CHAPTER 6

Component Manager

This chapter describes how you can use the Component Manager to allow your
application to find and utilize various software objects (components) at run time. It also
discusses how you can create your own components and how you can use the
Component Manager to help manage your components. You should read this chapter if
you are developing an application that uses components or if you plan to develop your
own components.

The rest of this chapter

= contains a general introduction to components and the features provided by the
Component Manager

= discusses how to use the facilities of the Component Manager to call components
= describes how to create a component

Several of the sections in this chapter are divided into two main topics: one describes
how applications can use components, and one describes how to create your own
components. If you are developing an application that uses components, you should
focus on the material that describes how to use existing components—you do not need
to read the material that describes how to create a component. If you are developing a
component, however, you should be familiar with all the information in this chapter.

For information on a specific component, see the documentation supplied with that
component. For example, for information on the components that Apple supplies with
QuickTime, see Inside Macintosh: QuickTime Components.

Introduction to Components

A component is a piece of code that provides a defined set of services to one or more
clients. Applications, system extensions, as well as other components can use the
services of a component. A component typically provides a specific type of service to its
clients. For example, a component might provide image compression or image
decompression capabilities; an application could call such a component, providing the
image to compress, and the component could perform the desired operation and return
the compressed image to the application.

Multiple components can provide the same type of service. For example, separate
components might exist that can compress an image by 20 percent, 40 percent, or 50
percent, with varying degrees of fidelity. All components of the same type must support
the same basic interface. This allows your application to use the same interface for any
given type of component and get the same type of service, yet allows your application to
obtain different levels of service.

The Component Manager provides access to components and manages them by, for
example, keeping track of the currently available components and routing requests to
the appropriate component.

Introduction to Components 6-3

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

The Component Manager classifies components by three main criteria: the type of
service provided, the level of service provided, and the component manufacturer. The
Component Manager uses a component type to identify the type of service provided by
a component. Like resource types, a component type is a sequence of four characters. All
components of the same component type provide the same type of services and support
a common application interface. For example, all image compressor components have a
component type of ' i nto' . Other types of components include video digitizers, timing
sources, movie controllers, and sequence capturers.

Note

Component types consisting of only lowercase characters are reserved
for definition by Apple. You can define component types using other
combinations of characters, but you must register any new component
types with Apple’s Component Registry Group (AppleLink
REGISTRY). O

The Component Manager allows components to identify variations on the basic interface
they must support by specifying a four-character component subtype. The value of the
component subtype is meaningful only in the context of a given component type. For
example, image compressor components use the component subtype to specify the
compression algorithm supported by the component.

All components of a given type-subtype combination must support a common
application interface. However, components that share a type-subtype specification may
support routines that are not part of the basic interface defined for their type. In this
manner, components can provide enhanced services to client applications while still
supporting the basic application interface.

Finally, the Component Manager allows components to have a four-character
manufacturer code that identifies the manufacturer of the component. You must register
your component with Apple’s Component Registry Group to receive a manufacturer
code for your component. The manufacturer code allows applications to further
distinguish between components of the same type-subtype.

About the Component Manager

The Component Manager provides services that allow applications to obtain run-time
location of and access to functional objects (in much the same way that the Resource
Manager allows applications that are running to access data objects dynamically).

The Component Manager creates an interface between components and clients, which
can be applications, other components, system extensions, and so on. Instead of
implementing support for a particular data format, protocol, or model of a device, you
can use a standard interface through which your application communicates with all
components of a given type. You can then use the Component Manager to locate and
communicate with components of that type. Those components, in turn, provide the
appropriate services to your client application.

About the Component Manager



CHAPTER 6

Component Manager

Given a particular component type, the Component Manager can locate and query all

components of that type. You can find out how many components of a specific type are

available and you can get further details about a component’s capabilities without
having to open it first. For each component, the Component Manager keeps track of
many characteristics, including its name, icon, and information string.

For example, components of type ' i mic' provide image decompression services. All
components of type ' i ndc' share a common application interface, but each image
decompressor component may support a unique compression technique or take

advantage of a special hardware implementation. Individual components may support

additions to the defined application interface, as long as they support the common
routines. Any algorithm-dependent or implementation-dependent variations of the
general decompression interface can be implemented by each' i ndc' component as
extensions to the basic interface.

Figure 6-1 shows the relationship between an application, the Component Manager, and

several components. Applications and other clients use the Component Manager to
access components. In this figure, four components are available to the application: an

image decompression component (of type ' i mdc' ), two drawing components (of type

" draw ), and a clock component (of type ' ¢l ok' ). Note that the two drawing
components have different subtypes: ' oval ' and ' rect' . The drawing component
with subtype ' oval ' draws ovals, and the drawing component with subtype ' r ect '
draws rectangles.

Figure 6-1 The relationship between an application, the Component Manager, and

components

|

Component
Manager

f
| ) ) 1

Image decompression Drawing Drawing Clock
component component component component
(type' i ndc' (type' dr aw (type' dr aw (type' cl ok’
subtype ' r pza') subtype ' oval ') subtype ' rect ") subtype' m cr')

About the Component Manager

6-5

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

The Component Manager allows a single component to serve multiple client
applications at the same time. Each client application has a unique access path to the
component. These access paths are called component connections. You identify

a component connection by specifying a component instance. The Component Manager
provides this component instance to your application when you open a connection to a
component. The component maintains separate status information for each open
connection.

For example, multiple applications might each open a connection to an image
decompression component. The Component Manager routes each application request to
the component instance for that connection. Because a component can maintain separate
storage for each connection, application requests do not interfere with each other and
each application has full access to the services provided by the component.

(See Figure 6-2 on page 6-34 for an illustration of multiple aplications using the services
of the same component.)

Using the Component Manager

6-6

This section describes how you can use the Component Manager to
= gain access to components

= locate components and take advantage of their services

= get information about a component

= close a connection to a component

The Component Manager is available in System 7.1 or later and may be present in
System 7. To determine whether the Component Manager is available, call the Gest al t
function with the gest al t Conponent Myr selector and check the value of the

r esponse parameter.

CONST
gest al t Conponent Myr = 'cpnt';

The Gest al t function returns in the r esponse parameter a 32-bit value indicating the
version of the Component Manager that is installed. Version 3 and above supports
automatic version control, the unregister request, and icon families. You should test the
version number before using any of these features.

This section presents several examples demonstrating how to use components and the
Component Manager. All of these examples use the services of a drawing component—a
simple component that draws an object of a particular shape on the screen. Drawing
components have a component type of ' dr aw . The component subtype value indicates
the type of object the component draws. For example, a drawing component that draws

Using the Component Manager



CHAPTER 6

Component Manager

an oval has a component subtype of ' oval ' . For information on creating your own
components and for listings that show the code for a drawing component, see “Creating
Components” beginning on page 6-13.

Opening Connections to Components

When your application requires the services of a component, you typically perform these
steps:

= open a connection to the desired component
= use the services of the component
= close the connection to the component

The following sections describe each of these steps in more detail.

Opening a Connection to a Default Component

Your application must use the Component Manager to gain access to a component. The
first step is to locate an appropriate component. You can locate the component yourself,
or you can allow the Component Manager to locate a suitable component for you. Your
application then opens a connection to that component. Once you have opened a
connection to a component, you can use the services provided by that component. When
you have finished using the component, you should close the connection.

If you are interested only in using a component of a particular type-subtype and you do
not need to specify any other characteristics of the component, use the

OpenDef aul t Conponent function and specify only the component type and subtype—
the Component Manager then selects a component for you and opens a connection to
that component. This is the easiest technique for opening a component connection. The
OpenDef aul t Conponent function searches its list of available components and
attempts to open a connection to a component with the specified type and subtype.

If more than one component of the specified type and subtype is available,

OpenDef aul t Conponent selects the first one in the list. If successful,

the OpenDef aul t Conponent function returns a component instance that identifies
your connection to the component. You can then use that connection to employ the
services of the selected component.

This code demonstrates the use of the OpenDef aul t Conponent function. The code
opens a connection to a component of type ' dr aw and subtype ' oval ' —a drawing
component that draws an oval.

VAR
aDr awOval Conp: Conponent | nst ance;

aDr awOval Comp : = OpenDef aul t Conponent (' draw , 'oval');

Using the Component Manager 6-7

Jabeurey Jusuodwo)d n



6-8

CHAPTER 6

Component Manager

If it cannot find or open a component of the specified type-subtype, the
OpenDef aul t Conponent function returns a function result of NI L.

To open a connection to a component with a specific type-subtype-manufacturer code or
with other specified characteristics, first use the Fi ndNext Conponent function to find
the desired component, then open the component using the OpenConponent function.
These operations are described in the next two sections.

Finding a Specific Component

If you are interested in asserting greater control over the selection of a component, you
can use the Component Manager to find a component that provides a specified service.
For example, you can use the Fi ndNext Conponent function in a loop to retrieve
information about all the components that are registered on a given computer. Each time
you call this function, the Component Manager returns information about a single
component. You can obtain a count of all the components on a given computer by calling
the Count Conponent s function. Both of these functions allow you to specify search
criteria, for example, by component type and subtype, or by manufacturer. By using
these criteria to narrow your search, you can quickly and easily find a component that
meets your needs.

You specify the search criteria for the component using a component description record.
A component description record is defined by the Conponent Descri pt i on data type.
For more information on the fields of this record, see “The Component Description
Record” beginning on page 6-37.

TYPE
Conponent Description =

RECORD
conponent Type: OSType; {type}
conponent SubType: CSType; {subt ype}
conponent Manuf acturer: OSType; {manuf act urer}
conponent Fl ags: Longl nt; {control flags}
conponent Fl agsMask: Longl nt; {mask for flags}

END;

By default, the Component Manager considers all fields of the component description
record when performing a search. Your application can override the default behavior of
which fields the Component Manager considers for a search. Specify 0 in any field of the
component description record to prevent the Component Manager from considering the
information in that field when performing the search.

Using the Component Manager



CHAPTER 6

Component Manager

Listing 6-1 shows an application-defined procedure, MFi ndVi deoConponent, that fills
out a component description record to specify the search criteria for the desired
component. The MyFi ndVi deoConponent procedure then uses the

Fi ndNext Conponent function to return the first component with the specified
characteristics—in this example, any component with the type

Vi deoDi gi ti zer Conponent Type.

Listing 6-1 Finding a component

PROCEDURE MyFi ndVi deoConponent ( VAR vi deoConpl D Component ) ;
VAR

vi deoDesc: Conponent Descri ption;
BEG N

{find a video digitizer conponent}

vi deoDesc. conponent Type : = Vi deoDi gi ti zer Conponent Type;

vi deoDesc. conmponent SubType : = OSType(O0); {any subtype}
vi deoDesc. conponent Manuf act urer: = OSType(0); {any manufacturer}
vi deoDesc. conmponent Fl ags : = O;

vi deoDesc. conmponent Fl agsMask : = 0;
vi deoConpl D : = Fi ndNext Conponent ( Conponent (0), vi deoDesc);
END;

The Fi ndNext Conponent function requires two parameters: a value that indicates
which component to begin the search with and a component description record. You can
specify 0 in the first parameter to start the search at the beginning of the component list.
Alternatively, you can specify a component identifier obtained from a previous call to

Fi ndNext Conponent .

The Fi ndNext Conponent function returns a component identifier to your
application. The returned component identifier identifies a given component to the
Component Manager. You can use this identifier to retrieve more information about the
component or to open a connection to the component. The next two sections describe
these tasks.

Opening a Connection to a Specific Component

You can open a connection to a specific component by calling the OpenConponent
function (alternatively, you can use the OpenDef aul t Conponent function, as discussed
in “Opening a Connection to a Default Component” on page 6-7). Your application must
provide a component identifier to the QpenConponent function. You get a component
identifier from the Fi ndNext Conponent function, as described in the previous section.

Using the Component Manager 6-9

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

The OpenConponent function returns a component instance that identifies your
connection to the component. Listing 6-2 shows how to use the QpenConponent
function to gain access to a specific component. The application-defined procedure
My Get Conponent uses the MyFi ndVi deoConponent procedure (defined in
Listing 6-1) to find a video digitizer component and then opens the component.

Listing 6-2 Opening a specific component

PROCEDURE My CGet Conponent
(VAR vi deoConpl nst ance: Conponent | nst ance) ;

VAR

vi deoCompl D: Conponent ;
BEG N

{first find a video digitizer conponent}

MyFi ndVi deoConponent (vi deoConpl D) ;

{now open it}

| F videoCompl D <> NIL THEN

vi deoConpl nst ance : = OpenConponent (vi deoConpl D) ;

END;

Getting Information About a Component

You can use the Get Conponent | nf o function to retrieve information about a
component, including the component name, icon, and other information. Listing 6-3
shows an application-defined procedure that retrieves information about a video
digitizer component.

Listing 6-3 Getting information about a component

PROCEDURE My Get Compl nfo (conpNane, conplnfo, conplcon: Handl e;
VAR vi deoDesc: Conponent Descri ption);

VAR
vi deoCompl D: Conponent ;
nmyErr: OSErr;
BEG N

{first find a video digitizer conponent}
MyFi ndVi deoConponent (vi deoConpl D) ;
{now get information about it}
| F videoCompl D <> NIL THEN
myErr := Get Conmponent | nf o(vi deoConpl D, vi deoDesc, conpNane,
conpl nfo, conplcon);
END;

6-10 Using the Component Manager



CHAPTER 6

Component Manager

You specify the component in the first parameter to Get Conponent | nf 0. You specify
the component using either a component identifier (obtained from

Fi ndNext Conponent or Regi st er Conponent ) or a component instance (obtained
from OpenDef aul t Conponent or OQpenConponent ).

The Get Conmponent | nf o function returns information about the component in the
second through fifth parameters of the function. The Get Conponent | nf o function
returns information about the component (such as its type, subtype, and manufacturer)
in a component description record. The function also returns the component name, icon,
and other information through handles. You must allocate these handles before calling
Get Conmponent | nf 0. (Alternatively, you can specify NI L in the conpNane, conpl nf o,
and conpl con parameters if you do not want the information returned.) The icon
returned in the conpl con parameter is a handle to a black-and-white icon. If a
component has an icon family, you can retrieve a handle to its icon suite using

Get Conponent | conSui t e.

Using a Component

Once you have established a connection to a component, you can use its services.

Each time you call a component routine, you must specify the component instance that
identifies your connection and provide any other parameters as required by the routine.

For example, Listing 6-4 illustrates the use of a drawing component. The
application-defined procedure establishes a connection to a drawing component, calls
the component’s Dr awer Set up function to establish the rectangle in which to draw the
desired object, and then draws the object using the Dr awer Dr aw function.

Listing 6-4 Using a drawing component

PROCEDURE MyDr awAnOval (VAR aDr awOval Conp: Component | nst ance) ;
VAR

r: Rect ;
result: Conponent Resul t ;
BEG N

{open a connection to a drawi ng conponent}
aDr awOval Comp : = OpenDef aul t Conponent (' draw , 'oval');
| F aDr awOval Comp <> NIL THEN
BEG N

Set Rect (r, 40, 40, 80, 80);

{set up rectangle for oval}

result := Drawer Set up(abDrawQval Conp, r);

|F result = noErr THEN

result := DrawerDraw abr awOval Conp); {draw oval }
END;
END;

Using the Component Manager 6-11

Jabeurey Jusuodwo)d n



6-12

CHAPTER 6

Component Manager

If you specify an invalid connection as a parameter to a component routine, the
Component Manager sets the function result of the component routine to
badConponent | nst ance.

Each component type supports a defined set of functions. You must refer to the
appropriate documentation for a description of the functions supported by a component.
You also need to refer to the component’s documentation for information on the
appropriate interface files that you must include to use the component (the interface files
for the drawing component are shown beginning on page 6-28). The components that
Apple provides with QuickTime are described in Inside Macintosh: QuickTime Components.
As an example, drawing components support the following functions:

FUNCTI ON Dr awer Set up( nyl nst ance: Conponent | nst ance;
VAR r: Rect): Conponent Result;
FUNCTI ON Drawer d i ck( nyl nst ance: Conponent | nst ance;
p: Point): ConponentResult;
FUNCTI ON Dr awer Mbve (nylnstance: Conponentlnstance; Xx: |nteger;
y: Integer): ConponentResult;
FUNCTI ON Dr awer Draw (nyl nst ance: Component | nst ance)
Conponent Resul t ;
FUNCTI ON Dr awer Er ase(nmyl nst ance: Comnponent | nst ance)
Conponent Resul t ;

Closing a Connection to a Component

When you finish using a component, you must close your connection to that component.
Use the O oseConponent function to close the connection. For example, this code calls
the application-defined procedure MyDr awAnOval (see Listing 6-4), which opens a
connection to a drawing component and uses that component to draw an oval. This code
closes the oval drawer component after it is finished using it.

VAR

aDr awOval Conp: Conponent | nst ance;

result: CSErr;
MyDr awAnOval (abDr awOval Comp) ; {open conponent and draw an oval}
result := DrawerErase(aDrawQval Conp); {erase the oval}

result := C oseConmponent (aDr awOval Conp); {close the conponent}

Using the Component Manager



CHAPTER 6

Component Manager

Creating Components

This section describes how to create a component and how your component interacts
with the Component Manager. This section also describes many of the routines that the
Component Manager provides to help you manage your component. If you are
developing a component, you should read the material in this section.

If you are developing an application that uses components, you may find this material
interesting, but you do not need to be familiar with it. You should read the preceding
section, “Using the Component Manager,” and then use the “Component Manager
Reference” section as needed.

This section discusses how you can

structure your component

respond to requests from the Component Manager

manage your component with the help of the Component Manager
= make your component available for use by applications

This section presents several examples demonstrating how to create components and
register them with the Component Manager. All of these examples are based on a
“drawing component”—a simple component that draws an object of a particular shape
on the screen. This section includes the code for a drawing component.

The Structure of a Component

define the functions that applications may call to request service from your component

Every component must have a single entry point that returns a value of type
Conponent Resul t (a long integer). Whenever the Component Manager receives a
request for your component, it calls your component’s entry point and passes

any parameters, along with information about the current connection, in a component
parameters record. The Component Manager also passes a handle to the global storage
(if any) associated with that instance of your component.

When your component receives a request, it should examine the parameters to
determine the nature of the request, perform the appropriate processing, set an error

code if necessary, and return an appropriate function result to the Component Manager.

Creating Components 6-13

Jabeurey Jusuodwo)d n



6-14

CHAPTER 6

Component Manager

The component parameters record is defined by a data structure of type
Conponent Par anet er s

TYPE Component Paraneters =
PACKED RECORD

fl ags: Char ; {reserved}

par anti ze: Char; {size of paraneters}

what : I nt eger; {request code}

par ans: ARRAY[ 0..0] OF Longlnt; {actual paraneters}
END;

The what field contains a value that specifies the type of request. Negative values are
reserved for definition by Apple. You can use values greater than or equal to 0 to define
other requests that are supported by your component. Follow these guidelines when
defining your request codes: request codes between 0 and 256 are reserved for definition
by components of a given type and a given type-subtype. Use request codes greater than
256 for requests that are unique to your component. For example, a certain component of
a certain type-subtype might support values 0 through 5 as requests that are supported
by all components of that type, values 128 through 140 as requests that are supported by
all components of that given type-subtype, and values 257 through 260 as requests
supported only by that component.

Table 6-1 shows the request codes defined by Apple and the actions your component
should take upon receiving them. Note that four of the request codes—open, close, can
do, and version—are required. Your component must respond to these four request
codes. These request codes are described in greater detail in “Handling Requests for
Service” beginning on page 6-18.

Table 6-1 Request codes
Action your component should
Request code perform Required
kComponent OpenSel ect Open a connection Yes
kConponent O oseSel ect Close an open connection Yes
kConmponent CanDoSel ect Determine whether your Yes
component supports a particular
request
kConmponent Ver si onSel ect Return your component’s version Yes
number
kConponent Regi st er Sel ect Determine whether your No

component can operate in the
current environment

Creating Components



CHAPTER 6

Component Manager

Table 6-1 Request codes (continued)
Action your component should
Request code perform Required
kConponent Tar get Sel ect Call another component whenever No
it would call itself (as a result of
your component being used by
another component)
kConponent Unr egi st er Sel ect Perform any operations that are No

necessary as a result of your
component being unregistered

The example drawing component (shown in Listing 6-5 on page 6-16) supports the four
required request codes, and in addition supports the request codes that are required for
all components of the type ' dr aw . All drawing components must support these request
codes:

CONST
kDr awer Set UpSel ect = 0; {set up draw ng region}
kDr awer Dr awSel ect = 1; {draw the object}
kDr awer Er aseSel ect 2; {erase the object}
kDr awer O i ckSel ect = 3; {determine if cursor is }
{ inside of the object}
kDr awer MoveSel ect = 4; {nove the object}

The par ans field of the component parameters record is an array that contains the
parameters specified by the application that called your component. You can directly
extract the parameters from this array, or you can use the Cal | Conponent Funct i on or
Cal | Conponent Funct i onW t hSt or age function to extract the parameters from this
array and pass these parameters to a subroutine of your component (see page 6-63 and
page 6-64 for more information about these functions).

Listing 6-5 shows the structure of a drawing component—a simple component that
draws an object on the screen. The component subtype of a drawing component
indicates the type of object the component draws. This particular drawing component is
of the subtype ' oval ' ; it draws oval objects.

Whenever an application calls your component, the Component Manager calls your
component’s main entry point (for example, the Oval Dr awer function). This entry point
must be the first function in the component’s code segment.

As previously described, the Component Manager passes two parameters to your
component: a component parameters record and a parameter of type Handl e.

The parameters specified by the calling application are contained in the component
parameters record. Your component can access the parameters directly from this record.
Alternatively, as shown in Listing 6-5, you can use Component Manager routines to
extract the parameters from this array and invoke a subroutine of your component. By
taking advantage of these routines, you can simplify the structure of your component
code.

Creating Components 6-15

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

The Oval Dr awer function first examines the value of the what field of the component
parameters record. The what field contains the request code. The Oval Dr awer function
performs the action specified by the request code. The Oval Dr awer function uses a
number of subroutines to carry out the desired action. It uses the Component Manager
routines Cal | Conponent Functi on and Cal | Corrponent Functi onWt hSt or age to
extract the parameters from the component parameters record and to call the specified
component’s subroutine with these parameters.

For example, when the drawing component receives the request code

kConmponent OpenSel ect, it calls the function Cal | Conponent Funct i on. It passes
the component parameters record and a pointer to the component’s Oval Cpen
subroutine as parameters to Cal | Conmponent Funct i on. This function extracts the
parameters and calls the Oval Open function. The Oval Qpen function allocates memory
for this instance of the component. Your component can allocate memory to hold global
data when it receives an open request. To do this, allocate the memory and then call the
Set Conponent | nst anceSt or age function. This function associates the allocated
memory with the current instance of your component. The next time this instance of
your component is called, the Component Manager passes a handle to your previously
allocated memory in the st or age parameter. For additional information on handling
the open request, see “Responding to the Open Request” on page 6-19.

When the drawing component receives the drawing setup request (indicated by the

kDr awer Set upSel ect constant), it calls the Component Manager function

Cal | Conponent Funct i onW t hSt or age. Like Cal | Conponent Funct i on, this
function extracts the parameters and calls the specified subroutine (Oval Set up) . The
Cal | Component Funct i onW t hSt or age function also passes as a parameter to the
subroutine a handle to the memory associated with this instance of the component. The
Oval Set up subroutine can use this memory as needed. For additional information on
handling the drawing setup request, see “Responding to Component-Specific Requests”
on page 6-26.

Listing 6-5 A drawing component for ovals

UNI T Oval s;
| NTERFACE
{include a

USES statenent if required}

FUNCTI ON Oval Drawer (parans: Conponent Paraneters;

storage: Handl e): Conponent Result;

| MPLEMENTATI ON

CONST

kOval Dr awer Ver si on

kDr awer Set UpSel ect

6-16

I
L

{version nunber of this conmponent}

I
Lo

{set up draw ng region}

Creating Components



CHAPTER 6

Component Manager

kDr awer Dr awSel ect = 1; {draw the object}
kDr awer Er aseSel ect = 2; {erase the object}
kDr awer C i ckSel ect = 3; {determine if cursor is }
{ inside of the object}
kDr awer MoveSel ect = 4; {nove the object}
TYPE
G obal sRecord =
RECORD
bounds: Rect ;
boundsRgn: RgnHandl e;
sel f: Component | nst ance;
END;
G obal sPtr = "d obal sRecor d;

A obal sHandle = ~d obal sktr;
{any subroutines used by the conponent go here}

FUNCTI ON Oval Drawer (params: Conponent Paraneters;
storage: Handl e): Conponent Result;
BEG N
{perform action corresponding to request code}
| F paranms. what < 0 THEN {handl e the required request codes}
CASE (parans.what) OF
kConmponent OpenSel ect :
Oval Drawer := Cal | Conponent Functi on(par ans,
Component Rout i ne( @val Open)) ;
kComponent C oseSel ect :
Oval Drawer := Cal | Conponent Functi onWt hSt orage(storage, parans,
Component Rout i ne( @val C ose) ) ;
kComponent CanDoSel ect :
Oval Drawer := Cal | Conponent Functi on( par ans,
Component Rout i ne( @val CanDo) ) ;
kConmponent Ver si onSel ect :

Oval Drawer := kOval Drawer Ver si on;
OTHERW SE
Oval Drawer := badConponent Sel ect or;
END {of CASE}
ELSE {handl e conponent -specific request codes}

CASE (parans.what) OF
kDr awer Set upSel ect :
Oval Drawer : = Cal | Conponent Functi onWt hSt or age
(storage, parans,
Conponent Rout i ne( @val Set up) ) ;

Creating Components 6-17

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

kDr awer Dr awSel ect :
Oval Drawer : = Cal | Conponent Functi onWt hSt or age
(storage, parans,
Conponent Rout i ne( @val Draw)) ;
kDr awer Er aseSel ect :
Oval Drawer := Call Conmponent Functi onW t hSt or age
(storage, parans,
Conponent Rout i ne( @val Erase));
kDr awer d i ckSel ect :
Oval Drawer := Cal |l Conponent Functi onWthSt orage
(storage, pararnms,
Conponent Rout i ne( @val C i ck));
kDr awer MoveSel ect :
Oval Drawer : = Cal | Conponent Functi onWt hSt or age
(storage, parans,
Conponent Rout i ne( @val MoveTo)) ;

OTHERW SE

Oval Drawer := badConponent Sel ect or;

END;, {of CASE}
END; {of Oval Drawer}

END.

6-18

The next section describes how your component should respond to the required request
codes. Following sections provide more information on

= defining your component’s interfaces
= registering your component

= how to store your component in a component resource file

Handling Requests for Service

Whenever an application requests services from your component, the Component
Manager calls your component and passes two parameters: the application’s parameters
in a component parameters record and a handle to the memory associated with the
current connection. The component parameters record also contains information
identifying the nature of the request.

There are two classes of requests: requests that are defined by the Component Manager
and requests that are defined by your component. The Component Manager defines
seven request codes: open, close, can do, version, register, unregister, and target. All
components must support open, close, can do, and version requests. The register,
unregister, and target requests are optional. Apple reserves all negative request codes for
definition by the Component Manager. You are free to assign request codes greater than
or equal to 0 to the functions supported by a component whose interface you have

Creating Components



CHAPTER 6

Component Manager

defined. (However, request codes between 0 and 256 are reserved for definition by
components of a given type and a given type-subtype. Request codes greater than 256
are available for requests that are unique to your component.)

You can refer to the standard request codes with these constants.

CONST kConponent OpenSel ect = -1; {open request}
kComponent Cl oseSel ect = -2; {close request}
kConmponent CanDoSel ect = -3; {can do request}
kConponent Ver si onSel ect = -4; {version request}
kComponent Regi st er Sel ect = -5; {register request}
kConponent Tar get Sel ect = -6; {target request}
kConponent Unr egi sterSel ect = -7; {unregister request}

The following sections discuss what your component must do when it receives these
Component Manager requests.

Responding to the Open Request

The Component Manager issues an open request to your component whenever an
application or any other client tries to open a connection to your component by calling
the OpenConponent (or OpenDef aul t Conponent ) function. The open request allows
your component to establish the environment to support the new connection. Your
component must support this request.

Your component should perform the necessary processing to establish the new
connection. At a minimum, you must allocate the memory for any global data for

the connection. Be sure to allocate this memory in the current heap zone, not in the
system heap. You should call the Set Conponent | nst anceSt or age procedure to
inform the Component Manager that you have allocated memory. The Component
Manager stores a handle to the memory and provides that handle to your component as
a parameter in subsequent requests.

You may also want to open and read data from your component’s resource file—if you
do so, use the OpenConponent ResFi | e function to open the file and be sure to close
the resource file before returning.

If your component uses the services of other components, open connections to them
when you receive the open request.

Once you have successfully set up the connection, set your component’s function result
to 0 and return to the Component Manager.

You can also refuse the connection. If you cannot successfully establish the environment
for a connection (for example, there is insufficient memory to support the connection, or
required hardware is unavailable), you can refuse the connection by setting the
component’s function result to a nonzero value. You can also use the open request as an
opportunity to restrict the number of connections your component can support.

If your application is registered globally, you should also set the A5 world for your
component in response to the open request. You can do this using the

Creating Components 6-19

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Set Conponent | nst anceA5 procedure. (See page 6-68 for information on this
procedure.)

The Component Manager sets these fields in the component parameters record that it
provides to your component on an open request:

Field descriptions

what The Component Manager sets this field to
kComponent OpenSel ect .
par ans The first entry in this array contains the component instance that

identifies the new connection.

Listing 6-6 shows the subroutine that handles the open request for the drawing
component. Note that your component can directly access the parameters from

the component parameters record, or use subroutines and the

Cal | Conponent Functi on and Cal | Conponent Functi onW t hSt or age functions
to extract the parameters for you (see Listing 6-5 on page 6-16). The code in this chapter
takes the second approach.

The Oval Qpen function allocates memory to hold global data for this instance of the
component. It calls the Set Conponent | nst anceSt or age function so that the
Component Manager can associate the allocated memory with this instance of

the component. The Component Manager passes a handle to this memory in subsequent
calls to this instance of the component.

Listing 6-6 Responding to an open request

6-20

FUNCTI ON Oval Open (sel f: Conponentlnstance): ConponentResult;
VAR
nmyd obal s: d obal sHandl e;

BEG N
{al | ocate storage}
nmyd obal s : =

d obal sHandl e( NewHand!| eCl ear (si zeof (d obal sRecord)));
IF nydobals = NIL THEN
Oval Open : = MenError
ELSE
BEG N
nyd obal s*.self := self;
nyd obal s*". boundsRgn : = NewRgn;
Set Conponent | nst anceSt or age( nyd obal s, sel f,
Handl e(nyd obal s));
{if your conponent is registered globally, set }
{ its A5 world before returning}
Oval Open : = noErr;
END;
END;

Creating Components



CHAPTER 6

Component Manager

Responding to the Close Request

The Component Manager issues a close request to your component when a client
application closes its connection to your component by calling the Cl oseConponent
function. Your component should dispose of the memory associated with the connection.
Your component must support this request. Your component should also close any files
or connections to other components that it no longer needs.

The Component Manager sets these fields in the component parameters record that it
provides to your component on a close request:

Field descriptions

what The Component Manager sets this field to
kConponent Cl oseSel ect.
par ams The first entry in this array contains the component instance that

identifies the open connection.

Listing 6-7 shows the subroutine that handles the close request for the

drawing component (as defined in Listing 6-5 on page 6-16). The Oval Cl ose

function closes the open connection. The drawing component uses the

Cal | Conponent Functi onW t hSt or age function to call the Oval Cl ose function (see
Listing 6-5). Because of this, in addition to the parameters specified in the component
parameters record, the Component Manager also passes to the Oval Cl ose function a
handle to the memory associated with the component instance.

Listing 6-7 Responding to a close request

FUNCTI ON Oval Cl ose (gl obals: d obal sHandl €;
sel f: Conponent | nstance): ConponentResult;
BEG N
| F globals <> NIL THEN
BEG N
Di sposeRgn( gl obal s**. boundsRgn) ;
Di sposeHandl| e( Handl e( gl obal s));
END;
Oval d ose : = noFErr;
END;

IMPORTANT

When responding to a close request, you should always test the handle
passed to your component against NI L because it is possible for your
close request to be called with a NI L handle in the st or age parameter.
For example, you can receive a NI L handle if your component returns a
nonzero function result in response to an open request. a

Creating Components 6-21

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Responding to the Can Do Request

The Component Manager issues a can do request to your component when an
application calls the Conmponent Funct i onl npl enent ed function to determine
whether your component supports a given request code. Your component must support
this request.

Set your component’s function result to 1 if you support the request code; otherwise, set
your function result to 0.

The Component Manager sets these fields in the component parameters record that it
provides to your component on a can do request:

Field descriptions

what The Component Manager sets this field to
kConponent CanDoSel ect .

par ans The first entry in this array contains the request code as an integer
value.

Listing 6-8 shows the subroutine that handles the can do request for the drawing
component (as defined in Listing 6-5 on page 6-16). The Oval CanDo function examines
the specified request code and compares it with the request codes that it supports. It
returns a function result of 1 if it supports the request code; otherwise, it returns 0.

Listing 6-8 Responding to the can do request

6-22

FUNCTI ON Oval CanDo (sel ector: Integer): ConponentResult;
BEG N
I F ((selector >= kComponent Ver si onSel ect) AND
(sel ector <= kDrawer MoveSel ect)) THEN

Oval CanDo : =1 {valid request}
ELSE
Oval CanDo : = 0; {invalid request}

END;

Responding to the Version Request

The Component Manager issues a version request to your component when an
application calls the Get Conponent Ver si on function to retrieve your component’s
version number. Your component must support this request.

In response to a version request, your component should return its version number as its
function result. Use the high-order 16 bits to represent the major version and the
low-order 16 bits to represent the minor version. The major version should represent the
component specification level; the minor version should represent your
implementation’s version number.

Creating Components



CHAPTER 6

Component Manager

If the Component Manager supports automatic version control (a feature available

in version 3 and above of the manager), it automatically resolves conflicts between
different versions of the same component. For more information on this feature, see the
next section, “Responding to the Register Request.”

The Component Manager sets only the what field in the component parameters record
that it provides to your component on a version request:

Field description

what The Component Manager sets this field to
kConponent Ver si onSel ect .

Listing 6-5 on page 6-16 shows how the drawing component handles the version request.
It simply returns its version number as its function result.

Responding to the Register Request

The Component Manager may issue a register request when your component is
registered. This request gives your component an opportunity to determine whether it
can operate in the current environment. For example, your component might use the
register request to verify that a specific piece of hardware is available on the computer.
This is an optional request—your component is not required to support it.

The Component Manager issues this request only if you have set the

cnpWant sRegi st er Message flag to 1 in the conponent Fl ags field of your
component’s component description record (see “Data Structures for Components”
beginning on page 6-52 for more information about the component description record).

Your component should not normally allocate memory in response to the register
request. The register request is provided so that your application can determine whether
it should be registered and made available to any clients. Once a client attempts to
connect to your component, your component receives an open request, at which time it
can allocate any required memory. Because your component might not be opened during
a particular session, following this guideline allows other applications to make use of
memory that isn’t currently needed by your component.

If you want the Component Manager to provide automatic version control (a feature
available in version 3 and above of the manager), your component can specify the
conponent DoAut oVer si on flag in the optional extension to the component resource.
If you specify this flag, the Component Manager registers your component only if there
is no later version available. If an older version is already registered, the Component
Manager unregisters it. If a newer version of the same component is registered after
yours, the Component Manager automatically unregisters your component. You can use
this automatic version control feature to make sure that the most recent version of your
component is registered, regardless of the number of versions that are installed.

Set your function result to TRUE to indicate that you do not want your component to be
registered; otherwise, set the function result to FALSE.

Creating Components 6-23

Jabeurey Jusuodwo)d n



6-24

CHAPTER 6

Component Manager

The Component Manager sets only the what field in the component parameters record
that it provides to your component on a register request:

Field description

what The Component Manager sets this field to
kConponent Regi st er Sel ect .

If you request that your component receive a register request, the Component Manager
actually sends your component a series of three requests: an open request, then the
register request, followed by a close request.

For more information about the process the Component Manager uses to register
components, see “Registering a Component” on page 6-30.

Responding to the Unregister Request

The unregister request is supported only in version 3 and above of the Component
Manager. If your component specifies the conmponent WaAnt sUnr egi st er flag in the
conmponent Regi st er Fl ags field of the optional extension to the component resource,
the Component Manager may issue an unregister request when your component is
unregistered. This request gives your component an opportunity to perform any
clean-up operations, such as resetting the hardware. This is an optional request—your
component is not required to support it.

Return any error information as your component’s function result.

The Component Manager sets only the what field in the component parameters record
that it provides to your component on an unregister request:

Field description

what The Component Manager sets this field to
kConponent Unr egi st er Sel ect.

If you have specified that your component should not receive a register request, then
your component does not receive an unregister request if it has not been opened.
However, if a client opens and closes your component, and then later the Component
Manager unregisters your component, the Component Manager does send your
component an unregister request (in a series of three requests: open, unregister, close).

If you have specified that your component should receive a register request, when your
component is registered the Component Manager sends your component a series of
three requests: an open request, then the register request, followed by a close request. In
this situation, even if your component is not opened by a client, the Component
Manager sends your component an unregister request when it unregisters your
component.

Creating Components



CHAPTER 6

Component Manager

For more information about the conponent Want sUnr egi st er flag, see “Resources”
beginning on page 6-80.

Responding to the Target Request

The Component Manager issues a target request to inform an instance of your
component that it has been targeted by another component. The component that targets
another component instance may also choose to first capture the component, but it is not
necessary to do so. Thus, a component can choose to

= capture a component and target an instance of it
= capture a component without targeting any instance of it

= target a component instance without capturing the component

To first capture another component, the capturing component calls the

Capt ur eConponent function. When a component is captured, the Component
Manager removes it from the list of available components. This makes the captured
component available only to the capturing component and to any clients currently
connected to it. Typically, a component captures another component when it wants to
override one or more functions of the other component.

After calling the Capt ur eConponent function, the capturing component can choose to
target a particular instance of the component. However, a component can capture
another component without targeting it.

A component uses the Conponent Set Tar get function to send a target request to a
specific component instance. After receiving a target request, whenever the targeted
component instance would call itself (that is, call any of its defined functions), instead it
should always call the component that targeted it.

For example, a component called NewMath might first capture a component called
OldMath. NewMath does this by using Fi ndNext Conponent to get a component
identifier for OldMath. NewMath then calls Capt ur eConponent to remove OldMath
from the list of available components. At this point, no other clients can access OldMath,
except for those clients previously connected to it.

NewMath might then call Conponent Set Tar get to target a particular component
instance of OldMath. The Conponent Set Tar get function sends a target request to the
specified component instance. When OldMath receives a target request, it saves the
component instance of the component that targeted it. When OldMath receives a request,
it processes it as usual. However, whenever OldMath calls one of its defined functions:
in its defined AP], it calls NewMath instead. (Suppose OldMath provides request codes
for these functions: DoMul t i pl y, DoAdd, DoDi vi de, and DoSubt r act . If OldMath’s
DoMul ti pl y function calls its own DoAdd function, then OldMath calls NewMath to
perform the addition.)

The target request is an optional request—your component is not required to support it.

Creating Components 6-25

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

The Component Manager sets these fields in the component parameters record that it
provides to your component on a target request:

Field descriptions

what The Component Manager sets this field to
kConponent Tar get Sel ect .
par ams The first entry in this array contains the component instance that

identifies the component issuing the target request.

Responding to Component-Specific Requests

When your component receives a component-specific request, it should handle the
request as appropriate. For example, the drawing component responds to five
component-specific requests: setup, draw, erase, click, and move to. See Listing 6-5 on
page 6-16 for the code that defines the drawing component’s entry point. The drawing
component uses Cal | Conponent Functi onW t hSt or age to extract the parameters
and call the appropriate subroutine.

Listing 6-9 shows the drawing component’s Oval Set up function. This function sets up
the data structures that must be in place before drawing the oval.

Listing 6-9 Responding to the setup request

6-26

FUNCTI ON Oval Setup (gl obal s: d obal sHandl e;
boundsRect: Rect): Conponent Result;

VAR
i gnoreErr: Conponent Resul t;
BEG N
gl obal s*”*. bounds : = boundsRect;
OpenRgn;

i gnoreErr := Oval Draw(gl obal s);
Gl oseRgn( gl obal s*". boundsRgn) ;
Oval Setup : = noErr;

END;

Listing 6-10 shows the drawing component’s Oval Dr aw function. This function draws
an oval in the previously allocated region.

Creating Components



CHAPTER 6

Component Manager

Listing 6-10 Responding to the draw request

FUNCTI ON Oval Draw (gl obal s: d obal sHandl e): Conponent Resul t;
BEG N

FrameOval (gl obal s**. bounds) ;

Oval Draw : = noErr;
END;

Listing 6-11 shows the drawing component’s Oval Er ase function. This function erases
an oval.

Listing 6-11 Responding to the erase request

FUNCTI ON Oval Erase (gl obals: d obal sHandl e): Conponent Resul t;
BEG N

Er aseOval (gl obal s**. bounds) ;

Oval Erase : = noErr;
END;

Listing 6-12 shows the drawing component’s Oval O i ck function. This function
determines whether the given point is within the oval. If so, the function returns 1;
otherwise, it returns 0. Because the Oval i ck function returns information other than
error information as its function result, Oval Cl i ck sets any error information using
Set Conponent | nst anceErr or.

Listing 6-12 Responding to the click request

FUNCTI ON Oval dick (gl obals: G obal sHandl e; p: Point)
Conponent Resul t ;
BEG N
I F PtInRgn(p, globals*". boundsRgn) THEN
Ovaldick :=1
ELSE
Ovaldick := 0;
Set Conponent | nst anceError (gl obal s**. sel f, noErr);
END;

Creating Components 6-27

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Listing 6-13 shows the drawing component’s Oval MoveTo function. This function
moves the oval’s coordinates to the specified location. Note that this function does not
erase or draw the oval; the calling application is responsible for issuing the appropriate
requests. For example, the calling application can issue requests to draw, erase, move to,
and draw—to draw the oval in one location, then erase the oval, move it to a new
location, and finally draw the oval in its new location.

Listing 6-13 Responding to the move to request

6-28

FUNCTI ON Oval MoveTo (gl obal s: d obal sHandl e; x, y: Integer)
Conponent Resul t ;

VAR
r: Rect;
BEG N
r := gl obal s®". bounds;
X :=Xx - (r.right + r.left) DV 2;
y @ = - (r.bottom+ r.top) DIV 2;

O f set Rect (gl obal s*. bounds, X, Y);
O f set Rgn( gl obal s**. boundsRgn, x, vy);
Oval MoveTo : = noErr;

END;

Reporting an Error Code

The Component Manager maintains error state information for all currently active
connections. In general, your component returns error information in its function result;
a nonzero function result indicates an error occurred, and a function result of 0 indicates
the request was successful. However, some requests require that your component return
other information as its function result. In these cases, your component can use the

Set Conponent | nst anceEr r or procedure to report its latest error state to the
Component Manager. You can also use this procedure at any time during your
component’s execution to report an error.

Defining a Component’s Interfaces

You define the interfaces supported by your component by declaring a set of functions
for use by applications. These function declarations specify the parameters that must be
provided for each request. The following code illustrates the general form of these
function declarations, using the setup request defined for the sample drawing
component as an example:

FUNCTI ON Dr awer Set up (nyl nstance: Conponentl| nstance;
VAR r: Rect): Conponent Result;

Creating Components



CHAPTER 6

Component Manager

This example declares a function that supports the setup request. The first parameter to
any component function must be a parameter that accepts a component instance. The
Component Manager uses this value to correctly route the request. The calling
application must supply a valid component instance when it calls your component. The
second and following parameters are those required by your component function. For
example, the Dr awer Set up function takes one additional parameter, a rectangle. Finally,
all component functions must return a function result of type Conponent Resul t (a
long integer).

These function declarations must also include inline code. This code identifies the

request code assigned to the function, specifies the number of bytes of parameter data
accepted by the function, and executes a trap to the Component Manager. To continue
with the Pascal example used earlier, the inline code for the Dr awer Set up function is

I NLI NE $2F3C, $0004, $0000, $7000, $A82A;

The first element of this code, $2F3C, is the opcode for a move instruction that loads the
contents of the next two elements onto the stack. The Component Manager uses these
values when it invokes your component.

The second element, $0004, defines an integer value that specifies the number of bytes
of parameter data required by the function, not including the component instance
parameter. In this case, the size of a pointer to the rectangle is specified: 4 bytes.

Note

Note that Pascal calling conventions require that Boolean and 1-byte
parameters are passed as 16-bit integer values. O

The third element, $0000, specifies the request code for this function as an integer value.
Each function supported by your component must have a unique request code. Your
component uses this request code to identify the application’s request. You may define
only request code values greater than or equal to 0; negative values are reserved for
definition by the Component Manager. Recall from the oval drawing component that the
request code for the setup request, kDr awer Set UpSel ect, has a value of 0.

The fourth element, $7000, is the opcode for an instruction that sets the DO register to 0,
which tells the Component Manager to call your component rather than to field the
request itself.

The fifth element, $A82A, is the opcode for an instruction that executes a trap to the
Component Manager.

If you are declaring functions for use by Pascal-language applications, your declarations
should take the following form:

FUNCTI ON Dr awer Set up (myl nstance: Conponent | nstance;
VAR r: Rect): ConponentResult;
I NLI NE $2F3C, $0004, $0000, $7000, $A82A;

Creating Components 6-29

Jabeurey Jusuodwo)d n



6-30

CHAPTER 6

Component Manager

If you are declaring functions for use by C-language applications, your declarations can
take the following form:

pascal Component Result Drawer Set up
(Conponent I nst ance nyl nstance, Rect *r) =
{ 0x2F3C, 0x4, 0x0, 0x7000, OxA82A} ;

Alternatively, you can define the following statement to replace the inline code:

#def i ne ConponentCall (call Num paranfi ze)
{0x2F3C, par anti ze, cal | Num 0x7000, OxA82A}

Using this statement results in the following declaration format:

pascal Component Result Drawer Set up
(Component | nst ance nyl nstance, Rect *r) =
Component Cal | (kDr awer Set UpSel ect, 4);

When a client application calls your function, the system executes the inline code, which
invokes the Component Manager. The Component Manager then formats a component
parameters record, locates the storage for the current connection, and invokes your
component. The Component Manager provides the component parameters record and a
handle to the storage of the current connection to your component as function
parameters.

Managing Components

This section discusses the Component Manager routines that help you manage your
component. It describes how to register your component and how to allow applications
to connect to your component.

Registering a Component

Applications must use the services of the Component Manager to find components that
meet their needs. Before an application can find a component, however, that component
must be registered with the Component Manager. When you register your component,
the Component Manager adds the component to its list of available components.

There are two mechanisms for registering a component with the Component Manager.
First, during startup processing, the Component Manager searches the Extensions folder
(and all of the folders within the Extensions folder) for files of type ' t hng" . If the file
contains all the information needed for registration (see “Creating a Component
Resource” on page 6-32 for more information on creating a component file),

the Component Manager automatically registers the component stored in the file.
Components registered in this manner are registered globally; that is, the component is
made available to all applications and other clients.

Creating Components



CHAPTER 6

Component Manager

Second, your application (or another application) can register your component. When
you register your component in this manner, you can specify whether the component
should be made available to all applications (global registration) or only to your
application (local registration). Your application can register a component that is in
memory or that is stored in a resource. You use the Regi st er Conponent function to
register a component that is in memory. You use the Regi st er Conponent Resour ce
function to register a component that is stored in a component resource. See “The
Component Resource” on page 6-80 for a description of the format and content of
component resources. The code in Listing 6-14 demonstrates how an application can use
the Regi st er Conponent function to register a component that is in memory.

Listing 6-14 Registering a component

VAR

cd: Component Descri pti on;

dr aw Conponent ;

W TH cd DO

BEG N {initialize the conmponent description record}
conponent Type := 'draw ;
component Subt ype : = 'oval';
conponent Manuf acturer := 'appl"';
conponent Fl ags : = O;
conmponent Fl agsivask : = 0;

END;

{regi ster the conponent}
draw : = Regi st er Conponent (cd, Conponent Routi ne( @val Drawer),
0, NIL, NIL, NL);

The code in Listing 6-14 specifies six parameters to the Regi st er Conponent

function. The first three are a component description record, a pointer to the
component’s entry point, and a value of 0 to indicate that this component should be
made available only to this application. A component that is registered locally is visible
only within the A5 world of the registering program. The last three parameters are
specified as NI L to indicate that the component doesn’t have a name, an information
string, or an icon. See page 6-57 for more information on the Regi st er Conponent
function.

When a component is registered and the cnpWant sRegi st er Message bit is not set in
the conponent FI ags field of the component description record, the Component
Manager adds the component to its list of registered components. Whenever a client
requests access to or information about a component (for example, by using

OpenDef aul t Conponent, Fi ndNext Conponent , or Get Conponent | nf 0), the
Component Manager searches its list of registered components.

Creating Components 6-31

Jabeurey Jusuodwo)d n



6-32

CHAPTER 6

Component Manager

If a component’s cnpWant sRegi st er Message bit is set, the Component Manager does
not automatically add your component to its list of registered components. Instead, it
sends your component a series of three requests: open, register, and close. If your
component returns a nonzero value as its function result in response to the register
request, your component is not added to the Component Manager’s list of registered
components. Thus, clients are not able to connect to or get information about

your component. You might choose to set the cnpWant sRegi st er Message bit if, for
example, your application requires specific hardware.

Alternatively, you can let your component be automatically registered. Your component
can then check for any specific hardware requirements upon receiving an open request.
This lets clients attempt to connect to your component and also lets them get information
about your component. However, in most cases, if your component requires specific
hardware to operate, you should set the cmpWant sRegi st er Message bit and respond
to the register request appropriately.

If your component controls a hardware resource, you should register your component
once for each hardware resource that is available (rather than registering once and
allowing multiple instances of your component). This allows clients to easily determine
how many hardware resources are available by using the Fi ndNext Conponent
function. If you register a component multiple times, be sure that you specify a unique
name for each registration.

If the feature is available, you can request that the Component Manager provide
automatic version control for your component (this feature is available only in version 3
and above of the manager). To request automatic version control, specify the
conponent DoAut oVer si on flag in the optional extension to the component resource.
If you specify this flag, the Component Manager registers your component only if there
is no later version available. If an older version is already registered, the Component
Manager unregisters it. If a newer version of the same component is registered after
yours, the Component Manager automatically unregisters your component. You can use
this automatic version control feature to make sure that the most recent version of your
component is registered, regardless of the number of versions that are installed.

Creating a Component Resource

You can create a component resource (a resource of type ' t hng' ) in a component file. A
component file is a file whose resource fork contains a component resource and other
required resources for the component. If you store your component in a component file,
either you can allow applications to use the Regi st er Conponent Resour ce function
to register your component as needed, or you can automatically register your component
at startup by storing your component file in the Extensions folder.

Creating Components



CHAPTER 6

Component Manager

A component file consists of

= a component description record that specifies the characteristics of your component
(its type, subtype, manufacturer, and control flags)

» the resource type and resource ID of your component’s code resource

= the resource type and resource ID of your component’s name string

= the resource type and resource ID of your component’s information string
= the resource type and resource ID of your component’s icon

= optional information about the component (its version number, additional flags, and
resource ID of the component’s icon family)

= the actual resources for your component’s code, name, information string, and icon

Listing 6-15 shows, in Rez format, a component resource that defines an oval drawing
component. This drawing component does not specify optional information (see
Figure 6-5 on page 6-85 for the contents of the optional extension to the component
resource). For compatibility with early versions of the Component Manager,
component resources should be locked.

Listing 6-15 Rez input for a component resource

resource 'thng' (128, |ocked) {

"draw , / *conmponent type*/

"oval ', / *conmponent subtype*/

"appl ', / *conponent nmanuf act urer*/
$00000000, / *conponent flags: 0*/
$00000000, /*reserved (conmponent flags mask): 0*/
' CODE' , / *conponent code resource type*/
128, / *conmponent code resource | D*/
"STR ', / *component name resource type*/
128, / *conponent nane resource | D*/
"STR ', /*component info resource type*/
129, /*conmponent info resource | D*/
"I CON , / *conponent icon resource type*/
128 / *conmponent icon resource |D*/

/*optional information (if any) goes here*/

}s

The component resource, and the resources that define the component’s code, name,
information string, and icon, must be in the same file. A component file must have the
file type' t hng' and reside in the Extensions folder in order to be automatically
registered by the Component Manager at startup.

Creating Components 6-33

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Establishing and Managing Connections

Your component may support one or more connections at a time. In addition, a single
application may have open connections with two or more different components at the
same time. In fact, a single application can use more than one connection to a single
component. Figure 6-2 shows two applications and two components: the first
application, SurfPaint, uses two connections to component A; the second application,
SurfWriter, uses one connection to component A and one to component B.

Figure 6-2 Supporting multiple component connections

6-34

Instance 1 of A

Storage

Component A

A5 :\lame
Last error con ;
Information
Description
Instance 2 of A Type
. Storage Subtype
SurfPaint A5 Manufacturer
Last error Flags
Refcon
Instance 3 of A Code
Storage
A5 Component B
Last error
Name
Instance 1 of B Icon
. Information
Storage o
SurfWriter e g <:> Description
Last error Type
Subtype
Manufacturer
Flags
Refcon
Code

A component can allocate separate storage for each open connection. A component can
also set the A5 world for a specific component instance and can maintain separate error
information for each instance. A component can also use a reference constant value to
maintain global data for the component.

When an application requests that the Component Manager open a connection to your
component, the Component Manager issues an open request to your component. At this
time, your component should allocate any memory it needs in order to maintain a
connection for the requesting application. Be sure to allocate this memory in the current
heap zone rather than in the system heap. As described in “Responding to the Open
Request” on page 6-19, you can use the Set Conponent | nst anceSt or age procedure
to associate the allocated memory with the component instance. Whenever the
application requests services from your component, the Component Manager supplies

Creating Components



CHAPTER 6

Component Manager

you with the handle to this memory. You can also use the open request as an opportunity
to restrict the number of connections your component can support.

To allocate global data for your component, you can maintain a reference constant for
use by your component. The Component Manager provides two routines,

Set Conponent Ref con and Get Conponent Ref con, that allow you to work with your
component’s reference constant. Note that your component has one reference constant,
regardless of the number of connections maintained by your component.

If your component uses its reference constant and is registered globally, be aware that in
certain situations the Component Manager may clone your component. This situation
occurs only when the Component Manager opens a component that is registered
globally and there’s no available space in the system heap. In this case, the Component
Manager clones your component, creating a new registration of the component in the
caller’s heap, and returns to the caller the component identifier of the cloned component,
not the component identifier of the original registration. The reference constant of the
original component is not preserved in the cloned component. Thus you need to take
extra steps to set the reference constant of the cloned component to the same value as
that of the original component.

To determine whether your component has been cloned, you can examine your
component’s A5 world using the Get Conponent | nst anceA5 function. If the returned
value of the A5 world is nonzero, your component is cloned (only components registered
globally can be cloned; if your component is registered locally it has a valid, nonzero A5
world and you don’t need to check whether it’s been cloned). If you determine that your
component is cloned, you can retrieve the original reference constant by using the

Fi ndNext Conmponent function to iterate through all registrations of your component.
You should compare the component identifier of the cloned component with the
component identifier returned by Fi ndNext Conponent . Once you find a component
with the same component description but a different component identifier, you've found
the original component. You can then use Get Conponent Ref con to get the reference
constant of the original component and then use Set Conponent Ref con to set the
reference constant of the cloned component appropriately. This technique works if a
component registers itself only once or registers itself multiple times but with a unique
name for each registration. This technique does not work if a component registers itself
multiple times using the same name.

When responding to a request from an application, your component can invoke the
services of other components. The Component Manager provides two techniques for
calling other components. First, your component can call another component using the
standard mechanisms also used by applications. The Component Manager then passes
the requests to the appropriate component, and your component receives the results of
those requests.

Second, your component can redirect a request to another component. For example, you
might want to create two similar components that provide different levels of service to
applications. Rather than completely implementing both components, you could design
one to rely on the capabilities of the other. Use the Del egat eConponent Cal | function
to pass a request on to another component.

Creating Components 6-35

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Listing 6-16 shows an example of delegating a request to another component. The
component in this example is a drawing component that draws rectangles. The

Rect angl eDr awer component handles open, close, and setup requests. It delegates all
other requests to another component. When the Rect angl eDr awer component receives
an open request, it opens the component to which it will later delegate requests, and
stores in its allocated storage the delegated component’s component instance. It then
specifies this value when it calls the Del egat eConponent Cal | function.

Listing 6-16 Delegating a request to another component

FUNCTI ON Rect angl eDr awer ( par ans: Conponent Par anet er s;
storage: Handl e): Conponent Result;

VAR
theRt n:  Conponent Routi ne;
saf e: Bool ean;

BEG N

safe : = FALSE;
CASE (parans.what) OF
kConponent OpenSel ect :
theRt n : = Conponent Rout i ne( @Rect angl eOpen) ;
kConponent Cl oseSel ect:
theRt n : = Conponent Rout i ne( @Rect angl ed ose) ;
kDr awer Set upSel ect :
theRt n : = Conponent Rout i ne( @Rect angl eSet up) ;
OTHERW SE
BEG N
safe : = TRUE
| F (storage <> NIL) THEN
Rect angl eDr awer : =
Del egat eConponent Cal |
(par ans,
Conmponent | nst ance( St or ageHd| (st or age) **. del egat el nst ance))
ELSE
Rect angl eDr awer : = badConponent Sel ect or;
END;
END; {of CASE}
I F NOT safe THEN
Rect angl eDr awer : =
Cal | Component Functi onWt hSt or age( st orage, parans, theRtn);
END;

6-36 Creating Components



CHAPTER 6

Component Manager

Component Manager Reference

This section provides information about the data structures, routines, and resources
defined by the Component Manager. This section is divided into the following topics:

» “Data Structures for Applications” describes the data structures used by applications.

= “Routines for Applications” discusses the Component Manager routines that are
available to applications that use components.

» “Data Structures for Components” describes the data structures used by components.

» “Routines for Components” describes the Component Manager routines that are used
by components.

= “Application-Defined Routine” describes how to define a component function and
supply the appropriate registration information.

= “Resources” describes the format and content of component resources.

Assembly-Language Note

You can invoke Component Manager routines by using the trap
_Conponent Di spat ch with the appropriate routine selector. The
routine selectors are listed in “Assembly-Language Summary”
beginning on page 6-98. O

Data Structures for Applications

This section describes the format and content of the data structures used by applications
that use components.

Your application can use the component description record to find components that
provide specific services or meet other selection criteria.

The Component Description Record

The component description record identifies the characteristics of a component,
including the type of services offered by the component and its manufacturer.

Applications and components use component description records in different ways.
An application that uses components specifies the selection criteria for finding a
component in a component description record. A component uses the component
description record to specify its registration information and capabilities. If you are
developing a component, see page 6-52 for information on how a component uses the
component description record.

The Conponent Descri pti on data type defines the component description record.

Component Manager Reference 6-37

Jabeurey Jusuodwo)d n



6-38

CHAPTER 6

Component Manager

TYPE Conponent Description =

RECORD
conmponent Type: CSType; {type}
conponent SubType: CSType; {subt ype}
conmponent Manuf act ur er: {manuf act urer}
GSType;
conponent Fl ags: Longl nt; {control flags}
conmponent Fl agsMask: Longl nt; {mask for control }
{ flags}
END;

Field descriptions
conponent Type

A four-character code that identifies the type of component. All
components of a particular type must support a common set of
interface routines. For example, drawing components all have a
component type of ' dr aw .

Your application can use this field to search for components of a
given type. You specify the component type in the

conmponent Type field of the component description record you
supply to the Fi ndNext Conponent or Count Conponent s
routine. A value of 0 operates as a wildcard.

conmponent SubType

A four-character code that identifies the subtype of the component.
Different subtypes of a component type may support additional
features or provide interfaces that extend beyond the standard
routines for a given component type. For example, the subtype of
drawing components indicates the type of object the component
draws. Drawing components that draw ovals have a subtype

of "oval .

Your application can use the conmponent SubType field to

perform a more specific lookup operation than is possible using
only the conponent Type field. For example, you may want your
application to use only components of a certain

component type (' dr aw ) that also have a specific entry

in the conponent SubType field (' oval ' ). By specifying
particular values for both fields in the component description
record that you supply to the Fi ndNext Conponent or

Count Conponent s routine, your application retrieves information
about only those components that meet both of these search criteria.
A value of 0 operates as a wildcard.

Component Manager Reference



CHAPTER 6

Component Manager

conmponent Manuf act ur er

conponent Fl ags

A four-character code that identifies the manufacturer of the
component. This field allows for further differentiation between
individual components. For example, components made by a
specific manufacturer may support an extended feature set.
Components provided by Apple use a manufacturer value

of "appl .

Your application can use this field to find components from a
certain manufacturer. Specify the appropriate manufacturer code in
the component Manuf act ur er field of the component description
record you supply to the Fi ndNext Conponent or

Count Conponent s routine. A value of 0 operates as a wildcard.

A 32-bit field that provides additional information about a
particular component.

The high-order 8 bits are defined by the Component Manager. You
should usually set these bits to 0.

The low-order 24 bits are specific to each component type. These
flags can be used to indicate the presence of features or capabilities
in a given component.

Your application can use these flags to further narrow the

search criteria applied by the Fi ndNext Conponent or

Count Conponent s routine. If you use the conponent Fl ags field
in a component search, you use the conponent Fl agsMask field to
indicate which flags are to be considered in the search.

conponent FI agsMask

A 32-bit field that indicates which flags in the conponent Fl ags
field are relevant to a particular component search operation.

For each flag in the conponent Fl ags field that is to be considered
as a search criterion by the Fi ndNext Conrponent or

Count Conponent s routine, your application should set the
corresponding bit in the conponent FI agsMask field to 1. The
Component Manager considers only these flags during the search.
You specify the desired flag value (either 0 or 1) in the

conponent Fl ags field.

For example, to look for a component with a specific control flag
that is set to 0, set the appropriate bit in the Conponent Fl ags field
to 0 and the same bit in the Conrponent Fl agsMask field to 1. To
look for a component with a specific control flag that is set to 1,

set the bit in the Conponent Fl ags field to 1 and the same bit in
the Conponent Fl agsMask field to 1. To ignore a flag, set the bit

in the Conponent Fl agsMask field to 0.

Component Manager Reference 6-39

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Figure 6-3 shows how the various fields interact during a search. In
the case depicted in the figure, the conponent Fl agsMask field of
a component description record supplied to a search routine
specifies that only the low-order four flags of the conponent Fl ags
field are to be examined during the search. The conponent Fl ags
fields in the component description records of components A and B
have a number of flags set. However, in this example the mask
specifies that the Component Manager examine only the low-order
4 bits, and therefore only component A meets the search criteria.

Figure 6-3 Interaction between the conponent Fl ags and conponent Fl agsMask fields
Component
Manager information Component-specific flags
( 1 A
CIT T T Ty LT T Ty LI T TTT T LI ITITTTT ] Fromcomponent
conmponent FI ags description record of

search routine—either
Fi ndNext Conponent
CLIT T T Ty LTI T T YT TTTITT) LI TTTT orcCountConponents

conponent Fl agsMask

LI T Ty LTI T T T YT T TTIT T LTI TTTT] From component

Component A's conponent Fl ags description records
of components in the

Component Manager’s

LI T T T T Y LTI TTT YT TTTTTT ) LTI TTTT registration list

Component B's conponent Fl ags

Component Identifiers and Component Instances

In general, when using Component Manager routines, your application must specify the
particular component using either a component identifier or component instance.

The Component Manager identifies each component by a component identifier. The
Component Manager identifies each instance of a component by a component instance.
Thus, when your application searches for a component with a particular type and
subtype using the Fi ndNext Conponent function, Fi ndNext Conponent returns a
component identifier that identifies the component. Similarly, your application specifies
a component identifier to the Get Conponent | nf o function to obtain information
about a component.

When you open a connection to a component, the OpenDef aul t Conponent and
OpenConponent functions return a component instance. The returned component
instance identifies that specific instance of the component. If you open the same
component again, the Component Manager returns a different component instance. So a

6-40 Component Manager Reference



CHAPTER 6

Component Manager

component has a single component identifier and can have multiple component
instances. To use a component function, your application specifies a component instance.

Although conceptually component identifiers and component instances

serve different purposes, Component Manager routines (with the exception of

Del egat eConponent Cal | ) allow you to use component identifiers and component
instances interchangeably. If you do this, you must always coerce the data type
appropriately.

A component identifier is defined by the data type Conponent :

TYPE
{conponent identifier}
Conponent = ~Conponent Recor d;
Conponent Recor d =
RECORD
data: ARRAY[O0..0] OF Longlnt;
END;

A component instance is defined by the data type Component | nst ance:

TYPE
{conponent instance}
Conponent I nst ance = ~Conponent | nst anceRecor d;
Conmponent | nst anceRecord =
RECORD
data: ARRAY[O0..0] OF Longlnt;
END;

Routines for Applications

This section discusses the Component Manager routines that are used by applications.
If you are developing an application that uses components, you should read this
section. If you are developing an application that registers components, you should also
read “Registering Components” beginning on page 6-57.

If you are developing a component, you should read this section and “Routines for
Components” beginning on page 6-56.

This section describes the routines that allow your application to
» search for components
» gain access to and release components

= get detailed information about specific components

get component error information

Component Manager Reference 6-41

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Note

Any of the routines discussed in this section that require a component
identifier also accept a component instance. Similarly, you can supply a
component identifier to any routine that requires a component instance
(except for the Del egat eConponent Cal | function). If you do this, you
must always coerce the data type appropriately. O

Finding Components

The Component Manager provides routines that allow your application to search for
components. Your application specifies the search criteria in a component description
record. (See “Data Structures for Applications” beginning on page 6-37 for information
about the component description record.) Based on the values you specify in fields of the
component description record, the Component Manager attempts to find components
that meet the needs of your application.

You can use the Count Conponent s function to determine the number of components
that match a component description. Use the Fi ndNext Conponent function to find an
individual component that matches a description.

You can use the Get Conponent Li st MbdSeed function to determine whether the list of
registered components has changed.

FindNextComponent

6-42

The Fi ndNext Conponent function returns the component identifier for the next
registered component that meets the selection criteria specified by your application. You
specify the selection criteria in a component description record.

Your application can use the component identifier returned by this function to get more
information about the component or to open the component.

FUNCTI ON Fi ndNext Conmponent (aConponent: Conponent;
| ooki ng: Conponent Descri ption)
Conponent ;

aConponent
The starting point for the search. Set this field to 0 to to start the search at
the beginning of the component list. If you are continuing a search, you
can specify a component identifier previously returned by the
Fi ndNext Conponent function. The function then searches the
remaining components.

| ooki ng A component description record. Your application specifies the criteria for
the component search in the fields of this record.

The Component Manager ignores fields in the component description
record that are set to 0. For example, if you set all the fields to 0, all
components meet the search criteria. In this case, your application can

Component Manager Reference



DESCRIPTION

SEE ALSO

CHAPTER 6

Component Manager

retrieve information about all of the components that are registered in the
system by repeatedly calling Fi ndNext Conponent and

Cet Conponent | nf o until the search is complete. Similarly, if you set all
fields to 0 except for the conponent Manuf act ur er field, the
Component Manager searches all registered components for a component
supplied by the manufacturer you specify. Note that the

Fi ndNext Conponent function does not modify the contents of the
component description record you supply. To retrieve detailed
information about a component, you need to use the

Cet Conponent | nf o function to get the component description record
for each returned component.

The Fi ndNext Conponent function returns the component identifier of a component
that meets the search criteria. Fi ndNext Conponent returns a function result of 0 when
there are no more matching components.

Use the Get Conponent | nf o function, described on page 6-48, to retrieve more
information about a component. To open a component, use the

OpenDef aul t Conponent or QpenConponent function, described on page 6-45 and
page 6-46, respectively. See page 6-37 for information on the component description
record.

See Listing 6-1 on page 6-9 for an example of searching for a specific component.

CountComponents

Your application can use the Count Conponent s function to determine the number of
registered components that meet your selection criteria. You specify the selection criteria
in a component description record. The Count Conponent s function returns the
number of components that meet those search criteria.

FUNCTI ON Count Conponents (I ooki ng: Conponent Descri ption): Longlnt;

| ooki ng A component description record. Your application specifies the criteria for
the component search in the fields of this record.

The Component Manager ignores fields in the component description
record that are set to 0. For example, if you set all the fields to 0, the
Component Manager returns the number of components registered in the
system. Similarly, if you set all fields to 0 except for the

component Manuf act ur er field, the Component Manager returns the
number of registered components supplied by the manufacturer you

specify.

Component Manager Reference 6-43

Jabeurey Jusuodwo)d n



DESCRIPTION

SEE ALSO

CHAPTER 6

Component Manager

The Count Conponent s function returns a long integer containing the number of
components that meet the specified search criteria.

See page 6-37 for information on the component description record.

GetComponentListModSeed

DESCRIPTION

The Get Conponent Li st ModSeed function allows you to determine if the list of
registered components has changed. This function returns the value of the component
registration seed number. By comparing this value to values previously returned by the
this function, you can determine whether the list has changed. Your application may
use this information to rebuild its internal component lists or to trigger other activity
that is necessary whenever new components are available.

FUNCTI ON Get Conponent Li st ModSeed: Longlnt;

The Get Conponent Li st ModSeed function returns a long integer containing the
component registration seed number. Each time the Component Manager registers or
unregisters a component it generates a new, unique seed number.

Opening and Closing Components

6-44

The OpenDef aul t Conponent, QpenConponent, and Cl oseConponent functions
allow your application to gain access to and release components. Your application must
open a component before it can use the services provided by that component. Similarly,
your application must close the component when it is finished using the component.

You can use the OpenDef aul t Conponent function to open a component of a specified
component type and subtype. You do not have to supply a component description
record or call the Fi ndNext Conponent function to use this function.

You use the OpenConponent function to gain access to a specified component. To use
this function, your application must have previously obtained a component identifier for
the desired component by using the Fi ndNext Conponent function. (If your application
registers a component, it can also obtain a component identifier from the

Regi st er Conponent or Regi st er Conponent Resour ce function.)

Once you are finished using a component, use the Cl oseConponent function to release
the component.

Component Manager Reference



CHAPTER 6

Component Manager

OpenDefaultComponent

DESCRIPTION

The OpenDef aul t Conponent function allows your application to gain access to the
services provided by a component. Your application must open a component before it
can call any component functions. You specify the component type and subtype values
of the component to open. The Component Manager searches for a component that
meets those criteria. If you want to exert more control over the selection process, you can
use the Fi ndNext Conponent and QpenConponent functions.

FUNCTI ON OpenDef aul t Component (conponent Type: OSType;
conponent SubType: OSType)
Conponent | nst ance,;

conponent Type
A four-character code that identifies the type of component. All
components of a particular type support a common set of interface
routines. Your application uses this field to search for components of a
given type.

conponent SubType
A four-character code that identifies the subtype of the component.
Different subtypes of a component type may support additional features
or provide interfaces that extend beyond the standard routines for a
given component type. For example, the subtype of an image compressor
component indicates the compression algorithm employed by the
COMpressor.
Your application can use the conponent SubType field to perform a
more specific lookup operation than is possible using only the
conponent Type field. For example, you may want your application to
use only components of a certain component type (' dr aw ) that also
have a specific subtype (' oval ' ). Set this parameter to 0 to select a
component with any subtype value.

The OpenDef aul t Conponent function searches its list of registered components for a
component that meets the search criteria. If it finds a component that matches the search
criteria, OQpenDef aul t Conponent opens a connection to the component and returns a
component instance. The returned component instance identifies your application’s
connection to the component. You must supply this component instance whenever you
call the functions provided by the component. When you close the component, you must
also supply this component instance to the Cl oseConponent function.

If more than one component in the list of registered components meets the search
criteria, OpenDef aul t Conponent opens the first one that it finds in its list.

If it cannot open the specfied component, the QpenDef aul t Conponent function
returns a function result of NI L.

Component Manager Reference 6-45

Jabeurey Jusuodwo)d n



SEE ALSO

CHAPTER 6

Component Manager

For an example that opens a component using the OQpenDef aul t Conponent function,
see “Opening a Connection to a Default Component” beginning on page 6-7.

OpenComponent

DESCRIPTION

SEE ALSO

6-46

The QpenConponent function allows your application to gain access to the services
provided by a component. Your application must open a component before it can call
any component functions. You specify the component with a component identifier that
your application previously obtained from the Fi ndNext Conponent function.

Alternatively, you can use the OpenDef aul t Conponent function, as previously
described, to open a component without calling the Fi ndNext Conponent function.

Note that your application may maintain several connections to a single component, or it
may have connections to several components at the same time.

FUNCTI ON OpenConponent (aConponent: Conponent): Component | nstance;

aConponent
A component identifier that specifies the component to open. Your
application obtains this identifier from the Fi ndNext Conponent
function. If your application registers a component, it can also obtain a
component identifier from the Regi st er Conponent or
Regi st er Conponent Resour ce function.

The OpenConponent function returns a component instance. The returned component
instance identifies your application’s connection to the component. You must supply this
component instance whenever you call the functions provided by the component. When
you close the component, you must also supply this component instance to the

G oseConponent function.

If it cannot open the specfied component, the QpenConponent function returns a
function result of NI L.

For examples of opening a specific component by using the Fi ndNext Conponent and
OpenConponent functions, see Listing 6-1 on page 6-9 and Listing 6-2 on page 6-10,
respectively. For a description of the Fi ndNext Conponent function, see page 6-42.

Component Manager Reference



CHAPTER 6

Component Manager

CloseComponent

DESCRIPTION

RESULT CODES

SEE ALSO

The O oseConponent function terminates your application’s access to the services
provided by a component. Your application specifies the connection to be closed with the
component instance returned by the QpenConponent or QpenDef aul t Conponent
function.

FUNCTI ON Cl oseConponent
(aComponent | nst ance: Conponent | nstance): OSErr;

aConponent | nst ance
A component instance that specifies the connection to close. Your
application obtains the component instance from the OpenConponent
function or the OpenDef aul t Conponent function.

The O oseConponent function closes only a single connection. If your application has
several connections to a single component, you must call the Cl oseConponent function
once for each connection.

noErr 0 No error
i nval i dComponent | D -3000  No component with this component identifier

For a description of the OpenDef aul t Conponent and OpenConponent functions, see
page 6-45 and page 6-46, respectively.

Getting Information About Components

Your application can get the registration information for any component using the
Get Conponent | nf o function. You can use the Get Conponent | conSui t e function to
get a handle to the component’s icon suite, if any.

In addition, for components to which your application already has a connection, your
application can obtain the component’s version number and also determine whether the
component supports a particular request by using the Get Conponent Ver si on and
Conponent Funct i onl npl enent ed functions.

Component Manager Reference 6-47

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

GetComponentInfo

6-48

The Get Conponent | nf o function returns all of the registration information for a
component. Your application specifies the component with a component identifier
returned by the Fi ndNext Conponent function. The Get Conponent | nf o function
returns information about the component in a component description record. The

Cet Conponent | nf o function also returns the component’s name, information string,
and icon. (To get a handle to the component’s icon suite, if it provides one, use the

Get Conponent | conSui t e function.)

A component provides this registration information when it is registered with the
Component Manager.

FUNCTI ON CGet Conponent I nf o (aComnponent : Conponent ;
VAR cd: Conponent Descri pti on;
conponent Narme: Handl e;
conponent I nfo: Handl e;
conponent | con: Handle): OSErr;

aConponent
A component identifier that specifies the component for the operation.
Your application obtains a component identifier from the
Fi ndNext Conponent function. If your application registers a
component, it can also obtain a component identifier from the
Regi st er Conponent or Regi st er Conponent Resour ce function.

You may supply a component instance rather than a component identifier
to this function. (If you do so, you must coerce the data type

appropriately.) Your application can obtain a component instance from
the OpenConponent function or the OpenDef aul t Conponent function.

cd A component description record. The Get Conponent | nf o function
returns information about the specified component in a component
description record.

conponent Nane
An existing handle that is to receive the component’s name. If the
component does not have a name, the Get Conponent | nf o function
returns an empty handle. Set this field to NI L if you do not want to
receive the component’s name.

conponent I nfo
An existing handle that is to receive the component’s information string.
If the component does not have an information string, the
Cet Conponent | nf o function returns an empty handle. Set this field to
NI L if you do not want to receive the component’s information string.

conponent | con
An existing handle that is to receive the component’s icon. If the
component does not have an icon, the Get Conponent | nf o function
returns an empty handle. Set this field to NI L if you do not want to
receive the component’s icon.

Component Manager Reference



DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 6

Component Manager

The Get Conponent | nf o function returns information about the specified component
in the cd, conponent Nane, conponent | nf o, and conponent | con parameters.

noErr 0 No error
i nval i dComponent | D -3000  No component with this component identifier

For information on the component description record, see page 6-37. For information on
the Fi ndNext Conponent function, see page 6-42. For information on registering
components, see “Registering Components” beginning on page 6-57.

For an example of the use of the Get Conponent | nf o function, see Listing 6-3 on
page 6-10.

GetComponentIconSuite

DESCRIPTION

The Get Conponent | conSui t e function returns a handle to the component’s icon suite
(if it provides one).

FUNCTI ON Get Conponent | conSui t e (aConponent: Conponent;
VAR iconSuite: Handle): OSErr;

aConponent
A component identifier that specifies the component for the operation.
Your application obtains a component identifier from the
Fi ndNext Conponent function. If your application registers a
component, it can also obtain a component identifier from the
Regi st er Conponent or Regi st er Conponent Resour ce function.

iconSuite GetConponent!|conSuit e returns, in this parameter, a handle to the
component’s icon suite, if any. If the component has not provided an icon
suite, Get Conponent | conSui t e returns NI L in this parameter.

The Get Conponent | conSui t e function returns a handle to the component’s icon
suite. A component provides to the Component Manager the resource ID of its icon
family in the optional extensions to the component resource. Your application is
responsible for disposing of the returned icon suite handle.

Component Manager Reference 6-49

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

SPECIAL CONSIDERATIONS

The Get Conponent | conSui t e function is available only in version 3 of the
Component Manager.

RESULT CODES

noErr 0 No error
i nval i dComponent | D -3000  No component with this component identifier

SEE ALSO

For information about icon suites and icon families, see the chapter “Icon Utilities” in
this book.

GetComponentVersion

The Get Conmponent Ver si on function returns a component’s version number.
FUNCTI ON Get Conponent Ver si on (ci: Conponentlnstance): Longlnt;

Ci The component instance from which you want to retrieve version
information. Your application obtains the component instance from the
OpenDef aul t Conponent or QpenConponent function.

DESCRIPTION

The Get Conponent Ver si on function returns a long integer containing the version
number of the component you specify. The high-order 16 bits represent the major
version, and the low-order 16 bits represent the minor version. The major version
specifies the component specification level; the minor version specifies a particular
implementation’s version number.

ComponentFunctionlmplemented

The Conponent Funct i onl npl ermrent ed function allows you to determine whether a
component supports a specified request. Your application can use this function to
determine a component’s capabilities.

FUNCTI ON Component Functi onl npl enented (ci: Component | nst ance;
ft nNunber: | nteger)
Longl nt;

6-50 Component Manager Reference



DESCRIPTION

CHAPTER 6

Component Manager

Ci A component instance that specifies the connection for this operation.
Your application obtains the component instance from the
OpenDef aul t Conponent or QpenConponent function.

ftnNunmber A request code value. See Inside Macintosh: QuickTime Components for
information about the request codes supported by the components
supplied by Apple with QuickTime. For other components, see the
documentation supplied with the component for request code values.

The Conponent Funct i onl npl ermrent ed function returns a long integer indicating
whether the component supports the specified request. You can interpret this long
integer as if it were a Boolean value. If the returned value is TRUE, the component
supports the specified request. If the returned value is FALSE, the component does
not support the request.

Retrieving Component Errors

The Component Manager provides a routine that allows your application to retrieve the
last error code that was generated by a component instance. Some component routines
return error information as their function result. Other component routines set an error
code that your application can retrieve using the Get Conponent | nst anceEr r or
function. Refer to the documentation supplied with the component for information on
how that particular component handles errors.

GetComponentInstanceError

DESCRIPTION

The Get Conponent | nst anceEr r or function returns the last error generated by a
specific connection to a component.

FUNCTI ON Get Conponent | nst anceEr r or
(aComponent | nst ance: Conponent | nstance): OSErr;

aConponent | nst ance
A component instance that specifies the connection from which you want
error information. Your application obtains the component instance from
the OpenDef aul t Conponent or OpenConponent function.

Once you have retrieved an error code, the Component Manager clears the error code for
the connection. If you want to retain that error value, you should save it in your
application’s local storage.

Component Manager Reference 6-51

Jabeurey Jusuodwo)d n



RESULT CODES

6-52

CHAPTER 6

Component Manager

noErr 0 No error
i nval i dConponent | D -3000  No component with this component identifier

Data Structures for Components

This section describes the format and content of the data structures used by components.

Components, and applications that register components, use the component description
record to identify a component. A component resource incorporates the information in a
component description record and also includes other information. If you are developing
a component or an application that registers components, you must be familiar with
both the component description record and component resource; see “Resources”
beginning on page 6-80 for a description of the component resource.

The Component Manager passes information about a request to your component in a
component parameters record.

The Component Description Record

The component description record identifies the characteristics of a component,
including the type of services offered by the component and the manufacturer of the
component.

Components use component description records to identify themselves to

the Component Manager. If your component is stored in a component resource, the
information in the component description record must be part of that resource (see the
description of the component resource, on page 6-80). If you have developed an
application that registers your component, that application must supply a component
description record to the Regi st er Conponent function (see “Registering
Components” on page 6-57 for information about registering components).

The Conponent Descri pti on data type defines the component description record.
Note that the valid values of fields in the component description record are determined
by the component type specification. For example, all image compressor components
must use the conponent SubType field to specify the compression algorithm used by
the compressor.

TYPE Conponent Description =

RECORD
conponent Type: CSType; {type}
component SubType: CSType; {subt ype}
conponent Manuf act urer: {manuf acturer}

GSType;

component Fl ags: Longl nt ; {control flags}
conponent Fl agsivask: Longl nt; {reserved}

END;

Component Manager Reference



CHAPTER 6

Component Manager

Field descriptions
conponent Type

A four-character code that identifies the type of component. All
components of a particular type must support a common set of
interface routines. For example, drawing components all have a
component type of ' dr aw .

Your component must support all of the standard routines for the
component type specified by this field. Type codes with all
lowercase characters are reserved for definition by Apple. See Inside
Macintosh: QuickTime Components for information about the
QuickTime components supplied by Apple. You can define your
own component type code as long as you register it with Apple’s
Component Registry Group.

component SubType

A four-character code that identifies the subtype of the component.
Different subtypes of a component type may support additional
features or provide interfaces that extend beyond the standard
routines for a given component. For example, the subtype of a
drawing component indicates the type of object the component
draws. Drawing components that draw ovals have a subtype of
"oval .

Your component may use this field to indicate more specific
information about the capabilities of the component. There are no
restrictions on the content you assign to this field. If no additional
information is appropriate for your component type, you may set
the conponent SubType field to 0.

conponent Manuf act ur er

component Fl ags

Component Manager Reference

A four-character code that identifies the manufacturer of the
component. This field allows for further differentiation between
individual components. For example, components made by a
specific manufacturer may support an extended feature set.
Components provided by Apple use a manufacturer value of
"appl .

Your component uses this field to indicate the manufacturer of the
component. You obtain your manufacturer code, which can be the
same as your application signature, from Apple’s Component
Registry Group.

A 32-bit field that provides additional information about a
particular component.

The high-order 8 bits are reserved for definition by the Component
Manager and provide information about the component. The
following bits are currently defined:

CONST
cnmpWant sRegi st er Message = $80000000;
cnpFast Di spat ch = $40000000;

6-53

Jabeurey Jusuodwo)d n



6-54

CHAPTER 6

Component Manager

The setting of the cnpWant sRegi st er Message bit determines
whether the Component Manager calls this component during
registration. Set this bit to 1 if your component should be called
when it is registered; otherwise, set this bit to 0. If you want to
automatically dispatch requests to your component to the
appropriate routine that handles the request (rather than your
component calling Cal | Conponent Functi on or

Cal | Conponent Functi onW t hSt or age), set the

cnpFast Di spat ch bit. If you set this bit, you must write your
component’s entry point in assembly language. If you set this

bit, the Component Manager calls your component’s entry point
with the call’s parameters, the handle to that instance’s storage, and
the caller’s return address already on the stack. The Component
Manager passes the request code in register D0 and passes the stack
location of the instance’s storage in register A0. Your component can
then use the request code in register DO to directly dispatch the
request itself (for example, by using this value as an index into a
table of function addresses). Be sure to note that the standard
request codes have negative values. Also note that the function
parameter that the caller uses to specify the component instance
instead contains a handle to the instance’s storage. When the
component function completes, control returns to the calling
application.

For more information about component registration and
initialization, see “Responding to the Register Request” on

page 6-23.

The low-order 24 bits are specific to each component type. You can
use these flags to indicate any special capabilities or features of your
component. Your component may use all 24 bits, as appropriate to
its component type. You must set all unused bits to 0.

conponent FI agsMask

Reserved. (However, note that applications can use this field when
performing search operations, as described on page 6-39.)

Your component must set the conponent Fl agsMask field in its
component description record to 0.

The Component Parameters Record

The Component Manager uses the component parameters record to pass information to

your component about a request from an application. The information in this record

completely defines the request. Your component services the request as appropriate.

Component Manager Reference



CHAPTER 6

Component Manager

The Conponent Par anet er s data type defines the component parameters record.

Conponent Par aneters =
PACKED RECORD

fl ags: Char ; {reserved}

par anti ze: Char; {size of paraneters}

what : I nt eger; {request code}

par ans: ARRAY[ 0..0] OF Longlnt; {actual paraneters}
END;

Field descriptions
flags
par antsi ze

what

par ams

Reserved for use by Apple.

Specifies the number of bytes of parameter data for this request. The
actual parameters are stored in the par ans field.

Specifies the type of request. Component designers define the
meaning of positive values and assign them to requests that are
supported by components of a given type. Negative values are
reserved for definition by Apple. Apple has defined these request
codes:

CONST
kConmponent OpenSel ect = -1; {required}
kComponent Cl oseSel ect = -2; {required}
kConmponent CanDoSel ect = -3; {required}
kConponent Ver si onSel ect = -4; {required}
kComponent Regi st er Sel ect = -5; {optional}
kConponent Tar get Sel ect = -6; {optional}
kConponent Unr egi sterSel ect = -7; {optional}

An array that contains the parameters specified by the
application that called your component.

You can use the Cal | Corponent Functi on or

Cal | Conponent Funct i onW t hSt or age routine to convert this
array into a Pascal-style invocation of a subroutine in your
component.

For information on how your component responds to requests, see “Handling Requests
for Service” beginning on page 6-18.

Component Manager Reference 6-55

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Routines for Components

6-56

This section describes the Component Manager routines that are used by components. It
also discusses routines a component or application can use to register a component. This
section first describes the routines for registering components then describes the routines
that allow your component to

» extract the parameters from a component parameters record and invoke a subroutine
of your component with these parameters

= manage open connections
= associate storage with a specific connection

= pass error information to the Component Manager for later use by the calling
application

= store and retrieve your component’s reference constant
= open and close its resource file

= call other components

= capture other components

= target a component instance

Note that version 3 and above of the Component Manager supports automatic version
control, the unregister request, and icon families. You should test the version number
before using any of these features. You can use the Gest al t function with the

gest al t Conponent Myr selector to do this. When you specify this selector, Gest al t
returns in the r esponse parameter a 32-bit value indicating the version of the
Component Manager that is installed.

If you are developing an application that uses components but does not register them,
you do not have to read this material, though it may be interesting to you. For a
discussion of the Component Manager routines that support applications that use
components, see “Routines for Applications” beginning on page 6-41.

If you are developing an application that registers components, you should read the next
section, “Registering Components.” You may also find the other topics in this section
interesting.

If you are developing a component, you should read this entire section. For more
information about creating components, see “Creating Components” beginning on
page 6-13.

Several of the routines discussed in this section use the component parameters record.
For a complete description of that structure, see “Data Structures for Components”
beginning on page 6-52. For information on the distinction between component
identifiers and component instances, see page 6-40.

Component Manager Reference



CHAPTER 6

Component Manager

Note

Any of the routines discussed in this section that require a component
identifier also accept a component instance. Similarly, you can supply a
component identifier to any routine that requires a component instance
(except for the Del egat eConponent Cal | function). If you do this, you
must always coerce the data type appropriately. For more information,
see “Component Identifiers and Component Instances” on page 6-40. O

Registering Components

Before a component can be used by an application, the component must be registered
with the Component Manager. The Component Manager automatically registers
component resources stored in files with file types of ' t hng' that are stored in the
Extensions folder (for information about the content of component resources, see
“Resources” beginning on page 6-80).

Alternatively, you can use either the Regi st er Conponent function or the
Regi st er Conmponent Resour ce function to register components. Both applications
and components can use these routines to register components.

Furthermore, you can use the Regi st er Conponent Resour ceFi | e function to register
all components specified in a given resource file.

Once you have registered your component, applications can find the component and
retrieve information about it using the Component Manager routines described earlier in
this chapter in “Routines for Applications” beginning on page 6-41.

Finally, you can use the Unr egi st er Conponent function to remove a component from
the registration list.

Note

When an application quits, the Component Manager automatically
closes any component connections to that application. In addition, if the
application has registered components that reside in its heap space, the
Component Manager automatically unregisters those components. O

RegisterComponent

The Regi st er Conponent function makes a component available for use by
applications (or other clients). Once the Component Manager has registered a
component, applications can find and open the component using the standard
Component Manager routines. To register a component, you provide information
identifying the component and its capabilities. The Component Manager returns a
component identifier that uniquely identifies the component to the system.

Component Manager Reference 6-57

Jabeurey Jusuodwo)d n



6-58

CHAPTER 6

Component Manager

Components you register with the Regi st er Conponent function must be in memory
when you call this function. If you want to register a component that is stored in the
resource fork of a file, use the Regi st er Conponent Resour ce function. Use the

Regi st er Conponent Resour ceFi | e function to register all components in the
resource fork of a file.

Note that a component residing in your application heap remains registered until your
application unregisters it or quits. A component residing in the system heap and
registered by your application remains registered until your application unregisters it or
until the computer is shut down.

FUNCTI ON Regi st er Conponent (cd: Conponent Descri pti on;
conmponent Ent r yPoi nt : Conponent Rout i ne;
gl obal : | nteger;
conmponent Nanme: Handl e;
conponent I nfo: Handl e;
conponent | con: Handl e): Conponent;

cd A component description record that describes the component to be
registered. You must correctly fill in the fields of this record before calling
the Regi st er Conponent function. When applications search for
components using the Fi ndNext Conponent function, the Component
Manager compares the attributes you specify here with those specified by
the application. If the attributes match, the Component Manager returns
the component identifier to the application.

conponent Ent r yPoi nt
The address of the main entry point of the component you are
registering. The routine referred to by this parameter receives all requests
for the component.

gl obal A set of flags that control the scope of component registration. You can
use these flags to specify a value for the gl obal parameter:

regi st er Crpd obal = 1;
Specify this flag to indicate that this component should be
made available to other applications and clients as well as
the one performing the registration. If you do not specify
this flag, the component is available for use only by the
registering application or component (that is, the
component is local to the A5 world of the registering
program).

regi st er CrpNoDupl i cates = 2;
Specify this flag to indicate that if a component with
identical characteristics to the one being registered already
exists, then the new one should not be registered
(Regi st er Conponent returns 0 in this situation). If you
do not specify this flag, the component is registered even if
a component with identical characteristics to the one being
registered already exists.

Component Manager Reference



DESCRIPTION

SEE ALSO

CHAPTER 6

Component Manager

regi ster ConpAfter = 4,
Specify this flag to indicate that this component should be
registered after all other components with the same
component type. Usually components are registered before
others with identical descriptions; specifying this flag
overrides that behavior.

conmponent Name
Ahandle to the component’s name. Set this parameter to NI L if you do
not want to assign a name to the component.

component I nfo
A handle to the component’s information string. Set this parameter to
NI L if you do not want to assign an information string to the component.

conponent | con
A handle to the component’s icon (a 32-by-32 pixel black-and-white icon).
Set this parameter to NI L if you do not want to supply an icon for this
component. Note that this icon is not used by the Finder; you supply an
icon only so that other components or applications can display your
component’s icon if needed.

The Regi st er Conponent function registers the specified component, recording the
information specified in the cd, conponent Nane, conponent | nf o, and

conponent | con parameters. The function returns the component identifier assigned to
the component by the Component Manager. If it cannot register the component, the
Regi st er Conponent function returns a function result of NI L.

For a complete description of the component description record, see “Data Structures for
Components” beginning on page 6-52.

RegisterComponentResource

The Regi st er Conponent Resour ce function makes a component available for use by
applications (or other clients). Once the Component Manager has registered a
component, applications can find and open the component using the standard
Component Manager routines. You provide information identifying the component and
specifying its capabilities. The Component Manager returns a component identifier that
uniquely identifies the component to the system.

Components you register with the Regi st er Conponent Resour ce function must be
stored in a resource file as a component resource (see “The Component Resource”
beginning on page 6-80 for a description of the format and content of component
resources). If you want to register a component that is in memory, use the

Regi st er Conponent function.

Component Manager Reference 6-59

Jabeurey Jusuodwo)d n



DESCRIPTION

6-60

CHAPTER 6

Component Manager

The Regi st er Conponent Resour ce function does not actually load the code specified
by the component resource into memory. Rather, the Component Manager loads the
component code the first time an application opens the component. If the code is not in
the same file as the component resource or if the Component Manager cannot find the
file, the open request fails.

Note that a component registered locally by your application remains registered until
your application unregisters it or quits. A component registered globally by your
application remains registered until your application unregisters it or until the computer
is shut down.

FUNCTI ON Regi st er Conponent Resource (cr: Conponent Resour ceHandl e;
gl obal : Integer): Component;

cr Ahandle to a component resource that describes the component to be
registered. The component resource contains all the information required
to register the component.

gl obal A set of flags that controls the scope of component registration. You can
use these flags to specify a value for the gl obal parameter:

regi ster Cpd obal = 1;
Specify this flag to indicate that this component should be
made available to other applications and clients as well as
the one performing the registration. If you do not specify
this flag, the component is available for use only by the
registering application or component (that is, the
component is local to the A5 world of the registering
program).

regi st er CrpNoDupl i cates = 2;
Specify this flag to indicate that if a component with
identical characteristics to the one being registered already
exists, then the new one should not be registered
(Regi st er Conponent Resour ce returns 0 in this
situation). If you do not specify this flag, the component is
registered even if a component with identical
characteristics to the one being registered already exists.

regi ster ConpAfter = 4,
Specify this flag to indicate that this component should be
registered after all other components with the same
component type. Usually components are registered before
others with identical descriptions; specifying this flag
overrides that behavior.

The Regi st er Conponent Resour ce function returns the component
identifier assigned to the component by the Component Manager. If the

Regi st er Conponent Resour ce function could not register the component, it
returns a function result of NI L.

Component Manager Reference



SEE ALSO

CHAPTER 6

Component Manager

For a description of the format and content of component resources, see “Resources”
beginning on page 6-80.

RegisterComponentResourceFile

DESCRIPTION

The Regi st er Conponent Resour ceFi | e function registers all component resources
in the given resource file according to the flags specified in the gl obal parameter.

FUNCTI ON Regi st er Conponent ResourceFil e (resRef Num i nteger;
gl obal : integer): Longlnt;

resRef Num The reference number of the resource file containing the components to
register.

gl obal A set of flags that control the scope of the registration of the components
in the resource file specified in the r esRef Numparameter. You can use
these flags to specify a value for the gl obal parameter:

regi st er Cpd obal = 1;
Specify this flag to indicate that each component in the
resource file should be made available to other applications
and clients as well as the one performing the registration. If
you do not specify this flag, each component is available
for use only by the registering application or component
(that is, the component is local to the A5 world of the
registering program).

regi st er CrpNoDupl i cates = 2;
Specify this flag to indicate that if a component with
identical characteristics to the one being registered already
exists, then the new one should not be registered
(Regi st er Conponent Resour ceFi | e returns 0 in this
situation). If you do not specify this flag, the component is
registered even if a component with identical
characteristics to the one being registered already exists.
regi ster ConpAfter = 4,
Specify this flag to indicate that as
Regi st er Conponent Resour ceFi | e registers a
component, it should register the component after all
other components with the same component type. Usually
components are registered before others with identical
descriptions; specifying this flag overrides that behavior.

The Regi st er Conponent Resour ceFi | e function registers components in a resource
file. If the Regi st er Conponent Resour ceFi | e function successfully registers all
components in the specified resource file, Regi st er Conponent Resour ceFi | e returns

Component Manager Reference 6-61

Jabeurey Jusuodwo)d n



SEE ALSO

CHAPTER 6

Component Manager

a function result that indicates the number of components registered. If the

Regi st er Component Resour ceFi | e function could not register one or more of the
components in the resource file or if the specified file reference number is invalid, it
returns a negative function result.

For a description of the format and content of component resources, see “Resources”
beginning on page 6-80.

UnregisterComponent

DESCRIPTION

RESULT CODES

SEE ALSO

6-62

The Unr egi st er Conponent function removes a component from the Component
Manager’s registration list. Most components are registered at startup and remain
registered until the computer is shut down. However, you may want to provide some
services temporarily. In that case you dispose of the component that provides the
temporary service by using this function.

FUNCTI ON Unr egi st er Conponent (aConponent: Conponent): OSErr;

aConponent
A component identifier that specifies the component to be removed.
Applications that register components may obtain this identifier from the
Regi st er Conponent or Regi st er Conponent Resour ce functions.

The Unr egi st er Conponent function removes the component with the specified
component identifier from the list of available components. The component to be
removed from the registration list must not be in use by any applications or components.
If there are open connections to the component, the Unr egi st er Conponent function
returns a negative result code.

nokErr 0 No error
i nval i dConponent | D -3000 No component with this component identifier
val i dl nst ancesExi st -3001  This component has open connections

If you provide a component that supports the unregister request, see “Responding to the
Register Request” on page 6-23 for more information.

Component Manager Reference



CHAPTER 6

Component Manager

Dispatching to Component Routines

This section discusses routines that simplify the process of calling subroutines within
your component.

When an application requests service from your component, your component receives

a component parameters record containing the information for that request. That
component parameters record contains the parameters that the application provided
when it called your component. Your component can use this record to access the
parameters directly. Alternatively, you can use the routines described in this section to
extract those parameters and pass them to a subroutine of your component. By taking
advantage of these routines, you can simplify the structure of your component code. For
more information about the interface between the Component Manager and your
component, see “Creating Components” beginning on page 6-13.

Use the Cal | Conponent Funct i on function to call a component subroutine

without providing it access to global data for that connection. Use the

Cal | Conponent Funct i onW t hSt or age function to call a component subroutine and
to pass it a handle to the memory that stores the global data for that connection.

CallComponentFunction

DESCRIPTION

The Cal | Conponent Funct i on function invokes a specified function of your
component with the parameters originally provided by the application that called
your component. You pass these parameters by specifying the same component
parameters record passed to your component’s main entry point.

FUNCTI ON Cal | Conponent Functi on (parans: Conponent Paraneters;
func: Component Function): Longlnt;

par ans The component parameters record that your component received from
the Component Manager.

func The address of the function that is to handle the request. The Component
Manager calls the routine referred to by the f unc parameter as a Pascal
function with the parameters that were originally provided by the
application. The routine referred to by this parameter must return a
function result of type Conponent Resul t (a long integer) indicating the
success or failure of the operation.

Cal | Component Funct i on returns the value that is returned by the routine referred to
by the f unc parameter. Your component should use this value to set the current error for
this connection.

Component Manager Reference 6-63

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

SPECIAL CONSIDERATIONS

SEE ALSO

If your component subroutine does not need global data, your component should use
Cal | Conponent Funct i on. If your component subroutine requires memory in which
to store global data for the component, your component must use

Cal | Conponent Functi onW t hSt or age, which is described next.

For an example that uses Cal | Conponent Funct i on, see Listing 6-5 on page 6-16. You
can use the Set Conponent | nst anceEr r or procedure, described on page 6-69, to set
the current error.

CallComponentFunctionWithStorage

DESCRIPTION

6-64

The Cal | Conponent Funct i onW t hSt or age function invokes a specified function
of your component with the parameters originally provided by the application that
called your component. You pass these parameters by specifying the same component
parameters record that was received by your component’s main entry point. The

Cal | Conponent Funct i onW t hSt or age function also provides a handle to the
memory associated with the current connection.

FUNCTI ON Cal | Conponent Functi onW t hSt or age
(storage: Handl e; paranms: Conponent Paraneters;
func: Component Function): Longlnt;

st or age Ahandle to the memory associated with the current connection. The
Component Manager provides this handle to your component along with
the request.

par ans The component parameters record that your component received from
the Component Manager.

func The address of the function that is to handle the request. The Component
Manager calls the routine referred to by the f unc parameter as a Pascal
function with the parameters that were originally provided by the
application. These parameters are preceded by a handle to the memory
associated with the current connection. The routine referred to by the
f unc parameter must return a function result of type Conponent Resul t
(a long integer) indicating the success or failure of the operation.

The Cal | Conponent Funct i onW t hSt or age function returns the value that is
returned by the function referred to by the f unc parameter. Your component should use
this value to set the current error for this connection.

Component Manager Reference



CHAPTER 6

Component Manager

SPECIAL CONSIDERATIONS

SEE ALSO

Cal | Conponent Funct i onW t hSt or age takes as a parameter a handle to the memory
associated with the connection, so subroutines of a component that don’t need global
data should use the Cal | Conponent Funct i on routine described in the previous
section instead.

If your component subroutine requires a handle to the memory associated with the
connection, you must use Cal | Conponent Funct i onW t hSt or age. You allocate the
memory for a given connection each time your component is opened. You inform the
Component Manager that a connection has memory associated with it by calling the
Set Conponent | nst anceSt or age procedure.

For an example that uses Cal | Conponent Functi onW t hSt or age,

see Listing 6-5 on page 6-16. Use the Set Conponent | nst anceEr r or procedure,
described on page 6-69, to set the current error for a connection. A description of the
Set Conponent | nst anceSt or age procedure is given next.

Managing Component Connections

The Component Manager provides a number of routines that help your component
manage the connections it maintains with its client applications and components.

Use the Set Conponent | nst anceSt or age procedure to inform the Component
Manager of the memory your component is using to maintain global data for a
connection. Whenever the client application issues a request to the connection, the
Component Manager provides to your component the handle to the allocated memory
for that connection along with the parameters for the request. You can also use the

Cet Conponent | nst anceSt or age function to retrieve a handle to the storage for a
connection.

Use the Count Conmrponent | nst ances function to count all the connections that are
currently maintained by your component. This routine is similar to the

Count Conponent s routine that the Component Manager provides to client
applications and components.

Use the Set Conponent | nst anceA5 procedure to set the A5 world for a connection.
Once you set the A5 world for a connection, the Component Manager automatically
switches the contents of the A5 register when your component receives a request for that
connection. When your component returns to the Component Manager,

the Component Manager restores the A5 register. Your component can use the

Get Conponent | nst anceA5 function to retrieve the A5 world for a connection.

Component Manager Reference 6-65

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

SetComponentInstanceStorage

DESCRIPTION

When an application or component opens a connection to your component, the
Component Manager sends your component an open request. In response to this open
request, your component should set up an environment to service the connection.
Typically, your component should allocate some memory for the connection. Your
component can then use that memory to maintain state information appropriate to the
connection.

The Set Conponent | nst anceSt or age procedure allows your component to pass a
handle to this memory to the Component Manager. The Component Manager then
provides this handle to your component each time the client application requests service
from this connection.

PROCEDURE Set Conponent | nst anceSt or age
(aComponent | nst ance: Conponent | nstance; theStorage: Handle);

aConponent | nst ance
The connection to associate with the allocated memory. The Component
Manager provides a component instance to your component when the
connection is opened.

t heSt or age
A handle to the memory that your component has allocated for the
connection. Your component must allocate this memory in the current
heap. The Component Manager saves this handle and provides it to your
component, along with other parameters, in subsequent requests to this
connection.

The Set Conponent | nst anceSt or age procedure associates the handle

passed in the parameter t heSt or age with the connection specified by the
aConponent | nst ance parameter. Your component should dispose of any allocated
memory for the connection only in response to the close request.

SPECIAL CONSIDERATIONS

6-66

Note that whenever an open request fails, the Component Manager

always issues the close request. Furthermore, the value stored with

Set Conponent | nst ancesSt or age is always passed to the close request, so

it must be valid or NI L. If the open request tries to dispose of its allocated memory
before returning, it should call Set Conponent | nst anceSt or age again with a NI L
handle to keep the Component Manager from passing an invalid handle to the close
request.

Component Manager Reference



SEE ALSO

CHAPTER 6

Component Manager

For an example that allocates memory in response to an open request, see Listing 6-6 on
page 6-20.

GetComponentInstanceStorage

DESCRIPTION

The Get Conmponent | nst anceSt or age function allows your component

to retrieve a handle to the memory associated with a connection. Your

component tells the Component Manager about this memory by calling the

Set Conponent | nst anceSt or age procedure. Typically, your component does not
need to use this function, because the Component Manager provides this handle to your
component each time the client application requests service from this connection.

FUNCTI ON Get Conmponent | nst anceSt or age
(aComponent | nst ance: Conponent | nstance): Handl e;

aConponent | nst ance
The connection for which to retrieve the associated memory. The
Component Manager provides a component instance to your component
when the connection is opened.

The Get Conponent | nst anceSt or age function returns a handle to the memory
associated with the specified connection.

CountComponentInstances

The Count Conponent | nst ances function allows you to determine the number of
open connections being managed by a specified component. This function can be useful
if you want to restrict the number of connections for your component or if your
component needs to perform special processing based on the number of open
connections.

FUNCTI ON Count Component | nst ances (aConponent: Conponent): Longlnt;

aConponent
The component for which you want a count of open connections. You can
use the component instance that your component received in its open
request to identify your component.

Component Manager Reference 6-67

Jabeurey Jusuodwo)d n



DESCRIPTION

CHAPTER 6

Component Manager

The Count Conponent | nst ances function returns the number of open connections for
the specified component.

SetComponentInstanceA5

DESCRIPTION

The Set Conponent | nst anceA5 procedure allows your component to set the A5 world
for a connection.

PROCEDURE Set Conponent | nst anceA5
(aComponent | nst ance: Conponent | nstance; theA5: Longlnt);

aConponent | nst ance
The connection for which to set the A5 world. The Component Manager
provides a component instance to your component when the connection
is opened.

t heA5 The value of the A5 register for the connection. The Component Manager
sets the A5 register to this value automatically, and it restores the previous
A5 value when your component returns to the Component Manager.

The Set Conponent | nst anceA5 procedure sets the A5 world for the specified
component instance. Once you set the A5 world for a connection, the Component
Manager automatically switches the contents of the A5 register when your component
receives a request over that connection. When your component returns to the
Component Manager, the Component Manager restores your client’s A5 value.

If your component has been registered globally and you have not set an A5 value, the A5
register is set to 0. In this case you should set the A5 world of your component instance
to your client’s A5 value by using Set Conponent | nst anceA5.

In general, your component uses this procedure only if it is registered globally; in this
case, it typically calls Set Conponent | nst anceA5 when processing the open request
for a new connection.

GetComponentInstanceA5

6-68

You can use the Get Conponent | nst anceA5 function to retrieve the value of the A5
register for a specified connection. Your component sets the A5 register by calling the
Set Conponent | nst anceA5 function, as previously described. The Component
Manager then sets the A5 register for your component each time the client requests

Component Manager Reference



DESCRIPTION

CHAPTER 6

Component Manager

service on this connection. If your component has been registered globally and you have
not set an A5 value, the A5 register is set to 0. In this case you should use your client’s A5
value.

FUNCTI ON Get Conponent | nst anceA5
(aComponent | nst ance: Conponent | nstance): Longlnt;

aConponent | nst ance
The connection for which to retrieve the A5 value. The Component
Manager provides a component instance to your component when the
connection is opened.

The Get Conponent | nst anceA5 function returns the value of the A5 register for the
connection.

Setting Component Errors

The Component Manager maintains error state information for all currently active
components. In general, your component returns error information in its function result;
a nonzero function result indicates an error occurred, and a function result of 0 indicates
the request was successful. However, some requests require that your component return
other information as its function result. In these cases, your component can use the

Set Conponent | nst anceEr r or procedure to report its latest error state to the
Component Manager. You can also use this procedure at any time during your
component’s execution to report an error

SetComponentInstanceError

Although your component usually returns error information as its function result, your
component can choose to use the Set Conponent | nst anceEr r or procedure to pass
error information to the Component Manager. The Component Manager uses this error
information to set the current error value for the appropriate connection. Applications
can then retrieve this error information by calling the Get Conponent | nst anceEr r or
function. The documentation for your component should specify how the component
indicates errors.

PROCEDURE Set Conponent | nst anceEr r or
(aComponent | nst ance: Conponent | nstance; theError: OSErr);

Component Manager Reference 6-69

Jabeurey Jusuodwo)d n



DESCRIPTION

SEE ALSO

CHAPTER 6

Component Manager

aConponent | nst ance
A component instance that specifes the connection for which to set the
error. The Component Manager provides a component instance to your
component when the connection is opened. The Component Manager
also provides a component instance to your component as the first
parameter in the par ans field of the parameters record.

t heError The new value for the current error. The Component Manager uses this
value to set the current error for the connection specified by the
aConponent | nst ance parameter.

The Set Conponent | nst anceEr r or procedure sets the error associated with the
specified component instance to the value specified by the parameter t heErr or.

For a description of the Get Conponent | nst anceEr r or function, see page 6-51.

Working With Component Reference Constants

The Component Manager provides routines that manage access to the reference
constants that are associated with components. There is one reference constant for

each component, regardless of the number of connections to that component. When your
component is registered, the Component Manager sets this reference constant to 0.

The reference constant is a 4-byte value that your component can use in any way you
decide. For example, you might use the reference constant to store the address of a data
structure that is shared by all connections maintained by your component. You should
allocate shared structures in the system heap. Your component should deallocate the
structure when its last connection is closed or when it is unregistered.

Use the Set Conponent Ref con procedure to set the value of the reference constant for
your component. Use the Get Conponent Ref con function to retrieve the value of the
reference constant.

SetComponentRefcon

6-70

You can use the Set Conponent Ref con procedure to set the reference constant for your
component.

PROCEDURE Set Conponent Ref con (aConponent: Conponent;
t heRef con: Longlnt);

Component Manager Reference



DESCRIPTION

CHAPTER 6

Component Manager

aConponent
A component identifier that specifies the component whose reference
constant you wish to set.

t heRef Con  The reference constant value that you want to set for your component.

The Set Conponent Ref con procedure sets the value of the reference constant for your
component. Your component can later retrieve the reference constant using the
Get Conponent Ref con function, described next.

GetComponentRefcon

DESCRIPTION

The Get Conponent Ref con function retrieves the value of the reference constant for
your component.

FUNCTI ON CGet Conponent Ref con (aConponent: Component): Longlnt;
aConponent

A component identifier that specifies the component whose reference
constant you wish to get.

The Get Conponent Ref con function returns a long integer containing the reference
constant for the specified component.

Accessing a Component’s Resource File

If you store your component in a component resource and register your

component using the Regi st er Conponent Resour ce function or

Regi st er Conponent Resour ceFi | e function, or if the Component Manager
automatically registers your component, the Component Manager allows your
component to gain access to its resource file. You can store read-only data for

your component in its resource file. For example, the resource file may contain the color
icon for the component, static data needed to initialize private storage, or any other data
that may be useful to the component. Note that there is only one resource file associated
with a component.

If you store your component in a component resource but register the component with
the Regi st er Conponent function, rather than with the

Regi st er Conponent Resour ce or Regi st er Conponent Resour ceFi | e function,
your component cannot access its resource file with the routines described in this section.

Component Manager Reference 6-71

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

The routines described in this section allow your component to gain access to its
resource file. These routines provide read-only access to the data in the resource file. If
your component opens its resource file, it must close the file before returning to the
calling application.

Use the OQpenConponent ResFi | e function to open your component’s resource file. Use
the Cl oseConponent ResFi | e function to close the resource file before returning to the
calling application.

OpenComponentResFile

DESCRIPTION

6-72

The OpenConponent ResFi | e function allows your component to gain access to its
resource file. This function opens the resource file with read permission and returns a
reference number that your component can use to read data from the file. The
Component Manager adds the resource file to the current resource chain. Your
component must close the resource file with the Ol oseConponent ResFi | e function
before returning to the calling application.

Your component can use FSpQpenResFi | e or equivalent Resource Manager routines to
open other resource files, but you must use OpenConponent ResFi | e to open your
component’s resource file.

FUNCTI ON OpenConponent ResFi | e (aConponent: Conponent): |nteger;

aConponent
A component identifier that specifies the component whose resource file
you wish to open. Applications that register components may obtain this
identifier from the Regi st er Conponent Resour ce function.

The OpenConponent ResFi | e function returns a reference number for the appropriate
resource file. This function returns 0 or a negative number if the specified component
does not have an associated resource file or if the Component Manager cannot open the
resource file.

Note that when working with resources, your component should always first save the
current resource file, perform any resource operations, then restore the current resource
file to its previous value before returning.

Component Manager Reference



CHAPTER 6

Component Manager

CloseComponentResFile

This function closes the resource file that your component opened previously with the
OpenComnponent ResFi | e function.

FUNCTI ON C oseConponent ResFil e (refnum |Integer): OSErr;

ref num The reference number that identifies the resource file to be closed. Your
component obtains this value from the OpenConponent ResFi | e
function.

DESCRIPTION

The C oseConponent ResFi | e function closes the specified resource file. Your
component must close any open resource files before returning to the calling application.

RESULT CODES

noErr 0 No error
r esFNot Found -193 Resource file not found

Calling Other Components

The Component Manager provides two techniques that allow a component to call other
components. First, your component may invoke the services of another component using
the standard mechanisms also used by applications. The Component Manager then
passes the requests to the appropriate component, and your component receives the
results of those requests.

Second, your component may supplement its capabilities by using the services of
another component to directly satisfy application requests. The Component Manager
provides the Del egat eConponent Cal | function, which allows your component to
pass a request to a specified component. For example, you might want to create two
similar components that provide different levels of service to applications. Rather than
completely implementing both components, you could design one to rely on the
capabilities of the other. In this manner, you have to implement only that portion of the
more capable component that provides additional services.

Component Manager Reference 6-73

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

DelegateComponentCall

DESCRIPTION

SEE ALSO

6-74

The Del egat eConponent Cal | function provides an efficient mechanism for passing
on requests to a specified component. Your component must open a connection to the
component to which the requests are to be passed. Your component must close that
connection when it has finished using the services of the other component.

Note

The Del egat eConponent Cal | function does not accept a component
identifier in place of a component instance. In addition, your component
should never use the Del egat eConponent Cal | function with open or
close requests from the Component Manager—always use the
OpenConponent and C oseConponent functions to manage
connections with other components. O

FUNCTI ON Del egat eConponent Cal |
(original Parans: Component Par anet ers;
ci: Componentlnstance): Longlnt;

ori gi nal Par ans
The component parameters record provided to your component by the
Component Manager.

Ci The component instance that is to process the request. The Component
Manager provides a component instance to your component when it
opens a connection to another component with the OpenConponent or
OpenDef aul t Conponent function. You must specify a component
instance; this function does not accept a component identifier.

The Del egat eConponent Cal | function calls the component instance specified by the
Ci parameter, and passes it the specified component parameters record.

Del egat eConponent Cal | returns a long integer containing the component result
returned by the specified component.

See “The Component Parameters Record” on page 6-54 for a description of the
component parameters record. See page 6-45, page 6-46, and page 6-47, respectively, for
information on the QpenDef aul t Conponent , OpenConponent , and

Cl oseConponent functions.

See Listing 6-16 on page 6-36 for an example of the use of the
Del egat eConponent Cal | function.

Component Manager Reference



CHAPTER 6

Component Manager

Capturing Components

The Component Manager allows your component to capture another component. When
a component is captured, the Component Manager removes the captured component
from its list of available components. The Fi ndNext Conponent function does not
return information about captured components. Also, other applications or clients
cannot open or access captured components unless they have previously received a
component identifier or component instance for the captured component. The routines
described in this section allow your component to capture and uncapture other
components.

Typically, your component captures another component when you want to override all
or some of the features provided by a component or to provide new features. For
example, a component called NewMath might capture a component called OldMath.
Suppose the NewMath component provides a new function, DOExponent . Whenever
NewMath gets an exponent request, it can handle the request itself. For all other
requests, NewMath might call the OldMath component to perform the request.

After capturing a component, your component might choose to target a particular
instance of the captured component. For information on targeting a component instance,
see “Responding to the Target Request” beginning on page 6-25 and “Targeting a
Component Instance” on page 6-77.

Use the Capt ur eConponent function to capture a component. Use the
Uncapt ur eConponent function to restore a previously captured component to the
search list.

CaptureComponent

The Capt ur eConponent function allows your component to capture another
component. In response to this function, the Component Manager removes the

specified component from the search list of components. As a result, applications cannot
retrieve information about the captured component or gain access to it. Current clients of
the captured component are not affected by this function.

FUNCTI ON Capt ur eConponent (capt ur edConponent: Conponent;
capt uri ngConmponent : Conponent)
Component ;

capt ur edConponent
The component identifier of the component to be captured. Your
component can obtain this identifier from the Fi ndNext Conponent
function or from the component registration routines.

capt uri ngConponent
The component identifier of your component. Note that you can use the
component instance (appropriately coerced) that your component
received in its open request in this parameter.

Component Manager Reference 6-75

Jabeurey Jusuodwo)d n



DESCRIPTION

SEE ALSO

CHAPTER 6

Component Manager

The Capt ur eConponent function removes the specified component from the search
list of components and returns a new component identifier. Your component can use this
new identifier to refer to the captured component. For example, your component

can open the captured component by providing this identifier to the

OpenConponent function. Your component must provide this identifier to the

Uncapt ur eConponent function to specify the component to be restored to the

search list.

If the component specified by the capt ur edConponent parameter is already captured,
the Capt ur eConponent function returns a component identifier set to NI L.

See “Responding to the Target Request” on page 6-25 and “Targeting a Component
Instance” on page 6-77 for information about target requests. For information related to
the Component Manager’s use of its list of available components, see page 6-42 for
details on the Fi ndNext Conponent function and page 6-45 for details on the
OpenDef aul t Conponent function. See “Registering Components” beginning on
page 6-57 for details of the component registration routines.

UncaptureComponent

DESCRIPTION

RESULT CODES

6-76

The Uncapt ur eConponent function allows your component to uncapture a previously
captured component.

FUNCTI ON Uncapt ur eConponent (aConponent: Conponent): OSErr;

aConponent
The component identifier of the component to be uncaptured. Your
component obtains this identifier from the Capt ur eConponent function.

The Uncapt ur eConponent function restores the specified component to the search list
of components. Applications can then access the component and retrieve information
about the component using Component Manager routines.

noErr 0 No error
i nval i dConponent | D -3000  No component has this component identifier
conmponent Not Capt ur ed -3002 This component has not been captured

Component Manager Reference



CHAPTER 6

Component Manager

Targeting a Component Instance

Your component can target a component instance without capturing the component

or your component can first capture the component and then target a specific instance of
the component. For information on capturing components, see “Capturing Components”
beginning on page 6-75. To target a component instance, use the Conponent Set Tar get

function.

ComponentSetTarget

DESCRIPTION

SEE ALSO

You can use the Conponent Set Tar get function to call a component’s target request
routine (that is, the routine that handles the kConponent Tar get Sel ect request code).
The target request informs a component that it has been targeted by another component.

You should not target a component instance if the component does not support the
target request. Before calling this function, you should issue a can do request to the
component instance you want to target to verify that the component supports the target
request. If the component supports it, use the Conponent Set Tar get function to send a
target request to the component instance you wish to target. After receiving a target
request, the targeted component instance should call the component instance that
targeted it whenever the targeted component instance would normally call one of its
defined functions.

FUNCTI ON Conponent Set Target (ci: Conponentl nstance;
target: Conponentlnstance): Longlnt;

Ci The component instance to which to send a target request (the component
that has been targeted).
target The component instance of the component issuing the target request.

The Conponent Set Tar get function returns a function result of

badConponent Sel ect or if the targeted component does not support the target
request. Otherwise, the Conponent Set Tar get function returns as its function result
the value that the targeted component instance returned in response to the target request.

For details on how to handle the target request, see “Responding to the Target Request”
on page 6-25.

Component Manager Reference 6-77

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Changing the Default Search Order

You can use the Set Def aul t Conponent function to change the order in which the list
of registered components is searched.

SetDefaultComponent

The Set Def aul t Conponent function allows your component to change the search
order for registered components. You specify a component that is to be placed at the
front of the search chain, along with control information that governs the reordering
operation. The order of the search chain influences which component the Component
Manager selects in response to an application’s use of the OpenDef aul t Conponent
and Fi ndNext Conponent functions.

FUNCTI ON Set Def aul t Conponent (aConponent: Conponent;
flags: Integer): OSErr;

aConponent
A component identifier that specifies the component for this operation.

fl ags A value specifying the control information governing the operation. The
value of this parameter controls which component description fields the
Component Manager examines during the reorder operation. Set the
appropriate flags to 1 to define the fields that are examined during the
reorder operation. The following flags are defined:

def aul t Conponent | dent i cal
The Component Manager places the specified component
in front of all other components that have the same
component description.

def aul t Conponent AnyFl ags
The Component Manager ignores the value of the
conponent Fl ags field during the reorder operation.
def aul t Conponent AnyManuf act ur er
The Component Manager ignores the value of the
conponent Manuf act ur er field during the reorder
operation.
def aul t Conponent AnySubType
The Component Manager ignores the value of the
conponent SubType field during the reorder operation.

6-78 Component Manager Reference



CHAPTER 6

Component Manager

DESCRIPTION

The Set Def aul t Conponent function changes the search order of registered
components by moving the specified component to the front of the search chain,
according to the value specified in the f | ags parameter.

SPECIAL CONSIDERATIONS

Note that the Set Def aul t Conponent function changes the search order for all
applications. As a result, you should use this function carefully.

RESULT CODES

noErr 0 No error
i nval i dCorponent | D -3000  No component has this component identifier

Application-Defined Routine

To provide a component, you define a component function and supply the appropriate
registration information. You store your component function in a code resource and
typically store your component’s registration information as resources in a component
file. For additional information on this process, see “Creating Components” beginning
on page 6-13.

MyComponent

Here’s how to declare a component function named My Conponent :

FUNCTI ON MyConponent ( parans: Component Par anet ers;
storage: Handl e): Conponent Result;

par ans A component parameters record. The what field of the component
parameters record indicates the action your component should perform.
The parameters that the client invoked your function with are contained
in the par ans field of the component parameters record. Your component
can use the Cal | Conponent Funct i on or
Cal | Conponent Functi onW t hSt or age routine to extract the
parameters from this record.

st orage A handle to any memory that your component has associated with the
connection. Typically, upon receiving an open request, your component
allocates memory and uses the Set Conponent | nst anceSt or age
function to associate the allocated memory with the component
connection.

Component Manager Reference 6-79

Jabeurey Jusuodwo)d n



DESCRIPTION

SEE ALSO

Resources

CHAPTER 6

Component Manager

When your component receives a request, it should perform the action specified in the
what field of the component parameters record. Your component should return a value
of type Conponent Resul t (a long integer). If your component does not return error
information as its function result, it should indicate errors using the

Set Conponent | nst anceEr r or procedure.

For information on the component parameters record, see page 6-54. For information on
writing a component, see “Creating Components” beginning on page 6-13.

6-80

This section describes the resource you use to define your component. If you are
developing a component, you should be familiar with the format and content of a
component resource.

The Component Resource

A component resource (a resource of type ' t hng' ) stores all of the information about a
component in a single file. The component resource contains all the information needed
to register a code resource as a component. Information in the component resource tells
the Component Manager where to find the code for the component.

If you are developing an application that uses components, you do not need to know
about component resources.

If you are developing a component or an application that registers components, you
should be familiar with component resources. The Component Manager automatically
registers any components that are stored in component files in the Extensions folder. The
file type for component files must be set to ' t hng' . If you store your component in a
component file in the Extensions folder, you do not need to create an application to
register the component.

The Component Manager provides routines that register components. The

Regi st er Conponent function registers components that are not stored in resource
files. The Regi st er Component Resour ce and Regi st er Conponent Resour ceFi | e
functions register components that are stored as component resources in a component
file. If you are developing an application that registers components, you should use the
routine that is appropriate to the storage format of the component. For more information
about how your application can register components, see “Registering Components”
beginning on page 6-57.

Component Manager Reference



CHAPTER 6

Component Manager

This section describes the component resource, which must be provided by all
components stored in a component file. Applications that register a component using the
Regi st er Conmponent function must also provide the same information as that
contained in a component resource.

IMPORTANT

For compatibility with early versions of the Component Manager, a

component resource must be locked. a

The Conmponent Resour ce data type defines the structure of a component resource.
(You can also optionally append to the end of this structure the information defined by
the Conponent Resour ceExt ensi on data type, as shown in Figure 6-5 on page 6-85.)

Conmponent Resource =

RECORD
cd: {registration information}
Conponent Descri ption
conponent : Resour ceSpec; {code resource}

conponent Narme: ResourceSpec; {nane string resource}
conponent I nfo: ResourceSpec; {info string resource}
conponent | con: ResourceSpec; {icon resource}

END;

Field descriptions

cd A component description record that specifies the characteristics of
the component. For a complete description of this record, see
page 6-52.

conponent A resource specification record that specifies the type and ID of the

component code resource. The r esType field of the resource
specification record may contain any value. The component’s main
entry point must be at offset 0 in the resource.

conponent Nane A resource specification record that specifies the resource type and
ID for the name of the component. This is a Pascal string. Typically,
the component name is stored in a resource of type ' STR ' .

conponent I nfo A resource specification record that specifies the resource type and
ID for the information string that describes the component. This is a
Pascal string. Typically, the information string is stored in a resource
of type' STR ' . You might use the information stored in this
resource in a Get Info dialog box.

conponent | con A resource specification record that specifies the resource type and
ID for the icon for a component. Component icons are stored as
32-by-32 bit maps. Typically, the icon is stored in a resource of type
" | CON . Note that this icon is not used by the Finder; you supply
an icon only so that other components or applications can display
your component’s icon in a dialog box if needed.

Component Manager Reference 6-81

Jabeurey Jusuodwo)d n



6-82

CHAPTER 6

Component Manager

A resource specification record, defined by the data type Resour ceSpec, describes the
resource type and resource ID of the component’s code, name, information string, or
icon. The resources specified by the resource specification records must reside in the
same resource file as the component resource itself.

ResourceSpec =

RECORD
resType: OSType; {resource type}
resld: I nt eger; {resource |ID}
END;

You can optionally include in your component resource the information defined by the
Conponent Resour ceExt ensi on data type:

Conponent Resour ceExt ensi on =

RECORD
component Ver si on: Longl nt; {version of conponent}
conponent Regi ster Fl ags: Longlnt; {additional flags}
conponent | conFami | y: Integer; {resource ID of icon }
{ fam |y}
END;

Field descriptions

conponent Ver si on
The version number of the component. If you specify the
conmponent DoAut oVer si on flag in conponent Regi st er Fl ags,
the Component Manager must obtain the version number of your
component when your component is registered. Either you can
provide a version number in your component’s resource, or you can
specify a value of 0 for its version number. If you specify 0, the
Component Manager sends your component a version request to
get the version number of your component.

conponent Regi st er Fl ags
A set of flags containing additional registration information. You
can use these constants as flags:

CONST
conponent DoAut oVer si on = 1;
conponent Want sUnr egi st er = 2;

conponent Aut oVer si onl ncl udeFl ags

i
e

Component Manager Reference



CHAPTER 6

Component Manager

Specify the conponent DoAut oVer si on flag if you want the
Component Manager to resolve conflicts between different versions
of the same component. If you specify this flag, the Component
Manager registers your component only if there is no later version
available. If an older version is already registered, the Component
Manager unregisters it. If a newer version of the same component is
registered after yours, the Component Manager automatically
unregisters your component. You can use this automatic version
control feature to make sure that the most recent version of your
component is registered, regardless of the number of versions that
are installed.

Specify the conponent Want sUnr egi st er flag if you want your
component to receive an unregister request when it is unregistered.

Specify the flag conponent Aut oVer si onl ncl udeFl ags if you
want the Component Manager to include the conponent Fl ags
field of the component description record when it searches for
identical components in the process of performing automatic
version control for your component. If you do not specify this flag,
the Component Manager searches only the conponent Type,
conponent SubType, and conponent Manuf act ur er fields.

When the Component Manager performs automatic version control
for your component, it searches for components with identical
values in the conponent Type, conponent SubType, and
conponent Manuf act ur er fields (and optionally, in

the component Fl ags field). If it finds a matching component, it
compares version numbers and registers the most recent version of
the component. Note that the setting of the

conponent Aut oVer si onl ncl udeFl ags flag affects automatic
version control only and does not affect the search operations
performed by Fi ndNext Conponent and Count Conponent s.

conponent | conFami | y
The resource ID of an icon family. You can provide an icon family in
addition to the icon provided in the conponent | con field. Note
that members of this icon family are not used by the Finder; you
supply an icon family only so that other components or applications
can display your component’s icon in a dialog box if needed.

Component Manager Reference 6-83

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

You store a component resource, along with other resources for the component, in the
resource fork of a component file. Figure 6-4 shows the structure of a component file.

6-84

Figure 6-4 Format of a component file
Component file Bytes
} Component resource } 44 10 54
Z Code resource /Variable

Z Name string resource / Variable
Z Information string resource / Variable
Z Icon resource / Variable
{ Optional icon family resources { Variable

You can also store other resources for your component in your component file. For
example, you should include ' FREF' ,' BNDL' , and icon family resources so that the
Finder can associate the icon identifying your component with your component file.
When designing the icon for your component file, you should follow the same
guidelines as those for system extension icons. See Macintosh Human Interface Guidelines
for information on designing an icon. See the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials for information on the ' FREF' and ' BNDL'
resources.

Figure 6-5 shows the structure of a component resource.

Component Manager Reference



CHAPTER 6

Component Manager

Figure 6-5 Structure of a compiled component (' t hng' ) resource
Component resource Bytes
—
Type 4
Subtype 4
Component description record — Manufacturer 4
Flags 4
Reserved 4
A
'
Resource type 4

Identifier for code resource

Resource ID 2
A
'
Resource type 4
Identifier for name string
Resource ID 2
A
'
Resource type 4
Identifier for information string —
Resource ID 2
A
'
Resource type 4
Identifier foricon ———————
Resource ID 2
A
'
Component version 4
. . . (@)
Optional information —— o
Additional flags 4 _g
o
>
[0}
Resource ID of icon family 2 2
— <
@
>
[
Q
@

Component Manager Reference 6-85



CHAPTER 6

Component Manager

Summary of the Component Manager

Pascal Summary

Constants

CONST
gest al t Conponent Myr

1
O
e
>
=

kConponent OpenSel ect = -1; {open request}
kComponent C oseSel ect = -2; {cl ose request}
kConmponent CanDoSel ect = -3; {can do request}
kConponent Ver si onSel ect = -4, {version request}
kComponent Regi st er Sel ect = -5; {register request}
kConmponent Tar get Sel ect = -6; {target request}
kConponent Unr egi st er Sel ect = -7; {unregister request}
{wi | dcard val ues for searches}

kAnyConponent Type = 0; {any type}
kAnyConponent SubType = 0; {any subtype}
kAnyConponent Manuf act ur er = 0; {any manufacturer}
kAnyConponent Fl agsMask = 0; {any fl ags}

{conponent description flag}

cnpWant sRegi st er Message $80000000; {send register request}
{flags for optional extension to conponent resource}

conponent DoAut oVer si on = 1; {provide version control}
conponent Want sUnr egi st er = 2; {send unregister request}
conponent Aut oVer si onl ncl udeFl ags 4, {include flags in search}

{flags for SetDefaultConponent function}

def aul t Conponent | dent i cal = 0;
def aul t Conponent AnyFl ags = 1;
def aul t Conponent AnyManuf acturer = 2;
def aul t Conponent AnySubType = 4;

def aul t Conponent AnyFl agsAnyManuf act ur er
= def aul t Conponent AnyFl ags +
def aul t Conponent AnyManuf act ur er;

6-86 Summary of the Component Manager



CHAPTER 6

Component Manager

def aul t Conponent AnyFl agsAnyManuf act ur er AnySubType
= def aul t Conponent AnyFl ags
+ def aul t Conponent AnyManuf act ur er
+ def aul t Component AnySubType;

{flags for the global paraneter of Regi sterConponent ResourceFile function}

regi st er Cmpd obal = 1; {other apps can comuni cate with conponent}
regi ster CrpNoDupl icates = 2; {don't register if duplicate conponent }

{ exists}
regi st er ConpAfter = 4; {conponent registered after all others of }

{ sanme type}

Data Types
TYPE
Conponent Descri ption =
RECORD
conponent Type: OSType; {type}
conponent SubType: OSType; {subtype}
conponent Manuf act ur er: CSType; {manufacturer}
conponent Fl ags: Longlnt; {control flags}
conponent FI agsMask: Longlnt; {mask for control flags }
{ (reserved when }
{ registering a conponent)}
END;

Resour ceSpec =

RECORD
resType: OSType; {resource type}
reslD: Integer; {resource |D}
END;

Conmponent Resour cePtr
Conponent Resour ceHandl e

AComponent Resour ce;
AComponent Resour cePtr

Conponent Resour ce = {component resource}
RECORD
cd: Conponent Descri pti on; {registration information}
conponent: Resour ceSpec; {code resource}
conponent Nare: Resour ceSpec; {nane string resource}
conponent | nf o: Resour ceSpec; {info string resource}
conponent | con: Resour ceSpec; {icon resource}
END;

Summary of the Component Manager 6-87

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Conponent Resour ceExt ensi on =
RECORD

conponent Ver si on: Longl nt ;
conponent Regi st er Fl ags: Longl nt;
component | conFami | y: I nt eger
END;
{conmponent paraneters record}

Conponent Par aneters =
PACKED RECORD

{optional extension to resource}

{version of conponent}

{addi tional flags}
{resource ID of icon }
{ famly}

{reserved}

{size in bytes of actual }
{ paraneters passed to }

{ this routine}

{request code- }

{ negative for requests }

{ defined by Conmponent Myr}
{actual parameters for }

{ the indicated routine}

flags: Char ;
par antsi ze:  Char
what : I nt eger;
par ans: ARRAY[ 0. .0] OF Longl nt;
END;
{conponent identifier}
Conponent = ~Conponent Recor d;
Conponent Recor d =
RECORD
dat a: ARRAY[ 0..0] OF Longlnt;
END;
{conmponent i nstance}

Conponent | nst ance = ~Conponent | nst anceRecor d;

Conponent | nst anceRecord =

RECORD

dat a: ARRAY[ 0. .0] OF Longl nt;
END;
Conponent Resul t = Longl nt;
Conponent Routi ne = ProcPtr;
Component Functi on = ProcPtr;

6-88 Summary of the Component Manager



CHAPTER 6

Component Manager

Routines for Applications

Finding Components
FUNCTI ON Fi ndNext Conponent  (aConponent: Conponent;

| ooki ng: Conponent Descri ption): Conponent;
FUNCTI ON Count Conponent s (1 ooki ng: Conponent Descri ption): Longlnt;
FUNCTI ON Get Conrponent Li st ModSeed: Longl nt;

Opening and Closing Components
FUNCTI ON OpenDef aul t Conponent
(component Type: OSType;
conponent SubType: OSType): Conponentl nstance;
FUNCTI ON OpenConponent (aConponent : Conponent): Conponentl nst ance;
FUNCTI ON Cl oseConponent (aConponent | nst ance: Conponent | nstance): OSErr;

Getting Information About Components

FUNCTI ON Get Conponent I nfo (aConponent : Conponent;
VAR cd: Conponent Descri pti on;
conmponent Narme: Handl e; conponent | nfo: Handl e;
conmponent | con: Handle): OSErr;

FUNCTI ON Get Conrponent | conSui te
(aConponent : Conponent ;
VAR i conSuite: Handle): CSErr;

FUNCTI ON Get Conrponent Ver si on
(ci: Conponentlnstance): Longlnt;

FUNCTI ON Conponent Funct i onl nmpl enent ed
(ci: Conponentlnstance; ftnNunber: |nteger)
Longl nt;

Retrieving Component Errors

FUNCTI ON Get Conponent | nst anceEr r or
(aConponent | nst ance: Conponent | nstance): CSErr;

Summary of the Component Manager 6-89

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Routines for Components

Registering Components

FUNCTI ON Regi st er Conponent  (cd: Conponent Descri pti on;
conponent Ent ryPoi nt: Conponent Rout i ne;
gl obal : I nteger; conponent Nane: Handl e;
conponent | nfo: Handl e;
component | con: Handl e): Conponent;
FUNCTI ON Regi st er Conponent Resour ce
(cr: Conponent Resour ceHandl e;
gl obal : Integer): Conponent;
FUNCTI ON Regi st er Conponent Resour ceFi | e
(resRef Num integer; global: integer); Longlnt;
FUNCTI ON Unr egi st er Conponent
(aConponent: Conponent): OSErr;

Dispatching to Component Routines

FUNCTI ON Cal | Conponent Functi on
(paranms: Conponent Par anet er s;
func: Conponent Function): Longlnt;
FUNCTI ON Cal | Conponent Functi onW t hSt or age
(storage: Handl e;
par ans: Conponent Par anet ers;
func: Conponent Function): Longlnt;

Managing Component Connections

PROCEDURE Set Conponent | nst anceSt or age
(aConponent | nst ance: Conponent | nst ance;
t heSt orage: Handl e);
FUNCTI ON Get Conrponent | nst anceSt or age
(aConponent | nst ance: Conponent | nstance): Handl e;
FUNCTI ON Count Conponent | nst ances
(aConponent: Conponent): Longlnt;
PROCEDURE Set Conponent | nst anceA5
(aConponent | nst ance: Conponent | nst ance;
t heA5: Longlnt);
FUNCTI ON Get Conponent | nst anceA5
(aConponent | nst ance: Conponent | nst ance)
Longl nt;

6-90 Summary of the Component Manager



CHAPTER 6

Component Manager

Setting Component Errors

PROCEDURE Set Conponent | nst anceEr r or
(aConponent | nst ance: Conponent | nst ance;
theError: OSErr);

Working With Component Reference Constants
PROCEDURE Set Conponent Ref con
(aConponent : Conponent; theRefcon: Longlnt);

FUNCTI ON CGet Conponent Ref con
(aConponent: Conponent): Longlnt;

Accessing a Component’s Resource File

FUNCTI ON OpenConponent ResFi | e

(aConponent: Conponent): |nteger;
FUNCTI ON O oseConponent ResFi | e

(refnum Integer): OSErr;

Calling Other Components

FUNCTI ON Del egat eConponent Cal |
(original Paranms: Conponent Paraneters;
ci: Conponentlnstance): Longlnt;

Capturing Components

FUNCTI ON Capt ur eConponent (capt uredConponent : Conponent ;
capt uri ngConponent: Conponent): Conponent;
FUNCTI ON Uncapt ur eConponent
(aConponent: Conponent): OSErr;

Targeting a Component Instance

FUNCTI ON Conponent Set Target (ci: Conponent | nstance;
target: Conponentlnstance): Longlnt;

Changing the Default Search Order

FUNCTI ON Set Def aul t Conponent
(aConponent: Conponent; flags: Integer): OSErr

Summary of the Component Manager

6-91

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Application-Defined Routine

FUNCTI ON My Conponent
st or age:

C Summary

(paranms: Conponent Par anet ers;
Handl e) :

Conponent Resul t;

Constants

#defi ne gestalt Conponent Mgr ' cpnt'

/*requi red conponent routines*/
#def i ne kConmponent OpenSel ect
#def i ne kConponent O oseSel ect
#def i ne kConponent CanDoSel ect
#defi ne kConponent Ver si onSel ect
#def i ne kConponent Regi st er Sel ect
#def i ne kConponent Tar get Sel ect
#defi ne kConponent Unr egi st er Sel ect

sear ches*/
kAnyConponent Type
kAnyConponent SubType
kAnyComponent Manuf act ur er
kAnyConponent Fl agsMask

/*w | dcard val ues for
#defi ne
#def i ne
#defi ne
#defi ne

/ *conponent description flags*/
enum {

cnpWant sRegi st er Message = 1L<<31
b
[*flags for optional extension to conponent
enum {
component DoAut oVer si on =1
conponent Want sUnr egi st er =2
conponent Aut oVer si onl ncl udeFl ags = 4
b
enum { /*flags for SetDefaultConponent
def aul t Conponent | dent i cal = 0,
def aul t Conponent AnyFl ags 1,
def aul t Conponent AnyManuf acturer = 2,
6-92 Summary of the Component Manager

o O O o

[*Cestalt selector*/

1 / *open request*/

2 /*cl ose request*/

3 /*can do request*/

4 [*version request*/

5 /*register request*/

6 /*target request*/

7 /*unregi ster request*/
/*any type*/
/*any subtype*/
/*any manufacturer*/
/*any flags*/

/*send regi ster request*/
resour ce*/

/ *provi de version control */
/*send unregi ster request*/
/*include flags in search*/

functi on*/



CHAPTER 6

Component Manager

def aul t Conponent AnySubType = 4,
b
#def i ne def aul t Component AnyFl agsAnyManuf act ur er
(def aul t Conponent AnyFl ags+def aul t Component AnyManuf act ur er)
#def i ne def aul t Conponent AnyFl agsAnyManuf act ur er AnySubType
(def aul t Conponent AnyFl ags+def aul t Conponent AnyManuf act ur er
+def aul t Conponent AnySubType)
enum {
/*flags for the gl obal parameter of Regi sterConmponent ResourceFile function*/
regi st er Cnpd obal = 1, /*other apps can communi cate with */
/* conponent */
regi st er CrpNoDupl i cates = 2, /*duplicate conponent exists*/
regi st er ConpAfter = 4 [*conponent registered after all others */
/* of sane type*/
1

Data Structures

struct Conponent Description {

OSType conponent Type; [ *type*/

OSType conponent SubType; [ *subt ype*/

OSType conponent Manuf acturer; /*manufacturer*/

unsi gned | ong conponent Fl ags; /*control flags*/

unsi gned | ong conponent Fl agsMask; /*mask for control flags */

/* (reserved when registering */
/* a conponent)*/

b

t ypedef struct ConponentDescription Conponent Description

struct ResourceSpec {
OSType ResType; /*resource type*/
short Resl D /*resource | D*/
1

typedef struct ResourceSpec ResourceSpec;

Summary of the Component Manager 6-93

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

struct Conponent Resource {

Component Descri pti on cd; /*registration information*/
Resour ceSpec conponent ; /*code resource*/

Resour ceSpec conponent Nane; /*nanme string resource*/
Resour ceSpec component | nf o; /*info string resource*/
Resour ceSpec conponent | con; /*icon resource*/

1
typedef struct Conponent Resource Conponent Resour ce;
t ypedef Conponent Resource *Conponent ResourcePtr, **Conponent ResourceHandl e;

/*optional extension to conponent resource*/
struct Conponent Resour ceExt ensi on {

| ong conponent Ver si on; /*version numnber*/
| ong conponent Regi ster Fl ags; /*additional flags*/
short conponent | conFam | y; /*resource ID of icon fam|y*/

1

t ypedef struct Conponent ResourceExt ensi on Conponent Resour ceExt ensi on
/*structure received by conponent*/

struct Conponent Paraneters {

unsi gned char fl ags; [ *reserved*/

unsi gned char paranSi ze; /*size in bytes of actual paraneters passed */
/* to this routine*/

short what ; /*request code, negative for requests */
/* defined by Conponent Myr*/

| ong parans[1]; /*actual paraneters for the indicated */

/* routine*/
b

typedef struct Conponent Paranet ers Conponent Par anet ers;

/*component identifier*/

typedef struct privateConponent Record *Conponent;

/ *conponent i nstance*/

typedef struct privateConponent!|nstanceRecord *Conmponent| nstance;

t ypedef | ong Conponent Resul t;

t ypedef pascal Conponent Result (*Conponent Routi ne)
(Conponent Paraneters *cp, Handl e conmponent St or age) ;
typedef pascal ConponentResult (*ConponentFunction)();

#def i ne Conponent Cal | Now( cal | Nunber, paranti ze) \
{0x2F3C, paranti ze, call Number, 0x7000, OxA82A}

6-94 Summary of the Component Manager



CHAPTER 6

Component Manager

Routines for Applications

Finding Components

pascal Component Fi ndNext Conponent
(Conponent aConponent,
Conponent Descri ption *| ooki ng);

pascal |ong Count Conponents
(Conponent Descri ption *I ooki ng);

pascal |ong Get Conmponent Li st MbdSeed
(void);

Opening and Closing Components

pascal Component | nstance OpenDef aul t Conponent
(OSType conponent Type,
OSType conponent SubType);

pascal Component | nstance OpenConponent
(Conponent aConponent);

pascal OSErr C oseConponent
(Conponent | nst ance aConponent | nst ance) ;

Getting Information About Components

pascal OSErr Get Conponentlnfo
(Conponent aConponent,
Conponent Descri ption *cd,
Handl e conmponent Nane, Handl e conponent | nfo,
Handl e component| con);

pascal OSErr Get ConponentlconSuite
(Component aConponent,
Handl e *iconSuite);

pascal | ong CGet Conponent Versi on
(Component | nst ance ci);

pascal | ong Conponent Functi onl npl enent ed
(Conponent I nstance ci, short ftnNunber);

Retrieving Component Errors

pascal OSErr Get Conponent| nstanceError
(Component | nst ance aConponent | nst ance) ;

Summary of the Component Manager 6-95

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Routines for Components

Registering Components

pascal Component Regi st er Conponent
(Conponent Descri ption *cd,
Conponent Rout i ne conponent Ent r yPoi nt
short gl obal, Handl e conmponent Nane,
Handl e conponent | nfo, Handl e conponentl con);

pascal Conmponent Regi st er Conponent Resource
( Conponent Resour ceHandl e cr, short gl obal);

pascal |ong Regi sterConmponent ResourceFil e
(short resRef Num short gl obal);

pascal OSErr Unregi ster Conponent
(Conponent aConponent);

Dispatching to Component Routines

pascal |ong Cal | Conponent Functi on
(Conponent Par anet ers *par ans,
Conmponent Functi on func);

pascal |ong Call Conponent Functi onWthSt orage
(Handl e storage, Conponent Paraneters *parans,
Conmponent Functi on func);

Managing Component Connections

pascal void Set Conmponent| nstanceSt or age
(Component | nst ance aConponent | nst ance,
Handl e t heSt orage) ;

pascal Handl e Get Conponent | nst anceSt or age
( Conponent | nst ance aConponent | nst ance) ;

pascal | ong Count Conponent | nst ances
(Component aConponent);

pascal void Set Component | nstanceAb
(Conmponent | nst ance aConponent | nst ance,
| ong t heAb);

pascal |ong Get Component | nstanceAb5
(Conmponent | nst ance aConponent | nst ance) ;

Setting Component Errors

pascal void Set Component | nstanceError
(Conponent | nst ance aConponent | nst ance,
CSErr theError);

6-96 Summary of the Component Manager



CHAPTER 6

Component Manager

Working With Component Reference Constants
pascal void Set Component Ref con
(Conponent aConponent, |ong theRefcon);

pascal |ong Get Component Ref con
(Conponent aConponent);

Accessing a Component’s Resource File
pascal short OpenConponent ResFil e
(Component aConponent);

pascal OSErr C oseConponent ResFil e
(short refnum;

Calling Other Components

pascal | ong Del egat eConmponent Cal |
( Component Par anet ers *ori gi nal Par ans,
Conmponent | nst ance ci);

Capturing Components

pascal Component CaptureConponent
(Conmponent capt ur edConponent,
Conponent capt uri ngConponent);

pascal OSErr Uncapt ur eConmponent
(Conmponent aConponent);

Targeting a Component Instance

pascal | ong Conmponent Set Tar get
(Conponent | nst ance ci,
Conponent | nst ance target);

Changing the Default Search Order

pascal OSErr Set Def aul t Conponent
(Component aConponent, short flags);

Application-Defined Routine

pascal Component Result MyConponent
( Conponent Par anet er s* par ans,
Handl e storage);

Summary of the Component Manager 6-97

Jabeurey Jusuodwo)d n



CHAPTER 6

Component Manager

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_Conponent Di spat ch

Selector Routine

$7001 Regi st er Conponent

$7002 Unr egi st er Conrponent

$7003 Count Conponent s

$7004 Fi ndNext Conponent

$7005 Get Conponent | nfo

$7006 Get Conmponent Li st MbdSeed
$7007 OpenConponent

$7008 Cl oseConponent

$700A Get Conmponent | nst anceErr or
$700B Set Conponent | nst anceErr or
$700C Get Conponent | nst anceSt or age
$700D Set Conmponent | nst anceSt or age
$700E Get Conponent | nst anceAb5

$700F Set Conponent | nst anceA5

$7010 Get Conponent Ref con

$7011 Set Conponent Ref con

$7012 Regi st er Conponent Resour ce
$7013 Count Conponent | nst ances
$7014 Regi st er Conponent Resour ceFi |l e
$7015 OpenConponent ResFi |l e

$7018 Cl oseConponent ResFi | e

$701C Capt ur eConponent

$701D Uncapt ur eConponent

$701E Set Def aul t Conponent

$7021 QpenDef aul t Conponent

$7024 Del egat eConponent Cal |

$70FF Cal | Conponent Functi on

$70FF Cal | Conponent Functi onW t hSt or age

6-98 Summary of the Component Manager



CHAPTER 6

Component Manager

Result Codes

noErr

r esFNot Found

i nval i dComponent | D
val i dl nst ancesExi st
conponent Not Capt ur ed
badConponent | nst ance
badConponent Sel ect or

0

-193
-3000
-3001
-3002
$800008001
$800008002

No error

Resource file not found

No component has this component identifier

This component has open connections

This component has not been captured

Invalid component passed to Component Manager
Component does not support the specified request code

Summary of the Component Manager 6-99

Jabeurey Jusuodwo)d n






	Component Manager
	Introduction to Components
	About the Component Manager
	Using the Component Manager
	Opening Connections to Components
	Opening a Connection to a Default Component
	Finding a Specific Component
	Opening a Connection to a Specific Component

	Getting Information About a Component
	Using a Component
	Closing a Connection to a Component

	Creating Components
	The Structure of a Component
	Handling Requests for Service
	Responding to the Open Request
	Responding to the Close Request
	Responding to the Can Do Request
	Responding to the Version Request
	Responding to the Register Request
	Responding to the Unregister Request
	Responding to the Target Request
	Responding to Component-Specific Requests
	Reporting an Error Code

	Defining a Component’s Interfaces
	Managing Components
	Registering a Component
	Creating a Component Resource
	Establishing and Managing Connections


	Component Manager Reference
	Data Structures for Applications
	The Component Description Record
	Component Identifiers and Component Instances

	Routines for Applications
	Finding Components
	Opening and Closing Components
	Getting Information About Components
	Retrieving Component Errors

	Data Structures for Components
	The Component Description Record
	The Component Parameters Record

	Routines for Components
	Registering Components
	Dispatching to Component Routines
	Managing Component Connections
	Setting Component Errors
	Working With Component Reference Constants
	Accessing a Component’s Resource File
	Calling Other Components
	Capturing Components
	Targeting a Component Instance
	Changing the Default Search Order

	Application-Defined Routine
	Resources
	The Component Resource


	Summary of the Component Manager
	Pascal Summary
	Constants
	Data Types
	Routines for Applications
	Routines for Components
	Application-Defined Routine

	C Summary
	Constants
	Data Structures
	Routines for Applications
	Routines for Components
	Application-Defined Routine

	Assembly-Language Summary
	Trap Macros

	Result Codes


	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Resource Manager TOC
	 Resource Manager, Part 1 (Introduction, About, and Using)
	 Resource Manager, Part 2 (Reference)
	 Scrap Manager TOC
	 Scrap Manager
	 Help Manager TOC
	 Help Manager, Part 1 (About and Using)
	 Help Manager, Part 2 (Reference)
	 List Manager TOC
	 List Manager
	 Icon Utilities TOC
	 Icon Utilities
	 Component Manager TOC
	 Translation Manager TOC
	 Translation Manager
	 Control Panels TOC
	 Control Panels
	 Desktop Manager TOC
	 Desktop Manager
	 Glossary
	 Index
	 Colophon

