some other thread to run.

Developers need to be concerned with preemptibility at two different levels.
First of all, a thread as a whole can be nonpreemptible, insuring that it will
never be interrupted. Secondly, a developer might want to make a block of
expressions within a function be non-preemptible, even though the thread as a
whole is preemptible, to insure that the scheduler does not interrupt a critical
operation.

A thread’s preemptibility is set on instantiation. Thread objects have three
preemptibility levels. The global function callInThread, which is a
convenient shorthand for calling new on the Thread class, creates a thread that
is fully preemptible.

600

22 ScriptX Components Guide

When does a thread need to be non-preemptible? In general, a task that must
always run to completion each time it runs should never be preempted.
Commonly, a thread calls certain functions or executes blocks of expressions
that must run atomically—which is to say, they must run without interruption.
Preemption can be prevented by using the global functions
threadCriticalUp and threadCriticalDown.

Full preemptibility is not guaranteed. When the ScriptX Player runs on an
operating system that does not support preemptive multitasking, a thread that
is fully preemptible is the same as generic preemptible. At the scripter level,
the full and generic preemptibility are equivalent. Macintosh System 7.5 and
Microsoft Windows 3.1 do not support preemptive multitasking. Both Apple
Computer and Microsoft have announced that future releases of their
operating systems will offer full preemptive multitasking.

Developers should use caution in creating threads that are not preemptible. If
possible, tasks should be divided to create processes that run to completion in
a short time slice. Threads that are not preemptible can potentially starve other
threads, including threads that are managed by the ScriptX Player itself.

And what a potential for conflict there is! Consider the garbage collector, which
runs in its own thread at a system priority level. Since the garbage collector
runs in its own thread, it cannot recover memory while another thread is
running. If a thread is @nonPreemptible, it could conceivably run for a very
long time, consuming all available memory.

Why would a title developer want to create a thread that is non-preemptible?
The answer is that preemption can potentially create other conflicts. Imagine a
thread function that must relinquish a series of gates while conducting a
sequence of complex and state-dependent operations. Under normal
circumstances, this thread runs until it blocks, so that the potential problem is
never detected. What happens when the program runs with a slower processor,
or with unusual memory constraints? If the thread is interrupted in the wrong
place, it might create a deadlock. This kind of bug is treacherous because it
fails to show up repeatedly, making debugging very difficult.

A thread that is preemptible can be interrupted virtually anywhere. If the
thread manages a process that is visible to the user, it might create a jarring
interruption, much like suspending a conversation in the middle of a sentence.
If the interruption occurs within a block of expressions that should normally be
executed together, the result can be inconsistent behavior.

Table 22-4: Preemptibility levels of threads

Level Implementation Meaning

@nonPreemptible all systems yields only cooperatively

@genericPreemptible all systems may be preempted during
generic function dispatches

@fullyPreemptible not guaranteed may be preempted at any
time

601

Threads 22

In general, you should use a lock to delineate a critical section of code. Use
threadCriticalUp and threadCriticalDown only if no other thread can
execute while your code is running. Although such situations are common in
systems programming, they should be very rare in titles.

The following code example shows how to use a lock to assure that a segment
of code is executed atomically. In this example, users is a closure function that
keeps track of the number of users. (For information about closures, see the
ScriptX Language Guide.) Assuming that logout and login can execute in
parallel, you want to protect them with a critical section so that login doesn’t
add a new user while logout is in the middle of testing whether users is
equal to zero.

-- keepTrack is a function that returns a closure
function keepTrack y -> (local x:0; (y -> x := x + y))
global users := keepTrack 0 -- creates a closure
global busy:false

fn logout -> (
-- we don't want to swap after the test but before the value of
-- busy is set to false
if (users -1) = 0 do busy := false

)

fn login -> (
busy := true
users 1

)

You could accomplish this task with threadCriticalUp and
threadCriticalDown, but that would be overkill, and it would be very bad
for performance, since it would lock out other threads that have no interest in
login and logout. The solution is to use a lock.

critical := new Lock
fn logout -> (

acquire critical
if (users -1) = 0 do busy := false
relinquish critical

)
fn login -> (

acquire critical
busy := true
users 1
relinquish critical

)

In summary, to assure that a multi-threaded title runs smoothly follow these
guidelines:

• Always set the value of preemptibility to @fullyPreemptible unless
there is a good reason not to.

602

22 ScriptX Components Guide

• Determine which blocks of expressions must execute atomically, and which
blocks cannot run while any other thread is running. Use
threadCriticalUp and threadCriticalDown to prevent the scheduler
from preempting the running thread while these expressions are executing.
Allow the thread to be preempted whereever possible.

• Use threadCriticalUp and threadCriticalDown only as a last resort.
They can often be avoided by using gates as a synchronization device. The
global functions lockMany and gateWaitAfterOpening can be used to
execute code atomically where there are multiple locks.

Note – In the future, your ScriptX title or tool may run on systems that use
more than one processor. When the ScriptX Player is implemented to run with
multiple processors, a nonpreemptible thread will suspend other processors
every time it runs, as will a call to the global function threadCriticalUp. To
assure that a title runs smoothly on future systems, use only threads that are
fully preemptible.

Protection

Protection does not actually affect scheduling; rather, it protects a thread from
operations, initiated by other threads, that could be destructive. When its
protection level is non-zero, certain operations on a thread (threadKill,
threadInterrupt, threadRestart, threadDeactivate, and
threadReturn) are deferred.

Why would a thread need protection? Keep in mind that ScriptX allows a
developer to create new tools, called intermediate objects, and add them to an
existing title. Imagine a tool that must operate in an environment that knows
nothing about it, or a title that does not know what tools are in use. Threads
can protect themselves from actions, whether unfriendly or inadvertent, that
could have destructive consequences. For example, a thread can protect itself
to guarantee that data structures are left in a consistent state when a title
closes.

When a thread is protected, certain operations are deferred until the thread
becomes unprotected. If one of these critical operations has been deferred, it
will be stored in the thread’s pendingAction instance variable. Query
pendingAction for debugging, but do not assume that it will remain the
same in future versions of ScriptX.

Use the methods threadProtect and threadUnProtect much as you
would used threadCriticalUp and threadCriticalDown to bracket and
protect critical segments of code.

threadProtect
-- do something meaningful here
threadUnProtect
-- now let preemption occur

603

Threads 22

The following example illustrates a strategy for detecting and reporting
potentially harmful function and method calls by another thread. The function
criticalProcess, which might be the controlling function of a thread, runs
in an infinite loop. Each time the loop is repeated, it checks for pending actions
that might destroy its stack, and then reports before yielding. This function
will run to completion of the loop each time it runs.

function criticalProcess theParam -> (-- only for debugging!
guard -- in case there is an exception reported

repeat while true do (
case (theRunningThread.pendingAction) of

@killed: -- report thread was killed by another
@restart: -- report thread restarted by another
@done: -- report thread was forced to finish
@inactive: -- report thread was deactivated
otherwise:

-- body of the function goes here
continue -- start repeat loop over

end -- case
threadUnProtect theRunningThread; threadYield()

)
catching

all: -- report interrupt or exception here
end -- end of guarded code

)

The entire body of the function criticalProcess is enclosed in a guard
construction. If another thread calls threadInterrupt on this thread, which
reports an exception, the catching construct allows the function to respond.
When the function jumps to this section, it retains the values of variables from
where it jumped off. For more information on exception handling, see the
ScriptX Language Guide.

A thread’s protection level is stored in its protection instance variable as a
non-negative integer. A call to threadProtect increases the protection level
by 1, and can be balanced by a call to threadUnProtect. If there is a pending
action in the sample script above, the thread will continue to run, executing the
repeat loop, until its protection level reaches 0.

ScriptX permits a script to change the protection level of any thread. As a rule,
a script should only change the protection level of a running thread—that is, a
thread should manage its own protection level. To do otherwise is an invitation
for data corruption, deadlock, and disaster.

Using the Threads Component
Threads can be created by calling the new method within a script. As part of
the new method, you pass in the function the thread executes and other
information, including stack size, a priority, and an optional label. Among the

604

22 ScriptX Components Guide

ScriptX core classes, threads are unusual for the number of keyword arguments
that can be set on instantiation. For convenience, the global function
callInThread creates a Thread object with default parameters.

-- create a thread (priority @user) to compute primes to 1000000
myThread := callInThread computePrimesTo 1000000 @user

Only three arguments are required: the thread’s function, the function’s
argument, and the thread’s priority with the scheduler. With its simple syntax,
callInThread will be the technique of choice for many developers. A script
still needs to call the new method to set more keyword arguments on
instantiation of a thread.

ScriptX provides a shorthand construct for creating threads, similar to that in
the Unix shell languages. The ampersand character (&) at the end of a line of
code spawns the expression that preceded it as a separate thread.

myThread := computePrimesTo 1000000 &

A thread that is created in this manner has a default priority of @user, but its
priority, and all of its other instance variables, can be reset by script. The thread
operator has the lowest precedence of any operator in the ScriptX language
other than the assignment operator.

Thread Examples
The following examples demonstrate the ScriptX Threads component.

Asynchronous Processing

Threads allow for a very interactive style of programming. A thread is a
process that can be dynamically altered by a script, even while it is active. The
script can kill or restart a thread, modify its instance variables, or force it to
wait on a gate. In ScriptX, a developer can create a new thread and activate it
without modifying any existing threads. Of course, when a new thread is
added to a system, it uses a share of the available processing cycles. This may
modify the behavior of a multi-threaded program in ways that are hard to
predict.

In a single-threaded environment, a program is deterministic and outcomes are
in some sense repeatable. Even a random number generator creates a
seemingly random but repeatable sequence of numbers from a seed. In a
multi-threaded environment, programming takes on a new dimension, with
outcome dependent on timing and interaction.

In the following code example, two threads write to a pipe, while a third
thread reads from the pipe. To run this program, enter it into the ScriptX
Listener, select it, and evaluate it. Output appears in the ScriptX Listener
window. In this example, two threads compete to write to the same pipe,

605

Threads 22

creating a race condition. The output of this script depends on which thread
runs first, on whether the reading thread is able to clear the pipe between
writes, and on the size of the pipe itself. The dynamic interaction of processes
is always an issue in multi-threaded programming.

object myWindow (Window)
boundary:(new Rect x2:300 y2:50), fill:whiteBrush
settings x:20, y:40

end
show myWindow
-- create text string global
object myTextBox (TextEdit)

boundary:(myWindow.boundary), target:("musician" as Text)
fill:whiteBrush, stroke:blackBrush

end
setDefaultAttr myTextBox @alignment @center
append myWindow myTextBox
show myWindow

-- now set up the threads
function classical thePipe -> (

local composerList := #("Beethoven","Bach","Mozart","Haydn",
"Stravinsky","Mahler","Debussy","Ravel","Sibelius","Lutoslawski")

repeat while true do (
write thePipe (getAny composerList)
threadYield()

)
)

function heavyMetal thePipe -> (
local heavyMetalList := #("Aerosmith","Bon Jovi","Motley Crue",

"Megadeath","Twisted Sister","Judas Priest","AC/DC","Metallica")
repeat while true do (

write thePipe (getAny heavyMetalList)
threadYield()

)
)

function listenTo thePipe -> -- this is the reading thread
repeat while true do \

myTextBox.target := (read thePipe) as Text
object myPipe (PipeClass) maxSize:3 end

-- create the three threads. They will start active.
global classic := new Thread func:classical arg:myPipe priority:@user
global metal := new Thread func:heavyMetal arg:myPipe priority:@user
global listen := new Thread func:listenTo arg:myPipe priority:@system

A script can change thread properties dynamically. Shift the relative priorities
of these threads, and the output of the program changes accordingly. The
example above gives user priority to the writing threads and system priority to
the reading thread. The thread listen receives many more turns from the

606

22 ScriptX Components Guide

scheduler, so it quickly processes any objects that are placed in the pipe. If
relative priorities were reversed, the writing threads would tend to block while
waiting for the reading thread to empty the pipe.

ScriptX is an interactive programming environment. In the example above, the
threads classic, metal, and listen run independently in the background.
All three thread functions run in infinite loops. From the ScriptX Browser, they
can be suspended by calling threadDeactivate, reactivated by called
threadActivate, or terminated by calling threadKill.

classic.priority := @system
threadKill metal -- not good programming practice, but very tempting

A developer can create a new thread dynamically and make it interact with
threads that are already active. For example, the following thread can be
created and started up from the Listener while the three existing threads
continue to process in the background.

function playJazz thePipe -> (
local composerList := #("Armstrong","Ellington","Parker","Hawkins",

"Young","Monk","Mingus","Coltrane","Davis","Carla Bley")
repeat while true do (

write thePipe (getAny composerList)
threadYield()
)

)
playJazz:= new Thread func:jazz arg:myPipe priority:@user

A good way to appreciate the limitations of programming in a multi-threaded
environment is to create enough threads to thrash the system. Use the
examples above as a basis for adding more active threads: country, rap, salsa,
klezmer, gospel, blues, soul, reggae, folk, punk, elevator, etc. As you add
additional threads, performance will gradually decline. Since the Listener runs
in its own thread, you will notice a slow degradation in Listener response
times. Your system will thrash much more quickly if you add system priority
threads. System priority threads quickly crowd out essential system services,
such as garbage collection.

A Thread Dispatcher

Operations that require many CPU cycles, such as rendering a screen or
searching a database, should be managed in a separate thread.

The following code sample creates a Dispatcher class that manages a thread
and an associated condition. It can be used to activate other threads. We use
this approach because threads and gates are sealed classes in ScriptX. Note that
both the thread and its associated condition are instance variables of the class
Dispatcher.

607

Threads 22

Dispatcher has an instance variable that is a SortedKeyedArray, one of the
classes in the Collections component. This dispatch list will store a list of
actions and associated function calls as key-value pairs.

class Dispatcher (RootObject)
instance variables

dispatchList -- SortedKeyedArray
dThread -- a thread for responding to user actions
dCond -- a condition that prevents us from trying to
-- respond to a new action until the old one is dispatched
action -- name of action we are currently responding to
args -- list of arguments that goes with action

instance methods
method init self #rest args -> (

self.dispatchList := new SortedKeyedArray
self.dCond := new Condition label:self
self.dThread := new Thread \

func:dThreadFn arg:self priority:@system
self.action := undefined
self.args := undefined
apply nextMethod self args

)
method pleaseDo self act argument -> (

if (hasKey self.dispatchList act) then (
self.action := act
self.args := argument
relinquish self.dCond -- open the gate

) else (
format debug "action not defined here" @user

)
)

end -- (Dispatcher class definition)

When a Dispatcher object is created, the thread dThread and the condition
dCond are also instantiated. The thread will call the function dThreadFn,
which is defined below, each time it runs. Note that the thread blocks until it
acquires the condition dispatcher.dCond. This condition is opened when
the method pleaseDo on is called on a Dispatcher object. Since pleaseDo
sets a value for the Dispatcher object’s action instance variable, the else
block of expressions in dThreadFn is finally executed.

-- create the control function for Dispatcher.dThread
function dThreadFn dispatcher -> (

repeat while true do (
if dispatcher.action == undefined then (

-- thread blocks here until the flag is acquired
acquire dispatcher.dCond -- block, don’t poll!
-- a condition activates any waiting threads and
-- is immediately closed again.
continue -- now execute the loop again

) else (
-- work with a local copy and set action to undefined

608

22 ScriptX Components Guide

local actionCopy := dispatcher.action
dispatcher.action := undefined
if hasKey dispatcher.dispatchList actionCopy then

apply (dispatcher.dispatchList[actionCopy]) dispatcher.args
else

format debug "undefined action" @user
)

)
)

The script creates a Dispatcher object. When Dispatcher is instantiated, the
thread dThread and its associated condition dCond are also instantiated. This
thread will be activated when another thread calls pleaseDo, specifying the
action and its arguments. Since it runs briefly and blocks, it is a suitable use of
the @system priority level.

global gDispatcher := new Dispatcher -- create an instance
-- the init method on Dispatcher automatically creates a thread
-- define the functions that will be called
global fn func1 x -> format debug "Function 1 with %*\n" x @user
global fn func2 x -> format debug "Function 2 with %*\n" x @user
global fn func3 x -> format debug "Function 3 with %*\n" x @user
-- now add key-value pairs, addMany is a method on Collection
addMany gDispatcher.dispatchList #(@act1:func1, @act2:func2, @act3:func3)
pleaseDo gDispatcher @act1 ("Larry" as String)
pleaseDo gDispatcher @act2 ("Curly" as String)
pleaseDo gDispatcher @act3 ("Moe" as String)

Think of the Dispatcher class as a container for a thread, an associated gate,
and a list of actions. It allows one thread to process many different actions,
perhaps in response to user input. The thread waits for an action that it knows
how to respond to. The method pleaseDo with its associated argument acts
like a handler. The Dispatcher class provides a mechanism so that this
handler can be processed in the background.

Note that Dispatcher.dThread blocks if one of the functions it dispatches
blocks. This could block other functions that a Dispatcher instance might
want to respond to. The solution is to have the Dispatcher class itself
activate other threads. Presumably, these threads could be at user priority
levels, while Dispatcher.dThread runs at system priority.

For a script that builds logically on the Dispatcher class, see the section
“Processing with an Event Queue” on page 533 of Chapter 18, “Events and
Input Devices.” This sample script creates the EventDispatcher class,
similar to Dispatcher, except that it receives events through an event queue.
EventQueue is a specialized subclass of PipeClass.

C H A P T E R

23
Object System
Kernel

610

23 ScriptX Components Guide

611

Object System Kernel 23

The Object System Kernel is a set of system services that are used by all ScriptX
objects. Some of the services this kernel provides are implemented through
classes and objects, while others are implemented in the substrate, and hidden
from the scripter.

The Object System Kernel is the combination of three parts:

• A set of system classes that define the root behavior of all classes and objects
in ScriptX. These system classes include the metaclasses, which allow for the
“object” behavior of classes themselves.

• A set of auxiliary and language classes that support the behavior and
naming of ScriptX objects.

• A set of system services that is provided for all ScriptX objects, such as
object store, garbage collection, and the interface to the scripting language.
Many of these system services, though aspects of the “kernel” architecture,
are documented elsewhere.

Classes and Inheritance
The class inheritance hierarchy for the Object System Kernel is shown in the
following figure.

The following classes form the Object System Kernel component. In this list,
indentation indicates inheritance.

Behavior

RootClass

Delegate

NameClass

Legend
Gray box = abstract class

Black box = concrete class

No box = class belongs to another component

RootObject

DebugInfo

ByteCodeMethod

Generic

Primitive

PrimitiveMethod

AbstractFunction

612

23 ScriptX Components Guide

RootObject – contains methods common to all objects, and the method new
for creating new objects.

Behavior – provides methods common to all classes and metaclasses.

RootClass – contains methods common to all metaclasses, and the
method new for creating new classes.

Delegate – a class that redirects method calls to other objects.

NameClass – represents names, which are generally interned in the system
name table.

DebugInfo – provides a template for storing debugging information.

AbstractFunction – the root class from which all functions inherit.

ByteCodeMethod – An object that represents a function or method that is
implemented in the scripter.

Generic – An object that represents a generic function, a function that is
associated with a particular class or object.

Primitive – A function that implements a global function, defined either
in the substrate or in the External ScriptX API.

PrimitiveMethod – A function that implements a method for a generic
function, defined either in the substrate or in the External ScriptX API.

Note – The classes belonging to the metaclass network, except RootObject,
Behavior, and RootClass, are not documented in the class descriptions.
They operate transparently to someone scripting in ScriptX. These include
MetaClass and metaMetaClass.

Conceptual Overview
Many fundamental features of ScriptX classes and objects are determined by
inheritance. The focus of this chapter is on those aspects of ScriptX that are
defined by inheritance through the root system classes and the metaclass
network. Some portions of this chapter are essential to understanding
ScriptX—especially the discussions of the Initialization protocol and of
instance variable access. Other topics are advanced or specialized.

How Classes and Objects Work
The root system classes—RootObject, Behavior, and RootClass—define
protocols that every class and object in the system inherits, and sometimes
specializes. These protocols include initialization, coercion, copying,
comparison, and printing to a debugging stream. The metaclasses, which
inherit from Behavior, allow every class to behave as an object, so that class
variables and methods are really instance variables and methods on class

613

Object System Kernel 23

objects. The function classes represent both scripted functions and functions
that are defined in the substrate. Access to instance variables, which can only
contain other objects, is through accessor functions.

Metaclass Network Introduction

The metaclass network is transparent to authors creating titles, and makes for
advanced reading. It is the basis for defining class behavior. It is not necessary
to understand the metaclass network in order to create and use class methods.

The ScriptX substrate was developed using Objects-in-C (OIC), a set of
extensions to ANSI C that support object-oriented development. Key features
of OIC include class variables and methods, global polymorphism, multiple
inheritance, and classes as first-class objects. The ScriptX object model is
implemented through a metaclass network similar to that of CLOS and
Smalltalk.

The metaclass network consists of the classes named RootClass, Behavior,
RootObject, and other metaclasses.

Figure 23-1 shows how the RootObject, Behavior, and RootClass classes
belong to the metaclass network. When you create a class named MyClass, a
corresponding metaclass named metaMyClass is automatically created by the
system. Every class in the class hierarchy has a metaclass. Thus, classes come
in pairs: Event and metaEvent, QueuedEvent and metaQueuedEvent,
MouseUpEvent and metaMouseUpEvent.

Every class is the sole instance of its metaclass. Every metaclass is an instance
of MetaClass. The metaclasses, together with the classes RootClass,
Behavior, and RootObject, make up the metaclass network.

Metaclass Network Details

The OIC model supports class variables and class methods. This is
implemented by using a metaclass scheme similar to that employed in
Smalltalk™. Each class is itself an instance of a class, its so-called metaclass,
and the class methods are defined on that metaclass. The class methods are in
fact instance methods for metaclass instances.

In the OIC system, metaclasses are created automatically whenever a class is
created. So that each class can have its own specific class methods, each class is
an instance of a separate metaclass. There is one metaclass for each class, and
each class is the only instance of this metaclass.

All the metaclasses are themselves instances of another class, namely the
distinguished class MetaClass, which is an instance of metaMetaClass,
which is itself an instance of MetaClass, thus ending the regression.

In summary, a class is an instance of a metaclass, a metaclass is an instance of
MetaClass, and MetaClass is an instance of metaMetaClass.

614

23 ScriptX Components Guide

Figure 23-1: The complete metaclass network for MouseUpEvent.

Although we want different classes to have different class methods, we also
want to be able factor class methods using inheritance. This is achieved by
having each metaclass of a class inherit from the metaclasses of the classes that
the class inherits from, forming two parallel chains of inheritance: class to class
and metaclass to metaclass. The root superclass for all metaclasses is the
distinguished class RootClass. So, near the end of the inheritance chain, the
metaclass of RootObject inherits from RootClass.

By convention, the distinguished class named RootClass represents all
classes. Its class method new is used to create new classes.

To be consistent, metaclasses have the same class behavior as classes. So, this
common behavior is factored out into the Behavior class which is the
superclass of both RootClass and MetaClass. The default class methods,
such as new, getSupers, getSubs, and so forth, are implemented as instance

metaMouseUpEvent

metaMouseEvent

metaQueuedEvent

metaEvent

MouseUpEvent

MouseEvent

QueuedEvent

Event

MetaClass

metaMetaClass

RootObject

Behavior

metaRootObject

metaRootClass

metaBehavior

RootClass

Abstract Class Concrete Class

The hierarchy of metaclasses
parallels the hierarchy of
classesEvery metaclass is an

instance of MetaClass

MetaClass inherits from
behavior and is an instance
of metaMetaClass

Every class is the sole
instance of its metaclass

Every metaclass inherits from
metaRootObject; metaRootObject
inherits from RootClass

metaMetaClass inherits from
metaBehavior and is an
instance of MetaClass

Inheritance: Instantiation:

Every class inherits
from RootObject

615

Object System Kernel 23

methods by Behavior. Finally, Behavior inherits from RootObject because
all classes and metaclasses are objects and share the common behavior of all
objects.

If you create a new class called SpecialClass, using the class definition
construct in the ScriptX language, the compiler generates a call to the new
method in RootClass. This also creates the metaclass, metaSpecialClass,
of which SpecialClass is the only instance. Creating this instance of
metaSpecialClass invokes the new method in Behavior.

Keep in mind that a class is itself an object, the sole instance of its metaclass.
The new method for creating instances of a class is defined by Behavior.
When you create a new class, the init method on RootClass is called. It first
creates a metaclass, which is an instance of MetaClass, and then creates the
class itself, the sole instance of that metaclass.

Quite a substantial part of the OIC system is implemented by the methods in
these classes. This is not only a pleasing reflection on the expressivity of the
system (it being able to implement large parts of itself in itself), but it also
means that the advanced user can specialize the basic OIC model for his own
requirements using standard OOP techniques. There is nothing to prevent the
development of specializations of these kernel classes that implement, say,
different inheritance semantics or object layout for some tuned purpose and
having all the schemes coexist in one system.

Initialization

The Initialization protocol comprises three generic functions—new, init, and
afterInit. Of these three generics, only new is ever called directly. The
generic function new is defined by Behavior as a class method, and can be
called on any concrete class in the system. Programmers can create most
objects by calling new directly, supplying the appropriate keyword arguments,
but many objects are generated automatically, or through syntactic shortcuts in
the ScriptX language. The object definition expression provides an alternative
syntax for calling new.

As a rule, you specialize initialization behavior by specializing init and
afterInit. Never call init or afterInit directly from the scripter, since
they are called automatically by new. Many of the core classes define an init
method, which initializes the class’s internal structures. Scripted classes can
override init to supply keyword arguments. Relatively few of the core classes
specialize afterInit. Scripted classes should use afterInit rather than
init to set the values of class and instance variables, or to add objects to a
collection. afterInit is called only after the object itself has been created and
initialized.

The ScriptX Class Reference demonstrates, for each concrete class, how to create
(instantiate) and initialize instances of that class under the heading “Creating
and Initializing a New Instance.” Creation and initialization are related
operations—the act of creating an instance automatically initializes it.
Specifically, the new method, when called on a class, creates an instance of that

616

23 ScriptX Components Guide

class, then calls init to initialize the instance, and then calls afterInit for
post-initialization. (Note that few core classes have an implementation for the
afterInit method.)

Creating an Instance of a Class

To create an instance of any concrete class, call the class method new,
specifying the class name as the first parameter, followed by the keyword
arguments from the init and afterInit methods (described in the next
section). You must include required keywords. (In the ScriptX Class Reference,
optional keywords are indicated with brackets.) You can enter keyword
arguments in any order. The new method does not process keyword arguments
itself—it passes them along automatically to init and afterInit.

The new method creates an empty instance of the class, and then it initializes
the instance automatically by calling init and afterInit with the keyword
arguments you supply. The new method returns the initialized instance.

For example, the following script creates a new instance of the Bitmap class:

myBitmap := new Bitmap \
colormap:(new Colormap) \
data:myStream \
bBox:(new Rect x2:100 y2:100)

The resulting variable, called myBitmap, refers to the initialized Bitmap
object. Its colormap instance variable is set to an instance of Colormap, its
data instance variable is set to myStream, and the size of the bitmap is set to
100 x 100 pixels.

Initialization Syntax

As stated previously, the new method passes its arguments along for init and
afterInit to use. Since most of the core classes do not implement
afterInit, the syntax for new and init is usually identical. For example, the
syntax for the init method of Bitmap is shown in Figure 23-2. Note that
required keyword arguments in Figure 23-2 don’t have default values, since
the script must always provide them.

617

Object System Kernel 23

Figure 23-2: Initialization syntax for a Bitmap object

Both the init and afterInit methods can take two different kinds of
arguments: positional arguments and keyword arguments. The initial
argument self is a positional argument, so it takes no keyword. Other
arguments to init are all keyword arguments, each in the form of a
keyword-value pair, as shown in Figure 23-3.

Figure 23-3: The calling sequence for an init method

How the new Method Works

When you call new on a class, the new class method creates an instance of that
class, then calls init and afterInit on that instance, as shown in
Figure 23-4.

Figure 23-4: The three phases of initialization.

4. Calling new on a concrete class creates an instance of that class, allocating
the appropriate amount of memory for the specified class.

init self [data:byteString] [colormap:colormap] bBox:rect ➯ self

self Bitmap instance
data: ByteString object containing pixel data
colormap: Colormap object representing pixel depth

The Stencil class uses the following keyword:

bBox: Rect object representing height and width of the
bitmap

Initializes the Bitmap object self, applying the values supplied with the
keywords to the instance variables of the same names, as follows: data sets the
source of its data, colormap sets the color map instance variable used by the
bitmap, and bBox sets the area of the bitmap.

If you omit an optional keyword, its default value is used. The defaults are:

data:storage allocated based on bBox size and colorMap
colormap:(new Colormap)

init self

1st argument

keyword value

2nd argument 3nd argument 4th argument

keyword value keyword value

bBox:rect data:byteStringcolorMap:color

creates an

The new method

instance

1 2 3
init afterInit

618

23 ScriptX Components Guide

5. The new class method calls the init method on that instance, which
initializes variables for the instance and invokes any init methods that are
defined by its superclasses.

6. Once initialization is complete, the new class method calls afterInit on
the instance. The afterInit method performs any post-initialization work,
such as building internal structures that depend on settings derived from
init, or assigning additional user-supplied values to the initialized
instance. Most of the ScriptX core classes do not specialize afterInit, but
afterInit is commonly specialized in scripted classes.

Note that new is a class method while init and afterInit are instance
methods. The new method is a class method defined in the Behavior class,
and takes any number of keyword arguments. These arguments are ignored by
new, but are passed along for use in the init and afterInit methods.

The init and afterInit methods, on the other hand, are implemented
individually in each class. When init is called on any instance, it initializes
the instance self, applying the arguments to instance variables or internal
states. Keywords are passed along to superclasses, as appropriate, up the
inheritance tree, to insure that inherited structures are properly initialized.

Notes on init and afterInit

The method for initializing an instance is init and the method for performing
post-initialization is afterInit. There is no need for you to explicitly
initialize an instance, since that happens automatically when you call new to
create the instance. In fact, if you were to call init on an instance, the instance
is not guaranteed to be initialized. There is no way to re-initialize an instance—
the only way to get an initialized instance is to create a new instance.

Note – Do not call init or afterInit directly on any instance; these
initialization methods are called by automatically new. They are visible in the
scripter so that they can be specialized.

For most of the core classes, the afterInit method is empty and performs no
function. The init method performs the standard initialization tasks of
applying values to instance variables and setting other private internal states.

Since abstract classes cannot be instantiated, the ScriptX Class Reference does
not document the new method for abstract classes. However, the init method
is documented for many abstract classes because it plays an important role in
the initialization of instances of concrete subclasses. That is, when you create a
subclass of an abstract (or concrete) class, the init method defined by that
subclass must call its superclass’s init method in order to instantiate the new
class properly.

619

Object System Kernel 23

Overriding Initialization in a Subclass

Note – Do not modify any methods in any of the core classes directly,
including new, init or afterInit. Specializing any of the generics in the
initialization protocol directly can override important internal initialization.
Create a subclass and then override the method in that subclass. You can add
new methods to a core class that do not override existing methods; however,
instance- or class-level specialization is a safer strategy, given that multiple
titles often run concurrently.

As stated previously, the new method is responsible for allocating memory
required for the object, while the init and afterInit methods assign initial
values to the newly created instance. You can override any of these methods in
a subclass of a core class.

A scripted class should override the new method only in very special cases; for
example, to limit the number of instances created. In the ScriptX substrate, the
MouseDevice class overrides new. In a system that has only one hardware
mouse, when two ScriptX titles that are running concurrently ask for a mouse,
they should both get the same device. When the second title calls new, the
method does not create a new MouseDevice object—instead it returns the
device already created.

You would override init to change how values are assigned to the new
instance through keyword arguments. Most other tasks should be done at
post-initialization time, by the afterInit method.

If you override new, init, or afterInit in a class, be sure to invoke its
superclass’s init (or afterInit) method using the nextMethod call. This
allows the superclasses to properly initialize the instance as needed:

method init self #rest args -> (
-- some specialization
apply nextMethod self args
-- some more specialization

)

For more information on the Initialization protocol, and for examples of how to
specialize init and afterInit, see the discussion of init and afterInit
in the ScriptX Language Guide.

Function Dispatch

ScriptX functions, including global and generic functions, are objects that can
be saved, stored, bound to names, and assigned as values. The function classes
are sealed, and are generally created through syntactic constructs in the ScriptX
language. The underlying implementation of functions and methods is
designed to be transparent to the ScriptX programmer. However, it is useful to
have some familiarity with function dispatch.

All ScriptX functions are instances of one of the concrete subclasses of
AbstractFunction. In the ScriptX Class Reference, many methods and
variables return a function. Officially, the ScriptX Engineering Team does not

620

23 ScriptX Components Guide

specify which type of function is returned by any of these methods and
variables, and developers should be aware that the ScriptX function classes are
subject to future changes. However, developers can assume that all functions
will always inherit from AbstractFunction. The following test can be used
in type verification.

isAKindOf draw AbstractFunction -- draw is a generic function

➯ true

isAKindOf ueq AbstractFunction -- ueq is a global function

➯ true

Global functions that are defined in the substrate are instances of Primitive.
Global functions defined in the scripter are instances of ByteCodeMethod, as
are local functions, anonymous functions, and closures. In all respects, global
functions behave identically, whether they are defined in the substrate or in the
scripter.

ScriptX methods are implementations of a generic function for a particular
class or object. There is a one-to-many relationship between generic functions
and the methods that implement them for a particular class or object. For
example, draw is a generic function which many ScriptX classes, including
TwoDShape, TextPresenter, and ScrollBar define methods for.

ScriptX has many implementations of the draw method, but only a single
generic function named draw. Each TwoDPresenter class defines or inherits a
draw method. These methods share a single name binding for the ScriptX
name draw, which is associated with a Generic object.

In the scripter, the lexical name draw is bound to a Generic object. (The name
draw is exported by the ScriptX module, but is defined in the Substrate
module.) However, the actual draw method, as it is defined by
TextPresenter, is a PrimitiveMethod object. PrimitiveMethod, like
Generic, is a class that inherits from AbstractFunction. There is no way to
define a PrimitiveMethod object from the scripter. (The External ScriptX
API, documented in the ScriptX Tools Guide, allows a programmer to define
both Primitive and PrimitiveMethod objects in C.)

getClass draw

➯ Generic

methodBinding TextPresenter draw
➯ #<PrimitiveMethod for draw on TextPresenter>

When the compositor calls draw, it supplies the object to be drawn as the first
argument. ScriptX maintains a generic function dispatch table. The bytecode
compiler looks in this table to find the particular implementation of draw that
is associated with the object. Use of a dispatch table is generally faster than
traversing a tree (the technique used in some other object-oriented languages),
and ScriptX optimizes this dispatch mechanism by caching recent method calls.

Although draw is a behavior that is associated with presenters, it is possible to
define a draw method for any unsealed class. When a new method is defined,
it is associated automatically with a Generic object. If no Generic object
with the given name exists in the current module, a new one is created

621

Object System Kernel 23

automatically. This association of methods with Generic objects explains why
any new draw method, implemented by any class or object in any module that
uses the ScriptX module, must be called with the same “signature” of three
arguments:

◆ draw self surface clip

Suppose we specialize TextPresenter by implementing a specialized
version of draw. The scripted method cannot be a PrimitiveMethod object,
since primitive methods cannot be defined in the scripter. The draw method, as
implemented by the specialized subclass, is also a function, but it is an instance
of ByteCodeMethod.

-- create a specialized class
class SpecialTextPresenter (TextPresenter) end
-- specialize the draw method in some trivial manner
method draw self {class SpecialTextPresenter} surface clip -> (

nextMethod self surface clip
print "I just drew myself"

)
methodBinding SpecialTextPresenter draw
➯ #<ByteCodeMethod anonymous of 3 arguments for draw on \

SpecialTextPresenter>

In ScriptX, scripted global functions, anonymous functions, closures, and
methods all compile to ByteCodeMethod objects. Thus, a call to a generic
function (a Generic object) is redirected to an instance of PrimitiveMethod
or ByteCodeMethod, depending on how the draw method is implemented by
a particular class or object.

The following generic function, which specializes Behavior, determines
whether any class implements a given method in the substrate, or as a scripted
method. Since it is defined by Behavior in this example,
definesScriptedMethod could be called as a class method on any class.

method definesScriptedMethod self {class Behavior} meth ->
if getClass (methodBinding self meth) = ByteCodeMethod then

true
else

false

definesScriptedMethod SpecialTextPresenter draw
➯ true
definesScriptedMethod SpecialTextPresenter inside
➯ false

Using the generic function methodBinding, it is possible to get a binding to a
superclass’s implementation of a generic function. The following example
demonstrates how to override the generic dispatch mechanism. In this
example, primitivePrin is bound to the version of prin that is defined by
RootObject, rather than the specialization of prin that is normally called on
a Text object.

622

23 ScriptX Components Guide

global myText := "ping" as Text

➯ "ping" as Text

prin myText @normal debug

➯ "ping" as TextOK

-- now get a binding to prin, as defined by RootObject
global primitivePrin := methodBinding RootObject prin

➯ #<PrimitiveMethod for prin on RootObject>

primitivePrin myText @normal debug

➯ Text@0x14ff894OK

This example is provided only to illustrate the generic dispatch mechanism.
This technique might be used to reveal more about the design of a library of
scripted classes. In special cases, it might be used to bypass the normal
dispatch mechanism, perhaps for efficiency, within a library of scripted classes.
(ScriptX maintains a cache of recent generic dispatch calls—so that in effect,
ScriptX already does this internally.) Developers who use this technique in the
core classes are living dangerously. Subverting the normal dispatch mechanism
can easily cause a system crash, or other unintended results.

Note – Many undocumented features of functions are visible in the scripter.
Developers should always assume that undocumented features and interfaces
are subject to change in future versions of ScriptX.

Redefinition of Global and Generic Functions

Any ScriptX function can be assigned to a variable. Within the core classes,
functions are often assigned to instance variables so that they can be called
automatically, in response to some event or change in state. Examples include
the valueAction of a ScrollBar object, the activateAction of a
PushButton object, the script of a Callback object, and the
eventReceiver of an Event object.

Although any function can be assigned to a variable, global and generic
functions differ in what happens to an existing assignment when a function is
redefined. The following example illustrates this. First, we define both a global
and a generic function, and set up callbacks to each.

-- create a global function
function sayCheese x y ->

print "The best North American cheese comes from Wisconsin"

-- create the cheese class and define a method
class Cheese () end
method frommage self {class Cheese} x ->

print "The best European cheese comes from France"

-- create an instance of Cheese to call frommage on
object myCheese (Cheese) end

-- now, set up two callbacks
addTimeCallback theCalendarClock sayCheese undefined \

undefined (theCalendarClock.time + 5) true

623

Object System Kernel 23

addTimeCallback theCalendarClock frommage myCheese \
undefined (theCalendarClock.time + 5) true

The callbacks are invoked, as expected, after five seconds.

"The best North American cheese comes from Wisconsin"
"The best European cheese comes from France"

Now, suppose we set up two more callbacks. This time, we leave a few extra
seconds to redefine both the global function sayCheese and the Cheese
class’s frommage method.

addTimeCallback theCalendarClock sayCheese undefined \
undefined (theCalendarClock.time + 60) true

addTimeCallback theCalendarClock frommage myCheese \
undefined (theCalendarClock.time + 60) true

-- redefine both the global function and the method
function sayCheese x y ->

print "The best North American cheese comes from Ontario"
method frommage self {class Cheese} x ->

print "The best European cheese comes from Denmark"

The callbacks are invoked, as expected, after 60 seconds. The second callback
invokes the redefined version of the frommage method. But the first callback
still invokes the original version of the global function sayCheese.

"The best North American cheese comes from Wisconsin"
"The best European cheese comes from Denmark"

The generic dispatch mechanism provides, in effect, an extra layer of
indirection. Thus, a method can be redefined on the fly—the callback invokes
the new version of the method. The global function cannot be redefined in the
same manner. The callback’s script continues to invoke the old version of the
function.

This difference in function dispatch has implications for many classes. A useful
workaround, so that a global function can be redefined like a method, is to use
an anonymous function as a “wrapper” function. In effect, this adds an extra
layer of indirection.

addTimeCallback theCalendarClock (a b -> sayCheese a b) undefined \
undefined (theCalendarClock.time + 30) true

function sayCheese x y ->
print "Wisconsin still makes the best cheese in North America"

With the use of an anonymous function, sayCheese is called indirectly. The
new and redefined version of the global function is called.

"Wisconsin still makes the best cheese in North America"

624

23 ScriptX Components Guide

Access to Variables

ScriptX provides access to instance and class variables through getter and
setter methods, a design feature that is modeled on the object-oriented
language Dylan. A class can be specialized by overriding its getter and setter
methods. Two types of instance and class variables are visible to the scripter.
Real instance variables are allocated a “slot,” a physical memory location
within the contiguous memory that is allocated to an object on the ScriptX
heap. Virtual instance variables do not have such a slot. To the scripter, they
appear just like real variables, but they are calculated on the fly.

In notation, the two types of variables are identical. They use either language
notation for instance variable access, or the getter and setter generics. Those
instance variables that are read-only have only a “getter” method, while those
that are also writable have both “getter” and “setter” methods. When you
retrieve a value, you actually call its getter method. Assign a new value, and
you call the setter method. Both types of variables are set and retrieved
through getter and setter methods. You need to be concerned about how
instance variables are implemented only when you are defining or specializing
instance and class variables. For example, if were saving an object, you might
want to save objects that it contains references to as well.

Note that the generic functions ivNames and ivTypes return lists of real
instance variables—virtual instance variables are excluded. Similarly,
getDirectMethods, getAllMethods, getDirectGenerics, and
getAllGenerics return lists of methods or generics defined by a class,
including the getters and setters that are used for access to virtual instance
variables.

Using Getters and Setters

Every instance variable has a getter method (for getting its value). Those that
are read-write also have a setter method (for setting a value). These methods
are named ivnameGetter and ivnameSetter, and are not explicitly
documented in the ScriptX Class Reference. For example, if an object named
myBox has an instance variable named width, you can access it using instance
variable syntax:

myBox.width := value -- for setting the value
myBox.width -- for getting the value

You can also call the equivalent methods:

widthSetter myBox value -- for setting the value
widthGetter myBox -- for getting the value

The two styles have identical access times—neither one is more direct or faster
than the other. Choose one style or the other based on which syntax you prefer.
The ScriptX Engineering Team has adopted the instance variable style rather
than the method style.

625

Object System Kernel 23

Note – In the ScriptX Class Reference and in other volumes of the ScriptX
Technical Reference Series, we document instance variables, but not their
setters or getters. Assume that any instance variable has an “undocumented”
getter method and setter method (if writable), which you are free to use. The
names of these accessor methods are always the instance variable name, with
Getter or Setter added as a suffix.

When you want an instance variable to behave differently, such as to perform
some other action whenever you set its value, you can override its setter and
getter methods in any subclass of a core class. In the example above, you could
override widthSetter or widthGetter. You might override widthSetter
to test the supplied width value to ensure it does not exceed the screen width
before accepting the value. (You should never modify any method in a core
class—create a subclass, and specialize the method there.)

A “slot” is a particular location in memory where the value of the instance
variable is stored. ScriptX does not provide direct access to instance variable
slots in the scripter; you have access to slots only through accessor methods.

Some instance variables store values in slots while others do not. For example,
the instance valueEqualComparator, defined by Collection, has no slot.
Instance variables without slots call functions to set or get the values from the
environment. The instance variable presentedBy, defined by Presenter, is
an example of a variable with an actual slot to hold its value.

When you create a subclass, instance variables that are identified in this
manual as read-only can be made read-write by including a setter method for
them. For example, the instance variable includesLower is read-only for the
immutable class NumberRange, but if you create a mutable subclass of
NumberRange, you can implement an includesLowerSetter method to
make it writable.

Note – In the current version, ScriptX does not always enforce read-only.
Although you can actually change a variable designated as read-only, doing so
may cause errors or unpredictable behavior.

Delegation

In object-oriented programming, it is a common technique for a class or object
to “delegate” some action to another object. Delegation is often the key to
writing code that is general, and can be applied to many objects. With dynamic
binding, multiple inheritance, generic function dispatch, and accessor methods,
ScriptX is an ideal system for implementing delegation.

Delegation is built into certain ScriptX classes. The most widely used
delegation protocol in ScriptX is the IndirectCollection class.
IndirectCollection is often used as a mix-in class, although it is not
strictly a mix-in class, to add collection properties and behavior to other
objects. An indirect collection redirects each method call to its target collection.
By specifying that an object inherits from IndirectCollection, rather than
a specific collection class, a developer can write code for a collection without

626

23 ScriptX Components Guide

being concerned with the physical implementation of the collection. In this
way, a program could determine, even at runtime, whether a given data
structure should be an array or a linked list.

CostumedPresenter implements simple delegation for presenters. A
costumed presenter has a target presenter, to which its target instance
variable stores a reference. By using a costumed presenter, a program can
implement general connections with a presenter, and determine the appearance
of that presenter dynamically, at runtime. The document template classes could
also be used to implement delegation. Each template is a presenter that can be
used to present or lay out other presenters. OneOfNPresenter is yet another
presenter class that can be used to implement delgation. OneOfNPresenter
embodies a one-to-many relationship in which a single presenter from a
collection of presenters is the target. For information on CostumedPresenter
and OneOfNPresenter, see Chapter 3, “Spaces and Presenters.” For
information on document templates, see Chapter 13, “Document Templates.”

The Delegate class can be used to implement delegation in any unsealed
class. Delegate really does not belong to any ScriptX component; it is more a
utility class than a part of the Object System Kernel. Delegate defines a single
instance variable, delegate, that specifies an object to which method calls are
directed. Delegate is a concrete class, but it is often specialized or mixed in
with other classes to add delegation properties to a scripted class. Delegate
provides a simple mechanism for redirecting calls at runtime.

Copying Objects

The Copy protocol comprises two generics, copy and initCopy, that a class
can implement to make itself copyable. A script makes a copy of an object by
calling the copy generic function on that object. RootObject defines the
default implementation of copy, which most classes do not override.

In a sense, the Copy protocol is analogous to new and init. Just as you create
a new object by calling new rather than init, you copy an object by calling
copy rather than initCopy. A script calls init only indirectly, by calling new.
In the same way, a script calls initCopy only indirectly, since copy calls
initCopy automatically, if it is defined by the class.

You specialize copying by specializing initCopy. Although you are allowed
to, a script generally does not specialize the copy method itself. (Among the
core classes, the one exception is NameClass. For more information, see the
definition of NameClass in the ScriptX Class Reference.)

The default version of copy, defined by RootObject, creates a new instance of
the target class. It then calls initCopy on itself, and on each of its
superclasses, in turn. If any of these superclasses is a scripted class that does
not define an initCopy method, it invokes the default action for a scripted
class, which is to make a shallow copy of any instance variables that class
defines. If any of the superclasses is a member of the core classes, it looks for
an initCopy method. If that class is not copyable, it reports an exception.

Most core classes that implement the Copy protocol create a “shallow” copy of
themselves. A shallow copy is a copy of the class’s internal structures, but not
of member elements or embedded objects. For example, to copy a mouse event

627

Object System Kernel 23

does not mean to make a new copy of the device that the event is associated
with. The initialized copy has its own pointer to a mouse device, but it points
to the same device as the original. The device itself does not get copied.

The following example demonstrates the difference between a shallow copy
and an assignment. In the first example, myArrayCopy is a copy of myArray.
Since it is a shallow copy, newText has its own internal structures. Initially, it
points to the same data.

global myArray := #("dog", "hog", "frog", "bog")

➯ #("dog", "hog", "frog", "bog")

-- assign this array to anotherArray, which does not create a new array
global anotherArray := myArray

➯ #("dog", "hog", "frog", "bog")

-- create a copy of myArray; this creates a new array
global myArrayCopy := copy myArray

➯ #("dog", "hog", "frog", "bog")

While myArray and anotherArray are the same object, myArray and
myArrayCopy are not. Think of anotherArray as just another name binding
for the Array object that the name myArray is bound to.

myArray == newArray

➯ true

myArray == myArrayCopy

➯ false

Whereas anotherArray is just a new name for myArray, myArrayCopy is
actually a separate object that shares the same member elements. We see this
when we change one element of myArray.

myArray[3] := "toad"

➯ "toad"

newArray

➯ #("dog", "hog", "toad", "bog")

myArrayCopy

➯ #("dog", "hog", "frog", "bog")

A class can implement the Copy protocol only if all of its superclasses in the
core classes define an initCopy method. The following script prints a list of
classes that implement the initCopy method:

global myArray := new Array
for i in (getSubs RootObject) \

select i into myArray if canClassDo i initCopy
for i in (myArray as SortedArray) do print i

➯ Array
ArrayList
Btree

. . .

628

23 ScriptX Components Guide

SortedKeyedArray
String
Triple

For brevity, the middle of this list has been omitted. If you try this yourself,
you will find that initCopy is defined by most collections, events, and ranges.
Other substrate classes report an exception if you attempt to copy them.

In this script, canClassDo is an instance method defined by Behavior, and is
thus a class method for all ScriptX classes. The script asks each class that is a
subclass of RootObject, that is, all the classes in the core classes, whether it
implements initCopy. The script then prints out a sorted list of classes.

You can write your own initCopy method for a scripted class. By default,
scripted classes are copyable. ScriptX makes a shallow copy of each instance
variable that is defined by a scripted class. You can specialize this behavior.
Since ScriptX automatically calls initCopy on all superclasses, you should not
include a nextMethod call in your own initCopy method.

Most of the core classes do not implement initCopy. Use the generic function
canClassDo to determine if a class is copyable.

Creating a Deep Copy

In most cases, you want to create only a shallow copy when you copy an
object. A deep copy requires additional memory and processing. Two shallow
copies of the same object share internal structures, until one of the copies
changes as new values are assigned.

You might want a deep copy of an object that has other objects embedded
within it. For example, suppose you wanted to create a class of pushbutton
that is copyable. Although instances of PushButton are not copyable, a
subclass of PushButton could be made copyable by defining an initCopy
method for that class.

Suppose you have created a subclass of PushButton, the SpecialButton
class. Like PushButton, SpecialButton defines three subpresenters, stored
in the instance variables pressedPresenter, releasedPresenter, and
disabledPresenter. In shallow copy of a SpecialButton object, these
three instance variables store handles to the same three presenters as the
original object. Of course, since the copy is a shallow copy, when the value of
fill or stroke changes on one of its subpresenters, the change affects both
the copy and the original object. To make a deep copy of a SpecialButton
object, specialize initCopy to assigned completely new structures when the
object is copied.

Coercing Objects

Object coercion is the conversion of an object from one class to another. The
Coercion protocol comprises two generics, morph and newFrom, that classes
can specialize to provide for coercion through the as operator in the ScriptX
language and the coerce function in the substrate.

629

Object System Kernel 23

When an object is coerced to another class, the original object remains in
existence. ScriptX creates a new instance of the target class and uses the
original object to set the contents of the new instance. Suppose that x is the
name of some object and y is the name of a target class. The following
expressions are equivalent in ScriptX.

x as y -- ScriptX language, equivalent to the function coerce
coerce x y -- global function

The first expression, which uses the ScriptX operator as, is translated by the
compiler into the second expression. The global function coerce, which is
defined in the substrate, is equivalent to the following:

function coerce x y ->
guard

morph x y @normal
catching

cantCoerce:(newFrom (classOf x) y)
end

The function coerce first calls the generic function morph. If there is no
implementation of morph on the original class or one of its parents, or if the
morph method that is available does not know about class y, then morph
reports the cantCoerce exception. The coerce function catches this
exception and attempts to coerce by calling newFrom, a generic that can be
defined by the class.

This mechanism allows any scripted classes to specialize coercion from any
existing class in the core classes without modifying the existing class. By
defining a newFrom class method, a scripted class can allow for the coercion of
objects that are instances of the core classes.

This means that a developer has two mechanisms for converting an object from
one class to another. Although the morph generic function is the normal
mechanism, the newFrom class method provides a work-around for certain
cases where it is not practical to specialize morph. (A script should normally
cast an object from one class to another using the as operator or the coerce
function, but it is possible to call the underlying generics directly.)

The following example defines the PolarPoint class, which implements both
morph and newFrom. Polar coordinates are used to solve certain problems in
analytical geometry and complex analysis—in computer science, they are
especially useful in graphics. In the polar coordinate system, position is
expressed in terms of radius (r), or distance from the origin, and orientation
(theta), or angle from the y axis. Orientation is expressed in radians.

In two-dimensional computer graphics, it is conventional to show points on a
Cartesian surface, with the origin in the upper left corner. (This differs from the
standard mathematics textbook treatment only in the placement of the origin.)
We can use the Point class, one of the core classes, to store Cartesian
coordinates.

object myPoint (Point) x:6, y:6 end

630

23 ScriptX Components Guide

A PolarPoint object represents an ordered pair of polar coordinates.
Figure 23-5 depicts both Cartesian and polar coordinates for myPoint.

Figure 23-5: Cartesian and polar coordinate systems

We want to be able to freely coerce objects from PolarPoint to Point, and
vice versa. By defining a newFrom class method for the PolarPoint class, we
can accomplish this without specializing the Point class, which is one of the
core classes. Here is the definition of the PolarPoint class:

class PolarPoint ()
instance variables

r, _theta
instance methods
method init self #rest args #key r: theta: -> (

if not isAKindOf r Number do
report invalidNumber r

if r < 0 do
report badParameter \

#(r, init, self, "r must be > 0")
if not isAKindOf theta Number do

report invalidNumber theta
apply nextMethod self args

)
method afterInit self #rest args #key r: theta: -> (

apply nextMethod self args
self.r := r
self.theta := theta

)
method thetaGetter self -> self._theta
-- normalizes theta between 0 and (2 * pi)
method thetaSetter self value -> (

local constant twoPI := (2 * pi)
if value >= twoPI then

self._theta := mod value twoPI
else if value < 0 then

self._theta := mod (twoPI + value) twoPI
else

self._theta := value
)

end

origin (0, 0)

myPoint (6, 6)

y axis

+

+

theta r

x axis

631

Object System Kernel 23

The PolarPoint class performs the appropriate range and type checking. It
checks that values supplied for r and theta are instances of Number, and that
r >= 0, reporting the appropriate exceptions if necessary. This validation of
arguments is performed in the init method, while the assignment of values to
instance variables is performed after initialization, in the afterInit method.
The value of theta is normalized internally so that
0 ≤ theta < (2 * pi), and the original value is not saved.

To implement the Coercion protocol, define the class method newFrom and
specialize the instance method morph. Note that this class method, defined
using the free method syntax, compiles to create an instance method on
metaPolarPoint, the PolarPoint class’s metaclass.

class method newFrom self {class PolarPoint} other -> (
if (isAKindOf other Point) then

new self r:(sqrt (other.x * other.x + other.y * other.y)) \
theta:(atan (other.y/other.x))

else
report cantCoerce #(other, self)

)

method morph self {class PolarPoint} cls style -> (
if not isAKindOf cls Behavior do

report badParameter \
#(cls, morph, PolarPoint, "Expecting name of Class")

if (isSub cls String) then
"(" + (self.r as String) + " x " + (self.theta as String) + ")"

else if (isSub cls Point) then
new cls x:(self.r * (sin self.theta)) \

y:(self.r * (cos self.theta))
else

report cantCoerce #(self, cls)
)

To test the PolarPoint class, create a PolarPoint object that has the same
position or value in a two-dimensional coordinate system as myPoint (defined
on page 629), only expressed in polar coordinates.

object myPolarPoint (PolarPoint) r:(6 * sqrt 2), theta:(pi/4) end
-- check that conversions results are correct
myPolarPoint.r

➯ 8.48528137423857

myPolarPoint.theta

➯ 0.7853981633974483

global convertedPoint := myPoint as PolarPoint
convertedPoint.r = (6 * sqrt 2)

➯ true

convertedPoint.theta = (pi / 4)

➯ true

As objects are coerced from Point to PolarPoint and back, morph is invoked
when we coerce a PolarPoint object to a Point object, and newFrom when
we reverse the operation.

632

23 ScriptX Components Guide

PolarPoint also provides a conversion to String. Of course, this conversion
depends on the conversion of numbers to strings, which is defined by the
String class in the core classes.

myPolarPoint as String

➯ "(8.48528137423857 x 0.7853981633974483)"

Note – The following rules apply to specializing morph and defining a
newFrom class method. If morph succeeds in coercing an object to the target
class, it should not call nextMethod. If morph fails to coerce, it should either
call nextMethod, which allows one of its superclasses to handle the coercion,
or report the cantCoerce exception. The newFrom class method should never
call nextMethod. If newFrom fails to convert the object to the target class, it
should report the cantCoerce exception. This insures that if both a morph
instance method and a newFrom class method exist for a given class, the
morph method takes precedence over newFrom.

Coercion to a Superclass or Subclass

In the Coercion protocol, a special case arises when the original object belongs
to a subclass of the result class. If you attempt to coerce an object to a
superclass of its class, and the superclass is concrete, nothing happens. This is
because the original object, as an instance of a subclass, is already an instance
of all of its concrete superclasses. For example, a StringConstant object is
also a String object, while an instance of RoundedRect is considered to be an
instance of Rect.

greeting := "Hello" -- creates a StringConstant object
coerce greeting String -- coerce it to String
getClass greeting
➯ StringConstant -- still an instance of StringConstant

If the original class is a superclass of the result class, the result of coerce
depends on the implementation of morph on the original class, just as it does
for any two ScriptX classes. Thus, the String class specializes morph so that
strings can be coerced freely between the three string classes: String,
StringConstant, and Text. For this reason, an instance of String can
readily be coerced to an instance of StringConstant, but an instance of
EventQueue cannot be coerced to an instance of EventDispatchQueue.

Suppose a developer creates a scripted subclass of StringConstant called
NameConstant. She wants to be able to coerce an instance of String to an
instance of NameConstant. To do this, she overrides the morph method on
String to allow for NameConstant as a special case, and then calls apply
nextMethod to allow the String class to handle other cases.

633

Object System Kernel 23

Coercion and Numerics

An object represents information about some entity, both its properties and its
behavior. To coerce an object to another class is to represent information about
that entity through another template or model. Coercion may involve loss of
information or precision. For example, the Number classes can readily be
coerced, say from ImmediateInteger to Float, or vice versa, but there is
loss of precision with certain operations.

3 as Float

➯ 3.0

pi as ImmediateInteger -- Hoosier pi

➯ 3

The usual precautions about floating point precision and integer truncation
apply to operations in ScriptX. For example, the value of pi cannot be
simplified, despite the good intentions of the Indiana state legislature, which
once debated a member’s proposal to set the value of pi to 3. As an alternative
to coercion, it may be efficient to define a method that represents the value of
the object in a different way:

trunc pi

➯ 3

Note that ScriptX runs on a range of system software and hardware platforms,
including some without floating point processors. Internally, these platforms
may store floating point or extended precision values in different ways. After a
long series of type casts and computations, slight differences in precision may
be noticeable. This is not really a coercion issue per se—it is an issue of
precision and magnitudes that applies globally to any floating point
computations in ScriptX.

Comparing Objects

The Comparison protocol, a set of generic functions defined by RootObject,
is the foundation for the comparison of all objects in ScriptX. For certain
classes, it makes sense to compare and order instances. The basis for ordering
differs by class. For example, strings can be ordered lexicographically, integers
or floats can be ordered numerically, and linear collections can be compared
element by element.

Basic comparison operations are all defined in terms of the three generic
functions in the Comparison protocol. Developers implement the Comparison
protocol for a scripted class by specializing methods for these generics, by
indicating how instances are ordered. Override these methods as necessary,
and all of the other comparison functions will operate correctly for a scripted
class.

634

23 ScriptX Components Guide

The first of these generics is isComparable, which indicates whether it is
correct to directly compare two objects. By default, x and y are comparable if
(getClass x == getClass y), but some classes override this. For
example, the subclasses of Number are comparable, as are the subclasses of
String and Sequence.

isComparable Array LinkedList

➯ true

If two objects pass the test of comparability, then the generics localLt and
localEqual can be applied, where localLt is the less-than comparison and
localEqual is the equality comparison. The following script prints a list of
classes that implement a method for localLT, meaning that instances of these
classes can be compared with comparable classes:

global myArray := #()
forEach (allInstances Behavior) \

(a b -> if (canClassDo a localLT) do (append b a)) myArray
myArray | print

The global function eq, which is not part of the Comparison protocol, tests
whether x and y are exactly the same object. Two objects are the same object if
they share the same master pointer—that is, they share a handle to the same
object in the ScriptX heap. Immediate objects are an exception. For
ImmediateInteger and ImmediateFloat objects, eq returns true if two
objects have the same value, even though they may be different objects. For
more information on immediate objects, see “Immediate Objects” on page 486
in Chapter 17, “Numerics.”

Defining Global Functions

Each comparison operator has a global function that is its counterpart. From
the four generics of the Comparison protocol—isComparable, localLt,
localEqual, and eq—all other comparison operations are defined as global
functions. For example, the equality functions equal and nequal, defined in
the substrate, could be defined as follows in ScriptX. (See the “Global
Functions” chapter of the ScriptX Class Reference for the equivalent ScriptX
definition of each of the comparison functions.)

function equal x y -> (isComparable x y) and (localEqual x y)
function nequal x y -> not (equal x y)

Comparison functions are defined as global functions, and are documented in
the “Global Functions” chapter of the ScriptX Class Reference. See that source
for an equivalent ScriptX definition of each of the comparison functions. To
make instances of a given class comparable, you need only specialize the
generic functions of the Comparison protocol. Objects cannot be compared
unless they implement this protocol, and they can only be compared with other
objects to which they are comparable.

635

Object System Kernel 23

Some ScriptX operations require objects that implement the Comparison
protocol. For example, only objects that are comparable with one another can
be stored in an ordered collection such as a sorted array or a B-tree. (A
developer might specialize BTree, SortedArray, or SortedKeyedArray, to
detect whether objects that are added to the collection are comparable.)

The following example demonstrates how to extend the Comparison protocol
for scripted classes. In a previous section of this chapter (“Coercing Objects” on
page 628), we defined the PolarPoint class, a scripted class that implements
a polar coordinate system. The core classes define the Point class, which
implements a point in a Cartesian coordinate space. The substrate does not
implement the Comparison protocol for Point.

Suppose you want to compare Point and PolarPoint objects, both with
themselves and with each other. To make comparisons in both directions, the
program must specialize isComparable, localEqual, and localLT in both
classes. First, we implement isComparable, localEqual, and localLT on
the PolarPoint class:

method isComparable self {class PolarPoint} other -> (
if isAKindOf other Point or isAKindOf other PolarPoint then

true
else

false
)

method localEqual self {class PolarPoint} other -> (
local comparator
if getClass other = PolarPoint then

comparator := other
else if isAKindOf other Point then

comparator := other as PolarPoint
else -- pass it on to RootObject, which reports exception

nextMethod self other
if self.r = comparator.r and self.theta = comparator.theta then

return true
else

return false
)

There are several possible ways to order a set of points. Any function that
produces a unique ordering, so that the comparison operators obey the
associative and commutative laws, can be used as an ordering function. If the
only purpose of ordering is to store objects in some kind of ordered collection,
for speedy retrieval, a lexicographic ordering function is a speedy solution.
This version of localLT sorts first on the basis of distance from the origin. The
final else clause is called only if the two objects are equal distances from the
origin.

method localLt self {class PolarPoint} other -> (
local comparator := undefined
if getClass other = PolarPoint then -- the same class

comparator := other
else if isAKindOf other Point then -- a comparable class

comparator := other as PolarPoint
else

636

23 ScriptX Components Guide

report generalError \
"Cannot compare PolarPoint and %* objects." \
(getClassName other)

-- now do the actual comparison
if self.r < comparator.r then

return true
else if self.r > comparator.r then

return false
else (
 if self.theta < comparator.theta then
 return true
 else
 return false
)

)

ScriptX allows for the specialization of existing methods in the core classes, but
doing so is an invitation for collisions when multiple storage containers and
name spaces are open in a single session. Developers should regard the ability
to specialize the core classes in this manner as a convenience for debugging
and analysis, not as a means of adding new features to titles. For this reason,
we do not specialize the Point class here.

Instead, we define the CartesianPoint class, a subclass of Point, in which
to implement the Comparison protocol. This example extends the Comparison
protocol in both directions between CartesianPoint and PolarPoint.
CartesianPoint specializes both isComparable and localEqual, calling
the superclass’s version for cases it cannot resolve.

class CartesianPoint (Point) end

method isComparable self {class CartesianPoint} other -> (
if isAKindOf other Point or isAKindOf other PolarPoint then

true
else

nextMethod self other
)

method localEqual self {class CartesianPoint} other -> (
if getClass other = PolarPoint then

localEqual other self
else if isAKindOf other Point then

if self.x = other.x and self.y = other.y then
true

else
false

else
nextMethod self other

)

CartesianPoint also specializes localLT. In this particular
implementation, the localLT method simply converts objects to PolarPoint
objects and calls on the localLT method that is defined by PolarPoint. Of
course, localLT could be implemented any number of ways, depending on
the requirements of the program. Unlike localEqual, localLT does not call
nextMethod for cases it cannot handle. Instead it reports an exception.

637

Object System Kernel 23

method localLt self {class CartesianPoint} other -> (
local comparator := undefined
local cls := getClass other
if cls = PolarPoint then

localLt other self
else if isAKindOf other Point then

comparator := other as PolarPoint
else

report generalError "Cannot compare CartesianPoint and %*." cls
if self.r < comparator.r then

return true
else if self.r > comparator.r then

return false
else (
 if self.theta < comparator.theta then
 return true
 else
 return false
)

)

ScriptX makes it possible to choose any ordering function, and to switch
functions dynamically at runtime, simply by redefining localLT. In the case
of points, there are several valid approaches. Points could also be ordered
based upon a primary axis in the Cartesian coordinate space, such as the x or y
axis. Another possible ordering function would treat each CartesianPoint
or PolarPoint object as a sum of vectors, and sort them based on the scalar
product of those vectors.

Specializing localEqual or localLT

Of the three generics in the Comparison protocol, RootObject actually
defines a method for only two. Since RootObject does not implement
localLT, CartesianPoint and PolarPoint do not call nextMethod for
cases they cannot handle—instead, both classes report an exception.

All ScriptX global functions call isComparable, either directly or indirectly,
before any call that results in a call to localEqual or localLT. The generic
function isComparable qualifies a call to localEqual or localLT. Thus,
there is no reason, within the body of a method for localEqual or localLT,
to call isComparable. (Scripter-defined global comparison functions should
follow this same prototype.) Within the body of localEqual or localLT
methods, it should be assumed that the two objects are known to be
comparable.

Global comparison functions may call other comparison functions, but
ultimately, all comparison functions must be defined in terms of the three
generics in the Comparison protocol, avoiding any circular definitions and
dependencies. A program can also declare new global comparison functions,
making them apply automatically to any existing classes that implement the
Comparison protocol.

638

23 ScriptX Components Guide

Except within a comparison function, scripts should not call the three generics
of the Comparison protocol directly (other than for testing and debugging).
They should be called indirectly through global functions or through
comparison operators in the ScriptX language, which compile into calls to
global functions. The generic functions canClassDo and canObjectDo are
useful for testing whether a class or object implements localLT.

Global functions can be defined either in the scripter, so that they compile to
ByteCodeMethod objects, or using the Extending ScriptX API, so that they
compile to Primitive objects. The latter are indistinguishable from global
functions defined in the substrate in any modules in which they are visible.

For more information on comparison operators in the ScriptX language, see the
ScriptX Language Guide. For information on comparison functions and ordered
collections, see “Sorted Collections” on page 449 and “Comparison Functions”
on page 450 in Chapter 16, “Collections.” See also the discussions of BTree,
SortedKeyedArray, and SortedArray in that chapter, and the definitions of
those collection classes in the ScriptX Class Reference.

Printing Objects

This section demonstrates the Printing protocol, which allows ScriptX to print
information about objects to an output stream, such as the debug stream. The
Printing protocol comprises two generic functions, prin and recurPrin, that
are used to define all global printing functions. (The Printing protocol is
unrelated to the Printing component, a loadable extension to ScriptX. The
Printing component, which provides printing services for ScriptX titles and
accessories, is documented in the “Printing” chapter of this volume.)

Every ScriptX object can print an ASCII representation of itself to an output
stream. This stream must be a byte stream, and it must be writable. The generic
function prin, implemented by RootObject, is the basis for printing objects
in ScriptX. As implemented by RootObject, prin indicates an object’s class
and the location of its master pointer in memory. Any unsealed class or object
can implement a specialized version of prin. The usual reason for specializing
prin is to provide additional debugging information.

The generic function prin is the basis for several global printing functions,
including prinln, print, printString, and format. Most printing is done
through one of these functions. By specializing prin, a developer can change
the way all global printing functions operate on a given class of object. For
example, suppose you have defined a scripted class that contains several
“member” objects—objects that are assigned to instance variable “slots.” You
could print an instance of this class by specializing the prin method to call
prin on each of those objects individually. Indeed, that is exactly what the
Point class does. When you call prin on a point, it prints out the values of x
and y.

prin (new Point x:6 y:6) @normal debug

➯ [6, 6] as PointOK

639

Object System Kernel 23

Of course, prin does little to improve the readability of the stream it prints to.
As this example shows, it does not insert an end-of-line character before the
return value of the expression, which is the OK object. Most actual printing is
through global functions, which provide a more readable representation as
well as a simpler calling sequence.

The core classes specialize prin with several different printing modes. The
four standard modes are @normal, @complete, @unadorned, and @debug.
The PolarPoint class, defined in previous sections of this chapter, is similar
to Point, so a developer might want the debugging stream to yield similar
information about a PolarPoint object. The following example implements
prin for PolarPoint objects, using the prin method that is defined in the
substrate by Point as a model:

method prin self {class PolarPoint} formatStyle printStream -> (
case formatStyle of

@normal:(
format printStream "[%n1, %n2] as PolarPoint" \

#(self.r, self.theta)
)
@complete:(

format printStream "[r=%c1, theta=%c2] as PolarPoint" \
#(self.r, self.theta)

)
@unadorned:(

format printStream "[%u1, %u2]" #(self.r, self.theta)
)
@debug:(

(methodBinding RootObject prin) self @normal printStream
writeString printStream ": ["
writeString printStream (getClassName self.r)
writeString printStream ": "
writeString printStream (self.r as String)
writeString printStream ", "
writeString printStream (getClassName self.theta)
writeString printStream ": "
writeString printStream (self.theta as String)
writeString printStream "]"

)
otherwise: (

nextMethod self formatStyle printStream
)

end
)

This implementation of prin is quite wasteful of memory, because it adds
many StringConstant objects to the memory footprint of the PolarPoint
class. (A simpler version of the @debug mode could be defined with a single
string using the format global function.) For this reason, it is useful to define
prin in the free method syntax, binding it to the PolarPoint class only for
authoring, and not when the title is played back in the ScriptX Player.

Printing Recursive Objects

Recursive structures present a special problem. Certain objects, such as linked
lists, contain recursive structures, structures that point to an instance of the
same class. For recursion, ScriptX defines the generic function recurPrin, also

640

23 ScriptX Components Guide

implemented as a method by RootObject. recurPrin is not meant to be
called directly from a script. With most objects, recurPrin and prin are the
same—a call to prin calls recurPrin by default.

In an object that contains recursive structures, redefine the prin method to call
the global function printRecursively, passing the same arguments that
were used to call the prin method. The function printRecursively then
calls recurPrin, adding an additional argument to track the recursive print
state. Specialize the method recurPrin to print a representation of the object
to a stream. To print out an object within the recurPrin method, call the
global function safeRecurPrin, passing on the recursive print state as the
final argument. This final argument, which is used to resolve references to
objects in recursive structures, is of no real consequence to developers.

C H A P T E R

24
Exceptions

642

24 ScriptX Components Guide

The Exceptions component provides facilities for reporting and handling
exceptions (also known as errors.)

Each kind of exception in ScriptX is represented by a global instance of the
class Exception or one of its subclasses. To report (or signal) an exception,
call the report method on the appropriate global exception instance. For
example, to report an error during an attempt to divide a number by 0, the
report method is called on the divideByZero instance.

When an exception is reported, the system checks if it can be caught. If it can
be caught, the action that has been specified as the response to such an
exception is performed. If it is not caught, the default exception handler takes
over, which means that either a fatal error occurs or the thread that caused the
error died.

To catch and handle exceptions, you must use the guard and catching
syntax in the ScriptX language. See the ScriptX Language Guide for a discussion
of catching exceptions.

This chapter briefly describes the Exceptions component. A complete listing of
system-defined subclasses and instances of Exception is included in Appendix
A of the ScriptX Class Reference. For more information on how to write
exception-handling code, see the ScriptX Language Guide.

Classes and Inheritance
The class inheritance hierarchy for the Exceptions component is shown in the
following figure.

Exceptions
omponent
report method
Exception)
Exception
ass:report

method

Exception
ass:guard
yntax
Exception
ass:catching
yntax
guard syntax
catching syn-
ax
errors:see Ex-
eption compo-
ent
Errors:see Ex-
eption class,
xceptions
omponent
$nopage>

Exceptions
omponent:in-
eritance dia-
ram

643

Exceptions 24

The following classes and groups form the Exceptions component. In this list,
indentation indicates inheritance. The superclass Exception is first described;
then the Exception classes and groups are described in detail in alphabetical
order.

Exception – the superclass of all exceptions.

ClockException – the class of clock exceptions.

CollectionException – the class of collection exceptions.

ContainerException – the class of container exceptions.

DevicesException – the class of devices exceptions.

DirRepException – the class of dir rep exceptions.

EventException – the class of event exceptions.

GeneralException– the class of general exceptions.

Exception

Object

ClockException

CollectionException

ContainerException

DevicesException

DirRepException

EventException

ImportExportError

LoaderException

MathException

MemoryException

ObjStoreException

PlayerException

ScriptError

ThreadException

TextException

StreamException

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

GeneralException

SystemError

SpaceException

Exception
ass

ClockExcep-
on class

CollectionEx-
eption class

ContainerEx-
eption class

DevicesEx-
eption class

DirRepExcep-
on class

EventExcep-
on class

GeneralEx-
eption class

644

24 ScriptX Components Guide

ImportExportError – the class of exceptions related to importing and
exporting.

LoaderException – the class of loader exceptions.

MathException – the class of math exceptions.

MemoryException – the class of memory exceptions.

ObjStoreException – the class of object store exceptions.

PlayerException – the class of player exceptions.

ScriptError – the class of exceptions that can occur during script
compilation.

SpaceException – the class of space exceptions.

StreamException – the class of stream exceptions.

SystemError – the class of system exceptions.

TextException – the class of text exceptions.

ThreadException – the class of thread exceptions.

Note that there are also space exceptions, general errors, and text and font
exceptions that do not have their own subclasses.

How Exceptions Work
The system-defined exception instances, such as notObject, noMethod,
divideByZero and so on, are created in the ScriptX source code. These
exceptions are all listed in Appendix A of the ScriptX Class Reference.

Users may also create their own exception classes and instances. To create a
new exception instance, call the new method on the appropriate class of
exceptions.

Each Exception instance has a format string that provides the default error
message for the exception. This string can contain substitution characters that
are replaced by real values when the exception is reported. All occurrences of
%* in the format string are replaced by an object when the string is printed,
and each occurrence of %n is replaced by the nth item in a linear collection.

To report an exception to indicate that an error has been detected, call the
report method on an Exception instance. The second argument to the
report method is an object that contains information about the error that
occurred. This information is passed to the format string to replace its
substitution characters. This information can also be used by any code that
wants to find out the details of the exception.

When calling report on an exception, make sure that the second argument
matches the type of input required by the exception’s format string. If the
format string contains %*, the second argument to report should be an object.
If the format string contains %n, the second argument to report should be a
linear collection object containing at least n objects.

mportExport-
rror class

LoaderExcep-
on class

MathExcep-
on class

MemoryEx-
eption class

ObjStoreEx-
eption class

PlayerExcep-
on class

ScriptError
ass

SpaceExcep-
on class

StreamExcep-
on class

SystemError
ass

TextExcep-
on class

ThreadExcep-
on class

Exception
ass:format
tring
format
trings:of ex-
eptions

645

Exceptions 24

ThrowTag and ThrowArg Global Variables

The global variable throwTag is always bound to the most recently reported
exception, and the global variable throwArg is bound to the argument that
was passed to the report method for that exception.

For example, suppose you attempt to divide 21.3 by 0:

b := 21.3 / 0

This expression causes the divideByZero exception to be reported. The
throwTag global variable becomes bound to divideByZero, and throwArg
becomes bound to 21.3.

These global variables can be useful if you want to find out information about
which exception was most recently reported.

Using Exceptions
To catch exceptions, use the guard and catching syntax described in the
ScriptX Language Guide.

To report an exception, call its report method and pass arguments
appropriate to the exception’s format string.

For example, the following statement creates a cantBePurple exception as an
instance of the user-defined class ColorException.

new ColorException name: "cantBePurple" \
format: "I am sorry. %* clashes with my hair color."

When this exception is reported, the second argument to report should be the
unsuitable color, for example:

function putColor object color ->
(

if (color = "Purple" or color = "Violet" or color = "Mauve")
do report cantBePurple color

else object.color := color
)

Exceptions in the Kaleida Media Player
When a ScriptX title is running in the Kaleida Media Player, uncaught
exceptions open a dialog box warning the user of the problem. The user's only
option is to to click OK to close the dialog box.

Note – In the current release, certain exceptions reported in the ScriptX
Listener may cause the Kaleida Media Player to hang without displaying a
dialog box.

Exception
ass:throwTag

global variable
Exception
ass:throwArg
lobal variable
throwTag glo-
al variable
throwArg glo-
al variable

Exception
ass:using

Exception
ass:excep-
ons in the Ka-
eida Media
layer
Kaleida Media
layer:excep-
ons

646

24 ScriptX Components Guide

C H A P T E R

24
Import and Export

648

24 ScriptX Components Guide

649

Import and Export 24

The Import and Export component provides classes that allow ScriptX to
import and export various types of data, such as audio files, video files and
bitmaps. This component includes predefined importers for common data
types.

Classes and Inheritance
The class inheritance hierarchy for the Import and Export component is shown
in the following figure.

The Import and Export component consists of the following classes.

Exporter – converts an internal data object to a known external data format

Importer – converts a stream from an external data format to an internal data
object

ImportExportEngine – provides the import and export methods that
invoke concrete importers and exporters in this component

How Import and Export Work
When the ScriptX system starts up, it creates a single instance of
ImportExportEngine and stores that object in the global variable
theImportExportEngine. The global variable theImportExportEngine
then uses a Loader object to load Importer and Exporter objects into the
system. You can create multiple instances of ImportExportEngine, but
generally need not do so.

When importing external data into ScriptX, theImportExportEngine selects
the appropriate Importer object to convert the data, then returns an internal
data object that represents the imported data.

Rather than interacting with Importer or Exporter objects directly, call the
importMedia or exportMedia methods on theImportExportEngine
global instance, which in turn calls the appropriate methods on Importer or
Exporter.

mport and Ex-
rt component

mporting:see
port and Ex-
rt component
xporting:see
port and Ex-
rt component,
portExpor-
ngine
ss<$nopage>

mport and Ex-
rt compo-
nt:inheritance

agram
xporting:see Im-
rt and Export
mponent, Im-
rtExpor-
ngine
ass<$nopage>

RootObject

Legend
Gray box = abstract class
Black box = concrete class
No border = class belongs to another component

Importer

Exporter

ImportExportEngine

xporter class
mporter class
mportExpor-
ngine class

mport and Ex-
rt compo-
nt:theImportEx
rtEngine

heImportExpor-
ngine global
riable

mportMedia
ethod (Impor-
xportEngine)
xportMedia
ethod (Impor-
xport engine)
mportExpor-
ngine class:im-
rtMedia

ethod
mportExpor-
ngine class:ex-
rtMedia

ethod

650

24 ScriptX Components Guide

Registering Import and Export Modules

During the ScriptX system’s startup process, theImportExportEngine
requests a Loader object to load groups of

• import modules – importers that reside in a directory (folder) called
importrs (notice the “e” is omitted to make it 8 characters)

• export modules – no exporters are available in the current release.

See the ScriptX Tools Guide for information about importers supplied with this
release.

Using the Import and Export Component
See the ScriptX Tools Guide for detailed information on the import modules
available in ScriptX and how to use them to import media files, complete with
examples.

mport and Ex-
rt compo-
nt:registering
port modules

mport and Ex-
rt compo-
nt:registering
port modules

mport and Ex-
rt compo-
nt:import

odules
mport and Ex-
rt compo-
nt:export

odules
mportrs folder
mport and Ex-
rt compo-
nt:Importrs
der

portExpor-
gine class:im-
ting data

C H A P T E R

25
Loader

652

25 ScriptX Components Guide

653

Loader 25

The Loader component provides facilities for loading modules into the runtime
environment to extend and update existing code. The Loader component
allows developers to integrate patches to existing code in a seamless fashion
and to add C extensions to the substrate.

The Loader component links its targets into the current environment
transparently, so that users cannot distinguish them from the original system.
Users can access the Loader component from ScriptX.

This chapter describes the Loader component and the programmatic tools
associated with it. It includes descriptions of the incremental linking and load
process as well as instructions for writing code that uses Loader facilities.

Note – A loadable unit can be loaded by a script-level program. However, the
loadable unit itself must be written in C. This manual covers material only for
the script-level ScriptX programmer. Writing a loadable unit is discussed in the
chapter “Extending ScriptX” in the ScriptX Tools Guide.

Classes and Inheritance

The class inheritance hierarchy for the Loader component is shown in the
following figure.

The following classes form the Loader component.

LoadableGroup – Contains a group of loadable units that can be loaded by
the Loader component.

LoadableUnit – Defines the atomic units for the Loader component,
including how to be loaded and version number.

LoadableUnitId – A class whose instances are used to identify loadable
units. Constants of this class are used to identify errors when a unit can’t be
loaded.

oader component

oader component:inheritance diagram

LoadableGroup

LoadableUnit

LoadableUnitId

LoaderCode

Loader

RootObject

Legend
Gray box = abstract class
Black box = concrete class
No box = class belongs to another component

oadableGroup class

oadableUnit class

oadableUnitID class

654

25 ScriptX Components Guide

Loader – Maintains the tables of currently loading and successfully loaded
units, drives the load and unload operations.

LoaderCode – A class whose global constants are used as return values to
identify the whether the code in a loadable unit can be used.

Conceptual Overview

The Loader component is responsible for loading and linking the following
types of data:

• replacement code, either indirect functions or class/instance methods

• new device drivers and utility functions

• new classes

The runtime environment uses the Loader component for dynamic loading to
optimize system resources. With dynamic loading, the runtime system loads an
object only when it is needed as a resource. When the resource is no longer
required, the Loader component unbinds it and frees any associated memory.
The result is a runtime environment that optimizes memory usage.

Modules loaded by the Loader component are housed in loadable unit
persistent objects, which are created and kept within loadable group persistent
objects. These loadable modules can contain any combination of class
definitions, class and instance methods, indirect functions, and data. Each class
has initialization code that bootstraps the class definitions and registers
whatever was loaded into the system.

The focal point for the Loader component is a class called Loader. When using
the Loader component, the first step is to create an instance of the class Loader
that manages the loading process.

How the Loader Works

This section describes loadable objects, entry point code, and loader lists.

Loadable Objects

From a high-level standpoint, the Loader component operates on two types of
objects:

• A loadable unit is the atomic unit of the Loader component. A loadable unit
contains a single binary code/data file, a pointer to entry point code, an
environment variable, as well as system and unit version identifiers.

• A loadable group is a collection of loadable units logically bundled together.
A loadable group includes platform-specific device and handle information
that uniquely identifies it.

Both loadable units and loadable groups are persistent objects that are
available to the system through the Persistent Object System.

oader class

oaderCode class

Loader component:features

dynamic loading

oader class

Loadable objects

655

Loader 25

The following diagram shows the layout of a loadable group containing three
loadable units:

Figure 25-1: Layout of a loadable group.

A loadable group maintains two lists:

• a load list specifying which loadable units to load when a group is processed

• a unit list of all loadable units in the group

When processing a group, the Loader component loads the units specified by
the load list and returns a list of opaque LoadableUnitID objects
representing the successfully loaded units. The LoadableUnitID class is a
private class not visible from the ScriptX environment but used internally by
the Loader component. LoadableUnitID objects contain a unique identifier
for each loadable unit, known as an LID, along with other information.

Loadable units are always associated with a group. There are two types of
loadable units:

• Ephemeral units contain code that is loaded, executed, and then unbound.
The ephemeral unit’s initialization code does not link its code and data into
the system, so the system is unaware of them. An ephemeral unit can call
exported code in the system, however.

Loadable Group
Name
Device
Load list
 LU a
Unit list
 LU a
 LU b
 LU c

Loadable Unit a
Entry point name
system version
unit version
environment
binary file

Loadable Unit b

Loadable Unit c

Binary text data

oadableUnitID class

656

25 ScriptX Components Guide

• Linkable units contain the actual target code for a load. Once the Loader
component has successfully loaded a linkable unit, its code can be called by
other parts of the runtime system. It, in turn, can reference any part of the
system that is exported.

Entry Point Code

Both ephemeral and linkable units are associated with entry point code that is
run after the unit is loaded but before a LoadUnitID object is returned. Entry
point code can invoke the Loader component recursively to load other units or
can set up the environment for linkable units that will be dynamically loaded
at some future time.

For a linkable unit, entry point code typically performs the following
initialization procedures:

• It invokes the class initialization routines for any classes it creates.

• It registers all new classes and methods with the runtime system.

• If the module contains replacement indirect functions or replacement
class/instance methods, the initialization code links these into actual system
functions and methods using system utilities.

Ephemeral units normally consist entirely of entry point code. Useful
applications for ephemeral units include checking for the presence of certain
facilities before loading linkable units.

Loader Lists

The Loader component maintains two internal lists to prevent redundant load
operations:

• Whenever a Loader object starts the load process on a unit, it places the
unit’s LID on the loading list, a list of all units currently being loaded.

• When a module is successfully loaded, the Loader object removes the LID
from the loading list and enters it on the loaded list, a list of all units
successfully loaded and still present in the system.

Before a Loader object attempts to load a unit, it first checks the loaded list:

• If the LID of the current unit matches a LID on the loaded list, and the
current unit’s version number is less than the version number of the loaded
unit, the Loader object simply returns the current unit’s LID.

• If the version of the current unit is greater than or equal to the version of the
existing unit, the Loader object continues to process the current unit, since
it is more recent.

If the unit’s LID is not on the loaded list, the Loader object checks the LIDs
and version numbers on the loading list. If the LID is on the loading list and
the version of the matching unit is greater than or equal to the version being
loaded, the Loader object returns the special code LoadableUnitIdLoading
to the caller to indicate that the load is in process.

oadableUnitID class

oader class

oadableUnitID class

657

Loader 25

If the LID is not on either list, the Loader object loads the specified unit.

Whenever a Loader object removes a unit from the system through an unbind
operation, it deletes its LID from the loaded list.

Using the Loader

Using the Loader component requires only a few steps:

1. First, make an instance of the class Loader:

deviceLoader := new Loader

Multiple instances of the Loader class an exist concurrently in the system.
Users typically create a private Loader instance for each load operation,
although entry point code in a linkable unit might use a single Loader
object recursively in successive load operations.

2. Invoke the process method to load all units on a loadable group’s load list
from the specified media:

process deviceLoader deviceName handle

This method returns a list of LoadableUnitID objects for all units in the
group that were loaded.

Alternatively, you can use the loadModule method to load a particular
loadable unit from a specified group:

loadModule deviceLoader groupInstance unitName

The Loader method getGroup returns a group instance to use in this case.
The loadModule method returns the LoadableUnitID object representing
the successfully loaded unit.

How the Loader Works (continued)

This section describes the load process, symbol accessibility, relinquishing, and
exception handling.

The Load Process

 Processing Groups

The Loader component processes a loadable group by iterating through the
group’s load list and invoking the loadModule method on each loadable unit
in the list. The getgroup method provides a group instance to use for the
process.

oader component:steps for loading

oadableUnitID class

Loader component:the load process

Loader class

oadableUnitID classoader classoadableUnitID class

658

25 ScriptX Components Guide

Symbol Accessibility

The private class LoaderHelper uses the nameToAddress instance methods
in both LoaderHelper and Loader classes to resolve references to symbols in
the running system so that the newly loaded code can access static symbol
definitions. When writing code that uses the Loader component, you can make
symbols available to the rest of the run-time environment at load time through
any of the following mechanisms:

• When writing the initialization routines to be called by entry point code, use
the standard system facilities for linking newly loaded functions and
methods into the system:

• indirectSet associates the name of an indirect function with the actual
system function definition.

• methodFor, methods, and classMethods bind an instance or class
method to a generic function. Use these methods as you would normally
in base system code, such as in an initClass method.

• You can export arbitrary symbols through the Loader class export
method.

While these operations are particularly important during entry point
initialization, they can be performed at any time in the system, including at
system initialization time.

The following table shows what symbols are available to the static system and
to units loaded into the static system dynamically:

1. Available through Loader class method nameToExport and as a symbol while
being loaded.

2. A copy is made of the symbol at the time of the load. Subsequent changes to the
original symbol will not be reflected in code that references the symbol. You
should export the symbol via the Loader class export method if you anticipate
that its value might change.

3. The Interned name string must be the same as the symbol name, without any
leading "SXi".

4. The Exception name string must be the same as the symbol name, without any
leading "SXe".

Symbols System Dynamic
Module

global (not class or generic function) Yes No

exported via Loader class Yes1 Yes1

available via indirectSet, methodFor, methods,
classMethods

Yes Yes

class Yes Yes2

generic function Yes Yes

interned name symbols Yes Yes3

exception objects Yes Yes4

Loader component:accessing symbols

Loader class

659

Loader 25

The following table shows what symbols are available within a dynamically
loaded unit and to units that are loaded at a later time:

Duplicate Symbols and Shadowing

As the preceding tables indicate, the Loader component cannot relocate certain
symbols in dynamically loaded code. However, you can duplicate facilities that
do not require sharing, such as string-handling and copy functions, for a
loadable unit to use as its private copy. In such cases, the private copy shadows
the base system version of the facility; that is, the loadable unit invokes the
private copies of the functions rather than looking for the functions in the base
system. Note, however, that data shared between the base system and the
dynamically loaded unit cannot use the private facilities.

Relinquishing

The Loader class releaseLoadableUnit method removes loadable units
from the system. When passed a LoadableUnitId object,
releaseLoadableUnit removes the unit’s LID from the loaded list and
arranges for the loaded resources (code, data, and any created classes) to be
freed when they are no longer referenced. The Loader component works with
the system garbage collector to ensure that as long as there are references to
classes and/or instances of classes associated with the loadable unit, the class

1. Available through Loader class method nameToExport and as a symbol while
being loaded.

2. A copy is made of the symbol at the time of the load. Subsequent changes to the
original symbol will not be reflected in code that references the symbol. You
should export the symbol via the Loader class export method if you anticipate
that its value might change.

3. The Interned name string must be the same as the symbol name, without any
leading "SXi".

4. The Exception name string must be the same as the symbol name, without any
leading "SXe".

Symbols System Current
Dynamic
Module

Dynamic
Module
Loaded
Later

global (not class or generic function) in
current dynamic module

No Yes No

exported via Loader class Yes1 Yes1 Yes1

available via indirectSet, methodFor,
methods, classMethods

Yes Yes Yes

class in current dynamic module No Yes Yes2

generic function in current dynamic module No Yes Yes

interned name symbol No Yes Yes3

exception objects No Yes Yes4

der class

ader component:relinquishing units
nquishing loadable units

ader class

adableUnitID class

660

25 ScriptX Components Guide

objects and code will not be freed. If newer loadable units reference classes
from a loadable unit that is unbound, the code and classes will not be freed
until the newer loadable unit is also freed.

It is not safe to release a loadable unit that contains code not associated with
any class unless you are sure that the code or data is not being used by the
system. The Loader component does not track the use of normal C functions or
data.

The Loader component also does not track references to symbols that have
been exported through the Loader class export method. You must explicitly
ensure that you have unexported any symbols from a loadable unit, and that
no code is referencing them.

Typically loadable units that are candidates for unbinding simply advertise a
specific class (or classes) to the rest of the system. Code that exports symbols or
contains C functions used by the system is not usually unbound.

Cleanup During Relinquishing

The Loader component automatically takes care of cleanup for any
dynamically loaded class that defines an unbind class method. Each loadable
unit should include a relinquish method that cleans up during the
unloading of the module. Note that this relinquish method should not do
anything detrimental to class operation, since the class, instances of the class,
and associated method code remain active in the system until the last instance
of the class is disposed.

To do a full cleanup, the class should implement a finalization method, which
is invoked at garbage collection time when there are no remaining instances of
or references to the class.

Exception Handling

The Loader component’s exceptions are instances of an Exception class
called LoaderException:

• If a loadable unit reports the loaderInitError exception during the
running of entry point code, the Loader component automatically unbinds
the unit. Usually the loaderInitError exception is reported when
assertClass cannot find an initialized class definition for classes
contained in the unit.

• If the Loader component cannot resolve a symbol during relocation, it
assigns the symbol the address of loaderNullFunction, which reports
the loaderUnresolvedError exception when any code attempts to call
the unresolved function.

• When general errors occur during the process of loading a class, the
cantLoadClass exception is reported.

Loader class

ader component:exception handling
ceptions:loader component

661

Loader 25

Loader Examples

The following ScriptX examples demonstrate how to use the Loader
component for the most common tasks: dynamically loading new classes and
methods and loading patches to existing code. All of these are ScriptX
examples and require no C code.

-- The following examples contain two separate LoadableGroups:
-- "PlugIns" is a group of new classes that can be plugged
-- into the system
-- Patches contains replacement code

-- The first example loads the "Foo" class three different ways:
-- directly (Snippet 1), recursively via loading another class
-- (Snippet 2), and by "processing" the group containing "Foo"
-- (Snippet 3). After each load, the example uses the class and
-- then unbinds it before loading it again.

-- The first snippet loads "Foo" twice in a row to show that
-- the Loader component is smart enough to only load it once.
-- Until it is unbound, it will not get loaded again.

--
-- Snippet 1 - load directly
--
fooLoader := new Loader
plugInGroup := getGroup fooLoader "PlugIns"
fooUnit := getLoadableUnit plugInGroup "Foo"
fooId := loadModule fooLoader plugInGroup fooUnit

-- Second loadModule will do nothing, since it's already in the
-- system.
fooId := loadModule fooLoader plugInGroup fooUnit

-- Note: the following code assumes the module containing the
-- Foo class has been imported to this module
aFoo := new Foo
writeString aFoo "This is a test"

-- Nothing will actually be freed until no more refs to
-- Classes loaded ("Foo"), and instances of the classes.
relinquish fooId

-- Still safe ... (See above)
writeString aFoo "This is a test"

--
-- Snippet 2 - load recursively through an ephemeral unit
-- named barUnit
--
barLoader := new Loader
plugInGroup := getGroup barLoader "PlugIns"
barUnit := getLoadableUnit plugInGroup
barId := loadModule barLoader plugInGroup barUnit
fooId := loaderValue barLoader barId
aFoo := new Foo

662

25 ScriptX Components Guide

writeString aFoo "This is a test"
relinquish fooId

--
-- Snippet 3 - load implicitly via Process method
--
fooLoader := new Loader
idList := process fooLoader "PlugIns"
aFoo := new Foo
writeString aFoo "This is a test"
foreach idList (m -> relinquish m)

-- This example loads the "Replace" unit, which contains
-- a replacement method for the Foo class' writeString method
-- and a replacement indirect function for
-- loaderIndirectFunction. Since the class Foo is dynamically
-- loaded (see above), it might not be in the system when the
-- init code is processed. If the Foo class does not exist,
-- the Loader component won't try to replace the method.

patchLoader := new Loader
patchesGroup := getGroup patchLoader "Patches"
unit := getLoadableUnit "Replace"
id := loadModule patchLoader patchesGroup unit
foo := new Foo
writeString foo "This is a test"

-- Don't relinquish this unit - it will cause problems since it replaces
-- an Indirect function and a method (see "Relinquishing" earlier)

A P P E N D I X

A
Loadable Extensions

dable ex-
s

664

A ScriptX Components Guide

665

Loadable Extensions A

This section contains an overview of the loadable extensions that can be loaded
and run in the ScriptX Player. Other extensions that run only in the ScriptX
Development Environment, such as the tool framework, are described in the
ScriptX Tools Guide.

Summary of Loadable Extensions
ScriptX contains two kinds of loadable extensions:

• C-Loadable extensions – These classes and functions are written in C and
compiled separately for each platform. These are often referred to simply as
“loadable extensions.”

• Scripted extensions – These classes are are written in ScriptX and saved and
distributed in library containers (which run on all ScriptX platforms).

C-Loadable Extensions

The following are the loadable extensions available with this version of ScriptX
that run with the ScriptX Player:

Loadable Transitions

Transitions provide the capability for visual effects when changing what’s on
the screen. Loadable transitions provide variety beyond the core set of
transitions.

Classes: Blinds, Checkerboard, DiamondIris, Dissolve, Fan,
GarageDoor, Push, RandomChunks, RectIris, RectWipe, StripSlide,
StripWipe

For more information: See the Transitions chapter in this document.

Printing

The Printing loadable extension provides the basic building blocks you need to
write custom printing methods for your title. You can design custom printing
methods to print a Window view to a page (as a bitmap), and print a
TextPresenter, OneOfNPresenter, or Document object to a series of pages.

Classes: Printer, PrinterSurface

For more information: See the Printing chapter in this document.

-Loadable
tensions

cripted exten-
ns

666

A ScriptX Components Guide

Loadable Media Players

We provide three loadable media players classes:

• VFWPlayer and QuickTimePlayer can be used to play movies directly
from hard disk without importing them into ScriptX. These classes provide
ScriptX object wrappers to the Video For Windows runtime and the
QuickTime runtime, respectively.

• CDPlayer class is a loadable extension class which lets you play audio CD
in a CD-ROM drive while running ScriptX.

The QuickTimePlayer class works on Windows and Macintosh computers. It
can play QuickTime files directly, without importing them. The native
QuickTime extension is responsible for doing everything from reading the
video information off disk, deinterleaving it, decompressing video frames and
displaying them on the screen. The ScriptX QuickTimePlayer class simply
provides the movie with an area of screen real-estate on which to display the
video and supports behavior similar to that of the ScriptX MoviePlayer class.

The VFWPlayer class works only on a Windows machine with Video For
Windows installed. It can play AVI files directly, without having to import
them into ScriptX. Video For Windows is responsible for doing everything
from reading the video information off disk, deinterleaving it, decompressing
video frames and displaying them on the screen. The ScriptX VFWPlayer class
simply provides the movie with an area of screen real-estate on which to
display the video and supports behavior similar to that of the ScriptX
MoviePlayer class.

The CDPlayer class lets you play audio CD in a CD-ROM drive while running
ScriptX. You can control the audio CD in two ways: by using graphical buttons
that appear on the screen, or by calling methods on an instance of CDPlayer.
Currently, the CDPlayer class lets you interact with one CD-ROM drive. Each
time you create a new instance of CDPlayer, it establishes a connection to the
same CD-ROM drive.

Classes: QuickTimePlayer, VFWPlayer, CDPlayer

For more information: See the Media Player chapter in this document.

External Command Interface Extension

The MCICMD extension provides access to Multimedia Command Interface
commands for Microsoft Windows systems.

Classes: (none) However, there is one global function: mciCommand

For more information: See the description that follows later in this section.

adable me-
a playersFWPlayer
uickTime-

ayer

DPlayer

667

Loadable Extensions A

Scripted Extensions

Widget Library

The Widget Library provides a set of simple user interface controls to save you
time creating your user interface. In general, Widget Kit objects use fewer
presenters and therefore perform better than core User Interface objects, but
they are also less customizable; they are less complex, but also less flexible. For
example, buttons in the Widget Library derive their appearance from stencils
and not from subpresenters.

Classes: ColorScheme, FontContext, Frame, Label, GenericButton,
RadioButton, CheckBox, StencilButton, TextButton, PopUpButton,
PopUpMenu, RadioGroup, ListSelection, ScrollBox,
MultiListBox,ScrollListBox, ListBox, SimpleScrollBar,
SmallTextEdit,ScrollingTextEdit

For more information: See the User Inteface chapter in this document.

External Command Interface Extension
This section describes the loadable extension that provides an external
command interface to the ScriptX runtime environment. There is one such
loadable extension: The MCICMD extension provides access to Multimedia
Command Interface commands for Microsoft Windows systems.

Loading the External Command Extension

The External Command Extension is contained in the directory LOADABLE in
the ScriptX directory. The Microsoft Windows extension is in a subdirectory
named MCICMD. To load the extension for your platform, start ScriptX, then
select Open Title from the File menu. Select the “loadme.sx” file in the mcicmd
subdirectory to load the appropriate extension.

MCI Interface

The MCI extension provides the interface to Microsoft Windows MCI
commands. Loading an MCI command provides the same syntax defined for
that command through the standard ScriptX interface. In other words, the
commands and syntax for the MCI command can be mixed freely with ScriptX
expressions in the source code for a title.

The MCI interface is provided through a single function, mciCommand. The
function mciCommand loads the MCI command represented by the string
cmdString. This function is documented in the functions chapter of the ScriptX
Class Reference.

Once the MCI command is loaded into the ScriptX runtime environment, you
can compile code that mixes MCI commands with other ScriptX commands.
Note that mixing MCI commands with ScriptX commands makes your code

xternal com-
and interface

CICMD exten-
n

668

A ScriptX Components Guide

platform specific. If you want your title to run on any platform, you should
conditionally execute this platform-specific code and provide alternate
functionality for systems other than Windows.

A P P E N D I X

B
Glossary

670

B ScriptX Components Guide

671

Glossary B

Glossary

The following is a list of terms used in this manual. The Point class is used throughout
as an example to illustrate these terms.

abstract class– A type of class designed for subclassing rather than instantiating. An
abstract class can range from containing no implementation (a true abstract class) to
containing full implementation (a true mixin class). Contrast with concrete.

The term “abstract method” means a method that has no implementation.

accessory – A set of classes or instances that can be dynamically added to a running
title. It is intended to incrementally add data or behavior to titles. Like a library, it may
be usable in only one title or in many titles. Examples include a tape measure that can
be used to measure the size of objects, and an inspector that can analyze the state of
objects in a title.

attribute – A property of an object that has a special implementation, through its own
accessor methods. Examples are the attributes of Text and TextPresenter objects.

class – An object that defines a set of variables and methods for a set of similar objects,
called instances. Instances can be created from a class. For example, Point is a class that
defines instance variables (x, y) and instance methods (copy, transform). ScriptX
allows you to define and specialize your own classes.

class method – A method that operates on a class. A class method defines a behavior
of its class. For example, new is a class method that operates on the Point class to create
an instance:

pt := new Point -- Creates a new instance of Point

class variable – A variable of a particular class; this variable holds some state
information for that class. ScriptX has very few class variables in its built-in classes.

concrete class – A type of class that can be instantiated. Some concrete classes are
instantiated by the system and cannot be instantiated by the author— Boolean, for
example, can have only two instances, true and false. In general, a concrete class has
a new class method for creating instances. For some concrete classes, this method is not
visible at the scripter level. For example, new instances of the Number subclasses are
automatically generated by the compiler as it encounters numbers in a script. Contrast
with abstract.

core class – Any class that resides in the Kaleida Media Player executable file;
therefore it does not include loadable or scripted classes. Technically, ScriptX has
another set of core classes that belong to the ScriptX executable (development
environment), which is a superset of the KMP core classes.

frame – One complete image in the sequence of images that makes up a time-based
graphic presentation. A typical presentation might run at 10 to 30 frames per second.

frame buffer – See “off-screen buffer.”

generic function – A function that calls one of several methods according to the class
passed into the function (see Figure B-1). For example, init is a generic function. When
init is called on an instance of Point, the generic function redirects the call to the Point
class’s implementation of init. In this way, a generic function can call a uniqe
implementation for each kind of instance. The result is that each class has its own way
of initializing its instances—see polymorphism.

672

B ScriptX Components Guide

Figure B-1: When the generic function init is called on an instance, it calls the
init method corresponding to that class.

garbage collector – An independent process that operates incrementally and invisibly
while ScriptX is running, reclaiming memory that is assigned to objects that are no
longer in use.

implement – To provide functionality by way of a script or other code.

inheritance – A relationship between classes where a class shares the variables and
methods defined in its superclasses. The further down the inheritance hierarchy you go,
the more specialized classes become.

Methods and variables inherit differently in ScriptX—while a class inherits entire
methods (both syntax and implementation) from its superclasses, it inherits only the
name and not the value of instance variables from its superclasses.

instance – An individual object that is created from a class. An instance can have its
own instance variables and instance methods. The following example creates an
instance of the Point class:

new Point -- Creates a new instance of Point

Also see “object.”

instance method – A method that operates on an instance. In the following example,
xSetter is an instance method that operates on pt, an instance of the Point class.

pt := new Point -- Creates a new instance of Point
xSetter pt 100 -- 'xSetter' is an instance method

instance variable – A variable of a particular instance; this variable holds some state
information for that instance. The value of an instance variable is kept with the
instance (in contrast to a class variable, where the value is kept with the class). One
instance of Point might have an x-location of 100, another instance might have an
x-location of 50. Thus, the values of instance variables distinguish instances of the same
class. In the following example, x is an instance variable.

pt := new Point -- Creates a new instance of Point
pt.x := 100 -- Sets x of pt to 100

instantiate – To create an instance from a class. In ScriptX, you generally do this with
the new method. Some instances, such as numbers and strings, can be created
automatically by ScriptX without explicitly using the new method.

Kaleida Media Player – The runtime environment, including loadables, where ScriptX
titles and applications can be played.

GENERIC

CLASSES METHODS

init

Point “init” method for Point
Oval “init” method for Oval
Rect “init” method for Rect
PushButton “init” method for Pushbutton
Window “init” method for Window
Array “init” method for Array
Clock “init” method for Clock
Bounce “init” method for Bounce
MoviePlayer “init” method for MoviePlayer

FUNCTION

673

Glossary B

kind of– Any class or superclass of an instance. For example, an instance of Point is a
kind of Stencil, because Point is a subclass of Stencil.

KMP– See “Kaleida Media Player.”

library – ScriptX code, saved in a library container, that is intended to be reused by one or
more titles. A library can contain any kinds of objects or classes, including text, graphics,
animation, audio, video or ScriptX code.

metaclass – The class of a class. For example, the metaPoint class is the class of the
Point class.

method – A function that is defined and implemented in a class or an instance of a
class. A class method requires a class as its first argument; an instance method requires
an instance as its first argument. When used alone, the term method could apply to
either—its meaning depends on the context. The methods of a class or instance are often
called its behavior.

You can easily distinguish between class methods and instance methods by looking at
whether its first argument is a class or an instance. In the following example, new is a
class method, since it operates on Point, a class. However, xSetter is an instance
method, since it operates on pt, an instance.

pt := new Point -- ‘new’ is a class method
xSetter pt 100 -- ‘xSetter’ is an instance method

method instance variable – A “method” instance variable is an instance variable that
is accessed with underlying “getter” and “setter” methods instead of accessed directly.
(In fact, there might be no memory allocated for a particular instance variable.) When
you read the variable, an underlying “getter” method is called, and when you write to
it, a “setter” method is called. For example, the methods to set and get the x instance
variable are xSetter and xGetter.

All accessible instance variables in ScriptX are method instance variables. A method
instance variable may or may not have a slot (see “slot instance variable”).

mixin class – A type of class that can usefully be mixed into other classes. All classes in
ScriptX are technically mixin classes, although they don’t all add functionality. The
classes Dragger and SequenceCursor are true mixin classes in that they contain a full
implementation—by mixing them in you automatically get the added functionality you
want without further implementation.

module– A namespace, similar to the packaging system in the Lisp language. Names
defined in one module are visible to another module only if they are exported from the
first module and imported into the second. For example, unless you export it, a global
variable is accessible only within the module where it is defined.

multiple inheritance – The ability for a class to be defined directly from two or more
classes. This resulting class inherits variables and methods from these direct
superclasses and is said to “multiply inherit” from them.

name literal – A series of characters that begins with an “at” sign (@), which you can
use as a value to make your code more readable, where you might otherwise use
strings. A name literal is an instance of NameClass, and is efficient than a string. For
example, instead of using the Boolean true to indicate a procedure has succeeded, you
could create a name for it: @succeeded.

object – Any class or instance of a class. Each object is represented by some memory for
a set of variables and methods. In ScriptX, not only are all instances objects, but all
classes are also objects, because a class is an instance of its metaclass. Throughout this

674

B ScriptX Components Guide

manual, the term “object” generally refers to instances, not classes. For example, the
term “Point object” means an instance of the Point class, rather than the Point class
itself. Also see “instance.”

off-screen buffer – The off-screen area of memory where the changed parts of a frame
are constructed. Once all changed presenters have drawn to the frame buffer, the image
is transferred to the display surface for viewing by the user.

override – Given a method defined in a class, to override that method means to
redefine that method in a subclass such that it takes precedence. Instances of that
subclass will then have the new behavior defined by the overriding method.

persistent object – An object actually stored in a StorageContainer.

polymorphism – The ability of separate objects to execute their own implementations
of methods in response to a common generic function (see generic function). Thus,
new Point and new Rect execute different new methods.

reference to – When object A has a reference to object B, that means either object A has
an instance variable that holds B, or A is a collection that contains B. For example, a 2D
shape has a reference to the bitmap it displays, by way of its target instance variable
that holds the bitmap.

ScriptX development environment – The ScriptX executable, Listener, tools and
loadables in which the ScriptX source scripts can be compiled and run. ScriptX titles,
applications, and tools can be played in this environment.

ScriptX runtime environment – The portion of the ScriptX executable that runs the
ScriptX compiled language and core classes. Both the ScriptX development
environment and the ScriptX Player contain the ScriptX runtime environment.

sealed class – A type of class that cannot be subclassed. Very few classes in ScriptX are
sealed. The Number class is an example of a sealed class. Note that sealed classes can
have predefined subclasses—for example, Number has the subclass Fixed.

slot instance variable – Also called a slot. A “slot” instance variable is an instance
variable that has a slot of memory that holds the state. A slot instance variable is
accessed with underlying “getter” and “setter” methods instead of accessed directly, the
same as method instance variables. (In fact, there might be no memory allocated for a
particular instance variable.) When you read the variable, an underlying “getter”
method is called, and when you write to it, a “setter” method is called. For example, the
methods to set and get the x instance variable are xSetter and xGetter.

Not all instance variables in ScriptX are slot instance variables. (See “method instance
variable”).

specialize – To define methods or variables for a particular instance or class. This can
involve creating new methods and variables, redefining existing ones, or inheriting
existing ones through multiple inheritance.

state – The condition defined by instance variables, class variables, and global
variables. Given an instance of the Point class, its state is defined by its x and y values.

subclass – (noun) A class that inherits variables and methods from one or more
classes. Point is a subclass of RootObject. A subclass is generally more specialized
than the classes it inherits from. (verb) To create a new class that inherits from an
existing class. The keyword to do this in ScriptX is class.

superclass – A class that has one or more classes inheriting variables and methods
from it. RootObject is a superclass of Point. A superclass is generally less specialized
than classes that inherit from it.

675

Glossary B

title – A complete, stand-alone, interactive multimedia ScriptX application or program.
Examples include modular compositions, virtual spaces, conversational interactions,
constructive experiences, and multitrack sequencing.

tool – A complete, stand-alone application or program used to develop titles. Examples
include browsers, debuggers, and compilers. Some tools, such as the borwser and
debugger, are written in ScriptX.

676

B ScriptX Components Guide

 677

Index

Numerics
2D compositor, see TwoDCompositor
2D graphic compositor, see TwoDCompositor class
2D Graphics

see Two D Graphics
2D Matrtix

see TwoDMatrix class
2D presenter, see TwoDPresenter class

A
abstract class

definition 671
AbstractFunction class 619
accept method (Event) 506, 511
accessing files 553
accessories 414–418

see also accessory containers
see also AccessoryContainer class

accessory 8
definition 671

accessory containers 375, 414–418
creating 416
modules 415
opening 418
startup action 376
.sxa file extension 416

AccessoryContainer class 375, 414
getAccessory method 415, 418
libraries instance variable 418
open class method 418
preStartupAction instance variable 418
prestartupAction instance variable 418
startupAction instance variable 418

acquire method 596
acquire method (Condition) 596
acquire method (Lock) 596
acquireQueue method (PipeClass) 506
Action class 200
ActionListPlayer class 168, 200

rewindScripts instance variable 203
sample script 204, 207

activateAction instance variable (PushButton) 622
Actuator class 123

actuators in documents 331
Actuator class

press instance method 48
ActuatorController class 117
ActuatorController class 48, 497, 514
actuators

double-clicking 125
multiple-clicking 125

addAccessory method (TitleContainer) 415, 416,
417, 418

addEventInterest method (Event) 503, 504, 513
addEventInterest method (MouseEvent) 521, 522,

525
addHours method (Time) 490
addition 484
addMinutes method (Time) 490
addSeconds method (Time) 490
addUser method (LibraryContainer) 408, 409
adjustClockMaster method (TwoDPresenter) 96
afterInit, see Initialization protocol
afterLoading generic function 380, 382
afterLoading method (RootObject) 380, 382
AIFF files 186
allocated objects 377
and 484
angle conversion functions

485
animating ball script 207
animation

garbage collection tip 204
transforming hints 258

Animation component 199
blocking of threads 591
how it works 200
inheritance diagram 199
sample script 204, 207

animation facilities 22
appendDefinitionPage sample function 351
appendMoviePage sample function 350
arg instance variable (Thread) 587
arithmetic operations 485
Array class 454
Array class

memory and load management 463
ArrayList class 457
ArrayList class

memory and load management 463
arrays 454
attribute

definition 671
attributes

of text, see text attributes
audio files

importing and playing 186
audioMuted instance variable (Player) 170
AudioStream class 180

sound channel allocation 187
authorData instance variable (Event) 504, 513
authoring metaphors 45
autoRepeat instance variable (KeyboardDevice) 529
autoSplice instance variable (TransitionPlayer) 217, 220

678

ScriptX Components Guide

B
backgroundBrush instance variable (TransitionPlayer) 218
backgrounds

in document templates, see fills 327
backward method (Document) 329
balanced tree 459
bBox instance variable (TwoDPresenter) 69
Behavior class 17, 612, 613

implementation of class methods 614
new 615

binding 448
bit operations 485
Bitmap class 236

animation hints 258
colormap instance variable 259
compression 249
freeing data 251
invisibleColor instance variable 249
matteColor instance variable 249
remapOnDraw instance variable 260
remapOnSet instance variable 261
using 248

Bitmap class 415
presentation with TwoDShape 79

bitmap instance variable (Pointer) 519
BitmapSurface class 236, 265

colormap instance variable 259
remapOnDraw instance variable 260
remapOnSet instance variable 261
using 274

bitwise logical operations 486
blocking

threads 591
versus polling 591

Boolean class
operations 484

borders
in document templates 327

Bounce class
contention among controllers 110
sample script 110
tickle instance method 48, 103, 106

boundary instance variable
(Document) 326
(Page) 326
(PageLayer) 326
(PageTemplate) 326

boundary instance variable (Presenter) 88
boundary instance variable

(TwoDMultiPresenter) 85
boundary instance variable (TwoDPresenter) 262
boundary instance variable (TwoDPresenter) 69
breakPipe method (BytePipe) 594
breakPipe method (PipeClass) 594
bringToFront method (Window) 402
broadcast method (Event) 500, 507, 508, 509, 513,

537
broadcastDispatch class method (Event) 508

Brush class 237, 252
BTree class 459

memory and load management 463
storage containers 384

buttons 123
buttons instance variable (MouseDevice) 520
buttons instance variable (MouseEvent) 520
ByteCodeMethod class 620, 638
BytePipe class 591, 593

breakPipe method 594
ByteStream class 562
ByteString class 464

C
cachedTarget instance variable (TransitionPlayer) 218
calculate method (TextPresenter) 291
CalendarClock class 145

global instance 153
CalendarClock class

theCalendarClock global variable 490
Callback class 146, 154

and clock behavior 161
cancel method 160
condition instance variable 158
creating instances 154
example 161
order instance variable 158, 159
priority instance variable 158
script instance variable 156
subclasses of 154

Callback class 591
blocking of threads 591
script instance variable 622

callbacks
controllers in a space 107

callInThread global function 598, 599
cancel method (Callback) 160
canClassDo 638
canObjectDo 638
canRequestPurge global function 381
canStore generic function 380
canStore method (RootObject) 380
card metaphor 317
CartesianPoint class 636
catching syntax 642
CDPlayer 666
changePage method

(DocTemplate) 329
(SpecialPage) 349
example definition 330, 333

channelPolyphony instance variable (MIDIDriver) 193
check boxes 123
ChunkStream class 180
class

definition 671
class method

definition 671

679

class methods
implementation 614

class methods, see also metaclass network 614
class variable

definition 671
classes 17
clearSelection method (TitleContainer) 400
clearSelection method (Window) 400
clipboard 406–408

see also Clipboard class
Clipboard class 406

getClipboard method 406
setClipboard method 406
typeList instance variable 406

ClippedStencil class 236
using 251

clipping stencils 251
C-Loadable extensions 665
Clock class 145, 146

Callback example 161
callback scripts for 156
callbacks and behavior 161
callbacks for 158
global constants 153
hierarchies and behavior 152, 154
instances created by ScriptX 153
masterClock instance variable 149
modeling with 153
offset instance variable 151
rate instance variable 147, 149, 152
scale instance variable 147
storing hierarchies 153
ticks instance variable 148
time instance variable 148

Clock class
pause method 401
resume method 401
title instance variable 401, 412, 415

clock instance variable
(TwoDSpace) 147

clock instance variable (TwoDPresenter) 70
clock instance variable (Window) 64, 92, 401
ClockException class 643
clocks

controllers that implement tickle 50
effective rate 149, 152
keeping time with 147
local time 151
master clocks 148
slaving 53, 97
spaces and controllers 50
synchronization 53, 97
synchronizing 95, 148, 151
threads 583

Clocks component 43, 145, 497
class hierarchy 145

close box (Macintosh) 60, 61
close menu (Windows and OS/2) 60, 61
close method (LibraryContainer) 412

close method (TitleContainer) 396, 399, 400, 419
closeMIDIDriver function 193
coerce global function, see Coercion protocol
Coercion protocol 628–633

cantCoerce exception 629, 632
coerce global function 628
morph 628
newFrom 628
numerics 633
specializing morph and newFrom 632
strings 632
subclasses 632
superclasses 632

Collection class
forEach method 462
forEachBinding method 462
iterate method 472
iteratorClass instance variable 470

Collection class
spaces as collections 88
valueEqualComparator instance variable 625

CollectionException class 643
Collections 443
collections 445, 472

and strings 286
binding 448
comparison functions 450
definition 445, 446
elements 446
hashing 460
items 446
key 448
key-value pair 448
load generic function 463
load management 462
loadDeep global function 463
locks 462
members 446
object store 462
objects contained 447
sorting 449
subclassing 469
which to use 452

Collections component 43, 445
inheritance diagram 445

Color class 237
color instance variable (Brush) 252
Color tables 259
Colormap class 237, 259, 260, 261

theDefaultColormap global contants 261
colormap instance variable

(Bitmap) 259
(BitmapSurface) 259
(DisplaySurface) 259

colors
predefined 252

comparison
BTree class 635
global functions 634

680

ScriptX Components Guide

sorted collections 635
comparison functions 450
Comparison protocol 633–638
composition facilities 22, 29, 34, 36
compositor

clock 92
controllers 107
model-presenter-controller system 45
threads 583
timing 92
what it does behind the scenes 262

compositor instance variable (TwoDPresenter) 70,
91

compositor instance variable (Window) 91
compositor, see also TwoDCompositor
compositors 89–97

temporal aliasing 96
compression

of bitmaps 249
concatenation of strings 305
concrete class

definition 671
concurrency (threads) 586
Condition class 595, 596
condition instance variable (Callback) 158
constructive experiences 12
container keyword

for importing media 183
container presenters 76, 82
ContainerException class 643
content 24
content objects 24
ContinuousNumberRange class 467
Controller class

using controllers in documents 331
wholeSpace instance variable 122

Controller class 103
modeling 47
model-presenter-controller system 45
protocols instance variable 109
space instance variable 54
tickle instance method 48, 55, 103, 104,

106–108, 591
Ticklish protocol 55
wholeSpace instance variable 54, 108

controllers 15
actuator object 125
adding objects 108
attaching to a space 104
attachment to a space 54
callbacks on a space’s clock 107
compositor 107
conceptual overview 47
contention among controllers 110
defining new controllers 106
definition 105
example 110
how controllers work 104
order in which listed 107

overview 102
receiving events 514
sample script 111
spaces 48, 54–55, 101
Ticklish protocol 48, 55, 103, 104, 106–108
timing 107
user interface 110, 116, 117, 121
when to use 103
see also TwoDController class

Controllers component 43, 101–112
inheritance diagram 101

controllers instance variable (Space) 50, 54
conversational interactions 11
conversion

numbers 483
coordinate systems 65, 239
coordinates

local 66
screen 65
surface 66
window 66

Copy menu command 406
see also copySelection method

Copy protocol 626–628
copy 626–628
creating a deep copy 628
creating a shallow copy 626
initCopy 626–628

copy, see Copy protocol
copySelection method (TitleContainer) 400, 407
copySelection method (Window) 400, 407
core class

definition 671
CostumedPresenter class 80

delegation 81, 626
subpresenters instance variable 80
target instance variable 80, 626

createDir method (DirRep) 551, 552
createFile method (DirRep) 549, 552
createInterestList instance variable

(TwoDPresenter) 525
creating

files 552
crossingType instance variable

(MouseCrossingEvent) 526, 527
currentCoords instance variable (MouseDevice) 519
cursor

in a stream 562
cursor positions 288
Curve class 236

using 245
Cut menu command 406

see also cutSelection method
cutSelection method (TitleContainer) 400, 407
cutSelection method (Window) 400, 407

681

D
data

accessing 566
and streams 566, 567, 568
for pages 323
freeing bitmap data 251

data instance variable (MIDIEvent) 191
data management facilities 22, 25
databyte1 instance variable (MIDIEvent) 191
databyte2 instance variable (MIDIEvent) 191
Date class 489–491

dayOfMonth instance variable 490
dayOfWeek instance variable 490
month instance variable 490
year instance variable 490

dates 489–491
dayOfMonth instance variable (Date) 490
dayOfWeek instance variable (Date) 490
deadlock (threads) 586
deflate generic function 380
deflate method (RootObject) 380
deinstallQuitQuery global function 419, 420, 436
deinstallQuitTask global function 419, 421
Delegate class 17, 625–626
delegation 625–626

CostumedPresenter class 81, 626
IndirectCollection class 625
OneOfNPresenter class 81, 626

delete method (DirRep) 553
deleteNth method (LinearCollection) 454
DeltaPathAction class 200
design

of documents 318
development environment

defined 5
development framework

motivating influences 6
device driver 502
deviceID instance variable (InputDevice) 515
DevicesException class 643
dialog box

message 557
open 555
save 555

DigitalAudioPlayer class 180
pan instance variable 170
sound channel allocation 187
using 186
volume instance variable 170

DigitalAudioPlayer class
modeling 47

DigitalVideoPlayer class 180
digitizing data 181
direct instance variable (TwoDPresenter) 73
directories

and paths 549
deleting 553
navigating 552

directory instance variable
(LibraryContainer) 395

directory instance variable (TitleContainer) 395
DirRep class 547

as Sequence 550
createDir method 551, 552
createFile method 549, 552
creating instances 551
delete method 553
fixNameForOS method 551
getStream method 549, 553, 564
global instances 548
isDir method 550
isThere method 550
isType method 550
parentDir method 552
spawn method 551

DirRep class
getStream method 413
theContainerSearchList global variable 382,

393
DirRepException class 643
DiscreteRange class 468
display facilities 29
display management facilities 22, 23
display surface

drawing to a display surface 90
display surfaces

drawing to 59
DisplaySurface class 236, 265

colormap instance variable 259
PaletteChangedEvent interests 261
remapOnDraw instance variable 260

displaySurface instance variable
(TwoDCompositor) 91

displaySurface instance variable (Window) 64, 91
division 484
DocTemplate class 318

findParent method 330
getParentData method 324

Document class 318, 319
actuators in documents 331
advanced example 337
appending documents to a window 329
backward method 329
boundary instance variable 326
creating a document 327
forward method 329
goTo method 329
movies in a document 332
navigating through documents 329
simple example 336

Document Templates component 317, 626
advanced example 337
boundaries 326
card metaphor 317
document design 318
fills and outlines 327
finding page numbers 331

682

ScriptX Components Guide

finding the presenter of a presenter 330
inheritance diagram 317
see also Document class, Page class, and PageElement

class
simple example 336
using 327
using push buttons 335
using scrolling presenters 334

documents
scrolling presenters 127
see Document class
see Document Templates component

double-clicking 125
DragController class 131
DragController class 514

contention among controllers 110
Dragger class 131
Dragger class

contention among controllers 110
dropAction instance method 110
grabAction instance method 110

draw 620–621
draw generic function 59
draw instance method (TwoDPresenter) 591
draw method

(TwoDPresenter) 262, 277
arguments for 263

draw method (TwoDMultiPresenter) 84
draw method (TwoDSpace) 87
dropAction instance method (Dragger) 110
dropData method (Bitmaps) 251
dropping

bitmap data 251
duration instance variable

(media players) 182
(TransitionPlayer) 215

dynamic binding 8
dynamic loading 654

E
effective rate 149, 152
elasticity instance variable (Projectile) 111
elements (collections) 445
enabled instance variable (InputDevice) 515
enabled instance variable (TwoDCompositor) 92
eq global function 484, 488, 634
errors

see Exception class, Exceptions component
Event class

accept method 506, 511
addEventInterest method 503, 504, 513
authorData instance variable 504, 513
broadcast method 500, 507, 508, 509, 513, 537
broadcastDispatch class method 508
eventReceiver instance variable 504, 506, 513,

622
interests class variable 503, 509, 514

isSatisfiedBy method 501, 509, 510, 513
matchedInterest instance variable 537
priority instance variable 509
reject method 506, 511
sendToQueue method 500, 506, 508, 513, 537
signal method 500, 501, 508, 509, 510, 513, 537
signalDispatch class method 508

event interests 500, 512–514
matching 508–510
presenters 520–525
storing 508–510

event queues 505–507
event receivers 503–507, 513

accepting an event 504, 506
functions 276, 503, 504–505
methods 531
polling versus blocking 505
queues 503, 505–507

EventDispatchQueue class 502
Coercion protocol 632

EventException class 643
eventInterests instance variable

(TwoDPresenter) 520, 522, 523, 524, 525
EventQueue class 506, 591

Coercion protocol 632
eventReceiver instance variable (Event) 504, 506,

513, 622
eventReceiver instance variable (MouseEvent) 522
events

accepting 501, 510–512
asynchronous delivery 510–512
controllers 131
creating new classes 512–514
delivery 500–501
dispatch 500, 507–508
generating 501–502
interests 500
matching 501
overview 499–500
priority 509
queued events 502
receivers, see event receivers
sending 507–508
synchronous delivery 510–512

Events component 497–543
inheritance diagram 498

examples
Grid class 271
ShadowedShape class (improved version) 268
ShadowedShape class (short version) 265
Stencilizer class 274

Exception class 643
catching syntax 642
exceptions in the Kaleida Media Player 645
format string 644
guard syntax 642
report method 642
throwArg global variable 645
throwTag global variable 645

683

using 645
Exceptions 641
exceptions

loader component 660
Exceptions component 642

inheritance diagram 642
excise method (Iterator) 472
existKey method (KeyboardDevice) 529
explicit keys 448
ExplictilyKeyedCollection class 448
exponential functions 485
Exporter class 649
exporting

see Import and Export component, ImportExpor-
tEngine class

exportMedia method (ImportExportEngine) 649
external command interface 667

F
false global constant 484
fastForward method (Player) 168
file name manipulation 551
Files 545
files

accessing 553
and streams 564
creating 552
deleting 553
navigating 552
opening 555
saving 555

Files component 547
inheritance diagram 547

fill instance variable
(PageLayer) 327
(PageTemplate) 327

fill instance variable (TwoDSpace) 87
fill method

(Surface) 262
using 263

filling shapes 251
fills

in document templates 327
findAllAtPoint instance variable

(TwoDMultiPresenter) 84
findAllInStencil instance variable

(TwoDMultiPresenter) 84
findFirstAtPoint instance variable

(TwoDMultiPresenter) 84
findFirstInStencil instance variable

(TwoDMultiPresenter) 84
findParent method (DocTemplate) 330
Fixed class 482, 488
fixed-point arithmetic 488
fixNameForOS method (RootDirRep) 551
Flag class 595, 597
Float class 482, 488

floating-point numbers 482–489
machine-dependence 488

FocusEvent class 517–518
focusType instance variable 517

focusType instance variable (FocusEvent) 517
Font class 283, 293

see also Text and Fonts component
fonts

creating 290
fonts, see Text and Fonts component
forEach method (Collection)

Collection class 462
forEachBinding method (Collection)

Collection class 462
format global function 638
format strings

of exceptions 644
forward method (Document) 329
frame

definition 671
frame buffer

definition 671
drawing to 90

frame instance variable
(Page) 320, 326
(TransitionPlayer) 215

freeing
bitmap data 251

front-to-back ordering 85
FullScreenWindow class

refreshing a window 91
func instance variable (Thread) 587
functions

AbstractFunction class 619
ByteCodeMethod class 620
dispatch 619–623
Generic class 620
Primitive class 620
PrimitiveMethod class 620
redefinition 622

G
gaitWait global function 596
garbage collector 573–580

animation 204
definition 672
increment 574
setGCIncrement global function 575
threads 583, 599

garbageCollect global function 574
Gate class 595
gates 595

in pipes 593
gateWaitAfterOpening global function 602
GeneralException class 643
generic 671
Generic class 620

684

ScriptX Components Guide

generic function
definition 671

getAccessory method (AccessoryContainer) 415,
418

getAllGenerics 624
getAllMethods 624
getAttr method (Text) 294
getAttrRange method (Text) 294
getAttrs method (Text) 294
getClipboard method (Clipboard) 406
getDefaultAttr method (TextPresenter) 296
getDefaultAttrs method (TextPresenter) 296
getDeviceFromList class method

(InputDevice) 515
getDirectMethods 624
getDirectSupers 624
getKeyName method (KeyboardDevice) 516
getMIDIDriverList function 192
getNextMarker method (Player) 174
getNth method (LinearCollection) 454
getParentData method (DocTemplate) 324
getPreviousMarker method (Player) 174
getPrinterNameList global function 358
getStorageContainer global function 381
getStream method (DirRep) 549, 553, 564
getStream method (DirRep) 413
global 577
global functions

getPrinterNameList 358
globalBoundary instance variable (TwoDPresenter) 262
globalBoundary instance variable

(TwoDPresenter) 69
globalBrightness instance variable (Player) 170
globalContrast instance variable (Player) 170
globalHue instance variable (Player) 170
globalSaturation instance variable (Player) 170
globalTransform instance variable

(TwoDPresenter) 69
globalVolumeOffset instance variable (Player) 170
Glossary 663, 669
goto method

(Document) 329
(SequenceCursor) 464

goToBegin method (Player) 168
goToEnd method (Player) 168
goToMarkerFinish method (Player) 173
goToMarkerStart method (Player) 173
grabAction instance method (Dragger) 110
graphics facilities 22

see also 2D Graphics component
Gravity class 102

contention among controllers 110
sample script 110

Grid class 271
GroupPresenter class

clipping 85
container presenters 82

GroupSpace class
clipping 85

container presenters 82
presentation container 47

guard syntax 642

H
hardware device 502
hashing 460
HashTable class 460
HashTable class

memory and load management 463
storage containers 384

hasUserFocus instance variable
(TitleContainer) 396

hide method (Window) 60, 404
hints

for smoother bitmap animation 258
hit 121
hit testing 121
hotSpot instance variable (Pointer) 519
hours instance variable (Time) 490
hyperbolic functions 485
hypertext links 302

I
identityMatrix global constant (TwoDMatrix) 253
images

see also shapes 238
imaging model 237
immediate objects 486–488
ImmediateFloat class 482, 488, 634

inflate method 381
ImmediateInteger class 482, 634

inflate method 381
implement

definition 672
ImplicitlyKeyedCollection class 448
Import and Export 647
Import and Export component 649

export modules 650
import modules 650
importrs folder 650
inheritance diagram 649
registering export modules 650
registering import modules 650
theImportExportEngine global variable 649

Importer class 649
ImportExportEngine class 649

exportMedia method 649
importing data 650
importMedia method 649

ImportExportError class 644
Importing

see Import and Export component
importing

see Import and Export component, ImportExpor-
tEngine class

685

importing media 182
container keyword 183

importMedia method (ImportExportEngine) 182, 649
importrs folder 650
includesLower instance variable

(NumberRange) 625
IndirectCollection class 469

objectAdded method 462
objectRemoved method 462

IndirectCollection class
delegation 625
isAppropriateObject instance method 108, 109
objectAdded instance method 109
objectRemoved instance method 109
spaces 49, 88
targetCollection instance variable 49, 108
TwoDMultiPresenter class 82

inflate generic function 380, 381
inflate method (ImmediateFloat) 381
inflate method (ImmediateInteger) 381
inflate method (NameClass) 381
inflate method (RootObject) 380, 381
inheritance 14

definition 672
init, see Initialization protocol
initCopy, see Copy protocol
Initialization protocol 615–619

afterInit 615
creating a new instance 616
creating new classes 614
init 615
keyword arguments 617
new 615
new method (RootClass) 614
overriding init and afterInit 619
overriding new 619

inkMode instance variable (Brush) 252
input devices 514–530

cross-platform compatibility 528
focus 517–518
joystick 529
keyboard devices 515–517
mouse devices 519–528
overview 499–500
polling 515
virtual devices 529

Input Devices component 497–543
inheritance diagram 498

InputDevice class 502, 514
deviceID instance variable 515
enabled instance variable 515
getDeviceFromList class method 515

inputStream instance variable (MediaStream) 181
inside method (Stencil) 121
installQuitQuery global function 419, 420
installQuitTask global function 419, 421
instance

definition 672
instance method

definition 672
instance variable

definition 672
instance variables

accessor methods 624–625
instantiate

definition 672
Integer class

bit operations 485
bitwise operations 486
length method 485
lshift method 485
rshift method 485

integers 482–489
interaction facilities 22, 23, 35
interests class variable (Event) 503, 509, 514
InterleavedMoviePlayer class 180

interleavedStream instance variable 181
movies in a document 332
using 187

interleavedStream instance variable
(InterleavedMoviePlayer) 181

internal state 65
interned objects 381
Interpolator class

tickle instance method 48
invisibleColor instance variable (Bitmap) 249
invoker instance variable (Menu) 128
isAKindOf generic function

protocols 50
Space class 50

isAppropriateAccessory method
(TitleContainer) 415, 416, 418

isAppropriateObject instance method
(IndirectCollection) 108

illustration 109
isAppropriateObject method (TwoDSpace) 88
isButtonDown method (MouseDevice) 501
isComparable, see Comparison protocol
isDir method (DirRep) 550
isInMemory global function 381
ISO 10646 284
isPurgeRequested global function 381
isSatisfiedBy method (Event) 501, 509, 510, 513
isSatisfiedBy method (KeyboardEvent) 517
isSatisfiedBy method (MouseEvent) 520, 524
isSeekable method (Stream) 568
isThere method (DirRep) 550
isType method (DirRep) 550
isVisible instance variable (SystemMenuBar) 393
isVisible instance variable (Window) 60
items (collections) 445
iterate method (Collection) 472
iterator 470

definition 445, 447
kind of a stream 471

Iterator class 470
creating instances 565
excise method 472

686

ScriptX Components Guide

sample script 472
iteratorClass instance variable (Collection) 470
ivNames 624
ivTypes 624

K
Kaleida Media Player

clocks created by 153
exceptions 645

kettle example 161
key 448
keyboard devices 515–517

focus 517–518
keyboard events 515–517
KeyboardDevice class 503, 507, 514, 530

autoRepeat instance variable 529
existKey method 529
getKeyName method 516
keyModifiers instance variable 503, 516

KeyboardDownEvent class 502
KeyboardEvent class 502, 508

isSatisfiedBy method 517
keyCode instance variable 516
keyModifiers instance variable 516, 517
maxKeyCode instance variable 516
minKeyCode instance variable 516

keyCode instance variable (KeyboardEvent) 516
KeyedLinkedList class 456
KeyedLinkedList class

memory and load management 463
storage containers 384

keyModifiers instance variable
(KeyboardDevice) 503, 516

keyModifiers instance variable
(KeyboardEvent) 516, 517

keyModifiers instance variable (MouseEvent) 520
key-value pairs 445, 446, 448
kind of

definition 673
KMP

definition 673

L
label instance variable (Marker) 175
language facilities 22, 24
LargeInteger class 482
length method (Integer) 485
libraries 374, 411–414

opening and closing 408, 412
see also LibraryContainer class

libraries instance variable
(AccessoryContainer) 418

libraries instance variable
(LibraryContainer) 375

libraries instance variable (TitleContainer) 374,
408, 409

library
definition 673

library containers 375, 411–414
creating 411
modules 375–376, 412
startup action 376
.sxl file extension 411
target collection 384

LibraryContainer class 375, 578
addUser method 408, 409
close method 412
directory instance variable 395
libraries instance variable 375
preStartupAction instance variable 376
removeUser method 408, 409
startupAction instance variable 376, 393, 436
users instance variable 375, 408, 409

Line class 236
using 243

Line class
presentation with TwoDShape 79

LinearCollection class 454
deleteNth method 454
getNth method 454

LineStream class 562
lineWidth instance variable (Brush) 252
linked lists

printing 639
recursion 639

LinkedList class 456
LinkedList class

memory and load management 463
load generic function 379, 395

collections 463
load management 23, 26, 578
load method (RootObject) 379, 395, 578
Loadable extensions 663
loadable media players 666
loadable objects 654
loadable transitions 211
LoadableGroup class 653
LoadableUnit class 653
LoadableUnitID class 653, 655, 656, 657, 659
loadDeep global function

collections 463
Loader 651
Loader class 654, 656, 657, 658, 659, 660
Loader component 653

exception handling 660
features 654, 657
inheritance diagram 653
relinquishing units 659
the load process 657, 658

LoaderCode class 654
LoaderException class 644
local 577
local coordinates 66
local time (Clocks) 151
localCoords instance variable (MouseEvent) 508, 519

687

localEqual, see Comparison protocol
localLT, see Comparison protocol
localToSurface method (TwoDPresenter) 66
Lock class 462
Lock class 595, 596
lockMany global function 596, 602
lshift method (Integer) 485

M
machine-specific screens 66
Macintosh

resource files 549, 566
makeBackgroundLayer sample function 341
makeDefinitionLayer sample function 343
makeDocument sample function 352
makeMovieLayer sample function 347
makePictureLayer sample function 344
makeTemplate sample function 349
Marker class 168

accessing markers in a player’s marker list 174
creating markers 174
forwarding players to a marker 173
label instance variable 175
using labels 175
using markers 173

markerList instance variable (Player) 174
mask instance variable (Pointer) 519
master clocks 148
master player 169, 170
masterClock instance variable

(Clock) 149
(Player) 170

matchedInterest instance variable (Event) 537
matchedInterest instance variable

(MouseUpEvent) 510, 525, 526
MathException class 644
matteColor instance variable (Bitmap) 249
maxKeyCode instance variable (KeyboardEvent) 516
MCICMD extension 667
media

creating 181
importing 182
saving 183

media classes 16
Media Players component 179

duration instance variable 182
importing media 182
inheritance diagram 179
saving batch media example 185
saving media 183
saving media player example 183
saving media streams example 184
synchronizing players 181
using media players 186

MediaStream class 180
inputStream instance variable 181
saving media streams 184

mediaStream instance variable (MediaStreamPlayer) 181
MediaStreamPlayer class 167, 179

mediaStream instance variable 181
members (collections) 445
memory management

conservative collection 576
freeing a window 404
root set 576
ScriptX heap 575
tracing collection 576
Visual Memory 580

Memory Management component 573–580
MemoryException class 644
MemoryStream class 562

creating instances 564
menu bar (system) 405
Menu class 127

invoker instance variable 128
placement instance variable 129
popup method 128
subMenu instance variable 128
superMenu instance variable 128

metaclass 17, 673
definition 673

MetaClass class 613
metaclass network 613–615
metaMetaClass class 613
metaphors 9, 14
method

definition 673
method instance variable

definition 673
methodBinding 621
methods

dispatch 619–623
getter methods 624–625
implementation of class methods 614
setter methods 624–625

Microsoft Windows 3.1
GDI limitation 62

MIDI files
importing 190
playing 190

MIDI messages
long 191
short 191
system exclusive 191

MIDIDriver class 180, 192
channelPolyphony instance variable 193
finding a driver 192
playing MIDI events 193
sendMIDIEvent method 193

MIDIEvent class 180, 191
creating MIDI events 191
data instance variable 191
databyte1 instance variable 191
databyte2 instance variable 191
playing MIDI events 191
sending events to a driver 193

688

ScriptX Components Guide

statusByte instance variable 191
MIDIPlayer class 180

using 190
MIDIStream class 180
minKeyCode instance variable (KeyboardEvent) 516
minutes instance variable (Time) 490
mixin class

definition 673
modal window 61
model 33, 52
model object 34, 52
modeling facilities 35
modeling/presentation cycle 92
model-presenter-controller system 45–48

separation of model objects 46
models 46

views 47
modifying shapes 252
modular 8
modular compositions 8, 22
modularity 8
module

definition 673
ModuleClass class 17
modules

accessory containers 415
library containers 376
object store 376
storage containers 375–376

month instance variable (Date) 490
morph, see Coercion protocol
mouse buttons 520
mouse devices 519–528
mouse events 519–528

matching 522
presenters 521
TwoDPresenter class 521

mouse pointer 519
MouseCrossingEvent class 526–528

crossingType instance variable 526, 527
MouseDevice class 530

buttons instance variable 520
currentCoords instance variable 519
isButtonDown method 501
pointerType instance variable 519, 520

MouseDownEvent class
receiver function for 276

MouseDownEvent class 501, 502
sample script 532

MouseEvent class 502, 510
addEventInterest method 521, 522, 525
buttons instance variable 520
eventReceiver instance variable 522
isSatisfiedBy method 520, 524
keyModifiers instance variable 520
localCoords instance variable 508, 519
presenter instance variable 521
signal method 521
surfaceCoords instance variable 519

MouseMoveEvent class
receiver function for 276

MouseMoveEvent class
polling for events 515

MouseUpEvent class
receiver function for 276

MouseUpEvent class 502
matchedInterest instance variable 510, 525, 526
sample script 532

Movement class
contention among controllers 110
sample script 110
tickle instance method 106

movie files
importing and playing 187

MovieGroupSpace class 344, 346
MoviePlayer class 168, 180

movies in a document 332
slaveClocks instance variable 181
target instance variable 181
using 187

movingTarget instance variable (TransitionPlayer) 218
multiple inheritance

definition 673
multiple-clicking 125
multiplication 484
multitrack sequencing 13
mutableCopy method (TwoDMatrix) 254
MyDocument class 345

N
name literal

definition 673
NameClass class 17

inflate method 381
keys for collections 384

navigating
through documents 329

needsTickle 70
needsTickle instance variable (TwoDPresenter) 70
new, see Initialization protocol
newFrom, see Coercion protocol
not 484
notifyChanged method (TwoDPresenter) 253
notifyChanged method (TwoDPresenter) 95
Number class

operations 485
NumberRange class

includesLower instance variable 625
numbers

creating new instances 482
numeric constants 485
Numerics component 481–494

inheritance diagram 481

689

O
object

definition 673
object store

collections 462
Object Store protocol

afterLoading 380
canStore 380
deflate 380
inflate 380
load 379
update 379

Object System Kernel 609–640
inheritance diagram 611

objectAdded instance method
(IndirectCollection) 109

objectAdded method (IndirectCollection)
IndirectCollection class 462

objectAdded method (TwoDSpace) 88
object-oriented programming model 14
objectRemoved instance method

(IndirectCollection) 109
objectRemoved method (IndirectCollection) 462
objectRemoved method (TwoDSpace) 88
objects 17, 24

allocated 377
model 34
persistent 377
stored 377
transient 377

objectStoreMessages global variable 382
objectStoreMessagesStream global variable 382
ObjectStoreStream class

creating instances 565
ObjStoreException class 644
off-screen buffer

definition 674
off-screen drawing 59, 65, 92
offset instance variable

(Clock) 151
(Player) 172

OneOfNPresenter class 81
delegation 81, 626
subpresenters instance variable 81

open class method (AccessoryContainer) 418
open class method (TitleContainer) 394
Open dialog box 555
Open menu command 394
Open Title menu command 394
OpenAccessory menu command 416, 418
openMIDIDriver function 192
or 484
order instance variable (Callback) 158, 159
ordinal position 288
outlines

in document templates 327
of shapes 251

Oval class 236

using 243
Oval class

presentation with TwoDShape 79
override

definition 674

P
Page class 318, 320

actuators on a page 331
appending pages to a document 329
boundary instance variable 326
changePage method 329
finding page number 331
findParent method 330
frame instance variable 320, 326
getParentData method 324
going back or forward a page 329
movies on a page 332
sharing templates 322

page elements
see PageElement class

page layers
scrolling presenters 127

PageElement class 318, 320
appending page elements to a page layer 328
changePage method 329
findParent method 330
frame instance variable 323
getParentData method 324
movies in a page element 332
presenter instance variable 321
specifying target data 323
target instance variable 321

PageLayer class 318, 320
boundary instance variable 326
changePage method 329
fill instance variable 327
findParent method 330
getParentData method 324
stroke instance variable 327

PageLayer class
presentation container 47

pages
see Page class

PageTemplate class 318, 320
boundary instance variable 326
changePage method 329
fill instance variable 327
findParent method 330
getParentData method 324
stroke instance variable 327

PageTemplate class
clipping 85

Pair class 461
PaletteChangedEvent class 261
PaletteChangedEvent class 501
pan instance variable (DigitialAudioPlayer) 170

690

ScriptX Components Guide

parentDir method (DirRep) 552
parsing, see strings
Paste menu command 406

see also pasteToSelection method
pasteToSelection method (TitleContainer) 400,

407
pasteToSelection method (Window) 400, 407
Path class 237

using 246
Path class

presentation with TwoDShape 79
path separator character 549
PathAction class 200
paths as sequences 550
pattern instance variable (Brush) 252
pause method (Clock) 401
pause method (Player) 168
pendingAction instance variable (Thread) 602
PeriodicCallback class 146

skipIfLate instance variable 159
persistence 25
persistent object

definition 674
persistent objects 377
PhysicalKeyboard class 503, 530
PhysicalMouse class 515, 530
PhysicalMouseDevice class 501
PipeClass class 506, 591, 593

acquireQueue method 506
breakPipe method 594

pipes 593
placement instance variable (Menu) 129
PlatformFont class 283, 293
play method (Player) 168
Player class 167

audioMuted instance variable 170
globalBrightness instance variable 170
globalContrast instance variable 170
globalHue instance variable 170
globalSaturation instance variable 170
globalVolumeOffset instance variable 170
how players work 169
markerList instance variable 174
marking time ranges 173
masterClock instance variable 170
offset instance variable 172
setting offsets for slave players 171
synchronizing players 170
time instance variable 169

Player class
fastForward method 168
getNextMarker method 174
getPreviousMarker method 174
goToBegin method 168
goToEnd method 168
goToMarkerFinish method 173
goToMarkerStart method 173
pause method 168
play method 168

playPrepare method 169
playUntil method 168
resume method 168
rewind method 169
stop method 168
title instance variable 401, 412, 415

PlayerException class 644
players

threads 583
Players component 43, 167

inheritance diagram 167
master player 169
playing slaves at different rates 173

playing
audio 186
movies 187
standard MIDI files 190

playMovie method (MovieGroupSpace) 346
playPrepare method (Player) 169
playUntil method (Player) 168
plug method (Stream) 569
Point class 236
Point class 629, 631, 635, 639
Pointer class 519

bitmap instance variable 519
hotSpot instance variable 519
mask instance variable 519

pointerType instance variable (MouseDevice) 519,
520

PolarPoint class
Coercion protocol 631–632
Comparison protocol 635–637
definition 629
Printing protocol 639

polling
input devices 515, 528
mouse devices 528

polymorphism
definition 674

popup method (Menu) 128
position instance variable (TwoDPresenter) 69
preemptibility

threads 599–602
preemptibility instance variable (Thread) 599–602
presentation hierarchy 56, 119, 522, 525

compositing 90
TwoDPresenter class 58

presentedBy instance variable
(object in a document) 330
(Presenter) 57

presentedBy instance variable (Presenter) 82, 87,
625

presentedBy instance variable (TwoDPresenter) 96
Presenter class

presentedBy instance variable 57
subpresenters instance variable 57

Presenter class 43, 55
boundary instance variable 88
modeling 47

691

model-presenter-controller system 45
presentedBy instance variable 82, 87, 625
subpresenters instance variable 87

presenter instance variable (MouseEvent) 521
presenter instance variable (PageElement) 321
presenters 15, 24, 55–88

conceptual overview 47
container presenters 76, 82
definition 56
event interests 520–525
how they work 55
layering 120
positioning 239
presentation container 47
presentation hierarchy 119
see TwoDPresenter class
shared 117
simple presenters 76, 79
user interface 116, 117
z-order 120

presentMessagePanel global function 557
presentOpenFilePanel global function 555
presentSaveFilePanel global function 555
press instance method

(Actuator) 48
preStartupAction instance variable

(AccessoryContainer) 418
prestartupAction instance variable

(AccessoryContainer) 418
preStartupAction instance variable

(LibraryContainer) 376
preStartupAction instance variable

(TitleContainer) 394
Primitive class 620, 638
PrimitiveMethod class 620
prin 621
prin, see Printing protocol
prinln global function 638
print global function 638
printing (objects) 638–640
Printing protocol 638–640

recursive structures
printRecursively global function 640
printString global function 638
printTitle method (TitleContainer) 400
printTitle method (Window) 400
priority

threads 598–599
priority instance variable

(Callback) 158
priority instance variable (Event) 509
priority instance variable (Thread) 589, 598
Projectile class

elasticity instance variable 111
sample script 111
tickle instance method 106
velocity instance variable 106

Property Manager component 2
protection

threads 602–603
protection instance variable (Thread) 603
protocols

controllers 109
protocols instance variable 50
protocols instance variable (Controller) 109
protocols instance variable (TwoDSpace) 88
protocols instance variable(Space) 50
PushButton class 122, 123, 124

pushbuttons in documents 331
using in documents 331, 335

PushButton class 86
PushButton class 514, 628

activateAction instance variable 622
clipping 85

Q
Quad class 461
qualifiers

readonly 378
reference 378
transient 378, 380

QueuedEvent class 502
QuickTimePlayer 666
quit global function 419
Quit Manager 419–421, 431–439

deinstallQuitQuery global function 419, 420
deinstallQuitTask global function 419
installQuitQuery global function 419, 420
installQuitTask global function 419

quit queries 419, 419–420, 431–439
quit tasks 419, 420–421, 431–439
quitting ScriptX 419–421

quit queries 419, 419–420, 431–439
quit tasks 419, 420–421, 431–439

R
radio buttons 122, 123
RadioButtonController class 125
RamStream class 562

creating instances 564
Range class

size instance variable 466
ranges

continuous 467
discrete 468
immutable 466
literals 466
mutable 466
of numbers 466

rarelyInflatedClasses global variable 382
rate instance variable

(Clock) 147, 149, 152
RateCallback class 146
read method (Stream) 566, 567
readonly qualifier 378

692

ScriptX Components Guide

Rect class 237
using 243

Rect class
Coercion protocol 632
presentation with TwoDShape 79

recurPrin, see Printing protocol
reference qualifier 378
reference to

definition 674
refresh method (TwoDPresenter) 74
refreshRegion method (TwoDCompositor) 91
refreshRegion method (Window) 91
Region class 237
Region class

presentation with TwoDShape 79
refreshing a window 91

reject method (Event) 506, 511
releasing

bitmap data 251
relinquish method 596
relinquish method (Lock) 596
relinquishing loadable units 659
remapOnDraw instance variable

(Bitmap) 260
(BitmapSurface) 260
(DisplaySurface) 260

remapOnSet instance variable
(Bitmap) 261
(BitmapSurface) 261
(DisplaySurface) 261

removeAccessory method (TitleContainer) 415
removeUser method (LibraryContainer) 408, 409
report method (Exception) 642
requestPurge global function 381, 414, 573, 579
requestPurgeForAllObjects method

(StorageContainer) 373
ResBundle class 547, 549

creating instances 566
ResStream class 549

creating instances 566
result instance variable (Thread) 587, 589, 590
result instance variable (Thread)

Thread class
result instance variable 590

resume method (Clock) 401
resume method (Player) 168
return

threads 587
rewind method (Player) 169
rewindScript instance variable (TargetListAction) 202
rewindScripts instance variable (ActionListPlayer) 203
RGBColor class 237, 252
root clock 148
RootClass class 17, 612, 613, 614
RootObject class 17, 612, 613, 614

afterLoading method 380, 382
canStore method 380
deflate method 380
inflate method 380, 381

load method 379, 395, 578
update method 379

rotating
about a stencil’s center 258
about a stencil’s origin 256
matrices 255
shapes 253
stencils 253

RoundedRect class
Coercion protocol 632

RoundRect class 237
using 243

RoundRect class
presentation with TwoDShape 79

RowColumnController class 128
rshift method (Integer) 485

S
safeRecurPrin global function 640
Sample script

advanced document template example 337
simple document template example 336

Save As dialog box 556
Save dialog box 555
saving

batch media 185
media 183
media streams 184

scale instance variable (Clock) 147
scale instance variable (Time) 490
ScaleCallback class 146
Scaling

matrices 255
scaling

matrices 255
shapes 253
stencils 253

scheduler, see threads 583
screen coordinates 65
script instance variable (Callback) 622
ScriptAction class 201
ScriptAction class

blocking of threads 591
scripted extensions 665
ScriptError class 644
scripts

for callbacks 146, 156
ScriptX Development Environment 5
ScriptX development environment

definition 674
ScriptX development framework 5
ScriptX heap 575
ScriptX Platform 5
ScriptX runtime environment

definition 674
scroll bars

adding to a window 61

693

ScrollBar class 130
ScrollBar class 497, 514

valueAction instance variable 622
ScrollingPresenter class 126

using in documents 334
ScrollingPresenter class

windows 61
sealed class

definition 674
sealed classes

gates 595
sealed objects

numbers 482
search-and-query facilities 23, 27
SearchContext class 310
searchIndex global function 310
seconds instance variable (Time) 490
seekFromCursor method (Stream) 568
seekFromEnd method (Stream) 568
seekFromStart method (Stream) 568
selections 303
sendMIDIEvent method (MIDIDriver) 193
sendToBack method (Window) 402
sendToQueue method (Event) 500, 506, 508, 513, 537
SequenceCursor class 464

goTo method 464
sample script 465

setAttr method (Text) 294
setAttrFromTo method (Text) 294
setClipboard method (Clipboard) 406
setDefaultAttr method (TextPresenter) 296
setGCIncrement global function 575
settings notation 134
ShapeAction class 200
shapes

boundaries versus global boundaries 262
clipping 251
filling 251
modifying 252
positioning 239, 243
rotating and scaling 253
stroking 251

shared objects 381
show method (Window) 60
showChangedRegion instance variable

(TwoDCompositor) 74
signal method (Event) 500, 501, 508, 509, 510, 513,

537
signal method (MouseEvent) 521
signalDispatch class method (Event) 508
simple presenters 79
simulation facilities 22, 34
Single class 461
size instance variable (Range) 466
skipIfLate instance variable (PeriodicCallback) 159
slave clocks 148
slave players 170

different rates 173
different start times 171

slaveClocks instance variable (MoviePlayer) 181
slot instance variable

definition 674
smoother animation hints

for bitmaps 258
SND files 186
sorted collections 449
SortedArray class 454
SortedArray class

memory and load management 463
SortedKeyedArray class 454
SortedKeyedArray class

memory and load management 463
storage containers 384

sound channel allocation 187
Space class

and clocks 146
Space class 43, 49, 50, 87, 101

controllers instance variable 50, 54
member objects 51
modeling 47
model-presenter-controller system 45
targetCollection instance variable 51

space instance variable(Controller) 54
SpaceException class 644
spaces 15

attaching a controller 54
clock 50
clocks 52–54
conceptual overview 48
controllers 48, 50, 54–55, 101
member objects 50
protocols 50
timing 52–54
user interface 116

spaces and presenters
examples 97

Spaces and Presenters component 43–??, 626
spawn method (DirRep) 551
specialize

definition 674
SpecialPage class 349
stack space

threads 586
stacking order 85
Standard MIDI Files

see MIDI files
startupAction instance variable

(AccessoryContainer) 418
startupAction instance variable

(LibraryContainer) 376, 393, 436
startupAction instance variable

(TitleContainer) 393, 395
starvation (threads) 586
state

definition 674
status instance variable (Thread) 587
status instance variable (Thread)

Thread class

694

ScriptX Components Guide

status instance variable 587
statusByte instance variable (MIDIEvent) 191
Stencil class 236

inside method 121
Stencil class

boundary of a space 88
Stencilizer class 274
Stencilizer sample script 274, 276, 277
stencils

clipping 251
positioning 240
presenters and stencils 79
rotating and scaling 253
see also shapes 240
transforming 253

stop method (Player) 168, 173
stopMovie method (MovieGroupSpace) 346
storage containers

adding objects 383
modules 375–376
target collection 384

StorageContainer class 373, 578
 global variable 382
getStorageContainer global function 381
requestPurgeForAllObjects method 373
theContainerSearchList global variable 382
update method 373

stored objects 377
stream

cursor 562
defined 562
non-seekable 563
read-only 562, 564
read-write 562, 564
seekable 563
write-only 562, 564

Stream class 562
also see iterator
file access 564
methods for reading 570
methods for seeking 570
methods for writing 570
plug method 569
read method 566, 567, 568
seekFromCursor method 568
seekFromEnd method 568
seekFromStart method 568
subclasses of 564
subclassing 569
write method 566, 567

StreamException class 644
Streams 559
streams

and data 566, 567, 568, 569
and files 564
and strings 287

Streams component 561
inheritance diagram 561

String class 283, 284

String class
Coercion protocol 632

StringConstant class 283
StringConstant class

Coercion protocol 632
StringIndex class 310
strings

adding to 305
concatenating 305
creating 289
deleting from 308
encoding of 284–285
literals 286
parsing 310
presenting 291
searching 310
see Text and Fonts component

stroke instance variable
(PageLayer) 327
(PageTemplate) 327

stroke instance variable (TwoDSpace) 87
stroke method

(Surface) 262
using 263

subclass
definition 674

subMenu instance variable (Menu) 128
subobjects 377
subpresenters

definition 57
subpresenters instance variable

(Presenter) 57
subpresenters instance variable

(CostumedPresenter) 80
subpresenters instance variable

(OneOfNPresenter) 81
subpresenters instance variable (Presenter) 87
subpresenters instance variable

(TwoDMultiPresenter) 82
subpresenters instance variable

(TwoDPresenter) 75, 76
subpresenters instance variable (Window) 410
subtraction 484
superclass 674

definition 674
superMenu instance variable (Menu) 128
Surface class 236
surface coordinates 66
surfaceCoords instance variable (MouseEvent) 519
surfaceToLocal method (TwoDPresenter) 66
.sxa file extension 416
.sxl file extension 411
.sxt file extension 398
synchronizing

clocks 148
players 170

system exclusive MIDI messages 191
system menu (Windows and OS/2)

close menu item 60, 61

695

system menu bar 405
SystemError class 644
SystemMenuBar class 405

isVisible instance variable 393
systemMenuBar instance variable

(TitleContainer) 405
systemQuery global function 529

T
target collection objects 377
target instance variable

(MoviePlayer) 181
(PageElement) 321, 323
(TwoDPresenter) 67

target instance variable (CostumedPresenter) 80,
626

targetCollection instance variable
(IndirectCollection) 49, 108

targetCollection instance variable (Space) 51
targetCollection instance variable

(TwoDMultiPresenter) 49, 84
targetGetter method

(MovieGroupSpace) 344
TargetListAction class 201

rewindScript instance variable 202
sample script 205

TargetListAction class
blocking of threads 591

targetSetter method
(MovieGroupsSpace) 344

templates
pages share templates 322

temporal aliasing 96
terminate method (TitleContainer) 397, 400
terminateAction instance variable

(TitleContainer) 400
text actions, using 312
Text and Fonts component 43, 283–313

actions for hypertext 302
attributes 293–303

defaults 296

see text attributes

summary list of 295
caret, see cursor
creating new instances 286, 292
cursor positions 288
cursors

setting defaults 305
Font class 293
fonts 293
inheritance diagram 283
insertion point 303
links for hypertext 302
PlatformFont class 293
searching text 310
selections

setting defaults 305
string arithmetic 305
String class 283, 284
StringConstant class 283, 284
strings as collections 286
strings as streams 287
Text class 283, 284
text presentation 291–293
text representation 284–291
TextEdit class 291
TextPresenter class 291

text attributes 293–303
@action 302
@alignment 300
@brush 298
@font 297
@indent, @indentFromEnd, and @paraIndent 301
@leading, @paraLeading, and

@firstLineLeading 298
@size 297
@style 298
@underline 298
@weight 297
@width 298
attributes instance variable 294
cursor positions 288
difference between Text and TextPresenter 294
getting and setting 296
justification, see alignment
methods for defining 294
setting defaults 296
summary 295

Text class 283, 284
text cursor 520
text, see Text and Fonts component
TextEdit class 283, 291
TextEdit class 497, 514

focus 517, 518
TextException class 644
TextPresenter class 283, 291

instance variables for 292
see also Text and Fonts component

TextStencil objects and Text objects 295
TextStencil class 237

using 247
The ScriptX Development Framework 3
theCalendarClock global constant 153
theCalendarClock global variable 490
theClipboard global constant 406
theContainerSearchList global variable 382, 393,

394, 395
theDefault1Colormap global constant 261
theDefault2Colormap global constant 261
theDefault4Colormap global constant 261
theDefault8Colormap global constant 261
theEventTimeStampClock global constant 153
theEventTimeStampClock global variable 489
theImportExportEngine global variable 649

696

ScriptX Components Guide

theMainThread global variable 585
theOpenContainers global variable 382, 395, 410,

418
theOpenTitles global variable 393, 396, 415
theRootDir global variable 548
theRunningThread global variable 589
theScratchTitle global constant 397, 414
theScratchTitle global variable 411, 415
theScriptDir global variable 395
theStartDir global variable 548
theStartDir global variable 395, 398, 412, 416
thetempDir global variable 548
theTitleContainer global variable 393, 396, 401,

410, 415
theUIEventDispatchQueue global variable 528
thrashing (threads) 586
Thread class

arg instance variable 587
func instance variable 587
pendingAction instance variable 602
preemptibility instance variable 599–602
priority instance variable 589, 598
protection instance variable 603
result instance variable 587, 589, 590
status instance variable 587
threadDeactivate instance method 602
threadInterrupt instance method 602
threadKill instance method 602
threadKill method 590
threadProtect instance method 602, 603
threadRestart instance method 602
threadRestart method 590
threadReturn instance method 602
threadReturn method 587, 590
threadUnprotect instance method 602, 603

threadCriticalDown global function 586, 589,
599–??, 600, ??–602

threadCriticalUp function 462
threadCriticalUp global function 586, 589, 599–??,

600, ??–602
threadDeactivate instance method (Thread) 602
ThreadException class 644
threadExit global function 587
threadInterrupt instance method (Thread) 602
threadKill instance method (Thread) 602
threadKill method (Thread) 590
threadProtect instance method (Thread) 602, 603
threadRestart instance method (Thread) 602
threadRestart method (Thread) 590
threadReturn instance method (Thread) 602
threadReturn method (Thread) 587, 590
Threads 581
threads

blocking 591
callInThread global function 599
collections 462
compositor 94
concurrency 586
deadlock 586

event system 497
functions 587
garbage collector 599
interaction through gates 595
pipes 593
preemptibility 599–602
priority 598–599
programming guidelines 586
protection 602–603
return expression 587
scheduler 583, 598, 599
stack space 586
starvation 586
system threads 583
temporal aberrations 94
thrashing 586
threadCriticalDown global function 600
threadCriticalUp global function 600
time slices 598
user priority callbacks thread 93

Threads component 583–608
inheritance diagram 584

threadUnprotect instance method (Thread) 602, 603
threadYieldTo global function 589
throwArg global variable 645
throwTag global variable 645
tickle instance method

(Bounce) 48
(Controller) 48
(Interpolator) 48

tickle instance method (Bounce) 103, 106
tickle instance method (Controller) 103, 104,

106–108, 591
tickle instance method (controllers) 50
tickle instance method (Movement) 106
tickle instance method (Projectile) 106
tickle instance method (TwoDPresenter) 591
tickle instance method(Controller) 55
Ticklish protocol

controllers 48, 55, 103, 104, 106–108
ticks instance variable (Clock) 148
ticks instance variable (Time) 490
time and clocks 147
Time class 489–491

addHours method 490
addMinutes method 490
addSeconds method 490
hours instance variable 490
minutes instance variable 490
scale instance variable 490
seconds instance variable 490
ticks instance variable 490

time instance variable
(Clock) 148
(TransitionPlayer) 215

time instance variable
(Player) 169

TimeAction class 201
TimeCallback class 146

697

TimeJumpCallback class 146
times 489–491
timing hierarchy 146, 148

and clock behavior 152, 154
and rates 152
and storage containers 153
modeling with 153
setup 150
synchronizing 151

title
definition 675

title bar 61
title containers

accessories 374
adding objects 383
clocks 400
closing 392, 399
closing libraries 408
creating 398
libraries 374
modules 375–376
multiple 410
opening libraries 408
players 400
saving 392, 399
startup action 376
.sxt file extension 398
target collection 384, 398
updating 392, 399
user focus 400
window management 400–402
windows 400

title instance variable (Clock) 401, 412, 415
title instance variable (Player) 401, 412, 415
title instance variable (Window) 401, 402, 412, 415
Title Management component 371–439

inheritance diagram 371
title management facilities 22
TitleContainer class 374, 392

addAccessory method 415, 416, 417, 418
clearSelection method 400
close method 396, 399, 400, 419
copySelection method 400, 407
cutSelection method 400, 407
dir keyword argument 398
directory instance variable 395
hasUserFocus instance variable 396
isAppropriateAccessory method 415, 416,

418
libraries instance variable 374, 408, 409
open class method 394
pasteToSelection method 400, 407
preStartupAction instance variable 394
printTitle method 400
removeAccessory method 415
startupAction instance variable 393, 395
systemMenuBar instance variable 405
terminate method 397, 400
terminateAction instance variable 400

topClocks instance variable 402, 405
topPlayers instance variable 402, 405
update method 399
windows instance variable 62, 401, 410

titles 374
closing 393, 396
muting 405
opening 393
pausing 405
resuming 405
see also title containers
see also TitleContainer class
startup sequence 394

Toggle class 86, 122, 123, 124
Toggle class

clipping 85
tool

definition 675
top clock 148
topClocks instance variable (TitleContainer) 402,

405
topPlayers instance variable (TitleContainer) 402,

405
topPresenter instance variable

(TwoDCompositor) 91
transfer method

(Surface) 262
using 263, 265

transform instance variable (TwoDPresenter) 68
transforming

stencils 253
transient objects 377
transient qualifier 378, 380
TransitionPlayer class 168, 213

autoSplice instance variable 217, 220
backgroundBrush instance variable 218
cachedTarget instance variable 218
duration instance variable 215
frame instance variable 215
movingTarget instance variable 218
sample script 231
time instance variable 215
useOffscreen instance variable 218

transitions
how they work 213
illustration 213
loadable 211
making the target disappear 220
played backwards 215
sample script 231
setting up 219
technique for altering an existing collection 221

Transitions component 211
inheritance diagram 211

translating
matrices 255

trigonometric functions 485
Triple class 461
true global constant 484

698

ScriptX Components Guide

Two D Graphics
using 243

Two D Graphics component 235
inheritance diagram 236

2D Graphics component 43
TwoDCompositor class

PaletteChangedEvent interests 261
synchronizing clocks 95

TwoDCompositor class 43, 89–97
creating a compositor 90
disabling the compositor 92
displaySurface instance variable 91
enabled instance variable 92
modeling phase 94
model-presenter-controller system 45
refreshRegion method 91
showChangedRegion instance variable 74
topPresenter instance variable 91
useOffScreen instance variable 91

TwoDController class 103
modeling 48

TwoDMatrix class 237, 253
identityMatrix global constant 253
rotating 255
scaling 255
translating 255

TwoDMultiPresenter class
example 86
z-ordering 85

TwoDMultiPresenter class 82–88, 514
boundary instance variable 85
clipping 85
container presenters 82
creating 83
draw method 84
findAllAtPoint instance variable 84
findAllInStencil instance variable 84
findFirstAtPoint instance variable 84
findFirstInStencil instance variable 84
IndirectCollection class 82
managing subpresenters 59
presentation container 47
presentation hierarchy 525
subpresenters instance variable 82
targetCollection instance variable 49, 84
TwoDSpace class 87

TwoDPresenter
creating subclasses 261

TwoDPresenter
subpresenters instance variable 75, 76

TwoDPresenter class 239
draw method 277
location 68
refresh method 74
size 68
target 67
target instance variable 67
transform 68
transform instance variable 68

transform matrix 68
TwoDPresenter class 55, 58–59

adjustClockMaster method 96
bBox instance variable 69
boundary instance variable 69
clock instance variable 70
compositor instance variable 70, 91
container presenter 76
createInterestList instance variable 525
direct instance variable 73
draw instance method 591
drawing to a display surface 59
eventInterests instance variable 520, 522, 523,

524, 525
globalBoundary instance variable 69
globalTransform instance variable 69
improving drawing speed 73
interests in mouse events 521
localToSurface method 66
modeling 47
mouse events 521
position instance variable 69
presentation hierarchy 58
presentedBy instance variable 96
re-drawing 72
simple presenter 76
subpresenters of a TwoDMultiPresenter object 82
surfaceToLocal method 66
tickle instance method 591
window instance variable 70
x instance variable 69
y instance variable 69
z instance variable 69

TwoDShape class
see also shapes
using 243

TwoDShape class 79
sample script 80

TwoDSpace class
clock instance variable 147
example 78
hit testing 122

TwoDSpace class 87
clipping 85
container presenters 82
draw method 87
fill instance variable 87
isAppropriateObject method 88
objectAdded method 88
objectRemoved method 88
presentation container 47
presentation hierarchy 88
protocols instance variable 88
stroke instance variable 87

typeList instance variable (Clipboard) 406

699

U
undefined system object 580
Unicode 284

key codes 516
unprePareMIDIDriver method (MIDIDriver) 193
update generic function 379
update method (RootObject) 379
update method (StorageContainer) 373
update method (TitleContainer) 399
useOffscreen instance variable (TransitionPlayer) 218
useOffScreen instance variable

(TwoDCompositor) 91
user focus 400
user interaction facilities 31, 37
user interface

controllers 110
User Interface component 43, 115, 497

inheritance diagram 115, 121
user’s view 65
users instance variable (LibraryContainer) 375,

408, 409
UTF encoding 284

V
valueAction instance variable (ScrollBar) 622
valueEqualComparator instance variable

(Collection) 625
variable-length encoding

text 284
variables

assignment 577
global 577
local 577

velocity instance variable (Projectile) 106
VFWPlayer 666
VideoStream class 180
virtual spaces 9, 33
Visual Memory 580
volume instance variable (DigitalAudioPlayer) 170

W
warnings global function 75
WAV files 186
wholeSpace instance variable (Controller) 122
wholeSpace instance variable (Controller) 54
wholeSpace instance variable (Controller) 54, 108
Widget Kit

inheritance diagram 138
Window class

scrolling 127
Window class 59–67, 87

bringToFront method 402
clearSelection method 400
clipping 85
clock instance variable 64, 92, 401
compositor instance variable 91

copySelection method 400, 407
cutSelection method 400, 407
displaySurface instance variable 64, 91
hide method 60, 404
illustration of layers 62
isVisible instance variable 60
pasteToSelection method 400, 407
presentation container 47
presentation hierarchy 88
printTitle method 400
refreshRegion method 91
sendToBack method 402
show method 60
subpresenters instance variable 410
title instance variable 401, 402, 412, 415
top presenter 88

window coordinates 66
window instance variable (TwoDPresenter) 70
windows 59–67

adding objects to 64
creating 64
display surfaces 64
freeing from memory 404
managing 61
modal window 61
synchronization of clocks 401
title bar 61
title containers 400–402
user focus 400

windows instance variable (TitleContainer) 62, 401,
410

write method (Stream) 566, 567

X
x instance variable (TwoDPresenter) 69
xor global function 484

Y
y instance variable (TwoDPresenter) 69
year instance variable (Date) 490

Z
z instance variable (TwoDPresenter) 69
z-ordering 85

700

ScriptX Components Guide

Colophon

PRODUCT DEVELOPMENT

VP Engineering • Chris Jette

Chief Architect • John Wainwright

Kaleida Founder • Erik Neumann

Kaleida Fellow • Andrew Nicholson

ScriptX Language Team • Wade Hennessey (mgr), Mike Agostino, Eric Benson, Ross Nelson,
Chris Richardson, David Williams

ScriptX Media Team • Erik Neumann (mgr), Vidur Apparao, Ikko Fushiki, Jennifer Jacobi,
Chih Chao Lam, Michael Papp, Ken Tidwell, Ken Wiens

Cross-Platform Team • Elba Sobrino (mgr), Yukari Huguenard, Alan Little, Jeanne Mommaerts,
Charlie Reiman, Richard Roth, Vladimir Solomonik, Clayton Wishoff, Wanmo Wong

Quality Engineering Team • Ermalinda Horne (mgr), William Africa, Adela Bartl, Ron Decker,
Suzan Ehdaie, Rajiv Joshi, Tony Leung

Technical Publications Team • Douglas Kramer (mgr), Jocelyn Becker, Alta Elstad,
Maydene Fisher, Howard Metzenberg, Sandra Ware

Application Support Engineering Team • Ray Davis, Rob Lockstone, Felicia Santelli, Su Quek

AND ALL OUR FELLOW KALEIDANS

Masumi Abe, Harvey Alcabes, Rob Barnes, Amy Benesh, Fred Benz, Alison Booth, Mike Braun,
Mark Bunzel, Janet Byler, John Cummerford, Shannon Garrow, Marylis Garthoeffner, Norman
Gilmore, Bill Grotzinger, Sue Haderle, Diana Harwood, Don Hopkins, Bill Howell, John Hudson,
Pat Ladine, Fritzi Lareau, Deb Lyons, Karl May, Steve Mayer, Victor Medina, Gabe Mont-Reynaud,
Tom Morton, Randy Nelson, Christy O'Connell, Karen O'Such, Christian Pease, David Rosnow,
Molly Seamons, Ken Smith, Michelle Smith, Ivan Vazquez, Greg Womack

THANKS TO KALEIDA ENGINEERING ALUMNI, INCLUDING:

Sarah Allen, Dan Bornstein, Jim Inscore, David Kaiser, Shel Kaphan, Laura Lemay, Dave Lundberg,
Leslie Lundquist, Fred Malouf, Dmitry Nasledov, Steve Riggins, Steve Shaw, Cheng Tan,
Phil Taylor

Special Thanks To...

Lady, Nikki, Boots, Ella, Tyler, Rufus, Kiri, Frisky and Iggy

THIS DOCUMENT

Writing • Howard Metzenberg, Douglas Kramer, Jocelyn Becker, Maydene Fisher, Alta Elstad

Illustrations • Graham Metcalfe

Book production • Sandra Ware, Jacki Dudley, Diana Harwood, Beth Delson

This book was created electronically using Adobe FrameMaker on Macintosh Quadra computers.

	ScriptX Components Guide
	Quick Contents
	Graphic Overview
	Contents
	Preface
	Chapter 1 - ScriptX Features
	Chapter 2 - Approaching ScriptX
	Chapter 3 - Spaces and Presenters
	Chapter 4 - Controllers
	Chapter 5 - User Interface
	Chapter 6 - Clocks
	Chapter 7 - Players
	Chapter 8 - Media Players
	Chapter 9 - Animation
	Chapter 10 - Transitions
	Chapter 11 - 2D Graphics
	Chapter 12 - Text and Fonts
	Chapter 13 - Document Templates
	Chapter 14 - Printing
	Chapter 15 - Title Management
	Chapter 16 - Collections
	Chapter 17 - Numerics
	Chapter 18 - Events and Input Devices
	Chapter 19 - Files and System Services
	Chapter 20 - Streams
	Chapter 21 - Memory Management
	Chapter 22 - Threads
	Chapter 23 - Object System Kernel
	Chapter 24 - Exceptions
	Chapter 25 - Loader
	Appendix A - Loadable Extensions
	Appendix B - Glossary
	Index
	Colophon

