

C H A P T E R 4

4

R
esponding to A

pple E
vents

Responding to Apple Events 4

This chapter describes how your application can use the Apple Event Manager to
respond to Apple events. Your application must be able to respond to the four required
Apple events to take advantage of the launching and terminating mechanisms that are
part of System 7 and later versions of system software. If your application provides
publish and subscribe capabilities, it should also handle the events sent by the Edition
Manager. To be scriptable, or capable of responding to Apple events sent by scripting
components, your application should handle the appropriate core and functional-area
Apple events.

Before you read this chapter, you should be familiar with the chapters “Introduction to
Interapplication Communication” and “Introduction to Apple Events” in this book. You
should also have a copy of the Apple Event Registry: Standard Suites available for reference.

Although the Apple events used by the Edition Manager are discussed in this chapter,
you must refer to the chapter “Edition Manager” in this book for a full discussion of how
to implement the Edition Manager’s publish and subscribe features.

This chapter provides the basic information you need to make your application capable
of responding to Apple events. To respond to core and functional-area Apple events,
your application must also be able to resolve object specifier records. You should
read the chapter “Resolving and Creating Object Specifier Records” before you write
Apple event handlers for events that can contain object specifier records.

The section “Handling Apple Events,” which begins on page 4-4, describes how to

■ accept and process Apple events

■ install entries in the Apple event dispatch tables

■ handle the required events

■ handle events sent by the Edition Manager

■ get data out of an Apple event

■ write handlers that perform the action requested by an Apple event

■ reply to an Apple event

■ dispose of Apple event data structures

■ write and install coercion handlers

The section “Interacting With the User,” which begins on page 4-45, describes

■ how a server application can interact with the user when processing an Apple event

■ how client applications set user interaction preferences

■ how the client application’s preferences and the server application’s preferences affect
user interaction
4-3

C H A P T E R 4

Responding to Apple Events

Handling Apple Events 4

You do not need to implement all Apple events at once. If you want to begin by
supporting only the required Apple events, you must

■ set bits in the 'SIZE' resource to indicate that your application supports high-level
events

■ include code to handle high-level events in your main event loop

■ write routines that handle the required events

■ install entries for the required Apple events in your application’s Apple event
dispatch table

The following sections explain how to perform these tasks: “Accepting an Apple Event,”
which begins on page 4-5, “Installing Entries in the Apple Event Dispatch Tables,” which
begins on page 4-7, and “Handling the Required Apple Events,” which begins on
page 4-11.

To respond to the Apple events sent by the Edition Manager in addition to the required
events, you must install entries for the Section Read, Section Write, Section Scroll, and
Create Publisher events in your application’s Apple event dispatch table and write the
corresponding handlers, as described in “Handling Apple Events Sent by the Edition
Manager” on page 4-20.

To respond to core and functional-area Apple events, you must install entries and write
handlers for those events. You must also make sure that your application can locate
Apple event objects with the aid of the Apple Event Manager routines described in the
chapter “Resolving and Creating Object Specifier Records.” These routines are currently
available as the Object Support Library (OSL), which you must link with your
application when you build it.

The Apple Event Manager (excluding the OSL) is available only in System 7
and later versions of system software. Use the Gestalt function with the
gestaltAppleEventsAttr selector to determine whether the Apple Event
Manager is available. In the response parameter, the bit defined by the constant
gestaltAppleEventsPresent is set if the Apple Event Manager is available.

CONST gestaltAppleEventsAttr = 'evnt'; {Gestalt selector}

gestaltAppleEventsPresent = 0; {if this bit is set, }

{ then the Apple Event }

{ Manager is available}

To find out which version of the Apple Event Manager is available, you can use the
AEManagerInfo function; for more information, see page 4-104.
4-4 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4

R
esponding to A

pple E
vents

Accepting an Apple Event 4
To accept or send Apple events (or any other high-level events), you must set the
appropriate flags in your application’s 'SIZE' resource and include code to handle
high-level events in your application’s main event loop.

Two flags in the 'SIZE' resource determine whether an application receives high-level
events:

■ The isHighLevelEventAware flag must be set for your application to receive any
high-level events.

■ The localAndRemoteHLEvents flag must be set for your application to receive
high-level events sent from another computer on the network.

Note that in order for your application to respond to Apple events sent from remote
computers, the user of your application must also allow network users to link to your
application. The user does this by selecting your application in the Finder, choosing
Sharing from the File menu, and clicking the Allow Remote Program Linking checkbox.
If the user has not yet started program linking, the Sharing command offers to display
the Sharing Setup control panel so that the user can start program linking. The user must
also authorize remote users for program linking by using the Users & Groups control
panel. Program linking and setting up authenticated sessions are described in the
chapter “Program-to-Program Communications Toolbox” in this book.

For a complete description of the 'SIZE' resource, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Apple events (and other high-level events) are identified by a message class of
kHighLevelEvent in the what field of the event record. You can test the what field of
the event record to determine whether the event is a high-level event.

Listing 4-1 is an example of a procedure called from an application’s main event loop to
handle events, including high-level events. The procedure determines the type of event
received and then calls another routine to take the appropriate action.

Listing 4-1 A DoEvent procedure

PROCEDURE DoEvent (event: EventRecord);

BEGIN

CASE event.what OF {determine the type of event}

mouseDown:

DoMouseDown (event);

.

. {handle other kinds of events}

.

{handle high-level events, including Apple events}

kHighLevelEvent: DoHighLevelEvent (event);

END;

END;
Handling Apple Events 4-5

C H A P T E R 4

Responding to Apple Events

Listing 4-2 is an example of a procedure that handles both Apple events and the
high-level event identified by the event class mySpecialHLEventClass and the event
ID mySpecialHLEventID. Note that, in most cases, you should use Apple events to
communicate with other applications.

Listing 4-2 A DoHighLevelEvent procedure for handling Apple events and other high-level
events

PROCEDURE DoHighLevelEvent (event: EventRecord);

VAR

myErr: OSErr;

BEGIN

IF (event.message = LongInt(mySpecialHLEventClass)) AND

(LongInt(event.where) = LongInt(mySpecialHLEventID))

THEN

{it's a high-level event that doesn't use AEIMP}

myErr := HandleMySpecialHLEvent(event)

ELSE

{otherwise, assume that the event is an Apple event}

myErr := AEProcessAppleEvent(event);

{check and handle error}

IF myErr <> noErr THEN DoError(myErr);

END;

If your application accepts high-level events that do not follow the Apple Event
Interprocess Messaging Protocol (AEIMP), you must dispatch these high-level events
before calling AEProcessAppleEvent. To dispatch high-level events that do not follow
AEIMP, you should check the event class, the event ID, or both for each event to see
whether your application can handle the event.

After receiving a high-level event (and, if appropriate, checking whether it is a
high-level event other than an Apple event), your application typically calls the
AEProcessAppleEvent function. The AEProcessAppleEvent function determines
the type of Apple event received, gets the event buffer that contains the parameters and
attributes of the Apple event, and calls the corresponding Apple event handler in your
application.

You should provide an Apple event handler for each Apple event that your application
supports. This handler is responsible for performing the action requested by the
Apple event and if necessary can return data in the reply Apple event.
4-6 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4

R
esponding to A

pple E
vents

If the client application requests a reply, the Apple Event Manager passes a default reply
Apple event to your handler. If the client application does not request a reply, the Apple
Event Manager passes a null descriptor record (a descriptor record of descriptor type
typeNull and a data handle whose value is NIL) to your handler instead of a default
reply Apple event.

After your handler finishes processing the Apple event and adds any parameters to the
reply Apple event, it must return a result code to AEProcessAppleEvent. If the
client application is waiting for a reply, the Apple Event Manager returns the reply
Apple event to the client.

Installing Entries in the Apple Event Dispatch Tables 4
When your application receives an Apple event, use the AEProcessAppleEvent
function to retrieve the data buffer of the event and to route the Apple event to the
appropriate Apple event handler in your application. Your application supplies an
Apple event dispatch table to map the Apple events your application supports to
the Apple event handlers provided by your application.

To install entries in your application’s Apple event dispatch table, use the
AEInstallEventHandler function. You usually install entries for all of the Apple
events that your application accepts into your application’s Apple event dispatch table.

To install an Apple event handler in your Apple event dispatch table, you must specify

■ the event class of the Apple event

■ the event ID of the Apple event

■ the address of the Apple event handler for the Apple event

■ a reference constant

You provide this information to the AEInstallEventHandler function. In addition,
you indicate whether the entry should be added to your application’s Apple event
dispatch table or to the system Apple event dispatch table.

The system Apple event dispatch table is a table in the system heap that contains
system Apple event handlers—handlers that are available to all applications and
processes running on the same computer. The handlers in your application’s Apple
event dispatch table are available only to your application. If AEProcessAppleEvent
cannot find a handler for the Apple event in your application’s Apple event
dispatch table, it looks in the system Apple event dispatch table for a handler (see
“How Apple Event Dispatching Works” on page 4-9 for details). If it doesn’t find a
handler for the event, it returns the errAEEventNotHandled result code.

If you add a handler to the system Apple event dispatch table, the handler should reside
in the system heap. If there was already an entry in the system Apple event dispatch
table for the same event class and event ID, it is replaced unless you chain it to your
system handler. See “Creating and Managing the Apple Event Dispatch Tables” on
page 4-61 for details.
Handling Apple Events 4-7

C H A P T E R 4

Responding to Apple Events

Installing Entries for the Required Apple Events 4

Listing 4-3 illustrates how to add entries for the required Apple events to your
application’s Apple event dispatch table.

Listing 4-3 Adding entries for the required Apple events to an application’s Apple event
dispatch table

myErr := AEInstallEventHandler(kCoreEventClass,

 kAEOpenApplication,

 @MyHandleOApp, 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(kCoreEventClass,

 kAEOpenDocuments,

 @MyHandleODoc,0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(kCoreEventClass,

 kAEPrintDocuments,

 @MyHandlePDoc, 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(kCoreEventClass,

 kAEQuitApplication,

 @MyHandleQuit, 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

The code in Listing 4-3 creates entries for all four required Apple events in the Apple
event dispatch table. (For examples of handlers that correspond to these entries, see
“Handling the Required Apple Events,” which begins on page 4-11.) The first entry
creates an entry for the Open Application event. The entry indicates the event class and
event ID of the Open Application event, supplies the address of the handler for
that event, and specifies 0 as the reference constant.

The Apple Event Manager passes the reference constant to your handler each time your
handler is called. Your application can use this reference constant for any purpose. If
your application doesn’t use the reference constant, use 0 as the value.

The last parameter to the AEInstallEventHandler function is a Boolean value that
determines whether the entry is added to the system Apple event dispatch table or to
your application’s Apple event dispatch table. To add the entry to your application’s
Apple event dispatch table, use FALSE as the value of this parameter. If you specify
TRUE, the entry is added to the system Apple event dispatch table. The code shown in
Listing 4-3 adds entries to the application’s Apple event dispatch table.
4-8 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4

R
esponding to A

pple E
vents

Installing Entries for Apple Events Sent by the Edition Manager 4

If your application supports the Edition Manager, you should also add entries to your
application’s Apple event dispatch table for the Apple events that your application
receives from the Edition Manager. Listing 4-4 shows how to add these entries.

Listing 4-4 Adding entries for Apple events sent by the Edition Manager to an application’s
Apple event dispatch table

myErr := AEInstallEventHandler(sectionEventMsgClass,

 sectionReadMsgID,

 @MyHandleSectionReadEvent,

 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(sectionEventMsgClass,

 sectionWriteMsgID,

 @MyHandleSectionWriteEvent,

 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(sectionEventMsgClass,

 sectionScrollMsgID,

 @MyHandleSectionScrollEvent,

 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

See “Handling Apple Events Sent by the Edition Manager” on page 4-20 for the
parameters associated with these events. See the chapter “Edition Manager” in this book
for information on how your application should respond to the Apple events sent by the
Edition Manager.

How Apple Event Dispatching Works 4

In addition to the Apple event handler dispatch tables, applications can add entries to a
special handler dispatch table in either the application heap or the system heap. These
dispatch tables are used for various specialized handlers; for more information, see
“Creating and Managing the Special Handler Dispatch Tables,” which begins on
page 4-99.

When an application calls AEProcessAppleEvent, the function looks first in the
application’s special handler dispatch table for an entry that was installed with the
constant keyPreDispatch. If the application’s special handler dispatch table does not
include such a handler or if the handler returns errAEEventNotHandled, the function
looks in the application’s Apple event dispatch table for an entry that matches the event
class and event ID of the specified Apple event.
Handling Apple Events 4-9

C H A P T E R 4

Responding to Apple Events

If the application’s Apple event dispatch table does not include such a handler or if the
handler returns errAEEventNotHandled, the AEProcessAppleEvent function looks
in the system special handler dispatch table for an entry that was installed with the
constant keyPreDispatch. If the system special handler dispatch table does not
include such a handler or if the handler returns errAEEventNotHandled, the function
looks in the system Apple event dispatch table for an entry that matches the event class
and event ID of the specified Apple event.

If the system Apple event dispatch table does not include such a handler, the Apple
Event Manager returns the result code errAEEventNotHandled to the server
application and, if the client application is waiting for a reply, to the client application.

▲ W A R N I N G

Before an application calls a system Apple event handler, system
software has set up the A5 register for the calling application. For this
reason, if you provide a system Apple event handler, it should never use
A5 global variables or anything that depends on a particular context;
otherwise, the application that calls the system handler may crash. ▲

For any entry in your Apple event dispatch table, you can specify a wildcard value
for the event class, event ID, or both. You specify a wildcard by supplying the
typeWildCard constant when installing an entry into the Apple event dispatch table.
A wildcard value matches all possible values. Wildcards make it possible to supply
one Apple event handler that dispatches several related Apple events.

For example, if you specify an entry with the typeWildCard event class and the
kAEOpenDocuments event ID, the Apple Event Manager dispatches Apple events of
any event class with an event ID of kAEOpenDocuments to the handler for that entry.

If you specify an entry with the kCoreEventClass event class and the
typeWildCard event ID, the Apple Event Manager dispatches Apple events of
the kCoreEventClass event class with any event ID to the handler for that entry.

If you specify an entry with the typeWildCard event class and the typeWildCard
event ID, the Apple Event Manager dispatches all Apple events of any event class and
any event ID to the handler for that entry.

If an Apple event dispatch table contains one entry for an event class and a specific event
ID, and also contains another entry that is identical except that it specifies a wildcard
value for either the event class or the event ID, the Apple Event Manager dispatches the
more specific entry. For example, if an Apple event dispatch table includes one entry that
specifies the event class as kAECoreSuite and the event ID as kAEDelete, and
another entry that specifies the event class as kAECoreSuite and the event ID as
typeWildCard, the Apple Event Manager will dispatch the Apple event handler
associated with the entry that specifies the event ID as kAEDelete.
4-10 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
IMPORTANT

If your application sends Apple events to itself using a
typeProcessSerialNumber address descriptor record with the
lowLongOfPSN field set to kCurrentProcess, the Apple Event
Manager jumps directly to the appropriate Apple event handler without
going through the normal event-processing sequence. For this reason,
your application will not appear to run more slowly when it sends
Apple events to itself. For more information, see “Addressing an Apple
Event for Direct Dispatching” on page 5-13. ▲

Handling the Required Apple Events 4
This section describes the required Apple events—the Apple events your application
must support to be compatible with System 7 and later versions of system software—
and the descriptor types for all parameters of the required Apple events. It also describes
how to write the handlers for these events, and it provides sample code.

To support the required Apple events, you must set the necessary flags in the 'SIZE'
resource of your application, install entries in your application’s Apple event dispatch
table, add code to the event loop of your application to recognize high-level events,
and call the AEProcessAppleEvent function, as described in “Accepting an Apple
Event,” which begins on page 4-5, and “Installing Entries in the Apple Event Dispatch
Tables,” which begins on page 4-7. You must also write handlers for each Apple event;
this section describes how to write these handlers.

Required Apple Events 4

When a user opens or prints a file from the Finder, the Finder sets up the information
your application uses to determine which files to open or print. In System 7 and later
versions, if your application supports high-level events, the Finder communicates this
information to your application through the required Apple events.

The Finder sends these required Apple events to your application to request the
corresponding actions:

Apple event Requested action

Open Application Perform tasks your application normally performs when a user
opens your application without opening or printing any
documents

Open Documents Open the specified documents

Print Documents Print the specified documents

Quit Application Perform tasks—such as releasing memory, requesting the user to
save documents, and so on—associated with quitting before the
Finder terminates your application
Handling Apple Events 4-11

C H A P T E R 4

Responding to Apple Events
In System 7 and later versions, the Finder uses these events as part of the mechanisms
for launching and terminating applications. When the Finder launches your application,
the application receives the Open Application, Open Documents, or Print Documents
event. When the Finder terminates your application, the application receives the
Quit Application event. This method of communicating Finder information to your
application replaces the mechanisms used in earlier versions of system software.

Applications that do not support high-level events can still use the CountAppFiles,
GetAppFiles, and ClrAppFiles procedures (or the GetAppParms procedure) to get
the Finder information. See the chapter “Introduction to File Management” in
Inside Macintosh: Files for information on these routines. To make your application
compatible with System 7 and with earlier and later versions, you must support both the
old and new mechanisms.

Use the Gestalt function to determine whether the Apple Event Manager is present.
If it is and the isHighLevelEventAware flag is set in your application’s 'SIZE'
resource, your application receives the Finder information through the required
Apple events.

If your application accepts high-level events, it must be able to process the four required
Apple events. Your application receives the required Apple events from the Finder in
these situations:

■ If your application is not open and the user opens your application from the Finder
without opening or printing any documents, the Finder launches your application
and sends it the Open Application event.

■ If your application is not open and the user opens one of your application’s
documents from the Finder, the Finder launches your application and sends it the
Open Documents event.

■ If your application is not open and the user prints one of your application’s
documents from the Finder, the Finder launches your application and sends it the
Print Documents event. Your application should print the selected documents and
remain open until it receives a Quit Application event from the Finder.

■ If your application is open and the user opens or prints any of your application’s
documents from the Finder, the Finder sends your application the Open Documents
or Print Documents event.

■ If your application is open and the user chooses Restart or Shut Down from the
Finder’s Special menu, the Finder sends your application the Quit Application event.
4-12 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Upon receiving any of the required Apple events, your application should perform the
action requested by the event. Here is a summary of the contents of the required events
and the actions they request applications to perform:

Open Application—perform tasks associated with opening an application

Event class kCoreEventClass

Event ID kAEOpenApplication

Parameters None

Requested action Perform any tasks—such as opening an untitled document
window—that you would normally perform when a user opens
your application without opening or printing any documents.

Open Documents—open the specified documents

Event class kCoreEventClass

Event ID kAEOpenDocuments

Required parameter

Keyword: keyDirectObject

Descriptor type: typeAEList

Data: A list of alias records for the documents to be opened

Requested action Open the documents specified in the keyDirectObject
parameter.

Print Documents—print the specified documents

Event class kCoreEventClass

Event ID kAEPrintDocuments

Required parameter

Keyword: keyDirectObject

Descriptor type: typeAEList

Data: A list of alias records for the documents to be printed

Requested action Print the documents specified in the keyDirectObject
parameter without opening windows for the documents.

Quit Application—perform tasks associated with quitting

Event class kCoreEventClass

Event ID kAEQuitApplication

Parameters None
Handling Apple Events 4-13

C H A P T E R 4

Responding to Apple Events
Your application needs to recognize only two descriptor types to handle the required
Apple events: descriptor lists and alias records. The Open Documents event and Print
Documents event use descriptor lists to store a list of documents to open. Each document
is specified as an alias record in the descriptor list.

You can retrieve the data that specifies the document to open as an alias record, or you
can request that the Apple Event Manager coerce the alias record to a file system
specification (FSSpec) record. The file system specification record provides a standard
method of identifying files in System 7 and later versions. See Inside Macintosh: Files for a
complete description of how to specify files using file system specification records.

Handling the Open Application Event 4

When the user opens your application, the Finder uses the Process Manager to launch
your application. On startup, your application typically performs any needed
initialization, and then begins to process events. If your application supports high-level
events, and if the user opens your application without selecting any documents to open
or print, your application receives the Open Application event.

To handle the Open Application event, your application should do just what the user
expects it to do when it is opened. For example, your application might open a new
untitled window in response to an Open Application event.

Listing 4-5 shows a handler that processes the Open Application event. This handler first
calls an application-defined function called MyGotRequiredParams, which checks
whether the Apple event contains any required parameters. If so, the handler returns an
error, because by definition, the Open Application event should not contain any required
parameters. Otherwise, the handler opens a new document window.

Requested action Perform any tasks that your application would
normally perform when the user chooses Quit. Such tasks
typically include asking the user whether to save documents
that have been changed. When appropriate, the Finder sends
this event to an application immediately after sending it a Print
Documents event (unless the application was already open) or
if the user chooses Restart or Shut Down from the Finder’s
Special menu.

Quit Application—perform tasks associated with quitting (continued)
4-14 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-5 A handler for the Open Application event

FUNCTION MyHandleOApp (theAppleEvent, reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myErr: OSErr;

BEGIN

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

DoNew;

MyHandleOApp := myErr;

END;

For a description of the MyGotRequiredParams function, see Listing 4-11 on page 4-35.
For information about the reply and handlerRefcon parameters for an Apple event
handler, see “Writing Apple Event Handlers” on page 4-33.

Handling the Open Documents Event 4

To handle the Open Documents event, your application should open the documents that
the Open Documents event specifies in its direct parameter. Your application extracts this
information and then opens the specified documents. Listing 4-6 shows a handler for the
Open Documents event.

Listing 4-6 A handler for the Open Documents event

FUNCTION MyHandleODoc (theAppleEvent, reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myFSS: FSSpec;

docList: AEDescList;

myErr, ignoreErr: OSErr;

index, itemsInList: LongInt;

actualSize: Size;

keywd: AEKeyword;

returnedType: DescType;

BEGIN

{get the direct parameter--a descriptor list--and put it }

{ into docList}

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeAEList, docList);
Handling Apple Events 4-15

C H A P T E R 4

Responding to Apple Events
IF myErr = noErr THEN

BEGIN

{check for missing required parameters}

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

BEGIN

{count the number of descriptor records in the list}

myErr := AECountItems (docList, itemsInList);

IF myErr = noErr THEN

{now get each descriptor record from the list, }

{ coerce the returned data to an FSSpec record, and }

{ open the associated file}

FOR index := 1 TO itemsInList DO

BEGIN

myErr := AEGetNthPtr(docList, index, typeFSS,

keywd, returnedType, @myFSS,

Sizeof(myFSS),actualSize);

IF myErr = noErr THEN

BEGIN

myErr := MyOpenFile(@myFSS);

IF myErr <> noErr THEN

; {handle error from MyOpenFile}

END

ELSE

; {handle error from AEGetNthPtr}

END; {of For index Do}

END

ELSE

; {handle error from MyGotRequiredParams}

ignoreErr := AEDisposeDesc(docList);

END

ELSE

; {failed to get direct parameter, handle error}

MyHandleODoc := myErr;

END;

The handler in Listing 4-6 first uses the AEGetParamDesc function to get the direct
parameter (specified by the keyDirectObject keyword) out of the Apple event.
The handler requests that AEGetParamDesc return a descriptor list in the docList
variable. The handler then checks that it has retrieved all of the required parameters by
calling the MyGotRequiredParams function. (See Listing 4-11 on page 4-35 for a
description of this function.)
4-16 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Once the handler has retrieved the descriptor list from the Apple event, it uses
AECountItems to count the number of descriptors in the list. Using the returned
number as an index, the handler can get the data of each descriptor record in the list.
This handler requests that the AEGetNthPtr function coerce the data in the descriptor
record to a file system specification record. The handler can then use the file system
specification record as a parameter to its own routine for opening files.

For more information on the AEGetParamDesc function, see page 4-69. For more
information on the AEGetNthPtr and AECountItems functions, see “Getting Data Out
of a Descriptor List” on page 4-31.

After extracting the file system specification record that describes the document to open,
your application can use this record to open the file. For example, in Listing 4-6, the code
passes the file system specification record to its routine for opening files, the
MyOpenFile function.

The MyOpenFile function should be designed so that it can be called in response to
both the Open Documents event and to events generated by the user. For example,
when the user chooses Open from the File menu, the code that handles the mouse-down
event uses the StandardGetFile procedure to let the user choose a file; it then
calls MyOpenFile, passing the file system specification record returned by
StandardGetFile. By isolating code that performs a requested action from code that
interacts with the user, you can easily adapt your application to handle Apple events
that request the same action.

Note the use of the AEDisposeDesc function to dispose of the descriptor list when your
handler no longer requires the data in it. Your handler should also return a result code.

Handling the Print Documents Event 4

To handle the Print Documents event, your application should extract information about
the documents to be printed from the direct parameter, then print the specified
documents.

If your application can interact with the user, it should open windows for the
documents, display a Print dialog box for the first document, and use the settings
entered by the user for the first document to print all the documents. If user interaction is
not allowed, your application may either return the error errAENoUserInteraction
or print the documents using default settings. See “Interacting With the User,” which
begins on page 4-45, for information about using the AEInteractWithUser function to
interact with the user.

Note that your application can remain open after processing the Print Documents event;
when appropriate, the Finder sends your application a Quit Application event
immediately after sending it a Print Documents event.

The handler for the Print Documents event shown in Listing 4-7 is similar to the handler
for the Open Documents event, except that it prints the documents referred to in the
direct parameter.
Handling Apple Events 4-17

C H A P T E R 4

Responding to Apple Events
Listing 4-7 A handler for the Print Documents event

FUNCTION MyHandlePDoc (theAppleEvent, reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myFSS: FSSpec;

docList: AEDescList;

myErr, ignoreErr: OSErr;

index, itemsInList: LongInt;

actualSize: Size;

keywd: AEKeyword;

returnedType: DescType;

BEGIN

{get the direct parameter--a descriptor list--and put it }

{ into docList}

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeAEList, docList);

IF myErr = noErr THEN

BEGIN

{check for missing required parameters}

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

BEGIN

{count the number of descriptor records in the list}

myErr := AECountItems (docList, itemsInList);

IF myErr = noErr THEN

{now get each descriptor record from the list, }

{ coerce the returned data to an FSSpec record, and }

{ print the associated file}

FOR index := 1 TO itemsInList DO

BEGIN

myErr := AEGetNthPtr(docList, index, typeFSS,

keywd, returnedType, @myFSS,

Sizeof(myFSS), actualSize);

IF myErr = noErr THEN

BEGIN

myErr := MyPrintFile(@myFSS);

IF myErr <> noErr THEN

; {handle error from MyOpenFile}

END

ELSE

; {handle error from AEGetNthPtr}

END; {of For index Do}

END
4-18 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
ELSE

; {handle error from MyGotRequiredParams}

ignoreErr := AEDisposeDesc(docList);

END

ELSE

; {failed to get direct parameter, handle error}

MyHandlePDoc := myErr;

END;

Handling the Quit Application Event 4

To handle the Quit Application event, your application should take any actions that are
necessary before it is terminated (such as saving any open documents). Listing 4-8 shows
an example of a handler for the Quit Application event.

When appropriate, the Finder sends your application a Quit Application event
immediately after a Print Documents event. The Finder also sends your application a
Quit Application event if the user chooses Restart or Shut Down from the Finder’s
Special menu.

Listing 4-8 A handler for the Quit Application event

FUNCTION MyHandleQuit (theAppleEvent, reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myErr: OSErr;

userCanceled: Boolean;

BEGIN

{check for missing required parameters}

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

BEGIN

userCanceled := MyPrepareToTerminate;

IF userCanceled THEN

MyHandleQuit := kUserCanceled

ELSE

MyHandleQuit := noErr;

END

ELSE

MyHandleQuit := myErr;

END;
Handling Apple Events 4-19

C H A P T E R 4

Responding to Apple Events
The handler in Listing 4-8 calls another function supplied by the application,
the MyPrepareToTerminate function. This function saves the documents for any
open windows and returns a Boolean value that indicates whether the user canceled the
Quit operation. This is another example of isolating code for interacting with the user
from the code that performs the requested action. By structuring your application in this
way, you can use the same routine to respond to a user action (such as choosing the
Quit command from the File menu) or to the corresponding Apple event. (For a
description of the MyGotRequiredParams function, see “Writing Apple Event
Handlers” on page 4-33.)

IMPORTANT

When your application is ready to quit, it should call the ExitToShell
procedure from the main event loop, not from your handler for the Quit
Application event. Your application should quit only after the handler
returns noErr as its function result. ▲

Handling Apple Events Sent by the Edition Manager 4
If your application provides publish and subscribe capabilities, it should handle the
Apple events sent by the Edition Manager in addition to the required Apple events. Your
application should also handle the Create Publisher event, which is described in the
“Handling the Create Publisher Event” section on page 4-22.

The Edition Manager sends your application Apple events to communicate information
about the publishers and subscribers in your application’s documents. Specifically, the
Edition Manager uses Apple events to notify your application

■ when the information in an edition is updated

■ when your application needs to write the data from a publisher to an edition

■ when your application should locate a particular publisher and scroll through the
document to that location
4-20 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
The Section Read, Section Write, and Section Scroll Events 4

The following descriptions identify the three Apple events sent by the Edition Manager—
Section Read, Section Write, and Section Scroll—and the actions they tell applications to
perform.

See the chapter “Edition Manager” in this book for details on how your application
should respond to these events.

Section Read—read information into the specified section

Event class SectionEventMsgClass

Event ID SectionReadMsgID

Required parameter

Keyword: keyDirectObject

Descriptor type: typeSectionH

Data: A handle to the section record of the subscriber whose edition
contains updated information

Requested action Update the subscriber with the new information from the
edition.

Section Write—write the specified section to an edition

Event class SectionEventMsgClass

Event ID SectionWriteMsgID

Required parameter

Keyword: keyDirectObject

Descriptor type: typeSectionH

Data: A handle to the section record of the publisher

Requested action Write the publisher’s data to its edition.

Section Scroll—scroll through the document to the specified section

Event class SectionEventMsgClass

Event ID SectionScrollMsgID

Required parameter

Keyword: keyDirectObject

Descriptor type: typeSectionH

Data: A handle to the section record of the publisher to scroll to

Requested action Scroll through the document to the publisher identified by the
specified section record.
Handling Apple Events 4-21

C H A P T E R 4

Responding to Apple Events
Handling the Create Publisher Event 4

If your application supports publish and subscribe capabilities, it should also handle the
Create Publisher event.

When your application receives the Create Publisher event, it should create a
publisher and write the publisher’s data to an edition. The data of the publisher, and the
location and name of the edition, are defined by the Apple event. If the Create Publisher
event includes a keyDirectObject parameter, then your application should publish
the data contained in the parameter. If the keyDirectObject parameter is missing,
then your application should publish the current selection. If the document doesn’t have
a current selection, your handler for the event should return a nonzero result code.

If the Create Publisher event includes a keyAEEditionFileLoc parameter, your
application should use the location and name contained in the parameter as the default
location and name of the edition. If the keyAEEditionFileLoc parameter is missing,
your application should use the default location and name your application normally
uses to specify the edition container.

Listing 4-9 shows a handler for the Create Publisher event. This handler checks for the
keyDirectObject parameter and the keyAEEditionFileLoc parameter. If either of
these is not specified, the handler uses default values. The handler uses the
application-defined function DoNewPublisher to create the publisher and its edition,
create a section record, and update other data structures associated with the document.
See the chapter “Edition Manager” in this book for an example of the DoNewPublisher
function.

Create Publisher—create a publisher

Event class kAEMiscStdSuite

Event ID kAECreatePublisher

Required parameter None

Optional parameter

Keyword: keyDirectObject

Descriptor type: typeObjectSpecifier

Data: An object specifier record that specifies the Apple event object
or objects to publish. If this parameter is omitted, publish the
current selection.

Optional parameter

Keyword: keyAEEditionFileLoc

Descriptor type: typeAlias

Data: An alias record that contains the location of the edition
container to create. If this parameter is omitted, use the default
edition container.

Requested action Create a publisher for the specified data using the specified loca-
tion for the edition container. If the data isn’t specified, publish
the current selection. If the location of the edition isn’t specified,
use the default location.
4-22 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-9 A handler for the Create Publisher event

FUNCTION MyHandleCreatePublisherEvent (theAppleEvent,

reply: AppleEvent;

handlerRefcon: LongInt)

: OSErr;

VAR

myErr: OSErr;

returnedType: DescType;

thePublisherDataDesc: AEDesc;

actualSize: LongInt;

promptForDialog: Boolean;

thisDocument: MyDocumentInfoPtr;

preview: Handle;

previewFormat: FormatType;

defaultLocation: EditionContainerSpec;

BEGIN

MyGetDocumentPtr(thisDocument);

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeObjectSpecifier,

thePublisherDataDesc);

CASE myErr OF

errAEDescNotFound:

BEGIN

{use the current selection as the publisher and set up }

{ info for later when DoNewPublisher displays preview}

preview := MyGetPreviewForSelection(thisDocument);

previewFormat := 'TEXT';

END;

noErr:

{use the data in keyDirectObject parameter as the }

{ publisher (which is returned in the }

{ thePublisherDataDesc variable), and set up info for }

{ later when DoNewPublisher displays preview}

MySetInfoForPreview(thePublisherDataDesc, thisDocument,

 preview, previewFormat);

OTHERWISE

BEGIN

MyHandleCreatePublisherEvent := myErr;

Exit(MyHandleCreatePublisherEvent);

END;

END;

myErr := AEDisposeDesc(thePublisherDataDesc);
Handling Apple Events 4-23

C H A P T E R 4

Responding to Apple Events
myErr := AEGetParamPtr(theAppleEvent, keyAEEditionFileLoc,

 typeFSS, returnedType,

 @defaultLocation.theFile,

 SizeOf(FSSpec), actualSize);

CASE myErr OF

errAEDescNotFound:

{use the default location as the edition container}

myErr := MyGetDefaultEditionSpec(thisDocument,

defaultLocation);

noErr:

BEGIN {the keyAEEditionFileLoc parameter }

{ contains a default location}

defaultLocation.thePart := kPartsNotUsed;

defaultLocation.theFileScript := smSystemScript;

END;

OTHERWISE

BEGIN

MyHandleCreatePublisherEvent := myErr;

Exit(MyHandleCreatePublisherEvent);

END;

END;

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr <> noErr THEN

BEGIN

MyHandleCreatePublisherEvent := myErr;

Exit(MyHandleCreatePublisherEvent);

END;

myErr := AEInteractWithUser(kAEDefaultTimeout, gMyNotifyRecPtr,

@MyIdleFunction);

IF myErr = noErr THEN promptForDialog := TRUE

 ELSE promptForDialog := FALSE;

myErr := DoNewPublisher(thisDocument, promptForDialog,

preview, previewFormat,

defaultLocation);

{add keyErrorNumber and keyErrorString parameters if desired}

END;

Note that the MyHandleCreatePublisherEvent handler in Listing 4-9 uses the
AEInteractWithUser function to determine whether user interaction is allowed.
If so, the handler sets the promptForDialog variable to TRUE, indicating that the
DoNewPublisher function should display the publisher dialog box. If not,
4-24 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
the handler sets the promptForDialog variable to FALSE, and the DoNewPublisher
function does not prompt the user for the location or name of the edition. For more
information about AEInteractWithUser, see “Interacting With the User,” which
begins on page 4-45.

Getting Data Out of an Apple Event 4
The Apple Event Manager stores the parameters and attributes of an Apple event in a
format that is internal to the Apple Event Manager. You use Apple Event Manager
functions to retrieve the data from an Apple event and return it to your application in
a format your application can use.

Most of the functions that retrieve data from Apple event parameters and attributes are
available in two forms: one that returns the desired data in a specified buffer and one
that returns a descriptor record containing the same data. For example, the
AEGetParamPtr function uses a specified buffer to return the data contained in an
Apple event parameter, and the AEGetParamDesc function returns the descriptor
record for a specified parameter.

You can also use Apple Event Manager functions to get data out of descriptor records,
descriptor lists, and AE records. You use similar functions to put data into descriptor
records, descriptor lists, and AE records.

When your handler receives an Apple event, you typically use the AEGetParamPtr,
AEGetAttributePtr, AEGetParamDesc, or AEGetAttributeDesc function to get
the data out of the Apple event.

Some Apple Event Manager functions let your application request that the data be
returned using any descriptor type, even if it is different from the original descriptor
type. If the original data is of a different descriptor type, the Apple Event Manager
attempts to coerce the data to the requested descriptor type.

For example, the AEGetParamPtr function lets you specify the desired descriptor type
of the resulting data as follows:

VAR

theAppleEvent: AppleEvent;

returnedType: DescType;

multResult: LongInt;

actualSize: Size;

myErr: OSErr;

myErr := AEGetParamPtr(theAppleEvent, keyMultResult,

 typeLongInteger, returnedType,

 @multResult, SizeOf(multResult),

 actualSize);
Handling Apple Events 4-25

C H A P T E R 4

Responding to Apple Events
In this example, the desired type is specified in the third parameter by the
typeLongInteger descriptor type. This requests that the Apple Event Manager
coerce the data to a long integer if it is not already of this type. To prevent coercion and
ensure that the descriptor type of the result is of the same type as the original, specify
typeWildCard for the third parameter.

The Apple Event Manager returns, in the returnedType parameter, the descriptor type
of the resulting data. This is useful information when you specify typeWildCard as the
desired descriptor type; you can determine the descriptor type of the resulting data by
examining this parameter.

The Apple Event Manager can coerce many different types of data. For example, the
Apple Event Manager can convert alias records to file system specification records,
integers to Boolean data types, and characters to numeric data types, in addition to other
data type conversions. For a complete list of the data types for which the Apple Event
Manager provides coercion handling, see Table 4-1 on page 4-43.

To perform data coercions that the Apple Event Manager doesn’t perform, you can
provide your own coercion handlers. See “Writing and Installing Coercion Handlers,”
which begins on page 4-41, for information on providing your own coercion handlers.

Apple event parameters are keyword-specified descriptor records. You can
use AEGetParamDesc to get the descriptor record of a parameter, or you can use
AEGetParamPtr to get the data out of the descriptor record of a parameter. If an Apple
event parameter consists of an object specifier record, you can use AEResolve and your
own object accessor functions to resolve the object specifier record—that is, to locate the
Apple event object it describes. For more information about AEResolve and object
accessor functions, see “Writing Object Accessor Functions,” which begins on page 6-28.
Attributes are also keyword-specified descriptor records, and you can use similar
routines to get the descriptor record of an attribute or to get the data out of an attribute.

The following sections show how to use the AEGetParamPtr, AEGetAttributePtr,
AEGetParamDesc, or AEGetAttributeDesc function to get the data out of an
Apple event.

Getting Data Out of an Apple Event Parameter 4

You can use the AEGetParamPtr or AEGetParamDesc function to get the data out of
an Apple event parameter. Use the AEGetParamPtr function (or the AEGetKeyPtr
function, which works the same way) to return the data contained in a parameter. Use
the AEGetParamDesc function when you need to get the descriptor record of a
parameter or to extract the descriptor list from a parameter.

For example, suppose you need to get the data out of a Section Read event. The Edition
Manager sends your application a Section Read event to tell your application to read
updated information from an edition into the specified subscriber. The direct parameter
of the Apple event contains a handle to the section record of the subscriber. You can use
the AEGetParamPtr function to get the data out of the Apple event.
4-26 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
You specify the Apple event that contains the desired parameter, the keyword of the
desired parameter, the descriptor type the function should use to return the data, a
buffer to store the data, and the size of this buffer as parameters to the AEGetParamPtr
function. The AEGetParamPtr function returns the descriptor type of the resulting data
and the actual size of the data, and it places the requested data in the specified buffer.

VAR

sectionH: SectionHandle;

theAppleEvent: AppleEvent;

returnedType: DescType;

actualSize: Size;

myErr: OSErr;

myErr := AEGetParamPtr(theAppleEvent, keyDirectObject,

 typeSectionH, returnedType, @sectionH,

 SizeOf(sectionH), actualSize);

In this example, the keyDirectObject keyword specifies that the AEGetParamPtr
function should extract information from the direct parameter; AEGetParamPtr returns
the data in the buffer specified by the sectionH variable.

You can request that the Apple Event Manager return the data using the descriptor type
of the original data or you can request that the Apple Event Manager coerce the data into
a descriptor type that is different from the original. To prevent coercion, specify the
desired descriptor type as typeWildCard.

The typeSectionH descriptor type specifies that the returned data should be coerced to
a handle to a section record. You can use the information returned in the sectionH
variable to identify the subscriber and read in the information from the edition.

In this example, the AEGetParamPtr function returns, in the returnedType variable,
the descriptor type of the resulting data. The descriptor type of the resulting data
matches the requested descriptor type unless the Apple Event Manager wasn’t able to
coerce the data to the specified descriptor type or you specified the desired descriptor
type as typeWildCard. If the coercion fails, the Apple Event Manager returns the
errAECoercionFail result code.

The AEGetParamPtr function returns, in the actualSize variable, the actual size of
the data (that is, the size of coerced data, if any coercion was performed). If the value
returned in this variable is greater than the amount your application allocated for the
buffer to hold the returned data, your application can increase the size of its buffer to this
amount, and get the data again. You can also choose to use the AEGetParamDesc
function when your application doesn’t know the size of the data.

In general, use the AEGetParamPtr function to extract data that is of fixed length or
known maximum length, and the AEGetParamDesc function to extract data that is of
variable length. The AEGetParamDesc function returns the descriptor record for an
Apple event parameter. This function is useful, for example, for extracting a descriptor
list from a parameter.
Handling Apple Events 4-27

C H A P T E R 4

Responding to Apple Events
You specify, as parameters to AEGetParamDesc, the Apple event that contains the
desired parameter, the keyword of the desired parameter, the descriptor type the
function should use to return the descriptor record, and a buffer to store the returned
descriptor record. The AEGetParamDesc function returns the descriptor record using
the specified descriptor type.

For example, the direct parameter of the Open Documents event contains a descriptor
list that specifies the documents to open. You can use the AEGetParamDesc function to
get the descriptor list out of the direct parameter.

VAR

docList: AEDescList;

theAppleEvent: AppleEvent;

myErr: OSErr;

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeAEList, docList);

In this example, the Apple event specified by the variable theAppleEvent
contains the desired parameter. The keyDirectObject keyword specifies that the
AEGetParamDesc function should get the descriptor record of the direct parameter.
The typeAEList descriptor type specifies that the descriptor record should be returned
as a descriptor list. In this example, the AEGetParamDesc function returns a descriptor
list in the docList variable.

The descriptor list contains a list of descriptor records. To get the descriptor records and
their data out of a descriptor list, use the AECountItems function to find the number of
descriptor records in the list and then make repetitive calls to the AEGetNthPtr
function to get the data out of each descriptor record. See “Getting Data Out of a
Descriptor List” on page 4-31 for more information.

Note that the AEGetParamDesc function copies the descriptor record from the
parameter. When you’re done with a descriptor record that you obtained from
AEGetParamDesc, you must dispose of it by calling the AEDisposeDesc function.

If an Apple event parameter consists of an object specifier record, you can use
AEResolve to resolve the object specifier record (that is, locate the Apple event object it
describes), as explained in “Finding Apple Event Objects” on page 3-46.

Getting Data Out of an Attribute 4

You can use the AEGetAttributePtr or AEGetAttributeDesc function to get the
data out of the attributes of an Apple event.
4-28 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
You specify, as parameters to AEGetAttributePtr, the Apple event that contains the
desired attribute, the keyword of the desired attribute, the descriptor type the function
should use to return the data, a buffer to store the data, and the size of this buffer. The
AEGetAttributePtr function returns the descriptor type of the returned data and the
actual size of the data and places the requested data in the specified buffer.

For example, this code gets the data out of the keyEventSourceAttr attribute of an
Apple event.

VAR

theAppleEvent: AppleEvent;

returnedType: DescType;

sourceOfAE: Integer;

actualSize: Size;

myErr: OSErr;

myErr := AEGetAttributePtr(theAppleEvent, keyEventSourceAttr,

 typeShortInteger, returnedType,

@sourceOfAE, SizeOf(sourceOfAE),

actualSize);

The keyEventSourceAttr keyword specifies the attribute from which to get the data.
The typeShortInteger descriptor type specifies that the data should be returned as a
short integer; the returnedType variable contains the actual descriptor type that is
returned. You also must specify a buffer to hold the returned data and specify the size of
this buffer. If the data is not already a short integer, the Apple Event Manager coerces it
as necessary before returning it. The AEGetAttributePtr function returns, in the
actualSize variable, the actual size of the returned data after coercion has taken place.
You can check this value to make sure you got all the data.

As with the AEGetParamPtr function, you can request that AEGetAttributePtr
return the data using the descriptor type of the original data, or you can request that the
Apple Event Manager coerce the data into a descriptor type that is different from the
original.

In this example, the AEGetAttributePtr function returns the requested data as a
short integer in the sourceOfAE variable, and you can get information about the source
of the Apple event by examining this value. You can test the returned value against the
values defined by the data type AEEventSource.

TYPE AEEventSource = (kAEUnknownSource, kAEDirectCall,

 kAESameProcess, kAELocalProcess,

 kAERemoteProcess);
Handling Apple Events 4-29

C H A P T E R 4

Responding to Apple Events
The constants defined by the data type AEEventSource have the following meanings:

The next example shows how to use the AEGetAttributePtr function to get data out
of the keyMissedKeywordAttr attribute. After your handler extracts all known
parameters from an Apple event, it should check whether the keyMissedKeywordAttr
attribute exists. If it does, then your handler did not get all of the required parameters.

Note that if AEGetAttributePtr returns the errAEDescNotFound result code, then
the keyMissedKeywordAttr attribute does not exist—that is, your application has
extracted all of the required parameters. If AEGetAttributePtr returns noErr, then
the keyMissedKeywordAttr attribute does exist—that is, your handler did not get all
of the required parameters.

myErr := AEGetAttributePtr(theAppleEvent, keyMissedKeywordAttr,

typeWildCard, returnedType, NIL, 0,

actualSize);

The data in the keyMissedKeywordAttr attribute contains the keyword of the
first required parameter, if any, that your handler didn’t retrieve. If you want this data
returned, specify a buffer to hold it and specify the buffer size. Otherwise, as in this
example, specify NIL as the buffer and 0 as the size of the buffer.

This example shows how to use the AEGetAttributePtr function to get the address of
the sender of an Apple event from the keyAddressAttr attribute of the Apple event:

VAR

theAppleEvent: AppleEvent;

returnedType: DescType;

addressOfAE: TargetID;

actualSize: Size;

myErr: OSErr;

myErr := AEGetAttributePtr(theAppleEvent, keyAddressAttr,

typeTargetID, returnedType,

@addressOfAE, SizeOf(addressOfAE),

actualSize);

Constant Meaning

kAEUnknownSource Source of Apple event unknown

kAEDirectCall A direct call that bypassed the PPC Toolbox

kAESameProcess Target application is also the source application

kAELocalProcess Source application is another process on the same computer as
the target application

kAERemoteProcess Source application is a process on a remote computer on the
network
4-30 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
The keyAddressAttr keyword specifies the attribute to get the data from. The
typeTargetID descriptor type specifies that the data should be returned as a target ID
record; the returnedType variable contains the actual descriptor type that is returned.
You can examine the address returned in the addressOfAE variable to determine the
sender of the Apple event.

The target ID record returned in the addressOfAE variable contains the sender’s port
name, port location, and session reference number. To get the process serial number for a
process on the local machine, pass the port name returned in the target ID record to the
GetProcessSerialNumberFromPortName function. You can then pass the process
serial number to the GetProcessInformation function to find the creator signature
for a given process. (For more information about these functions, see the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials.)

For more information about target addresses, see “Specifying a Target Address” on
page 5-10.

Getting Data Out of a Descriptor List 4

You can use the AECountItems function to count the number of items in a descriptor
list, and you can use AEGetNthDesc or AEGetNthPtr to get a descriptor record or its
data out of a descriptor list.

The Open Documents event contains a direct parameter that specifies the list of
documents to open. The list of documents is contained in a descriptor list. After
extracting the descriptor list from the parameter, you can determine the number of items
in the list and then extract each descriptor record from the descriptor list. See Figure 3-9
on page 3-19 for a depiction of the Open Documents event.

For example, when your handler receives an Open Documents event, you can use the
AEGetParamDesc function to return the direct parameter as a descriptor list. You can
then use AECountItems to return the number of descriptor records in the list.

VAR

theAppleEvent: AppleEvent;

docList: AEDescList;

itemsInList: LongInt;

myErr: OSErr;

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeAEList, docList);

myErr := AECountItems(docList, itemsInList);

The AEGetParamDesc function returns, in the docList variable, a copy of the
descriptor list from the direct parameter of the Open Documents event. You specify this
list to the AECountItems function.
Handling Apple Events 4-31

C H A P T E R 4

Responding to Apple Events
You specify the descriptor list whose items you want to count in the first parameter to
AECountItems. The Apple Event Manager returns, in the second parameter, the
number of items in the list. When extracting the descriptor records from a list, you often
use the number of items as a loop index. Here’s an example:

FOR index := 1 TO itemsInList DO

BEGIN

{for each descriptor record in the list, get its data}

END;

The format of the descriptor records in a descriptor list is private to the Apple Event
Manager. You must use the AEGetNthPtr or AEGetNthDesc function to extract
descriptor records from a descriptor list.

You specify the descriptor list that contains the desired descriptor records and an index
as parameters to the AEGetNthPtr function. The index represents a specific descriptor
record in the descriptor list. The AEGetNthPtr function returns the data for the
descriptor record represented by the specified index.

You also specify the descriptor type the function should use to return the data, a buffer
to store the data, and the size of this buffer. If the specified descriptor record exists, the
AEGetNthPtr function returns the keyword of the parameter, the descriptor type of the
returned data, and the actual size of the data, and it places the requested data in the
specified buffer.

Here’s an example that uses the AEGetNthPtr function to extract an item from the
descriptor list in the direct parameter of the Open Documents event:

myErr := AEGetNthPtr(docList, index, typeFSS, keywd,

returnedType, @myFSS, Sizeof(myFSS),

actualSize);

The docList variable specifies the descriptor list from the direct parameter of the
Open Documents event. The index variable specifies the index of the descriptor record
to extract. You can use the typeFSS descriptor type, as in this example, to specify that
the data be returned as a file system specification record. The Apple Event Manager
automatically coerces the original data type of the descriptor record from an alias
record to a file system specification record. The AEGetNthPtr function returns the
keyword of the parameter and the descriptor type of the resulting data in the keywd
and returnedType variables, respectively.

You also specify a buffer to hold the desired data and the size (in bytes) of the buffer. In
this example, the myFSS variable specifies the buffer. The function returns the actual size
of the data in the actualSize variable. If this size is larger than the size of the buffer
you provided, you know that you didn’t get all of the data for the descriptor record.

Listing 4-10 shows a more complete example of extracting the items from a descriptor
list in the Open Documents event.
4-32 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-10 Extracting items from a descriptor list

VAR

index: LongInt;

itemsInList: LongInt;

docList: AEDescList;

keywd: AEKeyword;

returnedType: DescType;

myFSS: FSSpec;

actualSize: Size;

myErr: OSErr;

FOR index := 1 TO itemsInList DO

BEGIN

myErr := AEGetNthPtr(docList, index, typeFSS, keywd,

returnedType, @myFSS, Sizeof(myFSS),

actualSize);

IF myErr <> noErr THEN DoError(myErr);

myErr := MyOpenFile(@myFSS);

IF myErr <> noErr THEN DoError(myErr);

END;

myErr := AEDisposeDesc(docList);

Writing Apple Event Handlers 4
For each Apple event your application supports, you must provide a function called
an Apple event handler. The AEProcessAppleEvent function calls one of your Apple
event handlers when it processes an Apple event. Your Apple event handlers should
perform any action requested by the Apple event, add parameters to the reply Apple
event if appropriate, and return a result code.

The Apple Event Manager uses dispatch tables to route Apple events to the appropriate
Apple event handler. You must supply an Apple event handler for each entry in your
application’s Apple event dispatch table. Each handler must be a function that uses
this syntax:

FUNCTION MyEventHandler (theAppleEvent: AppleEvent;

 reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

The parameter theAppleEvent is the Apple event to handle. Your handler uses Apple
Event Manager functions to extract any parameters and attributes from the Apple event
and then performs the necessary processing. If any of the parameters include object
specifier records, your handler should call AEResolve to resolve them—that is, to locate
the Apple event objects they describe. For more information, see the chapter “Resolving
and Creating Object Specifier Records” in this book.
Handling Apple Events 4-33

C H A P T E R 4

Responding to Apple Events
The reply parameter is the default reply provided by the Apple Event Manager.
(“Replying to an Apple Event,” which begins on page 4-36, describes how to add
parameters to the default reply.) The handlerRefcon parameter is the reference
constant stored in the Apple event dispatch table entry for the Apple event. Your handler
can check the reference constant, if necessary, for information about the Apple event.

You can use the reference constant for anything you wish. For example, if you want to
use the same handler for several Apple events, you can install entries for each event in
your application’s Apple event dispatch table that specify the same handler but different
reference constants. Your handler can then use the reference constant to distinguish the
different Apple events it handles.

To provide an Apple event handler in C, be sure to include the Pascal declaration before
the handler declaration. This is the syntax for an Apple event handler in C:

pascal OSErr MyEventHandler (const AppleEvent *theAppleEvent,

 const AppleEvent *reply,

 long handlerRefcon);

After extracting all known parameters from the Apple event, every handler should
determine whether the Apple event contains any further required parameters. Your
handler can determine whether it retrieved all the required parameters by checking
whether the keyMissedKeywordAttr attribute exists. If the attribute exists, then your
handler has not retrieved all the required parameters and should immediately return an
error. If the attribute does not exist, then the Apple event does not contain any more
required parameters, although it may contain additional optional parameters.

The Apple Event Manager determines which parameters are optional according to the
keywords listed in the keyOptionalKeywordAttr attribute. The source application is
responsible for adding these keywords to the keyOptionalKeywordAttr attribute,
but is not required to do so, even if that parameter is listed in the Apple Event Registry:
Standard Suites as an optional parameter. If the source application does not add the
necessary keyword to the keyOptionalKeywordAttr attribute, the target application
treats the parameter as required for that Apple event. If the target application supports
the parameter, it should handle the Apple event as the source application expects. If the
target application does not support the parameter and checks whether it has received all
the required parameters, it finds that there’s another parameter that the client
application considered required, and should return the result code errAEParamMissed
without attempting to handle the event.

Listing 4-11 shows a function that checks for a keyMissedKeywordAttr attribute. A
handler calls this function after getting all the required parameters it knows about from
an Apple event.
4-34 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-11 A function that checks for a keyMissedKeywordAttr attribute

FUNCTION MyGotRequiredParams (theAppleEvent: AppleEvent): OSErr;

VAR

myErr: OSErr;

returnedType: DescType;

actualSize: Size;

BEGIN

myErr := AEGetAttributePtr(theAppleEvent,

 keyMissedKeywordAttr,

 typeWildCard, returnedType,

 NIL, 0, actualSize);

IF myErr = errAEDescNotFound THEN

{you got all the required parameters}

MyGotRequiredParams := noErr

ELSE IF myErr = noErr THEN

{you missed a required parameter}

MyGotRequiredParams := errAEParamMissed;

END;

The code in Listing 4-11 uses the AEGetAttributePtr function to get the
keyMissedKeywordAttr attribute. This attribute contains the first required parameter,
if any, that your handler didn’t retrieve. If AEGetAttributePtr returns the
errAEDescNotFound result code, the Apple event doesn’t contain a
keyMissedKeywordAttr attribute. If the Apple event doesn’t contain this attribute,
then your handler has extracted all of the parameters that the client application
considered required.

If the AEGetAttributePtr function returns noErr as the result code, then the
attribute does exist, meaning that your handler has not extracted all of the required
parameters. In this case, your handler should return an error and not process the
Apple event.

The first remaining required parameter is specified by the data of the
keyMissedKeywordAttr attribute. If you want this data returned, specify a buffer to
hold the data. Otherwise, specify NIL as the buffer and 0 as the size of the buffer. If you
specify a buffer to hold the data, you can check the value of the actualSize parameter
to see if the data is larger than the buffer you allocated.

For more information about specifying Apple event parameters as optional or required,
see “Specifying Optional Parameters for an Apple Event” beginning on page 5-7.
Handling Apple Events 4-35

C H A P T E R 4

Responding to Apple Events
Replying to an Apple Event 4
Your handler routine for a particular Apple event is responsible for performing the
action requested by the Apple event, and can optionally return data in a reply Apple
event. The Apple Event Manager passes a default reply Apple event to your handler. The
default reply Apple event has no parameters when it is passed to your handler. Your
handler can add parameters to the reply Apple event. If the client application requested
a reply, the Apple Event Manager returns the reply Apple event to the client.

The reply Apple event is identified by the kCoreEventClass event class and by the
kAEAnswer event ID. If the client application specified the kAENoReply flag in the
reply parameter of the AESend function, the Apple Event Manager passes a null
descriptor record (a descriptor record of type typeNull whose data handle has the
value NIL) to your handler instead of a default reply Apple event. Your handler should
check the descriptor type of the reply Apple event before attempting to add any
attributes or parameters to it. An attempt to add an Apple event attribute or parameter
to a null descriptor record generates an error.

If the client application requests a reply, the Apple Event Manager prepares a reply
Apple event for the client by passing a default reply Apple event to your handler. The
default reply Apple event has no parameters when it is passed to your handler. Your
handler can add any parameters to the reply Apple event. If your application is a
spelling checker, for example, you can return a list of misspelled words in a parameter.

When your handler finishes processing an Apple event, it returns a result code to
AEProcessAppleEvent, which returns this result code as its function result. If your
handler returns a nonzero result code, and if you have not added your own
keyErrorNumber parameter, the Apple Event Manager also returns this result code
to the client application by putting the result code into a keyErrorNumber parameter
for the reply Apple event. The client can check for the existence of this parameter to
determine whether the handler performed the requested action.

The client application specifies whether it wants a reply Apple event or not by specifying
flags (represented by constants) in the sendMode parameter of the AESend function.

If the client specifies the kAEWaitReply flag in the sendMode parameter, the AESend
function does not return until the timeout specified by the timeoutInTicks parameter
expires or the server application returns a reply. When the server application returns a
reply, the reply parameter to AESend contains the reply Apple event that your handler
returned to the AEProcessAppleEvent function. When the client application no longer
needs the original Apple event and the reply event, it must dispose of them, but the
Apple Event Manager disposes of both the Apple event and the reply event for the
server application when the server’s handler returns to AEProcessAppleEvent.
4-36 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
If the client specified the kAEQueueReply flag, the client receives the reply event at a
later time during its normal processing of other events.

Your handler should always set its function result to noErr if it successfully
handles the Apple event. If an error occurs, your handler should return either
errAEEventNotHandled or some other nonzero result code. If the error
occurs because your application cannot understand the event, return
errAEEventNotHandled. This allows the Apple Event Manager to look for a handler
in the system special handler or system Apple event dispatch tables that might be able
to handle the event. If the error occurs because the event is impossible to handle as
specified, return the result code returned by whatever function caused the failure, or
whatever other result code is appropriate.

For example, suppose your application receives a Get Data event requesting the name of
the current printer, and your application cannot handle such an event. In this situation,
you should return errAEEventNotHandled in case another handler available to the
Apple Event Manager can handle the Get Data event. This strategy allows users to take
advantage of system capabilities from within your application via system handlers.

However, if your application cannot handle a Get Data event that requests the fifth
paragraph in a document because the document contains only four paragraphs, you
should return some other nonzero error, because further attempts to handle the event are
pointless.

If your Apple event handler calls the AEResolve function and AEResolve calls an
object accessor function in the system object accessor dispatch table, your Apple event
handler may not recognize the descriptor type of the token returned by the function. In
this case, your handler should return the result code errAEUnknownObjectType.
When your handler returns this result code, the Apple Event Manager attempts to locate
a system Apple event handler that can recognize the token. For more information, see
“Installing Entries in the Object Accessor Dispatch Tables,” which begins on page 6-21.

The Apple Event Manager automatically adds any nonzero result code that your handler
returns to a keyErrorNumber parameter in the reply Apple event. In addition to
returning a result code, your handler can also return an error string in the
keyErrorString parameter of the reply Apple event. Your handler should provide
meaningful text in the keyErrorString parameter, so that the client can display this
string to the user if desired.

Listing 4-12 shows how to add the keyErrorString parameter to the reply Apple
event. See “Adding Parameters to an Apple Event” on page 5-5 for a description of the
AEPutParamPtr function.
Handling Apple Events 4-37

C H A P T E R 4

Responding to Apple Events
Listing 4-12 Adding the keyErrorString parameter to the reply Apple event

FUNCTION MyHandler (theAppleEvent: AppleEvent; reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myErr: OSErr;

errStr: Str255;

BEGIN

{handle your Apple event here}

{if an error occurs when handling an Apple event, set the }

{ function result and error string accordingly}

IF myErr <> noErr THEN

BEGIN

MyHandler := myErr; {result code to be returned--the }

{ Apple Event Manager adds this }

{ result code to the reply Apple }

{ event as the keyErrorNumber }

{ parameter}

IF (reply.dataHandle <> NIL) THEN

{add error string parameter to the default reply}

BEGIN

{strings should normally be stored in resources}

errStr := 'Why error occurred';

myErr := AEPutParamPtr(reply, keyErrorString,

typeIntlText, @errStr[1],

length(errStr));

END;

END

ELSE

MyHandler := noErr;

END;

If your handler needs to return data to the client, it can add parameters to the
reply Apple event. Listing 4-13 shows how a handler for the Multiply event
(an imaginary Apple event that asks the server to multiply two numbers) might
return the results of the multiplication to the client.
4-38 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-13 Adding parameters to the reply Apple event

FUNCTION MyMultHandler (theAppleEvent: AppleEvent;

reply: AppleEvent;

handlerRefcon: LongInt): OSErr;

VAR

myErr: OSErr;

number1,number2: LongInt;

replyResult: LongInt;

actualSize: Size;

returnedType: DescType;

BEGIN

{get the numbers to multiply from the parameters of the }

{ Apple event; put the numbers in the number1 and number2 }

{ variables and then perform the requested multiplication}

myErr := MyDoMultiply(theAppleEvent, number1,

number2, replyResult);

IF myErr = noErr THEN

IF (reply.dataHandle <> NIL) THEN

{return result of the multiplication in the reply Apple }

{ event}

myErr := AEPutParamPtr(reply, keyDirectObject,

typeLongInteger, @replyResult,

SizeOf(replyResult));

MyMultHandler := myErr;

{if an error occurs, set the error string }

{ accordingly, as shown in Listing 4-12}

END;

Disposing of Apple Event Data Structures 4
Whenever a client application uses Apple Event Manager functions to create a descriptor
record, descriptor list, or Apple event record, the Apple Event Manager allocates
memory for these data structures in the client’s application heap. Likewise, when a
server application extracts a descriptor record from an Apple event by using Apple
Event Manager functions, the Apple Event Manager creates a copy of the descriptor
record, including the data to which its handle refers, in the server’s application heap.

Whenever you finish using a descriptor record or descriptor list that you have created or
extracted from an Apple event, you should dispose of the descriptor record—and
thereby deallocate the memory it uses—by calling the AEDisposeDesc function. If the
descriptor record you pass to AEDisposeDesc (such as an Apple event record or an
AE record) includes other nested descriptor records, one call to AEDisposeDesc will
dispose of them all.
Handling Apple Events 4-39

C H A P T E R 4

Responding to Apple Events
When a client application adds a descriptor record to an Apple event (for example, when
it creates a descriptor record by calling AECreateDesc and then puts a copy of it into a
parameter of an Apple event by calling AEPutParamDesc), it is still responsible for
disposing of the original descriptor record. After a client application has finished using
both the Apple event specified in the AESend function and the reply Apple event, it
should dispose of their descriptor records by calling AEDisposeDesc. The client
application should dispose of them even if AESend returns a nonzero result code.

The Apple event that a server application’s handler receives is a copy of the original
event created by the client application. When a server application’s handler returns to
AEProcessAppleEvent, the Apple Event Manager disposes of the server’s copy (in the
server’s application heap) of both the Apple event and the reply event. The server
application is responsible for disposing of any descriptor records created while
extracting data from the Apple event or adding data to the reply event.

In general, outputs from Apple Event Manager functions are your application’s
responsibility. Once you finish using them, you should use AEDisposeDesc to dispose
of any Apple event data structures created or returned by these functions:

If you attempt to dispose of descriptor records returned by successful calls to these
functions without using AEDisposeDesc, your application may not be compatible
with future versions of the Apple Event Manager. However, if any of these functions
return a nonzero result code, they return a null descriptor record, which does not need to
be disposed of.

Outputs from functions, such as AEGetKeyPtr, that use a buffer rather than a descriptor
record to return data do not require the use of AEDisposeDesc. It is therefore preferable
to use these functions for any data that is not identified by a handle.

Some of the functions described in the chapter “Resolving and Creating Object Specifier
Records” in this book also create descriptor records. If you set the disposeInputs
parameter to FALSE for any of the following functions, you should dispose of any
Apple event data structures that they create or return:

Your application is also responsible for disposing of some of the tokens it creates in the
process of resolving an object specifier record. For information about token disposal, see
“Defining Tokens” on page 6-39.

AECoerceDesc AEDuplicateDesc

AECoercePtr AEGetAttributeDesc

AECreateAppleEvent AEGetKeyDesc

AECreateDesc AEGetNthDesc

AECreateList AEGetParamDesc

CreateCompDescriptor CreateObjSpecifier

CreateLogicalDescriptor CreateRangeDescriptor
4-40 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Writing and Installing Coercion Handlers 4
When your application extracts data from a parameter, it can request that the Apple
Event Manager return the data using a descriptor type that is different from the original
descriptor type. For example, when extracting data from the direct parameter of the
Open Documents event, you can request that the alias records be returned as file system
specification records. The Apple Event Manager can automatically coerce many different
types of data from one to another. Table 4-1 on page 4-43 shows descriptor types and the
kinds of coercion that the Apple Event Manager can perform.

You can also provide your own routines, referred to as coercion handlers, to coerce data
into any other descriptor type. To install your own coercion handlers, use the
AEInstallCoercionHandler function. You specify as parameters to this function

■ the descriptor type of the data coerced by the handler

■ the descriptor type of the resulting data

■ the address of the coercion handler for this descriptor type

■ a reference constant

■ a Boolean value that indicates whether your coercion handler expects the data to be
specified as a descriptor record or as a pointer to the actual data

■ a Boolean value that indicates whether your coercion handler should be added to
your application’s coercion dispatch table or the system coercion dispatch table

The system coercion dispatch table is a table in the system heap that contains coercion
handlers available to all applications and processes running on the same computer. The
coercion handlers in your application’s coercion dispatch table are available only to your
application. When attempting to coerce data, the Apple Event Manager first looks for a
coercion handler in your application’s coercion dispatch table. If it cannot find a handler
for the descriptor type, it looks in the system coercion dispatch table for a handler. If it
doesn’t find a handler there, it attempts to use the default coercion handling described
by Table 4-1 on page 4-43. If it can’t find an appropriate default coercion handler, it
returns the errAECoercionFail result code.

Any handler that you add to the system coercion dispatch table should reside in the
system heap. If there was already an entry in the system coercion dispatch table for
the same descriptor type, it is replaced. Therefore, if there is an entry in the system
coercion dispatch table for the same descriptor type, you should chain it to your
system coercion handler as explained in “Creating and Managing the Coercion Handler
Dispatch Tables,” which begins on page 4-96.

▲ W A R N I N G

Before an application calls a system coercion handler, system software
has set up the A5 register for the calling application. For this reason, if
you provide a system coercion handler, it should never use A5 global
variables or anything that depends on a particular context; otherwise,
the application that calls the system coercion handler may crash. ▲
Handling Apple Events 4-41

C H A P T E R 4

Responding to Apple Events
You can provide a coercion handler that expects to receive the data in a descriptor record
or a buffer referred to by a pointer. When you install your coercion handler, you specify
how your handler wishes to receive the data. Whenever possible, you should write your
coercion handler so that it can accept a pointer to the data, because it’s more efficient for
the Apple Event Manager to provide your coercion handler with a pointer to the data.

A coercion handler that accepts a pointer to data must be a function with the following
syntax:

FUNCTION MyCoercePtr (typeCode: DescType; dataPtr: Ptr;

 dataSize: Size; toType: DescType;

 handlerRefcon: LongInt;

 VAR result: AEDesc): OSErr;

The typeCode parameter is the descriptor type of the original data. The dataPtr
parameter is a pointer to the data to coerce; the dataSize parameter is the length, in
bytes, of the data. The toType parameter is the desired descriptor type of the resulting
data. The handlerRefcon parameter is a reference constant stored in the coercion table
entry for the handler and passed to the handler by the Apple Event Manager whenever
the handler is called. The result parameter is the descriptor record returned by your
coercion handler.

Your coercion handler should coerce the data to the desired descriptor type and return
the data in the descriptor record specified by the result parameter. If your handler
successfully performs the coercion, it should return the noErr result code; otherwise,
it should return a nonzero result code.

A coercion handler that accepts a descriptor record must be a function with the
following syntax:

FUNCTION MyCoerceDesc (theAEDesc: AEDesc; toType: DescType;

 handlerRefcon: LongInt;

 VAR result: AEDesc): OSErr;

The parameter theAEDesc is the descriptor record that contains the data to be coerced.
The toType parameter is the descriptor type of the resulting data. The handlerRefcon
parameter is a reference constant stored in the coercion table entry for the handler and
passed to the handler by the Apple Event Manager whenever the handler is called. The
result parameter is the resulting descriptor record.

Your coercion handler should coerce the data in the descriptor record to the desired
descriptor type and return the data in the descriptor record specified by the result
parameter. Your handler should return an appropriate result code.

Note
To ensure that no coercion is performed and that the descriptor type of
the result is of the same descriptor type as the original, specify
typeWildCard for the desired type. ◆
4-42 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Table 4-1 lists the descriptor types for which the Apple Event Manager provides
coercion.

Table 4-1 Coercion handling provided by the Apple Event Manager

Original descriptor
type of data to be
coerced Desired descriptor type Description

typeChar typeInteger
typeLongInteger
typeSMInt
typeSMFloat
typeShortInteger
typeFloat
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

Any string that is a valid
representation of a number can be
coerced into an equivalent
numeric value.

typeInteger
typeLongInteger
typeSMInt
typeSMFloat
typeShortInteger
typeFloat
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

typeChar Any numeric descriptor type can
be coerced into the equivalent text
string.

typeInteger
typeLongInteger
typeSMInt
typeSMFloat
typeShortInteger
typeFloat
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

typeInteger
typeLongInteger
typeSMInt
typeSMFloat
typeShortInteger
typeFloat
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

Any numeric descriptor type can
be coerced into any other numeric
descriptor type.

typeChar typeType
typeEnumerated
typeKeyword
typeProperty

Any four-character string can be
coerced to one of these descriptor
types.

typeEnumerated
typeKeyword
typeProperty
typeType

typeChar Any of these descriptor types can
be coerced to the equivalent text
string.

continued
Handling Apple Events 4-43

C H A P T E R 4

Responding to Apple Events
NOTE Some of the descriptor types listed in this table are synonyms; for example, the constants
typeSMInt and typeShortInteger have the same four-character code, 'shor'.

typeIntlText typeChar The result contains text only,
without the script code or
language code from the original
descriptor record.

typeTrue typeBoolean The result is the Boolean value
TRUE.

typeFalse typeBoolean The result is the Boolean value
FALSE.

typeEnumerated typeBoolean The enumerated value 'true'
becomes the Boolean value TRUE.
The enumerated value 'fals'
becomes the Boolean value FALSE.

typeBoolean typeEnumerated The Boolean value FALSE
becomes the enumerated value
'fals'. The Boolean value TRUE
becomes the enumerated value
'true'.

typeShortInteger
typeSMInt

typeBoolean A value of 1 becomes the Boolean
value TRUE. A value of 0 becomes
the Boolean value FALSE.

typeBoolean typeShortInteger
typeSMInt

A value of FALSE becomes 0. A
value of TRUE becomes 1.

typeAlias typeFSS An alias record is coerced into a
file system specification record.

typeAppleEvent typeAppParameters An Apple event is coerced into a
list of application parameters for
the LaunchParamBlockRec
parameter block.

any descriptor type typeAEList A descriptor record is coerced into
a descriptor list containing a single
item.

typeAEList type of list item A descriptor list containing a
single descriptor record is coerced
into a descriptor record.

Table 4-1 Coercion handling provided by the Apple Event Manager (continued)

Original descriptor
type of data to be
coerced Desired descriptor type Description
4-44 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Interacting With the User 4

When your application receives an Apple event, it may need to interact with the user.
For example, it may need to display a dialog box asking the user for additional
information or confirmation. You must use the AEInteractWithUser function to make
sure your application is in the foreground before it actually interacts with the user.

Both the client application and the server application specify their preferences for user
interaction. The AEInteractWithUser function checks the user interaction preferences
set by each application. If both the client and the server allow user interaction,
AEInteractWithUser usually posts a notification request, and the Notification
Manager brings the server to the foreground after the user responds to the notification
request.

The AEInteractWithUser function can also bring the server application directly to the
foreground, but only if the client application is the active application on the same
computer and has set two flags in the sendMode parameter of the AESend function:
the kAEWaitReply flag, which indicates that it is waiting for a reply, and the
kAECanSwitchLayer flag, which indicates that it wants the server application to
come directly to the foreground rather than posting a notification request.

To specify its preferences for how the server application should interact with the user,
the client application sets various flags in the sendMode parameter to AESend. The
Apple Event Manager sets the corresponding flags in the keyInteractLevelAttr
attribute of the Apple event.

The server application sets its preferences with the AESetInteractionAllowed
function. This function lets your application specify whether it allows interaction with
the user as a result of receiving an Apple event from itself; from itself and other
processes on the local computer; or from itself, local processes, and processes from
another computer on the network.

Your application calls the AEInteractWithUser function before interacting with the
user. If AEInteractWithUser returns the noErr result code, then your application is
currently in the front and free to interact with the user. If AEInteractWithUser
returns the errAENoUserInteraction result code, the conditions didn’t allow user
interaction and your application should not interact with the user.

The rest of this section explains how to set user interactions for the client and server
applications and the practical effect these settings have when a server needs to interact
with a user.
Interacting With the User 4-45

C H A P T E R 4

Responding to Apple Events
Setting the Client Application’s User Interaction Preferences 4
The client application sets its user interaction preferences by setting flags in the
sendMode parameter to the AESend function. The Apple Event Manager automatically
adds the specified flags to the keyInteractLevelAttr attribute of the Apple event.
These flags are represented by the following constants:

For example, suppose a client application sends a Set Data event to a database
application to change a customer’s address. The database application is configured to
request user confirmation of changes to a customer’s record. In this case the client sets
the kAECanInteract flag before sending the event. Thus, the database application
attempts to interact with the user if interaction is allowed. If interaction is not allowed,
the database makes the correction anyway without consulting the user. However, if the
client application sends a Delete event to delete a customer’s record entirely and sets the
kAEAlwaysInteract flag, the database application deletes the specified record only if
it can interact with the user first and receives confirmation of the decision to delete a
record. If interaction with the user is not allowed, the database application returns an
error. By setting the kAEAlwaysInteract flag, the client application ensures that the
entire record won’t be lost if the user sends the Delete event by mistake.

If the client application doesn’t specify any of the three user interaction flags, the
Apple Event Manager sets either the kAENeverInteract or the kAECanInteract flag
in the keyInteractLevelAttr attribute of the Apple event, depending on the
location of the server application. If the server application is on a remote computer,

Flag Description

kAENeverInteract The server application should never interact
with the user in response to the Apple event. If
this flag is set, AEInteractWithUser returns the
errAENoUserInteraction result code. This flag is the
default when an Apple event is sent to a remote application.

kAECanInteract The server application can interact with the user in response
to the Apple event—by convention, if the user needs to
supply information to the server. If this flag is set and the
server allows interaction, AEInteractWithUser either
brings the server application to the foreground or posts a
notification request. This flag is the default when an Apple
event is sent to a local application.

kAEAlwaysInteract The server application can interact with the user in response
to the Apple event—by convention, whenever the server
application normally asks a user to confirm a decision or
interact in any other way, even if no additional information is
needed from the user. If this flag is set and the server allows
interaction, AEInteractWithUser either brings the server
application to the foreground or posts a notification request.
4-46 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
the Apple Event Manager sets the kAENeverInteract flag as the default. If the
server application is on the local computer, the Apple Event Manager sets the
kAECanInteract flag as the default.

In addition to the three user interaction flags, the client application can set another flag
in the sendMode parameter to AESend to request that the Apple Event Manager
immediately bring the server application directly to the foreground instead of posting a
notification request:

Note that although the kAECanSwitchLayer flag must be set for the Apple Event
Manager to bring the server application directly to the foreground, setting it does not
guarantee that the Apple Event Manager will bypass the notification request if user
interaction is permitted. Another flag, the kAEWaitReply flag, must also be set in the
sendMode parameter, and the client application must provide an idle function.

The kAEWaitReply flag is one of three flags in the sendMode parameter that a client
application can set to specify whether and how the client should wait for a reply.
(For a description of these flags, see “Sending an Apple Event and Handling the Reply”
on page 3-30.) If the client application is not waiting for a reply, the user may have
continued with other work. An application switch at this point might be unexpected
and would thus violate the principle of user control as described in Macintosh Human
Interface Guidelines.

If the client application sets the kAEWaitReply flag, it should also provide an idle
function when it calls AESend so that it can handle events such as update events that it
receives while waiting for the reply. Idle functions are described in “Writing an Idle
Function,” which begins on page 5-22.

When a server application calls AEInteractWithUser, the function first checks
whether the kAENeverInteract flag in the keyInteractLevelAttr attribute of the
Apple event is set. (The Apple Event Manager sets this attribute according to the flags
specified in the sendMode parameter of AESend.) If the kAENeverInteract flag is set,
AEInteractWithUser immediately returns the errAENoUserInteraction result
code. If the client specified kAECanInteract or kAEAlwaysInteract,
AEInteractWithUser checks the server’s preferences for user interaction.

Flag Description

kAECanSwitchLayer If both the client and server allow interaction, and if the client
application is the active application on the local computer
and is waiting for a reply (that is, it has set the
kAEWaitReply flag), AEInteractWithUser brings the
server directly to the foreground. Otherwise,
AEInteractWithUser uses the Notification Manager to
request that the user bring the server application to the
foreground.
Interacting With the User 4-47

C H A P T E R 4

Responding to Apple Events
Setting the Server Application’s User Interaction Preferences 4
The server sets its user interaction preferences by using the
AESetInteractionAllowed function. This function specifies the conditions
under which your application is willing to interact with the user.

myErr := AESetInteractionAllowed(level);

The level parameter is of type AEInteractAllowed.

TYPE AEInteractAllowed = (kAEInteractWithSelf,

kAEInteractWithLocal,

kAEInteractWithAll);

You can specify one of these values for the interaction level:

If the server application does not set the user interaction level, AEInteractWithUser
uses kAEInteractWithLocal as the value.

If the application sends itself an Apple event (that is, if the application is both the client
and the server) without setting the kAENeverInteract flag, AEInteractWithUser
always allows user interaction. If the client application is a process on the local computer
and specifies kAECanInteract or kAEAlwaysInteract, and if the server has set the
interaction level to kAEInteractWithLocal or kAEInteractWithAll, then
AEInteractWithUser allows user interaction. If the client is a process on a remote
computer on the network and specifies kAECanInteract or kAEAlwaysInteract,
AEInteractWithUser allows user interaction only if the server specified
the kAEInteractWithAll flag for the interaction level. In all other cases,
AEInteractWithUser does not allow user interaction.

Flag Description

kAEInteractWithSelf Your server application can interact with the user in
response to an Apple event only when your application is
also the client application—that is, only when your
application is sending the Apple event to itself.

kAEInteractWithLocal Your server application can interact with the user in
response to an Apple event only if the client application
is on the same computer as your application. This is the
default if the server application does not call the function
AESetInteractionAllowed.

kAEInteractWithAll Your server application can interact with the user in
response to an Apple event sent by any client application
on any computer.
4-48 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Requesting User Interaction 4
If your server application needs to interact with the user for any reason, it must call the
AEInteractWithUser function to make sure it is in the foreground before it actually
interacts with the user. When AEInteractWithUser allows user interaction (based on
the client’s and server’s preferences), AEInteractWithUser brings the server
application to the foreground—either directly or after the user responds to a notification
request—and then returns a noErr result code. If AEInteractWithUser brings the
server to the foreground directly, the client returns to the foreground immediately after
the server has finished interacting with the user. If AEInteractWithUser brings the
server to the foreground after the user responds to a notification request, the server
remains in the foreground after completing the user interaction.

The AEInteractWithUser function specifies how long your handler is willing to wait
for a response from the user. For example, if the timeout value is 900 ticks (15 seconds)
and the Apple Event Manager posts a notification request, the Notification Manager
begins to display a blinking icon in the upper-right corner of the screen, then removes
the notification request (and the blinking icon) if the user does not respond within
15 seconds. (The discussion that follows describes some restrictions on the icons that can
be displayed in this situation.)

Note that the timeout value passed to the AEInteractWithUser function is separate
from the timeout value passed to the AESend function, which specifies how long the
client application is willing to wait for the reply or return receipt from the server
application. If AEInteractWithUser does not receive a response from the user within
the specified time, AEInteractWithUser returns errAETimeout.

You may want to give the user a method of setting the interaction level. For example,
some users may not want to be interrupted while background processing of an Apple
event occurs, or they may not want to respond to dialog boxes when your application is
handling Apple events sent from another computer.
Interacting With the User 4-49

C H A P T E R 4

Responding to Apple Events
Listing 4-14 illustrates the use of the AEInteractWithUser function. You call this
function before your application displays a dialog box or otherwise interacts with the
user when processing an Apple event. You specify a timeout value, a pointer to a
Notification Manager record, and the address of an idle function as parameters to
AEInteractWithUser.

Listing 4-14 Using the AEInteractWithUser function

myErr := AEInteractWithUser(kAEDefaultTimeout, gMyNotifyRecPtr,

 @MyIdleFunction);

IF myErr <> noErr THEN

{the attempt to interact failed; do any error handling}

DoError(myErr)

ELSE

{interact with the user by displaying a dialog box }

{ or by interacting in any other way that is necessary}

DisplayMyDialogBox;

You can set a timeout value, in ticks, in the first parameter to AEInteractWithUser.
Use the kAEDefaultTimeout constant if you want the Apple Event Manager to use a
default value for the timeout value. The Apple Event Manager uses a timeout value of
about one minute if you specify this constant. You can also specify the kNoTimeOut
constant if your application is willing to wait an indefinite amount of time for a response
from the user. Usually you should provide a timeout value, so that your application can
complete processing of the Apple event in a reasonable amount of time.

If you specify NIL instead of a Notification Manager record in the second parameter of
AEInteractWithUser, the Apple Event Manager looks for an application icon with the
ID specified by the application’s bundle ('BNDL') resource and the application’s file
reference ('FREF') resource. The Apple Event Manager first looks for an 'SICN'
resource with the specified ID; if it can’t find an 'SICN' resource, it looks for the
'ICN#' resource and compresses the icon to fit in the menu bar. The Apple Event
Manager won’t look for any members of an icon family other than the icon specified in
the 'ICN#' resource.

If the application doesn’t have 'SICN' or 'ICN#' resources, or if it doesn’t have a file
reference resource, the Apple Event Manager passes NIL to the Notification Manager,
and no icon appears in the upper-right corner of the screen. Therefore, if you want to
display any icon other than those of type 'SICN' or 'ICN#', you must specify a
notification record as the second parameter to the AEInteractWithUser function.

Note
If you want the Notification Manager to use a color icon when it posts a
notification request, you should provide a Notification Manager record
that specifies a 'cicn' resource. ◆
4-50 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
The AEInteractWithUser function posts a notification request only when user
interaction is allowed and the kAECanSwitchLayer flag in the
keyInteractLevelAttr attribute is not set.

The last parameter to AEInteractWithUser specifies an idle function provided by
your application. Your idle function should handle any update events, null events,
operating-system events, or activate events while your application is waiting to be
brought to the front. See “Writing an Idle Function” on page 5-22 for more information.

Figure 4-1 illustrates a situation in which a client application (a forms application) might
request a service from a server application (a database application). To perform this
service, the server application must interact with the user.

Figure 4-1 A document with a button that triggers a Get Data event

Figure 4-1 shows part of an electronic form used to enter information about an order
received by telephone. If the customer has ordered from the company before, the user
can quickly retrieve the customer’s address and telephone number by clicking the
Retrieve Customer Info button. In response, the forms application sends a Get Data
event to a database application (SurfDB) currently open on the same computer. The
Get Data event sent by the forms application (the client application for the ensuing
transaction) asks SurfDB (the server) to locate the customer’s name in a table of
addresses and return the customer’s address. When the forms application receives the
reply Apple event, it can add the address data to the appropriate fields in the order form.

Order Form
Acme Dot Company

14 Ocean View Drive

Santa Cruz, CA

Order Date:

Order Number:

1/16/92

917563

Type the name of the customer:

If the customer has ordered before, click this button

to retrieve the customer info from the Addresses database:

If this is the customer’s first order, fill in the customer info.

Street Address:

City:

State:

Zip Code:

Telephone:

John Chapman

Retrieve Customer Info
Interacting With the User 4-51

C H A P T E R 4

Responding to Apple Events
If SurfDB, as the server application, locates more than one entry for the specified
customer name, it needs to interact with the user to determine which data to return in
the reply Apple event. To interact with the user, the server application must be in the
foreground, so that it can display a dialog box like the one shown in Figure 4-2.

Figure 4-2 A server application displaying a dialog box that requests information from the user

Figure 4-3, Figure 4-4, and Figure 4-5 illustrate two methods of dealing with this
situation. Figure 4-3 shows the behavior of the server application that is common to both
methods. In both cases, the server uses AESetInteractionAllowed to set its own
interaction level to kAEInteractWithLocal. After calling AEResolve to locate the
requested data, the server application discovers that two addresses match the name the
user typed into the electronic form. The server then calls AEInteractWithUser with a
timeout value of kAEDefaultTimeout so it can find out which address the user wants.

Order Form
Acme Dot Company

14 Ocean View Drive

Santa Cruz, CA

Order Date:

Order Number:

1/16/92

917563

Type the name of the customer:

If the customer has ordered before, click this button

to retrieve the customer info from the Addresses database:

If this is the customer’s first order, fill in the customer info.

Street Address:

City:

State:

Zip Code:

Telephone:

John Chapman

Retrieve Customer Info
4-52 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Figure 4-3 Handling user interaction

SurfDB

Server

application

Apple event

John Chapman

1774 Broadway

Los Angeles, CA

John Chapman

1809 Mason St.

Seattle, WA

MyHandleGetData

AEInteractWithUser(kAEDefaultTimeout,

 gMyNotifyRec,

																			@MyIdle)

DisplayMyDialogBox

Call AEResolve to locate requested data

If there is more than one address for the

specified customer name, interact with user:

•

If user makes choice, continue processing event

Add address user selected or an error, such as

“duplicate name,” to reply Apple event

•
•

•

MyInitialize

Sets interaction level:•
AESetInteractAllowed(kAEInteractWithLocal)

AEInteractWithUser

Apple Event Manager

Determines that user interaction

is allowed

Brings SurfDB directly to the

foreground or posts a notification

request, depending on sendMode

flags

Returns noErr after SurfDB is in the

foreground

•

•

•

See Figures 4-4 and 4-5 for

examples of flags set in the

sendMode parameter of the

AESend function.

Object specifier record specifying

the address for “John Chapman”

in the table “MyAddresses”

Get Data
Interacting With the User 4-53

C H A P T E R 4

Responding to Apple Events
Figure 4-4 shows the circumstances in which the server application’s call to
AEInteractWithUser shown in Figure 4-3 will cause the Apple Event Manager to
bring the server application directly to the foreground. The client application sets the
kAECanInteract, kAECanSwitchLayer, and kAEWaitReply flags in the sendMode
parameter of the AESend function when it sends the Get Data event shown in the figure.
These flags indicate that the client application expects the user to wait until the address
appears in the appropriate fields of the electronic form before continuing with any other
work. In this case, an automatic layer switch will not surprise the user and will avoid
the additional user action required to respond to a notification request, so
AEInteractWithUser brings the server application directly to the foreground
and returns a noErr result code. The server application then displays the dialog box
requesting that the user select the desired customer.

After the user selects the desired customer and clicks OK, the server application’s
Get Data event handler returns. The Apple Event Manager immediately brings the client
application to the foreground, and the client application displays the requested customer
information in the appropriate fields.

Figure 4-4 Handling user interaction with the kAEWaitReply flag set

SurfDB

Apple event

Get Data

sendMode flags:

kAECanInteract

kAECanSwitchLayer

KAEWaitReply

AEInteractWithUser

•

•

•

Determines that user interaction

is allowed

Brings SurfDB directly to foreground

Returns noErr

Apple Event Manager brings client to the

foreground as soon as the Apple event handler

returns.
4-54 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Figure 4-5 shows the circumstances in which the server application’s call to
AEInteractWithUser in Figure 4-3 will cause the Apple Event Manager to post a
notification request rather than bringing the server application directly to the foreground.

Figure 4-5 Handling user interaction with the kAEQueueReply flag set

SurfDB

Apple event

Get Data

sendMode flags:

kAECanInteract

KAEQueueReply

AEInteractWithUser

•

•

•

Determines that user interaction

is allowed

Posts notification request

Returns noErr after user brings

SurfDB to the front

Server remains in the foreground after the

Apple event handler returns.
Interacting With the User 4-55

C H A P T E R 4

Responding to Apple Events
The only difference between the Get Data event shown in Figure 4-4 and the Get Data
event shown in Figure 4-5 is that the client application has set the kAEQueueReply flag
instead of the kAEWaitReply flag in the sendMode parameter of AESend and has not
set the kAECanSwitchLayer flag. This combination of flags indicates that the client
application expects the user to continue filling in other parts of the form, such as the
items being ordered; the address will just appear after a while, provided there is no
duplicate name. In this case, an automatic layer switch would disrupt the user’s work.
Instead of bringing the server application directly to the foreground,
AEInteractWithUser uses the Notification Manager to post a notification request.

After the user has responded to the request and has brought the server application to the
foreground, AEInteractWithUser returns a noErr result code, and the server
application displays the dialog box requesting that the user select the desired customer.
When the user selects a customer and clicks OK, the server application’s Get Data event
handler returns. Because the user brought the server to the foreground manually, the
server remains in the foreground after the handler returns.

Reference to Responding to Apple Events 4

This section describes the basic Apple Event Manager data structures and routines that
your application can use to respond to Apple events. It also describes the syntax for
application-defined Apple event handlers and coercion handlers that your application
can provide for use by the Apple Event Manager.

For information about routines used to create and send Apple events, see the chapter
“Creating and Sending Apple Events” in this book. For information about routines and
data structures used with object specifier records, see the chapter “Resolving and
Creating Object Specifier Records” in this book.

Data Structures Used by the Apple Event Manager 4
This section summarizes the major data structures used by the Apple Event Manager.
For an overview of the relationships among these data structures, see “Data Structures
Within Apple Events,” which begins on page 3-12.

Descriptor Records and Related Data Structures 4

Descriptor records are the fundamental data structures from which Apple events are
constructed. A descriptor record is a data structure of type AEDesc.
4-56 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
TYPE AEDesc =

RECORD {descriptor record}

descriptorType: DescType; {type of data being passed}

dataHandle: Handle; {handle to data being passed}

END;

Field descriptions

descriptorType
A four-character string of type DescType that indicates the type of
data being passed.

dataHandle A handle to the data being passed.

The descriptor type is a structure of type DescType, which in turn is of data type
ResType—that is, a four-character code. Constants, rather than these four-character
codes, are usually used to refer to descriptor types. Table 4-2 lists the constants for the
basic descriptor types used by the Apple Event Manager.

Table 4-2 Descriptor types used by the Apple Event Manager (excluding those used with
object specifier records)

Descriptor type Value Description

typeBoolean 'bool' Boolean value

typeChar 'TEXT' Unterminated string

typeLongInteger 'long' 32-bit integer

typeInteger 'long' 32-bit integer

typeShortInteger 'shor' 16-bit integer

typeSMInt 'shor' 16-bit integer

typeLongFloat 'doub' SANE double

typeFloat 'doub' SANE double

typeShortFloat 'sing' SANE single

typeSMFloat 'sing' SANE single

typeExtended 'exte' SANE extended

typeComp 'comp' SANE comp

typeMagnitude 'magn' Unsigned 32-bit integer

typeAEList 'list' List of descriptor records

typeAERecord 'reco' List of keyword-specified descriptor
records

typeAppleEvent 'aevt' Apple event record

typeTrue 'true' TRUE Boolean value

continued
Reference to Responding to Apple Events 4-57

C H A P T E R 4

Responding to Apple Events
For information about descriptor records and descriptor types used with object specifier
records, see the chapter “Resolving and Creating Object Specifier Records” in this book.

Apple event attributes, Apple event parameters, object specifier records, tokens, and
most of the other data structures used by the Apple Event Manager are constructed from
one or more descriptor records. The Apple Event Manager identifies the various parts of
an Apple event by means of keywords associated with the corresponding descriptor
records. The AEKeyword data type is defined as a four-character code.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

Constants are typically used for keywords. A keyword combined with a descriptor
record forms a keyword-specified descriptor record, which is defined by a data structure
of type AEKeyDesc.

TYPE AEKeyDesc =

RECORD

descKey: AEKeyword; {keyword}

descContent: AEDesc; {descriptor record}

END;

typeFalse 'fals' FALSE Boolean value

typeAlias 'alis' Alias record

typeEnumerated 'enum' Enumerated data

typeType 'type' Four-character code for event class or
event ID

typeAppParameters 'appa' Process Manager launch parameters

typeProperty 'prop' Apple event property

typeFSS 'fss ' File system specification

typeKeyword 'keyw' Apple event keyword

typeSectionH 'sect' Handle to a section record

typeWildCard '****' Matches any type

typeApplSignature 'sign' Application signature

typeSessionID 'ssid' Session reference number

typeTargetID 'targ' Target ID record

typeProcessSerialNumber 'psn ' Process serial number

typeNull 'null' Nonexistent data (data handle is NIL)

Table 4-2 Descriptor types used by the Apple Event Manager (excluding those used with
object specifier records) (continued)

Descriptor type Value Description
4-58 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Field descriptions

descKey A four-character code of type AEKeyword that identifies the data in
the descContent field.

descContent A descriptor record of type AEDesc.

Every Apple event includes an attribute that contains the address of the target
application. A descriptor record that contains an application’s address is called an
address descriptor record.

TYPE AEAddressDesc = AEDesc; {address descriptor record}

Many Apple Event Manager functions take or return lists of descriptor records in a
special descriptor record called a descriptor list. A descriptor list is a structure of data
type AEDescList whose data consists of a list of other descriptor records.

TYPE AEDescList = AEDesc; {list of descriptor records}

Other Apple Event Manager functions take or return lists of keyword-specified
descriptor records in the form of an AE record. An AE record is a structure of data type
AERecord whose data handle refers to a list of keyword-specified descriptor records.

TYPE AERecord = AEDescList; {list of keyword-specified }

{ descriptor records}

The handle for a descriptor list of data type AERecord refers to a list of
keyword-specified descriptor records that specify Apple event parameters; they cannot
specify Apple event attributes.

Finally, a full-fledged Apple event, including both attributes and parameters, is an
Apple event record, which is a structure of data type AppleEvent.

TYPE AppleEvent = AERecord; {list of attributes and }

{ parameters for an Apple }

{ event}

The event class and event ID of an Apple event are specified in Apple Event Manager
routines by structures of data types AEEventClass and AEEventID, respectively.

TYPE AEEventClass = PACKED ARRAY[1..4] OF Char;

TYPE AEEventID = PACKED ARRAY[1..4] OF Char;

For more information about descriptor records and the other data structures described in
this section, see “Data Structures Within Apple Events,” which begins on page 3-12.

With the exception of array data records, which are described in the next section, the
other Apple Event Manager data structures used in responding to Apple events are
described in “Routines for Responding to Apple Events,” beginning on page 4-61, under
the descriptions of the routines that use them.
Reference to Responding to Apple Events 4-59

C H A P T E R 4

Responding to Apple Events
Apple Event Array Data Types 4

The AEGetArray function (see page 4-77) creates a Pascal or C array that corresponds to
an Apple event array in a descriptor list, and the AEPutArray function (see page 5-32)
adds data specified in a buffer to a descriptor list as an Apple event array.

You can use the data type AEArrayType to define the type of Apple event array you
want to add to or obtain from a descriptor list.

TYPE AEArrayType = (kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray);

When your application adds an Apple event array to a descriptor list, it provides the
data for an Apple event array in an array data record, which is defined by the data type
AEArrayData.

TYPE AEArrayData =

RECORD {data for an Apple event array}

CASE AEArrayType OF

kAEDataArray:

(AEDataArray: ARRAY[0..0] OF Integer);

kAEPackedArray:

(AEPackedArray: PACKED ARRAY[0..0] OF Char);

kAEHandleArray:

(AEHandleArray: ARRAY[0..0] OF Handle);

kAEDescArray:

(AEDescArray: ARRAY[0..0] OF AEDesc);

kAEKeyDescArray:

(AEKeyDescArray: ARRAY[0..0] OF AEKeyDesc);

END;

The type of array depends on the data for the array:

Array type Description of Apple event array

kAEDataArray Array items consist of data of the same size and same type, and
are aligned on word boundaries.

kAEPackedArray Array items consist of data of the same size and same type, and
are packed without regard for word boundaries.

kAEHandleArray Array items consist of handles to data of variable size and the
same type.

kAEDescArray Array items consist of descriptor records of different descriptor
types with data of variable size.

kAEKeyDescArray Array items consist of keyword-specified descriptor records
with different keywords, different descriptor types, and data of
variable size.
4-60 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Array items in Apple event arrays of type kAEDataArray, kAEPackedArray, or
kAEHandleArray must be factored—that is, contained in a factored descriptor list.
Before adding array items to a factored descriptor list, you should provide both a pointer
to the data that is common to all array items and the size of that common data when you
first call AECreateList to create a factored descriptor list. When you call AEPutArray
to add the array data to such a descriptor list, the Apple Event Manager automatically
isolates the common data you specified in the call to AECreateList.

When you call AEGetArray or AEPutArray, you specify a pointer of data type
AEArrayDataPointer that points to a buffer containing the data for the array.

TYPE AEArrayDataPointer = ^AEArrayData;

For more information about using AECreateList to create factored descriptor lists for
arrays, see page 5-29. For information about using AEGetArray and AEPutArray, see
page 4-77 and page 5-32, respectively.

Routines for Responding to Apple Events 4
This section describes the Apple Event Manager routines you can use to create and
manage the Apple event dispatch tables, dispatch Apple events, extract information
from Apple events, request user interaction, request more time to respond to Apple
events, suspend and resume Apple event handling, delete descriptor records, deallocate
memory for descriptor records, create and manage the coercion handler and special
handler dispatch tables, and get information about the Apple Event Manager.

Because the Apple Event Manager uses the services of the Event Manager, which in turn
uses the services of the PPC Toolbox, the routines described in this section may return
Event Manager and PPC Toolbox result codes in addition to the Apple Event Manager
result codes listed.

Creating and Managing the Apple Event Dispatch Tables 4

An Apple event dispatch table contains entries that specify the event class and event ID
that refer to one or more Apple events, the address of the handler routine that
handles those Apple events, and a reference constant. You can use the
AEInstallEventHandler function to add entries to the Apple event dispatch table.
This function sets up the initial mapping between the handlers in your application and
the Apple events that they handle.

To get the address of a handler currently in the Apple event dispatch table, use the
AEGetEventHandler function. If you need to remove any of your Apple event
handlers after the mapping between handlers and Apple events is established, you can
use the AERemoveEventHandler function.
Reference to Responding to Apple Events 4-61

C H A P T E R 4

Responding to Apple Events
AEInstallEventHandler 4

You can use the AEInstallEventHandler function to add an entry to either your
application’s Apple event dispatch table or the system Apple event dispatch table.

FUNCTION AEInstallEventHandler (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 handler: EventHandlerProcPtr;

 handlerRefcon: LongInt;

 isSysHandler: Boolean): OSErr;

theAEEventClass
The event class for the Apple event or events to be dispatched for this
entry. The AEEventClass data type is defined as a four-character code:

TYPE AEEventClass = PACKED ARRAY[1..4] OF Char;

theAEEventID
The event ID for the Apple event or events to be dispatched for this entry.
The AEEventID data type is defined as a four-character code:

TYPE AEEventID = PACKED ARRAY[1..4] OF Char;

handler A pointer to an Apple event handler for this dispatch table entry. Note
that a handler in the system dispatch table must reside in the system
heap; this means that if the value of the isSysHandler parameter is
TRUE, the handler parameter should point to a location in the system
heap. Otherwise, if you put your system handler code in your application
heap, you must use AERemoveEventHandler to remove the handler
before your application terminates.

handlerRefcon
A reference constant that is passed by the Apple Event Manager to the
handler each time the handler is called. If your handler doesn’t use a
reference constant, use 0 as the value of this parameter.

isSysHandler
Specifies the dispatch table to which you want to add the handler. If the
value of isSysHandler is TRUE, the Apple Event Manager adds the
handler to the system Apple event dispatch table. Entries in the system
dispatch table are available to all applications. If the value of
isSysHandler is FALSE, the Apple Event Manager adds the handler to
your application’s Apple event dispatch table. The application’s dispatch
table is searched first; the system dispatch table is searched only if the
necessary handler is not found in your application’s dispatch table.
4-62 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
DESCRIPTION

The AEInstallEventHandler function creates an entry in the Apple event dispatch
table. You must supply parameters that specify the event class, the event ID, the address
of the handler that handles Apple events of the specified event class and event ID, and
whether the handler is to be added to the system Apple event dispatch table or your
application’s Apple event dispatch table. You can also specify a reference constant that
the Apple Event Manager passes to your handler whenever your handler processes an
Apple event.

The parameters theAEEventClass and theAEEventID specify the event class and
event ID of the Apple events to be handled by the handler for this dispatch table entry.
For these parameters, you must provide one of the following combinations:

■ the event class and event ID of a single Apple event to be dispatched to the handler

■ the typeWildCard constant for theAEEventClass and an event ID for
theAEEventID, which indicate that Apple events from all event classes whose event
IDs match theAEEventID should be dispatched to the handler

■ an event class for theAEEventClass and the typeWildCard constant for
theAEEventID, which indicate that all events from the specified event class should
be dispatched to the handler

■ the typeWildCard constant for both the theAEEventClass and theAEEventID
parameters, which indicates that all Apple events should be dispatched to the handler

IMPORTANT

If you use the typeWildCard constant for either the
theAEEventClass or the theAEEventID parameter (or for both
parameters), the corresponding handler must return the error
errAEEventNotHandled if it does not handle a particular event. ▲

If there was already an entry in the specified dispatch table for the same event class and
event ID, it is replaced. Therefore, before installing a handler for a particular Apple event
in the system dispatch table, use the AEGetEventHandler function (described next) to
determine whether the table already contains a handler for that event. If an entry exists,
AEGetEventHandler returns a reference constant and a pointer to that event handler.
Chain the existing handler to your handler by providing pointers to the previous
handler and its reference constant in the handlerRefcon parameter of
AEInstallEventHandler. When your handler is done, use these pointers to call the
previous handler. If you remove your system Apple event handler, be sure to reinstall
the chained handler.
Reference to Responding to Apple Events 4-63

C H A P T E R 4

Responding to Apple Events
SPECIAL CONSIDERATIONS

Before an application calls a system Apple event handler, system software has set up the
A5 register for the calling application. For this reason, if you provide a system Apple
event handler, it should never use A5 global variables or anything that depends on a
particular context; otherwise, the application that calls the system handler may crash.

RESULT CODES

SEE ALSO

For more information about installing Apple event handlers, see “Installing Entries in
the Apple Event Dispatch Tables,” which begins on page 4-7.

AEGetEventHandler 4

You can use the AEGetEventHandler function to get an entry from an Apple event
dispatch table.

FUNCTION AEGetEventHandler (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 VAR handler: EventHandlerProcPtr;

 VAR handlerRefcon: LongInt;

 isSysHandler: Boolean): OSErr;

theAEEventClass
The value of the event class field of the dispatch table entry for the
desired handler.

theAEEventID
The value of the event ID field of the dispatch table entry for the desired
handler.

handler The AEGetEventHandler function returns, in this parameter, a pointer
to the specified handler.

handlerRefcon
The AEGetEventHandler function returns, in this parameter, the
reference constant from the dispatch table entry for the specified handler.

noErr 0 No error
paramErr –50 Parameter error (handler pointer is NIL or odd)
memFullErr –108 Not enough room in heap zone
4-64 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
isSysHandler
Specifies the Apple event dispatch table from which to get the handler. If
the value of isSysHandler is TRUE, the AEGetEventHandler function
returns the handler from the system dispatch table. If the value is FALSE,
AEGetEventHandler returns the handler from your application’s
dispatch table.

DESCRIPTION

The AEGetEventHandler function returns, in the handler parameter, a pointer to the
handler for the Apple event dispatch table entry you specify in the parameters
theAEEventClass and theAEEventID. You can use the typeWildCard constant for
either or both of these parameters; however, AEGetEventHandler returns an error
unless an entry exists that specifies typeWildCard in exactly the same way. For
example, if you specify typeWildCard in both the theAEEventClass parameter and
the theAEEventID parameter, the Apple Event Manager will not return the first
handler for any event class and event ID in the dispatch table; instead, the dispatch table
must contain an entry that specifies type typeWildCard for both the event class and the
event ID.

RESULT CODES

SEE ALSO

For an explanation of wildcard values, see the description of the
AEInstallEventHandler function on page 4-62.

AERemoveEventHandler 4

You can use the AERemoveEventHandler function to remove an entry from an Apple
event dispatch table.

FUNCTION AERemoveEventHandler (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 handler: EventHandlerProcPtr;

 isSysHandler: Boolean): OSErr;

theAEEventClass
The event class for the handler whose entry you want to remove from the
dispatch table.

noErr 0 No error
errAEHandlerNotFound –1717 No handler found for an Apple event
Reference to Responding to Apple Events 4-65

C H A P T E R 4

Responding to Apple Events
theAEEventID
The event ID for the handler whose entry you want to remove from the
Apple event dispatch table.

handler A pointer to the handler to be removed. Although the parameters
theAEEventClass and theAEEventID would be sufficient to identify
the handler to be removed, providing the handler parameter is a
recommended safeguard that ensures that you remove the correct
handler. If the value of this parameter is NIL, the Apple Event Manager
relies solely on the event class and event ID to identify the handler to be
removed.

isSysHandler
Specifies the dispatch table from which to remove the handler. If the value
of isSysHandler is TRUE, AERemoveEventHandler removes the
handler from the system dispatch table. If the value is FALSE,
AERemoveEventHandler removes the handler from your application’s
dispatch table.

DESCRIPTION

The AERemoveEventHandler function removes the Apple event dispatch table entry
you specify in the parameters theAEEventClass, theAEEventID, and handler. You
can use the typeWildCard constant for the theAEEventClass or the theAEEventID
parameter, or for both parameters; however, AERemoveEventHandler returns an error
unless an entry exists that specifies typeWildCard in exactly the same way. For
example, if you specify typeWildCard in both the theAEEventClass parameter and
the theAEEventID parameter, the Apple Event Manager will not remove the first
handler for any event class and event ID in the dispatch table; instead, the dispatch table
must contain an entry that specifies type typeWildCard for both the event class and the
event ID.

RESULT CODES

SEE ALSO

For an explanation of wildcard values, see the description of the
AEInstallEventHandler function on page 4-62.

Dispatching Apple Events 4

After receiving a high-level event (and optionally determining whether it is a type of
high-level event other than an Apple event that your application might support), your
application typically calls the AEProcessAppleEvent function to determine the type
of Apple event received and call the corresponding handler.

noErr 0 No error
errAEHandlerNotFound –1717 No handler found for an Apple event
4-66 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEProcessAppleEvent 4

You can use the AEProcessAppleEvent function to call the appropriate handler for a
specified Apple event.

FUNCTION AEProcessAppleEvent

(theEventRecord: EventRecord): OSErr;

theEventRecord
The event record for the Apple event.

DESCRIPTION

The AEProcessAppleEvent function looks first in the application’s special handler
dispatch table for an entry that was installed with the constant keyPreDispatch. If the
application’s special handler dispatch table does not include such a handler or if the
handler returns errAEEventNotHandled, the function looks in the application’s Apple
event dispatch table for an entry that matches the event class and event ID of the
specified Apple event.

If the application’s Apple event dispatch table does not include such a handler or if the
handler returns errAEEventNotHandled, the AEProcessAppleEvent function looks
in the system special handler dispatch table for an entry that was installed with the
constant keyPreDispatch. If the system special handler dispatch table does not
include such a handler or if the handler returns errAEEventNotHandled, the function
looks in the system Apple event dispatch table for an entry that matches the event class
and event ID of the specified Apple event.

If the system Apple event dispatch table does not include such a handler, the Apple
Event Manager returns the result code errAEEventNotHandled to the server
application and, if the client application is waiting for a reply, to the client application.

If AEProcessAppleEvent finds an entry in one of the dispatch tables that matches the
event class and event ID of the specified Apple event, it calls the corresponding handler.

SPECIAL CONSIDERATIONS

If an Apple event dispatch table contains one entry for an event class and a specific event
ID, and also contains another entry that is identical except that it specifies a wildcard
value for either the event class or the event ID, the Apple Event Manager dispatches the
more specific entry. For example, if an Apple event dispatch table includes one entry that
specifies the event class as kAECoreSuite and the event ID as kAEDelete, and another
entry that specifies the event class as kAECoreSuite and the event ID as
typeWildCard, the Apple Event Manager dispatches the Apple event handler
associated with the entry that specifies the event ID as kAEDelete.
Reference to Responding to Apple Events 4-67

C H A P T E R 4

Responding to Apple Events
RESULT CODES

SEE ALSO

For an example of the use of AEProcessAppleEvent, see Listing 4-2 on page 4-6.

For a description of an Apple event handler, see page 4-105.

For more information about event processing, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes 4

The Apple Event Manager provides four functions that allow you to get data from Apple
event parameters and attributes. The AEGetParamPtr and AEGetParamDesc functions
get data from a specified Apple event parameter. The AEGetAttributePtr and
AEGetAttributeDesc functions get data from a specified Apple event attribute.

AEGetParamPtr 4

You can use the AEGetParamPtr function to get a pointer to a buffer that contains the
data from a specified Apple event parameter.

FUNCTION AEGetParamPtr (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

desiredType: DescType;

VAR typeCode: DescType; dataPtr: Ptr;

maximumSize: Size;

VAR actualSize: Size): OSErr;

theAppleEvent
The Apple event containing the desired parameter.

theAEKeyword
The keyword that specifies the desired parameter.

desiredType
The desired descriptor type for the data to be returned; if the requested
Apple event parameter is not of this type, the Apple Event Manager
attempts to coerce it to this type. If the value of desiredType

noErr 0 No error
memFullErr –108 Not enough room in heap zone
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
errAECorruptData –1702 Data in an Apple event could not be read
errAENewerVersion –1706 Need a newer version of the Apple Event

Manager
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event

handler
4-68 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
is typeWildCard, no coercion is performed, and the descriptor type of
the returned data is the same as the descriptor type of the Apple event
parameter.

typeCode The descriptor type of the returned data.

dataPtr A pointer to the buffer in which the returned data is stored.

maximumSize
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dataPtr parameter.

actualSize
The length, in bytes, of the data for the specified Apple event parameter.
If this value is larger than the value of the maximumSize parameter, not
all of the data for the parameter was returned.

DESCRIPTION

The AEGetParamPtr function uses a buffer to return the data from a specified Apple
event parameter, which it attempts to coerce to the descriptor type specified by the
desiredType parameter.

RESULT CODES

SEE ALSO

For examples of the use of AEGetParamPtr, see “Getting Data Out of an Apple Event,”
which begins on page 4-25.

AEGetParamDesc 4

You can use the AEGetParamDesc function to get the descriptor record for a specified
Apple event parameter.

FUNCTION AEGetParamDesc (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR result: AEDesc): OSErr;

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-69

C H A P T E R 4

Responding to Apple Events
theAppleEvent
The Apple event containing the desired parameter.

theAEKeyword
The keyword that specifies the desired parameter.

desiredType
The desired descriptor type for the descriptor record to be returned; if the
requested Apple event parameter is not of this type, the Apple Event
Manager attempts to coerce it to this type. If the value of desiredType is
typeWildCard, no coercion is performed, and the descriptor type of the
returned data is the same as the descriptor type of the Apple event
parameter.

result The descriptor record from the desired Apple event parameter coerced to
the descriptor type specified in desiredType.

DESCRIPTION

The AEGetParamDesc function returns, in the result parameter, the descriptor record
for a specified Apple event parameter, which it attempts to coerce to the descriptor type
specified by the desiredType parameter. Your application should call the
AEDisposeDesc function to dispose of the resulting descriptor record after your
application has finished using it.

If AEGetParamDesc returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

RESULT CODES

SEE ALSO

For an example of the use of AEGetParamDesc, see “Getting Data Out of an Apple
Event Parameter,” which begins on page 4-26.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-70 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetAttributePtr 4

You can use the AEGetAttributePtr function to get a pointer to a buffer that contains
the data from a specified Apple event attribute.

FUNCTION AEGetAttributePtr (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR typeCode: DescType; dataPtr: Ptr;

 maximumSize: Size;

 VAR actualSize: Size): OSErr;

theAppleEvent
The Apple event containing the desired attribute.

theAEKeyword
The keyword that specifies the desired attribute.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description that
follows.

desiredType
The desired descriptor type for the data to be returned; if the requested
Apple event attribute is not of this type, the Apple Event Manager
attempts to coerce it to this type. If the value of desiredType is
typeWildCard, no coercion is performed, and the descriptor type of the
returned data is the same as the descriptor type of the Apple event
attribute.

typeCode The descriptor type of the returned data.

dataPtr A pointer to the buffer in which the returned data is stored.

maximumSize
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dataPtr parameter.

actualSize
The length, in bytes, of the data for the specified Apple event attribute. If
this value is larger than the value of the maximumSize parameter, not all
of the data for the attribute was returned.

DESCRIPTION

The AEGetAttributePtr function uses a buffer to return the data from an Apple event
attribute with the specified keyword, which it attempts to coerce to the descriptor type
specified by the desiredType parameter. You can specify the parameter
theAEKeyWord using any of these constants:
Reference to Responding to Apple Events 4-71

C H A P T E R 4

Responding to Apple Events
CONST

keyAddressAttr = 'addr'; {address of target or }

 { client application}

keyEventClassAttr = 'evcl'; {event class}

keyEventIDAttr = 'evid'; {event ID}

keyEventSourceAttr = 'esrc'; {nature of source }

 { application}

keyInteractLevelAttr = 'inte'; {settings to allow the }

 { Apple Event Manager to }

 { bring server application }

 { to the foreground}

keyMissedKeywordAttr = 'miss'; {first required parameter }

 { remaining in Apple event}

keyOptionalKeywordAttr = 'optk'; {list of optional }

 { parameters for Apple }

 { event}

keyOriginalAddressAttr = 'from'; {address of original source }

 { of Apple event; available }

 { beginning with version }

 { 1.01 of Apple Event }

 { Manager}

keyReturnIDAttr = 'rtid'; {return ID for reply Apple }

 { event}

keyTimeoutAttr = 'timo'; {length of time in ticks }

 { that client will wait }

 { for reply or result from }

 { the server}

keyTransactionIDAttr = 'tran'; {transaction ID identifying }

 { a series of Apple events}

RESULT CODES

SEE ALSO

For an example of the use of the AEGetAttributePtr function, see “Getting Data Out
of an Attribute” and “Writing Apple Event Handlers,” which begin on page 4-28 and
page 4-33, respectively.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-72 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetAttributeDesc 4

You can use the AEGetAttributeDesc function to get the descriptor record for a
specified Apple event attribute.

FUNCTION AEGetAttributeDesc (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR result: AEDesc): OSErr;

theAppleEvent
The Apple event containing the desired attribute.

theAEKeyword
The keyword that specifies the desired attribute.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description of
AEGetAttributePtr on page 4-71.

desiredType
The desired descriptor type for the descriptor record to be returned; if the
requested Apple event attribute is not of this type, the Apple Event
Manager attempts to coerce it to this type. If the value of desiredType is
typeWildCard, no coercion is performed, and the descriptor type of the
returned data is the same as the descriptor type of the Apple event
attribute.

result A copy of the descriptor record from the desired attribute coerced to the
descriptor type specified by the desiredType parameter.

DESCRIPTION

The AEGetAttributeDesc function returns, in the result parameter, the descriptor
record for the Apple event attribute with the specified keyword. Your application should
call the AEDisposeDesc function to dispose of the resulting descriptor record after your
application has finished using it.

If AEGetAttributeDesc returns a nonzero result code, it returns a null descriptor
record unless the Apple Event Manager is not available because of limited memory.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-73

C H A P T E R 4

Responding to Apple Events
Counting the Items in Descriptor Lists 4

The AECountItems function counts the number of descriptor records in any descriptor
list, including an Apple event record.

AECountItems 4

You can use the AECountItems function to count the number of descriptor records in
any descriptor list.

FUNCTION AECountItems (theAEDescList: AEDescList;

 VAR theCount: LongInt): OSErr;

theAEDescList
The descriptor list to be counted.

theCount The AECountItems function returns the number of descriptor records in
the specified descriptor list in this parameter.

RESULT CODES

SEE ALSO

For an example of the use of AECountItems, see “Getting Data Out of a Descriptor
List,” which begins on page 4-31.

Getting Items From Descriptor Lists 4

The Apple Event Manager provides three functions that allow you to get items from any
descriptor list, including an Apple event record. The AEGetNthPtr and AEGetNthDesc
functions give you access to the data in a descriptor list. The AEGetArray function gets
data from an array contained in a descriptor list.

noErr 0 No error
errAENotAEDesc –1704 Not a valid descriptor record
4-74 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetNthPtr 4

You can use the AEGetNthPtr function to get a pointer to a buffer that contains a copy
of a descriptor record from any descriptor list.

FUNCTION AEGetNthPtr (theAEDescList: AEDescList; index: LongInt;

 desiredType: DescType;

 VAR theAEKeyword: AEKeyword;

 VAR typeCode: DescType; dataPtr: Ptr;

 maximumSize: Size;

 VAR actualSize: Size): OSErr;

theAEDescList
The descriptor list containing the desired descriptor record.

index The position of the desired descriptor record in the list (for example, 2
specifies the second descriptor record).

desiredType
The desired descriptor type for the copy of the descriptor record to be
returned; if the desired descriptor record is not of this type, the Apple
Event Manager attempts to coerce it to this type. If the value of
desiredType is typeWildCard, no coercion is performed, and
the descriptor type of the copied descriptor record is the same as the
descriptor type of the original descriptor record.

theAEKeyword
The keyword of the specified descriptor record, if you are getting data
from a list of keyword-specified descriptor records; otherwise,
AEGetNthPtr returns the value typeWildCard.

typeCode The descriptor type of the returned descriptor record.

dataPtr A pointer to the buffer in which the returned descriptor record is stored.

maximumSize
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dataPtr parameter.

actualSize
The length, in bytes, of the data for the specified descriptor record. If this
value is larger than the value of the maximumSize parameter, not all of
the data for the descriptor record was returned.

DESCRIPTION

The AEGetNthPtr function uses a buffer to return a specified descriptor record from a
specified descriptor list; the function attempts to coerce the descriptor record to the
descriptor type specified by the desiredType parameter.
Reference to Responding to Apple Events 4-75

C H A P T E R 4

Responding to Apple Events
RESULT CODES

SEE ALSO

For an example of the use of AEGetNthPtr, see Listing 4-10 on page 4-33.

AEGetNthDesc 4

You can use the AEGetNthDesc function to get a copy of a descriptor record from any
descriptor list.

FUNCTION AEGetNthDesc (theAEDescList: AEDescList; index: LongInt;

 desiredType: DescType;

 VAR theAEKeyword: AEKeyword;

 VAR result: AEDesc): OSErr;

theAEDescList
The descriptor list containing the desired descriptor record.

index The position of the desired descriptor record in the list (for example, 2
specifies the second descriptor record).

desiredType
The desired descriptor type for the copy of the descriptor record to be
returned; if the desired descriptor record is not of this type, the Apple
Event Manager attempts to coerce it to this type. If the value of
desiredType is typeWildCard, no coercion is performed, and the
descriptor type of the copied descriptor record is the same as
the descriptor type of the original descriptor record.

theAEKeyword
The keyword of the specified descriptor record, if you are getting data
from a list of keyword-specified descriptor records; otherwise,
AEGetNthDesc returns the value typeWildCard.

result A copy of the desired descriptor record coerced to the descriptor type
specified by the desiredType parameter.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-76 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
DESCRIPTION

The AEGetNthDesc function returns a specified descriptor record from a specified
descriptor list.Your application should call the AEDisposeDesc function to dispose of
the resulting descriptor record after your application has finished using it.

If AEGetNthDesc returns a nonzero result code, it returns a descriptor record of
descriptor type typeNull. A descriptor record of this type does not contain any data.

RESULT CODES

AEGetArray 4

You can use the AEGetArray function to convert an Apple event array (an array created
with the AEPutArray function and stored in a descriptor list) to the corresponding
Pascal or C array and place the converted array in a buffer for which you have provided
a pointer.

FUNCTION AEGetArray (theAEDescList: AEDescList;

arrayType: AEArrayType;

arrayPtr: AEArrayDataPointer;

maximumSize: Size;

VAR itemType: DescType; VAR itemSize: Size;

VAR itemCount: LongInt): OSErr;

theAEDescList
A descriptor list containing the desired array. If the array is of type
kAEDataArray, kAEPackedArray, or kAEHandleArray, the descriptor
list must be factored.

arrayType The Apple event array type to be converted. This is specified by one of the
following constants: kAEDataArray, kAEPackedArray,
kAEHandleArray, kAEDescArray, or kAEKeyDescArray.

arrayPtr A pointer to the buffer for storing the array.

maximumSize
The maximum length, in bytes, of the buffer for storing the array.

itemType For arrays of type kAEDataArray, kAEPackedArray, or
kAEHandleArray, the AEGetArray function returns the descriptor type
of the returned array items in this parameter.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-77

C H A P T E R 4

Responding to Apple Events
itemSize For arrays of type kAEDataArray or kAEPackedArray, the
AEGetArray function returns the size (in bytes) of the returned array
items in this parameter.

itemCount The AEGetArray function returns the number of items in the resulting
array in this parameter.

DESCRIPTION

The AEGetArray function uses a buffer identified by the pointer in the arrayPtr
parameter to return the converted data for the Apple event array specified by the
theAEDescList parameter. Even if the descriptor list that contains the array is
factored, the converted data for each array item includes the data common to all the
descriptor records in the list. The Apple Event Manager automatically reconstructs
the common data for each item when you call AEGetArray.

RESULT CODES

SEE ALSO

For more information about data types and constants used with AEGetArray, see
“Apple Event Array Data Types” on page 4-60.

For information about creating and factoring descriptor lists for Apple event arrays, see
the description of AECreateList on page 5-29. For information about adding an Apple
event array to a descriptor list, see the description of AEPutArray on page 5-32.

Getting Data and Keyword-Specified Descriptor Records Out of AE Records 4

The Apple Event Manager provides two functions, AEGetKeyPtr and AEGetKeyDesc,
that allow you to get data and descriptor records out of an AE record or an Apple event
record.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-78 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetKeyPtr 4

You can use the AEGetKeyPtr function to get a pointer to a buffer that contains the data
from a keyword-specified descriptor record. You can use this function to get data from
an AE record or an Apple event record.

FUNCTION AEGetKeyPtr (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR typeCode: DescType;

 dataPtr: Ptr; maximumSize: Size;

 VAR actualSize: Size): OSErr;

theAERecord
The AE record containing the desired data.

theAEKeyword
The keyword that specifies the desired descriptor record.

desiredType
The desired descriptor type for the data to be returned; if the requested
data is not of this type, the Apple Event Manager attempts to coerce it to
this type. If the value of desiredType is typeWildCard, no coercion is
performed, and the descriptor type of returned data is the same as the
descriptor type of the original data.

typeCode The descriptor type of the returned data.

dataPtr A pointer to the buffer for storing the data.

maximumSize
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dataPtr parameter.

actualSize
The length, in bytes, of the data for the keyword-specified descriptor
record. If this value is larger than the value of the maximumSize
parameter, not all of the data for the parameter was returned.

DESCRIPTION

The AEGetKeyPtr function uses a buffer to return the data from a keyword-specified
Apple event parameter, which the function attempts to coerce to the descriptor type
specified by the desiredType parameter.
Reference to Responding to Apple Events 4-79

C H A P T E R 4

Responding to Apple Events
RESULT CODES

AEGetKeyDesc 4

You can use the AEGetKeyDesc function to get the descriptor record for a
keyword-specified descriptor record. You can use this function to get a descriptor record
out of an AE record or an Apple event record.

FUNCTION AEGetKeyDesc (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR result: AEDesc): OSErr;

theAERecord
The AE record containing the desired descriptor record.

theAEKeyword
The keyword that specifies the desired descriptor record.

desiredType
The desired descriptor type for the descriptor record to be returned; if the
requested descriptor record is not of this type, the Apple Event Manager
attempts to coerce it to this type. If the value of desiredType is
typeWildCard, no coercion is performed, and the descriptor type of
the returned descriptor record is the same as the descriptor type of the
original descriptor record.

result A copy of the keyword-specified descriptor record, coerced to the
descriptor type specified in the desiredType parameter.

DESCRIPTION

The AEGetKeyDesc function returns a copy of the descriptor record for a
keyword-specified descriptor record. Your application should call the AEDisposeDesc
function to dispose of the resulting descriptor record after your application has finished
using it.

If AEGetKeyDesc returns a nonzero result code, it returns a descriptor record of
descriptor type typeNull. A descriptor record of this type does not contain any data.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-80 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
RESULT CODES

Requesting User Interaction 4

The Apple Event Manager provides three functions that allow you to set or request user
interaction levels and to initiate user interaction when your application is the server
application. The AESetInteractionAllowed and AEGetInteractionAllowed
functions specify and return, respectively, the current user interaction preferences. Your
application should call the AEInteractWithUser function before actually interacting
with the user in response to an Apple event.

AESetInteractionAllowed 4

You can use the AESetInteractionAllowed function to specify your application’s
user interaction preferences for responding to an Apple event.

FUNCTION AESetInteractionAllowed

(level: AEInteractAllowed): OSErr;

level The user interaction level to be set.

DESCRIPTION

The AESetInteractionAllowed function sets the user interaction level for a server
application’s response to an Apple event. The level parameter must be one of three
flags: kAEInteractWithSelf, kAEInteractWithLocal, or kAEInteractWithAll.

Specifying the kAEInteractWithSelf flag allows the server application to interact
with the user in response to an Apple event only when the client application and server
application are the same—that is, only when the application is sending the Apple event
to itself.

Specifying the kAEInteractWithLocal flag allows the server application to
interact with the user in response to an Apple event only if the client application
is on the same computer as the server application; this is the default if the
AESetInteractionAllowed function is not used.

Specifying the kAEInteractWithAll flag allows the server application to interact with
the user in response to an Apple event sent from any client application on any computer.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-81

C H A P T E R 4

Responding to Apple Events
RESULT CODE

SEE ALSO

For more information about setting user preferences for a server application, see “Setting
the Server Application’s User Interaction Preferences” on page 4-48.

AEGetInteractionAllowed 4

You can use the AEGetInteractionAllowed function to get the current user
interaction preferences for responding to an Apple event.

FUNCTION AEGetInteractionAllowed

(VAR level: AEInteractAllowed): OSErr;

level The current user interaction level, using the data type
AEInteractAllowed.

TYPE AEInteractAllowed = (kAEInteractWithSelf,
 kAEInteractWithLocal,
 kAEInteractWithAll);

DESCRIPTION

The AEGetInteractionAllowed function returns, in the level parameter, a value
that indicates the user interaction preferences for responding to an Apple event. The
value, set by a previous call to AESetInteractionAllowed, is one of the following
flags: kAEInteractWithSelf, kAEInteractWithLocal, or kAEInteractWithAll.
The default value of kAEInteractWithLocal is returned if your application has not
used AESetInteractionAllowed to set the interaction level explicitly.

The kAEInteractWithSelf flag indicates that the server application may interact with
the user in response to an Apple event only when the client application and server
application are the same—that is, only when the application is sending the Apple event
to itself.

The kAEInteractWithLocal flag indicates that the server application may interact
with the user in response to an Apple event only if the client application is on the same
computer as the server application. This is the default if your application has not used
the AESetInteractionAllowed function to set the interaction level explicitly.

The kAEInteractWithAll flag indicates that the server application may interact with
the user in response to an Apple event sent from any client application on any computer.

RESULT CODE

noErr 0 No error

noErr 0 No error
4-82 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEInteractWithUser 4

You can use the AEInteractWithUser function to initiate interaction with the user
when your application is a server application responding to an Apple event.

FUNCTION AEInteractWithUser (timeOutInTicks: LongInt;

 nmReqPtr: NMRecPtr;

 idleProc: IdleProcPtr): OSErr;

timeOutInTicks
The amount of time (in ticks) that your handler is willing to wait for a
response from the user. You can specify a number of ticks or use one of
the following constants:

CONST kAEDefaultTimeout = -1; {value determined }
 { by AEM}
 kNoTimeOut = -2; {wait until reply }
 { comes back}

nmReqPtr A pointer to a Notification Manager record provided by your application.
You can specify NIL for this parameter to get the default notification
handling provided by the Apple Event Manager.

idleProc A pointer to your application’s idle function, which handles events while
waiting for the Apple Event Manager to return control.

DESCRIPTION

Your application should call the AEInteractWithUser function before displaying a
dialog box or alert box or otherwise interacting with the user in response to an Apple
event. If the user interaction preference settings permit the application to come to the
foreground, this function brings your application to the front, either directly or by
posting a notification request.

Your application should normally pass a notification record in the nmReqPtr parameter
rather than specifying NIL for default notification handling. If you specify NIL, the
Apple Event Manager looks for an application icon with the ID specified by the
application’s bundle ('BNDL') resource and the application’s file reference ('FREF')
resource. The Apple Event Manager first looks for an 'SICN' resource with the
specified ID; if it can’t find an 'SICN' resource, it looks for the 'ICN#' resource and
compresses the icon to fit in the menu bar. The Apple Event Manager won’t look for any
members of an icon family other than the icon specified in the 'ICN#' resource.

If the application doesn’t have 'SICN' or 'ICN#' resources, or if it doesn’t have a file
reference resource, the Apple Event Manager passes NIL to the Notification Manager,
and no icon appears in the upper-right corner of the screen. Therefore, if you want to
display any icon other than those of type 'SICN' or 'ICN#', you must specify a
notification record as the second parameter to the AEInteractWithUser function.
Reference to Responding to Apple Events 4-83

C H A P T E R 4

Responding to Apple Events
Note
If you want the Notification Manager to use a color icon when it posts a
notification request, you should provide a Notification Manager record
that specifies a 'cicn' resource. ◆

The AEInteractWithUser function checks whether the client application set the
kAENeverInteract flag for the Apple event and, if so, returns an error. If not, then
the AEInteractWithUser function checks the server application’s preference set
by the AESetInteractionAllowed function and compares it against the source of the
Apple event—that is, whether it came from the same application, another process on the
same computer, or a process running on another computer. The AEInteractWithUser
function returns the errAENoUserInteraction result code if the user interaction
preferences don’t allow user interaction. If user interaction is allowed, the Apple Event
Manager brings your application to the front, either directly or by posting a notification
request. If AEInteractWithUser returns the noErr result code, then your application
is in the foreground and is free to interact with the user.

RESULT CODES

SEE ALSO

For information about idle functions, see “Writing an Idle Function” on page 5-22.

For examples of the use of the AEInteractWithUser function, see “Interacting With
the User,” which begins on page 4-45.

Requesting More Time to Respond to Apple Events 4

The AEResetTimer function resets the timeout value for an Apple event to its starting
value. A server application can call this function when it knows it cannot fulfill a client
application’s request (either by returning a result or by sending back a reply Apple
event) before the client application is due to time out.

AEResetTimer 4

You can use the AEResetTimer function to reset the timeout value for an Apple event
to its starting value.

FUNCTION AEResetTimer (reply: AppleEvent): OSErr;

noErr 0 No error
errAETimeout –1712 Apple event timed out
errAENoUserInteraction –1713 No user interaction allowed
4-84 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
reply The default reply for an Apple event, provided by the Apple Event
Manager.

DESCRIPTION

When your application calls AEResetTimer, the Apple Event Manager for the server
application uses the default reply to send a Reset Timer event to the client application;
the Apple Event Manager for the client application’s computer intercepts this Apple
event and resets the client application’s timer for the Apple event. (The Reset Timer
event is never dispatched to a handler, so the client application does not need a handler
for it.)

RESULT CODE

Suspending and Resuming Apple Event Handling 4

When your application calls AEProcessAppleEvent and one of your event handlers is
invoked, the Apple Event Manager normally assumes that your application has finished
handling the event when the event handler returns. At this point, the Apple Event
Manager disposes of the event. However, some applications, such as multi-session
servers or any applications that implement their own internal event queueing, may need
to defer handling of the event.

The AESuspendTheCurrentEvent, AEResumeTheCurrentEvent,
AESetTheCurrentEvent, and AEGetTheCurrentEvent functions described in this
section allow you to suspend and resume Apple event handling, specify the Apple event
to be handled, and identify an Apple event that is currently being handled.

AESuspendTheCurrentEvent 4

You can use the AESuspendTheCurrentEvent function to suspend the processing of
the Apple event that is currently being handled.

FUNCTION AESuspendTheCurrentEvent

(theAppleEvent: AppleEvent): OSErr;

theAppleEvent
The Apple event whose handling is to be suspended. Although the Apple
Event Manager doesn’t need this parameter to identify the Apple event
currently being handled, providing it is a safeguard that you are
suspending the correct Apple event.

noErr 0 No error
errAEReplyNotValid –1709 AEResetTimer was passed an invalid reply
Reference to Responding to Apple Events 4-85

C H A P T E R 4

Responding to Apple Events
DESCRIPTION

After a server application makes a successful call to the AESuspendTheCurrentEvent
function, it is no longer required to return a result or a reply for the Apple event
that was being handled. It can, however, return a result if it later calls the
AEResumeTheCurrentEvent function to resume event processing.

The Apple Event Manager does not automatically dispose of Apple events that have
been suspended or their default replies. (The Apple Event Manager does, however,
automatically dispose of a previously suspended Apple event and its default reply
if the server later resumes processing of the Apple event by calling the
AEResumeTheCurrentEvent function.) If your server application does not resume
processing of a suspended Apple event, it is responsible for using the AEDisposeDesc
function to dispose of both the Apple event and its default reply when your application
has finished using them.

SPECIAL CONSIDERATIONS

If your application suspends handling of an Apple event it sends to itself, the Apple
Event Manager immediately returns from the AESend call with the error code
errAETimeout, regardless of whether the kAEQueueReply, kAEWaitReply, or
kAENoReply flags were set, even if the timeout parameter is set to kNoTimeOut.
The routine calling AESend should take the timeout error as confirmation that the event
was sent.

As with other calls to AESend that return a timeout error, the handler continues to
process the event nevertheless. The handler’s reply, if any, is provided in the reply event
when the handling is completed. The Apple Event Manager provides no notification that
the reply is ready. If no data has yet been placed in the reply event, the Apple Event
Manager returns errAEReplyNotArrived when your application attempts to extract
data from the reply.

RESULT CODE

AEResumeTheCurrentEvent 4

You can use the AEResumeTheCurrentEvent function to inform the Apple Event
Manager that your application wants to resume the handling of a previously suspended
Apple event or that it has completed the handling of the Apple event.

FUNCTION AEResumeTheCurrentEvent

(theAppleEvent, reply: AppleEvent;

 dispatcher: EventHandlerProcPtr;

 handlerRefcon: LongInt): OSErr;

noErr 0 No error
4-86 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
theAppleEvent
The Apple event to be resumed.

reply The default reply provided by the Apple Event Manager for the
Apple event.

dispatcher
One of the following:

■ a pointer to a routine for handling the event

■ the kAEUseStandardDispatch constant, which tells the Apple
Event Manager to dispatch the resumed event using the standard
dispatching scheme it uses for other Apple events

■ the kAENoDispatch constant, which tells the Apple Event Manager
that the Apple event has been completely processed and need not be
dispatched

handlerRefcon
If the value of the dispatcher parameter is not
kAEUseStandardDispatch, this parameter is the reference
constant passed to the handler when the handler is called. If the
value of the dispatcher parameter is kAEUseStandardDispatch,
the Apple Event Manager ignores the handlerRefcon parameter
and instead passes the reference constant stored in the Apple event
dispatch table entry for the Apple event. (You may wish to pass the
same reference constant that is stored in the Apple event dispatch
table. If so, call the AEGetEventHandler function.)

DESCRIPTION

When your application calls the AEResumeTheCurrentEvent function, the Apple
Event Manager resumes handling the specified Apple event using the handler specified
in the dispatcher parameter, if any. If kAENoDispatch is specified in the
dispatcher parameter, AEResumeTheCurrentEvent simply informs the Apple
Event Manager that the specified event has been handled.

SPECIAL CONSIDERATIONS

An Apple event handler that suspends an event should not immediately call
AEResumeTheCurrentEvent, or else the handler will generate an error. Instead, the
handler should return just after suspending the event.

When your application calls AEResumeTheCurrentEvent for an event that was not
directly dispatched, the Apple Event Manager disposes of the event and the reply,
just as it normally does, after the event handler returns to AEProcessAppleEvent.
Make sure all processing involving the event or the reply has been completed
before your application calls AEResumeTheCurrentEvent. Do not call
AEResumeTheCurrentEvent for an event that was not suspended.
Reference to Responding to Apple Events 4-87

C H A P T E R 4

Responding to Apple Events
When your application calls AEResumeTheCurrentEvent for an event that was
directly dispatched, your application is responsible for disposing of the original event
and the reply, since it is acts as both the server and the client.

RESULT CODE

AESetTheCurrentEvent 4

You can use the AESetTheCurrentEvent function to specify the Apple event to be
handled.

FUNCTION AESetTheCurrentEvent (theAppleEvent: AppleEvent): OSErr;

theAppleEvent
The Apple event to be handled.

DESCRIPTION

There is usually no reason for your application to use the AESetTheCurrentEvent
function. Instead of calling this function, your application should let the Apple Event
Manager set the current Apple event through the dispatch tables.

If you need to avoid the dispatch tables, you must use the AESetTheCurrentEvent
function only in the following way:

1. Your application suspends handling of an Apple event by calling the
AESuspendTheCurrentEvent function.

2. Your application calls the AESetTheCurrentEvent function. This informs the Apple
Event Manager that your application is handling the suspended Apple event. In this
way, any routines that call the AEGetTheCurrentEvent function can ascertain
which event is currently being handled.

3. When your application finishes handling the Apple event, it calls the
AEResumeTheCurrentEvent function with the value kAENoDispatch to tell the
Apple Event Manager that the event has been processed and need not be dispatched.

RESULT CODE

noErr 0 No error

noErr 0 No error
4-88 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetTheCurrentEvent 4

You can use the AEGetTheCurrentEvent function to get the Apple event that is
currently being handled.

FUNCTION AEGetTheCurrentEvent

(VAR theAppleEvent: AppleEvent): OSErr;

theAppleEvent
The Apple event that is currently being handled; if no Apple event is
currently being handled, AEGetTheCurrentEvent returns a null
descriptor record in this parameter.

DESCRIPTION

In many applications, the handling of an Apple event involves one or more long chains
of calls to internal routines. The AEGetTheCurrentEvent function makes it
unnecessary for these calls to include the current Apple event as a parameter; the
routines can simply call AEGetTheCurrentEvent to get the current Apple event when
it is needed.

You can also use the AEGetTheCurrentEvent function to make sure that no
Apple event is currently being handled. For example, suppose your application
always uses an application-defined routine to delete a file. That routine can first call
AEGetTheCurrentEvent and delete the file only if AEGetTheCurrentEvent returns
a null descriptor record (that is, only if no Apple event is currently being handled).

RESULT CODE

Getting the Sizes and Descriptor Types of Descriptor Records 4

The Apple Event Manager provides four routines that allow you to get the sizes and
descriptor types of descriptor records that are not part of an Apple event record. The
AESizeOfNthItem function returns the size and descriptor type of a descriptor record
in a descriptor list.The AESizeOfKeyDesc function returns the size and descriptor type
of a keyword-specified descriptor record in an AE record. You can get the size and
descriptor type of an Apple event parameter or Apple event attribute using the
AESizeOfParam and AESizeOfAttribute functions.

noErr 0 No error
Reference to Responding to Apple Events 4-89

C H A P T E R 4

Responding to Apple Events
AESizeOfNthItem 4

You can use the AESizeOfNthItem function to get the size and descriptor type of a
descriptor record in a descriptor list.

FUNCTION AESizeOfNthItem (theAEDescList: AEDescList;

 index: LongInt; VAR typeCode: DescType;

 VAR dataSize: Size): OSErr;

theAEDescList
The descriptor list containing the descriptor record.

index The position of the descriptor record in the list (for example, 2 specifies
the second descriptor record).

typeCode The descriptor type of the descriptor record.

dataSize The length (in bytes) of the data in the descriptor record.

RESULT CODES

AESizeOfKeyDesc 4

You can use the AESizeOfKeyDesc function to get the size and descriptor type of a
keyword-specified descriptor record in an AE record.

FUNCTION AESizeOfKeyDesc (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 VAR typeCode: DescType;

 VAR dataSize: Size): OSErr;

theAERecord
The AE record containing the desired keyword-specified descriptor
record.

theAEKeyword
The keyword that specifies the desired descriptor record.

typeCode The descriptor type of the keyword-specified descriptor record.

dataSize The length, in bytes of the data in the keyword-specified descriptor record.

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAEReplyNotArrived –1718 Reply has not yet arrived
4-90 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
RESULT CODES

AESizeOfParam 4

You can use the AESizeOfParam function to get the size and descriptor type of an
Apple event parameter.

FUNCTION AESizeOfParam (theAppleEvent: AppleEvent; theAEKeyword:

AEKeyword; VAR typeCode: DescType;

VAR dataSize: Size): OSErr;

theAppleEvent
The Apple event containing the parameter.

theAEKeyword
The keyword that specifies the desired parameter.

typeCode The descriptor type of the Apple event parameter.

dataSize The length, in bytes, of the data in the Apple event parameter.

RESULT CODES

AESizeOfAttribute 4

You can use the AESizeOfAttribute function to get the size and descriptor type of an
Apple event attribute.

FUNCTION AESizeOfAttribute (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 VAR typeCode: DescType;

 VAR dataSize: Size): OSErr;

theAppleEvent
The Apple event containing the desired attribute.

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-91

C H A P T E R 4

Responding to Apple Events
theAEKeyword
The keyword that specifies the attribute.

typeCode The descriptor type of the attribute.

dataSize The length, in bytes, of the data in the attribute.

RESULT CODES

Deleting Descriptor Records 4

The Apple Event Manager provides three functions that allow you to delete descriptor
records. The AEDeleteItem, AEDeleteKeyDesc, and AEDeleteParam functions
allow you to delete descriptor records from a descriptor list, an AE record, and an
Apple event parameter, respectively.

AEDeleteItem 4

You can use the AEDeleteItem function to delete a descriptor record from a descriptor
list. All subsequent descriptor records will then move up one place.

FUNCTION AEDeleteItem (theAEDescList: AEDescList;

 index: LongInt): OSErr;

theAEDescList
The descriptor list containing the descriptor record to be deleted.

index The position of the descriptor record to delete (for example, 2 specifies the
second item).

RESULT CODES

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
4-92 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEDeleteKeyDesc 4

You can use the AEDeleteKeyDesc function to delete a keyword-specified descriptor
record from an AE record.

FUNCTION AEDeleteKeyDesc (theAERecord: AERecord;

 theAEKeyword: AEKeyword): OSErr;

theAERecord
The AE record containing the keyword-specified descriptor record to be
deleted.

theAEKeyword
The keyword that specifies the descriptor record to be deleted.

RESULT CODES

AEDeleteParam 4

You can use the AEDeleteParam function to delete an Apple event parameter.

FUNCTION AEDeleteParam (theAppleEvent: AppleEvent;

theAEKeyword: AEKeyword): OSErr;

theAppleEvent
The Apple event containing the parameter to be deleted.

theAEKeyword
The keyword that specifies the parameter to be deleted.

RESULT CODES

Deallocating Memory for Descriptor Records 4

The AEDisposeDesc function deallocates the memory used by a descriptor record.
Because all Apple event structures (except for keyword-specified descriptor records) are
descriptor records, you can use AEDisposeDesc for any of them.

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Reference to Responding to Apple Events 4-93

C H A P T E R 4

Responding to Apple Events
AEDisposeDesc 4

You can use the AEDisposeDesc function to deallocate the memory used by a
descriptor record.

FUNCTION AEDisposeDesc (VAR theAEDesc: AEDesc): OSErr;

theAEDesc The descriptor record to deallocate. The function returns a null descriptor
record in this parameter. If you pass a null descriptor record in this
parameter, AEDisposeDesc returns noErr.

RESULT CODE

SEE ALSO

For more information about using AEDisposeDesc, see “Disposing of Apple Event
Data Structures,” which begins on page 4-39.

Coercing Descriptor Types 4

The Apple Event Manager provides two functions that allow you to coerce descriptor
types. The AECoercePtr function takes a pointer to data and a desired descriptor type
and attempts to coerce the data to a descriptor record of the desired descriptor type. The
AECoerceDesc function attempts to coerce the data in an existing descriptor record to
another descriptor type.

AECoercePtr 4

You can use the AECoercePtr function to coerce data to a desired descriptor type. If
successful, it creates a descriptor record containing the newly coerced data.

FUNCTION AECoercePtr (typeCode: DescType; dataPtr: Ptr;

 dataSize: Size; toType: DescType;

 VAR result: AEDesc): OSErr;

typeCode The descriptor type of the source data.

dataPtr A pointer to the data to be coerced.

dataSize The length, in bytes, of the data to be coerced.

toType The desired descriptor type of the resulting descriptor record.

result The resulting descriptor record.

noErr 0 No error
4-94 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
DESCRIPTION

The AECoercePtr function creates a new descriptor record by coercing the specified
data to a descriptor record of the specified descriptor type. You should use the
AEDisposeDesc function to dispose of the resulting descriptor record once you are
finished using it.

If AECoercePtr returns a nonzero result code, it returns a null descriptor record unless
the Apple Event Manager is not available because of limited memory.

RESULT CODES

SEE ALSO

For a description of the AEDisposeDesc function, see page 4-94.

AECoerceDesc 4

You can use the AECoerceDesc function to coerce the data in a descriptor record to
another descriptor type.

FUNCTION AECoerceDesc (theAEDesc: AEDesc; toType: DescType;

 VAR result: AEDesc): OSErr;

theAEDesc The descriptor record whose data is to be coerced.

toType The desired descriptor type of the resulting descriptor record.

result The resulting descriptor record.

DESCRIPTION

The AECoerceDesc function attempts to create a new descriptor record by coercing
the specified descriptor record. Your application is responsible for using the
AEDisposeDesc function to dispose of the resulting descriptor record once you are
finished using it.

If AECoerceDesc returns a nonzero result code, it returns a null descriptor record
(a descriptor record of type typeNull, which does not contain any data) unless the
Apple Event Manager is not available because of limited memory.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
Reference to Responding to Apple Events 4-95

C H A P T E R 4

Responding to Apple Events
RESULT CODES

SEE ALSO

For a list of the descriptor types for which the Apple Event Manager provides coercions,
see Table 4-1, which begins on page 4-43.

Creating and Managing the Coercion Handler Dispatch Tables 4

The Apple Event Manager provides three functions that allow you to create and manage
the coercion handler dispatch tables. The AEInstallCoercionHandler function
installs a coercion handler routine in either the application or system coercion dispatch
table. The AEGetCoercionHandler function returns the handler for a specified
descriptor type coercion. The AERemoveCoercionHandler function removes a
coercion handler from either the application or system coercion table.

AEInstallCoercionHandler 4

You can use the AEInstallCoercionHandler function to install a coercion handler
routine in either the application or system coercion handler dispatch table.

FUNCTION AEInstallCoercionHandler (fromType: DescType;

 toType: DescType;

 handler: ProcPtr;

 handlerRefcon: LongInt;

 fromTypeIsDesc: Boolean;

 isSysHandler: Boolean): OSErr;

fromType The descriptor type of the data coerced by the handler.

toType The descriptor type of the resulting data. If there was already an entry in
the specified coercion handler table for the same source descriptor type
and result descriptor type, the existing entry is replaced.

handler A pointer to the coercion handler. Note that a handler in the system
coercion table must reside in the system heap; thus, if the value of the
isSysHandler parameter is TRUE, the handler parameter should point
to a location in the system heap. Otherwise, if you put your system
handler code in your application heap, you should use
AERemoveCoercionHandler to remove the handler when your
application quits.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to requested descriptor

type
4-96 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
handlerRefcon
A reference constant passed by the Apple Event Manager to the handler
each time the handler is called. If your handler doesn’t expect a reference
constant, use 0 as the value of this parameter.

fromTypeIsDesc
Specifies the form of the data to be coerced. If the value of this parameter
is TRUE, the coercion handler expects the data to be passed as a descriptor
record. If the value is FALSE, the coercion handler expects a pointer to the
data. Because it is more efficient for the Apple Event Manager to provide
a pointer to data than to a descriptor record, all coercion routines should
accept a pointer to data if possible.

isSysHandler
Specifies the coercion table to which the handler is added. If the value of
this parameter is TRUE, the handler is added to the system coercion table
and made available to all applications. If the value is FALSE, the handler
is added to the application coercion table. Note that a handler in the
system coercion table must reside in the system heap; thus, if the value of
the isSysHandler parameter is TRUE, the handler parameter must point
to a location in the system heap.

DESCRIPTION

Before using AEInstallCoercionHandler to install a handler for a particular
descriptor type into the system coercion handler dispatch table, use the
AEGetCoercionHandler function to determine whether the table already contains a
coercion handler for that descriptor type. If an entry exists, AEGetCoercionHandler
returns a reference constant and a pointer to that handler. Chain these to your
coercion handler by providing, in the handlerRefcon parameter of
AEInstallCoercionHandler, pointers to the previous handler and its reference
constant. If your coercion handler returns the error errAECoercionFail, use these
pointers to call the previous handler. If you remove your system coercion handler,
be sure to reinstall the chained handlers.

SPECIAL CONSIDERATIONS

Before an application calls a system coercion handler, system software has set up the
A5 register for the calling application. For this reason, if you provide a system coercion
handler, it should never use A5 global variables or anything that depends on a particular
context; otherwise, the application that calls the system handler may crash.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
Reference to Responding to Apple Events 4-97

C H A P T E R 4

Responding to Apple Events
AEGetCoercionHandler 4

You can use the AEGetCoercionHandler function to get the handler for a specified
descriptor type coercion.

FUNCTION AEGetCoercionHandler (fromType: DescType;

 toType: DescType;

 VAR handler: ProcPtr;

 VAR handlerRefcon: LongInt;

 VAR fromTypeIsDesc: Boolean;

 isSysHandler: Boolean): OSErr;

fromType The descriptor type of the data coerced by the handler.

toType The descriptor type of the resulting data.

handler A pointer to the desired coercion handler.

handlerRefcon
The reference constant for the desired handler. The Apple Event Manager
passes this reference constant to the handler each time the handler
is called.

fromTypeIsDesc
If the AEGetCoercionHandler function returns TRUE in this parameter,
the coercion handler expects the data to be passed as a descriptor record.
If the function returns FALSE, the coercion handler expects a pointer to
the data.

isSysHandler
Specifies the coercion table from which to get the handler. If the value of
this parameter is TRUE, the handler is taken from the system coercion
table. If the value is FALSE, the handler is taken from the application
coercion table.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEHandlerNotFound –1717 No coercion handler found
4-98 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AERemoveCoercionHandler 4

You can use the AERemoveCoercionHandler function to remove a coercion handler
from either the application or system coercion handler dispatch table.

FUNCTION AERemoveCoercionHandler (fromType: DescType;

 toType: DescType;

 handler: ProcPtr;

 isSysHandler: Boolean): OSErr;

fromType The descriptor type of the data coerced by the handler.

toType The descriptor type of the resulting data.

handler A pointer to the coercion handler. Although the fromType and toType
parameters would be sufficient to identify the handler to be removed,
providing the handler parameter is a safeguard to ensure that you
remove the correct handler.

isSysHandler
The coercion table from which to remove the handler. If the value of this
parameter is TRUE, the handler is removed from the system coercion
table. If the value is FALSE, the handler is removed from the application
coercion dispatch table.

RESULT CODES

Creating and Managing the Special Handler Dispatch Tables 4

The Apple Event Manager provides three functions that allow you to create and manage
the special handler dispatch tables. The AEInstallSpecialHandler function installs
an entry for a special handler in either the application or system special handler dispatch
table. The AEGetSpecialHandler function returns the handler for a specified special
handler. The AERemoveSpecialHandler function removes a special handler from
either the application or system special handler dispatch table.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEHandlerNotFound –1717 No coercion handler found
Reference to Responding to Apple Events 4-99

C H A P T E R 4

Responding to Apple Events
You can also use the AEInstallSpecialHandler, AEGetSpecialHandler, and
AERemoveSpecialHandler functions to install, get, and remove object callback
functions—including system object callback functions, which cannot be installed with
the AESetObjectCallbacks function. When calling any of these three functions, use
one of the following constants as the value of the functionClass parameter to specify
the object callback function:

You can also use the AERemoveSpecialHandler function to disable all the Apple
Event Manager routines that support object specifier records. To do this, specify the
constant keySelectProc in the functionClass parameter as described on
page 4-102.

AEInstallSpecialHandler 4

You can use the AEInstallSpecialHandler function to install a special handler in
either the application or system special handler dispatch table.

FUNCTION AEInstallSpecialHandler (functionClass: AEKeyword;

 handler: ProcPtr;

 isSysHandler: Boolean): OSErr;

functionClass
The keyword for the special handler that is installed. The
keyPreDispatch constant identifies a handler with the same
parameters as an Apple event handler called immediately before the
Apple Event Manager dispatches an Apple event. Any of the constants for
object callback functions listed above can also be specified in this
parameter. If there was already an entry in the specified special handler
dispatch table for the same value of functionClass, it is replaced.

handler A pointer to the special handler. Note that a handler in the system special
handler dispatch table must reside in the system heap; thus, if the value
of the isSysHandler parameter is TRUE, the handler parameter
should point to a location in the system heap. Otherwise, if you put
your system handler code in your application heap, use
AERemoveSpecialHandler to remove the handler when your
application quits.

Object callback function Constant

Object-counting function keyAECountProc

Object-comparison function keyAECompareProc

Token disposal function keyDiposeTokenProc

Error callback function keyAEGetErrDescProc

Mark token function keyAEMarkTokenProc

Object-marking function keyAEMarkProc

Mark-adjusting function keyAEAdjustMarksProc
4-100 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
isSysHandler
The special handler dispatch table to which to add the handler. If the
value of this parameter is TRUE, the handler is added to the system
handler dispatch table and made available to all applications. If the value
is FALSE, the handler is added to the application handler table.

DESCRIPTION

The AEInstallSpecialHandler function creates an entry in either your application’s
special handler dispatch table or the system special handler dispatch table. You must
supply parameters that specify the keyword for the special handler that is installed, the
handler routine, and whether the handler is to be added to the system special handler
dispatch table or your application’s special handler dispatch table.

SPECIAL CONSIDERATIONS

Before an application calls a system special handler, system software has set up the
A5 register for the calling application. For this reason, a system special handler should
never use A5 global variables or anything that depends on a particular context;
otherwise, the application that calls the system handler may crash.

RESULT CODES

AEGetSpecialHandler 4

You can use the AEGetSpecialHandler function to get a specified special handler.

FUNCTION AEGetSpecialHandler (functionClass: AEKeyword;

VAR handler: ProcPtr;

isSysHandler: Boolean): OSErr;

functionClass
The keyword for the special handler that is installed. The
keyPreDispatch constant identifies a handler with the same
parameters as an Apple event handler that is called immediately before
the Apple Event Manager dispatches an Apple event. Any of the
constants for object callback functions listed on page 4-100 can also be
specified in this parameter.

handler A pointer to the special handler.

noErr 0 No error
paramErr –50 Parameter error (handler pointer is NIL

or odd)
memFullErr –108 Not enough room in heap zone
errAENotASpecialFunction –1714 Wrong keyword for a special function
Reference to Responding to Apple Events 4-101

C H A P T E R 4

Responding to Apple Events
isSysHandler
Specifies the special handler dispatch table from which to get the handler.
If the value of this parameter is TRUE, the handler is taken from the
system special handler dispatch table. If the value is FALSE, the handler is
taken from the application’s special handler dispatch table.

RESULT CODES

AERemoveSpecialHandler 4

You can use the AERemoveSpecialHandler function to remove a handler from a
special handler table.

FUNCTION AERemoveSpecialHandler (functionClass: AEKeyword;

handler: ProcPtr;

isSysHandler: Boolean): OSErr;

functionClass
The keyword for the special handler to be removed. In addition to the
constants for object callback functions listed on page 4-100, two other
values are allowed for the functionClass parameter:
keyPreDispatch and keySelectProc. The keyPreDispatch
constant identifies a handler with the same parameters as an Apple event
handler that is called immediately before the Apple Event Manager
dispatches an Apple event. The keySelectProc constant indicates that
you want to disable the Object Support Library—that is, all the routines
described in the chapter “Resolving and Creating Object Specifier
Records” in this book (see the description that follows for more
information).

handler A pointer to the special handler to be removed. Although the
functionClass parameter would be sufficient to identify the handler to
be removed, providing the handler parameter is a safeguard that you
remove the correct handler.

isSysHandler
Specifies the special handler dispatch table from which to remove the
handler. If the value of this parameter is TRUE, the handler is taken from
the system special handler dispatch table. If the value is FALSE, the
handler is removed from the application special handler dispatch table.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAENotASpecialFunction –1714 Wrong keyword for a special handler
4-102 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
DESCRIPTION

In addition to using the AERemoveSpecialHandler function to remove specific special
handlers, you can use the function to disable, within your application only, all Apple
Event Manager routines that support Apple event objects—that is, all the routines
available to your application as a result of linking the Object Support Library (OSL) and
calling the AEObjectInit function.

An application that expects its copy of the OSL to move after it is installed—for
example, an application that keeps it in a stand-alone code resource—would need to do
this. When an application calls AEObjectInit to initialize the OSL, the OSL installs the
addresses of its routines as extensions to the pack. If those routines move, the addresses
become invalid.

To disable the OSL, you should pass the keyword keySelectProc in the
functionClass parameter, NIL in the handler parameter, and FALSE in the
isSysHandler parameter. Once you have called the AERemoveSpecialHandler
function with these parameters, subsequent calls by your application to any of the Apple
Event Manager routines that support Apple event objects will return errors. To initialize
the OSL after disabling it with the AERemoveSpecialHandler function, your
application must call AEObjectInit again.

If you expect to initialize the OSL and disable it several times, you should call
AERemoveObjectAccessor to remove your application’s object accessor functions
from your application’s object accessor dispatch table before you call
AERemoveSpecialHandler.

RESULT CODES

Getting Information About the Apple Event Manager 4

The AEManagerInfo routine allows you to get two kinds of information related
to Apple events on the current computer: the number of processes currently recording
Apple events and the version of the Apple Event Manager. If you decide to make your
application recordable, this information may be useful when your application is
responding to Apple events that it sends to itself.

You can find out whether the Apple Event Manager is available in system software by
using the Gestalt function. See page 4-4 for details.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAENotASpecialFunction –1714 Wrong keyword for a special function
Reference to Responding to Apple Events 4-103

C H A P T E R 4

Responding to Apple Events
AEManagerInfo 4

You can use the AEManagerInfo function to obtain information about the version of the
Apple Event Manager currently available or the number of processes that are currently
recording Apple events. This function is available only in version 1.01 and later versions
of the Apple Event Manager.

FUNCTION AEManagerInfo (keyword: AEKeyword;

VAR result: LongInt): OSErr;

keyword A value that determines what kind of information AEManagerInfo
returns. The value can be represented by one of these constants:

CONST keyAERecorderCount = 'recr';
 keyAEVersion = 'vers';

result If the value of the keyword parameter is keyAERecorderCount, this
parameter is an integer that indicates the number of processes that are
currently recording Apple events. If the value of the keyword parameter
is keyAEVersion, this parameter is an integer that provides information
about the version of the Apple Event Manager available on the current
computer, using the same format as a 'vers' resource.

RESULT CODE

SEE ALSO

For information about using the AEManagerInfo function to check whether Apple
event recording is on or not, see the chapter “Recording Apple Events” in this book.

For information about using Gestalt to determine whether the Apple Event Manager
is available, see “Handling Apple Events” on page 4-4.

For information about the 'vers' resource, see the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials.

Application-Defined Routines 4
For each Apple event your application supports, you must provide an Apple event
handler. The AEProcessAppleEvent function calls one of your Apple event handlers
when it processes an Apple event. An Apple event handler (MyEventHandler)
should perform any action described by the Apple event, add parameters to the reply
Apple event if appropriate, and return a result code.

You can also provide your own coercion handlers to coerce data to descriptor types other
than those for which the Apple Event Manager provides coercion handling. The
MyCoercePtr function accepts a pointer to data and returns a descriptor record, and
the MyCoerceDesc function accepts a descriptor record and returns a descriptor record.

noErr 0 No error
4-104 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
MyEventHandler 4

An Apple event handler has the following syntax:

FUNCTION MyEventHandler (theAppleEvent: AppleEvent;

 reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

theAppleEvent
The Apple event to handle.

reply The default reply Apple event provided by the Apple Event Manager.

handlerRefcon
The reference constant stored in the Apple event dispatch table for the
Apple event.

DESCRIPTION

An Apple event handler should extract any parameters and attributes from the Apple
event, perform the requested action, and add parameters to the reply Apple event if
appropriate.

Your handler should always set its function result to noErr if it successfully
handles the Apple event. If an error occurs, your handler should return either
errAEEventNotHandled or some other nonzero result code. If the error
occurs because your application cannot understand the event, return
errAEEventNotHandled, in case a handler in the system special handler or system
Apple event dispatch tables might be able to handle the event. If the error occurs because
the event is impossible to handle as specified, return the result code returned
by whatever function caused the failure, or whatever other result code is appropriate.

For example, suppose your application receives a Get Data event that requests the name
of the current printer, and your application cannot handle such an event. In this
situation, you should return errAEEventNotHandled in case another handler
available to the Apple Event Manager can handle the event. This strategy allows users to
take advantage of system capabilities from within your application via system handlers.

However, if your application cannot handle a Get Data event that requests the fifth
paragraph in a document because the document contains only four paragraphs, you
should return some other nonzero error, because further attempts to handle the event are
pointless.

If your Apple event handler calls the AEResolve function and AEResolve calls an
object accessor function in the system object accessor dispatch table, your Apple event
handler may not recognize the descriptor type of the token returned by the function. In
this case, your handler should return the result code errAEUnknownObjectType.
When your handler returns this result code, the Apple Event Manager attempts to locate
a system Apple event handler that can recognize the token.
Reference to Responding to Apple Events 4-105

C H A P T E R 4

Responding to Apple Events
SEE ALSO

For more information about Apple event handlers, see “Writing Apple Event Handlers”
on page 4-33.

For a discussion of the dispatching of object accessor functions and the use of the result
code errAEUnknownObjectType, see “Installing Entries in the Object Accessor
Dispatch Tables,” which begins on page 6-21.

MyCoercePtr 4

A coercion handler that accepts a pointer to data has the following syntax:

FUNCTION MyCoercePtr (typeCode: DescType; dataPtr: Ptr;

 dataSize: Size; toType: DescType;

 handlerRefcon: LongInt;

 VAR result: AEDesc): OSErr;

typeCode The descriptor type of the original data.

dataPtr A pointer to the data to coerce.

dataSize The length, in bytes, of the data to coerce.

toType The desired descriptor type for the resulting descriptor record.

handlerRefcon
A reference constant that is stored in the coercion dispatch table entry for
the handler and passed to the handler by the Apple Event Manager
whenever the handler is called.

result The resulting descriptor record.

DESCRIPTION

Your coercion handler should coerce the data to the desired descriptor type and return
the resulting data in the descriptor record specified by the result parameter. Your
handler should return the noErr result code if your handler successfully performs the
coercion, and a nonzero result code otherwise.

SEE ALSO

For more information, see “Writing and Installing Coercion Handlers” on page 4-41.
4-106 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
MyCoerceDesc 4

A coercion handler that accepts a descriptor record has the following syntax:

FUNCTION MyCoerceDesc (theAEDesc: AEDesc; toType: DescType;

 handlerRefcon: LongInt;

 VAR result: AEDesc): OSErr;

theAEDesc The descriptor record that contains the data to be coerced.

toType The desired descriptor type for the resulting descriptor record.

handlerRefcon
A reference constant that is stored in the coercion dispatch table entry for
the handler and passed to the handler by the Apple Event Manager
whenever the handler is called.

result The resulting descriptor record.

DESCRIPTION

Your coercion handler should coerce the data in the descriptor record to the desired
descriptor type and return the resulting data in the descriptor record specified by the
result parameter. Your handler should return an appropriate result code.

SEE ALSO

For more information, see “Writing and Installing Coercion Handlers” on page 4-41.
Reference to Responding to Apple Events 4-107

C H A P T E R 4

Responding to Apple Events
Summary of Responding to Apple Events 4

Pascal Summary 4

Constants 4

CONST

gestaltAppleEventsAttr = 'evnt'; {selector for Apple events}

gestaltAppleEventsPresent = 0; {if this bit is set, then Apple }

{ Event Manager is available}

{Apple event descriptor types}

typeBoolean = 'bool'; {1-byte Boolean value}

typeChar = 'TEXT'; {unterminated string}

typeSMInt = 'shor'; {16-bit integer}

typeInteger = 'long'; {32-bit integer}

typeSMFloat = 'sing'; {SANE single}

typeFloat = 'doub'; {SANE double}

typeLongInteger = 'long'; {32-bit integer}

typeShortInteger = 'shor'; {16-bit integer}

typeLongFloat = 'doub'; {SANE double}

typeShortFloat = 'sing'; {SANE single}

typeExtended = 'exte'; {SANE extended}

typeComp = 'comp'; {SANE comp}

typeMagnitude = 'magn'; {unsigned 32-bit integer}

typeAEList = 'list'; {list of descriptor records}

typeAERecord = 'reco'; {list of keyword-specified }

{ descriptor records}

typeAppleEvent = 'aevt'; {Apple event record}

typeTrue = 'true'; {TRUE Boolean value}

typeFalse = 'fals'; {FALSE Boolean value}

typeAlias = 'alis'; {alias record}

typeEnumerated = 'enum'; {enumerated data}

typeType = 'type'; {four-character code for }

{ event class or event ID}

typeAppParameters = 'appa'; {Process Manager launch parameters}

typeProperty = 'prop'; {Apple event property}

typeFSS = 'fss '; {file system specification}
4-108 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
typeKeyword = 'keyw'; {Apple event keyword}

typeSectionH = 'sect'; {handle to a section record}

typeWildCard = '****'; {matches any type}

typeApplSignature = 'sign'; {application signature}

typeSessionID = 'ssid'; {session reference number}

typeTargetID = 'targ'; {target ID record}

typeProcessSerialNumber = 'psn '; {process serial number}

typeNull = 'null'; {NULL or nonexistent data}

{keywords for Apple event parameters}

keyDirectObject = '----'; {direct parameter}

keyErrorNumber = 'errn'; {error number parameter}

keyErrorString = 'errs'; {error string parameter}

keyProcessSerialNumber = 'psn '; {process serial number param}

{keywords for Apple event attributes}

keyTransactionIDAttr = 'tran'; {transaction ID}

keyReturnIDAttr = 'rtid'; {return ID}

keyEventClassAttr = 'evcl'; {event class}

keyEventIDAttr = 'evid'; {event ID}

keyAddressAttr = 'addr'; {address of target or }

{ client application}

keyOptionalKeywordAttr = 'optk'; {list of optional parameters }

{ for the Apple event}

keyTimeoutAttr = 'timo'; {number of ticks the client }

{ will wait}

keyInteractLevelAttr = 'inte'; {settings to allow Apple Event }

{ Manager to bring server }

{ to foreground}

keyEventSourceAttr = 'esrc'; {nature of source }

{ application}

keyMissedKeywordAttr = 'miss'; {first required parameter }

{ remaining in an Apple event}

keyOriginalAddressAttr = 'from'; {address of original source; }

{ available only in version }

{ 1.01 and later versions of }

{ the Apple Event Manager}

{keywords for special handlers}

keyPreDispatch = 'phac'; {identifies a handler routine }

{ called immediately before the }

{ Apple Event Manager dispatches }

{ an Apple event}
Summary of Responding to Apple Events 4-109

C H A P T E R 4

Responding to Apple Events
keySelectProc = 'selh'; {selector used with }

{ AERemoveSpecialHandler to }

{ disable the OSL}

{keywords for use with AEManagerInfo; available only in version }

{ 1.0.1 and later versions of the Apple Event Manager}

keyAERecorderCount = 'recr'; {keyword for recording info}

keyAEVersion = 'vers'; {keyword for version info}

{event class}

kCoreEventClass = 'aevt'; {event class for required Apple }

{ events}

{event IDs for required Apple events}

kAEOpenApplication = 'oapp'; {event ID for Open }

{ Application event}

kAEOpenDocuments = 'odoc'; {event ID for Open Documents event}

kAEPrintDocuments = 'pdoc'; {event ID for Print Documents }

{ event}

kAEQuitApplication = 'quit'; {event ID for Quit Application }

{ event}

kAEAnswer = 'ansr'; {event ID for Apple event replies}

kAEApplicationDied = 'obit'; {event ID for Application Died }

{ event}

{constants for setting the sendMode parameter of AESend}

kAENoReply = $00000001; {client doesn't want reply}

kAEQueueReply = $00000002; {client wants server to }

{ reply in event queue}

kAEWaitReply = $00000003; {client wants a reply and }

{ will give up processor}

kAENeverInteract = $00000010; {server application should }

{ not interact with user }

{ for this Apple event}

kAECanInteract = $00000020; {server may interact with }

{ user for this Apple event }

{ to supply information}

kAEAlwaysInteract = $00000030; {server may interact with user }

{ for this Apple event even if }

{ no information is required}

kAECanSwitchLayer = $00000040; {server should come directly }

{ to foreground when appropriate}
4-110 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
kAEDontReconnect = $00000080; {don't reconnect if there }

{ is a PPC session closed error}

kAEWantReceipt = nReturnReceipt; {client wants return }

{ receipt}

kAEDontRecord = $00001000; {don't record this event}

kAEDontExecute = $00002000; {don't excecute this event}

{constants for setting the sendPriority parameter of AESend}

kAENormalPriority = $00000000; {put event at the back of }

{ event queue}

kAEHighPriority = nAttnMsg; {put event at the front of }

{ the event queue}

{event IDs for recording events; available only in version 1.01 and }

{ later versions of the Apple Event Manager}

kAEStartRecording = 'reca'; {event ID for Start Recording }

{ event}

kAEStopRecording = 'recc'; {event ID for Stop Recording }

{ event}

kAENotifyStartRecording = 'rec1'; {event ID for Recording On event}

kAENotifyStopRecording = 'rec0'; {event ID for Recording Off event}

kAENotifyRecording = 'recr'; {event ID for Receive Recordable }

{ Event event}

{constant for the returnID parameter of AECreateAppleEvent}

kAutoGenerateReturnID = -1; {tells Apple Event Manager to }

{ generate a unique return ID}

{constant for transaction IDs}

kAnyTransactionID = 0; {the Apple event is not }

{ part of a transaction}

{constants for timeout durations}

kAEDefaultTimeout = -1; {use default timeout value}

kNoTimeOut = -2; {never time out}

{constants for the dispatcher parameter of AEResumeTheCurrentEvent}

kAENoDispatch = 0; {don't redispatch the Apple event}

kAEUseStandardDispatch = -1; {redispatch the Apple event }

{ by using its entry in the }

{ Apple event dispatch table}
Summary of Responding to Apple Events 4-111

C H A P T E R 4

Responding to Apple Events
Data Types 4

TYPE

AEEventClass =

PACKED ARRAY[1..4] OF Char; {event class for a high-level }

{ event}

AEEventID =

PACKED ARRAY[1..4] OF Char; {event ID for a high-level }

{ event}

AEKeyword =

PACKED ARRAY[1..4] OF Char; {keyword for a descriptor }

{ record}

DescType = ResType; {descriptor type}

AEDesc = {descriptor record}

RECORD

descriptorType: DescType; {type of data being passed}

dataHandle: Handle; {handle to data being passed}

END;

AEKeyDesc = {keyword-specified }

RECORD { descriptor record}

descKey: AEKeyword; {keyword}

descContent: AEDesc; {descriptor record}

END;

AEAddressDesc = AEDesc; {address descriptor record}

AEDescList = AEDesc; {list of descriptor records}

AERecord = AEDescList; {list of keyword-specified }

{ descriptor records}

AppleEvent = AERecord; {list of attributes and }

{ parameters necessary for }

{ an Apple event}

AESendMode = LongInt; {flags that determine how }

{ an Apple event is sent}

AESendPriority = Integer; {send priority of an Apple }

{ event}
4-112 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEInteractAllowed = (kAEInteractWithSelf, kAEInteractWithLocal,

 kAEInteractWithAll); {what processes may }

{ interact with the user}

AEEventSource = (kAEUnknownSource, kAEDirectCall, kAESameProcess,

 kAELocalProcess, kAERemoteProcess);

{the source of an Apple }

{ event}

AEArrayType = (kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray);

{type of an Apple event array}

AEArrayData =

RECORD {data for an Apple event array}

CASE AEArrayType OF

kAEDataArray:

(AEDataArray: ARRAY[0..0] OF Integer);

kAEPackedArray:

(AEPackedArray: PACKED ARRAY[0..0] OF Char);

kAEHandleArray:

(AEHandleArray: ARRAY[0..0] OF Handle);

kAEDescArray:

(AEDescArray: ARRAY[0..0] OF AEDesc);

kAEKeyDescArray:

(AEKeyDescArray: ARRAY[0..0] OF AEKeyDesc);

END;

AEArrayDataPointer = ^AEArrayData;

EventHandlerProcPtr = ProcPtr; {pointer to an Apple event }

{ handler}

IdleProcPtr = ProcPtr; {pointer to an application's }

{ idle function}

EventFilterProcPtr = ProcPtr; {pointer to an application's }

{ filter function}
Summary of Responding to Apple Events 4-113

C H A P T E R 4

Responding to Apple Events
Routines for Responding to Apple Events 4

Creating and Managing the Apple Event Dispatch Tables

FUNCTION AEInstallEventHandler
(theAEEventClass: AEEventClass;
theAEEventID: AEEventID;
handler: EventHandlerProcPtr;
handlerRefcon: LongInt;
isSysHandler: Boolean): OSErr;

FUNCTION AEGetEventHandler (theAEEventClass: AEEventClass;
theAEEventID: AEEventID;
VAR handler: EventHandlerProcPtr;
VAR handlerRefcon: LongInt;
isSysHandler: Boolean): OSErr;

FUNCTION AERemoveEventHandler
(theAEEventClass: AEEventClass; theAEEventID:
AEEventID; handler: EventHandlerProcPtr;
isSysHandler: Boolean): OSErr;

Dispatching Apple Events

FUNCTION AEProcessAppleEvent
(theEventRecord: EventRecord): OSErr;

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes

FUNCTION AEGetParamPtr (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
desiredType: DescType;
VAR typeCode: DescType;
dataPtr: Ptr; maximumSize: Size;
VAR actualSize: Size): OSErr;

FUNCTION AEGetParamDesc (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; desiredType: DescType;
VAR result: AEDesc): OSErr;

FUNCTION AEGetAttributePtr (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; desiredType: DescType;
VAR typeCode: DescType;
dataPtr: Ptr; maximumSize: Size;
VAR actualSize: Size): OSErr;

FUNCTION AEGetAttributeDesc (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; desiredType: DescType;
VAR result: AEDesc): OSErr;
4-114 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Counting the Items in Descriptor Lists

FUNCTION AECountItems (theAEDescList: AEDescList;
VAR theCount: LongInt): OSErr;

Getting Items From Descriptor Lists

FUNCTION AEGetNthPtr (theAEDescList: AEDescList; index: LongInt;
desiredType: DescType;
VAR theAEKeyword: AEKeyword;
VAR typeCode: DescType; dataPtr: Ptr;
maximumSize: Size;
VAR actualSize: Size): OSErr;

FUNCTION AEGetNthDesc (theAEDescList: AEDescList; index: LongInt;
desiredType: DescType;
VAR theAEKeyword: AEKeyword;
VAR result: AEDesc): OSErr;

FUNCTION AEGetArray (theAEDescList: AEDescList;
arrayType: AEArrayType;
arrayPtr: AEArrayDataPointer;
maximumSize: Size;
VAR itemType: DescType; VAR itemSize: Size;
VAR itemCount: LongInt): OSErr;

Getting Data and Keyword-Specified Descriptor Records Out of AE Records

FUNCTION AEGetKeyPtr (theAERecord: AERecord;
theAEKeyword: AEKeyword;
desiredType: DescType; VAR typeCode: DescType;
dataPtr: Ptr; maximumSize: Size;
VAR actualSize: Size): OSErr;

FUNCTION AEGetKeyDesc (theAERecord: AERecord;
theAEKeyword: AEKeyword;
desiredType: DescType;
VAR result: AEDesc): OSErr;

Requesting User Interaction

FUNCTION AESetInteractionAllowed
(level: AEInteractAllowed): OSErr;

FUNCTION AEGetInteractionAllowed
(VAR level: AEInteractAllowed): OSErr;

FUNCTION AEInteractWithUser (timeOutInTicks: LongInt; nmReqPtr: NMRecPtr;
idleProc: IdleProcPtr): OSErr;
Summary of Responding to Apple Events 4-115

C H A P T E R 4

Responding to Apple Events
Requesting More Time to Respond to Apple Events

FUNCTION AEResetTimer (reply: AppleEvent): OSErr;

Suspending and Resuming Apple Event Handling

FUNCTION AESuspendTheCurrentEvent
(theAppleEvent: AppleEvent): OSErr;

FUNCTION AEResumeTheCurrentEvent
(theAppleEvent, reply: AppleEvent;
dispatcher: EventHandlerProcPtr;
handlerRefcon: LongInt): OSErr;

FUNCTION AESetTheCurrentEvent
(theAppleEvent: AppleEvent): OSErr;

FUNCTION AEGetTheCurrentEvent
(VAR theAppleEvent: AppleEvent): OSErr;

Getting the Sizes and Descriptor Types of Descriptor Records

FUNCTION AESizeOfNthItem (theAEDescList: AEDescList; index: LongInt;
VAR typeCode: DescType;
VAR dataSize: Size): OSErr;

FUNCTION AESizeOfKeyDesc (theAERecord: AERecord;
theAEKeyword: AEKeyword;
VAR typeCode: DescType;
VAR dataSize: Size): OSErr;

FUNCTION AESizeOfParam (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
VAR typeCode: DescType;
VAR dataSize: Size): OSErr;

FUNCTION AESizeOfAttribute (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
VAR typeCode: DescType;
VAR dataSize: Size): OSErr;

Deleting Descriptor Records

FUNCTION AEDeleteItem (theAEDescList: AEDescList;
index: LongInt): OSErr;

FUNCTION AEDeleteKeyDesc (theAERecord: AERecord;
theAEKeyword: AEKeyword): OSErr;

FUNCTION AEDeleteParam (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword): OSErr;
4-116 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Deallocating Memory for Descriptor Records

FUNCTION AEDisposeDesc (VAR theAEDesc: AEDesc): OSErr;

Coercing Descriptor Types

FUNCTION AECoercePtr (typeCode: DescType; dataPtr: Ptr;
dataSize: Size; toType: DescType;
VAR result: AEDesc): OSErr;

FUNCTION AECoerceDesc (theAEDesc: AEDesc; toType: DescType;
VAR result: AEDesc): OSErr;

Creating and Managing the Coercion Handler Dispatch Tables

FUNCTION AEInstallCoercionHandler
(fromType: DescType; toType: DescType;
handler: ProcPtr; handlerRefcon: LongInt;
fromTypeIsDesc: Boolean;
isSysHandler: Boolean): OSErr;

FUNCTION AEGetCoercionHandler
(fromType: DescType; toType: DescType;
VAR handler: ProcPtr;
VAR handlerRefcon: LongInt;
VAR fromTypeIsDesc: Boolean;
isSysHandler: Boolean): OSErr;

FUNCTION AERemoveCoercionHandler
(fromType: DescType; toType: DescType;
handler: ProcPtr;
isSysHandler: Boolean): OSErr;

Creating and Managing the Special Handler Dispatch Tables

FUNCTION AEInstallSpecialHandler
(functionClass: AEKeyword; handler: ProcPtr;
isSysHandler: Boolean): OSErr;

FUNCTION AEGetSpecialHandler
(functionClass: AEKeyword;
VAR handler: ProcPtr;
isSysHandler: Boolean): OSErr;

FUNCTION AERemoveSpecialHandler
(functionClass: AEKeyword; handler: ProcPtr;
isSysHandler: Boolean): OSErr;
Summary of Responding to Apple Events 4-117

C H A P T E R 4

Responding to Apple Events
Getting Information About the Apple Event Manager

{available only in version 1.01 and later versions of Apple Event Manager}

FUNCTION AEManagerInfo (keyword: AEKeyword;
VAR result: LongInt): OSErr;

Application-Defined Routines 4

FUNCTION MyEventHandler (theAppleEvent: AppleEvent; reply: AppleEvent;
handlerRefcon: LongInt): OSErr;

FUNCTION MyCoercePtr (typeCode: DescType; dataPtr: Ptr;
dataSize: Size; toType: DescType;
handlerRefcon: LongInt;
VAR result: AEDesc): OSErr;

FUNCTION MyCoerceDesc (theAEDesc: AEDesc; toType: DescType;
handlerRefcon: LongInt;
VAR result: AEDesc): OSErr;

C Summary 4

Constants 4

enum {

#define gestaltAppleEventsAttr 'evnt' /*selector for Apple events*/

gestaltAppleEventsPresent = 0 /*if this bit is set, then */

/* Apple Event Manager is */

}; /* available*/

/*Apple event descriptor types*/

enum {

typeBoolean = 'bool', /*1-byte Boolean value*/

typeChar = 'TEXT', /*unterminated string*/

typeSMInt = 'shor', /*16-bit integer*/

typeInteger = 'long', /*32-bit integer*/

typeSMFloat = 'sing', /*SANE single*/

typeFloat = 'doub', /*SANE double*/

typeLongInteger = 'long', /*32-bit integer*/

typeShortInteger = 'shor', /*16-bit integer*/

typeLongFloat = 'doub', /*SANE double*/

typeShortFloat = 'sing', /*SANE single*/

typeExtended = 'exte', /*SANE extended*/
4-118 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
typeComp = 'comp', /*SANE comp*/

typeMagnitude = 'magn', /*unsigned 32-bit integer*/

typeAEList = 'list', /*list of descriptor records*/

typeAERecord = 'reco', /*list of keyword-specified */

/* descriptor records*/

typeAppleEvent = 'aevt', /*Apple event record*/

typeTrue = 'true', /*TRUE Boolean value*/

typeFalse = 'fals', /*FALSE Boolean value*/

typeAlias = 'alis', /*alias record*/

typeEnumerated = 'enum' /*enumerated data*/

};

enum {

typeType = 'type', /*four-character code for */

/* event class or event ID*/

typeAppParameters = 'appa', /*Process Manager launch */

/* parameters*/

typeProperty = 'prop', /*Apple event property*/

typeFSS = 'fss ', /*file system specification*/

typeKeyword = 'keyw', /*Apple event keyword*/

typeSectionH = 'sect', /*handle to a section record*/

typeWildCard = '****', /*matches any type*/

typeApplSignature = 'sign', /*application signature*/

typeSessionID = 'ssid', /*session ID*/

typeTargetID = 'targ', /*target ID record*/

typeProcessSerialNumber = 'psn ', /*process serial number*/

typeNull = 'null' /*NULL or nonexistent data*/

};

/*keywords for Apple event parameters*/

enum {

keyDirectObject = '----', /*direct parameter*/

keyErrorNumber = 'errn', /*error number parameter*/

keyErrorString = 'errs', /*error string parameter*/

keyProcessSerialNumber = 'psn ' /*process serial number param*/

};

/*keywords for Apple event attributes*/

enum {

keyTransactionIDAttr = 'tran', /*transaction ID*/

keyReturnIDAttr = 'rtid', /*return ID*/

keyEventClassAttr = 'evcl', /*event class*/
Summary of Responding to Apple Events 4-119

C H A P T E R 4

Responding to Apple Events
keyEventIDAttr = 'evid', /*event ID*/

keyAddressAttr = 'addr', /*address of target or */

/* client application*/

keyOptionalKeywordAttr = 'optk', /*list of optional parameters */

/* for the Apple event*/

keyTimeoutAttr = 'timo', /*number of ticks the client */

/* will wait*/

keyInteractLevelAttr = 'inte', /*settings to allow Apple */

/* Event Mgr to bring */

/* server to foreground*/

keyEventSourceAttr = 'esrc', /*nature of source */

/* application*/

keyMissedKeywordAttr = 'miss', /*first required parameter */

/* remaining in an Apple */

/* event*/

keyOriginalAddressAttr = 'from' /*address of original source; */

/* available only in version */

/* 1.01 and later versions of */

/* the Apple Event Manager*/

};

/*keywords for special handlers*/

enum {

keyPreDispatch = 'phac', /*identifies a handler */

/* routine that is called */

/* immediately before the */

/* Apple Event Manager */

/* dispatches an Apple event*/

keySelectProc = 'selh', /*selector used with */

/* AERemoveSpecialHandler to */

/* disable the OSL*/

/*keywords for use with AEManagerInfo, available only in version */

/* 1.0.1 and later versions of the Apple Event Manager*/

keyAERecorderCount = 'recr', /*keyword for recording info*/

keyAEVersion = 'vers', /*keyword for version info*/

/*event class*/

kCoreEventClass = 'aevt' /*event class for required */

/* Apple events*/

};
4-120 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
/*event IDs for required Apple events*/

enum {

kAEOpenApplication = 'oapp', /*event ID for Open */

/* Application event*/

kAEOpenDocuments = 'odoc', /*event ID for Open */

/* Documents event*/

kAEPrintDocuments = 'pdoc', /*event ID for Print */

/* Documents event*/

kAEQuitApplication = 'quit', /*event ID for Quit */

/* Application event*/

kAEAnswer = 'ansr', /*event ID for Apple event */

/* replies*/

kAEApplicationDied = 'obit' /*event ID for Application */

/* Died event*/

};

/*constants for setting the sendMode parameter of AESend*/

enum {

kAENoReply = 0x00000001, /*client doesn't want reply*/

kAEQueueReply = 0x00000002, /*client wants server to */

/* reply in event queue*/

kAEWaitReply = 0x00000003, /*client wants a reply and */

/* will give up processor*/

kAENeverInteract = 0x00000010, /*server application should */

/* not interact with user */

/* for this Apple event*/

kAECanInteract = 0x00000020, /*server may interact with */

/* user for this Apple event */

/* to supply information*/

kAEAlwaysInteract = 0x00000030, /*server may interact with */

/* user for this Apple event */

/* even if no information */

/* is required*/

kAECanSwitchLayer = 0x00000040, /*server should come */

/* directly to foreground */

/* when appropriate*/

kAEDontReconnect = 0x00000080, /*don't reconnect if there */

/* is a PPC session closed */

/* error*/

kAEWantReceipt = nReturnReceipt, /*client wants return */

/* receipt*/

kAEDontRecord = 0x00001000, /*don't record this event*/

kAEDontExecute = 0x00002000, /*don't excecute this event*/
Summary of Responding to Apple Events 4-121

C H A P T E R 4

Responding to Apple Events
/*constants for setting the sendPriority parameter of AESend*/

kAENormalPriority = 0x00000000, /*post message at end of */

/* event queue*/

kAEHighPriority = nAttnMsg /*post message at front of */

/* event queue*/

};

/*event IDs for recording events; available only in version 1.01 and */

/* later versions of the Apple Event Manager*/

enum {

kAEStartRecording = 'reca', /*event ID for Start */

/* Recording event*/

kAEStopRecording = 'recc', /*event ID for Stop */

/* Recording event*/

kAENotifyStartRecording = 'rec1', /*event ID for Recording On*/

/* event*/

kAENotifyStopRecording = 'rec0', /*event ID for Recording Off */

/* event*/

kAENotifyRecording = 'recr' /*event ID for Receive */

/* Recordable Event event*/

};

enum {

/*constant for the returnID parameter of AECreateAppleEvent*/

kAutoGenerateReturnID = -1, /*tells Apple Event Manager */

/* to generate a unique */

/* return ID*/

/*constant for transaction IDs*/

kAnyTransactionID = 0, /*the Apple event is not */

/* part of a transaction*/

/*constants for timeout durations*/

kAEDefaultTimeout = -1, /*use default timeout value*/

kNoTimeOut = -2, /*never time out*/

/*constants for the dispatcher parameter of AEResumeTheCurrentEvent*/

kAENoDispatch = 0, /*don't redispatch the */

/* Apple event*/

kAEUseStandardDispatch = -1 /*redispatch the Apple event */

/* by using its entry in the */

/* Apple event dispatch table*/

};
4-122 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Data Types 4

typedef unsigned long AEEventClass; /*event class for a */

/* high-level event*/

typedef unsigned long AEEventID; /*event ID for a high-level */

/* event*/

typedef unsigned long AEKeyword; /*keyword for a descriptor */

/* record*/

typedef ResType DescType; /*descriptor type*/

struct AEDesc { /*descriptor record*/

DescType descriptorType; /*type of data being passed*/

Handle dataHandle; /*handle to data being passed*/

};

typedef struct AEDesc AEDesc;

struct AEKeyDesc { /*keyword-specified */

/* descriptor record*/

AEKeyword descKey; /*keyword*/

AEDesc descContent; /*descriptor record*/

};

typedef struct AEKeyDesc AEKeyDesc;

typedef AEDesc AEAddressDesc; /*address descriptor record*/

typedef AEDesc AEDescList; /*list of descriptor records*/

typedef AEDescList AERecord; /*list of keyword-specified */

/* descriptor records*/

typedef AERecord AppleEvent; /*list of attributes and */

/* parameters necessary for */

/* an Apple event*/

typedef long AESendMode; /*flags that determine how */

/* an Apple event is sent*/

typedef short AESendPriority; /*send priority of an Apple */

/* event*/

enum { kAEInteractWithSelf, kAEInteractWithLocal,

 kAEInteractWithAll }; /*what processes may */

typedef unsigned char AEInteractAllowed; /* interact with the user*/
Summary of Responding to Apple Events 4-123

C H A P T E R 4

Responding to Apple Events
enum { kAEUnknownSource, kAEDirectCall, kAESameProcess, kAELocalProcess,

 kAERemoteProcess }; /*the source of an Apple */

typedef unsigned char AEEventSource; /* event*/

enum { kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray }; /*type of an Apple event */

typedef unsigned char AEArrayType; /* array*/

union AEArrayData { /*data for an Apple event */

short kAEDataArray[1]; /* array*/

char kAEPackedArray[1];

Handle kAEHandleArray[1];

AEDesc kAEDescArray[1];

AEKeyDesc kAEKeyDescArray[1];

};

typedef union AEArrayData AEArrayData;

typedef AEArrayData *AEArrayDataPointer;

typedef ProcPtr EventHandlerProcPtr; /*pointer to an Apple event */

/* handler*/

typedef ProcPtr IdleProcPtr; /*pointer to an application's */

/* idle function*/

typedef ProcPtr EventFilterProcPtr; /*pointer to an application's */

/* filter function*/

Routines for Responding to Apple Events 4

Creating and Managing the Apple Event Dispatch Tables

pascal OSErr AEInstallEventHandler
(AEEventClass theAEEventClass,
AEEventID theAEEventID,
EventHandlerProcPtr handler,
long handlerRefcon, Boolean isSysHandler);

pascal OSErr AEGetEventHandler
(AEEventClass theAEEventClass,
AEEventID theAEEventID,
EventHandlerProcPtr *handler,
long *handlerRefcon, Boolean isSysHandler);

pascal OSErr AERemoveEventHandler
(AEEventClass theAEEventClass,
AEEventID theAEEventID,
EventHandlerProcPtr handler,
Boolean isSysHandler);
4-124 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Dispatching Apple Events

pascal OSErr AEProcessAppleEvent

(const EventRecord *theEventRecord);

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes

pascal OSErr AEGetParamPtr (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType desiredType,
DescType *typeCode, void* dataPtr,
Size maximumSize, Size *actualSize);

pascal OSErr AEGetParamDesc (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType desiredType,
AEDesc *result);

pascal OSErr AEGetAttributePtr
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType desiredType,
DescType *typeCode, void* dataPtr,
Size maximumSize, Size *actualSize);

pascal OSErr AEGetAttributeDesc
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType desiredType,
AEDesc *result);

Counting the Items in Descriptor Lists

pascal OSErr AECountItems (const AEDescList *theAEDescList,
long *theCount);

Getting Items From Descriptor Lists

pascal OSErr AEGetNthPtr (const AEDescList *theAEDescList, long index,
DescType desiredType, AEKeyword *theAEKeyword,
DescType *typeCode, void* dataPtr,
Size maximumSize, Size *actualSize);

pascal OSErr AEGetNthDesc (const AEDescList *theAEDescList, long index,
DescType desiredType, AEKeyword *theAEKeyword,
AEDesc *result);

pascal OSErr AEGetArray (const AEDescList *theAEDescList,
AEArrayType arrayType,
AEArrayDataPointer arrayPtr, Size maximumSize,
DescType *itemType, Size *itemSize,
long *itemCount);
Summary of Responding to Apple Events 4-125

C H A P T E R 4

Responding to Apple Events
Getting Data and Keyword-Specified Descriptor Records Out of AE Records

pascal OSErr AEGetKeyPtr (const AERecord *theAERecord,
AEKeyword theAEKeyword, DescType desiredType,
DescType *typeCode, void* dataPtr,
Size maximumSize, Size *actualSize);

pascal OSErr AEGetKeyDesc (const AERecord *theAERecord,
AEKeyword theAEKeyword, DescType desiredType,
AEDesc *result);

Requesting User Interaction

pascal OSErr AESetInteractionAllowed
(AEInteractAllowed level);

pascal OSErr AEGetInteractionAllowed
(AEInteractAllowed *level);

pascal OSErr AEInteractWithUser
(long timeOutInTicks, NMRecPtr nmReqPtr,
IdleProcPtr idleProc);

Requesting More Time to Respond to Apple Events

pascal OSErr AEResetTimer (const AppleEvent *reply);

Suspending and Resuming Apple Event Handling

pascal OSErr AESuspendTheCurrentEvent
(const AppleEvent *theAppleEvent);

pascal OSErr AEResumeTheCurrentEvent
(const AppleEvent *theAppleEvent,
const AppleEvent *reply,
EventHandlerProcPtr dispatcher,
long handlerRefcon);

pascal OSErr AESetTheCurrentEvent
(const AppleEvent *theAppleEvent);

pascal OSErr AEGetTheCurrentEvent
(AppleEvent *theAppleEvent);

Getting the Sizes and Descriptor Types of Descriptor Records

pascal OSErr AESizeOfNthItem
(const AEDescList *theAEDescList, long index,
DescType *typeCode, Size *dataSize);

pascal OSErr AESizeOfKeyDesc
(const AERecord *theAERecord,
AEKeyword theAEKeyword, DescType *typeCode,
Size *dataSize);
4-126 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
pascal OSErr AESizeOfParam (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType *typeCode,
Size *dataSize);

pascal OSErr AESizeOfAttribute
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType *typeCode,
Size *dataSize);

Deleting Descriptor Records

pascal OSErr AEDeleteItem (const AEDescList *theAEDescList, long index);

pascal OSErr AEDeleteKeyDesc
(const AERecord *theAERecord,
AEKeyword theAEKeyword);

pascal OSErr AEDeleteParam (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword);

Deallocating Memory for Descriptor Records

pascal OSErr AEDisposeDesc (AEDesc *theAEDesc);

Coercing Descriptor Types

pascal OSErr AECoercePtr (DescType typeCode, const void* dataPtr,
Size dataSize, DescType toType,
AEDesc *result);

pascal OSErr AECoerceDesc (const AEDesc *theAEDesc, DescType toType,
AEDesc *result);

Creating and Managing the Coercion Handler Dispatch Tables

pascal OSErr AEInstallCoercionHandler
(DescType fromType, DescType toType,
ProcPtr handler, long handlerRefcon,
Boolean fromTypeIsDesc, Boolean isSysHandler);

pascal OSErr AEGetCoercionHandler
(DescType fromType, DescType toType,
ProcPtr *handler, long *handlerRefcon,
Boolean *fromTypeIsDesc,
Boolean isSysHandler);

pascal OSErr AERemoveCoercionHandler
(DescType fromType, DescType toType,
ProcPtr handler, Boolean isSysHandler);
Summary of Responding to Apple Events 4-127

C H A P T E R 4

Responding to Apple Events
Creating and Managing the Special Handler Dispatch Tables

pascal OSErr AEInstallSpecialHandler
(AEKeyword functionClass, ProcPtr handler,
Boolean isSysHandler);

pascal OSErr AEGetSpecialHandler
(AEKeyword functionClass, ProcPtr *handler,
Boolean isSysHandler);

pascal OSErr AERemoveSpecialHandler
(AEKeyword functionClass, ProcPtr handler,
Boolean isSysHandler);

Getting Information About the Apple Event Manager
/*available only in version 1.01 and later versions of Apple Event Manager*/

pascal OSErr AEManagerInfo (AEKeyword keyword, long *result);

Application-Defined Routines 4

pascal OSErr MyEventHandler (const AppleEvent *theAppleEvent,
const AppleEvent *reply, long handlerRefcon);

pascal OSErr MyCoercePtr (DescType typeCode, const void* dataPtr,
Size dataSize, DescType toType,
long handlerRefcon, AEDesc *result);

pascal OSErr MyCoerceDesc (const AEDesc *theAEDesc, DescType toType, long
handlerRefcon, AEDesc *result);

Assembly-Language Summary 4

Trap Macros 4

Trap Macros Requiring Routine Selectors

_Pack8

Selector Routine

$011E AESetInteractionAllowed

$0204 AEDisposeDesc

$0219 AEResetTimer

$021A AEGetTheCurrentEvent

$021B AEProcessAppleEvent
4-128 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Result Codes 4

$021D AEGetInteractionAllowed

$022B AESuspendTheCurrentEvent

$022C AESetTheCurrentEvent

$0407 AECountItems

$040E AEDeleteItem

$0413 AEDeleteKeyDesc

$0413 AEDeleteParam

$0441 AEManagerInfo

$0500 AEInstallSpecialHandler

$0501 AERemoveSpecialHandler

$052D AEGetSpecialHandler

$0603 AECoerceDesc

$061C AEInteractWithUser

$0720 AERemoveEventHandler

$0723 AERemoveCoercionHandler

$0812 AEGetKeyDesc

$0812 AEGetParamDesc

$0818 AEResumeTheCurrentEvent

$0826 AEGetAttributeDesc

$0828 AESizeOfAttribute

$0829 AESizeOfKeyDesc

$0829 AESizeOfParam

$082A AESizeOfNthItem

$091F AEInstallEventHandler

$0921 AEGetEventHandler

$0A02 AECoercePtr

$0A22 AEInstallCoercionHandler

$0A0B AEGetNthDesc

$0B24 AEGetCoercionHandler

$0D0C AEGetArray

$0E11 AEGetKeyPtr

$0E11 AEGetParamPtr

$0E15 AEGetAttributePtr

$100A AEGetNthPtr

Selector Routine
Summary of Responding to Apple Events 4-129

C H A P T E R 4

Responding to Apple Events
noErr 0 No error
paramErr –50 Parameter error (for example, value of handler pointer

is NIL or odd)
eLenErr –92 Buffer too big to send
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled an operation
procNotFound –600 No eligible process with specified process serial

number
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
connectionInvalid –609 Nonexistent signature or session ID
noUserInteractionAllowed –610 Background application sends event requiring

authentication
noPortErr –903 Client hasn’t set 'SIZE' resource to indicate

awareness of high-level events
destPortErr –906 Server hasn’t set 'SIZE' resource to indicate

awareness of high-level events, or else is not present
sessClosedErr –917 The kAEDontReconnect flag in the sendMode

parameter was set, and the server quit and then
restarted

errAECoercionFail –1700 Data could not be coerced to the requested descriptor
type

errAEDescNotFound –1701 Descriptor record was not found
errAECorruptData –1702 Data in an Apple event could not be read
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
errAENewerVersion –1706 Need a newer version of the Apple Event Manager
errAENotAppleEvent –1707 Event is not an Apple event
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event handler
errAEReplyNotValid –1709 AEResetTimer was passed an invalid reply
errAEUnknownSendMode –1710 Invalid sending mode was passed
errAEWaitCanceled –1711 User canceled out of wait loop for reply or receipt
errAETimeout –1712 Apple event timed out
errAENoUserInteraction –1713 No user interaction allowed
errAENotASpecialFunction –1714 The keyword is not valid for a special function
errAEParamMissed –1715 Handler cannot understand a parameter the client

considers required
errAEUnknownAddressType –1716 Unknown Apple event address type
errAEHandlerNotFound –1717 No handler found for an Apple event or a coercion, or

no object callback function found
errAEReplyNotArrived –1718 Reply has not yet arrived
errAEIllegalIndex –1719 Not a valid list index
errAEImpossibleRange –1720 The range is not valid because it is impossible for a

range to include the first and last objects that were
specified; an example is a range in which the offset of
the first object is greater than the offset of the last
object

errAEWrongNumberArgs –1721 The number of operands provided for the kAENot
logical operator is not 1

errAEAccessorNotFound –1723 There is no object accessor function for the specified
object class and token descriptor type
4-130 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
errAENoSuchLogical –1725 The logical operator in a logical descriptor record is
not kAEAnd, kAEOr, or kAENot

errAEBadTestKey –1726 The descriptor record in a test key is neither a
comparison descriptor record nor a logical descriptor
record

errAENotAnObjectSpec –1727 The objSpecifier parameter of AEResolve is not
an object specifier record

errAENoSuchObject –1728 A run-time resolution error, for example: object
specifier record asked for the third element, but there
are only two

errAENegativeCount –1729 Object-counting function returned negative value
errAEEmptyListContainer –1730 The container for an Apple event object is specified by

an empty list
errAEUnknownObjectType –1731 Descriptor type of token returned by AEResolve is

not known to server application
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when it is already on
Summary of Responding to Apple Events 4-131

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	Responding to Apple Events
	Handling Apple Events
	Accepting an Apple Event
	Installing Entries in the Apple Event Dispatch Tab...
	Installing Entries for the Required Apple Events
	Installing Entries for Apple Events Sent by the Ed...
	How Apple Event Dispatching Works

	Handling the Required Apple Events
	Required Apple Events
	Handling the Open Application Event
	Handling the Open Documents Event
	Handling the Print Documents Event
	Handling the Quit Application Event

	Handling Apple Events Sent by the Edition Manager
	The Section Read, Section Write, and Section Scrol...
	Handling the Create Publisher Event

	Getting Data Out of an Apple Event
	Getting Data Out of an Apple Event Parameter
	Getting Data Out of an Attribute
	Getting Data Out of a Descriptor List

	Writing Apple Event Handlers
	Replying to an Apple Event
	Disposing of Apple Event Data Structures
	Writing and Installing Coercion Handlers

	Interacting With the User
	Setting the Client Application’s User Interaction ...
	Setting the Server Application’s User Interaction ...
	Requesting User Interaction

	Reference to Responding to Apple Events
	Data Structures Used by the Apple Event Manager
	Descriptor Records and Related Data Structures
	Apple Event Array Data Types

	Routines for Responding to Apple Events
	Creating and Managing the Apple Event Dispatch Tab...
	Dispatching Apple Events
	Getting Data or Descriptor Records Out of Apple Ev...
	Counting the Items in Descriptor Lists
	Getting Items From Descriptor Lists
	Getting Data and Keyword-Specified Descriptor Reco...
	Requesting User Interaction
	Requesting More Time to Respond to Apple Events
	Suspending and Resuming Apple Event Handling
	Getting the Sizes and Descriptor Types of Descript...
	Deleting Descriptor Records
	Deallocating Memory for Descriptor Records
	Coercing Descriptor Types
	Creating and Managing the Coercion Handler Dispatc...
	Creating and Managing the Special Handler Dispatch...
	Getting Information About the Apple Event Manager

	Application-Defined Routines

	Summary of Responding to Apple Events
	Pascal Summary
	Constants
	Data Types
	Routines for Responding to Apple Events
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Routines for Responding to Apple Events
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

