
Open Transport CSMA/CD
Developer Note

Revision 1.1b14
1/12/96

Table of Contents

Revision History 3

Related Documents 3

Introduction 4

Current CSMA/CD Driver 5
Supported DLPI Primitives 5
Extensions to DLPI 6
Packet Formats 6
Address Formats 7

Binding 9
Multicasts 10

Sending And Receiving 12
Sending Packets 12
Receiving Packets 12

Test and XID Packets 13

Promiscuous Mode 14

Extensions to DLPI 15
Fast Path Mode 15
Raw Packets 15
Fast Path and Raw Mode 16
Framing and DL_INFO_REQ 16

Token Ring and FDDI Drivers 17

Future Extensions 18
Statistics 18
Style 2 DLPI 18
Other Extensions 18

Index 19

Revision History

1/12/96 Corrected som figures
9/15/95 Added Future extensions
3/14/95 Added support for raw mode.
1/20/95 Corrected IPX stuff. Now allow multiple binds to the same SAP.
11/28/94 Creation

Related Documents

Data Link Provider Interface Specification Unix International, OSI Workgroup

Streams Modules and Drivers Unix® SVR4.2 UNIX Press

Apple Shared Library Manager Developer’s Guide, by ESD Publications, October 4, 1993, Apple
Computer, Inc.

Open Transport Client Developer Note

Logical Link Control, ANSI/IEEE Standard 802.2–1985.

Carrier Sense Multiple Access with Collision Detection, ANSI/IEEE Standard 802.3–1989

Designing PCI Cards and Drivers for Power Macintosh Computers preliminary draft, Apple Computer,
Inc.

Introduction

This document describes the Open Transport CSMA/CD driver. It is divided into two parts: The first part describes
the driver as it exists in Open Transport version 1.1. The second part describes extensions which will be made in the
near future.
Current CSMA/CD Driver

The current Open Transport CSMA/CD driver is a Streams driver that presents a Data Link Provider Interface
(DLPI) to its clients. It is based on Revision 2.0.0 of the DLPI Specification, and is a Style 1 provider, supporting
the Connectionless Mode primitives. Developers who wish to write CSMA/CD drivers that will interoperate with
the Open Transport AppleTalk and TCP/IP implementations should use the information given in this section to guide
the implementation.

Supported DLPI Primitives

The following DLPI primitives are supported by the Open Transport CSMA/CD driver. The ones marked with a †
are not required by either the Appletalk    or TCP/IP stacks:

DL_INFO_REQ

DL_INFO_ACK

DL_BIND_REQ

DL_BIND_ACK

DL_UNBIND_REQ

DL_SUBS_BIND_REQ

DL_SUBS_BIND_ACK

DL_ENABLEMULTI_REQ

DL_DISABLEMULTI_REQ

DL_OK_ACK

DL_ERROR_ACK

DL_UNITDATA_REQ

DL_UNITDATA_IND

DL_TEST_REQ †

DL_TEST_IND †

DL_TEST_RES †

DL_TEST_CON †

DL_XID_REQ †

DL_XID_IND †

DL_XID_RES †

DL_XID_CON †

DL_PHYS_ADDR_REQ

DL_PHYS_ADDR_ACK

Future versions of the driver will also support these additional primitives:

DL_GET_STATISTICS_REQ †

DL_GET_STATISTICS_ACK †

DL_PROMISCON_REQ †

DL_PROMISCOFF_REQ†

Extensions to DLPI

In addition to supporting the DLPI primitives listed above, the Open Transport    CSMA/CD driver includes
extensions to support Mentat’s Fast Path mode (described later in this document).    This includes the handling of
M_IOCTL messages with a type of DL_IOC_HDR_INFO, and special handling of M_DATA messages. It also
defines several special M_IOCTL messages to enable the reception of raw packets and to inform it what kind of
framing the client expects.

Packet Formats

The Open Transport CSMA/CD driver recognizes three packet formats. They are Ethernet, 802.2, and Novell "Raw
802.3". The details of the packet format are largely hidden from the client by the driver

The type of packets the driver will handle is specified at bind time.

In all three packet formats, the first    six bytes are the destination hardware address, the next six bytes are the source
hardware address. After this is a protocol dependent section, and finally the packet data.

Ethernet Packets

In Ethernet packets, the protocol dependent section consists of    a two byte protocol type field. This field has a value
in the range 150110    – 6553510.    (5DD16 – FFFF16).

802.2 Packets

In 802.2 packets, the protocol dependent section consists of a two byte length word, a one byte Destination SAP
(DSAP), a    one byte Source SAP (SSAP), a Control byte and an optional five byte SNAP field. Thus this section of
the packet can be either five or ten bytes long.

IPX Packets

IPX payloads may be carried in any one of three frames. In addition to Ethernet and 802.2, an IPX packet may be
framed in what Novell calls a "Raw 802.3" packet. In this case, the    protocol dependent section consists only of a
two byte length word. However, to make it possible to distinguish these packets from 802.2 packets, Novell
specifies that the first two bytes of the data section are always set to FF16.

For brevity we will refer to these packets as IPX packets in the rest of this document.

Destination
Hardware
Address

Source
Hardware
Address

Packet
Length

Data

IPX

Destination
Hardware
Address

Source
Hardware
Address

Protocol
Type

Data

Ethernet

Destination
Hardware
Address

Source
Hardware
Address

Packet
Length
DSAP
SSAP

Control

SNAP

(optional)

Data

802.2

Figure 1 - Packet Formats Recognized by the CSMA/CD Driver

Address Formats

Addresses used by the Open Transport CSMA/CD driver consist of two parts, a hardware address, and a protocol
dependent field.    The hardware address is a six byte physical address. A hardware address of all ones is the
broadcast address. If a hardware address is not all ones but the low bit of the first (leftmost) byte is set, then the
address is a multicast address. The protocol address consists of a two byte value called a DLSAP (since it
corresponds to the DLSAP defined in the DLPI specification) optionally followed by a five byte SNAP. The protocol
address, when present, is appended to the hardware address.

Ethernet

In Ethernet the DLSAP corresponds to the protocol type field.

802.2

In 802.2 packets, the DLSAP corresponds to the SSAP (in a DL_BIND_REQ, DL_BIND_ACK or in the source
address field of a DL_UNITDATA_IND), or the DSAP (in a DL_UNITDATA_REQ or in the destination address

field of a DL_UNITDATA_IND). If the DLSAP is AA16, then it must be followed by a five byte SNAP.

IPX

In IPX packets, the DLSAP is always 00FF16.

Binding

The information passed in a Bind Request is a function of the type of packets to be handled by this stream.

Ethernet

To bind to an Ethernet protocol, the client sends a DL_BIND_REQ with the dl_sap field set to the protocol type.
This is a value in the range 150110    – 6553510.    (5DD16 – FFFF16). The dl_xidtst_flg field is ignored.

802.2

To bind to an 802.2 address, the client sends a DL_BIND_REQ with the dl_sap field set to the SSAP. This is an
even value in the range 010    – 25410.    (016 – FE16). The dl_xidtst_flg field may optionally have either or both of the
DL_AUTO_XID or DL_AUTO_TEST bits set.

If the SSAP is AA16, then the client should follow the acknowledgment of the bind with a DL_SUBS_BIND_REQ
with a five byte SNAP. The dl_subs_bind_class field should be set to DL_HIERARCHICAL_BIND.

DL_SUBS__BIND_REQ
16

5

DL_HIERARCHICAL_BIND

SNAP

dl_primitive

dl_subs_bind_offset

dl_subs_bind_class

dl_subs_bind_length

Figure 2 - Subsbind Message for enabling a SNAP

After successfully binding to an 802.2 SAP, the client may enable a Group SAP by sending a
DL_SUBS_BIND_REQ with a two byte DLSAP containing the Group SAP. Valid Group SAPs are odd numbers in
the range 110    – 25310.    (116 – FD16). In this case, the dl_subs_bind_class field should be set to DL_PEER_BIND.
Note that SAP 25510. (FF16) is the Global (Broadcast) SAP, and is always enabled.

DL_SUBS__BIND_REQ

16
2

DL_PEER_BIND

DLSAP

dl_primitive

dl_subs_bind_offset

dl_subs_bind_class

dl_subs_bind_length

Figure 3 - Subsbind Message for enabling a Group SAP

As a special case, a client may request that it receive all 802.2 packets that come in. It does so by sending a
DL_SUBS_BIND_REQ with a two byte DLSAP set to 0. In this case, the dl_subs_bind_class field should be set to
DL_PEER_BIND

IPX

To bind to an IPX protocol, the client sends a DL_BIND_REQ with the dl_sap field set to 25510 (FF16). The
dl_xidtst_flg field is ignored.

In all three cases, the dl_max_conind field should be set to 0 and the dl_service_mode field must be set to the
constant DL_CLDLS.

Note that the DLPI specification leaves open the possibility that several streams on the same hardware port could be
bound to a single DLSAP. This feature is explicitly supported by the Open Transport CSMA/CD Driver. If a packet
arrives addressed to two or more streams simultaneously, each stream receives a copy of the packet.

Multicasts

A multicast address    may be enabled on a driver with the DL_ENABMULTI_REQ message. The value must be a
valid multicast address as defined in the section Address Formats, above.

Similarly a multicast address may be disabled on a driver with the DL_DISABMULTI_REQ message. The value
must be a valid multicast address that was enabled on that particular stream with a prior DL_ENABMULTI_REQ.

Sending And Receiving

Sending Packets

Packets are sent with the DL_UNITDATA_REQ message. If the destination has the same protocol address as the
sender, it is only necessary to supply the hardware address of the destination, otherwise the full address must be
used. Note that only a stream bound to the IPX SAP can send to another IPX stream.

“Fast Path” Packets

In order to support Mentat’s “Fast Path” mode, the Open Transport CSMA/CD driver treats M_DATA messages as
fully formed ("Raw") packets, including all addresses and headers. The only modification made before sending the
packet to the hardware is to check for a zero in the 802.2 length field, and if found setting it to the appropriate value.

Receiving Packets

Incoming packets are passed to the client in DL_UNITDATA_IND messages. The dl_group_address field is set to
zero if the packet was addressed to a standard Ethernet Address, keaMulticast if the packet was addressed to a
multicast address and keaBroadcast if the packet was addressed to a broadcast address, where kaeMulticast and
kaeBroadcast are constants, currently set to 1 and 2 respectively.

The data portion of the message consists of everything following the protocol–dependent section.

Test and XID Packets

The driver includes support for 802.2 Test and XID packets

If the client requested automatic handling of Test (XID) packets by setting the DL_AUTO_TEST (DL_AUTO_XID)
bit in the dl_xidtest_flag field of the Bind request when binding to an 802.2 DLSAP, then the driver will respond to
incoming Test (XID) packets without notifying the client. If automatic handling has been requested, the client may
not send Test (XID) packets.

If the client did not request automatic handling of Test (XID) packets, then incoming Test (XID) packets will be
passed up to the client as DL_TEST_IND (DL_XID_IND) messages. The client should respond to them with a
DL_TEST_RES (DL_XID_RES) message.

If automatic handling has not been requested, the client may send Test (XID) packets with a DL_TEST_REQ
(DL_XID_REQ) message. Any responses are passed back to the client as DL_TEST_CON (DL_XID_CON)
message.

Attempts by non-802.2 streams to send DL_TEST_REQ, DL_XID_REQ, DL_TEST_RES or DL_XID_RES
messages will be quietly ignored.
Promiscuous Mode

The DLPI specification defines three levels of promiscuous mode: DL_PROMISC_PHYS, DL_PROMISC_SAP and
DL_PROMISC_MULTI. The specification is notably vague as to exactly what these levels mean. Working with
other Streams developers, we have come up with the following definitions

DL_PROMISC_PHYS

If the DLPI provider is in DL_UNBOUND state, the DLPI user receives all traffic on the wire regardless of
MAC address or SAP.

If the DLPI provider is in DL_IDLE state, the DLPI user receives all traffic on the wire destined for the
bound SAP(s), regardless of MAC address.

DL_PROMISC_SAP

If the DLPI provider is in DL_UNBOUND state, the DLPI user receives all traffic destined for this interface
(physical address match, multicast address match or broadcast address) which match any SAP bound by any
DLPI user of this interface.

If the DLPI provider is in DL_IDLE state, the DLPI user receives all traffic destined for this interface
(physical address match, multicast address match or broadcast address) and which match the bound SAP.

DL_PROMISC_MULTI

If the DLPI provider is in DL_UNBOUND state, the DLPI user receives all multicast packets on the wire,
regardless of    SAP.

If the DLPI provider is in DL_IDLE state, the DLPI user receives all multicast packets on the wire destined
for the bound SAP(s).

Support for the DL_PROMISCON_REQ/DL_PROMISCOFF_REQ pair is not required for normal operation of the

driver.    If you do not support them, be sure to reply to the request with a DL_ERROR_ACK with the error code set
to DL_NOTSUPPORTED.

Extensions to DLPI

The driver includes several optional extensions to the DLPI definition.

Fast Path Mode

“Fast Path” is an optional optimization wherein the driver supplies the client with pre-computed packet header for a
given destination, The client caches the header, and copies it directly into packets addressed to that destination
before passing them to the driver.

The client first requests a header by sending the driver an M_IOCTL message with its ioc_cmd field set to
DL_IOC_HDR_INFO and its chained data block containing the dl_unitdata_req_t structure that the client would
normally use to send packets to that particular destination. If the driver does not support fast path, it simply responds
with an M_IOCNAK message. If the driver supports fast path, it responds with a M_IOCACK message with the
chained data block containing the precomputed header. (Note that in the case of 802.2 packets, the length field of the
precomputed header is set to zero).

 The client then prepends the header to outgoing packets and passes them to the driver as M_DATA messages. The
driver then sends the packet as is, filling in the 802.2 length field if necessary.

Note that the data block returned in the M_IOCACK should not be modified by the client, and it should always be
copied with copyb rather than dupb, since the driver may modify it before sending the packet.

Once the driver has acknowledged a DL_IOC_HDR_INFO message, its handling of incoming packets changes as
well. If an incoming packet is a directed packet, its header is stripped off and the data portion is delivered to the
client as an M_DATA message. Non-directed packets (e.g. packets sent to a Multicast or Broadcast address) are not
affected: they continue to be delivered to the client as DL_UNIT_DATA_IND messages.

Raw Packets

Occasionally, a client may wish to send or receive “Raw” packets, i.e. packets with the link and protocol headers
attached. To send raw packets the client merely sends them as M_DATA messages, as described in the “Fast Path”
section above.

A client that wishes to receive raw packets may send an M_IOCTL message with the ioc_cmd field set to
kOTSetRawMode and its chained data block containing a UInt32 value. The value can be either kOTRawRcvOn
kOTRawRcvOnWithTimeStamp or kOTRawRcvOff, to turn the reception of raw packets on or off, respectively. If the
driver supports the delivery of raw packets, it will respond with an M_IOCACK message. If not, it will respond with
M_IOCNAK message.

Any raw packets received will have the keaRawPacketBit set in the dl_group_address field of the corresponding
dl_unitdata_ind_t.

If the constant kOTRawRcvOnWithTimeStamp is set, then the first 64 bits (8 bytes) of the data will be a 64-bit
timestamp obtained with the OTGetTimeStamp function.    Packets received with this timestamp will have the
keaTimeStampBit set in the dl_group_address field of the corresponding dl_unitdata_ind_t.

Fast Path and Raw Mode

If the client enables Raw Mode and Fast Path, directed packets will not have their header stripped before being
delivered to the client as M_DATA's. Because there is no header block associated with the packet, there is no way to
designate that it is a raw packet, or that a timestamp is appended to the front of the packet (if
kOTRawRcvOnWithTimeStamp was used).

Framing and DL_INFO_REQ

In order to support the TCP/IP stack available with Open Transport, CSMA/CD drivers must support both Ethernet
and 802.2 framing (including full SAP/SNAP binding).    Because the DLPI specification does not allow for a driver
supporting multiple kinds of framing, it is ambiguous how to fill out the dl_mac_type field of a dl_info_ack_t.
Open Transport has defined that the default value of this field should be DL_ETHER.    Clients may send an
M_IOCTL message with the ioc_cmd field set to kOTSetFramingType and its chained data block containing a
UInt32 value with a single bit set.    If this value is the constant kOTFraming8022, then subsequent DL_INFO_ACK
requests should set the dl_mac_type field to DL_CSMACD.    If the value is not that constant, then subsequent
DL_INFO_REQ requests should set the dl_mac_type field to DL_ETHER.    The return value of this IOCtl is the
current value of the framing type.    If the value is the constant kOTGetFramingValue, then the driver should not
changed the framing type, but merely return the current value of the framing type.

It should be emphasized that the only thing this M_IOCTL affects is the contents of the DL_INFO_ACK. The
framing that is actually used by the driver is specified in the bind.

Token Ring and FDDI Drivers

The Open Transport Token Ring and FDDI Drivers are identical to the CSMA/CD Driver with the following
exceptions:

Packet Types

Only 802.2
packets are supported.

Address Formats

Only 802.2
addressing is supported.

For Token
Ring, a hardware multicast is a hardware address with the two high order bits of the leftmost byte set to one.

Future Extensions

There are a number of extensions planned for    the Open Transport CSMA/CD and related drivers. These include

• Defining and
supporting the DL_GET_STATISTICS_REQ/ACK messages.

• Defining a
Style 2 DLPI which would allow multiple hardware address.

• Miscellaneous
extensions to the DLPI standard to support different transports.

Statistics

In order to properly support SNMP, the DL_GET_STATISTICS messages will have to be supported. This requires
that the format of the information returned be defined and documented.

Style 2 DLPI

In order to support systems where we need multiple hardware addresses on a single interface, we will expand the
definition of the DLPI to allow Style 2 providers. In this case the DL_ATTACH_REQ message will be used to
indicate which interface is being used.

In the dl_attach_req_t, the dl_ppa field will contain an ordinal indicating the interface to use. A value of zero will
indicate the default interface and an non-zero value (TBD) will indicate alternate interfaces.

Optionally, the DL_SET_PHYS_ADDR_REQ message may be used to set the actual hardware address recognized
by the alternate interfaces.

Other Extensions

We plan to define the following additional values for the dl_mac_type field in the DL_INFO_ACK.

DL_FC Fibre Channel

DL_ATM ATM AAL5/Raw

DL_IPATM ATM Classical IP

DL_X25 X.25

DL_ISDN ISDN

DL_HIPPI HIPPI

DL_100VG 100 Based VG Ethernet

DL_100VGTPR 100 Based VG TokenRing

DL_ETH_CSMA 802.3 and Ethernet

Index
802.2 6, 8
Address Formats 7
Binding 9
Control byte 6
Destination SAP 6
DLSAP 7
DL_ATTACH_REQ 18
DL_AUTO_TEST 9, 13
DL_AUTO_XID 9, 13
DL_BIND_REQ 9
DL_CSMACD 16
DL_DISABMULTI_REQ 11
DL_ENABMULTI_REQ 10, 11
DL_ETHER 16
DL_GET_STATISTICS_ACK 18
DL_GET_STATISTICS_REQ 18
dl_group_address 12
DL_HIERARCHICAL_BIND 9
DL_INFO_ACK 16, 18
dl_info_ack_t 16
DL_IOC_HDR_INFO 6, 15
dl_mac_type 16, 18

DL_PEER_BIND 10
DL_PROMISC_MULTI 14
DL_PROMISC_PHYS 14
DL_PROMISC_SAP 14
DL_SET_PHYS_ADDR_REQ 18
DL_SUBS_BIND_REQ 9, 10
DL_TEST_CON 13
DL_TEST_IND 13
DL_TEST_REQ 13
DL_TEST_RES 13
DL_UNITDATA_IND 12
DL_UNITDATA_REQ 12
dl_xidtest_flag 13
DL_XID_CON 13
DL_XID_IND 13
DL_XID_REQ 13
DL_XID_RES 13
DSAP 6
Ethernet 6, 7
Fast Path 6, 12
Fast Path and Raw Mode 16
Fast Path Mode 15
FDDI 17
Framing and DL_INFO_REQ 16
Global SAP 10
Group SAP 10
Index 19
IPX 6
IPX packets 6
keaBroadcast 12
keaMulticast 12
keaRawPacketBit 16
kOTFraming8022 16
kOTRawRcvOff 15
kOTRawRcvOn 15
kOTSetFramingType 16
kOTSetRawMode 15
Multicasts 10
M_DATA 6, 12, 15
M_IOCACK 15, 16
M_IOCNAK 15, 16
M_IOCTL 6, 15
Novell 6
Other Extensions 18
Packet Formats 6
Promiscuous Mode 14
Raw 802.3 6
Raw Packets 12, 15
Receiving Packets 12
Sending Packets 12
SNAP 6, 7, 8, 9
Source SAP 6
SSAP 6
Statistics 18
Style 2 DLPI 18
Test packets 13

Token Ring 17
XID packets 13

Note that the 802.3 specification guarantees that this
length will be less than 150110    , so that it is
always possible to differentiate Ethernet and
802.2 packets based on this field.

If we were pedantic, we would point out that these
are really 802.3 packets with an 802.2 payload.
However, demonstrating our aversion to
pedantry, we will continue to refer to these as
802.2 packets.

A legal 802.2 packet will never have both the SSAP
and DSAP fields set to FF16.

Attempting to do a hierarchical subsbind to any SAP
other than AA16    will result in an error.

For a discussion of Group and Global SAPs, refer to
the 802.2 specification listed in the Related
Documents section.

 When sending packets to DLSAP FF16 there is an
ambiguity as to whether it is destined for an
802.2 Global    SAP or to an IPX SAP. This
resolved by declaring that only an IPX endpoint
can send to another IPX endpoint, and an IPX
endpoint cannot send to a Global SAP.

This feature is necessary to support Appletalk
backward compatibility.

For a description of Test and XID packets, refer to the
802.2 specification. In general, most clients
should merely enable automatic handling and let
the driver deal with them.

Streams drivers are defined to NAK    any IOCTLs
that they do not understand.

It is strongly recommended that drivers support this
feature since Appletalk backwards compatibility,
among other things, requires it.

