CHAPTER 5

Creating and Sending Apple Events

This chapter describes how your application can use the Apple Event Manager to create
and send Apple events. If you want to factor your application for recording, or if you
want your application to send Apple events directly to other applications, you can use
Apple Event Manager routines to create and send Apple events.

Before you read this chapter, you should be familiar with the chapters “Introduction to
Interapplication Communication,” “Introduction to Apple Events,” and “Responding to
Apple Events” in this book. If you are factoring your application, you should also be
familiar with the chapter “Recording Apple Events” in this book.

This chapter provides the basic information you need to create and send Apple events
from your application. To send core and functional-area Apple events, your application
must also be able to create object specifier records. For information about object specifier
records, see the chapter “Resolving and Creating Object Specifier Records” in this book.

To allow your application to send Apple events to applications on other computers, you
may wish to use the PPCBr owser function, which is described in the chapter
“Program-to-Program Communications Toolbox” in this book.

The first section in this chapter, “Creating an Apple Event,” describes how to
= create an Apple event

» add parameters to an Apple event

» specify optional Apple event parameters

= specify a target address

The section “Sending an Apple Event” describes how to

= send an Apple event

= deal with timeouts

= write an idle function

= write a reply filter function

Creating an Apple Event

You create an Apple event by using the AECr eat eAppl eEvent function. You supply
parameters that specify the event class and event ID, the target address, the return ID,
and the transaction ID, and a buffer for the returned Apple event. The

AECr eat eAppl eEvent function creates and returns, in the buffer you specify, an Apple
event with the attributes set as your application requested. You should not directly
manipulate the contents of the Apple event; rather, use Apple Event Manager functions
to add additional attributes or parameters to it.

Creating an Apple Event 5-3

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

The example that follows creates an imaginary Multiply event using the
AECr eat eAppl eEvent function.

nyErr : = AECreat eAppl eEvent (kArithmeti cC ass, kMultEvent| D,
t ar get Addr ess, kAut oGener at eRet ur nl D,
kAnyTransactionl D, theAppl eEvent);

The event class, specified by the kAri t hnet i cd ass constant, identifies this event as
belonging to a class of Apple events for arithmetic operations. The event ID specifies the
particular Apple event within the class—in this case, an Apple event that performs
multiplication.

You specify the target of the Apple event in the third parameter to

AECr eat eAppl eEvent . The target address can identify an application on the local
computer or another computer on the network. You can specify the address using a
target ID record or session reference number. For processes on the local computer, you
can also use a process serial number or application signature to specify the address. See
“Specifying a Target Address” on page 5-10 for more information.

In the fourth parameter, you specify the return ID of the Apple event, which associates
this Apple event with the server’s reply. The AECr eat eAppl eEvent function assigns
the specified return ID value to the keyRet ur nl DAt t r attribute of the Apple event. If a
server returns a standard reply Apple event (that is, an event of event class ' aevt '

and event ID ' ansr') in response to this event, the Apple Event Manager assigns the
reply event the same return ID. When you receive a reply Apple event, you can check the
keyRet urnl DAt t r attribute to determine which outstanding Apple event the reply is
responding to. You can use the kAut oGener at eRet ur nl D constant to request that the
Apple Event Manager generate a return ID that is unique to this session for the Apple
event. Otherwise, you are responsible for making it unique.

The fifth parameter specifies the transaction ID attribute of the Apple event. A
transactionis a sequence of Apple events that are sent back and forth between the client
and server applications, beginning with the client’s initial request for a service. All Apple
events that are part of one transaction must have the same transaction ID.

You can use a transaction ID to indicate that an Apple event is one of a sequence of
Apple events related to a single transaction. The kAny Tr ansact i onl D constant
indicates that the Apple event is not part of a transaction.

The AECr eat eAppl eEvent function creates an Apple event with only the specified
attributes and no parameters. To add parameters or additional attributes, you can use
other Apple Event Manager functions.

Creating an Apple Event

CHAPTER 5

Creating and Sending Apple Events

Adding Parameters to an Apple Event

You can use the AEPut Par anPt r or AEPut Par anDesc function to add parameters to
an Apple event. When you use either of these functions, the Apple Event Manager adds
the specified parameter to the Apple event.

Use the AEPut Par anPt r function when you want to add data specified in a buffer as
the parameter of an Apple event. You specify the Apple event, the keyword of the
parameter to add, the descriptor type, a buffer that contains the data, and the size of this
buffer as parameters to the AEPut Par anPt r function. The AEPut Par anPt r function
adds the data to the Apple event as a parameter with the specified keyword.

For example, this code adds a parameter to the Multiply event using the
AEPut Par anPt r function:

CONST keyOperandl = ' OPN1';

VAR
nunber 1: Longl nt ;
t heAppl eEvent : Appl eEvent ;
myErr: OSErr;

nunber1 : = 10;

nyErr : = AEPut ParanPtr (t heAppl eEvent, keyOperandl,
t ypeLongl nt eger, @unber1,
Si zeOf (nunber 1)) ;

In this example, the Apple Event Manager adds the parameter containing the first
number to the specified Apple event.

Use the AEPut Par anDesc function to add a descriptor record to an Apple event. The
descriptor record you specify must already exist. To create or get a descriptor record, you
can use the AECr eat eDesc, AEDupl i cat eDesc, and other Apple Event Manager
functions that return a descriptor record.

When you create a descriptor record using the AECr eat eDesc function, you specify the
descriptor type, a buffer that contains the data, and the size of this buffer as parameters.
The AECr eat eDesc function returns the descriptor record that describes the data.

Creating an Apple Event 5-5

suang 9|ddy Buipuas pue Buneald -

5-6

CHAPTER 5

Creating and Sending Apple Events

This example creates a descriptor record for the second parameter of the Multiply event:

VAR
nunber 2: Longl nt;
mul t Par anmkDesc: AEDesc;
nmyErr: CSErr;

nunber?2 : = 8;
nyErr : = AECreateDesc(typeLongl nteger, @unber2, SizeO (nunber?2),
nul t Par ankDesc) ;

In this example, the AECr eat eDesc function creates a descriptor record with the
t ypeLongl nt eger descriptor type and the data identified in the nunber 2 variable.

Once you have created a descriptor record, you can use AEPut Par anDesc to add the
data to an Apple event parameter. You specify the Apple event to add the parameter to,
the keyword of the parameter, and the descriptor record of the parameter as parameters
to the AEPut Par anDesc function.

This example adds a second parameter to the Multiply event using the
AEPut Par anDesc function:

CONST keyOperand2 = ' OPN2';

nyErr : = AEPut Par anDesc(t heAppl eEvent, keyQOperand2,
nmul t Par ankDesc) ;

This example adds the keyOper and2 keyword and the descriptor record created in the
previous example as the second parameter to the specified Apple event.

You can also create a descriptor record without using Apple Event Manager routines. For
example, this example generates an alias descriptor record from an existing alias handle:

W TH nyAl i asDesc DO
BEG N
descri ptor Type : = typeAli as;
dat aHandl e : = nyAl i asHandl e;
END;

Creating an Apple Event

CHAPTER 5

Creating and Sending Apple Events

Whatever method you use to create a descriptor record, you can add it to an Apple event
parameter by using AEPut Par anDesc.

After adding parameters to an Apple event, you can send the Apple event using the
AESend function. See “Sending an Apple Event,” which begins on page 5-13, for
information about using this function.

Specifying Optional Parameters for an Apple Event

The parameters for a given Apple event are listed in the Apple Event Registry: Standard
Suites as either required or optional. Your application does not usually have to include
Apple event parameters that are listed as optional; the target application uses default
values for parameters that are listed as optional if your application does not provide
them. The Apple Event Registry: Standard Suites defines the default value a target
application should use for each optional parameter of a specific Apple event.

The guidelines listed in the Apple Event Registry: Standard Suites for which parameters
should be considered optional and which should be considered required are not
enforced by the Apple Event Manager. Instead, the source application indicates which
Apple event parameters it considers optional by listing the keywords for those
parameters in the keyOpt i onal Keywor dAt t r attribute.

The keyOpt i onal Keywor dAt t r attribute does not contain the optional parameters;

it simply lists the keywords of any parameters for the Apple event that the source
application wants to identify as optional. Although the source application is responsible
for providing this information in the keyQpt i onal Keywor dAt t r attribute of an Apple
event, it is not required to provide this attribute.

If a keyword for an Apple event parameter is not included in the

keyOpt i onal Keywor dAt t r attribute, the source application expects the target
application to understand the Apple event parameter identified by that keyword. If a
target application cannot understand the parameter, it should return the result code
er r AEPar anM ssed and should not attempt to handle the event.

If a keyword for an Apple event parameter is included in the

keyOpt i onal Keywor dAt t r attribute, the source application does not

require the target application to understand the Apple event parameter identified
by that keyword. If the target application cannot understand a parameter whose
keyword is included in the keyOpt i onal Keywor dAt t r attribute, it should ignore
that parameter and attempt to handle the Apple event as it normally does.

Creating an Apple Event 5-7

suang 9|ddy Buipuas pue Buneald -

5-8

CHAPTER 5

Creating and Sending Apple Events

A source application can choose not to list the keyword for an Apple event parameter in
the keyOpt i onal Keywor dAt t r attribute even if that parameter is listed in the

Apple Event Registry: Standard Suites as an optional parameter. This has the effect of
forcing the target application to treat the parameter as required for a particular Apple
event. If the target application supports the parameter, it should handle the Apple event
as the client application expects. If the target application does not support the parameter
and calls an application-defined routine such as MyGot Requi r edPar ans to check
whether it has received all the required parameters, it finds that there’s another
parameter that the client application considered required, and should return the result
code er r AEPar anM ssed.

If a source application wants a target application to attempt to handle an Apple event
regardless of whether the target application supports a particular Apple event parameter
included in that Apple event, the source application should list the keyword for that
parameter in the keyOpt i onal Keywor dAt t r attribute.

It is up to the source application to decide whether to list a parameter that is described as
optional in the Apple Event Registry: Standard Suites in the keyOpt i onal Keywor dAt t r
attribute of an Apple event. For example, suppose a source application has extended the
definition of the Print event to include an optional keyCol or Or G ayscal e parameter
that specifies printing in color or gray scale rather than black and white. The source
application might decide whether or not to list the keyword keyCol or Or Gr ayscal e in
the keyOpt i onal Keywor dAt t r attribute according to the characteristics of the print
request. If the source application requires the target application to print a document

in color, the source application could choose not to add the keyword

keyCol or Or Grayscal e to the keyOpt i onal Keywor dAt t r attribute; in this case,
only target applications that supported the keyCol or Or G- ayscal e parameter would
attempt to handle the event. If the source application does not require the document
printed in color, it could choose to add the keyword keyCol or Or Gr ayscal e to the
keyOpt i onal Keywor dAt t r attribute; in this case, the target application will attempt to
handle the event regardless of whether it supports the keyCol or Or Gr ayscal e
parameter.

Your application can add optional parameters to an Apple event the same way

it adds required parameters, using the AECr eat eDesc, AEPut Par anPtr,

and AEPut Par anDesc functions as described in the previous section, “Adding
Parameters to an Apple Event.” If your application chooses to provide the

keyOpt i onal Keywor dAt t r attribute for an Apple event, it should first create a
descriptor list that specifies the keywords of the optional parameters, then add it to
the Apple event as a keyOpt i onal Keywor dAt t r attribute.

Creating an Apple Event

CHAPTER 5

Creating and Sending Apple Events

Listing 5-1 shows an application-defined routine, MyCr eat eOpt i onal Keywor d, that
creates the keyOpt i onal Keywor dAt t r attribute for the Create Publisher event.

Listing 5-1 Creating the optional keyword for the Create Publisher event

FUNCTI ON MyCr eat eOpt i onal Keyword
(VAR creat ePubAppl eEvent : Appl eEvent)
OSErr;
VAR
optional Li st: AEDesclLi st;
my Opt Keywor d1: AEKeywor d;
ny Opt Keywor d2: AEKeywor d;

myErr: OSErr;
i gnoreErr: OSErr;
BEG N

nmy Opt Keywor d1 : = keyDi rect Qbj ect ;
{create an enpty descriptor list}
nyErr := AECreatelList(N L, 0O, FALSE, optionallList);
IF nyErr = noErr THEN
BEG N
{add the keyword of the first optional parameter}
nyErr := AEPutPtr(optional List, 1, typeKeyword,
@y Opt Keywor d1, SizeO (myOpt Keywordl));
I F nyErr = noErr THEN
BEG N
{add the keyword of the next optional paraneter}
ny Opt Keywor d2 : = keyAEEdi ti onFi |l eLoc;
nyErr := AEPut Ptr(optional List, 2, typeKeyword,
@y Opt Keywor d2, Si zeOF (myOpt Keywor d2)) ;
END;
IF nyErr = noErr THEN
{create the keyOptional KeywordAttr attribute and add it }
{ to the Create Publisher event}
nyErr := AEPut Attri but eDesc(creat ePubAppl eEvent,
keyOpt i onal Keywor dAttr,
optional List);
END;
i gnoreErr := AED sposeDesc(optional List);
My Cr eat eOpt i onal Keyword : = nyErr;
END;

Creating an Apple Event 5-9

suang 9|ddy Buipuas pue Buneald -

5-10

CHAPTER 5

Creating and Sending Apple Events

The MyCr eat eOpt i onal Keywor d function shown in Listing 5-1 adds to a descriptor
list the keyword of each parameter that the source application considers optional. Each
keyword is added as a descriptor record with the descriptor type t ypeKeywor d. The
function specifies that the target application can handle the Create Publisher event
without supporting parameters identified by the keywords keyDi r ect Obj ect and
keyAEEdi ti onFi | eLoc. (These are the parameters that specify the Apple event object
to publish and the location of the edition container; if these parameters are missing, the
target application creates a publisher for the current selection using the application’s
default edition container.) After adding these keywords to the descriptor list, the
function creates the keyOpt i onal Keywor dAt t r attribute using the

AEPut At t ri but eDesc function.

Typically a target application does not examine the keyOpt i onal Keywor dAt t r
attribute directly. Instead, a target application that supports a parameter listed as
optional in the Apple Event Registry: Standard Suites attempts to extract it from the

Apple event (using AEGet Par anDesc, for example). If it can’t extract the parameter, the
target application uses the default value, if any, listed in the Apple Event Registry. A target
application can use the keyM ssedKeywor dAt t r attribute to return the first required
parameter (that is, considered required by the source application), if any, that it did not
retrieve from the Apple event. The keyM ssedKeywor dAt t r attribute does not return
any parameters whose keywords are listed in the keyOpt i onal Keywor dAt t r attribute
of the Apple event.

Specifying a Target Address

When you create an Apple event, you must specify the address of the target. The

target address identifies the particular application or process to which you want to send
the Apple event. You can send Apple events to applications on the local computer or on
remote computers on the network.

These are the descriptor types that identify the four methods of addressing an
Apple event:

t ypeAppl Si gnat ure The application signature of the target
t ypeSessi onl D The session reference number of the target
typeTarget| D The target ID record of the target

t ypeProcessSeri al Nunber The process serial number of the target

To address an Apple event to a target on a remote computer on the network, you must
use either the t ypeSessi onl Dor t ypeTar get | Ddescriptor type.

If your application sends an Apple event to itself, it should address the Apple event
using a process serial number of KCur r ent Pr ocess. This is the fastest way for your
application to send an Apple event to itself. For more information, see “Addressing an
Apple Event for Direct Dispatching” on page 5-13.

You can use any of the four address types when sending an Apple event to another
application on the local computer. The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials describes all four types of addresses. Your application can

Creating an Apple Event

CHAPTER 5

Creating and Sending Apple Events

also use another address type if it provides a coercion handler that coerces the address
type into one of the four address types that the Apple Event Manager recognizes. See
“Writing and Installing Coercion Handlers,” which begins on page 4-41, for more
information.

To allow the user to choose the target of an Apple event, use the PPCBr owser function.
This function presents a standard user interface for choosing a target application, much
as the Standard File Package provides a standard user interface for opening and saving
files. The PPCBr owser function returns, in a target ID record, information about the
application the user chose. Listing 5-3 on page 5-12 shows how to use the PPCBr owser
function to let the user choose a target.

Creating an Address Descriptor Record

You specify the address using an address descriptor record (a descriptor record of data
type AEAddr essDesc). You must create a descriptor record of this type and then add it
to the Apple event using the AECr eat eAppl eEvent function.

You can use the AECr eat eDesc function to create address descriptor records for any of
the four types of target addresses. Listing 5-2 shows four possible ways to create an
address, each using a different address type.

Listing 5-2 Creating a target address

PROCEDURE My Set Tar get Addr esses(VAR t ar get Addr ess1,
t ar get Address2, target Address3,
t ar get Addr ess4: AEAddressDesc;
toTarget| D. Targetl D,
t hePSN: ProcessSeri al Nunber ;
t heSi gnature: OSType;
t heSessi onRef: PPCSessRef Nunj ;

VAR
nmyErr: OSErr;
BEG N
nyErr := AECreateDesc(typeTarget| D, @ oTargetlD,
SizeOf (toTarget 1 D), target Addressl);
nyErr : = AECreateDesc(typeProcessSerial Nunber, @ hePSN,
Si zeOF (t hePSN), target Address?2);
myErr : = AECreat eDesc(typeAppl Si gnature, @ heSi gnature,
Si zeOF (t heSi gnature), target Address3);
nyErr := AECreateDesc(typeSessionl D, @heSessi onRef,

Si zeOk (t heSessi onRef), target Address4);
{add your own error checking}
END;

Creating an Apple Event 5-11

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

To create an address descriptor record, specify the following as parameters to

AECr eat eDesc: the descriptor type for the address, a pointer to the buffer containing
the address, and the size of the buffer. The AECr eat eDesc function returns an address
descriptor record with the specified characteristics.

After creating an address, you can specify it as a parameter to the
AECr eat eAppl eEvent function. See “Creating an Apple Event,” which begins on
page 5-3, for an example using the AECr eat eAppl eEvent function.

When you specify an address to the AECr eat eAppl eEvent function, the Apple Event
Manager stores the address in the keyAddr essAt t r attribute of the Apple event.

If you use the PPCBr owser function to allow the user to choose an Apple event’s target,
your application must create a target ID record based on the user’s choice. Listing 5-3
shows how to create a target ID record using the information returned from the

PPCBr owser function and create an address descriptor record using the

AECr eat eDesc function.

Listing 5-3 Specifying a target address in an Apple event by using the PPCBr owser function

5-12

FUNCTI ON MyGet Tar get Address (nyPronpt: Str255; nyAppStr: Str255;
VAR myPort | nfo: PortlnfoRec;
VAR t ar get Addr ess: AEAddr essDesc;
VAR toTarget|D: targetlD): OSErr;
VAR
nmyErr: CSErr;
BEG N
{use PPCBrowser to |et user choose the target}
nyErr := PPCBrowser (nyPronmpt, myAppStr, FALSE,
toTarget | D. | ocation,
myPortlinfo, NIL, "");
MyGet Tar get Address : = nyErr;
| F nyErr <> noErr THEN Exit (MyGet Tar get Addr ess) ;

toTarget | D. name : = nyPortl| nfo.naneg;

{create the descriptor record for the target address}
MyGet Tar get Addr ess : = AECreat eDesc(typeTarget| D, @oTargetl D,
Si zeO (toTargetl D),
t ar get Addr ess) ;
END;

See the chapter “Program-to-Program Communications Toolbox” in this book for more
information on using the PPCBr owser function.

Creating an Apple Event

CHAPTER 5

Creating and Sending Apple Events

Addressing an Apple Event for Direct Dispatching

As described in the chapter “Recording Apple Events” in this book, a recordable
application must send itself Apple events in response to user actions. Your application
can send itself Apple events by using an address descriptor record of descriptor type

t ypeProcessSeri al Nunber with the | owLongCOf PSN field set to kCur r ent Pr ocess
and the hi ghLongCOf PSNset to 0. The Apple Event Manager processes such Apple
events immediately, executing the appropriate Apple event handler directly without
going through the normal event-processing sequence. For this reason, your application
will not appear to run more slowly when it sends Apple events to itself.

Apple events your application sends to itself this way do not appear in your
application’s high-level event queue. This not only speeds up delivery of the event but
also avoids situations in which an Apple event sent in response to a user action arrives in
the event queue after some other event that really occurred later than the user action. For
example, suppose a user chooses Cut from the Edit menu and then clicks in another
window. If the Cut event arrives in the queue after the window activate event, a selection
in the wrong window might be cut.

Your application can send events to itself using other forms of addressing, such as the
true process serial number returned by Get Cur r ent Pr ocess. Because direct
dispatching avoids event sequence problems, applications should generally send events
to themselves by using an address descriptor record of descriptor type

t ypeProcessSeri al Nunber with the kCurr ent Process constant rather than using
a true process serial number or an application signature.

IMPORTANT

When Apple event recording has been turned on, the Apple Event
Manager records every event that your application sends to itself unless
you specify the kKAEDont Recor d flag in the sendMbde parameter of the
AESend function. a

Sending an Apple Event

To send an Apple event, you first create an Apple event, add parameters and attributes
to it, and then use the AESend function to send it.

When you send an Apple event, you specify various options to indicate how the server
should handle the Apple event. You request a user interaction level from the server and
specify whether the server can switch directly to the foreground if user interaction is
needed, whether your application is willing to wait for a reply Apple event, whether
reconnection is allowed, and whether your application wants a return receipt for the
Apple event.

Sending an Apple Event 5-13

suang 9|ddy Buipuas pue Buneald -

5-14

CHAPTER 5

Creating and Sending Apple Events

You specify these options by setting flags in the sendMbde parameter for AESend. Here
are the constants that represent these flags:

CONST kAENoRepl y = $00000001; {client doesn't want reply}
kAEQueueRepl y = $00000002; {client wants Apple Event }
{ Manager to return }
{ reply in event queue}
$00000003; {client wants a reply and }
{ will give up processor}

kAEWAI t Repl y

kAENever | nt er act

$00000010; {server application }
{ should not interact }
{ with user for this }
{ Apple event}
$00000020; {server may interact with }
{ user for this Apple }
{ event to supply }
{ information}
$00000030; {server nmay interact with }
{ user for this Apple }
{ event even if no }
{ information is required}

kAECanl nt er act

KAEAl waysl nt er act

kAECanSwi t chLayer $00000040; { server shoul d cone }
{ directly to foreground }
{ when appropri at e}
$00000080; {don't reconnect if there }

{ is a PPC session closed }

kAEDont Reconnect

{ error}
kAEWANt Recei pt = nReturnReceipt;{client wants return }
{ receipt}
kAEDont Recor d = $00001000; {don't record this event}
kAEDont Execut e = $00002000; {don't execute this event}

If you want your application to receive a reply Apple event, specify the
kAEQueueRepl y or KAEVAI t Repl y flag. If you want your application to receive

the reply Apple event in its event queue, use KAEQueueRepl y. If you want your
application to receive the reply Apple event in the r epl y parameter for AESend

and you are willing to give up the processor while it is waiting for the reply, use
KAEWAI t Repl y. If you don’t want your application to receive a reply Apple event and
your application doesn’t need to wait for the server to handle the Apple event, specify
kAENoRepl y.

Sending an Apple Event

CHAPTER 5

Creating and Sending Apple Events

Note

Before the Apple Event Manager sends a reply event back to the client
application, the keyAddr essAt t r attribute contains the address of the
client application. After the client receives the reply event, the

keyAddr essAtt r attribute contains the address of the server
application. O

If you specify KAENoRepl y or KAEQueueRepl y, the AESend function returns
immediately after using the Event Manager to send the event. In this case, a noEr r
result code from AESend indicates that the Event Manager sent the Apple event; it does
not mean that the server accepted or handled the Apple event.

When AESend returns, the r epl y parameter does not contain valid data if your
application specifies KAENoRepl y or kKAEQueueRepl y. The KAENoRepl y flag indicates
that the Apple Event Manager will not return the reply Apple event to your application.
The kAEQueueRepl y flag indicates that you want your application to receive the reply
via its event queue rather than the r epl y parameter of AESend. If you specify
kKAEQueueRepl y, you must install a handler for the reply Apple event (event class

kCor eEvent d ass and event ID KAEAnswer).

If you specify KAEWAI t Repl y, the Apple Event Manager uses the Event Manager to
send the event. The Apple Event Manager then calls the Wi t Next Event function on
behalf of your application, causing your application to yield the processor and giving the
server application a chance to receive and handle the Apple event. Your application
continues to yield the processor until the server handles the Apple event or the request
times out.

If you specify KAEWAI t Repl y, you must provide an idle function. This function should
process any update events, null events, operating-system events, or activate events that
occur while your application is waiting for a reply. See “Writing an Idle Function,” which
begins on page 5-22, for sample code that shows an idle function.

You use one of the three flags—k AENever | nt er act, kKAECanl nt er act, and

KAEAI waysl| nt er act —to specify whether the server should interact with the user
when handling the Apple event. Specify KAENever | nt er act if the server should not
interact with the user when handling the Apple event. You might specify this constant if
you don’t want the user to be interrupted while the server is handling the Apple event.

Use the KAECanl nt er act flag if the server should interact with the user when the user
needs to supply information to the server. Use the KAEAl ways| nt er act flag if the
server should interact with the user whenever the server normally asks a user to confirm
a decision or interact in any other way, even if no additional information is needed from
the user. Note that it is the responsibility of the server and client applications to agree on
how to interpret the KAEAl ways| nt er act flag.

If the client application does not set any one of the user interaction flags, the Apple Event
Manager sets a default, depending on the location of the target of the Apple event. If the
server application is on a remote computer, the Apple Event Manager sets the

kAENever | nt er act flag as the default. If the target of the Apple event is on the local
computer, the Apple Event Manager sets the KAECan| nt er act flag as the default.

Sending an Apple Event 5-15

suang 9|ddy Buipuas pue Buneald -

5-16

CHAPTER 5

Creating and Sending Apple Events

The server application should call AEI nt er act Wt hUser if it needs to interact with the
user. If both the client and the server allow user interaction, the Apple Event Manager
attempts to bring the server to the foreground if it is not already the foreground process.
If both the KAECanSwi t chLayer and the KAEWAI t Repl y flags are set, and if the client
application is the active application on the local computer, the Apple Event Manager
brings the server application directly to the front. Otherwise, the Apple Event Manager
posts a notification request asking the user to bring the server application to the front,
regardless of whether the KAECanSwi t chLayer flag is set. This ensures that the user
will not be interrupted by an unexpected application switch.

You should specify the KAECanSwi t chLayer flag only when the client and server
applications reside on the same computer. In general, you should not set this flag if it
would be confusing or inconvenient to the user for the server application to come to the
front unexpectedly. This flag is ignored if you are sending an Apple event to a remote
computer.

Specify the KAEDont Reconnect flag if the Apple Event Manager should not reconnect
if it receives a session closed error from the PPC Toolbox. If you don't set this flag, the
Apple Event Manager automatically attempts to reconnect and reestablish the session.

Specify the KAEWANt Recei pt flag if your application wants notification that the server
application has accepted the Apple event. If you specify this flag, your application
receives a return receipt as a high-level event.

If you specify the KAEWANt Recei pt flag and the server application does not accept the
Apple event within the time specified by the t i meQut | nTi cks parameter to AESend,
the AESend function returns a timeout error. Note that AESend also returns a timeout
error if your application sets the KAEWAI t Repl y flag and does not receive the reply
Apple event within the time specified by the t i meCQut | nTi cks parameter.

Specify the kKAEDont Recor d flag if your application is sending an Apple event to itself
that you don’t want to be recorded. When Apple event recording has been turned on,
every event that your application sends to itself will be automatically recorded by the
Apple Event Manager except those sent with the KAEDont Recor d flag set.

Specify the kAEDont Execut e flag if your application is sending an Apple event to itself
for recording purposes only—that is, if you want the Apple Event Manager to send a
copy of the event to the recording process but you do not want your application actually
to receive the event. (For more information about when to use the kKAEDont Execut e
flag, see the chapter “Recording Apple Events” in this book.)

Listing 5-4 illustrates how to send a Multiply event (an imaginary Apple event for
multiplying two long integers). It first creates an Apple event, adds parameters
containing the numbers to multiply, then sends it, specifying various options. It also
illustrates how to handle the reply Apple event that contains the result.

Sending an Apple Event

CHAPTER 5

Creating and Sending Apple Events

Note

If you want to send Apple events, your application must set flags in its

' SI ZE' resource indicating that it can handle high-level events, and it
must provide handlers for the required Apple events. See “Accepting an
Apple Event” on page 4-5 for information on setting the appropriate
flags in the ' SI ZE' resource and “Handling the Required Apple
Events” on page 4-11 for information on supporting the required

Apple events. O

Sending an Apple Event

5-17

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

Listing 5-4 Sending an Apple event

FUNCTI ON MySendMul ti pl yEvent (server Address: AEAddressDesc;
firstOperand: Longlnt; secondOperand: Longlnt;
VAR repl yResul tLonglnt: Longlnt): OSErr;
CONST
kArithmeticd ass

"ARTH ; {event class for arithmetic }
{ Appl e events}

"MULT ; {event IDfor Miltiply event}

"OPNL'; {keyword for first paraneter}

kMul ti pl yEvent1 D
keyMul t Oper and1

keyMul t Oper and2 = '"OPN2'; {keyword for second paraneter}
VAR

t heAppl eEvent : Appl eEvent ;

reply: Appl eEvent ;

returnedType: DescType;

act ual Si ze: Longl nt;

myErr: OSErr;

i gnoreErr: OSErr;

errStr: St r 255;

err Nunber : Longl nt;
BEG N

nyErr := AECreat eAppl eEvent (kArithneticC ass, kMl tipl yEventI D,
server Addr ess, kAut oGener at eRet ur nl D,
kAnyTransacti onl D, theAppl eEvent);

I F nyErr = noErr THEN

{add the first operand}
myErr : = AEPut ParanPtr (t heAppl eEvent, keyMilt Operandl,
typeLongl nteger, @i rst Qperand,
Si zeOr (firstQOperand));
{add the second operand with the proper keyword}
I F nyErr = noErr THEN
nyErr := AEPut ParanPtr (t heAppl eEvent, keyMilt Qperand2,
t ypeLongl nt eger, @econdQper and,
Si zeOf (secondQper and)) ;

IF nyErr = noErr THEN
nyErr := AESend(theAppl eEvent, reply, kAEWitReply + kAENever| nteract,
KAENor mal Priority, 120, @wldl eFunction, NL);
IF nyErr = noErr THEN {Appl e event successfully sent}
BEG N {Check whether it was successfully handl ed-- }
{ get result code returned by the server's handl er}
myErr := AEGet ParanPtr(reply, keyErrorNunber, typelLonglnteger,
returnedType, @rrNunber, SizeO (errNumber),
act ual Si ze);

5-18 Sending an Apple Event

CHAPTER 5

Creating and Sending Apple Events

IF (nyErr = err AEDescNot Found) OR (errNunmber = noErr) THEN
{if keyErrorNunber doesn't exist or server returned noErr }
{ then the Apple event was successfully handl ed--the reply Apple }
{ event contains the result in the direct paraneter}
nyErr := AECet ParanPtr(reply, keyDirectCbject, typelLonglnteger,
returnedType, @ epl yResultLonglnt,
Si zeOf (repl yResul t Longl nt), actual Si ze)
ELSE
BEA N {server returned an error, so get error string}
myErr := AEGet ParanPtr(reply, keyErrorString, typeChar,
returnedType, @rrStr[1], SizeO(errStr)-1,
act ual Si ze);
IF nyErr = noErr THEN
BEG N
| F actual Si ze > 255 THEN
actual Si ze : = 255;
errStr[0] := chr(actual Size);
MyDi spl ayError(errStr);
END;
END;
i gnoreErr : = AEDi sposeDesc(reply);
END
ELSE
BEG N
{the Apple event wasn't successfully dispatched, }
{ the request tinmed out, the user canceled, or other error}
END;
i gnoreErr := AED sposeDesc(theAppl eEvent);
MySendMul ti pl yEvent : = nyErr;
END;

The code in Listing 5-4 first creates an Apple event with KAri t hneti cCl ass as the
event class and kMl ti pl yEvent | Das the event ID. It also specifies the server of the
Apple event. See “Specifying a Target Address” on page 5-10 for information on
specifying a target address and “Creating an Apple Event,” which begins on page 5-3,
for more information on creating an Apple event.

The Multiply event shown in Listing 5-4 contains two parameters, each specifying a
number to multiply. See “Adding Parameters to an Apple Event” on page 5-5 for
examples of how to specify the parameters for the AEPut Par anPt r function.

After adding the parameters to the event, the code uses AESend to send the event.
The first parameter to AESend specifies the Apple event to send—in this example, the
Multiply event. The next parameter specifies the reply Apple event.

Sending an Apple Event 5-19

suang 9|ddy Buipuas pue Buneald -

5-20

CHAPTER 5

Creating and Sending Apple Events

This example specifies KAEWAI t Repl y in the third parameter, indicating that the client
is willing to yield the processor for the specified timeout value (120 ticks, or 2 seconds).
The kAENever | nt er act flag indicates that the server should not interact with the user
when processing the Apple event. The fourth parameter specifies that the Multiply event
is to be sent using normal priority (that is, placed at the end of the event queue). You can
specify the KAEH ghPri ori ty flag to place the event in the front of the event queue,
but this is not usually recommended.

The next to last parameter specifies the address of an idle function. If you specify
KAEWAI t Repl y, you must provide an idle function. This function should process any
update events, null events, operating-system events, or activate events that occur while
your application is waiting for a reply. See “Writing an Idle Function,” which begins on
page 5-22, for sample code that shows an idle function.

The last parameter to AESend specifies a filter function. You can supply a filter function
to filter high-level events that your application may receive while waiting for a reply
Apple event. You can specify NI L for this parameter if you do not need to filter
high-level events while waiting for a reply. See “Writing a Reply Filter Function” on
page 5-24 for more information.

If you specify KAEWAI t Repl y, a noEr r result code from AESend indicates that the
Apple event was sent successfully, not that the server has completed the requested action
successfully. Therefore, you should find out whether a result code was returned from the
handler by checking the reply Apple event for the existence of either the

keyEr r or Number or keyEr r or St ri ng parameter. If the keyEr r or Nunber parameter
does not exist or contains the NoEr r result code, you can use AECet Par anPt r to get the
parameter you're interested in from the reply Apple event.

The MySendMul ti pl yEvent function in Listing 5-4 checks the function result of
AESend. If itis noEr r, M\ySendMul t i pl yEvent checks the keyEr r or Nunber
parameter of the reply Apple event to determine whether the server successfully
handled the Apple event. If this parameter exists and indicates that an error occurred,
MySendMul ti pl yEvent gets the error string out of the keyEr r or St r i ng parameter.
Otherwise, the server performed the request, and the reply Apple event contains the
answer to the multiplication request.

When you have finished using the Apple event specified in the AESend function and no
longer need the reply Apple event, you must dispose of both the original event and the
reply by calling the AEDi sposeDesc function.

IMPORTANT

If your application sends Apple events to itself using a

t ypeProcessSeri al Nunber address descriptor record with the

I owLongCf PSNfield set to kCur r ent Pr ocess, the Apple Event
Manager jumps directly to the appropriate Apple event handler without
going through the normal event-processing sequence. For this reason,
your application will not appear to run more slowly when it sends
Apple events to itself. For more information, see “Addressing an Apple
Event for Direct Dispatching” on page 5-13. a

Sending an Apple Event

CHAPTER 5

Creating and Sending Apple Events

Dealing With Timeouts

When your application calls AESend and chooses to wait for the server application to
handle the Apple event, it can also specify the maximum amount of time it is willing to
wait for a response. You can specify a timeout value in the t i meQut | nTi cks parameter
to AESend. You can either specify a particular length of time, in ticks, that your
application is willing to wait, or you can specify the kNoTi meQut constant or the
KAEDef aul t Ti meout constant.

Use the KNoTi meQut constant to indicate that your application is willing to wait forever
for a response from the server. You should use this value only if you are sure that the
server will respond in a reasonable amount of time. You should also implement a
method of checking whether the user wants to cancel. The idle function that you specify
as a parameter to AESend should check the event queue for any instances of
Command-period and immediately return TRUE as its function result if it finds a

request to cancel in the event queue.

Use the KAEDef aul t Ti meout constant if you want the Apple Event Manager to use a
default timeout value. The Apple Event Manager uses a timeout value of about one
minute if you specify this constant.

If you set the KAEWAI t Repl y flag and the server doesn’t have a handler for the Apple
event, the server immediately returns the er r AEEvent Not Handl ed result code. If the
server doesn’t respond within the length of time specified by the timeout value, AESend
returns the er r AETi neout result code and a reply Apple event that contains no data.
This result code does not necessarily mean that the server failed to perform the
requested action; it means only that the server did not complete processing within the
specified time. The server might still be processing the Apple event, and it might still
send a reply.

If the server finishes processing the Apple event sometime after the time specified in the
keyTi meout At t r attribute has expired, it returns a reply Apple event to

AEPr ocessAppl eEvent . The Apple Event Manager then adds the actual data to the
reply. Thus, your application can continue to check the reply Apple event to see if the
server has responded, even after the time expires. If the server has not yet sent the reply
when the client attempts to extract data from the reply Apple event, the Apple Event
Manager functions return the er r AERepl yNot Ar r i ved result code. After the reply
Apple event returns from the server, the client can extract the data in the reply.

Additionally, the server can examine the keyTi neout At t r attribute of the Apple event
to determine the timeout value specified by the client. You can use the value of this
attribute as a rough estimate of how much time your handler has to respond. You can
assume that your handler has less time to respond than the timeout value, because
transmitting the Apple event uses some of the available time, as does transmitting the
reply Apple event back to the client, and the event may have been in the queue for a
while already.

Sending an Apple Event 5-21

suang 9|ddy Buipuas pue Buneald -

5-22

CHAPTER 5

Creating and Sending Apple Events

If you set the KAENoRepl y or KAEQueueRepl y flag, the Apple Event Manager ignores
any timeout value you specify, because your application is not waiting for the reply. An
attempt by the server to examine the keyTi meout At t r attribute in this situation
generates the error er r AEDescNot Found.

If your handler needs more time than is specified in the keyTi meout At t r attribute, you
can reset the timer by using the AEReset Ti mer function. This function resets the
timeout value of an Apple event to its starting value.

Writing an Idle Function

This section describes how to write an idle function for use with the AESend or
AEIl nt er act Wt hUser function.

When your application sends an Apple event, you can set one of three flags in the
sendMobde parameter to AESend that specify how you want to deal with the reply:
kKAENoRepl y if you don’t want your application to receive a reply, KAEQueueRepl y if
you want it to receive the reply in its event queue, or KAEWAi t Repl y if you want the
reply returned in the r epl y parameter of AESend and you are willing to give up

the processor while your application is waiting for the reply.

If you specify KAENoRepl y or KAEQueueRepl y, the AESend function returns
immediately after using the Event Manager to send the event. If you specify

KAEWAI t Repl y, the AESend function does not return until either the server application
finishes handling the Apple event or a specified amount of time expires. In this case the
AESend function calls Wai t Next Event on behalf of your application. This yields the
processor to other processes, so that the server has an opportunity to receive and process
the Apple event sent by your application. While your application is waiting for a reply, it
cannot receive events unless it provides an idle function.

If you provide a pointer to an idle function as a parameter to the AESend function,
AESend calls your idle function whenever an update event, null event, operating-system
event, or activate event is received for your application. To allow your application to
process high-level events that it receives while waiting for a reply, provide a reply filter
function. See the next section, “Writing a Reply Filter Function,” for more information.

Your application can yield the processor in a similar manner when it calls the

AEl nt eract Wt hUser function. If AEl nt er act Wt hUser needs to post a notification
request to bring your application to the front, your application yields the processor until
the user brings your application to the front. To receive events while waiting for the user
to bring your application to the front, you must provide an idle function.

If you provide a pointer to an idle function as a parameter to the

AEI nt eract Wt hUser function, AEI nt er act Wt hUser calls your idle function
whenever an update event, null event, operating-system event, or activate event is
received for your application.

Sending an Apple Event

CHAPTER 5

Creating and Sending Apple Events

An idle function must use this syntax:

FUNCTI ON Myl dl eFunction (VAR event: EventRecord,;
VAR sl eepTi me: Longl nt;
VAR mouseRgn: RgnHandl e) : Bool ean;

The event parameter is the event record of the event to process. The sl eepTi ne
parameter and mouseRgn parameter are values that your idle function sets the first time
it is called; thereafter they contain the values your function set. Your idle function should
return a Boolean value that indicates whether your application wishes to continue
waiting. Set the function result to TRUE if your application is no longer willing to wait
for a reply from the server or for the user to bring the application to the front. Set the
function result to FALSE if your application is still willing to wait.

You use the sl eepTi me and nouseRgn parameters in the same way as the sl eep and
mouseRgn parameters of the Wai t Next Event function. Specify in the sl eepTi e
parameter the amount of time (in ticks) during which your application agrees to
relinquish the processor if no events are pending for it.

In the mouseRgn parameter, you specify a screen region that determines the conditions
under which your application is to receive notice of mouse-moved events. Your idle
function receives mouse-moved events only if your application is the front application
and the cursor strays outside the region you specify.

Your idle function receives only update events, null events, operating-system events, and
activate events. When your idle function receives a null event, it can use the idle time to
update a status dialog box, animate cursors, or perform similar tasks. If your idle
function receives any of the other events, it should handle the event as it normally would
if received in its event loop.

Listing 5-5 shows an example of an idle function for use with AESend or

AEI nt er act Wt hUser. The idle function processes update events, null events,
operating-system events, and activate events. The first time the function is called it
receives a null event. At this time, it sets the s| eepTi me and nbuseRgn parameters. The
function continues to process events until the server finishes handling the Apple event or
the user brings the application to the front.

Your application should implement a method of checking whether the user wants to
cancel. The MyCancel | nQueue function in Listing 5-5 checks the event queue for any
instances of Command-period and immediately returns TRUE as its function result if it
finds a request to cancel in the event queue.

Listing 5-5 An idle function

FUNCTI ON Myl dl eFunction (VAR event: EventRecord,;
VAR sl eeptinme: Longlnt;
VAR nouseRgn: RgnHandl e): Bool ean;
BEG N
Myl dl eFuncti on : = FALSE;

Sending an Apple Event 5-23

suang 9|ddy Buipuas pue Buneald -

5-24

CHAPTER 5

Creating and Sending Apple Events

{the MyCancel | nQueue function checks for Comrand- peri od}
| F MyCancel | nQueue THEN
BEG N
Myl dl eFunction : = TRUE
Exi t (Myl dl eFuncti on);

END;
CASE event.what OF
updat eEvt,
activat eEvt, {every idle function should handle }
osEvt: { these kinds of events}
BEG N
MyAdj ust Cur sor (event . where, gCursorRgn);
DoEvent (event);
END;
nul | Event :
BEG N
{set the sleepTine and nmouseRgn par amet er s}
nmouseRgn : = gCursor Rgn;
sleeptinme := 10; {use the correct value for your }
{ app}
Dol dl e; {the application's idle handling}
END;
END; {of CASE}

END;

Writing a Reply Filter Function

If your application calls AESend and chooses to yield the processor to other processes
while waiting for a reply, you can provide an idle function to process update, null,
operating-system, and activate events, and you can provide a reply filter function to
process high-level events. The previous section describes how an idle function processes
events.

Your reply filter function can process any high-level events that it is willing to handle
while waiting for a reply Apple event. For example, your application can choose to
handle Apple events from other processes while waiting. Note, however, that your
application must maintain any necessary state information. Your reply filter function
must not accept any Apple events that can change the state of your application and make
it impossible to return to its previous state.

A reply filter function must use this syntax:
FUNCTI ON MyRepl yFilter (VAR event: EventRecord;
returnl D Longlnt;

transactionl D: Longlnt;
sender: AEAddressDesc): Bool ean

Sending an Apple Event

CHAPTER 5

Creating and Sending Apple Events

The event parameter is the event record for a high-level event. The next three
parameters contain valid information only if the event is an Apple event. The

r et ur nl D parameter is the return ID for the Apple event. The t r ansact i onl D
parameter is the transaction ID for the Apple event. The sender parameter contains
the address of the application or process that sent the Apple event.

Your reply filter function should return TRUE as the function result if you want to accept
the Apple event; otherwise, it should return FALSE. If your filter function returns

TRUE, the Apple Event Manager calls the AEPr ocessAppl eEvent function on behalf of
your application, and your handler routine is called to process the Apple event. In this
case, make sure your handler is not called while it is still being used by an earlier call.

Reference to Creating and Sending Apple Events

This section describes the basic Apple Event Manager routines that your application
can use to create and send Apple events. It also describes application-defined idle
functions and reply filter functions that your application can provide for use by the
Apple Event Manager.

For information about data structures used with the routines described in this chapter,
see the section “Data Structures Used by the Apple Event Manager,” which begins on
page 4-56.

Routines for Creating and Sending Apple Events

This section describes the Apple Event Manager routines you can use to create Apple
events, create and duplicate descriptor records, create and add items to descriptor lists
and AE records, add parameters and attributes to Apple events, and send Apple events.
The section “Routines for Responding to Apple Events,” which begins on page 4-61,
describes other Apple Event Manager routines used for both responding to and creating
Apple events.

Reference to Creating and Sending Apple Events 5-25

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

Creating Apple Events

The AECr eat eAppl eEvent function allows you to create an Apple event.

AECreateAppleEvent

You can use the AECr eat eAppl eEvent function to create an Apple event with several
important attributes but no parameters. You add parameters to the Apple event after you
create it.

FUNCTI ON AECr eat eAppl eEvent (theAEEvent Cl ass: AEEvent O ass;
t heAEEvent | D. AEEvent | D
target: AEAddressDesc;
returni D. Integer,
transactionl D: Longlnt;

VAR result: Appl eEvent): OSErr;

t heAEEvent C ass
The event class of the Apple event to be created.

t heAEEvent | D
The event ID of the Apple event to be created.

t ar get The address of the server application.

returnl D The return ID for the Apple event; if you specify
kAut oGener at eRet ur nl D, the Apple Event Manager assigns
a return ID that is unique to the current session.

transactionl D
The transaction ID for this Apple event. A transaction is a sequence of
Apple events that are sent back and forth between the client and server
applications, beginning with the client’s initial request for a service.
All Apple events that are part of a transaction must have the same
transaction ID.

resul t The AECr eat eAppl eEvent function returns, in this parameter, the
Apple event that it creates.

DESCRIPTION

The AECr eat eAppl eEvent function creates an Apple event.Your application is
responsible for using the AEDi sposeDesc function to dispose of the Apple event when
you no longer need it.

If AECr eat eAppl eEvent returns a nonzero result code, it returns a null descriptor
record unless the Apple Event Manager is not available because of limited memory.

5-26 Reference to Creating and Sending Apple Events

RESULT CODES

SEE ALSO

CHAPTER 5

Creating and Sending Apple Events

noErr 0 No error
menful | Err -108 Not enough room in heap zone

See “Creating an Apple Event,” which begins on page 5-3, for more information on how
to create an Apple event.

See “Specifying a Target Address” on page 5-10 for information on how to address an
Apple event.

Creating and Duplicating Descriptor Records

The AECr eat eDesc function converts data into a descriptor record, and the
AEDupl i cat eDesc function makes a copy of a descriptor record.

AECreateDesc

DESCRIPTION

You can use the AECr eat eDesc function to convert data into a descriptor record.

FUNCTI ON AECr eat eDesc (typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size; VAR result: AEDesc): OSErr;

typeCode The descriptor type for the descriptor record.

dat aPt r A pointer to the data for the descriptor record.

dat aSi ze The length, in bytes, of the data for the descriptor record.

resul t The descriptor record that the AECr eat eDesc function creates.

The AECr eat eDesc function creates a new descriptor record that incorporates the
specified data. Your application is responsible for using the AEDi sposeDesc function to
dispose of the resulting descriptor record when you no longer need it. You normally do
this after receiving a result code from the AESend function.

If AECr eat eDesc returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

Reference to Creating and Sending Apple Events 5-27

suang 9|ddy Buipuas pue Buneald -

RESULT CODES

SEE ALSO

CHAPTER 5

Creating and Sending Apple Events

noErr 0 No error
menful | Err -108 Not enough room in heap zone

For examples of the use of AECr eat eDesc, see “Adding Parameters to an Apple Event,”
which begins on page 5-5, and Listing 5-2 on page 5-11.

AEDuplicateDesc

DESCRIPTION

5-28

You can use the AEDupl i cat eDesc function to make a copy of a descriptor record.

FUNCTI ON AEDupl i cat eDesc (t heAEDesc: AEDesc;
VAR result: AEDesc): OSErr;

t heAEDesc The descriptor record to be duplicated.
result The duplicate descriptor record.

The AEDupl i cat eDesc function creates a new descriptor record by copying the
descriptor record from the parameter t heAEDesc. Your application is responsible for
using the AEDI sposeDesc function to dispose of the resulting descriptor record when
you no longer need it. You normally do this after receiving a result code from the
AESend function.

If AEDupl i cat eDesc returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

It is common for applications to send Apple events that have one or more attributes or
parameters in common. For example, if you send a series of Apple events to the same
application, the address attribute is the same. In these cases, the most efficient way to
create the necessary Apple events is to make a template Apple event that you can then
copy—by calling the AEDupl i cat eDesc function—as needed. You then fill in or change
the remaining parameters and attributes of the copy, send the copy by calling AESend,
and dispose of the copy—by calling AEDI sposeDesc—after AESend returns a result
code.

Reference to Creating and Sending Apple Events

RESULT CODES

CHAPTER 5

Creating and Sending Apple Events

noErr 0 No error
menful | Err -108 Not enough room in heap zone

Creating Descriptor Lists and AE Records

The AECr eat eLi st function allows you to create an empty descriptor list or AE record.

AECreateList

DESCRIPTION

You can use the AECr eat eLi st function to create an empty descriptor list or AE record.

FUNCTI ON AECreatelList (factoringPtr: Ptr; factoredSize: Size;
i sSRecord: Bool ean;
VAR resul tList: AEDescList): OSErr;

factoringPtr
A pointer to the data at the beginning of each descriptor that is the same
for all descriptor records in the list. If there is no common data, or if you
decide not to isolate the common data, specify NI L as the value of this
parameter.

factoredSi ze
The size of the common data. If there is no common data, or if you decide
not to isolate the common data, the value of f act or edSi ze must be 0.
(See the description that follows for more information.)

i sSRecord ABoolean value that specifies the kind of list to create. If you set
it to TRUE, the Apple Event Manager creates an AE record. If you set it to
FALSE, the Apple Event Manager creates a descriptor list.

resul tList
The descriptor list or AE record that the AECr eat eLi st function creates.

The AECr eat eLi st function creates an empty descriptor list or AE record. Your
application is responsible for using the AEDi sposeDesc function to dispose of the
resulting descriptor record when you no longer need it. You normally do this after
receiving a result code from the AESend function.

If you intend to use a descriptor list for a factored Apple event array, you must provide,
in the f act ori ngPt r parameter, a pointer to the data shared by all items in the array
and, in the f act or edSi ze parameter, the size of the common data. The common data
must be 4, 8, or more than 8 bytes in length because it always consists of (a) the
descriptor type (4 bytes); (b) the descriptor type (4 bytes) and the size of each item’s data
(4 bytes); or (c) the descriptor type (4 bytes), the size of each item’s data (4 bytes), and
some portion of the data itself (1 or more bytes).

Reference to Creating and Sending Apple Events 5-29

suang 9|ddy Buipuas pue Buneald -

RESULT CODES

SEE ALSO

CHAPTER 5

Creating and Sending Apple Events

If AECr eat eLi st returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

noErr 0 No error
par antrr -50 Parameter error (value of handler pointer is NI L or odd)
mentul | Err -108 Not enough room in heap zone

For an example of the use of AECr eat eLi st, see Listing 5-1 on page 5-9.

For information about data types used with Apple event arrays, see “Apple Event Array
Data Types” on page 4-60.

Adding Items to Descriptor Lists

The Apple Event Manager provides three routines that allow you to add descriptor
records to any descriptor list, including an Apple event record. The AEPut Pt r function
converts data specified in a buffer to a descriptor record and adds the descriptor

record to a descriptor list. The AEPut Desc function adds a descriptor record to a
descriptor list. The AEPuUt Ar r ay function puts the data for an Apple event array

into a descriptor list.

AEPutPtr

You can use the AEPut Pt r routine to add data specified in a buffer to any descriptor list

as a descriptor record.

FUNCTI ON AEPut Ptr (theAEDescLi st: AEDesclList; index: Longlnt;

typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size): OSErr;

t heAEDescLi st
The descriptor list to which to add a descriptor record.

i ndex The position of the descriptor record in the descriptor list. (For example,
the value 2 specifies the second descriptor record in the list.) If there is
already a descriptor record in the specified position, it is replaced. If the
value of i ndex is 0, the descriptor record is added to the end of the list.

typeCode The descriptor type for the resulting descriptor record.

dat aPtr A pointer to the data for the descriptor record.

dat aSi ze The length, in bytes, of the data for the descriptor record.

5-30 Reference to Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

RESULT CODES

noErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AEW ongDat aType -1703 Wrong descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

err AEBadLi stltem -1705 Operation involving a list item failed

err AEll | egal | ndex -1719 Not a valid list index

SEE ALSO
For an example of the use of AEPut Pt r, see Listing 5-1 on page 5-9.
AEPutDesc
You can use the AEPut Desc function to add a descriptor record to any descriptor list.
FUNCTI ON AEPut Desc (t heAEDescLi st: AEDescLi st; index: Longlnt;
t heAEDesc: AEDesc): OSErr;

t heAEDescLi st
The descriptor list to which to add a descriptor record.

i ndex The position of the descriptor record in the descriptor list. (For example,
the value 2 specifies the second descriptor record in the list.) If there is
already a descriptor record in the specified position, it is replaced. If the
value of i ndex is 0, the descriptor record is added to the end of the list.

t heAEDesc The descriptor record to be added to the list.

RESULT CODES

noErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AEW ongDat aType -1703 Wrong descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

err AEBadLi stltem -1705 Operation involving a list item failed

err AEl | | egal | ndex -1719 Not a valid list index

Reference to Creating and Sending Apple Events 5-31

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

AEPutArray

You can use the AEPut Ar r ay function to put the data for an Apple event array into any
descriptor list.

FUNCTI ON AEPut Array (theAEDesclLi st: AEDescli st;
arrayType: AEArrayType;
arrayPtr: AEArrayDat aPoi nter;
i tenlype: DescType;
itentSi ze: Size; itemCount: Longlnt): OSErr;

t heAEDesclLi st
The descriptor list into which to put the Apple event array. If there are
any items already in the descriptor list, they are replaced.

arrayType The Apple event array type to be created. This is specified by one of the
following constants: KAEDat aAr r ay, KAEPackedAr r ay,
kAEHandl eAr r ay, KAEDescAr r ay, or KAEKeyDescAr r ay.

arrayPtr A pointer to the buffer containing the array.

i tenlype For arrays of type KAEDat aAr r ay, kAEPackedAr r ay, or
kAEHandl eAr r ay, the descriptor type of array items to be created.

itenSi ze For arrays of type KAEDat aAr r ay or KAEPackedAr r ay, the size (in
bytes) of the array items to be created.

i temCount The number of elements in the array.

DESCRIPTION
When you use AEPuUt Ar r ay to put an array into a factored descriptor list, each array
item must include the data that is common to all the descriptor records in the list. The
Apple Event Manager automatically isolates the data you specified in the call to
AECr eat eLi st that is common to all the elements of the array.

RESULT CODES

noErr 0 No error

menful | Err -108 Not enough room in heap zone
err AEW ongDat aType -1703 Wrong descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

SEE ALSO

For information about data types and constants used with AEPut Ar r ay, see “Apple
Event Array Data Types” on page 4-60.

For more information about creating descriptor lists for Apple event arrays, see the
description of AECr eat eLi st on page 5-29.

5-32 Reference to Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

Adding Data and Descriptor Records to AE Records

The Apple Event Manager provides two routines that allow you to add data and
descriptor records to AE records. The AEPut KeyPt r function takes a pointer

to data, a descriptor type, and a keyword and converts them into a keyword-specified
descriptor record that it adds to an AE record. The AEPut KeyDesc function takes

a descriptor record and a keyword and converts them into a keyword-specified
descriptor record that it adds to an AE record.

AEPutKeyPtr

RESULT CODES

You can use the AEPut KeyPt r function to add a pointer to data, a descriptor type, and a
keyword to an AE record as a keyword-specified descriptor record.

FUNCTI ON AEPut KeyPt r (theAERecord: AERecord;
t heAEKeywor d: AEKeywor d;
typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size): OSErr;

t heAERecord
The AE record to which to add a keyword-specified
descriptor record.

t heAEKeywor d
The keyword that identifies the descriptor record. If the AE record already
includes a descriptor record with this keyword, it is replaced.

typeCode The descriptor type for the keyword-specified descriptor record.

dat aPtr A pointer to the data for the keyword-specified descriptor record.

dat aSi ze The length, in bytes, of the data for the keyword-specified descriptor
record.

noErr 0 No error

menful | Err -108 Not enough room in heap zone

err AEW ongDat aType -1703 Wrong descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

err AEBadLi st 1t em -1705 Operation involving a list item failed

Reference to Creating and Sending Apple Events 5-33

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

AEPutKeyDesc

You can use the AEPut KeyDesc function to add a descriptor record and a keyword to an
AE record as a keyword-specified descriptor record.

FUNCTI ON AEPut KeyDesc (t heAERecord: AERecord;
t heAEKeywor d: AEKeywor d;
t heAEDesc: AEDesc): OSErr;

t heAERecor d
The AE record to which to add the keyword-specified descriptor record.

t heAEKeywor d
The keyword specifying the descriptor record. If there was already a
keyword-specified descriptor record with this keyword, it is replaced.

t heAEDesc The descriptor record for the keyword-specified descriptor record.

RESULT CODES
NoErr 0 No error
menful | Err -108 Not enough room in heap zone
er r AEW ongDat aType -1703 Wrong descriptor type
er r AENot AEDesc -1704 Not a valid descriptor record
err AEBadLi stltem -1705 Operation involving a list item failed

Adding Parameters and Attributes to Apple Events

The Apple Event Manager provides four functions that allow you to add Apple

event parameters and attributes to an Apple event. The AEPut Par anPt r and

AEPut Par amDesc functions add parameters to a specified Apple event.

The AEPut At t ri but ePt r and AEPut At t ri but eDesc functions add attributes to a
specified Apple event.

AEPutParamPtr

You can use the AEPut Par anPt r function to add a pointer to data, a descriptor type,
and a keyword to an Apple event as an Apple event parameter.

FUNCTI ON AEPut Par anPtr (t heAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size): OSErr;

t heAppl eEvent
The Apple event to which to add a parameter.

5-34 Reference to Creating and Sending Apple Events

RESULT CODES

SEE ALSO

CHAPTER 5

Creating and Sending Apple Events

t heAEKeywor d
The keyword for the parameter to be added. If the Apple event already
included a parameter with this keyword, the parameter is replaced.

typeCode The descriptor type for the parameter.
dat aPtr A pointer to the data for the parameter.
dat aSi ze The length, in bytes, of the data for the parameter.

nokErr 0 No error

menful | Err -108 Not enough room in heap zone

err AEW ongDat aType -1703 Wrong descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

err AEBadLi st 1t em -1705 Operation involving a list item failed

For an example of the use of AEPut Par anPt r, see “Adding Parameters to an Apple
Event,” which begins on page 5-5.

AEPutParamDesc

RESULT CODES

You can use the AEPut Par anDesc function to add a descriptor record and a keyword to

an Apple event as an Apple event parameter.

FUNCTI ON AEPut Par anDesc (t heAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
t heAEDesc: AEDesc): OSErr;

t heAppl eEvent
The Apple event to which to add a parameter.

t heAEKeywor d
The keyword for the parameter to be added. If the Apple event already
included a parameter with this keyword, the parameter is replaced.

t heAEDesc The descriptor record for the parameter.

noErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AEW ongDat aType -1703 Wrong descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

err AEBadLi stltem -1705 Operation involving a list item failed

Reference to Creating and Sending Apple Events 5-35

suang 9|ddy Buipuas pue Buneald -

SEE ALSO

CHAPTER 5

Creating and Sending Apple Events

For an example of the use of AEPut Par anDesc, see “Adding Parameters to an Apple
Event,” which begins on page 5-5.

AEPutAttributePtr

DESCRIPTION

5-36

You can use the AEPut At t ri but ePt r function to add a pointer to data, a descriptor
type, and a keyword to an Apple event as an attribute.

FUNCTI ON AEPut Attri butePtr (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
t ypeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

t heAppl eEvent
The Apple event to which to add an attribute.

t heAEKeywor d
The keyword for the attribute to be added.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description that
follows. If the Apple event already included an attribute with this
keyword, the attribute is replaced.

typeCode The descriptor type for the attribute.
dat aPt r A pointer to the buffer containing the data to be assigned to the attribute.
dataSi ze The length, in bytes, of the data to be assigned to the attribute.

The AEPut At t ri but ePt r function adds the specified pointer to data, descriptor type,
and keyword to the specified Apple event as an attribute. You can specify the parameter
t heAEKeyWor d using any of the following constants:

CONST

keyAddr essAttr = "addr'; {address of target }
{ application}

keyEvent Cl assAttr = "evcl'; {event class}

keyEvent | DAt tr = 'evid'; {event ID}

keyEvent Sour ceAttr "esrc'; {source application}

keyl nteract Level Attr inte'; {settings to allow the }
{ Apple Event Manager to }
{ bring server application }
{ to the foreground}

Reference to Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

keyM ssedKeywor dAt t r = 'mss';
keyOpti onal Keywor dAttr = 'optk';
keyOri gi nal AddressAttr = 'from;
keyReturnl DAt tr ='rtid;
keyTi neout Attr ='tinmo';

{first required paraneter }

{ remaining in Apple event}

{l'ist of optional }

{ paraneters for Apple }

{ event}

{address of original source }
{ of Apple event}

{return ID for reply Apple }
{ event}

{length of time in ticks }

{ that client will wait }

{ for reply or result from}
{ the server}

keyTransactionl DAttr = "tran'; {transaction ID identifying }
{ a series of Apple events}

RESULT CODES

noErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AECoer ci onFai | -1700 Data could not be coerced to the requested

descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

AEPutAttributeDesc

You can use the AEPut At t ri but eDesc function to add a descriptor record and a

keyword to an Apple event as an attribute.

FUNCTI ON AEPut Attri but eDesc (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
t heAEDesc: AEDesc): OSErr;

t heAppl eEvent

The Apple event to which you are adding an attribute.

t heAEKeywor d

The keyword for the attribute to be added.
TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description of
AEPut At t ri but ePt r on page 5-36. If the Apple event already included
an attribute with this keyword, the attribute is replaced.

Reference to Creating and Sending Apple Events

5-37

suang 9|ddy Buipuas pue Buneald -

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 5

Creating and Sending Apple Events

t heAEDesc The descriptor record to be assigned to the attribute. The descriptor type
of the specified descriptor record should match the defined descriptor
type for that attribute. For example, the keyEvent Sour ceAt t r attribute
has the t ypeShor t | nt eger descriptor type.

The AEPut At t ri but eDesc function takes a descriptor record and a keyword and adds
them to an Apple event as an attribute. If the descriptor type required for the attribute is
different from the descriptor type of the descriptor record, the Apple Event Manager
attempts to coerce the descriptor record into the required type, with one exception: the
Apple Event Manager does not attempt to coerce the data for an address attribute,
thereby allowing applications to use their own address types.

NoErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AECoer ci onFai | -1700 Data could not be coerced to the requested
descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

For an example of the use of AEPut At t ri but eDesc, see Listing 5-1 on page 5-9.

Sending Apple Events

AESend

The AESend function allows you to send an Apple event that you have previously
created with the AECr eat eAppl eEvent function.

5-38

You can use the AESend function to send an Apple event.

FUNCTI ON AESend ('t heAppl eEvent: Appl eEvent;
VAR reply: Appl eEvent; sendMdde: AESendMode;
sendPriority: AESendPriority;
ti meQut !l nTicks: Longlnt; idleProc: IdleProcPkPtr;
filterProc: EventFilterProcPtr): OSErr;

t heAppl eEvent
The Apple event to be sent.

Reference to Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

reply

sendMode

sendPriorit

ti meut | nT

i dl eProc

filterProc

The reply Apple event returned by the AESend function if you specify
the KAEWAI t Repl y flag in the sendMbde parameter. (If you specify the
KAEQueueRepl y flag in the sendMbde parameter, you receive the reply
Apple event in your event queue.) If you specify KAENoRepl y flag, the
reply Apple event returned by this function is a null descriptor record. If
you specify KAEWAI t Repl y in the sendMbde parameter, your
application is responsible for using the AEDi sposeDesc function to
dispose of the descriptor record returned in the r epl y parameter.

Specifies the following: the reply mode for the Apple event (set with one
of the constants KAENoRepl y, KAEQueueRepl y, or KAEWI t Repl y);

the interaction level (set with one of the constants KAENever | nt er act,
KAECanl nt er act, or KAEAl waysl| nt er act , which represent flags in
the keyl nt eract Level At tr attribute); the application switch mode
(set with the KAECanSwi t chLayer constant); the reconnection mode (set
with the kKAEDont Reconnect constant); and the return receipt

mode (set with the kAEWANt Recei pt constant). You obtain the value

for this parameter by adding the appropriate constants. (The description
that follows provides more details about the sendMbde flags.)

y
An integer of data type AESendPr i or i t y that specifies whether the

Apple event is put at the back of the event queue (indicated by the
KAENor mal Pri ori ty flag) or at the front of the queue (indicated by
the KAEHi ghPri ori ty flag).

cks

If the reply mode specified in the sendMbde parameter is

KAEWAI t Repl y, or if a return receipt is requested, this parameter
specifies the length of time (in ticks) that the client application is willing
to wait for the reply or return receipt from the server application before
timing out. Most applications should use the kAEDef aul t Ti meout
constant, which tells the Apple Event Manager to provide an appropriate
timeout duration. If the value of this parameter is KNoTi neCut, the
Apple event never times out.

A pointer to a function that handles events (such as update,
operating-system, activate, and null events) that your application receives
while waiting for a reply. Your application can also perform other tasks
(such as displaying a wristwatch or spinning beachball cursor) while
waiting for a reply or a return receipt. Your application must provide an
idle function if it specifies the KAEW4i t Repl y flag in the sendMbde
parameter.

A pointer to a function that accepts certain incoming Apple events that
are received while the handler waits for a reply or a return receipt and
filters out the rest.

Reference to Creating and Sending Apple Events 5-39

suang 9|ddy Buipuas pue Buneald -

DESCRIPTION

5-40

CHAPTER 5

Creating and Sending Apple Events

You can use one of the following flags in the sendMode parameter to specify the reply
mode for an Apple event. Only one of these flags may be set.

Flag
kAENoRepl y

kAEQueueRepl y

kAEWAI t Repl y

Description

Your application does not want a reply Apple event; the server
processes your Apple event as soon as it has the opportunity.

Your application wants a reply Apple event; the reply appears in
your event queue as soon as the server has the opportunity to
process and respond to your Apple event.

Your application wants a reply Apple event and is willing to give
up the processor while waiting for the reply; for example, if the
server application is on the same computer as your application,
your application yields the processor to allow the server to
respond to your Apple event. If you specify KAEVAI t Repl y, you
should provide an idle function.

You can communicate your user interaction preferences to the server application by
specifying one of the following flags in the sendMode parameter. Only one of these flags

may be set.

Flag
kAENever | nt er act

kAECanl nt er act

Description

The server application should never interact with

the user in response to the Apple event. If this flag

is set, AEl nt er act W t hUser returns the

err AENoUser | nt er act i on result code. This flag is the
default when an Apple event is sent to a remote application.

The server application can interact with the user in response
to the Apple event—by convention, if the user needs to
supply information to the server. If this flag is set and the
server allows interaction, AEl nt er act Wt hUser either
brings the server application to the foreground or posts a
notification request. This flag is the default when an Apple
event is sent to a local application.

KAEAI waysl| nt er act The server application can interact with the user in response

to the Apple event—by convention, whenever the server
application normally asks a user to confirm a decision or
interact in any other way, even if no additional information is
needed from the user. If this flag is set and the server allows
interaction, AEl nt er act Wt hUser either brings the server
application to the foreground or posts a notification request.

Reference to Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

The flags in the following list specify the application switch mode, the reconnection
mode, and the return receipt mode. Any of these flags may be set.

Flag Description

kAECanSwi t chLayer If both the client and server allow interaction, and if the
client application is the active application on the local
computer and is waiting for a reply (that is, it has set the
kKAEWAi t Repl y flag), AEI nt er act W t hUser brings
the server directly to the foreground. Otherwise,
AEl nt er act Wt hUser uses the Notification Manager to
request that the user bring the server application to the

foreground.

kAEDont Reconnect The Apple Event Manager must not automatically try to
reconnect if it receives a sessCl osedEr r result code from
the PPC Toolbox.

kAEVANt Recei pt The sender wants to receive a return receipt for this Apple

event from the Event Manager. (A return receipt means only
that the receiving application accepted the Apple event; the
Apple event may or may not be handled successfully after it
is accepted.) If the receiving application does not send a
return receipt before the request times out, AESend returns
er r AETi meout as its function result.

If the Apple Event Manager cannot find a handler for an Apple event in either
the application or system Apple event dispatch table, it returns the result code

er r AEEvent Not Handl ed to the server application (as the result of the

AEPr ocessAppl eEvent function). If the client application is waiting for a reply,
the Apple Event Manager also returns this result code to the client.

The AESend function returns NOEr r as its function result if the Apple event was
successfully sent by the Event Manager. A noEr r result from AESend does not indicate
that the Apple event was handled successfully; it indicates only that the Apple event was
successfully sent by the Event Manager. If the handler returns a result code other than
NOEr r, and if the client is waiting for a reply, it is returned in the keyEr r or Nunber
parameter of the reply Apple event.

If your application is sending an event to itself, you can set one of these flags to prevent
the event from being recorded or to ask the Apple Event Manager to record the event
without your application actually receiving it. Only one of these flags may be set.

Flag Description

kAEDont Recor d Your application is sending an event to itself but does not want
the event recorded. When Apple event recording is on, the Apple
Event Manager records a copy of every event your application
sends to itself except for those events for which this flag is set.

kAEDont Execut e Your application is sending an Apple event to itself for recording
purposes only—that is, you want the Apple Event Manager to
send a copy of the event to the recording process but you do not
want your application actually to receive the event.

Reference to Creating and Sending Apple Events 5-41

suang 9|ddy Buipuas pue Buneald -

RESULT CODES

SEE ALSO

CHAPTER 5

Creating and Sending Apple Events

noErr 0 No error

eLenErr -92 Buffer too big to send

menful | Err -108 Not enough room in heap zone

user Cancel edErr -128 User canceled an operation

pr ocNot Found -600 No eligible process with specified process
serial number

connectionlnvalid -609 Nonexistent signature or session ID

noUser | nt er act i onAl | owed -610 Background application sends event
requiring authentication

noPort Err -903 Client hasn’t set' S| ZE' resource to
indicate awareness of high-level events

dest Port Err -906 Server hasn’t set' SI ZE' resource to

indicate awareness of high-level events,
or else is not present

sessC osedErr -917 The KAEDont Reconnect flag in the
sendMbde parameter was set and the
server quit, then restarted

er r AEEvent Not Hand! ed -1708 Event wasn’t handled by an Apple event
handler

er r AEUnknownSendMvbde -1710 Invalid sending mode was passed

er r AEWai t Cancel ed -1711 User canceled out of wait loop for reply
or receipt

er r AETi meout -1712 Apple event timed out

er r AEUnknownAddr essType -1716 Unknown Apple event address type

For more information on sending Apple events, see “Sending an Apple Event,” which
begins on page 5-13.

For information on writing an idle function, see “Writing an Idle Function,” which
begins on page 5-22.

For information on writing a reply filter function, see “Writing a Reply Filter Function,”
which begins on page 5-24.

For information on when to use the KAEDont Execut e flag, see the chapter “Recording
Apple Events” in this book.

Application-Defined Routines

5-42

If your application sends an Apple event using AESend and is waiting for a reply, or if it
calls AEI nt er act W t hUser, you can provide an idle function to handle update events,
null events, operating-system events, and activate events. You can also provide a reply
filter function that can handle any high-level events that you want your application to
handle while it is waiting for a reply or for user interaction.

Reference to Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

MyldleFunction

DESCRIPTION

SEE ALSO

An idle function has the following syntax:

FUNCTI ON Myl dl eFunction (VAR event: Event Record,;
VAR sl eepTi me: Longl nt;
VAR nouseRgn: RgnHandl e) : Bool ean;

event The event record of the event to process.

sl eepTi me Amount of time (in ticks) during which your application agrees to
relinquish the processor if no events are pending.

mouseRgn A screen region that determines the conditions under which your
application is to receive notice of mouse-moved events.

If your application provides a pointer to an idle function (Myl dl eFuncti on)asa
parameter to AESend or AEl nt er act W t hUser, the Apple Event Manager will call the
idle function to handle any update event, null event, operating-system event, or activate
event received for your application while it is waiting for a reply.

Set the function result to TRUE if your application is no longer willing to wait for a reply
from the server or for the user to bring the application to the front. Set the function result
to FALSE if your application is still willing to wait.

For more information, see “Writing an Idle Function,” which begins on page 5-22.

MyReplyFilter

A reply filter function has the following syntax:

FUNCTI ON MyRepl yFi lter (VAR event: EventRecord;
returni D. Longlnt;
transactionl D. Longlnt;
sender: AEAddressDesc): Bool ean;

event The event record for a high-level event. The next three parameters contain
valid information only if the event is an Apple event.

returnl D ReturnID for the Apple event.

transactionl D
Transaction ID for the Apple event.

sender Address of process that sent the Apple event.

Reference to Creating and Sending Apple Events 5-43

suang 9|ddy Buipuas pue Buneald -

DESCRIPTION

SEE ALSO

5-44

CHAPTER 5

Creating and Sending Apple Events

If your application provides a pointer to a reply filter function as a parameter to the
AESend function, the reply filter function can process any high-level events that it is
willing to handle while your application is waiting for a reply.

Your reply filter function should return TRUE as the function result if you want to accept
the Apple event; otherwise, it should return FALSE.

For more information, see “Writing a Reply Filter Function” on page 5-24.

Reference to Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

Summary of Creating and Sending Apple Events

Pascal Summary

Constants
CONST
gest al t Appl eEvent sAttr = 'evnt'; {sel ector for Apple events}
gest al t Appl eEvent sPresent = 0; {if this bit is set, then Apple }

{ Event Manager is avail abl e}

{Appl e event descriptor types}

t ypeBool ean = 'bool '; {1-byte Bool ean val ue}
t ypeChar = ' TEXT"; {unterm nated string}
t ypeSM nt = 'shor'; {16-bit integer}
t ypel nt eger = 'long'; {32-bit integer}
t ypeSMFl oat = 'sing'; { SANE si ngl e}
t ypeFl oat = 'doub'; { SANE doubl e}
t ypeLongl nt eger = 'long'; {32-bit integer}
t ypeShort | nt eger = 'shor'; {16-bit integer}
t ypeLongFl oat = 'doub'; { SANE doubl e}
t ypeShort Fl oat = 'sing'; { SANE si ngl e}
t ypeExt ended = "exte'; { SANE ext ended}
t ypeConp = 'conp'; { SANE conp}
t ypeMagni t ude = 'magn'; {unsi gned 32-bit integer}
t ypeAELi st ="'list"; {l'ist of descriptor records}
t ypeAERecor d = 'reco'; {l'ist of keyword-specified }
{ descriptor records}
t ypeAppl eEvent = "aevt'; {Appl e event record}
typeTrue = 'true'; { TRUE Bool ean val ue}
typeFal se = 'fals'; { FALSE Bool ean val ue}
typeAli as = "alis'; {alias record}
t ypeEnuner at ed = '"enum ; {enuner at ed dat a}
typeType = "type'; {four-character code for }
{ event class or event |D}
t ypeAppPar anet er s = 'appa'; {Process Manager |aunch paraneters}
typeProperty = 'prop'; {Appl e event property}
t ypeFSS = "'fss '; {file system specification}

Summary of Creating and Sending Apple Events 5-45

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

t ypeKeywor d = 'keyw ;
typeSecti onH = 'sect';
typeW | dCard = PERERxL
t ypeAppl Si ghat ure = 'sign'
t ypeSessi onl D = "'ssid
typeTarget| D ='targ'
typeProcessSeri al Nunber = 'psn '
typeNul | ="'null";

{keywords for Apple event paraneters}

keyDi r ect oj ect ='o---

keyEr r or Nurber ='errn',;
keyErrorString ='errs
keyProcessSeri al Number = 'psn

{keywords for Apple event attributes}

keyTransactionl DAttr ="tran'
keyRet urnl DAt tr ='rtid";
keyEvent Cl assAttr = 'evcl';
keyEvent | DAt tr = "evid
keyAddr essAttr = 'addr’
keyOpti onal Keywor dAttr = 'optk’
keyTi neout Attr ="'tino'
keyl nt eract Level Attr ='inte'
keyEvent Sour ceAttr = 'esrc
keyM ssedKeywor dAt t r = 'mss
keyOri gi nal AddressAttr = 'from;

{keywords for special handl ers}
keyPreDi spat ch

= 'phac’;

{Appl e event keywor d}
{handl e to a section record}
{mat ches any type}
{application signature}
{session reference nunber}
{target ID record}

{process serial nunber}
{NULL or nonexistent data}

{direct paraneter}

{error nunber paraneter}
{error string paraneter}
{process serial nunber paran}

{transaction | D}

{return I D}
{event cl ass}
{event |D}

{address of target or }

{ client application}

{list of optional paraneters }
{ for the Apple event}

{nunber of ticks the client }
{ will wait}

{settings to allow Apple Event }
{ Manager to bring server }

{ to foreground}

{nature of source }

{ application}

{first required paraneter }

{ remaining in an Apple event}
{address of original source; }
{ available only in version }
{ 1.01 and | ater versions of }
{ the Apple Event Manager}

{identifies a handler routine }

{ called inmediately before the }
{ Apple Event Manager dispatches }
{ an Appl e event}

5-46 Summary of Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

keySel ect Proc = 'selh'; {sel ector used with }
{ AERenobveSpeci al Handl er to }
{ disable the OSL}

{keywords for use with AEManagerInfo; available only in version }
{ 1.0.1 and | ater versions of the Apple Event Manager}

keyAERecor der Count = 'recr'; {keyword for recording info}

keyAEVer si on = 'vers'; {keyword for version info}

{event cl ass}

kCor eEvent d ass = "aevt'; {event class for required Apple }
{ events}

{event I Ds for required Apple events}
kAEOpenAppl i cati on = 'oapp'; {event ID for Open }
{ Application event}

kAEQpenDocunent s = 'odoc'; {event I D for Open Docunents event}
kAEPr i nt Docunent s = ' pdoc'; {event ID for Print Documents }

{ event}
KAEQui t Appl i cation ='quit'; {event ID for Qit Application }

{ event}
k AEAnswer = "ansr'; {event ID for Apple event replies}
kKAEAppl i cati onDi ed = 'obit'; {event ID for Application Died }

{ event}

{constants for setting the sendMode paraneter of AESend}
kAENoRepl y $00000001; {client doesn't want reply}
kAEQueueRepl y $00000002; {client wants server to }
{ reply in event queue}
$00000003; {client wants a reply and }
{ will give up processor}
$00000010; {server application should }
{ not interact with user }
{ for this Apple event}
$00000020; {server may interact with }
{ user for this Apple event }
{ to supply information}

kAEWAI t Repl y

kAENever | nt er act

kAECanl nt er act

kAEAl waysl nt er act

{ no information is required}

Summary of Creating and Sending Apple Events

$00000030; {server nmay interact with user }
{ for this Apple event even if }

5-47

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

kKAECanSwi t chLayer $00000040; {server should cone directly }

{ to foreground when appropri ate}
$00000080; {don't reconnect if there }

{ is a PPC session closed error}
nRet ur nRecei pt; {client wants return }

{ receipt}
$00001000; {don't record this event}
$00002000; {don't excecute this event}

kAEDont Reconnect

kAEWANt Recei pt

kAEDont Record
kAEDont Execut e

{constants for setting the sendPriority paraneter of AESend}

kAENor mal Priority = $00000000; {put event at back of }
{ event queue}
KAEH ghPriority = nAttnhMsg; {put event at front of }

{ the event queue}

{event IDs for recording events; available only in version 1.01 and }
{ later versions of the Apple Event Manager}

kAESt ar t Recor di ng = 'reca'; {event ID for Start Recording }

{ event}
kAESt opRecor di ng = 'recc'; {event ID for Stop Recording }

{ event}
KAENot i fyStart Recording = 'recl'; {event I D for Recording On event}
kAENot i f ySt opRecording = 'recQ'; {event ID for Recording Of event}
kAENot i f yRecor di ng = 'recr'; {event ID for Receive Recordable }

{ Event event}

{constant for the returnlD paranmeter of AECreateAppl eEvent}
kAut oGenerateReturnlD = -1; {tells Apple Event Manager to }
{ generate a unique return |ID}

{constant for transaction |Ds}
kAnyTr ansacti onl D = 0; {the Apple event is not }
{ part of a transaction}

{constants for timeout durations}
kAEDef aul t Ti neout = -1; {use default tinmeout val ue}
kNoTi neQut = -2; {never tinme out}

{constants for the dispatcher parameter of AEResunmeTheCurrent Event}
kAENoDi spat ch = 0; {don't redispatch the Apple event}
kAEUseSt andar dDi spatch = -1; {redi spatch the Apple event }

{ by using its entry in the }

{ Apple event dispatch table}

5-48 Summary of Creating and Sending Apple Events

Data Types

CHAPTER 5

Creating and Sending Apple Events

TYPE

AEEvent Cl ass =
PACKED ARRAY[1..4] OF Char;

AEEvent |

D =

PACKED ARRAY[1..4] OF Char;

AEKeywor

d =

PACKED ARRAY[1..4] OF Char;

DescType = ResType
AEDesc =
RECORD
descri pt or Type: DescType;
dat aHandl e: Handl e;
END;
AEKeyDesc =
RECORD
descKey: AEKeywor d;
descCont ent : AEDesc;
END;
AEAddr essDesc = AEDesc;
AEDesclLi st = AEDesc;
AERecor d = AEDesclLi st;
Appl eEvent = AERecor d;
AESendMode = Longl nt;
AESendPriority = I nteger

Summary of Creating and Sending Apple Events

{event class for a high-level }
{ event}

{event ID for a high-level }
{ event}

{keyword for a descriptor }
{ record}

{descriptor type}
{descriptor record}

{type of data bei ng passed}

{handl e to data bei ng passed}

{keyword-specified }

{ descriptor record}
{ keywor d}
{descriptor record}

{address descriptor record}

{list of descriptor records}

{l'ist of keyword-specified }
{ descriptor records}

{list of attributes and }
{ paraneters necessary for }
{ an Apple event}

{flags that deternine how }
{ an Apple event is sent}

{send priority of an Apple }
{ event}

5-49

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

AElI nteract Al |l oned = (KAEI nteract WthSel f, KAElInteractWthLocal,
KAEI nteract Wt hAl I); {what processes may }
{ interact with the user}

AEEvent Sour ce = (KAEUnknownSource, kAEDi rectCall, kAESaneProcess,
kAELocal Process, kAERenot eProcess);
{the source of an Apple }
{ event}

(kAEDat aArray, kAEPackedArray, kAEHandl eArray,
kAEDescArray, kAEKeyDescArray);
{type of an Apple event array}

AEArrayType

AEAr r ayDat a
RECORD {data for an Apple event array}
CASE AEArrayType OF
kAEDat aArray:
(AEDat aArray: ARRAY[O0..0] OF Integer);
kAEPackedArr ay:
(AEPackedArray: Packed Array[0..0] OF Char);
kAEHand| eArr ay:
(AEHandl eArray: Array[0..0] OF Handl e);
KAEDescArray:
(AEDescArray: Array[O0..0] OF AEDesc);
kAEKeyDescArray:
(AEKeyDescArray: Array[0..0] OF AEKeyDesc);

END;

AEAr r ayDat aPoi nt er = "AEArrayDat a;

Event Handl er ProcPtr = ProcPtr; {pointer to an Apple event }
{ handl er}
I dl eProcPtr = ProcPtr; {pointer to an application's }
{ idle function}
EventFilterProcPtr = ProcPtr; {pointer to an application's }

{ filter function}

5-50 Summary of Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

Routines for Creating and Sending Apple Events

Creating Apple Events

FUNCTI ON AECr eat eAppl eEvent (theAEEvent C ass: AEEvent d ass;
t heAEEvent | D: AEEvent | D
target: AEAddressDesc; returnlD: |Integer;
transactionl D. Longlnt;
VAR result: AppleEvent): OSErr;

Creating and Duplicating Descriptor Records

FUNCTI ON AECr eat eDesc (typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size; VAR result: AEDesc): OSErr;

FUNCTI ON AEDupl i cat eDesc (theAEDesc: AEDesc; VAR result: AEDesc): OSErr

Creating Descriptor Lists and AE Records

FUNCTI ON AECr eat eLi st (factoringPtr: Ptr; factoredSize: Size;
i sRecord: Bool ean;
VAR resul tList: AEDesclList): OCSErr;

Adding Items to Descriptor Lists

FUNCTI ON AEPut Pt r (t heAEDescLi st: AEDesclList; index: Longlnt;
typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size): CSErr;

FUNCTI ON AEPut Desc (t heAEDescLi st: AEDesclList; index: Longlnt;
t heAEDesc: AEDesc): OSErr;
FUNCTI ON AEPut Ar r ay (t heAEDescLi st: AEDesclLi st;

arrayType: AEArrayType;

arrayPtr: AEArrayDat aPoi nter;

i tenifype: DescType; itenfize: Size;
i temCount: Longlint): OSErr;

Adding Data and Descriptor Records to AE Records

FUNCTI ON AEPut KeyPt r (t heAERecor d: AERecord;
t heAEKeywor d: AEKeywor d; typeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

FUNCTI ON AEPut KeyDesc (t heAERecor d: AERecord;
t heAEKeywor d: AEKeywor d;
t heAEDesc: AEDesc): OSErr;

Summary of Creating and Sending Apple Events

5-51

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

Adding Parameters and Attributes to Apple Events

FUNCTI ON AEPut Par anPt r (t heAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d; typeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

FUNCTI ON AEPut Par anDesc (t heAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
t heAEDesc: AEDesc): OSErr;

FUNCTI ON AEPut AttributePtr (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d; typeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

FUNCTI ON AEPut Attri but eDesc (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
t heAEDesc: AEDesc): OSErr;

Sending Apple Events

FUNCTI ON AESend (t heAppl eEvent : Appl eEvent;
VAR reply: Appl eEvent; sendMdde: AESendMode;
sendPriority: AESendPriority;
ti meQut | nTi cks: Longlnt;
id eProc: IdleProcPtr;
filterProc: EventFilterProcPtr): OSErr;

Application-Defined Routines

FUNCTI ON Myl dl eFuncti on (VAR event: Event Record;
VAR sl eepTi ne: Longl nt;
VAR nouseRgn: RgnHandl e): Bool ean;

FUNCTI ON MyRepl yFi | ter (VAR event: Event Record;
returnl D. Longlnt; transactionlD: Longlnt;
sender: AEAddressDesc): Bool ean;

C Summary
Constants
enum {
#def i ne gestal t Appl eEvent sAttr "evnt' /*selector for Apple events*/
gest al t Appl eEvent sPresent =0 /*if this bit is set, then */
/* Appl e Event Manager is */
}; /* avail abl e*/

5-52 Summary of Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

/*Appl e event descriptor types*/

enum {
t ypeBool ean = 'bool ', /*1-byte Bool ean val ue*/
t ypeChar = ' TEXT', /*unterm nated string*/
typeSM nt = 'shor"', /*16-bit integer*/
t ypel nt eger = 'long', [*32-bit integer*/
t ypeSMF oat = 'sing', /*SANE si ngl e*/
t ypeFl oat = ' doub', / *SANE doubl e*/
t ypeLongl nt eger = 'long", [*32-bit integer*/
t ypeShort | nt eger = 'shor', /*16-bit integer*/
t ypeLongFl oat = ' doub', / *SANE doubl e*/
t ypeShort Fl oat = 'sing', / *SANE si ngl e*/
t ypeExt ended = '"exte', / * SANE ext ended*/
t ypeConp = 'conp', / *SANE conp*/
t ypeMagni t ude = 'magn', /*unsi gned 32-bit integer*/
t ypeAELi st "list', /*list of descriptor records*/
t ypeAERecor d = 'reco', /*list of keyword-specified */
/* descriptor records*/
t ypeAppl eEvent = "aevt', /*Appl e event record*/
typeTrue "true', / *TRUE Bool ean val ue*/
typeFal se = 'fals'", / *FALSE Bool ean val ue*/
typeAlias ='alis'", /*alias record*/
t ypeEnuner at ed = " enum /*enuner at ed dat a*/
1
enum {
typeType = "type', /*four-character code for */
/* event class or event |D¢/
t ypeAppPar anet er s = 'appa', / *Process Manager |aunch */
/* parameters*/
typeProperty = 'prop', /*Appl e event property*/
t ypeFSS ='"fss ', /*file system specification*/
t ypeKeywor d = 'keyw , /*Appl e event keyword*/
typeSecti onH = 'sect"', /*handl e to a section record*/
typeW I dCard = PRERx /*mat ches any type*/
t ypeAppl Si ghat ure = 'sign', /*application signature*/
t ypeSessi onl D "ssid', /*session | D*/
typeTarget | D ='targ', /*target 1D record*/
t ypeProcessSeri al Nunber = 'psn ', /*process serial nunber*/
typeNul | ="'null’ /*NULL or nonexi stent data*/
1

Summary of Creating and Sending Apple Events 5-53

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

/*keywords for Apple event paraneters*/

enum {
keyDi r ect bj ect ='---- /*direct paraneter*/
keyEr r or Nunber ='errn', /*error nunber paraneter*/
keyErrorString ='errs', /*error string paraneter*/
keyProcessSeri al Nunber = 'psn ' /*process serial nunber parant/
1
/[*keywords for Apple event attributes*/
enum {
keyTransacti onl DAttr = 'tran', /*transaction | D*/
keyReturnl DAt tr ='rtid, /*return | D*/
keyEvent Cl assAttr = 'evcl', /*event cl ass*/
keyEvent | DAt tr = 'evid', /*event |D*/
keyAddr essAttr = "addr', /*address of target or */
/* client application*/
keyOpti onal Keywor dAttr = 'optk', /*list of optional paraneters */
/* for the Apple event*/
keyTi meout At tr ='tim', [*nunber of ticks the client */
[* will wait*/
keyl nteract Level Attr ='inte', /*settings to allow Apple */

/* Event Mgr to bring */
/* server to foreground*/
keyEvent SourceAttr = 'esrc', /*nature of source */
/* application*/
mss', /*first required paraneter */
/* remaining in an Apple */
/* event*/
keyOri gi nal AddressAttr "from /*address of original source; */
/* available only in version */
/* 1.01 and later versions of */
/* the Apple Event Manager*/

keyM ssedKeywor dAtt r

/ *keywords for special handl ers*/
enum {
keyPreDi spat ch

' phac' , /*identifies a handler */

/* routine that is called */

/* inmediately before the */

/* Appl e Event Manager */

/* di spatches an Apple event*/
"selh', /*sel ector used with */

/* AERenoveSpeci al Handl er to */

/* disable the OSL*/

keySel ect Proc

5-54 Summary of Creating and Sending Apple Events

enum {

s

enum {

CHAPTER 5

Creating and Sending Apple Events

/*keywords for use with AEManager|nfo, available only in version */
/* 1.0.1 and | ater versions of the Apple Event Manager*/

keyAERecor der Count = 'recr', /*keyword for recording info*/
keyAEVer si on = 'vers', /*keyword for version info*/
/*event class*/

kCor eEvent d ass = 'aevt' /*event class for required */

/* Apple events*/

/*event IDs for required Apple events*/

kAEQpenAppl i cati on = 'oapp', /*event ID for Qpen */
/* Application event*/
kAEOpenDocunent s = 'odoc', /*event ID for Open */

/* Docunments event*/

kAEPr i nt Docunent s = ' pdoc', /*event ID for Print */
/* Docunents event*/
kKAEQui t Appl i cation ='quit", /*event ID for Quit */
/* Application event*/
kAEAnswer = "ansr', /*event ID for Apple event */
/* replies*/
kAEAppl i cati onDi ed = 'obit’ /*event ID for Application */

/* Died event*/

/*constants for setting the sendvbde paraneter of AESend*/

kAENoRepl y = 0x00000001, /*client doesn't want reply*/
kAEQueueRepl y = 0x00000002, /*client wants server to */
/* reply in event queue*/
kAEWAI t Repl y = 0x00000003, /*client wants a reply and */
/* will give up processor*/
kAENever | nt er act = 0x00000010, [/*server application should */

/* not interact with user */

/[* for this Apple event*/
kAECanl nt er act = 0x00000020, /*server may interact with */

/* user for this Apple event */

/* to supply information*/
KAEAl waysl nt er act = 0x00000030, /*server may interact with */

/* user for this Apple event */

/* even if no information */

/* is required*/

Summary of Creating and Sending Apple Events 5-55

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

kKAECanSwi t chLayer 0x00000040, /*server should conme */
/* directly to foreground */
/* when appropriate*/

0x00000080, /*don't reconnect if there */
/* is a PPC session closed */
/* error*/

nRet urnRecei pt, /*client wants return */
/* receipt*/

0x00001000, /*don't record this event*/

0x00002000, /*don't excecute this event*/

kAEDont Reconnect

kAEVANt Recei pt

kAEDont Record
kAEDont Execut e

/*constants for setting the sendPriority paraneter of AESend*/

KAENor mal Priority = 0x00000000, [/*post nessage at end of */
/* event queue*/
kAEH ghPriority = nAttnhMsg [*post nmessage at front of */
/* event queue*/
b
/*event IDs for recording events; available only in version 1.01 and */
/* later versions of the Apple Event Manager*/
enum {
kAESt ar t Recor di ng = 'reca', /*event ID for Start */
/* Recording event*/
kAESt opRecor di ng = 'recc', /*event ID for Stop */
/* Recording event*/
kKAENot i fyStart Recording = 'recl', /*event ID for Recording On */
/* event*/
kAENot i f ySt opRecording = 'recO', /*event ID for Recording Of */
[* event*/
kAENot i f yRecor di ng = 'recr' /*event ID for Receive */
/* Recordabl e Event event*/
1
enum {
/*constant for the returnl D paraneter of AECreateAppl eEvent*/
kAut oGenerateReturnlD = -1, /*tells Apple Event Manager */

/* to generate a uni que */
/* return | D*/

/*constant for transaction |Ds*/

kAnyTr ansacti onl D = 0, /*the Apple event is not */
/* part of a transaction*/

/*constants for tineout durations*/

kAEDef aul t Ti neout = -1, /*use default tinmeout value*/
kNoTi meQut = -2, /[*never tinme out*/

5-56 Summary of Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

/*constants for the dispatcher

kAENoDi spat ch = 0,
kAEUseSt andar dDi spatch = -1
1
Data Types

par amet er of AEResuneTheCurrent Event */

/*don't redispatch the */
/* Apple event*/
/*redi spatch the Apple event */
/* by using its entry in the */
/* Appl e event dispatch table*/

t ypedef unsigned | ong AEEvent d ass;
t ypedef unsigned | ong AEEvent| D

t ypedef unsigned | ong AEKeywor d;

t ypedef ResType DescType

struct AEDesc {

DescType descri pt or Type
Handl e dat aHandl e;

b
typedef struct AEDesc AEDesc;

struct AEKeyDesc {

AEKeywor d descKey;
AEDesc descCont ent;
b
t ypedef struct AEKeyDesc AEKeyDesc;

t ypedef AEDesc AEAddressDesc;
t ypedef AEDesc AEDescli st;
t ypedef AEDescLi st AERecord,;

t ypedef AERecord Appl eEvent;

t ypedef | ong AESendMode;

/*event class for a */

/* high-level event*/

/*event ID for a high-level */
/* event*/

/*keyword for a descriptor */
/* record*/

/*descriptor type*/

/*descriptor record*/
/*type of data bei ng passed*/
/*handl e to data bei ng passed*/

/ *keywor d- speci fied */
/* descriptor record*/
[*keywor d*/

/*descriptor record*/

/*address descriptor record*/
/*list of descriptor records*/
/*list of keyword-specified */
/* descriptor records*/

/*list of attributes and */

/* parameters necessary for */
/* an Apple event*/

/*flags that determ ne how */
/* an Apple event is sent*/

Summary of Creating and Sending Apple Events 5-57

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

t ypedef short AESendPriority; /*send priority of an Apple */
/* event*/

enum { KAElnteract Wt hSel f, kAElInteractWthLocal,
KAEI nteract Wt hAl | }; / *what processes may */

t ypedef unsi gned char AEl nteractAl | owed; /* interact with the user*/

enum { kAEUnknownSource, kAEDi rectCall, kAESaneProcess, kAELocal Process,

kAERenot ePr ocess }; /*the source of an Apple */
t ypedef unsi gned char AEEvent Source; /* event*/
enum { kAEDat aArray, kAEPackedArray, kKAEHandl eArray,
kAEDescArray, kAEKeyDescArray }; /*type of an Apple event */
t ypedef unsigned char AEArrayType; /* array*/
uni on AEArrayData { /*data for an Apple event */
short KkAEDat aArray[1]; /* array*/

char kAEPackedArray[1];
Handl e kKAEHandl eArray[1];
AEDesc KAEDescArray[1];
AEKeyDesc kAEKeyDescArray[1];
1
t ypedef uni on AEArrayData AEArrayDat a;

t ypedef AEArrayData *AEArrayDat aPoi nter;

typedef ProcPtr Event Handl er ProcPtr; /*pointer to an Apple event */
/* handl er*/

typedef ProcPtr IdleProchktr; /*pointer to an application's */
/* idle function*/

typedef ProcPtr EventFilterProcPtr; /*pointer to an application's */

/* filter function*/

Routines for Creating and Sending Apple Events

Creating Apple Events

pascal OSErr AECreat eAppl eEvent
(AEEvent C ass t heAEEvent O ass,
AEEvent | D t heAEEvent | D,
const AEAddressDesc *target, short returnlD,
I ong transactionl D, Appl eEvent *result);

5-58 Summary of Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

Creating and Duplicating Descriptor Records

pascal OSErr AECreat eDesc (DescType typeCode, const void* dataPtr,
Si ze dat aSi ze, AEDesc *result);

pascal OSErr AEDupli cat eDesc
(const AEDesc *theAEDesc, AEDesc *result);

Creating Descriptor Lists and AE Records

pascal OSErr AECreateli st (const void* factoringPtr, Size factoredSize,
Bool ean i sRecord, AEDescList *resultlList);

Adding Items to Descriptor Lists

pascal OSErr AEPutPtr (const AEDescli st *theAEDescList, |ong index,
DescType typeCode, const void* dataPtr,
Si ze dat aSi ze) ;

pascal OSErr AEPut Desc (const AEDescli st *theAEDescList, |ong index,
const AEDesc *theAEDesc);
pascal OSErr AEPut Array (const AEDescLi st *theAEDesclLi st,

AEArrayType arrayType,

const AEArrayDat aPoi nter *arrayPtr,
DescType iteniType, Size itentize,

I ong itenCount);

Adding Data and Descriptor Records to AE Records

pascal OSErr AEPut KeyPtr (const AERecord *theAERecord,
AEKeywor d t heAEKeywor d, DescType typeCode,
const void* dataPtr, Size dataSize);

pascal OSErr AEPut KeyDesc (const AERecord *theAERecord,
AEKeywor d t heAEKeywor d,
const AEDesc *theAEDesc);

Adding Parameters and Attributes to Apple Events

pascal OSErr AEPut ParanPtr (const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d, DescType typeCode,
const void* dataPtr, Size dataSize);

pascal OSErr AEPut ParanmDesc (const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d,
const AEDesc *theAEDesc);

pascal OSErr AEPutAttributePtr
(const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d, DescType typeCode,
const void* dataPtr, Size dataSize);

Summary of Creating and Sending Apple Events 5-59

suang 9|ddy Buipuas pue Buneald -

CHAPTER 5

Creating and Sending Apple Events

pascal OSErr AEPut Attri buteDesc
(const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d,
const AEDesc *theAEDesc);

Sending Apple Events

pascal OSErr AESend (const Appl eEvent *theAppl eEvent,
Appl eEvent *reply, AESendMbde sendMode,
AESendPriority sendPriority,
long tineQutlnTicks, IdleProcPtr idleProc,
EventFilterProcPtr filterProc);

Application-Defined Routines

pascal Bool ean Myl dl eFunction
(const Event Record *event,
| ong *sl eepTi me, RgnHandl e *nouseRgn);

pascal Bool ean MyRepl yFilter
(const Event Record *event,
long returnl D, |ong transactionlD,
AEAddr essDesc sender);

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_Pack8

Selector Routine

$0405 AEDupl i cat eDesc
$0609 AEPut Desc

$0610 AEPut KeyDesc

$0610 AEPut Par anDesc
$0627 AEPut At t ri but eDesc
$0706 AECr eat elLi st

$0825 AECr eat eDesc

$0A08 AEPuUt Pt r

$0AO0F AEPut KeyPt r

5-60 Summary of Creating and Sending Apple Events

CHAPTER 5

Creating and Sending Apple Events

Selector Routine

$0AO0F AEPut Par anPt r
$0A16 AEPut At tri butePtr
$0BOD AEPuUt Ar r ay

$0B14 AECr eat eAppl eEvent
$0D17 AESend

Result Codes

noErr
parantrr

eLenErr

menful | Err

user Cancel edErr
pr ocNot Found

buf ferl sSnal |

noQut st andi ngHLE
connectionlnvalid
noUser | nt er acti onAl | owed

noPort Err
dest PortErr

sessCl osedErr

er r AECoer ci onFai |

er r AEDescNot Found

er r AECor r upt Dat a

err AEW ongDat aType

er r AENot AEDesc

err AEBadLi st1tem

er r AENewer Ver si on

er r AENot Appl eEvent

er r AEEvent Not Handl ed
er r AERepl yNot Val i d

er r AEUnknownSendMode
err AEWai t Cancel ed

er r AETi neout

err AENoUser | nteracti on
er r AENot ASpeci al Functi on
er r AEPar anM ssed

er r AEUnknownAddr essType

=50

92
-108
-128
-600

-607
-608
-609
-610

-903

-906

917

-1700

-1701
-1702
-1703
-1704
-1705
-1706
-1707
-1708
-1709
-1710
-1711
-1712
-1713
-1714
-1715

-1716

No error

Parameter error (for example, value of handler pointer
is NI L or odd)

Buffer too big to send

Not enough room in heap zone

User canceled an operation

No eligible process with specified process serial
number

Buffer is too small

No outstanding high-level event

Nonexistent signature or session ID

Background application sends event requiring
authentication

Client hasn’'t set' Sl ZE' resource to indicate
awareness of high-level events

Server hasn’t set' Sl ZE' resource to indicate
awareness of high-level events, or else is not present
The kAEDont Reconnect flag in the sendMbde
parameter was set, and the server quit and then
restarted

Data could not be coerced to the requested descriptor
type

Descriptor record was not found

Data in an Apple event could not be read

Wrong descriptor type

Not a valid descriptor record

Operation involving a list item failed

Need a newer version of the Apple Event Manager
Event is not an Apple event

Event wasn’t handled by an Apple event handler
AEReset Ti mer was passed an invalid reply
Invalid sending mode was passed

User canceled out of wait loop for reply or receipt
Apple event timed out

No user interaction allowed

The keyword is not valid for a special function
Handler cannot understand a parameter the client
considers required

Unknown Apple event address type

Summary of Creating and Sending Apple Events 5-61

suang 9|ddy Buipuas pue Buneald -

er r AEHandl er Not Found
err AERepl yNot Arri ved

err AEl | | egal | ndex
er r AEl npossi bl eRange

er r AEW ongNunber Ar gs
er r AEAccessor Not Found
er r AENoSuchLogi cal

er r AEBadTest Key

er r AENot AnQbj ect Spec

er r AENoSuchbj ect

er r AENegat i veCount

err AEEnpt yLi st Cont ai ner
er r AEUnknownObj ect Type

err AERecor di ngl sAl r eadyOn

-1717
-1718

-1719
-1720

-1721

-1723

-1725

-1726

-1727

-1728

-1729

-1730

-1731

-1732

No handler found for an Apple event or a coercion, or
no object callback function found

Reply has not yet arrived

Not a valid list index

The range is not valid because it is impossible for a
range to include the first and last objects that were
specified; an example is a range in which the offset of
the first object is greater than the offset of the last
object

The number of operands provided for the K AENot
logical operator is not 1

There is no object accessor function for the specified
object class and token descriptor type

The logical operator in a logical descriptor record is
not KAEAnd, KAECOr, or k AENot

The descriptor record in a test key is neither a
comparison descriptor record nor a logical descriptor
record

The obj Speci fi er parameter of AEResol ve is not
an object specifier record

A run-time resolution error, for example: object
specifier record asked for the third element, but there
are only two

Object-counting function returned negative value
The container for an Apple event object is specified by
an empty list

Descriptor type of token returned by AEResol ve is
not known to server application

Attempt to turn recording on when it is already on

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	Creating and Sending Apple Events
	Creating an Apple Event
	Adding Parameters to an Apple Event
	Specifying Optional Parameters for an Apple Event
	Specifying a Target Address
	Creating an Address Descriptor Record
	Addressing an Apple Event for Direct Dispatching

	Sending an Apple Event
	Dealing With Timeouts
	Writing an Idle Function
	Writing a Reply Filter Function

	Reference to Creating and Sending Apple Events
	Routines for Creating and Sending Apple Events
	Creating Apple Events
	Creating and Duplicating Descriptor Records
	Creating Descriptor Lists and AE Records
	Adding Items to Descriptor Lists
	Adding Data and Descriptor Records to AE Records
	Adding Parameters and Attributes to Apple Events
	Sending Apple Events

	Application-Defined Routines

	Summary of Creating and Sending Apple Events
	Pascal Summary
	Constants
	Data Types
	Routines for Creating and Sending Apple Events
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Routines for Creating and Sending Apple Events
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

