

C H A P T E R 9

9

R
ecording A

pple E
vents

Recording Apple Events 9

This chapter describes the general characteristics of a recordable application and
provides some examples of how to factor your application for recording. It also provides
guidelines to help you decide which user actions to record and how to record them.

Before you read this chapter, you should read the chapter “Introduction to Scripting” in
this book. To factor your application, you must know how to respond to Apple events,
create and send Apple events, and resolve and create object specifier records. For
comprehensive information about implementing Apple events, see the chapters
“Introduction to Apple Events,” “Responding to Apple Events,” “Creating and Sending
Apple Events,” and “Resolving and Creating Object Specifier Records” in this book.

The first three sections in this chapter provide

■ a description of the basic requirements for recordable applications

■ examples of how to begin factoring your application

■ guidelines for what to record

The fourth section describes how Apple event recording works. You need to read it only
if you are developing a script editor, an application that can initiate recording, or a
scripting component.

About Recordable Applications 9

A recordable application is an application that uses Apple events to report user actions
to the Apple Event Manager for recording purposes. One way to do this is to separate
the code that implements your application’s user interface from the code that actually
performs work when the user manipulates the interface. This is called factoring your
application. A factored application translates low-level events generated by the user into
recordable Apple events that the application sends to itself to perform tasks.

A recordable event is any Apple event that any recordable application sends to itself
while recording is turned on for the local computer, with the exception of events that are
sent with the kAEDontRecord flag set in the sendMode parameter of AESend. A
recording process is any process (for example, the Script Editor application) that can
turn recording on and off and can receive and record recordable Apple events.

After Apple event recording has been turned on by a recording process, the Apple Event
Manager sends that process copies of all recordable Apple events on the local computer.
For example, when a user presses the Record button in the Script Editor application, it
calls a scripting component routine to turn on recording for the AppleScript component
(or any other scripting component). While recording is on, the Apple Event Manager
sends Script Editor copies of all subsequent recordable Apple events, which Script Editor
records (with the aid of the scripting component) in the form of a compiled script. After
turning off recording from Script Editor, the user can edit or execute the recorded script.
About Recordable Applications 9-3

C H A P T E R 9

Recording Apple Events

Although factoring your application is the recommended method of making your
application recordable, it is also possible to report user actions by means of Apple events
only when Apple event recording is turned on, even though the application may
respond to those actions by some means other than Apple events. In effect, the
application uses Apple events to describe user actions without actually using the events
to perform the action. To indicate that you want the Apple Event Manager to send a copy
of a recordable event to the recording process without actually sending the event to your
application, add the constant kAEDontExecute to the sendMode parameter of the
AESend function.

Even in a factored application, it may not always be possible to send an Apple event that
actually executes the task initiated by the user. For example, if the user types some text,
it is more practical to use standard TextEdit or QuickDraw routines to draw the text than
to send a separate Apple event each time the user presses a key. In this case, the
application can draw the text as it is typed in the most convenient manner available;
then, when the user finishes typing a sequence of characters—by clicking the mouse
button while the cursor is somewhere else in the document or performing some other
action—the application can create an Apple event that corresponds to the typing and
add the constant kAEDontExecute to the sendMode parameter when it sends the
Apple event.

If your application needs to know when Apple event recording is turned on and off, it
should install handlers for the Recording On and Recording Off events.

Recording On—perform actions associated with beginning of recording session

Event class kCoreEventClass

Event ID kAENotifyStartRecording

Parameters None

Description Sent by the Apple Event Manager to all running processes on the local
computer to inform them that recording has been turned on

Recording Off—perform actions associated with end of recording session

Event class kCoreEventClass

Event ID kAENotifyStopRecording

Parameters None

Description Sent by the Apple Event Manager to all running processes on the local
computer to inform them that recording has been turned off
9-4 About Recordable Applications

C H A P T E R 9

Recording Apple Events

9

R
ecording A

pple E
vents

When a recording process turns on recording, the Apple Event Manager sends all
running processes on the local computer a Recording On event. When a user turns off
recording, the Apple Event Manager sends all running processes the Recording Off event
with the kAEWaitReply flag set. If an application has stored some data (for instance,
keystrokes) that needs to be recorded as an Apple event, this is the last chance to send an
event for recording purposes. If your application needs to know which recording process
has turned recording on or off, it can check the keyOriginalAddressAttr attribute of
the Recording On or Recording Off event for the address of the recording process.

Factoring your application is the recommended method of making your application
recordable because it guarantees that any action a user can perform via your
application’s user interface can also be accomplished via Apple events. Factoring also
allows you to avoid duplicating code within your application. Instead of using one piece
of code to respond to some user action within your application, and another piece of
code to respond to the equivalent Apple event, you can use the same code to respond to
the Apple event, whether it is sent by your application in response to a user action, by
some other application, or by a scripting component in the course of executing a script.

The next section, “Factoring Your Application for Recording,” provides some examples
of how to go about factoring your application. Regardless of how you factor your
application, making it recordable requires you to make decisions about the most useful
methods of recording user actions that can be described in several different ways in
scripts. If a user moves a window, for example, the window can be described in the
corresponding recorded script as window 1, or the window named Fred, or the
first window. Although the OSA permits recording at a high level and thus avoids
many of the problems users encounter with applications that record low-level events
such as keystrokes and mouse clicks, scripting components cannot predict what
information a user cares about in a given situation. Therefore, a recordable application
should send Apple events that correspond to the simplest possible statements in a
scripting language. “What to Record,” which begins on page 9-14, provides some general
guidelines for making these kinds of decisions.

“How Apple Event Recording Works,” which begins on page 9-35, describes the Apple
Event Manager’s recording mechanism in more detail, including the role of the
Recording On and Recording Off events.
About Recordable Applications 9-5

C H A P T E R 9

Recording Apple Events

Factoring Your Application for Recording 9

The recommended way to make your application recordable, or capable of sending
Apple events to itself whenever a user performs a significant action, is to factor the code
that controls your application’s user interface from the code that responds to the user’s
manipulation of the interface. A fully factored application translates user actions into
Apple events that the application sends to itself to initiate tasks.

The examples that follow demonstrate how to factor code that responds to relatively
simple user actions such as creating a new document or moving a window. They are
intended only to illustrate the general approach you should take; many of the decisions
you will need to make while factoring will be unique to your application. “What to
Record,” which begins on page 9-14, provides guidelines for deciding which user actions
to record and how to record them. For examples of factored applications, see the
AppleScript Software Developers’ Kit.

If you are factoring an existing application, it’s usually a good idea to begin with the
required Apple events and any other Apple events that you plan to send in order to
execute commands in the File menu. You can then proceed to other menu commands
and mouse actions. If you are designing a new application and want to make it
recordable, you should build factoring into every aspect of your application design.

Factoring the Quit Command and the New Command 9
This section demonstrates how to factor two File menu commands: Quit and New.

When the user chooses a menu command, an application first determines which one was
chosen and then performs the action associated with that command. For example, when
a user chooses Quit from the File menu, an application that is not factored simply calls
an application-defined DoQuit routine. Because Quit Application is one of the required
Apple events, it is relatively easy for most applications that support Apple events to
factor the code that responds to the Quit command.

After a factored application has determined that the user has chosen the Quit command,
it sends the Quit Application event to itself by calling its MyDoMenuQuit routine.

PROCEDURE MyDoMenuQuit;

VAR

myErr: OSErr;

BEGIN

myErr := MySendAEQuit(kAEAskUser);

{handle any errors}

END;
9-6 Factoring Your Application for Recording

C H A P T E R 9

Recording Apple Events

9

R
ecording A

pple E
vents

The MyDoMenuQuit routine in turn calls the MySendAEQuit routine shown in
Listing 9-1, which creates the Quit Application event and sends it.

Listing 9-1 A function used by a factored application to send itself a Quit Application event

FUNCTION MySendAEQuit (saveOpt: DescType): OSErr;

VAR

myAppleEvent, defReply: AppleEvent;

myErr, ignoreErr: OSErr;

BEGIN

{create Quit event}

myErr := AECreateAppleEvent(kCoreEventClass,

kAEQuitApplication,

gSelfAddrDesc,

kAutoGenerateReturnID,

kAnyTransactionID, myAppleEvent);

IF myErr = noErr THEN

{add optional parameter that specifies whether this app }

{ should prompt user if window is dirty}

myErr := AEPutParamPtr(myAppleEvent, keyAESaveOptions,

typeEnumerated, @saveOpt,

SizeOf(saveOpt));

IF myErr = noErr THEN

{send event}

myErr := AESend(myAppleEvent, defReply,

kAENoReply+kAEAlwaysInteract,

kAENormalPriority, kAEDefaultTimeOut,

NIL, NIL);

MySendAEQuit := myErr;

ignoreErr := AEDisposeDesc(myAppleEvent);

END;

The input to the MySendAEQuit routine is a constant that indicates whether to save
dirty windows without asking the user (kAEYes), quit without saving dirty windows
(kAENo), or ask the user whether each dirty window should be saved (kAEAskUser).
In this example, the constant kAEAskUser passed to the MySendAEQuit routine
indicates that the user will be asked whether each dirty window should be saved.
Factoring Your Application for Recording 9-7

C H A P T E R 9

Recording Apple Events

After the application receives the Quit Application event, the MyHandleQuit handler
shown in Listing 9-2 performs all the actions associated with that event, such as saving
any open documents. (Note that your application should call the ExitToShell
procedure from the main event loop, not from your handler for the Quit Application
event.)

Listing 9-2 A routine used by a factored application to handle a Quit Application event

FUNCTION MyHandleQuit (theAppleEvent, reply: AppleEvent;

handlerRefcon: LongInt): OSErr;

VAR

userCanceled: Boolean;

saveOpt, returnedType: DescType;

actSize: Size;

myErr: OSErr;

BEGIN

{check for missing required parameters}

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

BEGIN

{pick up optional save parameter}

saveOpt := kAEAskUser; {the default}

myErr := AEGetParamPtr(theAppleEvent, keyAESaveOptions,

typeEnumerated, returnedType,

@saveOpt, SizeOf(saveOpt), actSize);

IF myErr = errAEDescNotFound THEN

myErr := noErr;

MyHandleQuit := myErr;

IF myErr = noErr THEN

BEGIN

userCanceled := MyPrepareToTerminate(saveOpt);

IF userCanceled THEN

MyHandleQuit := kUserCanceled;

END;

END

ELSE

MyHandleQuit := myErr;

END;
9-8 Factoring Your Application for Recording

C H A P T E R 9

Recording Apple Events

9

R
ecording A

pple E
vents

The handler in Listing 9-2 calls another function supplied by the application, the
MyPrepareToTerminate function. When the value of the optional parameter
that specifies how to deal with dirty windows equals kAEAskUser, this function
asks the user whether to save each dirty window and returns a Boolean value that
indicates whether the user canceled the Quit request. It also responds appropriately to
the other possible values of the optional parameter.

If recording has been turned on for a scripting component (for example, after a user
clicks the Record button in the Script Editor application) and the user quits the
application, the Apple Event Manager automatically sends the scripting component a
copy of the Quit Application event sent by the MySendAEQuit routine. The scripting
component records the event in a compiled script. When a user executes the recorded
script, the scripting component sends the same Quit Application event to the application,
which calls the MyHandleQuit function and responds to the event just as if the user had
chosen Quit from the File menu.

After you have factored the commands associated with required Apple events for an
existing application, you can move on to the other commands in the File menu, such as
New. After a factored application has determined that the user has chosen New, it calls
its MyDoMenuNew routine, which sends the Create Element event to the application.

PROCEDURE MyDoMenuNew;

VAR

myErr := OSErr;

BEGIN

myErr := MySendAECreateElement(gNullDesc, cDocument);

{handle any errors}

END;

The container for the new element is the application’s default container, specified by a
null descriptor record, and the desired class is cDocument. The MyDoMenuNew routine
in turn calls the MySendAECreateElement routine shown in Listing 9-3, which creates
the Apple event and sends it.
Factoring Your Application for Recording 9-9

C H A P T E R 9

Recording Apple Events

Listing 9-3 A routine used by a factored application to send itself a Create Element event

FUNCTION MySendAECreateElement (cont: AEDesc;

 elemClass: DescType): OSErr;

VAR

myAppleEvent, defReply: AppleEvent;

myErr, ignoreErr: OSErr;

BEGIN

{create Create Element event}

myErr := AECreateAppleEvent(kCoreEventClass, kAECreateElement,

gSelfAddrDesc,

kAutoGenerateReturnID,

kAnyTransactionID, myAppleEvent);

IF myErr = noErr THEN

{add parameter that specifies insertion location for the }

{ new element}

myErr := AEPutParamDesc(myAppleEvent,keyAEInsertHere,cont);

IF myErr = noErr THEN

{add parameter that specifies new element's object class}

myErr := AEPutParamPtr(myAppleEvent, keyAEObjectClass,

 typeType, @elemClass,

 SizeOf(elemClass));

IF myErr = noErr THEN

{send the event}

myErr := AESend(myAppleEvent, defReply,

kAENoReply+kAECanInteract,

kAENormalPriority, kAEDefaultTimeOut, NIL,

NIL);

MySendAECreateElement := myErr;

ignoreErr := AEDisposeDesc(myAppleEvent); {must dispose of }

{ event}

END;

For the purposes of this example, the routine shown in Listing 9-3 sends only the
required parameters and can only create a new active window with the default name.
After the application receives the Create Element event, its MyHandleCreateElement
handler performs the requested action, as shown in Listing 9-4. In this case, it creates a
new active window with a default title.
9-10 Factoring Your Application for Recording

C H A P T E R 9

Recording Apple Events

9

R
ecording A

pple E
vents

Listing 9-4 The Create Element event handler for a factored application

FUNCTION MyHandleCreateElement (theAppleEvent: AppleEvent;

 reply: AppleEvent;

 handlerRefCon: LongInt): OSErr;

VAR

myCont: AEDesc;

returnedType, newElemClass: DescType;

actSize: Size;

contClass: DescType;

window: WindowPtr;

myErr: OSErr;

BEGIN

{get the parameters out of the event}

{first get the direct parameter, which specifies insertion }

{ location for new window--that is, frontmost window}

myCont.dataHandle := NIL;

myErr := AEGetParamDesc(theAppleEvent, keyAEInsertHere,

typeWildCard, myCont);

IF myErr = noErr THEN

{get the other required parameter, which specifies class }

{ cDocument when MyHandleCreateElement creates a new window}

myErr := AEGetParamPtr(theAppleEvent, keyAEObjectClass,

typeType, returnedType,

@newElemClass,

SizeOf(newElemClass), actSize);

IF myErr = noErr THEN

myErr := MyGotRequiredParams(theAppleEvent);

MyHandleCreateElement := myErr;

IF myErr = noErr THEN

BEGIN

{check container and class, just to make sure}

IF (myCont.descriptorType <> typeNull) OR (newElemClass <>

cDocument) THEN

MyHandleCreateElement := kWrongContainerOrElement

ELSE

{MyNewWindow creates a new window with a default name }

{ and returns a pointer to it in the window parameter}

MyHandleCreateElement := MyNewWindow(window);

END;

myErr := AEDisposeDesc(myCont);

{if your app sends a reply in response to the Create Element }

{ event, then set up the reply event as appropriate}

END;
Factoring Your Application for Recording 9-11

C H A P T E R 9

Recording Apple Events

If recording has been turned on for a scripting component (for example, after a user
clicks the Record button in the Script Editor application), the Apple Event Manager
automatically sends the scripting component a copy of the Create Element event sent by
the MySendAECreateElement routine. The scripting component records the Apple
event as a statement in a compiled script. When a user executes the recorded script, the
scripting component sends the same Create Element event to the application, which calls
its MyHandleCreateElement handler and responds to the event just as if the user had
chosen New from the File menu.

Sending Apple Events Without Executing Them 9
If an application is fully factored, it carries out almost all the tasks a user can perform by
sending itself Apple events in the manner illustrated by the listings in the preceding
sections. However, in some cases it may not be practical to send an Apple event that
actually executes a task performed by the user.

For example, if the user drags a window by its title bar from one position to another, it is
inefficient to send a series of Apple events that move the window through a series of
positions until the user releases the mouse button. Instead, your application can call the
Window Manager routine DragWindow to allow the user to drag the window to a new
position. Until the user releases the mouse button, it’s not possible to send a single Apple
event that drags the window to the new position, because the new position is not yet
known. When DragWindow returns, the window has already been dragged to its new
position, and its window record has been updated.

At this point your application can send itself the Set Data event that performs the same
action; but to avoid repeating the action that was just performed with DragWindow, you
should add the kAEDontExecute constant to the sendMode parameter of the AESend
function when you send the event. The Apple Event Manager then sends the Set Data
event to the recording process, if any, but does not send it to the application.

Listing 9-5 shows an application-defined routine, MyDoDragWindow, that illustrates this
approach. The MyDoDragWindow routine calls DragWindow in the usual way, then uses
another application-defined routine, MyCreateAESetWindowPos, and the AESend
function to create and send a Set Data Apple event that sets the window position to the
new location. However, because the window has already been moved, there is no need
to execute the Set Data event. To send the event for recording purposes without actually
executing it, the MyDoDragWindow routine adds the kAEDontExecute constant to the
sendMode parameter of the AESend function when it sends the Set Data event.
9-12 Factoring Your Application for Recording

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Listing 9-5 A routine used by a factored application to handle window movement

PROCEDURE MyDoDragWindow (theWindow: WindowPtr; startPt: Point;

 boundsRect: Rect);

VAR

newPos: Point;

index: Integer;

theAppleEvent: AppleEvent;

reply: AppleEvent;

myErr: OSErr;

BEGIN

DragWindow(theWindow, startPt, boundsRect);

newPos := WindowPeek(theWindow)^.contRgn^^.rgnBBox.topLeft;

index := MyIndexFromWndwPtr(theWindow);

MyCreateAESetWindowPos(index, newPos, theAppleEvent);

myErr := AESend(theAppleEvent, reply, kAENoReply +

kAECanInteract + kAEDontExecute,

kAENormalPriority, kAEDefaultTimeout, NIL,

NIL);

END;

If recording has been turned on and the user moves a window, the Apple Event Manager
automatically sends the scripting component a copy of the Set Data event sent by the
MyDoDragWindow routine but does not send the event to the application. The scripting
component records the event as a statement in a compiled script. When a user executes
the recorded script, the scripting component sends the same Set Data event to the
application. The application’s handler for the Set Data event then changes the position of
the window.
Factoring Your Application for Recording 9-13

C H A P T E R 9

Recording Apple Events
What to Record 9

Factoring an application involves making decisions about which user actions generate
Apple events, about the content of those events, and about when to send events for
recording purposes. For example, the preceding section, “Sending Apple Events Without
Executing Them,” describes how an application should generate an Apple event that
corresponds to a change in the position of a window. Other actions can be more
complicated to define in terms of Apple events. This section provides general guidelines
for deciding which user actions should generate Apple events and how those events
should be defined.

When the user records a series of actions as a script, playing the recorded script back
later in exactly the same circumstances must produce exactly the same result. If the
circumstances at execution time are similar but not exactly the same as when the script
was recorded, the script should also work correctly. However, certain differences will
always lead to unexpected results or cause execution to fail.

The goal of these guidelines is to help you create scripts that will work correctly in the
largest number of circumstances with the fewest post-recording changes by the user. To
accomplish this goal, a recordable application should send itself Apple events that
describe as specifically as possible the user’s actions in the application’s domain without
making guesses about the user’s intentions.

The way your application uses Apple events to record a user’s actions depends in part
on the kind of script being recorded. From the user’s perspective, there are at least three
kinds of scripts:

■ A script application. The icons for these files appear in the Finder, for example, in the
Apple Menu Items folder or the Startup Items folder.

■ A script that functions like a menu command, usually acting on the current selection
in the current application, and stored either as a compiled script file that appears in
the Finder or as a script stored within an application or one of its documents.

■ A script that is “embedded” in an application—that is, explicitly associated with
something in a document, such as a field in a form, a cell or row of a spreadsheet, or a
button.
9-14 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
The recording guidelines in the sections that follow apply to the recording of scripts that
function like menu commands and scripts that are embedded in an application. Because
such scripts are executed under a user’s direct control, the user expects their execution to
cause something to happen, possibly changing the current selection, the Clipboard, or
the active window.

The execution of a script application, however, may cause a scripting component to send
events to one or more applications intermittently without the user’s knowledge. If the
script in a script application refers to the current selection, the Clipboard, or the active
window, its execution may interfere with other tasks being performed by the user or
tasks performed during the execution of other scripts. To create a script application and
ensure that it works correctly when executed, a scripter may need to modify the script
after it has been recorded.

For example, to eliminate references to the Clipboard, a scripter can use a script variable
as a user-defined Clipboard and convert Cut, Copy, and Paste statements to appropriate
combinations of Move, Copy, New, and Delete statements, while supplying the
previously defined selection as the argument. It may also be necessary to convert a
description such as “the front document” to a specific filename or a variable.

Recording User Actions 9
Two general guidelines apply to the recording of all user actions:

■ Send Apple events that correspond to simple statements in a script rather than
compound statements.

■ Don’t record superfluous actions.

In most cases, if the user performs several related actions, your application should send
Apple events for each action rather than saving the actions and creating an event that
combines them.

For example, if the user selects some text, cuts it, and then pastes it somewhere else, your
application should send itself four events that correspond to these actions:

1. Select the text

2. Cut

3. Set the insertion point

4. Paste
What to Record 9-15

C H A P T E R 9

Recording Apple Events
Thus, if the user selects characters 5 through 20 of the frontmost document, chooses the
Cut command from the Edit menu, places the insertion point after character 72, and
chooses the Paste command, your application should send the following events.

■ A Select event (event class kAEMiscStandards, event ID kAESelect) with this
direct parameter:

■ A Cut event (event class kAEMiscStandards, event ID kAECut)

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cDocument

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 20
9-16 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
■ A Select event with this direct parameter:

■ A Paste event

Note
The format used for the direct parameters in this example and
throughout this chapter does not show the structure of the direct
parameters as they exist within the Apple events. Instead, this format
shows what you would obtain after calling AEGetKeyDesc repeatedly
to extract the nested descriptor records from the Apple events.

When you call AEGetKeyDesc to extract the descriptor record that
specifies an application’s default container, AEGetKeyDesc returns a
descriptor record of type AEDesc with a descriptor type of typeNull
and a data handle whose value is 0. ◆

The first Select event in this example sets the application’s pSelection property (that
is, the current selection) to the objects identified by the object specifier record in the
direct parameter—characters 5 through 20. The second Select event places the insertion
point after the object identified by the object specifier in the direct parameter—after
character 72.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cDocument

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 72

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAEAfter
What to Record 9-17

C H A P T E R 9

Recording Apple Events
You could also interpret these four actions as a single Move event that simply moves
characters 5 through 20 to after character 72. A user could write such a statement in a
script, but for recording purposes four separate events correspond more precisely to the
user’s actions. For example, if the user performed another paste operation after the first
four actions, a Move event would not produce the correct results.

It is equally important for a recordable application not to send superfluous events. For
example, your application should not send an event every time the user makes a
selection. Instead, it should keep track of the most recent selection made. When the user
performs some action on the selection, the application should send an event that sets the
selection followed by the event that corresponds to the action taken by the user.
However, if the user doesn’t perform an action on the selection, the application should
not send an event.

IMPORTANT

If something is already selected when recording begins, your application
should not record that selection. Subsequent user actions should be
recorded assuming that there is a selection. By not recording the current
selection, you allow the user to record scripts that work, without further
modification, much like menu commands that operate on the current
selection. ▲

The example just discussed assumes that the application has multiple documents. In
such an application, document 1 is always the document in the frontmost window. The
examples that follow are simplified, as if they were generated by an application like
TeachText that can have only one document open at a time and can therefore locate
objects such as characters in the default container. For more complex applications that
locate text in cells, documents, and other containers, you must specify additional
containers as appropriate.

Recording the Selection of Text Objects 9
When your application needs to record a selection that the user has made by dragging
through a range of text, it should send itself a Select event that selects a range of
characters. For example, a Select event with this direct parameter selects characters 80
through 764:
9-18 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
It is sufficient to record such a text selection as a range of characters. However, recording
selections in other units can make the corresponding scripts easier to read. If you decide
to record text selections in other units, keep these guidelines in mind:

■ Use the largest whole unit that completely describes the selection.

■ Do not mix units.

■ Use units appropriate to the method of selection.

■ Use logical units rather than units that vary with reformatting.

■ Don’t try to guess the user’s intentions.

The rest of this section provides examples of how to apply these guidelines.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 80

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 764
What to Record 9-19

C H A P T E R 9

Recording Apple Events
If you do record text selections in units other than characters, record each selection in
terms of the largest whole unit that completely describes the selection. For example,
suppose the user selects characters 115 through 170 by dragging. Further, suppose the
selected characters are exactly the same as words 33 through 50 and also the same as
paragraph 2. In this case your application should send itself a Select event with this
direct parameter:

However, if the selected characters don’t match a larger unit exactly—for example, if
paragraph 2 is larger than the selection or the selection is a portion of two paragraphs—
use the largest unit available, in this case words.

For example, a Select event with this direct parameter selects word 33 through word 45:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cParagraph

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 2

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cText

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 33

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 45
9-20 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Do not mix units. You should not send Apple events that define selections like character
2 of word 3 of line 5 of paragraph 2 in document “MyDocument.” Instead, define
selections as simply as possible; for example, character 45 in the document
“MyDocument.”

When the user selects text by double-clicking it, your application should send a Select
event that specifies words. For example, your application should send a Select event
with this direct parameter when the user double-clicks word 5:

If the user double-clicks word 5 and then extends the selection through word 9, your
application should send a Select event with this direct parameter:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cText

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 9
What to Record 9-21

C H A P T E R 9

Recording Apple Events
If your application supports selection of a paragraph, for example by clicking the left
margin, triple-clicking, or some other action, your application should send a Select event
that selects the paragraph. For example, a Select event with this direct parameter selects
paragraph 2:

If your application supports the selection of other units (for instance, cells, rows, and
columns in a spreadsheet; embedded graphics in a word processor; or buttons) and if
users can select a range of such units, your application should record using those units
when appropriate. For example, a Select event with this direct parameter selects row 5
through row 23:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cParagraph

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 2

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 23
9-22 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
A Select event with this direct parameter selects the second 'PICT' image:

When the user chooses a Select All command, your application should send a Select
event with this direct parameter to select the contents of the document:

Units that vary with reformatting, such as lines and pages in a text document, are not as
useful as logical units that describe the data more precisely. Whenever possible, use
logical units such as character, word, paragraph, section, and so on.

Don’t try to guess the user’s intentions. For example, if a selection can be described as
either “word 14” or as “the third bold word in paragraph 3,” use the simpler description.
If you guess the user’s intentions, you will be wrong often enough to cause the user to
distrust the recording process.

Recording Insertion Points 9
The insertion point and a selection are synonymous in the Macintosh Operating System.
However, scripting languages need a way of specifying a zero-width selection.
Sometimes the best way to specify an insertion location is in relation to another object;
for example, “after word 5.” This section describes recommended methods of specifying
an insertion point in a recordable event.

The insertion point can be specified in Apple events by either an insertion location
descriptor record (typeInsertionLocation) or an object specifier record
(typeObjectSpecifier) that specifies the class cInsertionLoc and the key form
formRelativePosition. The Move, Clone, and Create events accept an insertion
location descriptor record; other events, including Select and Set Data, require an object
specifier record.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cPICT

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 2

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pContents
What to Record 9-23

C H A P T E R 9

Recording Apple Events
Five constants can be used to describe an insertion point in relation to an object or
container:

For more information about the way AppleScript uses insertion location descriptor
records, see “Defining Terminology for Use by the AppleScript Component,” which
begins on page 8-3, and the Apple Event Registry: Standard Suites. The rest of this section
provides examples of object specifier records used to specify insertion points.

Users usually insert objects after some other object. So, unless the insertion point is
clearly at the beginning or end of a container or identifies an object to be replaced, use
the constant kAEAfter to record the location.

For example, if the user places the insertion point after character 2, your application
should send a Select event with this direct parameter:

Constant Corresponding insertion point

kAEReplace The specified object will be replaced if not qualified by one of the
other phrases

kAEBefore Just before the specified object (either type
typeObjectSpecifier or type typeInsertionLocation)

kAEAfter Just after the specified object (either type typeObjectSpecifier
or type typeInsertionLocation)

kAEBeginning In the specified container and before all other elements of the same
class in that container (type typeInsertionLocation only)

kAEEnd In the specified container and after all other elements of the same
class in that container

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 2

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAEAfter
9-24 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
If the selection is not 0 characters wide, the user is replacing the selection with another
object, so you can specify the location simply as the object specifier record for the object
to be replaced.

If the user clicks the white space after a paragraph somewhere in the middle of the
document, defining the insertion point becomes more complex because different
applications deal with this situation in different ways. Some place the insertion point at
the end of the current paragraph, while others place the insertion point at the beginning
of the next paragraph. Depending on the way your application handles this situation,
you should use an object specifier record that specifies either kAEBeginning or kAEEnd.

Remember that the Select event requires an object specifier record. Thus, if you want to
place the insertion point at the beginning of a paragraph, use an object specifier record
that specifies a location just before the first item of the paragraph, rather than an
insertion location descriptor record.

For example, a Select event with this direct parameter places the insertion point just
before the first item of paragraph 3:

If the user clicks the left edge of the first line in a paragraph, thus setting the insertion
point before the beginning of the paragraph, you should use a similar strategy. However,
this is the only situation in which you should use kAEPrevious.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cItem

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cParagraph

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 3

keyAEKeyForm typeType formAbsolutePosition

keyAEKeyData typeLongInteger 1

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAEPrevious
What to Record 9-25

C H A P T E R 9

Recording Apple Events
When the insertion point is at the end of a document record, use an object specifier
record that specifies the location after the last item in the document.

For example, a Select event with this direct parameter places the insertion point just after
the last item in a document:

A Select event with this direct parameter places the insertion point just after the last item
in paragraph 3:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cItem

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger -1

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAENext

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cParagraph

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 3

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAENext
9-26 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Recording Typing 9
In general, to record typing your application should send itself a Set Data event that sets
the contents of the selection. The data should be unstyled text. When your application
handles the Set Data event, it should apply the styles that prevail at the insertion point. If
your application supports styled text, you need to decide how to apply styles to new text
and how to record style changes to selected text. Follow these general guidelines for
recording typing:

■ When the user sets an insertion point and types new text, use the styles defined for
the text just before the insertion location.

■ When a user selects text and changes its style, apply the changes to the selection.

■ If a user types or pastes new text into a selection, place the insertion point after the
new text.

The rest of this section provides examples of how to apply these guidelines.

Suppose the user sets an insertion point and then types something. Your application
should use the style, font, size, and other characteristics of the text just before the
insertion point for the new text, and it should record only the new characters inserted.
For example, to place the insertion point after word 30 and insert the text “This is the
new text,” your application can send a Select event followed by a Set Data event:

■ A Select event with this direct parameter places the insertion point after word 30:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 30

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAENext
What to Record 9-27

C H A P T E R 9

Recording Apple Events
■ A Set Data event (event class kAECoreSuite, event ID kAESetData) with these
parameters (keyDirectObject and keyAEData) sets the selection to the new text:

Notice that the Select event in this example causes your application to set its
pSelection property (the current selection) to the location specified by the object
specifier record in the direct parameter—that is, after word 30. The Set Data event then
sets the contents of the selection to a text string. The pContents property specified by
the object specifier record in the direct parameter of the Set Data event represents the
contents of the selection, and the text string in the keyAEData parameter is the text to
which the selection’s contents is to be set.

At this stage, the insertion point is after word 35—the last word added by typing. If the
user now selects one of the new words, say word 34, and changes the style to boldface
and the font to Helvetica®, send a Select event and two Set Data events to record the
action:

■ A Select event with this direct parameter selects word 34:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pSelection

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeType pContents

keyAEData typeChar "This is the new text"

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 34
9-28 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
■ A Set Data event with these parameters sets the style of the selection to boldface:

■ A Set Data event with these parameters sets the font of the selection to Helvetica:

After these three events are sent, word 34 remains selected. Thus, subsequent user
actions upon the same selection do not require your application to send an additional
event to set the selection. Your application should maintain the selection as long as the
selected text is not replaced. If the user types or pastes new text into the selection, your
application should place the insertion point after the new text.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pSelection

keyAEKeyForm typeType formPropertyID

keyAEKeyData typeType pTextStyles

keyAEData typeEnumerated kAEBold

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pSelection

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeType pFont

keyAEData typeChar "Helvetica"
What to Record 9-29

C H A P T E R 9

Recording Apple Events
Such a strategy might result in a series of events like these:

■ A Set Data event with these parameters sets the contents of a selection to “More new
text”:

■ Two Paste events paste the contents of the Clipboard twice after the new text.

Recording the Selection of Nontext Objects 9
The selection of nontext objects differs from the selection of text objects mainly in the
way a recordable application specifies the objects. For example, if the user is working in
a table or spreadsheet and selects row 5, column 3, your application can send a Select
event with this direct parameter:

When recording a range of cells, use a range of rows through a range of columns.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pSelection

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeType pContents

keyAEData typeChar "More new text"

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 3

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5
9-30 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
For example, if the user selects row 5 column 3 through row 6 column 4, specify columns
3 through 4 of rows 5 through 6 by sending a Select event with this direct parameter:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 3

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 4

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 6
What to Record 9-31

C H A P T E R 9

Recording Apple Events
In some drawing and layout applications, users are used to dealing with insertion points
at specific locations rather than relative to other objects. For example, setting an insertion
point in a recordable drawing application might cause the application to send itself a
Select event that places the insertion location at (235, 330)—that is, the location defined
by a vertical coordinate of 235 and a horizontal coordinate of 330. A Select event that
does this could have this direct parameter:

Notice that the key data corresponds to an application’s extension of the standard
interpretation of key form formAbsolutePosition.

To set a selection that consists of noncontiguous objects, an application should send
events that correspond to statements like these:

select {¬

row 5 thru 6 of column 3 thru 4, ¬

row 22 of column 6}

select {circle 2, rectangle 12, text frame 2}

select {file "Guidelines", file "Test Results"}

Identifying Objects 9
The way a recordable application identifies objects can involve assumptions about the
user’s criteria for selecting those objects. In general, such assumptions should be
avoided. Follow these guidelines for identifying objects:

■ If you aren’t absolutely certain of the user’s criteria for selecting an object, identify the
object by name.

■ If the object doesn’t have a name, identify it by index.

■ Determine the index based on the order in which a user would see the objects when
reading a document.

■ Identify windows and open documents on which actions are taken as the frontmost
window or document.

The rest of this section provides examples of how to apply these guidelines.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLocation

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeAEList (see indented record)

typeLongInteger 235

typeLongInteger 330
9-32 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Suppose a user is working with an electronic mail application that permits a variety of
sorting methods for messages received. If the user is currently looking at messages
sorted by date and then deletes the second message in the list, that message should be
identified by name rather than by date. Use an object’s name in any situation where it is
not completely clear which identifying criteria the user had in mind.

Suppose a user has used the application’s Find command to locate all messages created
on a certain date. In this case it might be appropriate to identify “every message whose
creation date . . .” in the corresponding Apple event. However, if the user did not ask for
all messages created on that date, you can’t be sure whether the user really wanted every
message or only a particular one. For instance, perhaps the user couldn’t remember the
name, but only an approximate date. In this case a recordable application should identify
the message by name.

Just as names are more specific and usually more desirable than whose tests,
names are usually more specific and more readable than identifiers or indices. However,
some objects may not have a name, only some other identifier or an index. Even though
an identifier is more specific than an index, a logically defined index of position is more
readable and is therefore recommended. For example, if a document contains unnamed
illustrations, the user is more likely to identify a figure by index (order from the
beginning of the file) than identifier (such as order created).

Suppose a document contains two figures that appear at first glance to be side by side,
except that the right one is slightly taller and therefore begins higher on the page than
the left one. In cases such as this, your application should determine the index based
on the order in which the user would see the objects when reading a document. For
Roman script systems, this means reading from left to right and from top to bottom.
In the example just described, the leftmost, shorter figure would have a lower figure
number than the rightmost, taller one.

When your application needs to refer to a window or a document, it should identify the
object with an object specifier record that corresponds to the first, or front, window:

This strategy allows users to record scripts that will work on any window, regardless
of its name. Similarly, events that act on an open document should identify it as
“document 1.”

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWindow

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1
What to Record 9-33

C H A P T E R 9

Recording Apple Events
It is usually possible to describe objects in several different ways. If an object has a
unique name, use that. For example, instead of an object specifier record that describes
“column number 7,” use one that describes “the column named ‘March’”:

It may be that such an object could also be described in a more complex manner, such as
picture 1 of paragraph 302 of chapter 2. But complex descriptions like this should be
used only as a last resort if no simpler name is available.

In general, be as specific as possible when you identify a selection in a recordable event.
The user can generalize as necessary by editing the recorded script.

Moving the Selection During Recording 9
If recording is turned on and the user makes a selection, performs some action, and then
makes a different selection, your application must make a decision: should it record the
second selection in absolute terms or relative to the first selection? That is, should the
corresponding AppleScript statement be

select insertion location before paragraph 5

or

select insertion location before paragraph after selection

Both statements may be appropriate under different conditions. But suppose that the
user had selected paragraph 3 and now selects paragraph 12 or picture 3. Relative
addressing doesn’t make sense in these situations because the distance involved is too
great or the unit is different. When you can’t be sure of the user’s intent, you should use
absolute addressing. You can safely use relative addressing only when the user moves
the selection or insertion point by only one unit, as with the arrow keys.

Even the use of the arrow keys does not guarantee that you can use relative addressing.
For example, suppose that the user has selected cell 5 of row 2 in a spreadsheet and then
presses the Left Arrow key three times. In this case, it is best to send Apple events
equivalent to the statement

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeLongInteger "March"
9-34 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
select cell 3 of row 2

rather than the statements

select the cell before selection

select the cell before selection

select the cell before selection

Using relative addressing in certain circumstances may minimize the amount of editing
that the user must do after recording a script. However, recordable applications are not
required to use relative addressing.

Recording Interactions With Dialog Boxes 9
When executing scripts, users normally do not want to see dialog boxes. Therefore, your
application should record information specified by the user in dialog boxes rather than
sending events that would cause the dialog boxes to appear during script execution.

For example, suppose a user chooses the Close command and the standard save changes
dialog box appears. If the user then clicks Save, your application should send a Close
event that corresponds to a statement like this:

close document "MyDoc" saving Yes

Any settings in a dialog box that the user does not change (such as the range of pages to
print in a Print dialog box) should not be recorded.

How Apple Event Recording Works 9

Scripting components use the Apple Event Manager’s recording mechanism to allow a
recording process such as the Script Editor application to control recording into scripts.
Script editors and applications that provide their own recording capabilities can take
advantage of the recording mechanism via standard scripting component routines.

This section describes how scripting components use Apple event recording. You need to
read this section if you are developing a scripting component or a script-editing
application, or if you want your application to initiate and control Apple event
recording. For information about using the standard scripting component routines to
turn recording off and on, see “Recording Scripts” on page 10-26.
How Apple Event Recording Works 9-35

C H A P T E R 9

Recording Apple Events
When a user turns on recording for a recording process (for example, by clicking the
Record button in Script Editor), the recording process calls a scripting component
routine (OSAStartRecording) to turn recording on. The scripting component responds
by sending a Start Recording event to the recording process (or any running process on
the local computer).

The recording process should not handle the Start Recording event. Instead, the Apple
Event Manager handles it by sending a Recording On event to all running processes on
the local computer and sending copies of all subsequent recordable events to the
recording process. (The Recording On event is described on page 9-4.)

If an application that supports Apple events is launched on a computer for which
recording is turned on, the Apple Event Manager will also send it a Recording On event
for each recording process that is currently recording.

The recording process receives recordable events by means of a Receive Recordable
Event handler—that is, a handler installed in the Apple event dispatch table for event
class kCoreEventClass and event ID kAENotifyRecording. Scripting components
install this handler on behalf of a recording process when recording is first turned on
and remove the handler when recording is turned off. Much like a handler for event
class typeWildCard and event ID typeWildCard, the Receive Recordable Event
handler handles all recordable events sent to the recording process by the Apple Event
Manager. Any other Apple events received by the recording process are dispatched in
the usual manner. The Receive Recordable Event handler handles recordable events by
recording them in the script specified by the recording process’s call to
OSAStartRecording.

Start Recording—begin sending copies of recordable events to recording process

Event class kCoreEventClass

Event ID kAEStartRecording

Parameters None

Description Sent by a scripting component to the recording process (or to any
running process on the local computer), but handled by the Apple Event
Manager. The Apple Event Manager responds by turning on recording
and sending a Recording On event to all running processes on the local
computer.

This event must be addressed using a process serial number (PSN); it
should never be sent to an address specified as kCurrentProcess.

Receive Recordable Event—receive and record a copy of a recordable event

Event class kCoreEventClass

Event ID kAENotifyRecording

Parameters Same as Apple event being recorded

Description Wildcard event class and event ID handled by a recording process in
order to receive and record copies of recordable events sent to it by the
Apple Event Manager. Scripting components install a handler for this
event on behalf of a recording process when recording is turned on and
remove the handler when recording is turned off.
9-36 How Apple Event Recording Works

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Whenever the Receive Recordable Event handler receives a recordable event, the
scripting component sends your application a Recorded Text event. The Recorded Text
event contains the decompiled source data for the recorded event in the form of styled
text. For a description of the Recorded Text event, see “Recording Scripts” on page 10-26.

When a user turns off recording (for example, by clicking Script Editor’s Stop button),
the recording process calls a scripting component routine (OSAStopRecording) to turn
recording off. The scripting component responds by sending a Stop Recording event to
the recording process (or any running process on the local computer).

Like the Start Recording event, the Stop Recording event is handled by the Apple Event
Manager. The Apple Event Manager responds by sending a Recording Off event to all
running processes on the local computer. (The Recording Off event is described on
page 9-4.)

Recording continues, and the recording process may continue to receive recordable
events, until the Apple Event Manager has notified all running processes that recording
has been turned off for that recording process. The Apple Event Manager sends all
running processes the Recording Off event with the kAEWaitReply flag set. If an
application has stored some data (for instance, keystrokes) that needs to be recorded as
an Apple event, this is the last chance for the application to send the event for recording
purposes. Recording stops only after the Apple Event Manager returns a reply for the
Stop Recording event.

The Apple Event Manager supports multiple simultaneous recording processes. A Stop
Recording event sent for one of them does not affect the others. If your application needs
to know which of several recording processes has turned recording on or off, it can check
the keyOriginalAddressAttr attribute of the Recording On or Recording Off event
for the address of the recording process.

If the Apple Event Manager does not receive a Stop Recording event for a recording
process that quits unexpectedly, the applications being recorded don’t find out
immediately. When it attempts to send a copy of a recordable event to a recording
process that is no longer active, the Apple Event Manager sends a Recording Off event to
all running processes on behalf of that recording process and specifies the address for
that process in the keyOriginalAddressAttr attribute. If a recording process that
quits is the only actively recording process, recording stops completely after the Apple
Event Manager has informed all running processes that recording has been turned off.

Stop Recording—stop sending copies of recordable events to recording process

Event class kCoreEventClass

Event ID kAEStopRecording

Parameters None

Description Sent by a scripting component to the recording process (or to any
running process on the local computer), but handled by the Apple Event
Manager. The Apple Event Manager responds by sending a Recording
Off event to all running processes on the local computer.

This event must be addressed using a process serial number (PSN); it
should never be sent to an address specified as kCurrentProcess.
How Apple Event Recording Works 9-37

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	Recording Apple Events
	About Recordable Applications
	Factoring Your Application for Recording
	Factoring the Quit Command and the New Command
	Sending Apple Events Without Executing Them

	What to Record
	Recording User Actions
	Recording the Selection of Text Objects
	Recording Insertion Points
	Recording Typing
	Recording the Selection of Nontext Objects
	Identifying Objects
	Moving the Selection During Recording
	Recording Interactions With Dialog Boxes

	How Apple Event Recording Works

	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

