

C H A P T E R 7

7

Introduction to S
cripting

Introduction to Scripting 7

This chapter provides an overview of the tasks involved in making your application
scriptable and recordable. This chapter also introduces some of the ways your
application can use the Component Manager and scripting components to manipulate
and execute scripts. The three chapters that follow provide detailed information,
including sample code, about the topics introduced in this chapter.

The chapter “Introduction to Interapplication Communication” in this book describes
the Open Scripting Architecture (OSA) and its relationship to the Apple Event Manager
and other parts of the IAC architecture. If your application supports the appropriate
core and functional-area events defined in the Apple Event Registry: Standard Suites, you
can make it scriptable (that is, capable of responding to Apple events sent by scripting
components) by providing an Apple event terminology extension ('aete') resource.
This chapter describes some of the tasks involved in making your application scriptable
and introduces the 'aete' resource. The next chapter, “Apple Event Terminology
Resources,” describes in detail how to create an 'aete' resource.

This chapter also introduces Apple event recording and the use of the standard scripting
component routines to manipulate and execute scripts. The chapter “Recording Apple
Events” describes in detail how to make your application recordable, and the chapter
“Scripting Components” describes how to use the standard scripting component
routines.

To use this chapter or any of the chapters that follow, you should be familiar with the
chapters “Introduction to Apple Events” and “Responding to Apple Events” in this
book. If you plan to make your application recordable, you should also read the chapters
“Creating and Sending Apple Events” and “Resolving and Creating Object Specifier
Records.”

The AppleScript Software Developers’ Kit (available from APDA) provides development
tools, sample applications, and information about the AppleScript language that you will
find useful when you begin to apply the information in this chapter to your application.

If you are developing a scripting component, you should provide support for the
standard scripting component routines described in the chapter “Scripting
Components,” and you should read the instructions for creating components in the
chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox.

This chapter begins with an overview of scripts and scripting components. The rest of
the chapter describes how the OSA makes it possible to

■ make your application scriptable

■ make your application recordable

■ have your application manipulate and execute scripts
7-3

C H A P T E R 7

Introduction to Scripting

About Scripts and Scripting Components 7

A script is any collection of data that, when executed by the appropriate program, causes
a corresponding action or series of actions. The Open Scripting Architecture (OSA)
provides a standard mechanism that allows users to control multiple applications with
scripts written in a variety of scripting languages. Each scripting language has a
corresponding scripting component. Each scripting component supports the standard
scripting component routines described in the chapter “Scripting Components” in
this book.

When a scripting component executes a script, it performs the actions described in the
script, including sending Apple events to applications if necessary. Like other
components that use the Component Manager, scripting components can provide their
own routines in addition to the standard routines that must be supported by all
components of the same type.

Scripting components typically implement a text-based scripting language based on
Apple events. For example, the AppleScript component implements AppleScript, the
standard user scripting language defined by Apple Computer, Inc. This book uses
AppleScript examples to demonstrate how applications can interact with scripting
components.

Other scripting components may support the standard scripting component routines in
different ways. Scripting components need not implement a text-based scripting
language, or even one that is based on Apple events. For example, specialized scripting
components can play sounds, execute XCMDs, or perform almost any other action when
they execute scripts.

This chapter describes three ways that you can take advantage of the OSA:

■ You can make your application scriptable, or capable of responding to Apple events
sent to it by a scripting component. An application is scriptable if it
n Responds to the appropriate standard Apple events as described in the chapter

“Responding to Apple Events” in this book.
n Provides an Apple event terminology extension ('aete') resource describing the

Apple events that your application supports and the user terminology that
corresponds to those events. The 'aete' resource allows scripting components to
interpret scripts correctly and send the appropriate Apple events to your
application during script execution.
7-4 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

■ You can make your application recordable— that is, capable of sending Apple events
to itself to report user actions to the Apple Event Manager for recording purposes.
After a user has turned on recording for a particular scripting component, the
scripting component receives a copy of every subsequent Apple event that any
application on the local computer sends to itself. The scripting component records
such events in the form of a script.

■ You can have your application manipulate and execute scripts with the aid of a
scripting component. To do so, your application must
n Use the Component Manager to open a connection with the appropriate

component.
n Use the standard scripting component routines described in the chapter “Scripting

Components” to record, edit, compile, save, load, or execute scripts.

Users of scriptable applications can execute scripts to perform tasks that might otherwise
be difficult to accomplish, especially repetitive or conditional tasks that involve multiple
applications. For example, a user can execute an AppleScript script to locate database
records with specific characteristics, create a series of graphs based on those records,
import the graphs into a page-layout document, and send the document to a remote
computer on the network via electronic mail. When a user executes such a script, the
AppleScript component attempts to perform the actions the script describes, including
sending Apple events when necessary.

To respond appropriately to the Apple events sent to it by the AppleScript component,
the database application in this example must be able to locate records with specific
characteristics so that it can identify and return the requested data. These characteristics
are described by an object specifier record that is part of an Apple event supported by
the application. Also, the other applications involved must support Apple events that
manipulate the data in the ways described in the script. Each application in this example
must also provide an 'aete' resource describing the Apple events that the application
supports and the user terminology that corresponds to those events, so that the
AppleScript component can interpret the script correctly.

Even with little or no knowledge of a particular scripting language, users of applications
that are recordable as well as scriptable can record simple scripts. More knowledgeable
users may also wish to record their actions as scripts with recordable applications and
then edit or combine scripts as needed.

An application that uses scripting components to manipulate and execute scripts need
not be scriptable; however, if it is scriptable, it can execute scripts that control its own
behavior. In other words, it can perform tasks by means of scripts and allow users to
modify those scripts to suit their own needs.

The next three sections provide an overview of the way scripting components can
interact with applications.
About Scripts and Scripting Components 7-5

C H A P T E R 7

Introduction to Scripting

Script Editors and Script Files 7
A script editor is an application that allows users to record, edit, save, and execute
scripts. For example, the AppleScript component uses the services of the Script Editor
application.

Figure 7-1 shows an AppleScript script displayed in a Script Editor window. The Record,
Stop, and Run buttons control a script in much the same way that the equivalent buttons
on a cassette recorder control an audio tape. A script comment at the top of the window
describes what the script does. Users with some knowledge of a text-based scripting
language such as AppleScript can use Script Editor to modify recorded scripts or write
their own scripts.

Figure 7-1 A script window in the Script Editor application

Script Editor provides entry-level scripting capabilities, but it is not intended for
intensive script development. Users who wish to write complex scripts may replace
Script Editor with more sophisticated editors that provide specialized debugging and
development tools.

t e l l application "SurfWriter"
 copy table "Summary of Sales" of document "Sales Report" to Totals
end tell

t e l l application "SurfCharter"
 copy Totals to Chart 1 of document "Sales Chart"
end tell

Updates the document "Sales Chart" with the latest sales figures from
"Sales Report"
7-6 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

A script like the one in Figure 7-1 can be stored in a script file represented by an icon in
the Finder, or it can be stored within an application or one of its documents. Figure 7-2
shows the four icons representing the files in which Script Editor stores scripts.

Figure 7-2 Script file icons in the Finder and corresponding user actions

Script Editor and similar script-editing applications allow users to store scripts using
three file types:

■ A compiled script file has the file type 'osas' and contains the script data as a
resource of type 'scpt'. Before executing the script in a compiled script file, a user
must first open the script from the Finder or from an application such as Script Editor.
After opening a compiled script in an application that supports script editing, the user
can view the script, modify it if necessary, and execute it.

■ A script application has the file type 'APPL' and contains the script data as a
resource of type 'scpt'. Its kind is “application.” A script application takes one of
two forms, each with its own icon:
n A script application with the creator signature 'aplt'. A user double-clicks the

icon to trigger the script.
n A script application with the creator signature 'dplt'. A user can drag the icon for

another file or a folder over this script application’s icon to trigger a script that acts
on that object.

Compiled script file icon

Double-click to open the script in the

script-editing application that created it.

Script application icon

Double-click to initiate execution of

the script.

Script application icon

Drag the icon for any folder or file over

this icon to trigger its script.

Script text file icon

Double-click to open the script text

in the application that created it.
About Scripts and Scripting Components 7-7

C H A P T E R 7

Introduction to Scripting

By default, when a user triggers the script in either kind of script application, a splash
screen appears that allows the user either to quit or to run the script. Users can also
save a script application in a form that bypasses the splash screen, running the script
immediately after the user double-clicks its icon.

■ A script text file contains only a plain-text version of uncompiled scripting-language
statements. This format is useful primarily as a last resort for saving a script that can’t
be compiled because of syntax errors or other problems. It is also useful for
exchanging unstyled text with other text-based applications. A user must open a
script text file in a script editor and successfully compile it before it will execute.

Like sound resources, scripts can be stored within applications and documents as well as
in distinct files that can be manipulated from the Finder. Your application can use the
standard scripting component routines to manipulate and execute both its own
internally stored scripts and scripts stored as separate files whose icons appear in the
Finder. For more information about script storage formats, see “Saving Script Data” on
page 10-12.

The next two sections describe how scripting components interact with scriptable
applications and with applications that execute scripts.

Scripting Components and Scriptable Applications 7
Scripting components control the behavior of scriptable applications by means of Apple
events. For example, when the AppleScript component executes the AppleScript script
shown in Figure 7-1, it sends the Apple events shown in Figure 7-3 to trigger the actions
described by the script. The client application in this example would most commonly be
a script editor but could also be any other application that uses standard scripting
component routines to manipulate and execute scripts.
7-8 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

Figure 7-3 How the AppleScript component executes a script

Server

application

Apple event

Get Data

Table named

“Summary of Sales”

in the document named

“Sales Report”

SurfWriter
Apple event

Reply

Summary of Sales

300 788 500 825

Sales Report

This table

shows the

sales data:

300

500

788

825

Server

application

SurfCharter

Chart of

sales by

product area:

300

788

Sales Chart

500 825

Summary of

Sales

Apple event

Set Data

Chart 1 of document

"Sales Chart"

Summary of Sales

300 788 500 825

Client

application

tell application "SurfWriter"

 copy table "Summary of Sales" of document ¬

 "Sales Report" to Totals

end tell

tell application "SurfCharter"

 copy Totals to Chart 1 of document "Sales Chart"

end tell

AppleScript

component

Component Manager

Summary of

Sales

Script
About Scripts and Scripting Components 7-9

C H A P T E R 7

Introduction to Scripting

As described in the chapter “Introduction to Apple Events” in this book, a client
application is any application that uses Apple events to request a service or information.
A client application that executes a script does not send the corresponding Apple events
itself; instead, it uses scripting component routines to manipulate and execute the script.
The scripting component sends Apple events when necessary to trigger the actions
described in the script. Similarly, a scriptable application that responds to the Apple
events sent by a scripting component can be considered the server application for those
Apple events.

When a scripting component evaluates a script, it attempts to perform all the actions
described in the script, including sending Apple events when necessary. In the example
shown in Figure 7-3, the AppleScript component first performs the action described in
the first tell statement:

tell application "SurfWriter"

copy table "Summary of Sales" of document¬

"Sales Report" to Totals

end tell

To perform this action, the AppleScript component sends a Get Data event to the
SurfWriter application requesting the data from the specified table. The SurfWriter
application returns the data to the AppleScript component in a standard reply Apple
event, and the AppleScript component sets the value of the variable Totals to the data
returned by SurfWriter.

Then the AppleScript component performs the action described in the second tell
statement:

tell application "SurfCharter"

copy Totals to Chart 1 of document "Sales Chart"

end tell

In this case, the AppleScript component sends a Set Data event to the SurfCharter
application that sets the specified chart to the value of the variable Totals.

Both SurfWriter and SurfCharter are server applications for the Apple events sent by the
AppleScript component, because they are performing services in response to requests
made by the client application via the script.

To send the appropriate Apple events to a scriptable application while executing a script,
a scripting component must obtain information about the nature of that application’s
support for Apple events and the human-language terminology to associate with those
events. A scriptable application provides this information in the form of an Apple event
terminology extension ('aete') resource. A scripting component uses both the 'aete'
resource provided by a scriptable application and the Apple event user terminology
('aeut') resource provided by the scripting component itself to obtain the information
it needs to execute a script that controls that application.
7-10 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

See “Making Your Application Scriptable,” which begins on page 7-14, for an overview
of the tasks you should perform to make your application scriptable and a more detailed
description of the 'aete' and 'aeut' resources. See “Making Your Application
Recordable” on page 7-20 for an overview of the tasks you should perform if you want
your application to be recordable as well as scriptable.

Scripting Components and Applications That Execute Scripts 7
To store and execute scripts as a client application, your application must first establish a
connection with a scripting component registered with the Component Manager on the
same computer. Each scripting component can manipulate and execute scripts written in
the corresponding scripting language when your application calls the standard scripting
component routines.

Your application can use scripting component routines to

■ obtain a handle to a script in a form that can be saved, and load the script again when
necessary

■ allow users to modify scripts that have been previously saved

■ compile and execute scripts

■ redirect Apple events to script contexts

■ supply application-defined functions for use by scripting components

■ control the recording process directly, turning recording off and on and saving the
recorded script for use by your application

Your application can perform these tasks as a client application regardless of whether it
is scriptable or recordable. If your application is scriptable, however, it can execute
scripts that control its own behavior, thus acting as both the client application and the
server application for the corresponding Apple events. For example, your application
can allow users to associate a script with a custom menu command that performs a
series of routine actions on a selected object, sets preferences, or automates other actions
within your application.

You can also use scripting component routines to execute scripts that perform tasks for
your application with the aid of other applications. For example, a user of a
word-processing application might be able to attach a script to a specific word so that the
application executes the script whenever that word is double-clicked. Such a script could
trigger Apple events that cause other applications to look up and display related
information, run a QuickTime movie, perform a calculation, play a voice annotation, and
so on.

Your application can associate a script with either Apple event objects or
application-defined objects. Almost any user action can be used to trigger such a script:
choosing a menu command, clicking a button, tabbing from one table cell to another, and
so on. The script can be executed directly by the application when it detects a triggering
action; or, if the script is associated with an Apple event object in the form of a script
context, it can be executed automatically when a specified Apple event performs an
action on that object.
About Scripts and Scripting Components 7-11

C H A P T E R 7

Introduction to Scripting

The rest of this section describes one way that an application could execute such a script.
Suppose a forms application allows users to create custom forms that can include
scripts associated with specific fields on the form. These scripts are executed when the
user presses Enter or Tab in the appropriate field. For the purposes of this example, it
doesn’t matter whether a field with which a script is associated is an Apple event object
(which can be described in an object specifier record) or some other application-defined
object (which can’t be described in an object specifier record).

A company could use the forms application to create a custom order form for taking
telephone orders. If the customer has ordered from the company before, the user can
quickly retrieve the customer’s address from the company database by typing the
customer’s name in a field and pressing the Tab key. In response, the application
executes the script associated with the field. The script might look like this in
AppleScript:

set custName to field "Customer Name"

tell application SurfDB

copy the first record in the table MyAddresses ¬

whose cell "Customer Name" = custName to Address

end tell

set field "Street" to item 2 of Address

set field "City" to item 3 of Address

set field "Zip" to item 4 of Address

To execute such a script (or to manipulate it any other way, such as when the form is first
created), the forms application must previously have established a connection with the
appropriate scripting component—in this case, the AppleScript component. When the
user enters a customer name and presses Tab, the forms application calls scripting
component routines to execute the script. As shown in Figure 7-4, the AppleScript
component first sends the forms application a Get Data event that requests the contents
of the “Customer Name” field and sets the variable custName to that value. It then
sends SurfDB a Get Data event that requests the appropriate address information and
copies it to the variable Address. (The replies to the Get Data events are not shown in
Figure 7-4.) Finally, the AppleScript component sends the forms application a Set Data
event that copies the address information from the variable Address to the appropriate
fields.

The AppleScript component needs to maintain the binding of the variables custName
and Address throughout execution of the script. Scripting components bind variables
with the aid of a script context, which is a script that maintains context information for
the execution of other scripts. An application specifies a script context when it executes a
script. The forms application in Figure 7-4 provides a context for the scripting
component to use whenever it executes a script associated with a button.
7-12 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

Figure 7-4 How an application uses the AppleScript component to execute a script

Forms application

Get Data

event handler

AppleScript

component

Get Data

Apple event

Script context provided by application

Component Manager

Set Data

event handler

Get Data

Apple event

SurfDB

Get Data

event handler

Set Data

Apple events

set custName to field "Customer Name"

tell application SurfDB

	copy the first record in the table MyAddresses ¬

		whose cell "Customer Name" = custName to Address

end tell

set field "Street" to item 2 of Address

set field "City" to item 3 of Address

set field "Zip" to item 4 of Address

Script
About Scripts and Scripting Components 7-13

C H A P T E R 7

Introduction to Scripting
In the example shown in Figure 7-4, the application executes the script directly when the
cursor is in the appropriate field and the user presses Tab or Enter. Your application can
also associate such a script with an object in the form of a script context, so that the script
context is executed whenever a specified Apple event acts on the field. The section
“Using a Script Context to Handle an Apple Event,” which begins on page 7-25,
describes this approach in more detail.

See “Manipulating and Executing Scripts,” which begins on page 7-22, for an overview
of methods your application can use to save and load script data, compile source data,
and perform other useful tasks with scripting component routines. The chapter
“Scripting Components” in this book provides full implementation details, including
sample code and human interface guidelines for associating scripts with objects.

Making Your Application Scriptable 7

To make your application scriptable, you need to

■ define a hierarchy of Apple event objects within your application that you want client
applications to be able to identify—that is, which objects can be contained by other
Apple event objects in your application, which properties each kind of object can
have, and so on

■ write Apple event handlers, object accessor functions, and other routines required to
implement the Apple events and related object classes that you want to support

■ create an 'aete' resource

The chapters “Introduction to Apple Events,” “Responding to Apple Events,” and
“Resolving and Creating Object Specifier Records” in this book describe how to perform
the first two tasks. The extent to which scripts can control your application depends
mainly on the extent of your application’s support for Apple events. For example, if your
application does not provide the Apple event handlers and object accessor functions
required to locate and manipulate windows, users will not be able to use scripts to
control your application’s windows. Although you should use the definitions in the
Apple Event Registry: Standard Suites whenever possible, you have considerable freedom
to extend or limit your implementation of the standard Apple events according to the
needs of your application.

The OSA makes it possible to design new kinds of applications that always operate in
the background and can be controlled only by means of scripts. For example, it is
possible to design a simple telecommunications program that can log on to a network,
send and receive text files created by another application, and perform other basic
operations in response to scripts without providing any other form of user interface.
Such an application would not need to support Apple events that control window
movement, the File menu, or the Edit menu; instead, it would need to support only those
Apple events that execute its basic telecommunications operations.
7-14 Making Your Application Scriptable

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
At the other extreme, some applications allow users to arrange windows, palettes, and
dialog boxes on their screen in many different ways, or to customize menus or other
aspects of the presentation of information. If such an application can respond to scripts
that control windows, dialog boxes, specialized preferences, and other aspects of the
presentation of information, it can allow users who might not otherwise explore those
capabilities to take advantage of them. For example, a naive user could execute a script
that sets up a powerful word processor with the appropriate menus, window and palette
arrangement, and formatting templates for a particular task, such as producing a
company newsletter.

Scripting components use 'aeut' and 'aete' resources to associate Apple event codes
supported by your application with corresponding human-language terms used in
scripts that control your application. Each scripting component supplies an 'aeut'
resource, and each scriptable application provides an 'aete' resource. The next section
introduces the 'aeut' and 'aete' resources.

About Apple Event Terminology Resources 7
As explained in the chapter “Introduction to Apple Events” in this book, applications
can support different combinations of the standard suites of Apple events. Applications
can also extend the definitions of individual Apple events and object classes, or define
custom Apple events and object classes. Scripting components use the Apple event user
terminology resources, 'aeut' and 'aete', to associate the IDs, keywords, and other
codes used in Apple events with the corresponding human-language terms used in
scripts that control your application.

The Apple event user terminology ('aeut') resource contains terminology information
for all the standard suites of Apple events defined in the Apple Event Registry:
Standard Suites. The resource consists of a sequence of concatenated arrays that map
human-language names to each of the following:

■ the ID defined for each suite

■ the Apple events defined for each suite

■ the parameters defined for each Apple event

■ the Apple event object classes defined for each suite

■ the properties defined for each object class

■ the elements defined for each object class

■ the key forms defined for each element class

■ the comparison operators defined for each suite

■ the values for enumerators defined for each suite
Making Your Application Scriptable 7-15

C H A P T E R 7

Introduction to Scripting
Each scripting component provides its own 'aeut' resource. A scripting component
can also provide different versions of the 'aeut' resource; for example, the user
terminology provided by the 'aeut' resource for the AppleScript Japanese dialect
component is in Japanese. The IDs, keywords, and other codes listed in the 'aeut'
resource are based on the Apple Event Registry: Standard Suites and do not vary from one
version to another.

An 'aete' resource has the same format as the 'aeut' resource but serves a different
purpose. Each scriptable application must include its own 'aete' resource describing
which of the standard suites listed in the 'aeut' resource it supports and providing
other application-specific information. Since the human-language equivalents for the
standard suites are defined in the 'aeut' resource, applications that support standard
suites without any modifications do not have to define such equivalents; instead, they
can simply list, in the 'aete' resource, the suites they support. The scripting
component associates the standard suites listed in the 'aete' resource with the
corresponding Apple event descriptions in its 'aeut' resource.

Applications can also use the 'aete' resource to describe extensions to the standard
suites, such as additional parameters for standard Apple events, additional properties
and element classes for the standard Apple event object classes, and additional key
forms for each element class. Information about such extensions must be included in the
appropriate arrays of the 'aete' resource, along with the equivalent human-language
terms. Similarly, an application can use the 'aete' resource to describe the parts of each
standard suite it supports (if it doesn’t support the entire suite) and any custom Apple
events or Apple event object classes defined by the application.

The human language in which your Apple event extensions or custom Apple events are
displayed in scripts depends on the corresponding user terminology you specify in your
application’s 'aete' resource. Therefore, if your application implements such
extensions or custom Apple events, you must provide a separate version of this resource
for each localized version of your application.

Scripting components can use the information in the 'aete' and 'aeut' resources
in a variety of ways. The next section, “How AppleScript Uses Terminology
Information,” describes how the AppleScript component uses these resources when it
executes or records a script. The next chapter, “Apple Event Terminology Resources,”
describes how to create an 'aete' resource for your application.

If you want users to be able to control your application with scripts written in the
AppleScript scripting language, you also need to know how the AppleScript component
interprets AppleScript commands that trigger Apple events. In this way, you can make
sure you support Apple events and specify the user terminology for your 'aete'
resource in a way that translates easily into AppleScript statements. The section
“Defining Terminology for Use by the AppleScript Component,” which begins on
page 8-3, discusses these issues. If you implement Apple events so that they translate
into logical and useful AppleScript scripts, your implementation will probably work well
with other scripting components that resemble AppleScript.
7-16 Making Your Application Scriptable

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
How AppleScript Uses Terminology Information 7

The manner in which the AppleScript component uses the information in 'aete'
resources depends on specific characteristics of the AppleScript scripting language. An
AppleScript expression consists of an internal compiled form and corresponding
expressions in dialects, or versions of the AppleScript scripting language that resemble
different human languages. Users can select the dialect they want to use from within the
Script Editor application. If a script is displayed in a window and the user selects a
different dialect, the AppleScript component converts the script to the new dialect. Users
can install additional dialects as necessary.

This section describes how the AppleScript component uses the information in the
'aeut' and 'aete' resources, not how it obtains that information. For a description of
the methods available to scripting components for loading information from
terminology resources, see “Dynamic Loading of Terminology Information” on
page 7-20.

Figure 7-5 shows how the AppleScript component uses information from its 'aeut'
resource and an application’s 'aete' resource to execute a script that consists of
AppleScript statements displayed in a script editor window. When a user executes the
script from the script editor (for example, by pressing the Run button in the Script Editor
application), the AppleScript component first compiles the script into the equivalent
compiled expressions, using information from its 'aeut' resource and the application’s
'aete' resource to map application-specific terms in the script with the equivalent
Apple events and Apple event parameters. The AppleScript component then evaluates
each expression and performs actions or sends Apple events as appropriate.

For example, the AppleScript component evaluates the expression

2*3

as the value 6. The AppleScript component can then decompile and display this value in
the script editor window, assign it to a variable, or otherwise manipulate it according to
the rest of the script. However, to compile the statement

print Chart 1 of document "Sales Report"

the AppleScript component uses its 'aeut' resource and the SurfWriter application’s
'aete' resource to associate the terms used in the script with the Print Apple event, the
object class for charts, and the object class for documents, so that it can describe the
event accurately in the form of a compiled expression. When the AppleScript component
evaluates the compiled expression, it creates and sends a Print event whose direct
parameter is an object specifier record that the SurfWriter application can resolve as the
specified chart. The SurfWriter application then handles the Apple event by printing the
chart as requested.
Making Your Application Scriptable 7-17

C H A P T E R 7

Introduction to Scripting
Figure 7-5 Role of the 'aete' and 'aeut' resources when the AppleScript component
compiles and executes a script

Note that although Figure 7-5 shows only one Apple event generated as a result of
executing a script, the AppleScript component could also send a series of Apple events to
several different applications, depending on the content of the script.

A recordable application generally needs to be able to send itself a subset of the
Apple events that it can handle as a scriptable application. A recordable event is
any Apple event that any recordable application sends to itself while recording is turned
on for the local computer (with the exception of events that the application explicitly
identifies as not for recording purposes). After a user turns on recording from the
Script Editor application, the Apple Event Manager sends copies of all recordable events
to Script Editor. A scripting component previously selected by the user handles each
copied event for Script Editor by translating the event and recording the translation as
part of a Script Editor script. When a scripting component executes a recorded script, it
sends the corresponding Apple events to the applications in which they were recorded.

Every scripting component must be able to handle copies of recordable events sent to a
recording process (such as Script Editor) by recording them in an appropriate form.
For example, as shown in Figure 7-6, the AppleScript component records copies of
recordable events in the form of compiled expressions. The AppleScript component can
then use information from its 'aeut' resource and the application’s 'aete' resource to

SurfWriterAppleScript component

AppleScript

statements

displayed

by script editor

Compile

Execute

'aeut' resource

Apple event
Apple event

handler

'aete' resource

Apple event

codes for

human-language

terms

Compiled

expressions
7-18 Making Your Application Scriptable

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
translate the compiled expressions into the appropriate human-language terms and
display them as AppleScript statements in the script editor window. When the user
opens a recorded script in Script Editor and presses Run, the AppleScript component
recompiles the script if necessary and sends the Apple events described by the compiled
expressions to the SurfWriter application, just as in Figure 7-5.

Figure 7-6 Role of the 'aete' and 'aeut' resources when the AppleScript component
records and decompiles a script

If the user copies a chart from one document to another document and the SurfWriter
application performs this task by sending itself Apple events, the equivalent statements
in the recorded script might look something like this:

tell application "SurfWriter"

select Chart 1 of document "Sales Chart"

copy

select paragraph 3 of document "Monthly Report"

paste

end tell

SurfWriterAppleScript component

AppleScript

statements

displayed by

script editor

Decompile

Record

'aeut' resource

User action

Apple

event

Copy of

Apple event

User action

handler

'aete' resource

Apple event

handler

Human-language

terms for

Apple event

codes

Compiled

expressions
Making Your Application Scriptable 7-19

C H A P T E R 7

Introduction to Scripting
To display these statements in the script editor window, the AppleScript component first
translates the Set Data, Copy, and Paste Apple events sent by the recordable application
into compiled expressions. It then uses information from its 'aeut' resource and the
application’s 'aete' resource to decompile the compiled expressions and pass the
equivalent source data to the script editor for display to the user. After completing a
recording session, the user can edit and save the resulting script and execute it again at
any time.

As shown in Figure 7-5 and Figure 7-6, the AppleScript component uses information it
obtains from the 'aeut' and 'aete' resources when it is compiling and decompiling
scripts. Other scripting components might use the same information during execution or
recording, or in other ways that are specific to each component.

Dynamic Loading of Terminology Information 7

When a scripting component needs information about the user terminology defined
in your application’s 'aete' resource, it sends a Get AETE event to your application. If
your application does not handle the Get AETE event, the scripting component reads the
terminology information it needs directly from your application’s 'aete' resource.

Your application does not need to handle the Get AETE event unless it provides separate
'aete' resources for plug-in components. If your application does provide separate
plug-in components, the Get AETE event allows it to gather terminology information
from the 'aete' resources for the components that are currently running and add that
information to the reply event.

If your application handles the Get AETE event, you must also provide a scripting size
resource. A scripting size resource is a resource of type 'scsz' that provides
information about an application’s capabilities and preferences for use by scripting
components.

To take advantage of dynamic loading, your application must be running. Note that if
your application does not provide a handler for the Get AETE event, the scripting
component can obtain terminology information directly from your application’s 'aete'
resource even if your application is not running.

Making Your Application Recordable 7

If you decide to make your application scriptable, you can also make it recordable. A
recordable application is an application that uses Apple events to report user actions to
the Apple Event Manager for recording purposes. A recordable event is any Apple event
that a recordable application sends to itself while recording is turned on for the local
computer (with the exception of events sent with the kAEDontRecord flag set in the
sendMode parameter of AESend).
7-20 Making Your Application Recordable

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
When a user turns on recording by clicking the Record button in the Script Editor
application, the Apple Event Manager sends copies of all subsequent recordable events
to Script Editor. The AppleScript component handles each copied event for Script Editor
by translating it into compiled expressions and recording the compiled expressions as
part of a script. (Figure 7-6 on page 7-19 shows how the AppleScript component uses the
'aete' and 'aeut' resources when it records a script.) The user can view the
equivalent decompiled source data in Script Editor while the script is being recorded.
When a user executes a recorded script, the AppleScript component sends the
corresponding Apple events to the applications in which they were recorded.

Applications generally have two parts: the code that implements the application’s user
interface and the code that actually performs the work of the application when the user
manipulates the interface. One way to make your application recordable is to separate
these two parts of your application, using Apple events to connect user actions with the
work your application performs. This is called factoring your application. In a fully
factored application, almost all tasks are carried out in response to Apple events. The
application translates low-level events that result in significant actions into recordable
Apple events and then sends them to itself.

Factoring your application is the recommended method of making your application
recordable. However, it is also possible for your application to report user actions by
means of Apple events even though it actually performs those actions by some means
other than Apple events. You can indicate that you want the Apple Event Manager to
record events in this manner, without executing them, by adding the constant
kAEDontExecute to the sendMode parameter of AESend.

Before you decide how to map the user’s potential actions to recordable Apple events
supported by your application, you need to answer these questions:

■ What are the significant (that is, undoable) actions a user can perform with your
application that you want to record?

■ Which actions can you execute by means of Apple events, and which actions should
cause Apple events to be sent but not executed?

■ How do you want to record actions that can be described in a scripting language in
several different ways?

For example, if your application is a word processor, the user’s selection of a range of
text should probably not generate an Apple event, because users often select various
different pieces of text before deciding to do something to the selection. However, if a
user changes the font of a selection, a recordable word processor should generate a
corresponding Apple event so that the scripting component can record the change.

In general, a recordable application should generate Apple events for any user action
that the user could reverse by choosing Undo. A recordable application can usually
handle a greater variety of Apple events than it can record, because it must record the
same action the same way every time even though Apple events might be able to trigger
that action in several different ways.
Making Your Application Recordable 7-21

C H A P T E R 7

Introduction to Scripting
For more information about recordable applications, factoring, and the Apple Event
Manager’s recording mechanism, see the chapter “Recording Apple Events” in this
book. For a description of the role of the 'aete' and 'aeut' resources when the
AppleScript component records a script, see “How AppleScript Uses Terminology
Information,” which begins on page 7-17.

Manipulating and Executing Scripts 7

Your application can use scripting component routines to manipulate and execute scripts
written in any scripting language based on the OSA. This section describes how
scripting components use script data and summarizes some of the tasks your application
can perform by calling the standard scripting component routines.

Your application can manipulate and execute scripts regardless of whether it is scriptable
or recordable. However, if your application is scriptable, you can easily make it capable
of manipulating and executing scripts that control its own behavior. For example, the
forms application shown in Figure 7-4 on page 7-13 uses standard scripting component
routines to execute a script whenever the cursor is in the appropriate field and the user
presses Enter or Tab. Applications can also use scripting component routines to allow
users to edit, recompile, save, and load such scripts in order to adapt them to their own
purposes.

Before using any scripting component routines, your application must open a connection
with at least one scripting component. After opening a connection with a component,
your application receives a component instance that it can use as the first parameter for
any scripting component routine. You can use the Component Manager to establish a
connection with the generic scripting component or to establish an explicit connection
with any other scripting component. Your application can open connections with
different scripting components under different circumstances and, if necessary,
simultaneously.

To manipulate or execute scripts written in any scripting language based on the OSA,
your application can open a connection with the generic scripting component. The
generic scripting component in turn attempts to open connections dynamically with the
appropriate scripting component for a given script. If your application opens a
connection with the generic scripting component, it can load and execute scripts created
by any scripting component that is registered with the Component Manager on the
current computer. The generic scripting component also provides routines that allow
you to determine which scripting component created a particular script and to perform
other useful tasks when you are using multiple scripting components.

To manipulate and execute scripts written in a single scripting language only, your
application can open an explicit connection with the scripting component for that
language. In this case your application can load and execute only those scripts that were
created by that component; however, your application can also take advantage of
additional routines and other special capabilities provided by the component.
7-22 Manipulating and Executing Scripts

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
After your application has established a connection with the appropriate scripting
component for an existing script, it can use the standard scripting component routines to
execute scripts. A script that has not yet been compiled consists of source data, or
statements in a scripting language. Before executing source data, your application must
use scripting component routines to compile it so that the scripting component can keep
track of it in memory and execute it.

Scripting components can refer to at least three kinds of script data in memory:

■ A compiled script consists of compiled code that an application can decompile into
source data or execute using the standard scripting component routines.

■ A script value consists of an integer, a string, a Boolean value, constants, PICT data, or
any other fixed data returned or used by a scripting component in the course of
executing a script.

■ A script context maintains context information for the execution of other scripts. A
script context can also contain executable statements in a scripting language. Like a
compiled script, a script context can be decompiled as source data.
For example, a script context can contain user-defined handlers for specific Apple
events. In AppleScript, a script context that contains such handlers or other executable
statements is called a script object. Handlers in a script object resemble HyperTalk
message handlers. They consist of AppleScript statements and have no corresponding
entry in Apple event dispatch tables.

Scripting components keep track of script data in memory by means of script IDs of type
OSAID.

TYPE OSAID = LongInt;

A scripting component assigns a script ID to a compiled script or script context
whenever the component creates or loads the corresponding script data. The scripting
component routines that compile, load, and execute scripts all return script IDs, and you
must pass valid script IDs to many of the other routines that manipulate scripts.

Applications most commonly use scripting component routines to

■ compile source data and execute the resulting compiled script, so that a user can
create a new script and execute it immediately from within the application

■ get a handle to script data in a form that can be saved, and load and execute the script
data again when necessary

■ allow users to modify a script, then recompile and save the script

■ redirect Apple events to script contexts

The remainder of this section provides an overview of the scripting component routines
you can use to perform these tasks.

Your application can also use scripting component routines to

■ get information about scripts

■ get information about scripting components
Manipulating and Executing Scripts 7-23

C H A P T E R 7

Introduction to Scripting
■ coerce script values to descriptor records and vice versa

■ set a resume dispatch function and alternative send, create, and active functions for
use by a scripting component

■ control the recording process directly, turning recording off and on and saving the
recorded script for use by your application

The chapter “Scripting Components” in this book provides detailed information about
using all the standard scripting component routines as well as additional routines
provided by the AppleScript component and the generic scripting component.

Compiling, Saving, Modifying, and Executing Scripts 7
This section introduces some of the scripting component functions your application can
use to compile, save, modify, and execute scripts.

To create and execute a script using the Script Editor application, a user can type the
script, then press the Run button to execute it. Your application can provide similar
capabilities by using these functions to compile source data and execute the resulting
compiled script:

■ The OSACompile function takes a descriptor record with a handle to source data
(usually text) and a script ID. If you specify kOSANullScript instead of an existing
script ID, OSACompile returns a script ID for the new compiled script, which you can
then pass to the OSAExecute function.

■ The OSAExecute function takes a script ID for a compiled script and a script ID for a
script context, executes the script, and returns a script ID for the resulting script value.

The binding of any global variables in the compiled script is determined by the
script context whose script ID you pass to OSAExecute. If you pass kOSANullScript
instead of the script ID for a script context, the scripting component provides its own
default context. If you want to provide your own script context rather than using the
scripting component default context, you can use either OSACompile or
OSAMakeContext to create a script context, which you can load and store just like a
compiled script.

After creating a script and trying it out, a user may want to save it for future use. Your
application should normally save its scripts as script data rather than source data, so that
it can reload and execute the data without recompiling it. Before saving script data, you
must first call the OSAStore function to get a handle to the data in the form of a
descriptor record. You can then save the data to disk as a resource or write it to the data
fork of a document.

To allow a user to reload and execute a previously compiled and saved script, your
application can call these functions:

■ The OSALoad function takes a descriptor record that contains a handle to the saved
script data and returns a script ID for the compiled script.

■ The OSAExecute function takes a script ID for a compiled script and a script ID for a
script context, executes the script, and returns a script ID for the resulting script value.
7-24 Manipulating and Executing Scripts

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
In most cases you will want to allow users to modify saved scripts and save them again.
To allow a user to modify and save a compiled script, your application can call these
functions:

■ The OSAGetSource function takes a script ID and returns a descriptor record with a
handle to the equivalent source data.

■ The OSACompile function takes a descriptor record with a handle to source data and
a script ID, and returns the same script ID updated so that it refers to the modified
and recompiled script.

■ The OSAStore function takes a script ID and returns a copy of the corresponding
script data in the form of a storage descriptor record.

You can pass the script ID for the compiled script to be modified to the OSAGetSource
function, which returns a descriptor record with a handle to the equivalent source data.
Your application can then present the source data to the user for editing. When the user
has finished editing the source data, you can pass the modified source data and the
original script ID to the OSACompile function to update the script ID so that it refers to
the modified and recompiled script. Finally, to obtain a handle to the modified script
data so you can save it in a resource or write it to the data fork of a document, you can
pass the script ID for the modified compiled script to the OSAStore function.

If your application has no further use for a compiled script or a resulting script value
after successfully loading, saving, compiling, or executing a script, you can use the
OSADispose function to release the memory assigned to them. The OSADispose
function takes a script ID and releases the memory assigned to the corresponding script
data. A script ID is no longer valid after the memory associated with it has been released.
This means, for example, that a scripting component may assign a different script ID to
the same compiled script each time you load it, and that a scripting component may
reuse a script ID that is no longer associated with a specific script.

“Using Scripting Component Routines,” which begins on page 10-7, provides more
information about the standard scripting component routines described in this section.

Using a Script Context to Handle an Apple Event 7
One way to associate a script with an object is to associate a script context with a specific
Apple event object—that is, with any object in your application that can be identified by
an object specifier record. When an Apple event acts on an Apple event object with
which a script context is associated, your application attempts to use the script context to
handle the Apple event. This approach can be useful if you want to associate many
different scripts with many different kinds of objects.

Figure 7-7 illustrates one way that an application can use a script context to handle an
Apple event. This example shows how you can use a general Apple event handler to
provide initial processing for all Apple events received by your application. If an Apple
event acts on an object with which a script context is associated, the general handler
attempts to use the script context to handle the event.
Manipulating and Executing Scripts 7-25

C H A P T E R 7

Introduction to Scripting
The SurfWriter application in Figure 7-7 associates script contexts (called script objects in
AppleScript) with geometric shapes such as circles or squares. These script contexts can
contain one or more user-defined handlers for specific Apple events. For example, the
script context shown in Figure 7-7 is associated with a circle and contains this handler:

on move to {x, y}

continue move to {x, item 2 of position of this}

end move

This handler exists only as AppleScript statements in the script context and doesn’t have
an entry in SurfWriter’s Apple event dispatch table. SurfWriter does have its own
standard Apple event handlers installed in its Apple event dispatch table. When
SurfWriter receives a Move event that acts on the circle with which this script context is
associated, SurfWriter uses the handler in the script context to modify its own standard
handling of the event. The rest of this section describes how this works.

Figure 7-7 Using a handler in a script context to handle an Apple event

SurfWriter

Default Move

event handler

Apple event object

(a circle)

Script context attached to Apple event object
on move to {x, y}

 continue move to {x, item 2 of position of this}

end moveAppleScript

component

Move

Apple

event

Component Manager

Move

 Apple

event

Script

ID

Get the direct parameter for the event

If the direct parameter refers to an Apple event object with

a script context attached, get a script ID for the script context

MyGeneralAppleEventHandler

Pass the event and the script ID to OSADoEvent

Resume

dispatch function
7-26 Manipulating and Executing Scripts

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
The MyGeneralAppleEventHandler function in Figure 7-7 is installed in SurfWriter’s
special handler dispatch table. Thus, MyGeneralAppleEventHandler provides initial
processing for all Apple events received by SurfWriter. When it receives an Apple event,
MyGeneralAppleEventHandler checks whether a script context is associated with the
object on which the event acts. If so, MyGeneralAppleEventHandler passes the
event and a script ID for the script context to the OSADoEvent function. If not,
MyGeneralAppleEventHandler returns errAEEventNotHandled, which causes the
Apple Event Manager to look for the appropriate handler in SurfWriter’s Apple event
dispatch table.

The OSADoEvent function looks for a handler in the specified script context that can
handle the specified event. If the script context doesn’t include an appropriate handler,
OSADoEvent returns errAEEventNotHandled. If the script context includes an
appropriate handler (in this example, a handler that begins on move), OSADoEvent
attempts to use the handler to handle the event.

When it encounters the continue statement during execution of the on move handler
shown in Figure 7-7, the AppleScript component calls SurfWriter’s resume dispatch
function. A resume dispatch function takes an Apple event and invokes the
application’s default handler for that event directly, bypassing the application’s special
handler dispatch table and the MyGeneralAppleEventHandler handler (or its
equivalent). In this case, the AppleScript component uses SurfWriter’s default Move
handler to move the circle to a different location than the one specified in the original
Move event. The location specified by {x, item 2 of position of this} has the
same horizontal coordinate as the location specified by the original event, but specifies
the circle’s original vertical coordinate (item 2 of the circle’s original position), thus
constraining motion to a horizontal direction.

The AppleScript component calls the resume dispatch function as soon as it encounters a
continue statement during script execution. For example, if the handler in Figure 7-7
contained additional indented statements after the continue statement, the AppleScript
component would proceed with the execution of those statements after calling the
resume dispatch function successfully.

A script context can modify the event and use the default Apple event handler to execute
the modified event, as in this example; or it can override the default handler completely,
performing some completely different action; or it can perform some action and then
pass the original event to the application’s default handler to be handled in the usual
way. Script contexts associated with Apple event objects thus provide a way for users to
modify or override the way an application responds to a particular Apple event that
manipulates those objects.

A general Apple event handler can use the OSAExecuteEvent function instead of
OSADoEvent to execute a script context. The main difference between these functions is
is that OSAExecuteEvent returns the script ID for the resulting script value, whereas
OSADoEvent returns a reply event.
Manipulating and Executing Scripts 7-27

C H A P T E R 7

Introduction to Scripting
To create a script context, pass the source data for the scripting-language statements you
want the script context to contain to OSACompile with the modeFlags parameter set to
kOSACompileIntoContext. The resulting script context is identical to a script context
returned by the OSAMakeContext function, except that it contains compiled statements.

“Using a Script Context to Handle an Apple Event,” which begins on page 10-19,
describes this method of executing a script in more detail.
7-28 Manipulating and Executing Scripts

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	Introduction to Scripting
	About Scripts and Scripting Components
	Script Editors and Script Files
	Scripting Components and Scriptable Applications
	Scripting Components and Applications That Execute...

	Making Your Application Scriptable
	About Apple Event Terminology Resources
	How AppleScript Uses Terminology Information
	Dynamic Loading of Terminology Information

	Making Your Application Recordable
	Manipulating and Executing Scripts
	Compiling, Saving, Modifying, and Executing Script...
	Using a Script Context to Handle an Apple Event

	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

