

C H A P T E R 1 2

12

D
ata A

ccess M
anager

Data Access Manager 12

This chapter describes how your application can use the Data Access Manager to gain
access to data in another application. It also tells you how to provide templates to be
used for data transactions.

The Data Access Manager is available in System 7 and later versions. Use the
Gestalt Manager to determine whether the Data Access Manager is present. To
determine whether the Data Access Manager is available, use the Gestalt function
with the gestaltDBAccessMgrAttr environmental selector. If the Data Access
Manager is not available, the Gestalt function returns an error. For more information
on the Gestalt Manager, see Inside Macintosh: Operating System Utilities.

The Data Access Manager allows your application to communicate with a database or
other data source even if you do not know anything about databases in general or the
specific data source with which the users of your software will be communicating. All
your application needs are a few high-level Data Access Manager functions and access to
a file called a query document. The query document, provided by another application,
contains commands and data in the format appropriate for the database or other data
source. The string of commands and data sent to the data source are referred to as a
query. Note that a query does not necessarily extract data from a data source; it might
only send data or commands to a database or other application.

The Data Access Manager makes it easy for your application to communicate with data
sources. You need only add a menu item that opens a query document, using a few
standard Data Access Manager functions to implement the menu selection. Users of your
application can then access a database or other data source whenever they have the
appropriate query documents. A user of a word-processing program might use this
feature, for example, to obtain access to archived material, dictionaries in a variety of
languages, or a database of famous quotations. A user of a spreadsheet program might
use a query document to obtain tax records, actuarial tables, or other data. A user of an
art or computer-aided design program might download archived illustrations or
designs. And for the user of a database application for the Macintosh computer, the
Data Access Manager can provide the resources and power of a mainframe database.

The Data Access Manager also provides a low-level interface for use by applications that
are capable of creating their own queries and that therefore do not have to use query
documents.

If your application uses only the high-level interface and relies on query documents
created by other programs, then all the routines you need to know are described in this
chapter. However, if you want to create a query document or an application that uses the
low-level interface, then you must also be familiar with the command language used by
the data server.
12-3

C H A P T E R 1 2

Data Access Manager

You need the information in this chapter if you want your application to access data in
other applications or if you want to write a query document.

Note
The Data Access Manager makes it easy for your application to
communicate with a database running on a remote computer, and this
chapter generally assumes that you are using it for that purpose.
However, there is no reason why the database could not be local—that
is, running on the same computer as your application. To implement
such a system, you would have to have a database that runs on a
Macintosh computer and that has a command-language interface, plus a
database extension that can use that command language. In most cases,
it would be much simpler to run the database as a separate application
and use the Clipboard to transfer data into and out of the database. ◆

Note also that the program containing the data need not be a database. With the
appropriate database extension, your application could read data from a spreadsheet,
for example, or any other program that stores data.

Apple Computer, Inc. provides a database extension that uses Data Access Language
(DAL). A database extension provides an interface between the Data Access
Manager and the database or other program that contains the data. If you want
to write an application that uses the low-level interface to communicate with a
Data Access Language server, or if you want to create a query document that
uses Data Access Language, you must be familiar with that language. Data Access
Language Programmer’s Reference, available from APDA, fully describes this language.
12-4

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

About the Data Access Manager 12

The Data Access Manager constitutes a standard interface that allows Macintosh
applications to communicate with any number of databases or other data sources
through a variety of data servers. As used in this chapter, a data server is the application
that acts as an interface between the database extension on the Macintosh computer and
the data source, which can be on the Macintosh computer or on a remote host computer.
A data server can be a database server program, such as a Data Access Language server,
which can provide an interface to a variety of different databases, or it can be the data
source itself, such as a Macintosh application.

The Data Access Manager has two application interfaces: the high-level interface and the
low-level interface. If the proper database extension and query documents are available
in the user’s system, you can use the high-level interface to communicate with a data
source without having any knowledge of the command language that the data server
uses. Even if you use the low-level interface, your application can isolate the user from
any specific knowledge of the data source or the data server’s command language.

This section presents an overview and description of the Data Access Manager, including
diagrams and conceptual descriptions of the components and processes involved in
using the high-level and low-level interfaces. Next, “Using the Data Access Manager”
beginning on page 12-12 includes descriptions, flowcharts, and program fragments that
provide a step-by-step guide to the use of the high-level and low-level interfaces.
“Creating a Query Document” beginning on page 12-47 describes the contents and
function of a query document. You do not have to read this section unless you are
writing an application that creates query documents, although if you are using the
high-level interface you might be interested to know just how a query document works.

Figure 12-1 illustrates connections between Macintosh applications and a database on a
remote computer. The arrows in Figure 12-1 show the flow of information, not the paths
of commands or control signals. See Figure 12-2 on page 12-8 and Figure 12-3 on
page 12-10 for the sequences involved in sending and retrieving data.
About the Data Access Manager 12-5

C H A P T E R 1 2

Data Access Manager

Figure 12-1 A connection with a database

Database-

naive

application

Commands;

Query

Query

results

Data Access

Language server

Remote computer

Macintosh computer

Database-

aware

application

Database Database

Data Access Language

database extension

Other data

server

High-level interface

Data Access Manager

Low-level interface

Query

document

QueryCommands

Query

results

Query Query

results

Query Query

results

Other database

extensions
12-6 About the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

The High-Level Interface 12
As Figure 12-1 on page 12-6 shows, a database-naive application—that is, one that
cannot prepare a query for a specific data server—uses the Data Access Manager’s
high-level routines to communicate with a data server. Because the application cannot
prepare a query, it must use a query document to provide one. A query document can
contain code, called a query definition function, that prompts the user for information
and modifies the query before the Data Access Manager sends it to the data server. The
exact format of a query definition function is described in “Writing a Query Definition
Function” on page 12-52.

Note
The term query refers to any string of commands (and associated data)
that can be executed by a data server. A query can send data to a data
source, retrieve data from a data source, or reorganize the data in a
data source. The Data Access Manager does not interpret or execute the
query; it only implements the interface (sometimes called the application
program interface, or API) that allows you to send the query to the
data server. ◆

When you want to use the high-level routines to execute a query on a data server, you
first select a query document or allow the user to select one. You use high-level
routines to

■ get the query from the query document

■ execute the query definition function to modify the query

■ send the query to the data server

■ retrieve the results from any query that asks for information from the data source

■ convert to text the results returned by a query

For example, suppose a company that makes rubber ducks has a database on a
minicomputer that contains a mailing list of all its customers. The database has a
Data Access Language interface, and the company’s marketing manager has a
Macintosh computer with an application that uses high-level Data Access Manager
routines to communicate with the remote database server. As Figure 12-2 illustrates, the
marketing manager must also have a query document, created by another application,
that she can use to get an address from the mailing list on the remote minicomputer. The
query document can be as complex or as simple as its creator cares to make it; in this
example, the query document is designed specifically to obtain addresses from the
rubber duck mailing list. The marketing manager might have several other query
documents available as well: one to extract a mailing list for a specific zip code, one to
list all of the customers who have made a purchase within the last year, and so on.
About the Data Access Manager 12-7

C H A P T E R 1 2

Data Access Manager

Notice that once the query document has sent the query to the data server, the Data
Access Manager handles the data retrieval. Although query documents and high-level
Data Access Manager routines make it very easy for you to request data from a data
source, there is no way for a query document to verify that data sent to a data source has
been successfully received. For that reason, it is recommended that you use the low-level
interface to send data to a data source or update data in a data source.

Figure 12-2 Using high-level Data Access Manager routines

Sending a Query Through the High-Level Interface 12

To obtain a list of addresses from the mailing list, the marketing manager chooses the
Open Query menu command from the File menu in her application. From the list of
query documents displayed, she chooses one named Rubber Duck Address List.

Displays

data

User wants to obtain

a list of addresses

from mailing list

Query

document

Mailing list

database

Database server

Translates

data

Checks status of

server periodically

until data is available

Sends

query

Data

Access

ManagerDatabase-

naive

application

Query

document

File Edit Tools Colors ?

File Edit Tools Colors ?
12-8 About the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

The application calls the Data Access Manager function DBGetNewQuery, specifying the
resource ID of the query ('qrsc') resource in the Rubber Duck Address List query
document. The DBGetNewQuery function creates a query record and a partial query
from the information in the query resource. The partial query specifies the type of data
(character strings) and the columns from which the data items should come (the name
and address columns). The partial query lacks some specific data (the rows that should
be searched) that is needed to complete the search criteria.

Next, the application calls the DBStartQuery function, which in turn calls the query
definition function in the query document. The query definition function displays a
dialog box that asks for the purchase dates to search. When the marketing manager
types in the requested information and clicks OK, the query definition function adds the
data to the partial query in memory. The query is now ready to be executed.

Next, the DBStartQuery function sends the query to the Data Access Language
database extension, and the database extension sends the query over a communications
network to the remote Data Access Language server. Finally, the DBStartQuery
function commands the Data Access Language server to execute the query.

Retrieving Data Through the High-Level Interface 12

When the application is ready to retrieve the data that it requested from the database, the
application calls the DBGetQueryResults function. This function determines when the
data is available, retrieves it from the data server, and places the data in a record in
memory. The application can then call the DBResultsToText function, which uses
routines called result handlers to convert each data item to a character string. The
DBResultsToText function passes to the application a handle to the converted data.
The application then displays the list of customers for the marketing manager.

Data items and result handlers are described in “Processing Query Results” beginning
on page 12-37.

The Low-Level Interface 12
A database-aware application communicates through the low-level interface of the
Data Access Manager. You can use the low-level interface to

■ initiate communication with the data server, sending the user name, password, and
other information to the data server

■ send a query to the data server

■ execute the query that you have sent to the data server

■ halt execution of the query

■ return status and errors from the data server

■ send data to the data source

■ retrieve data from the data source
About the Data Access Manager 12-9

C H A P T E R 1 2

Data Access Manager

For example, suppose once again that a company that makes rubber ducks has a mailing
list of all of its customers in a database on a minicomputer, and the database has a Data
Access Language interface. This time, suppose the Macintosh application the marketing
manager is using calls low-level Data Access Manager routines to communicate with the
remote database server. Figure 12-3 illustrates the use of the low-level interface. Notice
that if you use the high-level interface (Figure 12-2), the query document and the
Data Access Manager prepare the query, send the query, retrieve the query results, and
translate the data for you. If you use the low-level interface, however, you must perform
these functions yourself.

Figure 12-3 Using low-level Data Access Manager routines

Sending a Query Through the Low-Level Interface 12

To update the mailing list with a new address for customer Marvin M., the marketing
manager enters the new address into her application. The application prepares a Data
Access Language statement (a query) that specifies the type of data (a character string),
the column into which the data item should go (the address column), the row to be
modified (the Marvin M. row), plus the actual data the application wishes to send
(Marvin M.’s address). The application then passes this query to the Data Access

Application checks status

of server periodically

until data is available

Data

Access

Manager

Displays

data

Mailing list

database

Database server

File Edit Tools Colors ?

Database-

aware

application

Sends

query

Starts

session

Sends

query

Starts

session

File Edit Tools Colors ?

User wants to obtain

a list of addresses

from mailing list
12-10 About the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

Manager using the low-level interface. (The application can send the query in several
pieces or all at once.) The Data Access Manager sends the query to the Data Access
Language database extension in the Macintosh computer, and the database extension
sends the query to the remote Data Access Language server.

Retrieving Data Through the Low-Level Interface 12

Once the query begins executing, the application can periodically check with the data
server to determine whether the data is ready (Figure 12-3). When the data is available,
the application must retrieve it one data item at a time. An application that uses the
low-level interface must determine the data type of each data item, convert the data into
a format that is meaningful to the user, and store the data in memory allocated by the
application. Data types are described in “Getting Query Results” beginning on
page 12-37.

Note that neither the Data Access Manager nor the DAL database extension reads,
modifies, or acts on the query that an application sends to the data server. The
data server does execute the query, causing the data source to accept new data or
prepare data for the application. To use the low-level interface to communicate with a
data server, your application must be capable of preparing a query that can be executed
by the data server.

Comparison of the High-Level and Low-Level Interfaces 12
An application that uses the low-level interface to send a query to the data server must
prepare the query, initiate communication with the data server, send the query to the
data server, and execute the query. If it requested data to be returned, the application
must determine when the data is ready, and retrieve the data one item at a time. Each
step in this process requires calling one or more low-level routines.

The high-level interface between the Data Access Manager and the application, in
contrast, consists of only a few routines, each of which might call several low-level
routines to accomplish its tasks. For example, a single high-level function can call the
query definition function, initiate communication with the data server, send the query to
the data server, and execute the query.

Because the high-level interface is very easy to use and requires no specific knowledge of
the data source or database server, you can add high-level data access to your
application very easily. Then, whenever someone provides a query document for use
with a specific data server, the user can take advantage of the data access capability
included in your application. However, because there is no way for a query document to
verify that data sent to a data source has been successfully received, it is recommended
that you use the low-level interface to send data to a data source or update data in a data
source.

Although in concept the low-level routines and high-level routines serve separate
purposes, there is nothing to prevent you from using calls to both in a single application.
For example, you might use low-level routines to send a query to a data server and
high-level routines to read the results and convert them to text.
About the Data Access Manager 12-11

C H A P T E R 1 2

Data Access Manager

Using the Data Access Manager 12

There are at least three different ways in which you can use the Data Access Manager to
communicate with a data source. You can

■ use low-level interface routines to send queries and retrieve data from the data source.
In this case, your application must be capable of preparing a query in a language
appropriate for the data server.

■ use high-level interface routines to send queries and retrieve data from the data
source. In this case, you must have one or more query documents provided by
another application.

■ create your own query documents and use high-level interface routines to send
queries and retrieve data from the data source. In this case, your application must be
capable of preparing a query, but it can use the same query repeatedly once it has
been prepared.

This section describes how to use the high-level and low-level interfaces to the Data
Access Manager to send queries to a data server. This section also describes how to call
Data Access Manager functions asynchronously, how to determine the status of the
high-level functions at various points in their execution (and cancel execution if you so
desire), how to obtain information about Data Access Manager sessions that are in
progress, and how to retrieve query results and convert them to text.

Executing Routines Asynchronously 12
All of the Data Access Manager low-level routines and some of the high-level routines
can execute asynchronously—that is, the routine returns control to your application
before the routine has completed execution. Your application must call the Event
Manager’s WaitNextEvent function periodically to allow an asynchronous routine to
complete execution.

Note
The database extension is responsible for implementing asynchronous
execution of Data Access Manager routines. For example, if you call the
DBSend function to send a query to a data server, and the database
extension calls a device driver, the database extension can return control
to your application as soon as the device driver has placed its routine in
the driver input/output (I/O) queue. If you attempt to execute a routine
asynchronously and the database extension that the user has selected
does not support asynchronous execution, the routine returns a result
code of rcDBAsyncNotSupp and terminates execution. ◆

All Data Access Manager routines that can execute asynchronously take as a parameter a
pointer to a parameter block known as the asynchronous parameter block. If the value of
this pointer is NIL, the function is executed synchronously—that is, the routine does not
return control to your application until execution is complete.
12-12 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

General Guidelines for the User Interface 12
When you use the Data Access Manager to provide data access, you should keep two
important principles in mind: keep the user in control, and provide feedback to the user.

Keep the User in Control 12

When designing a data access feature or application, keep in mind that the user should
have as much access to the Macintosh computer’s abilities as possible. Design your
application so that most of the data access process happens in the background. Call the
Data Access Manager asynchronously whenever the database extension you are using
supports asynchronous calls. Because data retrieval queries can take minutes or even
hours to complete, they should always run in the background.

After issuing a query, return control of the computer to users so that they may work on
other tasks or switch to other applications while the query runs. Whenever a background
task requires the user’s attention, follow the suggestions in Macintosh Human Interface
Guidelines regarding user notification. A background task should never take control from
the user by posting an alert box in front of the active application’s windows. Any
message that you post should identify the query that requires attention. For example, an
alert box might display the message “The query Get Employee Information was canceled
because the connection was unexpectedly broken.”

If your application allows more than one simultaneous connection to data sources or
allows more than one query document to run, provide a modeless window that lists the
open connections and queries, displays the status of each, and allows the user to cancel
them if necessary.

Allow the user to limit the amount of disk space that must remain free after any
transaction. For example, a user may wish to specify that 1 MB of space always be free.
Cancel any transaction that would exceed the user’s limit and notify the user.

Provide Feedback to the User 12

Keep the user informed about status, progress, and error conditions, and allow the user
to cancel an interaction whenever possible. Inform the user before the application
becomes modal and the computer becomes unavailable. Use the spinning beach ball
cursor or the animated wristwatch cursor to indicate a process that takes several seconds
to complete. Use a dialog box to indicate any process that lasts longer than a few
seconds. For example, connecting to a remote database could take a couple of minutes.
In this case include a Cancel button in the dialog box so that the user can cancel the
operation. When possible, display a progress indicator to show how long a process lasts.
Warn the user before doing anything potentially dangerous or irreversible, such as
deleting all of a user’s data files to replace them with data retrieved from a data source.

When a data retrieval query terminates prematurely, make the retrieved data available to
the user but warn the user that it is incomplete. The user can then evaluate the partial
data before deciding whether to run the query again.
Using the Data Access Manager 12-13

C H A P T E R 1 2

Data Access Manager

Using the High-Level Interface 12
Use the high-level interface to the Data Access Manager if you want to use a query
document to do the work of communicating with a data source. You can use the
high-level interface to open a query document, execute the query definition function in
the query document, establish communication (initiate a session) with a data server,
send the query to the data server, execute the query, retrieve any data requested by the
query, and convert the retrieved data to text. Although two or three high-level routines
accomplish most of these tasks, you may need to call a few low-level routines as well to
control a session with a data server.

Applications that implement this type of data access must provide user control and
feedback as described in “General Guidelines for the User Interface” on page 12-13. In
addition, you should include an Open Query command in the File menu. The Open
Query command is equivalent to the Open (file) command in meaning. When the user
chooses this command, display an open file dialog box filtered to show only query
documents (file type 'qery'). The user can then select the desired query document. The
query document contains the query to be sent to the data source. Depending on the type
of query, the data source could receive information, send back information, report the
status of the data source, or perform some other task.

Figure 12-4 is a flowchart of a typical session using the high-level interface.
As Figure 12-4 illustrates, you must follow this procedure to use the high-level interface:

1. Call the InitDBPack function to initialize the Data Access Manager.

2. Select the query document that you want to use and determine the resource ID of the
'qrsc' resource in that query document. You can use any method you like to select
the query document. One possibility is to use the StandardGetFile procedure to let
the user select the query document. A query document should contain only one
'qrsc' resource; you can then use the Resource Manager to determine the
resource ID of the 'qrsc' resource in the document that the user selected. For
further information, see the description of the StandardGetFile procedure in
the chapter “Standard File Package” in Inside Macintosh: Files and the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

3. Call the DBGetNewQuery function. The DBGetNewQuery function creates in memory
a data structure called a query record from the 'qrsc' resource that you specify.

4. Call the DBStartQuery function specifying the handle to the query record that you
created with the DBGetNewQuery function (step 3).
You should also provide the DBStartQuery function with a handle to your status
routine. A status routine is a routine that you provide to update windows, check the
results of the low-level calls made by the DBStartQuery and DBGetQueryResults
functions, and cancel execution of these functions when you consider it appropriate to
do so.
12-14 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Figure 12-4 A flowchart of a session using the high-level interface

InitDBPack

Yes

Yes

Yes

No

Yes

Yes

No

No

Quit

DBInit

DBGetQueryResults

DBGetNewQuery

DBStartQuery

DBResultsToText

DBDisposeQuery

DBEnd

Convert

data to

text?

Let Data

Access Manager

initiate

communication

for you?

Requested

data?

Use same

query record

again?

Use new

query

document?

Open

another

session?

Yes

No

No

No
Using the Data Access Manager 12-15

C H A P T E R 1 2

Data Access Manager
The DBStartQuery function calls the query definition function (if any) referred to by
the query record. The query definition function can prompt the user for information
and modify the query record.
After the query definition function has completed execution, the DBStartQuery
function calls your status routine so that you can update your windows if necessary.
The DBStartQuery function then checks whether communication has been
established with the data server. If not, it calls your status routine so that you can
display a status dialog box and then calls the DBInit function to establish
communication (initiate a session) with the data server. The DBStartQuery function
obtains the values it needs for the DBInit function parameters from the query record.
When the DBInit function completes execution, the DBStartQuery function calls
your status routine again.
The DBInit function returns an identification number, called a session ID. This
session ID is unique; no other current session, for any database extension, has the
same session ID. You must specify the session ID any time you want to send data to or
retrieve data from this session. If you prefer, you can use the DBInit function to
establish communication before you call the DBStartQuery function. In that case,
you must specify the session ID as an input parameter to the DBStartQuery
function. See “Using the Low-Level Interface” beginning on page 12-28 for more
information on using the DBInit function.
Once communication has been established, the DBStartQuery function calls the
DBSend function to send the data server the query specified by the query record.
When the DBSend function has completed execution, the DBStartQuery function
calls your status routine. Finally, the DBStartQuery function uses the DBExec
function to execute the query. The DBStartQuery function calls your status routine
after the DBExec function has completed execution (that is, the query has started
executing and the DBExec function has returned control to the DBStartQuery
function) and again just before the DBStartQuery function completes execution.

5. If you requested data and want to know when the data is available, but do not want
to retrieve the data immediately, you can call the DBState function. This function
tells you when the data server has finished executing the query, but it does not
retrieve the data. If you requested data and want to retrieve it as soon as it is
available, you do not have to call the DBState function; go to step 6 instead.
If you did not request data, you can use the DBState function to determine the status
of the query. When the data server has finished executing the query, skip to step 8.

6. Call the DBGetQueryResults function. If the query has not finished executing, this
function returns the rcDBExec result code. If the query has finished executing, the
DBGetQueryResults function calls the DBGetItem function repeatedly until the
data server has returned all of the data available.
The DBGetQueryResults function puts the returned data into a record that contains
handles to arrays that contain the data, the type of data in each column, and the
length of each data item. The Data Access Manager allocates the memory for this data
in the application heap.
12-16 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The DBGetQueryResults function calls your status routine after it retrieves each
data item. You can use this opportunity to display the data item for the user
and to give the user the opportunity to cancel execution of the function. The
DBGetQueryResults function also calls your status routine just before completing
execution, so that you can dispose of any memory allocated by the status routine,
remove any dialog box that you displayed, and update your windows if necessary.
To convert the returned data to text, go to the next step. If you do not want to convert
the returned data to text, skip to step 9.

7. Call the DBResultsToText function. This function calls a result handler function for
each data type. The result handler converts the data to text, places it in a buffer, and
returns a handle to the buffer. Some result handlers are provided with the Data Access
Manager; you can provide as many with your application as you wish. Result
handlers are discussed in “Converting Query Results to Text” beginning on
page 12-43.

8. If you are finished using the query record, call the DBDisposeQuery function to
dispose of the query record and free all the memory associated with the query record.
If you want to reuse the same query, return to step 5. You should close the query
document when you are finished using it.
If you want to use a new query document, return to step 3.

9. When you are finished using the data source, you must use the DBEnd function to
terminate the session. You must call the DBEnd function after the DBInit function has
returned a nonzero session ID, even if it also returned an error.

Listing 12-1 illustrates the use of the high-level interface. This code initiates a session
with a remote database, lets the user select a query document to execute, opens the
selected file, finds a 'qsrc' resource, and creates a query record. Next, it executes the
query, checks the status of the remote database server, retrieves the data when it’s
available, and converts this data to text. When the query has finished executing, the code
disposes of the query record, ends the session, and closes the user-selected query
document. In general, there’s no reason why there can’t be multiple sessions open at
once. You can identify each session by its session ID. Listing 12-1 shows just one session.

Listing 12-1 assumes that you are using a database extension that supports asynchronous
execution of Data Access Manager routines. This listing shows just one possible
approach to sending a query and retrieving data asynchronously.
Using the Data Access Manager 12-17

C H A P T E R 1 2

Data Access Manager
Listing 12-1 Using the high-level interface

PROCEDURE MyHiLevel(VAR rr: ResultsRecord; myTextHdl: Handle;

VAR thisSession: LongInt; VAR sessErr: OSErr);

TYPE

{define a record to include space for the current value in }

{ A5 so a completion routine can find it}

CRRec = RECORD

QPB: DBAsyncParamBlockRec; {the parameter block}

appsA5: LongInt; {append A5 to the }

{ parameter block}

END;

CRRecPtr = ^CRRec;

VAR

StartPB, GetQRPB: CRRec;

SFR: StandardFileReply;

packErr, startQErr, getQErr, disposeQErr: OSErr;

getnewQErr, gStartQErr, gGetQRErr: OSErr;

endErr, fsopenErr, fscloseErr, resultsErr: OSErr;

gStart, gQueryResults: Boolean;

qrscHandle: Handle;

rsrcID: Integer;

rsrcType: ResType;

rsrcName: Str255;

myQHandle: QueryHandle;

savedResFile: Integer;

typeList: SFTypeList;

fsRefNum: Integer;

FUNCTION GetQPB: CRRecPtr;

INLINE $2E88; {MOVE.L A0,(SP)}

BEGIN

gStart := FALSE;

gQueryResults := FALSE;

sessErr := noErr; {assume everything went fine}

packErr := InitDBPack; {initialize the Data Access Mgr}

{display a dialog box to let the user pick a query document}

typeList[0] := 'qery';

StandardGetFile(NIL, 1, typeList, SFR);

IF SFR.sfGood = TRUE THEN

fsopenErr := FSpOpenRF(SFR.sfFile, fsCurPerm, fsRefNum);

IF (fsopenErr <> noErr) OR (SFR.sfGood = FALSE) THEN
12-18 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
BEGIN

sessErr := fsopenErrOrUserCanceled;

EXIT(MyHiLevel);

END;

savedResFile := CurResFile; {save current resource file}

UseResFile(fsRefNum); {get query info from here}

{a query document should have only one 'qrsc' resource}

qrscHandle := Get1IndResource('qrsc', 1);

IF ResError <> noErr THEN

BEGIN

sessErr := ResError;

EXIT(MyHiLevel);

END;

{get the resource ID of the 'qrsc' resource}

GetResInfo(qrscHandle, rsrcID, rsrcType, rsrcName);

{create a query record using the resource ID}

getnewQErr := DBGetNewQuery(rsrcID, myQHandle);

IF getnewQErr <> noErr THEN

BEGIN

sessErr := getnewQErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

StartPB.QPB.completionProc := @MyStartCompRoutine;

StartPB.appsA5 := SetCurrentA5; {save this for the }

{ completion routine}

{MyStartStatus is a status routine that handles messages sent }

{ by the DBStartQuery function when it calls a low-level }

{ function}

startQErr := DBStartQuery(thisSession, myQHandle,

@MyStartStatus, @StartPB);

IF startQErr <> noErr THEN

BEGIN

sessErr := startQErr;

IF thisSession <> 0 THEN

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

WHILE NOT gStart DO {while waiting for gStart to go TRUE, }

BEGIN { MyGoDoSomething calls WaitNextEvent }

MyGoDoSomething; { to give other routines a chance to run}

END; {while}

{the DBStartQuery call has completed}
Using the Data Access Manager 12-19

C H A P T E R 1 2

Data Access Manager
IF gStartQErr <> noErr THEN

BEGIN

sessErr := gStartQErr;

IF thisSession <> 0 THEN

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

GetQRPB.QPB.completionProc := @MyGetQRCompRoutine;

GetQRPB.appsA5 := SetCurrentA5; {save this for the }

{ completion routine}

{MyGetQRStatus is a status routine that handles messages sent }

{ by the DBGetQueryResults function when it calls a low-level }

{ function.}

getQErr := DBGetQueryResults(thisSession, rr, kDBWaitForever,

@MyGetQRStatus, @GetQRPB);

IF getQErr <> noErr THEN

BEGIN

sessErr := getQErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

WHILE NOT gQueryResults DO

BEGIN

MyGoDoSomething;

END; {while}

{The DBGetQueryResults call has completed. Assuming the call }

{ completed successfully, you may want to convert the }

{ retrieved data to text, return memory you have borrowed, }

{ and end the session.}

IF gGetQRErr <> noErr THEN

BEGIN

sessErr := gGetQRErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

{the data has been retrieved; convert it to text}

resultsErr := DBResultsToText(rr, myTextHdl);

{The current query is finished. You can elect to execute }

{ the next 'qrsc' resource of the file, or select another }

{ query document. This example just returns to the caller.}

disposeQErr := DBDisposeQuery(myQHandle);

UseResFile(savedResFile);{restore current resource file}

fscloseErr := FSClose(fsRefNum); {close the query document}
12-20 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
IF fscloseErr <> noErr THEN

DoError(fscloseErr);

endErr := DBEnd(thisSession, NIL);

IF endErr <> noErr THEN

DoError(endErr);

END;

Listing 12-2 shows the completion routines MyStartCompRoutine and
MyGetQRCompRoutine used in Listing 12-1.

Listing 12-2 Two completion routines

PROCEDURE MyStartCompRoutine(aCRRecPtr: CRRecPtr);

VAR

curA5: LongInt;

BEGIN

aCRRecPtr := GetQPB; {get the param block}

curA5 := SetA5(aCRRecPtr^.appsA5); {set A5 to the app's A5}

gStart := TRUE; {query has been started}

gStartQErr := aCRRecPtr^.QPB.result;{send back result code}

{do whatever else you want to do}

curA5 := SetA5(curA5);{restore original A5}

END; {MyStartCompRoutine}

PROCEDURE MyGetQRCompRoutine(aCRRecPtr: CRRecPtr);

VAR

curA5: LongInt;

BEGIN

aCRRecPtr := GetQPB; {get the param block}

curA5 := SetA5(aCRRecPtr^.appsA5); {set A5 to the app's A5}

gQueryResults := TRUE;{query results are complete}

gGetQRErr := aCRRecPtr^.QPB.result; {send back the result code}

{do whatever else you want to do}

curA5 := SetA5(curA5); {restore original A5}

END; {MyGetQRCompRoutine}

The next section provides information about status routines.
Using the Data Access Manager 12-21

C H A P T E R 1 2

Data Access Manager
Writing a Status Routine for High-Level Functions 12
Both of the two main high-level functions, DBStartQuery and DBGetQueryResults,
call low-level functions repeatedly. After each time they call a low-level function, these
high-level functions call a routine that you provide, called a status routine. Your status
routine can check the result code returned by the low-level function and can cancel
execution of the high-level function before it calls the next low-level function. Your status
routine can also update your application’s windows after the DBStartQuery function
has displayed a dialog box.

You provide a pointer to your status routine in the statusProc parameter to the
DBStartQuery and DBGetQueryResults functions.

Here is a function declaration for a status routine:

FUNCTION MyStatusFunc (message: Integer; result: OSErr;

 dataLen: Integer; dataPlaces: Integer;

 dataFlags: Integer; dataType: DBType;

 dataPtr: Ptr): Boolean;

Your status routine should return a value of TRUE if you want to continue execution of
the DBStartQuery or DBGetQueryResults function, or a value of FALSE if you want
to cancel execution of the function. In the latter case, the high-level function returns the
userCanceledErr result code.

Note
If you call the DBStartQuery or DBGetQueryResults function
asynchronously, you cannot depend on the A5 register containing a
pointer to your application’s global variables when the Data Access
Manager calls your status routine. ◆

The message parameter tells your status routine the current status of the high-level
function that called it. The possible values for the message parameter depend on
which function called your routine.

The value of the result parameter depends on the value of the message parameter, as
summarized in the following list:

Message Result

kDBUpdateWind 0

kDBAboutToInit 0

kDBInitComplete Result of DBInit

kDBSendComplete Result of DBSend

kDBExecComplete Result of DBExec

kDBStartQueryComplete Result of DBStartQuery

kDBGetItemComplete Result of DBGetItem

kDBGetQueryResultsComplete Result of DBGetQueryResults
12-22 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The dataLen, dataPlaces, dataFlags, dataType, and dataPtr parameters are
returned only by the DBGetQueryResults function, and only when the message
parameter equals kDBGetItemComplete. When the DBGetQueryResults function
calls your status routine with this message, the dataLen, dataPlaces, and dataType
parameters contain the length, decimal places, and type of the data item retrieved,
respectively, and the dataPtr parameter contains a pointer to the data item.

The least significant bit of the dataFlags parameter is set to 1 if the data item is in the
last column of the row. The third bit of the dataFlags parameter is set to 1 if the data
item is NULL. You can use this information, for example, to check whether the data meets
some criteria of interest to the user, or to display each data item as the DBGetItem
function receives it. You can use the constants kDBLastColFlag and kDBNullFlag to
test for these flag bits.

The DBGetQueryResults function returns a results record, which contains a handle to
the retrieved data. The address in the dataPtr parameter points inside the array
specified by this handle. Because the dataPtr parameter is not a pointer to a block of
memory allocated by the Memory Manager, but just a pointer to a location inside such a
block, you cannot use this pointer in any Memory Manager routines (such as the
GetPtrSize function). Note also that you cannot rely on this pointer remaining valid
after you return control to the DBGetQueryResults function.

The DBStartQuery function can send to your status routine the following constants in
the message parameter:

CONST {DBStartQuery status messages}

kDBUpdateWind = 0; {update windows}

kDBAboutToInit = 1; {about to call DBInit}

kDBInitComplete = 2; {DBInit has completed}

kDBSendComplete = 3; {DBSend has completed}

kDBExecComplete = 4; {DBExec has completed}

kDBStartQueryComplete = 5; {DBStartQuery is about to }

{ complete}

DBStartQuery message
constant Meaning

kDBUpdateWind The DBStartQuery function has just called a
query definition function. Your status routine
should process any update events that your
application has received for its windows.

kDBAboutToInit The DBStartQuery function is about to call the
DBInit function to initiate a session with a data
server. Because initiating the session might involve
establishing communication over a network, and
because in some circumstances the execution of a
query can tie up the user’s computer for some
length of time, you might want to display a dialog
box giving the user the option of canceling
execution at this time.
Using the Data Access Manager 12-23

C H A P T E R 1 2

Data Access Manager
continued

kDBInitComplete The DBInit function has completed execution.
When the DBStartQuery function calls your
status routine with this message, the result
parameter contains the result code returned by the
DBInit function. If the DBInit function returns
the noErr result code, the DBStartQuery
function calls the DBSend function next. If the
DBInit function returns any other result code,
you can display a dialog box informing the user of
the problem before returning control to the
DBStartQuery function. The DBStartQuery
function then returns an error code and stops
execution.

kDBSendComplete The DBSend function has completed execution.
When the DBStartQuery function calls your
status routine with this message, the result
parameter contains the result code returned by the
DBSend function. If the DBSend function returns
the noErr result code, the DBStartQuery
function calls the DBExec function next. If the
DBSend function returns any other result code,
you can display a dialog box informing the user of
the problem before returning control to the
DBStartQuery function. The DBStartQuery
function then returns an error code and stops
execution.

kDBExecComplete The DBExec function has completed execution.
When the DBStartQuery function calls your
status routine with this message, the result
parameter contains the result code returned by the
DBExec function. If the DBExec function returns
the noErr result code, the DBStartQuery
function returns control to your application next. If
the DBExec function returns any other result code,
you can display a dialog box informing the user of
the problem before returning control to the
DBStartQuery function. The DBStartQuery
function then returns an error code and stops
execution.

kDBStartQueryComplete The DBStartQuery function has completed
execution and is about to return control to your
application. The function result is in the result
parameter passed to your status routine. Your
status routine can use this opportunity to perform
any final tasks, such as disposing of memory that it
allocated or removing from the screen any dialog
box that it displayed.

DBStartQuery message
constant Meaning (continued)
12-24 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The DBGetQueryResults function can send to your status routine the following
constants in the message parameter:

CONST {DBGetQueryResults status messages}

kDBGetItemComplete = 6; {DBGetItem has completed}

kDBGetQueryResultsComplete = 7; {DBGetQueryResults has }

{ completed}

Listing 12-3 shows a status routine for the DBStartQuery function. This routine
updates the application’s windows in response to the kDBUpdateWind message,

DBGetQueryResults message
constant Meaning

kDBGetItemComplete The DBGetItem function has completed
execution. When the DBGetQueryResults
function calls your status routine with this
message, the result parameter contains the
result code returned by the DBGetItem
function. The DBGetQueryResults
function also returns values for the
dataLen, dataPlaces, dataType,
dataFlags, anddataPtr parameters, as
discussed earlier in this section.

For each data item that it retrieves, the
DBGetQueryResults function calls
the DBGetItem function twice: once to
obtain information about the next data item
and once to retrieve the data item. The
DBGetQueryResults function calls your
status routine only after calling the
DBGetItem function to retrieve a data item.

If your status routine returns a function
result of FALSE in response to the
kDBGetItemComplete message, the results
record returned by the
DBGetQueryResults function to your
application contains data through the last
full row retrieved.

Data types and results records are described
in “Getting Query Results” beginning on
page 12-37.

kDBGetQueryResultsComplete The DBGetQueryResults function has
completed execution and is about to return
control to your application. The function
result is in the result parameter passed to
your status routine. Your status routine can
use this opportunity to perform any final
tasks, such as disposing of memory that it
allocated or removing from the screen any
dialog box that it displayed.
Using the Data Access Manager 12-25

C H A P T E R 1 2

Data Access Manager
displays a dialog box giving the user the option of canceling before the data access is
initiated, and checks the results of calls to the DBInit, DBSend, and DBExec functions.
If one of these functions returns an error, the status routine displays a dialog box
describing the error.

Listing 12-3 A sample status routine

FUNCTION MyStartStatus(message: Integer; result: OSErr;

 dataLen: Integer; dataPlaces: Integer;

dataFlags: Integer; dataType: DBType;

dataPtr: Ptr): Boolean;

VAR

myString: Str255;

continue: Boolean;

BEGIN

continue := TRUE; {assume user wants to continue with query}

CASE message OF

kDBUpdateWind: {a qdef function has just been called; }

BEGIN { handle activate and update events}

MyDoActivate; {find and handle activate events}

MyDoUpdate; {find and handle update events}

END; {kDBUpdateWind}

kDBAboutToInit: {about to initiate a session}

BEGIN {MyDisplayDialog displays a dialog box. The value }

{ returned in the continue variable indicates }

{ whether DBStartQuery should continue.}

myString := 'The Data Access Manager is about to open a

session. This could take a while. Do you

want to continue?';

MyDisplayDialog(@myString, continue);

END; {kDBAboutToInit}

kDBInitComplete: {the DBInit function has completed execution}

BEGIN

IF result <> noErr THEN {if there's an error, }

BEGIN { let the user know what it is}

CASE result OF

rcDBError:

BEGIN

myString := 'The Data Access Manager was unable to

open the session. Please check your

connections and try again later.';

MyDisplayString(@myString);

END; {rcDBError}
12-26 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
rcDBBadDDev:

BEGIN

myString := 'The Data Access Manager cannot find

the database extension file it needs to

open a session. Check with your system

administrator for a copy of the file.';

MyDisplayString(@myString);

END; {rcDBBadDDev}

OTHERWISE

BEGIN

myString := 'The Data Access Manager was unable to

open the session. The error code

returned was';

MyDisplayError(@myString, result);

END; {of otherwise}

END; {of CASE result}

END; {of result <> noErr}

END; {kDBInitComplete}

kDBSendComplete: {the DBSend function has completed execution}

BEGIN

{if there's an error, let the user know what it is}

IF result <> noErr THEN

BEGIN

IF result = rcDBError THEN

BEGIN

myString := 'An error occurred while the Data

Access Manager was trying to send the

query. Please try again later.';

MyDisplayString(@myString);

END

ELSE

BEGIN

myString := 'An error occurred while the Data

Access Manager was trying to send the

query. The error code returned was';

MyDisplayError(@myString, result);

END;

END; {of result <> noErr}

END; {kDBSendComplete}

kDBExecComplete: {the DBExec function has completed execution}

BEGIN

IF result <> noErr THEN {if there's an error, }

BEGIN { let the user know what it is}
Using the Data Access Manager 12-27

C H A P T E R 1 2

Data Access Manager
IF result = rcDBError THEN

BEGIN

myString := 'The Data Access Manager was unable to

execute the query. There may be a problem

with the query document or the database.

Check with your system administrator.';

MyDisplayString(@myString);

END

ELSE

BEGIN

myString := 'An error occurred while the Data

Access Manager was trying to execute the

query. The error code returned was';

MyDisplayError(@myString, result);

END;

END; {of result <> noErr}

END; {kDBExecComplete}

kDBStartQueryComplete:{the DBStartQuery function is about }

BEGIN { to return control to your application}

{clean up memory and any dialog boxes left on the screen}

MyCleanUpWindows;

END; {kDBStartQueryComplete}

END; {CASE message}

MyStartStatus := continue;

END;

Using the Low-Level Interface 12
You can use the low-level interface to establish communication (initiate a session) with a
data server, send a query to the data server, execute the query, and retrieve any data
requested by the query. You call one or more low-level routines to accomplish each of
these tasks.

Applications that implement this type of data access must provide user control and
feedback, as described in “General Guidelines for the User Interface” on page 12-13.
When the data source is ready to return data, you can retrieve it all and then display it to
the user, or you can display the data as it arrives. If the data arrives slowly, it’s best to
display it one record at a time as it arrives. This way the user can preview the data,
decide if it’s the desired information, and cancel the query if not.

Figure 12-5 is a flowchart of a typical session using the low-level interface. As Figure 12-5
illustrates, you must follow this procedure to use the low-level interface:

1. Call the InitDBPack function to initialize the Data Access Manager.

2. Call the DBInit function to establish communication with the data server. The
DBInit function returns an identification number, called a session ID. This session ID
12-28 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
is unique; no other current session, for any database extension, has the same
session ID.
Using the Data Access Manager 12-29

C H A P T E R 1 2

Data Access Manager
Figure 12-5 A flowchart of a session using the low-level interface

Command

string

Data

item

Yes

No

Yes

Quit

InitDBPack

DBInit

NoNo

No

No

No

DBSendItem DBSend

DBExec

DBState

DBGetItem

DBEnd

Query

complete?

Command string

or

data item?

Query finished

executing?

Requested

data?

Last data

item?

Send

another

query?

Open

another

session?

Yes

Yes

Yes

Yes
12-30 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
You must specify the session ID any time you want to send data to or retrieve data
from this session.
The DBInit function requires as input parameters the name of the database extension
and character strings for the host system, user name, password, and connection string.
All of these parameters depend on the user and the user’s computer system,
including the specific database extension, host computer, data server, and database
management software in use. You will not know the user name and password when
you are writing an application, and you might not know the values of any of these
parameters. Therefore, you must display a dialog box that prompts the user for the
necessary information.
Depending on the database extension you are using, the DBInit function
might return a session ID of zero if it fails to initiate a session, or it might return
a nonzero session ID and a result code other than noErr. In the latter case, you
can pass the session ID to the DBGetErr function to determine the cause of the error.
If the DBInit function returns a nonzero session ID and a result code other than
noErr, you must call the DBEnd function before making another attempt to open
the session.

3. Prepare a query, and send it to the data server by calling the DBSend and
DBSendItem functions one or more times.
An application that uses the low-level interface must be capable of creating a query
for the data server in the language and format required by that data server.
The DBSend function sends a query or a portion of a query to the data server. The
data server appends this portion of the query to any portion you sent previously.
Because the Data Access Manager and data server do not modify the string you send
in any way, they do not insert any delimiter between fragments of queries that you
send to the data server. If you want a blank or a semicolon to be included between
query fragments, or if you want to use return characters to divide the query into lines
of text, you must include them in the character string that you send with the DBSend
function. The data string that you send with the DBSend function can be any length
up to 64 KB.
The DBSendItem function sends a single data item to the data server. Use the
DBSendItem function to send data items to the data source in the same format as
they are retrieved from the data source by the DBGetItem function. You must specify
the data type as an input parameter and, for any data type that does not have an
implied length, you must specify the length as well. The database extension or the
data server (depending on how the system is implemented) converts the data item to
a character string and appends it to the query, just as a query program fragment is
appended to the query by the DBSend function.
You can call the DBSend and DBSendItem functions as many times as you wish to
send your query to the data server.
Listing 12-4 sends the Data Access Language query fragment “print 451+222;” to
the Data Access Language server.
Using the Data Access Manager 12-31

C H A P T E R 1 2

Data Access Manager
Listing 12-4 Sending a query fragment

FUNCTION MySendFragment(sessID: LongInt): OSErr;

VAR

value1: LongInt;

value2: LongInt;

text1, text2, text3: Str15;

text1Ptr, text2Ptr, text3Ptr: Ptr;

rc: OSErr;

BEGIN

text1 := 'print ';

value1 := 451;

text2 := '+';

value2 := 222;

text3 := ';';

MySetTextPtrs(text1, text1Ptr, text2, text2Ptr,

text3, text3Ptr);

rc := DBSend (sessID, text1Ptr, LENGTH(text1), NIL);

IF rc = noErr THEN

rc := DBSendItem (sessID, typeInteger, 0, 0, 0,

Ptr(ORD(@value1)), NIL);

IF rc = noErr THEN

rc := DBSend (sessID, text2Ptr, LENGTH(text2), NIL);

IF rc = noErr THEN

rc := DBSendItem (sessID, typeInteger, 0, 0, 0,

Ptr(ORD(@value2)), NIL);

IF rc = noErr THEN

rc := DBSend (sessID, text3Ptr, LENGTH(text3), NIL);

MySendFragment := rc;

END;

4. Use the DBExec function to initiate execution of the query.
Depending on the way the system you are using is implemented, the DBExec
function might return control to your application as soon as the query has begun
execution.

5. Use the DBState function to determine the status of the data source.
The DBState function tells you when the data server has finished executing the
query you just sent. If you have requested data, the data server stores the data you
requested but does not send it to your application until you request it explicitly. The
DBState function tells you when the data is available; if data is available, go to step
6. If you wish to send another query, return to step 3. If you are finished using the
data source, skip to step 7.
12-32 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
6. Call the DBGetItem function repeatedly to retrieve the data.
The DBGetItem function retrieves the next data item from the data server. You can
also use this function to obtain information about the next data item without
retrieving the data. When you use the DBGetItem function to retrieve a data item,
you must specify the location and size of the buffer into which the function is to place
that item. If you know beforehand what kind of data to expect, you can allocate a
buffer of the exact size you need. If you do not know what type of data to expect, you
can first call the DBGetItem function with a NIL pointer to the data buffer. The
DBGetItem function then returns information about the next data item without
actually retrieving it. You can then allocate the appropriate buffer and call
DBGetItem again.
Alternatively, to avoid calling DBGetItem twice for each data item, you can allocate
a buffer that you expect to be of sufficient size for any data item and call
the DBGetItem function. If the buffer is not large enough for the data item, the
DBGetItem function returns the rcDBError result code, but still returns information
about the data item. You can then allocate the necessary buffer, call the DBUnGetItem
function to go back one data item, and call the DBGetItem function again to retrieve
the data item a second time.
The DBGetItem function includes a timeout parameter that you can use to specify
the maximum amount of time that the database extension should wait to receive
results from the data server before canceling the command. If the database extension
you are using does not support asynchronous execution of routines, you can use the
timeout parameter to return control to your application while a query is executing.
To use the timeout parameter in this way, call the DBGetItem function periodically,
specifying a brief period of time for the timeout parameter. Your application can
then retrieve the next data item as soon as execution of the query is complete without
having to call the DBState function to determine when data is available. The
DBGetItem function ignores the timeout parameter if you make an asynchronous
call to this function.

7. When you are finished using the data source, you must use the DBEnd function to
terminate the session. You must call the DBEnd function after the DBInit function has
returned a nonzero session ID, even if it also returned an error.

The procedure in Listing 12-5 uses the low-level interface to send a Data Access
Language routine to the Data Access Language server on a remote computer and then
retrieves the results. The procedure initiates a session with a remote database and calls
the MySendFragment routine (Listing 12-4) to send a query. Next, it executes the query,
checks the status of the remote database server, and retrieves the data when it’s
available. This example retrieves only one data item. To retrieve more than one data
item, put the data-retrieval code in a loop.

Listing 12-5 assumes that the database extension does not support asynchronous
execution of Data Access Manager routines. For an example of asynchronous execution
of routines, see Listing 12-1 beginning on page 12-18.
Using the Data Access Manager 12-33

C H A P T E R 1 2

Data Access Manager
Listing 12-5 Using the low-level interface

PROCEDURE MyLoLevel(VAR thisSession: LongInt; VAR sessErr: OSErr);

VAR

theDDevName: Str63;

theHost, theUser: Str255;

thePasswd, theConnStr: Str255;

packErr, initErr, sendErr, execErr: OSErr;

stateErr, getErr, endErr: OSErr;

myTimeout: LongInt;

myType: DBType;

len, places, flags: Integer;

myBuffer: Ptr;

myDataInfo: Boolean;

myDataReturned: Boolean;

BEGIN

sessErr := noErr; {assume everything went fine}

packErr := InitDBPack; {init the Data Access Mgr}

{Set up values for theDDevName, theHost, theUser, thePasswd, }

{ and theConnStr. You can display a dialog box prompting }

{ the user to supply some of these parameters.}

theDDevName := 'DAL';

theHost := 'The Host System Name';

theUser := 'Joe User';

thePasswd := 'secret';

theConnStr := 'extra stuff as needed';

initErr := DBInit(thisSession, theDDevName, theHost, theUser,

thePasswd, theConnStr, NIL);

IF initErr <> noErr THEN

BEGIN

sessErr := initErr;

IF thisSession <> 0 THEN endErr := DBEnd(thisSession, NIL);

EXIT(MyLoLevel);

END;

{send a query or query fragment to the remote data server}

sendErr := MySendFragment(thisSession);

{If there's an error, then probably something went wrong with }

{ DBSend or DBSendItem. Don't forget to end the session.}

IF sendErr <> noErr THEN

BEGIN

sessErr := sendErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyLoLevel);

END;
12-34 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
{The query has been sent. This example assumes that }

{ the query will return data.}

execErr := DBExec(thisSession, NIL);

IF execErr = noErr THEN

BEGIN

stateErr := rcDBExec;

WHILE (stateErr = rcDBExec) DO

BEGIN {while waiting for stateErr <> rcDBExec, }

MyGoDoSomething; { let other apps run}

stateErr := DBState(thisSession, NIL);

END;

{DBState returned a result code other than rcDBExec. }

{ If it's rcDBValue, there are results to retrieve. }

{ Otherwise, it's probably an error.}

IF stateErr = rcDBValue THEN

BEGIN

{call DBGetItem once to get info on the data item and }

{ call DBGetItem a second time to get the data item}

myTimeout := 2*60; {2*60 ticks = 2 seconds}

myType := DBType(typeAnyType);

myDataInfo := FALSE;

WHILE NOT myDataInfo DO

BEGIN

getErr := DBGetItem(thisSession, myTimeout, myType,

 len, places, flags, NIL, NIL);

{If you timed out, then give up control. When }

{ control returns, continue getting the info.}

IF getErr = rcDBBreak THEN MyGoDoSomething

ELSE IF (getErr = noErr) OR (getErr = rcDBValue) THEN

myDataInfo := TRUE

ELSE

BEGIN

sessErr := getErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyLoLevel);

END;

END; {while}

{At this point, you may want to examine the info }

{ about the data item before calling DBGetItem a }

{ second time to actually retrieve it.}

{MyGimmeSpace returns a pointer to where you want }

{ the data item to go.}

myBuffer := MyGimmeSpace(len);
Using the Data Access Manager 12-35

C H A P T E R 1 2

Data Access Manager
myDataReturned := FALSE;

WHILE NOT myDataReturned DO

BEGIN

getErr := DBGetItem(thisSession, myTimeout, myType,

 len, places, flags, myBuffer,

NIL);

{If you timed out, then give up control. When }

{ control returns, continue getting the data.}

IF getErr = rcDBBreak THEN MyGoDoSomething

ELSE IF (getErr = noErr) OR

(getErr = rcDBValue) THEN myDataReturned := TRUE

ELSE

BEGIN

sessErr := getErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyLoLevel);

END;

END; {while}

END

ELSE sessErr := stateErr;

END

ELSE sessErr := execErr;

endErr := DBEnd(thisSession, NIL);

END;

Note that, even if you are using the low-level interface to send queries to the data server,
you might want to use the high-level functions to retrieve data and convert it to text.

Getting Information About Sessions in Progress 12
If your application is only one of several on a single Macintosh computer connected to
data servers, you can use the DBGetConnInfo and DBGetSessionNum functions to
obtain information about the sessions in progress. If you know the session ID (which is
returned by the DBInit function when you open a session), you can use the
DBGetConnInfo function to determine the database extension being used, the name of
the host system on which the session is running, the user name and connection string
used to initiate the session, the time at which the session started, and the status of the
session. The status of the session specifies whether the data server is executing a query
or waiting for another query fragment, whether there is output data available, and
whether execution of a query ended in an error.
12-36 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
If you do not know the session ID, or if you want to get information about all open
sessions, you can specify a database extension and a session number when you call the
DBGetConnInfo function. Although there can be only one active session with a given
session ID, session numbers are unique only for a specific database extension. Because
the database extension assigns session numbers sequentially, starting with 1, you can
call the DBGetConnInfo function repeatedly for a given database extension,
incrementing the session number each time, to obtain information about all
sessions open for that database extension. Your application need not have initiated
the session to obtain information about it in this fashion.

The DBGetSessionNum function returns the session number when you specify the
session ID. You can use this function to determine the session numbers for the sessions
opened by your own application. You might want this information, for example, so you
can distinguish your own sessions from those opened by other applications when you
use the DBGetConnInfo function to get information about all open sessions.

Processing Query Results 12
You can use the low-level function DBGetItem to retrieve a single data item returned by
a query, or you can use the high-level function DBGetQueryResults to retrieve all of
the query results at once. If you use the DBGetQueryResults function, you can then
use the DBResultsToText function to convert the results to ASCII text. The
DBResultsToText function calls routines called result handlers, which are installed in
memory by applications or by system extensions (files containing 'INIT' resources).
This section discusses the use of the DBGetItem and DBGetQueryResults functions
and describes how to write and install a result handler.

Getting Query Results 12

The DBGetItem function retrieves a single data item that was returned by a data source
in response to a query. When you call the DBGetItem function, you specify the data
type to be retrieved. If you do not know what data type to expect, you can specify the
typeAnyType constant for the dataType parameter, and the data server returns the
next data item regardless of data type. It also returns information about the data item,
including data type and length.

If you do not know the length of the next data item, you can specify NIL for the buffer
parameter in the DBGetItem function, and the data server returns the data type, length,
and number of decimal places without retrieving the data item. The next time you call
the DBGetItem function with a nonzero value for the buffer parameter, the function
retrieves the data item.
Using the Data Access Manager 12-37

C H A P T E R 1 2

Data Access Manager
If you want to skip a data item, specify the typeDiscard constant for the dataType
parameter. Then the next time you call the DBGetItem function, it retrieves the
following data item.

You should use the DBGetItem function if you want complete control over the retrieval
of each item of data. If you want the Data Access Manager to retrieve the data for you,
use the DBGetQueryResults function instead.

Table 12-1 shows the data types recognized by the Data Access Manager. You use a
constant to specify each data type, as follows:

CONST {data types}

typeAnyType = 0; {can be any data type}

typeNone = 'none'; {no more data expected}

typeBoolean = 'bool'; {Boolean}

typeSMInt = 'shor'; {short integer}

typeInteger = 'long'; {integer}

typeSMFloat = 'sing'; {short floating point}

typeFloat = 'doub'; {floating point}

typeDate = 'date'; {date}

typeTime = 'time'; {time}

typeTimeStamp = 'tims'; {date and time}

typeChar = 'TEXT'; {character}

typeDecimal = 'deci'; {decimal number}

typeMoney = 'mone'; {money value}

typeVChar = 'vcha'; {variable character}

typeVBin = 'vbin'; {variable binary}

typeLChar = 'lcha'; {long character}

typeLBin = 'lbin'; {long binary}

typeDiscard = 'disc'; {discard next data item}

typeUnknown = 'unkn'; {result handler for unknown }

{ data type}

typeColBreak = 'colb'; {result handler for column break}

typeRowBreak = 'rowb'; {result handler for end of line}

The writer of a database extension can define other data types to support specific data
sources or data servers.
12-38 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Each data type has a standard definition, shown in Table 12-1. For example, if the
DBGetItem function returns the typeInteger constant for the dataType parameter,
you know that the data item represents an integer value and that a 4-byte buffer is
necessary to hold it. Similarly, if you are using the DBSendItem function to send to the
data server a data item that you identify as typeFloat, the data server expects to
receive an 8-byte floating-point value.

Notice that some of these data types are defined to have a specific length (referred to as
an implied length), and some do not. The len parameter of the DBSendItem and
DBGetItem functions indicates the length of an individual data item. The
DBGetQueryResults function returns a handle to an array of lengths, decimal places,
and flags in the colInfo field of the results record. The typeAnyType,
typeColBreak, and typeRowBreak constants do not refer to specific data types, and
therefore the length specification is not applicable for these constants.

Table 12-1 Data types defined by the Data Access Manager

Constant Length Definition

typeAnyType NA Any data type (used as an input parameter to the
DBGetItem function only; never returned by the
function).

typeNone 0 Empty.

typeBoolean 1 byte TRUE (1) or FALSE (0).

typeSMInt 2 bytes Signed integer value.

typeInteger 4 bytes Signed long integer value.

typeSMFloat 4 bytes Signed floating-point value.

typeFloat 8 bytes Signed floating-point value.

typeDate 4 bytes Date; a long integer value consisting of a year (most
significant 16 bits), month (8 bits), and day (least
significant 8 bits).

typeTime 4 bytes Time; a long integer value consisting of an hour (0–23;
most significant 8 bits), minute (8 bits), second (8 bits),
and hundredths of a second (least significant 8 bits).

typeTimeStamp 8 bytes Date and time. A long integer date value followed by a
long integer time value.

typeChar Any Fixed-length character string, not NULL terminated. The
length of the string is defined by the specific data
source.
Using the Data Access Manager 12-39

C H A P T E R 1 2

Data Access Manager
typeDecimal Any Packed decimal string. A contiguous string of 4-bit
nibbles, each of which contains a decimal number,
except for the low nibble of the highest-addressed byte
(that is, the last nibble in the string), which contains a
sign. The value of the sign nibble can be 10, 12, 14, or 15
for a positive number or 11 or 13 for a negative number;
12 is recommended for a positive number and 13 is
recommended for a negative number. The most
significant digit is the high-order nibble of the
lowest-addressed byte (that is, the first nibble to appear
in the string).

The total number of nibbles (including the sign nibble)
must be even; therefore, the high nibble of the
highest-addressed byte of a number with an even
number of digits must be 0.

For example, the number +123 is represented as $123C.

The number –1234 is represented as $01234D.

The length of a packed decimal string is defined as the
number of bytes, including any extra leading 0 and the
sign nibble. A packed decimal string can have from 0 to
31 digits, not including the sign nibble.

In addition to the length of a packed decimal string,
each data item has an associated value that indicates
the number of digits that follow the decimal place. The
places parameter in the DBGetItem and
DBSendItem functions indicates the number of
decimal places in an individual data item. The
DBGetQueryResults function returns the number of
decimal places.

typeMoney Any Same as typeDecimal, but always has two decimal
places.

typeVChar Any Variable-length character string, NULL terminated.

continued

Table 12-1 Data types defined by the Data Access Manager (continued)

Constant Length Definition

1

3

2

C

Bits 7 4 3 0 Address

A

A+1

Bits 7 4 3 0 Address

A

A+1

A+24 D

0

2

1

3

12-40 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The DBGetQueryResults function retrieves all of the data that was returned by a data
source in response to a query, unless insufficient memory is available to hold the data, in
which case it retrieves as many complete rows of data as possible. The
DBGetQueryResults function stores the data in a structure called a results record.
You must allocate the results record data structure and pass this record to the
DBGetQueryResults function. The Data Access Manager allocates the handles inside
the results record. When your application is finished using the results record, you must
deallocate both the results record and the handles inside the results record.

typeVBin Any Not defined. Reserved for future use.

typeLChar Any Not defined. Reserved for future use.

typeLBin Any Not defined. Reserved for future use.

typeDiscard NA Do not retrieve the next data item (used as an input
parameter to the DBGetItem function only; never
returned by the function).

typeUnknown NA A dummy data type for the result handler that
processes any data type for which no other result
handler is available (used as an input parameter to the
DBInstallResultHandler,
DBRemoveResultHandler, and
DBGetResultHandler functions only; never returned
by the DBGetItem function).

typeColBreak NA A dummy data type for the result handler that the
DBGetQueryResults function calls after each item
that is not the last item in a row (used as an input
parameter to the DBInstallResultHandler,
DBRemoveResultHandler, and
DBGetResultHandler functions only; never returned
by the DBGetItem function).

typeRowBreak NA A dummy data type for the result handler that the
DBGetQueryResults function calls at the end of each
row (used as an input parameter to the
DBInstallResultHandler,
DBRemoveResultHandler, and
DBGetResultHandler functions only; never returned
by the DBGetItem function).

Table 12-1 Data types defined by the Data Access Manager (continued)

Constant Length Definition
Using the Data Access Manager 12-41

C H A P T E R 1 2

Data Access Manager
The results record is defined by the ResultsRecord data type.

TYPE ResultsRecord =

RECORD

numRows: Integer; {number of rows retrieved}

numCols: Integer; {number of columns per row}

colTypes: ColTypesHandle; {type of data in each column}

colData: Handle; {array of data items}

colInfo: ColInfoHandle; {info about each data item}

END;

The numRows field in the results record indicates the total number of rows retrieved. If
the DBGetQueryResults function returns a result code other than rcDBValue, then
not all of the data actually returned by the data source was retrieved. This could happen,
for instance, if the user’s computer does not have sufficient memory space to hold all the
data. In this case, your application can make more space available (by writing the data in
the data record to disk, for example) and then call the DBGetQueryResults function
again to complete retrieval of the data.

Note
The DBGetQueryResults function retrieves whole rows only; if it runs
out of space in the middle of a row, it stores the partial row in a private
buffer so that the data in the results record ends with the last complete
row. Because the last partial row is no longer available from the data
server, you cannot start to retrieve data with the DBGetQueryResults
function and then switch to the DBGetItem function to complete the
data retrieval. ◆

The numCols field indicates the number of columns in each row of data.

The colTypes field is a handle to an array of data types, specifying the type of data in
each column. The number of elements in the array is equal to the value in the numCols
field. Table 12-1 beginning on page 12-39 shows the standard data types.

The colData field is a handle to the data retrieved by the DBGetQueryResults
function.
12-42 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The colInfo field is a handle to an array of records of type DBColInfoRecord, each of
which specifies the length, places, and flags for a data item. There are as many records in
the array as there are data items retrieved by the DBGetQueryResults function. Here
is the DBColInfoRecord type definition:

TYPE DBColInfoRecord =

RECORD

len: Integer; {length of data item}

places: Integer; {places for decimal and }

{ money data items}

flags: Integer; {flags for data item}

END;

The len field indicates the length of the data item. The DBGetQueryResults function
returns a value in this field only for those data types that do not have implied lengths;
see Table 12-1 beginning on page 12-39.

The places field indicates the number of decimal places in data items of types
typeMoney and typeDecimal. For all other data types, the places field returns 0.

The least significant bit of the flags field is set to 1 if the data item is in the last column
of the row. The third bit of the flags field is 1 if the data item is NULL. You can use the
constants kDBLastColFlag and kDBNullFlag to test for these flag bits.

Converting Query Results to Text 12

The DBResultsToText function provided by the high-level interface converts the data
retrieved by the DBGetQueryResults function into strings of ASCII text. This function
makes it easier for you to display retrieved data for the user.

For the DBResultsToText function to convert data of a specific type to text, either the
application or the system software must have a routine called a result handler. With
System 7, Apple Computer, Inc., provides system result handlers for the data types listed
here. (These data types are described in Table 12-1 beginning on page 12-39.)

Note
Apple’s system result handler for the variable character (typeVChar)
data type strips trailing spaces from the character string. ◆

Data type Constant Data type Constant

Boolean typeBoolean Time typeTime

Short integer typeSMInt Date and time typeTimeStamp

Integer typeInteger Character typeChar

Short floating
point

typeSMFloat Decimal number typeDecimal

Floating point typeFloat Money value typeMoney

Date typeDate Variable character typeVChar
Using the Data Access Manager 12-43

C H A P T E R 1 2

Data Access Manager
In addition to the result handlers for these standard data types, Apple provides the
following three system result handlers, which correspond to no specific data type:

The typeUnknown result handler processes any data type for which no other result
handler is available. The DBResultsToText function calls the typeColBreak
result handler after each item that is not the last item in a row. This result handler does
not correspond to any data type, but adds a delimiter character to separate columns of
text. The default typeColBreak result handler inserts a tab character. Similarly, the
DBResultsToText function calls the typeRowBreak result handler at the end of each
row of data to add a character that separates the rows of text. The default
typeRowBreak result handler inserts a return character. Your application can install
your own typeColBreak and typeRowBreak result handlers to insert whatever
characters you wish—or to insert no character at all, if you prefer.

You can install result handlers for any data types you know about. When you call the
DBInstallResultHandler function, you can specify whether the result handler you
are installing is a system result handler. A system result handler is available to all
applications that use the system. All other result handlers (called application result
handlers) are associated with a particular application. The DBResultsToText function
always uses a result handler for the current application in preference to a system result
handler for the same data type. When you install a system result handler for the same
data type as an already installed system result handler, the new result handler replaces
the old one. Similarly, when you install an application result handler for the same data
type as a result handler already installed for the same application, the new result handler
replaces the old one for that application.

Result handlers are stored in memory. The Data Access Manager installs its system result
handlers the first time the Macintosh Operating System loads the Data Access Manager
into memory. You must reinstall your own application result handlers each time your
application starts up. You can also install your own system result handlers each time
your application starts up, or you can provide a system extension (that is, a file with an
'INIT' resource) that installs system result handlers each time the user starts up the
system.

Here is a function declaration for a result handler function:

FUNCTION MyResultHandler (dataType: DBType;

 theLen, thePlaces, theFlags: Integer;

 theData: Ptr; theText: Handle): OSErr;

Data type Constant

Unknown typeUnknown

Column break typeColBreak

End of line typeRowBreak
12-44 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The dataType parameter specifies the data type of the data item that the
DBResultsToText function is passing to the result handler. Table 12-1 beginning on
page 12-39 describes the standard data types.

The parameters theLen and thePlaces specify the length and number of decimal
places of the data item that the DBResultsToText function wants the result handler to
convert to text.

The parameter theFlags is the value returned for the flags parameter by the
DBGetItem function. If the least significant bit of this parameter is set to 1, the data item
is in the last column of the row. If the third bit of this parameter is set to 1, the data
item is NULL. You can use the constants kDBLastColFlag and kDBNullFlag to test for
these flag bits.

The parameter theData is a pointer to the data that the result handler is to convert
to text.

The parameter theText is a handle to the buffer that is to hold the text version of the
data. The result handler should use the Memory Manager’s SetHandleSize function
to increase the size of the buffer as necessary to hold the new text, and append the new
text to the end of the text already in the buffer. The SetHandleSize function is
described in the chapter “Memory Manager” in Inside Macintosh: Memory.

If the result handler successfully converts the data to text, it should return a result code
of 0 (noErr).

You can use the DBInstallResultHandler function to install a result handler and the
DBRemoveResultHandler function to remove an application result handler. You can
install and replace system result handlers, but you cannot remove them.

The following line of code installs an application result handler. The first parameter
(typeInteger) specifies the data type that this result handler processes. The second
parameter (MyTypeIntegerHandler) is a pointer to the result handler routine. The
last parameter (FALSE) is a Boolean value specifying that this routine is not a system
result handler.

err := DBInstallResultHandler

 (typeInteger,@MyTypeIntegerHandler,FALSE);
Using the Data Access Manager 12-45

C H A P T E R 1 2

Data Access Manager
Listing 12-6 shows a result handler that converts the integer data type to text.

Listing 12-6 A result handler

FUNCTION MyTypeIntegerHandler(datatype: DBType; theLen: Integer;

theData: Ptr;

theText: Handle): OSErr;

VAR

theInt: LongInt;

theTextLen: LongInt;

temp: Str255;

atemp1: Ptr;

atemp2: LongInt;

atemp3: LongInt;

BEGIN

BlockMove(theData, @theInt, sizeof(theInt));

NumToString(theInt, temp); {convert to text}

theTextLen := GetHandleSize(theText); {get current size }

{ of theText}

{size text handle}

SetHandleSize(theText, theTextLen + LongInt(LENGTH(temp)));

IF (MemError <> noErr) THEN

MyTypeIntegerHandler := MemError

ELSE

BEGIN

atemp1 := Ptr(ORD(@temp));

atemp2 := LongInt(theText^) + theTextLen;

atemp3 := LongInt(LENGTH(temp));

{use BlockMove to append text}

BlockMove(P2CStr(atemp1), Ptr(atemp2), atemp3);

MyTypeIntegerHandler := MemError;

END;

END;
12-46 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Creating a Query Document 12

A query document is a file of type 'qery' that contains a 'qrsc' resource and one or
more 'wstr' resources, and may contain a 'qdef' resource plus other resources.
Query documents make it possible for you to write applications that can communicate
with data servers without requiring familiarity with the command language used by the
data server. Because a query document is most useful if it can be used by many
different applications, no query document should depend on the presence of a particular
application in order to function.

An application can call the DBGetNewQuery function to convert a 'qrsc' resource into
a query record in memory. A query record specifies connection information and also
contains a handle to an array of queries; each query can be either a complete query or a
template for a query. If the 'wstr' resource is a template, it contains the commands and
data necessary to create a query, without any information that the user must add just
before the query is sent. The 'qdef' resource contains a query definition function,
which can modify the query record and, if necessary, fill in the query template to create a
complete query. The DBStartQuery function sends the query pointed to by a query
record to a data server. The following sections describe the contents of a query
document, describe query records, and define the 'qrsc', 'wstr', and 'qdef'
resources.

User Interface Guidelines for Query Documents 12
All query documents should behave in fundamentally the same way. They should be
self-explanatory and should never execute a query without an explicit command from
the user. When your application opens a query document, the query document should
display a dialog box with enough information about the query so that the user can
decide if it’s the right query. The dialog box should describe the purpose of the query,
what kind of data it transfers and in which direction, the type of data source it accesses,
and any warnings or instructions. The dialog box can describe how the user interprets
the data, such as the name of each field in a record. Figure 12-6 shows an example of a
query document dialog box.
Creating a Query Document 12-47

C H A P T E R 1 2

Data Access Manager
Figure 12-6 A query document dialog box

This dialog box should allow the user to cancel the request for data. In addition, it may
be useful to allow the user to set parameters with text boxes, checkboxes, or radio
buttons. For example, a query to a database of financial information could provide a list
of these options: a trial balance, profit-and-loss statements, or net worth reports. Save the
last set of user-specified parameters with the query document. This way the user can
review the parameters used to generate the data or use the same parameters the next
time.

Once a query starts running, it must be able to complete its task without user
intervention. If a query must run modally (that is, it must run to completion before
returning control to the user), display a dialog box that shows the query’s progress and
be sure to return control to the user as soon as possible. The philosophy of this process is
similar to that of receiving electronic mail—that is, inform the user when the information
arrives, but let the user decide when to read it.

Whenever possible, query documents should check that data is compatible before
transmitting it to a data source. Establish a connection with a data source only after you
have checked the data.
12-48 Creating a Query Document

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Contents of a Query Document 12
The query document must contain

■ one 'qrsc' resource, as defined in the next section, “Query Records and Query
Resources”

■ one 'STR#' resource that contains the name of the database extension to be used,
plus any host, user name, password, and connection string needed for the DBInit
function

■ one or more 'wstr' resources containing queries—that is, strings of commands and
data that the DBSend function sends to the data server and that the DBExec function
executes

A 'wstr' resource consists of a 2-byte length field followed by a character string. (The
w in 'wstr' refers to the length word as opposed to the length byte used in an 'STR '
resource.) Each 'wstr' resource contains one query (or one query template, to be
modified by the query definition function before it is sent to the data server). The
'qrsc' resource includes an array that lists the resource ID numbers of all of the
'wstr' resources in the query document and an index into the array that specifies
which one of the 'wstr' resources should be sent to the data server.

In addition, the query document may contain

■ a 'qdef' resource that contains a query definition function

■ any resources needed by the query definition function, such as 'DLOG' and 'DITL'
resources (which support dialog boxes)

■ resources to support an icon (to replace the default icon that the Finder uses for files of
type 'qery'); see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for more information on icon resources and for guidelines on designing icons

Figure 12-7 illustrates the relationship between the resources in a query document and
the query record.
Creating a Query Document 12-49

C H A P T E R 1 2

Data Access Manager
Figure 12-7 The relationship between resources in a query document and the query record

The query document in Figure 12-7 contains a 'qrsc' resource that specifies the
resource ID of a 'qdef' resource, the resource IDs of three 'wstr' resources, and
the resource ID of an 'STR#' resource. It also specifies which of the three 'wstr'
resources represents the current query.

Query document

'qrsc' resource

Resource ID of 'qdef'

Resource IDs of 'wstr's

Current query index

Resource ID of 'STR#'

'qdef' resource

'wstr' resource

'STR#' resource

Other resources

Query record

Partial queries

'wstr' resource

'wstr' resource

Info:

Suzie Doe

456 East St.

MyTown, MA

Info:

John Chapman

123 Main St.

ThisTown, MO

Info:

Sam Surf

34 Beach Ave.

ByTheSea, CA
12-50 Creating a Query Document

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The DBGetNewQuery function creates the query record and partial queries from this
information. Your application can use the DBStartQuery function to send a query to a
data server. The DBStartQuery function calls the query definition function referred to
by the query record (if any). The query definition function can prompt the user for
information and modify the query as needed. Figure 12-8 illustrates a query record that
contains a handle to an array of queries, a handle to a query definition function, and an
index that identifies the current query. The query definition function displays a dialog
box and modifies the current query according to the user’s input. Once the query
definition function modifies the current query and returns, the DBStartQuery function
sends the query to the data server.

Figure 12-8 The relationship between a query definition function and queries

Query record

Partial queries

Current query index

Handle to queries

Handle to 'qdef'

Query definition

function

User

changes

or adds

information

'qdef' modifies current query

Info:

Johnny Chapman

88 North Circle Drive

ThatTown, CA

Info:

Suzie Doe

456 East St.

MyTown, MA

Info:

John Chapman

123 Main St.

ThisTown, MO

Info:

Sam Surf

34 Beach Ave.

ByTheSea, CA
Creating a Query Document 12-51

C H A P T E R 1 2

Data Access Manager
Query Records and Query Resources 12
The DBGetNewQuery function converts the 'qrsc' resource in the query document
into a query record in memory. The query definition function can then modify
the query record before the application sends the query to the data server. See
“The Query Record” beginning on page 12-57 for a description of the query record.
See “The Query Resource” beginning on page 12-91 for the format of a 'qrsc' resource.
The next section provides information about query definition functions.

Writing a Query Definition Function 12
Before the DBStartQuery function sends a query to a data server, it calls the query
definition function specified by the queryProc field in the query record. The purpose of
the query definition function is to modify the query and the query record before the
query is sent to the data server. The query definition function can use dialog boxes to
request information from the user. Because a query document is most useful if it can be
used by many different applications, no query definition function should depend on the
presence of a particular application.

If you want to include a query definition function, you must make it the first piece of
code in a resource of type 'qdef' in the query document.

Here is a function declaration for a query definition function.

FUNCTION MyQDef (VAR sessID: LongInt; query: QueryHandle): OSErr;

If the application has already initiated a session with the data server, the DBStartQuery
function passes the session ID for that session in the sessID parameter to the query
definition function. If the query definition function receives a 0 in this parameter, then
the Data Access Manager has not initiated a session. In this case, the query definition
function can return a 0 in the sessID parameter, or it can call the DBInit function to
initiate a session and then return the session ID in this parameter.

If the query definition function returns a 0 in the sessID parameter, the DBStartQuery
function calls the DBInit function and then calls the DBSend function to send a query to
the data server. If the query definition function returns a session ID in this parameter, the
DBStartQuery function calls the DBSend function immediately.

The query parameter to the query definition function specifies a handle to the query
record. The query definition function can modify any of the fields in the query record,
including the currQuery field that specifies which query is to be sent to the data server.
In addition, the query definition function can modify an existing query or create a new
query, adding the handle to the new query to the query list. Note that, because a query in
memory consists only of a 2-byte length value followed by a character string, the query
definition function has to know the exact contents and structure of a query in order to
modify it.
12-52 Creating a Query Document

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The query definition function must return the noErr result code as the function result if
the function executed successfully. If it returns any other value, the DBStartQuery
function does not call the DBSend function. The query definition function can return any
result code, including noErr, userCanceledErr, or rcDBError.

When the DBStartQuery function calls the query definition function, the current
resource file is the file that contains the 'qrsc' resource from which the Data Access
Manager created the query record. When the query definition function returns control to
the Data Access Manager, the current resource file must be unchanged. See the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox for more information on
the current resource file.

The query definition function can allocate memory and use the dataHandle field in the
query record to store a handle to it. The query definition function must free any memory
it allocates before terminating.

Listing 12-7 shows a query definition function that uses a dialog box to prompt the user
for a user name and password and then modifies the query record accordingly.

Listing 12-7 A query definition function

FUNCTION MyQDef(VAR sessID: LongInt; query: QueryHandle): OSErr;

CONST

myNameItem = 7;

myPassWordItem = 8;

VAR

myNumRes: Integer;

myResList: ResListHandle;

myResLPtr: ResListPtr;

myIndex: Integer;

myDialog: DialogPtr;

myDlogID: Integer;

itemType: Integer;

itemHName: Handle;

itemHPasswd: Handle;

itemBox: Rect;

mySTR: ARRAY[1..2] OF Str255;

itemHit: Integer;

myQErr: OsErr;

BEGIN

{If sessID = 0 no session has been initiated. Your qdef may }

{ optionally initiate a session, or it can let DBStartQuery }

{ take care of this. In this example, the qdef doesn't }

{ check the sessID parameter.}

HLock(Handle(query));

myNumRes := query^^.numRes;
Creating a Query Document 12-53

C H A P T E R 1 2

Data Access Manager
myResList := query^^.resList;

HLock(Handle(myResList));

myResLPtr := myResList^;

myIndex := 0;

{look for a 'DLOG' resource}

WHILE (myIndex < myNumRes) AND

(myResLPtr^[myIndex].theType <> 'DLOG') DO

BEGIN

myIndex := myIndex + 1;

END;

IF (myIndex < myNumRes) THEN {found the 'DLOG' resource}

myDlogID := myResLPtr^[myIndex].id

ELSE

BEGIN

{The 'DLOG' wasn't found; exit with no error. This }

{ is probably OK; it just means that the query }

{ and the query record don't get modified.}

MyQDEF := noErr;

HUnlock(Handle(query));

HUnlock(Handle(myResList));

EXIT(MyQDef);

END;

{found the 'DLOG' and its ID; now display the dialog box}

myDialog := GetNewDialog(myDlogID, Ptr(NIL), WindowPtr(-1));

SetPort(GrafPtr(myDialog));

REPEAT

ModalDialog(@MyEventFilter, itemHit);

UNTIL ((itemHit = kOK) OR (itemHit = kCancel));

IF itemHit = kOK THEN

BEGIN

{The user clicked the OK button. Update the user }

{ and password fields of the query record.}

GetDialogItem(myDialog, myNameItem, itemType, itemHName,

 itemBox);

GetDialogItemText(itemHName, mySTR[1]);

GetDialogItem(myDialog, myPassWordItem, itemType,

itemHPasswd, itemBox);

GetDialogItemText(itemHPasswd, mySTR[2]);

{Now you can change the query record or the query itself. }

{ What you change is entirely up to you. In this example, }

{ the qdef changes only the user and password fields }

{ of the query record.}

query^^.user := mySTR[1];
12-54 Creating a Query Document

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
query^^.password := mySTR[2];

MyQDef := noErr;

END

ELSE

MyQDef := userCanceledErr;

HUnlock(Handle(query));

HUnlock(Handle(myResList));

DisposDialog(myDialog);

END;

Data Access Manager Reference 12

This section describes the data structures, routines, and resources that are specific to the
Data Access Manager. The “Data Structures” section shows the data structures for the
asynchronous parameter block, the results record, the query record, and the data item
record. The “Data Access Manager Routines” section beginning on page 12-60 describes
routines for using the high-level and low-level interfaces, including initializing the Data
Access Manager, handling query documents and results, controlling sessions, sending
and executing queries, retrieving results, and installing and removing result handlers.
The “Resources” section beginning on page 12-91 describes the query resource, the query
string resource, and the query definition function resource.

Data Structures 12
This section describes the data structures that you use to provide information to the
Data Access Manager or that the Data Access Manager uses to provide information to
your application.

You provide a pointer to an asynchronous parameter block as a parameter to
the DBStartQuery, DBGetQueryResults, DBInit, DBEnd, DBGetSessionNum,
DBKill, DBSend, DBSendItem, DBExec, DBState, DBGetErr, DBBreak, DBGetItem,
and DBUnGetItem functions.

The query record specifies connection information and contains a handle to an array of
one or more complete queries or query templates. The DBGetNewQuery function returns
a handle to a query record, and you provide a handle to a query record as a parameter to
the DBStartQuery and DBDisposeQuery functions.

You use the results record to store the data that was returned by a data source in
response to a query. The results record is a parameter to the DBGetQueryResults and
DBResultsToText functions.
Data Access Manager Reference 12-55

C H A P T E R 1 2

Data Access Manager
The Asynchronous Parameter Block 12

Each Data Access Manager routine that can be called asynchronously (that is, that can
return control to your application before it has completed execution) takes as a
parameter a pointer to a parameter block known as the asynchronous parameter block. If
you specify NIL for this parameter, the routine does not return control to your
application until it has completed execution.

Note
The asynchronous parameter block is passed on to the database
extension, which is responsible for implementing the asynchronous
routine. If the database extension does not support asynchronous
routines, the Data Access Manager returns the rcDBAsyncNotSupp
result code and terminates execution of the routine. ◆

The DBAsyncParamBlockRec data type defines the asynchronous parameter block.

TYPE DBAsyncParamBlockRec =

RECORD

completionProc: ProcPtr; {pointer to completion routine}

result: OSErr; {result of call}

userRef: LongInt; {reserved for use by application}

ddevRef: LongInt; {reserved for use by database }

{ extension}

reserved: LongInt; {reserved for use by Data }

{ Access Manager}

END;

DBAsyncParmBlkPtr = ^DBAsyncParamBlockRec;

Field descriptions

completionProc
Points to a completion routine that the database extension calls
when it has completed executing the asynchronous function. Before
calling the completion routine, the Data Access Manager places a
pointer to the asynchronous parameter block in the A0 register. If
you do not want to use a completion routine, set this parameter
to NIL.

result Returns the result code for the called routine. The database
extension sets this field to 1 while the routine is executing and
places the result code in it when the routine completes. Your
application can poll this field to determine when an asynchronous
routine has completed execution.

userRef Reserved for the application’s use. Because the Data Access
Manager passes a pointer to the parameter block to the completion
routine, you can use this field to pass information to the
completion routine.
12-56 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
ddevRef Reserved for use by the database extension.
reserved Reserved for use by the Data Access Manager.

The Query Record 12

The DBGetNewQuery function converts a 'qrsc' resource in a query document into a
query record in memory and returns a handle to the query record. The query record
specifies connection information and also contains a handle to an array of queries; each
query can be either a complete query or a template for a query. The DBGetNewQuery
function creates the queries from the 'wstr' resources stored in the query document.

The QueryRecord data type defines a query record.

TYPE QueryRecord =

RECORD

version: Integer; {query record format version}

id: Integer; {resource ID of 'qrsc'}

queryProc: Handle; {handle to qdef}

ddevName: Str63; {name of database extension}

host: Str255; {name of host computer}

user: Str255; {name of user}

password: Str255; {user's password}

connStr: Str255; {connection string}

currQuery: Integer; {index of current query}

numQueries: Integer; {number of queries in list}

queryList: QueryListHandle; {handle to array of }

{ handles to text}

numRes: Integer; {number of resources in list}

resList: ResListHandle; {handle to array of resource }

{ list elements}

dataHandle: Handle; {handle to memory for qdef}

refCon: LongInt; {reserved for use by app}

END;

QueryPtr = ^QueryRecord; {pointer to query record}

QueryHandle = ^QueryPtr; {handle to query record}

Field descriptions

version The version number of the query record format. For the Data Access
Manager released with System 7, the version number is 0.

id The resource ID of the 'qrsc' resource from which the Data
Access Manager created this query record.

queryProc A handle to the query definition function that the DBStartQuery
function calls. This handle is NIL if there is no query definition
function—that is, if the DBStartQuery function should send the
query specified by this query record to the data server without
modifications.
Data Access Manager Reference 12-57

C H A P T E R 1 2

Data Access Manager
ddevName The database extension name used as a parameter to the DBInit
function.

host The name of the host computer system used as a parameter to the
DBInit function.

user The name of the user, used as a parameter to the DBInit function.
password The user’s password, used as a parameter to the DBInit function.
connStr The connection string used as a parameter to the DBInit function.
currQuery An index value from 1 through numQueries, indicating which

element in the array of query handles represents the current query.
The current query is the one actually sent to the data server. If
the query document contains more than one 'wstr' resource, the
query definition function can prompt the user to select a new
current query and modify this field in the query record
appropriately.

numQueries The number of queries referred to by the queryList field.
queryList A handle to an array of handles. Each handle in this array refers to a

query. Each query is created from a 'wstr' resource in the query
document and is stored in memory as a 2-byte length field followed
by ASCII text. (The length does not include the 2 bytes of the length
field.) The query definition function can create a new query. To add
a new handle to the array of handles, use the Memory Manager’s
SetHandleSize function to increase the size of the array. Don’t
forget to change the value of the numQueries field as well.

numRes The number of resources referred to by the resList field.
resList A handle to an array of records of type ResListElem. Each record

in the array contains the type and ID of a resource that is needed by
the query definition function.

TYPE ResListElem =

RECORD

theType: ResType; {resource type}

id: Integer; {resource ID}

END;

dataHandle A handle to memory for use by the query definition function. When
the Data Access Manager first creates the query record, it sets this
field to NIL. The query definition function can allocate memory and
place a handle to it in this field. The query definition function
should dispose of any memory it allocates before it returns control
to the Data Access Manager.

refCon The query record’s reference value. The application can use this
field for any purpose.
12-58 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The Results Record 12

The results record describes the data that was returned by a data source in response to a
query. To get the results of a query, allocate a results record and pass this record to the
DBGetQueryResults function. The Data Access Manager allocates the handles inside
the results record. When your application is finished using the results record, you must
deallocate both the results record and the handles inside the results record.

The results record is defined by the ResultsRecord data type.

TYPE ResultsRecord =

RECORD

numRows: Integer; {number of rows retrieved}

numCols: Integer; {number of columns per row}

colTypes: ColTypesHandle; {type of data in each column}

colData: Handle; {array of data items}

colInfo: ColInfoHandle; {info about each data item}

END;

Field descriptions

numRows The total number of rows retrieved. If the DBGetQueryResults
function returns a result code other than rcDBValue, then not all of
the data actually returned by the data source was retrieved. This
could happen, for instance, if the user’s computer does not have
sufficient memory space to hold all the data. In this case, your
application can make more space available (by writing the data in
the data record to disk, for example) and then call the
DBGetQueryResults function again to complete retrieval of the
data.

Note

The DBGetQueryResults function retrieves whole rows only; if it
runs out of space in the middle of a row, it stores the partial row in a
private buffer so that the data in the results record ends with the
last complete row. Because the last partial row is no longer available
from the data server, you cannot start to retrieve data with the
DBGetQueryResults function and then switch to the DBGetItem
function to complete the data retrieval. ◆

numCols The number of columns in each row of data.
colTypes A handle to an array of data types, specifying the type of data in

each column. The number of elements in the array is equal to the
value in the numCols field. Table 12-1 beginning on page 12-39
shows the standard data types.

colData A handle to the data retrieved by the DBGetQueryResults
function.
Data Access Manager Reference 12-59

C H A P T E R 1 2

Data Access Manager
colInfo A handle to an array of records of type DBColInfoRecord, each of
which specifies the length, places, and flags for a data item. There
are as many records in the array as there are data items retrieved by
the DBGetQueryResults function. Here is the
DBColInfoRecord type definition:

TYPE DBColInfoRecord =

RECORD

len: Integer; {length of data item}

places: Integer; {places for decimal }

{ and money data items}

flags: Integer; {flags for data item}

END;

The len field indicates the length of the data item. The
DBGetQueryResults function returns a value in this field only for
those data types that do not have implied lengths; see Table 12-1 on
page 12-39 for a list of these data types.
The places field indicates the number of decimal places in data
items of types typeMoney and typeDecimal. For all other data
types, the places field returns 0.
The least significant bit of the flags field is set to 1 if the data item
is in the last column of the row. The third bit of the flags field is 1
if the data item is NULL. You can use the constants
kDBLastColFlag and kDBNullFlag to test for these flag bits.

Data Access Manager Routines 12
The Data Access Manager has high-level routines, low-level routines, and routines that
manipulate result handlers. This section describes all of the Data Access Manager
routines.

All of the low-level routines and some of the high-level routines accept a pointer to
an asynchronous parameter block as a parameter. For these routines, see “The
Asynchronous Parameter Block” beginning on page 12-56 for a description of the fields
in the parameter block.

If you specify a nonzero value for the pointer to the asynchronous parameter block, the
database extension executes the function asynchronously—that is, it returns control to
the Data Access Manager before the routine has completed execution, and the Data
Access Manager returns control to your application. If you specify NIL for this
parameter, the database extension does not return control to your application until the
routine has finished execution. Your application must call the Event Manager’s
WaitNextEvent function periodically to allow an asynchronous routine to complete
execution. The WaitNextEvent function is described in the chapter “Event Manager”
in Inside Macintosh: Macintosh Toolbox Essentials.
12-60 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
You can tell when an asynchronous routine has completed execution and check the result
code by looking at values in the asynchronous parameter block. You can use the DBKill
function to cancel an asynchronous routine.

Note
A noErr result code returned by a routine that has been called
asynchronously indicates only that the routine began execution
successfully. You must check the result field of the asynchronous
parameter block for the final result of the routine. ◆

Assembly-Language Note

You can invoke each of the Data Access Manager routines with a macro
that has the same name as the routine, but preceded with an underscore;
for example, the macro for the DBInit function is named _DBInit.
Each of these macros places a routine selector in the D0 register and calls
the trap _Pack13. The routine selectors are listed in each routine
description and in “Assembly-Language Summary” beginning on
page 12-104. ◆

Initializing the Data Access Manager 12

You must initialize the Data Access Manager before you can use it.

InitDBPack 12

Use the InitDBPack function to initialize the Data Access Manager.

FUNCTION InitDBPack: OSErr;

DESCRIPTION

The InitDBPack function initializes the Data Access Manager. You must call the
InitDBPack function before you call any other Data Access Manager routines. If the
Data Access Manager has already been initialized, the InitDBPack function returns the
noErr result code but does nothing else.

The interface routine that implements the InitDBPack function includes a version
number for the Data Access Manager. If the Data Access Manager is a different version
from that specified by the interface routine, then the InitDBPack function returns the
rcDBWrongVersion result code.

SPECIAL CONSIDERATIONS

The InitDBPack function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.
Data Access Manager Reference 12-61

C H A P T E R 1 2

Data Access Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the InitDBPack function are

RESULT CODES

High-Level Interface: Handling Query Documents 12

The high-level interface to the Data Access Manager allows applications to manipulate
query documents and to get the results of the query provided by a query document. The
use and contents of query documents are discussed in “Creating a Query Document”
beginning on page 12-47. The routines described in this section create query records,
dispose of query records, and use query documents to establish communication with
and send queries to a data server. For a general discussion of the high-level interface, see
“The High-Level Interface” beginning on page 12-7 . For instructions on using the
high-level interface, refer to “Using the High-Level Interface” beginning on page 12-14.

DBGetNewQuery 12

You can use the DBGetNewQuery function to create a query record.

FUNCTION DBGetNewQuery (queryID: Integer;

VAR query: QueryHandle): OSErr;

queryID The resource ID of a 'qrsc' resource.

query Returns a handle to the query record.

DESCRIPTION

The DBGetNewQuery function creates a query record from the specified 'qrsc'
resource. The resource file that contains the 'qrsc' resource must remain open until
after the DBStartQuery function has completed execution. If you do not already know
the resource ID of the 'qrsc' resource (for example, if you call the StandardGetFile
procedure to let the user select the query document), you can use Resource Manager
routines to determine the resource ID.

Trap macro Selector

_InitDBPack $0100

noErr 0 No error
rcDBWrongVersion –812 Wrong version number
12-62 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
SPECIAL CONSIDERATIONS

The DBGetNewQuery function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetNewQuery function are

RESULT CODES

SEE ALSO

See Listing 12-1 beginning on page 12-18 for an example of the use of the
DBGetNewQuery function. For a description of the query record, see page 12-57. For a
description of the 'qrsc' resource, see “The Query Resource” beginning on page 12-91.
The StandardGetFile procedure is described in the chapter “Standard File Package”
in Inside Macintosh: Files, and Resource Manager routines are described in the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

DBDisposeQuery 12

When you are finished using a query record, call DBDisposeQuery to dispose of the
query record.

FUNCTION DBDisposeQuery (query: QueryHandle): OSErr;

query A handle to the query record to dispose.

DESCRIPTION

The DBDisposeQuery function disposes of a query record and frees all the memory
that the Data Access Manager allocated when it created the query record.

SPECIAL CONSIDERATIONS

The DBDisposeQuery function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

Trap macro Selector

_DBGetNewQuery $030F

noErr 0 No error
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-63

C H A P T E R 1 2

Data Access Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBDisposeQuery function are

RESULT CODES

SEE ALSO

See Listing 12-1 beginning on page 12-18 for an example of the use of the
DBDisposeQuery function in the high-level interface. For a description of the query
record, see page 12-57.

DBStartQuery 12

Use the DBStartQuery function to initiate the process of sending a query to a data
server.

FUNCTION DBStartQuery (VAR sessID: LongInt; query: QueryHandle;

 statusProc: ProcPtr;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID A session ID that identifies a session with the data server. If you specify 0
for this parameter, then the DBStartQuery function initiates a session
and returns the session ID in the sessID parameter.

query A handle to a query record.

statusProc
A pointer to a status routine that your application can use to update its
windows after the query definition function has completed execution.
(The DBStartQuery function does not attempt to update your
application’s windows.) The DBStartQuery function also calls your
status routine before it initiates a session with a data server, after it calls
the DBInit function, after it calls the DBSend function, and after it
calls the DBExec function. Status routines are discussed in “Writing a
Status Routine for High-Level Functions” beginning on page 12-22.

asyncPB A pointer to an asynchronous parameter block. When specified, the
DBStartQuery function calls the DBInit, DBSend, and DBExec
functions asynchronously. As soon as the DBInit function has started
execution, it returns control to your application. Your application must
then call the Event Manager’s WaitNextEvent function periodically to

Trap macro Selector

_DBDisposeQuery $0210

noErr 0 No error
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-64 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
allow these asynchronous routines to run, and it must check the result
field of the asynchronous parameter block to determine when each
routine has completed execution.

DESCRIPTION

The DBStartQuery function performs the following tasks, in the order specified:

1. It calls the query definition function (if any) pointed to by the query record. The query
definition function modifies the query record and the query, usually by asking the
user for input. The query definition function can display a dialog box that gives
the user the option of canceling the query; if the user does cancel the query, the
DBStartQuery function returns the userCanceledErr result code.

2. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBUpdateWind constant in the message
parameter so that your application can update its windows.

3. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBAboutToInit constant in the
message parameter so that your application can display a dialog box informing the
user that a session is about to be initiated with a data server, and giving the user the
option of canceling execution of the function.

4. If the sessID parameter is 0, the DBStartQuery function calls the DBInit function
to initiate a session, and returns a session ID.

5. If you specify a nonzero value for the statusProc parameter and the
DBStartQuery function calls the DBInit function, the DBStartQuery function
calls your status routine with the kDBInitComplete constant in the message
parameter and the result of the DBInit function in the function result.

6. The DBStartQuery function calls the DBSend function to send the query to the data
server.

7. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBSendComplete constant in the
message parameter and the result of the DBSend function in the result parameter.

8. The DBStartQuery function calls the DBExec function to execute the query.

9. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBExecComplete constant in the
message parameter and the result of the DBExec function in the result parameter.

10. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBStartQueryComplete constant in the
message parameter and the result of the DBStartQuery function in the result
parameter.

SPECIAL CONSIDERATIONS

The DBStartQuery function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.
Data Access Manager Reference 12-65

C H A P T E R 1 2

Data Access Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBStartQuery function are

RESULT CODES

SEE ALSO

See “Using the High-Level Interface” beginning on page 12-14 for a general description
of how the DBStartQuery function works in conjunction with other Data Access
Manager routines. See Listing 12-1 beginning on page 12-18 for an example of the use of
the DBStartQuery function. For a description of the query record, see page 12-57. For
information on how to write a query definition function or status routine, see “Writing a
Query Definition Function” beginning on page 12-52 and “Writing a Status Routine for
High-Level Functions” beginning on page 12-22, respectively. Descriptions of the
DBInit, DBSend, and DBExec functions begin on page 12-69, page 12-77, and
page 12-79, respectively.

High-Level Interface: Handling Query Results 12

The high-level interface to the Data Access Manager allows applications to manipulate
query documents and to get the results of the query provided by a query document. The
high-level routines in this section retrieve query results and convert them to text.

DBGetQueryResults 12

You can use the DBGetQueryResults function to retrieve the results of a query.

FUNCTION DBGetQueryResults (sessID: LongInt;

 VAR results: ResultsRecord;

 timeout: LongInt; statusProc: ProcPtr;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

Trap macro Selector

_DBStartQuery $0811

noErr 0 No error
userCanceledErr –128 User canceled the query
rcDBError –802 Error initiating session, sending text, or executing

query
rcDBBadSessID –806 Session ID is invalid
rcDBBadDDev –808 Couldn’t find the specified database extension, or

error occurred in opening database extension
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-66 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
sessID The session ID of the session from which you wish to retrieve results.

results The results record, which contains handles to the retrieved data.

timeout The value that the DBGetQueryResults function uses for the
timeout parameter each time it calls the DBGetItem function.
The timeout parameter specifies the maximum amount of time that the
database extension should wait to receive results from the data server
before canceling the DBGetItem function. Specify the timeout
parameter in sixtieths of a second. To disable the timeout feature, set the
timeout parameter to the kDBWaitForever constant. Some database
extensions ignore the timeout parameter when you specify a nonzero
value for the asyncPB parameter.

statusProc
A pointer to a status routine that you provide. The DBGetQueryResults
function calls your status routine after it calls the DBGetItem function to
retrieve a data item. When it calls the status routine, the
DBGetQueryResults function provides the result of the DBGetItem
function, the data type, the data length, the number of decimal places, the
flags associated with the data item, and a pointer to the data item.

asyncPB A pointer to an asynchronous parameter block. If specified, the
DBGetQueryResults function calls the DBGetItem function
asynchronously for each data item. As soon as the DBGetItem function
has started execution, it returns control to your application. Your
application must then call the Event Manager’s WaitNextEvent
function periodically to allow this asynchronous routine to run, and it
must check the result field of the asynchronous parameter block to
determine when the routine has completed execution.

DESCRIPTION

The DBGetQueryResults function retrieves the results returned by a query and places
them in memory. If there is sufficient memory available, this function retrieves all of the
results at once. If the DBGetQueryResults function runs out of memory, it places as
much data as possible in memory, up to the last whole row. You can then make more
memory available and call the DBGetQueryResults function again to retrieve more
data.

You must allocate the results record and pass this record to the DBGetQueryResults
function. The Data Access Manager allocates the handles inside the results record. When
your application is finished using the results record, you must deallocate both the results
record and the handles inside the results record.

The DBGetQueryResults function can be used to retrieve the results of any query, not
only queries sent and executed by the DBStartQuery function.

SPECIAL CONSIDERATIONS

The DBGetQueryResults function may move or purge memory. You should not call
this routine from within an interrupt, such as in a completion routine or a VBL task.
Data Access Manager Reference 12-67

C H A P T E R 1 2

Data Access Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetQueryResults function are

RESULT CODES

SEE ALSO

See Listing 12-1 beginning on page 12-18 for an example of the use of the
DBGetQueryResults function. See page 12-56 for a description of the asynchronous
parameter block. Descriptions of the DBStartQuery and DBGetItem functions begin
on page 12-64 and page 12-84, respectively. For more information on results records, see
“The Results Record” beginning on page 12-59 and “Getting Query Results” beginning
on page 12-37. For more information on status routines, see “Writing a Status Routine for
High-Level Functions” beginning on page 12-22.

DBResultsToText 12

After retrieving a results record from DBGetQueryResults, you can use the
DBResultsToText function to convert the returned data to text.

FUNCTION DBResultsToText (results: ResultsRecord;

 VAR theText: Handle): OSErr;

results The results record returned by the DBGetQueryResults function.

theText The DBResultsToText function returns a handle to the converted text
in this parameter. This handle is allocated by the Data Access Manager.

DESCRIPTION

The DBResultsToText function calls result handlers to convert to text the data
retrieved by the DBGetQueryResults function.

Trap macro Selector

_DBGetQueryResults $0A12

noErr 0 No error
userCanceledErr –128 Function canceled by status routine
rcDBValue –801 Data available
rcDBError –802 Query execution ended in an error
rcDBBreak –804 Function timed out
rcDBExec –805 Query currently executing
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-68 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
SPECIAL CONSIDERATIONS

The DBResultsToText function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBResultsToText function are

RESULT CODES

SEE ALSO

See Listing 12-1 begining on page 12-18 for an example of the use of the
DBResultsToText function. See “Converting Query Results to Text” beginning on
page 12-43 for a discussion of result handlers.

Low-Level Interface: Controlling the Session 12

The low-level interface to the Data Access Manager allows applications to open and
close sessions with a data server, send and execute queries, retrieve query results, and
obtain information about any current session.

DBInit 12

Use the DBInit function to initiate a session with a data server.

FUNCTION DBInit (VAR sessID: LongInt; ddevName: Str63;

 host: Str255; user: Str255; password: Str255;

 connStr: Str255;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The DBInit function returns the session ID in this parameter. This
session ID is unique; no other current session, for any database extension,
has the same session ID. You must specify the session ID any time you
want to send data to or retrieve data from this session. Depending on the
database extension you are using, the DBInit function might return a

Trap macro Selector

_DBResultsToText $0413

noErr 0 No error
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-69

C H A P T E R 1 2

Data Access Manager
session ID of 0 if it fails to initiate a session, or it might return a
nonzero session ID and a result code other than noErr. In the latter case,
you can pass the session ID to the DBGetErr function to determine the
cause of the error.

ddevName A string of no more than 63 characters that specifies the name of the
database extension. The name of the database extension is contained in
the database extension file in a resource of type 'STR ' with a
resource ID of 128. For the Data Access Language database extension
provided by Apple, for example, this string is “DAL”.

host The name of the host system on which the data server is located. This
name depends on the manner in which the database extension initiates
communication with the data server and how the system administrator
has set up the computer system.

user The name of the user.

password The password associated with the user name.

connStr A string that is passed to the data server, which might pass it on to the
database management software on the host computer. This string is
necessary in some systems to complete log-on procedures.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

You must initiate a session before you call any Data Access Manager function that
requires a session ID as an input parameter. If the DBInit function returns a nonzero
session ID, you must call the DBEnd function to terminate the session, even if the
DBInit function also returns a result code other than noErr.

Because the high-level function DBStartQuery can call the DBInit function, you do
not have to call the DBInit function if you have called the DBStartQuery function.

SPECIAL CONSIDERATIONS

The DBInit function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBInit function are

Trap macro Selector

_DBInit $0E02
12-70 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See Listing 12-5
beginning on page 12-34 for an example of the use of the DBInit function. See
page 12-64 for a description of the DBStartQuery function. The DBEnd function is
described next.

DBEnd 12

You must call the DBEnd function to terminate a session.

FUNCTION DBEnd (sessID: LongInt;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBEnd function terminates a session with a data server and terminates the network
connection between the application and the host computer.

SPECIAL CONSIDERATIONS

The DBEnd function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBEnd function are

noErr 0 No error
rcDBError –802 Error initiating session
rcDBBadDDev –808 Couldn’t find the specified database extension, or

error occurred in opening database extension
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called

Trap macro Selector

_DBEnd $0403
Data Access Manager Reference 12-71

C H A P T E R 1 2

Data Access Manager
RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

DBGetConnInfo 12

The DBGetConnInfo function returns information about the specified session,
including

■ the version of the database extension

■ the name of the host system on which the session is running

■ the user name

■ the connection string that was used to initiate communication

■ the name of the network

■ the time at which the session started, in ticks (sixtieths of a second)

■ the status of the session

FUNCTION DBGetConnInfo (sessID: LongInt; sessNum: Integer;

VAR returnedID: LongInt;

VAR version: LongInt;

VAR ddevName: Str63;

VAR host: Str255; VAR user: Str255;

VAR network: Str255; VAR connStr: Str255;

VAR start: LongInt; VAR state: OSErr;

asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function. If you include
a nonzero value for the sessID parameter when you call the
DBGetConnInfo function, the function returns the name of the database
extension in the ddevName parameter. If you use 0 for the sessID
parameter and specify the database extension and session number instead
(in the ddevName and sessNum parameters), the function returns the
session ID in the returnedID parameter.

sessNum The session number of the session about which you want information. If
you specify a nonzero session number, you must also provide the
database extension in the ddevName parameter.

noErr 0 No error
rcDBError –802 Error ending session
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-72 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
returnedID
Returns the session ID if you specify the session number and the database
extension.

version Returns the version number of the database extension that is currently in
use.

ddevName A string of no more than 63 characters that specifies the name of the
database extension. If you specify 0 for the session ID, you must include
the name of the database extension as well as a session number. If you
specify a valid session ID, then the DBGetConnInfo function returns the
name of the database extension in the ddevName parameter. The name of
the database extension is contained in the database extension file in a
resource of type 'STR ' with a resource ID of 128. For the Data Access
Language database extension provided by Apple, for example, this string
is “DAL”.

host Returns the host string used to initiate communication with the data
server.

user Returns the user string used to initiate communication with the data
server.

network Returns the name of the network through which the database extension is
communicating with the data server. This parameter is an empty string if
you are not communicating through a network.

connStr Returns the connection string used to initiate communication with the
data server.

start Returns the time, in ticks (sixtieths of a second), at which this session was
initiated.

state Returns one of the following values to provide information about the
status of the session:

CONST noErr = 0; {no error--ready for more }
{ text}

rcDBValue = –801; {output data available}
rcDBError = –802; {execution ended in an }

{ error}
rcDBExec = –805; {busy--currently executing }

{ query}

asynchPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

You can use the DBGetConnInfo function to get information about a particular session,
or you can call the function repeatedly, incrementing the session number each time, to
get information about all of the sessions associated with a particular database extension.
Data Access Manager Reference 12-73

C H A P T E R 1 2

Data Access Manager
The sessID parameter is the session ID that was returned by the DBInit function. The
sessNum parameter is the session number of the session about which you want
information. You can specify either the session ID or the session number when you call
the DBGetConnInfo function. If you specify the sessID parameter, use 0 for the
sessNum parameter. If you specify the sessNum parameter, then use 0 for the sessID
parameter. If you specify the sessNum parameter, you must specify a value for the
ddevName parameter as well. If you specify the session number and the database
extension, then the DBGetConnInfo function returns the session ID in the returnedID
parameter.

SPECIAL CONSIDERATIONS

The DBGetConnInfo function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetConnInfo function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. For more
information on the use of the DBGetConnInfo function, see “Getting Information
About Sessions in Progress” on page 12-36.

Trap macro Selector

_DBGetConnInfo $1704

noErr 0 No error
rcDBBadSessID –806 Session ID is invalid or database extension name is

invalid
rcDBBadSessNum –807 Invalid session number
rcDBBadDDev –808 Couldn’t find the specified database extension, or

error occurred in opening database extension
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-74 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
DBGetSessionNum 12

The DBGetSessionNum function returns a session number when you specify the
session ID.

FUNCTION DBGetSessionNum (sessID: LongInt; VAR sessNum: Integer;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

sessNum Returns the session number of the session you specify with the sessID
parameter. The session number is unique for a particular database
extension, but the same session number might be in use for different
database extensions at the same time.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

You can use the DBGetSessionNum function to determine the session numbers for the
sessions opened by your own application. You might want this information, for example,
so you can distinguish your own sessions from those opened by other applications when
you use the DBGetConnInfo function to get information about all open sessions.

SPECIAL CONSIDERATIONS

The DBGetSessionNum function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetSessionNum function are

RESULT CODES

Trap macro Selector

_DBGetSessionNum $0605

noErr 0 No error
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-75

C H A P T E R 1 2

Data Access Manager
SEE ALSO

A description of the asynchronous parameter block structure begins on page 12-56. The
DBInit function description begins on page 12-69. A description of the
DBGetConnInfo function begins on page 12-72.

DBKill 12

Use the DBKill function to cancel the execution of an asynchronous routine.

FUNCTION DBKill (asyncPB: DBAsyncParmBlkPtr): OSErr;

asyncPB A pointer to an asynchronous parameter block.

DESCRIPTION

The DBKill function cancels the execution of the asynchronous call specified by the
asyncPB parameter.

SPECIAL CONSIDERATIONS

The DBKill function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBKill function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

Trap macro Selector

_DBKill $020E

noErr 0 No error
rcDBError –802 Error canceling routine
rcDBBadAsynchPB –810 Invalid parameter block specified
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-76 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Low-Level Interface: Sending and Executing Queries 12

The functions in this section send queries or portions of queries to the data server,
execute queries that have been sent, return information about queries that have been
sent, and halt execution of queries that are executing.

DBSend 12

You can use the DBSend function to send a query or a portion of a query to a data server.

FUNCTION DBSend (sessID: LongInt; text: Ptr; len: Integer;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

text A pointer to the query or query fragment that you want to send to
the data server. The query or query fragment must be a character string.

len The length of the character string. If the len parameter has a value of –1,
then the character string is assumed to be NULL terminated (that is, the
string ends with a NULL byte); otherwise, the len parameter specifies the
number of bytes in the string.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBSend function sends a query or a portion of a query to the data server. The data
server appends this portion of the query to any portion you sent previously. Because the
Data Access Manager does not modify the string you send in any way, it does not
insert any delimiter between fragments of queries that you send to the data server. If
you want a blank or a semicolon to be included between query fragments, or if you want
to use return characters to divide the query into lines of text, you must include them in
the character string that you send with this function.

The data server does not execute the query until you call the DBExec function.

SPECIAL CONSIDERATIONS

The DBSend function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBSend function are

Trap macro Selector

_DBSend $0706
Data Access Manager Reference 12-77

C H A P T E R 1 2

Data Access Manager
RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See Listing 12-4
beginning on page 12-32 for an example of the use of the DBSend function in sending a
query fragment. See page 12-79 for a description of the DBExec function.

DBSendItem 12

You can use the DBSendItem function to send to the data server the data that you wish
to include in a query.

FUNCTION DBSendItem (sessID: LongInt; dataType: DBType;

len: Integer; places: Integer;

flags: Integer; buffer: Ptr;

asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

dataType The data type for the data item that you are sending to the data server.

len The length of the data item that you are sending to the data server. The
database extension and data server ignore the len parameter if the data
type has an implied length.

places The number of decimal places for the data item that you are sending
to the data server. The database extension and data server ignore the
places parameter for all values of the dataType parameter except
typeDecimal and typeMoney.

flags Set the flags parameter to 0. There are no flags currently defined for the
DBSendItem function.

buffer A pointer to the memory location of the data item that you want to send.
When you use the DBSendItem function to send an item of data to a data
server, the database extension and data server format the data according
to the data type, length, and decimal places you specify, convert it to a
character string, and append the data to the query.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

noErr 0 No error
rcDBError –802 Error trying to send text
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-78 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
DESCRIPTION

The DBSendItem function sends a single data item to the data server. The database
extension or the data server (depending on how the system is implemented) converts the
data item to a character string and appends it to the query, just as the DBSend function
appends a query program fragment to the query. The query is not executed until you call
the DBExec function.

SPECIAL CONSIDERATIONS

The DBSendItem function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBSendItem function are

RESULT CODES

SEE ALSO

For a discussion of data types, see “Getting Query Results” beginning on page 12-37. For
a description of the asynchronous parameter block, see page 12-56. See Listing 12-4
beginning on page 12-32 for an example of the use of the DBSendItem function in
sending a query fragment. See page 12-77 for a description of the DBSend function. The
DBExec function is described next.

DBExec 12

The DBExec function initiates execution of a query that you have sent to a data server.

FUNCTION DBExec (sessID: LongInt;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

Trap macro Selector

_DBSendItem $0B07

noErr 0 No error
rcDBError –802 Error trying to send item
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-79

C H A P T E R 1 2

Data Access Manager
DESCRIPTION

The DBExec function initiates execution of a query that you have sent to a data server.
You can use the DBState function to determine the status of a query after you have
initiated execution.

SPECIAL CONSIDERATIONS

The DBExec function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBExec function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See Listing 12-5
beginning on page 12-34 for an example of the use of the DBExec function. Descriptions
of the DBSend and DBSendItem functions begin on page 12-77 and page 12-78,
respectively. The DBState function is described next.

DBState 12

You can use the DBState function to determine whether the data server has successfully
executed a query and whether it has data available for you to retrieve.

FUNCTION DBState (sessID: LongInt;

asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

Trap macro Selector

_DBExec $0408

noErr 0 No error
rcDBError –802 Error trying to begin execution
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-80 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
DESCRIPTION

The DBState function returns a result code that indicates the status of the data server.

SPECIAL CONSIDERATIONS

The DBState function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBState function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

DBGetErr 12

The DBGetErr function retrieves error codes and error messages from a data server. You
can use this function to obtain information when a low-level function returns the result
code rcDBError.

FUNCTION DBGetErr (sessID: LongInt; VAR err1: LongInt;

 VAR err2: LongInt; VAR item1: Str255;

 VAR item2: Str255; VAR errorMsg: Str255;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

err1 Returns the primary error code.

err2 Returns the secondary error code.

item1 Returns a string that describes the object of the error message.

Trap macro Selector

_DBState $0409

noErr 0 No error
rcDBValue –801 Output data available
rcDBError –802 Error executing function
rcDBExec –805 Query currently executing
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-81

C H A P T E R 1 2

Data Access Manager
item2 Returns a string that describes the object of the error message.

errorMsg Returns the error message.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

If the DBState function returns the rcDBError result code, indicating that execution of
a query ended in an error, the error information retuned by DBGetErr can help you
debug the query. The meaning of each error code and error message returned by this
function depends on the data server with which you are communicating; see the
documentation for that data server for more information.

SPECIAL CONSIDERATIONS

The DBGetErr function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetErr function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

DBBreak 12

You can use the DBBreak function to cancel a query—for example, if you determine that
it is taking too long to complete execution.

FUNCTION DBBreak (sessID: LongInt; abort: Boolean;

asyncPB: DBAsyncParmBlkPtr): OSErr;

Trap macro Selector

_DBGetErr $0E0A

noErr 0 No error
rcDBError –802 Error retrieving error information
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-82 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
sessID The session ID that was returned by the DBInit function.

abort A Boolean value that indicates how DBBreak should cancel the query.
Specify TRUE (nonzero) to cause the data server to halt any query that is
executing and terminate the current session. Specify FALSE (0) to cause
the data server to halt any query that is executing and reinitialize itself.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBBreak function can halt execution of a query and reinitialize the data server, or it
can unconditionally terminate a session with a data server.

SPECIAL CONSIDERATIONS

The DBBreak function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBBreak function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

Low-Level Interface: Retrieving Results 12

The functions in this section allow you to retrieve a data item from the data server, to
obtain information about the next data item, and to retrieve the same data item more
than once.

Trap macro Selector

_DBBreak $050B

noErr 0 No error
rcDBError –802 Error executing function
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-83

C H A P T E R 1 2

Data Access Manager
DBGetItem 12

After you have executed a query and the DBState function returns the rcDBValue
result code, indicating that data is available, you can use the DBGetItem function to
retrieve the next data item. You can also use this function to obtain information about the
next data item without retrieving the data.

FUNCTION DBGetItem (sessID: LongInt; timeout: LongInt;

 VAR dataType: DBType; VAR len: Integer;

 VAR places: Integer; VAR flags: Integer;

 buffer: Ptr; asyncPB: DBAsyncParmBlkPtr)

 : OSErr;

sessID The session ID that was returned by the DBInit function.

timeout The maximum amount of time that the database extension should wait to
receive results from the data server before canceling the function. Specify
the timeout parameter in ticks (sixtieths of a second). To disable the
timeout feature, set the timeout parameter to the kDBWaitForever
constant. If the timeout period expires, the DBGetItem function returns
the rcDBBreak result code. The DBGetItem function ignores the
timeout parameter if you call the function asynchronously.

One use for the timeout parameter is to call the DBGetItem function
periodically with a short value set for this parameter in order to return
control to your application while a query is executing. Your application
can then retrieve the next data item as soon as execution of the query is
complete without having to call the DBState function to determine when
data is available.

dataType The data type that you expect the next data item to be. If the item is not of
the expected data type, the database extension returns the rcDBBadType
result code. If you want to retrieve the next data item regardless of type,
set the dataType parameter to the typeAnyType constant. To skip the
next data item, set the dataType parameter to the typeDiscard
constant. The data server sets the dataType parameter to the actual type
of the data item when it retrieves the data item or returns information
about the data item.

len The length of the data buffer pointed to by the buffer parameter. If you
use the DBGetItem function to obtain information only (by setting the
buffer parameter to NIL), then the data server ignores the len
parameter. The data server sets the len parameter to the actual length of
the data item when it retrieves the data item or returns information
about the data item.

places Returns the number of decimal places in data items of types typeMoney
and typeDecimal. For all other data types, the data server returns 0 for
the places parameter.
12-84 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
flags If the least significant bit of the flags parameter is set to 1, the data item
is in the last column of the row. If the third bit of this parameter is set to 1,
the data item is NULL. You can use the constants kDBLastColFlag and
kDBNullFlag to test for these flag bits.

buffer A pointer to the location where you want the retrieved data item to be
stored. You must ensure that the location you specify contains enough
space for the data item that will be returned. To determine the data type,
length, and number of decimal places of the next data item without
retrieving it, specify NIL for the buffer parameter.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBGetItem function retrieves the next data item from the data server. You can
repeat the DBGetItem function as many times as is necessary to retrieve all of the data
returned by the data source in response to a query.

SPECIAL CONSIDERATIONS

The DBGetItem function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetItem function are

RESULT CODES

Trap macro Selector

_DBGetItem $100C

noErr 0 No error
rcDBNull –800 The data item was NULL
rcDBValue –801 Data available was successfully retrieved
rcDBError –802 Error executing function
rcDBBadType –803 Next data item not of requested data type
rcDBBreak –804 Function timed out
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-85

C H A P T E R 1 2

Data Access Manager
SEE ALSO

For a discussion of data types, see “Getting Query Results” beginning on page 12-37.
To retrieve all of a query’s data items at once, use the high-level function
DBGetQueryResults; a description of that function begins on page 12-66. For a
description of the asynchronous parameter block, see page 12-56. See Listing 12-5
beginning on page 12-34 for an example that illustrates the use of the DBGetItem
function.

DBUnGetItem 12

The DBUnGetItem function reverses the effect of the last call to the DBGetItem
function, in the sense that the next time you call the DBGetItem function it retrieves the
same item a second time.

FUNCTION DBUnGetItem (sessID: LongInt;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBUnGetItem function does not remove the just-retrieved data item from the input
buffer. This function can reverse the effect of only one call to the DBGetItem function;
you cannot use it to step back through several previously retrieved data items.

SPECIAL CONSIDERATIONS

The DBUnGetItem function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBUnGetItem function are

Trap macro Selector

_DBUnGetItem $040D
12-86 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See page 12-84
for a description of the DBGetItem function.

Installing and Removing Result Handlers 12

The functions in this section install, remove, and return pointers to result handlers.

DBInstallResultHandler 12

The DBInstallResultHandler function installs a result handler for the data type
specified by the dataType parameter. The result handler is then used by the
DBResultsToText function to convert data of the specified type into a character string.

FUNCTION DBInstallResultHandler (dataType: DBType;

theHandler: ProcPtr;

isSysHandler: Boolean): OSErr;

dataType The type of result handler to install.

theHandler
A pointer to a result handler.

isSysHandler
A Boolean value that specifies whether the result handler is an
application result handler—to be used only when the
DBResultsToText function is called by the application that installed the
result handler—or a system result handler—to be used by every
application running on the system. If the isSysHandler parameter is
TRUE, the result handler is a system result handler.

DESCRIPTION

When you install an application result handler, it replaces any result handler with the
same name previously installed by that application. Similarly, when you install a system
result handler, it replaces any existing system result handler with the same name. Before
you temporarily replace an existing result handler, use the DBGetResultHandler

noErr 0 No error
rcDBError –802 Error executing function
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-87

C H A P T E R 1 2

Data Access Manager
function to obtain a pointer to the present handler, and save the present result handler in
your application’s private storage. Then you can reinstall the original result handler
when you are finished using the temporary one.

Because an application result handler is used in preference to a system result handler if
both are available, you can temporarily replace a system result handler for purposes of
your application by installing an application result handler for the same data type. You
can then use the DBRemoveResultHandler function to remove the application result
handler and return to using the system result handler whenever you wish.

SPECIAL CONSIDERATIONS

The DBInstallResultHandler function may move or purge memory. You should not
call this routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBInstallResultHandler function are

RESULT CODES

SEE ALSO

See page 12-68 for a description of the DBResultsToText function. For information
on application and system result handlers, see “Converting Query Results to Text”
beginning on page 12-43; that section also lists the data types for which Apple provides
system result handlers. Listing 12-6 on page 12-46 shows a sample result handler. The
DBRemoveResultHandler function is described on page 12-90, and the
DBGetResultHandler function is described next.

DBGetResultHandler 12

The DBGetResultHandler function returns a pointer to a result handler for a specified
data type.

FUNCTION DBGetResultHandler (dataType: DBType;

 VAR theHandler: ProcPtr;

 getSysHandler: Boolean): OSErr;

dataType The data type for which to install a result handler.

Trap macro Selector

_DBInstallResultHandler $0514

noErr 0 No error
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-88 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
theHandler
Returns a pointer to the result handler.

getSysHandler
If you set the getSysHandler parameter to FALSE (0), the function
returns a pointer to the current application result handler for the specified
data type, or it returns NIL if there is no application result handler for
that data type. If you set the getSysHandler parameter to TRUE
(nonzero), the function returns a pointer to the current system result
handler for the specified data type, or it returns NIL if there is no system
result handler for that data type.

DESCRIPTION

You can use the DBGetResultHandler function to obtain a pointer to a result handler
so that you can use it to convert to text an individual data item retrieved by the
DBGetItem function. The DBGetQueryResults function automatically converts to text
all of the data pointed to by the results record.

SPECIAL CONSIDERATIONS

The DBGetResultHandler function may move or purge memory. You should not call
this routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetResultHandler function are

RESULT CODES

SEE ALSO

The DBGetQueryResults function is described on page 12-66, and the DBGetItem
function is described on page 12-84. See “Converting Query Results to Text” beginning
on page 12-43 for a list of the data types for which Apple provides system result
handlers. Listing 12-6 on page 12-46 shows a sample result handler.

Trap macro Selector

_DBGetResultHandler $0516

noErr 0 No error
rcDBNoHandler –811 There is no handler for this data type installed for

the current application
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-89

C H A P T E R 1 2

Data Access Manager
DBRemoveResultHandler 12

You can use the DBRemoveResultHandler function to remove an application result
handler.

FUNCTION DBRemoveResultHandler (dataType: DBType): OSErr;

dataType The type of result handler to remove.

DESCRIPTION

The DBRemoveResultHandler function removes from memory the specified
application result handler. This function cannot remove a system result handler.

SPECIAL CONSIDERATIONS

The DBRemoveResultHandler function may move or purge memory. You should not
call this routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBRemoveResultHandler function are

RESULT CODES

SEE ALSO

For a discussion of result handlers, see “Converting Query Results to Text” beginning on
page 12-43.

Application-Defined Routines 12
You can provide status functions, result handler functions, and query defintion functions
for use with the Data Access Manager. For information on status functions, see “Writing
a Status Routine for High-Level Functions” beginning on page 12-22. See “Processing
Query Results” beginning on page 12-37 for information on result handlers. See “Writing
a Query Definition Function” beginning on page 12-52 for information on query
definition functions.

Trap macro Selector

_DBRemoveResultHandler $0215

noErr 0 No error
rcDBNoHandler –811 There is no handler for this data type installed for

the current application
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-90 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Resources 12
This section describes the query resource, the query string resource, and the query
definition function resource. You use the query resource to provide information that the
Data Access Manager uses to create a query record in memory. You use the query string
resource to define individual queries. You use the query definition function to modify a
query and the query record before the query is sent to the data server.

The Query Resource 12

Each query document should contain a single 'qrsc' resource. Figure 12-9 shows the
format of the 'qrsc' resource.

Figure 12-9 Structure of a compiled query ('qrsc') resource

A 'qrsc' resource contains these elements:

■ The version number of the 'qrsc' format. For the Data Access Manager released
with System 7, the version number is 0.

■ The resource ID of the 'qdef' resource containing the query definition function that
the Data Access Manager is to call when it opens this 'qrsc' resource. Use an ID of 0
if there is no query definition function for this resource—that is, if the Data Access
Manager should send the query in this resource to the data server without
modifications.

A query resource Bytes

Resource types and resource

IDs of other resources

2

Variable

Version

Resource ID of 'qdef'

Resource ID of 'STR#'

(database extension name, host, user,

password, connection string)

Current query index

Number of 'wstr' resources

2

2

2

2

Resource IDs of 'wstr' resources

Number of other resources

in this query document

Variable

2

Data Access Manager Reference 12-91

C H A P T E R 1 2

Data Access Manager
■ The resource ID of an 'STR#' resource that contains five Pascal strings corresponding
to some of the parameters used by the DBInit function. If the query definition
function is going to prompt the user for the values of these parameters before entering
them in the query record, they should be zero-length strings in the 'STR#' resource.

■ An index value indicating which element in the array of 'wstr' IDs represents the
current query. The current query is the one actually sent to the data server.

■ The number of 'wstr' resources in the query document.

■ An array of resource IDs of the 'wstr' resources in the query document. (The array
elements are numbered starting with 1.) If the query document contains more than
one 'wstr' resource, the query definition function can prompt the user to select the
query to use and modify the current query field in the query record appropriately.

■ The number of other resources in this query document.

■ An array listing the resource types and IDs of all the resources in the query document
other than the standard resources included in all query documents. The resources
listed in this final array are those used by the query definition function. This list
should include resources embedded in other resources, such as a 'PICT' resource
that is included in a 'DITL' resource.

The Query String Resource 12

A query document must contain one or more query string resources of type 'wstr'.
These 'wstr' resources contain individual queries—that is, strings of commands and
data that the DBSend function sends to the data server and that the DBExec function
executes.

A 'wstr' resource consists of a 2-byte length field followed by a character string. (The
w in 'wstr' refers to the length word as opposed to the length byte used in an 'STR '
resource.) Each 'wstr' resource contains one query (or one query template, to be
modified by the query definition function before it is sent to the data server). Figure
12-10 shows the structure of the 'wstr' resource.

Figure 12-10 Structure of a compiled query string ('wstr') resource

The 'qrsc' resource includes an array that lists the resource ID numbers of all of the
'wstr' resources in the query document and an index into the array that specifies
which one of the 'wstr' resources should be sent to the data server.

A 'wstr' resource Bytes

2Length

Commands and data 0 to 254
12-92 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The Query Definition Function Resource 12

A query document may contain a query definition function, which can modify the query
record and, if necessary, fill in the query template to create a complete query.

If you want to include a query definition function, you must make it the first piece of
code in a resource of type 'qdef' in the query document.

Note that, because a query in memory consists only of a 2-byte length value followed by
a character string, the query definition function has to know the exact contents and
structure of a query in order to modify it. For a sample query definition function that
uses a dialog box to prompt the user for a user name and password, see Listing 12-7 on
page 12-53.
Data Access Manager Reference 12-93

C H A P T E R 1 2

Data Access Manager
Summary of the Data Access Manager 12

Pascal Summary 12

Constants 12

CONST

gestaltDBAccessMgrAttr = 'dbac'; {Gestalt selector for }
{ Data Access Manager}

{Gestalt selector response}

gestaltDBAccessMgrPresent = 0; {TRUE if Data Access Manager }

{ is present}

{DBStartQuery status messages}

kDBUpdateWind = 0; {update windows}

kDBAboutToInit = 1; {about to call DBInit}

kDBInitComplete = 2; {DBInit has completed}

kDBSendComplete = 3; {DBSend has completed}

kDBExecComplete = 4; {DBExec has completed}

kDBStartQueryComplete = 5; {DBStartQuery is about }

 { to complete}

{DBGetQueryResults status messages}

kDBGetItemComplete = 6; {DBGetItem has completed}

kDBGetQueryResultsComplete = 7; {DBGetQueryResults has }

{ completed data types}

{data type codes}

typeNone = 'none'; {no more data expected}

typeDate = 'date'; {date}

typeTime = 'time'; {time}

typeTimeStamp = 'tims'; {date and time}

typeDecimal = 'deci'; {decimal number}

typeMoney = 'mone'; {money value}

typeVChar = 'vcha'; {variable character}

typeVBin = 'vbin'; {variable binary}

typeLChar = 'lcha'; {long character}

typeLBin = 'lbin'; {long binary}

typeDiscard = 'disc'; {discard next data item}

typeBoolean = 'bool'; {Boolean}

typeChar = 'TEXT'; {character}
12-94 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
typeSMInt = 'shor'; {short integer}

typeInteger = 'long'; {integer}

typeSMFloat = 'sing'; {short floating point}

typeFloat = 'doub'; {floating point}

{dummy data types for DBResultsToText}

typeUnknown = 'unkn'; {result handler for unknown }

{ data type}

typeColBreak = 'colb'; {result handler for column }

{ break}

typeRowBreak = 'rowb'; {result handler for end of }

{ line}

{any data type in DBGetItem}

typeAnyType = 0; {any data type}

{infinite timeout value for DBGetItem}

kDBWaitForever = -1; {infinite timeout value for }

{ DBGetItem}

{flags for DBGetItem}

kDBLastColFlag = $0001; {data item is last column }

{ of the row}

kDBNullFlag = $0004; {data item is NULL}

Data Types 12

TYPE DBType = OSType; {data type}

DBAsyncParamBlockRec = {asynchronous parameter block}

RECORD

completionProc: ProcPtr; {pointer to completion routine}

result: OSErr; {result of call}

userRef: LongInt; {reserved for use by }

{ application}

ddevRef: LongInt; {reserved for use by database }

{ extension}

reserved: LongInt; {reserved for use by }

{ Data Access Mgr}

END;

DBAsyncParmBlkPtr = ^DBAsyncParamBlockRec;

ResListElem = {resource list in QueryRecord}

RECORD

theType: ResType; {resource type}

id: Integer; {resource ID}

END;
Summary of the Data Access Manager 12-95

C H A P T E R 1 2

Data Access Manager
ResListArray = ARRAY[0..255] OF ResListElem;

ResListPtr = ^ResListArray;

ResListHandle = ^ResListPtr;

QueryRecord =

RECORD

version: Integer; {query record format version}

id: Integer; {resource ID of 'qrsc'}

queryProc: Handle; {handle to query def proc}

ddevName: Str63; {name of database extension}

host: Str255; {name of host computer}

user: Str255; {name of user}

password: Str255; {user's password}

connStr: Str255; {connection string}

currQuery: Integer; {index of current query}

numQueries: Integer; {number of queries in list}

queryList: QueryListHandle; {handle to array of handles to text}

numRes: Integer; {number of resources in list}

resList: ResListHandle; {handle to array of resource list }

 { elements}

dataHandle: Handle; {handle to memory for query def proc}

refCon: LongInt; {reserved for use by application}

END;

QueryPtr = ^QueryRecord; {pointer to query record}

QueryHandle = ^QueryPtr; {handle to query record}

{query list in QueryRecord}

QueryArray = ARRAY[0..255] OF Handle;

QueryListPtr = ^QueryArray;

QueryListHandle = ^QueryListPtr;

{column types array in ResultsRecord}

ColTypesArray = ARRAY[0..255] OF DBType;

ColTypesPtr = ^ColTypesArray;

ColTypesHandle = ^ColTypesPtr;

DBColInfoRecord = {column info in ResultsRecord}

RECORD

len: Integer; {length of data item}

places: Integer; {places for decimal and money }

{ data items}

flags: Integer; {flags for data item}

END;
12-96 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
ColInfoArray = ARRAY[0..255] OF DBColInfoRecord;

ColInfoPtr = ^ColInfoArray;

ColInfoHandle = ^ColInfoPtr;

{structure of results returned by DBGetResults}

ResultsRecord =

RECORD

numRows: Integer; {number of rows retrieved}

numCols: Integer; {number of columns per row}

colTypes: ColTypesHandle; {type of data in each column}

colData: Handle; {array of data items}

colInfo: ColInfoHandle; {DBColInfoRecord array--info about }

{ each data item}

END;

Data Access Manager Routines 12

Initializing the Data Access Manager

FUNCTION InitDBPack: OSErr;

High-Level Interface: Handling Query Documents

FUNCTION DBGetNewQuery (queryID: Integer; VAR query: QueryHandle)
: OSErr;

FUNCTION DBDisposeQuery (query: QueryHandle): OSErr;

FUNCTION DBStartQuery (VAR sessID: LongInt; query: QueryHandle;
statusProc: ProcPtr;
asyncPB: DBAsyncParmBlkPtr): OSErr;

High-Level Interface: Handling Query Results

FUNCTION DBGetQueryResults (sessID: LongInt; VAR results: ResultsRecord;
timeout: LongInt; statusProc: ProcPtr;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBResultsToText (results: ResultsRecord; VAR theText: Handle)
: OSErr;

Low-Level Interface: Controlling the Session

FUNCTION DBInit (VAR sessID: LongInt; ddevName: Str63;
host: Str255; user: Str255; password: Str255;
connStr: Str255; asyncPB: DBAsyncParmBlkPtr)
: OSErr;
Summary of the Data Access Manager 12-97

C H A P T E R 1 2

Data Access Manager
FUNCTION DBEnd (sessID: LongInt;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBGetConnInfo (sessID: LongInt; sessNum: Integer;
VAR returnedID: LongInt; VAR version: LongInt;
VAR ddevName: Str63; VAR host: Str255;
VAR user: Str255; VAR network: Str255;
VAR connStr: Str255; VAR start: LongInt;
VAR state: OSErr; asyncPB: DBAsyncParmBlkPtr)
: OSErr;

FUNCTION DBGetSessionNum (sessID: LongInt; VAR sessNum: Integer;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBKill (asyncPB: DBAsyncParmBlkPtr): OSErr;

Low-Level Interface: Sending and Executing Queries

FUNCTION DBSend (sessID: LongInt; text: Ptr; len: Integer;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBSendItem (sessID: LongInt; dataType: DBType;
len: Integer; places: Integer; flags: Integer;
buffer: Ptr; asyncPB: DBAsyncParmBlkPtr)
: OSErr;

FUNCTION DBExec (sessID: LongInt; asyncPB: DBAsyncParmBlkPtr)
: OSErr;

FUNCTION DBState (sessID: LongInt; asyncPB: DBAsyncParmBlkPtr)
: OSErr;

FUNCTION DBGetErr (sessID: LongInt; VAR err1: LongInt;
VAR err2: LongInt; VAR item1: Str255;
VAR item2: Str255; VAR errorMsg: Str255;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBBreak (sessID: LongInt; abort: Boolean;
asyncPB: DBAsyncParmBlkPtr): OSErr;

Low-Level Interface: Retrieving Results

FUNCTION DBGetItem (sessID: LongInt; timeout: LongInt;
VAR dataType: DBType;
VAR len: Integer; VAR places: Integer;
VAR flags: Integer; buffer: Ptr;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBUnGetItem (sessID: LongInt;
asyncPB: DBAsyncParmBlkPtr): OSErr;
12-98 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Installing and Removing Result Handlers

FUNCTION DBInstallResultHandler
(dataType: DBType; theHandler: ProcPtr;
isSysHandler: Boolean): OSErr;

FUNCTION DBGetResultHandler (dataType: DBType; VAR theHandler: ProcPtr;
getSysHandler: Boolean): OSErr;

FUNCTION DBRemoveResultHandler
(dataType: DBType): OSErr;

Application-Defined Routines 12

FUNCTION MyStatusFunc (message: Integer; result: OSErr;
dataLen: Integer; dataPlaces: Integer;
dataFlags: Integer; dataType: DBType;
dataPtr: Ptr): Boolean;

FUNCTION MyResultHandler (dataType: DBType; theLen: Integer;
thePlaces: Integer; theFlags: Integer;
theData: Ptr; theText: Handle): OSErr;

FUNCTION MyQDef (VAR sessID: LongInt;
query: QueryHandle): OSErr;

C Summary 12

Constants 12

enum {

#define gestaltDBAccessMgrAttr 'dbac' /*Gestalt selector for */
/* Data Access Manager*/

/*Gestalt selector response*/

gestaltDBAccessMgrPresent = 0 /*TRUE if Data Access Manager */

/* is present*/

};

enum { /*DBStartQuery status messages*/

kDBUpdateWind = 0, /*update windows*/

kDBAboutToInit = 1, /*about to call DBInit*/

kDBInitComplete = 2, /*DBInit has completed*/

kDBSendComplete = 3, /*DBSend has completed*/

kDBExecComplete = 4, /*DBExec has completed*/

kDBStartQueryComplete = 5 /*DBStartQuery is about */

/* to complete*/

};
Summary of the Data Access Manager 12-99

C H A P T E R 1 2

Data Access Manager
enum {

/*DBGetQueryResults status messages*/

kDBGetItemComplete = 6, /*DBGetItem has completed*/

kDBGetQueryResultsComplete = 7, /*DBGetQueryResults has */

/* completed data types*/

/*data type codes*/

#define typeNone 'none' /*no more data expected*/

#define typeDate 'date' /*date*/

#define typeTime 'time' /*time*/

#define typeTimeStamp 'tims' /*date and time*/

#define typeDecimal 'deci' /*decimal number*/

#define typeMoney 'mone' /*money value*/

#define typeVChar 'vcha' /*variable character*/

#define typeVBin 'vbin' /*variable binary*/

#define typeLChar 'lcha' /*long character*/

#define typeLBin 'lbin' /*long binary*/

#define typeDiscard 'disc' /*discard next data item*/

/*dummy data types for DBResultsToText*/

#define typeUnknown 'unkn' /*result handler for unknown */

/* data type*/

#define typeColBreak 'colb' /*result handler for */

/* column break*/

#define typeRowBreak 'rowb' /*result handler for */

/* end of line*/

/*any data type in DBGetItem*/

#define typeAnyType (DBType)0 /*any data type*/

/*infinite timeout value for DBGetItem*/

kDBWaitForever = -1, /*infinite timeout value for */

/* DBGetItem*/

/*flags for DBGetItem*/

kDBLastColFlag = 0x0001,/*data item is last column */

/* of the row*/

kDBNullFlag = 0x0004 /*data item is NULL*/

};

enum {

/*more data type codes*/

typeBoolean = 'bool', /*Boolean*/

typeChar = 'TEXT', /*character*/

typeSMInt = 'shor', /*short integer*/

typeInteger = 'long', /*integer*/

typeSMFloat = 'sing', /*short floating point*/

typeFloat = 'doub' /*floating point*/

};
12-100 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Data Types 12

typedef OSType DBType; /*data type*/

struct DBAsyncParamBlockRec { /*asynchronous parameter block*/

ProcPtr completionProc; /*pointer to completion routine*/

OSErr result; /*result of call*/

long userRef; /*reserved for use by application*/

long ddevRef; /*reserved for use by database */

/* extension*/

long reserved; /*reserved for use by */

/* Data Access Manager*/

};

typedef struct DBAsyncParamBlockRec DBAsyncParamBlockRec;

typedef DBAsyncParamBlockRec *DBAsyncParmBlkPtr;

struct ResListElem { /*resource list in QueryRecord*/

ResType theType; /*resource type*/

short id; /*resource ID*/

};

typedef struct ResListElem ResListElem;

typedef ResListElem *ResLisPtr, **ResListHandle;

typedef Handle **QueryListHandle;

struct QueryRecord { /*query record*/

short version; /*query record format version*/

short id; /*resource ID of 'qrsc'*/

Handle queryProc; /*handle to query def proc*/

Str63 ddevName; /*name of database extension*/

Str255 host; /*name of host computer*/

Str255 user; /*name of user*/

Str255 password; /*user's password*/

Str255 connStr; /*connection string*/

short currQuery; /*index of current query*/

short numQueries; /*number of queries in list*/

QueryListHandle queryList; /*handle to array of handles to text*/

short numRes; /*number of resources in list*/

ResListHandle resList; /*handle to array of resource list */

/* elements*/

Handle dataHandle; /*handle to memory for query def proc*/

long refCon; /*reserved for use by application*/

};

typedef struct QueryRecord QueryRecord;
Summary of the Data Access Manager 12-101

C H A P T E R 1 2

Data Access Manager
typedef QueryRecord *QueryPtr, **QueryHandle;

/*column types array in ResultsRecord*/

typedef Handle ColTypesHandle;

struct DBColInfoRecord { /*column info in ResultsRecord*/

short len; /*length of data item*/

short places; /*places for decimal and money */

/* data items*/

short flags; /*flags for data item*/

};

typedef struct DBColInfoRecord DBColInfoRecord;

typedef Handle ColInfoHandle;

struct ResultsRecord { /*results returned by DBGetResults*/

short numRows; /*number of rows retrieved*/

short numCols; /*number of columns per row*/

ColTypesHandle colTypes; /*type of data in each column*/

Handle colData; /*array of data items*/

ColInfoHandle colInfo; /*DBColInfoRecord array--info about */

/* each data item*/

};

typedef struct ResultsRecord ResultsRecord;

Data Access Manager Routines 12

Initializing the Data Access Manager

pascal OSErr InitDBPack (void);

High-Level Interface: Handling Query Documents
pascal OSErr DBGetNewQuery (short queryID, QueryHandle *query);

pascal OSErr DBDisposeQuery (QueryHandle query);

pascal OSErr DBStartQuery (long *sessID, QueryHandle query,
ProcPtr statusProc, DBAsyncParmBlkPtr asyncPB);

High-Level Interface: Handling Query Results
pascal OSErr DBGetQueryResults

(long sessID, ResultsRecord *results,
long timeout, ProcPtr statusProc,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBResultsToText
(ResultsRecord *results, Handle *theText);
12-102 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Low-Level Interface: Controlling the Session

pascal OSErr DBInit (long *sessID, ConstStr63Param ddevName,
ConstStr255Param host, ConstStr255Param user,
ConstStr255Param passwd,
ConstStr255Param connStr,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBEnd (long sessID, DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBGetConnInfo (long sessID, short sessNum, long *returnedID,
long *version, Str63 ddevName, Str255 host,
Str255 user, Str255 network, Str255 connStr,
long *start, OSErr *state,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBGetSessionNum
(long sessID, short *sessNum,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBKill (DBAsyncParmBlkPtr asyncPB);

Low-Level Interface: Sending and Executing Queries

pascal OSErr DBSend (long sessID, char *text, short len,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBSendItem (long sessID, DBType dataType, short len,
short places, short flags, void *buffer,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBExec (long sessID, DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBState (long sessID, DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBGetErr (long sessID, long *err1, long *err2,
Str255 item1, Str255 item2, Str255 errorMsg,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBBreak (long sessID, Boolean abort,
DBAsyncParmBlkPtr asyncPB);

Low-Level Interface: Retrieving Results
pascal OSErr DBGetItem (long sessID, long timeout, DBType *dataType,

short *len, short *places, short *flags,
void *buffer, DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBUnGetItem (long sessID, DBAsyncParmBlkPtr asyncPB);

Installing and Removing Result Handlers

pascal OSErr DBInstallResultHandler
(DBType dataType, ProcPtr theHandler,
Boolean isSysHandler);
Summary of the Data Access Manager 12-103

C H A P T E R 1 2

Data Access Manager
pascal OSErr DBGetResultHandler
(DBType dataType, ProcPtr *theHandler,
Boolean getSysHandler);

pascal OSErr DBRemoveResultHandler
(DBType dataType);

Application-Defined Routines 12

pascal Boolean MyStatusFunc (short message, OSErr result, short dataLen,
short dataPlaces, short dataFlags,
DBType dataType, Ptr dataPtr);

pascal OSErr MyResultHandler
(DBType dataType, short theLen,
short thePlaces, short theFlags, Ptr theData,
Handle theText);

pascal OSErr MyQDef (long *sessID, QueryHandle query);

Assembly-Language Summary 12

Trap Macros 12

Trap Macros Requiring Routine Selectors

_Pack13

Selector Routine

$0100 InitDBPack

$020E DBKill

$0210 DBDisposeQuery

$0215 DBRemoveResultHandler

$030F DBGetNewQuery

$0403 DBEnd

$0408 DBExec

$0409 DBState

$040D DBUnGetItem

$0413 DBResultsToText

$050B DBBreak

$0514 DBInstallResultHandler

$0516 DBGetResultHandler

$0605 DBGetSessionNum
12-104 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Result Codes 12

$0706 DBSend

$0811 DBStartQuery

$0A12 DBGetQueryResults

$0B07 DBSendItem

$0E02 DBInit

$0E0A DBGetErr

$100C DBGetItem

$1704 DBGetConnInfo

noErr 0 No error
userCanceledErr –128 User canceled the query
rcDBNull –800 The data item was NULL
rcDBValue –801 Data available or successfully retrieved
rcDBError –802 Error executing function
rcDBBadType –803 Next data item not of requested data type
rcDBBreak –804 Function timed out
rcDBExec –805 Query currently executing
rcDBBadSessID –806 Session ID is invalid
rcDBBadSessNum –807 Invalid session number
rcDBBadDDev –808 Couldn’t find the specified database extension, or error occurred in

opening database extension
rcDBAsyncNotSupp –809 The database extension does not support asynchronous calls
rcDBBadAsynchPB –810 Invalid parameter block specified
rcDBNoHandler –811 There is no handler for this data type installed for the current

application
rcDBWrongVersion –812 Wrong version number
rcDBPackNotInited –813 The InitDBPack function has not yet been called

Selector Routine
Summary of the Data Access Manager 12-105

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	Data Access Manager
	About the Data Access Manager
	The High-Level Interface
	Sending a Query Through the High-Level Interface
	Retrieving Data Through the High-Level Interface

	The Low-Level Interface
	Sending a Query Through the Low-Level Interface
	Retrieving Data Through the Low-Level Interface

	Comparison of the High-Level and Low-Level Interfa...

	Using the Data Access Manager
	Executing Routines Asynchronously
	General Guidelines for the User Interface
	Keep the User in Control
	Provide Feedback to the User

	Using the High-Level Interface
	Writing a Status Routine for High-Level Functions
	Using the Low-Level Interface
	Getting Information About Sessions in Progress
	Processing Query Results
	Getting Query Results
	Converting Query Results to Text

	Creating a Query Document
	User Interface Guidelines for Query Documents
	Contents of a Query Document
	Query Records and Query Resources
	Writing a Query Definition Function

	Data Access Manager Reference
	Data Structures
	The Asynchronous Parameter Block
	The Query Record
	The Results Record

	Data Access Manager Routines
	Initializing the Data Access Manager
	High-Level Interface: Handling Query Documents
	High-Level Interface: Handling Query Results
	Low-Level Interface: Controlling the Session
	Low-Level Interface: Sending and Executing Queries...
	Low-Level Interface: Retrieving Results
	Installing and Removing Result Handlers

	Application-Defined Routines
	Resources
	The Query Resource
	The Query String Resource
	The Query Definition Function Resource

	Summary of the Data Access Manager
	Pascal Summary
	Constants
	Data Types
	Data Access Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Data Access Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Glossary
	 Index
	 Colophon

