CHAPTER 2

Edition Manager

This chapter describes how you can use the Edition Manager to allow your users to
share and automatically update data from numerous documents and applications.

The Edition Manager is available only in System 7 or later. It can be used by many
different applications located on a single disk or throughout a network of Macintosh
computers. To test for the existence of the Edition Manager, use the Gest al t function,
described in Inside Macintosh: Operating System Ultilities.

Read the information in this chapter if you want your application’s documents to share
and automatically update data, or if you want to share and automatically update data
with documents created by other applications that support the Edition Manager.

For example, a user might want to capture sales figures and totals from within a
spreadsheet and then include this information in a word-processing document that
summarizes sales for a given month. The Edition Manager establishes a connection
between these two documents. When a user modifies the spreadsheet, the information in
the word-processing document can be automatically updated to contain the latest
changes. To accomplish this, both the spreadsheet application and the word-processing
application must support the features of the Edition Manager.

To use this chapter, you should be familiar with sending and receiving high-level events,
described in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials. Your application must also support Apple events to receive Apple events from
the Edition Manager. See the following chapters in this book for detailed information on
Apple events.

The Edition Manager provides you with the ability to
» capture data within a document and integrate it into another document

» modify information in a document and automatically update any document that
shares its data

» share information between applications on the same computer or across a network of
Macintosh computers

Building the capabilities of the Edition Manager into your program is similar to building
cut-and-paste features into your program. Text, graphics, spreadsheet cells, database
reports—any data that you can select, you can make accessible to other applications that
support the Edition Manager. The next section provides an overview of the main
elements of the Edition Manager. Following sections discuss how to implement these
features in your application.

This chapter also describes an advanced feature that allows applications to share data
directly from a file.

2-3

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Introduction to Publishers, Subscribers, and Editions

A section is a portion of a document that shares its contents with other documents. The
Edition Manager supports two types of sections: publishers and subscribers. A
publisher is a section within a document that makes its data available to other
documents or applications. A subscriber is a section within a document that obtains its
data from other documents or applications.

Your application writes a copy of the data in each publisher to a separate file called an
edition container. The actual data that is written to the edition container is referred to as
the edition. Your application obtains the data for each subscriber by reading data

from the edition container. Note that throughout this chapter, the term edition refers to
the edition container and the data it contains.

You publish data when you want to make it available to other documents and
applications. When data is published, it is stored in an edition container. You subscribe
to data that a publisher makes available by reading an edition from its container.

Note

Section and edition container are programmatic terms. You should not use
them in your application or your documentation. Use publishers,
subscribers, and editions. You should also refrain from using other terms
such as publication or subscription to describe the dynamic sharing of
information provided by the Edition Manager. Use the terms publish and
subscribe to describe the Edition Manager features. O

Each edition has an icon that is visible from the Finder. Figure 2-1 shows the
default edition icon.

Figure 2-1 The default edition icon

H
H
TYTREETEE]

sample

The name that the user specifies for the edition is located next to the edition icon. For
information on providing icons for the editions created by your application, see the
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials. Figure 2-2
illustrates a document containing a single publisher, its corresponding edition, and a
subscriber to the edition in another document.

2-4 Introduction to Publishers, Subscribers, and Editions

CHAPTER 2

Edition Manager

Figure 2-2 A publisher, an edition, and a subscriber

Publisher {

November December Totals

$1394.67 $5677.67 $2349.75
$3875.78 $2837.34 $3984.67
$9356.87 $3695.80 $5463.90
$5690.78 $5465.98 $7489.14

January February Totals
$1324.46 $1938.99 $3251.45 >

$2313.56 $2457.89 $3425.66

TO: Nick
FROM: Laura Palmer

Here are the sales figures that you requested.

H

i

i January February Totals .

i |::> $131246 $1938.99 $325145 — Subscriber

$2313.56__$2457.89 $3425.66

$4312.87 $3255.09 $5468.00 A
$oo0007 Soesnss 780123 Sales data These figues reflec the increases over a wo
month period which were affected by
the increase cost of
$1324.67 $4567.67 $7689.75 operating expenses for that period.
$2313.78 $2345.34 $3425.67 Adjustments to these figures will be evaluated
$4312.87 $3425.80 $5463.90 shortly.

$3590.00 $5465.98 $7865.90

Note that the publisher and subscriber borders illustrated in Figure 2-2 may appear
slightly different from the borders you see on the screen. Figure 2-6 on page 2-9 shows
the publisher and subscriber borders as they appear onscreen.

Data always flows in one direction, from publisher to edition to subscriber. Documents
that contain publishers and subscribers do not have to be open at the same time to share
data. Whenever the user saves a document that contains a publisher, the edition changes
to reflect the current data from the publisher. All subscribers update their contents from
the edition. Any number of subscribers can subscribe to a single edition.

To create a publisher within a document, a user selects an area of the document to
share and chooses Create Publisher from the Edit menu (see Figure 2-7 on page 2-10).
Figure 2-3 shows the dialog box that your application should display when the user
chooses Create Publisher.

Figure 2-3 The publisher dialog box

Preview =5 Editions w = Loma Prieta

) O sales data
- L3 nales repoel

d‘h J’q :
N Desktop

g
b
i

Name of new edition:
rond o |

<

Introduction to Publishers, Subscribers, and Editions 2-5

m
o
=
o
=1
<
D
S
)
Q
@

2-6

CHAPTER 2

Edition Manager

Your application provides a thumbnail sketch of the edition data, which the

Edition Manager displays in the preview area of the publisher dialog box. Your preview
of the edition in this dialog box should provide a visual cue about the type of
information that the user has selected to publish.

A preview area also appears in the subscriber dialog box (see Figure 2-4). This preview,
too, should provide a visual cue about the type of information the edition contains.
For example, it should allow users to distinguish between text information and
spreadsheet arrays.

The publisher dialog box uses the extended interface of the standard file dialog box that
accompanies System 7. The user navigates through the contents of the disk using the
mouse or keyboard.

A user can modify a publisher within a document just like any other portion of a
document. As a default, each time a user saves a document containing a publisher, your
application should automatically write the publisher’s data to the edition. You also need
to provide the user with the choice of sending new publisher data to an edition manually
(that is, only at the user’s specific request). You should provide these options by using
the publisher options dialog box described later in “Using Publisher and Subscriber
Options” beginning on page 2-43.

For example, one user may choose to update an edition automatically each time a
document is saved. This update mode is useful for a user who creates a publisher within
a spreadsheet application that records stock information. Each time the user updates the
stock information and saves the spreadsheet, a new edition automatically becomes
available to subscribers.

Another user may choose to update an edition only upon request. This update mode
might be useful for a user who creates a publisher within a word-processing application
for a quarterly sales report. The user incrementally updates the sales report throughout
the entire quarter but does not want this information to be available to subscribers

until the end of the quarter. Only at the end of each quarter does the user specifically
request to update the edition and make it available to any subscribers.

To create a subscriber within a document, the user places the insertion point and chooses
Subscribe To from the Edit menu. Figure 2-4 shows the dialog box that your application
should display when the user chooses Subscribe To.

Introduction to Publishers, Subscribers, and Editions

CHAPTER 2

Edition Manager

Figure 2-4 The subscriber dialog box

Preview =) Editions w = Loma Prieta

2 irand piano £wet
- [0 sales data

-~ I
Lo &% sales report Desktop

a

| Subscribe l

<

The subscriber dialog box also uses the extended interface of the standard file dialog box
introduced with System 7. Initially, the dialog box should highlight the name of the last
edition published or subscribed to. This allows a user to create a publisher and
immediately subscribe to its edition.

A subscriber receives its data from a single edition. By default, your application should
automatically update a document containing a subscriber whenever a new edition is
available. You also need to provide the user with the choice of receiving the latest edition
manually (that is, only when the user specifically requests it). You can provide these
options by using the subscriber options dialog box described later in “Using Publisher
and Subscriber Options” beginning on page 2-43.

For example, one user may choose to receive new editions automatically as they become
available. This update mode is useful for a user who subscribes to information from an
edition that consists of daily sales figures. This user automatically acquires each version
of the sales information as it becomes available.

Another user may choose to receive a new edition only upon request. This update mode
is useful for a user who creates a subscriber to an edition that consists of graphics data
(such as a company logo). The user may require only periodic versions of the logo and
not need frequent updates. In this case, your application should update the subscriber
with a new edition only when the user specifically requests it.

A user can select, cut, copy, or paste an entire subscriber. Although the contents of the
subscriber as a whole can be modified, a user cannot edit portions of a subscriber. For
example, a user can underline or italicize the entire subscriber text but cannot delete a
sentence or rotate a single graphic object. This restriction protects the user from losing
changes to a subscriber when a new edition arrives. Remember that, as a default, new
editions should automatically update a subscriber. Any changes that a user made to the
subscriber text would have to be reapplied by the user when the new edition arrives. See
“Modifying a Subscriber” on page 2-59 for further information.

Introduction to Publishers, Subscribers, and Editions 2-7

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

A single document can contain any number or combination of publishers and
subscribers. Figure 2-5 shows an example of a document that contains two publishers
and one subscriber (and their corresponding editions). Remember that data always flows
in one direction, from publisher to edition to subscriber. The “Concert flyer” document
contains a publisher that is subscribed to by the “Benefit concert” document. The
“Concert flyer” document also subscribes to a portion of the “Pianos & palm trees”
document. In addition, the “Concert flyer” document as a whole is subscribed to by the
“Sample flyer” document.

Figure 2-5 A document and its corresponding editions

= 1 D

P T EEE

EY
D i

Subscriber

is a series of benefit concerts
being held by the City Arts
Foundation. All proceeds

will be donated to the children’s
art museum and the city center

r—lﬁ arts council.

Il Benefit concert

M usic 3
In "3 &«
the)7% Publisher
par k VSA Graphic
Join us every Wednesday evening Pianos & palm trees
at 8 PM beginning March 21.
The concerts will be held in the outdoor atrium
shell located across from the Academy of Sciences
in Golden Gate Park in San Francisco.
The series will continue through
April 25. Here is a sample B
flyer.
o I J
Concert
flyer Q .
Y Subscriber

Sample flyer

2-8 Introduction to Publishers, Subscribers, and Editions

CHAPTER 2

Edition Manager

You should distinguish each selected publisher and subscriber within a document with a
border. Display a publisher border as three pixels wide with 50 percent gray lines, and
display a subscriber border as three pixels wide with 75 percent gray lines. A rectangle of
one white pixel should separate the data from the border itself. Borders should be drawn
outside the contents of publishers and subscribers so that data is not obscured. See

Figure 2-6 for an illustration of the borders as they appear onscreen. See “Displaying
Publisher and Subscriber Borders” on page 2-50 for detailed information on how to
implement borders for specific applications.

Figure 2-6 shows a document containing a publisher and a document containing a
subscriber, with borders displayed for each.

Borders for publishers and subscribers should behave like the borders of ' Pl CT'
graphics within a word-processing document. Your application should display a border
whenever the user clicks within the content area of a publisher or a subscriber. Your
application should hide the border whenever the user clicks outside the content area. See
“Displaying Publisher and Subscriber Borders” on page 2-50 for detailed information on
how to implement borders for specific applications.

Figure 2-6 Publisher and subscriber borders

ECJI=== Publisher border ==

""'"'LJ.'-.H

t

S| === Subscriber border

Apple SC51 zable terminators are hardware
dewvices that attach to a SC51 cable. There
roust be no more than two terminators ina
SC51 chain.

al |

Introduction to Publishers, Subscribers, and Editions 2-9

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

You also need to support the standard Edition Manager menu commands in the
Edit menu. These menu items include

= Create Publisher...

= Subscribe To...

» Publisher/Subscriber Options...
» Show/Hide Borders (optional)
= Stop All Editions (optional)

Use a divider to separate the Edition Manager menu commands from the standard
Edit menu commands Cut, Copy, and Paste. Figure 2-7 shows the standard Edition
Manager menu commands.

2-10

Figure 2-7 Edition Manager commands in the Edit menu
Undo ®2
Cut #H
Copy #C
Paste 0
Select All #A

Create Publisher...
Subscribe To...
Publisher Options...

Show Clipboard

The Subscriber Options menu command should toggle with the Publisher Options menu
command. When a user selects a subscriber and then accesses the menu bar, your
application should adjust its menus so that the Subscriber Options menu command
appears in the Edit menu. When a user selects a publisher and then accesses the menu
bar, your application should adjust its menus so that the Publisher Options menu
command appears in the Edit menu. In addition, you may support a Show Borders
menu command that toggles with Hide Borders to display or hide all publishers and
subscriber borders within documents. You may also support a Stop All Editions menu
command to provide a method for temporarily suspending all update activity in a
document. When the user chooses this command, you should place a checkmark next to
it. You should also stop all publishers from sending data to editions and all subscribers
from receiving new editions. When the user chooses this command again, remove the
checkmark and update any subscribers that are set up to receive new editions
automatically.

Introduction to Publishers, Subscribers, and Editions

CHAPTER 2

Edition Manager

If you find that you need all of the available space in the Edit menu for your
application’s commands, you may create a hierarchical menu for the Edition Manager
menu commands. If you choose to implement this structure, you should allow users to
access the Edition Manager menu commands through a Publishing menu command in
the Edit menu. Because this menu structure is not as accessible to users, you should
implement it only if you have no other alternative.

Figure 2-8 shows the Edition Manager menu commands in a hierarchical menu structure.

Figure 2-8 Edition Manager commands under the Publishing menu command
Undo #Z
Cut #H
Copy #C
Paste D
Select Al #A

Publishing |d Create Publisher...

Subscribe To...
Show Clipboard| Publisher Options...

For each publisher or subscriber within an open document, you must have a section
record and an alias record. The section record contains a time stamp that records the
version of the data that resides in the section. The section record also identifies the
section as either a publisher or subscriber, and it establishes a unique identity for each
publisher or subscriber. The section record does not contain the data within the section.
The alias record is a reference to the edition container from the document that contains
the corresponding publisher or subscriber section.

There are special options associated with publishers and subscribers within documents.
Your application can use the publisher and subscriber options dialog boxes provided by
the Edition Manager to make these choices available to the user. For example, a user can
select Open Publisher within the subscriber options dialog box to access the document
containing the publisher. Your application can also allow a user to cancel subscribers or
publishers within documents, specify when to update an edition from a publisher, or
specify when to update a subscriber with a new edition. These options are described in
“Using Publisher and Subscriber Options” beginning on page 2-43.

Introduction to Publishers, Subscribers, and Editions 2-11

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

About the Edition Manager

The next section discusses how to save, open, read, and write a document that shares
data. In addition, it describes how to

» make data accessible to other applications

integrate data into numerous documents
= set update options

= implement borders

» modify shared data

= customize dialog boxes

= subscribe to data in non-edition files

Using the Edition Manager

2-12

This section describes how your application can

receive Apple events from the Edition Manager

set up a section record and alias record for open documents containing sections

= save a document that contains sections

» open a document that contains sections

» read and write sections

= create a publisher within a document, create its edition container, and write data to it
» create a subscriber within a document and read its data from an edition

To begin, you must determine whether the Edition Manager is available on the system
by using the Gest al t function with the gest al t Edi ti onMgr Attr (' edt n') selector.
If the r esponse parameter returns 1 in the bit defined by the

gestal t Edi ti onMyr Pr esent constant (bit 0), the Edition Manager is present.

If the Edition Manager is present, load it into memory using the | ni t Edi t i onPack
function. This function determines whether the machine has enough space in the system
heap for the Edition Manager to operate.

err := InitEditionPack;

If the I ni t Edi t i onPack function returns noEr r, you have enough space to load the
package. If you do not have enough space, the application can either terminate itself or
continue with the Edition Manager functionality disabled.

About the Edition Manager

CHAPTER 2

Edition Manager

Receiving Apple Events From the Edition Manager

Applications that use the Edition Manager must support Apple events. This requires that
your application support the required Open Documents event and Apple events sent by
the Edition Manager. See the chapter “Introduction to Apple Events” in this book for
general information on Apple events.

Apple events sent by the Edition Manager arrive as high-level events. The
Event Recor d data type defines the event record.

TYPE Event Record =

RECORD
what : I nt eger; {kHi ghLevel Event}
nessage: Longl nt; {'sect'}
when: Longl nt ;
wher e: Poi nt ; {'read", '"wit', 'cncl', "scrl'}
nodi fiers: Integer;
END;

The Edition Manager can send these Apple events with the event class and event ID as
shown here:

» Section Read events (' sect' 'read')
s Section Write events (' sect' 'writ')
= Section Cancel events (' sect' 'cncl')

= Section Scroll events (' sect' 'scrl')

Each time your application creates a publisher or a subscriber, the Edition Manager
registers its section. When an edition is updated, the Edition Manager scans its list to
locate registered subscribers. For each registered subscriber that is set up to receive
updated editions automatically, your application receives a Section Read event.

If the Edition Manager discovers that an edition file is missing while registering a
publisher, it creates a new edition file and sends the publisher a Section Write event.

When you receive a Section Cancel event, you need to cancel the specified section. Note
that the current Edition Manager does not send you Section Cancel events, but you do
need to provide a handler for future expansion.

If the user selects a subscriber within a document and then selects Open Publisher in the
subscriber options dialog box, the publishing application receives the Open Documents
event and opens the document containing the publisher. The publishing application also
receives a Section Scroll event. Scroll to the location of the publisher, display this section
on the user’s screen, and turn on its border.

See “Opening and Closing a Document Containing Sections” beginning on page 2-22 for
detailed information on registering and unregistering a section and writing data to an
edition. See “Using Publisher and Subscriber Options” beginning on page 2-43 for
information on publisher and subscriber options.

Using the Edition Manager 2-13

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

After receiving an Apple event sent by the Edition Manager, use the Apple Event
Manager to extract the section handle. In addition, you must also call the

| sRegi st er edSect i on function to determine whether the section is registered. It is
possible (because of a race condition) to receive an event for a section that you recently
disposed of or unregistered. One way to ensure that an event corresponds to a valid
section is to call the | sRegi st er edSect i on function after you receive an event.

err := |sRegisteredSection (sectionH);

Listing 2-1 illustrates how to use the Apple Event Manager and install an event handler
to handle Section Read events. You can write similar code for Section Write events,
Section Scroll events, and Section Cancel events.

Listing 2-1 Accepting Section Read events and verifying if a section is registered

2-14

{the follow ng goes in your initialization code}

nmyErr := AEl nstal |l Event Handl er (secti onEvent Msgd ass {' sect'},
secti onReadMsgl D {'read'},
@WHandl eSect i onReadEvent, O,
FALSE) ;

{this is the routine the Apple Event Mnager calls when a }
{ Section Read event arrives}

FUNCTI ON MyHandl eSect i onReadEvent (t heAppl eEvent ,
reply: Appl eEvent;
ref Con: Longlnt): OSErr;

VAR

nmyEerr: CSErr;

secti onH; Sect i onHandl e;
BEG N

{get section handle out of Apple event nessage buffer}
nyErr := MyGet Secti onHandl eFronEvent (t heAppl eEvent, sectionH);
| F nyErr = noErr THEN
BEG N
| F I sRegi steredSection(sectionH = noErr THEN
{if section is registered, read the new data}
MyHandl eSect i onReadEvent : = DoSecti onRead(sectionH);
END
ELSE
MyHandl eSecti onReadEvent := nyErr;
END; {MyHandl eSecti onReadEvent}

Using the Edition Manager

CHAPTER 2

Edition Manager

{this routine reads in subscriber data and updates its display}
FUNCTI ON DoSecti onRead(subscri ber: SectionHandle): OSErr
BEG N
{your code here}
END; {DoSecti onRead}

{this is part of your Apple event-handling code}
FUNCTI ON MyCet Sect i onHandl eFr onEvent (t heAppl eEvent: Appl eEvent;
VAR sectionH SectionHandl e)

OSErr;
VAR
i gnhor eType: DescType,;
i gnor eSi ze: Si ze
BEG N

{parse section handl e out of nessage buffer}
My Get Sect i onHandl eFr onEvent

: = AEGet ParanPtr(theAppl eEvent, {event to parse}
keyDi rect Cbj ect, {look for direct }
{ object}
typeSecti onH, {want a Secti onHandl e}
i gnhor eType, {ignhore type it could }
{ get}
@ecti onH, {put SectionHandl e }
{ here}

Si zeOf (sectionH), {size of storage for }
{ SectionHandl e}
i gnor eSi ze) ; {ignhore storage it }
{ used}
END; {MyGet Secti onHandl eFr onEvent}

In addition to the Section Read, Section Write, Section Cancel, and Section Scroll events,
your application can also respond to the Create Publisher event. For more information
on this event, as well as additional information on how to handle Apple events, see the
chapter “Responding to Apple Events” in this book.

Creating the Section Record and Alias Record

Your application is responsible for creating a section record and an alias record for each
publisher and subscriber section within an open document.

The section record identifies each section as a publisher or subscriber and provides
identification for each section. The section record does not contain the data within the
section; it describes the attributes of the section. Your application must provide its own
method for associating the data within a section with its section record. Your application
is also responsible for saving the data in the section.

Using the Edition Manager 2-15

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

The al i as field of the section record contains a handle to its alias record. The alias
record is a reference to the edition container from the document that contains the
publisher or subscriber section. You should be familiar with the Alias Manager’s
conventions for creating alias records and identifying files, folders, and volumes to
locate files that have been moved, copied, or restored from backup. For information on
the Alias Manager, see Inside Macintosh: Files.

When a user saves a document, your application should store all section records and
alias records in the document’s resource fork. Corresponding section records and alias
records should have the same resource ID.

Figure 2-9 shows a document containing a publisher and subscriber, and the
corresponding section records and alias records.

Figure 2-9 A document with a publisher and subscriber and its resource fork
Adding Cable Terminators
A Cable Terminator acts as a damper in
your SCSI Cable System. T
keep signals from bouncing off one end
of the line and rippling back, interfering
with the new messages.
SCSl cables and terminators Y
Devices connected to the SCSI port on the back
Subscriber of the main unit must have the proper number

of terminators for the devices to work correctly
and to prevent damage to the SCSI chip
inside your computer.

‘Apple SCSI Cable Terminators
are hardware devices

Publisher — thiozscs! A
There must be no more than
two terminators in a SCSI chain.
Resource fork A4
Section record
version:
kind:
mode:
mdDate:
N section|ID:
Section record refCon: T~ - speserssceeness
. alias; ———}» | Aliasrecord | ——p» iZ E
version: L __ _ Etormmncl
kind: subPart: SCSlinfo
mode: nextSection:
mdDate:) controlBlock:
sectionlID: refNum:
refCon:
alias:
subPart: Terminator
nextSection:
controlBlock:
refNum:

2-16 Using the Edition Manager

CHAPTER 2

Edition Manager

A section record contains information to identify the data contained within a section as a
publisher or a subscriber, a time stamp to record the last modification of the section,
and unique identification for each section. The Sect i onRecor d data type defines the

section record.

TYPE SectionRecord =

RECORD
versi on:
ki nd:
node:
ndDat e:
sectionl D

r ef Con:
alias:

Si gnedByt e; {always 1 in 7.0}

Secti onType; {publ i sher or subscriber}

Updat eMode; {automatic or nanual }

Ti meSt anp; {last change in docunent}

Longl nt ; {application-specific, }
{ uni que per docunent}

Longl nt; {application-specific}

Al i asHandl e; {handl e to alias record}

{The following fields are private and are set up by the }
{ Regi sterSection function described later within this }

{ chapter. Do not nodify the private fields.}

subPart: Longl nt ; {private}

next Secti on: SectionHandl e; {private, do not use as a }
{ linked list}

control Bl ock: Handl e; {may be used for conparison }
{ only}

ref Num Edi ti onRef Num {private}

END;

Field descriptions
version
ki nd

node
ndDat e

Indicates the version of the section record, currently $01.

Defines the section type as either publisher or subscriber with the
st Publ i sher or st Subscri ber constant.

Indicates if editions are updated automatically or manually.

Indicates which version (modification date) of the section’s contents
is contained within the publisher or subscriber. The ndDat e field is
set to 0 when you create a new subscriber section and to the current
time when you create a new publisher. Be sure to update this field
each time publisher data is modified. The section’s modification
date is compared to the edition’s modification date to determine
whether the section and the edition contain the same data. The
section modification date is displayed in the publisher and
subscriber options dialog boxes. See “Closing an Edition” on

page 2-28 for detailed information.

Using the Edition Manager 2-17

Jabeuepy uonip3 -

2-18

CHAPTER 2

Edition Manager

sectionl D Provides a unique number for each section within a document. A
simple way to implement this is to create a counter for each
document that is saved to disk with the document. The counter
should start at 1. The section ID is currently used as a tie breaker in
the GoToPubl i sher Sect i on function when there are multiple
publishers to the same edition in a single document. The section ID
should not be 0 or —1. See “Duplicating Publishers and Subscribers”
on page 2-58 for information on multiple publishers.

ref Con Reference constant available for application-specific use.

alias Contains a handle to the alias record for a particular section within
a document.

Whenever the user creates a publisher or subscriber, call the NewSect i on function to
create the section record and the alias record.

err := NewSection(container, sectionDocunent, kind, sectionlD,
initial Mode, sectionH);

The NewSect i on function creates a new section record (either publisher or subscriber),
indicates whether editions are updated automatically or manually, sets the modification
date, and creates an alias record from the document containing the section to the edition
container.

You can set the sect i onDocunent parameter to NI L if the current document has never
been saved. Use the Associ at eSect i on function to update the alias record of a
registered section when the user names or renames a document by choosing Save As
from the File menu. If you are creating a subscriber with the i ni ti al Mode parameter
set to receive new editions automatically, your application receives a Section Read event
each time a new edition becomes available for this subscriber.

If an error is encountered, the NewSect i on function returns NI L in the sect i onH
parameter. Otherwise, NewSect i on returns a handle to the allocated section record in
the sect i onH parameter.

Using the Edition Manager

CHAPTER 2

Edition Manager

Set the i ni ti al Mode parameter to the update mode for each subscriber and publisher
created. You can specify the update mode using these constants:

CONST sumAut omat i ¢ = 0; {subscri ber receives new }
{ editions automatically}
sunmivanual = 1; {subscriber receives new }
{ editions nmanual |y}
punmOnSave = 0; {publ i sher sends new }
{ editions on save}
punivanual = 1; {publ i sher does not send } m
{ new editions until user } %‘
{ request} %
See “Using Publisher and Subscriber Options” beginning on page 2-43 for detailed é
9]

information on update modes for publishers and subscribers. See Listing 2-4 beginning
on page 2-33 for code that uses the NewSect i on function to create a publisher. See
Listing 2-6 on page 2-40 for code that uses NewSect i on to create a subscriber.

Saving a Document Containing Sections

When saving a document that contains sections, you should write out each section
record as a resource of type ' sect' and write out each alias record as a resource of type
"al i s' with the same ID as the section record. See the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox for detailed information on resources.

If a user closes a document that contains newly created publishers without attempting to
save its contents, you should display an alert box similar to the one shown in Figure 2-10.

Figure 2-10 The new publisher alert box

This document contains new Publishers. You
must save this document to keep them.

Save changes to the TeachText document
“untitled” before closing?

[Cancel][[Save]]

Using the Edition Manager 2-19

2-20

CHAPTER 2

Edition Manager

If you keep the section records and alias records for each publisher and subscriber as
resources, you can use the ChangedResour ce or Wi t eResour ce function. If you
detach the section records and alias records from each section, you need to clone the
handles and use the AddResour ce function. See the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox for detailed information on the
ChangedResour ce, Wit eResour ce, and AddResour ce functions.

Use the PBExchangeFi | es function to ensure that the file ID remains the same each
time you save a document that contains sections. Saving a file typically involves creating
a new file (with a temporary name), writing data to it, closing it, and then deleting the
original file that you are replacing. You rename the temporary file with the original
filename, which leads to a new file ID. The PBExchangeFi | es function swaps the
contents of the two files (even if they are open) by getting both catalog entries and
swapping the allocation pointers. If the files are open, the file control block (FCB) is
updated so that the reference numbers still access the same contents (under a new
name). See Inside Macintosh: Files for detailed information on the PBExchangeFi | es
function.

Listing 2-2 illustrates how to save a file that contains sections. If the contents of a
publisher have changed since the last save, the application-defined procedure
MySaveDocunent writes the publisher’s data to its edition. It then writes out to

the saved document the section records and alias records of all publishers and
subscribers. MySaveDocunent calls another application-defined routine,

My Get Sect i onAl i asPai r, to return a handle and resource ID to a section. As
described earlier, you should write out the eligible section records and alias records as
resources to allow for future compatibility. There are several different techniques for
saving or adding resources; this listing illustrates one technique. The section handles are
still valid after using the AddResour ce function because this listing illustrates just
saving, not closing, the file.

Before you write out sections, you need to see if any publisher sections share the same
control block. Publishers that share the same control block share the same edition.

If a user creates an identical copy of a file by choosing Save As from the File menu and
does not make any changes to this new file, you simply use the Associ at eSecti on
function to indicate to the Edition Manager which document a section is located in.

Using the Edition Manager

CHAPTER 2

Edition Manager

Listing 2-2 Saving a document containing sections

PROCEDURE MySaveDocurnent (t hi sDocunent: MyDocunent I nf oPtr;
nunmber Of Secti ons: | nteger);

VAR
aSecti onH: Sect i onHandl e;
copi edSect i onH: Handl e;
copi edAl i asH: Handl e;
resl D I nt eger;
t hi sone: I nt eger;
myErr: OSErr;
BEG N
FOR thisone := 1 TO nunber O Secti ons DO
BEG N
aSectionH : = MyGet Secti onAl i asPai r(thi sDocunent, thisone,
reslD);

| F (aSecti onH*”. ki nd st Publ i sher) &

(aSecti onH**. nbde = puntnSave) &

(MyCheckFor Dat aChanged(aSecti onH)) THEN

DoWiteEdition(aSectionH);
END; {end of for}
{set the curResFile to the resource fork of thisDocunent}
UseResFi | e(t hi sDocunent . r esFor kRef Num ;
{wite all section and alias records to the docunent}
FOR thisone := 1 TO nunber O Secti ons DO

BEG N
{given an index, get the next section handle and resID }
{ fromyour internal list of sections for this file}
aSectionH : = MyGet Secti onAl i asPair (thi sDocunent, thisone,

resi D);
{check for duplication of control block val ues}
My CheckFor Dupes(t hi sDocunent, nunber O Secti ons) ;
{save section record to disk}
copi edSecti onH : = Handl e(aSecti onH);
nyErr : = HandToHand(copi edSecti onH);
AddResour ce(copi edSecti onH, rSectionType, resliD, "'');
{save alias record to disk}
copi edAl i asH : = Handl e(aSecti onH”. al i as) ;
myErr := HandToHand(copi edAl i asH);
AddResour ce(copi edSecti onH, rAliasType, resliD, '');
END; {end of for}
{wite rest of docurment to disk}
END;

Using the Edition Manager

2-21

Jabeuepy uonip3 -

2-22

CHAPTER 2

Edition Manager

Opening and Closing a Document Containing Sections

When opening a document that contains sections, your application should use the

Cet Resour ce function to get the section record and the alias record for each publisher

and subscriber. Set the al i as field of the section record to be the handle to the alias. See
the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox for detailed
information on the Get Resour ce function.

You also need to register each section using the Regi st er Sect i on function. The
Regi st er Sect i on function informs the Edition Manager that a section exists.

err := Regi sterSection(sectionDocunent, sectionH,
al i as\WasUpdat ed) ;

The Regi st er Sect i on function adds the section record to the Edition Manager’s list of
registered sections. This function assumes that the al i as field of each section record is a
handle to the alias record. The alias record is a reference to the edition container from the
section’s document. If the Regi st er Sect i on function successfully locates the edition
container for a particular section, the section is registered through a shared control block.
The control block is a private field in the section record.

If the Regi st er Sect i on function cannot find the edition container for a particular
subscriber, Regi st er Sect i on returns the cont ai ner Not FoundW n result code. If
the Regi st er Sect i on function cannot find the edition container for a particular
publisher, Regi st er Sect i on creates an empty edition container for the publisher in
the last place the edition was located. The Edition Manager sends your application a
Section Write event for that section.

When a user attempts to open a document that contains multiple publishers to the same
edition, you should warn the user by displaying an alert box (see “Duplicating
Publishers and Subscribers” on page 2-58).

When a user opens a document that contains a subscriber (with an update mode set to
automatic), receives a new edition, and then closes the document without making any
changes to the file, you should update the document and simply allow the user to close
it. You do not need to prompt the user to save changes to the file.

When closing a document that contains sections, you must unregister each section (using
the UnRegi st er Sect i on function) and dispose of each corresponding section record
and alias record.

err := UnRegi sterSection(sectionH);

The UnRegi st er Sect i on function removes the section record from the list of
registered sections and unlinks itself from the shared control block.

Using the Edition Manager

CHAPTER 2

Edition Manager

Listing 2-3 illustrates how to open an existing file that contains sections. As described
earlier, you should retrieve the section and alias resources, connect the pair through the
al i as field of the section record, and register the section with the Edition Manager.
There are many different techniques for retrieving resources; this listing shows one
technique. If an alias was out of date and was updated by the Alias Manager during
the resolve, the Edition Manager sets the al i asWasUpdat ed parameter of the

Regi st er Sect i on function to TRUE. This means that you should save the document.
Additionally, your application must maintain its own list of registered sections for each
open document that contains sections. You use this list to write out new editions for
updated publishers within a document.

Listing 2-3 Opening a document containing sections

PROCEDURE MyOpenExi sti ngDocunent (t hi sDocunent: MyDocunent | nfoPtr);
VAR

secti onH: Sect i onHandl e;
al i asH: Al i asHandl e;
al i asWasUpdat ed: Bool ean;
regi sterErr: CSErr;
resi D I nt eger;
t heResType: ResType;
t hi sone: I nt eger;
nunber O Secti ons: I nt eger;
aNane: St r 255;

BEG N

UseResFi | e(t hi sDocunent . r esFor kRef Num ;

{find out the nunber of section resources}

nunber O Secti ons : = Count 1Resources(r Secti onType);
FOR t hi sone := 1 TO nunber O Secti ons DO

BEG N
sectionH : = Secti onHandl e(Get 11 ndResour ce(r Secti onType,
t hi sone));
IF sectionH = NIL THEN {sonething could be wong with }
MySecti onErr; { the file, handl e appropriately}

{get resource ID of the section & use sane ID for alias}

Cet Resl nf o(Handl e(sectionH), reslD, theResType, aNane);

{detaching is not necessary, but it is convenient}

Det achResour ce(Handl e(secti onH));

{get the alias}

aliasH := Ali asHandl e(Get 1Resource(rAl i asType, resiD));

IF aliasH = NIL THEN {sonething could be wong with }
MyAl i asErr; { the file, handl e appropriately}

Det achResour ce(Handl e(al i asH));

Using the Edition Manager 2-23

Jabeuepy uonip3 -

2-24

CHAPTER 2

Edition Manager

{connect section and alias together}

sectionH”*. alias := aliasH,
{register the section}
regi sterkErr := RegisterSection(thisbDocunent”.fil eSpec,

sectionH, aliasWasUpdat ed);

{The Regi sterSection function may return an error if }
{ a section is not registered. This is not a fatal error. }
{ Continue |ooping to regi ster renaining sections.}
{add this section/alias pair to your internal bookkeepi ng}
MyAddSect i onAl i asPai r (t hi sDocunment, sectionH, reslD);
| F al i as\WasUpdat ed THEN

{If alias has changed, make a note of this. }

{ It"s inportant to know this when you save.}

MyAl i asHasChanged(secti onH);

END; {end of FOR}
END;

Reading and Writing a Section

Your application writes publisher data to an edition. New publisher data replaces the
previous contents of the edition, making the previous edition information irretrievable.
Your application reads data from an edition for each subscriber within a document.

The following sections describe how to

= use different formats to write to or read from an edition
= open an edition to initiate writing or reading

= seta format mark

= write to or read from an edition

= close an edition after successfully writing or reading data

Formats in an Edition

You can write data to an edition in several different formats. These formats are the same
as scrap format types. Scrap format types are indicated by a four-character tag.

Typically, when a user copies data, you identify the scrap format types and then write
the data to the scrap. With the Edition Manager, when a user decides to publish data,
you identify the format types and then write the data to an edition. You can write
multiple formats of the same data.

For an edition, you should write your preferred formats first. In general, to write data

to an edition, your application should use either ' TEXT' formator' Pl CT' format. This
allows your application to share data with most other applications. To subscribe to

an edition, your application should be able to read both ' TEXT' and ' PI CT' files. In
addition, your application can write any other private formats that you want to support.

Using the Edition Manager

CHAPTER 2

Edition Manager

Scrap format types are described in the chapter “Scrap Manager” in Inside Macintosh:
More Macintosh Toolbox.

A few special formats are defined as constants.

CONST kPubl i sher DocAl i asFor mat = 'alis';{alias record fromthe }
{ edition to publisher}
"prvw ; {' PICT" thunbnail }
{ sketch}
"fms';{lists all available }
{ fornmats}

kPrevi ewFor mat

kFor mat Li st For mat

The kPubl i sher DocAl i asFormat (' al i s') format is written by the Edition
Manager. It is an alias record from the edition to the publisher’s document. Appended to
the end of the alias is the section ID of the publisher, which the Edition Manager uses to
distinguish between multiple publishers to a single edition. You should discourage users
from making multiple copies of the same publisher. See “Duplicating Publishers and
Subscribers” on page 2-58 for detailed information.

Jabeuepy uonip3 -

In addition to writing a publisher’s data to an edition in the ' TEXT' format or' Pl CT'
format, your application can also write data to an edition in the kPr evi ewFor mat

(" prvw) format. If you provide a' prvw format in an edition, the Edition Manager
uses it to display a preview of the edition data in the preview area of the subscriber
dialog box. The ' prvw format has the same formatasa' Pl CT' file. To draw a preview
inthe' prvw format, the Edition Manager calls Dr awPi ct ur e with a rectangle of

120 by 120 pixels. (See Inside Macintosh: Imaging for more information about

Dr awPi ct ur e.) Your application should provide dataina' prvw format so that the
data displays well in a rectangle of this size. Your application can also use this preview
to display subscriber data within a document (to save space).

If your application does not provide a preview in the' prvw format for an edition, the
Edition Manager attempts to provide a preview by using the edition’s ' PI CT' format.
To draw a preview in the ' PI CT' format, the Edition Manager examines the picture’s
bounding rectangle and calls Dr awPi ct ur e with a rectangle that scales the picture
proportionally and centers it in a 120-by-12-pixel area.

The kFor mat Li st For mat (' f nt's') format is a virtual format that is read but never
written. It is a list of all the formats and their lengths. Applications can use this format in
place of the Edi t i onHasFor mat function (described in “Choosing Which Edition
Format to Read” on page 2-41), which provides a procedural interface to determine
which formats are available.

If your application can read two or more of the available formats, use' f nts' to
determine the priority of these formats for a particular edition. The order of ' f nt s'
reflects the order in which the formats were written.

Using the Edition Manager 2-25

2-26

CHAPTER 2

Edition Manager

The For mat sAvai | abl e data type defines a record for the ' f mt's' format.

TYPE For mat sAvai |l abl e = ARRAY[0..0] OF

RECORD
t heType: For mat Type; {format type for an edition}
t heLength: Longl nt; {length of edition format }
{ type}
END;

For example, an edition container may have a format type ' TEXT' of length 100, and a
format type ' styl ' of length 32. A subscriber to this edition can open it and then read
the format type ' fnt's' to list all available formats. In this example, it returns 16 bytes:
" TEXT' $00000064 ' styl ' $00000020.

Opening an Edition

For a publisher, use the OpenNewEdi t i on function to initiate the writing of data to an
edition. (Note that the edition container must already exist before you initiate writing;
see “Creating the Edition Container” beginning on page 2-32.)

err := QpenNewkdi ti on(publ i sher SectionH, fdCreator,
publ i sher Sect i onDocunent, refNunj;

The publ i sher Sect i onHparameter is the publisher section that you are writing to the
edition. The f dCr eat or parameter is the Finder creator type of the new edition.

(The edition container file already has a creator type; you can specify the same creator
type or establish a new creator type for the edition.)

The publ i sher Sect i onDocunent parameter specifies the document that contains the
publisher. This parameter is used to create an alias from the edition to the publisher’s
document. If you pass NI L for publ i sher Sect i onDocunent, an alias is not made in
the edition file. The r ef Numparameter returns the reference number for the edition.

For a subscriber, use the QpenEdi t i on function to initiate the reading of data from
an edition.

err := QpenEdition(subscriberSectionH, refNum;

The subscri ber Sect i onHparameter is a handle to the section record for a given
section. The r ef Numparameter returns the reference number for the edition.

The user may rename or move the edition in the Finder. Before writing to or reading data
from an edition, the Edition Manager verifies the name of the edition. This process is
referred to as synching or synchronization. Synching ensures that the Edition Manager’s
existing edition names correspond to the Finder’s existing edition names by updating
the control block.

Using the Edition Manager

CHAPTER 2

Edition Manager

Format Marks

Each format has its own mark. The mark indicates the next position of a read or write
operation. Initially, a mark automatically defaults to 0. After reading or writing data, the
format mark is set past the last position written to or read from. The mark is similar to
the File Manager’s current read or write position marker for a data fork. Any time that
an edition is open (after calling the OpenEdi t i on or the OpenNewEdi t i on function),
any of the marks for each format can be queried or set.

To set the current mark for a section format to a new location, use the
Set Edi t i onFor mat Mar k function.

err := SetEditionFornat Mar k(whi chEdi ti on, whi chFormat,
set Mar kTo) ;

To get the current mark for a format in an edition file, use the Get Edi t i onFor mat Mar k
function.

err := GetEditionFormat Mar k(whi chEdi tion, whi chFormat,
current Mark) ;

Reading and Writing Edition Data

The Edition Manager allows you to read or write data a few bytes at a time (as with a
data fork of a Macintosh file) instead of in one block (as with the Scrap Manager). You
can read sequentially by setting the mark to 0 and repeatedly calling read, or you can
jump to a specific offset by setting the mark there. The Edition Manager also adds the
capability to stream multiple formats by keeping a separate mark for each format. This
allows you to write a few bytes of one format and then write a few bytes of another
format, and so forth.

Once you have opened the edition container for a particular publisher, you can begin
writing data to the edition. Use the Wi t eEdi t i on function to write publisher data to
an edition.

err := WiteEditi on(whichEdition, whichFormat, buffPtr, bufflLen);

The Wi t eEdi t i on function writes the specified format (beginning at the current mark
for that format type) from the buffer pointed to by the buf f Pt r parameter up to
buf f Len bytes.

After you open the edition container for a subscriber and determine which formats to
read, use the ReadEdi t i on function to read edition data.

err : = ReadEdition(whi chEdition, whichFormat, buffPtr, buffLen);

Using the Edition Manager 2-27

Jabeuepy uonip3 -

2-28

CHAPTER 2

Edition Manager

The ReadEdi t i on function reads the data with the specified format (whi chFor mat)
from the edition into the buffer. The ReadEdi t i on function begins reading at the
current mark for that format and continues to read up to buf f Len bytes. The actual
number of bytes read is returned in the buf f Len parameter. Once the buf f Len
parameter returns a value smaller than the value you have specified, there is no
additional data to read, and the ReadEdi t i on function returns a NoEr r result code.

Note

The Translation Manager (if it is available) attempts implicit translation
under certain circumstances. For instance, it does so when your
application attempts to read from an edition a format type that is not in
the edition. In this case, the Translation Manager attempts to

translate the data into the requested format. For more information,

see the chapter “Translation Manager” in Inside Macintosh:

More Macintosh Toolbox. O

Closing an Edition

When you are done writing to or reading data from an edition, call the O oseEdi ti on
function.

err := CloseEdition(whichEdition, successful);

Each time a user edits a publisher within a document, you must update the modification
date in the section record (even if the data is not yet written). When the update mode is
set to Manually, the user can compare the modification dates for a publisher and its
edition in the publisher options dialog box. One modification date indicates when the
publisher last wrote data to the edition, and the other modification date indicates when
the publisher section was last edited.

If the successf ul parameter for a publisher is TRUE, the Ol oseEdi t i on function
makes the newly written data available to subscribers and sets the modification date in
the mdDat e field of the edition to correspond to the modification date of the publisher’s
section record. If the two dates differ, the Edition Manager sends a Section Read event to
all current subscribers.

If the successf ul parameter for a subscriber is TRUE, the Cl oseEdi ti on function sets
the modification date of the subscriber’s section record to correspond to the modification
date of the edition.

If you cannot successfully read from or write data to an edition, set the successf ul
parameter to FALSE. For a publisher, data is not written to the edition, but it should still
be saved with the document that contains the section. When the document is next saved,
data can then be written to the edition. See “Closing an Edition After Reading or
Writing” on page 2-88 for additional information on the Cl oseEdi t i on function.

Using the Edition Manager

CHAPTER 2

Edition Manager

Creating a Publisher

You need to support a Create Publisher menu command in the Edit menu. When a user
selects a portion of a document and chooses Create Publisher from this menu, you
should display the publisher dialog box on the user’s screen. The Create Publisher menu
command should remain dimmed until the user selects a portion of a document.

Use the NewPubl i sher Di al og function to display the publisher dialog box on the
user’s screen. This function is similar to the Cust onPut Fi | e procedure described in the
chapter “Standard File Package” in Inside Macintosh: Files.

err := NewPublisherDi al og(reply);

The dialog box contains space for a preview (a thumbnail sketch) of the edition and a
space for the user to type the name of the edition in which to write the publisher data.
Figure 2-11 illustrates a sample publisher dialog box.

Figure 2-11 A sample publisher dialog box

Preview ' Editions « — Loma Prieta
5 sales dato -
L owales repned -
Desktop
Iy

Name of new edition: Cancel

|SiITI|J|E graphic |

The NewPubl i sher Di al og function displays the preview (provided by
your application), displays a text box with the default name of the edition
(provided by your application), and handles all user input until the user clicks
Publish or Cancel.

Using the Edition Manager 2-29

Jabeuepy uonip3 -

2-30

CHAPTER 2

Edition Manager

You pass a new publisher reply record as a parameter to the NewPubl i sher Di al og
function.

TYPE NewPubl i sherReply =

RECORD
cancel ed: Bool ean; {user clicked Cancel}
repl aci ng: Bool ean; {user chose existing }
{ filenane for an edition}
usePart: Bool ean; {al ways FALSE in version 7.0}
previ ew. Handl e; {handle to 'prvw, 'PICT, }
{ "TEXT', or 'snd ' data}
previ ewfor nat : {type of preview}

For mat Type;
container: EditionContainerSpec;{initially, default name }
{ and location of edition; }
{ on return, edition nanme & }
{ location chosen by the }
{ user to publish data to}
END;

You fill in the usePart, pr evi ew pr evi ewFor nat , and cont ai ner fields of the new
publisher reply record.

Always set the usePar t field to FALSE. The pr evi ewfield should contain either NI L or
the data to display in the preview. The pr evi ewFor mat field should contain' PI CT",
"TEXT',"snd ',or' prvw .

Set the cont ai ner field to be the default name and folder for the edition. The default
name should reflect the data contained in the publisher. For example, if a user publishes
a bar chart of sales information entitled “sales data,” then the default name for the
edition could also be “sales data.” Otherwise, you should use the document name
followed by a hyphen (-) and a number to establish uniqueness. For example, your
default name could be “January Totals - 3.”

If the document has not been saved, the default name should be “untitled edition <n>"
where 7 is a number to establish uniqueness. The default folder should be the same as
the edition for the last publisher created in the same document. If this is the first
publisher in the document, the default folder should be the same folder that the
document is in.

The cancel ed field of the new publisher reply record indicates whether the user clicked
Cancel. The r epl aci ng field indicates whether the user chose to replace an existing
edition file. If r epl aci ng returns FALSE, call the Cr eat eEdi t i onCont ai nerFi |l e
function to create an edition file.

Using the Edition Manager

CHAPTER 2

Edition Manager

The cont ai ner field is of data type Edi t i onCont ai ner Spec.

TYPE Edi ti onCont ai ner Spec =
RECORD
t heFi |l e: FSSpec; {record that identifies the }
{ file to contain edition data}
theFileScript: ScriptCode; {script code of filenane}

t hePart: Longl nt ; {which part of file, }
{ al ways kPart sNot Used}
t hePar t Nane: Str31; {not used in version 7.0}

thePart Script: ScriptCode; {not used in version 7.0}
END;

The field t heFi | e is a file system specification record, a data structure of type FSSpec.
You identify the edition using a volume reference number, directory ID, and filename.
When specifying an edition, follow the standard conventions described in

Inside Macintosh: Files.

After filling in the fields of the new publisher reply record, pass it as a parameter to the
NewPubl i sher Di al og function, which displays the publisher dialog box.

err := NewPublisherDi al og(reply);

After displaying the publisher dialog box, use the Cr eat eEdi t i onCont ai ner Fi | e
function to create the edition container, and then use the NewSect i on function to create
the section record and the alias record. See the next section, “Creating the Edition
Container,” and “Creating the Section Record and Alias Record” on page 2-15 for
detailed information.

The following code segment illustrates how your application might respond to the

user choosing the Create Publisher menu item. In this case, the code sets up the

preview for the edition, sets the default name for the edition container, and calls an
application-defined function (DoNewPubl i sher, shown in Listing 2-4 on page 2-33) to
display the publisher dialog box on the user’s screen. An application might call the
DoNewPubl i sher function in response to the user’s choosing Create Publisher from the
Edit menu or in response to handling the Create Publisher event. The chapter
“Responding to Apple Events” in this book gives an example of a handler for the

Create Publisher event.

VAR
t hi sDocument : MyDocument | nf oPt r;
pr onpt For Di al og: Bool ean;
previ ew. Handl e;
previ ewfor mat : For mat Type;
def aul t Locati on: Edi ti onCont ai ner Spec;
myErr: OSErr;

Using the Edition Manager 2-31

Jabeuepy uonip3 -

2-32

CHAPTER 2

Edition Manager

BEG N
{Get a preview to show the user. The My/Get Previ ewFor Sel ection }
{ function returns a handle to the preview}
preview : = MyGet Previ ewfor Sel ecti on(thi sDocunent);
previ ewFor mat : = ' TEXT ;
def aul t Locati on : = MyCet Def aul t Edi ti onSpec(t hi sDocunent);
pronpt For Di al og : = TRUE;
myErr : = DoNewPubl i sher (t hi sDocunent, pronpt ForDi al og, preview,
previ ewFormat, defaultLocation);
END;

Creating the Edition Container

Use the Cr eat eEdi ti onCont ai ner Fi | e function to create an edition container to
hold the publisher data.

err := CreateEditionContainerFile(editionFile, fdCreator,
edi ti onFi | eNanmeScri pt) ;

This function creates an edition container. The edition container is empty (that is, it does
not contain any formats) at this time.

To associate an icon with the edition container, create the appropriate entries for the icon
in your application’s bundle. See the chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials for additional information. Depending on the contents of the
edition, the file type will be ' edt p' (for graphics), ' edtt' (for text), or' edts'

(for sound).

After creating the edition container, use the NewSect i on function to create the section
record and alias record for the section.

Listing 2-4 illustrates how to create a publisher. The DoONewPubl i sher function shown
in the listing is a function provided by an application. Note that an application might call
the DoNewPubl i sher function in response to the user’s choosing the Create Publisher
command or in response to the Create Publisher event. The chapter “Responding to
Apple Events” in this book gives an example of a handler for the Create Publisher event.

The parameters to the DoNewPubl i sher function include a pointer to information
about the document, a Boolean value that indicates if the function should display the
new publisher dialog box, the preview for the edition, the preview format, and an
edition container.

The function displays the publisher dialog box if requested, letting the user accept or
change the name of the edition and the location where the edition should reside. Use the
Cr eat eEdi t i onCont ai ner Fi | e function to create the edition with the given name
and location. Use the NewSect i on function to create a new section for the publisher.

Using the Edition Manager

CHAPTER 2

Edition Manager

After the section is created, you must write out the edition data. Be sure to add the newly

created section to your list of sections for this document. There are several different
techniques for creating publishers and unique IDs; this listing displays one technique.

After creating the edition container and creating a new section record,
the DoNewPubl i sher function calls another application-defined routine,
DoW it eEdi ti on, to open the edition and write data to it.

Listing 2-4 Creating a publisher

FUNCTI ON DoNewPubl i sher (t hi sDocunent: MyDocunent | nfoPtr;
pr onpt For Di al og: Bool ean;
preview. Handl e;
previ ewor nat : For mat Type;
edi ti onSpec: Editi onCont ai ner Spec)
CSErr;
VAR
get LastErr, dialogErr: OSErr;
createkrr, sectionkErr: OSErr;

resi D I nt eger;

t hi sSecti onH: Sect i onHandl e;

reply: NewPubl i sher Repl y;
BEG N

{set up info for new publisher reply record}
reply.replacing := FALSE;

reply.usePart := FALSE;

reply. preview : = preview,

reply. previ ewFormat : = previ ewFor mat ;
reply.contai ner := editionSpec;

| F pronpt For Di al og THEN
BEG N {user interaction is all owed}
{di splay dialog box and | et user select}
di al ogErr := NewPublisherDi al og(reply);
{di spose of preview data handl e}
Di sposeHandl e(reply. previ ew);
| F di al ogErr <> noErr THEN MyErrHandl er (di al ogErr);
I F reply.cancel ed THEN
BEA N {do nothing if user cancel ed}
DoNewPubl i sher : = user Cancel edErr;
EXI T(DoNewPubl i sher) ;
END;
END;, {of pronptForDi al og}

Using the Edition Manager

2-33

Jabeuepy uonip3 -

2-34

CHAPTER 2

Edition Manager

| F NOT reply.replaci ng THEN
BEG N
{if user isn't replacing an existing file, create a new one}
createErr :=
CreateEditionContainerFil e(reply.container.theFile,
kAppSi gnat ur e,
reply.container.theFileScript);
| F createErr <> noErr THEN
BEG N
DoNewPubl i sher : = err AEPer ni ssi onDeni ed;
EXI T(DoNewPubl i sher);
END;
END; {of not repl acing}
{Advance counter to nmake a new uni que sectionlD for this }
{ docunent. It is not required that you equate section IDs }
{ with resources.}

t hi sDocunment ~. next Secti onl D : = t hi sDocunment ~. next Sectionl D + 1;
{create a publisher section}
sectionErr := NewSection(reply.container,

t hi sDocunent”. fil eSpecPtr,

st Publ i sher,

t hi sDocunent . next Sect i onl D,
pumOnSave, thisSectionH);
| F (sectionErr <> noErr) & (sectionErr <> nultiplePublisherWn)
& (sectionErr <> not ThePublisherWn) THEN
MyEr r Handl er (secti onErr);
resl D : = thi sDocurment ~. next Secti onl D
{add this section/alias pair to app's internal bookkeepi ng}
MyAddSect i onAl i asPai r (t hi sDocunent, thisSectionH, reslD);
{wite out first edition}
DoWiteEdition(thisSectionH);
{Renmenber that the section and alias records need to be }
{ saved as resources when the user saves the docunent.}
{set the function result appropriately}
DoNewPubl i sher := MyGetLastError;

END;

Using the Edition Manager

CHAPTER 2

Edition Manager

Opening an Edition Container to Write Data

Several routines are required to write (publish) data from a publisher to an edition
container. (For information on creating an edition container, see the previous section.)
Before writing data to an edition, you must use the OpenNewEdi t i on function. This
function should be used only for a publisher within a document. Use this function to
initiate the writing of data to an edition.

err := OpenNewEdi tion(publisherSectionH, fdCreator,
publ i sher Secti onDocunent, refNun);

A user may try to save a document containing a publisher that is unable to write its data
to an edition—because another publisher (that shares the same edition) is writing,
another subscriber (that shares the same edition) is reading, or a publisher located

on another computer is registered to the section. In such a case, you may decide to
refrain from writing to the edition so that the user does not have to wait. You should
also refrain from displaying an error to the user. The contents of the publisher are saved
to disk with the document. The next time that the user saves the document, you can
write the publisher data to the edition. You should display an alert box to discourage
users from making multiple copies of the same publisher and pasting them in the same
or other documents (see “Duplicating Publishers and Subscribers” on page 2-58).

If a user clicks Send Edition Now within the publisher options dialog box (to write
publisher data to an edition manually), and the publisher is unable to write its data to its
edition (for any of the reasons outlined above), you should display an error message.

After you are finished writing data to an edition, use the Cl oseEdi t i on function to
close the edition.

Listing 2-5 illustrates how to write data to an edition. For an existing edition container,
you must open the edition, write each format using the Wi t eEdi t i on function, and
close the edition using the G oseEdi t i on function. This listing shows how to write text
only. If the edition is written successfully, subscribers receive Section Read events.

Using the Edition Manager 2-35

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Listing 2-5 Writing data to an edition

2-36

PROCEDURE DoW it eEdi ti on(thePublisher: SectionHandl e);
VAR

eRef Num Edi ti onRef Num
openErr: OSEr r

witeErr: CSErr;

cl oseErr: CSErr;

t hi sDocunent: MyDocunent | nfoPtr;
t ext Handl e: Handl e;

BEG N

{find out which docunent this section belongs to}
t hi sDocunment : = MyFi ndDocunent (t hePubl i sher);
{open edition for witing}
openErr := QpenNewkdi ti on(thePublisher, kAppSi gnhature,
t hi sDocunment~. fil eSpecPtr, eRefNum;
I F openErr <> noErr THEN
MyEr r Handl er (openErr) ; {handl e error and exit}
{get the text data to wite}
text Handl e : = MyGet Text | nSecti on(t hePublisher, thisDocunent);
{write out text data}
HLock(t ext Handl e) ;
witeErr := WiteEdition(eRef Num 'TEXT', textHandle”,
Cet Handl eSi ze(t ext Handl e)) ;
HUnLock(t ext Handl e) ;
IF witeErr <> noErr THEN

BEG N
{There were problens witing; sinply close the edition. }
{ When successful = FALSE, the edition data <> section }

{ data. Note: this isn't fatal or bad; it just means }
{ that the data wasn't witten and no Section Read events }

{ will be generated.}
closeErr := O oseEdition(eRef Num FALSE);
END
ELSE
BEG N
{The wite was successful; now close the edition. }
{ When successful = TRUE, the edition data = section data.}
{ This edition is now avail able to any subscribers. }
{ Section Read events will be sent to current subscribers.}
closeErr := CloseEdition(eRef Num TRUE);
END;

END;

Using the Edition Manager

CHAPTER 2

Edition Manager

Creating a Subscriber

You need to create a Subscribe To menu command in the Edit menu. When a user
chooses Subscribe To from this menu, your application should display the subscriber

dialog box on the user’s screen.

Use the NewSubscr i ber Di al og function to display the subscriber dialog box on the

user’s screen. This function is similar to the Cust onGet Fi | e procedure described in the
chapter “Standard File Package” in Inside Macintosh: Files.

To create a subscriber, you must get information from the user, such as the name
of the edition being subscribed to. The dialog box displays a listing of all available

editions and allows the user to see a preview (thumbnail sketch) of the edition selected.

Figure 2-12 shows a sample subscriber dialog box.

Figure 2-12 A sample subscriber dialog box
Preview = Editions w =— Loma Prieta

imple graphic
O sales data
% sales report

<

Desktop

I Subscribe I

The subscriber dialog box allows the user to choose an edition to subscribe to. The
NewSubscr i ber Di al og function handles all user interaction until a user clicks
Subscribe or Cancel. When a user selects an edition container, the Edition Manager
accesses the preview for the edition container (if it is available) and displays it.

Using the Edition Manager

2-37

Jabeuepy uonip3 -

2-38

CHAPTER 2

Edition Manager

You pass a new subscriber reply record as a parameter to the NewSubscr i ber Di al og
function.

TYPE NewSubscriberReply =
RECORD
cancel ed: Bool ean; {user clicked Cancel}
f or mat sMask: Si gnedByte; {formats required}
container: EditionContainerSpec;{initially, default }
{ name & location of edition }
{ to subscribe to; on return, }
{ edition nane & |l ocation }
{ chosen by the user}
END;

The cancel ed field returns a Boolean value of TRUE if the user clicked Cancel. To
indicate which edition format types (text, graphics, or sound) your application can read,
you set the f or mat sMask field to one or more of these constants:

CONST kPI CTf or mat Mask = 1; {can subscribe to 'PICT}
kTEXTf or mat Mask = 2; {can subscribe to ' TEXT'}
ksndFor mat Mask = 4; {can subscribe to 'snd '}

To support a combination of formats, add the constants together. For example, a
f or mat sMask of 3 displays both graphics and text edition format types in the
subscriber dialog box.

The cont ai ner field is of data type Edi t i onCont ai ner Spec. You must initialize the
cont ai ner field with the default edition volume reference number, directory ID,
filename, and part. To do so, use the Get Last Edi t i onCont ai ner Used function to
obtain the name of the last edition displayed in the dialog box.

err := GetlastEditionContai nerUsed(container);

This function returns the last edition container for which a new section was created
using the NewSect i on function. If there is no last edition, or if the edition was deleted,
Get Last Edi t i onCont ai ner Used still returns the correct volume reference number
and directory ID to use, but leaves the filename blank and returns the f nf Er r

result code.

Using the Edition Manager

CHAPTER 2

Edition Manager

The cont ai ner field is of data type Edi t i onCont ai ner Spec.

TYPE Edi ti onCont ai ner Spec =

RECORD
t heFi |l e: FSSpec; {file containing edition }
{ data}
t heFil eScri pt: Scri pt Code; {script code of filenane}
t hePart: Longl nt ; {which part of file, }
{ al ways kPart sNot Used}
t hePar t Nane: Str31; {reserved} m
t hePart Scri pt: Scri pt Code; {reserved} %
END; 5
5
The field t heFi | e is of type FSSpec. See Inside Macintosh: Files for further information g;

on file system specification records.

After filling in the fields of the new subscriber reply record, pass it as a parameter to the
NewSubscr i ber Di al og function, which displays the subscriber dialog box.

err := NewSubscriberDi al og(reply);

After displaying the subscriber dialog box, call the NewSect i on function to create the
section record and the alias record. See “Creating the Section Record and Alias Record”
beginning on page 2-15 for detailed information.

If the subscriber is set up to receive new editions automatically (not manually), the
Edition Manager sends your application a Section Read event. Whenever your
application receives a Section Read event, it should read the contents of the edition into
the subscriber.

Listing 2-6 illustrates how to create a subscriber. As described earlier, you must set up
and display the subscriber dialog box to allow the user to subscribe to any of the
available editions. After your application creates a subscriber, your application receives a
Section Read event to read in the data being subscribed to. Be sure to add the newly
created section to your list of sections for this file. There are many different techniques
for creating subscribers and unique IDs; this listing displays one technique.

Using the Edition Manager 2-39

CHAPTER 2

Edition Manager

Listing 2-6 Creating a subscriber

2-40

PROCEDURE DoNewSubscri ber (t hi sDocunent: MyDocunent | nfoPtr);
VAR

getLastErr: OSErr;

di al ogErr: OSErr;

sectionErr: CSErr;

resi D I nt eger;

thi sSecti onH: Secti onHandl e;
reply: NewSubscri ber Repl y;

BEG N

{put default edition nanme into reply record}
getLastErr := CetlLastEditionContainerUsed(reply.container);
{can subscribe to pictures or text}
reply. formatsMask : = kPI CTf or mat Mask + KTEXTf or mat Mask;
{display dialog box & I et user select edition to subscribe to}
di al ogErr := NewSubscri berDi al og(reply);
| F dial ogErr <> noErr THEN

MyEr r Handl er (di al ogErr); {handl e error and exit}
| F reply.cancel ed THEN

EXI T(DoNewSubscri ber) ; {do nothing if user cancel ed}
{Advance counter to make a new uni que sectionlD for this }
{ docunent. It is not necessary to equate section IDs with }
{ resources.}

t hi sDocunent ~. next Sectionl D : = t hi sDocunent . next SectionlD + 1;
{create a subscriber section}
sectionErr := NewSection(reply.container,

t hi sDocurent ~. fi |l eSpecPtr,

st Subscri ber,

t hi sDocunent ~. next Secti onl D,

sumAut omati c, thisSectionH);
| F sectionErr <> noErr THEN

MyEr r Handl er (sectionErr); {handl e error and exit}

resl D : = thi sDocurment ~. next Secti onl D
{add this section/alias pair to app's internal bookkeepi ng}
MyAddSect i onAl i asPai r (t hi sDocunent, thisSectionH, reslD);
{Remenber that you will receive a Section Read event to read }
{ inthe edition that you just subscribed to because the }
{ initial node is set to sumAutomatic.}
{Remenber that the section and alias records need to be saved }
{ as resources when the user saves the docunent.}

END;

Using the Edition Manager

CHAPTER 2

Edition Manager

Opening an Edition Container to Read Data

Before reading data from an edition, you must use the OpenEdi t i on function. Your
application should only use this function for a subscriber. Use this function to initiate the
reading of data from an edition.

err := OpenEdition(subscriberSectionH, refNum;

As a precaution, you should retain the old data until the user can no longer undo. This
allows you to undo changes if the user requests it.

Your application can supply a procedure such as DoReadEdi t i on to read in data from
the edition to a subscriber. When your application opens a document containing a
subscriber that is set up to receive new editions automatically, the Edition Manager
sends you a Section Read event if the edition has been updated. The Section Read

event supplies the handle to the section that requires updating. Listing 2-7, shown in the
next section, provides an example of reading data from an edition.

Choosing Which Edition Format to Read

After your application opens the edition container for a subscriber, it can look in the
edition for formats that it understands. To accomplish this, use the Edi t i onHasFor nat
function.

err := EditionHasFor mat (whi chEdition, whi chFormat, fornmatSize);

The Edi t i onHasFor mat function returns the noTypeEr r result code if a requested
format is not available. If the requested format is available, this function returns the
NOEr r result code, and the f or mat Si ze parameter contains the size of the data in the
specified format or kFor mat Lengt hUnknown (-1), which signifies that the size is
unknown.

Note

The Translation Manager (if it is available) attempts implicit translation
under certain circumstances. For instance, it does so when your
application attempts to read from an edition a format type that is not
in the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,

see the chapter “Translation Manager” in Inside Macintosh:

More Macintosh Toolbox. O

After your application opens the edition container and determines which formats
it wants to read, call the ReadEdi t i on function to read in the edition data. See
“Reading and Writing Edition Data” on page 2-27 for detailed information.

After you have completed writing the edition data into the subscriber section, call the
O oseEdi ti on function to close the edition. See “Closing an Edition” on page 2-28 for
detailed information.

Using the Edition Manager 2-41

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Listing 2-7 illustrates how to read data from an edition. As described earlier, you must
open the edition, determine which formats to read, use the ReadEdi t i on function to
read in data, and then use the Cl oseEdi t i on function to close the edition. This listing
shows how to read only text.

Listing 2-7 Reading in edition data

PROCEDURE DoReadEdi ti on(theSubscri ber: SectionHandl e);

VAR
eRef Num Edi ti onRef Num
openErr: OSErr;
readErr: OSErr;
cl oseErr: CSErr;
t hi sDocunent : MyDocunent | nf oPtr;
t ext Handl e: Handl e;
f or mat Len: Si ze;
BEG N
{find out which docunent this section belongs to}
t hi sDocurment : = MyFi ndDocurent (t heSubscri ber);

{open the edition for readi ng}
openErr := QpenEdition(theSubscriber, eRefNum;
| F openErr <> noErr THEN
MyEr r Handl er (openErr); {handle error and exit}
{l ook for 'TEXT format}
| F Editi onHasFor mat (eRef Num ' TEXT', formatlLen) = noErr THEN
BEG N
{get the handle of location to read to}
text Handl e : = MyGet Text | nSecti on(t heSubscri ber,
t hi sDocurnent) ;
Set Handl eSi ze(t ext Handl e, formatLen);
HLock(t ext Handl e) ;
readErr := ReadEdition(eRefNum 'TEXT', textHandle®,
format Len) ;
MyUpdat eSubscri ber Text (t heSubscri ber, textHandl e, readErr);
HUnLock(t ext Handl e) ;
| F readErr = noErr THEN

BEG N
{The read was successful; now close the edition. Wen }
{ successful = TRUE, the section data = edition data.}

cl oseErr := C oseEdition(eRef Num TRUE);
EXI T(DoReadEdi ti on);
END;
END; {of EditionHasFormat}

2-42 Using the Edition Manager

CHAPTER 2

Edition Manager

{' TEXT" format wasn't found or

read error;

{ application did not get the latest edition.}
closeErr := Cl oseEdition(eRef Num FALSE)

END;

Using Publisher and Subscriber Options

just close }
{ the edition. FALSE tells the Edition Manager that your }

You can allow users to set several special options associated with publishers and

subscribers. To set these preferences, users change settings in two dialog boxes provided
by the Edition Manager: publisher options and subscriber options. To make these dialog
boxes available to the user, provide a command in the Edit menu that toggles between

Publisher Options (when the user has selected a publisher within a document)
and Subscriber Options (when a user has selected a subscriber within a document).

When a user chooses one of these menu commands, you need to display the appropriate
dialog box. Use the Sect i onOpt i onsDi al og function to display the publisher options
or subscriber options dialog box on the user’s screen.

err := SectionOptionsDi al og(reply);

Each dialog box contains information regarding the section and its edition. Figure 2-13

shows the publisher options dialog box with the update mode set to On Save.

Figure 2-13 The publisher options dialog box with update mode set to On Save

Publisher to: | £3 simple graphic vl

~5end Editions:

®) On Save
 Manually [send Edition Now | !
Latest Edition : Tuesday , October 17, 1989 5:04 :00 PM

[Cancel Publisher]

Cancel

Using the Edition Manager

2-43

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Figure 2-14 shows the publisher options dialog box with the update mode set
to Manually.

Figure 2-14 The publisher options dialog box with update mode set to Manually

Publisher to: | £# Simple graphic vI

~%end Editions: -
: [Cancel Publisher]

) 0n Save
® Manually [Send Edition Now |
Latest Edition: Monday , June 15, 1930 4:21 39 PM

| Lagt Change: Monday , June 15, 1990 4:21 39 PH [Cancel]

As a shortcut for the user, you should display the publisher options dialog box when the
user double-clicks a publisher section in a document.

Figure 2-15 shows the subscriber options dialog box with the update mode set to
Automatically.

Figure 2-15 The subscriber options dialog box with update mode set to Automatically

Subscriber to: | {3 Simple graphic vl

~bet Editions:

. [Cancel Subscriber]
@ Automatically

: Y Manually [Get Edition Now] [Open Publisher]

Latest Edition: Tuesday , October 17, 1989 5:04 :00 Pr :

Cancel

2-44 Using the Edition Manager

CHAPTER 2

Edition Manager

Figure 2-16 shows the subscriber options dialog box with the update mode set
to Manually.

Figure 2-16 The subscriber options dialog box with update mode set to Manually

Subscriber to: | £3 Simple graphic vI

~Get Editions:

i [Cancel Subscriber]
) Automatically

: @Manuallg [Get Edition Now] [Open Publisher]

Latest Edition: Monday , June 18, 1990 41733 PM :

i Last Received: Monday , June 18, 1990 41723 PM C
H H ancel

As a shortcut for the user, you should display the subscriber options dialog box when
the user double-clicks a subscriber section in a document.

You pass a section options reply record as a parameter to the Secti onOpt i onsDi al og
function.

TYPE SectionOptionsReply =

RECORD
cancel ed: Bool ean; {user clicked Cancel}
changed: Bool ean; {changed section record}
secti onH: Sect i onHandl e; {handl e to the specified }
{ section record}
action: ResType; {action codes}
END;

Set the sect i onH parameter to the handle to the section record for the section the
user selected.

Upon return of the Sect i onOpt i onsDi al og function, the cancel ed and changed
fields are set. If the cancel ed field is set to TRUE, the user clicked Cancel. Otherwise,
this field is set to FALSE. If the changed field is set to TRUE, the section record is
changed. For example, the user may have changed the update mode.

Using the Edition Manager 2-45

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

The Sect i onOpt i onsDi al og function returns in the act i on parameter the code for
one of five user actions. The function dismisses the publisher and subscriber options
dialog boxes after the user clicks a button.

= Action codeis' read' for a click of the Get Edition Now button.

= Action codeis' writ' for a click of the Send Edition Now button.

= Action codeis' got o' for a click of the Open Publisher button.

= Action codeis' cncl' for a click of the Cancel Publisher or Cancel Subscriber button.
= Action codeis' " ($20202020) for a click of the OK button.

Listing 2-8 shows an example of how your application can respond to the action codes
received from the section options reply record. You can use several different techniques
for this purpose; this listing shows one technique.

Listing 2-8 Responding to action codes

2-46

PROCEDURE DoOpti onsDi al og(t heSecti on: Secti onHandl e);
VAR

reply: Secti onOpti onsReply;
t heEdi ti onl nf o: Edi ti onl nf oRecor d;
action: ResType;

sodErr, geiErr: CSErr;

gpi Err, gpsErr: CSErr;

BEG N

reply.sectionH : = theSection;

{di splay options dial og box}

sodErr := SectionOptionsDi al og(reply);

{determ ne what the user did and handl e appropri ately}

| F reply.cancel ed THEN {user selected the Cancel button}
EXI T(DoOpt i onsDi al og) ;

| F reply. changed THEN
{the section record has changed; make note of this}
MySect i onHasChanged(t heSecti on);
{if you custom ze, you may want to do sone }
{ post-processing now}

{get the action code}

action := reply.action;

IF (action = 'read') THEN

BEG N {user selected Get Edition Now button}
DoReadEdi ti on(theSecti on);
EXI T(DoOpt i onsDi al og) ;

END;

Using the Edition Manager

CHAPTER 2

Edition Manager

IF (action = "writ') THEN

BEG N {user selected Send Edition Now button}
DoWiteEdition(theSection);
EXI T(DoOpt i onsDi al og) ;

END;

IF (action = 'goto') THEN

BEA N {user sel ected Qpen Publisher button}
gei Err := GetEditionlnfo(theSection, theEditionlnfo);
IF gei Err <> noErr THEN

MyEr r Handl er (gei Err) ; {handl e error and exit}
gpsErr : = GotoPublisherSection(theEditionlnfo.container);
| F gpsErr <> noErr THEN
MyEr r Handl er (gpsErr);{handl e error and exit}

EXI T(DoOpt i onsDi al og) ;

END;

IF (action = 'cncl') THEN

BEG N {User sel ected Cancel Publisher or Cancel Subscriber }
{ button. Call the UnRegisterSection function and di spose }
{ of the section record and alias record.}
EXI T(DoOpt i onsDi al og) ;

END;

END;

Jabeuepy uonip3 -

The following sections describe the features of the publisher and subscriber options
dialog boxes.

Publishing a New Edition While Saving or Manually

By default, your application should write publisher data to an edition each time the user
saves the document and the contents of the publisher differ from the latest edition. In the
publisher options dialog box, the user can choose to write new data to an edition each
time the document is saved (by clicking On Save) or only upon the user’s specific
request (by clicking Manually).

When the update mode is set to manual, a user must click the Send Edition Now button
in the publisher options dialog box to write publisher data to an edition. When a user
clicks this button, the section options reply record contains the action code' wri t' .In
this case, you should write out the new edition. Writing to an edition manually is useful
when a user tends to save a document numerous times while revising it.

Each time the user saves the document, check the update mode of the publisher section.
If the publisher section sends its data to an edition when the document is saved, check
whether the publisher data has changed since it was last written to the edition. If so,
write the publisher’s data to the new edition.

Using the Edition Manager 2-47

2-48

CHAPTER 2

Edition Manager

In addition, you may also support a Stop All Editions menu command to provide a
method for temporarily suspending all update activity. See “Introduction to Publishers,
Subscribers, and Editions” beginning on page 2-4 for additional information.

Subscribing to an Edition Automatically or Manually

By default, your application should subscribe to an edition each time new edition data
becomes available. In the subscriber options dialog box, the user can choose to read new
data from an edition as the data is available (by clicking Automatically) or only upon the
user’s specific request (by clicking Manually).

When the update mode is set to manual, the user must click the Get Edition Now button
in the subscriber options dialog box to receive new editions. When a user clicks this
button, the section options reply record contains the action code ' r ead' . In this case,
you should read in the new edition. See “Opening an Edition Container to Read Data”
beginning on page 2-41 for detailed information.

When the update mode is set to automatic, your application receives a Section Read
event each time a new edition becomes available. In response, you should read the new
edition data beginning with the OpenEdi t i on function.

Your application does not receive Section Read events for subscribers that receive new
editions manually.

You may also support a Stop All Editions menu command to provide a method for
temporarily suspending all update activity. See “Introduction to Publishers, Subscribers,
and Editions” beginning on page 2-4 for additional information.

Canceling Sections Within Documents

The option of canceling publishers and subscribers is available to the user through the
Cancel Publisher and Cancel Subscriber buttons in the corresponding options dialog
boxes. When the user clicks one of these buttons, the action code of the section options
reply record is ' cncl ' . See “Relocating an Edition” on page 2-60 for additional
information on canceling a section.

When a user cancels a section (either a publisher or subscriber) and then saves the
document, or when a user closes an untitled document (which contains newly created
sections) without saving it, you must unregister each corresponding section record and
alias record using the UnRegi st er Sect i on function. In addition, you should also
delete the section record and alias record using the Di sposeHandl e procedure. See
Inside Macintosh: Memory for additional information on the Di sposeHandl| e procedure.

When a user cancels a publisher section and then saves the document, or when a user
closes an untitled document (which contains newly created publishers) without saving
it, you must also delete any corresponding edition containers (in addition to deleting
section records and alias records).

Using the Edition Manager

CHAPTER 2

Edition Manager

Do not delete an edition container file, section record, or alias record until the user saves
the document; the user may decide to undo changes before saving the document.

To locate the appropriate edition container to be deleted (before you use the
UnRegi st er Sect i on function), use the Get Edi t i onl nf o function.

err := GetEditionlnfo(sectionH, editionlnfo);
The edi ti onl nf o parameter is a record of data type Edi t i onl nf oRecor d.

TYPE Editionl nfoRecord =

RECORD
crDat e: Ti meSt anp; {date edition container }
{ was created}
ndDat e: Ti meSt anp; {date of |ast change}
fdCreator: OSType; {file creator}
fdType: CSType; {file type}

container: EditionContainerSpec;{the edition}
END;

The Get Edi t i onl nf o function returns the edition container as part of the edition
information.

The cr Dat e field contains the creation date of the edition. The ntDat e field contains the
modification date of the edition.

The f dType and the f dCr eat or fields are the type and creator of the edition file. The
cont ai ner field includes a volume reference number, directory ID, filename, script, and
part number for the edition.

To remove the edition container, use the Del et eEdi t i onCont ai ner Fi | e function.

err := Del eteEditionContainerFile(editionFile);

Locating a Publisher Through a Subscriber

The user can locate a publisher from a subscriber within a document by clicking the
Open Publisher button in the subscriber options dialog box. As a shortcut, Apple
suggests that you also allow the user to locate a publisher by selecting a subscriber in a
document and pressing Option—-double-click.

When the action code of the Secti onQpt i onsRepl y record is' got o', use the
GoToPubl i sher Sect i on function.

err := GoToPublisherSection(container);

Using the Edition Manager 2-49

Jabeuepy uonip3 -

2-50

CHAPTER 2

Edition Manager

The GoToPubl i sher Sect i on function locates the correct document by resolving the
alias in the edition, and it launches the document’s application if necessary (the
Edition Manager sends an Open Documents event). The Edition Manager then sends
the publishing application a Section Scroll event. If the document containing the
requested publisher is located on the same computer as its subscriber, the document
opens and scrolls to the location of the publisher. If the document containing the
requested publisher is located on a shared volume (using file sharing), the document
opens and scrolls to the location of the publisher only if the user has privileges to open
the document from the Finder.

You need to provide the GoToPubl i sher Sect i on function with the edition container.
To accomplish this, use the Get Edi ti onl nf o function. See the previous section,
“Canceling Sections Within Documents,” for information on the Get Edi ti onl nf o
function.

Renaming a Document Containing Sections

If a user renames a document that contains sections by choosing Save As from the File
menu, or if a user pastes a portion of a document that contains a section into another
document, use the Associ at eSect i on function.

Use the Associ at eSect i on function to update the alias record of a registered section.
err := Associ ateSection (sectionH newSectionDocunent);

The Associ at eSect i on function internally calls the Updat eAl i as function. It is
also possible to update the alias record using the Alias Manager (see the chapter
“Alias Manager” in Inside Macintosh: Files for additional information).

Displaying Publisher and Subscriber Borders

Each publisher and subscriber within a document should have a border that appears
when a user selects the contents of these sections. You should display a publisher border
as three pixels wide with 50 percent gray lines and a subscriber border as three pixels
wide with 75 percent gray lines. Separate the contents of the section from the border
itself with one pixel of white space. To create your borders, you should use patterns, not
colors. Depending on the user’s monitor type, colors may not be distinguishable.

In general, borders for publishers and subscribers should behave like the borders of
"PI CT' graphics in a word-processing document. A border should appear when the
user clicks the content area of a publisher or a subscriber and disappear when

the user clicks outside the content area of a section. You can also make all publisher
and subscriber borders appear or disappear by implementing an optional

Show /Hide Borders menu command.

Using the Edition Manager

CHAPTER 2

Edition Manager

Figure 2-17 displays the Edition Manager Show /Hide Borders menu command in the
Edit menu.

Figure 2-17 Edit menu with Show/Hide Borders menu command

| Eait

Undo #E
Cut #H
Copy ¥C
Paste 1
Select RII #A

Create Publisher...
Subscribe To...
Subscriber Options...
Show Borders

Show Clipboard

Depending on your application, you may choose to include resize handles or similar
components in your borders. See “Object-Oriented Graphics Borders” on page 2-56 for
an example of resize handles.

Whenever a user selects a portion of a publisher or sets the insertion point within a
publisher, you should display the border as 50 percent gray. A user can copy the contents
of a publisher or subscriber without copying the section itself by selecting the data,
copying, and then pasting the data in a new location. A user can cut and paste a selection
that contains an entire publisher or subscriber, but you should discourage users from
making multiple copies of a publisher. See “Duplicating Publishers and Subscribers” on
page 2-58 for detailed information.

When the user modifies a publisher, your application should grow or shrink its border to
accommodate the new dimension of the section.

You should display only one publisher border within a document at a time. If a cursor is
inserted within a publisher that is contained within a larger publisher, you should
display only the smaller, internal publisher border. If it is absolutely necessary to display
all section borders within a document at the same time, you can create a Show /Hide
Borders menu item.

You do not need to provide support for publishers contained within other publishers.
If you do not, you should dim the Create Publisher menu command (to indicate that it is
not selectable) when a user attempts to create a publisher within an existing publisher.

Using the Edition Manager 2-51

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Figure 2-18 shows the recommended border behavior for publishers. The top window
shows a publisher with its borders displayed. The middle window shows how the
borders look when a user selects some of the contents of a section. The bottom window
shows how the borders look when a user selects data within a document that includes a
publisher section.

Figure 2-18 Publisher borders

=[[=—— borders displayed

iDevices connected to the SCS1 port on the back
fof the main unit must have the proper number
fof terminators for the dewvices to work correctly
tand to prevent damage to the SCSI chip inside
fyour computer.

2-52 Using the Edition Manager

CHAPTER 2

Edition Manager

Figure 2-19 shows the recommended border behavior for subscribers. The top window
shows a subscriber with its borders displayed. The middle window shows how the
borders look when a user selects the contents of a section. The bottom window shows
how the borders look when a user selects data within a document that includes a
subscriber section.

Figure 2-19 Subscriber borders

15|
im

s[1==— borders displayed

dpple SC5I1 cable terminators .
are hardware devices that attach
to a SC51 cable. There must be no
rnote than two terrminatorz ina f
SCSI chain.

=)= contents highlighted =P

dpple SCE| cable terminators '
are hardware devices that attach
to a SC51 cable. There must be no
rnote than two terminators ina f
5051 chain.

than two terminato
2| zhain.

If a user tries to select only a portion of a subscriber, you should highlight the entire
contents of the subscriber. A user cannot edit the data in a subscriber. See “Modifying a
Subscriber” on page 2-59 for detailed information.

If a user cancels a section using the publisher or subscriber options dialog box, your
application should leave the contents of the section within the document, but you should
be sure to remove the borders from this data, as it is no longer considered a section.

Using the Edition Manager 2-53

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Generally, the appearance and function of publisher and subscriber borders should be
the same across different applications. The following sections entitled “Text Borders,”
“Spreadsheet Borders,” “Object-Oriented Graphics Borders,” and “Bitmapped Graphics
Borders” describe specialized features for publisher and subscriber borders in
word-processing, spreadsheet, or graphics applications.

Text Borders

In word-processing documents, a publisher may contain other publishers. However, one
publisher should not overlap another publisher. You should display only one publisher
border at a time. If an insertion point is placed within a publisher that is encompassed by
another larger publisher, you should display only the smaller internal publisher border.

In exceptional cases, it may be necessary to display more than one publisher or
subscriber border at a time. For example, a publisher may consist of a paragraph that
includes a marker for a footnote. The data contained within the footnote should also be
considered part of the publisher. When a user selects the paragraph, you should
simultaneously display a border around the footnote.

The border of a publisher that contains text should be located between characters within
the text. The insertion point, when placed on such a boundary, should gravitate toward
the publisher. That is, a click in front (to the left) of a publisher border should place the
cursor inside the publisher, so that subsequent typing goes inside the publisher. Clicking
at the end (to the right) of a publisher border should also place the cursor inside the
publisher.

Whenever two separate borders are adjacent, the boundary click should go in between
them. This is also true for a border that is next to other nontextual aspects of a document,
such as' PI CT' graphics or page breaks.

When a user removes information from a publisher that contains text data, you should
resize the border so that it becomes smaller. When a user adds information to the
publisher, you should enlarge the border to accommodate the new text. The insertion
point should remain within the publisher.

If a user highlights the entire contents of a publisher and then chooses Cut from the Edit
menu, you should not delete the publisher border within the document. The user may
intend to delete the existing publisher data and replace it with new data, or the user may
want to move the entire publisher and its data to a new location. Figure 2-20 shows

this state.

Figure 2-20 A publisher with contents removed

2-54

The first quarter sumimary of our regional sales shows the
effectiveness of our new training program. It is clear that
we need tc%:apture the remaining sales potential.

Using the Edition Manager

CHAPTER 2

Edition Manager

You should leave the cursor inside the small publisher border for further typing. If the
user inserts the cursor in a new location (instead of typing data inside the existing
border), you need to remove the empty publisher border from the document to allow the
user to move the publisher. This effectively deletes the publisher from the document. If
the user pastes the publisher that is currently held in the scrap, you should re-create its
border. If the user cuts or copies other data from the document before pasting the
publisher from the scrap, the publisher should be removed from the scrap.

Spreadsheet Borders

Borders around spreadsheet data or other data in arrays should look and behave very
much like text borders. Figure 2-21 shows a typical border within a spreadsheet
document.

Figure 2-21 A publisher border within a spreadsheet document

A B C D E
LI January | February Farch O F
2 ELoas [14530 17849 2749458
3 foprockets | 1649 LRy 04890 .
4 E 'Widgets A7a0 5539 J900g
5

Note that the border goes below the column headers (A, B, C, D) and to the right of the
row labels (1, 2, 3, 4)—it should not overlap these cell boundaries. The border at the
bottom and the border on the right side can be placed within the adjacent cells (outside
of the cells that constitute the publisher).

Unlike borders in word-processing applications, borders in spreadsheet documents (or
other documents with array data) can overlap. That is, a user can select a row of cells to
be a publisher and an overlapping column of those cells to be another publisher. You
should never display more than one publisher border at a time. When a user selects a
spreadsheet cell that is part of more than one publisher, you should display only the
border of the publisher that was last edited. (This can be accomplished by comparing the
modification dates of the publishers.)

If it is absolutely necessary to display all section borders within a document at the same
time, you can create a Show /Hide Borders command in the Edit menu to toggle all
borders on and off.

When data is added to or deleted from a publisher that consists of a spreadsheet cell or
other array, you should resize its border to accommodate the addition or deletion of
data. A publisher should behave like a named range in a spreadsheet. For example, if a
user cuts a row within a publisher that consists of a named range in a spreadsheet, you
should shrink the publisher data and its border correspondingly.

Using the Edition Manager 2-55

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

When a user cuts a publisher and its entire contents within a spreadsheet document, the
entire section should be held in the scrap. Do not leave an empty publisher border in a
spreadsheet (as recommended for text borders). If a user attempts to paste a copy of an
existing publisher, you should warn the user by displaying an alert box (see
“Duplicating Publishers and Subscribers” on page 2-58).

Object-Oriented Graphics Borders

In an object-oriented drawing application, the publisher border should fit just around
the selected objects.

You can provide resize handles that appear with all drawing objects to allow the user
to resize the border of a publisher. Figure 2-22 shows a publisher border with resize
handles.

Figure 2-22 A publisher border with resize handles

2-56

Eee— Sample Graphics =iF=—L1=

-
=

An application can make publisher borders appear to float over the area the user
publishes. The border acts like a clipping rectangle—anything within the border
becomes the publisher. Figure 2-23 shows a publisher that contains clipped graphics and
its subscriber in another application.

A user can create publishers and subscribers that overlap each other. Thus, borders may
overlap and it may no longer be possible to turn on a particular border when the user
clicks within a publisher. Drawing applications should provide a menu command,
Show Borders, that toggles to Hide Borders. This command should allow users to turn
all publisher and subscriber borders on or off.

Using the Edition Manager

CHAPTER 2

Edition Manager

Figure 2-23 A publisher and subscriber with clipped graphics

=== Graphics Publisher =0

Graphics Subscriber

=3

Bitmapped Graphics Borders

Creating a border around bitmapped graphics in applications is similar to doing so in
object-oriented drawing applications. The border appears around the selected area. The
user can create overlapping publishers and subscribers in bitmapped graphics
applications. You need to provide a Show /Hide Borders command to allow users to turn
all borders on and off.

Using the Edition Manager 2-57

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Duplicating Publishers and Subscribers

Whenever a user clicks a publisher or subscriber border, you should change the contents
of the section to a selected state. You should discourage users from making multiple
copies of a publisher and pasting them in the same or other documents, because the
contents of the edition would be difficult or impossible to predict. Multiple copies of the
same publisher also contain the same control block value. See “Creating and Registering
a Section” on page 2-74 for detailed information on control blocks.

When a user attempts to create a copy of a publisher that already exists, you should
display an alert box such as the one shown in Figure 2-24.

Figure 2-24 Creating multiple publishers alert box

There is another Publisher open to the
Edition “January Sales.”

If there is more than one Publisher to an
Edition, the Edition’s contents aren’t

predictable.

When a user attempts to save a document that contains multiple copies of the same
publisher, display an alert box such as the one shown in Figure 2-25.

Figure 2-25 Saving multiple publishers alert box

2-58

"Year end report" contains two
Publishers to the Edition “January Sales”
If there is more than one Publisher to an
Edition, the Edition’s contents aren’t

predictable.

If a user decides to ignore your alert box, your application should still save the
document, but you should continue to display this error message every time the user
saves this document.

Using the Edition Manager

CHAPTER 2

Edition Manager

A user can modify the contents of any duplicate publisher, but the contents of the edition
will be whichever publisher was the last to write.

When a user chooses to copy and paste or duplicate a section, use the HandToHand
function (described in Inside Macintosh: Memory) to duplicate the section record and alias
record. Set the al i as field of the cloned section record to the handle of the cloned

alias record and generate a unique section identification number for it. In addition, you
should also place the section data, section record, and alias record in the scrap.

Use the Regi st er Sect i on function (described in “Opening and Closing a Document
Containing Sections” on page 2-22) to register the cloned section’s section record.

A user can select the contents of a publisher without selecting the border and copy just
the data to a new location. In this case, the user has simply copied data (and not the
publisher). Do not create a border for this data in the new location.

Modifying a Subscriber

When the user selects data or clicks the data area of a subscriber, you should highlight
the entire contents of the subscriber using inverse video. Although you shouldn’t allow a
user to edit the information in a subscriber, you can allow a user to make global
adornments to subscribers. In other words, users can change the font, size, or other
characteristics of the entire subscriber. For example, a user might select a subscriber
within a document and change all text from plain to bold. However, you should
discourage users from modifying the individual elements contained within a
subscriber—for example, by editing a sentence or rotating an individual graphic object.

Remember that each time a new edition arrives for a subscriber, any modifications that
the user has introduced are overwritten. Global changes to a subscriber are much easier
for your application to regenerate.

Note

Although adornments should be global and never partial, you may still
need to give users the ability to select portions of a subscriber, for
instance, when performing spell checking and search-and-replace
operations. O

If you do allow a user to edit a subscriber section, provide an

enable/disable editing option within the subscriber options dialog box using the
Sect i onOpt i onsExpDi al og function, described in “Customizing Dialog Boxes”
beginning on the next page. When you allow a user to edit a subscriber, you should
change the subscriber from a selected state to editable data.

Because a user can modify a publisher just like any other portion of a document, its
subscriber may change in size as well as content. For example, a user may modify a
publisher by adding two additional columns to a spreadsheet.

Using the Edition Manager 2-59

Jabeuepy uonip3 -

2-60

CHAPTER 2

Edition Manager

Relocating an Edition

In the Finder, users cannot move an edition across volumes. To relocate an edition,

the user must first select its publisher and cancel the section (remember to remove the
border). The user needs to republish and then select a new volume location for the
edition. As a convenience for the user, you should retain the selection of all the publisher
data after the user cancels the section to make it easy to republish the section.

Customizing Dialog Boxes

The expandable dialog box functions allow you to add items to the bottom of the
dialog boxes, apply alternate mapping of events to item hits, apply alternate meanings
to the item hits, and choose the location of the dialog boxes. See the chapter

“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials and the chapter
“Standard File Package” in Inside Macintosh: Files for additional information.

The expandable versions of these dialog boxes require five additional parameters. Use
the NewPubl i sher ExpDi al og function to expand the publisher dialog box.

err := NewPublisherExpDi al og (reply, where, expansionDl TLresl D,
dl gHook, filterProc, yourDataPtr);

Use the NewSubscr i ber ExpDi al og function to expand the subscriber dialog box.

err := NewSubscri ber ExpDi al og (reply, where, expansionDl TLresl D,
dl gHook, filterProc, yourDataPtr);

Use the Sect i onOpt i onsExpDi al og function to expand the publisher options and the
subscriber options dialog boxes.

err := SectionOptionsExpDi al og (reply, where, expansionDI TLresl D,
dl gHook, filterProc, yourDataPtr);

The r epl y parameter is a pointer to a NewPubl i sher Repl y, NewSubscr i ber Repl y,
or Sect i onQpt i onsRepl y record, respectively.

You can automatically center the dialog box by passing (-1, —1) in the wher e parameter.

The expansi onDI TLr es| D parameter should contain 0 or a valid item list (' DI TL")
resource ID. This integer is the resource ID of an item list whose items are appended to
the end of the standard item list. The dialog items keep their relative positions, but they
are moved as a group to the bottom of the dialog box. See the chapter “Dialog Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for additional information on item lists.

The fi | t er Proc parameter should be a pointer to an expandable modal-dialog filter
function or NI L. An expandable modal-dialog filter function is similar to a modal-dialog
filter function or event filter function except that an expandable modal-dialog filter
function accepts two extra parameters. The Mbdal Di al og procedure calls the
expandable modal-dialog filter function you provide in this parameter.

Using the Edition Manager

CHAPTER 2

Edition Manager

Providing a filter function enables you to map real events (such as a mouse-down event)
to an item hit (such as clicking the Cancel button). For instance, you may want to

map a keyboard equivalent to an item hit. See the chapter “Dialog Manager” in

Inside Macintosh: Macintosh Toolbox Essentials for information on the Modal Di al og
procedure.

The dI gHook parameter should be a pointer to an expandable dialog hook function

or NI L. An expandable dialog hook function is similar to a dialog hook

function except that an expandable dialog hook function accepts an additional
parameter. The NewSubscr i ber ExpDi al og, NewPubl i sher ExpDi al og, and

Secti onOpt i onsExpDi al og functions call your expandable dialog hook function
after each call to the Mbdal Di al og procedure. The dialog hook function should take the
appropriate action, such as filling in a checkbox. The i t enCf f set parameter to the
procedure is the number of items in the item list before the expansion dialog items. You
need to subtract the item offset from the item hit to get the relative item number in the
expansion dialog item list. The expandable dialog hook function should return as its
function result the absolute item number.

When the Edition Manager displays subsidiary dialog boxes in front of another dialog
box on the user’s screen, your dialog hook and event filter functions should check the

r ef Con field in the W ndowRecor d data type (from the wi ndowfield in the

Di al ogRecor d) to determine which window is currently in the foreground. The main
dialog box for the NewPubl i sher ExpDi al og and the NewSubscr i ber ExpDi al og
functions contains the following constant:

CONST sf Mai nDi al ogRef Con = 'stdf'; {new publisher and }
{ new subscri ber}

The main dialog box for the Sect i onOpt i onsExpDi al og function contains the
following constant:

CONST enOpt i onsDi al ogRef Con = 'optn'; {options dial og}

See “Summary of the Edition Manager” beginning on page 2-106 for additional constants.

The your Dat aPt r parameter is reserved for your use. It is passed back to your dialog
hook and event filter function. This parameter does not have to be of type Pt r —it can be
any 32-bit quantity that you want. In Pascal, you can pass your Dat aPt r in register A6,
and declare your dialog hook and modal-dialog filter as local functions without the last
parameter. The stack frame is set up properly for these functions to access their parent
local variables. See the chapter “Standard File Package” in Inside Macintosh: Files for
detailed information.

For the NewPubl i sher ExpDi al og and NewSubscri ber ExpDi al og functions, all the
pseudo-items for the Standard File Package—such as sf HookFi r st Cal | (-1),

sf HookNul | Event (100), sf HookRebui | dLi st (101), and sf HookLast Cal | (-2)—can
be used, as well as enHook Redr awPr evi ew(150).

Using the Edition Manager 2-61

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

For the Sect i onOpt i onsExpDi al og function, the only valid pseudo-items are
sf HookFi r st Cal | (-1), sf HookNul | Event (100), sf HookLast Cal | (-2),
enmHookRedr awPr evi ew(150), enHook Cancel Sect i on(160),
emHookGoToPubl i sher (161), enHook Get Edi t i onNow(162),

entHook SendEdi t i onNow(162), enHook Manual Updat eMode(163), and
emHook Aut oUpdat eMbde(164). See the chapter “Standard File Package” in
Inside Macintosh: Files for information on pseudo-items.

Subscribing to Non-Edition Files

Using the Edition Manager, a subscriber can read data directly from another document,
such as an entire ' Pl CT' file, instead of subscribing to an edition. This feature is for
advanced applications that can set up bottleneck procedures for reading. Figure 2-26
shows a document that is subscribing directly toa' Pl CT' file.

Figure 2-26 Subscribing directlyto a' PI CT' file

2-62

J.FJL
Music JJ:-"

. %
In "3 &«
the }"%\ Subscriber
J <
park
Join us every Wednesday evening
at 8 PM beginning March 21. N
The concerts will be held in the outdoor atrium Pianos & palm trees

shell located across from the Academy of Sciences
in Golden Gate Park in San Francisco.
The series will continue through
April 25

For each application, the Edition Manager keeps a pointer to a bottleneck function.
The Edition Manager never opens or closes an edition container directly. Instead, the
Edition Manager calls the current edition opener. The | ni t Edi t i onPack function
(described on page 2-74) sets up the current system opener function.

Subscribing to Non-Edition Files

CHAPTER 2

Edition Manager

To override the standard opener function, create an opener function that contains the
following parameters:

FUNCTI ON MyQpener (sel ector: EditionOpener Verb;
VAR PB: EditionGOpener ParanBl ock): OSErr;

Your opener needs to know which formats the file contains and how the data is
supposed to be read or written.

The opener function is passed an edition opener verb in the sel ect or parameter, which
identifies the action the opener function should perform. The opener can allocate a
handle or pointer to contain information such as file reference numbers. This value is
passed to the I/O routines in the i oRef Numfield of the edition opener parameter block.

The eoOpen and eoOpenNew edition opener verbs (described in “Calling an Edition
Opener” on page 2-64) return a pointer to a function to do the actual reading and writing.

The following sections describe

= how to get the current edition opener
= how to set your own edition opener

= how to call an edition opener

= the edition opener parameters

Getting the Current Edition Opener

When you want to get the current edition opener, use the Get Edi t i onOpener Pr oc
function.

err := GetEditionOpenerProc(opener);

The opener parameter returns a pointer to the current edition opener. A different
current opener is kept for each application. One application’s opener is never called by
another application.

Setting an Edition Opener

You can provide your own edition opener. To do so, use the Set Edi t i onOpener Pr oc
function.

err := SetEditionOpenerProc(@yQOpener);

The @W Opener parameter is a pointer to the edition opener function that you are
providing. If you set the current opener to be a routine in your own code, be sure to call
the Get Edi t i onQpener Pr oc function first so that you can save the previous opener. If
your opener is passed a selector that it does not understand, use the previous opener
provided by the Edition Manager to handle it. See the next section for a list of selectors.

Subscribing to Non-Edition Files 2-63

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Calling an Edition Opener

You use the Cal | Edi t i onOpener Pr oc function to call an edition opener. Since
the Edition Manager is a package that may move, a real pointer cannot be safely
returned for the standard opener and 1/O routines. The system opener and the
I/O routines are returned as a value that is not a valid address to a procedure. The
Cal | Edi ti onOpener Pr oc and Cal | For mat | OPr oc functions check for these
values and call the system openers.

You should never assume that a value for a system opener is a fixed constant.

err := CallEditionOpenerProc (selector, PB, routine);

Set the sel ect or parameter to one of the edition opener verbs. The edition opener
verbs include

= eoCanSubscri be

= eoOpen

= eoC ose

» eoOpenNew

= eod oseNew

The PB parameter of the Cal | Edi ti onQpener Pr oc function is an edition opener
parameter block.

TYPE Edi ti onQpener Par anBl ock =

RECORD
i nfo: Edi ti onl nf oRecor d; {edition container to }

{ be subscribed to}
secti onH Sect i onHandl e; {publisher or }

{ subscriber }

{ requesting open}
docunent : FSSpechktr; {docurent passed}
fdCreator: CSType; {Fi nder creator type}
i oRef Num Longl nt ; {reference number}

i oProc: Format | OProcPtr; {routine to read }

{ formats}
success: Bool ean; {reading or witing }

{ was successful}

f or mat sMask: Si gnedByt €; {formats required to }

{ subscri be}

END;

2-64 Subscribing to Non-Edition Files

Opener verb

CHAPTER 2

Edition Manager

The r out i ne parameter of the Cal | Edi ti onQpener Pr oc function is a pointer to an
edition opener function.

The following list shows which fields of the edition opener parameter block are used by
the edition opener verbs:

eoCanSubscri be o

eoQpen

eoCl ose

—

—

Field
i nfo

f or mat svask

Return value

i nfo

secti onH

i oRef Num

i oProc

Return value

i nfo

secti onH

i oRef Num

i oProc

Success

Return value

Subscribing to Non-Edition Files

Description

Edition container to
subscribe to.

Formats required to
subscribe.

AnoErr code
indicates that an
edition container can
be subscribed to. A
noTypeErr code
indicates that an
edition container
cannot be subscribed
to.

Edition container to
open for reading.

Subscriber section
requesting open or
NI L.

Reference number for
use by I/O routine.
Not the same as

Edi t i onRef Num

I/O routine to call to
read formats.

AnoErr code or
appropriate error code.

Edition container to be
closed for reading.

Subscriber section
requesting close or NI L.

Value returned by
eoCpen.

Value returned by
eoQpen.

Success value passed
to the Cl oseEdi ti on
function.

AnoErr code or
appropriate error code.

Called by

NewSubscri ber Di al og
function for a subscriber

OpenEdi ti on and
CGet St andar dFor mat s
functions for a subscriber

Cl oseEdi ti onand
CGet St andar dFor mat s
functions for a subscriber

continued

2-65

Jabeuepy uonip3 -

Opener verb
eoOpenNew

eoCl oseNew

2-66

CHAPTER 2

Edition Manager

Field
- info

. secti onH

- docunent

- f dCr eat or

- i oRef Num
- i oProc

- Return value
- info

- secti onH

o i oRef Num
- i oProc

5 success

- Return value

Description

Edition container to
open for writing.

Called by (continued)

OpenNewEdi ti on
function for a publisher

Publisher section
requesting open or
NI L.

Document pointer
passed into the
OpenNewEdi ti on
function.

The f dCr eat or
passed into the
OpenNewEdi ti on
function.

Reference number for
use by I/O routine.
Not the same as

Edi ti onRef Num

I/0O routine to call to
write formats.

A noErr code or
appropriate error code.

C oseEdition
function for a publisher

Edition container to be
closed after writing.

Publisher section
requesting close or NI L.

Value returned by
eoOpenNew

Value returned by
eoOpenNew

Success value passed
to the Cl oseEdi ti on
function.

A noErr code or
appropriate error code.

As Listing 2-9 demonstrates, you install your own edition opener function by first saving
the current opener and then installing your own opener. The listing also shows an
edition opener, the MyEdi t i onOpener function. When it receives the

eoCanSubscri be opener verb, the MyEdi t i onQpener function calls another
application-defined routine, MyCanSubscr i be. The Edition Manager sends your
edition opener this verb to help it build the list of files displayed by the

NewSubscr i ber function. The MyCanSubscr i be function returns noEr r if it can
subscribe to the file; otherwise, it calls the original edition opener to handle the request.

Subscribing to Non-Edition Files

CHAPTER 2

Edition Manager

Listing 2-9 Using your own edition opener function

VAR
gOri gi nal Opener: Editi onOpener ProcPtr; {gl obal vari abl e}

PROCEDURE Myl nst al | MyOpener ;

BEG N
Fai | OSErr (Get Edi ti onOpener Proc(gOri gi nal Opener));
Fai | OSEr r (Set Edi ti onOpener Proc(@¥Edi ti onOpener));

END; { Myl nstal | MyQpener}

FUNCTI ON MyEdi ti onOpener (sel ector: EditionOpenerVerb;
VAR PB: Editi onQOpener Par anBl ock)
OSErr;

BEG N

W TH PB DO

BEG N

CASE sel ector OF
eoCanSubscri be:
MyEdi ti onOpener : = MyCanSubscri be(PB);

eoQpen:

MyEdi ti onOpener : = MEditi onOpen(PB);
eod ose:

MyEdi ti onOpener := MyEditionCd ose(PB);
OTHERW SE

{call the original edition opener}
MyEdi ti onOpener
:= Cal | Edi ti onQpener Proc(sel ector, PB,
gOri gi nal Opener) ;
END; {of CASE}
END; {of W TH}
END; {MyEditi onOpener}

FUNCTI ON MyCanSubscri be (VAR PB: Editi onOpener Par anBl ock):
BEG N

CSErr;

{check file type to see if it is a file you can emulate as an }

{ edition}

| F PB.info.fdType = {for exanple}'PICT" THEN
MyCanSubscri be : = noErr

ELSE {otherw se, let the saved edition opener decide}

MyCanSubscri be : = Cal | Edi ti onOpener Proc(eoCanSubscri be,
PB, gOrigi nal Opener);

END; {MyCanSubscri be}

Subscribing to Non-Edition Files

2-67

Jabeuepy uonip3 -

2-68

CHAPTER 2

Edition Manager

Opening and Closing Editions

Each time the Edition Manager opens or closes an edition container, it calls the current
edition opener procedure and passes it an opener verb and a parameter block.

Your opener must be careful when closing documents since a document may already
have been opened by another application. Be sure to use the Open/Deny modes
whenever possible. Do not close a document if it was already open when your
application opened it.

Listing Files That Can Be Subscribed To

The NewSubscr i ber Di al og function calls the edition opener function and passes the
eoCanSubscri be opener verb in the sel ect or parameter to build the list of files that
can be subscribed to. The preview in the subscriber dialog box is generated by calling the
Get St andar dFor mat s function (described in “Edition Container Formats” on

page 2-101), which calls the format I/O procedure with the verbs eoQpen,

i oHasFor mat, i oRead, and then eod ose. See “Calling a Format I/O Function” on
this page for detailed information on format I/O verbs.

Reading From and Writing to Files

The I/O procedure is a routine that actually reads and writes the data. It too has an
interface of a selector and a parameter block.

To override the standard reading and writing functions, create an I/O function. Note
that you also need to provide your own opener function to call your I/O function. See
“Calling an Edition Opener” on page 2-64.

FUNCTI ON Myl O (sel ector: Formatl| OVerb;
VAR PB:. Fornat| OParanBl ock): OSErr;

Calling a Format I/0O Function

To indicate to the Edition Manager which format I/O function to use, use the
Cal | For mat | OPr oc function.

err := Call Formatl OProc (selector, PB, routine);

Subscribing to Non-Edition Files

CHAPTER 2

Edition Manager

Set the sel ect or parameter to one of the format I/O verbs. The format I/O verbs
include

= | oHasFor mat
= | oReadFor mat
= | oNewFor mat

= i OWiteFormt

The PB parameter of the Cal | For mat | OPr oc function contains a format I/O parameter
block.

TYPE For mat | OPar anBl ock =

RECORD
i oRef Num Longl nt; {reference nunmber}
format: For mat Type; {edition format type}
format | ndex: Longl nt; {opener-specific enuneration }
{ of formats}
of fset: Longl nt; {offset into format}
buf fPtr: Ptr; {data starts here}
buf f Len: Longl nt; {length of data}
END;

The r out i ne parameter of the Cal | For mat | OPr oc function is a pointer to a format
I/O function.

The following list shows which fields of For mat | OPar anBl ock are used by the
format I/O verbs:

Format I/O verb Parameter Description Called by
i oHasFor mat - i oRef Num I/O reference number Edi t i onHasFor mat,
returned by opener. Get St andar dFor mat s,
- f or mat Check for this format. and R.ead Edition
functions

- f or mat | ndex An optional
enumeration of the
supplied format.

- buf f Len If found, return the
length size or -1 if size
is unknown.

- Return value AnoErr or
noTypeErr code.

continued

Subscribing to Non-Edition Files 2-69

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Format 1/0 verb
i oReadFor mat

i oNewFor mat

i oWiteFor nat

Parameter
i oRef Num

f or mat
f or mat | ndex

of f set

buffPtr

buf f Len

Return value

i oRef Num

f or mat

f or mat | ndex

Return value

i oRef Num

f or mat
f or mat | ndex

of f set

buf f Ptr
buf f Len

Return value

Description Called by (continued)

ReadEdi ti on and
Cet St andar dFor nat s
functions

I/O reference number
returned by opener.

Get this format.

Value returned by
i oHasFor mat .

Read format beginning
from this offset.

Put data beginning here.

Specify buffer length to
read, and return actual
amount received.

AnoErr code, or
appropriate error code.

Set Edi ti onFor mat Mar k
and WiteEdition
functions

I/O reference number
returned by opener.

Create this format.

An optional
enumeration of the
supplied format.

AnoErr code, or
appropriate error code.

I/O reference number Wit eEdition function

returned by opener.
Get this format.

Value returned by
i oNewFor mat .

Write format beginning
from this offset.

Get data beginning here.
Specify buffer length to

write.

AnoErr code or
appropriate error code.

The marks for each format are kept by the Edition Manager. The format I/O function
only needs to be able to read or write, beginning at any offset. If you know that your
application always reads an entire format sequentially, you can ignore the offset.

2-70 Subscribing to Non-Edition Files

CHAPTER 2

Edition Manager

Edition Manager Reference

This section describes the data structures and routines that are specific to the
Edition Manager. The “Data Structures” section describes the edition container
record and the section record. The “Edition Manager Routines” section describes the
routines your application can use to implement publish and subscribe features in
your application.

Data Structures

This section describes the edition container record and the section record. See page 2-91
for a description of the new subscriber reply record, page 2-93 for a description of the
new publisher reply record, page 2-95 for a description of the section options record, and
page 2-99 for a description of the edition info record. For information on the edition
opener parameter block and format I/O parameter block, see page 2-103 and page 2-104,
respectively.

The Edition Container Record

An edition container record identifies a specific edition file. Many Edition Manager
routines require an edition container record as a parameter. The
Edi ti onCont ai ner Spec data type defines an edition container record.

TYPE Edi ti onCont ai ner Spec =

RECORD
t heFi |l e: FSSpec; {file containing edition }
{ data}
t heFil eScri pt: Scri pt Code; {script code of filenane}
t hePart: Longl nt ; {which part of file, }
{ al ways kPart sNot Used}
t hePar t Nane: Str31; {reserved}
t hePart Scri pt: Scri pt Code; {reserved}
END;

Field descriptions

theFile A file specificiation record that identifies the name and location of
the edition file. Specify the file using the standard conventions for
file specification records as described in the chapter “Introduction to
File Management” in Inside Macintosh: Files.

theFileScript Ascriptcode thatidentifies the script in which the name of the
document is to be displayed in the Finder. A script code of
snByst enScri pt represents the default system script.

Edition Manager Reference 2-71

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

t hePar t A value that must always be set to kPar t sNot Used in System 7.
t hePar t Name Reserved.
t hePart Scri pt Reserved.

The Section Record

2-72

A section record identifies a specific publisher or subscriber section. It contains
information to identify the section as a publisher or a subscriber, a time stamp to record
the last modification of the section, and unique identification for each section. Many
Edition Manager routines require a handle to a section record as a parameter. The

Sect i onRecor d data type defines a section record.

TYPE SectionRecord =
RECORD
ver si on:
ki nd:
node:
ndDat e:
sectionl D

r ef Con:
alias:

{The foll ow ng
{ RegisterSecti
{ fields.}
subPart :

next Secti on:

Si gnedByt e
Secti onType;
Updat eMode;
Ti meSt anp;
Longl nt ;

Longl nt;
Al i asHandl e;

{always 1 in 7.0}
{publisher or subscriber}
{automatic or nanual }
{last change in docunent}
{application-specific, }
{ uni que per docunent}
{appl i cati on-specific}
{handl e to alias record}

fields are private and are set up by the }
on function. Do not nodify the private }

Longl nt;
Sect i onHandl e;

{private}
{private, do not use as a }
{ linked list}

control Bl ock: Handl e; {may be used for conparison }
{ only}
ref Num Edi ti onRef Num {private}
END;
Field descriptions
ver si on Indicates the version of the section record, currently $01.
ki nd Defines the section type as either publisher or subscriber with the

st Publ i sher or st Subscri ber constant.

nmode Indicates if editions are updated automatically or manually.

Edition Manager Reference

CHAPTER 2

Edition Manager

ndDat e

sectionl D

r ef Con
alias

Indicates which version (modification date) of the section’s contents
is contained within the publisher or subscriber. The nDat e field is
set to 0 when you create a new subscriber section and to the current
time when you create a new publisher. Be sure to update this field
each time publisher data is modified. The section’s modification
date is compared to the edition’s modification date to determine
whether the section and the edition contain the same data. The
section modification date is displayed in the publisher and
subscriber options dialog boxes. See “Closing an Edition” on

page 2-28 for detailed information.

Provides a unique number for each section within a document.

A simple way to implement this is to create a counter for each
document that is saved to disk with the document. The counter
should start at 1. The section ID is currently used as a tie breaker in
the GoToPubl i sher Sect i on function when there are multiple
publishers to the same edition in a single document. The section ID
should not be 0 or —1. See “Duplicating Publishers and Subscribers”
on page 2-58 for information on multiple publishers.

Reference constant available for application-specific use.

Contains a handle to the alias record for a particular section within
a document.

Whenever the user creates a publisher or subscriber, call the NewSect i on function
(described on page 2-75) to create a section record and alias record.

Edition Manager Routines

This section describes the routines you use to

= initialize the Edition Manager

m create and register a section

= create and delete an edition container

» set and locate a format mark

» read in edition data

= write out edition data

= close an edition after reading or writing

» display dialog boxes

= locate a publisher and edition from a subscriber

» read and write non-edition files

Result codes appear at the end of each function where applicable. In addition to the
specific result codes listed, you may receive errors generated by the Alias Manager,
File Manager, and Memory Manager.

Edition Manager Reference 2-73

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Initializing the Edition Manager

You use the | ni t Edi ti onPack function to initialize the Edition Manager. Note
that you should call this function only once.

InitEditionPack

DESCRIPTION

RESULT CODES

Before calling the | ni t Edi t i onPack function, be sure to determine whether the
Edition Manager is available on your system by using the Gest al t function with the
gestal t Edi ti onMgr Attr (' edt n') selector.

FUNCTI ON | ni t Edi ti onPack: OSErr;

The | ni t Edi ti onPack function returns an error if the package could not be loaded
into the system heap and properly initialized.

NoErr 0 No error
menful | Err -108 Could not load package

Creating and Registering a Section

2-74

You use the NewSect i on function to create a new section (either publisher or
subscriber) and alias record (which is a reference to the edition container from the
document containing the publisher or subscriber section).

The NewSect i on function registers a section much as the Regi st er Sect i on function
informs the Edition Manager about a section (except that the NewSect i on function does
not resolve an alias to find the edition container).

When a section needs to be disposed of because the document containing the section is
being closed or because the user has canceled the section, you need to call the
UnRegi st er Sect i on function before disposing of the section.

Using the | sRegi st er edSect i on function, your application must verify that each
event received is for a registered section. This is necessary because your application may
have just called UnRegi st er Sect i on while the event was already being held in the
event queue.

If a user saves a document that contains sections under another name (using Save As) or
pastes a portion of a document that contains a section into another document, use the
Associ at eSect i on function to update the section’s alias record.

Edition Manager Reference

NewSection

CHAPTER 2

Edition Manager

DESCRIPTION

Use the NewSect i on function to create a new section record and alias record for a new
publisher or subscriber.

FUNCTI ON NewSecti on (contai ner: EditionContai ner Spec;
secti onDocunent: FSSpecPtr;
ki nd: SectionType; sectionlD:. Longlnt;
i nitial Mbde: Updat eMode;
VAR sectionH: SectionHandl e): OSErr;

contai ner The edition you want to publish or subscribe to.

sect i onDocunent
The volume reference number, directory ID, and filename of the
document that contains a section. The sect i onDocunent parameter
can be NI L if your current document has never been saved. If so,
when the user finally saves the document, remember to call the
Associ at eSect i on function for each section to update its alias record.

Jabeuepy uonip3 -

ki nd The type of section (publisher or subscriber) being created.

sectionl D A unique number for a section within a document. The NewSect i on
function initializes the sect i onl Dfield of the new section record with
the specified value. Do not use 0 or -1 for an ID number; these numbers
are reserved. If your application copies a section, you need to specify a
unique number for the copied section.

initial Mbde
The update mode for the section. For publishers this is either the
pumOnSave or pumvVanual constant, and for subscribers it is
either sumAut omat i ¢ or surmVanual . A subscriber created with
sumAut omat i ¢ mode automatically receives a Section Read event. To
prevent this initial Section Read event, you should set the i ni ti al Mode
parameter to sumvenual and then, when NewSect i on returns, set the
mode field of the section record to sumAut onati c.

secti onH The NewSect i on function returns a handle to the allocated section

record in this parameter. If an error occurs, NewSect i on returns NI L in
this parameter.

The NewSect i on function allocates two handles in the current zone: one handle for the
section record and another handle for the alias record. Note that you are responsible for
unregistering handles created by the Edition Manager.

Your application receives the mul ti pl ePubl i sher W n result code if there is
another registered publisher to the same edition. Your application receives the

not ThePubl i sher W n result code if another publisher (to the same edition) was the
last section to write to the edition. The mul ti pl ePubl i sher W n result code takes
priority over the not ThePubl i sher W n result code.

Edition Manager Reference 2-75

RESULT CODES

SEE ALSO

CHAPTER 2

Edition Manager

noErr 0 No error
editionMyrinitErr —450 Manager not initialized
badSect i onErr —-451 Not a valid section type
badSubPart Err —454 Bad edition container spec
mul tipl ePublisherWn — —460 Already is a publisher

not ThePubl i sher W n —-463 Not the publisher

For information on the edition container record, see page 2-71. For information on the
section record, see “The Section Record” beginning on page 2-72. For information on file
specification records, see Inside Macintosh: Files. See Listing 2-4 on page 2-33 for an
example that uses NewSect i on to create a publisher and Listing 2-6 on page 2-40 for
an example that creates a subscriber using NewSect i on.

RegisterSection

DESCRIPTION

2-76

When opening a document that contains sections, register each section using the
Regi st er Sect i on function.

FUNCTI ON Regi ster Section (sectionDocunent: FSSpec;
secti onH SectionHandl e;
VAR al i asWasUpdat ed: Bool ean): OSErr;

secti onDocunent
The volume reference number, directory ID, and filename of the
document that contains a section.

sectionH Ahandle to the section record for a given section.

al i asWasUpdat ed
A Boolean value that returns TRUE if the alias for the edition container
subscribed to was out of date and was updated. This may occur if the
edition file was moved to a new location or was renamed.

The Regi st er Sect i on function adds the section record to the Edition Manager’s list of
registered sections and tries to allocate a control block. After calling the

Regi st er Sect i on function, the cont r ol Bl ock field of the section record contains
either NI L or a valid control block.

For a subscriber, the cont r ol Bl ock field contains NI L if the Regi st er Secti on
function could not locate the edition container being subscribed to. The

Regi st er Sect i on function then returns either the cont ai ner Not FoundW n or the
user Cancel edEr r result code. For a publisher, if the Regi st er Sect i on function
could not locate its corresponding edition container, the Edition Manager creates an

Edition Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 2

Edition Manager

edition container in the last place the edition was located and creates a control block for
it. If the Regi st er Sect i on function could not locate a publisher’s corresponding
edition container or its volume, the cont r ol Bl ock field contains NI L. You should
never re-register a section that is already registered.

Note that you can compare control blocks for individual sections. If two sections contain
the same control block value, these sections publish or subscribe to the same edition
(unless the control block is NI L). The Edition Manager keeps track of how many sections
are referencing a control block to know when it can be deallocated. The control block
maintains a count of how many sections are referencing it. Each time you use the

UnRegi st er Sect i on function, the control block subtracts 1 from the number of
sections. When the number of sections reaches 0, the control block is deallocated.

Your application receives the nul ti pl ePubl i sher W n result code if there is
another registered publisher to the same edition. Your application receives the

not ThePubl i sher W n result code if another publisher (to the same edition) was
the last section to write to the edition. The mul t i pl ePubl i sher W n result code
takes priority over the not ThePubl i sher W n result code.

Jabeuepy uonip3 -

noErr 0 No error

user Cancel edErr -128 User clicked Cancel in dialog box
editionMyrinitErr —450 Manager not initialized
badSecti onErr —451 Not valid section type

mul ti pl ePubl i sher Wn —460 Already is a publisher
cont ai ner Not FoundW n —-461 Alias was not resolved
not ThePubl i sher W n —463 Not the publisher

For information on the section record, see “The Section Record” beginning on

page 2-72. For information on file specification records, see Inside Macintosh: Files.
For additional information and an example of the use of Regi st er Sect i on, see
“Opening and Closing a Document Containing Sections” beginning on page 2-22.

UnRegisterSection

When a section needs to be disposed of because the document containing the section is
being closed or because the user has canceled the section, you need to call the
UnRegi st er Sect i on function before disposing of the section.

FUNCTI ON UnRegi st er Section (sectionH SectionHandle): OSErr;

sectionH Ahandle to the section record for a given section.

Edition Manager Reference 2-77

DESCRIPTION

RESULT CODES

CHAPTER 2

Edition Manager

The UnRegi st er Sect i on function removes the section from the Edition Manager’s list
of registered sections. You can then dispose of the section record and alias record with
standard Memory Manager and Resource Manager calls. Once unregistered, a section
does not receive any events and cannot read or write any data. Depending on your

Clipboard strategy, you may want to unregister sections that have been cut into
the Clipboard.

NnoErr 0 No error

f BsyErr —47 Section doing I/O
editionMyrinitErr —450 Manager not initialized
not Regi st er edSecti onErr —452 Not registered

IsRegisteredSection

DESCRIPTION

RESULT CODES

SEE ALSO

2-78

Upon receiving a section event, your application must call the | sRegi st er edSecti on
function to verify that the event received is for a registered section. You must call

| sRegi st er edSect i on before handling a section event because your application may
have just called UnRegi st er Sect i on while the event was already being held in the
event queue.

FUNCTI ON | sRegi st eredSecti on (sectionH SectionHandle): OSErr;

sectionH Ahandle to the section record for a given section.

The | sRegi st er edSect i on function returns a result code (not a Boolean value)
indicating whether the section is registered. A noEr r result code indicates that a section
is registered.

noErr 0 No error
not Regi st er edSecti onErr —452 Not registered

For an example of the use of | SRegi st er edSect i on, see Listing 2-1 on page 2-14.

Edition Manager Reference

CHAPTER 2

Edition Manager

AssociateSection

DESCRIPTION

RESULT CODES

SEE ALSO

If a user saves a document that contains sections under another name (using Save As) or
pastes a portion of a document that contains a section into another document, use the
Associ at eSect i on function to update the section’s alias record.

FUNCTI ON Associ at eSection (sectionH SectionHandl e;
newSecti onDocunent: FSSpecPtr): OSErr;

sectionH Ahandle to the section record for a given section.

newSect i onDocunent
The volume reference number, directory ID, and filename of the new
document.

The Associ at eSect i on function calls Updat eAl i as on the section’s alias record.

nokErr 0 No error
par ankrr =50 Invalid parameter

For information on the Updat eAl i as function, see the chapter “Alias Manager” in
Inside Macintosh: Files.

Creating and Deleting an Edition Container

Each time a user creates a new publisher section within a document to an edition that
does not already exist, you use the Cr eat eEdi t i onCont ai ner Fi | e function to create
an empty edition container.

To remove the edition container, use the Del et eEdi ti onCont ai ner Fi | e function.

CreateEditionContainerFile

You use the Cr eat eEdi t i onCont ai ner Fi | e function to create an empty edition
container.

FUNCTI ON Cr eat eEdi ti onCont ai nerFil e
(editionFile: FSSpec; fdCreator: OSType;
edi tionFi |l eNaneScri pt: ScriptCode): OSErr;

Edition Manager Reference 2-79

Jabeuepy uonip3 -

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 2

Edition Manager

editionFile
The volume reference number, directory ID, and filename for the edition
container being created.

fdCreator The creator type for the edition.

edi tionFi |l eNameScri pt
The script of the filename. (You can get this value from the
t heFi | eScri pt field of an edition container specification record.)

The Cr eat eEdi t i onCont ai ner Fi | e function creates an empty edition container file
(it does not contain any formats). This function sets the file type of the edition to

"edt u' . As soon as you write data to the edition, the Edition Manager updates the type
(to' edt p' for graphics,' edtt' fortext, or' edts' for sound). If your application
writes both ' TEXT' and ' Pl CT' formats to the edition, the Edition Manager sets the file
type to the type that was written first. If your application has a bundle, you should
designate an icon for the appropriate edition types that you can write.

noErr 0 No error

dskFul Err -34 Disk is full

nsvEerr -35 No such volume

i oErr -36 I/O error

bdNantr r -37 Bad filename
fnfErr -43 File not found

di r NFEr r -120 Directory not found

editionMyrinitErr —450 Manager not initialized

For information on file specification records, see Inside Macintosh: Files. For an example of
the use of Cr eat eEdi t i onCont ai ner Fi | e, see Listing 2-4 on page 2-33.

DeleteEditionContainerFile

2-80

If a user cancels a publisher section within a document or closes a document containing
a newly created publisher without saving, you need to remove the edition container.

To locate the appropriate edition container to be deleted, use the Get Edi ti onl nfo
function. You use the UnRegi st er Sect i on function (only after using the

Cet Edi t i onl nf o function) to unregister the section record and alias record of the
publisher being canceled.

Edition Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 2

Edition Manager

To remove the edition container, use the Del et eEdi t i onCont ai ner Fi | e function.
FUNCTI ON Del et eEdi ti onContai nerFile (editionFile: FSSpec): OSErr;

editionFile
The volume reference number, directory ID, and filename for the edition
container being deleted.

If the user cancels a publisher, do not call the Del et eEdi ti onCont ai nerFi |l e
function until the user saves the document. This allows the user to undo changes and
revert to the last saved version of the document.

The Del et eEdi ti onCont ai ner Fi | e function deletes the edition container only if
there is no registered publisher. You need to unregister a publisher before you can delete
its corresponding edition container.

You should use the Del et eEdi t i onCont ai ner Fi | e function even if there are
subscribers to the edition. When a subscriber section tries to read in data, it receives
an error if the edition container has been deleted.

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 I/O error

bdNantr r -37 Bad filename
fnfErr -43 File not found

di r NFEr r -120 Directory not found

editionMyrinitErr —450 Manager not initialized

See page 2-98 for detailed information on the Get Edi t i onl nf o function. See page 2-77
for information on the UnRegi st er Sect i on function. For information on file
specification records, see Inside Macintosh: Files.

Setting and Getting a Format Mark

Use the Set Edi t i onFor mat Mar k function to set the current mark for a section
format and the Get Edi t i onFor mat Mar k function to get the current mark for a
particular format.

Edition Manager Reference 2-81

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

SetEditionFormatMark

A format mark indicates the next position of a read or write operation. Initially, a mark
defaults to 0. After reading or writing data, the format mark is set past the last position
written to or read from. To set the current mark for a given format, use the

Set Edi ti onFor mat Mar k function.

FUNCTI ON Set Edi ti onFor mat Mark (whi chEdition: EditionRef Num
whi chFor nat : For mat Type;
set MarkTo: Longlnt): OSErr;

whi chEdi ti on
The reference number for the edition.

whi chFor mat
The format type for the edition.

set Mar kTo The offset for the next read or write for this format.

DESCRIPTION
The Set Edi t i onFor mat Mar k function sets the current mark for the specified format
type according to the value of the set Mar kTo parameter.
RESULT CODES
noErr 0 No error
rf Nunerr 51 Bad edition reference number
noTypeErr -102 Unknown format (subscriber only)
editionMgrinitErr —450 Manager not initialized
GetEditionFormatMark
Use the Get Edi t i onFor mat Mar k function to get the current mark for a particular
format.
FUNCTI ON Get Edi ti onFor mat Mark (whi chEdition: EditionRef Num
whi chFor mat : For mat Type;
VAR current Mark: Longlnt): OSErr;
whi chEdi ti on
The reference number for the edition.
whi chFor nmat
The format type whose mark you want to get.
current Mark
The Get Edi t i onFor mat Mar k function returns the mark for the
specified format in this parameter.
2-82 Edition Manager Reference

DESCRIPTION

RESULT CODES

CHAPTER 2

Edition Manager

If the edition does not support the format specified in the whi chFor mat parameter, you
receive a noTypeEr r result code.

noErr 0 No error

rf Nunerr -51 Bad edition reference number
noTypeErr -102 Unknown format
editionMyrinitErr -450 Manager not initialized

Reading in Edition Data

To initiate the reading of data from an edition (for a subscriber), use the OpenEdi ti on
function.

Use the Edi t i onHasFor mat function to learn in which formats the edition data is
available.

Use the ReadEdi t i on function to read data from an edition. This function reads from
the current mark for the specified format.

OpenEdition

DESCRIPTION

To initiate the reading of data from an edition (for a subscriber), use the OpenEdi ti on
function.

FUNCTI ON OpenEdi tion (subscriberSectionH Secti onHandl e;
VAR ref Num EditionRefNun): OSErr;

subscri ber Secti onH
A handle to the section record for a given section.

ref Num The QpenEdi ti on function returns the reference number for the edition
in this parameter.

The OpenEdi t i on function opens an edition for reading and returns a reference
number that your application can use to refer to this edition in other Edition Manager
routines. Multiple subscribers can each call the OpenEdi t i on function simultaneously
(each call returns a different reference number) and read data from a single edition. If a
publisher (located on a different machine) is writing to an edition when you use the
OpenEdi ti on function, you receive an f | LckedEr r result code.

Edition Manager Reference 2-83

Jabeuepy uonip3 -

RESULT CODES

SEE ALSO

CHAPTER 2

Edition Manager

nokErr 0 No error

fnfErr 43 File not found

flLckedErr —45 Publisher writing to an edition
per nerr -54 Not a subscriber

editionMyrinitErr -450 Manager not initialized

For an example of the use of OpenEdi t i on, see Listing 2-7 on page 2-42.

EditionHasFormat

DESCRIPTION

2-84

Use the Edi t i onHasFor mat function to learn in which formats the edition data is
available.

FUNCTI ON Edi ti onHasFormat (whi chEdition: EditionRef Num
whi chFor nmat . For nat Type;
VAR format Si ze: Size): OSErr;

whi chEdi ti on
The reference number for the edition.

whi chFor mat
The format type that you are requesting. For the whi chFor mat
parameter, you should decide which formats to read in the same way that
you do when reading data from the scrap. You can also get a list of all the
available formats and their respective lengths by reading the
kFor mat Li st Format (fnts') format.

format Si ze
The Edi t i onHasFor mat function returns the format length in this
parameter.

If the requested format is available, the Edi t i onHasFor mat function returns noErr,
and the f or mat Si ze parameter returns the size of the data in the specified format or
kFor mat Lengt hUnknown (-1), which signifies that the size is unknown. You should
therefore continue to read the format until there is no more data.

Edition Manager Reference

CHAPTER 2

Edition Manager

Note

The Translation Manager (if it is available) attempts implicit
translation under certain circumstances. For instance, it does so when
your application attempts to read from an edition a format type that is
not in the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:

More Macintosh Toolbox. O

RESULT CODES
noErr 0 No error
rf Nunkrr -51 Bad edition reference number
noTypeErr -102 Format not available
editionMyrinitErr —-450 Manager not initialized
SEE ALSO
For an example of the use of Edi t i onHasFor mat, see Listing 2-7 beginning on
page 2-42. For information about the Translation Manager and Scrap Manager, see
Inside Macintosh: More Macintosh Toolbox.
ReadEdition

Use the ReadEdi t i on function to read data from an edition. This function reads from
the current mark for the specified format.

FUNCTI ON ReadEdi ti on (whi chEdition: EditionRefNum
whi chFormat: Format Type; buffPtr: UNIV Ptr;
VAR bufflLen: Size): OSErr

whi chEdi tion
The reference number for the edition.

whi chFor mat
The format type that you want to read.

buf f Pt r A pointer to the buffer into which you want to read the data.

buffLen The number of bytes that you want to read into the buffer. The
ReadEdi t i on function returns the actual number of bytes read in the
buf f Len parameter.

Edition Manager Reference 2-85

Jabeuepy uonip3 -

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 2

Edition Manager

The ReadEdi t i on function reads data from the edition into the specified buffer.
ReadEdi t i on returns in the buf f Len parameter the total number of bytes read into the
buffer. If the buf f Len parameter returns a value smaller than the value you have
specified, there is no additional data to read, and the ReadEdi t i on function returns a
NOEr r result code. If you use the ReadEdi t i on function after all data is read in, the
ReadEdi t i on function returns an eof Er r result code.

You can read data from an edition while a publisher on the same machine is writing data
to the same edition. The data that you are reading is the old edition (not the data that the
publisher is writing). If the publisher finishes writing data before you are through
reading the old edition data, the ReadEdi t i on function returns an abor t Er r result
code. If the ReadEdi t i on function returns an abor t Er r result code, you should stop
trying to read data and use the O oseEdi ti on function with the successf ul
parameter set to FALSE.

Note

The Translation Manager (if it is available) attempts implicit
translation under certain circumstances. For instance, it does so when
your application attempts to read from an edition a format type that is
not in the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:

More Macintosh Toolbox. O

noErr 0 No error

abort Err -27 Publisher has written a new edition
i OErr -36 I/0 error

f nOpnEr r -38 File not open

eof Err -39 No more data of that format

rf Nunerr -51 Bad edition reference number
noTypeErr -102 Format not available

editionMgrinitErr —450 Manager not initialized

For an example of the use of ReadEdi t i on, see Listing 2-7 beginning on page 2-42.

Writing out Edition Data

2-86

To initiate the writing of data from a publisher to its edition container, use the
OpenNewEdi t i on function. (To create an edition container, use the
Cr eat eEdi t i onCont ai ner Fi | e function, as described on page 2-79.)

Use the Wi t eEdi ti on function to write data to an edition.

Edition Manager Reference

CHAPTER 2

Edition Manager

OpenNewEdition

DESCRIPTION

RESULT CODES

To initiate the writing of data from a publisher to its edition container, use the
OpenNewEdi t i on function.

FUNCTI ON OpenNewEdi ti on (publi sherSectionH: Secti onHandl e;
fdCreator: OSType;
publ i sher Secti onDocunent: FSSpecPtr;
VAR ref Num EditionRef Num): OSErr;

publ i sher Secti onH
The publisher section that is writing to the edition.

fdCreator The Finder creator type of the new edition icon.

publ i sher Secti onDocunent
The document that contains the publisher. This parameter is used to
create an alias from the edition to the publisher’s document. If you pass
NI L for publ i sher Sect i onDocunent, an alias is not made in the
edition file.

ref Num The OpenNewEdi t i on function returns the reference number
for the edition in this parameter. You specify this reference
number as a parameter for subsequent calls to Wi t eEdi ti on,
Set Edi t i onFor mat Mar k, and G oseEdi t i on to specify which
publisher is writing its data to an edition. If the edition cannot be opened
for writing because there is another publisher writing to it, or because the
file system does not allow writing, an error is returned and
OpenNewEdi ti on sets r ef Numto NI L.

The OpenNewEdi t i on function opens an edition for writing. The function returns an

f1 LckdEr r result code if there is a subscriber on another machine reading data from the
same edition. The OpenNewEdi t i on function returns a per nEr r result code if there is a
registered publisher to that edition on another machine.

The Edition Manager allows two registered publishers that are located on the same
machine to write to the same edition. Note that multiple publishers cannot write to the
same edition simultaneously—only one publisher can write to an edition at a given time.

nokErr 0 No error

i oErr -36 1/0 error

fl LckdErr —45 Edition in use by another section

per nEr r -54 Registered publisher on another machine
wr Per nEr r —-61 Not a publisher

editionMgrinitErr —450 Manager not initialized

Edition Manager Reference 2-87

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

SEE ALSO

For an example of the use of OpenNewEdi t i on, see Listing 2-5 beginning on
page 2-36.

WriteEdition

Use the Wi t eEdi ti on function to write data to an edition. This function begins
writing at the current mark for the specified format.

FUNCTI ON WiteEdition (whichEdition: EditionRef Num
whi chFor nat : For mat Type;
buffPtr: UNIV Ptr; bufflen: Size): OSErr;

whi chEdi ti on
The reference number for the edition.

whi chFor mat
The format type that you want to write.

buf fPtr A pointer to the buffer containing the data to write to the edition.
buffLen The number of bytes that you want to write to the edition.

DESCRIPTION

The Wi t eEdi t i on function writes the specified number of bytes to the edition. If
the data cannot be entirely written to the edition, the Wi t eEdi t i on function returns
an error.

RESULT CODES

noErr 0 No error

dskFul Err -34 Disk is full

i oErr -36 I/O error

rf Nunerr -51 Bad edition reference number
editionMyrinitErr —-450 Manager not initialized

SEE ALSO

For an example that writes data to an edition, see Listing 2-5 beginning on page 2-36.

Closing an Edition After Reading or Writing

After finishing reading from or writing to an edition, use the Cl oseEdi t i on function to
close the edition.

2-88 Edition Manager Reference

CHAPTER 2

Edition Manager

CloseEdition

DESCRIPTION

RESULT CODES

Use the Cl oseEdi ti on function to close an edition after you finish reading from or
writing to it.

FUNCTI ON C oseEdition (whichEdition: EditionRef Num
successful: Bool ean): OSErr;

whi chEdi ti on
The reference number for the edition.

successful
A value that indicates whether your application was successful (TRUE) or
unsuccessful (FALSE) in reading from or writing data to the edition.

Jabeuepy uonip3 -

When a subscriber successfully finishes reading data from the edition, the

O oseEdi ti on function takes the modification date of the edition file that you have
read and puts it in the ndDat e field of the subscriber’s section record. This indicates that
the data contained in the edition and the subscriber section within the document

are the same.

When a subscriber is unsuccessful in reading data from an edition (because there is not
enough memory, or you didn’t find a format that you can read), set the successf ul
parameter to FALSE. The Cl oseEdi t i on function then closes the edition, but does not
set the mdDat e field. This implies that the subscriber is not updated with the latest
edition.

When a publisher successfully finishes writing data to an edition, the Cl oseEdi ti on
function makes the data that the publisher has written to the edition available to any
subscribers and sets the corresponding edition file’s modification date (i oFl MiDat) to
the ndDat e field of the publisher’s section record. The Edition Manager then sends a
Section Read event to all current subscribers set to automatic update mode. At this point,
the file type of the edition file is set based on the first known format that the publisher
wrote.

When a publisher is unsuccessful in writing data to an edition, the Cl oseEdi ti on
function discards what the publisher has written to the edition. The data contained in the
edition prior to writing remains unchanged, and Section Read events are not sent to
subscribers.

noErr 0 No error

i oErr -36 1/0 error

f nQpnEr r -38 File not open

rf Nunerr -51 Bad edition reference number

editionMgrinitErr —450 Manager not initialized

Edition Manager Reference 2-89

SEE ALSO

CHAPTER 2

Edition Manager

For an example of the use of Cl oseEdi ti on, see Listing 2-5 beginning on
page 2-36.

Displaying Dialog Boxes

The Edition Manager supports three dialog boxes: publisher, subscriber, and options
dialog boxes. Your application can display simple dialog boxes that appear centered on
the user’s screen, or you can customize your dialog boxes.

Use the Get Last Edi t i onCont ai ner Used function to get the default edition to
display.

Use the NewSubscri ber Di al og function to display the subscriber dialog box on the
user’s screen and use the NewPubl i sher Di al og function to display the publisher
dialog box on the user’s screen. Unlike the Standard File Package routines, the
NewPubl i sher Di al og and the NewSubscr i ber Di al og functions allow you to
specify the initial volume reference number and directory ID so that there can be one
default location for editions for all applications.

You use the Sect i onOpt i onsDi al og function to display the publisher options and
subscriber options dialog boxes on the user’s screen.

The NewSubscr i ber ExpDi al og, NewPubl i sher ExpDi al og, and
Secti onOpt i onsExpDi al og functions are the same as the simple dialog functions but
have five additional parameters.

GetLastEditionContainerUsed

DESCRIPTION

2-90

Use the Get Last Edi t i onCont ai ner Used function to get the default edition to
display. This function allows a user to easily subscribe to the data recently published.

FUNCTI ON Get Last Edi ti onCont ai ner Used
(VAR cont ai ner: EditionCont ai ner Spec): OSErr;

cont ai ner If the Get Last Edi t i onCont ai ner Used function locates the last
edition for which a section was created, the cont ai ner parameter
contains its volume reference number, directory ID, filename, and part,
and returns a NnoEr r result code. (The last edition created is associated
with the last time that your application or another application located on
the same machine used the NewSect i on function.)

If the last edition used is missing, the Get Last Edi t i onCont ai ner Used function
returns an f nf Er r result code, but still returns the correct volume reference number and
directory ID that you should use for the NewSubscr i ber Di al og function.

Edition Manager Reference

CHAPTER 2

Edition Manager

Pass the information from the Get Last Edi t i onCont ai ner Used function to the
NewSubscri ber Di al og function.

RESULT CODES
noErr 0 No error
fnfErr —43 Edition container not found
editionMyrinitErr —450 Manager not initialized

SEE ALSO
For an example of the use of Get Last Edi t i onCont ai ner Used, see Listing 2-6
beginning on page 2-40. For a description of the edition container record, see page 2-71.
The NewSubscr i ber Di al og function is described next.

NewSubscriberDialog

When a user chooses the Subscribe To menu command, your application should call the

NewSubscr i ber Di al og function to allow the user to choose an edition to subscribe to.

FUNCTI ON NewSubscri ber Di al og
(VAR reply: NewSubscriberReply): OSErr;

reply The new subscriber reply record. You specify a location to use as the
default edition container in the cont ai ner field of this record. You also
specify in the f or mat sMask field which edition format types
NewSubscr i ber Di al og should display. The NewSubscr i ber Di al og
function returns information concerning the user’s choice in the
cancel ed and cont ai ner fields of this record.

TYPE NewSubscri berReply =

RECORD
cancel ed: Bool ean; {user cancel ed }
{ dial og box}
f or mat sMask: Si gnedByt e; {formats required}
cont ai ner: Edi ti onCont ai ner Spec; {edi ti on sel ect ed}
END;

Field descriptions

cancel ed The NewSubscr i ber Di al og function returns in this field a value
that indicates whether the user canceled the dialog box. The
function returns TRUE in the cancel ed field if the user canceled
the dialog box. Otherwise, the function returns FALSE in this field
and returns in the cont ai ner field the edition container for the
new subscriber.

Edition Manager Reference 2-91

Jabeuepy uonip3 -

DESCRIPTION

RESULT CODES

SEE ALSO

2-92

CHAPTER 2

Edition Manager

f or mat sMask The f or mat sMask field indicates which edition format type (text,
graphics, and sound) to display within the subscriber dialog box.
You can set the f or mat sMask field to the following constants:
kTEXTf or mat Mask (1), kPI CTf or mat Mask (2), or
ksndFor mat Mask (4). To support a combination of formats, add
the constants together. For example, a f or mat sMask of 3 displays
both graphics and text edition format types in the subscriber
dialog box.

cont ai ner The edition container of the last edition published or subscribed to.
You provide in this parameter the location and filename to use as
the default edition to subscribe to. If the user clicks the Subscribe
button, NewSubscr i ber Di al og returns FALSE in the cancel ed
field and returns the selected edition container for the new
subscriber in the cont ai ner field.

The NewSubscr i ber Di al og function displays the subscriber dialog box on the user’s
screen. The NewSubscr i ber Di al og function (which is based on the Cust onGet Fi | e
procedure described in the chapter “Standard File Package” in Inside Macintosh: Files)
switches to the volume reference number and directory ID and selects the filename of the
edition container that you specified in the cont ai ner field of the r epl y parameter. Use
the Cet Last Edi t i onCont ai ner Used function to get the edition container of the last
edition that was either published or subscribed to, then set the cont ai ner field to this
edition container. This allows the user to publish and then easily subscribe.

Note that if an edition does not contain either' PI CT' ,' TEXT' ,or' snd ' data, the
NewSubscri ber Di al og function does not list the edition file in the new subscriber
dialog box (unless you install an opener that can recognize the edition’s data in response
to the eoCanSubscr i be verb).

noErr 0 No error
editionMyrinitErr —-450 Manager not initialized or could not load package
badSubPar t Er r —454 Bad edition container spec

For an illustration of the new subscriber dialog box, see Figure 2-12 on page 2-37. For an
example of the use of NewSubscr i ber Di al 0g, see Listing 2-6 beginning on page 2-40.
For a description of the edition container record, see page 2-71. For information on
edition openers, see “Subscribing to Non-Edition Files” beginning on page 2-62.

Edition Manager Reference

CHAPTER 2

Edition Manager

NewPublisherDialog

When a user selects a portion of a document and then chooses the Create Publisher
menu command, your application should call the NewPubl i sher Di al og function to
allow the user to choose a name and location of the edition to which your application
writes the publisher data. Your application specifies a location and name to use as the
default edition and provides a preview of the publisher data to the

NewPubl i sher Di al og function.

FUNCTI ON NewPubl i sher Di al og
(VAR reply: NewPublisherReply): OSErr;

reply A new publisher reply record. You specify a location to use as the default
edition container in the cont ai ner field of this record. You also specify
information in the usePar t, pr evi ew and pr evi ewFor mat fields. The
NewPubl i sher Di al og function returns information concerning the
user’s choice in the cancel ed, r epl aci ng, and cont ai ner fields of
this record.

TYPE NewPubl i sherReply =

RECORD
cancel ed: Bool ean; {user cancel ed di al og box}
repl aci ng: Bool ean; {user chose existing }
{ filename for an edition}
usePart: Bool ean; {al ways false in version 7.0}
previ ew, Handl e; {handle to '"prvw, 'PICT, }
{ "TEXT', or 'snd ' data}
previ ewor nat . For mat Type; {type of preview}
cont ai ner: Edi ti onCont ai ner Spec
{edition chosen}
END;

Field descriptions

cancel ed The NewPubl i sher Di al og function returns in this field a value
that indicates whether the user canceled the dialog box. The
function returns TRUE in the cancel ed field if the user canceled
the dialog box. The function returns FALSE in this field if the user
clicked the Publish button and returns in the cont ai ner field the
edition container for the new publisher.

repl aci ng The NewPubl i sher Di al og function returns TRUE in the
repl aci ng field if the user chose an existing filename from the list
of available editions and confirmed this replacement. If the value of
ther epl aci ng field is TRUE, do not call the
Cr eat eEdi ti onCont ai ner Fi | e function. If the value of this
field and the cancel ed field is FALSE, you can call
Cr eat eEdi ti onCont ai ner Fi | e to create a new edition
container.

Edition Manager Reference 2-93

Jabeuepy uonip3 -

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 2

Edition Manager

usePart A value that must be set to FALSE before calling the
NewPubl i sher Di al og function.
previ ew Ahandleto' prvw ,' PICT',' TEXT' ,or' snd ' data. The

NewPubl i sher Di al og function displays this data in the preview
area of the dialog box.

previ ewFor mat A value that indicates which type of data the handle in the
pr evi ewfield references.

cont ai ner An edition container record that specifies the volume reference
number, directory ID, and filename to use as the default edition to
publish the data to. The NewPubl i sher Di al og function returns in
this field the edition container that the user selected.

The NewPubl i sher Di al og function displays the new publisher dialog box on

the user’s screen. The NewPubl i sher Di al og function (which is based on the

Cust onPut Fi | e procedure described in the chapter “Standard File Package” in

Inside Macintosh: Files) switches to the volume reference number and directory ID
specified by the edition container, sets the editable text item to the filename specified by
the edition container, and displays a preview of the publisher data in the new publisher
dialog box. The NewPubl i sher Di al og function handles all user interaction until the
user clicks the Cancel or Publish button.

You should deallocate the handle referenced by the pr evi ewfield to free up memory.

noErr 0 No error
editionMyrinitErr -450 Manager not initialized or could not load package
badSubPart Err —454 Bad edition container spec

For an illustration of the new publisher dialog box, see Figure 2-11 on page 2-29. For an
example of the use of NewPubl i sher Di al og, see Listing 2-4 beginning on page 2-33.
For a description of the edition container record, see page 2-71.

SectionOptionsDialog

2-94

Use the Sect i onOpt i onsDi al og function to display the publisher options and
subscriber options dialog boxes on the user’s screen.

FUNCTI ON Sect i onOpti onsDi al og
(VAR reply: SectionOptionsReply): OSErr;

Edition Manager Reference

DESCRIPTION

RESULT CODES

CHAPTER 2

Edition Manager

reply The r epl y parameter contains a section options reply record. You specify
a handle to the publisher’s or subscriber’s section record in the
sect i onHfield of this record. The Sect i onOpt i onsDi al og function
returns information concerning the user’s actions in the cancel ed,
changed, and act i on fields.

TYPE SectionOptionsReply =

RECORD
cancel ed: Bool ean; {user cancel ed di al og box}
changed: Bool ean; {changed t he section record}
secti onH: Sect i onHandl e; {handl e to the specified } m
{ section record} §':
action: ResType; {action codes} z
END; 3
?

Field descriptions

cancel ed The Sect i onQpt i onsDi al og function returns in this field a value
that indicates whether the user canceled the dialog box. The
function returns TRUE in the cancel ed field if the user canceled
the dialog box. Otherwise, the function returns FALSE in this field.

changed The Sect i onOpt i onsDi al og function returns TRUE in this field if
the user changed the section record. For example, the update mode
may have changed. Otherwise, the function returns FALSE in this

field.
secti onH A handle to the section record for the section the user selected.
action The Sect i onOpt i onsDi al og function returns in this field the

code for one of five user actions: action code ' r ead' for user
selection of the Get Edition Now button, action code' wri t' for
user selection of the Send Edition Now button, action code ' got o'
for user selection of the Open Publisher button, action code

'cncl ' for user selection of the Cancel Publisher or Cancel
Subscriber button, or action code ' ' ($20202020) for user
selection of the OK button.

The Sect i onOpt i onsDi al og function displays the appropriate options dialog box for
the specified section record. The function displays information about the subscriber or
publisher, such as its latest edition and current update mode setting, and allows the user
to perform various actions. The Sect i onOpt i onsDi al og function handles all user
interaction until the user selects a button. The function returns the user’s action in the
act i on field of the r epl y parameter; your application should then perform the
corresponding action.

noErr 0 No error
menful | Err -108 Memory full

Edition Manager Reference 2-95

SEE ALSO

CHAPTER 2

Edition Manager

For illustrations of the section options dialog box, see Figure 2-13 through Figure 2-16
beginning on page 2-43. For an example of the use of Sect i onOpt i onsDi al og, see
Listing 2-8 beginning on page 2-46. For a description of the section record, see page 2-72.

NewSubscriberExpDialog, NewPublisherExpDialog, SectionOptionsExpDialog

2-96

The NewSubscr i ber ExpDi al og, NewPubl i sher ExpDi al og, and

Secti onOpt i onsExpDi al og functions are the same as the simple dialog functions but
have five additional parameters. These additional parameters allow you to add items to
the bottom of the dialog boxes, apply alternate mapping of events to item hits, apply
alternate meanings to the item hits, and choose the location of the dialog boxes.

FUNCTI ON NewSubscr i ber ExpDi al og
(VAR reply: NewSubscriberReply; where: Point;
expansi onDl TLresI D: | nteger;
dl gHook: ExpDl gHookProcPtr;
filterProc: ExpModal FilterProchktr;
yourDataPtr: UNIV Ptr): OSErr;

FUNCTI ON NewPubl i sher ExpDi al og
(VAR reply: NewPublisherReply; where: Point;
expansi onDl TLresl D: | nteger;
dl gHook: ExpDl gHookProcPtr;
filterProc: ExpModal FilterProchktr;
yourDataPtr: UNIV Ptr): OSErr;

FUNCTI ON Secti onOpti onsExpDi al og
(VAR reply: SectionOptionsReply; where: Point;
expansi onDl TLresl D: | nteger;
dl gHook: ExpDl gHookProcPtr;
filterProc: ExpModal FilterProchktr;
yourDataPtr: UNIV Ptr): OSErr;

reply A new subscriber reply, new publisher reply, or section options
reply record. You specify information in the fields of this record
just as you do in the the corresponding fields of records used by
NewSubscri ber Di al og, NewPubl i sher Di al og, and
SectionOpti onsDi al og.

wher e A point that specifies a location on the screen where the function displays
the dialog box. You can automatically center the dialog box by passing
(-1, -1) in the wher e parameter.

Edition Manager Reference

DESCRIPTION

CHAPTER 2

Edition Manager

expansi onDl TLresl| D
A value of 0 or a valid item list (' DI TL') resource ID. This integer is
the ID of a dialog item list whose items are appended to the end of the
standard dialog item list. The dialog items keep their relative positions,
but they are moved as a group to the bottom of the dialog box.

dl gHook A pointer to an expandable dialog hook function or NI L. An expandable
dialog hook function is similar to a dialog hook function except that an
expandable dialog hook function accepts an additional parameter.

The NewSubscr i ber ExpDi al og, NewPubl i sher ExpDi al og, and
Secti onOpt i onsExpDi al og functions call your expandable dialog
hook function after each call to the Mbdal Di al og procedure. The
expandable dialog hook function should take the appropriate action, such
as filling in a checkbox. The i t enf f set parameter to the expandable
dialog hook function is the number of items in the item list before your
expansion dialog items. You need to subtract the item offset from the item
hit to get the relative item number in the expansion item list. The
expandable dialog hook function should return as its function result the
absolute item number.

filterProc
A pointer to an expandable modal-dialog filter function or NI L. An
expandable modal-dialog filter function is similar to a modal-dialog
filter function or event filter function except that an expandable
modal-dialog filter function accepts two extra parameters. The
Modal Di al og procedure calls the expandable modal-dialog filter
function you provide in this parameter. An expandable modal-dialog
filter function allows you to map real events (such as a mouse-down
event) to an item hit (such as clicking a Cancel button). For instance, you
may want to map a keyboard equivalent to an item hit.

your Dat aPtr
Reserved for your use. It is passed back to your hook and event filter
function. This parameter does not have to be of type Pt r —it can be any
32-bit quantity that you want. In Pascal, you can pass your Dat aPt r in
register A6, and declare your dialog hook and event filter as local
functions without the last parameter. The stack frame is set up properly
for these functions to access their parent local variables.

The NewPubl i sher ExpDi al og, NewSubscri ber ExpDi al og, and

Sect i onOpt i onsExpDi al og functions display the appropriate dialog box, handle
user interaction, and call any functions you have provided in the dl gHook and
filterProc parameters.

For the NewPubl i sher ExpDi al og and NewSubscr i ber ExpDi al og functions, all
the pseudo-items for the Standard File Package such as hookFi r st Cal | (-1),

hookNul | Event (100), hookRebui | dLi st (101), and hookLast Cal | (-2) can be used,
as well as hookRedr awPr evi ew(150).

Edition Manager Reference 2-97

Jabeuepy uonip3 -

SEE ALSO

CHAPTER 2

Edition Manager

For the Sect i onOpt i onsExpDi al og function, the only valid pseudo-items are
hookFi r st Cal | (1), hookNul | Event (100), hookLast Cal | (-2),
enmHookRedr awPr evi ew(150), enHook Cancel Sect i on(160),
emHookGoToPubl i sher (161), enHook Get Edi t i onNow(162),

entHook SendEdi t i onNow(162), enHook Manual Updat eMode(163), and
entHook Aut oUpdat eMbde(164).

If you provide an expandable dialog hook function, it must contain the following
parameters:

FUNCTI ON MyExpDl gHook (itentOffset: Integer; itenHit: |nteger;
t heDi al og: Di al ogPtr;
yourDataPtr: Ptr): Integer;

If you provide an expandable modal-dialog filter function, it must contain the following
parameters.

FUNCTI ON MyExpModal Fil ter (theDi al og: Dial ogPtr;
VAR t heEvent: Event Recor d;
itemOf fset: Integer;
VAR itenHi t: Integer;
yourDataPtr: Ptr): Bool ean;

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for
additional information on item lists. See the chapter “Standard File Package” in
Inside Macintosh: Files for information on dialog hook and modal-dialog filter functions.

Locating a Publisher and Edition From a Subscriber

The Get Edi ti onl nf o function returns information about a section’s edition such as its
location, last modification date, creator, and type.

Once you locate a section’s edition, you can use the GoToPubl i sher Sect i on function
to find the document containing the publisher.

GetEditionInfo

2-98

Use the Get Edi ti onl nf o function to obtain information about a section’s edition, such
as its location, last modification date, creator, and type.

FUNCTI ON CGet Edi ti onl nfo
(sectionH SectionHandl e;
VAR edi tionlnfo: EditionlnfoRecord): OSErr;

Edition Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 2

Edition Manager

sectionH Ahandle to the section record for a given section.

editionlnfo
An edition information record. The Get Edi t i onl nf o function returns
the public information contained in the section’s control block.

The Edition Manager ensures that the existing edition name corresponds to the Finder’s
existing edition name. If the cont r ol Bl ock field of the section record is set to NI L or
the edition cannot be located, the Get Edi t i onl nf o function returns an f nf Er r

result code.

The Get Edi ti onl nf o function returns information about the section’s edition in a data
structure of type Edi t i onl nf oRecor d.

TYPE Editionl nfoRecord =

RECORD
crDat e: Ti meSt anp; {date edition container }
{ was created}
ndDat e: Ti meSt anp; {date of |ast change}
fdCreator: OSType; {file creator}
fdType: CSType; {file type}

contai ner: EditionContainerSpec;{the edition}
END;

Field descriptions

crDate The creation date of the edition.

ndDat e The modification date of the edition.

f dCr eat or The creator of the edition file.

fdType The file type of the edition file.

cont ai ner An edition container record, which specifies the volume reference
number, directory ID, filename, script, and part number for the
edition.

noErr 0 No error

fnfErr —43 Not registered or file moved

editionMygrinitErr —450 Manager not initialized

For an example of the use of Get Edi t i onl nf o, see Listing 2-8 beginning on page 2-46.
For another use of this function, see “Canceling Sections Within Documents” beginning
on page 2-48. For a description of the edition container record, see page 2-71.

Edition Manager Reference 2-99

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

GoToPublisherSection

DESCRIPTION

RESULT CODES

2-100

When the user wants to locate the publisher for a particular subscriber (by clicking
Open Publisher in the subscriber options dialog box), the Sect i onOpt i onsDi al og
function returns the action code ' got 0' in the act i on field of the section options reply
record. When you receive this action code, you should open the document containing
the publisher.

First, use the Get Edi ti onl nf o function to find the edition container. Then use the
GoToPubl i sher Sect i on function to open the document containing the publisher.

FUNCTI ON GoToPubl i sher Secti on
(contai ner: EditionContainerSpec): OSErr;

contai ner An edition container record, which specifies volume reference number,
directory ID, and filename of the subscriber’s edition. You obtain the
edition container by calling the Get Edi t i onl nf o function.

The GoToPubl i sher Sect i on function resolves the alias in the edition to find

the document containing its publisher. In general, this function internally uses the

Get St andar dFor mat s function to get the alias to the publisher document and then
resolves the alias. It next sends the Finder an Apple event to open the document (which
launches its application if necessary) and, after the publisher is registered, sends a
Section Scroll event to the publisher.

As an optimization, if there is a registered publisher, the GoToPubl i sher Sect i on
function simply sends a Section Scroll event to the publisher.

If the edition does not contain an alias and there are no registered publishers, then the
GoToPubl i sher Sect i on function sends an Open Documents event to open the edition
to the creating application.

If the edition container is not an edition file (as is the case when you are using
bottlenecks to subscribe to non-edition files), the GoToPubl i sher Sect i on function
sends the Finder an Apple event to open that file.

noErr 0 No error

fnfErr —43 File not found
editionMyrinitErr —450 Manager not initialized
badSubPart Er r —454 Invalid edition container

Edition Manager Reference

SEE ALSO

Edition Container Formats

CHAPTER 2

Edition Manager

For illustrations of the section options dialog box for subscribers, see Figure 2-15 on
page 2-44 and Figure 2-16 on page 2-45. For an example of responding to the action code
' got 0', see Listing 2-8 beginning on page 2-46. For a description of the edition
container record, see page 2-71.

GetStandardFormats

The Edition Manager calls the Get St andar dFor mat s function to get the alias used in
the GoToPubl i sher Sect i on function and to get the preview shown in the subscriber
dialog box. You probably do not need to call this function directly.

Jabeuepy uonip3 -

DESCRIPTION

You probably do not need to call the Get St andar dFor mat s function directly because
the Edition Manager calls this function.

FUNCTI ON Get St andar dFor mat s
(contai ner: EditionContai ner Spec;
VAR previ ewfor mat : For mat Type;
preview, publisherAlias, formts: Handle): OSErr;

contai ner An edition container record that specifies the edition volume reference
number, directory ID, filename, and part.
previ ewfor mat

The Get St andar dFor mat s function returns in this parameter a handle
to the first format of the requested format type that it finds in the edition.

previ ew A format type. The Get St andar dFor nat s function looks for a format of
the type specified in this parameter and returns in this parameter the
format type of the first format that it finds. The function tries to find one
of four formats: ' prvw ,' PICT',"' TEXT' ,or' snd '.

publ i sher Al'i as
The publ i sher Al i as parameter reads the format
kPubl i sher DocAl i asFormat (" alis').

formats The f or mat s parameter reads the virtual format kFor mat Li st For mat
(‘fmts').

You should pass in valid handles for the formats that you want and NI L for the formats
that you don’t want. The handles are resized to the size of the data.

If one of the requested formats cannot be found, Get St andar dFor mat s returns a
noTypeErr result code.

Edition Manager Reference 2-101

CHAPTER 2

Edition Manager

RESULT CODES

nokErr 0 No error
noTypeErr -102 Edition container not found
editionMyrinitErr —-450 Manager not initialized

Reading and Writing Non-Edition Files

The Edition Manager never opens or closes an edition container directly—it calls the
current edition opener. See “Subscribing to Non-Edition Files” beginning on page 2-62
for additional information.

To override the standard opener function, create an opener function that contains the
following parameters:

FUNCTI ON MyQpener (sel ector: EditionOpener Verb;
VAR PB: EditionOpener ParanBl ock): OSErr;

When this function is called by the Edition Manager, the sel ect or parameter is set to
one of the edition opener verbs (eoQpen, eoC ose, eoOpenNew eoC oseNew
eoCanSubscri be). The PB parameter contains an edition opener parameter block
record.

Use the Get Edi t i onOpener Pr oc function to locate the current edition opener and use
the Set Edi t i onOpener Pr oc function to provide your own edition opener.

Use the Cal | Edi t i onOpener Pr oc function to call an edition opener and use the
Cal | For mat | OPr oc function to call a format I/O function.

GetEditionOpenerProc

Use the Get Edi t i onCpener Pr oc function to locate the current edition opener.

FUNCTI ON Get Edi ti onQpener Proc
(VAR opener: EditionOpenerProcPtr): OSErr;

opener The Get Edi t i onOpener Pr oc function returns a pointer to the current
edition opener function in this parameter.

SetEditionOpenerProc

Use the Set Edi t i onOpener Pr oc function to provide your own edition opener.

FUNCTI ON Set Edi ti onOpener Proc
(opener: EditionQOpenerProckPtr): OSErr;

2-102 Edition Manager Reference

CHAPTER 2

Edition Manager

opener A pointer to the edition opener function that you are providing.

CallEditionOpenerProc

DESCRIPTION

Use the Cal | Edi ti onOpener Pr oc function to call an edition opener.

FUNCTI ON Cal | Edi ti onOpener Proc
(sel ector: EditionQCpenerVerb
VAR PB: Editi onQpener ParanBl ock;
routine: EditionQpenerProcPtr): OSErr

sel ector An edition opener verb. When the Cal | Edi t i onCpener Pr oc function
is called by the Edition Manager, the sel ect or parameter is set to one of
the edition opener verbs (eoOpen, eoCl ose, eoOpenNew eoCl oseNew
eoCanSubscri be).

PB An edition opener parameter block.

routine A pointer to an edition opener function.

The Edition Manager calls an edition opener function whenever it needs to open or close
an edition. The Edition Manager passes an edition opener parameter block as one of the
parameters to an edition opener function. The edition opener parameter block is defined
by this structure:

TYPE Edi ti onQpener Par anBl ock =

RECORD
i nfo: Edi ti onl nf oRecor d; {edition container to }

{ be subscribed to}
secti onH: Sect i onHandl e; {publisher or }

{ subscriber }

{ requesting open}
docunent : FSSpecPtr; {docurent passed}
fdCreator: OSType; {Fi nder creator type}
i oRef Num Longl nt; {reference nunber}

i oProc: Format | OProcPtr; {routine to read }

{ formats}
success: Bool ean; {reading or witing }

{ was successful}

f or mat sMask: Si gnedByt e; {formats required to }

{ subscri be}

END;

Edition Manager Reference 2-103

Jabeuepy uonip3 -

SEE ALSO

CHAPTER 2

Edition Manager

To override the standard reading and writing functions, you should create an I/O
function that contains the following parameters.

FUNCTI ON Myl O (sel ector: Formatl OVerb;
VAR PB: Fornmat | OPar anmBl ock): OSErr;

Set the sel ect or parameter to one of the format I/O verbs (i oHasFor mat,

i oReadFor mat , i oNewFor mat, i oW i t eFor mat). The PB parameter contains a format
I/O parameter block record.

See “Calling an Edition Opener” beginning on page 2-64 for additional information.

CallFormatIOProc

DESCRIPTION

2-104

Use the Cal | For mat | OPr oc function to call a format I/O function.

FUNCTI ON Cal | Format | OProc (sel ector: Fornmat| OVverb;
VAR PB: For mat | OPar anBl ock;
routi ne: Formatl OProcPtr): OSErr;

sel ect or A formatI/O verb (i oHasFor mat, i oReadFor mat, i oNewfFor mat,
i oWiteFormat).

PB A formatI/O parameter block record.
routine A pointer to a format I/O function.

The Edition Manager calls a format I /O function whenever it needs to read from or write
to an edition. The Edition Manager passes a format I/O parameter block as one of the
parameters to a format I/ O procedure. The format I/ O parameter block is defined by
this structure:

TYPE For mat | OPar anBl ock =

RECORD
i oRef Num Longl nt ; {reference nunber}
format: For mat Type; {edition format type}
format | ndex: Longl nt; {opener -specific enuneration}

{ of formats}

of fset: Longl nt; {offset into format}
buf fPtr: Ptr; {data starts here}
buf f Len: Longl nt ; {length of data}

END;

Edition Manager Reference

CHAPTER 2

Edition Manager

SEE ALSO
See “Calling a Format I/ O Function” beginning on page 2-68 for additional information.

Application-Defined Routines

Your application can provide an edition opener function, format I/O function,
expandable dialog hook function, and expandable modal-dialog filter function. For the
routine declarations of the edition opener and format I/O functions, see “Reading and
Writing Non-Edition Files” beginning on page 2-102. For the routine declarations of the
expandable dialog hook and expandable modal-dialog filter functions, see the
description of NewSubscr i ber ExpDi al og, NewPubl i sher ExpDi al og, and

Sect i onOpt i onsExpDi al og beginning on page 2-96.

Edition Manager Reference 2-105

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Summary of the Edition Manager

Pascal Summary

Constants

CONST
{resource types}
r Secti onType

{section types}
st Subscri ber

st Publ i sher
{updat e nodes}
sumAut omati c
sumvanual
punmOnSave

punmvanual

{edition container subpart

kPar t sNot Used
kPar t Nunber Unknown

{preview size}
kPrevi ewW dt h
kPrevi ewHei ght

{special formats}
kPubl i sher DocAl i asFor mat

kPrevi ewfFor mat
kFor mat Li st For mat

2-106

Summary of the Edition Manager

'sect’;

$01;
$OA;

nunber}

0;
-_‘]_,

120;

120;

"alis';

"prvw ;
"fts';

{resource type for a}
{ section}

{subscri ber section type}
{publisher section type}

{subscriber receives new }
{ editions autonmatically}
{subscri ber receives new }
{ editions manually}
{publ i sher sends new }

{ editions on save}
{publisher does not send }
{ new editions until user }
{ request}

{edition is the whole file}
{not used in version 7.0}

{preview wi dt h}
{previ ew hei ght}

{alias record fromthe }
{ edition to publisher}
{'PICT" thunbnail sketch}
{list of all available }
{ formats and their sizes}

CHAPTER 2

Edition Manager

{bits for fornmatMask}

kPI CTf or nat Mask = 1;
KTEXTf or mat Mask = 2;
ksndFor mat Mask = 4;

{Finder types for edition files}

"edtt’
"edts'
"edtu'

'sect';

by the

kPI CTEdi ti onFi | eType = 'edtp'
KTEXTEdi ti onFi | eType =

ksndEdi ti onFi | eType =
kUnknownEdi ti onFi | eType =

{m scel | aneous}

kFor mat Lengt hUnknown = -1;
{message | Ds for Apple events sent
secti onEvent Msgd ass =

secti onReadMsgl D = 'read';
secti onWiteMsgl D ='wit';
sectionScrol | Msgl D = "'scrl';
secti onCancel Msgl D = 'cncl';

{ref Con field when displaying stacked di al

sf Mai nDi al ogRef Con = "stdf';
sf NewFol der Di al ogRef Con = "'nfdr';
sf Repl aceDi al ogRef Con ="'rplc';
sf St at War nDi al ogRef Con = 'stat'
sf Error Di al ogRef Con ='err
enOpt i onsDi al ogRef Con = 'optn'
enCancel Sect i onDi al ogRef Con = 'cncl';
enGot oPubEr r Di al ogRef Con = 'gerr';

{pseudo-item hits for dial ogHooks}

enmHookRedr awPr evi ew = 150
enmHookCancel Secti on = 160;
emHookGoToPubl i sher = 161
entHook CGet Edi t i onNow = 162
enmHookSendEdi t i onNow = 162;
enmHookManual Updat eMode = 163;
enHook Aut oUpdat eMbde = 164,

Summary of the Edition Manager

{graphics format}
{text format}
{sound fornat}

{contains 'PICT', }
{ '"TEXT', and }

{ "snd ' file types}
{unknown file type}
{length of format unknown}
Edi ti on Manager}
{Appl e events sent
{ Edition Manager}
{Section Read events}
{Section Wite events}

{Section Scroll events}
{Section Cancel events}

by the }

og boxes}

{new publ i sher and }
{ new subscriber}
{new fol der}

{repl ace di al og}
{war ni ng di al og}
{error dial og}
{options dial og}
{cancel section}

{l ocate publisher}

{for NewPublisher or }

{ NewSubscri ber dial ogs}
{for SectionOptions dial og}
{for SectionOptions dialog}
{for SectionOptions dialog}
{for SectionOptions dial og}
{for SectionOptions dial og}
{for SectionOptions dialog}

2-107

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Data Types

TYPE Ti meSt anp
Edi ti onRef Num
Updat eMode

Secti onType

For mat Type

Sect i onHandl e
SectionPtr
Secti onRecord
RECORD
ver si on:
ki nd:
node:
ndDat e:
sectionl D

r ef Con:
alias:

{The following fields are private and are

{ RegisterSection function.

subPart :
next Secti on:
cont r ol Bl ock:
ref Num

END;

= Longl nt;
= Handl e;
= | nteger;

= Si gnedByt e

{seconds since 1904}
{for use in Edition I/ G
{sumAut omatic, }

{ sumvanual , }

{ pumnSave, pumvanual }
{st Subscriber or }

{ stPublisher}

= PACKED ARRAY[1..4] OF CHAR

= NSectionPtr;

{simlar to ResType used }
{ by the Scrap Manager}

= ASectionRecord,;

Si gnedByt e
Secti onType;
Updat eMode;
Ti meSt anp;
Longl nt;

Longl nt ;
Al i asHandl e;

}

Longl nt ;
Sect i onHandl e;
Handl e;
Edi t i onRef Num

{always 1 in version 7.0}
{publisher or subscriber}
{automatic or nanual }
{last change to section}
{application-specific, }
{ uni que per docunent}
{application-specific}
{handl e to alias record}

set up by the }

{private}
{privat e}
{privat e}
{private}

Edi ti onCont ai ner SpecPtr ="Edi ti onCont ai ner Spec;

Edi ti onCont ai ner Spec =
RECORD
theFil e:

theFil eScri pt:
thePart:

2-108 Summary of the Edition Manager

FSSpec;

Scri pt Code;
Longl nt;

{file containing edition }
{ data}

{script code of filenane}
{which part of file, }

{ al ways kPart sNot Used}

CHAPTER 2

Edition Manager

t hePar t Nane: Str31;
thePart Scri pt: Scri pt Code;
END;

For mat sAvai | abl e = ARRAY[O0..0] OF
RECORD

t heType: For mat Type;
t heLengt h: Longl nt;
END;

Edi ti onl nfoRecord =

{reserved}
{reserved}

{format type for an }

{ edition}

{length of edition fornat
{ type}

RECORD
crDat e: Ti meSt anp; {date edition container }
{ was created}
ndDat e: Ti meSt anp; {date of |ast change}
fdCreator: OSType; {file creator}
fdType: CSType; {file type}
cont ai ner: Edi ti onCont ai ner Spec;
{the edition}
END;

NewPubl i sherReply =

RECORD

cancel ed: Bool ean

repl aci ng: Bool ean;

usePart: Bool ean

previ ew, Handl e;

previ ewfor nat : For mat Type;

cont ai ner: Edi ti onCont ai ner Spec;
END;

NewSubscri ber Reply =

RECORD

cancel ed: Bool ean

f or mat sMask: Si gnedByt e

cont ai ner: Edi ti onCont ai ner Spec;
END;

Summary of the Edition Manager

{user cancel ed di al og box}
{user chose existing }
{ filename for an edition}

}

{al ways FALSE in version 7.0}

{handle to 'prvw, 'PICT,}
{ "TEXT', or 'snd ' data}
{type of preview

{edition chosen}

{user cancel ed di al og box}
{formats required}

{edition sel ected}

2-109

-

Jabeuepy uonip3

CHAPTER 2

Edition Manager

SectionOptionsReply =

RECORD
cancel ed: Bool ean; {user cancel ed di al og box}
changed: Bool ean; {changed t he section }
{ record}
secti onH: Sect i onHandl e; {handl e to the specified }
{ section record}
action: ResType; {action codes}
END;

Edi ti onOpener Ver b= (eoOpen, eoCd ose, eoOpenNew, eoC oseNew,
eoCanSubscri be) ;
Edi ti onOpener Par anBl ock =

RECORD
i nfo: Edi ti onl nf oRecor d; {edition container to }
{ be subscribed to}
secti onH Sect i onHandl e; {publisher or subscriber }
{ requesting open}
docunent : FSSpecPtr; {docurent passed}
fdCreator: OSType; {Fi nder creator type}
i oRef Num Longl nt; {reference nunber}
i oProc: Format | OProcPtr; {routine to read formats}
success: Bool ean; {reading or witing was }
{ successful}
f or mat sMask: Si gnedByt e; {formats required to }
{ subscri be}
END;

Format 1 Overb = (i oHasFormat, i oReadFornat, ioNewrFormat, ioWiteFormt);
For mat | OPar anBl ock =

RECORD
i oRef Num Longl nt ; {reference nunber}
format: For mat Type; {edition format type}
format | ndex: Longl nt; {opener-specific enuneration }
{ of formats}
of f set: Longl nt ; {offset into format}
buf fPtr: Ptr; {data starts here}
buf f Len: Longl nt ; {l ength of data}
END;

2-110 Summary of the Edition Manager

CHAPTER 2

Edition Manager

Edition Manager Routines

Initializing the Edition Manager
FUNCTI ON | ni t Edi ti onPack . OSErr;

Creating and Registering a Section

FUNCTI ON NewSect i on (container: EditionContainerSpec;
sectionDocunent: FSSpecPtr; kind: SectionType;
sectionlD; Longlnt; initial Mbde: UpdateMode;
VAR sectionH SectionHandle): OSErr;

FUNCTI ON Regi st er Secti on (sectionDocunent: FSSpec;
secti onH SectionHandl e;

VAR al i asWasUpdat ed: Bool ean)
OSErr;
FUNCTI ON UnRegi sterSection (sectionH SectionHandle): CSErr;

FUNCTI ON | sRegi st eredSecti on
(sectionH SectionHandle): OSErr;

FUNCTI ON Associ at eSecti on (sectionH SectionHandl e;
newSect i onDocunment: FSSpecPtr): OSErr;

Creating and Deleting an Edition Container

FUNCTI ON Cr eat eEdi ti onCont ai nerFil e
(editionFile: FSSpec; fdCreator: OSType;
editionFil eNameScript: ScriptCode): OSErr;

FUNCTI ON Del et eEdi ti onCont ai nerFil e
(editionFile: FSSpec): OSErr;

Setting and Getting a Format Mark

FUNCTI ON Set Edi t i onFor mat Mar k
(whi chEdi tion: EditionRef Num
whi chFor mat : For mat Type;
set MarkTo: Longlnt): OSErr;

FUNCTI ON Get Edi ti onFor mat Mar k
(whi chEdi tion: EditionRef Num
whi chFor mat . For mat Type;
VAR current Mark: Longlnt): OSErr;

Summary of the Edition Manager 2-111

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Reading in Edition Data

FUNCTI ON OpenEdi ti on (subscri ber Secti onH: Secti onHandl e;
VAR ref Num EditionRef Num): OSErr;
FUNCTI ON Edi ti onHasFor mat (whi chEdi tion: EditionRef Num
whi chFor mat : For mat Type;
VAR format Si ze: Size): CSErr;
FUNCTI ON ReadEdi ti on (whi chEdi tion: EditionRef Num
whi chFor mat : For mat Type; buffPtr: UNIV Ptr;
VAR bufflLen: Size): OSErr;

Writing out Edition Data

FUNCTI ON OpenNewEdi ti on (publ i sher SectionH: SectionHandl e;
fdCreator: OSType;
publ i sher Sect i onDocunent: FSSpecPtr;
VAR ref Num EditionRef Nun): OSErr;

FUNCTI ON WiteEdition (whi chEdi tion: EditionRef Num
whi chFor mat : Format Type; buffPtr: UNIV Ptr;
buffLen: Size): OSErr;

Closing an Edition After Reading or Writing

FUNCTI ON Cl oseEdi tion (whi chEdi tion: EditionRef Num
successful : Bool ean): OCSErr;

Displaying Dialog Boxes

FUNCTI ON Get Last Edi ti onCont ai ner Used
(VAR cont ai ner: EditionCont ai ner Spec): OSErr;

FUNCTI ON NewSubscri ber Di al og
(VAR reply: NewSubscriberReply): OCSErr;
FUNCTI ON NewPubl i sherDi al og (VAR reply: NewPublisherReply): OSErr;
FUNCTI ON Secti onOpti onsDi al og
(VAR reply: SectionOptionsReply): OSErr;
FUNCTI ON NewSubscri ber ExpDi al og
(VAR reply: NewSubscri berReply; where: Point;
expansi onDl TLresl D:. | nteger;
dl gHook: ExpDl gHookPr ocPtr;
filterProc: ExpModal FilterProcPktr;
yourDataPtr: UNIV Ptr): OSErr;

2-112 Summary of the Edition Manager

CHAPTER 2

Edition Manager

FUNCTI ON NewPubl i sher ExpDi al og
(VAR reply: NewPublisherReply; where: Point;
expansi onDl TLresI D: | nt eger;
dl gHook: ExpDl gHookPr ocPtr;
filterProc: ExpModal FilterProcPktr;
yourDataPtr: UNIV Ptr): OSErr;
FUNCTI ON Secti onOpti onsExpDi al og
(VAR reply: SectionOptionsReply; where: Point;
expansi onDl TLresl D: | nteger;
dl gHook: ExpDl gHookPr ocPtr;
filterProc: ExpModal FilterProcPktr;
yourDataPtr: UNIV Ptr): OSErr;

Locating a Publisher and Edition From a Subscriber

FUNCTI ON CGet Edi ti onl nfo (sectionH SectionHandl e;
VAR editionlnfo: EditionlnfoRecord): OCSErr;

FUNCTI ON GoToPubl i sher Secti on
(container: EditionContainerSpec): OSErr;

Edition Container Formats

FUNCTI ON Cet St andar dFormats (cont ai ner: Editi onCont ai ner Spec;
VAR previ ewrFor mat: For mat Type;
preview, publisherAlias,
formats: Handle): OSErr;

Reading and Writing Non-Edition files

FUNCTI ON Get Edi ti onQpener Proc
(VAR opener: EditionOpenerProcPtr): OCSErr;

FUNCTI ON Set Edi ti onOpener Proc
(opener: EditionQpenerProcPtr): OSErr;

FUNCTI ON Cal | Edi ti onOpener Proc
(sel ector: EditionOpener Verb;
VAR PB: Editi onQpener Par anBl ock;
routine: EditionQpenerProcPtr): OSErr;

FUNCTI ON Cal | For mat | OPr oc (sel ector: Fornmatl| Overb;
VAR PB: For mat | OPar anBl ock;
routine: Formatl OProcPtr): OSErr;

Application-Defined Routines

FUNCTI ON MyExpDl gHook (itenOffset: Integer; itenHt: Integer;
t heDi al og: Di al ogPtr;
yourDataPtr: Ptr): Integer;

Summary of the Edition Manager 2-113

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

FUNCTI ON MyExpModal Fi | ter (theDi al og: Dial ogPtr
VAR t heEvent: Event Record;
itenOffset: Integer; VAR itenHit: Integer
yourDataPtr: Ptr): Bool ean

FUNCTI ON MyQpener (sel ector: EditionQOpenerVerb
VAR PB: EditionOpener ParanBl ock): OSErr;
FUNCTI ON Myl O (sel ector: Fornmatl OVverb;

VAR PB: Fornat| OParanBl ock): OSErr;

C Summary

Constants

CONST

enum {
/*resource types*/
#def i ne rSecti onType

sect' /*resource type for a */
/* section*/

/*section types*/
st Subscri ber = 0x01, /*subscri ber section type*/

st Publ i sher = OxO0A, /*publ i sher section type*/

/ *updat e nodes*/

SsumAut omati c = 0, / *subscri ber receives new */
/* editions autonmatically*/
sumvanual = 1, / *subscri ber receives new */
/* editions manual | y*/
pumOnSave = 0, [*publ i sher sends new */
/* editions on save*/
pumvanual = 1, /*publ i sher does not send */

/* new editions until user */
/* request*/

/*edition container subpart nunber*/
kPar t sNot Used =0, /*edition is the whole file*/
kPar t Nunber Unknown = -1, /*not used in version 7.0*/

[*preview size*/
kPrevi ewW dt h
kPr evi ewHei ght

120, [*previ ew wi dt h*/
120, / *previ ew hei ght */

2-114 Summary of the Edition Manager

}s

CHAPTER 2

Edition Manager

/*speci al formts*/

#defi ne kPublisherDocAliasFornat 'alis’ /*alias record fromthe */
/* edition to publisher*/

#def i ne kPrevi ewFor mat "prvw /*'"PICT" thunbnail sketch*/

#def i ne kFor nmat Li st For mat "fms' /*list of all available */

/* formats and their sizes*/

/*bits for formatMask*/

kPI CTf or mat Mask = 1, /*graphics format*/
KTEXTf or mat Mask = 2, [*text format*/
ksndFor nat Mask = 4, / *sound format*/

/*Finder types for edition files*/

#define kPI CTEdi ti onFil eType "edtp' /*contains 'PICT', */
#defi ne KTEXTEdi tionFil eType "edtt’ [* "TEXT', and */
#def i ne ksndEditionFil eType "edts' /* 'snd ' file types*/

#defi ne kUnknownEdi ti onFil eType 'edtu /*unknown file type*/

/*pseudo-itemhits for dial ogHooks*/
enHookRedr awPr evi ew = 150, /*for NewPublisher or */
/* NewSubscri ber dial ogs*/

enmHookCancel Secti on = 160, /*for SectionOptions dial og*/
entHookGoToPubl i sher = 161, /*for SectionOptions dialog*/
enmHook Get Edi t i onNow = 162, /*for SectionOptions dial og*/
enmHook SendEdi t i onNow = 162, /*for SectionOptions dial og*/
enHookManual Updat eMbde = 163, /*for SectionOptions dialog*/
enmHook Aut oUpdat eMode = 164 /*for SectionOptions dial og*/

/*edition opener verbhs*/

enum { eoQpen, eod ose, eoOpenNew, eoC oseNew, eoCanSubscri be};

enum {

/*ref Con field when displaying stacked di al og boxes*/

#def i ne emOpti onsDi al ogRef Con "optn' /*options dial og*/
#defi ne entCancel Secti onDi al ogRef Con ' cncl" /*cancel section*/
#def i ne emCGot oPubErr Di al ogRef Con ‘gerr' /*1 ocate publisher*/
kFor mat Lengt hUnknown = -1 /*length of format unknown*/

/*ref Con field when displaying stacked di al og boxes*/

#def i ne sf Mai nDi al ogRef Con "stdf’ {new publ i sher and }
{ new subscri ber}
#def i ne sf NewFol der Di al ogRef Con' nf dr' {new fol der}

Summary of the Edition Manager

2-115

Jabeuepy uonip3 -

#def i ne
#def i ne
#def i ne

CHAPTER 2

Edition Manager

sf Repl aceDi al ogRef Con

rplc

sf St at War nDi al ogRef Con ' stat’

sf Error Di al ogRef Con

/*nmessage I Ds for Apple events

#def i ne

#defi ne
#defi ne
#def i ne
#defi ne

Data Types

secti onEvent Msgd ass

secti onReadMsgl D
secti onWiteMsglD
sectionScrol | Msgl D
secti onCancel Msgl D

sent

err

sect'

read'
writ'
scrl'
cncl’

{repl ace di al og}
{war ni ng di al og}
{error dial og}

by the Edition Manager*/

/*Appl e events sent by the */
/* Edition Manager*/
/*Section Read events*/
/*Section Wite events*/
/*Section Scroll events*/
/*Section Cancel events*/

t ypedef unsigned | ong Ti neStanp;
t ypedef Handl e Editi onRef Nuny”®
typedef short Updat eMode;

typedef char SectionType;

t ypedef unsigned | ong For mat Type;

struct SectionRecord {
Si gnedByt e versi on;
Secti onType ki nd;

Updat eMode node;
Ti meSt anp ndDat e;
| ong sectionl D

| ong ref Con;

Al i asHandl e ali as;
| ong subPart;
struct SectionRecord **next Secti on;
Handl e control Bl ock;
Edi ti onRef Num r ef Num

b

typedef struct SectionRecord SectionRecord;
t ypedef SectionRecord *SectionPtr,

2-116

Summary of the Edition Manager

/ *seconds since 1904*/

/*used in Edition |/CO*/
/*updat e node: sumAutomatic, */
/* sunmManual , */

/* punOnSave, puniManual */

/*one byte, stSubscriber */

[* or stPublisher*/

/*simlar to ResType*/

/*al ways 1x01 in version 7.0*/
/*st Publ i sher or */

/* stSubscriber*/
/*automatic or manual */
/*l ast change to section*/
/*application-specific, */
/* uni que per docunent*/
/*application-specific*/
/*handl e to alias record*/
[*private*/

/*private*/

[*private*/

[*private*/

** Sect i onHandl e;

CHAPTER 2

Edition Manager

struct EditionContai ner Spec {

FSSpec theFil e; /*file containing */

/* edition data*/
Scri pt Code theFil eScript; /*script code of filenanme*/
| ong thePart; /*whi ch part of file, */

/* al ways kPart sNot Used*/
Str31 thePart Nane; [*reserved*/
Scri pt Code thePart Scri pt; /*reserved*/

b

typedef struct EditionContainerSpec EditionContainer Spec;
t ypedef EditionContai ner Spec *Edi ti onCont ai ner SpecPtr

struct EditionlnfoRecord {

Ti meSt anp cr Dat e; /*date edition container */
/* was created*/

Ti meSt anp ndDat e; /*date of |ast change*/

OSType fdCreator; /*file creator*/

OSType fdType; /*file type*/

Edi ti onCont ai ner Spec cont ai ner; /*the edition*/

1
typedef struct EditionlnfoRecord EditionlnfoRecord;

struct NewPublisherReply {

Bool ean cancel ed; /*user cancel ed di al og box*/
Bool ean repl aci ng; /*user chose existing */
[* filename for an edition*/
Bool ean usePart; /*al ways FALSE in version */
[* 7.0%/
Handl e previ ew, /*handle to 'prvw, 'PICT 6 */
[* "TEXT', or 'snd ' data*/
For mat Type previ ewFor mat ; [*type of preview/
Edi ti onCont ai ner Spec cont ai ner; /*edi tion chosen*/

b
typedef struct NewPublisherReply NewPubl i sherReply;

struct NewSubscri berReply {

Bool ean cancel ed,; /*user cancel ed di al og box*/
unsi gned char formatsMask; /*formats required*/
Edi ti onCont ai ner Spec cont ai ner; /*edition sel ected*/

1
t ypedef struct NewSubscri ber Reply NewSubscri ber Reply;

Summary of the Edition Manager

2-117

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

struct SectionOptionsReply {

Bool ean cancel ed; /*user cancel ed di al og box*/
Bool ean changed; /*changed the section */
/* record*/
Secti onHandl e secti onH; /*handl e to the specified */
/* section record*/
ResType acti on; /*action codes*/

b
typedef struct SectionOptionsReply SectionOptionsReply;
t ypedef pascal Bool ean (*ExpModal FilterProcPtr) (DialogPtr theD al og,
Event Record *theEvent, short itenOXfset,

short *itenHit, Ptr yourDataPtr);

typedef pascal short (*ExpDl gHookProcPtr) (short itemOffset, short itenmHi t,
Di al ogPtr theDial og, Ptr yourDataPtr);

t ypedef unsi gned char EditionOpenerVerb

struct EditionOpener ParanBl ock {

Edi ti onl nfoRecord i nfo; /*edition container to */
/* be subscribed to*/

Sect i onHandl e secti onH; [*publ i sher or subscriber */
/* requesting open*/

FSSpecPtr document ; /*docunent passed*/

OSType fdCreator; / *Fi nder creator type*/

| ong i oRef Num /*reference nunber*/

Format | OProcPtr i oProc; /*routine to read formts*/

Bool ean success; /*reading or witing was */
/* successful */

unsi gned char fornat sMask; /*formats required to */

[* subscri be*/
1
typedef struct EditionQpenerParanBl ock Editi onOCpener ParanBl ock

t ypedef pascal short (*EditionQOpenerProcPtr) (EditionOpenerVerb sel ector
For mat | OPar anBl ock *PB) ;

enum {i oHasFormat, ioReadFormat, ioNewFormat, ioWiteFornat};
t ypedef unsi gned char Formatl| OVer b;

2-118 Summary of the Edition Manager

CHAPTER 2

Edition Manager

struct Fornmat | OPar anBl ock {
| ong i oRef Num / *ref erence numnber*/
For mat Type format; /[*edition format type*/
| ong fornmatlndex; /* opener-specific */
/* enuneration */
/* of formats*/
unsi gned | ong of fset; /*offset into format*/
Ptr buffPtr; /*data starts here*/
unsi gned | ong buffLen; /*1 ength of data*/
1

t ypedef struct Format!| OParanBl ock For mat | OPar anBl ock;

typedef pascal short (*Formatl OProcPtr) (Formatl Overb sel ector,

For mat | OPar anBl ock *PB);

Edition Manager Routines

Initializing the Edition Manager

pascal

OSErr InitEditionPack (void)

Creating and Registering a Section

pascal

pascal

pascal

pascal

pascal

OSErr NewSect i on (const EditionContai ner Spec *contai ner,

const FSSpec *secti onDocunent,
SectionType kind, |ong sectionlD,
Updat eMode i niti al Mode,
SectionHandl e *sectionH);

OSErr Regi sterSection
(const FSSpec *secti onDocunent,
Secti onHandl e secti onH,
Bool ean *al i asWasUpdat ed) ;

OSErr UnRegi st er Section
(SectionHandl e sectionH);

OSErr | sRegi steredSection
(SectionHandl e sectionH);

OSErr Associ at eSecti on
(SectionHandl e sectionH,
const FSSpec *newSecti onDocunent);

Summary of the Edition Manager

2-119

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Creating and Deleting an Edition Container

pascal OSErr CreateEditionContainerFile
(const FSSpec *editionFile, OSType fdCreator,
Scri pt Code editionFil eNaneScript);
pascal OSErr Del et eEditionContainerFile
(const FSSpec *editionFile);

Setting and Getting a Format Mark

pascal OSErr Set Editi onFor mat Mar k
(Edi ti onRef Num whi chEdi ti on,
For mat Type whi chFor nat,
unsi gned | ong set MarkTo) ;
pascal OSErr GCet Editi onFor mat Mar k
(Edi ti onRef Num whi chEdi ti on,
For mat Type whi chFor nat,
unsi gned | ong *current Mark);

Reading in Edition Data

pascal OSErr OpenEdition (SectionHandl e subscri ber Secti onH,
Edi ti onRef Num *r ef Num ;

pascal OSErr EditionHasFor nat
(Edi ti onRef Num whi chEdi ti on,
For mat Type whi chFor nat
Size *format Si ze) ;

pascal OSErr ReadEdition (Edi ti onRef Num whi chEdi ti on,
For mat Type whi chFormat, void *buffPtr,
Si ze *bufflLen);

Writing out Edition Data

pascal OSErr OpenNewEdition (SectionHandl e publi sherSectionH,
OSType fdCreator,
const FSSpec *publi sher Secti onDocunent,
Edi ti onRef Num *r ef Num ;

pascal OSErr WiteEdition (Edi ti onRef Num whi chEdi ti on,
For mat Type whi chFormat, const void *buffPtr,
Si ze *bufflLen);

Closing an Edition After Reading or Writing

pascal OSErr C oseEdition (Edi ti onRef Num whi chEdi ti on,
Bool ean successful);

2-120 Summary of the Edition Manager

CHAPTER 2

Edition Manager

Displaying Dialog Boxes

pascal

pascal

pascal

pascal

pascal

pascal

pascal

CSErr

CSErr

CSEr r

OSEr r

CSEr r

CSErr

CSEr r

Get Last Edi ti onCont ai ner Used
(Edi ti onCont ai ner Spec *cont ai ner);

NewSubscri ber Di al og
(NewSubscri berReply *reply);

NewPubl i sher Di al og
(NewPubl i sher Reply *reply);

Secti onOpti onsDi al og
(SectionOptionsReply *reply);
NewSubscri ber ExpDi al og
(NewSubscri berReply *reply, Point where,
short expansi onDl TLresl D,
ExpDl gHookPr ocPt r dl gHook,
ExpModal FilterProcPtr filterProc,
voi d *yourDataPtr);

NewPubl i sher ExpDi al og
(NewPubl i sher Reply *reply, Point where,
short expansi onDI TLresl D,
ExpDl gHookPr ocPt r dl gHook,
ExphModal Fi lterProcPtr filterProc,
void *yourDataPtr);

Secti onOpti onsExpDi al og
(SectionOptionsReply *reply, Point where,
short expansi onDl TLresl D,
ExpDl gHookPr ocPt r dl gHook,
ExpModal FilterProcPtr filterProc,
voi d *yourDataPtr);

Locating a Publisher and Edition From a Subscriber

pascal

pascal

CSEr r

CSEr r

CGetEditionlnfo (const SectionHandl e sectionH,
Edi ti onl nf oRecord *editionlnfo);

GoToPubl i sher Secti on
(const EditionContai ner Spec *contai ner);

Edition Container Formats

pascal

CSEr r

Cet St andar dFor mat s
(const EditionContai ner Spec *contai ner,
For mat Type *previ ewror nat ,
Handl e previ ew, Handl e publisherAli as,
Handl e formats);

Summary of the Edition Manager

2-121

Jabeuepy uonip3 -

CHAPTER 2

Edition Manager

Reading and Writing Non-Edition files

pascal OSErr Get Editi onOpener Proc
(Edit
pascal OSErr Set Editi onOpener Proc
(Edit
pascal OSErr Call Editi onOpenerPro
(Edit
Edi t
Edi t

pascal OSErr Call Format| OProc

i onOpener ProcPtr *opener);

i onQpener ProcPtr opener);

c

i onQpener Verb sel ect or,

i onQpener Par anBl ock *PB,

i onOpener ProcPtr routine);

(Format | Overb sel ector,
For mat | OPar anBl ock *PB,
Format | OProcPtr routine);

Application-Defined Routines

pascal

pascal

pascal

pascal

CSErr

CSErr

CSEr r

CSEr r

MyExpDl gHook (shor
Di al
Ptr

MyExpModal Fi | t er

(Di al

t itenOfset, short
ogPtr thebDi al og,
your Dat aPtr);

itenHit,

ogPtr thebDi al og,

Event Record *t heEvent,

shor
Ptr
(Edit
Edi t

MyQpener

M/l O

t itenOfset, short

your Dat aPtr);

i onOpener Verb sel ect or,
i onOpener Par anBl ock *PB);

*iTtenHt,

(Format | Overb sel ector,

For mat | OPar anBl ock *PB);

Result Codes

noErr
abort Err
dskFul Err
nsvErr

i oErr
bdNantr r
f nCpnErr
eof Err
fnfErr

fl LckedErr
f BsyErr
parantrr
rf Nunerr
per nerr

2-122

=27
-34
-35
-36
=37
-38
-39
—43
—45
—47
-50
51
-54

Summary of the Edition Manager

No error

Publisher has written a new edition
Disk is full

No such volume

1/0 error

Bad filename

File not open

No additional data in the format
Edition container not found
Publisher writing to an edition
Section doing I/O

Invalid parameter

Bad edition reference number
Not a subscriber

CHAPTER 2

Edition Manager

wr Per nEr r

noTypeErr

menful | Err

di r NFEr r

user Cancel edErr
editionMyrinitErr
badSecti onErr

not Regi st eredSecti onErr
badSubPart Err

mul ti pl ePubl i sher Wn
cont ai ner Not FoundW n
not ThePubl i sher Wn

—61
-102
-108
-120
-128
—450
—451
—452
—454
-460
—461
—463

Not a publisher

Format not available

Memory full

Directory not found

User clicked Cancel in dialog box

Manager not initialized or could not load package
Not a valid section type

Not registered

Bad edition container spec or invalid edition container
Already is a publisher

Alias was not resolved

Not the publisher

Summary of the Edition Manager

2-123

Jabeuepy uonip3 -

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	Edition Manager
	Introduction to Publishers, Subscribers, and Editi...
	About the Edition Manager
	Using the Edition Manager
	Receiving Apple Events From the Edition Manager
	Creating the Section Record and Alias Record
	Saving a Document Containing Sections
	Opening and Closing a Document Containing Sections...
	Reading and Writing a Section
	Formats in an Edition
	Opening an Edition
	Format Marks
	Reading and Writing Edition Data
	Closing an Edition

	Creating a Publisher
	Creating the Edition Container
	Opening an Edition Container to Write Data

	Creating a Subscriber
	Opening an Edition Container to Read Data
	Choosing Which Edition Format to Read

	Using Publisher and Subscriber Options
	Publishing a New Edition While Saving or Manually
	Subscribing to an Edition Automatically or Manuall...
	Canceling Sections Within Documents
	Locating a Publisher Through a Subscriber

	Renaming a Document Containing Sections
	Displaying Publisher and Subscriber Borders
	Text Borders
	Spreadsheet Borders
	Object-Oriented Graphics Borders
	Bitmapped Graphics Borders
	Duplicating Publishers and Subscribers

	Modifying a Subscriber
	Relocating an Edition
	Customizing Dialog Boxes

	Subscribing to Non-Edition Files
	Getting the Current Edition Opener
	Setting an Edition Opener
	Calling an Edition Opener
	Opening and Closing Editions
	Listing Files That Can Be Subscribed To
	Reading From and Writing to Files
	Calling a Format I/O Function

	Edition Manager Reference
	Data Structures
	The Edition Container Record
	The Section Record

	Edition Manager Routines
	Initializing the Edition Manager
	Creating and Registering a Section
	Creating and Deleting an Edition Container
	Setting and Getting a Format Mark
	Reading in Edition Data
	Writing out Edition Data
	Closing an Edition After Reading or Writing
	Displaying Dialog Boxes
	Locating a Publisher and Edition From a Subscriber...
	Edition Container Formats
	Reading and Writing Non-Edition Files

	Application-Defined Routines

	Summary of the Edition Manager
	Pascal Summary
	Constants
	Data Types
	Edition Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Edition Manager Routines
	Application-Defined Routines

	Result Codes

	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

