CHAPTER 4

Responding to Apple Events

This chapter describes how your application can use the Apple Event Manager to
respond to Apple events. Your application must be able to respond to the four required
Apple events to take advantage of the launching and terminating mechanisms that are
part of System 7 and later versions of system software. If your application provides
publish and subscribe capabilities, it should also handle the events sent by the Edition
Manager. To be scriptable, or capable of responding to Apple events sent by scripting
components, your application should handle the appropriate core and functional-area
Apple events.

Before you read this chapter, you should be familiar with the chapters “Introduction to
Interapplication Communication” and “Introduction to Apple Events” in this book. You
should also have a copy of the Apple Event Registry: Standard Suites available for reference.

Although the Apple events used by the Edition Manager are discussed in this chapter,
you must refer to the chapter “Edition Manager” in this book for a full discussion of how
to implement the Edition Manager’s publish and subscribe features.

This chapter provides the basic information you need to make your application capable
of responding to Apple events. To respond to core and functional-area Apple events,
your application must also be able to resolve object specifier records. You should

read the chapter “Resolving and Creating Object Specifier Records” before you write
Apple event handlers for events that can contain object specifier records.

The section “Handling Apple Events,” which begins on page 4-4, describes how to
= accept and process Apple events

= install entries in the Apple event dispatch tables

» handle the required events

» handle events sent by the Edition Manager

= get data out of an Apple event

» write handlers that perform the action requested by an Apple event

= reply to an Apple event

= dispose of Apple event data structures

» write and install coercion handlers

The section “Interacting With the User,” which begins on page 4-45, describes

= how a server application can interact with the user when processing an Apple event
» how client applications set user interaction preferences

» how the client application’s preferences and the server application’s preferences affect
user interaction

4-3

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Handling Apple Events

You do not need to implement all Apple events at once. If you want to begin by
supporting only the required Apple events, you must

» setbits in the' SI ZE' resource to indicate that your application supports high-level
events

» include code to handle high-level events in your main event loop
» write routines that handle the required events

= install entries for the required Apple events in your application’s Apple event
dispatch table

The following sections explain how to perform these tasks: “Accepting an Apple Event,”
which begins on page 4-5, “Installing Entries in the Apple Event Dispatch Tables,” which
begins on page 4-7, and “Handling the Required Apple Events,” which begins on

page 4-11.

To respond to the Apple events sent by the Edition Manager in addition to the required
events, you must install entries for the Section Read, Section Write, Section Scroll, and
Create Publisher events in your application’s Apple event dispatch table and write the
corresponding handlers, as described in “Handling Apple Events Sent by the Edition
Manager” on page 4-20.

To respond to core and functional-area Apple events, you must install entries and write
handlers for those events. You must also make sure that your application can locate
Apple event objects with the aid of the Apple Event Manager routines described in the
chapter “Resolving and Creating Object Specifier Records.” These routines are currently
available as the Object Support Library (OSL), which you must link with your
application when you build it.

The Apple Event Manager (excluding the OSL) is available only in System 7

and later versions of system software. Use the Gest al t function with the

gest al t Appl eEvent sAt t r selector to determine whether the Apple Event
Manager is available. In the r esponse parameter, the bit defined by the constant
gest al t Appl eEvent sPresent is set if the Apple Event Manager is available.

CONST gestal t Appl eEvent sAttr = 'evnt'; {Gestalt selector}
gest al t Appl eEvent sPresent = O0; {if this bit is set, }
{ then the Apple Event }
{ Manager is avail abl e}

To find out which version of the Apple Event Manager is available, you can use the
AEManager | nf o function; for more information, see page 4-104.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Accepting an Apple Event

To accept or send Apple events (or any other high-level events), you must set the
appropriate flags in your application’s ' SI ZE' resource and include code to handle
high-level events in your application’s main event loop.

Two flags in the ' SI ZE' resource determine whether an application receives high-level
events:

= Thei sH ghLevel Event Awar e flag must be set for your application to receive any
high-level events.

= Thel ocal AndRenot eHLEvent s flag must be set for your application to receive
high-level events sent from another computer on the network.

Note that in order for your application to respond to Apple events sent from remote
computers, the user of your application must also allow network users to link to your
application. The user does this by selecting your application in the Finder, choosing
Sharing from the File menu, and clicking the Allow Remote Program Linking checkbox.
If the user has not yet started program linking, the Sharing command offers to display
the Sharing Setup control panel so that the user can start program linking. The user must
also authorize remote users for program linking by using the Users & Groups control
panel. Program linking and setting up authenticated sessions are described in the
chapter “Program-to-Program Communications Toolbox” in this book.

For a complete description of the ' SI ZE' resource, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Apple events (and other high-level events) are identified by a message class of
kHi ghLevel Event in the what field of the event record. You can test the what field of
the event record to determine whether the event is a high-level event.

Listing 4-1 is an example of a procedure called from an application’s main event loop to
handle events, including high-level events. The procedure determines the type of event
received and then calls another routine to take the appropriate action.

Listing 4-1 A DoEvent procedure

PROCCEDURE DoEvent (event: EventRecord);
BEG N
CASE event.what OF {determ ne the type of event}
nmous eDown:
DoMbuseDown (event);

{handl e other kinds of events}

{handl e hi gh-1evel events, including Apple events}
kH ghLevel Event: DoHi ghLevel Event (event);
END;
END;

Handling Apple Events 4-5

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Listing 4-2 is an example of a procedure that handles both Apple events and the
high-level event identified by the event class mySpeci al HLEvent O ass and the event
ID ny Speci al HLEvent | D. Note that, in most cases, you should use Apple events to
communicate with other applications.

Listing 4-2 A DoHi ghLevel Event procedure for handling Apple events and other high-level

1-6

events

PROCEDURE DoHi ghLevel Event (event: EventRecord);
VAR
myErr: OSErr;
BEG N
| F (event. message = Longl nt (nySpeci al HLEvent ass)) AND
(Longl nt (event.where) = Longl nt (mySpeci al HLEvent | D))
THEN
{it's a high-level event that doesn't use AEl MP}
nyErr : = Handl eMySpeci al HLEvent (event)
ELSE
{otherwi se, assune that the event is an Apple event}
nyErr : = AEProcessAppl eEvent (event);

{check and handl e error}
| F nyErr <> noErr THEN DoError (nyErr);
END;

If your application accepts high-level events that do not follow the Apple Event
Interprocess Messaging Protocol (AEIMP), you must dispatch these high-level events
before calling AEPr ocessAppl eEvent . To dispatch high-level events that do not follow
AEIMP, you should check the event class, the event ID, or both for each event to see
whether your application can handle the event.

After receiving a high-level event (and, if appropriate, checking whether it is a
high-level event other than an Apple event), your application typically calls the

AEPr ocessAppl eEvent function. The AEPr ocessAppl eEvent function determines
the type of Apple event received, gets the event buffer that contains the parameters and
attributes of the Apple event, and calls the corresponding Apple event handler in your
application.

You should provide an Apple event handler for each Apple event that your application
supports. This handler is responsible for performing the action requested by the
Apple event and if necessary can return data in the reply Apple event.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

If the client application requests a reply, the Apple Event Manager passes a default reply
Apple event to your handler. If the client application does not request a reply, the Apple
Event Manager passes a null descriptor record (a descriptor record of descriptor type
typeNul | and a data handle whose value is NI L) to your handler instead of a default
reply Apple event.

After your handler finishes processing the Apple event and adds any parameters to the
reply Apple event, it must return a result code to AEPr ocessAppl eEvent . If the
client application is waiting for a reply, the Apple Event Manager returns the reply
Apple event to the client.

Installing Entries in the Apple Event Dispatch Tables

When your application receives an Apple event, use the AEPr ocessAppl eEvent
function to retrieve the data buffer of the event and to route the Apple event to the
appropriate Apple event handler in your application. Your application supplies an
Apple event dispatch table to map the Apple events your application supports to
the Apple event handlers provided by your application.

To install entries in your application’s Apple event dispatch table, use the
AEl nst al | Event Handl er function. You usually install entries for all of the Apple
events that your application accepts into your application’s Apple event dispatch table.

To install an Apple event handler in your Apple event dispatch table, you must specify
= the event class of the Apple event

» the event ID of the Apple event

» the address of the Apple event handler for the Apple event

= areference constant

You provide this information to the AEIl nst al | Event Handl er function. In addition,
you indicate whether the entry should be added to your application’s Apple event
dispatch table or to the system Apple event dispatch table.

The system Apple event dispatch table is a table in the system heap that contains
system Apple event handlers—handlers that are available to all applications and
processes running on the same computer. The handlers in your application’s Apple
event dispatch table are available only to your application. If AEPr ocessAppl eEvent
cannot find a handler for the Apple event in your application’s Apple event

dispatch table, it looks in the system Apple event dispatch table for a handler (see
“How Apple Event Dispatching Works” on page 4-9 for details). If it doesn’t find a
handler for the event, it returns the er r AEEvent Not Handl ed result code.

If you add a handler to the system Apple event dispatch table, the handler should reside
in the system heap. If there was already an entry in the system Apple event dispatch
table for the same event class and event ID, it is replaced unless you chain it to your
system handler. See “Creating and Managing the Apple Event Dispatch Tables” on

page 4-61 for details.

Handling Apple Events 4-7

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Installing Entries for the Required Apple Events

Listing 4-3 illustrates how to add entries for the required Apple events to your
application’s Apple event dispatch table.

Listing 4-3 Adding entries for the required Apple events to an application’s Apple event

4-8

dispatch table

myErr := AEl nstal | Event Handl er (kCor eEvent Cl ass,
kAEOpenAppl i cati on,
@WHandl eQApp, 0, FALSE);
I F nyErr <> noErr THEN DoError (nyErr);
nyErr := AElInstal |l Event Handl er (kCor eEvent O ass,
kAEQpenDocunent s,
@& Handl eODoc, 0, FALSE);
| F nyErr <> noErr THEN DoError (nyErr);
nyErr := AEl nstal | Event Handl er (kCor eEvent d ass,
kAEPr i nt Docunent s,
@#Handl ePDoc, 0, FALSE);
| F nyErr <> noErr THEN DoError (nyErr);
myErr := AEl nstal |l Event Handl er (kCor eEvent Cl ass,
kKAEQui t Appl i cati on,
@W&Handl eQuit, 0, FALSE);
I F nyErr <> noErr THEN DoError (nyErr);

The code in Listing 4-3 creates entries for all four required Apple events in the Apple
event dispatch table. (For examples of handlers that correspond to these entries, see
“Handling the Required Apple Events,” which begins on page 4-11.) The first entry
creates an entry for the Open Application event. The entry indicates the event class and
event ID of the Open Application event, supplies the address of the handler for

that event, and specifies 0 as the reference constant.

The Apple Event Manager passes the reference constant to your handler each time your
handler is called. Your application can use this reference constant for any purpose. If
your application doesn’t use the reference constant, use 0 as the value.

The last parameter to the AEI nst al | Event Handl er function is a Boolean value that
determines whether the entry is added to the system Apple event dispatch table or to
your application’s Apple event dispatch table. To add the entry to your application’s
Apple event dispatch table, use FALSE as the value of this parameter. If you specify
TRUE, the entry is added to the system Apple event dispatch table. The code shown in
Listing 4-3 adds entries to the application’s Apple event dispatch table.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Installing Entries for Apple Events Sent by the Edition Manager

If your application supports the Edition Manager, you should also add entries to your
application’s Apple event dispatch table for the Apple events that your application
receives from the Edition Manager. Listing 4-4 shows how to add these entries.

Listing 4-4 Adding entries for Apple events sent by the Edition Manager to an application’s

Apple event dispatch table

nyErr := AElnstall Event Handl er (secti onEvent Msgd ass,
secti onReadMsgl D,
@wWHandl eSect i onReadEvent,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

nyErr := AEl nstal |l Event Handl er (secti onEvent Msgd ass,
secti onWiteMsgl D,
@WHandl eSecti onWiteEvent,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

nmyErr := AEl nstal |l Event Handl er (secti onEvent Msgd ass,
sectionScrol | Msgl D,
@#Handl eSecti onScrol | Event,
0, FALSE):

| F nyErr <> noErr THEN DoError (nyErr);

See “Handling Apple Events Sent by the Edition Manager” on page 4-20 for the
parameters associated with these events. See the chapter “Edition Manager” in this book
for information on how your application should respond to the Apple events sent by the
Edition Manager.

How Apple Event Dispatching Works

In addition to the Apple event handler dispatch tables, applications can add entries to a
special handler dispatch table in either the application heap or the system heap. These
dispatch tables are used for various specialized handlers; for more information, see
“Creating and Managing the Special Handler Dispatch Tables,” which begins on

page 4-99.

When an application calls AEPr ocessAppl eEvent, the function looks first in the
application’s special handler dispatch table for an entry that was installed with the
constant keyPr eDi spat ch. If the application’s special handler dispatch table does not
include such a handler or if the handler returns er r AEEvent Not Handl ed, the function
looks in the application’s Apple event dispatch table for an entry that matches the event
class and event ID of the specified Apple event.

Handling Apple Events 4-9

suang 9|ddy 01 Buipuodsay -

4-10

CHAPTER 4

Responding to Apple Events

If the application’s Apple event dispatch table does not include such a handler or if the
handler returns er r AEEvent Not Handl ed, the AEPr ocessAppl eEvent function looks
in the system special handler dispatch table for an entry that was installed with the
constant keyPr eDi spat ch. If the system special handler dispatch table does not
include such a handler or if the handler returns er r AEEvent Not Handl ed, the function
looks in the system Apple event dispatch table for an entry that matches the event class
and event ID of the specified Apple event.

If the system Apple event dispatch table does not include such a handler, the Apple
Event Manager returns the result code er r AEEvent Not Handl ed to the server
application and, if the client application is waiting for a reply, to the client application.

WARNING

Before an application calls a system Apple event handler, system
software has set up the A5 register for the calling application. For this
reason, if you provide a system Apple event handler, it should never use
AS5 global variables or anything that depends on a particular context;
otherwise, the application that calls the system handler may crash. a

For any entry in your Apple event dispatch table, you can specify a wildcard value

for the event class, event ID, or both. You specify a wildcard by supplying the

t ypeW | dCar d constant when installing an entry into the Apple event dispatch table.
A wildcard value matches all possible values. Wildcards make it possible to supply
one Apple event handler that dispatches several related Apple events.

For example, if you specify an entry with the t ypeW | dCar d event class and the
kAEOpenDocument s event ID, the Apple Event Manager dispatches Apple events of
any event class with an event ID of KAEQpenDocunent s to the handler for that entry.

If you specify an entry with the kCor eEvent Cl ass event class and the
t ypeW | dCar d event ID, the Apple Event Manager dispatches Apple events of
the kCor eEvent O ass event class with any event ID to the handler for that entry.

If you specify an entry with the t ypeW | dCar d event class and the t ypeW | dCar d
event ID, the Apple Event Manager dispatches all Apple events of any event class and
any event ID to the handler for that entry.

If an Apple event dispatch table contains one entry for an event class and a specific event
ID, and also contains another entry that is identical except that it specifies a wildcard
value for either the event class or the event ID, the Apple Event Manager dispatches the
more specific entry. For example, if an Apple event dispatch table includes one entry that
specifies the event class as KAECor eSui t e and the event ID as KAEDel et e, and
another entry that specifies the event class as KAECor eSui t e and the event ID as

t ypeW | dCar d, the Apple Event Manager will dispatch the Apple event handler
associated with the entry that specifies the event ID as KAEDel et e.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

IMPORTANT

If your application sends Apple events to itself using a

t ypeProcessSeri al Nunber address descriptor record with the

| owLongCf PSNfield set to kCur r ent Pr ocess, the Apple Event
Manager jumps directly to the appropriate Apple event handler without
going through the normal event-processing sequence. For this reason,
your application will not appear to run more slowly when it sends
Apple events to itself. For more information, see “Addressing an Apple
Event for Direct Dispatching” on page 5-13. a

Handling the Required Apple Events

This section describes the required Apple events—the Apple events your application
must support to be compatible with System 7 and later versions of system software—
and the descriptor types for all parameters of the required Apple events. It also describes
how to write the handlers for these events, and it provides sample code.

To support the required Apple events, you must set the necessary flags in the ' SI ZE'
resource of your application, install entries in your application’s Apple event dispatch
table, add code to the event loop of your application to recognize high-level events,
and call the AEPr ocessAppl eEvent function, as described in “Accepting an Apple
Event,” which begins on page 4-5, and “Installing Entries in the Apple Event Dispatch
Tables,” which begins on page 4-7. You must also write handlers for each Apple event;
this section describes how to write these handlers.

Required Apple Events

When a user opens or prints a file from the Finder, the Finder sets up the information
your application uses to determine which files to open or print. In System 7 and later
versions, if your application supports high-level events, the Finder communicates this
information to your application through the required Apple events.

The Finder sends these required Apple events to your application to request the
corresponding actions:

Apple event Requested action

Open Application Perform tasks your application normally performs when a user
opens your application without opening or printing any
documents

Open Documents Open the specified documents

Print Documents Print the specified documents

Quit Application Perform tasks—such as releasing memory, requesting the user to

save documents, and so on—associated with quitting before the
Finder terminates your application

Handling Apple Events 4-11

suang 9|ddy 01 Buipuodsay -

4-12

CHAPTER 4

Responding to Apple Events

In System 7 and later versions, the Finder uses these events as part of the mechanisms
for launching and terminating applications. When the Finder launches your application,
the application receives the Open Application, Open Documents, or Print Documents
event. When the Finder terminates your application, the application receives the

Quit Application event. This method of communicating Finder information to your
application replaces the mechanisms used in earlier versions of system software.

Applications that do not support high-level events can still use the Count AppFi | es,
Cet AppFi | es, and O r AppFi | es procedures (or the Get AppPar ms procedure) to get
the Finder information. See the chapter “Introduction to File Management” in

Inside Macintosh: Files for information on these routines. To make your application
compatible with System 7 and with earlier and later versions, you must support both the
old and new mechanisms.

Use the Gest al t function to determine whether the Apple Event Manager is present.
If itis and the i sHi ghLevel Event Awar e flag is set in your application’s * Sl ZE'
resource, your application receives the Finder information through the required
Apple events.

If your application accepts high-level events, it must be able to process the four required
Apple events. Your application receives the required Apple events from the Finder in
these situations:

» If your application is not open and the user opens your application from the Finder
without opening or printing any documents, the Finder launches your application
and sends it the Open Application event.

» If your application is not open and the user opens one of your application’s
documents from the Finder, the Finder launches your application and sends it the
Open Documents event.

» If your application is not open and the user prints one of your application’s
documents from the Finder, the Finder launches your application and sends it the
Print Documents event. Your application should print the selected documents and
remain open until it receives a Quit Application event from the Finder.

» If your application is open and the user opens or prints any of your application’s
documents from the Finder, the Finder sends your application the Open Documents
or Print Documents event.

» If your application is open and the user chooses Restart or Shut Down from the
Finder’s Special menu, the Finder sends your application the Quit Application event.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Upon receiving any of the required Apple events, your application should perform the
action requested by the event. Here is a summary of the contents of the required events

and the actions they request applications to perform:

Open Application—perform tasks associated with opening an application

Event class kCor eEvent C ass

Event ID kAEOpenAppl i cati on

Parameters None

Requested action Perform any tasks—such as opening an untitled document

window—that you would normally perform when a user opens

your application without opening or printing any documents.

Open Documents—open the specified documents

Event class kCor eEvent O ass
Event ID kAEQpenDocunent s
Required parameter
Keyword: keyDi rect Obj ect
Descriptor type: t ypeAELi st
Data: Alist of alias records for the documents to be opened
Requested action Open the documents specified in the keyDi r ect Obj ect
parameter.

Print Documents—print the specified documents

Event class kCor eEvent Cl ass
Event ID KAEPr i nt Docunent s
Required parameter
Keyword: keyDi r ect Obj ect
Descriptor type: t ypeAELi st
Data: A list of alias records for the documents to be printed
Requested action Print the documents specified in the keyDi r ect Cbj ect

parameter without opening windows for the documents.

Quit Application—perform tasks associated with quitting

Event class kCor eEvent C ass
Event ID KAEQui t Appl i cation
Parameters None

Handling Apple Events

4-13

suang 9|ddy 01 Buipuodsay -

4-14

CHAPTER 4

Responding to Apple Events

Quit Application—perform tasks associated with quitting (continued)

Requested action Perform any tasks that your application would
normally perform when the user chooses Quit. Such tasks
typically include asking the user whether to save documents
that have been changed. When appropriate, the Finder sends
this event to an application immediately after sending it a Print
Documents event (unless the application was already open) or
if the user chooses Restart or Shut Down from the Finder’s
Special menu.

Your application needs to recognize only two descriptor types to handle the required
Apple events: descriptor lists and alias records. The Open Documents event and Print
Documents event use descriptor lists to store a list of documents to open. Each document
is specified as an alias record in the descriptor list.

You can retrieve the data that specifies the document to open as an alias record, or you
can request that the Apple Event Manager coerce the alias record to a file system
specification (FSSpec) record. The file system specification record provides a standard
method of identifying files in System 7 and later versions. See Inside Macintosh: Files for a
complete description of how to specify files using file system specification records.

Handling the Open Application Event

When the user opens your application, the Finder uses the Process Manager to launch
your application. On startup, your application typically performs any needed
initialization, and then begins to process events. If your application supports high-level
events, and if the user opens your application without selecting any documents to open
or print, your application receives the Open Application event.

To handle the Open Application event, your application should do just what the user
expects it to do when it is opened. For example, your application might open a new
untitled window in response to an Open Application event.

Listing 4-5 shows a handler that processes the Open Application event. This handler first
calls an application-defined function called MyGot Requi r edPar ans, which checks
whether the Apple event contains any required parameters. If so, the handler returns an
error, because by definition, the Open Application event should not contain any required
parameters. Otherwise, the handler opens a new document window.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Listing 4-5 A handler for the Open Application event

FUNCTI ON MyHandl eOApp (t heAppl eEvent, reply: Appl eEvent;
handl er Ref con: Longlnt): OSErr;

VAR

myErr:. OSErr;
BEG N

nyErr : = MyGot Requi r edPar ans(t heAppl eEvent) ;

IF nyErr = noErr THEN

DoNew,

MyHandl eOQApp : = nyErr;

END;

For a description of the MyGot Requi r edPar ans function, see Listing 4-11 on page 4-35.
For information about the r epl y and handl er Ref con parameters for an Apple event
handler, see “Writing Apple Event Handlers” on page 4-33.

Handling the Open Documents Event

To handle the Open Documents event, your application should open the documents that
the Open Documents event specifies in its direct parameter. Your application extracts this
information and then opens the specified documents. Listing 4-6 shows a handler for the
Open Documents event.

Listing 4-6 A handler for the Open Documents event

FUNCTI ON MyHandl eODoc (t heAppl eEvent, reply: Appl eEvent;
handl er Ref con: Longlnt): OSErr;

VAR
my FSS: FSSpec;
doclLi st: AEDesclLi st;
nyErr, ignoreErr: OSErr;
i ndex, itenslnList: Longlnt;
actual Si ze: Si ze;
keywd: AEKeywor d;
ret ur nedType: DescType,;
BEG N

{get the direct parameter--a descriptor list--and put it }
{ into docList}
nyErr : = AEGet Par anDesc(t heAppl eEvent, keyDirect bject,

t ypeAELi st, doclList);

Handling Apple Events 4-15

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

IF nyErr = noErr THEN
BEG N
{check for missing required paraneters}
nyErr : = MyGot Requi r edPar ans(t heAppl eEvent) ;
IF nyErr = noErr THEN
BEG N
{count the nunmber of descriptor records in the list}
myErr := AECountltens (docList, itenslnList);
I F nyErr = noErr THEN
{now get each descriptor record fromthe list, }
{ coerce the returned data to an FSSpec record, and }
{ open the associated fil e}
FOR index := 1 TO itenslnList DO
BEG N
nyErr := AEGet Nt hPtr(docList, index, typeFSS,
keywd, returnedType, @rFSS,
Si zeof (nyFSS) , act ual Si ze) ;
I F nyErr = noErr THEN
BEG N
myErr = MyOpenFil e(@VFSS);
I F nyErr <> noErr THEN
; {handl e error from MyOpenFil e}
END
ELSE
; {handl e error from AEGet Nt hPt r}
END; {of For index Do}
END
ELSE
; {handl e error from MyGot Requi r edPar ans}
i gnoreErr : = AEDi sposeDesc(doclList);
END
ELSE
; {failed to get direct parameter, handle error}
MyHandl eODoc : = nyErr;
END;

The handler in Listing 4-6 first uses the AEGet Par anDesc function to get the direct
parameter (specified by the keyDi r ect Obj ect keyword) out of the Apple event.

The handler requests that AEGet Par anDesc return a descriptor list in the docLi st
variable. The handler then checks that it has retrieved all of the required parameters by
calling the My Got Requi r edPar anms function. (See Listing 4-11 on page 4-35 for a
description of this function.)

4-16 Handling Apple Events

CHAPTER 4

Responding to Apple Events

Once the handler has retrieved the descriptor list from the Apple event, it uses
AECount | t ens to count the number of descriptors in the list. Using the returned
number as an index, the handler can get the data of each descriptor record in the list.
This handler requests that the AEGet Nt hPt r function coerce the data in the descriptor
record to a file system specification record. The handler can then use the file system
specification record as a parameter to its own routine for opening files.

For more information on the AEGet Par anDesc function, see page 4-69. For more
information on the AEGet Nt hPt r and AECount | t ens functions, see “Getting Data Out
of a Descriptor List” on page 4-31.

After extracting the file system specification record that describes the document to open,
your application can use this record to open the file. For example, in Listing 4-6, the code
passes the file system specification record to its routine for opening files, the

MyOpenFi | e function.

The MyOpenFi | e function should be designed so that it can be called in response to
both the Open Documents event and to events generated by the user. For example,
when the user chooses Open from the File menu, the code that handles the mouse-down
event uses the St andar dGet Fi | e procedure to let the user choose a file; it then

calls MyOpenFi | e, passing the file system specification record returned by

St andar dCet Fi | e. By isolating code that performs a requested action from code that
interacts with the user, you can easily adapt your application to handle Apple events
that request the same action.

Note the use of the AEDi sposeDesc function to dispose of the descriptor list when your
handler no longer requires the data in it. Your handler should also return a result code.

Handling the Print Documents Event

To handle the Print Documents event, your application should extract information about
the documents to be printed from the direct parameter, then print the specified
documents.

If your application can interact with the user, it should open windows for the
documents, display a Print dialog box for the first document, and use the settings
entered by the user for the first document to print all the documents. If user interaction is
not allowed, your application may either return the error er r AENoUser | nt er acti on
or print the documents using default settings. See “Interacting With the User,” which
begins on page 4-45, for information about using the AEl nt er act W t hUser function to
interact with the user.

suang 9|ddy 01 Buipuodsay -

Note that your application can remain open after processing the Print Documents event;
when appropriate, the Finder sends your application a Quit Application event
immediately after sending it a Print Documents event.

The handler for the Print Documents event shown in Listing 4-7 is similar to the handler
for the Open Documents event, except that it prints the documents referred to in the
direct parameter.

Handling Apple Events 4-17

CHAPTER 4

Responding to Apple Events

Listing 4-7 A handler for the Print Documents event

4-18

FUNCTI ON MyHandl ePDoc (t heAppl eEvent, reply: Appl eEvent;
handl er Ref con: Longlnt): OSErr;

VAR
my FSS: FSSpec;
doclLi st : AEDesclLi st ;
nyErr, ignoreErr: OSErr;
i ndex, itemslnList: Longlnt;
act ual Si ze: Si ze;
keywd: AEKeywor d;
returnedType: DescType;
BEG N

{get the direct paraneter--a descriptor list--and put it }
{ into doclLi st}
nyErr : = AEGet Par anDesc(t heAppl eEvent, keyDirect Qbject,
t ypeAELi st, doclList);
IF nyErr = noErr THEN
BEG N
{check for m ssing required paraneters}
myErr : = MyGot Requi r edPar ans(t heAppl eEvent);
I F nyErr = noErr THEN
BEG N
{count the nunber of descriptor records in the list}
nyErr := AECountltens (docList, itenslnList);
IF nyErr = noErr THEN
{now get each descriptor record fromthe list, }
{ coerce the returned data to an FSSpec record, and }
{ print the associated file}
FOR index := 1 TO itenslnList DO
BEG N
nyErr := AEGet Nt hPtr(docLi st, index, typeFSS,
keywd, returnedType, @rFSS,
Si zeof (nyFSS), actual Si ze);
IF nyErr = noErr THEN
BEG N
nyErr := MyPrintFile(@yFSS);
IF nyErr <> noErr THEN
; {handl e error from MyQpenFil e}
END
ELSE
; {handl e error from AEGet Nt hPt r}
END; {of For index Do}
END

Handling Apple Events

CHAPTER 4

Responding to Apple Events

ELSE
; {handl e error from MyGot Requi r edPar ans}

i gnoreErr : = AEDi sposeDesc(doclList);
END
ELSE

; {failed to get direct paranmeter, handle error}
MyHandl ePDoc : = nyErr;

END;

Handling the Quit Application Event

To handle the Quit Application event, your application should take any actions that are
necessary before it is terminated (such as saving any open documents). Listing 4-8 shows
an example of a handler for the Quit Application event.

When appropriate, the Finder sends your application a Quit Application event
immediately after a Print Documents event. The Finder also sends your application a
Quit Application event if the user chooses Restart or Shut Down from the Finder’s
Special menu.

Listing 4-8 A handler for the Quit Application event

FUNCTI ON MyHandl eQuit (theAppl eEvent, reply: Appl eEvent;
handl er Ref con: Longlnt): OSErr;

VAR
myErr: OSErr;
user Cancel ed: Bool ean;
BEG N

{check for m ssing required paraneters}
myErr : = MyGot Requi r edPar ans(t heAppl eEvent);
I F nyErr = noErr THEN
BEG N
user Cancel ed : = MyPrepareToTerni nat e;
| F user Cancel ed THEN
MyHandl eQuit : = kUser Cancel ed
ELSE
MyHandl eQuit := noErr;
END
ELSE
MyHandl eQuit := myErr;
END;

Handling Apple Events 4-19

suang 9|ddy 01 Buipuodsay -

4-20

CHAPTER 4

Responding to Apple Events

The handler in Listing 4-8 calls another function supplied by the application,

the MyPr epar eToTer mi nat e function. This function saves the documents for any
open windows and returns a Boolean value that indicates whether the user canceled the
Quit operation. This is another example of isolating code for interacting with the user
from the code that performs the requested action. By structuring your application in this
way, you can use the same routine to respond to a user action (such as choosing the
Quit command from the File menu) or to the corresponding Apple event. (For a
description of the MyGot Requi r edPar anms function, see “Writing Apple Event
Handlers” on page 4-33.)

IMPORTANT

When your application is ready to quit, it should call the Exi t ToShel |
procedure from the main event loop, not from your handler for the Quit
Application event. Your application should quit only after the handler
returns NOEr r as its function result. a

Handling Apple Events Sent by the Edition Manager

If your application provides publish and subscribe capabilities, it should handle the
Apple events sent by the Edition Manager in addition to the required Apple events. Your
application should also handle the Create Publisher event, which is described in the
“Handling the Create Publisher Event” section on page 4-22.

The Edition Manager sends your application Apple events to communicate information
about the publishers and subscribers in your application’s documents. Specifically, the
Edition Manager uses Apple events to notify your application

» when the information in an edition is updated
» when your application needs to write the data from a publisher to an edition

» when your application should locate a particular publisher and scroll through the
document to that location

Handling Apple Events

CHAPTER 4

Responding to Apple Events

The Section Read, Section Write, and Section Scroll Events

The following descriptions identify the three Apple events sent by the Edition Manager—
Section Read, Section Write, and Section Scroll—and the actions they tell applications to
perform.

Section Read—read information into the specified section

Event class Secti onEvent MsgCl ass
Event ID Sect i onReadMsgl D
Required parameter
Keyword: keyDi r ect (bj ect
Descriptor type: typeSecti onH
Data: A handle to the section record of the subscriber whose edition
contains updated information
Requested action U&Ddate the subscriber with the new information from the
edition.

Section Write—write the specified section to an edition

Event class Secti onEvent MsgCl ass
Event ID SectionWitelMsgl D
Required parameter
Keyword: keyDi r ect Obj ect
Descriptor type: t ypeSecti onH
Data: A handle to the section record of the publisher
Requested action Write the publisher’s data to its edition.

Section Scroll—scroll through the document to the specified section

Event class Sect i onEvent MsgCl ass
Event ID SectionScrol | Msgl D
Required parameter
Keyword: keyDi r ect oj ect
Descriptor type: t ypeSecti onH
Data: A handle to the section record of the publisher to scroll to
Requested action Scroll through the document to the publisher identified by the

specified section record.

See the chapter “Edition Manager” in this book for details on how your application
should respond to these events.

Handling Apple Events 4-21

suang 9|ddy 01 Buipuodsay -

4-22

CHAPTER 4

Responding to Apple Events

Handling the Create Publisher Event

If your application supports publish and subscribe capabilities, it should also handle the
Create Publisher event.

Create Publisher—create a publisher

Event class KAEM scSt dSuite
Event ID KAECr eat ePubl i sher
Required parameter None

Optional parameter
Keyword: keyDi r ect Obj ect
Descriptor type: t ypeQbj ect Speci fi er

Data: An object specifier record that specifies the Apple event object
or objects to publish. If this parameter is omitted, publish the
current selection.

Optional parameter
Keyword: keyAEEdi ti onFi | eLoc
Descriptor type: typeAlias

Data: An alias record that contains the location of the edition
container to create. If this parameter is omitted, use the default
edition container.

Requested action Create a publisher for the specified data using the specified loca-
tion for the edition container. If the data isn’t specified, publish
the current selection. If the location of the edition isn’t specified,
use the default location.

When your application receives the Create Publisher event, it should create a

publisher and write the publisher’s data to an edition. The data of the publisher, and the
location and name of the edition, are defined by the Apple event. If the Create Publisher
event includes a keyDi r ect Cbj ect parameter, then your application should publish
the data contained in the parameter. If the keyDi r ect Cbj ect parameter is missing,
then your application should publish the current selection. If the document doesn’t have
a current selection, your handler for the event should return a nonzero result code.

If the Create Publisher event includes a key AEEdi t i onFi | eLoc parameter, your
application should use the location and name contained in the parameter as the default
location and name of the edition. If the key AEEdi t i onFi | eLoc parameter is missing,
your application should use the default location and name your application normally
uses to specify the edition container.

Listing 4-9 shows a handler for the Create Publisher event. This handler checks for the
keyDi r ect Obj ect parameter and the key AEEdi ti onFi | eLoc parameter. If either of
these is not specified, the handler uses default values. The handler uses the
application-defined function DoNewPubl i sher to create the publisher and its edition,
create a section record, and update other data structures associated with the document.
See the chapter “Edition Manager” in this book for an example of the DoNewPubl i sher
function.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Listing 4-9 A handler for the Create Publisher event

FUNCTI ON MyHandl eCr eat ePubl i sher Event (t heAppl eEvent,
reply: Appl eEvent;

handl er Ref con: Longl nt)

OSErr;

VAR

myErr: OSErr;

returnedType: DescType;

t hePubl i sher Dat aDesc: AEDesc;

act ual Si ze: Longl nt;

pronpt For Di al og: Bool ean;

t hi sDocunent : MyDocurment | nf oPt r;

previ ew, Handl e;

previ ewfor mat : For mat Type;

def aul t Locat i on: Edi ti onCont ai ner Spec;
BEG N

My Get Docunent Pt r (t hi sDocunent) ;
nyErr : = AEGet Par anDesc(t heAppl eEvent, keyDirect Qbject,
t ypeObj ect Speci fier,
t hePubl i sher Dat aDesc) ;
CASE nyErr OF
er r AEDescNot Found:
BEG N
{use the current selection as the publisher and set

up }

{ info for later when DoNewPublisher displays preview

previ ew : = MyGet Previ ewror Sel ecti on(t hi sDocunent) ;
previ ewFormat = ' TEXT';

END;

noErr:
{use the data in keyDirectObject paraneter as the }
{ publisher (which is returned in the }

{ thePublisherDat aDesc variable), and set up info for }

{ later when DoNewPubl i sher displays previ ew}

My Set | nf oFor Previ ew(t hePubl i sher Dat aDesc, thi sDocunent,

previ ew, previewrornat);

OTHERW SE
BEG N
MyHandl eCr eat ePubl i sher Event : = nyErr;
Exi t (MyHandl eCr eat ePubl i sher Event);
END;
END;

nyErr := AEDi sposeDesc(thePubli sher Dat aDesc);

Handling Apple Events

4-23

suang 9|ddy 01 Buipuodsay -

4-24

CHAPTER 4

Responding to Apple Events

nyErr : = AEGet ParanPtr (t heAppl eEvent, keyAEEditionFil elLoc,
typeFSS, returnedType,
@lef aul t Locati on. theFil e,
Si zeOr (FSSpec), actual Si ze);

CASE nyErr OF

er r AEDescNot Found:
{use the default |ocation as the edition container}
myErr := MyGet Def aul t Edi ti onSpec(thi sDocunent,
def aul t Locati on);

noErr:
BEG N {the keyAEEdi tionFil eLoc paraneter }
{ contains a default |ocation}
def aul t Locati on.thePart := kPartsNot Used;
defaul tLocation.theFileScript := snBystentcri pt;
END;
OTHERW SE
BEG N

MyHandl eCr eat ePubl i sher Event : = nyErr;
Exi t (MyHandl eCr eat ePubl i sher Event) ;
END;
END;
nyErr : = MyGot Requi r edPar ans(t heAppl eEvent) ;
IF nyErr <> noErr THEN

BEG N
MyHandl eCr eat ePubl i sher Event : = nyErr;
Exi t (MyHandl eCr eat ePubl i sher Event) ;
END;

nyErr : = AEl nteract Wt hUser (KAEDef aul t Ti meout, gMyNoti fyRecPtr,

@1 dl eFuncti on);
IF nyErr = noErr THEN pronpt ForDi al og : = TRUE
ELSE pronpt For Di al og : = FALSE;
myErr : = DoNewPubl i sher (thi sDocunent, pronptForDi al og,
previ ew, previewrormat,
def aul t Locati on);

{add keyErrorNunmber and keyErrorString paraneters if desired}

END;

Note that the MyHandl eCr eat ePubl i sher Event handler in Listing 4-9 uses the
AEl nt er act Wt hUser function to determine whether user interaction is allowed.
If so, the handler sets the pr onpt For Di al og variable to TRUE, indicating that the
DoNewPubl i sher function should display the publisher dialog box. If not,

Handling Apple Events

CHAPTER 4

Responding to Apple Events

the handler sets the pr onpt For Di al og variable to FALSE, and the DoNewPubl i sher
function does not prompt the user for the location or name of the edition. For more
information about AEI nt er act Wt hUser, see “Interacting With the User,” which
begins on page 4-45.

Getting Data Out of an Apple Event

The Apple Event Manager stores the parameters and attributes of an Apple event in a
format that is internal to the Apple Event Manager. You use Apple Event Manager
functions to retrieve the data from an Apple event and return it to your application in
a format your application can use.

Most of the functions that retrieve data from Apple event parameters and attributes are
available in two forms: one that returns the desired data in a specified buffer and one
that returns a descriptor record containing the same data. For example, the

AEGCet Par anPt r function uses a specified buffer to return the data contained in an
Apple event parameter, and the AEGet Par anDesc function returns the descriptor
record for a specified parameter.

You can also use Apple Event Manager functions to get data out of descriptor records,
descriptor lists, and AE records. You use similar functions to put data into descriptor
records, descriptor lists, and AE records.

When your handler receives an Apple event, you typically use the AEGet Par anPtr,
AEGet At tri but ePt r, AEGet Par anDesc, or AEGet At t ri but eDesc function to get
the data out of the Apple event.

Some Apple Event Manager functions let your application request that the data be
returned using any descriptor type, even if it is different from the original descriptor
type. If the original data is of a different descriptor type, the Apple Event Manager
attempts to coerce the data to the requested descriptor type.

For example, the AEGet Par anPt r function lets you specify the desired descriptor type
of the resulting data as follows:

VAR
t heAppl eEvent : Appl eEvent ;
ret ur nedType: DescType,;
mul t Resul t: Longl nt ;
actual Si ze: Si ze;
myErr: OSErr;

nyErr ;= AEGet ParanPtr (t heAppl eEvent, keyMiltResult,
typeLongl nt eger, returnedType,
@l t Result, SizeO (nmultResult),
act ual Si ze);

Handling Apple Events 4-25

suang 9|ddy 01 Buipuodsay -

4-26

CHAPTER 4

Responding to Apple Events

In this example, the desired type is specified in the third parameter by the

t ypeLongl nt eger descriptor type. This requests that the Apple Event Manager
coerce the data to a long integer if it is not already of this type. To prevent coercion and
ensure that the descriptor type of the result is of the same type as the original, specify

t ypeW | dCar d for the third parameter.

The Apple Event Manager returns, in the r et ur nedType parameter, the descriptor type
of the resulting data. This is useful information when you specify t ypeW | dCar d as the
desired descriptor type; you can determine the descriptor type of the resulting data by
examining this parameter.

The Apple Event Manager can coerce many different types of data. For example, the
Apple Event Manager can convert alias records to file system specification records,
integers to Boolean data types, and characters to numeric data types, in addition to other
data type conversions. For a complete list of the data types for which the Apple Event
Manager provides coercion handling, see Table 4-1 on page 4-43.

To perform data coercions that the Apple Event Manager doesn’t perform, you can
provide your own coercion handlers. See “Writing and Installing Coercion Handlers,”
which begins on page 4-41, for information on providing your own coercion handlers.

Apple event parameters are keyword-specified descriptor records. You can

use AEGet Par anDesc to get the descriptor record of a parameter, or you can use

AEGCet Par anPt r to get the data out of the descriptor record of a parameter. If an Apple
event parameter consists of an object specifier record, you can use AEResol ve and your
own object accessor functions to resolve the object specifier record—that is, to locate the
Apple event object it describes. For more information about AEResol ve and object
accessor functions, see “Writing Object Accessor Functions,” which begins on page 6-28.
Attributes are also keyword-specified descriptor records, and you can use similar
routines to get the descriptor record of an attribute or to get the data out of an attribute.

The following sections show how to use the AEGet Par anPt r, AEGet Attri butePtr,
AEGet Par anDesc, or AEGet At t ri but eDesc function to get the data out of an
Apple event.

Getting Data Out of an Apple Event Parameter

You can use the AEGet Par anPt r or AECet Par anDesc function to get the data out of
an Apple event parameter. Use the AEGet Par anPt r function (or the AEGet KeyPt r
function, which works the same way) to return the data contained in a parameter. Use
the AEGet Par anmDesc function when you need to get the descriptor record of a
parameter or to extract the descriptor list from a parameter.

For example, suppose you need to get the data out of a Section Read event. The Edition
Manager sends your application a Section Read event to tell your application to read
updated information from an edition into the specified subscriber. The direct parameter
of the Apple event contains a handle to the section record of the subscriber. You can use
the AEGet Par anPt r function to get the data out of the Apple event.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

You specify the Apple event that contains the desired parameter, the keyword of the
desired parameter, the descriptor type the function should use to return the data, a
buffer to store the data, and the size of this buffer as parameters to the AEGet Par anPt r
function. The AEGet Par anPt r function returns the descriptor type of the resulting data
and the actual size of the data, and it places the requested data in the specified buffer.

VAR
secti onH: Sect i onHandl e;
t heAppl eEvent : Appl eEvent ;
retur nedType: DescType;
act ual Si ze: Si ze;
nmyErr: OSErr;

nyErr : = AEGet ParanPtr (t heAppl eEvent, keyDirect Obj ect,
typeSecti onH, returnedType, @ectionH,
Si zeOF (sectionH), actual Size);

In this example, the keyDi r ect Cbj ect keyword specifies that the AEGet Par anPt r
function should extract information from the direct parameter; AEGet Par anPt r returns
the data in the buffer specified by the sect i onHvariable.

You can request that the Apple Event Manager return the data using the descriptor type
of the original data or you can request that the Apple Event Manager coerce the data into
a descriptor type that is different from the original. To prevent coercion, specify the
desired descriptor type ast ypeW | dCar d.

The t ypeSect i onHdescriptor type specifies that the returned data should be coerced to
a handle to a section record. You can use the information returned in the sect i onH
variable to identify the subscriber and read in the information from the edition.

In this example, the AEGet Par anPt r function returns, in the r et ur nedType variable,
the descriptor type of the resulting data. The descriptor type of the resulting data
matches the requested descriptor type unless the Apple Event Manager wasn’t able to
coerce the data to the specified descriptor type or you specified the desired descriptor
type ast ypeW | dCar d. If the coercion fails, the Apple Event Manager returns the

er r AECoer ci onFai | result code.

The AEGet Par anPt r function returns, in the act ual Si ze variable, the actual size of
the data (that is, the size of coerced data, if any coercion was performed). If the value
returned in this variable is greater than the amount your application allocated for the
buffer to hold the returned data, your application can increase the size of its buffer to this
amount, and get the data again. You can also choose to use the AEGet Par anDesc
function when your application doesn’t know the size of the data.

In general, use the AEGet Par anPt r function to extract data that is of fixed length or
known maximum length, and the AEGet Par anDesc function to extract data that is of
variable length. The AECGet Par anDesc function returns the descriptor record for an
Apple event parameter. This function is useful, for example, for extracting a descriptor
list from a parameter.

Handling Apple Events 4-27

suang 9|ddy 01 Buipuodsay -

4-28

CHAPTER 4

Responding to Apple Events

You specify, as parameters to AECet Par anDesc, the Apple event that contains the
desired parameter, the keyword of the desired parameter, the descriptor type the
function should use to return the descriptor record, and a buffer to store the returned
descriptor record. The AEGet Par anDesc function returns the descriptor record using
the specified descriptor type.

For example, the direct parameter of the Open Documents event contains a descriptor
list that specifies the documents to open. You can use the AEGet Par anDesc function to
get the descriptor list out of the direct parameter.

VAR
doclLi st : AEDesclLi st ;
t heAppl eEvent : Appl eEvent ;
nmyErr: CSErr;

nyErr : = AEGet Par anDesc(t heAppl eEvent, keyDirect bject,
t ypeAELi st, doclList);

In this example, the Apple event specified by the variable t heAppl eEvent

contains the desired parameter. The keyDi r ect Cbj ect keyword specifies that the
AECet Par anDesc function should get the descriptor record of the direct parameter.
The t ypeAELi st descriptor type specifies that the descriptor record should be returned
as a descriptor list. In this example, the AEGet Par anDesc function returns a descriptor
list in the docLi st variable.

The descriptor list contains a list of descriptor records. To get the descriptor records and
their data out of a descriptor list, use the AECount | t ens function to find the number of
descriptor records in the list and then make repetitive calls to the AEGet Nt hPt r
function to get the data out of each descriptor record. See “Getting Data Out of a
Descriptor List” on page 4-31 for more information.

Note that the AEGet Par anDesc function copies the descriptor record from the
parameter. When you're done with a descriptor record that you obtained from
AEGet Par anDesc, you must dispose of it by calling the AEDi sposeDesc function.

If an Apple event parameter consists of an object specifier record, you can use
AEResol ve to resolve the object specifier record (that is, locate the Apple event object it
describes), as explained in “Finding Apple Event Objects” on page 3-46.

Getting Data Out of an Attribute

You can use the AEGet At t ri but ePt r or AEGet At t ri but eDesc function to get the
data out of the attributes of an Apple event.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

You specify, as parameters to AECet At t ri but ePt r, the Apple event that contains the
desired attribute, the keyword of the desired attribute, the descriptor type the function
should use to return the data, a buffer to store the data, and the size of this buffer. The
AEGet At tri but ePt r function returns the descriptor type of the returned data and the
actual size of the data and places the requested data in the specified buffer.

For example, this code gets the data out of the keyEvent Sour ceAt t r attribute of an
Apple event.

VAR
t heAppl eEvent : Appl eEvent ;
returnedType: DescType;
sour cer AE: I nt eger;
actual Si ze: Si ze;
myErr: OSErr;

myErr := AEGet AttributePtr(theAppl eEvent, keyEvent SourceAttr,
typeShortl|nteger, returnedType,
@ourceOr AE, SizeO (sourceX AE),
actual Si ze) ;

The keyEvent Sour ceAt t r keyword specifies the attribute from which to get the data.
The t ypeShort | nt eger descriptor type specifies that the data should be returned as a
short integer; the r et ur nedType variable contains the actual descriptor type that is
returned. You also must specify a buffer to hold the returned data and specify the size of
this buffer. If the data is not already a short integer, the Apple Event Manager coerces it
as necessary before returning it. The AEGet At t ri but ePt r function returns, in the

act ual Si ze variable, the actual size of the returned data after coercion has taken place.
You can check this value to make sure you got all the data.

As with the AEGet Par anPt r function, you can request that AEGet At t ri but ePt r
return the data using the descriptor type of the original data, or you can request that the
Apple Event Manager coerce the data into a descriptor type that is different from the
original.

In this example, the AEGet At t ri but ePt r function returns the requested data as a
short integer in the sour ceOf AE variable, and you can get information about the source
of the Apple event by examining this value. You can test the returned value against the
values defined by the data type AEEvent Sour ce.

TYPE AEEvent Source = (kAEUnknownSource, KAED rectCall,
kAESaneProcess, kAELocal Process,
kAERenot ePr ocess) ;

Handling Apple Events 4-29

suang 9|ddy 01 Buipuodsay -

4-30

CHAPTER 4

Responding to Apple Events

The constants defined by the data type AEEvent Sour ce have the following meanings:

Constant Meaning

kAEUnknownSour ce Source of Apple event unknown

KAED r ect Cal | A direct call that bypassed the PPC Toolbox

kAESamePr ocess Target application is also the source application

kAELocal Process Source application is another process on the same computer as
the target application

kAERenot ePr ocess Source application is a process on a remote computer on the
network

The next example shows how to use the AEGet At t ri but ePt r function to get data out
of the keyM ssedKeywor dAt t r attribute. After your handler extracts all known
parameters from an Apple event, it should check whether the keyM ssedKeywor dAt t r
attribute exists. If it does, then your handler did not get all of the required parameters.

Note that if AEGet At t ri but ePt r returns the er r AEDescNot Found result code, then
the keyM ssedKeywor dAt t r attribute does not exist—that is, your application has
extracted all of the required parameters. If AEGet At t ri but ePt r returns noErr, then
the keyM ssedKeywor dAt t r attribute does exist—that is, your handler did not get all
of the required parameters.

nyErr = AEGet AttributePtr(theAppl eEvent, keyM ssedKeywordAttr,
typeW !l dCard, returnedType, N L, O,
act ual Si ze);

The data in the keyM ssedKeywor dAt t r attribute contains the keyword of the

first required parameter, if any, that your handler didn’t retrieve. If you want this data
returned, specify a buffer to hold it and specify the buffer size. Otherwise, as in this
example, specify NI L as the buffer and 0 as the size of the buffer.

This example shows how to use the AEGet At t ri but ePt r function to get the address of
the sender of an Apple event from the keyAddr essAt t r attribute of the Apple event:

VAR
t heAppl eEvent: Appl eEvent;
returnedType: DescType;
addr essOF AE: Tar get | D;
actual Si ze: Si ze;
myErr: CSErr;

myErr = AEGet AttributePtr(theAppl eEvent, keyAddressAttr,
typeTarget| D, returnedType,
@ddressO AE, SizeO (addressOf AE),
actual Si ze) ;

Handling Apple Events

CHAPTER 4

Responding to Apple Events

The keyAddr essAt t r keyword specifies the attribute to get the data from. The

t ypeTar get | Ddescriptor type specifies that the data should be returned as a target ID
record; the r et ur nedType variable contains the actual descriptor type that is returned.
You can examine the address returned in the addr essCOf AE variable to determine the
sender of the Apple event.

The target ID record returned in the addr essOf AE variable contains the sender’s port
name, port location, and session reference number. To get the process serial number for a
process on the local machine, pass the port name returned in the target ID record to the
Get ProcessSeri al Nunber Fr onPor t Nanme function. You can then pass the process
serial number to the Get Pr ocessl| nf or mat i on function to find the creator signature
for a given process. (For more information about these functions, see the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials.)

For more information about target addresses, see “Specifying a Target Address” on
page 5-10.

Getting Data Out of a Descriptor List

You can use the AECount | t ens function to count the number of items in a descriptor
list, and you can use AEGet Nt hDesc or AEGet Nt hPt r to get a descriptor record or its
data out of a descriptor list.

The Open Documents event contains a direct parameter that specifies the list of
documents to open. The list of documents is contained in a descriptor list. After
extracting the descriptor list from the parameter, you can determine the number of items
in the list and then extract each descriptor record from the descriptor list. See Figure 3-9
on page 3-19 for a depiction of the Open Documents event.

For example, when your handler receives an Open Documents event, you can use the
AEGet Par anDesc function to return the direct parameter as a descriptor list. You can
then use AECount | t ens to return the number of descriptor records in the list.

VAR
t heAppl eEvent : Appl eEvent ;
doclLi st: AEDesclLi st ;
i tenslnLi st: Longl nt;
myErr: OSErr;
nyErr : = AEGet Par anDesc(t heAppl eEvent, keyDirect Qbject,
t ypeAELi st, doclList);
nyErr := AECountltens(docList, itenslnList);

The AECet Par anDesc function returns, in the docLi st variable, a copy of the
descriptor list from the direct parameter of the Open Documents event. You specify this
list to the AECount | t emrs function.

Handling Apple Events 4-31

suang 9|ddy 01 Buipuodsay -

4-32

CHAPTER 4

Responding to Apple Events

You specify the descriptor list whose items you want to count in the first parameter to
AECount | t ems. The Apple Event Manager returns, in the second parameter, the
number of items in the list. When extracting the descriptor records from a list, you often
use the number of items as a loop index. Here’s an example:

FOR index := 1 TO itenslnList DO
BEG N
{for each descriptor record in the list, get its data}
END;

The format of the descriptor records in a descriptor list is private to the Apple Event
Manager. You must use the AEGet Nt hPt r or AEGet Nt hDesc function to extract
descriptor records from a descriptor list.

You specify the descriptor list that contains the desired descriptor records and an index
as parameters to the AEGet Nt hPt r function. The index represents a specific descriptor
record in the descriptor list. The AEGet Nt hPt r function returns the data for the
descriptor record represented by the specified index.

You also specify the descriptor type the function should use to return the data, a buffer
to store the data, and the size of this buffer. If the specified descriptor record exists, the
AEGet Nt hPt r function returns the keyword of the parameter, the descriptor type of the
returned data, and the actual size of the data, and it places the requested data in the
specified buffer.

Here’s an example that uses the AEGet Nt hPt r function to extract an item from the
descriptor list in the direct parameter of the Open Documents event:

nmyErr = AEGet Nt hPtr(doclLi st, index, typeFSS, keywd,
returnedType, @wFSS, Sizeof (nyFSS),
act ual Si ze);

The docLi st variable specifies the descriptor list from the direct parameter of the
Open Documents event. The i ndex variable specifies the index of the descriptor record
to extract. You can use the t ypeFSS descriptor type, as in this example, to specify that
the data be returned as a file system specification record. The Apple Event Manager
automatically coerces the original data type of the descriptor record from an alias
record to a file system specification record. The AEGet Nt hPt r function returns the
keyword of the parameter and the descriptor type of the resulting data in the keywd
and r et ur nedType variables, respectively.

You also specify a buffer to hold the desired data and the size (in bytes) of the buffer. In
this example, the my FSS variable specifies the buffer. The function returns the actual size
of the data in the act ual Si ze variable. If this size is larger than the size of the buffer
you provided, you know that you didn’t get all of the data for the descriptor record.

Listing 4-10 shows a more complete example of extracting the items from a descriptor
list in the Open Documents event.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Listing 4-10 Extracting items from a descriptor list

VAR
i ndex: Longl nt ;
i tenmslnLi st: Longl nt;
doclLi st : AEDesclLi st ;
keywd: AEKeywor d;
ret ur nedType: DescType,;
my FSS: FSSpec;
act ual Si ze: Si ze;
myErr: OSErr;

FOR index := 1 TO itenslnList DO
BEG N
myErr := AEGet Nt hPtr (docLi st, index, typeFSS, keywd,
returnedType, @vFSS, Sizeof (nyFSS),
act ual Si ze);
I F nyErr <> noErr THEN DoError (nyErr);
nyErr := MyOpenFil e(@wFSS) ;
| F nyErr <> noErr THEN DoError (nyErr);
END;
nyErr := AED sposeDesc(doclList);

Writing Apple Event Handlers

For each Apple event your application supports, you must provide a function called

an Apple event handler. The AEPr ocessAppl eEvent function calls one of your Apple
event handlers when it processes an Apple event. Your Apple event handlers should
perform any action requested by the Apple event, add parameters to the reply Apple
event if appropriate, and return a result code.

The Apple Event Manager uses dispatch tables to route Apple events to the appropriate
Apple event handler. You must supply an Apple event handler for each entry in your
application’s Apple event dispatch table. Each handler must be a function that uses

this syntax:

FUNCTI ON MyEvent Handl er (t heAppl eEvent: Appl eEvent;
reply: Appl eEvent;
handl er Ref con: Longlnt): OSErr;

The parameter t heAppl eEvent is the Apple event to handle. Your handler uses Apple
Event Manager functions to extract any parameters and attributes from the Apple event
and then performs the necessary processing. If any of the parameters include object
specifier records, your handler should call AEResol ve to resolve them—that is, to locate
the Apple event objects they describe. For more information, see the chapter “Resolving
and Creating Object Specifier Records” in this book.

Handling Apple Events 4-33

suang 9|ddy 01 Buipuodsay -

4-34

CHAPTER 4

Responding to Apple Events

The r epl y parameter is the default reply provided by the Apple Event Manager.
(“Replying to an Apple Event,” which begins on page 4-36, describes how to add
parameters to the default reply.) The handl er Ref con parameter is the reference
constant stored in the Apple event dispatch table entry for the Apple event. Your handler
can check the reference constant, if necessary, for information about the Apple event.

You can use the reference constant for anything you wish. For example, if you want to
use the same handler for several Apple events, you can install entries for each event in
your application’s Apple event dispatch table that specify the same handler but different
reference constants. Your handler can then use the reference constant to distinguish the
different Apple events it handles.

To provide an Apple event handler in C, be sure to include the Pascal declaration before
the handler declaration. This is the syntax for an Apple event handler in C:

pascal OSErr MyEvent Handl er (const Appl eEvent *theAppl eEvent,
const Appl eEvent *reply,
| ong handl er Ref con);

After extracting all known parameters from the Apple event, every handler should
determine whether the Apple event contains any further required parameters. Your
handler can determine whether it retrieved all the required parameters by checking
whether the keyM ssedKeywor dAt t r attribute exists. If the attribute exists, then your
handler has not retrieved all the required parameters and should immediately return an
error. If the attribute does not exist, then the Apple event does not contain any more
required parameters, although it may contain additional optional parameters.

The Apple Event Manager determines which parameters are optional according to the
keywords listed in the keyOpt i onal Keywor dAt t r attribute. The source application is
responsible for adding these keywords to the keyOpt i onal Keywor dAt t r attribute,
but is not required to do so, even if that parameter is listed in the Apple Event Registry:
Standard Suites as an optional parameter. If the source application does not add the
necessary keyword to the keyOpt i onal Keywor dAt t r attribute, the target application
treats the parameter as required for that Apple event. If the target application supports
the parameter, it should handle the Apple event as the source application expects. If the
target application does not support the parameter and checks whether it has received all
the required parameters, it finds that there’s another parameter that the client
application considered required, and should return the result code er r AEPar anM ssed
without attempting to handle the event.

Listing 4-11 shows a function that checks for a keyM ssedKeywor dAt t r attribute. A
handler calls this function after getting all the required parameters it knows about from
an Apple event.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Listing 4-11 A function that checks for a keyM ssedKeywor dAt t r attribute

FUNCTI ON MyGot Requi r edPar ans (t heAppl eEvent: Appl eEvent): OSErr;
VAR

myErr: OSErr;

returnedType: DescType;

act ual Si ze: Si ze;
BEG N

myErr .= AEGet Attri butePtr(theAppl eEvent,
keyM ssedKeywor dAttr,
typeW | dCard, returnedType,
NI L, 0, actual Size);
| F nyErr = err AEDescNot Found THEN
{you got all the required paraneters}
My CGot Requi r edPar ans : = noErr
ELSE | F nyErr = noErr THEN
{you mi ssed a required paraneter}
My Got Requi r edPar ans : = err AEPar anM ssed;
END;

The code in Listing 4-11 uses the AEGet At t ri but ePt r function to get the

keyM ssedKeywor dAt t r attribute. This attribute contains the first required parameter,
if any, that your handler didn’t retrieve. If AEGet At t ri but ePt r returns the

er r AEDescNot Found result code, the Apple event doesn’t contain a

keyM ssedKeywor dAt t r attribute. If the Apple event doesn’t contain this attribute,
then your handler has extracted all of the parameters that the client application
considered required.

If the AEGet At t ri but ePt r function returns noEr r as the result code, then the
attribute does exist, meaning that your handler has not extracted all of the required
parameters. In this case, your handler should return an error and not process the
Apple event.

The first remaining required parameter is specified by the data of the

keyM ssedKeywor dAt t r attribute. If you want this data returned, specify a buffer to
hold the data. Otherwise, specify NI L as the buffer and 0 as the size of the buffer. If you
specify a buffer to hold the data, you can check the value of the act ual Si ze parameter
to see if the data is larger than the buffer you allocated.

For more information about specifying Apple event parameters as optional or required,
see “Specifying Optional Parameters for an Apple Event” beginning on page 5-7.

Handling Apple Events 4-35

suang 9|ddy 01 Buipuodsay -

4-36

CHAPTER 4

Responding to Apple Events

Replying to an Apple Event

Your handler routine for a particular Apple event is responsible for performing the
action requested by the Apple event, and can optionally return data in a reply Apple
event. The Apple Event Manager passes a default reply Apple event to your handler. The
default reply Apple event has no parameters when it is passed to your handler. Your
handler can add parameters to the reply Apple event. If the client application requested
a reply, the Apple Event Manager returns the reply Apple event to the client.

The reply Apple event is identified by the kCor eEvent O ass event class and by the
kKAEAnswer event ID. If the client application specified the KAENoRepl y flag in the

r epl y parameter of the AESend function, the Apple Event Manager passes a null
descriptor record (a descriptor record of type t ypeNul | whose data handle has the
value NI L) to your handler instead of a default reply Apple event. Your handler should
check the descriptor type of the reply Apple event before attempting to add any
attributes or parameters to it. An attempt to add an Apple event attribute or parameter
to a null descriptor record generates an error.

If the client application requests a reply, the Apple Event Manager prepares a reply
Apple event for the client by passing a default reply Apple event to your handler. The
default reply Apple event has no parameters when it is passed to your handler. Your
handler can add any parameters to the reply Apple event. If your application is a
spelling checker, for example, you can return a list of misspelled words in a parameter.

When your handler finishes processing an Apple event, it returns a result code to

AEPr ocessAppl eEvent , which returns this result code as its function result. If your
handler returns a nonzero result code, and if you have not added your own

keyEr r or Nunber parameter, the Apple Event Manager also returns this result code
to the client application by putting the result code into a keyEr r or Nunber parameter
for the reply Apple event. The client can check for the existence of this parameter to
determine whether the handler performed the requested action.

The client application specifies whether it wants a reply Apple event or not by specifying
flags (represented by constants) in the sendMbde parameter of the AESend function.

If the client specifies the KAEWAI t Repl y flag in the sendMbde parameter, the AESend
function does not return until the timeout specified by the t i neout | nTi cks parameter
expires or the server application returns a reply. When the server application returns a
reply, the r epl y parameter to AESend contains the reply Apple event that your handler
returned to the AEPr ocessAppl eEvent function. When the client application no longer
needs the original Apple event and the reply event, it must dispose of them, but the
Apple Event Manager disposes of both the Apple event and the reply event for the
server application when the server’s handler returns to AEPr ocessAppl eEvent .

Handling Apple Events

CHAPTER 4

Responding to Apple Events

If the client specified the kAEQueueRepl y flag, the client receives the reply event at a
later time during its normal processing of other events.

Your handler should always set its function result to noEr r if it successfully

handles the Apple event. If an error occurs, your handler should return either

er r AEEvent Not Handl ed or some other nonzero result code. If the error

occurs because your application cannot understand the event, return

er r AEEvent Not Handl ed. This allows the Apple Event Manager to look for a handler
in the system special handler or system Apple event dispatch tables that might be able
to handle the event. If the error occurs because the event is impossible to handle as
specified, return the result code returned by whatever function caused the failure, or
whatever other result code is appropriate.

For example, suppose your application receives a Get Data event requesting the name of
the current printer, and your application cannot handle such an event. In this situation,
you should return er r AEEvent Not Handl ed in case another handler available to the
Apple Event Manager can handle the Get Data event. This strategy allows users to take
advantage of system capabilities from within your application via system handlers.

However, if your application cannot handle a Get Data event that requests the fifth
paragraph in a document because the document contains only four paragraphs, you
should return some other nonzero error, because further attempts to handle the event are
pointless.

If your Apple event handler calls the AEResol ve function and AEResol ve calls an
object accessor function in the system object accessor dispatch table, your Apple event
handler may not recognize the descriptor type of the token returned by the function. In
this case, your handler should return the result code er r AEUnknownCbj ect Type.
When your handler returns this result code, the Apple Event Manager attempts to locate
a system Apple event handler that can recognize the token. For more information, see
“Installing Entries in the Object Accessor Dispatch Tables,” which begins on page 6-21.

The Apple Event Manager automatically adds any nonzero result code that your handler
returns to a keyEr r or Nunber parameter in the reply Apple event. In addition to
returning a result code, your handler can also return an error string in the

keyEr ror St ri ng parameter of the reply Apple event. Your handler should provide
meaningful text in the keyEr r or St r i ng parameter, so that the client can display this
string to the user if desired.

Listing 4-12 shows how to add the keyEr r or St r i ng parameter to the reply Apple
event. See “Adding Parameters to an Apple Event” on page 5-5 for a description of the
AEPut Par anPt r function.

Handling Apple Events 4-37

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Listing 4-12 Adding the keyEr r or St ri ng parameter to the reply Apple event

4-38

FUNCTI ON MyHandl er (theAppl eEvent: Appl eEvent; reply: Appl eEvent;
handl er Ref con: Longlnt): OSErr;

VAR
nmyErr: OSErr;
errStr: St r 255;
BEA N

{handl e your Apple event here}

{if an error occurs when handling an Apple event, set the }
{ function result and error string accordingly}
I F nyErr <> noErr THEN
BEG N
MyHandl er := nyErr; {result code to be returned--the }
{ Apple Event Manager adds this }
{ result code to the reply Apple }
{ event as the keyErrorNunber }
{ paraneter}
I F (reply.dataHandl e <> NIL) THEN
{add error string paranmeter to the default reply}

BEG N
{strings should nornally be stored in resources}
errStr := "Wiy error occurred';

nyErr := AEPut ParanPtr(reply, keyErrorString,
typelntl Text, @rrStr[1],
length(errStr));
END;
END
ELSE
MyHandl er : = noErr;
END;

If your handler needs to return data to the client, it can add parameters to the
reply Apple event. Listing 4-13 shows how a handler for the Multiply event

(an imaginary Apple event that asks the server to multiply two numbers) might
return the results of the multiplication to the client.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Listing 4-13 Adding parameters to the reply Apple event

FUNCTI ON MyMul t Handl er (t heAppl eEvent: Appl eEvent;
reply: Appl eEvent;
handl er Ref con: Longlnt): OSErr;

VAR
myErr: CSErr;
nunber 1, nunber2: Longlnt;
repl yResul t: Longl nt ;
act ual Si ze: Si ze;
ret ur nedType: DescType,;
BEG N

{get the nunmbers to nmultiply fromthe paraneters of the }
{ Apple event; put the nunmbers in the nunberl and numnber2 }
{ variables and then performthe requested multiplication}
nyErr := MyDoMul tiply(theAppl eEvent, nunberl,
nunber 2, replyResult);
IF nyErr = noErr THEN
IF (reply.dataHandl e <> NIL) THEN
{return result of the nultiplication in the reply Apple }
{ event}
nyErr := AEPut ParanPtr(reply, keyDirectQbject,
typeLongl nteger, @epl yResult,
Si zeOf (repl yResul t));
MyMul t Handl er : = nyErr;
{if an error occurs, set the error string }
{ accordingly, as shown in Listing 4-12}
END;

Disposing of Apple Event Data Structures

Whenever a client application uses Apple Event Manager functions to create a descriptor
record, descriptor list, or Apple event record, the Apple Event Manager allocates
memory for these data structures in the client’s application heap. Likewise, when a
server application extracts a descriptor record from an Apple event by using Apple
Event Manager functions, the Apple Event Manager creates a copy of the descriptor
record, including the data to which its handle refers, in the server’s application heap.

Whenever you finish using a descriptor record or descriptor list that you have created or
extracted from an Apple event, you should dispose of the descriptor record—and
thereby deallocate the memory it uses—by calling the AEDi sposeDesc function. If the
descriptor record you pass to AEDi sposeDesc (such as an Apple event record or an

AE record) includes other nested descriptor records, one call to AEDi sposeDesc will
dispose of them all.

Handling Apple Events 4-39

suang 9|ddy 01 Buipuodsay -

4-40

CHAPTER 4

Responding to Apple Events

When a client application adds a descriptor record to an Apple event (for example, when
it creates a descriptor record by calling AECr eat eDesc and then puts a copy of it into a
parameter of an Apple event by calling AEPut Par anDesc), it is still responsible for
disposing of the original descriptor record. After a client application has finished using
both the Apple event specified in the AESend function and the reply Apple event, it
should dispose of their descriptor records by calling AEDI sposeDesc. The client
application should dispose of them even if AESend returns a nonzero result code.

The Apple event that a server application’s handler receives is a copy of the original
event created by the client application. When a server application’s handler returns to
AEPr ocessAppl eEvent, the Apple Event Manager disposes of the server’s copy (in the
server’s application heap) of both the Apple event and the reply event. The server
application is responsible for disposing of any descriptor records created while
extracting data from the Apple event or adding data to the reply event.

In general, outputs from Apple Event Manager functions are your application’s
responsibility. Once you finish using them, you should use AEDi sposeDesc to dispose
of any Apple event data structures created or returned by these functions:

AECoer ceDesc AEDupl i cat eDesc
AECoer cePtr AEGet At t ri but eDesc
AECr eat eAppl eEvent AECGet KeyDesc

AECr eat eDesc AEGet Nt hDesc

AECr eat eLi st AEGet Par anDesc

If you attempt to dispose of descriptor records returned by successful calls to these
functions without using AEDI sposeDesc, your application may not be compatible

with future versions of the Apple Event Manager. However, if any of these functions
return a nonzero result code, they return a null descriptor record, which does not need to
be disposed of.

Outputs from functions, such as AEGet KeyPt r, that use a buffer rather than a descriptor
record to return data do not require the use of AEDi sposeDesc. It is therefore preferable
to use these functions for any data that is not identified by a handle.

Some of the functions described in the chapter “Resolving and Creating Object Specifier
Records” in this book also create descriptor records. If you set the di sposel nput s
parameter to FALSE for any of the following functions, you should dispose of any
Apple event data structures that they create or return:

Cr eat eConpDescri pt or Creat ebj Speci fi er

Creat eLogi cal Descri ptor Cr eat eRangeDescri pt or

Your application is also responsible for disposing of some of the tokens it creates in the
process of resolving an object specifier record. For information about token disposal, see
“Defining Tokens” on page 6-39.

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Writing and Installing Coercion Handlers

When your application extracts data from a parameter, it can request that the Apple
Event Manager return the data using a descriptor type that is different from the original
descriptor type. For example, when extracting data from the direct parameter of the
Open Documents event, you can request that the alias records be returned as file system
specification records. The Apple Event Manager can automatically coerce many different
types of data from one to another. Table 4-1 on page 4-43 shows descriptor types and the
kinds of coercion that the Apple Event Manager can perform.

You can also provide your own routines, referred to as coercion handlers, to coerce data
into any other descriptor type. To install your own coercion handlers, use the
AEl nst al | Coer ci onHandl er function. You specify as parameters to this function

= the descriptor type of the data coerced by the handler

s the descriptor type of the resulting data

= the address of the coercion handler for this descriptor type
= areference constant

= a Boolean value that indicates whether your coercion handler expects the data to be
specified as a descriptor record or as a pointer to the actual data

= aBoolean value that indicates whether your coercion handler should be added to
your application’s coercion dispatch table or the system coercion dispatch table

The system coercion dispatch table is a table in the system heap that contains coercion
handlers available to all applications and processes running on the same computer. The
coercion handlers in your application’s coercion dispatch table are available only to your
application. When attempting to coerce data, the Apple Event Manager first looks for a
coercion handler in your application’s coercion dispatch table. If it cannot find a handler
for the descriptor type, it looks in the system coercion dispatch table for a handler. If it
doesn’t find a handler there, it attempts to use the default coercion handling described
by Table 4-1 on page 4-43. If it can’t find an appropriate default coercion handler, it
returns the er r AECoer ci onFai | result code.

Any handler that you add to the system coercion dispatch table should reside in the
system heap. If there was already an entry in the system coercion dispatch table for

the same descriptor type, it is replaced. Therefore, if there is an entry in the system
coercion dispatch table for the same descriptor type, you should chain it to your

system coercion handler as explained in “Creating and Managing the Coercion Handler
Dispatch Tables,” which begins on page 4-96.

WARNING

Before an application calls a system coercion handler, system software
has set up the A5 register for the calling application. For this reason, if
you provide a system coercion handler, it should never use A5 global

variables or anything that depends on a particular context; otherwise,
the application that calls the system coercion handler may crash. a

Handling Apple Events 4-41

suang 9|ddy 01 Buipuodsay -

4-42

CHAPTER 4

Responding to Apple Events

You can provide a coercion handler that expects to receive the data in a descriptor record
or a buffer referred to by a pointer. When you install your coercion handler, you specify
how your handler wishes to receive the data. Whenever possible, you should write your
coercion handler so that it can accept a pointer to the data, because it's more efficient for
the Apple Event Manager to provide your coercion handler with a pointer to the data.

A coercion handler that accepts a pointer to data must be a function with the following
syntax:

FUNCTI ON MyCoercePtr (typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size; toType: DescType;
handl er Ref con: Longl nt;

VAR result: AEDesc): OSErr;

The t ypeCode parameter is the descriptor type of the original data. The dat aPt r
parameter is a pointer to the data to coerce; the dat aSi ze parameter is the length, in
bytes, of the data. The t 0Type parameter is the desired descriptor type of the resulting
data. The handl er Ref con parameter is a reference constant stored in the coercion table
entry for the handler and passed to the handler by the Apple Event Manager whenever
the handler is called. The r esul t parameter is the descriptor record returned by your
coercion handler.

Your coercion handler should coerce the data to the desired descriptor type and return
the data in the descriptor record specified by the r esul t parameter. If your handler
successfully performs the coercion, it should return the noEr r result code; otherwise,
it should return a nonzero result code.

A coercion handler that accepts a descriptor record must be a function with the
following syntax:

FUNCTI ON MyCoer ceDesc (t heAEDesc: AEDesc; toType: DescType;
handl er Ref con: Longl nt;
VAR result: AEDesc): OSErr;

The parameter t heAEDesc is the descriptor record that contains the data to be coerced.
The t 0Type parameter is the descriptor type of the resulting data. The handl er Ref con
parameter is a reference constant stored in the coercion table entry for the handler and
passed to the handler by the Apple Event Manager whenever the handler is called. The
resul t parameter is the resulting descriptor record.

Your coercion handler should coerce the data in the descriptor record to the desired
descriptor type and return the data in the descriptor record specified by the r esul t
parameter. Your handler should return an appropriate result code.

Note

To ensure that no coercion is performed and that the descriptor type of
the result is of the same descriptor type as the original, specify

t ypeW | dCar d for the desired type. O

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Table 4-1 lists the descriptor types for which the Apple Event Manager provides

coercion.

Table 4-1

Coercion handling provided by the Apple Event Manager

Original descriptor
type of data to be
coerced

t ypeChar

t ypel nt eger

t ypeLongl nt eger
typeSM nt

t ypeSMF oat

t ypeShort | nt eger
t ypeFl oat

t ypeLongFl oat

t ypeShort Fl oat
t ypeExt ended

t ypeConp

t ypeMagni t ude

t ypel nt eger

t ypeLongl nt eger
t ypeSM nt

t ypeSMF oat

t ypeShort | nt eger
t ypeFl oat

t ypeLongFl oat

t ypeShort Fl oat
t ypeExt ended

t ypeConp

t ypeMagni t ude

t ypeChar

t ypeEnunmer at ed
t ypeKeywor d
typeProperty

typeType

Handling Apple Events

Desired descriptor type

typel nt eger

t ypeLongl nt eger
typeSM nt

t ypeSMFI oat

t ypeShort | nt eger
t ypeFl oat

t ypeLongFl oat

t ypeShort Fl oat
t ypeExt ended
typeConp

t ypeMagni t ude

t ypeChar

t ypel nt eger

t ypeLongl nt eger
typeSM nt

t ypeSMFI oat
typeShort | nt eger
t ypeFl oat

t ypeLongFl oat

t ypeShort Fl oat
t ypeExt ended

t ypeConp

t ypeMagni t ude

typeType

t ypeEnuner at ed
t ypeKeywor d
typeProperty

t ypeChar

Description

Any string that is a valid
representation of a number can be
coerced into an equivalent
numeric value.

Any numeric descriptor type can
be coerced into the equivalent text
string.

Any numeric descriptor type can
be coerced into any other numeric
descriptor type.

Any four-character string can be
coerced to one of these descriptor

types.

Any of these descriptor types can
be coerced to the equivalent text
string.

continued

4-43

suang 9|ddy 01 Buipuodsay -

4-44

CHAPTER 4

Responding to Apple Events

Table 4-1

Coercion handling provided by the Apple Event Manager (continued)

Original descriptor
type of data to be
coerced

typel ntl Text

typeTrue
typeFal se

t ypeEnuner at ed

t ypeBool ean

t ypeShort | nt eger
t ypeSM nt

t ypeBool ean
typeAlias

t ypeAppl eEvent

any descriptor type

t ypeAELi st

Desired descriptor type
t ypeChar

t ypeBool ean
t ypeBool ean

t ypeBool ean

t ypeEnurmer at ed

t ypeBool ean

typeShort | nt eger
typeSM nt

t ypeFSS

t ypeAppPar anet er s

t ypeAELi st

type of list item

Description

The result contains text only,
without the script code or
language code from the original
descriptor record.

The result is the Boolean value
TRUE.

The result is the Boolean value
FALSE.

The enumerated value ' t r ue'
becomes the Boolean value TRUE.
The enumerated value ' f al s'
becomes the Boolean value FALSE.

The Boolean value FALSE
becomes the enumerated value
'fal s'.The Boolean value TRUE
becomes the enumerated value
"true'.

A value of 1 becomes the Boolean
value TRUE. A value of 0 becomes
the Boolean value FALSE.

A value of FALSE becomes 0. A
value of TRUE becomes 1.

An alias record is coerced into a
file system specification record.

An Apple event is coerced into a
list of application parameters for
the LaunchPar anBl ockRec
parameter block.

A descriptor record is coerced into
a descriptor list containing a single
item.

A descriptor list containing a
single descriptor record is coerced
into a descriptor record.

NOTE Some of the descriptor types listed in this table are synonyms; for example, the constants
typeSM nt and t ypeShort | nt eger have the same four-character code, ' shor' .

Handling Apple Events

CHAPTER 4

Responding to Apple Events

Interacting With the User

When your application receives an Apple event, it may need to interact with the user.
For example, it may need to display a dialog box asking the user for additional
information or confirmation. You must use the AEI nt er act Wt hUser function to make
sure your application is in the foreground before it actually interacts with the user.

Both the client application and the server application specify their preferences for user
interaction. The AEI nt er act W t hUser function checks the user interaction preferences
set by each application. If both the client and the server allow user interaction,

AEl nt er act Wt hUser usually posts a notification request, and the Notification
Manager brings the server to the foreground after the user responds to the notification
request.

The AEI nt er act Wt hUser function can also bring the server application directly to the
foreground, but only if the client application is the active application on the same
computer and has set two flags in the sendMbde parameter of the AESend function:

the KAEWAI t Repl y flag, which indicates that it is waiting for a reply, and the
KAECanSwi t chLayer flag, which indicates that it wants the server application to

come directly to the foreground rather than posting a notification request.

To specify its preferences for how the server application should interact with the user,
the client application sets various flags in the sendMbde parameter to AESend. The
Apple Event Manager sets the corresponding flags in the keyl nt er act Level Attr
attribute of the Apple event.

The server application sets its preferences with the AESet | nt er act i onAl | owed
function. This function lets your application specify whether it allows interaction with
the user as a result of receiving an Apple event from itself; from itself and other
processes on the local computer; or from itself, local processes, and processes from
another computer on the network.

suang 9|ddy 01 Buipuodsay -

Your application calls the AEI nt er act W t hUser function before interacting with the
user. If AEI nt er act W t hUser returns the NoEr r result code, then your application is
currently in the front and free to interact with the user. If AEI nt er act W t hUser
returns the er r AENoUser | nt er act i on result code, the conditions didn’t allow user
interaction and your application should not interact with the user.

The rest of this section explains how to set user interactions for the client and server
applications and the practical effect these settings have when a server needs to interact
with a user.

Interacting With the User 4-45

1-46

CHAPTER 4

Responding to Apple Events

Setting the Client Application’s User Interaction Preferences

The client application sets its user interaction preferences by setting flags in the
sendMbde parameter to the AESend function. The Apple Event Manager automatically
adds the specified flags to the keyl nt er act Level At t r attribute of the Apple event.
These flags are represented by the following constants:

Flag Description

kKAENever | nt er act The server application should never interact
with the user in response to the Apple event. If
this flag is set, AEI nt er act W t hUser returns the
err AENoUser | nt er act i on result code. This flag is the
default when an Apple event is sent to a remote application.

kKAECanl nt er act The server application can interact with the user in response
to the Apple event—by convention, if the user needs to
supply information to the server. If this flag is set and the
server allows interaction, AEl nt er act Wt hUser either
brings the server application to the foreground or posts a
notification request. This flag is the default when an Apple
event is sent to a local application.

KAEAl waysl nt er act The server application can interact with the user in response
to the Apple event—by convention, whenever the server
application normally asks a user to confirm a decision or
interact in any other way, even if no additional information is
needed from the user. If this flag is set and the server allows
interaction, AEl nt er act Wt hUser either brings the server
application to the foreground or posts a notification request.

For example, suppose a client application sends a Set Data event to a database
application to change a customer’s address. The database application is configured to
request user confirmation of changes to a customer’s record. In this case the client sets
the KAECanlI nt er act flag before sending the event. Thus, the database application
attempts to interact with the user if interaction is allowed. If interaction is not allowed,
the database makes the correction anyway without consulting the user. However, if the
client application sends a Delete event to delete a customer’s record entirely and sets the
KAEAl waysl nt er act flag, the database application deletes the specified record only if
it can interact with the user first and receives confirmation of the decision to delete a
record. If interaction with the user is not allowed, the database application returns an
error. By setting the KAEAI ways| nt er act flag, the client application ensures that the
entire record won’t be lost if the user sends the Delete event by mistake.

If the client application doesn’t specify any of the three user interaction flags, the

Apple Event Manager sets either the KAENever | nt er act or the KAECanl nt er act flag
in the keyl nt eract Level At tr attribute of the Apple event, depending on the
location of the server application. If the server application is on a remote computer,

Interacting With the User

CHAPTER 4

Responding to Apple Events

the Apple Event Manager sets the KAENever | nt er act flag as the default. If the
server application is on the local computer, the Apple Event Manager sets the
KAECanl nt er act flag as the default.

In addition to the three user interaction flags, the client application can set another flag
in the sendMbde parameter to AESend to request that the Apple Event Manager
immediately bring the server application directly to the foreground instead of posting a
notification request:

Flag Description

kAECanSwi t chLayer If both the client and server allow interaction, and if the client
application is the active application on the local computer
and is waiting for a reply (that is, it has set the
kAEWAI t Repl y flag), AEI nt er act W t hUser brings the
server directly to the foreground. Otherwise,
AEl nt er act Wt hUser uses the Notification Manager to
request that the user bring the server application to the
foreground.

Note that although the KAECanSwi t chLayer flag must be set for the Apple Event
Manager to bring the server application directly to the foreground, setting it does not
guarantee that the Apple Event Manager will bypass the notification request if user
interaction is permitted. Another flag, the KAEWAI t Repl y flag, must also be set in the
sendMbde parameter, and the client application must provide an idle function.

The KAEWAI t Repl y flag is one of three flags in the sendMbde parameter that a client
application can set to specify whether and how the client should wait for a reply.

(For a description of these flags, see “Sending an Apple Event and Handling the Reply”
on page 3-30.) If the client application is not waiting for a reply, the user may have
continued with other work. An application switch at this point might be unexpected
and would thus violate the principle of user control as described in Macintosh Human
Interface Guidelines.

If the client application sets the KAEWAI t Repl y flag, it should also provide an idle
function when it calls AESend so that it can handle events such as update events that it
receives while waiting for the reply. Idle functions are described in “Writing an Idle
Function,” which begins on page 5-22.

When a server application calls AEIl nt er act W t hUser, the function first checks
whether the KAENever | nt er act flagin the keyl nt eract Level Attr attribute of the
Apple event is set. (The Apple Event Manager sets this attribute according to the flags
specified in the sendMbde parameter of AESend.) If the KAENever | nt er act flag is set,
AEl nt er act Wt hUser immediately returns the er r AENoUser | nt er act i on result
code. If the client specified KAECanl nt er act or KAEAl waysl nt er act,

AEl nt eract Wt hUser checks the server’s preferences for user interaction.

Interacting With the User 4-47

suang 9|ddy 01 Buipuodsay -

4-48

CHAPTER 4

Responding to Apple Events

Setting the Server Application’s User Interaction Preferences

The server sets its user interaction preferences by using the
AESet | nt er act i onAl | owed function. This function specifies the conditions
under which your application is willing to interact with the user.

nyErr := AESet|nteractionAllowed(level);
The | evel parameter is of type AEI nt er act Al | owed.

TYPE AEInteractAllowed = (KAEInteract WthSel f,
KAEI nt eract Wt hLocal ,
KAEI nteract Wt hAl I) ;

You can specify one of these values for the interaction level:

Flag Description

KAEI nt er act Wt hSel f Your server application can interact with the user in
response to an Apple event only when your application is
also the client application—that is, only when your
application is sending the Apple event to itself.

KAEI nt er act Wt hLocal Your server application can interact with the user in
response to an Apple event only if the client application
is on the same computer as your application. This is the
default if the server application does not call the function
AESet | nt er acti onAl | owed.

KAEI nt er act Wt hAl | Your server application can interact with the user in
response to an Apple event sent by any client application
on any computer.

If the server application does not set the user interaction level, AEl nt er act W t hUser
uses KAEI nt er act Wt hLocal as the value.

If the application sends itself an Apple event (that is, if the application is both the client
and the server) without setting the KAENever | nt er act flag, AEI nt er act Wt hUser
always allows user interaction. If the client application is a process on the local computer
and specifies KAECanl nt er act or KAEAI waysl nt er act, and if the server has set the
interaction level to KAEI nt er act Wt hLocal or KAEI nt eract Wt hAl |, then

AEl nt eract Wt hUser allows user interaction. If the client is a process on a remote
computer on the network and specifies KAECan| nt er act or KAEAl waysl nt er act,
AEl nt er act Wt hUser allows user interaction only if the server specified

the KAEI nt er act Wt hAl | flag for the interaction level. In all other cases,

AEl nt eract Wt hUser does not allow user interaction.

Interacting With the User

CHAPTER 4

Responding to Apple Events

Requesting User Interaction

If your server application needs to interact with the user for any reason, it must call the
AEl nt eract Wt hUser function to make sure it is in the foreground before it actually
interacts with the user. When AEIl nt er act Wt hUser allows user interaction (based on
the client’s and server’s preferences), AElI nt er act W t hUser brings the server
application to the foreground—either directly or after the user responds to a notification
request—and then returns a NOEr r result code. If AEI nt er act W t hUser brings the
server to the foreground directly, the client returns to the foreground immediately after
the server has finished interacting with the user. If AEI nt er act W t hUser brings the
server to the foreground after the user responds to a notification request, the server
remains in the foreground after completing the user interaction.

The AEI nt er act W t hUser function specifies how long your handler is willing to wait
for a response from the user. For example, if the timeout value is 900 ticks (15 seconds)
and the Apple Event Manager posts a notification request, the Notification Manager
begins to display a blinking icon in the upper-right corner of the screen, then removes
the notification request (and the blinking icon) if the user does not respond within

15 seconds. (The discussion that follows describes some restrictions on the icons that can
be displayed in this situation.)

Note that the timeout value passed to the AEI nt er act Wt hUser function is separate
from the timeout value passed to the AESend function, which specifies how long the
client application is willing to wait for the reply or return receipt from the server
application. If AEI nt er act Wt hUser does not receive a response from the user within
the specified time, AEl nt er act Wt hUser returns er r AETi meout .

You may want to give the user a method of setting the interaction level. For example,
some users may not want to be interrupted while background processing of an Apple
event occurs, or they may not want to respond to dialog boxes when your application is
handling Apple events sent from another computer.

Interacting With the User 4-49

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Listing 4-14 illustrates the use of the AEI nt er act W t hUser function. You call this
function before your application displays a dialog box or otherwise interacts with the
user when processing an Apple event. You specify a timeout value, a pointer to a
Notification Manager record, and the address of an idle function as parameters to
AEl nteract Wt hUser.

Listing 4-14 Using the AEI nt er act Wt hUser function

4-50

nyErr := AElnteract Wt hUser (KAEDef aul t Ti mreout, gMyNotifyRecPtr,
@w1 dl eFunction);
IF nyErr <> noErr THEN
{the attenpt to interact failed; do any error handling}
DoError (nyErr)
ELSE
{interact with the user by displaying a dialog box }
{ or by interacting in any other way that is necessary}
Di spl ayMyDi al ogBox;

You can set a timeout value, in ticks, in the first parameter to AEl nt er act Wt hUser.
Use the KAEDef aul t Ti meout constant if you want the Apple Event Manager to use a
default value for the timeout value. The Apple Event Manager uses a timeout value of
about one minute if you specify this constant. You can also specify the KNoTi meQut
constant if your application is willing to wait an indefinite amount of time for a response
from the user. Usually you should provide a timeout value, so that your application can
complete processing of the Apple event in a reasonable amount of time.

If you specify NI L instead of a Notification Manager record in the second parameter of
AEl nt er act Wt hUser, the Apple Event Manager looks for an application icon with the
ID specified by the application’s bundle (' BNDL') resource and the application’s file
reference (' FREF') resource. The Apple Event Manager first looks for an' SI CN
resource with the specified ID; if it can’t find an' SI CN' resource, it looks for the

"I CN#' resource and compresses the icon to fit in the menu bar. The Apple Event
Manager won't look for any members of an icon family other than the icon specified in
the ' | CN#' resource.

If the application doesn’t have' SI CN' or' | CN#' resources, or if it doesn’t have a file
reference resource, the Apple Event Manager passes Nl L to the Notification Manager,
and no icon appears in the upper-right corner of the screen. Therefore, if you want to
display any icon other than those of type' SI CN' or' | CN#' , you must specify a
notification record as the second parameter to the AEI nt er act W t hUser function.

Note

If you want the Notification Manager to use a color icon when it posts a
notification request, you should provide a Notification Manager record
that specifiesa' ci cn' resource. O

Interacting With the User

CHAPTER 4

Responding to Apple Events

The AEI nt er act Wt hUser function posts a notification request only when user
interaction is allowed and the KAECanSwi t chLayer flag in the
keyl nt eract Level At tr attribute is not set.

The last parameter to AEI nt er act W t hUser specifies an idle function provided by
your application. Your idle function should handle any update events, null events,
operating-system events, or activate events while your application is waiting to be
brought to the front. See “Writing an Idle Function” on page 5-22 for more information.

Figure 4-1 illustrates a situation in which a client application (a forms application) might
request a service from a server application (a database application). To perform this
service, the server application must interact with the user.

Figure 4-1 A document with a button that triggers a Get Data event

% File Edit Font Style Orders 2 @&

Ei=——————— order Form Entry

Order Form

Acme Dot Company

14 Ocean View Drive Order Date: 1/16/92
Santa Cruz, CA Order Number: 917563

mEl

Type the name of the customer: | John Chapman ‘

If the customer has ordered before, click this button
to retrieve the customer info from the Addresses database: [Retrieve Customer Info)

If this is the customer’s first order, fill in the customer info.

Street Address:

State:

|
|

Zip Code: ‘ ‘
|

Telephone:

Figure 4-1 shows part of an electronic form used to enter information about an order
received by telephone. If the customer has ordered from the company before, the user
can quickly retrieve the customer’s address and telephone number by clicking the
Retrieve Customer Info button. In response, the forms application sends a Get Data
event to a database application (SurfDB) currently open on the same computer. The

Get Data event sent by the forms application (the client application for the ensuing
transaction) asks SurfDB (the server) to locate the customer’s name in a table of
addresses and return the customer’s address. When the forms application receives the
reply Apple event, it can add the address data to the appropriate fields in the order form.

Interacting With the User 4-51

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

If SurfDB, as the server application, locates more than one entry for the specified
customer name, it needs to interact with the user to determine which data to return in
the reply Apple event. To interact with the user, the server application must be in the
foreground, so that it can display a dialog box like the one shown in Figure 4-2.

Figure 4-2 A server application displaying a dialog box that requests information from the user
@ File Edit Format Entry Database liews [
I [
Or der F Is1and

Acme Dot Comp There are two entries for the name “John Chapman®.
14 Ocean View [Select the one you want:
Santa Cruz, CA

John Chapman, 1774 Broadway, Los Angeles, CA

John Chapman, 1809 Mason Street, Seattle, WA
Type the name of

If the customer ha
to retrieve the cus

If this is the custo [Cancel] I[LS]l
Street Address:
City: ‘
State: ‘ ‘
Zip Code: | |
Telephone: ‘ ‘ k

Figure 4-3, Figure 4-4, and Figure 4-5 illustrate two methods of dealing with this
situation. Figure 4-3 shows the behavior of the server application that is common to both
methods. In both cases, the server uses AESet | nt er act i onAl | owed to set its own
interaction level to KAEI nt er act W t hLocal . After calling AEResol ve to locate the
requested data, the server application discovers that two addresses match the name the
user typed into the electronic form. The server then calls AEI nt er act Wt hUser with a
timeout value of KAEDef aul t Ti meout so it can find out which address the user wants.

4-52 Interacting With the User

CHAPTER 4

Responding to Apple Events

Figure 4-3 Handling user interaction

Apple event
| Get Data

J

See Figures 4-4 and 4-5 for
examples of flags set in the
sendMode parameter of the
AESend function.

Z / Server

Object specifier record specifying application
the address for “John Chapman”
in the table “MyAddresses”

SurfDB

Myl nitialize

¢ Sets interaction level:
AESet | nt er act Al | owed(KAEI nt eract Wt hLocal)

MyHandl eGet Dat a

« Call AEResol ve to locate requested data @

A

John Chapnan
1774 Br oadway
Los Angel es, CA

John Chapnan

Py
@
(%]
°
o
>
2
>
Q@
—
o
>
o
°
)
m
<
@
>
—*
1]

1809 Mason St.
Seattle, WA Apple Event Manager
. Ifthe_rg is more than one address for_ the . ﬁ AEl nteract Wt hUser
specified customer name, interact with user:
AEl nt eract Wt hUser (KAEDef aul t Ti meout, [— « Determines that user interaction
gWNot i fyRec, is allowed
@awl dl e) « Brings SurfDB directly to the
&] foreground or posts a notification
.) request, depending on sendMode
Di spl ayMyDi al ogBox @ flags
« Returns nOEr r after SurfDB is in the

] foreground
There are two entries for the name “John Chapman”.

Select the one you want:

John € 1774 Bri y, Los Ang CA
John Chapman, 1809 Mason Street, Seattle, WA

« If user makes choice, continue processing event
« Add address user selected or an error, such as
“duplicate name,” to reply Apple event

Interacting With the User 4-53

CHAPTER 4

Responding to Apple Events

Figure 4-4 shows the circumstances in which the server application’s call to

AEl nt er act Wt hUser shown in Figure 4-3 will cause the Apple Event Manager to
bring the server application directly to the foreground. The client application sets the
KAECanl nt er act, KAECanSwi t chLayer, and kAEWAI t Repl y flags in the sendMbde
parameter of the AESend function when it sends the Get Data event shown in the figure.
These flags indicate that the client application expects the user to wait until the address
appears in the appropriate fields of the electronic form before continuing with any other
work. In this case, an automatic layer switch will not surprise the user and will avoid
the additional user action required to respond to a notification request, so

AEl nt er act W t hUser brings the server application directly to the foreground

and returns a NOEr r result code. The server application then displays the dialog box
requesting that the user select the desired customer.

After the user selects the desired customer and clicks OK, the server application’s

Get Data event handler returns. The Apple Event Manager immediately brings the client
application to the foreground, and the client application displays the requested customer
information in the appropriate fields.

Figure 4-4 Handling user interaction with the KAEWi t Repl y flag set

4-54

Apple event

Get Data > @
sendMbde flags: SurfDB
kAECanl nt er act @
kAECanSwi t chLayer
KAEWAI t Repl y
AEl nt eract Wt hUser
4 Z « Determines that user interaction

is allowed
¢ Brings SurfDB directly to foreground
* Returns noEr r

1

There are two entries for the name “John Chapman®.
Select the one you want:

John € 1774 Bri u, Los Ang A
John Chapman, 1809 Mason Street, Seattle, WA

Apple Event Manager brings client to the
foreground as soon as the Apple event handler
returns.

Interacting With the User

CHAPTER 4

Responding to Apple Events

Figure 4-5 shows the circumstances in which the server application’s call to
AEl nt er act Wt hUser in Figure 4-3 will cause the Apple Event Manager to post a
notification request rather than bringing the server application directly to the foreground.

Figure 4-5 Handling user interaction with the kAEQueueRepl y flag set

Apple event
Get Data >

sendMbde flags: SurfDB

kAECanl nt er act @
KAEQueueRepl y

4 { AEl nt eract Wt hUser
« Determines that user interaction
is allowed

« Posts notification request
« Returns NOEr r after user brings
SurfDB to the front

Hide MyFormsApp

Hide Others
Sz B

Finder
«4& MyFormsApp
+ o SurfDB

4

There are two entries for the name “John Chapman®”.
Select the one you want:

John © 1774 Br: u, Los Ang cA
John Chapman, 1809 Mason Street, Seattle, WA

Server remains in the foreground after the
Apple event handler returns.

Interacting With the User 4-55

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

The only difference between the Get Data event shown in Figure 4-4 and the Get Data
event shown in Figure 4-5 is that the client application has set the KAEQueueRepl y flag
instead of the KAEWAI t Repl y flag in the sendMode parameter of AESend and has not
set the KAECanSwi t chLayer flag. This combination of flags indicates that the client
application expects the user to continue filling in other parts of the form, such as the
items being ordered; the address will just appear after a while, provided there is no
duplicate name. In this case, an automatic layer switch would disrupt the user’s work.
Instead of bringing the server application directly to the foreground,

AEl nt er act Wt hUser uses the Notification Manager to post a notification request.

After the user has responded to the request and has brought the server application to the
foreground, AEI nt er act W t hUser returns a noEr r result code, and the server
application displays the dialog box requesting that the user select the desired customer.
When the user selects a customer and clicks OK, the server application’s Get Data event
handler returns. Because the user brought the server to the foreground manually, the
server remains in the foreground after the handler returns.

Reference to Responding to Apple Events

This section describes the basic Apple Event Manager data structures and routines that
your application can use to respond to Apple events. It also describes the syntax for
application-defined Apple event handlers and coercion handlers that your application
can provide for use by the Apple Event Manager.

For information about routines used to create and send Apple events, see the chapter
“Creating and Sending Apple Events” in this book. For information about routines and
data structures used with object specifier records, see the chapter “Resolving and
Creating Object Specifier Records” in this book.

Data Structures Used by the Apple Event Manager

This section summarizes the major data structures used by the Apple Event Manager.
For an overview of the relationships among these data structures, see “Data Structures
Within Apple Events,” which begins on page 3-12.

Descriptor Records and Related Data Structures

Descriptor records are the fundamental data structures from which Apple events are
constructed. A descriptor record is a data structure of type AEDesc.

4-56 Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

TYPE AEDesc =
RECORD {descriptor record}
descri pt or Type: DescType; {type of data bei ng passed}
dat aHandl e: Handl e; {handl e to data bei hg passed}
END;

Field descriptions

descri pt or Type
A four-character string of type DescType that indicates the type of
data being passed.

dat aHandl e Ahandle to the data being passed.

The descriptor type is a structure of type DescType, which in turn is of data type
ResType—that is, a four-character code. Constants, rather than these four-character
codes, are usually used to refer to descriptor types. Table 4-2 lists the constants for the
basic descriptor types used by the Apple Event Manager.

Table 4-2 Descriptor types used by the Apple Event Manager (excluding those used with
object specifier records)

Descriptor type Value Description

t ypeBool ean " bool Boolean value

t ypeChar ' TEXT' Unterminated string
t ypeLongl nt eger "1 ong' 32-bit integer

t ypel nt eger "l ong' 32-bit integer

t ypeShort | nt eger " shor' 16-bit integer

t ypeSM nt "shor' 16-bit integer

t ypeLongFl oat " doub' SANE double

t ypeFl oat " doub' SANE double

t ypeShort Fl oat si ng' SANE single
t ypeSMFI oat 'sing' SANE single

ext e' SANE extended

t ypeExt ended

t ypeConp ' conp' SANE comp
t ypeMagni t ude ' magn' Unsigned 32-bit integer
t ypeAELi st "list' List of descriptor records
t ypeAERecor d 'reco’ List of keyword-specified descriptor
records
t ypeAppl eEvent "aevt' Apple event record
typeTrue "true' TRUE Boolean value
continued

Reference to Responding to Apple Events 4-57

suang 9|ddy 01 Buipuodsay -

4-58

CHAPTER 4

Responding to Apple Events

Table 4-2 Descriptor types used by the Apple Event Manager (excluding those used with
object specifier records) (continued)

Descriptor type Value Description

typeFal se "fals' FALSE Boolean value

typeAlias "alis' Alias record

t ypeEnuner at ed " enum Enumerated data

typeType "type' Four-character code for event class or
event ID

t ypeAppPar anet er s "appa’ Process Manager launch parameters

typeProperty " prop' Apple event property

t ypeFSS "fss ' File system specification

t ypeKeywor d "keyw Apple event keyword

t ypeSecti onH 'sect'’ Handle to a section record

typeW | dCard PRk Matches any type

t ypeAppl Si ghat ure 'sign' Application signature

t ypeSessi onl D "ssid Session reference number

typeTarget | D targ' Target ID record

t ypeProcessSeri al Nunber psn Process serial number

typeNul | "nul ' Nonexistent data (data handle is NI L)

For information about descriptor records and descriptor types used with object specifier
records, see the chapter “Resolving and Creating Object Specifier Records” in this book.

Apple event attributes, Apple event parameters, object specifier records, tokens, and
most of the other data structures used by the Apple Event Manager are constructed from
one or more descriptor records. The Apple Event Manager identifies the various parts of
an Apple event by means of keywords associated with the corresponding descriptor
records. The AEKeywor d data type is defined as a four-character code.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

Constants are typically used for keywords. A keyword combined with a descriptor
record forms a keyword-specified descriptor record, which is defined by a data structure
of type AEKeyDesc.

TYPE AEKeyDesc =

RECORD

descKey: AEKeywor d; { keywor d}

descCont ent : AEDesc; {descri ptor record}
END;

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

Field descriptions

descKey A four-character code of type AEKeywor d that identifies the data in
the descCont ent field.
descCont ent A descriptor record of type AEDesc.

Every Apple event includes an attribute that contains the address of the target
application. A descriptor record that contains an application’s address is called an
address descriptor record.

TYPE AEAddressDesc = AEDesc; {address descriptor record}

Many Apple Event Manager functions take or return lists of descriptor records in a
special descriptor record called a descriptor list. A descriptor list is a structure of data
type AEDescLi st whose data consists of a list of other descriptor records.

TYPE AEDescLi st = AEDesc; {list of descriptor records}

Other Apple Event Manager functions take or return lists of keyword-specified
descriptor records in the form of an AE record. An AE record is a structure of data type
AERecor d whose data handle refers to a list of keyword-specified descriptor records.

TYPE AERecord = AEDesclLi st; {list of keyword-specified }
{ descriptor records}

The handle for a descriptor list of data type AERecor d refers to a list of
keyword-specified descriptor records that specify Apple event parameters; they cannot
specify Apple event attributes.

Finally, a full-fledged Apple event, including both attributes and parameters, is an
Apple event record, which is a structure of data type Appl eEvent .

TYPE Appl eEvent = AERecor d; {list of attributes and }
{ paraneters for an Apple }
{ event}

The event class and event ID of an Apple event are specified in Apple Event Manager
routines by structures of data types AEEvent O ass and AEEvent | D, respectively.

TYPE AEEvent Cl ass = PACKED ARRAY[1..4] OF Char;
TYPE AEEvent | D = PACKED ARRAY[1..4] OF Char;

For more information about descriptor records and the other data structures described in
this section, see “Data Structures Within Apple Events,” which begins on page 3-12.

With the exception of array data records, which are described in the next section, the
other Apple Event Manager data structures used in responding to Apple events are
described in “Routines for Responding to Apple Events,” beginning on page 4-61, under
the descriptions of the routines that use them.

Reference to Responding to Apple Events 4-59

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Apple Event Array Data Types

4-60

The AEGet Ar r ay function (see page 4-77) creates a Pascal or C array that corresponds to
an Apple event array in a descriptor list, and the AEPut Ar r ay function (see page 5-32)
adds data specified in a buffer to a descriptor list as an Apple event array.

You can use the data type AEAr r ay Ty pe to define the type of Apple event array you
want to add to or obtain from a descriptor list.

TYPE AEArrayType = (kAEDat aArray, kAEPackedArray, kAEHandl eArray,
kAEDescArray, kAEKeyDescArray);

When your application adds an Apple event array to a descriptor list, it provides the
data for an Apple event array in an array data record, which is defined by the data type
AEAr r ayDat a.

TYPE AEArrayData =
RECORD {data for an Apple event array}
CASE AEArrayType OF
kAEDat aArr ay:
(AEDat aArray: ARRAY[0..0] OF Integer);
kAEPackedAr r ay:
(AEPackedArr ay: PACKED ARRAY[0..0] OF Char);
kAEHand| eArray:
(AEHandl eArr ay: ARRAY[0. .0] OF Handl e);
kAEDescArr ay:
(AEDescArray: ARRAY[0. . 0] OF AEDesc);
kAEKeyDescArray:
(AEKeyDescArray: ARRAY[O0..0] OF AEKeyDesc);
END;

The type of array depends on the data for the array:

Array type Description of Apple event array

KAEDat aAr r ay Array items consist of data of the same size and same type, and
are aligned on word boundaries.

kAEPackedAr r ay Array items consist of data of the same size and same type, and
are packed without regard for word boundaries.

KAEHandl eArr ay Array items consist of handles to data of variable size and the
same type.

KAEDescAr r ay Array items consist of descriptor records of different descriptor

types with data of variable size.

kAEKeyDescAr r ay Array items consist of keyword-specified descriptor records
with different keywords, different descriptor types, and data of
variable size.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

Array items in Apple event arrays of type KAEDat aAr r ay, KAEPackedAr r ay, or
kAEHandl eAr r ay must be factored—that is, contained in a factored descriptor list.
Before adding array items to a factored descriptor list, you should provide both a pointer
to the data that is common to all array items and the size of that common data when you
first call AECr eat eLi st to create a factored descriptor list. When you call AEPut Ar r ay
to add the array data to such a descriptor list, the Apple Event Manager automatically
isolates the common data you specified in the call to AECr eat eLi st .

When you call AEGet Ar r ay or AEPuUt Ar r ay, you specify a pointer of data type
AEAr r ayDat aPoi nt er that points to a buffer containing the data for the array.

TYPE AEArrayDat aPoi nter = “AEArrayDat a;
For more information about using AECr eat eLi st to create factored descriptor lists for

arrays, see page 5-29. For information about using AECGet Ar r ay and AEPut Ar r ay, see
page 4-77 and page 5-32, respectively.

Routines for Responding to Apple Events

This section describes the Apple Event Manager routines you can use to create and
manage the Apple event dispatch tables, dispatch Apple events, extract information
from Apple events, request user interaction, request more time to respond to Apple
events, suspend and resume Apple event handling, delete descriptor records, deallocate
memory for descriptor records, create and manage the coercion handler and special
handler dispatch tables, and get information about the Apple Event Manager.

Because the Apple Event Manager uses the services of the Event Manager, which in turn
uses the services of the PPC Toolbox, the routines described in this section may return
Event Manager and PPC Toolbox result codes in addition to the Apple Event Manager
result codes listed.

Creating and Managing the Apple Event Dispatch Tables

An Apple event dispatch table contains entries that specify the event class and event ID
that refer to one or more Apple events, the address of the handler routine that

handles those Apple events, and a reference constant. You can use the

AEl nst al | Event Handl er function to add entries to the Apple event dispatch table.
This function sets up the initial mapping between the handlers in your application and
the Apple events that they handle.

To get the address of a handler currently in the Apple event dispatch table, use the
AEGet Event Handl er function. If you need to remove any of your Apple event
handlers after the mapping between handlers and Apple events is established, you can
use the AERenoveEvent Handl er function.

Reference to Responding to Apple Events 1-61

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

AEInstallEventHandler

4-62

You can use the AEI nst al | Event Handl er function to add an entry to either your
application’s Apple event dispatch table or the system Apple event dispatch table.

FUNCTI ON AEIl nst al | Event Handl er (theAEEvent Cl ass: AEEvent d ass;
t heAEEvent | D. AEEvent | D,
handl er: Event Handl er ProcPtr;
handl er Ref con: Longl nt;
i sSysHandl er: Bool ean): OSErr;

t heAEEvent O ass
The event class for the Apple event or events to be dispatched for this
entry. The AEEvent O ass data type is defined as a four-character code:

TYPE AEEvent Cl ass = PACKED ARRAY[1..4] OF Char;

t heAEEvent | D
The event ID for the Apple event or events to be dispatched for this entry.
The AEEvent | D data type is defined as a four-character code:

TYPE AEEvent | D = PACKED ARRAY[1..4] OF Char;

handl er A pointer to an Apple event handler for this dispatch table entry. Note
that a handler in the system dispatch table must reside in the system
heap; this means that if the value of the i sSysHand| er parameter is
TRUE, the handler parameter should point to a location in the system
heap. Otherwise, if you put your system handler code in your application
heap, you must use AERenoveEvent Handl er to remove the handler
before your application terminates.

handl er Ref con
A reference constant that is passed by the Apple Event Manager to the
handler each time the handler is called. If your handler doesn’t use a
reference constant, use 0 as the value of this parameter.

i sSysHandl er
Specifies the dispatch table to which you want to add the handler. If the
value of i sSysHandl er is TRUE, the Apple Event Manager adds the
handler to the system Apple event dispatch table. Entries in the system
dispatch table are available to all applications. If the value of
i sSysHandl er is FALSE, the Apple Event Manager adds the handler to
your application’s Apple event dispatch table. The application’s dispatch
table is searched first; the system dispatch table is searched only if the
necessary handler is not found in your application’s dispatch table.

Reference to Responding to Apple Events

DESCRIPTION

CHAPTER 4

Responding to Apple Events

The AEI nst al | Event Handl er function creates an entry in the Apple event dispatch
table. You must supply parameters that specify the event class, the event ID, the address
of the handler that handles Apple events of the specified event class and event ID, and
whether the handler is to be added to the system Apple event dispatch table or your
application’s Apple event dispatch table. You can also specify a reference constant that
the Apple Event Manager passes to your handler whenever your handler processes an
Apple event.

The parameters t heAEEvent Cl ass and t heAEEvent | Dspecify the event class and
event ID of the Apple events to be handled by the handler for this dispatch table entry.
For these parameters, you must provide one of the following combinations:

= the event class and event ID of a single Apple event to be dispatched to the handler

» thetypeW | dCar d constant for t heAEEvent Cl ass and an event ID for
t heAEEvent | D, which indicate that Apple events from all event classes whose event
IDs match t heAEEvent | Dshould be dispatched to the handler

= an event class for t heAEEvent O ass and the t ypeW | dCar d constant for
t heAEEvent | D, which indicate that all events from the specified event class should
be dispatched to the handler

= thetypeW | dCar d constant for both the t heAEEvent Cl ass and t heAEEvent | D
parameters, which indicates that all Apple events should be dispatched to the handler

IMPORTANT

If you use the t ypeW | dCar d constant for either the

t heAEEvent O ass or the t heAEEvent | D parameter (or for both
parameters), the corresponding handler must return the error

er r AEEvent Not Handl ed if it does not handle a particular event. a

If there was already an entry in the specified dispatch table for the same event class and
event ID, it is replaced. Therefore, before installing a handler for a particular Apple event
in the system dispatch table, use the AEGet Event Handl er function (described next) to
determine whether the table already contains a handler for that event. If an entry exists,
AECet Event Handl er returns a reference constant and a pointer to that event handler.
Chain the existing handler to your handler by providing pointers to the previous
handler and its reference constant in the handl er Ref con parameter of

AEl nst al | Event Handl er. When your handler is done, use these pointers to call the
previous handler. If you remove your system Apple event handler, be sure to reinstall
the chained handler.

Reference to Responding to Apple Events 41-63

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Before an application calls a system Apple event handler, system software has set up the
A5 register for the calling application. For this reason, if you provide a system Apple
event handler, it should never use A5 global variables or anything that depends on a
particular context; otherwise, the application that calls the system handler may crash.

noErr 0 No error
par antrr -50 Parameter error (handler pointer is NI L or odd)
menful | Err -108 Not enough room in heap zone

For more information about installing Apple event handlers, see “Installing Entries in
the Apple Event Dispatch Tables,” which begins on page 4-7.

AEGetEventHandler

4-64

You can use the AEGet Event Handl er function to get an entry from an Apple event
dispatch table.

FUNCTI ON AEGet Event Handl er (t heAEEvent C ass: AEEvent d ass;
t heAEEvent | D. AEEvent | D;
VAR handl er: Event Handl er ProcPtr;
VAR handl er Ref con: Longlnt;
i sSysHandl er: Bool ean): OSErr;

t heAEEvent Ol ass
The value of the event class field of the dispatch table entry for the
desired handler.

t heAEEvent | D
The value of the event ID field of the dispatch table entry for the desired
handler.

handl er The AECet Event Handl er function returns, in this parameter, a pointer
to the specified handler.

handl er Ref con
The AEGet Event Handl er function returns, in this parameter, the
reference constant from the dispatch table entry for the specified handler.

Reference to Responding to Apple Events

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 4

Responding to Apple Events

i sSysHandl er
Specifies the Apple event dispatch table from which to get the handler. If
the value of i sSysHandl er is TRUE, the AEGet Event Handl er function
returns the handler from the system dispatch table. If the value is FALSE,
AEGet Event Handl er returns the handler from your application’s
dispatch table.

The AEGet Event Handl er function returns, in the handl er parameter, a pointer to the
handler for the Apple event dispatch table entry you specify in the parameters

t heAEEvent O ass and t heAEEvent | D. You can use the t ypeW | dCar d constant for
either or both of these parameters; however, AEGet Event Handl er returns an error
unless an entry exists that specifies t ypeW | dCar d in exactly the same way. For
example, if you specify t ypeW | dCar d in both the t heAEEvent Cl ass parameter and
the t heAEEvent | D parameter, the Apple Event Manager will not return the first
handler for any event class and event ID in the dispatch table; instead, the dispatch table
must contain an entry that specifies type t ypeW | dCar d for both the event class and the
event ID.

nokErr 0 No error
er r AEHand! er Not Found -1717 No handler found for an Apple event

For an explanation of wildcard values, see the description of the
AEl nst al | Event Handl er function on page 4-62.

AERemoveEventHandler

You can use the AERenpveEvent Handl er function to remove an entry from an Apple
event dispatch table.

FUNCTI ON AERenpveEvent Handl er (t heAEEvent O ass: AEEvent O ass;
t heAEEvent | D. AEEvent | D,
handl er: Event Handl er ProcPtr;
i sSysHandl er: Bool ean): OSErr;

t heAEEvent d ass

The event class for the handler whose entry you want to remove from the
dispatch table.

Reference to Responding to Apple Events 4-65

suang 9|ddy 01 Buipuodsay -

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 4

Responding to Apple Events

t heAEEvent I D
The event ID for the handler whose entry you want to remove from the
Apple event dispatch table.

handl er A pointer to the handler to be removed. Although the parameters
t heAEEvent Cl ass and t heAEEvent | Dwould be sufficient to identify
the handler to be removed, providing the handler parameter is a
recommended safeguard that ensures that you remove the correct
handler. If the value of this parameter is NI L, the Apple Event Manager
relies solely on the event class and event ID to identify the handler to be
removed.

i sSysHandl er
Specifies the dispatch table from which to remove the handler. If the value
of i sSysHandl er is TRUE, AERenpbveEvent Handl er removes the
handler from the system dispatch table. If the value is FALSE,
AERenpveEvent Handl er removes the handler from your application’s
dispatch table.

The AERenpveEvent Handl er function removes the Apple event dispatch table entry
you specify in the parameters t heAEEvent O ass, t heAEEvent | D, and handl er. You
can use the t ypeW | dCar d constant for the t heAEEvent O ass or the t heAEEvent | D
parameter, or for both parameters; however, AERenoveEvent Handl er returns an error
unless an entry exists that specifies t ypeW | dCar d in exactly the same way. For
example, if you specify t ypeW | dCar d in both the t heAEEvent O ass parameter and
the t heAEEvent | D parameter, the Apple Event Manager will not remove the first
handler for any event class and event ID in the dispatch table; instead, the dispatch table
must contain an entry that specifies type t ypeW | dCar d for both the event class and the
event ID.

noErr 0 No error
er r AEHandl er Not Found -1717 No handler found for an Apple event

For an explanation of wildcard values, see the description of the
AEl nst al | Event Handl er function on page 4-62.

Dispatching Apple Events

1-66

After receiving a high-level event (and optionally determining whether it is a type of
high-level event other than an Apple event that your application might support), your
application typically calls the AEPr ocessAppl eEvent function to determine the type
of Apple event received and call the corresponding handler.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AEProcessAppleEvent

DESCRIPTION

You can use the AEPr ocessAppl eEvent function to call the appropriate handler for a
specified Apple event.

FUNCTI ON AEPr ocessAppl eEvent
(theEvent Record: Event Record): OSErr;

t heEvent Record
The event record for the Apple event.

The AEPr ocessAppl eEvent function looks first in the application’s special handler
dispatch table for an entry that was installed with the constant keyPr eDi spat ch. If the
application’s special handler dispatch table does not include such a handler or if the
handler returns er r AEEvent Not Handl ed, the function looks in the application’s Apple
event dispatch table for an entry that matches the event class and event ID of the
specified Apple event.

If the application’s Apple event dispatch table does not include such a handler or if the
handler returns er r AEEvent Not Handl ed, the AEPr ocessAppl eEvent function looks
in the system special handler dispatch table for an entry that was installed with the
constant keyPr eDi spat ch. If the system special handler dispatch table does not
include such a handler or if the handler returns er r AEEvent Not Handl ed, the function
looks in the system Apple event dispatch table for an entry that matches the event class
and event ID of the specified Apple event.

If the system Apple event dispatch table does not include such a handler, the Apple
Event Manager returns the result code er r AEEvent Not Handl ed to the server
application and, if the client application is waiting for a reply, to the client application.

If AEPr ocessAppl eEvent finds an entry in one of the dispatch tables that matches the
event class and event ID of the specified Apple event, it calls the corresponding handler.

SPECIAL CONSIDERATIONS

If an Apple event dispatch table contains one entry for an event class and a specific event
ID, and also contains another entry that is identical except that it specifies a wildcard
value for either the event class or the event ID, the Apple Event Manager dispatches the
more specific entry. For example, if an Apple event dispatch table includes one entry that
specifies the event class as KAECor eSui t e and the event ID as KAEDel et e, and another
entry that specifies the event class as KAECor eSui t e and the event ID as

t ypeW | dCar d, the Apple Event Manager dispatches the Apple event handler
associated with the entry that specifies the event ID as KAEDel et e.

Reference to Responding to Apple Events 4-67

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

RESULT CODES
noErr 0 No error
menful | Err -108 Not enough room in heap zone
bufferlsSmall -607 Buffer is too small
noCut st andi ngHLE -608 No outstanding high-level event
er r AECor r upt Dat a -1702 Data in an Apple event could not be read
er r AENewer Ver si on -1706 Need a newer version of the Apple Event
Manager
er r AEEvent Not Handl ed -1708 Event wasn’t handled by an Apple event
handler
SEE ALSO

For an example of the use of AEPr ocessAppl eEvent, see Listing 4-2 on page 4-6.
For a description of an Apple event handler, see page 4-105.

For more information about event processing, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes

The Apple Event Manager provides four functions that allow you to get data from Apple
event parameters and attributes. The AECGet Par anPt r and AEGet Par anDesc functions
get data from a specified Apple event parameter. The AEGet At t ri but ePt r and

AEGet At t ri but eDesc functions get data from a specified Apple event attribute.

AEGetParamPtr

You can use the AEGet Par anPt r function to get a pointer to a buffer that contains the
data from a specified Apple event parameter.

FUNCTI ON AEGet Par anPtr (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
desiredType: DescType;
VAR typeCode: DescType; dataPtr: Ptr;
maxi nunsi ze: Si ze;
VAR actual Si ze: Size): OSErr;

t heAppl eEvent
The Apple event containing the desired parameter.

t heAEKeywor d
The keyword that specifies the desired parameter.

desiredType
The desired descriptor type for the data to be returned; if the requested
Apple event parameter is not of this type, the Apple Event Manager
attempts to coerce it to this type. If the value of desi r edType

1-68 Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

ist ypeW | dCar d, no coercion is performed, and the descriptor type of
the returned data is the same as the descriptor type of the Apple event
parameter.

typeCode The descriptor type of the returned data.
dat aPtr A pointer to the buffer in which the returned data is stored.

maxi munti ze
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dat aPt r parameter.

actual Si ze
The length, in bytes, of the data for the specified Apple event parameter.
If this value is larger than the value of the maxi munSi ze parameter, not
all of the data for the parameter was returned.

DESCRIPTION
The AECet Par anPt r function uses a buffer to return the data from a specified Apple
event parameter, which it attempts to coerce to the descriptor type specified by the
desi r edType parameter.
RESULT CODES
noErr 0 No error
menful | Err -108 Not enough room in heap zone
er r AECoer ci onFai | -1700 Data could not be coerced to the requested
descriptor type
er r AEDescNot Found -1701 Descriptor record was not found
err AEW ongDat aType -1703 Wrong descriptor type
er r AENot AEDesc -1704 Not a valid descriptor record
err AERepl yNot Arri ved -1718 Reply has not yet arrived
SEE ALSO
For examples of the use of AEGet Par anPt r, see “Getting Data Out of an Apple Event,”
which begins on page 4-25.
AEGetParamDesc

You can use the AEGet Par anDesc function to get the descriptor record for a specified
Apple event parameter.

FUNCTI ON AEGet Par anDesc (t heAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
desiredType: DescType;

VAR result: AEDesc): OSErr;

Reference to Responding to Apple Events 1-69

suang 9|ddy 01 Buipuodsay -

DESCRIPTION

RESULT CODES

SEE ALSO

4-70

CHAPTER 4

Responding to Apple Events

t heAppl eEvent
The Apple event containing the desired parameter.

t heAEKeywor d
The keyword that specifies the desired parameter.

desi redType
The desired descriptor type for the descriptor record to be returned; if the
requested Apple event parameter is not of this type, the Apple Event
Manager attempts to coerce it to this type. If the value of desi r edType is
t ypeW | dCar d, no coercion is performed, and the descriptor type of the
returned data is the same as the descriptor type of the Apple event
parameter.

resul t The descriptor record from the desired Apple event parameter coerced to
the descriptor type specified in desi r edType.

The AEGet Par anDesc function returns, in the r esul t parameter, the descriptor record
for a specified Apple event parameter, which it attempts to coerce to the descriptor type
specified by the desi r edType parameter. Your application should call the

AEDi sposeDesc function to dispose of the resulting descriptor record after your
application has finished using it.

If AEGet Par anDesc returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

NoErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AECoer ci onFai | -1700 Data could not be coerced to the requested
descriptor type

er r AEDescNot Found -1701 Descriptor record was not found

er r AENot AEDesc -1704 Not a valid descriptor record

err AERepl yNot Arri ved -1718 Reply has not yet arrived

For an example of the use of AEGet Par anDesc, see “Getting Data Out of an Apple
Event Parameter,” which begins on page 4-26.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AEGetAttributePitr

DESCRIPTION

You can use the AEGet At t ri but ePt r function to get a pointer to a buffer that contains
the data from a specified Apple event attribute.

FUNCTI ON AEGet Attri butePtr (theAppl eEvent: Appl eEvent;

t heAEKeywor d: AEKeywor d;

desiredType: DescType;

VAR typeCode: DescType; dataPtr: Ptr;
maxi nunti ze: Size;

VAR actual Si ze: Size): OSErr;

t heAppl eEvent

t he AEKeywor

desiredType

t ypeCode
dataPtr

maxi munti ze

actual Si ze

The AEGet At t

The Apple event containing the desired attribute.

d
The keyword that specifies the desired attribute.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description that
follows.

The desired descriptor type for the data to be returned; if the requested
Apple event attribute is not of this type, the Apple Event Manager
attempts to coerce it to this type. If the value of desi r edType is

t ypeW | dCar d, no coercion is performed, and the descriptor type of the
returned data is the same as the descriptor type of the Apple event
attribute.

The descriptor type of the returned data.

A pointer to the buffer in which the returned data is stored.

The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dat aPt r parameter.

The length, in bytes, of the data for the specified Apple event attribute. If
this value is larger than the value of the maxi muni ze parameter, not all
of the data for the attribute was returned.

ri butePtr function uses a buffer to return the data from an Apple event

attribute with the specified keyword, which it attempts to coerce to the descriptor type
specified by the desi r edType parameter. You can specify the parameter

t he AEKeyWor

d using any of these constants:

Reference to Responding to Apple Events 4-71

suang 9|ddy 01 Buipuodsay -

RESULT CODES

SEE ALSO

4-72

CHAPTER 4

Responding to Apple Events

CONST
keyAddr essAttr =

keyEvent Cl assAttr =
keyEvent | DAt tr =
keyEvent Sour ceAttr =

keyl nteract Level Attr =

keyM ssedKeywor dAt t r =

keyOpti onal KeywordAttr =

keyOri gi nal AddressAttr

keyRet urnl DAt t r =

keyTi meout At tr =

keyTransacti onl DAttr

noErr 0
nmenful | Err -108
er r AECoer ci onFai | -1700
er r AEDescNot Found -1701
er r AENot AEDesc -1704

err AERepl yNot Arri ved -1718

addr'; {address of target or }
{ client application}

evcl'; {event class}

evid ; {event |ID}

esrc'; {nature of source }
{ application}

inte'; {settings to allow the }
{ Apple Event Manager to }
{ bring server application }
{ to the foreground}

mss'; {first required paraneter }
{ remaining in Apple event}

optk'; {list of optional }
{ paraneters for Apple }
{ event}

from; {address of original source }
{ of Apple event; avail able }
{ beginning with version }
{ 1.01 of Apple Event }
{ Manager}

rtid ; {return ID for reply Apple }
{ event}

tino'; {length of time in ticks }
{ that client will wait }
{ for reply or result from}
{ the server}

tran'; {transaction ID identifying }
{ a series of Apple events}

No error

Not enough room in heap zone

Data could not be coerced to the requested
descriptor type

Descriptor record was not found

Not a valid descriptor record

Reply has not yet arrived

For an example of the use of the AEGet At t ri but ePt r function, see “Getting Data Out
of an Attribute” and “Writing Apple Event Handlers,” which begin on page 4-28 and

page 4-33, respectively.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AEGetAttributeDesc

DESCRIPTION

RESULT CODES

You can use the AEGet At t ri but eDesc function to get the descriptor record for a
specified Apple event attribute.

FUNCTI ON AEGet Attri but eDesc (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
desiredType: DescType;

VAR result: AEDesc): OSErr;

t heAppl eEvent
The Apple event containing the desired attribute.

t heAEKeywor d
The keyword that specifies the desired attribute.

TYPE AEKeyword = PACKED ARRAY[1l..4] OF Char;

The keyword can be any of the constants listed in the description of
AEGet Attri but ePtr on page 4-71.

desiredType
The desired descriptor type for the descriptor record to be returned; if the
requested Apple event attribute is not of this type, the Apple Event
Manager attempts to coerce it to this type. If the value of desi r edType is
t ypeW | dCar d, no coercion is performed, and the descriptor type of the
returned data is the same as the descriptor type of the Apple event
attribute.

resul t A copy of the descriptor record from the desired attribute coerced to the
descriptor type specified by the desi r edType parameter.

The AEGet At t ri but eDesc function returns, in the r esul t parameter, the descriptor
record for the Apple event attribute with the specified keyword. Your application should
call the AEDi sposeDesc function to dispose of the resulting descriptor record after your
application has finished using it.

If AEGet At t ri but eDesc returns a nonzero result code, it returns a null descriptor
record unless the Apple Event Manager is not available because of limited memory.

noErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AECoer ci onFai | -1700 Data could not be coerced to the requested
descriptor type

er r AEDescNot Found -1701 Descriptor record was not found

er r AENot AEDesc -1704 Not a valid descriptor record

err AERepl yNot Arri ved -1718 Reply has not yet arrived

Reference to Responding to Apple Events 4-73

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Counting the Items in Descriptor Lists

The AECount | t ems function counts the number of descriptor records in any descriptor
list, including an Apple event record.

AECountltems

RESULT CODES

SEE ALSO

You can use the AECount | t ens function to count the number of descriptor records in
any descriptor list.

FUNCTI ON AECount I tens (theAEDesclLi st: AEDesclLi st;
VAR t heCount: Longlnt): OSErr;

t heAEDescLi st
The descriptor list to be counted.

t heCount The AECount | t ens function returns the number of descriptor records in
the specified descriptor list in this parameter.

nokErr 0 No error
er r AENot AEDesc -1704 Not a valid descriptor record

For an example of the use of AECount | t ens, see “Getting Data Out of a Descriptor
List,” which begins on page 4-31.

Getting Items From Descriptor Lists

4-74

The Apple Event Manager provides three functions that allow you to get items from any
descriptor list, including an Apple event record. The AEGet Nt hPt r and AEGet Nt hDesc
functions give you access to the data in a descriptor list. The AEGet Ar r ay function gets
data from an array contained in a descriptor list.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AEGetNthPtr

You can use the AEGet Nt hPt r function to get a pointer to a buffer that contains a copy
of a descriptor record from any descriptor list.

FUNCTI ON AEGet Nt hPt r (t heAEDescLi st: AEDesclLi st; index: Longlnt;
desiredType: DescType;
VAR t heAEKeywor d: AEKeywor d;
VAR typeCode: DescType; dataPtr: Ptr;
maxi nunti ze: Size;
VAR act ual Si ze: Size): OSErr;

t heAEDesclLi st
The descriptor list containing the desired descriptor record.

i ndex The position of the desired descriptor record in the list (for example, 2
specifies the second descriptor record).

desiredType
The desired descriptor type for the copy of the descriptor record to be
returned; if the desired descriptor record is not of this type, the Apple
Event Manager attempts to coerce it to this type. If the value of
desi redType ist ypeW | dCar d, no coercion is performed, and
the descriptor type of the copied descriptor record is the same as the
descriptor type of the original descriptor record.

t heAEKeywor d
The keyword of the specified descriptor record, if you are getting data
from a list of keyword-specified descriptor records; otherwise,
AEGet Nt hPt r returns the valuet ypeW | dCar d.

typeCode The descriptor type of the returned descriptor record.
dat aPtr A pointer to the buffer in which the returned descriptor record is stored.

maxi munti ze
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dat aPt r parameter.

actual Si ze
The length, in bytes, of the data for the specified descriptor record. If this
value is larger than the value of the maxi nunSi ze parameter, not all of
the data for the descriptor record was returned.

DESCRIPTION

The AEGet Nt hPt r function uses a buffer to return a specified descriptor record from a
specified descriptor list; the function attempts to coerce the descriptor record to the
descriptor type specified by the desi r edType parameter.

Reference to Responding to Apple Events 4-75

suang 9|ddy 01 Buipuodsay -

RESULT CODES

SEE ALSO

CHAPTER 4

Responding to Apple Events

noErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AECoer ci onFai | -1700 Data could not be coerced to the requested
descriptor type

er r AEDescNot Found -1701 Descriptor record was not found

err AEW ongDat aType -1703 Wrong descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

err AERepl yNot Arri ved -1718 Reply has not yet arrived

For an example of the use of AEGet Nt hPt r, see Listing 4-10 on page 4-33.

AEGetNthDesc

4-76

You can use the AEGet Nt hDesc function to get a copy of a descriptor record from any
descriptor list.

FUNCTI ON AEGet Nt hDesc (t heAEDesclLi st: AEDescLi st; index: Longlnt;
desiredType: DescType;
VAR t heAEKeywor d: AEKeywor d;
VAR result: AEDesc): OSErr;

t heAEDesclLi st
The descriptor list containing the desired descriptor record.

i ndex The position of the desired descriptor record in the list (for example, 2
specifies the second descriptor record).

desiredType
The desired descriptor type for the copy of the descriptor record to be
returned; if the desired descriptor record is not of this type, the Apple
Event Manager attempts to coerce it to this type. If the value of
desi redTypeistypeW | dCar d, no coercion is performed, and the
descriptor type of the copied descriptor record is the same as
the descriptor type of the original descriptor record.

t heAEKeywor d
The keyword of the specified descriptor record, if you are getting data
from a list of keyword-specified descriptor records; otherwise,
AEGet Nt hDesc returns the value t ypeW | dCar d.

resul t A copy of the desired descriptor record coerced to the descriptor type
specified by the desi r edType parameter.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

DESCRIPTION
The AEGet Nt hDesc function returns a specified descriptor record from a specified
descriptor list.Your application should call the AEDi sposeDesc function to dispose of
the resulting descriptor record after your application has finished using it.
If AEGet Nt hDesc returns a nonzero result code, it returns a descriptor record of
descriptor type t ypeNul | . A descriptor record of this type does not contain any data.
RESULT CODES
noErr 0 No error
menful | Err -108 Not enough room in heap zone
er r AECoer ci onFai | -1700 Data could not be coerced to the requested
descriptor type
er r AEDescNot Found -1701 Descriptor record was not found
er r AENot AEDesc -1704 Not a valid descriptor record
err AERepl yNot Arri ved -1718 Reply has not yet arrived
AEGetArray

You can use the AEGet Ar r ay function to convert an Apple event array (an array created
with the AEPut Ar r ay function and stored in a descriptor list) to the corresponding
Pascal or C array and place the converted array in a buffer for which you have provided
a pointer.

FUNCTI ON AEGet Array (theAEDescLi st: AEDesclLi st;
arrayType: AEArrayType;
arrayPtr: AEArrayDat aPoi nter;
maxi nunsi ze: Size;
VAR i temlype: DescType; VAR itenfsize: Size;
VAR itenCount: Longlnt): OSErr;

t heAEDescLi st
A descriptor list containing the desired array. If the array is of type
kAEDat aAr r ay, KAEPackedAr r ay, or KAEHandl eAr r ay, the descriptor
list must be factored.

arrayType The Apple event array type to be converted. This is specified by one of the
following constants: KAEDat aAr r ay, kAEPackedAr r ay,
kAEHand| eAr r ay, KAEDescAr r ay, or KAEKeyDescAr r ay.

arrayPtr A pointer to the buffer for storing the array.

maxi nunsi ze
The maximum length, in bytes, of the buffer for storing the array.

i tenmlype For arrays of type kAEDat aAr r ay, kAEPackedAr r ay, or
kAEHandl eAr r ay, the AEGet Ar r ay function returns the descriptor type
of the returned array items in this parameter.

Reference to Responding to Apple Events 4-77

suang 9|ddy 01 Buipuodsay -

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 4

Responding to Apple Events

itenSi ze For arrays of type KAEDat aAr r ay or KAEPackedAr r ay, the
AEGet Ar r ay function returns the size (in bytes) of the returned array
items in this parameter.

i temCount The AEGet Arr ay function returns the number of items in the resulting
array in this parameter.

The AECet Ar r ay function uses a buffer identified by the pointer in the ar rayPt r
parameter to return the converted data for the Apple event array specified by the

t heAEDescLi st parameter. Even if the descriptor list that contains the array is
factored, the converted data for each array item includes the data common to all the
descriptor records in the list. The Apple Event Manager automatically reconstructs
the common data for each item when you call AEGet Ar r ay.

nokErr 0 No error

mentul | Err -108 Not enough room in heap zone
err AEW ongDat aType -1703 Wrong descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

err AERepl yNot Arri ved -1718 Reply has not yet arrived

For more information about data types and constants used with AEGet Ar r ay, see
“Apple Event Array Data Types” on page 4-60.

For information about creating and factoring descriptor lists for Apple event arrays, see
the description of AECr eat eLi st on page 5-29. For information about adding an Apple
event array to a descriptor list, see the description of AEPut Ar r ay on page 5-32.

Getting Data and Keyword-Specified Descriptor Records Out of AE Records

4-78

The Apple Event Manager provides two functions, AEGet KeyPt r and AEGet KeyDesc,
that allow you to get data and descriptor records out of an AE record or an Apple event
record.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AEGetKeyPtr

DESCRIPTION

You can use the AEGet KeyPt r function to get a pointer to a buffer that contains the data
from a keyword-specified descriptor record. You can use this function to get data from
an AE record or an Apple event record.

FUNCTI ON AEGet KeyPtr (theAERecord: AERecord;

t heAERecord

t he AEKeywor

desiredType

t ypeCode
dataPtr

maxi munti ze

actual Si ze

t heAEKeywor d: AEKeywor d;
desiredType: DescType;

VAR typeCode: DescType;

dataPtr: Ptr; maxi nunSize: Size;
VAR act ual Si ze: Size): OSErr;

The AE record containing the desired data.

d
The keyword that specifies the desired descriptor record.

The desired descriptor type for the data to be returned; if the requested
data is not of this type, the Apple Event Manager attempts to coerce it to
this type. If the value of desi r edType is t ypeW | dCar d, no coercion is
performed, and the descriptor type of returned data is the same as the
descriptor type of the original data.

The descriptor type of the returned data.
A pointer to the buffer for storing the data.

The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dat aPt r parameter.

The length, in bytes, of the data for the keyword-specified descriptor
record. If this value is larger than the value of the maxi nunsi ze
parameter, not all of the data for the parameter was returned.

The AECet KeyPt r function uses a buffer to return the data from a keyword-specified
Apple event parameter, which the function attempts to coerce to the descriptor type
specified by the desi r edType parameter.

Reference to Responding to Apple Events 4-79

suang 9|ddy 01 Buipuodsay -

RESULT CODES

CHAPTER 4

Responding to Apple Events

noErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AECoer ci onFai | -1700 Data could not be coerced to the requested
descriptor type

er r AEDescNot Found -1701 Descriptor record was not found

err AEW ongDat aType -1703 Wrong descriptor type

er r AENot AEDesc -1704 Not a valid descriptor record

err AERepl yNot Arri ved -1718 Reply has not yet arrived

AEGetKeyDesc

DESCRIPTION

4-80

You can use the AEGet KeyDesc function to get the descriptor record for a
keyword-specified descriptor record. You can use this function to get a descriptor record
out of an AE record or an Apple event record.

FUNCTI ON AEGet KeyDesc (t heAERecord: AERecord;
t heAEKeywor d: AEKeywor d;
desiredType: DescType;
VAR result: AEDesc): OSErr;

t heAERecor d
The AE record containing the desired descriptor record.

t heAEKeywor d
The keyword that specifies the desired descriptor record.

desiredType
The desired descriptor type for the descriptor record to be returned; if the
requested descriptor record is not of this type, the Apple Event Manager
attempts to coerce it to this type. If the value of desi r edType is
t ypeW | dCar d, no coercion is performed, and the descriptor type of
the returned descriptor record is the same as the descriptor type of the
original descriptor record.

resul t A copy of the keyword-specified descriptor record, coerced to the
descriptor type specified in the desi r edType parameter.

The AECet KeyDesc function returns a copy of the descriptor record for a
keyword-specified descriptor record. Your application should call the AEDi sposeDesc
function to dispose of the resulting descriptor record after your application has finished
using it.

If AEGet KeyDesc returns a nonzero result code, it returns a descriptor record of
descriptor type t ypeNul | . A descriptor record of this type does not contain any data.

Reference to Responding to Apple Events

RESULT CODES

CHAPTER 4

Responding to Apple Events

noErr 0 No error

menful | Err -108 Not enough room in heap zone

er r AECoer ci onFai | -1700 Data could not be coerced to the requested
descriptor type

er r AEDescNot Found -1701 Descriptor record was not found

er r AENot AEDesc -1704 Not a valid descriptor record

err AERepl yNot Arri ved -1718 Reply has not yet arrived

Requesting User Interaction

The Apple Event Manager provides three functions that allow you to set or request user
interaction levels and to initiate user interaction when your application is the server
application. The AESet | nt er act i onAl | owed and AEGet | nt er acti onAl | owed
functions specify and return, respectively, the current user interaction preferences. Your
application should call the AEI nt er act W t hUser function before actually interacting
with the user in response to an Apple event.

AESetInteractionAllowed

DESCRIPTION

You can use the AESet | nt er act i onAl | owed function to specify your application’s
user interaction preferences for responding to an Apple event.

FUNCTI ON AESet | nt eracti onAl | owed
(level: AEInteractAllowed): OSErr;

| evel The user interaction level to be set.

The AESet | nt er act i onAl | owed function sets the user interaction level for a server
application’s response to an Apple event. The | evel parameter must be one of three
flags: KAEI nt er act Wt hSel f, kAEI nt er act Wt hLocal , or KAEI nt eract Wt hAI | .

Specifying the KAEI nt er act Wt hSel f flag allows the server application to interact
with the user in response to an Apple event only when the client application and server
application are the same—that is, only when the application is sending the Apple event
to itself.

Specifying the KAEI nt er act Wt hLocal flag allows the server application to
interact with the user in response to an Apple event only if the client application
is on the same computer as the server application; this is the default if the
AESet | nt eracti onAl | owed function is not used.

Specifying the KAEI nt er act Wt hAl | flag allows the server application to interact with
the user in response to an Apple event sent from any client application on any computer.

Reference to Responding to Apple Events 4-81

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

RESULT CODE
noErr 0 No error

SEE ALSO

For more information about setting user preferences for a server application, see “Setting
the Server Application’s User Interaction Preferences” on page 4-48.

AEGetInteractionAllowed

You can use the AEGet | nt er act i onAl | owed function to get the current user
interaction preferences for responding to an Apple event.

FUNCTI ON AECet | nt er acti onAl | owed
(VAR |l evel: AEInteractAllowed): OSErr;

| evel The current user interaction level, using the data type
AEIl nt er act Al | owed.

TYPE AEl nteract Al l owed = (kAEInteract WthSel f,
kAEI nt eract Wt hLocal ,
KAEl nteract Wt hAl) ;

DESCRIPTION

The AECet | nt er act i onAl | owed function returns, in the | evel parameter, a value
that indicates the user interaction preferences for responding to an Apple event. The
value, set by a previous call to AESet | nt er act i onAl | owed, is one of the following
flags: KAEI nt er act Wt hSel f, kAEl nt er act Wt hLocal , or KAEI nt eract Wt hAl | .
The default value of KAEI nt er act Wt hLocal is returned if your application has not
used AESet | nt er act i onAl | owed to set the interaction level explicitly.

The KAEI nt eract Wt hSel f flag indicates that the server application may interact with
the user in response to an Apple event only when the client application and server
application are the same—that is, only when the application is sending the Apple event
to itself.

The KAEI nt er act W t hLocal flag indicates that the server application may interact
with the user in response to an Apple event only if the client application is on the same
computer as the server application. This is the default if your application has not used
the AESet | nt er act i onAl | owed function to set the interaction level explicitly.

The KAEI nt eract Wt hAl | flag indicates that the server application may interact with
the user in response to an Apple event sent from any client application on any computer.

RESULT CODE
noErr 0 No error

4-82 Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AEInteractWithUser

DESCRIPTION

You can use the AEI nt er act Wt hUser function to initiate interaction with the user
when your application is a server application responding to an Apple event.

FUNCTI ON AEl nteract Wt hUser (tinmeQutlnTicks: Longlnt;
nnReqPtr: NVRecPtr;
idleProc: IdleProchPtr): OSErr

ti meQut I nTi cks
The amount of time (in ticks) that your handler is willing to wait for a
response from the user. You can specify a number of ticks or use one of
the following constants:

CONST kAEDef aul t Ti neout

-1; {value determ ned }
{ by AEM

-2; {wait until reply }
{ cones back}

kNoTi meCut

nnReqPt r A pointer to a Notification Manager record provided by your application.
You can specify NI L for this parameter to get the default notification
handling provided by the Apple Event Manager.

i dl eProc A pointer to your application’s idle function, which handles events while
waiting for the Apple Event Manager to return control.

Your application should call the AEI nt er act W t hUser function before displaying a
dialog box or alert box or otherwise interacting with the user in response to an Apple
event. If the user interaction preference settings permit the application to come to the
foreground, this function brings your application to the front, either directly or by
posting a notification request.

Your application should normally pass a notification record in the nnmReqPt r parameter
rather than specifying NI L for default notification handling. If you specify NI L, the
Apple Event Manager looks for an application icon with the ID specified by the
application’s bundle (" BNDL') resource and the application’s file reference (' FREF')
resource. The Apple Event Manager first looks foran ' SI CN' resource with the
specified ID; if it can’t find an' SI CN' resource, it looks for the ' | CN#' resource and
compresses the icon to fit in the menu bar. The Apple Event Manager won't look for any
members of an icon family other than the icon specified in the ' | CN#' resource.

If the application doesn’t have' SI CN' or' | CN#' resources, or if it doesn’t have a file
reference resource, the Apple Event Manager passes NI L to the Notification Manager,
and no icon appears in the upper-right corner of the screen. Therefore, if you want to
display any icon other than those of type' SI CN' or' | CN#' , you must specify a
notification record as the second parameter to the AEl nt er act Wt hUser function.

Reference to Responding to Apple Events 4-83

suang 9|ddy 01 Buipuodsay -

RESULT CODES

SEE ALSO

CHAPTER 4

Responding to Apple Events

Note

If you want the Notification Manager to use a color icon when it posts a
notification request, you should provide a Notification Manager record
that specifiesa' ci cn' resource. O

The AEI nt er act W t hUser function checks whether the client application set the
KAENever | nt er act flag for the Apple event and, if so, returns an error. If not, then
the AEI nt er act Wt hUser function checks the server application’s preference set

by the AESet | nt er act i onAl | owed function and compares it against the source of the
Apple event—that is, whether it came from the same application, another process on the
same computer, or a process running on another computer. The AEI nt er act W t hUser
function returns the er r AENoUser | nt er act i on result code if the user interaction
preferences don’t allow user interaction. If user interaction is allowed, the Apple Event
Manager brings your application to the front, either directly or by posting a notification
request. If AEI nt er act W t hUser returns the noEr r result code, then your application
is in the foreground and is free to interact with the user.

noErr 0 No error
er r AETi meout -1712 Apple event timed out
err AENoUser | nt eracti on -1713 No user interaction allowed

For information about idle functions, see “Writing an Idle Function” on page 5-22.

For examples of the use of the AEI nt er act Wt hUser function, see “Interacting With
the User,” which begins on page 4-45.

Requesting More Time to Respond to Apple Events

The AEReset Ti ner function resets the timeout value for an Apple event to its starting
value. A server application can call this function when it knows it cannot fulfill a client
application’s request (either by returning a result or by sending back a reply Apple
event) before the client application is due to time out.

AEResetTimer

4-84

You can use the AEReset Ti ner function to reset the timeout value for an Apple event
to its starting value.

FUNCTI ON AEReset Ti mer (reply: Appl eEvent): OSErr;

Reference to Responding to Apple Events

DESCRIPTION

RESULT CODE

CHAPTER 4

Responding to Apple Events

reply The default reply for an Apple event, provided by the Apple Event
Manager.

When your application calls AEReset Ti ner, the Apple Event Manager for the server
application uses the default reply to send a Reset Timer event to the client application;
the Apple Event Manager for the client application’s computer intercepts this Apple
event and resets the client application’s timer for the Apple event. (The Reset Timer
event is never dispatched to a handler, so the client application does not need a handler
for it.)

nokrr 0 No error
er r AERepl yNot Val i d -1709 AEReset Ti mer was passed an invalid reply

Suspending and Resuming Apple Event Handling

When your application calls AEPr ocessAppl eEvent and one of your event handlers is
invoked, the Apple Event Manager normally assumes that your application has finished
handling the event when the event handler returns. At this point, the Apple Event
Manager disposes of the event. However, some applications, such as multi-session
servers or any applications that implement their own internal event queueing, may need
to defer handling of the event.

The AESuspendTheCur r ent Event , AEResumeTheCur r ent Event,

AESet TheCur r ent Event, and AEGet TheCur r ent Event functions described in this
section allow you to suspend and resume Apple event handling, specify the Apple event
to be handled, and identify an Apple event that is currently being handled.

AESuspendTheCurrentEvent

You can use the AESuspendTheCur r ent Event function to suspend the processing of
the Apple event that is currently being handled.

FUNCTI ON AESuspendTheCur r ent Event
(t heAppl eEvent: Appl eEvent): OSErr;

t heAppl eEvent
The Apple event whose handling is to be suspended. Although the Apple
Event Manager doesn’t need this parameter to identify the Apple event
currently being handled, providing it is a safeguard that you are
suspending the correct Apple event.

Reference to Responding to Apple Events 4-85

suang 9|ddy 01 Buipuodsay -

DESCRIPTION

CHAPTER 4

Responding to Apple Events

After a server application makes a successful call to the AESuspendTheCur r ent Event
function, it is no longer required to return a result or a reply for the Apple event

that was being handled. It can, however, return a result if it later calls the
AEResureTheCur r ent Event function to resume event processing.

The Apple Event Manager does not automatically dispose of Apple events that have
been suspended or their default replies. (The Apple Event Manager does, however,
automatically dispose of a previously suspended Apple event and its default reply

if the server later resumes processing of the Apple event by calling the
AEResuneTheCur r ent Event function.) If your server application does not resume
processing of a suspended Apple event, it is responsible for using the AEDi sposeDesc
function to dispose of both the Apple event and its default reply when your application
has finished using them.

SPECIAL CONSIDERATIONS

RESULT CODE

If your application suspends handling of an Apple event it sends to itself, the Apple
Event Manager immediately returns from the AESend call with the error code

er r AETi meout, regardless of whether the KAEQueueRepl y, KAEWAI t Repl y, or
KAENoRepl y flags were set, even if the t i Nneout parameter is set to KNoTi meCut .

The routine calling AESend should take the timeout error as confirmation that the event
was sent.

As with other calls to AESend that return a timeout error, the handler continues to
process the event nevertheless. The handler’s reply, if any, is provided in the reply event
when the handling is completed. The Apple Event Manager provides no notification that
the reply is ready. If no data has yet been placed in the reply event, the Apple Event
Manager returns er r AERepl yNot Ar r i ved when your application attempts to extract
data from the reply.

noErr 0 No error

AEResumeTheCurrentEvent

1-86

You can use the AEResunmeTheCur r ent Event function to inform the Apple Event
Manager that your application wants to resume the handling of a previously suspended
Apple event or that it has completed the handling of the Apple event.

FUNCTI ON AEResuneTheCur r ent Event
(theAppl eEvent, reply: Appl eEvent;
di spat cher: Event Handl er ProcPtr;
handl er Ref con: Longlnt): OSErr;

Reference to Responding to Apple Events

DESCRIPTION

CHAPTER 4

Responding to Apple Events

t heAppl eEvent
The Apple event to be resumed.

reply The default reply provided by the Apple Event Manager for the
Apple event.

di spat cher
One of the following:

= a pointer to a routine for handling the event

= the KAEUseSt andar dDi spat ch constant, which tells the Apple
Event Manager to dispatch the resumed event using the standard
dispatching scheme it uses for other Apple events

= the KAENoDi spat ch constant, which tells the Apple Event Manager
that the Apple event has been completely processed and need not be
dispatched

handl er Ref con
If the value of the di spat cher parameter is not
KAEUseSt andar dDi spat ch, this parameter is the reference
constant passed to the handler when the handler is called. If the
value of the di spat cher parameter is KAEUseSt andar dDi spat ch,
the Apple Event Manager ignores the handl er Ref con parameter
and instead passes the reference constant stored in the Apple event
dispatch table entry for the Apple event. (You may wish to pass the
same reference constant that is stored in the Apple event dispatch
table. If so, call the AEGet Event Handl er function.)

When your application calls the AEResumeTheCur r ent Event function, the Apple
Event Manager resumes handling the specified Apple event using the handler specified
in the di spat cher parameter, if any. If KAENoDi spat ch is specified in the

di spat cher parameter, AEResunmeTheCur r ent Event simply informs the Apple
Event Manager that the specified event has been handled.

SPECIAL CONSIDERATIONS

An Apple event handler that suspends an event should not immediately call
AEResunmeTheCur r ent Event, or else the handler will generate an error. Instead, the
handler should return just after suspending the event.

When your application calls AEResuneTheCur r ent Event for an event that was not
directly dispatched, the Apple Event Manager disposes of the event and the reply,
just as it normally does, after the event handler returns to AEPr ocessAppl eEvent .
Make sure all processing involving the event or the reply has been completed

before your application calls AEResumeTheCur r ent Event . Do not call
AEResunmeTheCurr ent Event for an event that was not suspended.

Reference to Responding to Apple Events 4-87

suang 9|ddy 01 Buipuodsay -

RESULT CODE

CHAPTER 4

Responding to Apple Events

When your application calls AEResuneTheCur r ent Event for an event that was
directly dispatched, your application is responsible for disposing of the original event
and the reply, since it is acts as both the server and the client.

noErr 0 No error

AESetTheCurrentEvent

DESCRIPTION

RESULT CODE

4-88

You can use the AESet TheCur r ent Event function to specify the Apple event to be
handled.

FUNCTI ON AESet TheCurrent Event (theAppl eEvent: Appl eEvent): OSErr;

t heAppl eEvent
The Apple event to be handled.

There is usually no reason for your application to use the AESet TheCur r ent Event
function. Instead of calling this function, your application should let the Apple Event
Manager set the current Apple event through the dispatch tables.

If you need to avoid the dispatch tables, you must use the AESet TheCur r ent Event
function only in the following way:

1. Your application suspends handling of an Apple event by calling the
AESuspendTheCur r ent Event function.

2. Your application calls the AESet TheCur r ent Event function. This informs the Apple
Event Manager that your application is handling the suspended Apple event. In this
way, any routines that call the AEGet TheCur r ent Event function can ascertain
which event is currently being handled.

3. When your application finishes handling the Apple event, it calls the
AEResuneTheCur r ent Event function with the value KAENoDi spat ch to tell the
Apple Event Manager that the event has been processed and need not be dispatched.

noErr 0 No error

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AEGetTheCurrentEvent

DESCRIPTION

RESULT CODE

You can use the AEGet TheCur r ent Event function to get the Apple event that is
currently being handled.

FUNCTI ON AECet TheCur r ent Event
(VAR t heAppl eEvent: Appl eEvent): OSErr;

t heAppl eEvent
The Apple event that is currently being handled; if no Apple event is
currently being handled, AEGet TheCur r ent Event returns a null
descriptor record in this parameter.

In many applications, the handling of an Apple event involves one or more long chains
of calls to internal routines. The AEGet TheCur r ent Event function makes it
unnecessary for these calls to include the current Apple event as a parameter; the
routines can simply call AEGet TheCur r ent Event to get the current Apple event when
it is needed.

You can also use the AEGet TheCur r ent Event function to make sure that no

Apple event is currently being handled. For example, suppose your application

always uses an application-defined routine to delete a file. That routine can first call
AEGet TheCur r ent Event and delete the file only if AEGet TheCur r ent Event returns
a null descriptor record (that is, only if no Apple event is currently being handled).

noErr 0 No error

Getting the Sizes and Descriptor Types of Descriptor Records

The Apple Event Manager provides four routines that allow you to get the sizes and
descriptor types of descriptor records that are not part of an Apple event record. The
AESi zeOf Nt hl t emfunction returns the size and descriptor type of a descriptor record
in a descriptor list. The AESi zeOf KeyDesc function returns the size and descriptor type
of a keyword-specified descriptor record in an AE record. You can get the size and
descriptor type of an Apple event parameter or Apple event attribute using the

AESi zeOf Par amand AESi zeCOf At t ri but e functions.

Reference to Responding to Apple Events 4-89

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

AESizeOfNthltem

You can use the AESi zeOf Nt hl t emfunction to get the size and descriptor type of a
descriptor record in a descriptor list.

FUNCTI ON AESi zeOF Nt hlt em (t heAEDescLi st: AEDescli st;
i ndex: Longlnt; VAR typeCode: DescType;
VAR dat aSi ze: Size): OSErr;

t heAEDesclLi st
The descriptor list containing the descriptor record.

i ndex The position of the descriptor record in the list (for example, 2 specifies
the second descriptor record).

typeCode The descriptor type of the descriptor record.
dat aSi ze The length (in bytes) of the data in the descriptor record.

RESULT CODES
noErr 0 No error
er r AEDescNot Found -1701 Descriptor record was not found
err AERepl yNot Arri ved -1718 Reply has not yet arrived
AESizeOfKeyDesc

You can use the AESi zeOf KeyDesc function to get the size and descriptor type of a
keyword-specified descriptor record in an AE record.

FUNCTI ON AESi zeOf KeyDesc (t heAERecord: AERecord;
t heAEKeywor d: AEKeywor d;
VAR t ypeCode: DescType;
VAR dat aSi ze: Size): OSErr;

t heAERecor d
The AE record containing the desired keyword-specified descriptor
record.

t heAEKeywor d
The keyword that specifies the desired descriptor record.

typeCode The descriptor type of the keyword-specified descriptor record.
dataSi ze The length, in bytes of the data in the keyword-specified descriptor record.

4-90 Reference to Responding to Apple Events

RESULT CODES

CHAPTER 4

Responding to Apple Events

noErr 0 No error
er r AEDescNot Found -1701 Descriptor record was not found
er r AENot AEDesc -1704 Not a valid descriptor record

err AERepl yNot Arri ved -1718 Reply has not yet arrived

AESizeOfParam

RESULT CODES

You can use the AESi zeOf Par amfunction to get the size and descriptor type of an
Apple event parameter.

FUNCTI ON AESi zeOf Par am (t heAppl eEvent: Appl eEvent; theAEKeywor d:
AEKeywor d; VAR typeCode: DescType;
VAR dat aSi ze: Size): OSErr;

t heAppl eEvent
The Apple event containing the parameter.

t heAEKeywor d
The keyword that specifies the desired parameter.

typeCode The descriptor type of the Apple event parameter.
dat aSi ze The length, in bytes, of the data in the Apple event parameter.

noErr 0 No error
er r AEDescNot Found -1701 Descriptor record was not found
er r AENot AEDesc -1704 Not a valid descriptor record

err AERepl yNot Arri ved -1718 Reply has not yet arrived

AESizeOfAttribute

You can use the AESi zeOf At t ri but e function to get the size and descriptor type of an
Apple event attribute.

FUNCTI ON AESi zeOF Attri bute (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
VAR typeCode: DescType;
VAR dat aSi ze: Size): OSErr;

t heAppl eEvent
The Apple event containing the desired attribute.

Reference to Responding to Apple Events 4-91

suang 9|ddy 01 Buipuodsay -

RESULT CODES

CHAPTER 4

Responding to Apple Events

t heAEKeywor d
The keyword that specifies the attribute.

typeCode The descriptor type of the attribute.
dat aSi ze The length, in bytes, of the data in the attribute.

NnoErr 0 No error
er r AEDescNot Found -1701 Descriptor record was not found
er r AENot AEDesc -1704 Not a valid descriptor record

err AERepl yNot Arri ved -1718 Reply has not yet arrived

Deleting Descriptor Records

The Apple Event Manager provides three functions that allow you to delete descriptor
records. The AEDel et el t em AEDel et eKeyDesc, and AEDel et ePar amfunctions
allow you to delete descriptor records from a descriptor list, an AE record, and an
Apple event parameter, respectively.

AEDeleteltem

RESULT CODES

4-92

You can use the AEDel et el t emfunction to delete a descriptor record from a descriptor
list. All subsequent descriptor records will then move up one place.

FUNCTI ON AEDel et el tem (t heAEDescLi st: AEDesclLi st;
i ndex: Longlnt): OSErr;

t heAEDescLi st
The descriptor list containing the descriptor record to be deleted.

i ndex The position of the descriptor record to delete (for example, 2 specifies the
second item).

nokErr 0 No error

er r AEDescNot Found -1701 Descriptor record was not found

er r AENot AEDesc -1704 Not a valid descriptor record

err AEBadLi stltem -1705 Operation involving a list item failed

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AEDeleteKeyDesc

You can use the AEDel et eKeyDesc function to delete a keyword-specified descriptor
record from an AE record.

FUNCTI ON AEDel et eKeyDesc (t heAERecord: AERecord;
t heAEKeywor d: AEKeyword): OSErr;

t heAERecor d
The AE record containing the keyword-specified descriptor record to be
deleted.

t heAEKeywor d
The keyword that specifies the descriptor record to be deleted.

RESULT CODES
noErr 0 No error
er r AEDescNot Found -1701 Descriptor record was not found
er r AENot AEDesc -1704 Not a valid descriptor record
err AEBadLi stltem -1705 Operation involving a list item failed
AEDeleteParam
You can use the AEDel et ePar amfunction to delete an Apple event parameter.
FUNCTI ON AEDel et ePar am (t heAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeyword): OSErr;
t heAppl eEvent
The Apple event containing the parameter to be deleted.
t heAEKeywor d
The keyword that specifies the parameter to be deleted.
RESULT CODES
noErr 0 No error
er r AEDescNot Found -1701 Descriptor record was not found
er r AENot AEDesc -1704 Not a valid descriptor record
err AEBadLi stltem -1705 Operation involving a list item failed

Deallocating Memory for Descriptor Records

The AEDi sposeDesc function deallocates the memory used by a descriptor record.
Because all Apple event structures (except for keyword-specified descriptor records) are
descriptor records, you can use AEDi sposeDesc for any of them.

Reference to Responding to Apple Events 4-93

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

AEDisposeDesc

RESULT CODE

SEE ALSO

You can use the AEDi sposeDesc function to deallocate the memory used by a
descriptor record.

FUNCTI ON AEDi sposeDesc (VAR t heAEDesc: AEDesc): OSErr;
t heAEDesc The descriptor record to deallocate. The function returns a null descriptor

record in this parameter. If you pass a null descriptor record in this
parameter, AEDi sposeDesc returns noErr.

noErr 0 No error

For more information about using AEDi sposeDesc, see “Disposing of Apple Event
Data Structures,” which begins on page 4-39.

Coercing Descriptor Types

The Apple Event Manager provides two functions that allow you to coerce descriptor
types. The AECoer cePt r function takes a pointer to data and a desired descriptor type
and attempts to coerce the data to a descriptor record of the desired descriptor type. The
AECoer ceDesc function attempts to coerce the data in an existing descriptor record to
another descriptor type.

AECoercePtr

4-94

You can use the AECoer cePt r function to coerce data to a desired descriptor type. If
successful, it creates a descriptor record containing the newly coerced data.

FUNCTI ON AECoer cePtr (typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size; toType: DescType;
VAR result: AEDesc): OSErr;

typeCode The descriptor type of the source data.

dat aPt r A pointer to the data to be coerced.

dat aSi ze The length, in bytes, of the data to be coerced.

toType The desired descriptor type of the resulting descriptor record.

resul t The resulting descriptor record.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

DESCRIPTION
The AECoer cePt r function creates a new descriptor record by coercing the specified
data to a descriptor record of the specified descriptor type. You should use the
AEDi sposeDesc function to dispose of the resulting descriptor record once you are
finished using it.
If AECoer cePt r returns a nonzero result code, it returns a null descriptor record unless
the Apple Event Manager is not available because of limited memory.
RESULT CODES
nokErr 0 No error
mentul | Err -108 Not enough room in heap zone
er r AECoer ci onFai | -1700 Data could not be coerced to the requested
descriptor type
SEE ALSO
For a description of the AEDi sposeDesc function, see page 4-94.
AECoerceDesc
You can use the AECoer ceDesc function to coerce the data in a descriptor record to
another descriptor type.
FUNCTI ON AECoer ceDesc (t heAEDesc: AEDesc; toType: DescType;
VAR result: AEDesc): OSErr;
t heAEDesc The descriptor record whose data is to be coerced.
toType The desired descriptor type of the resulting descriptor record.
resul t The resulting descriptor record.
DESCRIPTION

The AECoer ceDesc function attempts to create a new descriptor record by coercing
the specified descriptor record. Your application is responsible for using the

AEDi sposeDesc function to dispose of the resulting descriptor record once you are
finished using it.

If AECoer ceDesc returns a nonzero result code, it returns a null descriptor record
(a descriptor record of type t ypeNul | , which does not contain any data) unless the
Apple Event Manager is not available because of limited memory.

Reference to Responding to Apple Events 4-95

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

RESULT CODES
noErr 0 No error
menful | Err -108 Not enough room in heap zone
er r AECoer ci onFai | -1700 Data could not be coerced to requested descriptor
type
SEE ALSO

For a list of the descriptor types for which the Apple Event Manager provides coercions,
see Table 4-1, which begins on page 4-43.

Creating and Managing the Coercion Handler Dispatch Tables

The Apple Event Manager provides three functions that allow you to create and manage
the coercion handler dispatch tables. The AEI nst al | Coer ci onHandl er function
installs a coercion handler routine in either the application or system coercion dispatch
table. The AEGet Coer ci onHandl er function returns the handler for a specified
descriptor type coercion. The AERenpveCoer ci onHandl er function removes a
coercion handler from either the application or system coercion table.

AEInstallCoercionHandler

You can use the AEI nst al | Coer ci onHandl er function to install a coercion handler
routine in either the application or system coercion handler dispatch table.

FUNCTI ON AEIl nst al | Coer ci onHandl er (fromlype: DescType;
toType: DescType;
handl er: ProcPtr;
handl er Ref con: Longl nt;
fromTypel sDesc: Bool ean;
i sSysHandl er: Bool ean): OSErr;

froniType The descriptor type of the data coerced by the handler.

toType The descriptor type of the resulting data. If there was already an entry in
the specified coercion handler table for the same source descriptor type
and result descriptor type, the existing entry is replaced.

handl er A pointer to the coercion handler. Note that a handler in the system
coercion table must reside in the system heap; thus, if the value of the
i sSysHandl er parameter is TRUE, the handl er parameter should point
to a location in the system heap. Otherwise, if you put your system
handler code in your application heap, you should use
AERenpveCoer ci onHandl er to remove the handler when your
application quits.

4-96 Reference to Responding to Apple Events

DESCRIPTION

CHAPTER 4

Responding to Apple Events

handl er Ref con
A reference constant passed by the Apple Event Manager to the handler
each time the handler is called. If your handler doesn’t expect a reference
constant, use 0 as the value of this parameter.

fronilypel sDesc
Specifies the form of the data to be coerced. If the value of this parameter
is TRUE, the coercion handler expects the data to be passed as a descriptor
record. If the value is FALSE, the coercion handler expects a pointer to the
data. Because it is more efficient for the Apple Event Manager to provide
a pointer to data than to a descriptor record, all coercion routines should
accept a pointer to data if possible.

i sSysHandl er
Specifies the coercion table to which the handler is added. If the value of
this parameter is TRUE, the handler is added to the system coercion table
and made available to all applications. If the value is FALSE, the handler
is added to the application coercion table. Note that a handler in the
system coercion table must reside in the system heap; thus, if the value of
the i sSysHandl er parameter is TRUE, the handler parameter must point
to a location in the system heap.

Before using AEl nst al | Coer ci onHandl er to install a handler for a particular
descriptor type into the system coercion handler dispatch table, use the

AEGet Coer ci onHandl er function to determine whether the table already contains a
coercion handler for that descriptor type. If an entry exists, AEGet Coer ci onHandl| er
returns a reference constant and a pointer to that handler. Chain these to your
coercion handler by providing, in the handl er Ref con parameter of

AEl nst al | Coer ci onHandl er, pointers to the previous handler and its reference
constant. If your coercion handler returns the error er r AECoer ci onFai | , use these
pointers to call the previous handler. If you remove your system coercion handler,

be sure to reinstall the chained handlers.

SPECIAL CONSIDERATIONS

RESULT CODES

Before an application calls a system coercion handler, system software has set up the

A5 register for the calling application. For this reason, if you provide a system coercion
handler, it should never use A5 global variables or anything that depends on a particular
context; otherwise, the application that calls the system handler may crash.

noErr 0 No error
menful | Err -108 Not enough room in heap zone

Reference to Responding to Apple Events 4-97

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

AEGetCoercionHandler

RESULT CODES

4-98

You can use the AEGet Coer ci onHandl er function to get the handler for a specified
descriptor type coercion.

FUNCTI ON AEGet Coer ci onHandl er (fronifype: DescType;
toType: DescType;
VAR handl er: ProcPtr;
VAR handl er Ref con: Longl nt;
VAR froniTypel sDesc: Bool ean;
i sSysHandl er: Bool ean): OSErr;

fronType The descriptor type of the data coerced by the handler.
t oType The descriptor type of the resulting data.
handl er A pointer to the desired coercion handler.

handl er Ref con
The reference constant for the desired handler. The Apple Event Manager
passes this reference constant to the handler each time the handler
is called.

fronilrypel sDesc
If the AEGet Coer ci onHandl er function returns TRUE in this parameter,
the coercion handler expects the data to be passed as a descriptor record.
If the function returns FALSE, the coercion handler expects a pointer to
the data.

i sSysHandl er
Specifies the coercion table from which to get the handler. If the value of
this parameter is TRUE, the handler is taken from the system coercion
table. If the value is FALSE, the handler is taken from the application
coercion table.

nokErr 0 No error
menful | Err -108 Not enough room in heap zone
er r AEHandl er Not Found -1717 No coercion handler found

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AERemoveCoercionHandler

You can use the AERenpveCoer ci onHandl er function to remove a coercion handler
from either the application or system coercion handler dispatch table.

FUNCTI ON AERenopveCoer ci onHandl er (fromflype: DescType;
toType: DescType;
handl er: ProcPtr;
i sSysHandl er: Bool ean): OSErr;

froniType The descriptor type of the data coerced by the handler.
t oType The descriptor type of the resulting data.

handl er A pointer to the coercion handler. Although the f r onilype and t 0Type
parameters would be sufficient to identify the handler to be removed,
providing the handl er parameter is a safeguard to ensure that you
remove the correct handler.

i sSysHandl er
The coercion table from which to remove the handler. If the value of this
parameter is TRUE, the handler is removed from the system coercion
table. If the value is FALSE, the handler is removed from the application
coercion dispatch table.

RESULT CODES

noErr 0 No error
menful | Err -108 Not enough room in heap zone
er r AEHand! er Not Found -1717 No coercion handler found

Creating and Managing the Special Handler Dispatch Tables

The Apple Event Manager provides three functions that allow you to create and manage
the special handler dispatch tables. The AEI nst al | Speci al Handl er function installs
an entry for a special handler in either the application or system special handler dispatch
table. The AEGet Speci al Handl er function returns the handler for a specified special
handler. The AERenpveSpeci al Handl er function removes a special handler from
either the application or system special handler dispatch table.

Reference to Responding to Apple Events 4-99

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

You can also use the AEIl nst al | Speci al Handl er, AEGet Speci al Handl er, and
AERenpveSpeci al Handl er functions to install, get, and remove object callback
functions—including system object callback functions, which cannot be installed with
the AESet (bj ect Cal | backs function. When calling any of these three functions, use
one of the following constants as the value of the f unct i onC ass parameter to specify
the object callback function:

Object callback function Constant

Object-counting function keyAECount Pr oc
Object-comparison function keyAEConpar ePr oc
Token disposal function keyDi poseTokenPr oc
Error callback function keyAEGet Er r DescPr oc
Mark token function keyAEMar k TokenPr oc
Object-marking function keyAENMar kPr oc
Mark-adjusting function keyAEAdj ust Mar ksPr oc

You can also use the AERenpveSpeci al Handl er function to disable all the Apple
Event Manager routines that support object specifier records. To do this, specify the
constant keySel ect Proc in the f uncti onC ass parameter as described on
page 4-102.

AElInstallSpecialHandler

4-100

You can use the AEI nst al | Speci al Handl er function to install a special handler in
either the application or system special handler dispatch table.

FUNCTI ON AEIl nst al | Speci al Handl er (functionC ass: AEKeywor d;
handl er: ProcPtr;
i sSysHandl er: Bool ean): OSErr;

functionC ass
The keyword for the special handler that is installed. The
keyPr eDi spat ch constant identifies a handler with the same
parameters as an Apple event handler called immediately before the
Apple Event Manager dispatches an Apple event. Any of the constants for
object callback functions listed above can also be specified in this
parameter. If there was already an entry in the specified special handler
dispatch table for the same value of f unct i onCl ass, it is replaced.

handl er A pointer to the special handler. Note that a handler in the system special
handler dispatch table must reside in the system heap; thus, if the value
of the i sSysHandl er parameter is TRUE, the handl er parameter
should point to a location in the system heap. Otherwise, if you put
your system handler code in your application heap, use
AERenpveSpeci al Handl er to remove the handler when your
application quits.

Reference to Responding to Apple Events

DESCRIPTION

CHAPTER 4

Responding to Apple Events

i sSysHandl er
The special handler dispatch table to which to add the handler. If the
value of this parameter is TRUE, the handler is added to the system
handler dispatch table and made available to all applications. If the value
is FALSE, the handler is added to the application handler table.

The AEIl nst al | Speci al Handl er function creates an entry in either your application’s
special handler dispatch table or the system special handler dispatch table. You must
supply parameters that specify the keyword for the special handler that is installed, the
handler routine, and whether the handler is to be added to the system special handler
dispatch table or your application’s special handler dispatch table.

SPECIAL CONSIDERATIONS

RESULT CODES

Before an application calls a system special handler, system software has set up the
A5 register for the calling application. For this reason, a system special handler should
never use A5 global variables or anything that depends on a particular context;
otherwise, the application that calls the system handler may crash.

noErr 0 No error

par antrr -50 Parameter error (handler pointer is NI L
or odd)

mentul | Err -108 Not enough room in heap zone

er r AENot ASpeci al Functi on -1714 Wrong keyword for a special function

AEGetSpecialHandler

You can use the AEGet Speci al Handl er function to get a specified special handler.

FUNCTI ON AEGet Speci al Handl er (functionC ass: AEKeyword;
VAR handl er: ProcPtr;
i sSysHandl er: Bool ean): OSErr;

functionC ass
The keyword for the special handler that is installed. The
keyPr eDi spat ch constant identifies a handler with the same
parameters as an Apple event handler that is called immediately before
the Apple Event Manager dispatches an Apple event. Any of the
constants for object callback functions listed on page 4-100 can also be
specified in this parameter.

handl er A pointer to the special handler.

Reference to Responding to Apple Events 4-101

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

i sSysHandl er
Specifies the special handler dispatch table from which to get the handler.
If the value of this parameter is TRUE, the handler is taken from the
system special handler dispatch table. If the value is FALSE, the handler is
taken from the application’s special handler dispatch table.

RESULT CODES

noErr 0 No error
menful | Err -108 Not enough room in heap zone
er r AENot ASpeci al Functi on -1714 Wrong keyword for a special handler

AERemoveSpecialHandler

You can use the AERenoveSpeci al Handl er function to remove a handler from a
special handler table.

FUNCTI ON AERenpveSpeci al Handl er (functionC ass: AEKeywor d;
handl er: ProcPtr;
i sSysHandl er: Bool ean): OSErr;

functionC ass
The keyword for the special handler to be removed. In addition to the
constants for object callback functions listed on page 4-100, two other
values are allowed for the f unct i onC ass parameter:
keyPr eDi spat ch and keySel ect Proc. The keyPr eDi spat ch
constant identifies a handler with the same parameters as an Apple event
handler that is called immediately before the Apple Event Manager
dispatches an Apple event. The keySel ect Pr oc constant indicates that
you want to disable the Object Support Library—that is, all the routines
described in the chapter “Resolving and Creating Object Specifier
Records” in this book (see the description that follows for more
information).

handl er A pointer to the special handler to be removed. Although the
functi onCd ass parameter would be sufficient to identify the handler to
be removed, providing the handl er parameter is a safeguard that you
remove the correct handler.

i sSysHandl er
Specifies the special handler dispatch table from which to remove the
handler. If the value of this parameter is TRUE, the handler is taken from
the system special handler dispatch table. If the value is FALSE, the
handler is removed from the application special handler dispatch table.

4-102 Reference to Responding to Apple Events

DESCRIPTION

RESULT CODES

CHAPTER 4

Responding to Apple Events

In addition to using the AERenpveSpeci al Handl er function to remove specific special
handlers, you can use the function to disable, within your application only, all Apple
Event Manager routines that support Apple event objects—that is, all the routines
available to your application as a result of linking the Object Support Library (OSL) and
calling the AEChj ect | ni t function.

An application that expects its copy of the OSL to move after it is installed—for
example, an application that keeps it in a stand-alone code resource—would need to do
this. When an application calls AECbj ect | ni t to initialize the OSL, the OSL installs the
addresses of its routines as extensions to the pack. If those routines move, the addresses
become invalid.

To disable the OSL, you should pass the keyword key Sel ect Pr oc in the

functi onC ass parameter, NI L in the handl er parameter, and FALSE in the

i sSysHandl er parameter. Once you have called the AERenpveSpeci al Handl er
function with these parameters, subsequent calls by your application to any of the Apple
Event Manager routines that support Apple event objects will return errors. To initialize
the OSL after disabling it with the AERenpveSpeci al Handl er function, your
application must call AEChj ect | ni t again.

If you expect to initialize the OSL and disable it several times, you should call
AERermpbve(hj ect Accessor to remove your application’s object accessor functions
from your application’s object accessor dispatch table before you call
AERenpveSpeci al Handl er.

noErr 0 No error
mentul | Err -108 Not enough room in heap zone
er r AENot ASpeci al Functi on -1714 Wrong keyword for a special function

Getting Information About the Apple Event Manager

The AEManager | nf o routine allows you to get two kinds of information related

to Apple events on the current computer: the number of processes currently recording
Apple events and the version of the Apple Event Manager. If you decide to make your
application recordable, this information may be useful when your application is
responding to Apple events that it sends to itself.

You can find out whether the Apple Event Manager is available in system software by
using the Gest al t function. See page 4-4 for details.

Reference to Responding to Apple Events 4-103

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

AEManagerInfo

RESULT CODE

SEE ALSO

You can use the AEManager | nf o function to obtain information about the version of the
Apple Event Manager currently available or the number of processes that are currently
recording Apple events. This function is available only in version 1.01 and later versions
of the Apple Event Manager.

FUNCTI ON AEManager | nfo (keyword: AEKeywor d;
VAR result: Longlint): OSErr;

keywor d A value that determines what kind of information AEManager | nf o
returns. The value can be represented by one of these constants:
CONST keyAERecor der Count = 'recr';
keyAEVer si on = 'vers';
resul t If the value of the keywor d parameter is key AERecor der Count, this

parameter is an integer that indicates the number of processes that are
currently recording Apple events. If the value of the keywor d parameter
is key AEVer si on, this parameter is an integer that provides information
about the version of the Apple Event Manager available on the current
computer, using the same formatasa' vers' resource.

noErr 0 No error

For information about using the AEManager | nf o function to check whether Apple
event recording is on or not, see the chapter “Recording Apple Events” in this book.

For information about using Gest al t to determine whether the Apple Event Manager
is available, see “Handling Apple Events” on page 4-4.

For information about the ' ver s' resource, see the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials.

Application-Defined Routines

4-104

For each Apple event your application supports, you must provide an Apple event
handler. The AEPr ocessAppl eEvent function calls one of your Apple event handlers
when it processes an Apple event. An Apple event handler (MyEvent Handl er)
should perform any action described by the Apple event, add parameters to the reply
Apple event if appropriate, and return a result code.

You can also provide your own coercion handlers to coerce data to descriptor types other
than those for which the Apple Event Manager provides coercion handling. The

MyCoer cePt r function accepts a pointer to data and returns a descriptor record, and
the MyCoer ceDesc function accepts a descriptor record and returns a descriptor record.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

MyEventHandler

DESCRIPTION

An Apple event handler has the following syntax:

FUNCTI ON MyEvent Handl er (t heAppl eEvent: Appl eEvent;
reply: Appl eEvent;
handl er Ref con: Longlnt): OSErr;

t heAppl eEvent
The Apple event to handle.

reply The default reply Apple event provided by the Apple Event Manager.
handl er Ref con

The reference constant stored in the Apple event dispatch table for the
Apple event.

An Apple event handler should extract any parameters and attributes from the Apple
event, perform the requested action, and add parameters to the reply Apple event if
appropriate.

Your handler should always set its function result to noEr r if it successfully

handles the Apple event. If an error occurs, your handler should return either

er r AEEvent Not Handl ed or some other nonzero result code. If the error

occurs because your application cannot understand the event, return

er r AEEvent Not Handl ed, in case a handler in the system special handler or system
Apple event dispatch tables might be able to handle the event. If the error occurs because
the event is impossible to handle as specified, return the result code returned

by whatever function caused the failure, or whatever other result code is appropriate.

For example, suppose your application receives a Get Data event that requests the name
of the current printer, and your application cannot handle such an event. In this
situation, you should return er r AEEvent Not Handl ed in case another handler
available to the Apple Event Manager can handle the event. This strategy allows users to
take advantage of system capabilities from within your application via system handlers.

However, if your application cannot handle a Get Data event that requests the fifth
paragraph in a document because the document contains only four paragraphs, you
should return some other nonzero error, because further attempts to handle the event are
pointless.

If your Apple event handler calls the AEResol ve function and AEResol ve calls an
object accessor function in the system object accessor dispatch table, your Apple event
handler may not recognize the descriptor type of the token returned by the function. In
this case, your handler should return the result code er r AEUnknownCbj ect Type.
When your handler returns this result code, the Apple Event Manager attempts to locate
a system Apple event handler that can recognize the token.

Reference to Responding to Apple Events 4-105

suang 9|ddy 01 Buipuodsay -

SEE ALSO

CHAPTER 4

Responding to Apple Events

For more information about Apple event handlers, see “Writing Apple Event Handlers”
on page 4-33.

For a discussion of the dispatching of object accessor functions and the use of the result
code er r AEUnknownQbj ect Type, see “Installing Entries in the Object Accessor
Dispatch Tables,” which begins on page 6-21.

MyCoercePtr

DESCRIPTION

SEE ALSO

4-106

A coercion handler that accepts a pointer to data has the following syntax:

FUNCTI ON MyCoer cePtr (typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size; toType: DescType;
handl er Ref con: Longl nt;

VAR result: AEDesc): OSErr;

typeCode The descriptor type of the original data.

dat aPt r A pointer to the data to coerce.

dat aSi ze The length, in bytes, of the data to coerce.

toType The desired descriptor type for the resulting descriptor record.

handl er Ref con
A reference constant that is stored in the coercion dispatch table entry for
the handler and passed to the handler by the Apple Event Manager
whenever the handler is called.

resul t The resulting descriptor record.

Your coercion handler should coerce the data to the desired descriptor type and return
the resulting data in the descriptor record specified by the r esul t parameter. Your
handler should return the noEr r result code if your handler successfully performs the
coercion, and a nonzero result code otherwise.

For more information, see “Writing and Installing Coercion Handlers” on page 4-41.

Reference to Responding to Apple Events

CHAPTER 4

Responding to Apple Events

MyCoerceDesc

DESCRIPTION

SEE ALSO

A coercion handler that accepts a descriptor record has the following syntax:

FUNCTI ON MyCoer ceDesc (t heAEDesc: AEDesc; toType: DescType;
handl er Ref con: Longl nt;
VAR result: AEDesc): OSErr

t heAEDesc The descriptor record that contains the data to be coerced.
toType The desired descriptor type for the resulting descriptor record.

handl er Ref con
A reference constant that is stored in the coercion dispatch table entry for
the handler and passed to the handler by the Apple Event Manager
whenever the handler is called.

result The resulting descriptor record.

Your coercion handler should coerce the data in the descriptor record to the desired
descriptor type and return the resulting data in the descriptor record specified by the
resul t parameter. Your handler should return an appropriate result code.

For more information, see “Writing and Installing Coercion Handlers” on page 4-41.

Reference to Responding to Apple Events 4-107

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Summary of Responding to Apple Events

Pascal Summary

Constants
CONST
gest al t Appl eEvent sAttr = 'evnt'; {sel ector for Apple events}
gest al t Appl eEvent sPresent = 0; {if this bit is set, then Apple }

{ Event Manager is avail abl e}

{Appl e event descriptor types}

t ypeBool ean = 'bool '; {1-byte Bool ean val ue}
t ypeChar = ' TEXT"; {unterm nated string}
t ypeSM nt = 'shor'; {16-bit integer}
t ypel nt eger = 'long'; {32-bit integer}
t ypeSMFl oat = 'sing'; { SANE si ngl e}
t ypeFl oat = 'doub'; { SANE doubl e}
t ypeLongl nt eger = 'long'; {32-bit integer}
t ypeShort | nt eger = 'shor'; {16-bit integer}
t ypeLongFl oat = 'doub'; { SANE doubl e}
t ypeShort Fl oat = 'sing'; { SANE si ngl e}
t ypeExt ended = 'exte'; { SANE ext ended}
t ypeConp = 'conp'; { SANE conp}
t ypeMagni t ude = 'magn'; {unsi gned 32-bit integer}
t ypeAELi st ="'list"; {l'ist of descriptor records}
t ypeAERecor d = 'reco'; {l'ist of keyword-specified }
{ descriptor records}
t ypeAppl eEvent = "aevt'; {Appl e event record}
typeTrue = 'true'; { TRUE Bool ean val ue}
typeFal se = 'fals'; { FALSE Bool ean val ue}
typeAli as = "alis'; {alias record}
t ypeEnuner at ed = '"enum ; {enuner at ed dat a}
typeType = "type'; {four-character code for }
{ event class or event |D}
t ypeAppPar anet er s = 'appa’'; {Process Manager |aunch paraneters}
typeProperty = 'prop'; {Appl e event property}
t ypeFSS = "'fss '; {file system specification}

4-108 Summary of Responding to Apple Events

CHAPTER 4

Responding to Apple Events

t ypeKeywor d =
typeSecti onH

typeW I dCard =
t ypeAppl Si ghat ure =
typeSessi onl D =
typeTarget| D =
t ypeProcessSeri al Nunber =
typeNul | =

{keywords for Apple event
keyDi rect Qbj ect =
keyEr r or Nunber =
keyErrorString =
keyPr ocessSeri al Nunmber

{keywords for Apple event
keyTransactionl DAttr
keyRet urnl DAt tr =
keyEvent Cl assAttr =
keyEvent | DAt tr

keyAddr essAttr =

keyOpt i onal Keywor dAt tr

keyTi neout Attr =

keyl nteract Level Attr

keyEvent Sour ceAttr =

keyM ssedKeywor dAt t r

keyOri gi nal AddressAttr

attri but es}

"tran';

rtid'
evel ' ;

evid'
addr'
opt k'

tino

inte'

esrc'

m ss

from

{keywords for special handl ers}

keyPreDi spat ch = 'phac';

Summary of Responding to Apple Events

{Appl e event keywor d}
{handl e to a section record}
{mat ches any type}
{application signature}
{session reference nunber}
{target ID record}

{process serial nunber}
{NULL or nonexistent data}

{direct paraneter}

{error nunber paraneter}
{error string paraneter}
{process serial nunber paran}

{transaction | D}

{return I D}
{event cl ass}
{event 1D}

{address of target or }

{ client application}

{list of optional paraneters }
{ for the Apple event}

{nunber of ticks the client }
{ will wait}

{settings to allow Apple Event }
{ Manager to bring server }

{ to foreground}

{nature of source }

{ application}

{first required paraneter }

{ remaining in an Apple event}
{address of original source; }
{ available only in version }
{ 1.01 and | ater versions of }
{ the Apple Event Manager}

{identifies a handler routine }

{ called inmediately before the }
{ Apple Event Manager dispatches }
{ an Appl e event}

4-109

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

keySel ect Proc = 'selh'; {sel ector used with }
{ AERenoveSpeci al Handl er to }
{ disable the OSL}

{keywords for use with AEManagerlnfo; available only in version }
{ 1.0.1 and Il ater versions of the Apple Event Manager}

keyAERecor der Count = 'recr'; {keyword for recording info}

keyAEVer si on = 'vers'; {keyword for version info}

{event cl ass}

kCor eEvent C ass = 'aevt'; {event class for required Apple }
{ events}

{event 1 Ds for required Apple events}

kAEOpenAppl i cati on = 'oapp'; {event ID for Open }

{ Application event}
kAEOpenDocunent s = 'odoc'; {event I D for OQpen Docunents event}
kAEPr i nt Docunent s = ' pdoc'; {event ID for Print Docunents }

{ event}

KAEQui t Appl i cation ='quit'; {event ID for Quit Application }

{ event}
kAEAnswer = "ansr'; {event I D for Apple event replies}
kAEAppl i cati onDi ed = 'obit'; {event ID for Application D ed }

{ event}

{constants for setting the sendMbde paraneter of AESend}
kAENoRepl y $00000001; {client doesn't want reply}
kAEQueueRepl y $00000002; {client wants server to }
{ reply in event queue}
$00000003; {client wants a reply and }
{ will give up processor}
$00000010; {server application should }
{ not interact with user }
{ for this Apple event}
$00000020; {server may interact with }
{ user for this Apple event }
{ to supply information}

kAEWAI t Repl y

kAENever | nt er act

kAECanl nt er act

kAEAl waysl nt er act $00000030; {server may interact with user }
{ for this Apple event even if }
{ no information is required}

$00000040; {server should cone directly }

{ to foreground when appropri at e}

kAECanSwi t chLayer

4-110 Summary of Responding to Apple Events

CHAPTER 4

Responding to Apple Events

kAEDont Reconnect $00000080; {don't reconnect if there }

{ is a PPC session closed error}
nRet ur nRecei pt; {client wants return }

{ receipt}
$00001000; {don't record this event}
$00002000; {don't excecute this event}

kAEWANt Recei pt

kAEDont Recor d
kAEDont Execut e

{constants for setting the sendPriority paranmeter of AESend}

kAENor mal Priority = $00000000; {put event at the back of }
{ event queue}
KAEH ghPriority = nAtt nMsg; {put event at the front of }

{ the event queue}

{event I Ds for recording events; available only in version 1.01 and }
{ later versions of the Apple Event Manager}

KAESt ar t Recor di ng = 'reca'; {event ID for Start Recording }

{ event}
kAESt opRecor di ng = 'recc',; {event ID for Stop Recording }

{ event}
kAENot i fyStart Recording = 'recl'; {event ID for Recording On event}
kAENot i f ySt opRecording = 'recO'; {event ID for Recording Of event}
kKAENot i f yRecor di ng = 'recr'; {event I D for Receive Recordable }

{ Event event}

{constant for the returnl D paraneter of AECreateAppl eEvent}
kAut oGenerateReturnlD = -1; {tells Apple Event Manager to }
{ generate a unique return |D}

{constant for transaction |Ds}
kAnyTransacti onl D = 0; {the Apple event is not }
{ part of a transaction}

{constants for tineout durations}
kAEDef aul t Ti neout = -1; {use default tinmeout val ue}
kNoTi neQut = -2; {never time out}

{constants for the dispatcher paranmeter of AEResuneTheCurrent Event}
kAENoDi spat ch = 0; {don't redispatch the Apple event}
kAEUseSt andar dDi spatch = -1; {redi spatch the Apple event }

{ by using its entry in the }

{ Apple event dispatch tabl e}

Summary of Responding to Apple Events 4-111

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Data Types
TYPE
AEEvent O ass =
PACKED ARRAY[1..4] OF Char; {event class for a high-level }
{ event}
AEEvent | D =
PACKED ARRAY[1..4] OF Char; {event ID for a high-level }
{ event}
AEKeyword =
PACKED ARRAY[1..4] OF Char; {keyword for a descriptor }
{ record}
DescType = ResType; {descriptor type}
AEDesc = {descriptor record}
RECORD
descri pt or Type: DescType; {type of data bei ng passed}
dat aHandl e: Handl e; {handl e to data bei ng passed}
END;
AEKeyDesc = {keyword-specified }
RECORD { descriptor record}
descKey: AEKeywor d; { keywor d}
descCont ent : AEDesc; {descriptor record}
END;
AEAddr essDesc = AEDesc; {address descriptor record}
AEDesclLi st = AEDesc; {list of descriptor records}
AERecor d = AEDesclList; {list of keyword-specified }
{ descriptor records}
Appl eEvent = AERecor d; {list of attributes and }
{ paraneters necessary for }
{ an Apple event}
AESendMode = Longl nt; {flags that deternine how }

{ an Apple event is sent}

AESendPriority

I nt eger; {send priority of an Apple }
{ event}

4-112 Summary of Responding to Apple Events

CHAPTER 4

Responding to Apple Events

AEl nt eract Al |l oned = (KAEI nteract WthSel f,
KAEI nteract Wt hAl I) ;

kKAEI nt eract Wt hLocal ,
{what processes nay }
{ interact with the user}

AEEvent Sour ce = (KAEUnknownSource, kAEDi rectCall, kAESaneProcess,
kAELocal Process, kAERenot eProcess);

AEArrayType

{the source of an Apple }
{ event}

(kAEDat aArray, kAEPackedArray, kAEHandl eArray,

kAEDescArray, kAEKeyDescArray);

AEAr r ayDat a
RECORD
CASE AEArrayType OF
kKAEDat aArray:

{type of an Apple event array}

{data for an Apple event array}

(AEDat aArray: ARRAY[O0..0] OF Integer);

kAEPackedArr ay:

(AEPackedArray: PACKED ARRAY[0..0] OF Char);

kAEHand| eArr ay:

(AEHandl eArray: ARRAY[O0..0] OF Handl e);

KAEDescArray:

(AEDescArray: ARRAY[O0..0] OF AEDesc);

kAEKeyDescArray:

(AEKeyDescArray: ARRAY[0..0] OF AEKeyDesc);

END;

AEAr r ayDat aPoi nt er = "AEArrayDat a;
Event Handl er ProcPtr = ProcPtr;

I dl eProcPtr = ProcPtr;

EventFilterProcPtr = ProcPtr;

Summary of Responding to Apple Events

{pointer to an Apple event }

{ handl er}

{pointer to an application's }
{ idle function}

{pointer to an application's }
{ filter function}

4-113

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Routines for Responding to Apple Events

Creating and Managing the Apple Event Dispatch Tables

FUNCTI ON AEl nst al | Event Handl er
(t heAEEvent O ass: AEEvent d ass;
t heAEEvent | D. AEEvent| D;
handl er: Event Handl er ProcPtr;
handl er Ref con: Longl nt;
i sSysHandl er: Bool ean): OSErr;

FUNCTI ON AEGet Event Handl er (t heAEEvent O ass: AEEvent C ass;
t heAEEvent | D AEEvent | D
VAR handl er: Event Handl er ProcPtr;
VAR handl| er Ref con: Longl nt;
i sSysHandl er: Bool ean): OSErr;

FUNCTI ON AERenpveEvent Handl er
(t heAEEvent O ass: AEEvent d ass; theAEEvent| D:
AEEvent | D; handl er: Event Handl er ProcPtr;
i sSysHandl er: Bool ean): OSErr;

Dispatching Apple Events

FUNCTI ON AEPr ocessAppl eEvent
(theEvent Record: Event Record): OSErr;

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes

FUNCTI ON AEGet Par anPt r (t heAppl eEvent : Appl eEvent;
t heAEKeywor d: AEKeywor d;
desiredType: DescType;
VAR t ypeCode: DescType;
dataPtr: Ptr; maxi nunSize: Size;
VAR actual Si ze: Size): CSErr;
FUNCTI ON AEGet Par anDesc (t heAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d; desiredType: DescType;
VAR result: AEDesc): OSErr;
FUNCTI ON AEGet AttributePtr (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d; desiredType: DescType;
VAR typeCode: DescType;
dataPtr: Ptr; maxi muntSi ze: Size;
VAR actual Si ze: Size): OSErr;
FUNCTI ON AEGet Attri but eDesc (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d; desiredType: DescType;
VAR result: AEDesc): OSErr;

4-114 Summary of Responding to Apple Events

CHAPTER 4

Responding to Apple Events

Counting the Items in Descriptor Lists

FUNCTI ON AECount | t ens (t heAEDescLi st: AEDesclLi st;
VAR t heCount: Longlnt): OSErr;

Getting Items From Descriptor Lists

FUNCTI ON AEGet Nt hPt r (t heAEDescLi st: AEDesclList; index: Longlnt;
desiredType: DescType;
VAR t heAEKeywor d: AEKeywor d;
VAR typeCode: DescType; dataPtr: Ptr;
maxi nunti ze: Size;
VAR act ual Si ze: Size): OSErr;
FUNCTI ON AEGet Nt hDesc (t heAEDescLi st: AEDesclList; index: Longlnt;
desiredType: DescType;
VAR t heAEKeywor d: AEKeywor d;
VAR result: AEDesc): OSErr;

FUNCTI ON AEGet Arr ay (t heAEDescLi st: AEDesclLi st;
arrayType: AEArrayType;
arrayPtr: AEArrayDat aPoi nter;
maxi munsSi ze: Size;
VAR iteniType: DescType; VAR itentize: Size;
VAR itenmCount: Longlnt): OSErr;

Getting Data and Keyword-Specified Descriptor Records Out of AE Records

FUNCTI ON AEGet KeyPt r (t heAERecord: AERecord;
t heAEKeywor d: AEKeywor d;
desi redType: DescType; VAR typeCode: DescType;
dataPtr: Ptr; maxi muntSi ze: Size;
VAR actual Si ze: Size): OSErr;

FUNCTI ON AEGet KeyDesc (theAERecord: AERecord;
t heAEKeywor d: AEKeywor d;
desiredType: DescType;
VAR result: AEDesc): OSErr;

Requesting User Interaction
FUNCTI ON AESet | nt er acti onAl | owed
(level: AEInteractAllowed): OCSErr;

FUNCTI ON AECet | nt er acti onAl | owed
(VAR level: AEInteractAll owed): OSErr;

FUNCTI ON AEl nteract Wt hUser (timeQutlnTicks: Longlnt; nnmReqPtr: NVRecPtr;
idleProc: IdleProckPtr): OSErr;

Summary of Responding to Apple Events 4-115

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Requesting More Time to Respond to Apple Events
FUNCTI ON AEReset Ti ner (reply: AppleEvent): CSErr;

Suspending and Resuming Apple Event Handling

FUNCTI ON AESuspendTheCur r ent Event
(t heAppl eEvent: Appl eEvent): OSErr;

FUNCTI ON AEResuneTheCur r ent Event
(t heAppl eEvent, reply: Appl eEvent;
di spat cher: Event Handl er ProcPtr;
handl er Ref con: Longlnt): OSErr;

FUNCTI ON AESet TheCurr ent Event
(t heAppl eEvent: Appl eEvent): OSErr;

FUNCTI ON AEGet TheCur r ent Event
(VAR t heAppl eEvent: Appl eEvent): OSErr;

Getting the Sizes and Descriptor Types of Descriptor Records

FUNCTI ON AESi zeOF Nt hl t em (theAEDesclLi st: AEDesclLi st; index: Longlnt;
VAR t ypeCode: DescType;
VAR dat aSi ze: Size): OSErr;

FUNCTI ON AESi zeOf KeyDesc (theAERecord: AERecord;
t heAEKeywor d: AEKeywor d;
VAR t ypeCode: DescType;
VAR dat aSi ze: Size): OSErr;

FUNCTI ON AESi zeOf Par am (t heAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
VAR typeCode: DescType;
VAR dat aSi ze: Size): OSErr;

FUNCTI ON AESi zeOf Attribute (theAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeywor d;
VAR t ypeCode: DescType;
VAR dat aSi ze: Size): OSErr;

Deleting Descriptor Records
FUNCTI ON AEDel et el tem (t heAEDescLi st: AEDesclLi st;
i ndex: Longlnt): OSErr;

FUNCTI ON AEDel et eKeyDesc (t heAERecord: AERecord;
t heAEKeywor d: AEKeyword): OSErr;

FUNCTI ON AEDel et ePar am (t heAppl eEvent: Appl eEvent;
t heAEKeywor d: AEKeyword): OSErr;

4-116 Summary of Responding to Apple Events

CHAPTER 4

Responding to Apple Events

Deallocating Memory for Descriptor Records
FUNCTI ON AED sposeDesc (VAR t heAEDesc: AEDesc): OSErr;

Coercing Descriptor Types

FUNCTI ON AECoer cePt r (typeCode: DescType; dataPtr: Ptr;
dat aSi ze: Size; toType: DescType;
VAR result: AEDesc): OSErr;

FUNCTI ON AECoer ceDesc (theAEDesc: AEDesc; toType: DescType;
VAR result: AEDesc): OSErr;

Creating and Managing the Coercion Handler Dispatch Tables

FUNCTI ON AEIl nst al | Coer ci onHandl er
(fromlype: DescType; toType: DescType;
handl er: ProcPtr; handl er Ref con: Longl nt;
fronTypel sDesc: Bool ean;
i sSysHandl er: Bool ean): OSErr;

FUNCTI ON AEGet Coer ci onHandl er
(fronmType: DescType; toType: DescType;
VAR handl er: ProcPtr;
VAR handl er Ref con: Longl nt;
VAR fronfTypel sDesc: Bool ean;
i sSysHandl er: Bool ean): OSErr;
FUNCTI ON AERenpveCoer ci onHandl er
(fromlype: DescType; toType: DescType;
handl er: ProcPtr;
i sSysHandl er: Bool ean): OSErr;

Creating and Managing the Special Handler Dispatch Tables

FUNCTI ON AEl nst al | Speci al Handl er
(functiond ass: AEKeyword; handler: ProcPtr;
i sSysHandl er: Bool ean): OSErr;
FUNCTI ON AECet Speci al Handl er
(functiond ass: AEKeyword;
VAR handl er: ProcPtr;
i sSysHandl er: Bool ean): OSErr;
FUNCTI ON AERenpveSpeci al Handl er
(functiond ass: AEKeyword; handler: ProcPtr;
i sSysHandl er: Bool ean): OSErr;

Summary of Responding to Apple Events 4-117

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Getting Information About the Apple Event Manager
{available only in version 1.01 and | ater versions of Apple Event Manager}

FUNCTI ON AEManager | nfo (keyword: AEKeywor d;
VAR result: Longlint): OSErr;

Application-Defined Routines

FUNCTI ON MyEvent Handl er (t heAppl eEvent: Appl eEvent; reply: Appl eEvent;
handl er Ref con: Longlnt): OSErr;
FUNCTI ON MyCoer cePt r (typeCode: DescType; dataPtr: Ptr;

dat aSi ze: Size; toType: DescType
handl er Ref con: Longl nt;
VAR result: AEDesc): OSErr;

FUNCTI ON MyCoer ceDesc (theAEDesc: AEDesc; toType: DescType;
handl er Ref con: Longl nt;
VAR result: AEDesc): OSErr;

C Summary
Constants
enum {
#define gestalt Appl eEventsAttr ‘'evnt' /*selector for Apple events*/
gest al t Appl eEvent sPresent =0 /*if this bit is set, then */
/* Appl e Event Manager is */
}; /* avail abl e*/
/*Appl e event descriptor types*/
enum {
t ypeBool ean = 'bool ', /*1-byte Bool ean val ue*/
t ypeChar = ' TEXT", /*unterm nated string*/
t ypeSM nt = "shor"', /*16-bit integer*/
t ypel nt eger = 'long", [*32-bit integer*/
t ypeSMF oat = 'sing', /*SANE si ngl e*/
t ypeFl oat = ' doub', / *SANE doubl e*/
t ypeLongl nt eger = 'long', [*32-bit integer*/
t ypeShort | nt eger = 'shor', /*16-bit integer*/
t ypeLongFl oat = ' doub', / *SANE doubl e*/
t ypeShort Fl oat = 'sing', / *SANE si ngl e*/
t ypeExt ended = '"exte', /*SANE ext ended*/

4-118 Summary of Responding to Apple Events

s

enum {

enum {

enum {

CHAPTER 4

Responding to Apple Events

t ypeConp

t ypeMagni t ude
t ypeAELi st

t ypeAERecor d

t ypeAppl eEvent
typeTrue

typeFal se
typeAli as
t ypeEnuner at ed

typeType
t ypeAppPar anet ers

typeProperty
t ypeFSS
t ypeKeyword

t ypeSecti onH
typeWl dCard

t ypeAppl Si gnature
t ypeSessi onl D
typeTarget| D

t ypePr ocessSeri al Nurmber

typeNul |

/*keywords for Apple event

keyDi r ect Obj ect
keyEr r or Nunber
keyErrorString

keyProcessSeri al Nunmber

[*keywords for Apple event

keyTransactionl DAttr

keyRet urnl DAt tr
keyEvent Cl assAttr

conp', /* SANE conp*/

magn' , /*unsigned 32-bit integer*/

list', /*list of descriptor records*/

reco', /*list of keyword-specified */
/* descriptor records*/

aevt', /*Appl e event record*/

true', / *TRUE Bool ean val ue*/

fals', / *FALSE Bool ean val ue*/

alis', /*alias record*/

enuni / *enuner at ed dat a*/

type', /*four-character code for */
/* event class or event |D*/

appa', /*Process Manager | aunch */
/* paraneters*/

prop', /*Appl e event property*/

fss ', /*file system specification*/

keyw , /*Appl e event keyword*/

sect', /*handl e to a section record*/

il /*mat ches any type*/

sign', [*application signature*/

ssid', /*session | D*/

targ', /*target ID record*/

psn ', /*process serial nunber*/

nul | /*NULL or nonexi stent data*/

par anmet er s*/

---- /*direct paraneter*/

errn', /*error nunber paraneter*/
errs', /*error string paraneter*/
psn ' /*process serial nunber parant/

attri butes*/

tran', /*transaction | D¢/
rtid', /*return | D*/
evel ', /*event cl ass*/

Summary of Responding to Apple Events 4-119

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

keyEvent | DAt tr =
keyAddr essAttr =

keyOpt i onal Keywor dAt t r

keyTi meout At tr =

keyl nteract Level Attr

keyEvent SourceAttr =

keyM ssedKeywor dAtt r

keyOri gi nal AddressAttr

b
/*keywords for special handl ers*/

enum {
keyPreDi spat ch = ' phac',
keySel ect Proc = "sel h',
/*keywords for use w th AEManager| nfo,
/* 1.0.1 and | ater versions of the App
keyAERecor der Count = 'recr',
keyAEVer si on = 'vers',
/*event class*/
kCor eEvent d ass = 'aevt

b

4-120 Summary of Responding to Apple Events

@
=
Q

o
©
—
~

S
=1
m—

esrc',

m ss',

"froni

/*event | D*/

/*address of target or */

/* client application*/

/*list of optional paraneters */
/* for the Apple event*/
/*nunber of ticks the client */
[* will wait*/

/*settings to allow Apple */

/* Event Mgr to bring */

/* server to foreground*/
/*nature of source */

/* application*/

/*first required paraneter */

/* remaining in an Apple */

/* event*/

/*address of original source; */
/* available only in version */
/* 1.01 and |l ater versions of */
/* the Apple Event Manager*/

/*identifies a handler */

/* routine that is called */

/* inmediately before the */

/* Appl e Event Manager */

/* di spatches an Apple event*/
/*sel ector used with */

/* AERenoveSpeci al Handl er to */
/* disable the OSL*/

avail able only in version */

e Event Manager*/

/*keyword for recording info*/
/*keyword for version info*/

/*event class for required */
/* Appl e events*/

CHAPTER 4

Responding to Apple Events

/*event IDs for required Apple events*/
enum {

kAEOpenAppl i cati on = 'oapp', /*event ID for Open */
/* Application event*/
kAEOpenDocunent s = ' odoc', /*event ID for Open */

/* Docunents event*/

kAEPr i nt Docunent s = ' pdoc', /*event ID for Print */
/* Docunents event*/

KAEQui t Appl i cation ='quit", /*event ID for Quit */
/* Application event*/

k AEAnswer = "ansr', /*event ID for Apple event */
/* replies*/

kAEAppl i cati onDi ed = 'obit’ /*event ID for Application */

/* Died event*/

1
/*constants for setting the sendMbde paraneter of AESend*/
enum {
kAENoRepl y = 0x00000001, /*client doesn't want reply*/
kAEQueueRepl y = 0x00000002, /*client wants server to */
/* reply in event queue*/
KAEWAI t Repl y = 0x00000003, /*client wants a reply and */
/* will give up processor*/
kAENever | nt er act = 0x00000010, /[/*server application should */

/* not interact with user */
/* for this Apple event*/
kAECanl nt er act = 0x00000020, /*server may interact with */
/* user for this Apple event */
/* to supply information*/
kAEAI waysl nt er act = 0x00000030, /*server may interact with */
/* user for this Apple event */
/* even if no information */
/* is required*/
kKAECanSwi t chLayer = 0x00000040, [/*server should cone */
/* directly to foreground */
/* when appropriate*/
kAEDont Reconnect = 0x00000080, /*don't reconnect if there */
/* is a PPC session closed */
/* error*/

kAEVANt Recei pt = nReturnReceipt, /*client wants return */
/* receipt*/

kAEDont Recor d = 0x00001000, /*don't record this event*/

kAEDont Execut e = 0x00002000, /*don't excecute this event*/

Summary of Responding to Apple Events 4-121

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

/*constants for setting the sendPriority parameter of AESend*/

kAENor mal Priority = 0x00000000, /[/*post nessage at end of */
/* event queue*/
KAEH ghPriority = nAttnhMsg /*post nmessage at front of */

/* event queue*/

/*event IDs for recording events; available only in version 1.01 and */
/* later versions of the Apple Event Manager*/
enum {

kAESt ar t Recor di ng = 'reca', /*event ID for Start */
/* Recording event*/
kAESt opRecor di ng = 'recc', /*event ID for Stop */
/* Recording event*/
kAENoti fyStart Recording = 'recl', /*event ID for Recording On*/
[* event*/
kAENot i f ySt opRecording = 'recQ', /*event ID for Recording Of */
/* event*/
kKAENot i f yRecor di ng = 'recr' /*event ID for Receive */
/* Recordabl e Event event*/
1
enum {
/*constant for the returnl D paraneter of AECreateAppl eEvent*/
kAut oGenerateReturnlD = -1, /*tells Apple Event Manager */
/* to generate a unique */
/* return | D*/
/*constant for transaction |Ds*/
kAnyTr ansacti onl D = 0, /*the Apple event is not */
/* part of a transaction*/
/*constants for tineout durations*/
kAEDef aul t Ti neout = -1, /*use default tineout val ue*/
kNoTi meCut = -2, /*never time out*/
/*constants for the dispatcher paranmeter of AEResuneTheCurrent Event*/
kAENoDi spat ch = 0, /*don't redispatch the */
/* Apple event*/
kAEUseSt andar dDi spatch = -1 /*redi spatch the Apple event */
/* by using its entry in the */
/* Apple event dispatch table*/
1

4-122 Summary of Responding to Apple Events

CHAPTER 4

Responding to Apple Events

Data Types
t ypedef unsigned | ong AEEvent d ass; /*event class for a */
/* high-level event*/
t ypedef unsigned | ong AEEvent| D /*event 1D for a high-level */
[* event*/
t ypedef unsi gned | ong AEKeywor d; /*keyword for a descriptor */
[* record*/
t ypedef ResType DescType; /*descriptor type*/
struct AEDesc ({ /*descriptor record*/
DescType descri pt or Type; /*type of data bei ng passed*/
Handl e dat aHandl e; /*handl e to data bei ng passed*/
b
t ypedef struct AEDesc AEDesc
struct AEKeyDesc ({ / *keywor d- speci fied */
/* descriptor record*/
AEKeywor d descKey; / *keywor d*/
AEDesc descContent; /*descriptor record*/
1
typedef struct AEKeyDesc AEKeyDesc;
t ypedef AEDesc AEAddr essDesc; /*address descriptor record*/
t ypedef AEDesc AEDescli st; /*list of descriptor records*/
t ypedef AEDescLi st AERecord,; /*list of keyword-specified */
/* descriptor records*/
typedef AERecord Appl eEvent; /*list of attributes and */

[* paraneters necessary for */
/* an Appl e event*/

t ypedef | ong AESendMbde; /*flags that determ ne how */
/* an Apple event is sent*/

typedef short AESendPriority; /*send priority of an Apple */
/* event*/

enum { KAElnteract Wt hSel f, kAElnteractWthLocal,

KAEl nteract Wt hAl l }; /*what processes may */
t ypedef unsi gned char AElInteractAl | owed; /* interact with the user*/

Summary of Responding to Apple Events 4-123

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

enum { kKAEUnknownSource, KAEDi rectCall, kAESameProcess, kAELocal Process,

kAERenot ePr ocess }; /*the source of an Apple */
t ypedef unsi gned char AEEvent Source; /* event*/
enum { KAEDat aArray, kAEPackedArray, kAEHandl eArray,
kAEDescArray, kAEKeyDescArray }; /*type of an Apple event */
t ypedef unsigned char AEArrayType; /* array*/
uni on AEArrayData { /*data for an Apple event */
short kAEDat aArray[1] ; [* array*/
char kAEPackedArray[1];
Handl e kAEHandl eArray][1] ;
AEDesc kAEDescArray[1] ;

AEKeyDesc kAEKeyDescArray[1] ;
b
typedef union AEArrayData AEArrayDat a;

typedef AEArrayData *AEArrayDat aPoi nter;

t ypedef ProcPtr EventHandl er ProcPtr; /*pointer to an Apple event */
/* handl er*/

typedef ProcPtr I|dleProcPtr; /[*pointer to an application's */
/* idle function*/

typedef ProcPtr EventFilterProcPtr; /*pointer to an application's */

/* filter function*/

Routines for Responding to Apple Events

Creating and Managing the Apple Event Dispatch Tables

pascal OSErr AEl nstall Event Handl er
(AEEvent C ass t heAEEvent O ass,
AEEvent | D t heAEEvent | D,
Event Handl er ProcPtr handl er,
| ong handl er Ref con, Bool ean i sSysHandl er);

pascal OSErr AEGet Event Handl er
(AEEvent Cd ass t heAEEvent O ass,
AEEvent | D t heAEEvent | D,
Event Handl er ProcPtr *handl er,
I ong *handl er Ref con, Bool ean i sSysHandl er);

pascal OSErr AERenoveEvent Handl er
(AEEvent Cl ass theAEEvent d ass,
AEEvent | D t heAEEvent | D,
Event Handl er ProcPtr handl er,
Bool ean i sSysHandl er);

4-124 Summary of Responding to Apple Events

CHAPTER 4

Responding to Apple Events

Dispatching Apple Events

pascal OSErr AEProcessAppl eEvent
(const Event Record *theEvent Record);

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes

pascal OSErr AEGet ParanPtr (const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d, DescType desiredType,
DescType *typeCode, void* dataPtr,
Si ze maxi nunti ze, Size *actual Size);

pascal OSErr AEGet ParanmDesc (const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d, DescType desiredType,
AEDesc *result);

pascal OSErr AEGet AttributePtr
(const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d, DescType desiredType,
DescType *typeCode, void* dataPtr,
Si ze maxi munti ze, Size *actual Size);
pascal OSErr AEGet Attri buteDesc
(const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d, DescType desiredType,
AEDesc *result);

Counting the Items in Descriptor Lists

pascal OSErr AECount!tens (const AEDescli st *theAEDesclLi st,
| ong *theCount);

Getting Items From Descriptor Lists

pascal OSErr AEGet Nt hPtr (const AEDescli st *theAEDescList, |ong index,
DescType desiredType, AEKeyword *theAEKeyword,
DescType *typeCode, void* dataPtr,
Si ze maxi munti ze, Size *actual Size);

pascal OSErr AEGet Nt hDesc (const AEDesclLi st *theAEDescList, |ong index,
DescType desiredType, AEKeyword *theAEKeyword,
AEDesc *result);

pascal OSErr AECet Array (const AEDescli st *theAEDesclLi st,
AEArrayType arrayType,
AEArrayDat aPoi nter arrayPtr, Size maxi nunfi ze,
DescType *itenType, Size *itenfize,
I ong *itemCount);

Summary of Responding to Apple Events 4-125

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Getting Data and Keyword-Specified Descriptor Records Out of AE Records

pascal OSErr AEGet KeyPtr (const AERecord *theAERecord,
AEKeywor d t heAEKeywor d, DescType desiredType,
DescType *typeCode, void* dataPtr,
Si ze maxi nunti ze, Size *actual Si ze);

pascal OSErr AEGet KeyDesc (const AERecord *theAERecord,
AEKeywor d t heAEKeywor d, DescType desiredType,
AEDesc *result);

Requesting User Interaction

pascal OSErr AESet|nteractionAll owed
(AElI nteract Al l owed | evel);

pascal OSErr AECet|nteractionAll owed
(AEI nteract Al l owed *Ilevel);
pascal OSErr AElInteract WthUser

(long timeQutlnTicks, NVRecPtr nnReqPtr,
I dl eProcPtr idleProc);

Requesting More Time to Respond to Apple Events
pascal OSErr AEReset Ti mer (const Appl eEvent *reply);

Suspending and Resuming Apple Event Handling

pascal OSErr AESuspendTheCurrent Event
(const Appl eEvent *theAppl eEvent);

pascal OSErr AEResumeTheCurrent Event
(const Appl eEvent *theAppl eEvent,
const Appl eEvent *reply,
Event Handl er ProcPtr di spat cher,
| ong handl er Ref con);

pascal OSErr AESet TheCurrent Event
(const Appl eEvent *theAppl eEvent);

pascal OSErr AEGet TheCurrent Event
(Appl eEvent *t heAppl eEvent);

Getting the Sizes and Descriptor Types of Descriptor Records

pascal OSErr AESi zeO' Nt hltem
(const AEDescLi st *theAEDescList, |ong index,
DescType *typeCode, Size *dataSi ze);
pascal OSErr AESi zeOf KeyDesc
(const AERecord *t heAERecord,
AEKeywor d t heAEKeywor d, DescType *typeCode,
Si ze *dat aSi ze);

4-126 Summary of Responding to Apple Events

CHAPTER 4

Responding to Apple Events

pascal OSErr AESi zeOf Param (const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d, DescType *typeCode,
Si ze *dat aSi ze);
pascal OSErr AESi zeOf Attribute
(const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d, DescType *typeCode,
Si ze *dat aSi ze);

Deleting Descriptor Records

pascal OSErr AEDel eteltem (const AEDescli st *theAEDescList, |ong index);
pascal OSErr AEDel et eKeyDesc
(const AERecord *theAERecord,
AEKeywor d t heAEKeywor d) ;

pascal OSErr AEDel eteParam (const Appl eEvent *theAppl eEvent,
AEKeywor d t heAEKeywor d) ;

Deallocating Memory for Descriptor Records
pascal OSErr AED sposeDesc (AEDesc *theAEDesc);

Coercing Descriptor Types

pascal OSErr AECoercePtr (DescType typeCode, const void* dataPtr,
Si ze dat aSi ze, DescType toType,
AEDesc *result);

pascal OSErr AECoerceDesc (const AEDesc *t heAEDesc, DescType toType,
AEDesc *result);

Creating and Managing the Coercion Handler Dispatch Tables

pascal OSErr AEl nstall Coerci onHandl er
(DescType fronilype, DescType toType,
ProcPtr handl er, |ong handl er Ref con,
Bool ean fronTypel sDesc, Bool ean i sSysHandl er);

pascal OSErr AEGet Coerci onHandl er
(DescType fronilype, DescType toType,
ProcPtr *handl er, 1ong *handl er Ref con,
Bool ean *fromlypel sDesc,
Bool ean i sSysHandl er);

pascal OSErr AERenpveCoerci onHandl er
(DescType fronilype, DescType toType,
ProcPtr handl er, Bool ean i sSysHandl er);

Summary of Responding to Apple Events 4-127

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

Creating and Managing the Special Handler Dispatch Tables

pascal OSErr AEl nstall Speci al Handl er
(AEKeyword functionC ass, ProcPtr handl er,
Bool ean i sSysHandl er);

pascal OSErr AEGet Speci al Handl er
(AEKeyword functionC ass, ProcPtr *handler,
Bool ean i sSysHandl er);

pascal OSErr AERenpveSpeci al Handl er
(AEKeyword functionC ass, ProcPtr handl er,
Bool ean i sSysHandl er);

Getting Information About the Apple Event Manager
/*available only in version 1.01 and | ater versions of Apple Event Manager*/

pascal OSErr AEManagerinfo (AEKeyword keyword, long *result);

Application-Defined Routines

pascal OSErr MyEvent Handl er (const Appl eEvent *theAppl eEvent,
const Appl eEvent *reply, |ong handl er Refcon);

pascal OSErr MyCoercePtr (DescType typeCode, const void* dataPtr,
Si ze dat aSi ze, DescType toType,
| ong handl er Ref con, AEDesc *result);

pascal OSErr MyCoer ceDesc (const AEDesc *theAEDesc, DescType toType, |ong
handl er Ref con, AEDesc *result);

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_Packs8

Selector Routine

$011E AESet | nt eracti onAl | owed
$0204 AEDi sposeDesc

$0219 AEReset Ti ner

$021A AEGet TheCurr ent Event
$021B AEPr ocessAppl eEvent

4-128 Summary of Responding to Apple Events

Selector
$021D

$022B
$022C
$0407
$040E
$0413
$0413
$0441
$0500
$0501
$052D
$0603
$061C
$0720
$0723
$0812
$0812
$0818
$0826
$0828
$0829
$0829
$082A
$091F
$0921
$0A02
$0A22
$0A0B
$0B24
$0D0C
$0E11
$0E11
$0E15
$100A

CHAPTER 4

Responding to Apple Events

Routine
AEGet | nt er acti onAl | owed

AESuspendTheCur r ent Event
AESet TheCurr ent Event
AECount | t ens

AEDel eteltem

AEDel et eKeyDesc

AEDel et ePar am
AEManager | nf o

AEIl nst al | Speci al Handl er
AERenoveSpeci al Handl er
AECet Speci al Handl er
AECoer ceDesc

AEl nt eract Wt hUser
AERenoveEvent Handl er
AERenpveCoer ci onHandl er
AEGet KeyDesc

AECet Par amDesc
AEResuneTheCurr ent Event
AEGet At t ri but eDesc

AESi zeOF Attri bute

AESi zeO KeyDesc

AESi zeOr Par am

AESi zeOF Nt hl t em

AEl nst al | Event Handl er
AEGet Event Handl er
AECoer cePtr

AEl nst al | Coer ci onHandl er
AEGet Nt hDesc

AEGet Coer ci onHandl er
AECet Ar r ay

AEGet KeyPt r

AECet Par anPt r

AEGet Attri butePtr

AEGet Nt hPt r

Result Codes

Summary of Responding to Apple Events

4-129

suang 9|ddy 01 Buipuodsay -

CHAPTER 4

Responding to Apple Events

nokErr
parantrr

eLenErr

menmful | Err

user Cancel edErr
pr ocNot Found

buf ferl sSmal |

noQut st andi ngHLE
connectionlnvalid
noUser | nt eracti onAl | owed

noPort Err
dest PortErr

sessC osedErr

er r AECoer ci onFai |

er r AEDescNot Found

er r AECor r upt Dat a

er r AEW ongDat aType

er r AENot AEDesc

err AEBadLi stltem

er r AENewer Ver si on

er r AENot Appl eEvent

er r AEEvent Not Handl| ed
err AERepl yNot Val i d

er r AEUnknownSendMbde
err AEWai t Cancel ed

err AETi neout

err AENoUser | nt eracti on
er r AENot ASpeci al Functi on
er r AEPar anM ssed

er r AEUnknownAddr essType
er r AEHandl er Not Found

err AERepl yNot Arri ved

err AEl | | egal | ndex
er r AEl npossi bl eRange

er r AEW ongNunber Ar gs

er r AEAccessor Not Found

=50

-92
-108
-128
-600

-607
-608
-609
-610

-903

—906

917

-1700

-1701
-1702
-1703
-1704
-1705
-1706
-1707
-1708
-1709
-1710
-1711
-1712
-1713
-1714
-1715

-1716
-1717

-1718

-1719
-1720

-1721

-1723

No error

Parameter error (for example, value of handler pointer
is NI L or odd)

Buffer too big to send

Not enough room in heap zone

User canceled an operation

No eligible process with specified process serial
number

Buffer is too small

No outstanding high-level event

Nonexistent signature or session ID

Background application sends event requiring
authentication

Client hasn’t set' SI ZE' resource to indicate
awareness of high-level events

Server hasn’t set' SI ZE' resource to indicate
awareness of high-level events, or else is not present
The kAEDont Reconnect flag in the sendMbde
parameter was set, and the server quit and then
restarted

Data could not be coerced to the requested descriptor
type

Descriptor record was not found

Data in an Apple event could not be read

Wrong descriptor type

Not a valid descriptor record

Operation involving a list item failed

Need a newer version of the Apple Event Manager
Event is not an Apple event

Event wasn’t handled by an Apple event handler
AEReset Ti mer was passed an invalid reply
Invalid sending mode was passed

User canceled out of wait loop for reply or receipt
Apple event timed out

No user interaction allowed

The keyword is not valid for a special function
Handler cannot understand a parameter the client
considers required

Unknown Apple event address type

No handler found for an Apple event or a coercion, or
no object callback function found

Reply has not yet arrived

Not a valid list index

The range is not valid because it is impossible for a
range to include the first and last objects that were
specified; an example is a range in which the offset of
the first object is greater than the offset of the last
object

The number of operands provided for the k AENot
logical operator is not 1

There is no object accessor function for the specified
object class and token descriptor type

4-130 Summary of Responding to Apple Events

CHAPTER 4

Responding to Apple Events

er r AENoSuchLogi cal

err AEBadTest Key

er r AENot An(bj ect Spec

er r AENoSuchQbj ect

er r AENegat i veCount

er r AEEnpt yLi st Cont ai ner
er r AEUnknownQbj ect Type

er r AERecor di ngl sAl readyOn

Summary of Responding to Apple Events

-1725

-1726

-1727

-1728

-1729

-1730

-1731

-1732

The logical operator in a logical descriptor record is
not KAEAnd, kAEQr, or K AENot

The descriptor record in a test key is neither a
comparison descriptor record nor a logical descriptor
record

The obj Speci fi er parameter of AEResol ve is not
an object specifier record

A run-time resolution error, for example: object
specifier record asked for the third element, but there
are only two

Object-counting function returned negative value
The container for an Apple event object is specified by
an empty list

Descriptor type of token returned by AEResol ve is
not known to server application

Attempt to turn recording on when it is already on

4-131

suang 9|ddy 01 Buipuodsay -

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	Responding to Apple Events
	Handling Apple Events
	Accepting an Apple Event
	Installing Entries in the Apple Event Dispatch Tab...
	Installing Entries for the Required Apple Events
	Installing Entries for Apple Events Sent by the Ed...
	How Apple Event Dispatching Works

	Handling the Required Apple Events
	Required Apple Events
	Handling the Open Application Event
	Handling the Open Documents Event
	Handling the Print Documents Event
	Handling the Quit Application Event

	Handling Apple Events Sent by the Edition Manager
	The Section Read, Section Write, and Section Scrol...
	Handling the Create Publisher Event

	Getting Data Out of an Apple Event
	Getting Data Out of an Apple Event Parameter
	Getting Data Out of an Attribute
	Getting Data Out of a Descriptor List

	Writing Apple Event Handlers
	Replying to an Apple Event
	Disposing of Apple Event Data Structures
	Writing and Installing Coercion Handlers

	Interacting With the User
	Setting the Client Application’s User Interaction ...
	Setting the Server Application’s User Interaction ...
	Requesting User Interaction

	Reference to Responding to Apple Events
	Data Structures Used by the Apple Event Manager
	Descriptor Records and Related Data Structures
	Apple Event Array Data Types

	Routines for Responding to Apple Events
	Creating and Managing the Apple Event Dispatch Tab...
	Dispatching Apple Events
	Getting Data or Descriptor Records Out of Apple Ev...
	Counting the Items in Descriptor Lists
	Getting Items From Descriptor Lists
	Getting Data and Keyword-Specified Descriptor Reco...
	Requesting User Interaction
	Requesting More Time to Respond to Apple Events
	Suspending and Resuming Apple Event Handling
	Getting the Sizes and Descriptor Types of Descript...
	Deleting Descriptor Records
	Deallocating Memory for Descriptor Records
	Coercing Descriptor Types
	Creating and Managing the Coercion Handler Dispatc...
	Creating and Managing the Special Handler Dispatch...
	Getting Information About the Apple Event Manager

	Application-Defined Routines

	Summary of Responding to Apple Events
	Pascal Summary
	Constants
	Data Types
	Routines for Responding to Apple Events
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Routines for Responding to Apple Events
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

