CHAPTER 8

Apple Event Terminology Resources

This chapter describes the resource structure used by both the' aeut' and ' aet e’
resources and explains how to create an' aet €' resource for your application. It also
explains how applications that support additional plug-in modules, each with its own
' aet e' resource, can write a handler for the Get AETE event that collects the ' aet €'
resources from the modules that are currently running.

Before you read this chapter, you should read the chapter “Introduction to Scripting” in
this book and the chapters about the Apple Event Manager that are relevant to your
application.

The first section in this chapter describes how the AppleScript component interprets
AppleScript statements that trigger Apple events. The first section also explains how to
define both Apple events and the corresponding user terminology for your application
in a way that translates easily into AppleScript statements. If you implement Apple
events so that they translate into logical and useful AppleScript scripts, your
implementation will probably work well with other scripting components that resemble
AppleScript.

The next two sections describe how to
m create an' aet e' resource
s handle the Get AETE event

For details about the structure of the datain an' aeut' resource and an' scsz'
resource, see “Reference to Apple Event Terminology Resources,” which begins on
page 8-26.

Defining Terminology for Use by the AppleScript Component

You should keep two principles in mind when you are defining the Apple event object
hierarchy and corresponding terminology for your application:

= Avoid defining new Apple events unless absolutely necessary. For example, instead of
defining a custom Find event, use the Get Data event with whose tests. (For more
information about whose tests, see the chapter “Resolving and Creating Object
Specifier Records” in this book.)

» Use existing object classes, or if you must define your own, define them in a
general fashion.

Defining Terminology for Use by the AppleScript Component 8-3

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

This section describes how the terms you specify in your application’s ' aet e' resource
are used in AppleScript statements that control your application. Before you implement
the Apple event object hierarchy for your application, try out your proposed user
terminology in AppleScript statements that use the standard syntax forms described
here. This will help you discover some of the advantages and disadvantages of both
your proposed object hierarchy and the human-language terminology you are planning
to use.

Some AppleScript commands, such asi f, repeat, and t el |, are executed directly by
the AppleScript component and do not correspond to Apple events. Other commands
trigger Apple events when the AppleScript component evaluates them.

AppleScript Corresponding

command Apple event
open Open

cl ose Close
save Save

nove Move

del ete Delete

set Set Data

The AppleScript component interprets the terms used in scripts according to rules
defined by the AppleScript language. For example, the open command must be
followed by an argument that specifies the objects to open, and the save command must
be followed by an argument that specifies the objects to save. The AppleScript
component uses the information in an application’s ' aet ' resource to map the
human-language terms used in these arguments to specific Apple event keywords and
codes, so that it can construct object specifier records that describe the objects on which
the Open and Save events act.

In general, the syntax for AppleScript commands that trigger Apple events follows
this pattern:

event name expression gammeter name EXPTESSiOVI e pammeter namnie EXPT’ESSiOTl

The underlined terms are supplied by the AppleScript component’s' aeut' resource, by
the application’s ' aet e' resource, or by the ' aeut' resource available on the current
computer. The argument that follows event name corresponds to the direct parameter for
the event, if there is one. Each subsequent argument corresponds to an additional
parameter.

Defining Terminology for Use by the AppleScript Component

CHAPTER 8

Apple Event Terminology Resources

An argument that corresponds to a direct parameter can use any of the syntax forms
shown in Table 8-1. These forms correspond to the key forms that can be used to identify
the key data in an object specifier record.

Table 8-1 Syntax for AppleScript arguments that correspond to direct parameters
Syntax of argument AppleScript example Key form
property name t he font fornPropertyl D
class name expression table "Fred" f or mNane
table 4 f or mMbsol ut ePosi ti on
class name bef ore | after expression word after table 2 fornRel ativePosition
class name expression t hr u expression words 1 thru 30 f or rMRange
every class name whose expression every word whose- f or MAhose
font = "Pal atino”
expression of expression first row of - Any key form; sets container
table "Fred" for elements or properties

If the Apple event object hierarchy for your application requires you to specify terms in
your ' aet e' resource that are not included in the ' aeut' resource, make sure those
terms read naturally when they appear in AppleScript statements that use the syntax
shown in Table 8-1. Any of the underlined terms in the table may be supplied by your
application’s ' aet &' resource.

For example, in the AppleScript statement
copy namet O expression

the argument name corresponds to a direct parameter that can use any of the syntax
variations shown in Table 8-1. The word t 0 and the expression that follows it correspond
to an additional parameter that describes the location to which to copy the objects
described by the direct parameter.

Many AppleScript commands, including the copy command, take additional arguments
that correspond to insertion location descriptor records , which are descriptor

records of type t ypel nserti onLoc defined as part of the Core suite. An insertion
location descriptor record is a coerced AE record that consists of two keyword-specified
descriptor records with the following keywords:

Keyword Description
key AEChj ect An object specifier record that identifies a single container

keyAEPosi ti on A constant that specifies where to put the Apple event object
described in an Apple event’s direct parameter in relation to the
container specified in the descriptor record with the keyword
keyAEQhj ect

Defining Terminology for Use by the AppleScript Component 8-5

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

You can specify one of these constants for the data in a descriptor record identified by
the keyword key AEPosi ti on:

Constant Meaning

k AEBef or e Before the container

KAEAf t er After the container

kAEBegi nni ng In the container and before all other elements of the same class as

the object being inserted

KAEENnd In the container and after all other objects of the same class as the
object being inserted

kAERepl ace Replace the container
The syntax that corresponds to an insertion descriptor record can take any of the forms

shown in Table 8-2.

Table 8-2 Syntax for AppleScript arguments that correspond to insertion location
descriptor records

Syntax of argument AppleScript example keyAEPosi ti on constant
before | after expression before Figure 1 kAEBefore | kAEAfter

begi nning of | end of expression end of w ndow 2 kAEBegi nning | kAEEnd

expression Figure 1 kAERepl ace

For example, in the AppleScript statement
copy Chart 1 of docunent "Sales Chart" to before Figure 1

the term copy corresponds to a Clone event, and Chart 1 of docunent "Sal es
Chart" corresponds to the direct parameter for the Clone event. The term t 0 is the
human-language name specified by the ' aeut' resource for the additional parameter
identified by the keyword KAEI nser t Her e, which always consists of an insertion
location descriptor record. The term bef or e corresponds to the constant KAEBef or e in
the descriptor record identified by the keyword keyAEPosi ti on, and Fi gure 1
corresponds to the object specifier record identified by the keyword key AEChj ect .

The AppleScript component handles statements that describe the replacement of one
object with another differently from statements that specify an insertion location before,
after, at the beginning of, or at the end of an object.

8-6 Defining Terminology for Use by the AppleScript Component

CHAPTER 8

Apple Event Terminology Resources

For example, in the statement
copy Chart 1 of docunent "Sales Chart" to Figure 1

the term t 0 is the human-language name for the additional parameter identified by the
keyword KAEI nser t Her e. When t 0 is followed immediately by an element expression
like Fi gur e 1, the Clone Apple event sent by the AppleScript component includes an
additional parameter that consists of an object specifier record for Figure 1. When your
application requests the parameter as an insertion location descriptor record, a system
coercion handler installed by the AppleScript component converts the object specifier
record to an insertion location descriptor record that specifies KAERepl ace in the
descriptor record identified by the keyword key AEPosi t i on.

If your application defines any extensions to the standard Apple events or object classes
that require the use of insertion locations, use standard insertion location descriptor
records to specify them, and make sure your Apple event object hierarchy and the
corresponding human terminology in your ' aet e' resource allow the AppleScript
component to translate insertion location descriptor records into meaningful statements
in an AppleScript dialect.

Unlike most other AppleScript commands, the copy command causes the AppleScript
component to send different Apple events under different circumstances. In the
examples just discussed, the copy command corresponds to a Clone event. However,
after evaluating the statements

tell application "SurfWiter"
copy table "Summary of Sal es"” of docunent-
"Sal es Report" to Totals
end tel

the AppleScript component sends a Get Data event and sets the variable Sal es91 to the
value of the returned data; and the statements

tell application "SurfCharter”
copy Totals to Chart 1 of docunent "Sales Chart"
end tel

cause the AppleScript component to send a Set Data event that sets the data in the
specified chart to the value of the variable Tot al s.

All scriptable applications should support the Get Data, Set Data, and Clone events for
all Apple event objects that a user might want to manipulate from a script with the copy
command. Scriptable applications should also support the other core events and any
appropriate functional-area events.

If you find it difficult to come up with meaningful AppleScript statements based on
your proposed implementation of Apple events, you may need to rethink your
implementation.

Defining Terminology for Use by the AppleScript Component 8-7

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

Structure of Apple Event Terminology Resources

Table 8-3 summarizes the resource structure used by both the ' aeut' and' aet e’
resources. Each asterisk (*) in the table indicates the beginning of an array. Each array
can contain any number of items, including both additional arrays and specific
definitions (=).

Table 8-3 Structure of the ' aeut' and' aet e' resources

= Template version
= Language code
* Array of suites:
= Suite information
* Array of events:
= Event information (including information about the direct parameter)
* Array of other parameters:
= Parameter information
* Array of classes:
= Class description
* Array of properties:
= Property information
* Array of elements:
= Element information
* Array of key forms:
= Key form information
* Array of comparison operators:
» Comparison operator information
* Array of enumerations:
» Enumeration information
* Array of enumerators:

= Enumerator information

8-8 Structure of Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

Listing 8-1 shows the resource type declaration in Rez format for the ' aeut' resource,
which can also serve as a template for an' aet €' resource. (Rez is a resource compiler
available with the MPW programming environment.) For complete descriptions of all
the fields shown in Listing 8-1, see “Reference to Apple Event Terminology Resources,”
beginning on page 8-26.

Listing 8-1 Resource type declaration for the ' aeut' resource
type 'aeut' {
hex byt e; /*maj or version in binary-coded */
/* decimal (BCD)*/
hex byte; /*m nor version in BCD*/
i nteger Language, english = 0, japanese = 11; /*|anguage code*/
i nteger Script, roman = O; /*script code*/
i nteger = $$Count of (Sui tes);
array Suites {
pstring; / *human- | anguage nanme of suite*/
pstring; /*suite description*/
al i gn word; /*al i gnment */
literal Iongint; [*suite | D/
i nteger; /*suite |evel */
i nteger; /*suite version*/

i nteger = 3Count of (Events);
array Events {

pstring; /*human- | anguage nane of event*/

pstring; /*event description*/

al i gn word; /*al i gnment */

l[iteral Iongint; /*event cl ass*/

literal Iongint; [*event |D*/

literal |ongint noReply = "null"; /*reply type*/

pstring; /*reply description*/

align word; /*alignment */

bool ean repl yRequi red, /*if the reply is */
repl yOpti onal ; /* required*/

bool ean singleltem /*if the reply must be a list*/
[istOFltenmns;

bool ean not Enuner at ed, /*if the type is enunerated*/
enuner at ed;

bool ean reserved; /*these 13 bits are reserved; */

bool ean reserved; /* set themto "reserved"*/

bool ean reserved;
bool ean reserved;
bool ean reserved;

Structure of Apple Event Terminology Resources 8-9

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

8-10

CHAPTER 8

Apple Event Terminology Resources

bool ean reserved;
bool ean reserved,;
bool ean reserved;
bool ean reserved;
bool ean reserved,;
bool ean reserved;
bool ean reserved;

bool ean reserved, /*if event is verb event or nonverb */
nonVer bEvent ; /* event; used by Japanese dial ect*/

literal |ongint noParans = 'null'; /*direct paramtype*/

pstring; /*di rect param description*/

align word; [*alignment*/

bool ean directParanRequired, /*if the direct paramis required*/
di rect ParamOpt i onal

bool ean singleltem /[*if the param nmust be a list*/
[istOFltenmns;
bool ean not Enuner at ed, /*if the type is enunerated*/

enuner at ed

bool ean doesnt ChangeState, /*if the event changes server's state*/
changesSt at e;

bool ean reserved; /*these 12 bits are reserved; */

bool ean reserved; /* set themto "reserved"*/

bool ean reserved,;

bool ean reserved;

bool ean reserved;

bool ean reserved,;

bool ean reserved;

bool ean reserved;

bool ean reserved,;

bool ean reserved;

bool ean reserved;

bool ean reserved,;

i nt eger = $$Count of (O her Par ans) ;

array O herParans {

pstring; / *human- | anguage nane for paraneter*/
align word; [*alignment*/
literal longint; / *par amet er keywor d*/
literal |ongint; [*paraneter type*/
pstring; [*paramet er description*/
al i gn word; /*al i gnment */
bool ean required, /*if paramis required*/
opt i onal

Structure of Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

bool ean singleltem /*if the param nmust be a list*/

listOFltens;

bool ean notEnunerated, /*if the type is enunerated*/

enumner at ed
bool ean i sNaned,

/*indicates if this should be the */

i sUnnaned; /* unnamed parameter; only one */
/* paranmeter can be so marked; set to */
/* reserved if not required*/
bool ean reserved; /*these 9 bits are reserved; */
bool ean reserved; /* set themto "reserved"*/
bool ean reserved;
bool ean reserved;
bool ean reserved;
bool ean reserved;
bool ean reserved;
bool ean reserved;
bool ean reserved;
bool ean not Feni ni ne, /*fem nine; set to reserved if not */
fem ni ne; /* required*/
bool ean not Masculine, /*masculine; set to reserved if not */
mascul i ne; /* required*/
bool ean si ngul ar
pl ural; [*plural */
1
1
i nteger = $$Count of (Cl asses);
array O asses {
pstring; /*human- | anguage nane for class*/
align word; /*al i gnment */
[iteral Iongint; [*class | D*/
pstring; /*cl ass description*/
align word; /*al i gnment */
i nteger = 3Count of (Properties);
array Properties {
pstring; / *human- | anguage nane for property*/
align word; [*alignment */
literal longint; /*property | D~/
literal |ongint; /*property class*/
pstring; /*property description*/
al i gn word; /*al i gnment */
bool ean reserved; /*reserved*/
bool ean singleltem /*if the property nmust be a list*/
[istOFltenmns;
Structure of Apple Event Terminology Resources 8-11

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

bool ean notEnunerated, /*if the type is enunerated*/
enuner at ed;

bool ean readOnly, /[*can only read it*/

readWite; /*can read or wite it*/
bool ean reserved,; /*these 9 bits are reserved; */
bool ean reserved; /* set themto "reserved"*/

bool ean reserved;
bool ean reserved,;
bool ean reserved;
bool ean reserved;
bool ean reserved,;
bool ean reserved;
bool ean reserved;

bool ean not Femi ni ne, /*fem nine; set to reserved if not */
fem ni ne; /* required*/

bool ean notMasculine, /*nasculine; set to reserved if not */
mascul i ne; /* required*/

bool ean singul ar
pl ural; [*plural */

b
i nteger = $$Count of (El ement s);
array El enents {
literal |ongint; /*el ement cl ass*/
i nteger = $$Count of (KeyFor ns) ;
array KeyForns { /*list of key fornms*/
literal |ongint
for mAbsol utePosition = "indx',

formNane = 'nane'; /*key form | D*/
b
1
1
i nt eger = $$Count of (Conpari sonps) ;
array ConparisonOps ({

pstring; /*human- | anguage name for */
/* conparison operator*/
align word; [*alignment*/
literal longint; /*conparison operator |D*/
pstring; /*conpari son operator description*/
align word; [*alignment*/
1
i nteger = $$Count of (Enuner ati ons);
array Enunerations { /*1ist of enunerations*/
literal longint; /*enuneration | D/

8-12 Structure of Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

i nt
arr

eger = $$Count of (Enumer at ors);

ay Enunerators { /*list of enunerators*/

pstring; / *human- | anguage nane for enunerator*/
al i gn word; /*al i gnment */

literal |ongint; /*enunerator |D+/

pstring; / *enuner at or description*/

al i gn word; /*al i gnment */

Creating an Apple Event Terminology Extension Resource

Scriptable applications must include an Apple event terminology extension (' aet e’)
resource. You use an ' aet €' resource to inform scripting components about the extent
of your application’s support for the standard Apple event suites, any custom Apple
events or Apple event objects defined by your application, and the corresponding
human-language terms for use in scripts that control your application.

The format of the ' aet e' resource is identical to that of the ' aeut ' resource, although
it serves a different purpose. The ' aeut' resource maps human-language names to IDs,
keywords, and other codes used in the Apple events described by the current edition of
the Apple Event Registry: Standard Suites. The ' aet ' resource for an application uses the
same format to accomplish the following:

Indicate when a set of definitions for a particular suite included in the ' aeut'
resource is supported in its entirety by the application. For example, an application
can indicate that it supports all of the ' aeut ' resource definitions for the Required
and Core suites simply by identifying the suite as a whole in its ' aet e' resource; the
detailed information for each standard suite does not need to be repeated.

Describe extensions, if any, to the definitions included in the ' aeut ' resource, such as
additional parameters for standard Apple events, additional properties and element
classes for standard object classes, and additional key forms for each element class.
For example, an application can indicate that it supports all of the definitions for

the Required and Core suites included in the ' aeut ' resource, an additional
parameter for one of the core events defined in the' aeut' resource, and an
additional property for one of the core object classes defined in the ' aeut' resource.

Describe the standard Apple events and object classes that belong to suites the
application does not support in their entirety.

Describe the application’s custom suite—that is, the application’s custom Apple
events and object classes, if any.

Creating an Apple Event Terminology Extension Resource 8-13

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

8-14

CHAPTER 8

Apple Event Terminology Resources

By specifying a suite ID, suite level, and suite version, your application can indicate that
it supports an entire suite. Because the ' aeut' resource provided by each scripting
component lists the human-language terms for all the standard suites, you do not have
to repeat this information if you support a suite in its entirety. If you support a subset of
a standard suite, you must list all the Apple events, Apple event parameters, object
classes, and so on and equivalent human-language terms for the parts of the suite your
application does support.

You can include at most one ' aet €' resource per application or per module. The
language code for this resource must match the language code of the language for which
you are developing your application. Applications that support additional modules with
their own ' aet e' resources must provide an' scsz' resource and handle the Get
AETE event as described in “Handling the Get AETE Event,” which begins on page 8-23.

IMPORTANT

Each human-language term supported by an application should
correspond to a unique Apple event ID, keyword, or other code in either
the application’s ' aet ' resource or the ' aeut’' resource. For example,
since the ' aeut' resource defines “size” as the human-language
equivalent for the property identified by the four-character code

"ptsz' (the pPoi nt Si ze property of text objects), an application’s

" aet e' resource must not define “size” as the human-language
equivalent for some other part of an Apple event or object class.
However, more than one human-language term can correspond to the
same Apple event ID or code. For example, an application’s ' aet e
resource can define a second human-language term, “point size,” that
corresponds to the Apple event identifier ' pt sz' . a

The AppleScript Software Developers’ Kit (available from APDA) includes a tool that allows
you to specify your application’s support for Apple events and creates the equivalent

" aet e' resource. The previous section, “Structure of Apple Event Terminology
Resources,” describes the basic format used by both the ' aeut' and ' aet e' resources.

The sections that follow provide examples of ' aet €' resources that can be generated
with the tools in the AppleScript Software Developers’ Kit.

Supporting Standard Suites Without Extensions

To indicate that your application supports a standard suite in its entirety, without any
extensions, your ' aet €' resource needs to provide only the information that identifies
the suite. For example, Listing 8-2 shows the Rez input for an ' aet e' resource provided
by an application that supports the entire Required and Core suites with no omissions or
extensions.

Every ' aet e' resource must provide the major and minor version numbers for

the content of the resource (1 and 0 in Listing 8-2) and the language code (English in
Listing 8-2). For each suite that an application supports in its entirety, without
extensions, the ' aet e' resource provides only the name, suite description, suite ID,
suite level (1 for all current suites), and suite version (1 for all current suites). If the

' aet e' resource provides an empty string as the human-language name for such a

Creating an Apple Event Terminology Extension Resource

CHAPTER 8

Apple Event Terminology Resources

suite, a scripting component uses the name provided for the corresponding suite by the
"aeut' resource. If an application does not extend or omit any of the definitions in a
standard suite, a scripting component can get the rest of the information about the
suite—its event and object class definitions, comparison operators, and enumerated
groups—from the ' aeut' resource. The corresponding arrays in the ' aet e' resource
can therefore be left empty.

Note that the Rez input for resources does not include the al i gn wor d fields shown in
the' aeut' resource type declaration in Listing 8-1. Rez takes care of word alignment
automatically.

Listing 8-2 Rez input for an ' aet e' resource for an application that supports the Required

and Core suites in their entirety

resource 'aete' (0, "JustTwoSuites") {

1, /*maj or version in BCD*/
0, /*m nor version in BCD*/
engl i sh, /*1 anguage code*/
roman, /*script code*/
{ [/*array Suites: 2 elenents*/

[*[1]*/

, / *human- | anguage nane for suite; */

/* "aeut' supplies "Required Suite"*/
"Events that every application should support”, /*suite description*/
kAERequi r edSui t e, /*suite code*/

1, /[*suite | evel */
1, /[*suite version*/
{ [/*array Events: 0 el enments*/

}1

{ [/*array O asses: 0 el enents*/

}l

{ [/*array ConparisonQOps: 0 el ements*/

}1

{ [/*array Enunerations: 0 el enents*/

}1

[*[2]*]

, / *human- | anguage nane for suite; */
/* "aeut' supplies "Core Suite"*/

"Suite that applies to all applications", /*suite description*/

kAECor eSui t e, /*suite code*/

1, /[*suite |evel */

1, /[*suite version*/

{ [/*array Events: 0 elenent*/

}

Creating an Apple Event Terminology Extension Resource 8-15

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

8-16

{
}
{
}
{
}

CHAPTER 8

Apple Event Terminology Resources

/[*array Cl asses: 0 el enents*/
/[*array ConparisonOps: 0 el ements*/

/*array Enunerations: 0 el ements*/

Extending the Standard Suites

If, like the ' aet e' resource shown in Listing 8-2, your application’s ' aet e' resource
indicates that you support an entire standard suite, the scripting component
automatically makes use of all the terminology for that suite provided by its ' aeut'
resource. For this reason, you can easily extend the definitions for a suite that your
application supports in its entirety: just provide arrays in the ' aet e' resource for the
definitions not already included in the " aeut' resource. For example, if you're
extending the definition of an event to support a single additional parameter, you should
provide an array of parameters that includes one item: the description of the new
parameter. Similarly, if you're not extending the contents of a particular array, you don’t
need to include the array in the ' aet e' resource.

Although an array of descriptions in an ' aet €' resource need not include descriptions
that are already provided by the ' aeut' resource, you must include information that
defines the position of the array in relation to the other information in the ' aet e’
resource. As Table 8-3 on page 8-8 shows, you can nest the arrays in an' aet e' resource
within other arrays: for example, an array of parameters is part of the description of an
event, and the event description is, in turn, part of the array of event descriptions for a
suite.

To add a description of a single new parameter to the definition of an Apple event in a
suite that your application supports in its entirety, you need to provide

» an array of parameters containing one element: the description of the new parameter
» information that identifies the event definition to which you're adding the parameter
» information that identifies the suite containing the event

Listing 8-3 illustrates how this works. This Rez input adds two new parameters
(“number of copies” and “print quality”) to the Print Documents event in the Required
suite, one enumeration (three values for the “print quality” parameter of the Print
Documents event) to the Required suite, and a new property (“first indent”) to the
cPar agr aph class in the Text suite. It also adds a plural synonym for the cPar agr aph
class: the word “paragraphs.”

Creating an Apple Event Terminology Extension Resource

CHAPTER 8

Apple Event Terminology Resources

Listing 8-3

Core, and Text suites

Rez input for an ' aet e' resource that extends the definitions of the Required,

/*maj or version in BCD*/
/*m nor version in BCD*/
/ *| anguage code*/
/*script code*/

#defi ne keyMyNurmber O Copi es ' nuntc'
#defi ne keyMyPrintQuality "prtq
#define typePrintQuality ' pgen’
#def i ne kFast 'fast'’
#defi ne kNor nal "nrm’
#define kHi ghQuality "higl'
#defi ne pFirstlndent "indt’
resource 'aete' (0, "SuiteExtensions") {

1,

0,

engl i sh,

roman,

{ [/*array Suites: 3 elenents*/

[*[1] */

"Events that every application should support”,

kAERequi r edSui t e,

1,

1,

{ [/*array Events:
[*[1]*/

1 el ement*/

"Print the specified list of
kCor eEvent d ass,
KAEPri nt Docunent s,
noRepl y,

repl yOpti onal,
singleltem

not Enurer at ed,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,

Creating an Apple Event Terminology Extension Resource

/*human- | anguage name for suite; */
/* "aeut' supplies "Required Suite"*/
/*suite description*/
/*suite code*/

[*suite |evel */

/[*suite version*/

/ *human- | anguage nane for event; */

/* "aeut' supplies "Print Documents"*/
docunent s", /*event description*/

/*event class*/

/*event |D*/

[*reply type*/

/*reply description*/

[*reply is optional*/

/*reply nust be single itent/

/*type is not enunerated*/
/*these 13 bits are reserved*/

8-17

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

reserved,

reserved,

reserved,

reserved,

reserved,

typeAli as,

"Li st of docunents to print",
di rect Par anRequi r ed,
l[istOfltemns,

not Enuner at ed,
doesnt ChangeSt at e,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

{ [/*array O herParans:
/* parameters Nunber
/* standard Print
[*[1]*/

"nunber of copies”,
keyMyNunber OF Copi es,
typeShort | nt eger,
"Nunber of copies to print",
opt i onal

singleltem

not Enurer at ed,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

8-18

/*direct paraneter type*/
/*direct paraneter description*/
/*direct paraneter is required*/
/*direct paraneter nust be list*/

/*type is not enunerated*/
/*event does not change */

/* server's state*/

/*these 12 bits are reserved*/

t hese fields describe the additional */
of Copies and Print Quality to the */
Docunents event*/

/ *human- | anguage nane for

/ * par amet er
/ * par anet er
[* par anet er
[* par amet er
/ * par anet er

par anet er */
keywor d*/

type*/

description*/

is optional*/

nmust be single itent/

/*type is not enunerated*/
/*these 13 bits are reserved*/

Creating an Apple Event Terminology Extension Resource

CHAPTER 8

Apple Event Terminology Resources

reserved,
reserved,
reserved,
reserved,
reserved,
[*[2]*/

"print quality",
keyMyPrintQuality, [*par anet er keywor d*/
typePrintQuality, [*parameter type*/

"The quality of the printing",/*paraneter description*/
optional , /*paraneter is optional*/

/*human- | anguage nanme for paraneter*/

singleltem [*paraneter must be single itent/

enuner at ed, /*type is enunerated*/
reserved, /*these 13 bits are reserved*/
reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved

/*array Cl asses: 0 el enments*/

/*

array ConparisonQps: 0 el enents*/

/[*array Enunerations: 1 elenent*/

/*

these fields add the 'pgen' enuneration to the Required suite*/

[*[1] */

typePrintQuality,

{

/*enuneration | D/
/*array Enunerators: 3 el enents*/

[*[1]*/

"Fast", / *enuner at or name*/

kFast , /*enunerator |D*/

"Print as quickly as possible",/*enunerator description*/
[*[2]*/

“Nor mal ", /*enuner at or name*/

Creating an Apple Event Terminology Extension Resource

8-19

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

kNor mal , [*enunerat or | D*/
"Print at normal speed", /*enunerat or description*/
[*[3]*]/
"Hi gh-Quality", / *enuner at or nane*/
kH ghQuality, /*enunerator |D+/
"Print at highest quality possible" /*enumerator description*/
}
},
[*[2]*]
/*human- | anguage name for suite; */
/* "aeut' supplies "Core Suite"*/
"Suite that applies to all applications"”, /*suite description*/
kAECor eSui t e, /*suite code*/
1, [*suite |evel */
1, /*suite version*/
{ [/*array Events: 0 el enents*/
},
{ [/*array O asses: 0 el enents*/
1
{ [*array ConparisonOps: 0 el ements*/
1
{ [/*array Enunerations: O el enents*/
},
[*[3]*/
/*human- | anguage name for suite; */
/* "aeut' supplies "Text Suite"*/
"A set of basic classes for text processing”, /*suite description*/
kAEText Sui t e, /*suite code*/

1, /*suite | evel */

1, /[*suite version*/
{ [/*array Events: 0 el enents*/
}
{

/[*array Cl asses: 1 element*/

[*[1]*/
"par agraph", / *human- | anguage nane for class*/
cPar agr aph, /*class | D/
"A paragraph", /*cl ass description*/
{ [/*array Properties: 1 element*/
[*[1]*]
“first indent", /*human- | anguage name for property*/
pFi rstl ndent, [*property | D~/
cLongl nt eger, /*property class*/

"First indent of paragraph in points",/*property description*/

8-20 Creating an Apple Event Terminology Extension Resource

CHAPTER 8

Apple Event Terminology Resources

reserved, /*reserved*/
singleltem /*property is single itenf/
not Enurrer at ed, /*type is not enumerated*/
readWite, /*property can be nodified*/
reserved, /*these 12 bits are reserved*/
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved
}
{ [/*array Elenents: O el ements*/
1
" par agr aphs”, / *human- | anguage nane for class*/
cPar agr aph, /*class | D/
"Every paragraph", /*cl ass description*/
{ [/*array Special Properties: 1 elenment*/
[*[1]*/
"y /*human- | anguage name for property*/
kAESpeci al C assProperties, /[*property | D*/
cType, [*property class*/
"y /*property description*/
reserved, /*reserved*/
singleltem /[*property is single itent/
not Enuner at ed, /*type is not enunerated*/
readOnly, /[*property cannot be nodified*/
reserved, /*these 11 bits are reserved*/
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,

Creating an Apple Event Terminology Extension Resource

8-21

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

8-22

CHAPTER 8

Apple Event Terminology Resources

pl ural /*human- | anguage nane is */
/* plural form/
}1
{ [/*array Elenents: 0 el enments*/
}l

/[*array ConparisonOps: 0 el enents*/

/[*array Enunerations: 0 el enents*/

[N W S N

In Listing 8-3, the possible values for the “print quality” parameter belong to an
enumeration. This is indicated by the term enuner at ed in the parameter description.
For this reason, the parameter type field contains the ID for the enumeration—

typePrintQuality.

Listing 8-3 also adds a plural synonym for “paragraph” to the array of classes: the word
“paragraphs.” Note that this is listed as if it were an additional class, except that it

also specifies cPar agr aph as the class ID. The first property listed for the synonym has
property ID kAESpeci al O assProperti es. This property describes characteristics
of the class as a whole; the last flag bit for this property is set to plural, indicating

that the term par agr aphs is a plural term for the specified class. This property

must always be the first property listed for a class. For more information about the
kAESpeci al Cl assProperti es property, see “Property Data,” which begins on

page 8-38.

An enumeration is described only by its ID; its declaration does not include a name or
description field. However, a name, value, and description must be provided for each of
the enumerators in an enumeration.

You can use the method illustrated in Listing 8-3 only to add to the definitions of Apple
events and Apple event object classes, not to support subsets of them. For example, to
support only a subset of the parameters of an Apple event or only some of the elements
or properties of an existing object class, you must list all the definitions from that suite
that you do support. The next section, “Supporting Subsets of Suites,” provides more
information about how to do this.

Human-language names for Apple events, object classes, and so on (including
extensions) can include both uppercase and lowercase letters and spaces. For
comparison purposes, case doesn’t matter. However, note that the human-language
names defined in Listing 8-3 are all lowercase. This convention ensures that scripts in
which these terms appear won't have capital letters in unexpected places.

Creating an Apple Event Terminology Extension Resource

CHAPTER 8

Apple Event Terminology Resources

Scripting components that get identifiers or strings from user terminology resources are
free to change the identifiers or strings as necessary (eliminating spaces, converting
identifiers to all uppercase or lowercase, or changing the identifiers altogether) to meet
the requirements of a particular task.

Supporting Subsets of Suites

Your application is not required to support all the definitions in a suite. If you wish to
support a subset of the definitions in one or more standard suites, you can collect
individual definitions from any number of suites in a placeholder suite whose suite ID is
the application’s signature or t ypeW | dCar d (' ****"'). When you support a subset of
a suite, you must provide all the definitions you want to support in your ' aet e'
resource.

Supporting New Suites

If your application defines its own custom Apple events or other Apple event constructs,
you should include a separate suite section for the suite in the ' aet ' resource. You
should use your application’s signature for both the suite ID and the class ID of all
events in the suite.

Handling the Get AETE Event

A scripting component sends the Get AETE event to an application when it needs
information about the user terminology specified by the application. For example, the
AppleScript component sends the Get AETE event when it first attempts to compile a

t el | statement that specifies a particular application. If your application does not
handle the Get AETE event, the scripting component reads the terminology information
it needs directly from your application’s ' aet e' resource. Applications that support
additional plug-in modules, each with its own ' aet e' resource, must provide an
"scsz' resource and a handler for the Get AETE event that collects the ' aet e’
resources from the modules that are currently running.

If your application does provide separate plug-in modules, the Get AETE event allows it
to gather information from the ' aet ' resources for the modules that are currently
running and return the terminology information along with your application’s built-in
terminology information to the scripting component in the reply event.

Handling the Get AETE Event 8-23

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

8-24

CHAPTER 8

Apple Event Terminology Resources

Here is a summary of the structure of a Get AETE event:

Get AETE—Get an application’s ' aet e' resource

Event class

Event ID

Required parameter
Keyword:
Descriptor type:
Data:

Required reply parameter
Keyword:
Descriptor type:
Data:

Description

kASAppl eScri pt A ass
kGet AETE

keyDi r ect Obj ect
t ypel nt eger

Language code

keyDi r ect (bj ect
t ypeAELi st ort ypeAETE
The application’s terminologies

Sent by a scripting component to an application when
the scripting component needs information about the
application’s user terminology

Your application can’t handle the Get AETE event unless it is running. If your
application doesn’t provide a handler for the Get AETE event, the scripting component
can obtain terminology information directly from your application’s ' aet e' resource
even if your application is not running.

If your application handles the Get AETE event, it must also provide a scripting size
resource. A scripting size resource is a resource of type' scsz' that provides
information about an application’s capabilities for use by scripting components. It allows
your application to declare whether it needs the Get AETE event and to specify
preferences for the sizes of the portion of your application’s heap used by a scripting
component. For information about the ' scsz' resource, see “The Scripting Size

Resource” on page 8-45.

A handler for the Get AETE event should perform the following tasks:

= Obtain the language code specified by the event.

s Create a descriptor list to hold the ' aet e' resources.

» Collect the' aet e' resources from all the application’s plug-in modules that are
currently running, including the application itself, and add them to the list.

s Add the list to the reply Apple event.

Listing 8-4 provides an example of a handler for the Get AETE event.

Handling the Get AETE Event

CHAPTER 8

Apple Event Terminology Resources

Listing 8-4 A handler for the Get AETE event

FUNCTI ON MyGet AETE (t heAE: Appl eEvent; theReply: Appl eEvent;

ref Con: Longlint): OSErr;

VAR
t helLi st: AEDesclLi st ;
returnedType: DescType;
act ual Si ze: Si ze;
| anguageCode: I nteger;
myErr: CSErr;

BEA N

MyGet AETE : = err AEEvent Not Handl ed;
| anguageCode : = O;
{if areply was not requested, then don't handl e}
| F theReply. dataHandl e = NIL THEN
Exi t (MyGet AETE) ;

{get the | anguage code that AppleScript is requesting so that }

{ this function can return the aete of a specified |anguage}

nyErr := AEGCet ParanPtr (t heAE, keyDirectbject,

t ypeLongl nt eger, returnedType,
@ anguageCode, sizeO (Longlnt),

act ual Si ze);
IF nyErr <> noErr THEN
Exi t (MyGet AETE) ;
{create a list}
nyErr := AECreateList(N L, O, FALSE, thelist);
IF nyErr <> noErr THEN
Exi t (MyGet AETE) ;

{get the requested 'aete' resources and put in the list--the }
{ MyG abAETE application-defined function does this}
{your code should iterate all of your installed code }

{ extensions and add the aete for each that matches the }

{ language code request ed}
nyErr := MyG abAETE(| anguageCode, thelist);
IF nyErr <> noErr THEN
BEG N
nyErr : = AEDi sposeDesc(thelist);
Exi t (MyGet AETE) ;
END;
{add list to reply Apple event}
nyErr : = AEPut Par anDesc(t heReply, keyDirectbject,
myErr := AED sposeDesc(thelList);
nmyGet AETE : = nyErr;
END;

Handling the Get AETE Event

t heLi st);

8-25

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

The MyGet AETE handler in Listing 8-4 begins by setting the function result to

er r AEEvent Not Handl ed. The function is set to this result if for any reason the handler
doesn’t successfully handle the event, so that a system handler provided by the scripting
component can at least read the terminology information directly from the application’s
own' aet e' resource. The handler in Listing 8-4 then checks the language code
specified by the event. After checking to make sure the reply exists, the handler creates a
list and uses the application-defined function My G- abAETE to collect all the appropriate
terminology information and append it to the list. The MyGet AETE handler then adds
the list to the reply event.

Reference to Apple Event Terminology Resources

Listing 8-1 on page 8-9 shows the complete resource type declaration in Rez format for
the ' aeut' resource. The same resource structure is used by both the ' aeut ' and

" aet e’ resources. Figure 8-1 shows the format of a compiled ' aeut' or' aet e’
resource.

8-26

Figure 8-1 Structure of an' aeut' or' aete' resource
'aeut' resource type Bytes
Header 8
Z First suite /Variable length

/ /

{ Last suite {Variable length

An' aeut' or'aete' resource contains the following:

= a header containing the version and language code of the template and a count of the
number of suites the resource describes

= a variable number of suite descriptions

The sections that follow describe the content of the header and each suite description
in detail.

Reference to Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

Header Data for an Apple Event Terminology Resource

The header for an' aeut' or' aete' resource specifies the version of its contents, the
language of the human-language equivalents contained in the resource, a script code,
and a count of the number of suites the resource describes. Figure 8-2 shows the header

format.
Figure 8-2 Structure of the header datain an' aeut' or ' aete' resource
Header datain an ' aeut' resource Bytes

Major version in BCD 1

Minor version in BCD 1

Language code 2

Script code 2

Count of suites 2

The header contains the following items:

s The major version number of the content of the resource in binary-coded decimal (the
major version number for the first release of the ' aeut ' resource is 1). The major and
minor versions describe the content of the resource, not its template. You can use these
fields to provide version numbers for the content of your application’s ' aet e
resource.

s The minor version number of the template in binary-coded decimal (the minor
version number for the first release of the ' aeut' resource is 0).

s The language code for the resource. Inside Macintosh: Text provides a list of language
codes. This code must be the same as the resource ID for the resource.

s The script code for the resource, taken from the list of script codes provided in
Inside Macintosh: Text.

= A count of the number of suites described by the resource.

Suite Data for an Apple Event Terminology Resource

Each item in the array of suites for an' aeut' or' aet e' resource includes information
about the suite ID, level, and version and four arrays that specify the events, object
classes, comparison operators, and enumerations for that suite. Figure 8-3 shows the
format of this suite data.

Reference to Apple Event Terminology Resources 8-27

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

Figure 8-3

8-28

Structure of suite datain an' aeut' or' aet e’

Suite datain an ' aeut' resource

/

(for each suite) Bytes
Human-language name of suite } 1to 256
Suite description / 1to 256
Alignment byte Oorl
Suite ID 4
Suite level 2
Suite version 2
Count of events 2

Array of events

/ Variable length

Count of classes

Array of classes

/ Variable length

Count of comparison operators

Array of comparison operators

/ Variable length

Count of enumerations

Array of enumerations

{Variable length

The data for each suite consists of the following items:

= The human-language name of the suite. This is a Pascal string that can include any
characters, including uppercase and lowercase letters and spaces. If the ' aet e'
resource specifies the name as an empty string, the scripting component looks up, in
its ' aeut ' resource, the suite name and other suite data that correspond to the
specified suite ID, suite level, and suite version. This strategy simplifies specification
of an entire suite and facilitates localization, since the human-language name is

provided by the ' aeut' resource.

Reference to Apple Event Terminology Resources

resource

Event Data

CHAPTER 8

Apple Event Terminology Resources

If the' aet e' resource specifies a name other than the name provided by the ' aeut
resource for the same suite ID, suite level, and suite version, the scripting component
uses the new name with the same suite data from the ' aeut' resource. Unless you

are defining a custom suite, you should specify an empty string for the name of a suite.

= A human-language description of the suite. This is a Pascal string that can include any
characters. When the resource description is compiled, the resource compiler pads the
string and aligns the next field on a word boundary.

= A four-character ID that distinguishes the suite from all other suites defined in either
the' aeut' or' aete' resources. This value is normally the same as the event class
for the Apple events in the suite.

If the ' aet e' resource specifies a standard suite name but a suite ID that is different
from the suite ID for the standard suite of that name described in the ' aeut’
resource, the scripting component uses the new suite ID with the standard suite data
for the specified name. In general, you should use the standard suite ID for any
standard suite that you support.

If your application uses a custom suite, you should use your application’s signature as
the event class for the events in the suite and, in addition, as its suite ID. When you
register your application’s signature with Developer Technical Support, the
corresponding event class is automatically registered for your application, and only
you can register events that belong to that event class. For information about
registering Apple events, contact the Apple Event Registrar.

= The level and version of the suite. For the first version of any suite, the level is usually
1 (indicating that it is the suite that contains the most basic definitions) and the
version is 1 (the version of this suite level). More advanced suites (such as a suite for
performing more sophisticated text manipulation than the current Text suite allows)
will have level numbers greater than 1. All currently defined suites have a level of 1
and a version of 1.

= A count of the events defined for this suite and an array of event definitions.
= A count of the object classes defined for this suite and an array of class definitions.

= A count of the comparison operators defined for this suite and an array of comparison
operator definitions.

= A count of the enumerations defined for this suite and an array of enumeration
definitions.

Each item in the array of events for a suite specified in an' aeut' or' aete' resource
includes information about the event, the reply, and the direct parameter, and an array
that specifies the additional parameters for the event. Figure 8-4 shows the format of this
event data.

Reference to Apple Event Terminology Resources 8-29

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

Figure 8-4

8-30

Structure of event data in an ' aeut '

or' aete'

Event datain an ' aeut' resource

(for each event) Bytes
} Human-language name of event } 1to 256
Z Event description / 1to 256

Alignment byte Oorl
Event class 4
Event ID 4
Type of reply's direct parameter 4

Z Description of reply's direct parameter / 1to 256

Alignment byte

Oorl

Reply flags

2

Direct parameter type

Z Direct parameter description

Alignment byte

Direct parameter flags

Count of additional parameters

{ Array of additional parameters

{Variable length

Reference to Apple Event Terminology Resources

resource

CHAPTER 8

Apple Event Terminology Resources

The data for each event consists of the following items:

The human-language name of the event. This is a Pascal string that can include any
characters, including uppercase and lowercase letters and spaces. If the ' aet e'
resource specifies the name as an empty string, the scripting component looks up,
inits' aeut' resource, the event name and other event data that correspond to

the specified event class and event ID. This strategy facilitates localization, since the
human-language name is provided by the ' aeut' resource. In this case the scripting
component will use the standard data from the ' aeut' resource for the event plus
the data provided by the ' aet e' resource for any additional parameters.

If the ' aet e' resource specifies a name other than the name provided by the ' aeut
resource for the same event class and event ID, the scripting component uses the new
name with the same suite data from the ' aeut ' resource. You should specify an
empty string for the name of any standard event that your application lists explicitly
inits' aete' resource.

A human-language description of the event. This is a Pascal string that can include
any characters. When the resource description is compiled, the resource compiler
pads the string and aligns the next field on a word boundary.

The four-character event class for the event. If the ' aet e' resource specifies

a standard event name and an event class other than the event class for the equivalent
standard event, the scripting component uses the new event class with the standard
event data for the specified name. You should specify the standard event class for any
standard event that your application lists explicitly in its ' aet €' resource.

The four-character event ID for the event. If the ' aet e' resource specifies a standard
event name and an event ID other than the event ID for the equivalent standard event,
the scripting component uses the new event ID with the standard event data for the
specified name. You should specify the standard event ID for any standard event that
your application lists explicitly in its ' aet &' resource.

A four-character descriptor type for the direct parameter of the reply. If the event
never needs a reply, or if the reply does not include a direct parameter, this value must
be t ypeNul | . Otherwise, the meaning of this field varies according to the values of
two of the flags that follow. One flag specifies whether the parameter is a list
(singleltemorlistCfltens) and the other specifies whether the values for the
parameter are enumerated (enuner at ed or not Enuner at ed):

o If the parameter is not a list and its values are not enumerated, this value is the
descriptor type for the direct parameter.

o If the parameter is a list and its values are not enumerated, this value is the
descriptor type for each of the items in the list. (If not all the items in the list are of
the same descriptor type, the flag specifying whether the value is a list must
have the value si ngl el t em and the value of this field must be t ypeAELi st .)

Reference to Apple Event Terminology Resources 8-31

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

8-32

CHAPTER 8

Apple Event Terminology Resources

O

If the parameter is not a list and its values are enumerated, this value is the
four-character code for the enumeration defined in either the ' aet e' or' aeut'
resource that contains the allowable values for the parameter. (If the values are
enumerated but the enumeration is not defined in either the ' aet e’ or' aeut'
resource, the flag specifying whether the parameter’s values are enumerated must
have the value not Enuner at ed, and the value of this field must be

t ypeEnuner at ed.)

If the parameter is a list and its values are enumerated, this value is the
four-character code for the enumeration defined in the same resource that contains
the allowable values for all of the items in the list. All items in the list must have
one of these enumerated values.

» A human-language description of the direct parameter of the reply. This is a Pascal
string that can include any characters. Although the reply may include other
parameters, only the direct parameter of the reply is described here. When the
resource description is compiled, the resource compiler aligns the string on a word
boundary.

» Flags that specify the following as Boolean values:

O

Whether the direct parameter of the reply is required (r epl yRequi r ed) or
optional (r epl yOpt i onal).

Whether the direct parameter of the reply is a single item (si ngl el t em) or a list of
items (I i st Of | t ens). (See the earlier description of the reply event’s
four-character descriptor type for information about how this value changes the
meaning of the reply type.)

Whether named constants, called enumerators, are specified as the only valid
values for the direct parameter of the reply (enuner at ed or not Enuner at ed).
(See the earlier description of the four-character descriptor type for the reply
event’s direct parameter for information about how this value changes the meaning
of the direct parameter type.) For information about specifying enumerators, see
“Enumeration and Enumerator Data” on page 8-43.

Following 5 bits are reserved for future use. The values of these bits must be set to
reserved.

Following 7 bits are reserved for future use as dialect-specific flags. The values of
these bits must be set to r eser ved.

Whether the event is a nonverb event (nonVer bEvent). This bit is used by dialects
such as the AppleScript Japanese dialect that make this distinction. For all other
dialects, set the value of this bit to r eser ved.

» A four-character descriptor type for the direct parameter of the event. If the event
never has a direct parameter, this value must be t ypeNul | . Otherwise, the meaning
of this field varies according to the values of two of the flags that follow. One flag
specifies whether the parameter is a list (Si ngl el t emor | i st Of | t es), and the
other specifies whether the values for the parameter are enumerated (enuner at ed or
not Enuner at ed):

Reference to Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

If the parameter is not a list and its values are not enumerated, this value is the
descriptor type for the direct parameter.

If the parameter is a list and its values are not enumerated, this value is the
descriptor type for each of the items in the list. (If not all the items in the list are of
the same descriptor type, the flag specifying whether the value is a list must

have the value si ngl el t em and the value of this field must be t ypeAELi st .)

If the parameter is not a list and its values are enumerated, this value is the
four-character code for the enumeration defined in either the ' aet e' or' aeut'
resource that contains the allowable values for the parameter. (If the values are
enumerated but the enumeration is not defined in either the ' aete' or' aeut'
resource, the flag specifying whether the parameter’s values are enumerated must
have the value not Enuner at ed, and the value of this field must be

t ypeEnuner at ed.)

If the parameter is a list and its values are enumerated, this value is the
four-character code for the enumeration defined in the same resource that contains
the allowable values for all of the items in the list. The values of the items in the list
must all be one of these enumerated values.

» A human-language description of the direct parameter. This is a Pascal string that can
include any characters. When the resource description is compiled, the resource
compiler pads the string and aligns the next field on a word boundary.

» Flags that specify the following as Boolean values:

O

Whether the direct parameter of the event is required (di r ect Par anRequi r ed)
or optional (di r ect Par amOpt i onal).

Whether the direct parameter of the event is a single item (si ngl el t em) or a list of
items (I i st OF | t ens). (See the earlier description of the direct parameter’s
four-character descriptor type for information about how this value changes the
meaning of the direct parameter type.)

Whether named constants, called enumerators, are specified as the only valid
values for the direct parameter (enuner at ed or not Enumrer at ed). (See the earlier
description of the direct parameter’s four-character descriptor type for information
about how this value changes the meaning of the direct parameter type.) For
information about specifying enumerators, see “Enumeration and Enumerator
Data” on page 8-43.

Whether receiving this event changes (changesSt at e) or doesn’t change

(doesnt ChangesSt at e) the internal state of the receiving application. Events that
only get information do not change the state of the application, whereas events
such as Cut and Move do.

Following 4 bits are reserved for future use. The values of these bits must be set to
reserved.

Following 8 bits are reserved for future use as dialect-specific flags. The values of
these bits must be set to r eser ved.

» A count of the additional parameters described for this event and an array of
additional parameter definitions.

Reference to Apple Event Terminology Resources 8-33

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

Additional Parameter Data

Each item in the array of additional parameters for an event specified in an' aeut'
resource includes information about a single additional parameter. Figure 8-5 shows the
format of additional parameter datainan ' aeut' or' aet e' resource.

Figure 8-5 Structure of additional parameter data in an' aeut' or' aet e' resource
Parameter datain an ' aeut' resource
(for each additional parameter) Bytes
} Human-language name of parameter }1 to 256
Alignment byte Oor1l
Parameter keyword 4
Parameter type 4
Z Parameter description / 1to 256
Alignment byte Oorl
Additional parameter flags 2

The data for each additional parameter consists of the following items:

s The human-language name of the parameter. This is a Pascal string that can include
any characters, including uppercase and lowercase letters and spaces. When the
resource description is compiled, the resource compiler pads the string and aligns the
next field on a word boundary.

If the ' aet e' resource specifies the name of an additional parameter as an empty
string, the scripting component looks up, inits ' aeut ' resource, the parameter name
and other parameter data that correspond to the specified parameter keyword. If the

" aet e' resource specifies a name other than the name provided by the ' aeut'
resource for the same parameter keyword, the scripting component uses the new
name with the same parameter data from the ' aeut ' resource. You should specify an
empty string for the name of any standard additional parameter that you list
explicitly inan ' aet e' resource.

8-34 Reference to Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

s The four-character keyword for the parameter. If the ' aet e' resource specifies a
standard parameter name and a parameter keyword other than the keyword for the
equivalent standard parameter, the scripting component uses the new parameter
keyword with the standard parameter data for the specified name. You should specify
the standard parameter keyword for any standard additional parameter that you list
explicitly inan ' aet e' resource.

= A four-character descriptor type for the parameter. The meaning of this field varies
according to the values of two of the flags that follow. One flag specifies whether the
parameter is a list (Si ngl el t emor | i st OF | t ens), and the other specifies whether
the values for the parameter are enumerated (enumner at ed or not Enuner at ed):

o If the parameter is not a list and its values are not enumerated, this value is the
descriptor type for the direct parameter.

o If the parameter is a list and its values are not enumerated, this value is the
descriptor type for each of the items in the list. (If not all the items in the list are
of the same descriptor type, the flag specifying whether the value is a list must
have the value si ngl el t em and the value of this field must be t ypeAELi st .)

o If the parameter is not a list and its values are enumerated, this value is the
four-character code for the enumeration defined in either the ' aete' or' aeut'
resource that contains the allowable values for the parameter. (If the values are
enumerated but the enumeration is not defined in either the ' aete' or' aeut’
resource, the flag specifying whether the parameter’s values are enumerated must
have the value not Enuner at ed, and the value of this field must be
t ypeEnuner at ed.)

o If the parameter is a list and its values are enumerated, this value is the
four-character code for the enumeration defined in the same resource that contains
the allowable values for all of the items in the list. The values of the items in the list
must all be one of these enumerated values.

= A human-language description of the parameter. This is a Pascal string that can
include any characters. When the resource description is compiled, the resource
compiler pads the string and aligns the next field on a word boundary.

» Flags that specify the following as Boolean values:
o Whether the parameter is required (r equi r ed) or optional (opt i onal).

o Whether the parameter is a single item (si ngl el t em) or a list of items
(I'i st Of I t ems). (See the earlier description of the additional parameter’s
four-character descriptor type for information about how this value changes the
meaning of the parameter type.)

o Whether named constants, called enumerators, are specified as the only valid
values for the parameter (enurer at ed or not Enuner at ed). (See the earlier
description of the parameter’s four-character descriptor type for information about
how this value changes the meaning of the parameter type.) For information about
specifying enumerators, see “Enumeration and Enumerator Data” on page 8-43.

Reference to Apple Event Terminology Resources 8-35

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

o Whether the parameter is the event’s only unnamed parameter (i sUnNaned) or is
named (i sNamed). This bit is used by dialects such as AppleScript Japanese that
make this distinction. For all other dialects, set the value of this bit tor eser ved.

o Following 4 bits are reserved for future use. The values of these bits must be set to
reserved.

o Following 8 bits are reserved for future use as dialect-specific flags. The values of
these bits must be set to r eser ved.

“Extending the Standard Suites,” which begins on page 8-16, includes sample Rez input
for an' aet e' resource that adds new parameters to a standard Apple event.

Object Class Data

Each item in the array of object classes for a suite includes information about the class
and arrays that specify the properties and elements for that class. Figure 8-6 shows the
format of the object class datainan' aeut' or' aete' resource.

Figure 8-6 Structure of object class datain an' aeut' or' aete' resource
Object class datain an ' aeut'
resource (for each object class) Bytes
} Human-language name of class }l to 256
Alignment byte Oorl
Class ID 4
Z Class description / 1to 256
Alignment byte Oor1l
Count of properties 2
Z Array of properties / Variable length
Count of element classes 2
{ Array of element classes {Variable length

8-36 Reference to Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

The data for each object class consists of the following items:

The human-language name of the object class. This is a Pascal string that can include
any characters, including uppercase and lowercase letters and spaces. When the
resource description is compiled, the resource compiler pads the string and aligns the
next field on a word boundary.

If the ' aet e' resource specifies the name of an object class as an empty string, the
scripting component looks up, inits ' aeut ' resource, the class name and other object
class data that correspond to the specified class ID. If the ' aet €' resource specifies a
name other than the name provided by the ' aeut' resource for the same class ID, the
scripting component uses the new name with the same object class data from the
"aeut' resource. You should specify an empty string for the name of any standard
object class that you list explicitly inan"' aet e' resource.

The four-character class ID for the object class. If the ' aet €' resource specifies

a standard object class name and a class ID other than the class ID for the equivalent
standard object class, the scripting component uses the new class ID with the standard
object class data for the specified name. You should specify the standard class ID for
any standard object class that you list explicitly inan ' aet e' resource.

A human-language description of the class. This is a Pascal string that can include any
characters. When the resource description is compiled, the resource compiler pads the
string and aligns the next field on a word boundary.

A count of the properties described for this class and an array of property definitions.

A count of the element classes described for this class and an array of element class
definitions.

To define characteristics of an object class (for instance, whether an object of that class is
a single item or a list of items, whether it is singular or plural, and so on), your
application’s ' aet ' resource must define a special property of property ID

KAESpeci al Gl assProperti es as the first property in the array of properties. Because
object class data does not include flag bits, the flag bits of this property are used to
specify attributes for the class to which the property belongs. The next section describes
how this property is defined and used.

Reference to Apple Event Terminology Resources 8-37

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

Property Data

Each item in the array of properties for an object class includes information about a
single property. Figure 8-7 shows the format of the property datain an' aeut' or
' aet e' resource.

Figure 8-7 Structure of property datain an' aeut' or' aete' resource
Property datain an' aeut' resource
(for each property) Bytes
} Human-language name of property }1 to 256
Alignment byte Oorl
Property ID 4
Property class 4
Z Property description / 1to 256
Alignment byte Oorl
Property flags 2

The data for each property consists of the following items:

= The human-language name of the property. This is a Pascal string that can include any
characters, including uppercase and lowercase letters and spaces. When the resource
description is compiled, the resource compiler pads the string and aligns the next field
on a word boundary.

If the ' aet e' resource specifies the name of a property as an empty string, the
scripting component looks up, inits ' aeut' resource, the property name and other
property data that correspond to the specified property ID. If the ' aet e' resource
specifies a name other than the name provided by the ' aeut ' resource for the same
property ID, the scripting component uses the new name with the same property data
from the' aeut' resource. You should specify an empty string for the name of any
standard property that you list explicitly in an ' aet e' resource.

8-38 Reference to Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

s The four-character property ID for the property. If the' aet e' resource specifies a
standard property name and a property ID other than the property ID for the
equivalent standard property, the scripting component uses the new property ID with
the standard property data for the specified name. You should specify the standard
property ID for any standard property that you list explicitly in an ' aet e' resource.

= A four-character class ID for the object class to which the property belongs. The
meaning of this field varies according to the values of two of the flags that follow. One
flag specifies whether the property is a list (si ngl el t emor | i st Of | t ens), and the
other specifies whether the values for the parameter are enumerated (enumner at ed or
not Enuner at ed):

o If the property is not a list and its values are not enumerated, this value is the class
ID for the property.

o If the property is a list and its values are not enumerated, this value is the class ID
for each of the items in the list. (If not all the items in the list are of the same
descriptor type, the flag specifying whether the value is a list must have the value
si ngl el t em and the value of this field must be cAELi st .)

o If the property is not a list and its values are enumerated, this value is the
four-character code for the enumeration defined in either the ' aete' or' aeut'
resource that contains the allowable values for the property. (If the values are
enumerated but the enumeration is not defined in either the ' aete' or' aeut’
resource, the flag specifying whether the property’s values are enumerated must
have the value not Enuner at ed, and the value of this field must be
t ypeEnuner at ed.)

o If the parameter is a list and its values are enumerated, this value is the
four-character code for the enumeration defined in the same resource that contains
the allowable values for all of the items in the list. The values of the items in the list
must all be one of these enumerated values.

= A human-language description of the property. This is a Pascal string that can include
any characters. When the resource description is compiled, the resource compiler
pads the string and aligns the next field on a word boundary.

» Flags that specify the following as Boolean values:
o The first bit is reserved for future use. Its value must be set to r eser ved.

o Whether the property is a single item (si ngl el t em) or a list of items
(I'i st OF I t ens). (See the earlier description of the property’s four-character class
ID for information about how this value changes the meaning of the class ID.)

o Whether named constants, called enumerators, are specified as the only valid
values for the property (enurer at ed or not Enurrer at ed). (See the earlier
description of the property’s four-character class ID for information about how this
value changes the meaning of the class ID.) For information about specifying
enumerators, see “Enumeration and Enumerator Data” on page 8-43.

Reference to Apple Event Terminology Resources 8-39

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

8-40

CHAPTER 8

Apple Event Terminology Resources

o Whether the property’s value can (r eadW i t €) or cannot (r eadOnl y) be set by
the Set Data Apple event.

o Following 4 bits are reserved for future use.

o Following 5 bits are reserved for future use as dialect-specific flags.

o Whether the human-language name of the property is feminine (f eni ni ne) or not
(not Feni ni ne). This bit is used by dialects such as the AppleScript French dialect
that make this distinction. For all other dialects, set the value of this bit to
reserved.

o Whether the human-language name of the property is masculine (mascul i ne) or
not (not Mascul i ne). This bit is used by dialects such as AppleScript French that
make this distinction. For all other dialects, set the value of this bit to r eser ved.

o Whether the human-language name of the property is singular (si ngul ar) or
plural (pl ur al). This bit is used by dialects such as AppleScript French that make
this distinction. If you set this bit to r eser ved, the scripting component will assign
it the value si ngul ar.

“Extending the Standard Suites,” which begins on page 8-16, includes sample Rez input
foran' aet e' resource that adds a new property to a standard object class.

The array of properties inan' aeut ' resource begins with a definition of a special
property that describes characteristics of the class as a whole using the flags in the
definition of that property. A property used in this way to define characteristics of a class
must be defined first in the array of properties for that class and must specify

KAESpeci al Gl assProperties (' c@! ') as the property ID, cType as the property
class, and an empty string for the property name and property description. If you don’t
define such a property for a class in your application’s ' aet e' resource, the scripting
component will assign that class the default values specified by the first constant for
each flag bit in the Rez declaration for the ' aeut' resource. (See Listing 8-1, which
begins on page 8-9, for the ' aeut ' resource type declaration.)

Element Class Data

Each item in the array of elements for an object class includes information about a single
element class and an array of key forms for that element class. Figure 8-8 shows the
format of the object class datain an' aeut' or' aete' resource.

Reference to Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

Figure 8-8 Structure of element class datainan ' aeut' or' aete' resource
Element class datain an ' aeut'
resource (for each element class) Bytes
Element class ID 4
Count of key forms 2
{ Array of key forms { Variable length

The following statements are included for each element class in the array of element
classes for an object class:

s The four-character class ID for the element’s object class.

= A count of key forms that apply to elements of this class within objects of the class for
which these element classes are defined, followed by an array of key forms. Each item
in the array must be a value from a special ' kf r mi enumeration. (The ' aeut’
resource includes enumerators for the standard key forms defined in the Apple Event
Registry: Standard Suites; an' aet ' resource can contain ' kf r m enumerators for
additional key forms that are specific to an application. For information about
defining enumerators and enumerations, see “Enumeration and Enumerator Data” on
page 8-43.) The enumerators for a' kf r M enumeration can include ' i ndx' (for the
key form f or mAbsol ut ePosi tion),' nane' (for the key form f or mNane),
"ID ' (for the key form f or mni quel D), ' prop' (for the key form
fornmPropertyl D),' rang" (for the key form f or nRange), ' rel e' (for the key
form f or nRel ati vePosi tion), and ' test' (for the key form f or nTest).

No names or descriptions are provided for element classes, because elements are
specified by their object classes, and the declaration of each object class includes the
name and description of the class.

Reference to Apple Event Terminology Resources 8-41

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

Comparison Operator Data

Each item in the array of comparison operators for a suite includes information about a
single comparison operator. Figure 8-9 shows the format of the comparison operator
datainan' aeut' or' aete' resource.

Note

The AppleScript component currently doesn’t use information about
comparison operators. Other scripting components may use this
information. O

Figure 8-9 Structure of comparison operator data in an' aeut' or' aete' resource

8-42

Comparison operator data in an
"aeut' resource (for each operator) Bytes

} Human-language name of comparison operator }1 to 256

Alignment byte Oorl
Comparison operator 1D 4
Z Comparison operator description / 1to 256
Alignment byte Oorl

The data for each comparison operator consists of the following items:

s The human-language name of the comparison operator. This is a Pascal string that can
include any characters, including uppercase and lowercase letters and spaces. When
the resource description is compiled, the resource compiler pads the string and
aligns the next field on a word boundary.

If the ' aet e' resource specifies the name of a comparison operator as an empty
string, the scripting component looks up, inits ' aeut' resource, the comparison
operator name and other comparison operator data that correspond to the specified
comparison operator ID. If the ' aet e' resource specifies a name other than the name
provided by the ' aeut ' resource for the same comparison operator ID, the scripting
component uses the new name with the same comparison operator data from the
"aeut' resource. You should specify an empty string for the name of any standard
comparison operator that you list explicitly inan ' aet ' resource.

Reference to Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

s The four-character comparison operator ID for the property. If the ' aet e' resource
specifies a standard comparison operator name and a comparison operator ID other
than the comparison operator ID for the equivalent standard comparison operator,
the scripting component uses the new comparison operator ID with the
standard comparison operator data for the specified name. You should specify
the standard comparison operator ID for any standard comparison operator that
you list explicitly in an ' aet e' resource.

= A human-language description of the comparison operator. This is a Pascal string that
can include any characters. When the resource description is compiled, the resource
compiler pads the string and aligns the next field on a word boundary.

“Extending the Standard Suites,” which begins on page 8-16, includes sample Rez input
for an' aet e' resource that adds a comparison operator to a standard suite.

Enumeration and Enumerator Data

Each item in the array of enumerations for a suite includes information about a single
enumeration and an array of enumerators for that enumeration.

Figure 8-10 shows the format of the enumeration datain an' aeut' or' aet e’ resource.

Figure 8-10 Structure of enumeration data in an' aeut' or' aete' resource

Enumeration datain an ' aeut'
resource (for each enumeration) Bytes
Enumeration ID 4
Count of enumerators 2
{ Array of enumerators { Variable length

The data for each enumeration consists of the following items:
= a four-character enumeration ID

= a count of constants, known as enumerators, that specify the allowable values for the
enumeration, and an array of enumerators

Reference to Apple Event Terminology Resources 8-43

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

CHAPTER 8

Apple Event Terminology Resources

Figure 8-11 shows the format of the enumerator data.

Figure 8-11 Structure of enumerator datain an ' aeut' or' aete' resource

8-44

Enumerator datain an ' aeut’
resource (for each enumerator) Bytes

} Human-language name of enumerator }1 to 256

Alignment byte Oorl
Enumerator ID 4

/ Enumerator description / 1to 256
Alignment byte Oor1l

The data for each enumerator consists of the following items:

s The human-language name of the enumerator. This is a Pascal string that can include

any characters, including uppercase and lowercase letters and spaces. When the
resource description is compiled, the resource compiler pads the string and aligns the
next field on a word boundary.

If the ' aet e' resource specifies the name of an enumerator as an empty string, the
scripting component looks up, inits ' aeut ' resource, the enumerator name and
other enumerator data that correspond to the specified enumerator ID. If the ' aet e
resource specifies a name other than the name provided by the ' aeut' resource for
the same enumerator ID, the scripting component uses the new name with the same
enumerator data from the ' aeut' resource. You should specify an empty string for
the name of any standard enumerator that you list explicitly in an ' aet ' resource.

The four-character enumerator ID for the enumerator. If the ' aet e' resource specifies
a standard enumerator name and an enumerator ID other than the enumerator ID for
the equivalent standard enumerator, the scripting component uses the new
enumerator ID with the standard enumerator data for the specified name. You should
specify the standard enumerator ID for any standard enumerator that you list
explicitly inan ' aet e' resource.

A human-language description of the enumerator. This is a Pascal string that can
include any characters. When the resource description is compiled, the resource
compiler pads the string and aligns the next field on a word boundary.

“Extending the Standard Suites,” which begins on page 8-16, includes sample Rez input
foran' aet e' resource that specifies an enumeration and an array of enumerators.

Reference to Apple Event Terminology Resources

CHAPTER 8

Apple Event Terminology Resources

The Scripting Size Resource

If your application handles the Get AETE event, you must provide a scripting size
resource. A scripting size resource is a resource of type ' scsz' that provides
information about an application’s capabilities for use by scripting components. It also
allows your application to specify preferences for the sizes of the portion of your
application’s heap used by a scripting component for its application-specific heap and

stack.

Listing 8-5 shows the resource type declaration in Rez format for the ' scsz' resource.

Listing 8-5

type 'scsz' {

Resource type declaration for the ' scsz' resource

bool ean dont ReadExt ensi onTerns, /*if application needs */
r eadExt ensi onTer 1rs; /* Get AETE event*/
bool ean reserved;
bool ean reserved,;
bool ean reserved;
bool ean reserved;
bool ean reserved,;
bool ean reserved;
bool ean reserved;
bool ean reserved,;
bool ean reserved;
bool ean reserved;
bool ean reserved,;
bool ean reserved;
bool ean reserved;
bool ean reserved,;
bool ean reserved;

/*menory sizes are in bytes; 0 nmeans use defaul t*/

m nSt ackSi ze
preferredStackSi ze;
max St ackSi ze
nm nHeapSi ze
pr ef erredHeapSi ze;
maxHeapSi ze

unsi gned | ongi nt
unsi gned | ongi nt
unsi gned | ongi nt
unsi gned | ongi nt
unsi gned | ongi nt
unsi gned | ongi nt

Reference to Apple Event Terminology Resources

/*m ni mum stack size*/
/*preferred stack size*/
/*maxi mum st ack size*/
/*m ni mum heap size*/
/*preferred stack size*/
/*maxi mrum heap size*/

8-15

sa2Inosay AbBojouiwlia]l Juan3g a|ddy n

8-46

CHAPTER 8

Apple Event Terminology Resources

The data for an' scsz' resource consists of the following items:

= Flags that specify Boolean values:

o Whether the scripting component should (r eadExt ensi onTer ns) or shouldn’t
(dont ReadExt ensi onTer ns) read the application’s terminology information
directly from its ' aet e' resource. If the application is not running, this flag allows
a scripting component to determine whether it should read the application’s
terminology information without sending it a Get AETE event.

o The following 15 bits are reserved for future use. Their values must be set to
reserved.

= The minimum size for the portion of the application’s heap used by the scripting
component’s application-specific stack

= The preferred size for the portion of the application’s heap used by the scripting
component’s application-specific stack

= The maximum size for the portion of the application’s heap used by the scripting
component’s application-specific stack

= The minimum size for the portion of the application’s heap used by the scripting
component’s application-specific heap

s The preferred size for the portion of the application’s heap used by the scripting
component’s application-specific heap

= The maximum size for the portion of the application’s heap used by the scripting
component’s application-specific heap

If you specify 0 for any of the fields that specify memory size or number of script IDs, the

scripting component uses its own default values for those fields.

The AppleScript component provides a function, ASI ni t, that allows your application
to initialize the component with desired values for memory sizes or number of script
IDs. If your application doesn’t call ASI ni t, the AppleScript component initializes itself
using either the values specified in the application’s' scsz' resource or, for those values
not provided by the ' scsz' resource, default values provided by the AppleScript
component. For more information about ASI ni t, see “Initializing AppleScript” on

page 10-80.

Reference to Apple Event Terminology Resources

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	Apple Event Terminology Resources
	Defining Terminology for Use by the AppleScript Co...
	Structure of Apple Event Terminology Resources
	Creating an Apple Event Terminology Extension Reso...
	Supporting Standard Suites Without Extensions
	Extending the Standard Suites
	Supporting Subsets of Suites
	Supporting New Suites

	Handling the Get AETE Event
	Reference to Apple Event Terminology Resources
	Header Data for an Apple Event Terminology Resourc...
	Suite Data for an Apple Event Terminology Resource...
	Event Data
	Object Class Data
	Comparison Operator Data
	Enumeration and Enumerator Data

	The Scripting Size Resource

	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

