

C H A P T E R 2

2

E
dition M

anager

Edition Manager 2

This chapter describes how you can use the Edition Manager to allow your users to
share and automatically update data from numerous documents and applications.

The Edition Manager is available only in System 7 or later. It can be used by many
different applications located on a single disk or throughout a network of Macintosh
computers. To test for the existence of the Edition Manager, use the Gestalt function,
described in Inside Macintosh: Operating System Utilities.

Read the information in this chapter if you want your application’s documents to share
and automatically update data, or if you want to share and automatically update data
with documents created by other applications that support the Edition Manager.

For example, a user might want to capture sales figures and totals from within a
spreadsheet and then include this information in a word-processing document that
summarizes sales for a given month. The Edition Manager establishes a connection
between these two documents. When a user modifies the spreadsheet, the information in
the word-processing document can be automatically updated to contain the latest
changes. To accomplish this, both the spreadsheet application and the word-processing
application must support the features of the Edition Manager.

To use this chapter, you should be familiar with sending and receiving high-level events,
described in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials. Your application must also support Apple events to receive Apple events from
the Edition Manager. See the following chapters in this book for detailed information on
Apple events.

The Edition Manager provides you with the ability to

■ capture data within a document and integrate it into another document

■ modify information in a document and automatically update any document that
shares its data

■ share information between applications on the same computer or across a network of
Macintosh computers

Building the capabilities of the Edition Manager into your program is similar to building
cut-and-paste features into your program. Text, graphics, spreadsheet cells, database
reports—any data that you can select, you can make accessible to other applications that
support the Edition Manager. The next section provides an overview of the main
elements of the Edition Manager. Following sections discuss how to implement these
features in your application.

This chapter also describes an advanced feature that allows applications to share data
directly from a file.
2-3

C H A P T E R 2

Edition Manager

Introduction to Publishers, Subscribers, and Editions 2

A section is a portion of a document that shares its contents with other documents. The
Edition Manager supports two types of sections: publishers and subscribers. A
publisher is a section within a document that makes its data available to other
documents or applications. A subscriber is a section within a document that obtains its
data from other documents or applications.

Your application writes a copy of the data in each publisher to a separate file called an
edition container. The actual data that is written to the edition container is referred to as
the edition. Your application obtains the data for each subscriber by reading data
from the edition container. Note that throughout this chapter, the term edition refers to
the edition container and the data it contains.

You publish data when you want to make it available to other documents and
applications. When data is published, it is stored in an edition container. You subscribe
to data that a publisher makes available by reading an edition from its container.

Note
Section and edition container are programmatic terms. You should not use
them in your application or your documentation. Use publishers,
subscribers, and editions. You should also refrain from using other terms
such as publication or subscription to describe the dynamic sharing of
information provided by the Edition Manager. Use the terms publish and
subscribe to describe the Edition Manager features. ◆

Each edition has an icon that is visible from the Finder. Figure 2-1 shows the
default edition icon.

Figure 2-1 The default edition icon

The name that the user specifies for the edition is located next to the edition icon. For
information on providing icons for the editions created by your application, see the
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials. Figure 2-2
illustrates a document containing a single publisher, its corresponding edition, and a
subscriber to the edition in another document.

sample
2-4 Introduction to Publishers, Subscribers, and Editions

C H A P T E R 2

Edition Manager

2

E
dition M

anager

Figure 2-2 A publisher, an edition, and a subscriber

Note that the publisher and subscriber borders illustrated in Figure 2-2 may appear
slightly different from the borders you see on the screen. Figure 2-6 on page 2-9 shows
the publisher and subscriber borders as they appear onscreen.

Data always flows in one direction, from publisher to edition to subscriber. Documents
that contain publishers and subscribers do not have to be open at the same time to share
data. Whenever the user saves a document that contains a publisher, the edition changes
to reflect the current data from the publisher. All subscribers update their contents from
the edition. Any number of subscribers can subscribe to a single edition.

To create a publisher within a document, a user selects an area of the document to
share and chooses Create Publisher from the Edit menu (see Figure 2-7 on page 2-10).
Figure 2-3 shows the dialog box that your application should display when the user
chooses Create Publisher.

Figure 2-3 The publisher dialog box

SubscriberPublisher

$1324.67 $4567.67 $7689.75

$2313.78 $2345.34 $3425.67

$4312.87 $3425.80 $5463.90

$3590.00 $5465.98 $7865.90

These figures reflect the increases over a two

month period which were affected by

the increase cost of

operating expenses for that period.

Adjustments to these figures will be evaluated

shortly.

January February Totals

$1324.46 $1938.99 $3251.45

$2313.56 $2457.89 $3425.66

$4312.87 $3255.09 $5468.00

$3590.67 $5655.88 $7861.23

$3890.88 $6586.45 $5433.71

November December Totals

$1394.67 $5677.67 $2349.75

$3875.78 $2837.34 $3984.67

$9356.87 $3695.80 $5463.90

$5690.78 $5465.98 $7489.14

January February Totals

$1312.46 $1938.99 $3251.45

$2313.56 $2457.89 $3425.66

Sales data

TO: Nick

FROM: Laura Palmer

Here are the sales figures that you requested.
Introduction to Publishers, Subscribers, and Editions 2-5

C H A P T E R 2

Edition Manager

Your application provides a thumbnail sketch of the edition data, which the
Edition Manager displays in the preview area of the publisher dialog box. Your preview
of the edition in this dialog box should provide a visual cue about the type of
information that the user has selected to publish.

A preview area also appears in the subscriber dialog box (see Figure 2-4). This preview,
too, should provide a visual cue about the type of information the edition contains.
For example, it should allow users to distinguish between text information and
spreadsheet arrays.

The publisher dialog box uses the extended interface of the standard file dialog box that
accompanies System 7. The user navigates through the contents of the disk using the
mouse or keyboard.

A user can modify a publisher within a document just like any other portion of a
document. As a default, each time a user saves a document containing a publisher, your
application should automatically write the publisher’s data to the edition. You also need
to provide the user with the choice of sending new publisher data to an edition manually
(that is, only at the user’s specific request). You should provide these options by using
the publisher options dialog box described later in “Using Publisher and Subscriber
Options” beginning on page 2-43.

For example, one user may choose to update an edition automatically each time a
document is saved. This update mode is useful for a user who creates a publisher within
a spreadsheet application that records stock information. Each time the user updates the
stock information and saves the spreadsheet, a new edition automatically becomes
available to subscribers.

Another user may choose to update an edition only upon request. This update mode
might be useful for a user who creates a publisher within a word-processing application
for a quarterly sales report. The user incrementally updates the sales report throughout
the entire quarter but does not want this information to be available to subscribers
until the end of the quarter. Only at the end of each quarter does the user specifically
request to update the edition and make it available to any subscribers.

To create a subscriber within a document, the user places the insertion point and chooses
Subscribe To from the Edit menu. Figure 2-4 shows the dialog box that your application
should display when the user chooses Subscribe To.
2-6 Introduction to Publishers, Subscribers, and Editions

C H A P T E R 2

Edition Manager

2

E
dition M

anager

Figure 2-4 The subscriber dialog box

The subscriber dialog box also uses the extended interface of the standard file dialog box
introduced with System 7. Initially, the dialog box should highlight the name of the last
edition published or subscribed to. This allows a user to create a publisher and
immediately subscribe to its edition.

A subscriber receives its data from a single edition. By default, your application should
automatically update a document containing a subscriber whenever a new edition is
available. You also need to provide the user with the choice of receiving the latest edition
manually (that is, only when the user specifically requests it). You can provide these
options by using the subscriber options dialog box described later in “Using Publisher
and Subscriber Options” beginning on page 2-43.

For example, one user may choose to receive new editions automatically as they become
available. This update mode is useful for a user who subscribes to information from an
edition that consists of daily sales figures. This user automatically acquires each version
of the sales information as it becomes available.

Another user may choose to receive a new edition only upon request. This update mode
is useful for a user who creates a subscriber to an edition that consists of graphics data
(such as a company logo). The user may require only periodic versions of the logo and
not need frequent updates. In this case, your application should update the subscriber
with a new edition only when the user specifically requests it.

A user can select, cut, copy, or paste an entire subscriber. Although the contents of the
subscriber as a whole can be modified, a user cannot edit portions of a subscriber. For
example, a user can underline or italicize the entire subscriber text but cannot delete a
sentence or rotate a single graphic object. This restriction protects the user from losing
changes to a subscriber when a new edition arrives. Remember that, as a default, new
editions should automatically update a subscriber. Any changes that a user made to the
subscriber text would have to be reapplied by the user when the new edition arrives. See
“Modifying a Subscriber” on page 2-59 for further information.
Introduction to Publishers, Subscribers, and Editions 2-7

C H A P T E R 2

Edition Manager

A single document can contain any number or combination of publishers and
subscribers. Figure 2-5 shows an example of a document that contains two publishers
and one subscriber (and their corresponding editions). Remember that data always flows
in one direction, from publisher to edition to subscriber. The “Concert flyer” document
contains a publisher that is subscribed to by the “Benefit concert” document. The
“Concert flyer” document also subscribes to a portion of the “Pianos & palm trees”
document. In addition, the “Concert flyer” document as a whole is subscribed to by the
“Sample flyer” document.

Figure 2-5 A document and its corresponding editions

M u s i c

in

the

park

Join us every Wednesday evening

at 8 PM beginning March 21.

The concerts will be held in the outdoor atrium

shell located across from the Academy of Sciences

in Golden Gate Park in San Francisco.

The series will continue through

April 25.

Concert

flyer

Benefit concert

is a series of benefit concerts

being held by the City Arts

Foundation. All proceeds

will be donated to the children’s

art museum and the city center

arts council.

u s i c
in

the

park

M

Subscriber

Title

Pianos & palm trees

Publisher

Graphic

Sample flyer

Here is a sample

flyer.

M u s i c

in

the

park

Join us every Wednesday evening

at 8 PM beginning March 21.

The concerts will be held in the outdoor atrium

shell located across from the Academy of Sciences

in Golden Gate Park in San Francisco.

The series will continue through

April 25.

Subscriber

Flyer
2-8 Introduction to Publishers, Subscribers, and Editions

C H A P T E R 2

Edition Manager

2

E
dition M

anager

You should distinguish each selected publisher and subscriber within a document with a
border. Display a publisher border as three pixels wide with 50 percent gray lines, and
display a subscriber border as three pixels wide with 75 percent gray lines. A rectangle of
one white pixel should separate the data from the border itself. Borders should be drawn
outside the contents of publishers and subscribers so that data is not obscured. See
Figure 2-6 for an illustration of the borders as they appear onscreen. See “Displaying
Publisher and Subscriber Borders” on page 2-50 for detailed information on how to
implement borders for specific applications.

Figure 2-6 shows a document containing a publisher and a document containing a
subscriber, with borders displayed for each.

Borders for publishers and subscribers should behave like the borders of 'PICT'
graphics within a word-processing document. Your application should display a border
whenever the user clicks within the content area of a publisher or a subscriber. Your
application should hide the border whenever the user clicks outside the content area. See
“Displaying Publisher and Subscriber Borders” on page 2-50 for detailed information on
how to implement borders for specific applications.

Figure 2-6 Publisher and subscriber borders
Introduction to Publishers, Subscribers, and Editions 2-9

C H A P T E R 2

Edition Manager

You also need to support the standard Edition Manager menu commands in the
Edit menu. These menu items include

■ Create Publisher…

■ Subscribe To…

■ Publisher/Subscriber Options…

■ Show/Hide Borders (optional)

■ Stop All Editions (optional)

Use a divider to separate the Edition Manager menu commands from the standard
Edit menu commands Cut, Copy, and Paste. Figure 2-7 shows the standard Edition
Manager menu commands.

Figure 2-7 Edition Manager commands in the Edit menu

The Subscriber Options menu command should toggle with the Publisher Options menu
command. When a user selects a subscriber and then accesses the menu bar, your
application should adjust its menus so that the Subscriber Options menu command
appears in the Edit menu. When a user selects a publisher and then accesses the menu
bar, your application should adjust its menus so that the Publisher Options menu
command appears in the Edit menu. In addition, you may support a Show Borders
menu command that toggles with Hide Borders to display or hide all publishers and
subscriber borders within documents. You may also support a Stop All Editions menu
command to provide a method for temporarily suspending all update activity in a
document. When the user chooses this command, you should place a checkmark next to
it. You should also stop all publishers from sending data to editions and all subscribers
from receiving new editions. When the user chooses this command again, remove the
checkmark and update any subscribers that are set up to receive new editions
automatically.
2-10 Introduction to Publishers, Subscribers, and Editions

C H A P T E R 2

Edition Manager

2

E
dition M

anager

If you find that you need all of the available space in the Edit menu for your
application’s commands, you may create a hierarchical menu for the Edition Manager
menu commands. If you choose to implement this structure, you should allow users to
access the Edition Manager menu commands through a Publishing menu command in
the Edit menu. Because this menu structure is not as accessible to users, you should
implement it only if you have no other alternative.

Figure 2-8 shows the Edition Manager menu commands in a hierarchical menu structure.

Figure 2-8 Edition Manager commands under the Publishing menu command

For each publisher or subscriber within an open document, you must have a section
record and an alias record. The section record contains a time stamp that records the
version of the data that resides in the section. The section record also identifies the
section as either a publisher or subscriber, and it establishes a unique identity for each
publisher or subscriber. The section record does not contain the data within the section.
The alias record is a reference to the edition container from the document that contains
the corresponding publisher or subscriber section.

There are special options associated with publishers and subscribers within documents.
Your application can use the publisher and subscriber options dialog boxes provided by
the Edition Manager to make these choices available to the user. For example, a user can
select Open Publisher within the subscriber options dialog box to access the document
containing the publisher. Your application can also allow a user to cancel subscribers or
publishers within documents, specify when to update an edition from a publisher, or
specify when to update a subscriber with a new edition. These options are described in
“Using Publisher and Subscriber Options” beginning on page 2-43.
Introduction to Publishers, Subscribers, and Editions 2-11

C H A P T E R 2

Edition Manager

About the Edition Manager 2

The next section discusses how to save, open, read, and write a document that shares
data. In addition, it describes how to

■ make data accessible to other applications

■ integrate data into numerous documents

■ set update options

■ implement borders

■ modify shared data

■ customize dialog boxes

■ subscribe to data in non-edition files

Using the Edition Manager 2

This section describes how your application can

■ receive Apple events from the Edition Manager

■ set up a section record and alias record for open documents containing sections

■ save a document that contains sections

■ open a document that contains sections

■ read and write sections

■ create a publisher within a document, create its edition container, and write data to it

■ create a subscriber within a document and read its data from an edition

To begin, you must determine whether the Edition Manager is available on the system
by using the Gestalt function with the gestaltEditionMgrAttr ('edtn') selector.
If the response parameter returns 1 in the bit defined by the
gestaltEditionMgrPresent constant (bit 0), the Edition Manager is present.

If the Edition Manager is present, load it into memory using the InitEditionPack
function. This function determines whether the machine has enough space in the system
heap for the Edition Manager to operate.

err := InitEditionPack;

If the InitEditionPack function returns noErr, you have enough space to load the
package. If you do not have enough space, the application can either terminate itself or
continue with the Edition Manager functionality disabled.
2-12 About the Edition Manager

C H A P T E R 2

Edition Manager

2

E
dition M

anager

Receiving Apple Events From the Edition Manager 2
Applications that use the Edition Manager must support Apple events. This requires that
your application support the required Open Documents event and Apple events sent by
the Edition Manager. See the chapter “Introduction to Apple Events” in this book for
general information on Apple events.

Apple events sent by the Edition Manager arrive as high-level events. The
EventRecord data type defines the event record.

TYPE EventRecord =

RECORD

what: Integer; {kHighLevelEvent}

message: LongInt; {'sect'}

when: LongInt;

where: Point; {'read', 'writ', 'cncl', 'scrl'}

modifiers: Integer;

END;

The Edition Manager can send these Apple events with the event class and event ID as
shown here:

■ Section Read events ('sect' 'read')

■ Section Write events ('sect' 'writ')

■ Section Cancel events ('sect' 'cncl')

■ Section Scroll events ('sect' 'scrl')

Each time your application creates a publisher or a subscriber, the Edition Manager
registers its section. When an edition is updated, the Edition Manager scans its list to
locate registered subscribers. For each registered subscriber that is set up to receive
updated editions automatically, your application receives a Section Read event.

If the Edition Manager discovers that an edition file is missing while registering a
publisher, it creates a new edition file and sends the publisher a Section Write event.

When you receive a Section Cancel event, you need to cancel the specified section. Note
that the current Edition Manager does not send you Section Cancel events, but you do
need to provide a handler for future expansion.

If the user selects a subscriber within a document and then selects Open Publisher in the
subscriber options dialog box, the publishing application receives the Open Documents
event and opens the document containing the publisher. The publishing application also
receives a Section Scroll event. Scroll to the location of the publisher, display this section
on the user’s screen, and turn on its border.

See “Opening and Closing a Document Containing Sections” beginning on page 2-22 for
detailed information on registering and unregistering a section and writing data to an
edition. See “Using Publisher and Subscriber Options” beginning on page 2-43 for
information on publisher and subscriber options.
Using the Edition Manager 2-13

C H A P T E R 2

Edition Manager
After receiving an Apple event sent by the Edition Manager, use the Apple Event
Manager to extract the section handle. In addition, you must also call the
IsRegisteredSection function to determine whether the section is registered. It is
possible (because of a race condition) to receive an event for a section that you recently
disposed of or unregistered. One way to ensure that an event corresponds to a valid
section is to call the IsRegisteredSection function after you receive an event.

err := IsRegisteredSection (sectionH);

Listing 2-1 illustrates how to use the Apple Event Manager and install an event handler
to handle Section Read events. You can write similar code for Section Write events,
Section Scroll events, and Section Cancel events.

Listing 2-1 Accepting Section Read events and verifying if a section is registered

{the following goes in your initialization code}

myErr := AEInstallEventHandler(sectionEventMsgClass {'sect'},

 sectionReadMsgID {'read'},

 @MyHandleSectionReadEvent, 0,

 FALSE);

{this is the routine the Apple Event Manager calls when a }

{ Section Read event arrives}

FUNCTION MyHandleSectionReadEvent(theAppleEvent,

 reply: AppleEvent;

 refCon: LongInt): OSErr;

VAR

myErr: OSErr;

sectionH: SectionHandle;

BEGIN

{get section handle out of Apple event message buffer}

myErr := MyGetSectionHandleFromEvent(theAppleEvent, sectionH);

IF myErr = noErr THEN

BEGIN

IF IsRegisteredSection(sectionH) = noErr THEN

{if section is registered, read the new data}

MyHandleSectionReadEvent := DoSectionRead(sectionH);

END

ELSE

MyHandleSectionReadEvent := myErr;

END; {MyHandleSectionReadEvent}
2-14 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
{this routine reads in subscriber data and updates its display}

FUNCTION DoSectionRead(subscriber: SectionHandle): OSErr;

BEGIN

{your code here}

END; {DoSectionRead}

{this is part of your Apple event–handling code}

FUNCTION MyGetSectionHandleFromEvent(theAppleEvent: AppleEvent;

 VAR sectionH: SectionHandle)

 : OSErr;

VAR

ignoreType: DescType;

ignoreSize: Size;

BEGIN

{parse section handle out of message buffer}

MyGetSectionHandleFromEvent

:= AEGetParamPtr(theAppleEvent, {event to parse}

keyDirectObject, {look for direct }

{ object}

typeSectionH, {want a SectionHandle}

ignoreType, {ignore type it could }

{ get}

@sectionH, {put SectionHandle }

{ here}

SizeOf(sectionH), {size of storage for }

{ SectionHandle}

ignoreSize); {ignore storage it }

{ used}

END; {MyGetSectionHandleFromEvent}

In addition to the Section Read, Section Write, Section Cancel, and Section Scroll events,
your application can also respond to the Create Publisher event. For more information
on this event, as well as additional information on how to handle Apple events, see the
chapter “Responding to Apple Events” in this book.

Creating the Section Record and Alias Record 2
Your application is responsible for creating a section record and an alias record for each
publisher and subscriber section within an open document.

The section record identifies each section as a publisher or subscriber and provides
identification for each section. The section record does not contain the data within the
section; it describes the attributes of the section. Your application must provide its own
method for associating the data within a section with its section record. Your application
is also responsible for saving the data in the section.
Using the Edition Manager 2-15

C H A P T E R 2

Edition Manager
The alias field of the section record contains a handle to its alias record. The alias
record is a reference to the edition container from the document that contains the
publisher or subscriber section. You should be familiar with the Alias Manager’s
conventions for creating alias records and identifying files, folders, and volumes to
locate files that have been moved, copied, or restored from backup. For information on
the Alias Manager, see Inside Macintosh: Files.

When a user saves a document, your application should store all section records and
alias records in the document’s resource fork. Corresponding section records and alias
records should have the same resource ID.

Figure 2-9 shows a document containing a publisher and subscriber, and the
corresponding section records and alias records.

Figure 2-9 A document with a publisher and subscriber and its resource fork

Publisher

Subscriber

Apple SCSI Cable Terminators

are hardware devices

that attach to a SCSI

device or SCSI cable.

There must be no more than

two terminators in a SCSI chain.

SCSI cables and terminators
Devices connected to the SCSI port on the back

of the main unit must have the proper number

of terminators for the devices to work correctly

and to prevent damage to the SCSI chip

inside your computer.

Resource fork

version:

kind:

mode:

mdDate:

sectionID:

refCon:

alias:

subPart:

nextSection:

controlBlock:

refNum:

version:

kind:

mode:

mdDate:

sectionID:

refCon:

alias:

subPart:

nextSection:

controlBlock:

refNum:

Adding Cable Terminators

A Cable Terminator acts as a damper in

your SCSI Cable System. Terminators

keep signals from bouncing off one end

of the line and rippling back, interfering

with the new messages.

Section record

Section record

Terminator

SCSI info

Alias record

Alias record
2-16 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
A section record contains information to identify the data contained within a section as a
publisher or a subscriber, a time stamp to record the last modification of the section,
and unique identification for each section. The SectionRecord data type defines the
section record.

TYPE SectionRecord =

RECORD

version: SignedByte; {always 1 in 7.0}

kind: SectionType; {publisher or subscriber}

mode: UpdateMode; {automatic or manual}

mdDate: TimeStamp; {last change in document}

sectionID: LongInt; {application-specific, }

{ unique per document}

refCon: LongInt; {application-specific}

alias: AliasHandle; {handle to alias record}

{The following fields are private and are set up by the }

{ RegisterSection function described later within this }

{ chapter. Do not modify the private fields.}

subPart: LongInt; {private}

nextSection: SectionHandle; {private, do not use as a }

{ linked list}

controlBlock: Handle; {may be used for comparison }

{ only}

refNum: EditionRefNum; {private}

END;

Field descriptions

version Indicates the version of the section record, currently $01.
kind Defines the section type as either publisher or subscriber with the

stPublisher or stSubscriber constant.
mode Indicates if editions are updated automatically or manually.
mdDate Indicates which version (modification date) of the section’s contents

is contained within the publisher or subscriber. The mdDate field is
set to 0 when you create a new subscriber section and to the current
time when you create a new publisher. Be sure to update this field
each time publisher data is modified. The section’s modification
date is compared to the edition’s modification date to determine
whether the section and the edition contain the same data. The
section modification date is displayed in the publisher and
subscriber options dialog boxes. See “Closing an Edition” on
page 2-28 for detailed information.
Using the Edition Manager 2-17

C H A P T E R 2

Edition Manager
sectionID Provides a unique number for each section within a document. A
simple way to implement this is to create a counter for each
document that is saved to disk with the document. The counter
should start at 1. The section ID is currently used as a tie breaker in
the GoToPublisherSection function when there are multiple
publishers to the same edition in a single document. The section ID
should not be 0 or –1. See “Duplicating Publishers and Subscribers”
on page 2-58 for information on multiple publishers.

refCon Reference constant available for application-specific use.
alias Contains a handle to the alias record for a particular section within

a document.

Whenever the user creates a publisher or subscriber, call the NewSection function to
create the section record and the alias record.

err := NewSection(container, sectionDocument, kind, sectionID,

 initialMode, sectionH);

The NewSection function creates a new section record (either publisher or subscriber),
indicates whether editions are updated automatically or manually, sets the modification
date, and creates an alias record from the document containing the section to the edition
container.

You can set the sectionDocument parameter to NIL if the current document has never
been saved. Use the AssociateSection function to update the alias record of a
registered section when the user names or renames a document by choosing Save As
from the File menu. If you are creating a subscriber with the initialMode parameter
set to receive new editions automatically, your application receives a Section Read event
each time a new edition becomes available for this subscriber.

If an error is encountered, the NewSection function returns NIL in the sectionH
parameter. Otherwise, NewSection returns a handle to the allocated section record in
the sectionH parameter.
2-18 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Set the initialMode parameter to the update mode for each subscriber and publisher
created. You can specify the update mode using these constants:

CONST sumAutomatic = 0; {subscriber receives new }

{ editions automatically}

sumManual = 1; {subscriber receives new }

{ editions manually}

pumOnSave = 0; {publisher sends new }

{ editions on save}

pumManual = 1; {publisher does not send }

{ new editions until user }

 { request}

See “Using Publisher and Subscriber Options” beginning on page 2-43 for detailed
information on update modes for publishers and subscribers. See Listing 2-4 beginning
on page 2-33 for code that uses the NewSection function to create a publisher. See
Listing 2-6 on page 2-40 for code that uses NewSection to create a subscriber.

Saving a Document Containing Sections 2
When saving a document that contains sections, you should write out each section
record as a resource of type 'sect' and write out each alias record as a resource of type
'alis' with the same ID as the section record. See the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox for detailed information on resources.

If a user closes a document that contains newly created publishers without attempting to
save its contents, you should display an alert box similar to the one shown in Figure 2-10.

Figure 2-10 The new publisher alert box
Using the Edition Manager 2-19

C H A P T E R 2

Edition Manager
If you keep the section records and alias records for each publisher and subscriber as
resources, you can use the ChangedResource or WriteResource function. If you
detach the section records and alias records from each section, you need to clone the
handles and use the AddResource function. See the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox for detailed information on the
ChangedResource, WriteResource, and AddResource functions.

Use the PBExchangeFiles function to ensure that the file ID remains the same each
time you save a document that contains sections. Saving a file typically involves creating
a new file (with a temporary name), writing data to it, closing it, and then deleting the
original file that you are replacing. You rename the temporary file with the original
filename, which leads to a new file ID. The PBExchangeFiles function swaps the
contents of the two files (even if they are open) by getting both catalog entries and
swapping the allocation pointers. If the files are open, the file control block (FCB) is
updated so that the reference numbers still access the same contents (under a new
name). See Inside Macintosh: Files for detailed information on the PBExchangeFiles
function.

Listing 2-2 illustrates how to save a file that contains sections. If the contents of a
publisher have changed since the last save, the application-defined procedure
MySaveDocument writes the publisher’s data to its edition. It then writes out to
the saved document the section records and alias records of all publishers and
subscribers. MySaveDocument calls another application-defined routine,
MyGetSectionAliasPair, to return a handle and resource ID to a section. As
described earlier, you should write out the eligible section records and alias records as
resources to allow for future compatibility. There are several different techniques for
saving or adding resources; this listing illustrates one technique. The section handles are
still valid after using the AddResource function because this listing illustrates just
saving, not closing, the file.

Before you write out sections, you need to see if any publisher sections share the same
control block. Publishers that share the same control block share the same edition.

If a user creates an identical copy of a file by choosing Save As from the File menu and
does not make any changes to this new file, you simply use the AssociateSection
function to indicate to the Edition Manager which document a section is located in.
2-20 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Listing 2-2 Saving a document containing sections

PROCEDURE MySaveDocument(thisDocument: MyDocumentInfoPtr;

 numberOfSections: Integer);

VAR

aSectionH: SectionHandle;

copiedSectionH: Handle;

copiedAliasH: Handle;

resID: Integer;

thisone: Integer;

myErr: OSErr;

BEGIN

FOR thisone := 1 TO numberOfSections DO

BEGIN

aSectionH := MyGetSectionAliasPair(thisDocument, thisone,

 resID);

IF (aSectionH^^.kind = stPublisher) &

(aSectionH^^.mode = pumOnSave) &

(MyCheckForDataChanged(aSectionH)) THEN

DoWriteEdition(aSectionH);

END; {end of for}

{set the curResFile to the resource fork of thisDocument}

UseResFile(thisDocument^.resForkRefNum);

{write all section and alias records to the document}

FOR thisone := 1 TO numberOfSections DO

BEGIN

{given an index, get the next section handle and resID }

{ from your internal list of sections for this file}

aSectionH := MyGetSectionAliasPair(thisDocument, thisone,

 resID);

{check for duplication of control block values}

MyCheckForDupes(thisDocument, numberOfSections);

{save section record to disk}

copiedSectionH := Handle(aSectionH);

myErr := HandToHand(copiedSectionH);

AddResource(copiedSectionH, rSectionType, resID, '');

{save alias record to disk}

copiedAliasH := Handle(aSectionH^^.alias);

myErr := HandToHand(copiedAliasH);

AddResource(copiedSectionH, rAliasType, resID, '');

END; {end of for}

{write rest of document to disk}

END;
Using the Edition Manager 2-21

C H A P T E R 2

Edition Manager
Opening and Closing a Document Containing Sections 2
When opening a document that contains sections, your application should use the
GetResource function to get the section record and the alias record for each publisher
and subscriber. Set the alias field of the section record to be the handle to the alias. See
the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox for detailed
information on the GetResource function.

You also need to register each section using the RegisterSection function. The
RegisterSection function informs the Edition Manager that a section exists.

err := RegisterSection(sectionDocument, sectionH,

 aliasWasUpdated);

The RegisterSection function adds the section record to the Edition Manager’s list of
registered sections. This function assumes that the alias field of each section record is a
handle to the alias record. The alias record is a reference to the edition container from the
section’s document. If the RegisterSection function successfully locates the edition
container for a particular section, the section is registered through a shared control block.
The control block is a private field in the section record.

If the RegisterSection function cannot find the edition container for a particular
subscriber, RegisterSection returns the containerNotFoundWrn result code. If
the RegisterSection function cannot find the edition container for a particular
publisher, RegisterSection creates an empty edition container for the publisher in
the last place the edition was located. The Edition Manager sends your application a
Section Write event for that section.

When a user attempts to open a document that contains multiple publishers to the same
edition, you should warn the user by displaying an alert box (see “Duplicating
Publishers and Subscribers” on page 2-58).

When a user opens a document that contains a subscriber (with an update mode set to
automatic), receives a new edition, and then closes the document without making any
changes to the file, you should update the document and simply allow the user to close
it. You do not need to prompt the user to save changes to the file.

When closing a document that contains sections, you must unregister each section (using
the UnRegisterSection function) and dispose of each corresponding section record
and alias record.

err := UnRegisterSection(sectionH);

The UnRegisterSection function removes the section record from the list of
registered sections and unlinks itself from the shared control block.
2-22 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Listing 2-3 illustrates how to open an existing file that contains sections. As described
earlier, you should retrieve the section and alias resources, connect the pair through the
alias field of the section record, and register the section with the Edition Manager.
There are many different techniques for retrieving resources; this listing shows one
technique. If an alias was out of date and was updated by the Alias Manager during
the resolve, the Edition Manager sets the aliasWasUpdated parameter of the
RegisterSection function to TRUE. This means that you should save the document.
Additionally, your application must maintain its own list of registered sections for each
open document that contains sections. You use this list to write out new editions for
updated publishers within a document.

Listing 2-3 Opening a document containing sections

PROCEDURE MyOpenExistingDocument(thisDocument: MyDocumentInfoPtr);

VAR

sectionH: SectionHandle;

aliasH: AliasHandle;

aliasWasUpdated: Boolean;

registerErr: OSErr;

resID: Integer;

theResType: ResType;

thisone: Integer;

numberOfSections: Integer;

aName: Str255;

BEGIN

UseResFile(thisDocument^.resForkRefNum);

{find out the number of section resources}

numberOfSections := Count1Resources(rSectionType);

FOR thisone := 1 TO numberOfSections DO

BEGIN

sectionH := SectionHandle(Get1IndResource(rSectionType,

 thisone));

IF sectionH = NIL THEN {something could be wrong with }

MySectionErr; { the file, handle appropriately}

{get resource ID of the section & use same ID for alias}

GetResInfo(Handle(sectionH), resID, theResType, aName);

{detaching is not necessary, but it is convenient}

DetachResource(Handle(sectionH));

{get the alias}

aliasH := AliasHandle(Get1Resource(rAliasType, resID));

IF aliasH = NIL THEN {something could be wrong with }

MyAliasErr; { the file, handle appropriately}

DetachResource(Handle(aliasH));
Using the Edition Manager 2-23

C H A P T E R 2

Edition Manager
{connect section and alias together}

sectionH^^.alias := aliasH;

{register the section}

registerErr := RegisterSection(thisDocument^.fileSpec,

 sectionH, aliasWasUpdated);

{The RegisterSection function may return an error if }

{ a section is not registered. This is not a fatal error. }

{ Continue looping to register remaining sections.}

{add this section/alias pair to your internal bookkeeping}

MyAddSectionAliasPair(thisDocument, sectionH, resID);

IF aliasWasUpdated THEN

{If alias has changed, make a note of this. }

{ It's important to know this when you save.}

MyAliasHasChanged(sectionH);

END; {end of FOR}

END;

Reading and Writing a Section 2
Your application writes publisher data to an edition. New publisher data replaces the
previous contents of the edition, making the previous edition information irretrievable.
Your application reads data from an edition for each subscriber within a document.

The following sections describe how to

■ use different formats to write to or read from an edition

■ open an edition to initiate writing or reading

■ set a format mark

■ write to or read from an edition

■ close an edition after successfully writing or reading data

Formats in an Edition 2

You can write data to an edition in several different formats. These formats are the same
as scrap format types. Scrap format types are indicated by a four-character tag.

Typically, when a user copies data, you identify the scrap format types and then write
the data to the scrap. With the Edition Manager, when a user decides to publish data,
you identify the format types and then write the data to an edition. You can write
multiple formats of the same data.

For an edition, you should write your preferred formats first. In general, to write data
to an edition, your application should use either 'TEXT' format or 'PICT' format. This
allows your application to share data with most other applications. To subscribe to
an edition, your application should be able to read both 'TEXT' and 'PICT' files. In
addition, your application can write any other private formats that you want to support.
2-24 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Scrap format types are described in the chapter “Scrap Manager” in Inside Macintosh:
More Macintosh Toolbox.

A few special formats are defined as constants.

CONST kPublisherDocAliasFormat = 'alis';{alias record from the }

{ edition to publisher}

kPreviewFormat = 'prvw';{'PICT' thumbnail }

{ sketch}

kFormatListFormat = 'fmts';{lists all available }

{ formats}

The kPublisherDocAliasFormat ('alis') format is written by the Edition
Manager. It is an alias record from the edition to the publisher’s document. Appended to
the end of the alias is the section ID of the publisher, which the Edition Manager uses to
distinguish between multiple publishers to a single edition. You should discourage users
from making multiple copies of the same publisher. See “Duplicating Publishers and
Subscribers” on page 2-58 for detailed information.

In addition to writing a publisher’s data to an edition in the 'TEXT' format or 'PICT'
format, your application can also write data to an edition in the kPreviewFormat
('prvw') format. If you provide a 'prvw' format in an edition, the Edition Manager
uses it to display a preview of the edition data in the preview area of the subscriber
dialog box. The 'prvw' format has the same format as a 'PICT' file. To draw a preview
in the 'prvw' format, the Edition Manager calls DrawPicture with a rectangle of
120 by 120 pixels. (See Inside Macintosh: Imaging for more information about
DrawPicture.) Your application should provide data in a 'prvw' format so that the
data displays well in a rectangle of this size. Your application can also use this preview
to display subscriber data within a document (to save space).

If your application does not provide a preview in the 'prvw' format for an edition, the
Edition Manager attempts to provide a preview by using the edition’s 'PICT' format.
To draw a preview in the 'PICT' format, the Edition Manager examines the picture’s
bounding rectangle and calls DrawPicture with a rectangle that scales the picture
proportionally and centers it in a 120-by-12-pixel area.

The kFormatListFormat ('fmts') format is a virtual format that is read but never
written. It is a list of all the formats and their lengths. Applications can use this format in
place of the EditionHasFormat function (described in “Choosing Which Edition
Format to Read” on page 2-41), which provides a procedural interface to determine
which formats are available.

If your application can read two or more of the available formats, use 'fmts' to
determine the priority of these formats for a particular edition. The order of 'fmts'
reflects the order in which the formats were written.
Using the Edition Manager 2-25

C H A P T E R 2

Edition Manager
The FormatsAvailable data type defines a record for the 'fmts' format.

TYPE FormatsAvailable = ARRAY[0..0] OF

RECORD

theType: FormatType; {format type for an edition}

theLength: LongInt; {length of edition format }

{ type}

END;

For example, an edition container may have a format type 'TEXT' of length 100, and a
format type 'styl' of length 32. A subscriber to this edition can open it and then read
the format type 'fmts' to list all available formats. In this example, it returns 16 bytes:
'TEXT' $00000064 'styl' $00000020.

Opening an Edition 2

For a publisher, use the OpenNewEdition function to initiate the writing of data to an
edition. (Note that the edition container must already exist before you initiate writing;
see “Creating the Edition Container” beginning on page 2-32.)

err := OpenNewEdition(publisherSectionH, fdCreator,

 publisherSectionDocument, refNum);

The publisherSectionH parameter is the publisher section that you are writing to the
edition. The fdCreator parameter is the Finder creator type of the new edition.
(The edition container file already has a creator type; you can specify the same creator
type or establish a new creator type for the edition.)

The publisherSectionDocument parameter specifies the document that contains the
publisher. This parameter is used to create an alias from the edition to the publisher’s
document. If you pass NIL for publisherSectionDocument, an alias is not made in
the edition file. The refNum parameter returns the reference number for the edition.

For a subscriber, use the OpenEdition function to initiate the reading of data from
an edition.

err := OpenEdition(subscriberSectionH, refNum);

The subscriberSectionH parameter is a handle to the section record for a given
section. The refNum parameter returns the reference number for the edition.

The user may rename or move the edition in the Finder. Before writing to or reading data
from an edition, the Edition Manager verifies the name of the edition. This process is
referred to as synching or synchronization. Synching ensures that the Edition Manager’s
existing edition names correspond to the Finder’s existing edition names by updating
the control block.
2-26 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Format Marks 2

Each format has its own mark. The mark indicates the next position of a read or write
operation. Initially, a mark automatically defaults to 0. After reading or writing data, the
format mark is set past the last position written to or read from. The mark is similar to
the File Manager’s current read or write position marker for a data fork. Any time that
an edition is open (after calling the OpenEdition or the OpenNewEdition function),
any of the marks for each format can be queried or set.

To set the current mark for a section format to a new location, use the
SetEditionFormatMark function.

err := SetEditionFormatMark(whichEdition, whichFormat,

 setMarkTo);

To get the current mark for a format in an edition file, use the GetEditionFormatMark
function.

err := GetEditionFormatMark(whichEdition, whichFormat,

 currentMark);

Reading and Writing Edition Data 2

The Edition Manager allows you to read or write data a few bytes at a time (as with a
data fork of a Macintosh file) instead of in one block (as with the Scrap Manager). You
can read sequentially by setting the mark to 0 and repeatedly calling read, or you can
jump to a specific offset by setting the mark there. The Edition Manager also adds the
capability to stream multiple formats by keeping a separate mark for each format. This
allows you to write a few bytes of one format and then write a few bytes of another
format, and so forth.

Once you have opened the edition container for a particular publisher, you can begin
writing data to the edition. Use the WriteEdition function to write publisher data to
an edition.

err := WriteEdition(whichEdition, whichFormat, buffPtr, buffLen);

The WriteEdition function writes the specified format (beginning at the current mark
for that format type) from the buffer pointed to by the buffPtr parameter up to
buffLen bytes.

After you open the edition container for a subscriber and determine which formats to
read, use the ReadEdition function to read edition data.

err := ReadEdition(whichEdition, whichFormat, buffPtr, buffLen);
Using the Edition Manager 2-27

C H A P T E R 2

Edition Manager
The ReadEdition function reads the data with the specified format (whichFormat)
from the edition into the buffer. The ReadEdition function begins reading at the
current mark for that format and continues to read up to buffLen bytes. The actual
number of bytes read is returned in the buffLen parameter. Once the buffLen
parameter returns a value smaller than the value you have specified, there is no
additional data to read, and the ReadEdition function returns a noErr result code.

Note
The Translation Manager (if it is available) attempts implicit translation
under certain circumstances. For instance, it does so when your
application attempts to read from an edition a format type that is not in
the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:
More Macintosh Toolbox. ◆

Closing an Edition 2

When you are done writing to or reading data from an edition, call the CloseEdition
function.

err := CloseEdition(whichEdition, successful);

Each time a user edits a publisher within a document, you must update the modification
date in the section record (even if the data is not yet written). When the update mode is
set to Manually, the user can compare the modification dates for a publisher and its
edition in the publisher options dialog box. One modification date indicates when the
publisher last wrote data to the edition, and the other modification date indicates when
the publisher section was last edited.

If the successful parameter for a publisher is TRUE, the CloseEdition function
makes the newly written data available to subscribers and sets the modification date in
the mdDate field of the edition to correspond to the modification date of the publisher’s
section record. If the two dates differ, the Edition Manager sends a Section Read event to
all current subscribers.

If the successful parameter for a subscriber is TRUE, the CloseEdition function sets
the modification date of the subscriber’s section record to correspond to the modification
date of the edition.

If you cannot successfully read from or write data to an edition, set the successful
parameter to FALSE. For a publisher, data is not written to the edition, but it should still
be saved with the document that contains the section. When the document is next saved,
data can then be written to the edition. See “Closing an Edition After Reading or
Writing” on page 2-88 for additional information on the CloseEdition function.
2-28 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Creating a Publisher 2
You need to support a Create Publisher menu command in the Edit menu. When a user
selects a portion of a document and chooses Create Publisher from this menu, you
should display the publisher dialog box on the user’s screen. The Create Publisher menu
command should remain dimmed until the user selects a portion of a document.

Use the NewPublisherDialog function to display the publisher dialog box on the
user’s screen. This function is similar to the CustomPutFile procedure described in the
chapter “Standard File Package” in Inside Macintosh: Files.

err := NewPublisherDialog(reply);

The dialog box contains space for a preview (a thumbnail sketch) of the edition and a
space for the user to type the name of the edition in which to write the publisher data.
Figure 2-11 illustrates a sample publisher dialog box.

Figure 2-11 A sample publisher dialog box

The NewPublisherDialog function displays the preview (provided by
your application), displays a text box with the default name of the edition
(provided by your application), and handles all user input until the user clicks
Publish or Cancel.
Using the Edition Manager 2-29

C H A P T E R 2

Edition Manager
You pass a new publisher reply record as a parameter to the NewPublisherDialog
function.

TYPE NewPublisherReply =

RECORD

canceled: Boolean; {user clicked Cancel}

replacing: Boolean; {user chose existing }

{ filename for an edition}

usePart: Boolean; {always FALSE in version 7.0}

preview: Handle; {handle to 'prvw', 'PICT', }

{ 'TEXT', or 'snd ' data}

previewFormat: {type of preview}

FormatType;

container: EditionContainerSpec;{initially, default name }

{ and location of edition; }

{ on return, edition name & }

{ location chosen by the }

{ user to publish data to}

END;

You fill in the usePart, preview, previewFormat, and container fields of the new
publisher reply record.

Always set the usePart field to FALSE. The preview field should contain either NIL or
the data to display in the preview. The previewFormat field should contain 'PICT',
'TEXT', 'snd ', or 'prvw'.

Set the container field to be the default name and folder for the edition. The default
name should reflect the data contained in the publisher. For example, if a user publishes
a bar chart of sales information entitled “sales data,” then the default name for the
edition could also be “sales data.” Otherwise, you should use the document name
followed by a hyphen (-) and a number to establish uniqueness. For example, your
default name could be “January Totals - 3.”

If the document has not been saved, the default name should be “untitled edition <n>”
where n is a number to establish uniqueness. The default folder should be the same as
the edition for the last publisher created in the same document. If this is the first
publisher in the document, the default folder should be the same folder that the
document is in.

The canceled field of the new publisher reply record indicates whether the user clicked
Cancel. The replacing field indicates whether the user chose to replace an existing
edition file. If replacing returns FALSE, call the CreateEditionContainerFile
function to create an edition file.
2-30 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
The container field is of data type EditionContainerSpec.

TYPE EditionContainerSpec =

RECORD

theFile: FSSpec; {record that identifies the }

{ file to contain edition data}

theFileScript: ScriptCode; {script code of filename}

thePart: LongInt; {which part of file, }

{ always kPartsNotUsed}

thePartName: Str31; {not used in version 7.0}

thePartScript: ScriptCode; {not used in version 7.0}

END;

The field theFile is a file system specification record, a data structure of type FSSpec.
You identify the edition using a volume reference number, directory ID, and filename.
When specifying an edition, follow the standard conventions described in
Inside Macintosh: Files.

After filling in the fields of the new publisher reply record, pass it as a parameter to the
NewPublisherDialog function, which displays the publisher dialog box.

err := NewPublisherDialog(reply);

After displaying the publisher dialog box, use the CreateEditionContainerFile
function to create the edition container, and then use the NewSection function to create
the section record and the alias record. See the next section, “Creating the Edition
Container,” and “Creating the Section Record and Alias Record” on page 2-15 for
detailed information.

The following code segment illustrates how your application might respond to the
user choosing the Create Publisher menu item. In this case, the code sets up the
preview for the edition, sets the default name for the edition container, and calls an
application-defined function (DoNewPublisher, shown in Listing 2-4 on page 2-33) to
display the publisher dialog box on the user’s screen. An application might call the
DoNewPublisher function in response to the user’s choosing Create Publisher from the
Edit menu or in response to handling the Create Publisher event. The chapter
“Responding to Apple Events” in this book gives an example of a handler for the
Create Publisher event.

VAR

thisDocument: MyDocumentInfoPtr;

promptForDialog: Boolean;

preview: Handle;

previewFormat: FormatType;

defaultLocation: EditionContainerSpec;

myErr: OSErr;
Using the Edition Manager 2-31

C H A P T E R 2

Edition Manager
BEGIN

{Get a preview to show the user. The MyGetPreviewForSelection }

{ function returns a handle to the preview.}

preview := MyGetPreviewForSelection(thisDocument);

previewFormat := 'TEXT';

defaultLocation := MyGetDefaultEditionSpec(thisDocument);

promptForDialog := TRUE;

myErr := DoNewPublisher(thisDocument, promptForDialog, preview,

previewFormat, defaultLocation);

END;

Creating the Edition Container 2

Use the CreateEditionContainerFile function to create an edition container to
hold the publisher data.

err := CreateEditionContainerFile(editionFile, fdCreator,

 editionFileNameScript);

This function creates an edition container. The edition container is empty (that is, it does
not contain any formats) at this time.

To associate an icon with the edition container, create the appropriate entries for the icon
in your application’s bundle. See the chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials for additional information. Depending on the contents of the
edition, the file type will be 'edtp' (for graphics), 'edtt' (for text), or 'edts'
(for sound).

After creating the edition container, use the NewSection function to create the section
record and alias record for the section.

Listing 2-4 illustrates how to create a publisher. The DoNewPublisher function shown
in the listing is a function provided by an application. Note that an application might call
the DoNewPublisher function in response to the user’s choosing the Create Publisher
command or in response to the Create Publisher event. The chapter “Responding to
Apple Events” in this book gives an example of a handler for the Create Publisher event.

The parameters to the DoNewPublisher function include a pointer to information
about the document, a Boolean value that indicates if the function should display the
new publisher dialog box, the preview for the edition, the preview format, and an
edition container.

The function displays the publisher dialog box if requested, letting the user accept or
change the name of the edition and the location where the edition should reside. Use the
CreateEditionContainerFile function to create the edition with the given name
and location. Use the NewSection function to create a new section for the publisher.
2-32 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
After the section is created, you must write out the edition data. Be sure to add the newly
created section to your list of sections for this document. There are several different
techniques for creating publishers and unique IDs; this listing displays one technique.

After creating the edition container and creating a new section record,
the DoNewPublisher function calls another application-defined routine,
DoWriteEdition, to open the edition and write data to it.

Listing 2-4 Creating a publisher

FUNCTION DoNewPublisher(thisDocument: MyDocumentInfoPtr;

promptForDialog: Boolean;

preview: Handle;

previewFormat: FormatType;

editionSpec: EditionContainerSpec)

: OSErr;

VAR

getLastErr, dialogErr: OSErr;

createErr, sectionErr: OSErr;

resID: Integer;

thisSectionH: SectionHandle;

reply: NewPublisherReply;

BEGIN

{set up info for new publisher reply record}

reply.replacing := FALSE;

reply.usePart := FALSE;

reply.preview := preview;

reply.previewFormat := previewFormat;

reply.container := editionSpec;

IF promptForDialog THEN

BEGIN {user interaction is allowed}

{display dialog box and let user select}

dialogErr := NewPublisherDialog(reply);

{dispose of preview data handle}

DisposeHandle(reply.preview);

IF dialogErr <> noErr THEN MyErrHandler(dialogErr);

IF reply.canceled THEN

BEGIN {do nothing if user canceled}

DoNewPublisher := userCanceledErr;

EXIT(DoNewPublisher);

END;

END; {of promptForDialog}
Using the Edition Manager 2-33

C H A P T E R 2

Edition Manager
IF NOT reply.replacing THEN

BEGIN

{if user isn't replacing an existing file, create a new one}

createErr :=

CreateEditionContainerFile(reply.container.theFile,

 kAppSignature,

 reply.container.theFileScript);

IF createErr <> noErr THEN

BEGIN

DoNewPublisher := errAEPermissionDenied;

EXIT(DoNewPublisher);

END;

END; {of not replacing}

{Advance counter to make a new unique sectionID for this }

{ document. It is not required that you equate section IDs }

{ with resources.}

thisDocument^.nextSectionID := thisDocument^.nextSectionID + 1;

{create a publisher section}

sectionErr := NewSection(reply.container,

 thisDocument^.fileSpecPtr,

 stPublisher,

 thisDocument^.nextSectionID,

 pumOnSave, thisSectionH);

IF (sectionErr <> noErr) & (sectionErr <> multiplePublisherWrn)

& (sectionErr <> notThePublisherWrn) THEN

MyErrHandler(sectionErr);

resID := thisDocument^.nextSectionID;

{add this section/alias pair to app's internal bookkeeping}

MyAddSectionAliasPair(thisDocument, thisSectionH, resID);

{write out first edition}

DoWriteEdition(thisSectionH);

{Remember that the section and alias records need to be }

{ saved as resources when the user saves the document.}

{set the function result appropriately}

DoNewPublisher := MyGetLastError;

END;
2-34 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Opening an Edition Container to Write Data 2

Several routines are required to write (publish) data from a publisher to an edition
container. (For information on creating an edition container, see the previous section.)
Before writing data to an edition, you must use the OpenNewEdition function. This
function should be used only for a publisher within a document. Use this function to
initiate the writing of data to an edition.

err := OpenNewEdition(publisherSectionH, fdCreator,

 publisherSectionDocument, refNum);

A user may try to save a document containing a publisher that is unable to write its data
to an edition—because another publisher (that shares the same edition) is writing,
another subscriber (that shares the same edition) is reading, or a publisher located
on another computer is registered to the section. In such a case, you may decide to
refrain from writing to the edition so that the user does not have to wait. You should
also refrain from displaying an error to the user. The contents of the publisher are saved
to disk with the document. The next time that the user saves the document, you can
write the publisher data to the edition. You should display an alert box to discourage
users from making multiple copies of the same publisher and pasting them in the same
or other documents (see “Duplicating Publishers and Subscribers” on page 2-58).

If a user clicks Send Edition Now within the publisher options dialog box (to write
publisher data to an edition manually), and the publisher is unable to write its data to its
edition (for any of the reasons outlined above), you should display an error message.

After you are finished writing data to an edition, use the CloseEdition function to
close the edition.

Listing 2-5 illustrates how to write data to an edition. For an existing edition container,
you must open the edition, write each format using the WriteEdition function, and
close the edition using the CloseEdition function. This listing shows how to write text
only. If the edition is written successfully, subscribers receive Section Read events.
Using the Edition Manager 2-35

C H A P T E R 2

Edition Manager
Listing 2-5 Writing data to an edition

PROCEDURE DoWriteEdition(thePublisher: SectionHandle);

VAR

eRefNum: EditionRefNum;

openErr: OSErr;

writeErr: OSErr;

closeErr: OSErr;

thisDocument: MyDocumentInfoPtr;

textHandle: Handle;

BEGIN

{find out which document this section belongs to}

thisDocument := MyFindDocument(thePublisher);

{open edition for writing}

openErr := OpenNewEdition(thePublisher, kAppSignature,

 thisDocument^.fileSpecPtr, eRefNum);

IF openErr <> noErr THEN

MyErrHandler(openErr);{handle error and exit}

{get the text data to write}

textHandle := MyGetTextInSection(thePublisher, thisDocument);

{write out text data}

HLock(textHandle);

writeErr := WriteEdition(eRefNum, 'TEXT', textHandle^,

 GetHandleSize(textHandle));

HUnLock(textHandle);

IF writeErr <> noErr THEN

BEGIN

{There were problems writing; simply close the edition. }

{ When successful = FALSE, the edition data <> section }

{ data. Note: this isn't fatal or bad; it just means }

{ that the data wasn't written and no Section Read events }

{ will be generated.}

closeErr := CloseEdition(eRefNum, FALSE);

END

ELSE

BEGIN

{The write was successful; now close the edition. }

{ When successful = TRUE, the edition data = section data.}

{ This edition is now available to any subscribers. }

{ Section Read events will be sent to current subscribers.}

closeErr := CloseEdition(eRefNum, TRUE);

END;

END;
2-36 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Creating a Subscriber 2
You need to create a Subscribe To menu command in the Edit menu. When a user
chooses Subscribe To from this menu, your application should display the subscriber
dialog box on the user’s screen.

Use the NewSubscriberDialog function to display the subscriber dialog box on the
user’s screen. This function is similar to the CustomGetFile procedure described in the
chapter “Standard File Package” in Inside Macintosh: Files.

To create a subscriber, you must get information from the user, such as the name
of the edition being subscribed to. The dialog box displays a listing of all available
editions and allows the user to see a preview (thumbnail sketch) of the edition selected.
Figure 2-12 shows a sample subscriber dialog box.

Figure 2-12 A sample subscriber dialog box

The subscriber dialog box allows the user to choose an edition to subscribe to. The
NewSubscriberDialog function handles all user interaction until a user clicks
Subscribe or Cancel. When a user selects an edition container, the Edition Manager
accesses the preview for the edition container (if it is available) and displays it.
Using the Edition Manager 2-37

C H A P T E R 2

Edition Manager
You pass a new subscriber reply record as a parameter to the NewSubscriberDialog
function.

TYPE NewSubscriberReply =

RECORD

canceled: Boolean; {user clicked Cancel}

formatsMask:SignedByte; {formats required}

container: EditionContainerSpec;{initially, default }

{ name & location of edition }

{ to subscribe to; on return, }

{ edition name & location }

{ chosen by the user}

END;

The canceled field returns a Boolean value of TRUE if the user clicked Cancel. To
indicate which edition format types (text, graphics, or sound) your application can read,
you set the formatsMask field to one or more of these constants:

CONST kPICTformatMask = 1; {can subscribe to 'PICT'}

kTEXTformatMask = 2; {can subscribe to 'TEXT'}

ksndFormatMask = 4; {can subscribe to 'snd '}

To support a combination of formats, add the constants together. For example, a
formatsMask of 3 displays both graphics and text edition format types in the
subscriber dialog box.

The container field is of data type EditionContainerSpec. You must initialize the
container field with the default edition volume reference number, directory ID,
filename, and part. To do so, use the GetLastEditionContainerUsed function to
obtain the name of the last edition displayed in the dialog box.

err := GetLastEditionContainerUsed(container);

This function returns the last edition container for which a new section was created
using the NewSection function. If there is no last edition, or if the edition was deleted,
GetLastEditionContainerUsed still returns the correct volume reference number
and directory ID to use, but leaves the filename blank and returns the fnfErr
result code.
2-38 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
The container field is of data type EditionContainerSpec.

TYPE EditionContainerSpec =

RECORD

theFile: FSSpec; {file containing edition }

{ data}

theFileScript: ScriptCode; {script code of filename}

thePart: LongInt; {which part of file, }

{ always kPartsNotUsed}

thePartName: Str31; {reserved}

thePartScript: ScriptCode; {reserved}

END;

The field theFile is of type FSSpec. See Inside Macintosh: Files for further information
on file system specification records.

After filling in the fields of the new subscriber reply record, pass it as a parameter to the
NewSubscriberDialog function, which displays the subscriber dialog box.

err := NewSubscriberDialog(reply);

After displaying the subscriber dialog box, call the NewSection function to create the
section record and the alias record. See “Creating the Section Record and Alias Record”
beginning on page 2-15 for detailed information.

If the subscriber is set up to receive new editions automatically (not manually), the
Edition Manager sends your application a Section Read event. Whenever your
application receives a Section Read event, it should read the contents of the edition into
the subscriber.

Listing 2-6 illustrates how to create a subscriber. As described earlier, you must set up
and display the subscriber dialog box to allow the user to subscribe to any of the
available editions. After your application creates a subscriber, your application receives a
Section Read event to read in the data being subscribed to. Be sure to add the newly
created section to your list of sections for this file. There are many different techniques
for creating subscribers and unique IDs; this listing displays one technique.
Using the Edition Manager 2-39

C H A P T E R 2

Edition Manager
Listing 2-6 Creating a subscriber

PROCEDURE DoNewSubscriber(thisDocument: MyDocumentInfoPtr);

VAR

getLastErr: OSErr;

dialogErr: OSErr;

sectionErr: OSErr;

resID: Integer;

thisSectionH: SectionHandle;

reply: NewSubscriberReply;

BEGIN

{put default edition name into reply record}

getLastErr := GetLastEditionContainerUsed(reply.container);

{can subscribe to pictures or text}

reply.formatsMask := kPICTformatMask + kTEXTformatMask;

{display dialog box & let user select edition to subscribe to}

dialogErr := NewSubscriberDialog(reply);

IF dialogErr <> noErr THEN

MyErrHandler(dialogErr); {handle error and exit}

IF reply.canceled THEN

EXIT(DoNewSubscriber); {do nothing if user canceled}

{Advance counter to make a new unique sectionID for this }

{ document. It is not necessary to equate section IDs with }

{ resources.}

thisDocument^.nextSectionID := thisDocument^.nextSectionID + 1;

{create a subscriber section}

sectionErr := NewSection(reply.container,

 thisDocument^.fileSpecPtr,

 stSubscriber,

 thisDocument^.nextSectionID,

 sumAutomatic, thisSectionH);

IF sectionErr <> noErr THEN

MyErrHandler(sectionErr);{handle error and exit}

resID := thisDocument^.nextSectionID;

{add this section/alias pair to app's internal bookkeeping}

MyAddSectionAliasPair(thisDocument, thisSectionH, resID);

{Remember that you will receive a Section Read event to read }

{ in the edition that you just subscribed to because the }

{ initial mode is set to sumAutomatic.}

{Remember that the section and alias records need to be saved }

{ as resources when the user saves the document.}

END;
2-40 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Opening an Edition Container to Read Data 2

Before reading data from an edition, you must use the OpenEdition function. Your
application should only use this function for a subscriber. Use this function to initiate the
reading of data from an edition.

err := OpenEdition(subscriberSectionH, refNum);

As a precaution, you should retain the old data until the user can no longer undo. This
allows you to undo changes if the user requests it.

Your application can supply a procedure such as DoReadEdition to read in data from
the edition to a subscriber. When your application opens a document containing a
subscriber that is set up to receive new editions automatically, the Edition Manager
sends you a Section Read event if the edition has been updated. The Section Read
event supplies the handle to the section that requires updating. Listing 2-7, shown in the
next section, provides an example of reading data from an edition.

Choosing Which Edition Format to Read 2

After your application opens the edition container for a subscriber, it can look in the
edition for formats that it understands. To accomplish this, use the EditionHasFormat
function.

err := EditionHasFormat(whichEdition, whichFormat, formatSize);

The EditionHasFormat function returns the noTypeErr result code if a requested
format is not available. If the requested format is available, this function returns the
noErr result code, and the formatSize parameter contains the size of the data in the
specified format or kFormatLengthUnknown (–1), which signifies that the size is
unknown.

Note
The Translation Manager (if it is available) attempts implicit translation
under certain circumstances. For instance, it does so when your
application attempts to read from an edition a format type that is not
in the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:
More Macintosh Toolbox. ◆

After your application opens the edition container and determines which formats
it wants to read, call the ReadEdition function to read in the edition data. See
“Reading and Writing Edition Data” on page 2-27 for detailed information.

After you have completed writing the edition data into the subscriber section, call the
CloseEdition function to close the edition. See “Closing an Edition” on page 2-28 for
detailed information.
Using the Edition Manager 2-41

C H A P T E R 2

Edition Manager
Listing 2-7 illustrates how to read data from an edition. As described earlier, you must
open the edition, determine which formats to read, use the ReadEdition function to
read in data, and then use the CloseEdition function to close the edition. This listing
shows how to read only text.

Listing 2-7 Reading in edition data

PROCEDURE DoReadEdition(theSubscriber: SectionHandle);

VAR

eRefNum: EditionRefNum;

openErr: OSErr;

readErr: OSErr;

closeErr: OSErr;

thisDocument: MyDocumentInfoPtr;

textHandle: Handle;

formatLen: Size;

BEGIN

{find out which document this section belongs to}

thisDocument := MyFindDocument(theSubscriber);

{open the edition for reading}

openErr := OpenEdition(theSubscriber, eRefNum);

IF openErr <> noErr THEN

MyErrHandler(openErr); {handle error and exit}

{look for 'TEXT' format}

IF EditionHasFormat(eRefNum, 'TEXT', formatLen) = noErr THEN

BEGIN

{get the handle of location to read to}

textHandle := MyGetTextInSection(theSubscriber,

 thisDocument);

SetHandleSize(textHandle, formatLen);

HLock(textHandle);

readErr := ReadEdition(eRefNum, 'TEXT', textHandle^,

 formatLen);

MyUpdateSubscriberText(theSubscriber, textHandle, readErr);

HUnLock(textHandle);

IF readErr = noErr THEN

BEGIN

{The read was successful; now close the edition. When }

{ successful = TRUE, the section data = edition data.}

closeErr := CloseEdition(eRefNum, TRUE);

EXIT(DoReadEdition);

END;

END; {of EditionHasFormat}
2-42 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
{'TEXT' format wasn't found or read error; just close }

{ the edition. FALSE tells the Edition Manager that your }

{ application did not get the latest edition.}

closeErr := CloseEdition(eRefNum, FALSE);

END;

Using Publisher and Subscriber Options 2
You can allow users to set several special options associated with publishers and
subscribers. To set these preferences, users change settings in two dialog boxes provided
by the Edition Manager: publisher options and subscriber options. To make these dialog
boxes available to the user, provide a command in the Edit menu that toggles between
Publisher Options (when the user has selected a publisher within a document)
and Subscriber Options (when a user has selected a subscriber within a document).

When a user chooses one of these menu commands, you need to display the appropriate
dialog box. Use the SectionOptionsDialog function to display the publisher options
or subscriber options dialog box on the user’s screen.

err := SectionOptionsDialog(reply);

Each dialog box contains information regarding the section and its edition. Figure 2-13
shows the publisher options dialog box with the update mode set to On Save.

Figure 2-13 The publisher options dialog box with update mode set to On Save
Using the Edition Manager 2-43

C H A P T E R 2

Edition Manager
Figure 2-14 shows the publisher options dialog box with the update mode set
to Manually.

Figure 2-14 The publisher options dialog box with update mode set to Manually

As a shortcut for the user, you should display the publisher options dialog box when the
user double-clicks a publisher section in a document.

Figure 2-15 shows the subscriber options dialog box with the update mode set to
Automatically.

Figure 2-15 The subscriber options dialog box with update mode set to Automatically
2-44 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Figure 2-16 shows the subscriber options dialog box with the update mode set
to Manually.

Figure 2-16 The subscriber options dialog box with update mode set to Manually

As a shortcut for the user, you should display the subscriber options dialog box when
the user double-clicks a subscriber section in a document.

You pass a section options reply record as a parameter to the SectionOptionsDialog
function.

TYPE SectionOptionsReply =

RECORD

canceled: Boolean; {user clicked Cancel}

changed: Boolean; {changed section record}

sectionH: SectionHandle; {handle to the specified }

{ section record}

action: ResType; {action codes}

END;

Set the sectionH parameter to the handle to the section record for the section the
user selected.

Upon return of the SectionOptionsDialog function, the canceled and changed
fields are set. If the canceled field is set to TRUE, the user clicked Cancel. Otherwise,
this field is set to FALSE. If the changed field is set to TRUE, the section record is
changed. For example, the user may have changed the update mode.
Using the Edition Manager 2-45

C H A P T E R 2

Edition Manager
The SectionOptionsDialog function returns in the action parameter the code for
one of five user actions. The function dismisses the publisher and subscriber options
dialog boxes after the user clicks a button.

■ Action code is 'read' for a click of the Get Edition Now button.

■ Action code is 'writ' for a click of the Send Edition Now button.

■ Action code is 'goto' for a click of the Open Publisher button.

■ Action code is 'cncl' for a click of the Cancel Publisher or Cancel Subscriber button.

■ Action code is ' ' ($20202020) for a click of the OK button.

Listing 2-8 shows an example of how your application can respond to the action codes
received from the section options reply record. You can use several different techniques
for this purpose; this listing shows one technique.

Listing 2-8 Responding to action codes

PROCEDURE DoOptionsDialog(theSection: SectionHandle);

VAR

reply: SectionOptionsReply;

theEditionInfo: EditionInfoRecord;

action: ResType;

sodErr, geiErr: OSErr;

gpiErr, gpsErr: OSErr;

BEGIN

reply.sectionH := theSection;

{display options dialog box}

sodErr := SectionOptionsDialog(reply);

{determine what the user did and handle appropriately}

IF reply.canceled THEN {user selected the Cancel button}

EXIT(DoOptionsDialog);

IF reply.changed THEN

{the section record has changed; make note of this}

MySectionHasChanged(theSection);

{if you customize, you may want to do some }

{ post-processing now}

{get the action code}

action := reply.action;

IF (action = 'read') THEN

BEGIN {user selected Get Edition Now button}

DoReadEdition(theSection);

EXIT(DoOptionsDialog);

END;
2-46 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
IF (action = 'writ') THEN

BEGIN {user selected Send Edition Now button}

DoWriteEdition(theSection);

EXIT(DoOptionsDialog);

END;

IF (action = 'goto') THEN

BEGIN {user selected Open Publisher button}

geiErr := GetEditionInfo(theSection, theEditionInfo);

IF geiErr <> noErr THEN

MyErrHandler(geiErr);{handle error and exit}

gpsErr := GotoPublisherSection(theEditionInfo.container);

IF gpsErr <> noErr THEN

MyErrHandler(gpsErr);{handle error and exit}

EXIT(DoOptionsDialog);

END;

IF (action = 'cncl') THEN

BEGIN {User selected Cancel Publisher or Cancel Subscriber }

{ button. Call the UnRegisterSection function and dispose }

{ of the section record and alias record.}

EXIT(DoOptionsDialog);

END;

END;

The following sections describe the features of the publisher and subscriber options
dialog boxes.

Publishing a New Edition While Saving or Manually 2

By default, your application should write publisher data to an edition each time the user
saves the document and the contents of the publisher differ from the latest edition. In the
publisher options dialog box, the user can choose to write new data to an edition each
time the document is saved (by clicking On Save) or only upon the user’s specific
request (by clicking Manually).

When the update mode is set to manual, a user must click the Send Edition Now button
in the publisher options dialog box to write publisher data to an edition. When a user
clicks this button, the section options reply record contains the action code 'writ'. In
this case, you should write out the new edition. Writing to an edition manually is useful
when a user tends to save a document numerous times while revising it.

Each time the user saves the document, check the update mode of the publisher section.
If the publisher section sends its data to an edition when the document is saved, check
whether the publisher data has changed since it was last written to the edition. If so,
write the publisher’s data to the new edition.
Using the Edition Manager 2-47

C H A P T E R 2

Edition Manager
In addition, you may also support a Stop All Editions menu command to provide a
method for temporarily suspending all update activity. See “Introduction to Publishers,
Subscribers, and Editions” beginning on page 2-4 for additional information.

Subscribing to an Edition Automatically or Manually 2

By default, your application should subscribe to an edition each time new edition data
becomes available. In the subscriber options dialog box, the user can choose to read new
data from an edition as the data is available (by clicking Automatically) or only upon the
user’s specific request (by clicking Manually).

When the update mode is set to manual, the user must click the Get Edition Now button
in the subscriber options dialog box to receive new editions. When a user clicks this
button, the section options reply record contains the action code 'read'. In this case,
you should read in the new edition. See “Opening an Edition Container to Read Data”
beginning on page 2-41 for detailed information.

When the update mode is set to automatic, your application receives a Section Read
event each time a new edition becomes available. In response, you should read the new
edition data beginning with the OpenEdition function.

Your application does not receive Section Read events for subscribers that receive new
editions manually.

You may also support a Stop All Editions menu command to provide a method for
temporarily suspending all update activity. See “Introduction to Publishers, Subscribers,
and Editions” beginning on page 2-4 for additional information.

Canceling Sections Within Documents 2

The option of canceling publishers and subscribers is available to the user through the
Cancel Publisher and Cancel Subscriber buttons in the corresponding options dialog
boxes. When the user clicks one of these buttons, the action code of the section options
reply record is 'cncl'. See “Relocating an Edition” on page 2-60 for additional
information on canceling a section.

When a user cancels a section (either a publisher or subscriber) and then saves the
document, or when a user closes an untitled document (which contains newly created
sections) without saving it, you must unregister each corresponding section record and
alias record using the UnRegisterSection function. In addition, you should also
delete the section record and alias record using the DisposeHandle procedure. See
Inside Macintosh: Memory for additional information on the DisposeHandle procedure.

When a user cancels a publisher section and then saves the document, or when a user
closes an untitled document (which contains newly created publishers) without saving
it, you must also delete any corresponding edition containers (in addition to deleting
section records and alias records).
2-48 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Do not delete an edition container file, section record, or alias record until the user saves
the document; the user may decide to undo changes before saving the document.

To locate the appropriate edition container to be deleted (before you use the
UnRegisterSection function), use the GetEditionInfo function.

err := GetEditionInfo(sectionH, editionInfo);

The editionInfo parameter is a record of data type EditionInfoRecord.

TYPE EditionInfoRecord =

RECORD

crDate: TimeStamp; {date edition container }

{ was created}

mdDate: TimeStamp; {date of last change}

fdCreator: OSType; {file creator}

fdType: OSType; {file type}

container: EditionContainerSpec;{the edition}

END;

The GetEditionInfo function returns the edition container as part of the edition
information.

The crDate field contains the creation date of the edition. The mdDate field contains the
modification date of the edition.

The fdType and the fdCreator fields are the type and creator of the edition file. The
container field includes a volume reference number, directory ID, filename, script, and
part number for the edition.

To remove the edition container, use the DeleteEditionContainerFile function.

err := DeleteEditionContainerFile(editionFile);

Locating a Publisher Through a Subscriber 2

The user can locate a publisher from a subscriber within a document by clicking the
Open Publisher button in the subscriber options dialog box. As a shortcut, Apple
suggests that you also allow the user to locate a publisher by selecting a subscriber in a
document and pressing Option–double-click.

When the action code of the SectionOptionsReply record is 'goto', use the
GoToPublisherSection function.

err := GoToPublisherSection(container);
Using the Edition Manager 2-49

C H A P T E R 2

Edition Manager
The GoToPublisherSection function locates the correct document by resolving the
alias in the edition, and it launches the document’s application if necessary (the
Edition Manager sends an Open Documents event). The Edition Manager then sends
the publishing application a Section Scroll event. If the document containing the
requested publisher is located on the same computer as its subscriber, the document
opens and scrolls to the location of the publisher. If the document containing the
requested publisher is located on a shared volume (using file sharing), the document
opens and scrolls to the location of the publisher only if the user has privileges to open
the document from the Finder.

You need to provide the GoToPublisherSection function with the edition container.
To accomplish this, use the GetEditionInfo function. See the previous section,
“Canceling Sections Within Documents,” for information on the GetEditionInfo
function.

Renaming a Document Containing Sections 2
If a user renames a document that contains sections by choosing Save As from the File
menu, or if a user pastes a portion of a document that contains a section into another
document, use the AssociateSection function.

Use the AssociateSection function to update the alias record of a registered section.

err := AssociateSection (sectionH, newSectionDocument);

The AssociateSection function internally calls the UpdateAlias function. It is
also possible to update the alias record using the Alias Manager (see the chapter
“Alias Manager” in Inside Macintosh: Files for additional information).

Displaying Publisher and Subscriber Borders 2
Each publisher and subscriber within a document should have a border that appears
when a user selects the contents of these sections. You should display a publisher border
as three pixels wide with 50 percent gray lines and a subscriber border as three pixels
wide with 75 percent gray lines. Separate the contents of the section from the border
itself with one pixel of white space. To create your borders, you should use patterns, not
colors. Depending on the user’s monitor type, colors may not be distinguishable.

In general, borders for publishers and subscribers should behave like the borders of
'PICT' graphics in a word-processing document. A border should appear when the
user clicks the content area of a publisher or a subscriber and disappear when
the user clicks outside the content area of a section. You can also make all publisher
and subscriber borders appear or disappear by implementing an optional
Show/Hide Borders menu command.
2-50 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Figure 2-17 displays the Edition Manager Show/Hide Borders menu command in the
Edit menu.

Figure 2-17 Edit menu with Show/Hide Borders menu command

Depending on your application, you may choose to include resize handles or similar
components in your borders. See “Object-Oriented Graphics Borders” on page 2-56 for
an example of resize handles.

Whenever a user selects a portion of a publisher or sets the insertion point within a
publisher, you should display the border as 50 percent gray. A user can copy the contents
of a publisher or subscriber without copying the section itself by selecting the data,
copying, and then pasting the data in a new location. A user can cut and paste a selection
that contains an entire publisher or subscriber, but you should discourage users from
making multiple copies of a publisher. See “Duplicating Publishers and Subscribers” on
page 2-58 for detailed information.

When the user modifies a publisher, your application should grow or shrink its border to
accommodate the new dimension of the section.

You should display only one publisher border within a document at a time. If a cursor is
inserted within a publisher that is contained within a larger publisher, you should
display only the smaller, internal publisher border. If it is absolutely necessary to display
all section borders within a document at the same time, you can create a Show/Hide
Borders menu item.

You do not need to provide support for publishers contained within other publishers.
If you do not, you should dim the Create Publisher menu command (to indicate that it is
not selectable) when a user attempts to create a publisher within an existing publisher.
Using the Edition Manager 2-51

C H A P T E R 2

Edition Manager
Figure 2-18 shows the recommended border behavior for publishers. The top window
shows a publisher with its borders displayed. The middle window shows how the
borders look when a user selects some of the contents of a section. The bottom window
shows how the borders look when a user selects data within a document that includes a
publisher section.

Figure 2-18 Publisher borders
2-52 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Figure 2-19 shows the recommended border behavior for subscribers. The top window
shows a subscriber with its borders displayed. The middle window shows how the
borders look when a user selects the contents of a section. The bottom window shows
how the borders look when a user selects data within a document that includes a
subscriber section.

Figure 2-19 Subscriber borders

If a user tries to select only a portion of a subscriber, you should highlight the entire
contents of the subscriber. A user cannot edit the data in a subscriber. See “Modifying a
Subscriber” on page 2-59 for detailed information.

If a user cancels a section using the publisher or subscriber options dialog box, your
application should leave the contents of the section within the document, but you should
be sure to remove the borders from this data, as it is no longer considered a section.
Using the Edition Manager 2-53

C H A P T E R 2

Edition Manager
Generally, the appearance and function of publisher and subscriber borders should be
the same across different applications. The following sections entitled “Text Borders,”
“Spreadsheet Borders,” “Object-Oriented Graphics Borders,” and “Bitmapped Graphics
Borders” describe specialized features for publisher and subscriber borders in
word-processing, spreadsheet, or graphics applications.

Text Borders 2

In word-processing documents, a publisher may contain other publishers. However, one
publisher should not overlap another publisher. You should display only one publisher
border at a time. If an insertion point is placed within a publisher that is encompassed by
another larger publisher, you should display only the smaller internal publisher border.

In exceptional cases, it may be necessary to display more than one publisher or
subscriber border at a time. For example, a publisher may consist of a paragraph that
includes a marker for a footnote. The data contained within the footnote should also be
considered part of the publisher. When a user selects the paragraph, you should
simultaneously display a border around the footnote.

The border of a publisher that contains text should be located between characters within
the text. The insertion point, when placed on such a boundary, should gravitate toward
the publisher. That is, a click in front (to the left) of a publisher border should place the
cursor inside the publisher, so that subsequent typing goes inside the publisher. Clicking
at the end (to the right) of a publisher border should also place the cursor inside the
publisher.

Whenever two separate borders are adjacent, the boundary click should go in between
them. This is also true for a border that is next to other nontextual aspects of a document,
such as 'PICT' graphics or page breaks.

When a user removes information from a publisher that contains text data, you should
resize the border so that it becomes smaller. When a user adds information to the
publisher, you should enlarge the border to accommodate the new text. The insertion
point should remain within the publisher.

If a user highlights the entire contents of a publisher and then chooses Cut from the Edit
menu, you should not delete the publisher border within the document. The user may
intend to delete the existing publisher data and replace it with new data, or the user may
want to move the entire publisher and its data to a new location. Figure 2-20 shows
this state.

Figure 2-20 A publisher with contents removed
2-54 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
You should leave the cursor inside the small publisher border for further typing. If the
user inserts the cursor in a new location (instead of typing data inside the existing
border), you need to remove the empty publisher border from the document to allow the
user to move the publisher. This effectively deletes the publisher from the document. If
the user pastes the publisher that is currently held in the scrap, you should re-create its
border. If the user cuts or copies other data from the document before pasting the
publisher from the scrap, the publisher should be removed from the scrap.

Spreadsheet Borders 2

Borders around spreadsheet data or other data in arrays should look and behave very
much like text borders. Figure 2-21 shows a typical border within a spreadsheet
document.

Figure 2-21 A publisher border within a spreadsheet document

Note that the border goes below the column headers (A, B, C, D) and to the right of the
row labels (1, 2, 3, 4)—it should not overlap these cell boundaries. The border at the
bottom and the border on the right side can be placed within the adjacent cells (outside
of the cells that constitute the publisher).

Unlike borders in word-processing applications, borders in spreadsheet documents (or
other documents with array data) can overlap. That is, a user can select a row of cells to
be a publisher and an overlapping column of those cells to be another publisher. You
should never display more than one publisher border at a time. When a user selects a
spreadsheet cell that is part of more than one publisher, you should display only the
border of the publisher that was last edited. (This can be accomplished by comparing the
modification dates of the publishers.)

If it is absolutely necessary to display all section borders within a document at the same
time, you can create a Show/Hide Borders command in the Edit menu to toggle all
borders on and off.

When data is added to or deleted from a publisher that consists of a spreadsheet cell or
other array, you should resize its border to accommodate the addition or deletion of
data. A publisher should behave like a named range in a spreadsheet. For example, if a
user cuts a row within a publisher that consists of a named range in a spreadsheet, you
should shrink the publisher data and its border correspondingly.
Using the Edition Manager 2-55

C H A P T E R 2

Edition Manager
When a user cuts a publisher and its entire contents within a spreadsheet document, the
entire section should be held in the scrap. Do not leave an empty publisher border in a
spreadsheet (as recommended for text borders). If a user attempts to paste a copy of an
existing publisher, you should warn the user by displaying an alert box (see
“Duplicating Publishers and Subscribers” on page 2-58).

Object-Oriented Graphics Borders 2

In an object-oriented drawing application, the publisher border should fit just around
the selected objects.

You can provide resize handles that appear with all drawing objects to allow the user
to resize the border of a publisher. Figure 2-22 shows a publisher border with resize
handles.

Figure 2-22 A publisher border with resize handles

An application can make publisher borders appear to float over the area the user
publishes. The border acts like a clipping rectangle—anything within the border
becomes the publisher. Figure 2-23 shows a publisher that contains clipped graphics and
its subscriber in another application.

A user can create publishers and subscribers that overlap each other. Thus, borders may
overlap and it may no longer be possible to turn on a particular border when the user
clicks within a publisher. Drawing applications should provide a menu command,
Show Borders, that toggles to Hide Borders. This command should allow users to turn
all publisher and subscriber borders on or off.
2-56 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Figure 2-23 A publisher and subscriber with clipped graphics

Bitmapped Graphics Borders 2

Creating a border around bitmapped graphics in applications is similar to doing so in
object-oriented drawing applications. The border appears around the selected area. The
user can create overlapping publishers and subscribers in bitmapped graphics
applications. You need to provide a Show/Hide Borders command to allow users to turn
all borders on and off.
Using the Edition Manager 2-57

C H A P T E R 2

Edition Manager
Duplicating Publishers and Subscribers 2

Whenever a user clicks a publisher or subscriber border, you should change the contents
of the section to a selected state. You should discourage users from making multiple
copies of a publisher and pasting them in the same or other documents, because the
contents of the edition would be difficult or impossible to predict. Multiple copies of the
same publisher also contain the same control block value. See “Creating and Registering
a Section” on page 2-74 for detailed information on control blocks.

When a user attempts to create a copy of a publisher that already exists, you should
display an alert box such as the one shown in Figure 2-24.

Figure 2-24 Creating multiple publishers alert box

When a user attempts to save a document that contains multiple copies of the same
publisher, display an alert box such as the one shown in Figure 2-25.

Figure 2-25 Saving multiple publishers alert box

If a user decides to ignore your alert box, your application should still save the
document, but you should continue to display this error message every time the user
saves this document.
2-58 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
A user can modify the contents of any duplicate publisher, but the contents of the edition
will be whichever publisher was the last to write.

When a user chooses to copy and paste or duplicate a section, use the HandToHand
function (described in Inside Macintosh: Memory) to duplicate the section record and alias
record. Set the alias field of the cloned section record to the handle of the cloned
alias record and generate a unique section identification number for it. In addition, you
should also place the section data, section record, and alias record in the scrap.

Use the RegisterSection function (described in “Opening and Closing a Document
Containing Sections” on page 2-22) to register the cloned section’s section record.

A user can select the contents of a publisher without selecting the border and copy just
the data to a new location. In this case, the user has simply copied data (and not the
publisher). Do not create a border for this data in the new location.

Modifying a Subscriber 2
When the user selects data or clicks the data area of a subscriber, you should highlight
the entire contents of the subscriber using inverse video. Although you shouldn’t allow a
user to edit the information in a subscriber, you can allow a user to make global
adornments to subscribers. In other words, users can change the font, size, or other
characteristics of the entire subscriber. For example, a user might select a subscriber
within a document and change all text from plain to bold. However, you should
discourage users from modifying the individual elements contained within a
subscriber—for example, by editing a sentence or rotating an individual graphic object.

Remember that each time a new edition arrives for a subscriber, any modifications that
the user has introduced are overwritten. Global changes to a subscriber are much easier
for your application to regenerate.

Note
Although adornments should be global and never partial, you may still
need to give users the ability to select portions of a subscriber, for
instance, when performing spell checking and search-and-replace
operations. ◆

If you do allow a user to edit a subscriber section, provide an
enable/disable editing option within the subscriber options dialog box using the
SectionOptionsExpDialog function, described in “Customizing Dialog Boxes”
beginning on the next page. When you allow a user to edit a subscriber, you should
change the subscriber from a selected state to editable data.

Because a user can modify a publisher just like any other portion of a document, its
subscriber may change in size as well as content. For example, a user may modify a
publisher by adding two additional columns to a spreadsheet.
Using the Edition Manager 2-59

C H A P T E R 2

Edition Manager
Relocating an Edition 2
In the Finder, users cannot move an edition across volumes. To relocate an edition,
the user must first select its publisher and cancel the section (remember to remove the
border). The user needs to republish and then select a new volume location for the
edition. As a convenience for the user, you should retain the selection of all the publisher
data after the user cancels the section to make it easy to republish the section.

Customizing Dialog Boxes 2
The expandable dialog box functions allow you to add items to the bottom of the
dialog boxes, apply alternate mapping of events to item hits, apply alternate meanings
to the item hits, and choose the location of the dialog boxes. See the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials and the chapter
“Standard File Package” in Inside Macintosh: Files for additional information.

The expandable versions of these dialog boxes require five additional parameters. Use
the NewPublisherExpDialog function to expand the publisher dialog box.

err := NewPublisherExpDialog (reply, where, expansionDITLresID,

dlgHook, filterProc, yourDataPtr);

Use the NewSubscriberExpDialog function to expand the subscriber dialog box.

err := NewSubscriberExpDialog (reply, where, expansionDITLresID,

 dlgHook, filterProc, yourDataPtr);

Use the SectionOptionsExpDialog function to expand the publisher options and the
subscriber options dialog boxes.

err := SectionOptionsExpDialog (reply, where, expansionDITLresID,

 dlgHook, filterProc, yourDataPtr);

The reply parameter is a pointer to a NewPublisherReply, NewSubscriberReply,
or SectionOptionsReply record, respectively.

You can automatically center the dialog box by passing (–1, –1) in the where parameter.

The expansionDITLresID parameter should contain 0 or a valid item list ('DITL')
resource ID. This integer is the resource ID of an item list whose items are appended to
the end of the standard item list. The dialog items keep their relative positions, but they
are moved as a group to the bottom of the dialog box. See the chapter “Dialog Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for additional information on item lists.

The filterProc parameter should be a pointer to an expandable modal-dialog filter
function or NIL. An expandable modal-dialog filter function is similar to a modal-dialog
filter function or event filter function except that an expandable modal-dialog filter
function accepts two extra parameters. The ModalDialog procedure calls the
expandable modal-dialog filter function you provide in this parameter.
2-60 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Providing a filter function enables you to map real events (such as a mouse-down event)
to an item hit (such as clicking the Cancel button). For instance, you may want to
map a keyboard equivalent to an item hit. See the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials for information on the ModalDialog
procedure.

The dlgHook parameter should be a pointer to an expandable dialog hook function
or NIL. An expandable dialog hook function is similar to a dialog hook
function except that an expandable dialog hook function accepts an additional
parameter. The NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog functions call your expandable dialog hook function
after each call to the ModalDialog procedure. The dialog hook function should take the
appropriate action, such as filling in a checkbox. The itemOffset parameter to the
procedure is the number of items in the item list before the expansion dialog items. You
need to subtract the item offset from the item hit to get the relative item number in the
expansion dialog item list. The expandable dialog hook function should return as its
function result the absolute item number.

When the Edition Manager displays subsidiary dialog boxes in front of another dialog
box on the user’s screen, your dialog hook and event filter functions should check the
refCon field in the WindowRecord data type (from the window field in the
DialogRecord) to determine which window is currently in the foreground. The main
dialog box for the NewPublisherExpDialog and the NewSubscriberExpDialog
functions contains the following constant:

CONST sfMainDialogRefCon = 'stdf'; {new publisher and }

{ new subscriber}

The main dialog box for the SectionOptionsExpDialog function contains the
following constant:

CONST emOptionsDialogRefCon = 'optn'; {options dialog}

See “Summary of the Edition Manager” beginning on page 2-106 for additional constants.

The yourDataPtr parameter is reserved for your use. It is passed back to your dialog
hook and event filter function. This parameter does not have to be of type Ptr—it can be
any 32-bit quantity that you want. In Pascal, you can pass yourDataPtr in register A6 ,
and declare your dialog hook and modal-dialog filter as local functions without the last
parameter. The stack frame is set up properly for these functions to access their parent
local variables. See the chapter “Standard File Package” in Inside Macintosh: Files for
detailed information.

For the NewPublisherExpDialog and NewSubscriberExpDialog functions, all the
pseudo-items for the Standard File Package—such as sfHookFirstCall(–1),
sfHookNullEvent(100), sfHookRebuildList(101), and sfHookLastCall(–2)—can
be used, as well as emHookRedrawPreview(150).
Using the Edition Manager 2-61

C H A P T E R 2

Edition Manager
For the SectionOptionsExpDialog function, the only valid pseudo-items are
sfHookFirstCall(–1), sfHookNullEvent(100), sfHookLastCall(–2),
emHookRedrawPreview(150), emHookCancelSection(160),
emHookGoToPublisher(161), emHookGetEditionNow(162),
emHookSendEditionNow(162), emHookManualUpdateMode(163), and
emHookAutoUpdateMode(164). See the chapter “Standard File Package” in
Inside Macintosh: Files for information on pseudo-items.

Subscribing to Non-Edition Files 2

Using the Edition Manager, a subscriber can read data directly from another document,
such as an entire 'PICT' file, instead of subscribing to an edition. This feature is for
advanced applications that can set up bottleneck procedures for reading. Figure 2-26
shows a document that is subscribing directly to a 'PICT' file.

Figure 2-26 Subscribing directly to a 'PICT' file

For each application, the Edition Manager keeps a pointer to a bottleneck function.
The Edition Manager never opens or closes an edition container directly. Instead, the
Edition Manager calls the current edition opener. The InitEditionPack function
(described on page 2-74) sets up the current system opener function.

Pianos & palm trees

M u s i c

in

the

park

Join us every Wednesday evening

at 8 PM beginning March 21.

The concerts will be held in the outdoor atrium

shell located across from the Academy of Sciences

in Golden Gate Park in San Francisco.

The series will continue through

April 25.

Subscriber
2-62 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
To override the standard opener function, create an opener function that contains the
following parameters:

FUNCTION MyOpener (selector: EditionOpenerVerb;

 VAR PB: EditionOpenerParamBlock): OSErr;

Your opener needs to know which formats the file contains and how the data is
supposed to be read or written.

The opener function is passed an edition opener verb in the selector parameter, which
identifies the action the opener function should perform. The opener can allocate a
handle or pointer to contain information such as file reference numbers. This value is
passed to the I/O routines in the ioRefNum field of the edition opener parameter block.

The eoOpen and eoOpenNew edition opener verbs (described in “Calling an Edition
Opener” on page 2-64) return a pointer to a function to do the actual reading and writing.

The following sections describe

■ how to get the current edition opener

■ how to set your own edition opener

■ how to call an edition opener

■ the edition opener parameters

Getting the Current Edition Opener 2
When you want to get the current edition opener, use the GetEditionOpenerProc
function.

err := GetEditionOpenerProc(opener);

The opener parameter returns a pointer to the current edition opener. A different
current opener is kept for each application. One application’s opener is never called by
another application.

Setting an Edition Opener 2
You can provide your own edition opener. To do so, use the SetEditionOpenerProc
function.

err := SetEditionOpenerProc(@MyOpener);

The @MyOpener parameter is a pointer to the edition opener function that you are
providing. If you set the current opener to be a routine in your own code, be sure to call
the GetEditionOpenerProc function first so that you can save the previous opener. If
your opener is passed a selector that it does not understand, use the previous opener
provided by the Edition Manager to handle it. See the next section for a list of selectors.
Subscribing to Non-Edition Files 2-63

C H A P T E R 2

Edition Manager
Calling an Edition Opener 2
You use the CallEditionOpenerProc function to call an edition opener. Since
the Edition Manager is a package that may move, a real pointer cannot be safely
returned for the standard opener and I/O routines. The system opener and the
I/O routines are returned as a value that is not a valid address to a procedure. The
CallEditionOpenerProc and CallFormatIOProc functions check for these
values and call the system openers.

You should never assume that a value for a system opener is a fixed constant.

err := CallEditionOpenerProc (selector, PB, routine);

Set the selector parameter to one of the edition opener verbs. The edition opener
verbs include

■ eoCanSubscribe

■ eoOpen

■ eoClose

■ eoOpenNew

■ eoCloseNew

The PB parameter of the CallEditionOpenerProc function is an edition opener
parameter block.

TYPE EditionOpenerParamBlock =

RECORD

info: EditionInfoRecord; {edition container to }

{ be subscribed to}

sectionH: SectionHandle; {publisher or }

{ subscriber }

{ requesting open}

document: FSSpecPtr; {document passed}

fdCreator: OSType; {Finder creator type}

ioRefNum: LongInt; {reference number}

ioProc: FormatIOProcPtr; {routine to read }

{ formats}

success: Boolean; {reading or writing }

{ was successful}

formatsMask: SignedByte; {formats required to }

{ subscribe}

END;
2-64 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
The routine parameter of the CallEditionOpenerProc function is a pointer to an
edition opener function.

The following list shows which fields of the edition opener parameter block are used by
the edition opener verbs:

Opener verb Field Description Called by

eoCanSubscribe → info Edition container to
subscribe to.

NewSubscriberDialog
function for a subscriber

→ formatsMask Formats required to
subscribe.

← Return value A noErr code
indicates that an
edition container can
be subscribed to. A
noTypeErr code
indicates that an
edition container
cannot be subscribed
to.

eoOpen → info Edition container to
open for reading.

OpenEdition and
GetStandardFormats
functions for a subscriber→ sectionH Subscriber section

requesting open or
NIL.

← ioRefNum Reference number for
use by I/O routine.
Not the same as
EditionRefNum.

← ioProc I/O routine to call to
read formats.

← Return value A noErr code or
appropriate error code.

eoClose → info Edition container to be
closed for reading.

CloseEdition and
GetStandardFormats
functions for a subscriber→ sectionH Subscriber section

requesting close or NIL.

→ ioRefNum Value returned by
eoOpen.

→ ioProc Value returned by
eoOpen.

→ success Success value passed
to the CloseEdition
function.

← Return value A noErr code or
appropriate error code.

continued
Subscribing to Non-Edition Files 2-65

C H A P T E R 2

Edition Manager
As Listing 2-9 demonstrates, you install your own edition opener function by first saving
the current opener and then installing your own opener. The listing also shows an
edition opener, the MyEditionOpener function. When it receives the
eoCanSubscribe opener verb, the MyEditionOpener function calls another
application-defined routine, MyCanSubscribe. The Edition Manager sends your
edition opener this verb to help it build the list of files displayed by the
NewSubscriber function. The MyCanSubscribe function returns noErr if it can
subscribe to the file; otherwise, it calls the original edition opener to handle the request.

eoOpenNew → info Edition container to
open for writing.

OpenNewEdition
function for a publisher

→ sectionH Publisher section
requesting open or
NIL.

→ document Document pointer
passed into the
OpenNewEdition
function.

→ fdCreator The fdCreator
passed into the
OpenNewEdition
function.

← ioRefNum Reference number for
use by I/O routine.
Not the same as
EditionRefNum.

← ioProc I/O routine to call to
write formats.

← Return value A noErr code or
appropriate error code.

eoCloseNew → info Edition container to be
closed after writing.

CloseEdition
function for a publisher

→ sectionH Publisher section
requesting close or NIL.

→ ioRefNum Value returned by
eoOpenNew.

→ ioProc Value returned by
eoOpenNew.

→ success Success value passed
to the CloseEdition
function.

← Return value A noErr code or
appropriate error code.

Opener verb Field Description Called by (continued)
2-66 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Listing 2-9 Using your own edition opener function

VAR

gOriginalOpener: EditionOpenerProcPtr;{global variable}

PROCEDURE MyInstallMyOpener;

BEGIN

FailOSErr(GetEditionOpenerProc(gOriginalOpener));

FailOSErr(SetEditionOpenerProc(@MyEditionOpener));

END; {MyInstallMyOpener}

FUNCTION MyEditionOpener (selector: EditionOpenerVerb;

 VAR PB: EditionOpenerParamBlock)

: OSErr;

BEGIN

WITH PB DO

BEGIN

CASE selector OF

eoCanSubscribe:

MyEditionOpener := MyCanSubscribe(PB);

eoOpen:

MyEditionOpener := MyEditionOpen(PB);

eoClose:

MyEditionOpener := MyEditionClose(PB);

OTHERWISE

{call the original edition opener}

MyEditionOpener

:= CallEditionOpenerProc(selector, PB,

gOriginalOpener);

END; {of CASE}

END; {of WITH}

END; {MyEditionOpener}

FUNCTION MyCanSubscribe (VAR PB: EditionOpenerParamBlock): OSErr;

BEGIN

{check file type to see if it is a file you can emulate as an }

{ edition}

IF PB.info.fdType = {for example}'PICT' THEN

MyCanSubscribe := noErr

ELSE {otherwise, let the saved edition opener decide}

MyCanSubscribe := CallEditionOpenerProc(eoCanSubscribe,

 PB, gOriginalOpener);

END; {MyCanSubscribe}
Subscribing to Non-Edition Files 2-67

C H A P T E R 2

Edition Manager
Opening and Closing Editions 2
Each time the Edition Manager opens or closes an edition container, it calls the current
edition opener procedure and passes it an opener verb and a parameter block.

Your opener must be careful when closing documents since a document may already
have been opened by another application. Be sure to use the Open/Deny modes
whenever possible. Do not close a document if it was already open when your
application opened it.

Listing Files That Can Be Subscribed To 2
The NewSubscriberDialog function calls the edition opener function and passes the
eoCanSubscribe opener verb in the selector parameter to build the list of files that
can be subscribed to. The preview in the subscriber dialog box is generated by calling the
GetStandardFormats function (described in “Edition Container Formats” on
page 2-101), which calls the format I/O procedure with the verbs eoOpen,
ioHasFormat, ioRead, and then eoClose. See “Calling a Format I/O Function” on
this page for detailed information on format I/O verbs.

Reading From and Writing to Files 2
The I/O procedure is a routine that actually reads and writes the data. It too has an
interface of a selector and a parameter block.

To override the standard reading and writing functions, create an I/O function. Note
that you also need to provide your own opener function to call your I/O function. See
“Calling an Edition Opener” on page 2-64.

FUNCTION MyIO (selector: FormatIOVerb;

VAR PB: FormatIOParamBlock): OSErr;

Calling a Format I/O Function 2
To indicate to the Edition Manager which format I/O function to use, use the
CallFormatIOProc function.

err := CallFormatIOProc (selector, PB, routine);
2-68 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Set the selector parameter to one of the format I/O verbs. The format I/O verbs
include

■ ioHasFormat

■ ioReadFormat

■ ioNewFormat

■ ioWriteFormat

The PB parameter of the CallFormatIOProc function contains a format I/O parameter
block.

TYPE FormatIOParamBlock =

RECORD

ioRefNum: LongInt; {reference number}

format: FormatType; {edition format type}

formatIndex: LongInt; {opener-specific enumeration }

{ of formats}

offset: LongInt; {offset into format}

buffPtr: Ptr; {data starts here}

buffLen: LongInt; {length of data}

END;

The routine parameter of the CallFormatIOProc function is a pointer to a format
I/O function.

The following list shows which fields of FormatIOParamBlock are used by the
format I/O verbs:

Format I/O verb Parameter Description Called by

ioHasFormat → ioRefNum I/O reference number
returned by opener.

EditionHasFormat,
GetStandardFormats,
and ReadEdition
functions→ format Check for this format.

← formatIndex An optional
enumeration of the
supplied format.

← buffLen If found, return the
length size or –1 if size
is unknown.

← Return value A noErr or
noTypeErr code.

continued
Subscribing to Non-Edition Files 2-69

C H A P T E R 2

Edition Manager
The marks for each format are kept by the Edition Manager. The format I/O function
only needs to be able to read or write, beginning at any offset. If you know that your
application always reads an entire format sequentially, you can ignore the offset.

ioReadFormat → ioRefNum I/O reference number
returned by opener.

ReadEdition and
GetStandardFormats
functions→ format Get this format.

→ formatIndex Value returned by
ioHasFormat.

→ offset Read format beginning
from this offset.

→ buffPtr Put data beginning here.

↔ buffLen Specify buffer length to
read, and return actual
amount received.

← Return value A noErr code, or
appropriate error code.

ioNewFormat → ioRefNum I/O reference number
returned by opener.

SetEditionFormatMark
and WriteEdition
functions→ format Create this format.

← formatIndex An optional
enumeration of the
supplied format.

← Return value A noErr code, or
appropriate error code.

ioWriteFormat → ioRefNum I/O reference number
returned by opener.

WriteEdition function

→ format Get this format.

→ formatIndex Value returned by
ioNewFormat.

→ offset Write format beginning
from this offset.

→ buffPtr Get data beginning here.

↔ buffLen Specify buffer length to
write.

← Return value A noErr code or
appropriate error code.

Format I/O verb Parameter Description Called by (continued)
2-70 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Edition Manager Reference 2

This section describes the data structures and routines that are specific to the
Edition Manager. The “Data Structures” section describes the edition container
record and the section record. The “Edition Manager Routines” section describes the
routines your application can use to implement publish and subscribe features in
your application.

Data Structures 2
This section describes the edition container record and the section record. See page 2-91
for a description of the new subscriber reply record, page 2-93 for a description of the
new publisher reply record, page 2-95 for a description of the section options record, and
page 2-99 for a description of the edition info record. For information on the edition
opener parameter block and format I/O parameter block, see page 2-103 and page 2-104,
respectively.

The Edition Container Record 2

An edition container record identifies a specific edition file. Many Edition Manager
routines require an edition container record as a parameter. The
EditionContainerSpec data type defines an edition container record.

TYPE EditionContainerSpec =

RECORD

theFile: FSSpec; {file containing edition }

{ data}

theFileScript: ScriptCode; {script code of filename}

thePart: LongInt; {which part of file, }

{ always kPartsNotUsed}

thePartName: Str31; {reserved}

thePartScript: ScriptCode; {reserved}

END;

Field descriptions

theFile A file specificiation record that identifies the name and location of
the edition file. Specify the file using the standard conventions for
file specification records as described in the chapter “Introduction to
File Management” in Inside Macintosh: Files.

theFileScript A script code that identifies the script in which the name of the
document is to be displayed in the Finder. A script code of
smSystemScript represents the default system script.
Edition Manager Reference 2-71

C H A P T E R 2

Edition Manager
thePart A value that must always be set to kPartsNotUsed in System 7.
thePartName Reserved.
thePartScript Reserved.

The Section Record 2

A section record identifies a specific publisher or subscriber section. It contains
information to identify the section as a publisher or a subscriber, a time stamp to record
the last modification of the section, and unique identification for each section. Many
Edition Manager routines require a handle to a section record as a parameter. The
SectionRecord data type defines a section record.

TYPE SectionRecord =

RECORD

version: SignedByte; {always 1 in 7.0}

kind: SectionType; {publisher or subscriber}

mode: UpdateMode; {automatic or manual}

mdDate: TimeStamp; {last change in document}

sectionID: LongInt; {application-specific, }

{ unique per document}

refCon: LongInt; {application-specific}

alias: AliasHandle; {handle to alias record}

{The following fields are private and are set up by the }

{ RegisterSection function. Do not modify the private }

{ fields.}

subPart: LongInt; {private}

nextSection: SectionHandle; {private, do not use as a }

{ linked list}

controlBlock: Handle; {may be used for comparison }

{ only}

refNum: EditionRefNum; {private}

END;

Field descriptions

version Indicates the version of the section record, currently $01.
kind Defines the section type as either publisher or subscriber with the

stPublisher or stSubscriber constant.
mode Indicates if editions are updated automatically or manually.
2-72 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
mdDate Indicates which version (modification date) of the section’s contents
is contained within the publisher or subscriber. The mdDate field is
set to 0 when you create a new subscriber section and to the current
time when you create a new publisher. Be sure to update this field
each time publisher data is modified. The section’s modification
date is compared to the edition’s modification date to determine
whether the section and the edition contain the same data. The
section modification date is displayed in the publisher and
subscriber options dialog boxes. See “Closing an Edition” on
page 2-28 for detailed information.

sectionID Provides a unique number for each section within a document.
A simple way to implement this is to create a counter for each
document that is saved to disk with the document. The counter
should start at 1. The section ID is currently used as a tie breaker in
the GoToPublisherSection function when there are multiple
publishers to the same edition in a single document. The section ID
should not be 0 or –1. See “Duplicating Publishers and Subscribers”
on page 2-58 for information on multiple publishers.

refCon Reference constant available for application-specific use.
alias Contains a handle to the alias record for a particular section within

a document.

Whenever the user creates a publisher or subscriber, call the NewSection function
(described on page 2-75) to create a section record and alias record.

Edition Manager Routines 2
This section describes the routines you use to

■ initialize the Edition Manager

■ create and register a section

■ create and delete an edition container

■ set and locate a format mark

■ read in edition data

■ write out edition data

■ close an edition after reading or writing

■ display dialog boxes

■ locate a publisher and edition from a subscriber

■ read and write non-edition files

Result codes appear at the end of each function where applicable. In addition to the
specific result codes listed, you may receive errors generated by the Alias Manager,
File Manager, and Memory Manager.
Edition Manager Reference 2-73

C H A P T E R 2

Edition Manager
Initializing the Edition Manager 2

You use the InitEditionPack function to initialize the Edition Manager. Note
that you should call this function only once.

InitEditionPack 2

Before calling the InitEditionPack function, be sure to determine whether the
Edition Manager is available on your system by using the Gestalt function with the
gestaltEditionMgrAttr ('edtn') selector.

FUNCTION InitEditionPack: OSErr;

DESCRIPTION

The InitEditionPack function returns an error if the package could not be loaded
into the system heap and properly initialized.

RESULT CODES

Creating and Registering a Section 2

You use the NewSection function to create a new section (either publisher or
subscriber) and alias record (which is a reference to the edition container from the
document containing the publisher or subscriber section).

The NewSection function registers a section much as the RegisterSection function
informs the Edition Manager about a section (except that the NewSection function does
not resolve an alias to find the edition container).

When a section needs to be disposed of because the document containing the section is
being closed or because the user has canceled the section, you need to call the
UnRegisterSection function before disposing of the section.

Using the IsRegisteredSection function, your application must verify that each
event received is for a registered section. This is necessary because your application may
have just called UnRegisterSection while the event was already being held in the
event queue.

If a user saves a document that contains sections under another name (using Save As) or
pastes a portion of a document that contains a section into another document, use the
AssociateSection function to update the section’s alias record.

noErr 0 No error
memFullErr –108 Could not load package
2-74 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
NewSection 2

Use the NewSection function to create a new section record and alias record for a new
publisher or subscriber.

FUNCTION NewSection (container: EditionContainerSpec;

sectionDocument: FSSpecPtr;

kind: SectionType; sectionID: LongInt;

initialMode: UpdateMode;

VAR sectionH: SectionHandle): OSErr;

container The edition you want to publish or subscribe to.

sectionDocument
The volume reference number, directory ID, and filename of the
document that contains a section. The sectionDocument parameter
can be NIL if your current document has never been saved. If so,
when the user finally saves the document, remember to call the
AssociateSection function for each section to update its alias record.

kind The type of section (publisher or subscriber) being created.

sectionID A unique number for a section within a document. The NewSection
function initializes the sectionID field of the new section record with
the specified value. Do not use 0 or –1 for an ID number; these numbers
are reserved. If your application copies a section, you need to specify a
unique number for the copied section.

initialMode
The update mode for the section. For publishers this is either the
pumOnSave or pumManual constant, and for subscribers it is
either sumAutomatic or sumManual. A subscriber created with
sumAutomatic mode automatically receives a Section Read event. To
prevent this initial Section Read event, you should set the initialMode
parameter to sumManual and then, when NewSection returns, set the
mode field of the section record to sumAutomatic.

sectionH The NewSection function returns a handle to the allocated section
record in this parameter. If an error occurs, NewSection returns NIL in
this parameter.

DESCRIPTION

The NewSection function allocates two handles in the current zone: one handle for the
section record and another handle for the alias record. Note that you are responsible for
unregistering handles created by the Edition Manager.

Your application receives the multiplePublisherWrn result code if there is
another registered publisher to the same edition. Your application receives the
notThePublisherWrn result code if another publisher (to the same edition) was the
last section to write to the edition. The multiplePublisherWrn result code takes
priority over the notThePublisherWrn result code.
Edition Manager Reference 2-75

C H A P T E R 2

Edition Manager
RESULT CODES

SEE ALSO

For information on the edition container record, see page 2-71. For information on the
section record, see “The Section Record” beginning on page 2-72. For information on file
specification records, see Inside Macintosh: Files. See Listing 2-4 on page 2-33 for an
example that uses NewSection to create a publisher and Listing 2-6 on page 2-40 for
an example that creates a subscriber using NewSection.

RegisterSection 2

When opening a document that contains sections, register each section using the
RegisterSection function.

FUNCTION RegisterSection (sectionDocument: FSSpec;

 sectionH: SectionHandle;

 VAR aliasWasUpdated: Boolean): OSErr;

sectionDocument
The volume reference number, directory ID, and filename of the
document that contains a section.

sectionH A handle to the section record for a given section.

aliasWasUpdated
A Boolean value that returns TRUE if the alias for the edition container
subscribed to was out of date and was updated. This may occur if the
edition file was moved to a new location or was renamed.

DESCRIPTION

The RegisterSection function adds the section record to the Edition Manager’s list of
registered sections and tries to allocate a control block. After calling the
RegisterSection function, the controlBlock field of the section record contains
either NIL or a valid control block.

For a subscriber, the controlBlock field contains NIL if the RegisterSection
function could not locate the edition container being subscribed to. The
RegisterSection function then returns either the containerNotFoundWrn or the
userCanceledErr result code. For a publisher, if the RegisterSection function
could not locate its corresponding edition container, the Edition Manager creates an

noErr 0 No error
editionMgrInitErr –450 Manager not initialized
badSectionErr –451 Not a valid section type
badSubPartErr –454 Bad edition container spec
multiplePublisherWrn –460 Already is a publisher
notThePublisherWrn –463 Not the publisher
2-76 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
edition container in the last place the edition was located and creates a control block for
it. If the RegisterSection function could not locate a publisher’s corresponding
edition container or its volume, the controlBlock field contains NIL. You should
never re-register a section that is already registered.

Note that you can compare control blocks for individual sections. If two sections contain
the same control block value, these sections publish or subscribe to the same edition
(unless the control block is NIL). The Edition Manager keeps track of how many sections
are referencing a control block to know when it can be deallocated. The control block
maintains a count of how many sections are referencing it. Each time you use the
UnRegisterSection function, the control block subtracts 1 from the number of
sections. When the number of sections reaches 0, the control block is deallocated.

Your application receives the multiplePublisherWrn result code if there is
another registered publisher to the same edition. Your application receives the
notThePublisherWrn result code if another publisher (to the same edition) was
the last section to write to the edition. The multiplePublisherWrn result code
takes priority over the notThePublisherWrn result code.

RESULT CODES

SEE ALSO

For information on the section record, see “The Section Record” beginning on
page 2-72. For information on file specification records, see Inside Macintosh: Files.
For additional information and an example of the use of RegisterSection, see
“Opening and Closing a Document Containing Sections” beginning on page 2-22.

UnRegisterSection 2

When a section needs to be disposed of because the document containing the section is
being closed or because the user has canceled the section, you need to call the
UnRegisterSection function before disposing of the section.

FUNCTION UnRegisterSection (sectionH: SectionHandle): OSErr;

sectionH A handle to the section record for a given section.

noErr 0 No error
userCanceledErr –128 User clicked Cancel in dialog box
editionMgrInitErr –450 Manager not initialized
badSectionErr –451 Not valid section type
multiplePublisherWrn –460 Already is a publisher
containerNotFoundWrn –461 Alias was not resolved
notThePublisherWrn –463 Not the publisher
Edition Manager Reference 2-77

C H A P T E R 2

Edition Manager
DESCRIPTION

The UnRegisterSection function removes the section from the Edition Manager’s list
of registered sections. You can then dispose of the section record and alias record with
standard Memory Manager and Resource Manager calls. Once unregistered, a section
does not receive any events and cannot read or write any data. Depending on your
Clipboard strategy, you may want to unregister sections that have been cut into
the Clipboard.

RESULT CODES

IsRegisteredSection 2

Upon receiving a section event, your application must call the IsRegisteredSection
function to verify that the event received is for a registered section. You must call
IsRegisteredSection before handling a section event because your application may
have just called UnRegisterSection while the event was already being held in the
event queue.

FUNCTION IsRegisteredSection (sectionH: SectionHandle): OSErr;

sectionH A handle to the section record for a given section.

DESCRIPTION

The IsRegisteredSection function returns a result code (not a Boolean value)
indicating whether the section is registered. A noErr result code indicates that a section
is registered.

RESULT CODES

SEE ALSO

For an example of the use of IsRegisteredSection, see Listing 2-1 on page 2-14.

noErr 0 No error
fBsyErr –47 Section doing I/O
editionMgrInitErr –450 Manager not initialized
notRegisteredSectionErr –452 Not registered

noErr 0 No error
notRegisteredSectionErr –452 Not registered
2-78 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
AssociateSection 2

If a user saves a document that contains sections under another name (using Save As) or
pastes a portion of a document that contains a section into another document, use the
AssociateSection function to update the section’s alias record.

FUNCTION AssociateSection (sectionH: SectionHandle;

newSectionDocument: FSSpecPtr): OSErr;

sectionH A handle to the section record for a given section.

newSectionDocument
The volume reference number, directory ID, and filename of the new
document.

DESCRIPTION

The AssociateSection function calls UpdateAlias on the section’s alias record.

RESULT CODES

SEE ALSO

For information on the UpdateAlias function, see the chapter “Alias Manager” in
Inside Macintosh: Files.

Creating and Deleting an Edition Container 2

Each time a user creates a new publisher section within a document to an edition that
does not already exist, you use the CreateEditionContainerFile function to create
an empty edition container.

To remove the edition container, use the DeleteEditionContainerFile function.

CreateEditionContainerFile 2

You use the CreateEditionContainerFile function to create an empty edition
container.

FUNCTION CreateEditionContainerFile

(editionFile: FSSpec; fdCreator: OSType;

 editionFileNameScript: ScriptCode): OSErr;

noErr 0 No error
paramErr –50 Invalid parameter
Edition Manager Reference 2-79

C H A P T E R 2

Edition Manager
editionFile
The volume reference number, directory ID, and filename for the edition
container being created.

fdCreator The creator type for the edition.

editionFileNameScript
The script of the filename. (You can get this value from the
theFileScript field of an edition container specification record.)

DESCRIPTION

The CreateEditionContainerFile function creates an empty edition container file
(it does not contain any formats). This function sets the file type of the edition to
'edtu'. As soon as you write data to the edition, the Edition Manager updates the type
(to 'edtp' for graphics, 'edtt' for text, or 'edts' for sound). If your application
writes both 'TEXT' and 'PICT' formats to the edition, the Edition Manager sets the file
type to the type that was written first. If your application has a bundle, you should
designate an icon for the appropriate edition types that you can write.

RESULT CODES

SEE ALSO

For information on file specification records, see Inside Macintosh: Files. For an example of
the use of CreateEditionContainerFile, see Listing 2-4 on page 2-33.

DeleteEditionContainerFile 2

If a user cancels a publisher section within a document or closes a document containing
a newly created publisher without saving, you need to remove the edition container.

To locate the appropriate edition container to be deleted, use the GetEditionInfo
function. You use the UnRegisterSection function (only after using the
GetEditionInfo function) to unregister the section record and alias record of the
publisher being canceled.

noErr 0 No error
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
dirNFErr –120 Directory not found
editionMgrInitErr –450 Manager not initialized
2-80 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
To remove the edition container, use the DeleteEditionContainerFile function.

FUNCTION DeleteEditionContainerFile (editionFile: FSSpec): OSErr;

editionFile
The volume reference number, directory ID, and filename for the edition
container being deleted.

DESCRIPTION

If the user cancels a publisher, do not call the DeleteEditionContainerFile
function until the user saves the document. This allows the user to undo changes and
revert to the last saved version of the document.

The DeleteEditionContainerFile function deletes the edition container only if
there is no registered publisher. You need to unregister a publisher before you can delete
its corresponding edition container.

You should use the DeleteEditionContainerFile function even if there are
subscribers to the edition. When a subscriber section tries to read in data, it receives
an error if the edition container has been deleted.

RESULT CODES

SEE ALSO

See page 2-98 for detailed information on the GetEditionInfo function. See page 2-77
for information on the UnRegisterSection function. For information on file
specification records, see Inside Macintosh: Files.

Setting and Getting a Format Mark 2

Use the SetEditionFormatMark function to set the current mark for a section
format and the GetEditionFormatMark function to get the current mark for a
particular format.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
dirNFErr –120 Directory not found
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-81

C H A P T E R 2

Edition Manager
SetEditionFormatMark 2

A format mark indicates the next position of a read or write operation. Initially, a mark
defaults to 0. After reading or writing data, the format mark is set past the last position
written to or read from. To set the current mark for a given format, use the
SetEditionFormatMark function.

FUNCTION SetEditionFormatMark (whichEdition: EditionRefNum;

 whichFormat: FormatType;

 setMarkTo: LongInt): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type for the edition.

setMarkTo The offset for the next read or write for this format.

DESCRIPTION

The SetEditionFormatMark function sets the current mark for the specified format
type according to the value of the setMarkTo parameter.

RESULT CODES

GetEditionFormatMark 2

Use the GetEditionFormatMark function to get the current mark for a particular
format.

FUNCTION GetEditionFormatMark (whichEdition: EditionRefNum;

 whichFormat: FormatType;

 VAR currentMark: LongInt): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type whose mark you want to get.

currentMark
The GetEditionFormatMark function returns the mark for the
specified format in this parameter.

noErr 0 No error
rfNumErr –51 Bad edition reference number
noTypeErr –102 Unknown format (subscriber only)
editionMgrInitErr –450 Manager not initialized
2-82 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
DESCRIPTION

If the edition does not support the format specified in the whichFormat parameter, you
receive a noTypeErr result code.

RESULT CODES

Reading in Edition Data 2

To initiate the reading of data from an edition (for a subscriber), use the OpenEdition
function.

Use the EditionHasFormat function to learn in which formats the edition data is
available.

Use the ReadEdition function to read data from an edition. This function reads from
the current mark for the specified format.

OpenEdition 2

To initiate the reading of data from an edition (for a subscriber), use the OpenEdition
function.

FUNCTION OpenEdition (subscriberSectionH: SectionHandle;

 VAR refNum: EditionRefNum): OSErr;

subscriberSectionH
A handle to the section record for a given section.

refNum The OpenEdition function returns the reference number for the edition
in this parameter.

DESCRIPTION

The OpenEdition function opens an edition for reading and returns a reference
number that your application can use to refer to this edition in other Edition Manager
routines. Multiple subscribers can each call the OpenEdition function simultaneously
(each call returns a different reference number) and read data from a single edition. If a
publisher (located on a different machine) is writing to an edition when you use the
OpenEdition function, you receive an flLckedErr result code.

noErr 0 No error
rfNumErr –51 Bad edition reference number
noTypeErr –102 Unknown format
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-83

C H A P T E R 2

Edition Manager
RESULT CODES

SEE ALSO

For an example of the use of OpenEdition, see Listing 2-7 on page 2-42.

EditionHasFormat 2

Use the EditionHasFormat function to learn in which formats the edition data is
available.

FUNCTION EditionHasFormat (whichEdition: EditionRefNum;

whichFormat: FormatType;

VAR formatSize: Size): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type that you are requesting. For the whichFormat
parameter, you should decide which formats to read in the same way that
you do when reading data from the scrap. You can also get a list of all the
available formats and their respective lengths by reading the
kFormatListFormat ('fmts') format.

formatSize
The EditionHasFormat function returns the format length in this
parameter.

DESCRIPTION

If the requested format is available, the EditionHasFormat function returns noErr,
and the formatSize parameter returns the size of the data in the specified format or
kFormatLengthUnknown (–1), which signifies that the size is unknown. You should
therefore continue to read the format until there is no more data.

noErr 0 No error
fnfErr –43 File not found
flLckedErr –45 Publisher writing to an edition
permErr –54 Not a subscriber
editionMgrInitErr –450 Manager not initialized
2-84 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Note
The Translation Manager (if it is available) attempts implicit
translation under certain circumstances. For instance, it does so when
your application attempts to read from an edition a format type that is
not in the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:
More Macintosh Toolbox. ◆

RESULT CODES

SEE ALSO

For an example of the use of EditionHasFormat, see Listing 2-7 beginning on
page 2-42. For information about the Translation Manager and Scrap Manager, see
Inside Macintosh: More Macintosh Toolbox.

ReadEdition 2

Use the ReadEdition function to read data from an edition. This function reads from
the current mark for the specified format.

FUNCTION ReadEdition (whichEdition: EditionRefNum;

 whichFormat: FormatType; buffPtr: UNIV Ptr;

 VAR buffLen: Size): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type that you want to read.

buffPtr A pointer to the buffer into which you want to read the data.

buffLen The number of bytes that you want to read into the buffer. The
ReadEdition function returns the actual number of bytes read in the
buffLen parameter.

noErr 0 No error
rfNumErr –51 Bad edition reference number
noTypeErr –102 Format not available
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-85

C H A P T E R 2

Edition Manager
DESCRIPTION

The ReadEdition function reads data from the edition into the specified buffer.
ReadEdition returns in the buffLen parameter the total number of bytes read into the
buffer. If the buffLen parameter returns a value smaller than the value you have
specified, there is no additional data to read, and the ReadEdition function returns a
noErr result code. If you use the ReadEdition function after all data is read in, the
ReadEdition function returns an eofErr result code.

You can read data from an edition while a publisher on the same machine is writing data
to the same edition. The data that you are reading is the old edition (not the data that the
publisher is writing). If the publisher finishes writing data before you are through
reading the old edition data, the ReadEdition function returns an abortErr result
code. If the ReadEdition function returns an abortErr result code, you should stop
trying to read data and use the CloseEdition function with the successful
parameter set to FALSE.

Note
The Translation Manager (if it is available) attempts implicit
translation under certain circumstances. For instance, it does so when
your application attempts to read from an edition a format type that is
not in the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:
More Macintosh Toolbox. ◆

RESULT CODES

SEE ALSO

For an example of the use of ReadEdition, see Listing 2-7 beginning on page 2-42.

Writing out Edition Data 2

To initiate the writing of data from a publisher to its edition container, use the
OpenNewEdition function. (To create an edition container, use the
CreateEditionContainerFile function, as described on page 2-79.)

Use the WriteEdition function to write data to an edition.

noErr 0 No error
abortErr –27 Publisher has written a new edition
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 No more data of that format
rfNumErr –51 Bad edition reference number
noTypeErr –102 Format not available
editionMgrInitErr –450 Manager not initialized
2-86 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
OpenNewEdition 2

To initiate the writing of data from a publisher to its edition container, use the
OpenNewEdition function.

FUNCTION OpenNewEdition (publisherSectionH: SectionHandle;

 fdCreator: OSType;

 publisherSectionDocument: FSSpecPtr;

 VAR refNum: EditionRefNum): OSErr;

publisherSectionH
The publisher section that is writing to the edition.

fdCreator The Finder creator type of the new edition icon.

publisherSectionDocument
The document that contains the publisher. This parameter is used to
create an alias from the edition to the publisher’s document. If you pass
NIL for publisherSectionDocument, an alias is not made in the
edition file.

refNum The OpenNewEdition function returns the reference number
for the edition in this parameter. You specify this reference
number as a parameter for subsequent calls to WriteEdition,
SetEditionFormatMark, and CloseEdition to specify which
publisher is writing its data to an edition. If the edition cannot be opened
for writing because there is another publisher writing to it, or because the
file system does not allow writing, an error is returned and
OpenNewEdition sets refNum to NIL.

DESCRIPTION

The OpenNewEdition function opens an edition for writing. The function returns an
flLckdErr result code if there is a subscriber on another machine reading data from the
same edition. The OpenNewEdition function returns a permErr result code if there is a
registered publisher to that edition on another machine.

The Edition Manager allows two registered publishers that are located on the same
machine to write to the same edition. Note that multiple publishers cannot write to the
same edition simultaneously—only one publisher can write to an edition at a given time.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
flLckdErr –45 Edition in use by another section
permErr –54 Registered publisher on another machine
wrPermErr –61 Not a publisher
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-87

C H A P T E R 2

Edition Manager
SEE ALSO

For an example of the use of OpenNewEdition, see Listing 2-5 beginning on
page 2-36.

WriteEdition 2

Use the WriteEdition function to write data to an edition. This function begins
writing at the current mark for the specified format.

FUNCTION WriteEdition (whichEdition: EditionRefNum;

 whichFormat: FormatType;

 buffPtr: UNIV Ptr; buffLen: Size): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type that you want to write.

buffPtr A pointer to the buffer containing the data to write to the edition.

buffLen The number of bytes that you want to write to the edition.

DESCRIPTION

The WriteEdition function writes the specified number of bytes to the edition. If
the data cannot be entirely written to the edition, the WriteEdition function returns
an error.

RESULT CODES

SEE ALSO

For an example that writes data to an edition, see Listing 2-5 beginning on page 2-36.

Closing an Edition After Reading or Writing 2

After finishing reading from or writing to an edition, use the CloseEdition function to
close the edition.

noErr 0 No error
dskFulErr –34 Disk is full
ioErr –36 I/O error
rfNumErr –51 Bad edition reference number
editionMgrInitErr –450 Manager not initialized
2-88 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
CloseEdition 2

Use the CloseEdition function to close an edition after you finish reading from or
writing to it.

FUNCTION CloseEdition (whichEdition: EditionRefNum;

 successful: Boolean): OSErr;

whichEdition
The reference number for the edition.

successful
A value that indicates whether your application was successful (TRUE) or
unsuccessful (FALSE) in reading from or writing data to the edition.

DESCRIPTION

When a subscriber successfully finishes reading data from the edition, the
CloseEdition function takes the modification date of the edition file that you have
read and puts it in the mdDate field of the subscriber’s section record. This indicates that
the data contained in the edition and the subscriber section within the document
are the same.

When a subscriber is unsuccessful in reading data from an edition (because there is not
enough memory, or you didn’t find a format that you can read), set the successful
parameter to FALSE. The CloseEdition function then closes the edition, but does not
set the mdDate field. This implies that the subscriber is not updated with the latest
edition.

When a publisher successfully finishes writing data to an edition, the CloseEdition
function makes the data that the publisher has written to the edition available to any
subscribers and sets the corresponding edition file’s modification date (ioFlMdDat) to
the mdDate field of the publisher’s section record. The Edition Manager then sends a
Section Read event to all current subscribers set to automatic update mode. At this point,
the file type of the edition file is set based on the first known format that the publisher
wrote.

When a publisher is unsuccessful in writing data to an edition, the CloseEdition
function discards what the publisher has written to the edition. The data contained in the
edition prior to writing remains unchanged, and Section Read events are not sent to
subscribers.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad edition reference number
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-89

C H A P T E R 2

Edition Manager
SEE ALSO

For an example of the use of CloseEdition, see Listing 2-5 beginning on
page 2-36.

Displaying Dialog Boxes 2

The Edition Manager supports three dialog boxes: publisher, subscriber, and options
dialog boxes. Your application can display simple dialog boxes that appear centered on
the user’s screen, or you can customize your dialog boxes.

Use the GetLastEditionContainerUsed function to get the default edition to
display.

Use the NewSubscriberDialog function to display the subscriber dialog box on the
user’s screen and use the NewPublisherDialog function to display the publisher
dialog box on the user’s screen. Unlike the Standard File Package routines, the
NewPublisherDialog and the NewSubscriberDialog functions allow you to
specify the initial volume reference number and directory ID so that there can be one
default location for editions for all applications.

You use the SectionOptionsDialog function to display the publisher options and
subscriber options dialog boxes on the user’s screen.

The NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog functions are the same as the simple dialog functions but
have five additional parameters.

GetLastEditionContainerUsed 2

Use the GetLastEditionContainerUsed function to get the default edition to
display. This function allows a user to easily subscribe to the data recently published.

FUNCTION GetLastEditionContainerUsed

(VAR container: EditionContainerSpec): OSErr;

container If the GetLastEditionContainerUsed function locates the last
edition for which a section was created, the container parameter
contains its volume reference number, directory ID, filename, and part,
and returns a noErr result code. (The last edition created is associated
with the last time that your application or another application located on
the same machine used the NewSection function.)

DESCRIPTION

If the last edition used is missing, the GetLastEditionContainerUsed function
returns an fnfErr result code, but still returns the correct volume reference number and
directory ID that you should use for the NewSubscriberDialog function.
2-90 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Pass the information from the GetLastEditionContainerUsed function to the
NewSubscriberDialog function.

RESULT CODES

SEE ALSO

For an example of the use of GetLastEditionContainerUsed, see Listing 2-6
beginning on page 2-40. For a description of the edition container record, see page 2-71.
The NewSubscriberDialog function is described next.

NewSubscriberDialog 2

When a user chooses the Subscribe To menu command, your application should call the
NewSubscriberDialog function to allow the user to choose an edition to subscribe to.

FUNCTION NewSubscriberDialog

(VAR reply: NewSubscriberReply): OSErr;

reply The new subscriber reply record. You specify a location to use as the
default edition container in the container field of this record. You also
specify in the formatsMask field which edition format types
NewSubscriberDialog should display. The NewSubscriberDialog
function returns information concerning the user’s choice in the
canceled and container fields of this record.

TYPE NewSubscriberReply =

RECORD

canceled: Boolean; {user canceled }

{ dialog box}

formatsMask: SignedByte; {formats required}

container: EditionContainerSpec;{edition selected}

END;

Field descriptions

canceled The NewSubscriberDialog function returns in this field a value
that indicates whether the user canceled the dialog box. The
function returns TRUE in the canceled field if the user canceled
the dialog box. Otherwise, the function returns FALSE in this field
and returns in the container field the edition container for the
new subscriber.

noErr 0 No error
fnfErr –43 Edition container not found
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-91

C H A P T E R 2

Edition Manager
formatsMask The formatsMask field indicates which edition format type (text,
graphics, and sound) to display within the subscriber dialog box.
You can set the formatsMask field to the following constants:
kTEXTformatMask (1), kPICTformatMask (2), or
ksndFormatMask (4). To support a combination of formats, add
the constants together. For example, a formatsMask of 3 displays
both graphics and text edition format types in the subscriber
dialog box.

container The edition container of the last edition published or subscribed to.
You provide in this parameter the location and filename to use as
the default edition to subscribe to. If the user clicks the Subscribe
button, NewSubscriberDialog returns FALSE in the canceled
field and returns the selected edition container for the new
subscriber in the container field.

DESCRIPTION

The NewSubscriberDialog function displays the subscriber dialog box on the user’s
screen. The NewSubscriberDialog function (which is based on the CustomGetFile
procedure described in the chapter “Standard File Package” in Inside Macintosh: Files)
switches to the volume reference number and directory ID and selects the filename of the
edition container that you specified in the container field of the reply parameter. Use
the GetLastEditionContainerUsed function to get the edition container of the last
edition that was either published or subscribed to, then set the container field to this
edition container. This allows the user to publish and then easily subscribe.

Note that if an edition does not contain either 'PICT', 'TEXT', or 'snd ' data, the
NewSubscriberDialog function does not list the edition file in the new subscriber
dialog box (unless you install an opener that can recognize the edition’s data in response
to the eoCanSubscribe verb).

RESULT CODES

SEE ALSO

For an illustration of the new subscriber dialog box, see Figure 2-12 on page 2-37. For an
example of the use of NewSubscriberDialog, see Listing 2-6 beginning on page 2-40.
For a description of the edition container record, see page 2-71. For information on
edition openers, see “Subscribing to Non-Edition Files” beginning on page 2-62.

noErr 0 No error
editionMgrInitErr –450 Manager not initialized or could not load package
badSubPartErr –454 Bad edition container spec
2-92 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
NewPublisherDialog 2

When a user selects a portion of a document and then chooses the Create Publisher
menu command, your application should call the NewPublisherDialog function to
allow the user to choose a name and location of the edition to which your application
writes the publisher data. Your application specifies a location and name to use as the
default edition and provides a preview of the publisher data to the
NewPublisherDialog function.

FUNCTION NewPublisherDialog

(VAR reply: NewPublisherReply): OSErr;

reply A new publisher reply record. You specify a location to use as the default
edition container in the container field of this record. You also specify
information in the usePart, preview, and previewFormat fields. The
NewPublisherDialog function returns information concerning the
user’s choice in the canceled, replacing, and container fields of
this record.

TYPE NewPublisherReply =

RECORD

canceled: Boolean; {user canceled dialog box}

replacing: Boolean; {user chose existing }

{ filename for an edition}

usePart: Boolean; {always false in version 7.0}

preview: Handle; {handle to 'prvw', 'PICT', }

{ 'TEXT', or 'snd ' data}

previewFormat: FormatType; {type of preview}

container: EditionContainerSpec;

{edition chosen}

END;

Field descriptions

canceled The NewPublisherDialog function returns in this field a value
that indicates whether the user canceled the dialog box. The
function returns TRUE in the canceled field if the user canceled
the dialog box. The function returns FALSE in this field if the user
clicked the Publish button and returns in the container field the
edition container for the new publisher.

replacing The NewPublisherDialog function returns TRUE in the
replacing field if the user chose an existing filename from the list
of available editions and confirmed this replacement. If the value of
the replacing field is TRUE, do not call the
CreateEditionContainerFile function. If the value of this
field and the canceled field is FALSE, you can call
CreateEditionContainerFile to create a new edition
container.
Edition Manager Reference 2-93

C H A P T E R 2

Edition Manager
usePart A value that must be set to FALSE before calling the
NewPublisherDialog function.

preview A handle to 'prvw', 'PICT', 'TEXT', or 'snd ' data. The
NewPublisherDialog function displays this data in the preview
area of the dialog box.

previewFormat A value that indicates which type of data the handle in the
preview field references.

container An edition container record that specifies the volume reference
number, directory ID, and filename to use as the default edition to
publish the data to. The NewPublisherDialog function returns in
this field the edition container that the user selected.

DESCRIPTION

The NewPublisherDialog function displays the new publisher dialog box on
the user’s screen. The NewPublisherDialog function (which is based on the
CustomPutFile procedure described in the chapter “Standard File Package” in
Inside Macintosh: Files) switches to the volume reference number and directory ID
specified by the edition container, sets the editable text item to the filename specified by
the edition container, and displays a preview of the publisher data in the new publisher
dialog box. The NewPublisherDialog function handles all user interaction until the
user clicks the Cancel or Publish button.

You should deallocate the handle referenced by the preview field to free up memory.

RESULT CODES

SEE ALSO

For an illustration of the new publisher dialog box, see Figure 2-11 on page 2-29. For an
example of the use of NewPublisherDialog, see Listing 2-4 beginning on page 2-33.
For a description of the edition container record, see page 2-71.

SectionOptionsDialog 2

Use the SectionOptionsDialog function to display the publisher options and
subscriber options dialog boxes on the user’s screen.

FUNCTION SectionOptionsDialog

(VAR reply: SectionOptionsReply): OSErr;

noErr 0 No error
editionMgrInitErr –450 Manager not initialized or could not load package
badSubPartErr –454 Bad edition container spec
2-94 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
reply The reply parameter contains a section options reply record. You specify
a handle to the publisher’s or subscriber’s section record in the
sectionH field of this record. The SectionOptionsDialog function
returns information concerning the user’s actions in the canceled,
changed, and action fields.

TYPE SectionOptionsReply =

RECORD

canceled: Boolean; {user canceled dialog box}

changed: Boolean; {changed the section record}

sectionH: SectionHandle; {handle to the specified }

{ section record}

action: ResType; {action codes}

END;

Field descriptions

canceled The SectionOptionsDialog function returns in this field a value
that indicates whether the user canceled the dialog box. The
function returns TRUE in the canceled field if the user canceled
the dialog box. Otherwise, the function returns FALSE in this field.

changed The SectionOptionsDialog function returns TRUE in this field if
the user changed the section record. For example, the update mode
may have changed. Otherwise, the function returns FALSE in this
field.

sectionH A handle to the section record for the section the user selected.
action The SectionOptionsDialog function returns in this field the

code for one of five user actions: action code 'read' for user
selection of the Get Edition Now button, action code 'writ' for
user selection of the Send Edition Now button, action code 'goto'
for user selection of the Open Publisher button, action code
'cncl' for user selection of the Cancel Publisher or Cancel
Subscriber button, or action code ' ' ($20202020) for user
selection of the OK button.

DESCRIPTION

The SectionOptionsDialog function displays the appropriate options dialog box for
the specified section record. The function displays information about the subscriber or
publisher, such as its latest edition and current update mode setting, and allows the user
to perform various actions. The SectionOptionsDialog function handles all user
interaction until the user selects a button. The function returns the user’s action in the
action field of the reply parameter; your application should then perform the
corresponding action.

RESULT CODES

noErr 0 No error
memFullErr –108 Memory full
Edition Manager Reference 2-95

C H A P T E R 2

Edition Manager
SEE ALSO

For illustrations of the section options dialog box, see Figure 2-13 through Figure 2-16
beginning on page 2-43. For an example of the use of SectionOptionsDialog, see
Listing 2-8 beginning on page 2-46. For a description of the section record, see page 2-72.

NewSubscriberExpDialog, NewPublisherExpDialog, SectionOptionsExpDialog 2

The NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog functions are the same as the simple dialog functions but
have five additional parameters. These additional parameters allow you to add items to
the bottom of the dialog boxes, apply alternate mapping of events to item hits, apply
alternate meanings to the item hits, and choose the location of the dialog boxes.

FUNCTION NewSubscriberExpDialog

(VAR reply: NewSubscriberReply; where: Point;

 expansionDITLresID: Integer;

 dlgHook: ExpDlgHookProcPtr;

 filterProc: ExpModalFilterProcPtr;

 yourDataPtr: UNIV Ptr): OSErr;

FUNCTION NewPublisherExpDialog

(VAR reply: NewPublisherReply; where: Point;

 expansionDITLresID: Integer;

 dlgHook: ExpDlgHookProcPtr;

 filterProc: ExpModalFilterProcPtr;

 yourDataPtr: UNIV Ptr): OSErr;

FUNCTION SectionOptionsExpDialog

(VAR reply: SectionOptionsReply; where: Point;

 expansionDITLresID: Integer;

 dlgHook: ExpDlgHookProcPtr;

 filterProc: ExpModalFilterProcPtr;

 yourDataPtr: UNIV Ptr): OSErr;

reply A new subscriber reply, new publisher reply, or section options
reply record. You specify information in the fields of this record
just as you do in the the corresponding fields of records used by
NewSubscriberDialog, NewPublisherDialog, and
SectionOptionsDialog.

where A point that specifies a location on the screen where the function displays
the dialog box. You can automatically center the dialog box by passing
(–1, –1) in the where parameter.
2-96 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
expansionDITLresID
A value of 0 or a valid item list ('DITL') resource ID. This integer is
the ID of a dialog item list whose items are appended to the end of the
standard dialog item list. The dialog items keep their relative positions,
but they are moved as a group to the bottom of the dialog box.

dlgHook A pointer to an expandable dialog hook function or NIL. An expandable
dialog hook function is similar to a dialog hook function except that an
expandable dialog hook function accepts an additional parameter.
The NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog functions call your expandable dialog
hook function after each call to the ModalDialog procedure. The
expandable dialog hook function should take the appropriate action, such
as filling in a checkbox. The itemOffset parameter to the expandable
dialog hook function is the number of items in the item list before your
expansion dialog items. You need to subtract the item offset from the item
hit to get the relative item number in the expansion item list. The
expandable dialog hook function should return as its function result the
absolute item number.

filterProc
A pointer to an expandable modal-dialog filter function or NIL. An
expandable modal-dialog filter function is similar to a modal-dialog
filter function or event filter function except that an expandable
modal-dialog filter function accepts two extra parameters. The
ModalDialog procedure calls the expandable modal-dialog filter
function you provide in this parameter. An expandable modal-dialog
filter function allows you to map real events (such as a mouse-down
event) to an item hit (such as clicking a Cancel button). For instance, you
may want to map a keyboard equivalent to an item hit.

yourDataPtr
Reserved for your use. It is passed back to your hook and event filter
function. This parameter does not have to be of type Ptr—it can be any
32-bit quantity that you want. In Pascal, you can pass yourDataPtr in
register A6, and declare your dialog hook and event filter as local
functions without the last parameter. The stack frame is set up properly
for these functions to access their parent local variables.

DESCRIPTION

The NewPublisherExpDialog, NewSubscriberExpDialog, and
SectionOptionsExpDialog functions display the appropriate dialog box, handle
user interaction, and call any functions you have provided in the dlgHook and
filterProc parameters.

For the NewPublisherExpDialog and NewSubscriberExpDialog functions, all
the pseudo-items for the Standard File Package such as hookFirstCall(–1),
hookNullEvent(100), hookRebuildList(101), and hookLastCall(–2) can be used,
as well as hookRedrawPreview(150).
Edition Manager Reference 2-97

C H A P T E R 2

Edition Manager
For the SectionOptionsExpDialog function, the only valid pseudo-items are
hookFirstCall(–1), hookNullEvent(100), hookLastCall(–2),
emHookRedrawPreview(150), emHookCancelSection(160),
emHookGoToPublisher(161), emHookGetEditionNow(162),
emHookSendEditionNow(162), emHookManualUpdateMode(163), and
emHookAutoUpdateMode(164).

If you provide an expandable dialog hook function, it must contain the following
parameters:

FUNCTION MyExpDlgHook (itemOffset: Integer; itemHit: Integer;

theDialog: DialogPtr;

 yourDataPtr: Ptr): Integer;

If you provide an expandable modal-dialog filter function, it must contain the following
parameters.

FUNCTION MyExpModalFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

itemOffset: Integer;

VAR itemHit: Integer;

yourDataPtr: Ptr): Boolean;

SEE ALSO

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for
additional information on item lists. See the chapter “Standard File Package” in
Inside Macintosh: Files for information on dialog hook and modal-dialog filter functions.

Locating a Publisher and Edition From a Subscriber 2

The GetEditionInfo function returns information about a section’s edition such as its
location, last modification date, creator, and type.

Once you locate a section’s edition, you can use the GoToPublisherSection function
to find the document containing the publisher.

GetEditionInfo 2

Use the GetEditionInfo function to obtain information about a section’s edition, such
as its location, last modification date, creator, and type.

FUNCTION GetEditionInfo

(sectionH: SectionHandle;

 VAR editionInfo: EditionInfoRecord): OSErr;
2-98 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
sectionH A handle to the section record for a given section.

editionInfo
An edition information record. The GetEditionInfo function returns
the public information contained in the section’s control block.

DESCRIPTION

The Edition Manager ensures that the existing edition name corresponds to the Finder’s
existing edition name. If the controlBlock field of the section record is set to NIL or
the edition cannot be located, the GetEditionInfo function returns an fnfErr
result code.

The GetEditionInfo function returns information about the section’s edition in a data
structure of type EditionInfoRecord.

TYPE EditionInfoRecord =

RECORD

crDate: TimeStamp; {date edition container }

{ was created}

mdDate: TimeStamp; {date of last change}

fdCreator: OSType; {file creator}

fdType: OSType; {file type}

container: EditionContainerSpec;{the edition}

END;

Field descriptions

crDate The creation date of the edition.
mdDate The modification date of the edition.
fdCreator The creator of the edition file.
fdType The file type of the edition file.
container An edition container record, which specifies the volume reference

number, directory ID, filename, script, and part number for the
edition.

RESULT CODES

SEE ALSO

For an example of the use of GetEditionInfo, see Listing 2-8 beginning on page 2-46.
For another use of this function, see “Canceling Sections Within Documents” beginning
on page 2-48. For a description of the edition container record, see page 2-71.

noErr 0 No error
fnfErr –43 Not registered or file moved
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-99

C H A P T E R 2

Edition Manager
GoToPublisherSection 2

When the user wants to locate the publisher for a particular subscriber (by clicking
Open Publisher in the subscriber options dialog box), the SectionOptionsDialog
function returns the action code 'goto' in the action field of the section options reply
record. When you receive this action code, you should open the document containing
the publisher.

First, use the GetEditionInfo function to find the edition container. Then use the
GoToPublisherSection function to open the document containing the publisher.

FUNCTION GoToPublisherSection

(container: EditionContainerSpec): OSErr;

container An edition container record, which specifies volume reference number,
directory ID, and filename of the subscriber’s edition. You obtain the
edition container by calling the GetEditionInfo function.

DESCRIPTION

The GoToPublisherSection function resolves the alias in the edition to find
the document containing its publisher. In general, this function internally uses the
GetStandardFormats function to get the alias to the publisher document and then
resolves the alias. It next sends the Finder an Apple event to open the document (which
launches its application if necessary) and, after the publisher is registered, sends a
Section Scroll event to the publisher.

As an optimization, if there is a registered publisher, the GoToPublisherSection
function simply sends a Section Scroll event to the publisher.

If the edition does not contain an alias and there are no registered publishers, then the
GoToPublisherSection function sends an Open Documents event to open the edition
to the creating application.

If the edition container is not an edition file (as is the case when you are using
bottlenecks to subscribe to non-edition files), the GoToPublisherSection function
sends the Finder an Apple event to open that file.

RESULT CODES

noErr 0 No error
fnfErr –43 File not found
editionMgrInitErr –450 Manager not initialized
badSubPartErr –454 Invalid edition container
2-100 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
SEE ALSO

For illustrations of the section options dialog box for subscribers, see Figure 2-15 on
page 2-44 and Figure 2-16 on page 2-45. For an example of responding to the action code
'goto', see Listing 2-8 beginning on page 2-46. For a description of the edition
container record, see page 2-71.

Edition Container Formats 2

The Edition Manager calls the GetStandardFormats function to get the alias used in
the GoToPublisherSection function and to get the preview shown in the subscriber
dialog box. You probably do not need to call this function directly.

GetStandardFormats 2

You probably do not need to call the GetStandardFormats function directly because
the Edition Manager calls this function.

FUNCTION GetStandardFormats

(container: EditionContainerSpec;

 VAR previewFormat: FormatType;

 preview, publisherAlias, formats: Handle): OSErr;

container An edition container record that specifies the edition volume reference
number, directory ID, filename, and part.

previewFormat
The GetStandardFormats function returns in this parameter a handle
to the first format of the requested format type that it finds in the edition.

preview A format type. The GetStandardFormats function looks for a format of
the type specified in this parameter and returns in this parameter the
format type of the first format that it finds. The function tries to find one
of four formats: 'prvw', 'PICT', 'TEXT', or 'snd '.

publisherAlias
The publisherAlias parameter reads the format
kPublisherDocAliasFormat ('alis').

formats The formats parameter reads the virtual format kFormatListFormat
('fmts').

DESCRIPTION

You should pass in valid handles for the formats that you want and NIL for the formats
that you don’t want. The handles are resized to the size of the data.

If one of the requested formats cannot be found, GetStandardFormats returns a
noTypeErr result code.
Edition Manager Reference 2-101

C H A P T E R 2

Edition Manager
RESULT CODES

Reading and Writing Non-Edition Files 2

The Edition Manager never opens or closes an edition container directly—it calls the
current edition opener. See “Subscribing to Non-Edition Files” beginning on page 2-62
for additional information.

To override the standard opener function, create an opener function that contains the
following parameters:

FUNCTION MyOpener (selector: EditionOpenerVerb;

 VAR PB: EditionOpenerParamBlock): OSErr;

When this function is called by the Edition Manager, the selector parameter is set to
one of the edition opener verbs (eoOpen, eoClose, eoOpenNew, eoCloseNew,
eoCanSubscribe). The PB parameter contains an edition opener parameter block
record.

Use the GetEditionOpenerProc function to locate the current edition opener and use
the SetEditionOpenerProc function to provide your own edition opener.

Use the CallEditionOpenerProc function to call an edition opener and use the
CallFormatIOProc function to call a format I/O function.

GetEditionOpenerProc 2

Use the GetEditionOpenerProc function to locate the current edition opener.

FUNCTION GetEditionOpenerProc

(VAR opener: EditionOpenerProcPtr): OSErr;

opener The GetEditionOpenerProc function returns a pointer to the current
edition opener function in this parameter.

SetEditionOpenerProc 2

Use the SetEditionOpenerProc function to provide your own edition opener.

FUNCTION SetEditionOpenerProc

(opener: EditionOpenerProcPtr): OSErr;

noErr 0 No error
noTypeErr –102 Edition container not found
editionMgrInitErr –450 Manager not initialized
2-102 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
opener A pointer to the edition opener function that you are providing.

CallEditionOpenerProc 2

Use the CallEditionOpenerProc function to call an edition opener.

FUNCTION CallEditionOpenerProc

(selector: EditionOpenerVerb;

 VAR PB: EditionOpenerParamBlock;

 routine: EditionOpenerProcPtr): OSErr;

selector An edition opener verb. When the CallEditionOpenerProc function
is called by the Edition Manager, the selector parameter is set to one of
the edition opener verbs (eoOpen, eoClose, eoOpenNew, eoCloseNew,
eoCanSubscribe).

PB An edition opener parameter block.

routine A pointer to an edition opener function.

DESCRIPTION

The Edition Manager calls an edition opener function whenever it needs to open or close
an edition. The Edition Manager passes an edition opener parameter block as one of the
parameters to an edition opener function. The edition opener parameter block is defined
by this structure:

TYPE EditionOpenerParamBlock =

RECORD

info: EditionInfoRecord; {edition container to }

{ be subscribed to}

sectionH: SectionHandle; {publisher or }

{ subscriber }

{ requesting open}

document: FSSpecPtr; {document passed}

fdCreator: OSType; {Finder creator type}

ioRefNum: LongInt; {reference number}

ioProc: FormatIOProcPtr; {routine to read }

{ formats}

success: Boolean; {reading or writing }

{ was successful}

formatsMask: SignedByte; {formats required to }

{ subscribe}

END;
Edition Manager Reference 2-103

C H A P T E R 2

Edition Manager
To override the standard reading and writing functions, you should create an I/O
function that contains the following parameters.

FUNCTION MyIO (selector: FormatIOVerb;

VAR PB: FormatIOParamBlock): OSErr;

Set the selector parameter to one of the format I/O verbs (ioHasFormat,
ioReadFormat, ioNewFormat, ioWriteFormat). The PB parameter contains a format
I/O parameter block record.

SEE ALSO

See “Calling an Edition Opener” beginning on page 2-64 for additional information.

CallFormatIOProc 2

Use the CallFormatIOProc function to call a format I/O function.

FUNCTION CallFormatIOProc (selector: FormatIOVerb;

VAR PB:FormatIOParamBlock;

routine: FormatIOProcPtr): OSErr;

selector A format I/O verb (ioHasFormat, ioReadFormat, ioNewFormat,
ioWriteFormat).

PB A format I/O parameter block record.

routine A pointer to a format I/O function.

DESCRIPTION

The Edition Manager calls a format I/O function whenever it needs to read from or write
to an edition. The Edition Manager passes a format I/O parameter block as one of the
parameters to a format I/O procedure. The format I/O parameter block is defined by
this structure:

TYPE FormatIOParamBlock =

RECORD

ioRefNum: LongInt; {reference number}

format: FormatType; {edition format type}

formatIndex: LongInt; {opener-specific enumeration }

{ of formats}

offset: LongInt; {offset into format}

buffPtr: Ptr; {data starts here}

buffLen: LongInt; {length of data}

END;
2-104 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
SEE ALSO

See “Calling a Format I/O Function” beginning on page 2-68 for additional information.

Application-Defined Routines 2
Your application can provide an edition opener function, format I/O function,
expandable dialog hook function, and expandable modal-dialog filter function. For the
routine declarations of the edition opener and format I/O functions, see “Reading and
Writing Non-Edition Files” beginning on page 2-102. For the routine declarations of the
expandable dialog hook and expandable modal-dialog filter functions, see the
description of NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog beginning on page 2-96.
Edition Manager Reference 2-105

C H A P T E R 2

Edition Manager
Summary of the Edition Manager 2

Pascal Summary 2

Constants 2

CONST

{resource types}

rSectionType = 'sect'; {resource type for a }

{ section}

{section types}

stSubscriber = $01; {subscriber section type}

stPublisher = $0A; {publisher section type}

{update modes}

sumAutomatic = 0; {subscriber receives new }

{ editions automatically}

sumManual = 1; {subscriber receives new }

{ editions manually}

pumOnSave = 0; {publisher sends new }

{ editions on save}

pumManual = 1; {publisher does not send }

{ new editions until user }

{ request}

{edition container subpart number}

kPartsNotUsed = 0; {edition is the whole file}

kPartNumberUnknown = -1; {not used in version 7.0}

{preview size}

kPreviewWidth = 120; {preview width}

kPreviewHeight = 120; {preview height}

{special formats}

kPublisherDocAliasFormat = 'alis'; {alias record from the }

{ edition to publisher}

kPreviewFormat = 'prvw'; {'PICT' thumbnail sketch}

kFormatListFormat = 'fmts'; {list of all available }

{ formats and their sizes}
2-106 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
{bits for formatMask}

kPICTformatMask = 1; {graphics format}

kTEXTformatMask = 2; {text format}

ksndFormatMask = 4; {sound format}

{Finder types for edition files}

kPICTEditionFileType = 'edtp'; {contains 'PICT', }

kTEXTEditionFileType = 'edtt'; { 'TEXT', and }

ksndEditionFileType = 'edts'; { 'snd ' file types}

kUnknownEditionFileType = 'edtu'; {unknown file type}

{miscellaneous}

kFormatLengthUnknown = -1; {length of format unknown}

{message IDs for Apple events sent by the Edition Manager}

sectionEventMsgClass = 'sect'; {Apple events sent by the }

{ Edition Manager}

sectionReadMsgID = 'read'; {Section Read events}

sectionWriteMsgID = 'writ'; {Section Write events}

sectionScrollMsgID = 'scrl'; {Section Scroll events}

sectionCancelMsgID = 'cncl'; {Section Cancel events}

{refCon field when displaying stacked dialog boxes}

sfMainDialogRefCon = 'stdf'; {new publisher and }

{ new subscriber}

sfNewFolderDialogRefCon = 'nfdr'; {new folder}

sfReplaceDialogRefCon = 'rplc'; {replace dialog}

sfStatWarnDialogRefCon = 'stat'; {warning dialog}

sfErrorDialogRefCon = 'err '; {error dialog}

emOptionsDialogRefCon = 'optn'; {options dialog}

emCancelSectionDialogRefCon = 'cncl'; {cancel section}

emGotoPubErrDialogRefCon = 'gerr'; {locate publisher}

{pseudo-item hits for dialogHooks}

emHookRedrawPreview = 150; {for NewPublisher or }

{ NewSubscriber dialogs}

emHookCancelSection = 160; {for SectionOptions dialog}

emHookGoToPublisher = 161; {for SectionOptions dialog}

emHookGetEditionNow = 162; {for SectionOptions dialog}

emHookSendEditionNow = 162; {for SectionOptions dialog}

emHookManualUpdateMode = 163; {for SectionOptions dialog}

emHookAutoUpdateMode = 164; {for SectionOptions dialog}
Summary of the Edition Manager 2-107

C H A P T E R 2

Edition Manager
Data Types 2

TYPE TimeStamp = LongInt; {seconds since 1904}

EditionRefNum = Handle; {for use in Edition I/O}

UpdateMode = Integer; {sumAutomatic, }

{ sumManual, }

{ pumOnSave, pumManual}

SectionType = SignedByte; {stSubscriber or }

{ stPublisher}

FormatType = PACKED ARRAY[1..4] OF CHAR;

{similar to ResType used }

{ by the Scrap Manager}

SectionHandle = ^SectionPtr;

SectionPtr = ^SectionRecord;

SectionRecord =

RECORD

version: SignedByte; {always 1 in version 7.0}

kind: SectionType; {publisher or subscriber}

mode: UpdateMode; {automatic or manual}

mdDate: TimeStamp; {last change to section}

sectionID: LongInt; {application-specific, }

{ unique per document}

refCon: LongInt; {application-specific}

alias: AliasHandle; {handle to alias record}

{The following fields are private and are set up by the }

{ RegisterSection function.}

subPart: LongInt; {private}

nextSection: SectionHandle; {private}

controlBlock: Handle; {private}

refNum: EditionRefNum; {private}

END;

EditionContainerSpecPtr =^EditionContainerSpec;

EditionContainerSpec =

RECORD

theFile: FSSpec; {file containing edition }

{ data}

theFileScript: ScriptCode; {script code of filename}

thePart: LongInt; {which part of file, }

{ always kPartsNotUsed}
2-108 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
thePartName: Str31; {reserved}

thePartScript: ScriptCode; {reserved}

END;

FormatsAvailable = ARRAY[0..0] OF

RECORD

theType: FormatType; {format type for an }

{ edition}

theLength: LongInt; {length of edition format }

{ type}

END;

EditionInfoRecord =

RECORD

crDate: TimeStamp; {date edition container }

{ was created}

mdDate: TimeStamp; {date of last change}

fdCreator: OSType; {file creator}

fdType: OSType; {file type}

container: EditionContainerSpec;

{the edition}

END;

NewPublisherReply =

RECORD

canceled: Boolean; {user canceled dialog box}

replacing: Boolean; {user chose existing }

{ filename for an edition}

usePart: Boolean; {always FALSE in version 7.0}

preview: Handle; {handle to 'prvw', 'PICT',}

{ 'TEXT', or 'snd ' data}

previewFormat: FormatType; {type of preview}

container: EditionContainerSpec;

{edition chosen}

END;

NewSubscriberReply =

RECORD

canceled: Boolean; {user canceled dialog box}

formatsMask: SignedByte; {formats required}

container: EditionContainerSpec;

{edition selected}

END;
Summary of the Edition Manager 2-109

C H A P T E R 2

Edition Manager
SectionOptionsReply =

RECORD

canceled: Boolean; {user canceled dialog box}

changed: Boolean; {changed the section }

{ record}

sectionH: SectionHandle; {handle to the specified }

{ section record}

action: ResType; {action codes}

END;

EditionOpenerVerb= (eoOpen, eoClose, eoOpenNew, eoCloseNew,

eoCanSubscribe);

EditionOpenerParamBlock =

RECORD

info: EditionInfoRecord; {edition container to }

{ be subscribed to}

sectionH: SectionHandle; {publisher or subscriber }

{ requesting open}

document: FSSpecPtr; {document passed}

fdCreator: OSType; {Finder creator type}

ioRefNum: LongInt; {reference number}

ioProc: FormatIOProcPtr; {routine to read formats}

success: Boolean; {reading or writing was }

{ successful}

formatsMask: SignedByte; {formats required to }

{ subscribe}

END;

FormatIOVerb = (ioHasFormat, ioReadFormat, ioNewFormat, ioWriteFormat);

FormatIOParamBlock =

RECORD

ioRefNum: LongInt; {reference number}

format: FormatType; {edition format type}

formatIndex: LongInt; {opener-specific enumeration }

{ of formats}

offset: LongInt; {offset into format}

buffPtr: Ptr; {data starts here}

buffLen: LongInt; {length of data}

END;
2-110 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Edition Manager Routines 2

Initializing the Edition Manager

FUNCTION InitEditionPack : OSErr;

Creating and Registering a Section

FUNCTION NewSection (container: EditionContainerSpec;
sectionDocument: FSSpecPtr; kind: SectionType;
sectionID: LongInt; initialMode: UpdateMode;
VAR sectionH: SectionHandle): OSErr;

FUNCTION RegisterSection (sectionDocument: FSSpec;
sectionH: SectionHandle;
VAR aliasWasUpdated: Boolean)
: OSErr;

FUNCTION UnRegisterSection (sectionH: SectionHandle): OSErr;

FUNCTION IsRegisteredSection
(sectionH: SectionHandle): OSErr;

FUNCTION AssociateSection (sectionH: SectionHandle;
newSectionDocument: FSSpecPtr): OSErr;

Creating and Deleting an Edition Container

FUNCTION CreateEditionContainerFile
(editionFile: FSSpec; fdCreator: OSType;
editionFileNameScript: ScriptCode): OSErr;

FUNCTION DeleteEditionContainerFile
(editionFile: FSSpec): OSErr;

Setting and Getting a Format Mark

FUNCTION SetEditionFormatMark
(whichEdition: EditionRefNum;
whichFormat: FormatType;
setMarkTo: LongInt): OSErr;

FUNCTION GetEditionFormatMark
(whichEdition: EditionRefNum;
whichFormat: FormatType;
VAR currentMark: LongInt): OSErr;
Summary of the Edition Manager 2-111

C H A P T E R 2

Edition Manager
Reading in Edition Data

FUNCTION OpenEdition (subscriberSectionH: SectionHandle;
VAR refNum: EditionRefNum): OSErr;

FUNCTION EditionHasFormat (whichEdition: EditionRefNum;
whichFormat: FormatType;
VAR formatSize: Size): OSErr;

FUNCTION ReadEdition (whichEdition: EditionRefNum;
whichFormat: FormatType; buffPtr: UNIV Ptr;
VAR buffLen: Size): OSErr;

Writing out Edition Data

FUNCTION OpenNewEdition (publisherSectionH: SectionHandle;
fdCreator: OSType;
publisherSectionDocument: FSSpecPtr;
VAR refNum: EditionRefNum): OSErr;

FUNCTION WriteEdition (whichEdition: EditionRefNum;
whichFormat: FormatType; buffPtr: UNIV Ptr;
buffLen: Size): OSErr;

Closing an Edition After Reading or Writing

FUNCTION CloseEdition (whichEdition: EditionRefNum;
successful: Boolean): OSErr;

Displaying Dialog Boxes

FUNCTION GetLastEditionContainerUsed
(VAR container: EditionContainerSpec): OSErr;

FUNCTION NewSubscriberDialog
(VAR reply: NewSubscriberReply): OSErr;

FUNCTION NewPublisherDialog (VAR reply: NewPublisherReply): OSErr;

FUNCTION SectionOptionsDialog
(VAR reply: SectionOptionsReply): OSErr;

FUNCTION NewSubscriberExpDialog
(VAR reply: NewSubscriberReply; where: Point;
expansionDITLresID: Integer;
dlgHook: ExpDlgHookProcPtr;
filterProc: ExpModalFilterProcPtr;
yourDataPtr: UNIV Ptr): OSErr;
2-112 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
FUNCTION NewPublisherExpDialog
(VAR reply: NewPublisherReply; where: Point;
expansionDITLresID: Integer;
dlgHook: ExpDlgHookProcPtr;
filterProc: ExpModalFilterProcPtr;
yourDataPtr: UNIV Ptr): OSErr;

FUNCTION SectionOptionsExpDialog
(VAR reply: SectionOptionsReply; where: Point;
expansionDITLresID: Integer;
dlgHook: ExpDlgHookProcPtr;
filterProc: ExpModalFilterProcPtr;
yourDataPtr: UNIV Ptr): OSErr;

Locating a Publisher and Edition From a Subscriber

FUNCTION GetEditionInfo (sectionH: SectionHandle;
VAR editionInfo: EditionInfoRecord): OSErr;

FUNCTION GoToPublisherSection
(container: EditionContainerSpec): OSErr;

Edition Container Formats

FUNCTION GetStandardFormats (container: EditionContainerSpec;
VAR previewFormat: FormatType;
preview, publisherAlias,
formats: Handle): OSErr;

Reading and Writing Non-Edition files

FUNCTION GetEditionOpenerProc
(VAR opener: EditionOpenerProcPtr): OSErr;

FUNCTION SetEditionOpenerProc
(opener: EditionOpenerProcPtr): OSErr;

FUNCTION CallEditionOpenerProc
(selector: EditionOpenerVerb;
VAR PB: EditionOpenerParamBlock;
routine: EditionOpenerProcPtr): OSErr;

FUNCTION CallFormatIOProc (selector: FormatIOVerb;
VAR PB: FormatIOParamBlock;
routine: FormatIOProcPtr): OSErr;

Application-Defined Routines 2

FUNCTION MyExpDlgHook (itemOffset: Integer; itemHit: Integer;
theDialog: DialogPtr;
yourDataPtr: Ptr): Integer;
Summary of the Edition Manager 2-113

C H A P T E R 2

Edition Manager
FUNCTION MyExpModalFilter (theDialog: DialogPtr;
VAR theEvent: EventRecord;
itemOffset: Integer; VAR itemHit: Integer;
yourDataPtr: Ptr): Boolean;

FUNCTION MyOpener (selector: EditionOpenerVerb;
VAR PB: EditionOpenerParamBlock): OSErr;

FUNCTION MyIO (selector: FormatIOVerb;
VAR PB: FormatIOParamBlock): OSErr;

C Summary 2

Constants 2

CONST

enum {

/*resource types*/

#define rSectionType 'sect' /*resource type for a */

/* section*/

/*section types*/

stSubscriber = 0x01, /*subscriber section type*/

stPublisher = 0x0A, /*publisher section type*/

/*update modes*/

sumAutomatic = 0, /*subscriber receives new */

/* editions automatically*/

sumManual = 1, /*subscriber receives new */

/* editions manually*/

pumOnSave = 0, /*publisher sends new */

/* editions on save*/

pumManual = 1, /*publisher does not send */

/* new editions until user */

/* request*/

/*edition container subpart number*/

kPartsNotUsed = 0, /*edition is the whole file*/

kPartNumberUnknown = -1, /*not used in version 7.0*/

/*preview size*/

kPreviewWidth = 120, /*preview width*/

kPreviewHeight = 120, /*preview height*/
2-114 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
/*special formats*/

#define kPublisherDocAliasFormat 'alis' /*alias record from the */

/* edition to publisher*/

#define kPreviewFormat 'prvw' /*'PICT' thumbnail sketch*/

#define kFormatListFormat 'fmts' /*list of all available */

/* formats and their sizes*/

/*bits for formatMask*/

kPICTformatMask = 1, /*graphics format*/

kTEXTformatMask = 2, /*text format*/

ksndFormatMask = 4, /*sound format*/

/*Finder types for edition files*/

#define kPICTEditionFileType 'edtp' /*contains 'PICT', */

#define kTEXTEditionFileType 'edtt' /* 'TEXT', and */

#define ksndEditionFileType 'edts' /* 'snd ' file types*/

#define kUnknownEditionFileType 'edtu' /*unknown file type*/

/*pseudo-item hits for dialogHooks*/

emHookRedrawPreview = 150, /*for NewPublisher or */

/* NewSubscriber dialogs*/

emHookCancelSection = 160, /*for SectionOptions dialog*/

emHookGoToPublisher = 161, /*for SectionOptions dialog*/

emHookGetEditionNow = 162, /*for SectionOptions dialog*/

emHookSendEditionNow = 162, /*for SectionOptions dialog*/

emHookManualUpdateMode = 163, /*for SectionOptions dialog*/

emHookAutoUpdateMode = 164 /*for SectionOptions dialog*/

};

/*edition opener verbs*/

enum {eoOpen, eoClose, eoOpenNew, eoCloseNew, eoCanSubscribe};

enum {

/*refCon field when displaying stacked dialog boxes*/

#define emOptionsDialogRefCon 'optn' /*options dialog*/

#define emCancelSectionDialogRefCon 'cncl' /*cancel section*/

#define emGotoPubErrDialogRefCon 'gerr' /*locate publisher*/

kFormatLengthUnknown = -1 /*length of format unknown*/

};

/*refCon field when displaying stacked dialog boxes*/

#define sfMainDialogRefCon 'stdf' {new publisher and }

{ new subscriber}

#define sfNewFolderDialogRefCon'nfdr' {new folder}
Summary of the Edition Manager 2-115

C H A P T E R 2

Edition Manager
#define sfReplaceDialogRefCon 'rplc' {replace dialog}

#define sfStatWarnDialogRefCon 'stat' {warning dialog}

#define sfErrorDialogRefCon 'err ' {error dialog}

/*message IDs for Apple events sent by the Edition Manager*/

#define sectionEventMsgClass 'sect' /*Apple events sent by the */

/* Edition Manager*/

#define sectionReadMsgID 'read' /*Section Read events*/

#define sectionWriteMsgID 'writ' /*Section Write events*/

#define sectionScrollMsgID 'scrl' /*Section Scroll events*/

#define sectionCancelMsgID 'cncl' /*Section Cancel events*/

Data Types 2

typedef unsigned long TimeStamp; /*seconds since 1904*/

typedef Handle EditionRefNum;` /*used in Edition I/O*/

typedef short UpdateMode; /*update mode: sumAutomatic, */

/* sumManual, */

/* pumOnSave, pumManual*/

typedef char SectionType; /*one byte, stSubscriber */

/* or stPublisher*/

typedef unsigned long FormatType; /*similar to ResType*/

struct SectionRecord {

SignedByte version; /*always 1x01 in version 7.0*/

SectionType kind; /*stPublisher or */

/* stSubscriber*/

UpdateMode mode; /*automatic or manual*/

TimeStamp mdDate; /*last change to section*/

long sectionID; /*application-specific, */

/* unique per document*/

long refCon; /*application-specific*/

AliasHandle alias; /*handle to alias record*/

long subPart; /*private*/

struct SectionRecord **nextSection; /*private*/

Handle controlBlock; /*private*/

EditionRefNum refNum; /*private*/

};

typedef struct SectionRecord SectionRecord;

typedef SectionRecord *SectionPtr, **SectionHandle;
2-116 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
struct EditionContainerSpec {

FSSpec theFile; /*file containing */

/* edition data*/

ScriptCode theFileScript; /*script code of filename*/

long thePart; /*which part of file, */

/* always kPartsNotUsed*/

Str31 thePartName; /*reserved*/

ScriptCode thePartScript; /*reserved*/

};

typedef struct EditionContainerSpec EditionContainerSpec;

typedef EditionContainerSpec *EditionContainerSpecPtr;

struct EditionInfoRecord {

TimeStamp crDate; /*date edition container */

/* was created*/

TimeStamp mdDate; /*date of last change*/

OSType fdCreator; /*file creator*/

OSType fdType; /*file type*/

EditionContainerSpec container; /*the edition*/

};

typedef struct EditionInfoRecord EditionInfoRecord;

struct NewPublisherReply {

Boolean canceled; /*user canceled dialog box*/

Boolean replacing; /*user chose existing */

/* filename for an edition*/

Boolean usePart; /*always FALSE in version */

/* 7.0*/

Handle preview; /*handle to 'prvw', 'PICT',*/

/* 'TEXT', or 'snd ' data*/

FormatType previewFormat; /*type of preview*/

EditionContainerSpec container; /*edition chosen*/

};

typedef struct NewPublisherReply NewPublisherReply;

struct NewSubscriberReply {

Boolean canceled; /*user canceled dialog box*/

unsigned char formatsMask; /*formats required*/

EditionContainerSpec container; /*edition selected*/

};

typedef struct NewSubscriberReply NewSubscriberReply;
Summary of the Edition Manager 2-117

C H A P T E R 2

Edition Manager
struct SectionOptionsReply {

Boolean canceled; /*user canceled dialog box*/

Boolean changed; /*changed the section */

/* record*/

SectionHandle sectionH; /*handle to the specified */

/* section record*/

ResType action; /*action codes*/

};

typedef struct SectionOptionsReply SectionOptionsReply;

typedef pascal Boolean (*ExpModalFilterProcPtr) (DialogPtr theDialog,

EventRecord *theEvent, short itemOffset,

short *itemHit, Ptr yourDataPtr);

typedef pascal short (*ExpDlgHookProcPtr) (short itemOffset, short itemHit,

 DialogPtr theDialog, Ptr yourDataPtr);

typedef unsigned char EditionOpenerVerb;

struct EditionOpenerParamBlock {

EditionInfoRecord info; /*edition container to */

/* be subscribed to*/

SectionHandle sectionH; /*publisher or subscriber */

/* requesting open*/

FSSpecPtr document; /*document passed*/

OSType fdCreator; /*Finder creator type*/

long ioRefNum; /*reference number*/

FormatIOProcPtr ioProc; /*routine to read formats*/

Boolean success; /*reading or writing was */

/* successful*/

unsigned char formatsMask; /*formats required to */

/* subscribe*/

};

typedef struct EditionOpenerParamBlock EditionOpenerParamBlock;

typedef pascal short (*EditionOpenerProcPtr) (EditionOpenerVerb selector,

FormatIOParamBlock *PB);

enum {ioHasFormat, ioReadFormat, ioNewFormat, ioWriteFormat};

typedef unsigned char FormatIOVerb;
2-118 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
struct FormatIOParamBlock {

long ioRefNum; /*reference number*/

FormatType format; /*edition format type*/

long formatIndex; /* opener-specific */

/* enumeration */

/* of formats*/

unsigned long offset; /*offset into format*/

Ptr buffPtr; /*data starts here*/

unsigned long buffLen; /*length of data*/

};

typedef struct FormatIOParamBlock FormatIOParamBlock;

typedef pascal short (*FormatIOProcPtr) (FormatIOVerb selector,

FormatIOParamBlock *PB);

Edition Manager Routines 2

Initializing the Edition Manager

pascal OSErr InitEditionPack (void)

Creating and Registering a Section

pascal OSErr NewSection (const EditionContainerSpec *container,
const FSSpec *sectionDocument,
SectionType kind, long sectionID,
UpdateMode initialMode,
SectionHandle *sectionH);

pascal OSErr RegisterSection
(const FSSpec *sectionDocument,
SectionHandle sectionH,
Boolean *aliasWasUpdated);

pascal OSErr UnRegisterSection
(SectionHandle sectionH);

pascal OSErr IsRegisteredSection
(SectionHandle sectionH);

pascal OSErr AssociateSection
(SectionHandle sectionH,
const FSSpec *newSectionDocument);
Summary of the Edition Manager 2-119

C H A P T E R 2

Edition Manager
Creating and Deleting an Edition Container

pascal OSErr CreateEditionContainerFile
(const FSSpec *editionFile, OSType fdCreator,
ScriptCode editionFileNameScript);

pascal OSErr DeleteEditionContainerFile
(const FSSpec *editionFile);

Setting and Getting a Format Mark

pascal OSErr SetEditionFormatMark
(EditionRefNum whichEdition,
FormatType whichFormat,
unsigned long setMarkTo);

pascal OSErr GetEditionFormatMark
(EditionRefNum whichEdition,
FormatType whichFormat,
unsigned long *currentMark);

Reading in Edition Data

pascal OSErr OpenEdition (SectionHandle subscriberSectionH,
EditionRefNum *refNum);

pascal OSErr EditionHasFormat
(EditionRefNum whichEdition,
FormatType whichFormat,
Size *formatSize);

pascal OSErr ReadEdition (EditionRefNum whichEdition,
FormatType whichFormat, void *buffPtr,
Size *buffLen);

Writing out Edition Data

pascal OSErr OpenNewEdition (SectionHandle publisherSectionH,
OSType fdCreator,
const FSSpec *publisherSectionDocument,
EditionRefNum *refNum);

pascal OSErr WriteEdition (EditionRefNum whichEdition,
FormatType whichFormat, const void *buffPtr,
Size *buffLen);

Closing an Edition After Reading or Writing

pascal OSErr CloseEdition (EditionRefNum whichEdition,
Boolean successful);
2-120 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Displaying Dialog Boxes

pascal OSErr GetLastEditionContainerUsed
(EditionContainerSpec *container);

pascal OSErr NewSubscriberDialog
(NewSubscriberReply *reply);

pascal OSErr NewPublisherDialog
(NewPublisherReply *reply);

pascal OSErr SectionOptionsDialog
(SectionOptionsReply *reply);

pascal OSErr NewSubscriberExpDialog
(NewSubscriberReply *reply, Point where,
short expansionDITLresID,
ExpDlgHookProcPtr dlgHook,
ExpModalFilterProcPtr filterProc,
void *yourDataPtr);

pascal OSErr NewPublisherExpDialog
(NewPublisherReply *reply, Point where,
short expansionDITLresID,
ExpDlgHookProcPtr dlgHook,
ExpModalFilterProcPtr filterProc,
void *yourDataPtr);

pascal OSErr SectionOptionsExpDialog
(SectionOptionsReply *reply, Point where,
short expansionDITLresID,
ExpDlgHookProcPtr dlgHook,
ExpModalFilterProcPtr filterProc,
void *yourDataPtr);

Locating a Publisher and Edition From a Subscriber

pascal OSErr GetEditionInfo (const SectionHandle sectionH,
EditionInfoRecord *editionInfo);

pascal OSErr GoToPublisherSection
(const EditionContainerSpec *container);

Edition Container Formats

pascal OSErr GetStandardFormats
(const EditionContainerSpec *container,
FormatType *previewFormat,
Handle preview, Handle publisherAlias,
Handle formats);
Summary of the Edition Manager 2-121

C H A P T E R 2

Edition Manager
Reading and Writing Non-Edition files

pascal OSErr GetEditionOpenerProc
(EditionOpenerProcPtr *opener);

pascal OSErr SetEditionOpenerProc
(EditionOpenerProcPtr opener);

pascal OSErr CallEditionOpenerProc
(EditionOpenerVerb selector,
EditionOpenerParamBlock *PB,
EditionOpenerProcPtr routine);

pascal OSErr CallFormatIOProc
(FormatIOVerb selector,
FormatIOParamBlock *PB,
FormatIOProcPtr routine);

Application-Defined Routines 2

pascal OSErr MyExpDlgHook (short itemOffset, short itemHit,
DialogPtr theDialog,
Ptr yourDataPtr);

pascal OSErr MyExpModalFilter
(DialogPtr theDialog,
EventRecord *theEvent,
short itemOffset, short *itemHit,
Ptr yourDataPtr);

pascal OSErr MyOpener (EditionOpenerVerb selector,
EditionOpenerParamBlock *PB);

pascal OSErr MyIO (FormatIOVerb selector,
FormatIOParamBlock *PB);

Result Codes 2
noErr 0 No error
abortErr –27 Publisher has written a new edition
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnOpnErr –38 File not open
eofErr –39 No additional data in the format
fnfErr –43 Edition container not found
flLckedErr –45 Publisher writing to an edition
fBsyErr –47 Section doing I/O
paramErr –50 Invalid parameter
rfNumErr –51 Bad edition reference number
permErr –54 Not a subscriber
2-122 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
wrPermErr –61 Not a publisher
noTypeErr –102 Format not available
memFullErr –108 Memory full
dirNFErr –120 Directory not found
userCanceledErr –128 User clicked Cancel in dialog box
editionMgrInitErr –450 Manager not initialized or could not load package
badSectionErr –451 Not a valid section type
notRegisteredSectionErr –452 Not registered
badSubPartErr –454 Bad edition container spec or invalid edition container
multiplePublisherWrn –460 Already is a publisher
containerNotFoundWrn –461 Alias was not resolved
notThePublisherWrn –463 Not the publisher
Summary of the Edition Manager 2-123

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	Edition Manager
	Introduction to Publishers, Subscribers, and Editi...
	About the Edition Manager
	Using the Edition Manager
	Receiving Apple Events From the Edition Manager
	Creating the Section Record and Alias Record
	Saving a Document Containing Sections
	Opening and Closing a Document Containing Sections...
	Reading and Writing a Section
	Formats in an Edition
	Opening an Edition
	Format Marks
	Reading and Writing Edition Data
	Closing an Edition

	Creating a Publisher
	Creating the Edition Container
	Opening an Edition Container to Write Data

	Creating a Subscriber
	Opening an Edition Container to Read Data
	Choosing Which Edition Format to Read

	Using Publisher and Subscriber Options
	Publishing a New Edition While Saving or Manually
	Subscribing to an Edition Automatically or Manuall...
	Canceling Sections Within Documents
	Locating a Publisher Through a Subscriber

	Renaming a Document Containing Sections
	Displaying Publisher and Subscriber Borders
	Text Borders
	Spreadsheet Borders
	Object-Oriented Graphics Borders
	Bitmapped Graphics Borders
	Duplicating Publishers and Subscribers

	Modifying a Subscriber
	Relocating an Edition
	Customizing Dialog Boxes

	Subscribing to Non-Edition Files
	Getting the Current Edition Opener
	Setting an Edition Opener
	Calling an Edition Opener
	Opening and Closing Editions
	Listing Files That Can Be Subscribed To
	Reading From and Writing to Files
	Calling a Format I/O Function

	Edition Manager Reference
	Data Structures
	The Edition Container Record
	The Section Record

	Edition Manager Routines
	Initializing the Edition Manager
	Creating and Registering a Section
	Creating and Deleting an Edition Container
	Setting and Getting a Format Mark
	Reading in Edition Data
	Writing out Edition Data
	Closing an Edition After Reading or Writing
	Displaying Dialog Boxes
	Locating a Publisher and Edition From a Subscriber...
	Edition Container Formats
	Reading and Writing Non-Edition Files

	Application-Defined Routines

	Summary of the Edition Manager
	Pascal Summary
	Constants
	Data Types
	Edition Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Edition Manager Routines
	Application-Defined Routines

	Result Codes

	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

