

C H A P T E R 1 1

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

Program-to-Program Communications Toolbox 11

This chapter describes how you can use the Program-to-Program Communications
(PPC) Toolbox to send and receive low-level message blocks between applications.

The PPC Toolbox can be used by different applications located on the same computer
or across a network of Macintosh computers. The PPC Toolbox is available only in
System 7 or later. To test for the existence of the PPC Toolbox, use the Gestalt function,
described in Inside Macintosh: Operating System Utilities.

Read this chapter if you want your application to transmit and receive data from other
applications that support the PPC Toolbox. Applications that utilize the PPC Toolbox
must be open and connected to each other to exchange data. The PPC Toolbox
allows you to send large amounts of data to other applications; it is typically useful
for code that is not event-based. The PPC Toolbox is called by the Macintosh Operating
System and can also be called by applications, device drivers, desk accessories, or
other programs.

The PPC Toolbox provides a method of communication that is particularly useful for
applications that are specifically designed to work together and are dependent on each
other for information. For example, suppose one user organizes large amounts of data
using a database application and another user filters and plots the same data using a
plotting application. If both applications use the PPC Toolbox, these two applications can
directly transmit data to each other when both applications are open and connected to
each other.

You can also use the PPC Toolbox if your application communicates with other
applications using high-level events or Apple events, and your application allows the
user to choose another application to communicate with. You can use a PPC Toolbox
routine that provides a standard user interface to display a dialog box that lists other
applications that are available to exchange information. See “Browsing for Ports Using
the Program Linking Dialog Box” beginning on page 11-22 for detailed information.
See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials for
information on high-level events, and see earlier chapters in this book for information on
Apple events.

The PPC Toolbox uses the AppleTalk Data Stream Protocol (ADSP) and the
Name-Binding Protocol (NBP). For detailed information on ADSP and NBP, see
Inside Macintosh: Networking.

Note
The sample applications “store data,” “display data,” “send and
receive,” “make memo,” and “spell quick” used in this chapter are not
actual products of Apple Computer, Inc. They are used for illustrative
purposes only. ◆
11-3

C H A P T E R 1 1

Program-to-Program Communications Toolbox

About the PPC Toolbox 11

The PPC Toolbox provides you with the ability to

■ exchange data with other open applications on the same computer or across a
network of Macintosh computers

■ browse through a listing of applications that are available to exchange data

■ verify user identities for communication across a network

To utilize the PPC Toolbox to exchange data between open applications, each application
involved must support the PPC Toolbox.

This chapter first defines the main elements of the PPC Toolbox and then discusses
how to

■ set up your application for communication

■ use security features prior to establishing communication

■ locate other applications that can exchange data

■ initiate communication between applications

■ accept or reject incoming communications requests

■ transmit and receive data between applications

■ terminate communication between applications

Ports, Sessions, and Message Blocks 11
To initiate communication between applications, you must first open a port. A port is a
portal through which your application can exchange information with another
application. A port is designated by a port name and a location name.

A port name is a unique identifier for a particular application on a computer. The port
name contains a name string, a type string, and a script code for localization. The
location name identifies the location of the computer on the network. The location name
contains an object string, a type string, and a zone. An application can specify an alias
location name by modifying its type string.

Your application can open as many ports as it requires as long as each port name is
unique within a particular computer. See “Specifying Port Names and Location Names”
beginning on page 11-17 for detailed information on port names and location names.
11-4 About the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

Through its port, an open application can communicate with another open application
during a session. One port can support any number of communication sessions. During
a session, an application sends and receives data in the form of a message block. The
PPC Toolbox treats each block of data as a byte stream and delivers it in the same
sequence in which it was sent.

The words port name, location name, session, and message block are programmatic terms.
You should not use them in the user interface of your application or in your user
documentation. Instead, refer to a file that contains executable code as an
application program. An application program that opens and uses PPC ports supports
program linking. When you link two application programs together, you are forming
a program link. A link allows two application programs to communicate with each other—
you unlink two application programs when you break the link between them. You can
compare the link between two application programs to the communication established
using telephones. For example, a program link is similar to a telephone connection that
enables various forms of communication such as human-to-human, modem-to-modem,
and facsimile machine–to–facsimile machine.

Figure 11-1 shows a database application on one computer that has initiated a session
with a spreadsheet application located on another computer on the network.

Figure 11-1 A PPC Toolbox session between two applications

Session

Location name

Port name

PPC Toolbox PPC Toolbox

store data,

database

display data,

spreadsheet

Joe Smith’s Macintosh:PPCToolBox@loading

Port name

Location name

Jane Doe’s Macintosh:PPCToolBox@twilight

3
70 1
About the PPC Toolbox 11-5

C H A P T E R 1 1

Program-to-Program Communications Toolbox

The database application’s port name consists of “store data” (the name string)
and “database” (the type string). Its location name consists of “Jane Doe’s Macintosh”
(the object string), “PPCToolBox” (the type string), and “twilight” (the AppleTalk zone).

The spreadsheet application’s port name consists of “display data” (the name string) and
“spreadsheet” (the type string). Its location name consists of “Joe Smith’s Macintosh”
(the object string), “PPCToolBox” (the type string), and “loading” (the AppleTalk zone).

Setting Up Authenticated Sessions 11
Network communication must be active to initiate sessions with other computers across
a network. The user must activate AppleTalk in the Chooser and enable program linking
using the Sharing Setup control panel located in the Control Panels folder inside the
System Folder. Figure 11-2 displays the icon for the Sharing Setup control panel.

Figure 11-2 The icon for the Sharing Setup control panel

Figure 11-3 shows the Sharing Setup control panel.

Figure 11-3 The Sharing Setup control panel
11-6 About the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

To permit other computers to initiate sessions with the owner’s computer, the owner of
the computer must click the Start button underneath Program Linking (Start toggles
with Stop). The Sharing Setup control panel then indicates “Program linking is on. Click
Stop to prevent other users from linking to your shared programs.” To prevent other
computers from initiating sessions, an owner simply clicks Stop underneath Program
Linking. The Sharing Setup control panel then indicates “Program linking is off. Click
Start to allow other users to link to your shared programs.” Clicking the Start or Stop
button also enables or disables the transmission of incoming Apple events across the
network.

If a user clicks the Stop button while there are active incoming sessions (sessions
initiated by other users), an alert box (shown in Figure 11-4) appears on the user’s screen.

Figure 11-4 The session termination alert box

If a user clicks OK, all active sessions initiated by other users are immediately
terminated. Note that it is still possible for the owner of the computer to initiate sessions,
even though other users may not initiate sessions with the owner’s computer.

The PPC Toolbox establishes the identity of users through the process of authentication.
The authentication mechanism of the PPC Toolbox identifies each user through an
assigned name and password. Each session initiated with a port that is located on a
remote computer requires authentication (unless guest access is enabled) before a session
is permitted. Sessions between applications located on the same computer never require
authentication.

A computer’s owner can establish access for other users and guests by opening the
Users & Groups control panel located in the Control Panels folder. The Users & Groups
control panel allows an owner to specify the names and passwords of other users
whose computers can initiate sessions with his or her ports across the network.
When the computer’s owner opens the Users & Groups control panel, the Guest icon
appears. If the owner’s name is specified in the Sharing Setup control panel, an icon with
the owner’s name also appears.
About the PPC Toolbox 11-7

C H A P T E R 1 1

Program-to-Program Communications Toolbox

To specify a particular new user, the owner chooses New User from the File menu.
The owner should type in the user’s name. When the owner opens a user icon in the
Users & Groups control panel, the Finder displays the users and groups dialog box on
the owner’s screen. Figure 11-5 shows the users and groups dialog box for a particular
user.

Figure 11-5 The users and groups dialog box

To permit authenticated session requests, the owner can specify a password for each
user. The owner allows other users to utilize the PPC Toolbox by clicking the checkbox
under Program Linking. If the owner clicks the checkbox again, all active sessions
initiated by this particular user are immediately terminated. The user termination alert
box (shown in Figure 11-6) is displayed as a warning.

Figure 11-6 The user termination alert box
11-8 About the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

When the owner opens a Guest icon in the Users & Groups control panel, the Finder
displays the guest dialog box on the owner’s screen. Authentication is not required if the
owner permits guest access. Figure 11-7 shows the guest dialog box.

Figure 11-7 The guest dialog box

By clicking the checkbox under Program Linking, the owner permits guests to
communicate using the PPC Toolbox or Apple events.

Consider this example of the authentication process: one user decides to make a
dictionary service available to other users. A second user wishes to employ this service
in a word-processing program. Assuming both programs support the PPC Toolbox, the
word-processing program attempts to gain access to the dictionary service that is open
on the first user’s computer by initiating a session. When the word-processing
application requests a session, the PPC Toolbox attempts to authenticate the second user
by requesting a user name and a password (unless guest access is enabled). If the
authentication process verifies the user’s identity and the dictionary application accepts
the request for a session, a session is established and the second user can access the
dictionary’s data.
About the PPC Toolbox 11-9

C H A P T E R 1 1

Program-to-Program Communications Toolbox

Figure 11-8 illustrates the authentication process that occurs when a user attempts to
initiate a session.

Figure 11-8 The PPC Toolbox authentication process

Using the PPC Toolbox 11

This section describes how to

■ use PPC Toolbox calling conventions

■ open a port

■ list all available port locations on the network

Accept/

reject

Macintosh computer

Start

Dictionary

service

Word

processor

PPC Toolbox

Macintosh computer

Authentication

PPC Toolbox
11-10 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

■ indicate that a port is available to accept session requests

■ initiate a session

■ accept and reject session requests

■ read and write data during a session

■ end a session after data is transmitted and received

■ close a port when it is no longer needed to transmit or receive data

■ invalidate users

To begin, you must determine whether the PPC Toolbox is available on the
user’s computer system by using the Gestalt function with the selector
gestaltPPCToolboxAttr. A noErr result code indicates that the PPC Toolbox
is present.

The Gestalt function returns a combination of the following constants
in the response parameter: gestaltPPCToolboxPresent,
gestaltPPCSupportsRealTime, gestaltPPCSupportsOutGoing,
and gestaltPPCSupportsIncoming.

The PPC Toolbox currently supports only sessions in real time. The Gestalt function
returns gestaltPPCSupportsRealTime by default. If this bit is not set, you need to
initialize the PPC Toolbox.

The Gestalt function returns gestaltPPCSupportsOutGoing to indicate support of
outgoing sessions across a network of Macintosh computers. If this bit is not set, the user
hasn’t enabled AppleTalk in the Chooser.

The Gestalt function returns gestaltPPCSupportsIncoming if the user has
enabled program linking in the Sharing Setup control panel. If this bit is not set, the user
either hasn’t enabled AppleTalk in the Chooser or hasn’t enabled program linking in the
Sharing Setup control panel.

Use the PPCInit function to initialize the PPC Toolbox.

err := PPCInit;
Using the PPC Toolbox 11-11

C H A P T E R 1 1

Program-to-Program Communications Toolbox

Listing 11-1 illustrates how you use the PPCInit function to initialize the PPC Toolbox.

Listing 11-1 Initializing the PPC Toolbox using the PPCInit function

FUNCTION MyPPCInit: OSErr;

VAR

PPCAttributes: LongInt;

err: OSErr;

BEGIN

err := Gestalt(gestaltPPCToolboxAttr, PPCAttributes);

IF err = noErr THEN {PPC Toolbox is present}

BEGIN

IF BAND(PPCAttributes, gestaltPPCSupportsRealTime) = 0 THEN

BEGIN

MyPPCInit := PPCInit; {initialize the PPC Toolbox}

{test the attributes for the PPC Toolbox}

err := Gestalt(gestaltPPCToolboxAttr, PPCAttributes);

END;

IF BAND(PPCAttributes, gestaltPPCSupportsOutGoing) <> 0 THEN

{ports can be opened to the outside world}

ELSE {it's likely that AppleTalk is disabled, so you }

; { may want to tell the user to activate AppleTalk }

{ from the Chooser}

IF BAND(PPCAttributes, gestaltPPCSupportsIncoming) <> 0 THEN

{ports can be opened with location names that the }

{ outside world can see}

ELSE {it's likely that program linking is disabled, so }

; { you may want to tell the user to start program }

{ linking from the Sharing Setup control panel}

END

ELSE

MyPPCInit := err;

END;
11-12 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

Figure 11-9 illustrates a spreadsheet application (on the left) that has initiated a session
with a database application (on the right) to exchange data using the PPC Toolbox. This
figure includes an example of the sequence of PPC Toolbox routines executed by these
applications. Detailed descriptions of the functions appear in the sections that follow.

Figure 11-9 Database and spreadsheet applications using the PPC Toolbox

PPCOpen

PPCBrowser

StartSecureSession

PPCWrite

PPCOpen

PPCInform

PPCAccept

PPCRead

PPCClose PPCClose

PPCEnd

PPCRead

PPCEnd

PPCWrite

PPC

Toolbox

PPC

Toolbox

3
70 1
Using the PPC Toolbox 11-13

C H A P T E R 1 1

Program-to-Program Communications Toolbox
To establish a session, each application must first open a port using the PPCOpen
function. The spreadsheet application prepares to receive session requests by calling the
PPCInform function.

Before initiating a session or opening a port, the database application can let the
user browse through the list of available ports (using the PPCBrowser function).
If the user decides to communicate with the spreadsheet application, the database
application initiates a session with the spreadsheet application’s port using the
StartSecureSession function. After the PPC Toolbox authenticates the user name
and password of the initiating port, the spreadsheet application accepts the session
request (using the PPCAccept function).

Once the session is established, the applications exchange information in the form of
message blocks (using the PPCRead and PPCWrite functions). During a session, an
application can both read from and write message blocks to another application. After
the information exchange is done, each application ends the session (PPCEnd) and then
closes its port (PPCClose) when it quits.

The PPCOpen function returns a port reference number. The port reference number is a
reference number for the port through which you are requesting a session. The
database application uses the port reference number in subsequent calls to the
StartSecureSession and PPCClose functions. The StartSecureSession function
returns a session reference number. The session reference number is used to identify the
session during the exchange of data. It is used in subsequent calls to the PPCWrite,
PPCRead, and PPCEnd functions.

The PPCOpen function returns a port reference number that the spreadsheet uses in
subsequent calls to the PPCInform and PPCClose functions. The PPCInform function
returns a session reference number that is used in subsequent calls to the PPCAccept,
PPCRead, PPCWrite, and PPCEnd functions.

PPC Toolbox Calling Conventions 11
Most PPC Toolbox functions can execute synchronously (meaning that the application
cannot continue until the function completes execution) or asynchronously (meaning
that the application is free to perform other tasks while the function is executing).
The PPC Toolbox functions that can only be executed synchronously include PPCInit,
PPCBrowser, StartSecureSession, DeleteUserIdentity, and
GetDefaultUser. All other PPC Toolbox functions can execute asynchronously or
synchronously. Here’s an example:

FUNCTION PPCFunction (pb: PPCParamBlockPtr;

 async: Boolean): OSErr;
11-14 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The pb parameter should point to a PPC parameter block. Set the async parameter to
TRUE if you want the function to execute asynchronously; set it to FALSE if you want the
function to execute synchronously.

Note
The PPCInform, PPCRead, and PPCWrite functions should always be
executed asynchronously, because they require interaction from the
other application in the session before they complete execution. ◆

The PPCParamBlockRec data type defines the PPC parameter block.

TYPE PPCParamBlockRec =

RECORD

CASE Integer OF

0: (openParam: PPCOpenPBRec); {PPCOpen params}

1: (informParam: PPCInformPBRec); {PPCInform params}

2: (startParam: PPCStartPBRec); {PPCStart params}

3: (acceptParam: PPCAcceptPBRec); {PPCAccept params}

4: (rejectParam: PPCRejectPBRec); {PPCReject params}

5: (writeParam: PPCWritePBRec); {PPCWrite params}

6: (readParam: PPCReadPBRec); {PPCRead params}

7: (endParam: PPCEndPBRec); {PPCEnd params}

8: (closeParam: PPCClosePBRec); {PPCClose params}

9: (listPortsParam: IPCListPortsPBRec); {IPCListPorts }

{ params}

END;

For an illustration of the fields of each individual parameter block (such as
PPCInformPBRec or IPCListPortsPBRec), see Figure 11-18 on page 11-47.

Your application transfers ownership of the PPC parameter block (and any buffers or
records pointed to by the PPC parameter block) to the PPC Toolbox until a PPC function
completes execution. Once the function completes, ownership of the parameter block
(and any buffers or records it points to) is transferred back to your application. If a
PPC Toolbox function is executed asynchronously, your program cannot alter memory
that might be used by the PPC Toolbox until that function completes.
Using the PPC Toolbox 11-15

C H A P T E R 1 1

Program-to-Program Communications Toolbox
A PPC Toolbox function that is executed asynchronously must specify NIL or the
address of a completion routine in the ioCompletion field of the PPC parameter block.
You should use the ioResult field to determine the actual result code when an
asynchronously executed PPC Toolbox function completes.

If you specify NIL in the ioCompletion field, you should poll the ioResult field of
the PPC parameter block after the function is called to determine whether the PPC
function has completed the requested operation. You should poll the ioResult field
within the event loop of your application. If the ioResult field contains a value other
than 1, the function has completed execution. Note that you must not poll the ioResult
field at interrupt time to determine whether the function has completed execution.

If you specify a completion routine in the ioCompletion field, it is called at interrupt
time when the PPC Toolbox function completes execution.

▲ W A R N I N G

Completion routines execute at the interrupt level and must preserve all
registers other than A0, A1, and D0–D2. (Note that MPW C and MPW
Pascal do this automatically.) Your completion routine must not make
any calls to the Memory Manager directly or indirectly, and it can’t
depend on the validity of handles to unlocked blocks. The PPC Toolbox
preserves the application global register A5. ▲

You can write completion routines in C, Pascal, or assembly language. A completion
routine declared in Pascal has this format:

PROCEDURE MyCompletionRoutine (pb: PPCParamBlockPtr);

The pb parameter points to the PPC parameter block passed to the PPC Toolbox function.

You may call another PPC Toolbox function from within a completion routine, but the
function called must be executed asynchronously. It is recommended that you allocate
parameter blocks of data type PPCParamBlockRec so that you may reuse the
pb parameter to call another PPC Toolbox function from within a completion routine.
For example, you should call either the PPCAccept function or the PPCReject function
asynchronously from within a PPCInform completion routine to accept or reject the
session request.

If your application is executing PPC Toolbox functions asynchronously, you may want to
define your own record type to hold all data associated with a session. You can attach the
data to the end of the parameter block. Here’s an example:
11-16 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
TYPE

SessRecHndl = ^SessRecPtr;

SessRecPtr = ^SessRec;

SessRec =

RECORD

pb: PPCParamBlockRec; {must be first }

{ item in record}

thePPCPortRec: PPCPortRec;

theLocationNameRec: LocationNameRec;

theUserName: Str32;

END;

The additional data elements in your record can be accessed during execution of a
completion routine by coercing the pb parameter to a pointer to your record type.

Specifying Port Names and Location Names 11
Before initiating a session, you must open a port to communicate with other programs. A
port name and location name identify each port. An application can open as many ports
as it requires as long as each port name is unique within a particular computer. You
specify both the port name and the location name in the PPC parameter block.

Figure 11-10 illustrates a single Macintosh computer with two applications, and their
corresponding port names and location names.

To open a port, you need to specify a port name. A port name consists of a name string, a
type string, and a script code for localization. For example, you can designate “make
memo” as the application’s name string, “word processor” as its type string, and
“smRoman” as its script code.

A port name is defined by a PPC port record. The PPC port record contains a script code,
name string, port kind selector, and type string. The script code is an integer script
identifier used for localization. The name string consists of a 32-byte character string that
designates the application name. You should keep both the script code and the
name string in a resource. The port kind selector is an integer that selects the kind of type
string. You should make it consistent internationally. The type string can be either a
32-byte character string or a 4-character creator and a 4-character file type. See the
chapter “Finder Interface” of Inside Macintosh: Macintosh Toolbox Essentials for
information on creators and file types. See Inside Macintosh: Text for information on script
codes and localization.
Using the PPC Toolbox 11-17

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Figure 11-10 Two Macintosh applications and their corresponding ports

The PPCPortRec data type defines the PPC port record.

TYPE PPCPortRec =

RECORD

nameScript: ScriptCode; {script identifier}

name: Str32; {port name in program }

{ linking dialog box}

portKindSelector: PPCPortKinds; {general category of }

{ application}

CASE PPCPortKinds OF

ppcByString: (portTypeStr: Str32);

ppcByCreatorAndType:

(portCreator: OSType;

portType: OSType);

END;

Port name

PPC Toolbox

store data,

database

make memo,

word processor

Port name

Location name

Jane Doe’s Macintosh:PPCToolBox@twilight
11-18 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The location name identifies the location of the computer on the network. The
PPC Toolbox provides the location name when the user starts up the computer.
The location name is specified in the standard Name-Binding Protocol (NBP) form,
<object string>:PPCToolBox @<AppleTalk zone>. The object string is the name provided in
the Sharing Setup control panel in the Control Panels folder. By default, the type string is
“PPCToolBox”. The AppleTalk zone is the zone to which the particular Macintosh
computer belongs. For example, “Jane Doe’s Macintosh:PPCToolBox@twilight” specifies
the object string, type string, and AppleTalk zone for a particular computer.

The LocationNameRec data type defines the location name record. The
locationKindSelector field can be set to ppcNoLocation, ppcNBPLocation,
or ppcNBPTypeLocation.

TYPE LocationNameRec =

RECORD

locationKindSelector: PPCLocationKind; {which variant}

CASE PPCLocationKind OF

{ppcNoLocation: storage not used by this value}

ppcNBPLocation:

(nbpEntity: EntityName); {NBP name entity}

ppcNBPTypeLocation:

(nbpType: Str32); {just the NBP type }

{ string for the }

{ PPCOpen function}

END;

The ppcNoLocation constant is used when the location received from or passed to a
PPC Toolbox function is the location of the local machine.

The ppcNBPLocation constant is used when a full NBP entity name is received from or
passed to a PPC Toolbox function.

Note
You should assign an NBP value directly—do not pack it using
nbpSetEntity. ◆

The ppcNBPTypeLocation constant is used only by the PPCOpen function when an
alias location name is needed.

The NBP type to be used for the alias location name is passed in the location name
record’s nbpType field. Alias location names allow you to filter the NBP objects
(Macintosh computers) displayed by the program linking dialog box (shown in
Figure 11-12 on page 11-22) using the PPCBrowser function. See “Browsing for Ports
Using the Program Linking Dialog Box” beginning on page 11-22 for information on the
PPCBrowser function.
Using the PPC Toolbox 11-19

C H A P T E R 1 1

Program-to-Program Communications Toolbox
An alias location name could be used to advertise a service (such as a dictionary service)
that is available to any application located on the network. For example, “Joe Smith’s
Macintosh: dictionary@ozone” specifies the object string, type string, and AppleTalk
zone for a particular dictionary service.

To search for all dictionary services available within a zone, you use the PPCBrowser
function and a filter. Figure 11-11 illustrates a Macintosh dictionary service application,
its corresponding port name, and its alias location name.

Figure 11-11 The PPC Toolbox and a dictionary service application

Opening a Port 11

To open a port and associate a name with it, use the PPCOpen function. Listing 11-2
illustrates how you use the PPCOpen function to open a port. In this listing, the name is
“Inside Macintosh” and the port type string is “Example”. The location name is
<object string>:PPC Example@<AppleTalk zone>.

Alias location name

Port name

PPC Toolbox

spell quick,

dictionary

Joe Smith's Macintosh:dictionary@ozone

Location name

Joe Smith's Macintosh:PPCToolBox@ozone
11-20 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Listing 11-2 Opening a PPC port

FUNCTION MyPPCOpen(VAR thePortRefNum: PPCPortRefNum;

 VAR nbpRegisteredFlag: Boolean): OSErr;

VAR

thePPCOpenPBRec: PPCOpenPBRec;

thePPCPortRec: PPCPortRec;

theLocationNameRec: LocationNameRec;

BEGIN

WITH thePPCPortRec DO

BEGIN

{nameScript and name should be resources to allow }

{ easy localization}

nameScript := smRoman; {Roman script}

name := 'Inside Macintosh';

{the port type should always be hard-coded to allow the }

{ application to find ports of a particular type even }

{ after the name is localized}

portKindSelector := ppcByString;

portTypeStr := 'Example';

END;

WITH theLocationNameRec DO

BEGIN

locationKindSelector := ppcNBPTypeLocation;

nbpType := 'PPC Example';

END;

WITH thePPCOpenPBRec DO

BEGIN

serviceType := ppcServiceRealTime;

resFlag := 0; {must be 0 for 7.0}

portName := @thePPCPortRec;

locationName := @theLocationNameRec;

networkVisible := TRUE; {make this a visible }

{ entity on the network}

END;

MyPPCOpen := PPCOpen(@thePPCOpenPBRec, FALSE);{synchronous}

thePortRefNum := thePPCOpenPBRec.portRefNum;

nbpRegisteredFlag := thePPCOpenPBRec.nbpRegistered;

END;
Using the PPC Toolbox 11-21

C H A P T E R 1 1

Program-to-Program Communications Toolbox
The PPCOpen function opens a port with the port name and location name specified in
the name and location fields of the parameter block. When the PPCOpen function
completes execution, the portRefNum field returns the port reference number. You can
use the port reference number in the PPCInform, PPCStart, StartSecureSession,
and PPCClose functions to refer to the port you have opened.

Browsing for Ports Using the Program Linking Dialog Box 11

Before initiating a session, you can use either the PPCBrowser function or the
IPCListPorts function to locate a port to communicate with.

Use the PPCBrowser function to display the program linking dialog box (shown in
Figure 11-12) on the user’s screen.

Note
Because this function displays a dialog box on the user’s screen, you
must not call the PPCBrowser function from an application that is
running in the background. ◆

Figure 11-12 The program linking dialog box

In the program linking dialog box, the user selects the computer, zone, and application.
The zone list is not displayed if there is no network connection. Figure 11-13 shows the
dialog box without the zone list.
11-22 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Figure 11-13 The program linking dialog box without a zone list

As shortcuts for the user, the program linking dialog box supports standard keyboard
equivalents. Pressing Command-period or the Esc (Escape) key selects Cancel—pressing
Enter or Return selects the OK button.

Each list is sorted in alphabetical order. As in the Chooser, the current list is indicated by
a thick outline around its border. The program linking dialog box supports keyboard
navigation and use of the arrow keys to select items from the current list. Pressing Tab or
clicking the rectangle of another list switches the current list. Pressing Shift-Tab reverses
the order in which the lists are selected. In addition, double-clicking an application name
in the Programs list of the program linking dialog box is equivalent to clicking the OK
button.

The PPCBrowser function allows users to browse for PPC ports.

err := PPCBrowser (prompt, applListLabel, defaultSpecified,

 theLocation, thePortInfo, portFilter,

 theLocNBPType);

If the defaultSpecified parameter is TRUE, the PPCBrowser function tries to select
the PPC port specified by the parameters theLocation and thePortInfo when the
program linking dialog box first appears. If the default cannot be found, the
PPCBrowser function selects the first PPC port in the list.
Using the PPC Toolbox 11-23

C H A P T E R 1 1

Program-to-Program Communications Toolbox
An application can open multiple ports as long as each port name is unique within a
particular computer. Unique ports can have duplicate name fields but different types.
For example, you can designate “make memo” as the application’s name string and
“word processor” as its type string. You can also designate a separate port as “make
memo” (the application’s name string) and “text only” (its type string).

In such a case, the PPCBrowser function does a secondary sort based on the port type.
Ports with a type selector of ppcByCreatorAndType are displayed before
ppcByString ports, and types are sorted alphabetically within each type selector.

The PPCBrowser function uses the IPCListPorts function to obtain the list of existing
ports on a particular computer within a particular zone. The portFilter parameter
of the PPCBrowser function allows you to filter the list of PPC ports before it displays
them in the program linking dialog box. If you set the portFilter parameter to NIL,
the PPCBrowser function displays the names of all the existing PPC ports returned
by the IPCListPorts function. If you do not set the portFilter parameter to NIL,
you must set it to a pointer to a port filter function that you create.

Listing 11-3 illustrates how you use a sample port filter function. In this listing, the
MyBrowserPortFilter function returns TRUE for ports with the port type string
“Example”.

Listing 11-3 Using a port filter function

FUNCTION MyBrowserPortFilter(theLocationNameRec: LocationNameRec;

 thePortInfoRec: PortInfoRec)

 : Boolean;

BEGIN

IF thePortInfoRec.name.portKindSelector = ppcByString THEN

IF thePortInfoRec.name.portTypeStr = 'Example' THEN

MyBrowserPortFilter := TRUE

ELSE

MyBrowserPortFilter := FALSE

ELSE

MyBrowserPortFilter := FALSE;

END;
11-24 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The PPCBrowser function calls your filter function once for each port on the selected
computer. Your function should return TRUE for each port you want to display in the
program linking dialog box, and FALSE for each port that you do not want to display.
Do not modify the data in the filter function parameters theLocationNameRec and
thePortInfoRec.

The PPCBrowser function returns the selected port name in the parameter
thePortInfo. The IPCListPorts function returns the port names in the area of
memory pointed to by the bufferPtr field of the IPCListPorts parameter block.
Both functions specify each port name in a port information record.

TYPE PortInfoRec =

RECORD

filler1: SignedByte; {space holder}

authRequired: Boolean; {authentication required}

name: PPCPortRec; {port name}

END;

If the authRequired field returns TRUE, the port requires authentication before
a session can begin. You should use the StartSecureSession function to initiate a
session with this port. If this field returns FALSE, you can use either the PPCStart
function or the StartSecureSession function to initiate a session. See “Initiating a
PPC Session” beginning on page 11-29 for detailed information. The name field of the
port information record specifies an available port name.

Listing 11-4 illustrates how you use the PPCBrowser function to display the program
linking dialog box in order to obtain the location and name of a port chosen by the user.
In this listing, the PPCBrowser function builds lists of zones (shown in the AppleTalk
Zones list of the program linking dialog box), objects (shown in the Macintoshes list),
and ports (shown in the Programs list). In this example, the PPCBrowser function next
tries to default to object “Moof™” in the “Twilight” zone. If it matches the object and
zone, it also tries to default to the port “Inside Macintosh” with the port type “Example”.
Using the PPC Toolbox 11-25

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Note that the data in the records LocationNameRec and PortInfoRec is used to
match the names in the program linking dialog box. The data has nothing to do with the
NBP type used by NBPLookup or the filtered PPC ports that show up in the program
linking dialog box. The NBPLookup function uses the NBP type supplied in
theLocNBPType. The PPC port names are filtered using the MyBrowserPortFilter
function shown in Listing 11-3 on page 11-24.

Listing 11-4 Browsing through dictionary service ports

FUNCTION MyPPCBrowser(VAR theLocationNameRec: LocationNameRec;

 VAR thePortInfoRec: PortInfoRec): OSErr;

VAR

prompt: Str255;

applListLabel: Str255;

defaultSpecified: Boolean;

theLocNBPType: Str32;

BEGIN

prompt := 'Choose an example to link to:';

applListLabel := 'Examples';

defaultSpecified := TRUE;

WITH theLocationNameRec DO

BEGIN

locationKindSelector := ppcNBPLocation;

WITH nbpEntity DO

BEGIN

objStr := 'Moof™';

{typeStr is ignored}

zoneStr := 'Twilight';

END;

END;

WITH thePortInfoRec.name DO

BEGIN

{nameScript and name should be resources to allow easy }

{ localization}

nameScript := smRoman; {Roman script}

name := 'Inside Macintosh';

{the port type should always be hard-coded to allow the }

{ application to find ports of a particular type even }

{ after the name is localized}

portKindSelector := ppcByString;

portTypeStr := 'Example';

END;
11-26 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
{when building the list of objects (Macintoshes), }

{ show only those with the NBP type "PPC Example"}

theLocNBPType := 'PPC Example'; {match this NBP type}

MyPPCBrowser := PPCBrowser(prompt, applListLabel,

defaultSpecified,

theLocationNameRec,

thePortInfoRec,

@MyBrowserPortFilter,

theLocNBPType);

END;

Obtaining a List of Available Ports 11

To generate a list of ports without displaying dialog boxes, you can use the
IPCListPorts function. The IPCListPorts function allows you to obtain a list of
ports on a particular computer within a particular zone. To obtain a list of ports, several
steps are required. First, use the GetZoneList function to obtain a list of zones. Next,
you must use the PLookupName function to obtain a list of computers with ports. After
establishing the zone and the computer, you can use the IPCListPorts function to
obtain the list of available ports. See Inside Macintosh: Networking for information on the
GetZoneList and PLookupName functions.

Listing 11-5 illustrates how you use the IPCListPorts function to obtain a list of ports
on a particular computer. This function returns a list of port information records in the
buffer pointed to by the parameter thePortInfoBufferPtr. The actual number of
port information records is returned in the parameter theActualCount.
Using the PPC Toolbox 11-27

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-5 Using the IPCListPorts function to obtain a list of ports

FUNCTION MyIPCListPorts

(theStartIndex: Integer;

 theRequestCount: Integer; VAR theActualCount: Integer;

 theObjStr: Str32; theZoneStr: Str32;

 thePortInfoBufferPtr: PortInfoArrayPtr): OSErr;

VAR

theIPCListPortsPBRec: IPCListPortsPBRec;

thePPCPortRec: PPCPortRec;

theLocationNameRec: LocationNameRec;

BEGIN

{list all PPC ports at the specified location}

WITH thePPCPortRec DO

BEGIN

nameScript := smRoman;

name := '='; {match all names}

portKindSelector := ppcByString;

portTypeStr := '='; {match all types}

END;

WITH theLocationNameRec DO

BEGIN

locationKindSelector := ppcNBPLocation;

WITH nbpEntity DO

BEGIN

{set NBP object from the list returned by NBPLookup}

objStr := theObjStr;

{set NBP type, in this example to "PPC Example"; if you }

{ don't supply your own NBP type, use "PPCToolBox"}

typeStr := 'PPC Example';

{set NBP zone from the list returned by GetZoneList}

zoneStr := theZoneStr;

END;

END;

WITH theIPCListPortsPBRec DO

BEGIN

startIndex := theStartIndex;

requestCount := theRequestCount;

portName := @thePPCPortRec;

locationName := @theLocationNameRec;

bufferPtr := thePortInfoBufferPtr;

END;
11-28 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
MyIPCListPorts := IPCListPorts(@theIPCListPortsPBRec, FALSE);

theActualCount := theIPCListPortsPBRec.actualCount;

END;

The IPCListPorts function returns information about ports that are on the computer
specified in the locationName field of the list ports parameter block. If you set the
locationName field to NIL or if you set the locationKindSelector field in
the location name record to ppcNoLocation, the IPCListPorts function returns
only the port names for the local computer.

The bufferPtr field points to an area of memory that contains the requested port
names. You are responsible for allocating enough memory to hold the requested
port names. The buffer length must be equal to

sizeof(PortInfoRec) * requestCount

Preparing for a Session 11
To communicate, you can open a port for your application and make it available to
receive session requests, to initiate sessions, or both. Applications that are able to receive
session requests can choose to accept or reject incoming session requests.

Before an application can accept and establish a session with another application,
the PPC Toolbox authenticates the initiating user (unless guest access is enabled or the
applications are located on the same computer). Once a session begins, the
two applications can exchange data with each other.

Initiating a PPC Session 11

Once you have established the name and the location of the port that you want
to communicate with, you can initiate a session. You can use either the
StartSecureSession function or the PPCStart function to initiate a session.
The StartSecureSession function displays several dialog boxes to identify each user
who requests a session. You may prefer to use the PPCStart function for low-level code
such as that used for drivers, which typically do not provide a user interface. You may
also prefer to use PPCStart when the application you are initiating a session with does
not require authentication. The IPCListPorts and PPCBrowser functions return
information about whether a particular port requires authentication.

Note
Do not call the StartSecureSession function from an application
that is running in the background, because the function displays several
dialog boxes on the user’s screen. ◆
Using the PPC Toolbox 11-29

C H A P T E R 1 1

Program-to-Program Communications Toolbox
The StartSecureSession function provides authentication services to identify each
user who requests a session. This function combines the processes of prompting for user
name and password and initiating a session into one synchronous procedure call. If
authentication fails, the PPC Toolbox rejects the incoming session request.

err := StartSecureSession (pb, userName, useDefault, allowGuest,

guestSelected, prompt);

Set the useDefault parameter to TRUE if you want the StartSecureSession
function to use the default user identity (described later in this section). If the default
user identity cannot be authenticated, the StartSecureSession function displays a
dialog box to allow a user to log on. Figure 11-14 shows the user identity dialog box.

Figure 11-14 The user identity dialog box

The prompt parameter of the StartSecureSession function allows you to specify a
line of text that the dialog box can display. The allowGuest parameter specifies
whether to enable the Guest radio button. If a port requires authentication, you should
set this parameter to FALSE.

The userName parameter specifies the name of the user who is attempting to initiate a
session. If the user name is not specified, the user identity dialog box appears on the
user’s screen with the owner name provided from the Sharing Setup control panel.
11-30 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
If the user enters an invalid password, the StartSecureSession function displays the
dialog box shown in Figure 11-15.

Figure 11-15 The incorrect password dialog box

After the user clicks OK, the user identity dialog box reappears in the foreground so that
the user can enter the password again.

If the user’s name is invalid, the StartSecureSession function displays the dialog
box shown in Figure 11-16.

Figure 11-16 The invalid user name dialog box

After the user clicks OK, the user identity dialog box reappears so that the user can enter
a new user name.

The StartSecureSession function remains in this loop until a secure session is
initiated or the user clicks Cancel in the user identity dialog box. If a secure session
is initiated, StartSecureSession returns the user reference number in the
corresponding field in the PPCStart parameter block. The user reference number
represents the user name and password. A user reference number of 0 indicates that a
session has been initiated with guest access. See “Setting Up Authenticated Sessions”
beginning on page 11-6 for more information.
Using the PPC Toolbox 11-31

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Before your application quits, you need to invalidate all user reference numbers obtained
with the StartSecureSession function except for the default user reference number
and the guest reference number (0). See “Invalidating Users” on page 11-44 for detailed
information.

Listing 11-6 illustrates how to use the StartSecureSession function to establish an
authenticated session. This listing shows only one session, although your application
may conduct multiple sessions at one time.

Listing 11-6 Using the StartSecureSession function to establish a session

FUNCTION MyStartSecureSession(thePortInfoPtr: PortInfoPtr;

theLocationNamePtr: LocationNamePtr;

thePortRefNum: PPCPortRefNum;

VAR theSessRefNum: PPCSessRefNum;

VAR theUserRefNum: LongInt;

VAR theRejectInfo: LongInt;

VAR userName: Str32;

VAR guestSelected: Boolean): OSErr;

VAR

thePPCStartPBRec: PPCStartPBRec;

useDefault: Boolean;

allowGuest: Boolean;

err: OSErr;

BEGIN

WITH thePPCStartPBRec DO

BEGIN

ioCompletion := NIL;

portRefNum := thePortRefNum; {from the PPCOpen function}

serviceType := ppcServiceRealTime;

resFlag := 0;

portName := @thePortInfoPtr^.name; {from the PPCBrowser}

locationName := theLocationNamePtr; {from the PPCBrowser}

userData := 0; {application-specific data that the }

{ PPCInform function sees}

END;

{try to connect with default user identity}

useDefault := TRUE;

{highlight the Guest button appropriately}

allowGuest := NOT thePortInfoPtr^.authRequired;

err := StartSecureSession(@thePPCStartPBRec, userName,

 useDefault, allowGuest,

 guestSelected, stringPtr(NIL)^);
11-32 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
IF err = noErr THEN

BEGIN

theSessRefNum := thePPCStartPBRec.sessRefNum;

theUserRefNum := thePPCStartPBRec.userRefNum;

END

ELSE

IF err = userRejectErr THEN

{return rejectInfo from the PPCReject function}

theRejectInfo := thePPCStartPBRec.rejectInfo;

MyStartSecureSession := err;

END;

For low-level code such as that used for drivers (which typically do not provide a user
interface), you can use the PPCStart function instead of the StartSecureSession
function to initiate a session. You can also use the IPCListPorts function (instead of
displaying the program linking dialog box) to obtain a list of ports.

If the authRequired field of the port information record contains FALSE, the port
allows guest access. If the authRequired field of the port information record contains
TRUE, use the PPCStart function and the user reference number obtained previously
from the StartSecureSession function to reestablish an authenticated session.

You can also attempt to log on as the default user using the GetDefaultUser function
to obtain the default user reference number and the default user name. The default user
name is established after the owner starts up the computer.

err := GetDefaultUser (userRef, userName);

The userRef parameter is a reference number that represents the user name and
password of the default user. The userName parameter contains the owner name that is
specified in the Sharing Setup control panel.

The GetDefaultUser function returns an error when the default user identity does not
exist (no name is specified in the Sharing Setup control panel) or the user is not currently
logged on.

Listing 11-7 illustrates how you use the PPCStart function to initiate a session. The
PPCStart function uses the port information record and the location name record to
attempt to open a session with the selected PPC port.
Using the PPC Toolbox 11-33

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-7 Initiating a session using the PPCStart function

FUNCTION MyPPCStart(thePortInfoPtr: PortInfoPtr;

theLocationNamePtr: LocationNamePtr;

thePortRefNum: PPCPortRefNum;

VAR theSessRefNum: PPCSessRefNum;

VAR theUserRefNum: LongInt;

VAR theRejectInfo: LongInt): OSErr;

VAR

thePPCStartPBRec: PPCStartPBRec;

userName: Str32;

err: OSErr;

BEGIN

WITH thePPCStartPBRec DO

BEGIN

ioCompletion := NIL;

portRefNum := thePortRefNum; {from the PPCOpen function}

serviceType := ppcServiceRealTime;

resFlag := 0;

portName := @thePortInfoPtr^.name; {destination port}

locationName := theLocationNamePtr; {destination location}

userData := 0; {application-specific data for PPCInform}

END;

err := GetDefaultUser(thePPCStartPBRec.userRefNum, userName);

IF err <> noErr THEN

thePPCStartPBRec.userRefNum := 0;

IF thePortInfoPtr^.authRequired AND

(thePPCStartPBRec.userRefNum = 0) THEN

{port selected doesn't allow guests & you don't have a }

{ default user ref number so you can't log on to this port}

err := authFailErr

ELSE {attempt to log on}

err := PPCStart(@thePPCStartPBRec, FALSE);

IF err = noErr THEN

BEGIN

theSessRefNum := thePPCStartPBRec.sessRefNum;

theUserRefNum := thePPCStartPBRec.userRefNum;

END

ELSE

IF err = userRejectErr THEN

{return rejectInfo from the PPCReject function}

theRejectInfo := thePPCStartPBRec.rejectInfo;

MyPPCStart := err;

END;
11-34 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The port to which you wish to connect must have an outstanding PPCInform function
to successfully start a session. You cannot initiate a session with a port that is not able to
receive session requests.

If the port is open, has an outstanding PPCInform function posted, and accepts your
session request, the PPCStart function returns a noErr result code and a valid session
reference number. This session reference number is used to identify the session during
the exchange of data.

Receiving Session Requests 11

Your application can open as many ports as it requires as long as each port name is
unique within a particular computer. A single port can support a number of
communication sessions. To allow a port to receive session requests, use the PPCInform
function. (Note that you must open a port to obtain a port reference number before
calling the PPCInform function.) A port may have any number of outstanding
PPCInform requests.

Listing 11-8 illustrates how you use the PPCInform function to allow a port to receive
session requests. In this listing, the parameter thePPCParamBlockPtr points to
a PPC parameter block record allocated by the application. The portRefNum,
autoAccept, portName, locationName, userName, and ioCompletion parameters
of the PPC parameter block record must be supplied. If you want to automatically accept
all incoming session requests, you can set the autoAccept field in the PPCInform
parameter block.
Using the PPC Toolbox 11-35

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-8 Using the PPCInform function to enable a port to receive sessions

FUNCTION MyPPCInform(thePPCParamBlockPtr: PPCParamBlockPtr;

thePPCPortPtr: PPCPortPtr;

theLocationNamePtr: LocationNamePtr;

theUserNamePtr: stringPtr;

thePortRefNum: PPCPortRefNum): OSErr;

BEGIN

WITH thePPCParamBlockPtr^.informParam DO

BEGIN

ioCompletion := @MyInformCompProc;

portRefNum := thePortRefNum; {from the PPCOpen function}

autoAccept := FALSE; {the completion routine }

{ handles accepting or }

{ rejecting requests}

portName := thePPCPortPtr;

locationName := theLocationNamePtr;

userName := theUserNamePtr;

END;

MyPPCInform := PPCInform(PPCInformPBPtr(thePPCParamBlockPtr),

TRUE); {asynchronous}

END;

A PPC parameter block record is used instead of a PPCInform parameter block record
so that the same parameter block can be reused to make other PPC Toolbox calls from
the PPCInform completion routine. The parameter block and the records it points to
cannot be deallocated until all calls that use the parameter block and records have
completed.

You should make the call to PPCInform asynchronously. For each function that you use
asynchronously, you should provide a completion routine. The completion routine gets
called at interrupt time when the PPCInform function completes.
11-36 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Listing 11-9 illustrates a completion routine for a PPCInform function. You can use the
data passed into your PPCInform completion routine (user name, user data, port name,
and location name) to determine whether to accept or reject the session request.

Listing 11-9 Completion routine for a PPCInform function

PROCEDURE MyInformCompProc(pb: PPCParamBlockPtr);

BEGIN

IF pb^.informParam.ioResult = noErr THEN

BEGIN

{decide if this session should be accepted or rejected by }

{ looking at data supplied by the session requester}

IF pb^.informParam.userData <> -1 THEN

DoPPCAccept(pb)

ELSE

DoPPCReject(pb);

END

ELSE

{use a global to tell the application that }

{ PPCParamBlockRec and the records it points to }

{ can be deallocated}

gPBInUse := FALSE;

END;

When the PPCInform function completes, the MyInformCompProc procedure
determines whether to accept or reject the incoming session request. It does this by
calling PPCAccept or PPCReject, as described in the next section.

Accepting or Rejecting Session Requests 11

Use the PPCAccept function or the PPCReject function to accept or reject an incoming
session request.

▲ W A R N I N G

If the PPCInform function (with the autoAccept parameter set
to FALSE) returns a noErr result code, you must call either
the PPCAccept function or the PPCReject function. The computer
trying to initiate a session (using the StartSecureSession function
or the PPCStart function) waits (hangs) until the session attempt is
either accepted or rejected, or until an error occurs. ▲
Using the PPC Toolbox 11-37

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-10 illustrates how you use the PPCAccept function to accept a session
request. This listing reuses the parameter block used in the PPCInform function, so the
sessRefNum field already contains the session reference number needed by the
PPCAccept function.

Listing 11-10 Accepting a session request using the PPCAccept function

PROCEDURE DoPPCAccept(pb: PPCParamBlockPtr);

VAR

err: OSErr;

BEGIN {accept the session}

pb^.acceptParam.ioCompletion := @MyAcceptCompProc;

{the sessRefNum field is set by the PPCInform function}

err := PPCAccept(@pb^.acceptParam, TRUE); {asynchronous}

END;

For each function that you use asynchronously, you should provide a completion
routine. Listing 11-11 illustrates a completion routine for a PPCAccept function. This
procedure gets called at interrupt time when the PPCAccept function completes. If there
are no errors, it sets the global variable gSessionOpen to TRUE. The global variable
gPBInUse is set to FALSE to inform the application that the parameter block and the
records it points to are no longer in use.

You can use the session reference number in subsequent PPCWrite, PPCRead, and
PPCEnd functions once a session is accepted.

Listing 11-11 Completion routine for a PPCAccept function

PROCEDURE MyAcceptCompProc(pb: PPCParamBlockPtr);

BEGIN

IF pb^.acceptParam.ioResult = noErr THEN

{accept completed so the session is completely open}

gSessionOpen := TRUE;

{use a global to tell the application that PPCParamBlockRec }

{ and the records it points to can be deallocated}

gPBInUse := FALSE;

END;

Use the PPCReject function to reject an incoming session request. Listing 11-12
illustrates how you use the PPCReject function to reject a session request.
11-38 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
This listing reuses the parameter block used in the PPCInform function, so the
sessRefNum field already contains the session reference number needed by the
PPCReject function.

Listing 11-12 Rejecting a session request using the PPCReject function

PROCEDURE DoPPCReject(pb: PPCParamBlockPtr);

VAR

err: OSErr;

BEGIN {reject the session}

WITH pb^.rejectParam DO

BEGIN

ioCompletion := @MyRejectCompProc;

{the sessRefNum field is set by the PPCInform function}

rejectInfo := -1;

END;

err := PPCReject(@pb^.rejectParam, TRUE); {asynchronous}

END;

Listing 11-13 illustrates a completion routine for a PPCReject function. This procedure
is called at interrupt time when the PPCReject function completes. In this example, the
global variable gPBInUse is set to FALSE to inform the application that the parameter
block and the records it points to are no longer in use.

Listing 11-13 Completion routine for a PPCReject function

PROCEDURE MyRejectCompProc(pb: PPCParamBlockPtr);

BEGIN

{use a global to tell the application that PPCParamBlockRec }

{ and the records it points to can be deallocated}

gPBInUse := FALSE;

END;

Exchanging Data During a PPC Session 11
After a session begins, each application can send data to and receive data from the other
using a sequence of message blocks. The PPC Toolbox treats each message block as a
byte stream and does not interpret the contents of the message block. The size of a
message block can be between 0 and (232–1) bytes. The PPC Toolbox treats the buffer size
as an unsigned long integer.
Using the PPC Toolbox 11-39

C H A P T E R 1 1

Program-to-Program Communications Toolbox
The PPC Toolbox delivers the message blocks in the same sequence as they are sent and
without duplicates. In Figure 11-17, an application transmits message blocks during
a session.

Figure 11-17 Transmitting message blocks

For each message block, you specify a block creator, block type, and user data. The first
PPCWrite function that you use to create a new message block sets the attributes for the
block. The PPCRead function returns the block creator, block type, and user data
attributes for the current message block when the call completes.

Although the PPC Toolbox does not interpret these attributes, they can give the receiving
application information about how to process the contents of the message block. For
example, a database application may specify, in the block creator field, a counter to
indicate the block number (block number 20 of 30 total blocks). This application could
also specify a code, such as 'DREC', in the block type field to indicate that the
information it contains is a database record. In addition, this application could specify, in
the user data field, the length of the message block.

Reading Data From an Application 11

An application can both read from and write data to another application during a
session. Use the PPCRead function during a session to read incoming blocks of data
from another application.

Once a session is initiated, you should have a PPCRead function pending. You can issue
a PPCRead function from inside a completion routine. This provides you with
immediate notification if an error condition arises or the session closes.

Block 2PPC Toolbox

Session

Block 1Block 3 PPC Toolbox

3
70 1
11-40 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The blockCreator, blockType, and userData fields are returned for the block you
are reading. (These fields are set by the PPCWrite function.) To determine whether there
is additional data to be read, check the more field. The value FALSE indicates the end of
a message block.

Listing 11-14 illustrates how you use the PPCRead function to read data during a session.

Listing 11-14 Using the PPCRead function to read data during a session

FUNCTION MyPPCRead(thePPCReadPBPtr: PPCReadPBPtr;

theSessRefNum: PPCSessRefNum;

theBufferLength: Size;

theBufferPtr: Ptr): OSErr;

BEGIN

WITH thePPCReadPBPtr^ DO

BEGIN

ioCompletion := NIL;

sessRefNum := theSessRefNum; {from PPCStart or PPCInform}

bufferLength := theBufferLength;

bufferPtr := theBufferPtr;

END;

MyPPCRead := PPCRead(thePPCReadPBPtr, TRUE); {asynchronous}

END;

You should make any calls to PPCRead asynchronously. You can provide a completion
routine that will be called when the PPCRead function has completed, or you can poll
the ioResult field of the PPC parameter block to determine whether the PPCRead
function has completed. A PPCRead completion routine can issue another asynchronous
PPC Toolbox call or set global variables. If another PPC Toolbox call is made from a
completion routine, then the PPCRead function must use a record of data type
PPCParamBlockRec instead of type PPCReadPBRec.

Listing 11-15 illustrates a function that can be used to poll the ioResult field of a record
of data type PPCReadPBRec. The function returns TRUE when the PPCRead function
associated with PPCReadPBRec has completed.

Listing 11-15 Polling the ioResult field to determine if a PPCRead function has completed

FUNCTION MyReadComplete(thePPCReadPBPtr: PPCReadPBPtr;

VAR err: OSErr): Boolean;

BEGIN

err := thePPCReadPBPtr^.ioResult;

MyReadComplete := err <> 1;

END;
Using the PPC Toolbox 11-41

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Sending Data to an Application 11

Use the PPCWrite function to send a message block during a session specified by the
session reference number.

You should call the PPCWrite function asynchronously. You can provide a completion
routine that will be called when the PPCWrite function has completed, or you can poll
the ioResult field of the PPC parameter block to determine whether the PPCWrite
function has completed. A PPCWrite completion routine can issue another PPC Toolbox
call or set global variables. If another PPC Toolbox call is made from a completion
routine, then the PPCWrite function must use a record of data type
PPCParamBlockRec instead of type PPCWritePBRec. Note that message blocks are
sent in the order in which they are written.

Listing 11-16 illustrates how you use the PPCWrite function to write data during a
session.

Listing 11-16 Using the PPCWrite function to write data during a session

FUNCTION MyPPCWrite(thePPCWritePBPtr: PPCWritePBPtr;

 theSessRefNum: PPCSessRefNum;

 theBufferLength: Size;

 theBufferPtr: Ptr): OSErr;

BEGIN

WITH thePPCWritePBPtr^ DO

BEGIN

ioCompletion := NIL;

sessRefNum := theSessRefNum; {from PPCStart or PPCInform}

bufferLength := theBufferLength;

bufferPtr := theBufferPtr;

more := FALSE; {no more data to read}

userData := 0; {application-specific data}

blockCreator := '????'; {application-specific data}

blockType := '????'; {application-specific data}

END;

MyPPCWrite := PPCWrite(thePPCWritePBPtr, TRUE); {asynchronous}

END;

The first PPCWrite function that you use to create a new message block sets the block
creator, block type, and user data attributes for the block. These attributes are returned to
the application when it reads from the message block. Set the more field to FALSE to
indicate the end of the message block or set this field to TRUE if you want to append
additional data to a message block.
11-42 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Listing 11-17 illustrates a function that can be used to poll the ioResult field of a record
of data type PPCWritePBRec. The function returns TRUE when the PPCWrite function
associated with PPCWritePBRec has completed.

Listing 11-17 Polling the ioResult field to determine if a PPCWrite function has completed

FUNCTION MyWriteComplete(thePPCWritePBPtr: PPCWritePBPtr;

 VAR err: OSErr): Boolean;

BEGIN

err := thePPCWritePBPtr^.ioResult;

MyWriteComplete := err <> 1;

END;

Ending a Session and Closing a Port 11
After data is written and read in, use the PPCEnd function to end the session (identified
by the session reference number). You may receive an error if you use the PPCEnd
function to end a session that has already been terminated.

Listing 11-18 illustrates how you use the PPCEnd function to end a session.

Listing 11-18 Ending a PPC session using the PPCEnd function

FUNCTION MyPPCEnd(theSessRefNum: PPCSessRefNum): OSErr;

VAR

thePPCEndPBRec: PPCEndPBRec;

BEGIN

thePPCEndPBRec.sessRefNum := theSessRefNum;

MyPPCEnd := PPCEnd(@thePPCEndPBRec, FALSE); {synchronous}

END;

The PPCEnd function causes all calls to the PPCRead and PPCWrite functions to
complete (with a sessClosedErr result code) and invalidates the session reference
number. The PPCEnd function also releases any PPC Toolbox resources so that they can
be reused.

Use the PPCClose function to close the port specified by the port reference number.
When you close a port, all sessions associated with a port are ended. Any active
asynchronous calls associated with a session then call their completion routines (if they
have one).
Using the PPC Toolbox 11-43

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-19 illustrates how you use the PPCClose function to close a port.

Listing 11-19 Closing a PPC port using the PPCClose function

FUNCTION MyPPCClose(thePortRefNum: PPCPortRefNum): OSErr;

VAR

theClosePBRec: PPCClosePBRec;

BEGIN

theClosePBRec.portRefNum := thePortRefNum; {from PPCOpen}

MyPPCClose := PPCClose(@theClosePBRec, FALSE); {synchronous}

END;

In this example, the call to PPCClose is made synchronously.

Invalidating Users 11
It is your responsibility to invalidate all user reference numbers obtained with the
StartSecureSession function before your application quits. However, while your
application remains open, you may want to keep track of a user reference number to
start a session with a port, end it, and then later start another session with the same port.

Use the DeleteUserIdentity function to invalidate the user reference number for a
particular user.

err := DeleteUserIdentity (userRef);

The DeleteUserIdentity function removes a user by invalidating the specified user
reference number. Note that you cannot invalidate the guest reference number (0) and, in
most cases, you should not dispose of the default user reference number.
11-44 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Listing 11-20 illustrates how you use the DeleteUserIdentity function to invalidate a
user reference number obtained from a StartSecureSession function. The sample
code does not invalidate the user reference number if it is either the default user
reference number or the guest reference number (0).

Listing 11-20 Using the DeleteUserIdentity function to invalidate a user identity

FUNCTION MyDeleteNewUserRefNum(newUserRef: LongInt): OSErr;

VAR

err: OSErr;

defUserRef: LongInt;

defUserName: Str32;

BEGIN

IF newUserRef <> 0 THEN

BEGIN {user reference number passed was not the guest}

err := GetDefaultUser(defUserRef, defUserName);

IF err = noErr THEN

BEGIN {there is a default user}

IF newUserRef <> defUserRef THEN

{new user ref number isn't the default user ref num, }

{ so ok to delete}

err := DeleteUserIdentity(newUserRef);

END

ELSE {there is no default, so delete new user ref num}

err := DeleteUserIdentity(newUserRef);

MyDeleteNewUserRefNum := err;

END

ELSE {user reference number passed was the guest}

MyDeleteNewUserRefNum := noErr;

END;
Using the PPC Toolbox 11-45

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPC Toolbox Reference 11

This section describes the data structures and routines that are specific to
the PPC Toolbox. The section “PPC Toolbox Routines” beginning on page 11-51
describes PPC Toolbox routines. “Application-Defined Routines” beginning on
page 11-78 describes completion routines and port filter functions.

Data Structures 11
This section describes the PPC parameter block, PPC port record, location name record,
and port information record.

The PPC Toolbox Parameter Block 11

PPC Toolbox functions require a pointer to a PPC parameter block. You must fill out any
fields of the parameter block that the specific PPC Toolbox function requires.

TYPE PPCParamBlockRec =

RECORD

CASE Integer OF

0: (openParam: PPCOpenPBRec); {PPCOpen params}

1: (informParam: PPCInformPBRec); {PPCInform params}

2: (startParam: PPCStartPBRec); {PPCStart params}

3: (acceptParam: PPCAcceptPBRec); {PPCAccept params}

4: (rejectParam: PPCRejectPBRec); {PPCReject params}

5: (writeParam: PPCWritePBRec); {PPCWrite params}

6: (readParam: PPCReadPBRec); {PPCRead params}

7: (endParam: PPCEndPBRec); {PPCEnd params}

8: (closeParam: PPCClosePBRec); {PPCClose params}

9: (listPortsParam: IPCListPortsPBRec); {IPCListPorts }

{ params}

END;

Figure 11-18 on the next page shows the PPC Toolbox parameter blocks. Note that the
reserved fields are not included in the illustration. The qLink, csCode, intUse,
intUsePtr, and reserved fields are used internally by the PPC Toolbox. Your
application should not rely on the PPC Toolbox to preserve these fields across calls.

Your application transfers ownership of the PPC Toolbox parameter block (and any
buffers or records pointed to by the PPC Toolbox parameter block) to the PPC Toolbox
until a PPC function is complete. Once the function completes, ownership of the
parameter block (and any buffers or records it points to) is transferred back to your
application. If a PPC Toolbox function is executed asynchronously, your program cannot
alter memory that might be used by the PPC Toolbox until that function completes.
11-46 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

F
ig

u
re

 1
1-

18
T

he
 P

P
C

 T
oo

lb
ox

 p
ar

am
et

er
 b

lo
ck

s

PPC
Ope

nPB
Rec

fi
ll
er
1

ne
tw
or
kV
is
ib
le

nb
pR
eg
is
te
re
d

po
rt
Re
fN
um

8 42 44 46 8 0 2 4 6

PPC
Clo

seP
BRe

c
po
rt
Re
fN
um

PPC
Inf

orm
PBR

ec

PPC
Sta

rtP
BRe

c

PPC
End

PBR
ec

PPC
Acc

ept
PBR

ec

PPC
Rej

ect
PBR

ec

PPC
Wri

teP
BRe

c

IPC
Lis

tPo
rts

PBR
ec

po
rt
Re
fN
um

re
qu
es
tT
yp
e

se
rv
ic
eT
yp
e

re
sF
la
g

re
je
ct
In
fo

us
er
Da
ta

fi
ll
er
1

us
er
Re
fN
um

se
ss
Re
fN
um

se
ss
Re
fN
um

se
ss
Re
fN
um

fi
ll
er
1

fi
ll
er
1

fi
ll
er
2

fi
ll
er
3

fi
ll
er
4

re
je
ct
In
fo

PPC
Rea

dPB
Rec

fi
ll
er
1

se
rv
ic
eT
yp
e

au
to
Ac
ce
pt

se
rv
ic
eT
yp
e

re
sF
la
g

po
rt
Na
me

lo
ca
ti
on
Na
me

bu
ff
er
Pt
r

bu
ff
er
Le
ng
th

ac
tu
al
Le
ng
th

mo
re

fi
ll
er
2

us
er
Da
ta

bl
oc
kC
re
at
or

fi
ll
er
1

st
ar
tI
nd
ex

re
qu
es
tC
ou
nt

ac
tu
al
Co
un
t

bu
ff
er
Pt
r

po
rt
Na
me

lo
ca
ti
on
Na
me

bl
oc
kT
yp
e

se
ss
Re
fN
um

0 6 8 0 2 4 8 0

po
rt
Re
fN
um

po
rt
Na
me

po
rt
Na
me

lo
ca
ti
on
Na
me

re
je
ct
In
fo

us
er
Da
ta

fi
ll
er
1

bu
ff
er
Pt
r

bu
ff
er
Le
ng
th

ac
tu
al
Le
ng
th

mo
re

fi
ll
er
2

us
er
Da
ta

bl
oc
kC
re
at
or

bl
oc
kT
yp
e

se
ss
Re
fN
um

se
ss
Re
fN
um

se
ss
Re
fN
um

lo
ca
ti
on
Na
me

Offset
PPC Toolbox Reference 11-47

3 4 5 5 5 64 5 5 6 6 6 6 7

This document was created with FrameMaker 4.0.4

C H A P T E R 1 1

Program-to-Program Communications Toolbox

A PPC Toolbox function that is executed asynchronously must specify NIL or the
address of a completion routine in the ioCompletion field of the PPC parameter block.
The ioResult field should be used to determine the actual result code when an
asynchronously executed PPC Toolbox function completes. If you specify a completion
routine in the ioCompletion field, it is called at interrupt time when the PPC Toolbox
function completes execution. See page 11-78 for the routine declaration for a completion
routine.

The PPC Port Record 11

A PPC port name is defined by a PPC port record. The PPCPortRec data type defines
the PPC port record.

TYPE PPCPortRec =

RECORD

nameScript: ScriptCode; {script identifier}

name: Str32; {port name in program }

{ linking dialog box}

portKindSelector: PPCPortKinds; {general category of }

{ application}

CASE PPCPortKinds OF

ppcByString: (portTypeStr: Str32);

ppcByCreatorAndType:

(portCreator: OSType;

portType: OSType);

END;

Field descriptions

nameScript An integer script code.
name A string that designates the application name.
portKindSelector

An integer that selects the kind of type string (either ppcByString
or ppcByCreatorAndType).

portTypeStr If the portKindSelector field specifies ppcByString, the
portTypeStr field contains a 32-byte character string.

portCreator If the portKindSelector field specifies
ppcByCreatorAndType, the portCreator field contains a
4-character creator code.

portType If the portKindSelector field specifies
ppcByCreatorAndType, the portType field contains a
4-character type code.

To open a port, you need to specify a port name. As previously described, a port name
consists of a script code, a name string, and a type string. For example, you can
designate “smRoman” as the script code, “make memo” as the application’s name string,
and “word processor” as its type string.
11-48 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

The Location Name Record 11

A location name identifies the location of a computer on the network. A location
name is specified in the standard Name-Binding Protocol (NBP) form,
<object string>:PPCToolBox @<AppleTalk zone>. The object string is the name provided in
the Sharing Setup control panel in the Control Panels folder. By default, the type string is
“PPCToolBox”. The AppleTalk zone is the zone to which the particular Macintosh
computer belongs. For example, “Jane Doe’s Macintosh:PPCToolBox@twilight” specifies
the object string, type string, and AppleTalk zone for a particular computer.

The LocationNameRec data type defines the location name record. The
locationKindSelector field can be set to ppcNoLocation, ppcNBPLocation, or
ppcNBPTypeLocation.

TYPE LocationNameRec =

RECORD

locationKindSelector: PPCLocationKind; {which variant}

CASE PPCLocationKind OF

{ppcNoLocation: storage not used by this value}

ppcNBPLocation:

(nbpEntity: EntityName); {NBP name entity}

ppcNBPTypeLocation:

(nbpType: Str32); {just the NBP type }

{ string for the }

{ PPCOpen function}

END;

Field descriptions

locationKindSelector
An integer that determines how the location is specified.
You can use either of the constants ppcNBPLocation
or ppcNBPTypeLocation. (The PPC Toolbox uses the constant
ppcNoLocation when the location received from or passed to a
PPC Toolbox function is the location of the local machine.)

nbpEntity If the locationKindSelector field specifies ppcNBPLocation,
the nbpEntity field specifies a full NBP entity name.

nbpType If the locationKindSelector field specifies
ppcNBPTypeLocation, the nbpType field specifies an alias
location name. This location kind is used only by the PPCOpen
function when an alias location name is needed.

Note
You should assign an NBP value directly—do not pack it using
nbpSetEntity. ◆
PPC Toolbox Reference 11-49

C H A P T E R 1 1

Program-to-Program Communications Toolbox

The Port Information Record 11

A port information record identifies whether a particular port requires authentication
and specifies the port’s port name. Both the PPCBrowser and IPCListPorts functions
return information about ports using port information records. In addition, if you
provide a port filter function, the PPC Toolbox provides information to your function
about the current port in a port information record. The PortInfoRec data type defines
a port information record.

TYPE PortInfoRec =

RECORD

filler1: SignedByte; {space holder}

authRequired: Boolean; {authentication required}

name: PPCPortRec; {port name}

END;

Field descriptions

filler1 Reserved.
authRequired Specifies whether the port requires authentication. This field is

TRUE if the port requires authentication before a session can begin.
Otherwise, this field is FALSE.

name Specifies an available port name.

For information on the PPCBrowser and IPCListPorts functions, see page 11-52 and
page 11-54, respectively. For information on port filter functions, see page 11-78.

PPC Toolbox Routines 11
This section describes the routines for

■ initializing the PPC Toolbox

■ displaying the program linking dialog box

■ listing available ports

■ opening and closing a port

■ starting and ending a session

■ accepting and rejecting a session

■ reading and writing data

■ obtaining the default user reference number and name

■ invalidating a user reference number

Result codes appear after each function where applicable.
11-50 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

Initializing the PPC Toolbox 11

You use the PPCInit function to initialize the PPC Toolbox.

PPCInit 11

Use the PPCInit function to initialize the PPC Toolbox.

FUNCTION PPCInit: OSErr;

DESCRIPTION

After initialization, most PPC Toolbox routines can execute either synchronously or
asynchronously.

Note that a noGlobalsErr result code indicates that the PPC Toolbox is not loaded
properly.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCInit function are

The registers on entry and exit for this routine are

RESULT CODES

Using the Program Linking Dialog Box 11

You can use either the PPCBrowser function or the IPCListPorts function to locate a
port to communicate with. Use the PPCBrowser function to display the program linking
dialog box. For the description of IPCListPorts, see page 11-54.

Trap macro Selector

_PPCBrowser $0000

Registers on entry

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
noGlobalsErr –904 System unable to allocate memory, critical error
PPC Toolbox Reference 11-51

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPCBrowser 11

Use the PPCBrowser function to display the program linking dialog box, which allows a
user to select a port to communicate with.

FUNCTION PPCBrowser (prompt: Str255; applListLabel: Str255;

defaultSpecified: Boolean;

VAR theLocation: LocationNameRec;

VAR thePortInfo: PortInfoRec;

portFilter: PPCFilterProcPtr;

theLocNBPType: Str32): OSErr;

prompt A line of text that the PPCBrowser function displays as a prompt in the
program linking dialog box. If you specify NIL or an empty string is
passed, the default prompt “Choose a program to link to:” is used.

applListLabel
The title of the list of PPC ports. If you specify NIL or an empty string is
passed, the default title “Programs” is used.

defaultSpecified
A value that determines which port is initially selected in the program
linking dialog box. If you specify TRUE, you must provide information in
the parameters theLocation and thePortInfo. In this case, the
PPCBrowser function tries to select the PPC port specified by the
parameters theLocation and thePortInfo when the program linking
dialog box first appears. If you specify FALSE, the PPCBrowser function
selects the first port in the list and you can leave the location name record
and the port information record (in the parameters theLocation and
thePortInfo) uninitialized.

theLocation
The port location. For information on this data structure, see “The
Location Name Record” on page 11-49.

thePortInfo
The port name. For information on this data structure, see “The Port
Information Record” on page 11-50.

portFilter
Determines how the list of PPC ports is filtered. If this parameter is NIL,
the names of all existing PPC ports are displayed. If this parameter isn’t
NIL, it must be a pointer to a port filter function.

theLocNBPType
The NBP type passed to NBPLookup to generate the list of computers. If
you specify NIL or an empty string is passed, the default, “PPCToolBox”,
is used.
11-52 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
DESCRIPTION

The PPCBrowser function builds the list of ports and then displays the program linking
dialog box.

If you set the defaultSpecified parameter to TRUE, the PPCBrowser function tries
to select the PPC port specified by the parameters theLocation and thePortInfo
when the program linking dialog box first appears. The locationKindSelector field
in the location name record must be set to the ppcNoLocation constant (which
specifies the local computer) or the ppcNBPLocation constant (which specifies the NBP
object and NBP zone). The ppcNBPTypeLocation constant is not supported for
matching. When matching the location, only the object string and the zone string of the
entity name are used—the type string is ignored. When matching the port, the entire
PPC port record (script, name, and port type) is used in the port information record. The
authRequired field of the port information record is ignored.

The parameter theLocNBPType of the PPCBrowser function specifies the NBP type
passed to NBPLookup to generate the list of computers. If you specify NIL or an empty
string is passed, the default, “PPCToolBox”, is used. Note that the current computer is
always included in the list of computers (even if a location with the specified type does
not exist for it). If the parameter theLocNBPType contains either of the NBP wildcard
characters (= or ≈), the PPCBrowser function returns a paramErr result code.

If the PPCBrowser function returns noErr, the parameters theLocation and
thePortInfo specify the port chosen by the user. If the PPCBrowser function returns a
userCanceledErr result code, the user clicked the Cancel button, and no port was
selected. If the function returns a memFullErr result code, there was not enough
memory to load the PPCBrowser package, and the dialog box did not appear.

Note
You must not call the PPCBrowser function from an application that is
running in the background, since this function displays a dialog box on
the user’s screen. ◆

RESULT CODES

SEE ALSO

For an example of the use of the PPCBrowser function, see Listing 11-4 on
page 11-26. For an example of the program linking dialog box, see
Figure 11-12 on page 11-22. For information on port filter functions,
see page 11-78.

noErr 0 No error
paramErr –50 Illegal parameter
memFullErr –108 Not enough memory to load PPCBrowser package
userCanceledErr –128 User decided not to conduct a session
PPC Toolbox Reference 11-53

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Obtaining a List of Ports 11

Use the IPCListPorts function to generate a list of existing ports without displaying a
dialog box. The IPCListPortsPBRec data type defines the parameter block used by
the IPCListPorts function.

IPCListPorts 11

Use the IPCListPorts function to generate a list of existing ports without displaying a
dialog box.

FUNCTION IPCListPorts (pb: IPCListPortsPBPtr;

 async: Boolean): OSErr;

pb A pointer to an IPCListPorts parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

DESCRIPTION

If your application calls the IPCListPorts function asynchronously, you must specify
in the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

If you call the IPCListPorts function asynchronously, you must not change any of the
fields in the parameter block until the call completes. The port name, location name, and
buffer pointed to by IPCListPortsPBRec are owned by the PPC Toolbox until the call
completes. These objects must not be deallocated or moved in memory while the call is
in progress.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ startIndex Integer Index to the port entry list
→ requestCount Integer Number of port names requested
← actualCount Integer Number of port names returned
→ portName PPCPortPtr Pointer to a PPCPortRec
→ locationName LocationNamePtr Pointer to a LocationNameRec
→ bufferPtr PortInfoArrayPtr Pointer to an array of

PortInfoRec
11-54 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The startIndex field specifies the index to the list of ports on the remote machine from
which the PPC Toolbox begins to get the list. In most cases, you’ll want to start at the
beginning, so set the startIndex field to 0. The requestCount field specifies the
maximum number of port information records that can fit into your buffer.

The actualCount field returns the actual number of entries returned. Your program
can use the IPCListPorts function repeatedly to obtain the entire list of ports. Ports
that are not visible to the network are not included in the ports listing on a remote
machine. (If you specify FALSE for the networkVisible field in the PPCOpen function,
the port is not included in the listing of available ports across a network.)

The portName field must contain a pointer to a PPC port record that specifies which
PPC ports to list. You can specify particular values in the PPC port record or you can use
an equal sign (=) in the name or the portTypeStr fields as a wildcard to match all port
names or port types.

The locationName field should contain a pointer to a location name record that
designates the computer that contains the PPC ports you want returned. If the
locationKindSelector field in the location name record is ppcNoLocation or if
the locationName pointer is NIL, then the location is the local machine. If the
locationKindSelector field in the location name record is ppcNBPLocation,
then the location is a remote machine designated by the location name record’s
nbpEntity field.

The IPCListPorts function returns an array (list) of port information records in the
area of memory pointed to by bufferPtr. Make sure that the buffer pointed to by the
bufferPtr field is at least sizeof(PortInfoRec) * requestCount.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the IPCListPorts function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $000A

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code
PPC Toolbox Reference 11-55

C H A P T E R 1 1

Program-to-Program Communications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the IPCListPorts function, see Listing 11-5 on page 11-28.

Opening and Closing a Port 11

You open a port using the PPCOpen function and close a port using the PPCClose
function.

PPCOpen 11

You open a port using the PPCOpen function.

FUNCTION PPCOpen (pb: PPCOpenPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCOpen parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 Invalid or inappropriate locationKindSelector in

location name
noGlobalsErr –904 System unable to allocate memory, critical error
localOnlyErr –905 Network activity is currently disabled
sessTableErr –907 PPC Toolbox is unable to create a session
noResponseErr –915 Unable to contact application
badPortNameErr –919 PPC port record is invalid
networkErr –925 An error has occurred in the network
badLocNameErr –931 Location name is invalid

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
← portRefNum PPCPortRefNum Port reference number of port

opened
→ serviceType PPCServiceType Service type requested—must be

ppcServiceRealTime
→ resFlag SignedByte Reserved field—must be 0
→ portName PPCPortPtr Pointer to a PPCPortRec
→ locationName LocationNamePtr Pointer to a LocationNameRec
→ networkVisible Boolean Make this port network visible
← nbpRegistered Boolean Port location was registered on

the network
11-56 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
DESCRIPTION

If your application calls the PPCOpen function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

If you call the PPCOpen function asynchronously, you must not change any of the fields
in the parameter block until the call completes. The port name and location name
pointed to by the PPCOpen parameter block record are owned by the PPC Toolbox until
the call completes. These objects must not be deallocated or moved in memory while the
call is in progress.

The portRefNum field returns the PPC port identifier. Use this port reference number to
initiate a session for this particular port. Set the serviceType field to indicate that this
port accepts sessions in real time. For System 7, this field must always be set to the
ppcServiceRealTime constant. You must set the resFlag field to 0.

The portName field must contain a pointer to a PPC port record that specifies the name
of the PPC port to be opened.

The locationName field should contain a pointer to a location name record that
designates the location of the PPC port to be opened. If the locationName pointer is
NIL, then the default name PPC Toolbox is used. If a location name record is used, then
the locationKindSelector field in the location name record must be
ppcNBPTypeLocation, and an alias location name specified by the location name
record’s nbpType field is used.

The networkVisible field indicates whether the port should be made visible (for
browsing as well as incoming network requests). If you specify FALSE, this port is not
visible in the listing of available ports across a network (although it is still included
within the local machine’s listing of available ports).

The nbpRegistered field returns TRUE if the location name specified was registered on
the network.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCOpen function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $0001

Registers on entry

A0 Pointer to a parameter block

D0 Selector (1)
PPC Toolbox Reference 11-57

C H A P T E R 1 1

Program-to-Program Communications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCOpen function, see Listing 11-2 on page 11-21.

PPCClose 11

You use the PPCClose function to close the port specified by the port reference number.

FUNCTION PPCClose (pb: PPCClosePBPtr; async: Boolean): OSErr;

pb A pointer to a PPCClose parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 Invalid or inappropriate

locationKindSelector in location name
noPortErr –903 Unable to open port or bad port reference

number
noGlobalsErr –904 System unable to allocate memory, critical error
badReqErr –909 Bad parameter or invalid state for this operation
portNameExistsErr –910 Another port is already open with this name
badPortNameErr –919 PPC port record is invalid
badServiceMethodErr –930 Service method is other than

ppcServiceRealTime
badLocNameErr –931 Location name is invalid
nbpDuplicateName –1027 Location name represents a duplicate on this

computer

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ portRefNum PPCPortRefNum Port reference number of port to close
11-58 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
DESCRIPTION

If your application calls this function asynchronously, you must specify in the
ioCompletion field either the address of a completion routine or NIL. If you
set ioCompletion to NIL, you should poll the ioResult field of the PPC parameter
block (from your application’s main event loop) to determine whether the PPC Toolbox
has completed the requested operation. A value in the ioResult field other than 1
indicates that the call is complete. Note that it is unsafe to poll the ioResult field at
interrupt time since the PPC Toolbox may be in the process of completing a call. See
“PPC Toolbox Calling Conventions” beginning on page 11-14 for detailed information.

The portRefNum field specifies the PPC port identifier of the port to close. The port
reference number must be a valid port reference number returned from a previous call to
the PPCOpen function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCClose function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the PPCClose function, see Listing 11-19 on page 11-44.

Starting and Ending a Session 11

You use the PPCStart or StartSecureSession function to initiate a session with
another port, and you use the PPCEnd function to end a session.

Trap macro Selector

_PPC $0009

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noPortErr –903 Bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
PPC Toolbox Reference 11-59

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPCStart 11

The PPCStart function initiates a session with the destination port specified in the
name and location fields.

FUNCTION PPCStart (pb: PPCStartPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCStart parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

DESCRIPTION

If your application calls the PPCStart function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time, since the PPC Toolbox may be in the process of completing a call. See “PPC
Toolbox Calling Conventions” beginning on page 11-14 for detailed information.

If you call the PPCStart function asynchronously, you must not change any of the fields
in the parameter block until the call completes. The port name and location name
pointed to by the PPCStart parameter block record are owned by the PPC Toolbox until
the call completes. These objects must not be deallocated or moved in memory while the
call is in progress.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ portRefNum PPCPortRefNum Port reference number of this

session
← sessRefNum PPCSessRefNum Session reference number of this

session
→ serviceType PPCServiceType Service type requested—must be

ppcServiceRealTime
→ resFlag SignedByte Reserved field—must be 0
→ portName PPCPortPtr Pointer to a PPCPortRec
→ locationName LocationNamePtr Pointer to a LocationNameRec
← rejectInfo LongInt Value from PPCReject if session

was rejected
→ userData LongInt Application-specific data
→ userRefNum LongInt User reference number
11-60 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
You specify the PPC port identifier in the portRefNum field. The port reference number
is a reference number for the port through which you are requesting a session. The value
you specify must correspond to the port reference number returned from the PPCOpen
function.

The sessRefNum field returns a session identifier. This number, which is provided by
the PPC Toolbox, is used while data is being exchanged to identify a particular session.
You must set the serviceType field to indicate that the session is to be connected in
real time. For System 7, this field must always be set to the ppcServiceRealTime
constant. You must set the resFlag field to 0.

The portName field must contain a pointer to a PPC port record. The locationName
field should contain a pointer to a location name record or NIL. The PPC port record and
the location name record specify the name and location of the PPC port to initiate a
session with, and they are usually obtained from the PPCBrowser function. If the
locationKindSelector field in the location name record is ppcNoLocation or if
the locationName pointer is NIL, then the location is the local machine. If the
locationKindSelector field in the location name record is ppcNBPLocation,
then the location is a remote machine designated by the location name record’s
nbpEntity field.

If the ioResult field of the PPC parameter block returns a userRejectErr result
code, the rejectInfo field contains the same value as the rejectInfo field in the
PPCReject parameter block. The rejectInfo field is defined by your application.

The initiating port can specify any information in the userData field. The PPCInform
function reports this data to the responding port upon its completion.

The userRefNum field specifies an authenticated user. The authentication mechanism of
the PPC Toolbox identifies each user through an assigned name and a password. A user
reference number of 0 indicates that you want to specify a guest.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCStart function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $0002

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code
PPC Toolbox Reference 11-61

C H A P T E R 1 1

Program-to-Program Communications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCStart function, see Listing 11-7 on page 11-34.

StartSecureSession 11

The StartSecureSession function prompts for user name and password and calls
PPCStart—all in one synchronous procedure call. Use the StartSecureSession
function whenever a port destination requires authentication.

FUNCTION StartSecureSession (pb: PPCStartPBPtr;

 VAR userName: Str32;

 useDefault: Boolean;

 allowGuest: Boolean;

 VAR guestSelected: Boolean;

 prompt: Str255): OSErr;

pb A pointer to a PPCStart parameter block.

userName A pointer to a 32-byte character string to be displayed as the user’s name.

useDefault
A Boolean value that indicates whether you want the
StartSecureSession function to use the default user identity (and
possibly prevent the user identity dialog box from appearing). If so,
specify TRUE; otherwise, specify FALSE.

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 locationKindSelector is not

ppcNBPLocation or ppcNoLocation
noPortErr –903 Bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
localOnlyErr –905 Network activity is currently disabled
destPortErr –906 Port does not exist at destination
sessTableErr –907 PPC Toolbox is unable to create a session
noUserNameErr –911 User name unknown on destination machine
userRejectErr –912 Destination rejected the session request
noResponseErr –915 Unable to contact application
portClosedErr –916 The port was closed
badPortNameErr –919 PPC port record is invalid
networkErr –925 An error has occurred in the network
noInformErr –926 PPCStart failed because target application did

not have an inform pending
authFailErr –927 User’s password is wrong
noUserRecErr –928 Invalid user reference number
badServiceMethodErr –930 Service method is other than

ppcServiceRealTime
guestNotAllowedErr –932 Destination port requires authentication
11-62 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
allowGuest
A Boolean value that determines whether the Guest radio button in the
user identity dialog box is active (TRUE) or inactive (FALSE).

guestSelected
Returns TRUE if the user has logged on as a guest.

prompt A line of text that the dialog box displays in place of the default prompt.
Specify NIL or an empty string to use the default prompt.

DESCRIPTION

Your program fills out a parameter block just as though it were calling the PPCStart
function. You specify all input fields in the parameter block except for the userRefNum
field. The userRefNum field is returned when the StartSecureSession function
successfully completes.

The userName parameter is a pointer to a 32-byte character string to be displayed as
the user’s name. If the Pascal string length is 0, the default user name is used. The
default user name is the name specified in the Sharing Setup control panel. The default
user name is returned in the userName buffer.

Set the useDefault parameter to TRUE if you want the StartSecureSession
function to use the default user identity (and possibly prevent the user identity dialog
box from appearing). The allowGuest parameter specifies whether the Guest radio
button in the user identity dialog box is active. You usually set it to the inverse of the
authRequired field in the port information record. For example, if authRequired is
TRUE, then allowGuest should be set to FALSE.

The guestSelected parameter returns TRUE if the user has logged on as a guest. The
prompt parameter of the StartSecureSession function allows you to specify a line
of text that the dialog box can display. Specify NIL or an empty string for the prompt
parameter to enable the PPC Toolbox to use the default prompt. The PPC Toolbox uses
the default string “Link to <port name> on <object string> as:”. The port name is obtained
from the name string of the port name, and the object string is obtained from the object
string of the location name.

Note
Do not call the StartSecureSession function from an application
that is running in the background, because the function displays several
dialog boxes on the user’s screen. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StartSecureSession function are

Trap macro Selector

_PPC $000E
PPC Toolbox Reference 11-63

C H A P T E R 1 1

Program-to-Program Communications Toolbox
The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the StartSecureSession function, see “Initiating a PPC
Session” beginning on page 11-29.

PPCEnd 11

Use the PPCEnd function to end a session. This function completes all outstanding
asynchronous calls associated with the session reference number.

FUNCTION PPCEnd (pb: PPCEndPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCEnd parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Registers on entry

A0 Pointer to a StartSecureParams record

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
userCanceledErr –128 User decided not to conduct a session
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 locationKindSelector is not

ppcNBPLocation or ppcNoLocation
noPortErr –903 Bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
localOnlyErr –905 Network activity is currently disabled
destPortErr –906 Port does not exist at destination
sessTableErr –907 PPC Toolbox is unable to create a session
noResponseErr –915 Unable to contact application
portClosedErr –916 The port was closed
badPortNameErr –919 PPC port record is invalid
noUserRefErr –924 Unable to create a new user reference number
networkErr –925 An error has occurred in the network
noInformErr –926 PPCStart failed because target application did

not have an inform pending
badServiceMethodErr –930 Service method is other than

ppcServiceRealTime
guestNotAllowedErr –932 Destination port requires authentication
11-64 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Parameter block

DESCRIPTION

If your application calls the PPCEnd function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

You provide a session identifier in the sessRefNum field to identify the session that you
are terminating. The PPCStart, StartSecureSession, or PPCInform function
returns the session reference number.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCEnd function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the PPCEnd function, see Listing 11-18 on page 11-43.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number of

session to end

Trap macro Selector

_PPC $0008

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
PPC Toolbox Reference 11-65

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Receiving, Accepting, and Rejecting a Session 11

You use the PPCInform function to receive session requests. After the PPCInform
function completes (with the autoAccept field set to FALSE), you must accept or reject
the session request using the PPCAccept or PPCReject function.

PPCInform 11

As long as a port has been opened, you can call the PPCInform function at any time.
You can have any number of outstanding PPCInform functions.

FUNCTION PPCInform (pb: PPCInformPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCInform parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE). You should execute
the PPCInform function asynchronously.

Parameter block

DESCRIPTION

If your application calls the PPCInform function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ portRefNum PPCPortRefNum Port reference number of this

session
← sessRefNum PPCSessRefNum Session reference number of this

session
← serviceType PPCServiceType Service type of this session
→ autoAccept Boolean If TRUE, session is accepted

automatically
→ portName PPCPortPtr Pointer to PPCPortRec, may be

NIL
→ locationName LocationNamePtr Pointer to LocationNameRec,

may be NIL
userName StringPtr Pointer to Str32, may be NIL

← userData LongInt Application-specific data
← requestType PPCSessionOrigin Network or local request
11-66 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
If you call the PPCInform function asynchronously, you must not change any of the
fields in the parameter block until the call completes. The port name, location name, user
name, and buffer pointed to by the record of type PPCInformPBRec are owned by the
PPC Toolbox until the call completes. These objects must not be deallocated or moved in
memory while the call is in progress.

You provide the PPC port identifier in the portRefNum field. A PPCOpen function
returns the port identifier. The sessRefNum field returns a session identifier.

The serviceType field indicates the service type. For system software version 7.0, this
field always returns the ppcServiceRealTime constant.

If you set the autoAccept field to TRUE, session requests are automatically accepted as
they are received. When the PPCInform function completes execution with a noErr
result code and you set the autoAccept field to FALSE, you need to accept or reject
the session.

▲ W A R N I N G

If the PPCInform function (with the autoAccept parameter set
to FALSE) returns a noErr result code, you must call either the
PPCAccept function or the PPCReject function. The computer trying
to initiate a session using the StartSecureSession function or the
PPCStart function waits (hangs) until the session attempt is either
accepted or rejected, or until an error occurs. ▲

The portName field must contain NIL or a pointer to a PPC port record. If the
portName field contains NIL, then the name of the PPC port that initiated the
session is not returned. If the portName field points to a PPC port record, then
the PPC port record is filled with the name of the PPC port that initiated the session
when the PPCInform function completes.

The locationName field must contain NIL or a pointer to a location name record. If the
locationName field contains NIL, then the location of the PPC port that initiated the
session is not returned. If the locationName field points to a location name record, then
the location name record is filled with the location of the PPC port that initiated the
session when the PPCInform function completes. If the locationKindSelector field
of the location name record returned is ppcNoLocation, then the location is the local
machine. If the locationKindSelector field of the location name record returned is
ppcNBPLocation, then the location is a remote machine designated by the location
name record’s nbpEntity field.

The userName field must contain NIL or a pointer to a 32-byte character string.
If the userName field contains NIL, then the user name string is not returned. If the
userName field points to a 32-byte character string, then the 32-byte character string is
filled with the name of the user making the session request (if authenticated) when the
PPCInform function completes.

When the PPCInform function completes, the userData field contains the user data
provided by the application making the session request. This field is transparent to the
PPC Toolbox. The application can send any data in this field.
PPC Toolbox Reference 11-67

C H A P T E R 1 1

Program-to-Program Communications Toolbox
When the PPCInform function completes, the requestType field contains either
ppcRemoteOrigin or ppcLocalOrigin, depending on whether the session request is
initiated by a computer across the network or by a port on the same computer.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCInform function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the PPCInform function, see Listing 11-8 on page 11-36.

PPCAccept 11

Use the PPCAccept function to indicate that an application is willing to accept an
incoming session request after a PPCInform function completes.

FUNCTION PPCAccept (pb: PPCAcceptPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCAccept parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Trap macro Selector

_PPC $0003

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noPortErr –903 Unable to open port or bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
portClosedErr –916 The port was closed
11-68 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Parameter block

DESCRIPTION

If your application calls the PPCAccept function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

The sessRefNum field specifies a session identifier. Use the session reference number
returned from the completed PPCInform parameter block to accept the session request.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCAccept function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the PPCAccept function, see “Accepting or Rejecting
Session Requests” beginning on page 11-37.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number of session

to accept

Trap macro Selector

_PPC $0004

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation
PPC Toolbox Reference 11-69

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPCReject 11

Use the PPCReject function to reject a session request after a PPCInform function
completes.

FUNCTION PPCReject (pb: PPCRejectPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCReject parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

DESCRIPTION

If your application calls the PPCReject function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

The sessRefNum field specifies a session to be rejected. This must be a valid session
reference number returned from a previous PPCInform function. The rejectInfo
field is an optional field. The application receiving a session request may specify any
data in this field. The initiating application receives this information in the PPCStart
parameter block.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCReject function are

The registers on entry and exit for this routine are

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number of session

to reject
→ rejectInfo LongInt Value to return if session is rejected

Trap macro Selector

_PPC $0005

Registers on entry

A0 Pointer to a parameter block

D0 Selector code
11-70 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCReject function, see page 11-39.

Reading and Writing Data 11

The PPCRead function reads incoming data from an application, and the PPCWrite
function writes data to an application during a session.

PPCRead 11

Use the PPCRead function to read message blocks during a session.

FUNCTION PPCRead (pb: PPCReadPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCRead parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE). You should execute
the PPCRead function asynchronously.

Parameter block

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number
→ bufferLength Size Length of data buffer
← actualLength Size Actual length of data read
→ bufferPtr Ptr Pointer to data buffer
← more Boolean TRUE if more data in this block to

be read
← userData LongInt Application-specific data
← blockCreator OSType Creator of block read
← blockType OSType Type of block read
PPC Toolbox Reference 11-71

C H A P T E R 1 1

Program-to-Program Communications Toolbox
DESCRIPTION

If your application calls the PPCRead function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

If you call the PPCRead function asynchronously, you must not change any of the fields
in the parameter block until the call completes. The buffer pointed to by the record of
data type PPCReadPBRec is owned by the PPC Toolbox until the call completes. These
objects must not be deallocated or moved in memory while the call is in progress.

The sessRefNum field specifies a session to read data from. This must be a valid session
reference number returned from a previous PPCStart, StartSecureSession, or
PPCInform function. The bufferLength and bufferPtr fields specify the length and
location of a buffer the message block will be read into. Your application must allocate
the storage for the buffer. The actualLength field returns the actual size of the data
read into your data buffer.

The more field returns TRUE if the provided buffer cannot hold the remainder of the
message block. Your application may read a message block in several pieces. It is not
necessary to have a buffer large enough to read in the entire message block, so a message
block can span multiple calls to the PPCRead function.

Upon completion of the PPCRead function, the userData, blockCreator, and
blockType fields contain information regarding the contents of the message block. You
specify these fields using the PPCWrite function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCRead function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $0007

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code
11-72 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCRead function in conjunction with the PPCWrite
function, see “Exchanging Data During a PPC Session” beginning on page 11-39.

PPCWrite 11

Use the PPCWrite function to write message blocks during a session.

FUNCTION PPCWrite (pb: PPCWritePBPtr; async: Boolean): OSErr;

pb A pointer to a PPCWrite parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE). You should execute
the PPCWrite function asynchronously.

Parameter block

DESCRIPTION

If your application calls the PPCWrite function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation
sessClosedErr –917 The session has closed

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number
→ bufferLength Size Length of data buffer
← actualLength Size Actual length of data written
→ bufferPtr Ptr Pointer to data buffer
→ more Boolean TRUE if more data in this block to

be written
→ userData LongInt Application-specific data
→ blockCreator OSType Creator of block written
→ blockType OSType Type of block written
PPC Toolbox Reference 11-73

C H A P T E R 1 1

Program-to-Program Communications Toolbox
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14.

If you call the PPCWrite function asynchronously, you must not change any of the fields
in the parameter block until the call completes. The buffer pointed to by the record of
data type PPCWritePBRec is owned by the PPC Toolbox until the call completes. These
objects must not be deallocated or moved in memory while the call is in progress.

The sessRefNum field specifies a session identifier. This must be a valid session
reference number returned from a previous PPCStart, StartSecureSession, or
PPCInform function.

The bufferLength and bufferPtr fields specify the length and location of a buffer
the message block is sent to. If the PPCWrite function returns a noErr result code, the
actualLength field returns the actual size of the message block that was written.

Set the more field to TRUE to indicate that you will be using the PPCWrite function
again to append data to this message block. Set the more field to FALSE to indicate that
this is the end of the data in this message block.

The initiating port can specify any information in the userData field. The PPCRead
function reports this data to the responding port upon its completion.

Set the userData, blockCreator, and blockType fields for each message block that
you create. These fields can give the receiving application information about how to
process the contents of the message block. They are ignored when you append
information to a message block.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCWrite function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $0006

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code
11-74 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCWrite function in conjunction with the PPCRead
function, see “Exchanging Data During a PPC Session” beginning on page 11-39.

Locating a Default User and Invalidating a User 11

You use the GetDefaultUser function to obtain a user reference number and the name
of the default user. To invalidate a particular user name and corresponding password,
use the DeleteUserIdentity function.

GetDefaultUser 11

The GetDefaultUser function returns the user reference number and the name of the
default user.

FUNCTION GetDefaultUser (VAR userRef: LongInt;

 VAR userName: Str32): OSErr;

userRef If the GetDefaultUser function completes with no errors, then the
userRef parameter returns the user reference number that represents the
user name and password of the default user.

userName The name of the default user.

DESCRIPTION

The default user is specified in the Sharing Setup control panel. This function is useful if
your application uses the PPCStart function to initiate a session with an application
that does not support guest access.

If the GetDefaultUser function completes with no errors, then the userRef
parameter returns the user reference number that represents the user name and
password of the default user. The userName parameter must contain NIL or a 32-byte
character string. If the userName parameter contains NIL, then the user name string is

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation
sessClosedErr –917 The session has closed
PPC Toolbox Reference 11-75

C H A P T E R 1 1

Program-to-Program Communications Toolbox
not returned. If the userName parameter is a 32-byte character string, the 32-byte
character string contains the user name that is specified in the Sharing Setup control
panel when the GetDefaultUser function completes (with no errors).

▲ W A R N I N G

If you are using Pascal, you cannot pass NIL for the userName
parameter. For example, you cannot pass StringPtr(NIL)^ because
Pascal performs range checking of string bounds. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetDefaultUser function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the GetDefaultUser function, see Listing 11-20 on
page 11-45.

DeleteUserIdentity 11

To invalidate a particular user name and corresponding password, use the
DeleteUserIdentity function.

FUNCTION DeleteUserIdentity (userRef: LongInt): OSErr;

userRef The reference number representing the user and password to be deleted.

Trap macro Selector

_PPC $000D

Registers on entry

A0 Pointer to a GetDefaultUserParams record

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
noDefaultUserErr –922 User has not specified owner name in Sharing Setup

control panel
notLoggedInErr –923 Default user reference number does not yet exist
11-76 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
DESCRIPTION

The DeleteUserIdentity function deletes the user name and password
corresponding to the user reference number.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DeleteUserIdentity function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the DeleteUserIdentity function, see “Invalidating
Users” on page 11-44.

Application-Defined Routines 11
This section describes the routine syntax for completion routines and port filter functions.

Completion Routines for PPC Toolbox Routines 11

Your application can provide a pointer to a completion routine in the ioCompletion
field of a PPC parameter block. You can provide completion routines only for
PPC Toolbox routines that you execute asynchronously.

Trap macro Selector

_PPC $000C

Registers on entry

A0 Pointer to a DeleteUserParams record

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
noUserRecErr –928 Invalid user reference number
PPC Toolbox Reference 11-77

C H A P T E R 1 1

Program-to-Program Communications Toolbox
MyCompletionRoutine 11

You can provide a completion routine for a PPC Toolbox routine that you execute
asynchronously.

PROCEDURE MyCompletionRoutine (pb: PPCParamBlockPtr);

pb A pointer to the PPC parameter block passed to the PPC Toolbox function.

DESCRIPTION

If you specify a completion routine in the ioCompletion field of a PPC parameter
block, it is called at interrupt time when the PPC Toolbox routine completes execution.
The PPC Toolbox passes to your completion routine a pointer to the same PPC
parameter block that your application passed to the PPC Toolbox routine.

▲ W A R N I N G

Completion routines execute at the interrupt level and must preserve all
registers other than A0, A1, and D0–D2. (Note that MPW C and MPW
Pascal do this automatically.) Your completion routine must not make
any calls to the Memory Manager, directly or indirectly, and it can’t
depend on the validity of handles to unlocked blocks. The PPC Toolbox
preserves the application global register A5. ▲

SEE ALSO

For examples of completion routines, see Listing 11-9 on page 11-37, Listing 11-11 on
page 11-38, and Listing 11-13 on page 11-39.

Port Filter Functions 11

This section describes the port filter function that can be used by the PPCBrowser
function.

MyPortFilter 11

You can provide a pointer to a port filter function in the portFilter parameter of the
PPCBrowser function.You can use a port filter function to refine the list of PPC ports
that the PPCBrowser function displays in the program linking dialog box.

FUNCTION MyPortFilter (locationName: LocationNamePtr;

 thePortInfo: PortInfoPtr): Boolean;
11-78 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
locationName
A pointer to a location name record. This record specifies the location of
the PPC port currently under consideration for display in the program
linking dialog box.

thePortInfo
A pointer to a port information record. This record specifies the port
information for the PPC port currently under consideration for display in
the program linking dialog box.

DESCRIPTION

The PPCBrowser function calls your port filter function once for each port before it adds
that port to the dialog list. Your port filter function should return TRUE for each port that
should be displayed in the program linking dialog box, and FALSE for each port
that shouldn’t be displayed.

SEE ALSO

For an example of a port filter function, see Listing 11-3 on page 11-24. For a description
of the location name record, see page 11-49. For a description of the port information
record, see page 11-50.
PPC Toolbox Reference 11-79

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Summary of the PPC Toolbox 11

Pascal Summary 11

Constants 11

CONST

{gestalt selectors}

gestaltPPCToolboxAttr = 'ppc '; {PPC Toolbox attributes}

gestaltPPCToolboxPresent = $0000; {PPC Toolbox is present}

gestaltPPCSupportsRealTime = $1000; {real time only in system }

{ software version 7.0}

gestaltPPCSupportsOutGoing = $0002; {support of outgoing }

{ sessions across a network}

gestaltPPCSupportsIncoming = $0001; {user enabled program }

{ linking in Sharing Setup }

{ control panel}

{service type)

ppcServiceRealTime = 1; {real time only in System 7}

{look-up type}

ppcNoLocation = 0; {there is no PPCLocName}

ppcNBPLocation = 1; {use AppleTalk NBP}

ppcNBPTypeLocation = 2; {use just the NBP type, fill }

{ in the rest with default}

{port type}

ppcByCreatorAndType = 1; {port type is specified as }

{ standard creator and type}

ppcByString = 2; {port type is in Pascal }

{ string format}

{session request type returned in the PPCInform function}

ppcLocalOrigin = 1; {session initiated on }

{ local computer}

ppcRemoteOrigin = 2; {session initiated on }

{ remote computer}
11-80 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Data Types 11

TYPE

PPCServiceType = SignedByte; {service type}

PPCLocationKind = Integer; {look-up type}

PPCPortKinds = Integer; {port type}

PPCSessionOrigin = SignedByte; {local or remote}

PPCPortRefNum = Integer; {port reference number}

PPCSessRefNum = LongInt; {session reference number}

LocationNamePtr = ^LocationNameRec;

LocationNameRec =

RECORD

locationKindSelector: PPCLocationKind; {which variant}

CASE PPCLocationKind OF {ppcNoLocation: storage not }

{ used by this value}

ppcNBPLocation: {NBP name entity}

 (nbpEntity: EntityName);

ppcNBPTypeLocation:(nbpType: Str32);{just the NBP type string }

{ for the PPCOpen function}

END;

PortInfoPtr = ^PortInfoRec;

PortInfoRec =

RECORD

filler1: SignedByte; {space holder}

authRequired: Boolean; {authentication required}

name: PPCPortRec; {port name}

END;

PPCPortPtr = ^PPCPortRec;

PPCPortRec =

RECORD

nameScript: ScriptCode; {script identifier}

name: Str32; {port name shown in program }

{ linking dialog box}

portKindSelector: PPCPortKinds; {general category of }

{ application}

CASE PPCPortKinds OF

ppcByString: (portTypeStr: Str32);{32 characters}

ppcByCreatorAndType: {4-character creator and type}

(portCreator: OSType; portType: OSType);

END;
Summary of the PPC Toolbox 11-81

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPCParamBlockPtr = ^PPCParamBlockRec;

PPCParamBlockRec =

RECORD

CASE Integer OF

0: (openParam: PPCOpenPBRec); {PPCOPen params}

1: (informParam: PPCInformPBRec); {PPCInform params}

2: (startParam: PPCStartPBRec); {PPCStart params}

3: (acceptParam: PPCAcceptPBRec); {PPCAccept params}

4: (rejectParam: PPCRejectPBRec); {PPCReject params}

5: (writeParam: PPCWritePBRec); {PPCWrite params}

6: (readParam: PPCReadPBRec); {PPCRead params}

7: (endParam: PPCEndPBRec); {PPCEnd params}

8: (closeParam: PPCClosePBRec); {PPCClose params}

9: (listPortsParam: IPCListPortsPBRec); {IPCListPorts params}

END;

PortInfoArrayPtr = ^PortInfoArray;

PortInfoArray = ARRAY[0..0] OF PortInfoRec;

PPCOpenPBPtr = ^PPCOpenPBRec;

PPCOpenPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a }

{ completion routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

portRefNum: PPCPortRefNum; {PPC port identifier}

filler1: LongInt; {space holder}

serviceType: PPCServiceType; {real time only}

resFlag: SignedByte; {reserved field}

portName: PPCPortPtr; {name of port to be opened}

locationName: LocationNamePtr; {location of port to be }

{ opened}

networkVisible: Boolean; {port is visible for }

{ browsing}

nbpRegistered: Boolean; {location name registered }

{ on network}

END;
11-82 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
PPCInformPBPtr = ^PPCInformPBRec;

PPCInformPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

portRefNum: PPCPortRefNum; {port identifier}

sessRefNum: PPCSessRefNum; {session identifier}

serviceType: PPCServiceType; {real time only}

autoAccept: Boolean; {automatic session }

{ acceptance}

portName: PPCPortPtr; {name of port that }

{ initiated a session}

locationName: LocationNamePtr; {location of port that }

{ initiated a session}

userName: StringPtr; {name of user that }

{ initiated a session}

userData: LongInt; {application-defined}

requestType: PPCSessionOrigin; {local or remote}

END;

PPCStartPBPtr = ^PPCStartPBRec;

PPCStartPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

portRefNum: PPCPortRefNum; {identifier for requested }

{ port}

sessRefNum: PPCSessRefNum; {session identifier}

serviceType: PPCServiceType; {real time only}
Summary of the PPC Toolbox 11-83

C H A P T E R 1 1

Program-to-Program Communications Toolbox
resFlag: SignedByte; {reserved field}

portName: PPCPortPtr; {name of port to be opened}

locationName: LocationNamePtr; {location of port to be }

{ opened}

rejectInfo: LongInt; {rejection of session}

userData: LongInt; {application-specific}

userRefNum: LongInt; {specifies an authenticated }

{ user}

END;

PPCAcceptPBPtr = ^PPCAcceptPBRec;

PPCAcceptPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {session identifier}

END;

PPCRejectPBPtr = ^PPCRejectPBRec;

PPCRejectPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {session identifier}

filler2: Integer; {space holder}

filler3: LongInt; {space holder}

filler4: LongInt; {space holder}
11-84 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
rejectInfo: LongInt; {rejection of session}

END;

PPCWritePBPtr = ^PPCWritePBRec;

PPCWritePBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {session identifier}

bufferLength: Size; {length of buffer to be }

{ written}

actualLength: Size; {actual size of data written}

bufferPtr: Ptr; {location of buffer to be }

{ written}

more: Boolean; {additional data to be }

{ written}

filler2: SignedByte; {space holder}

userData: LongInt; {application-specific}

blockCreator: OSType; {creator of block to be }

{ written}

blockType: OSType; {type of block to be written}

END;

PPCReadPBPtr = ^PPCReadPBRec;

PPCReadPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}
Summary of the PPC Toolbox 11-85

C H A P T E R 1 1

Program-to-Program Communications Toolbox
filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {session identifier}

bufferLength: Size; {length of buffer to be read}

actualLength: Size; {actual size of the data }

{ read}

bufferPtr: Ptr; {location of buffer to be }

{ read}

more: Boolean; {additional data to be read}

filler2: SignedByte; {space holder}

userData: LongInt; {application-specific}

blockCreator: OSType; {creator of block to be read}

blockType: OSType; {type of block to be read}

END;

PPCEndPBPtr = ^PPCEndPBRec;

PPCEndPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {identifier of session to }

{ be terminated}

END;

PPCClosePBPtr = ^PPCClosePBRec;

PPCClosePBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}
11-86 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
portRefNum: PPCPortRefNum; {identifier of port to }

{ be closed}

END;

IPCListPortsPBPtr = ^IPCListPortsPBRec;

IPCListPortsPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

startIndex: Integer; {index to the port entry }

{ list}

requestCount: Integer; {number of entries to }

{ be returned}

actualCount: Integer; {actual number of port names}

portName: PPCPortPtr; {list of port names}

locationName: LocationNamePtr; {location of port names}

bufferPtr: PortInfoArrayPtr; {pointer to a buffer}

END;

PPC Toolbox Routines 11

Initializing the PPC Toolbox

FUNCTION PPCInit: OSErr;

Using the Program Linking Dialog Box

FUNCTION PPCBrowser (prompt: Str255; applListLabel: Str255;
defaultSpecified: Boolean;
VAR theLocation: LocationNameRec;
VAR thePortInfo: PortInfoRec;
portFilter: PPCFilterProcPtr;
theLocNBPType: Str32): OSErr;

Obtaining a List of Ports

FUNCTION IPCListPorts (pb: IPCListPortsPBPtr; async: Boolean): OSErr;
Summary of the PPC Toolbox 11-87

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Opening and Closing a Port

FUNCTION PPCOpen (pb: PPCOpenPBPtr; async: Boolean): OSErr;

FUNCTION PPCClose (pb: PPCClosePBPtr; async: Boolean): OSErr;

Starting and Ending a Session

FUNCTION PPCStart (pb: PPCStartPBPtr; async: Boolean): OSErr;

FUNCTION StartSecureSession (pb: PPCStartPBPtr; VAR userName: Str32;
useDefault: Boolean; allowGuest: Boolean;
VAR guestSelected: Boolean; prompt: Str255)
: OSErr;

FUNCTION PPCEnd (pb: PPCEndPBPtr; async: Boolean): OSErr;

Receiving, Accepting, and Rejecting a Session

FUNCTION PPCInform (pb: PPCInformPBPtr; async: Boolean): OSErr;

FUNCTION PPCAccept (pb: PPCAcceptPBPtr; async: Boolean): OSErr;

FUNCTION PPCReject (pb: PPCRejectPBPtr; async: Boolean): OSErr;

Reading and Writing Data

FUNCTION PPCRead (pb: PPCReadPBPtr; async: Boolean): OSErr;

FUNCTION PPCWrite (pb: PPCWritePBPtr; async: Boolean): OSErr;

Locating a Default User and Invalidating a User

FUNCTION GetDefaultUser (VAR userRef: LongInt; VAR userName: Str32)
: OSErr;

FUNCTION DeleteUserIdentity (userRef: LongInt): OSErr;

Application-Defined Routines 11

PROCEDURE MyCompletionRoutine
(pb: PPCParamBlockPtr);

FUNCTION MyPortFilter (locationName: LocationNameRec;
thePortInfo: PortInfoRec): Boolean;
11-88 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
C Summary 11

Constants 11

CONST

enum {

/*gestalt selectors*/

#define gestaltPPCToolboxAttr 'ppc ' /*PPC Toolbox attributes*/

gestaltPPCToolboxPresent = $0000, /*PPC Toolbox is present*/

gestaltPPCSupportsRealTime = $1000, /*real time only in system */

/* software version 7.0*/

gestaltPPCSupportsOutGoing = $0002, /*support of outgoing */

/* sessions across a network*/

gestaltPPCSupportsIncoming = $0001 /*user enabled program */

/* linking in Sharing Setup */

/* control panel*/

};

enum {

/*service type*/

ppcServiceRealTime = 1 /*real time only in System 7*/

};

enum {

/*look-up type*/

ppcNoLocation = 0, /*there is no PPCLocName*/

ppcNBPLocation = 1, /*use AppleTalk NBP*/

ppcNBPTypeLocation = 2 /*use just the NBP type, fill */

/* in the rest with default*/

};

enum {

/*port type*/

ppcByCreatorAndType = 1, /*port type is specified as */

/* standard Mac creator and type*/

ppcByString = 2 /*port type is in Pascal */

/* string format*/

};

enum {

/*session request type returned in the PPCInform function*/

ppcLocalOrigin = 1, /*session initiated on */

/* local computer*/

ppcRemoteOrigin = 2 /*session initiated on */

/* remote computer*/

};
Summary of the PPC Toolbox 11-89

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Data Types 11

typedef unsigned char PPCServiceType; /*service type*/

typedef short PPCLocationKind; /*look-up type*/

typedef short PPCPortKinds; /*port type*/

typedef unsigned char PPCSessionOrigin; /*local or remote*/

typedef short PPCPortRefNum; /*port reference number*/

typedef long PPCSessRefNum; /*session reference number*/

struct PPCPortRec {

ScriptCode nameScript; /*script identifier*/

Str32 name; /*port name shown in program */

/* linking dialog box*/

PPCPortKinds portKindSelector; /*general category of */

/* application*/

union

Str32 portTypeStr; /*32 characters*/

struct

OSType creator; /*4-character creator and */

OSType type; /* type*/

} port;

} u;

};

typedef struct PPCPortRec PPCPortRec;

typedef PPCPortRec *PPCPortPtr;

struct LocationNameRec {

PPCLocationKind locationKindSelector; /*which variant*/

union {

EntityName nbpEntity; /*NBP name entity*/

Str32 nbpType; /*just the NBP type string */

/* for the PPCOpen function*/

} u;

};

typedef struct LocationNameRec LocationNameRec;

typedef LocationNameRec *LocationNamePtr;

struct PortInfoRec {

unsigned char filler1; /*space holder*/

Boolean authRequired; /*authentication required*/

PPCPortRec name; /*port name*/

};
11-90 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
typedef struct PortInfoRec PortInfoRec;

typedef PortInfoRec *PortInfoPtr;

typedef PortInfoRec *PortInfoArrayPtr;

typedef pascal Boolean (*PPCFilterProcPtr) (LocationNamePtr, PortInfoPtr);

/*procedures you need to write*/

/*ex: void MyCompletionRoutine(PPCParamBlkPtr pb)*/

/*ex: pascal Boolean MyPortFilter(LocationNamePtr, PortInfoPtr)*/

typedef ProcPtr PPCCompProcPtr;

#define PPCHeader \

Ptr qLink; /*private*/

unsigned short csCode; /*private*/

unsigned short intUse; /*private*/

Ptr intUsePtr; /*private*/

PPCCompProcPtr ioCompletion; /*address of a */

/* completion routine*/

OSErr ioResult; /*completion of operation*/

unsigned long Reserved[5]; /*private*/

struct PPCOpenPBRec {

PPCHeader

PPCPortRefNum portRefNum; /*PPC port identifier*/

long filler1; /*space holder*/

PPCServiceType serviceType; /*real time only*/

unsigned char resFlag; /*reserved field*/

PPCPortPtr portName; /*name of port to be opened*/

LocationNamePtr locationName; /*location of port to be */

/* opened*/

Boolean networkVisible; /*port is visible for */

/* browsing*/

Boolean nbpRegistered; /*location name registered */

/* on network*/

};

typedef struct PPCOpenPBRec PPCOpenPBRec;

typedef PPCOpenPBRec *PPCOpenPBPtr;

struct PPCInformPBRec {

PPCHeader

PPCPortRefNum portRefNum; /*port identifier*/

PPCSessRefNum sessRefNum; /*session identifier*/

PPCServiceType serviceType; /*real time only*/
Summary of the PPC Toolbox 11-91

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Boolean autoAccept; /*automatic session acceptance*/

PPCPortPtr portName; /*name of port that */

/* initiated a session*/

LocationNamePtr locationName; /*location of port that */

/* initiated a session*/

StringPtr userName; /*name of user that */

/* initiated a session*/

unsigned long userData; /*application-defined*/

PPCSessionOrigin requestType; /*local or remote*/

};

typdef struct PPCInformPBRec PPCInformPBPtr;

struct PPCStartPBRec {

PPCHeader

PPCPortRefNum portRefNum; /*identifier for requested */

/* port*/

PPCSessRefNum sessRefNum; /*session identifier*/

PPCServiceType serviceType; /*real time only*/

unsigned char resFlag; /*reserved field*/

PPCPortPtr portName; /*name of port to be opened*/

LocationNamePtr locationName; /*location of port to be opened*/

unsigned long rejectInfo; /*rejection of session*/

unsigned long userData; /*application-specific*/

unsigned long userRefNum; /*specifies an authenticated user*/

};

typedef struct PPCStartPBRec PPCStartPBRec;

typedef PPCStartPBRec *PPCStartPBPtr;

struct PPCAcceptPBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*session identifier*/

};

typedef struct PPCAcceptPBRec PPCAcceptPBRec;

typedef PPCAcceptPBRec *PPCAcceptPBPtr;

struct PPCRejectPBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*session identifier*/
11-92 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
short filler2; /*space holder*/

long filler3; /*space holder*/

long filler4; /*space holder*/

unsigned long rejectInfo; /*rejection of session*/

};

typedef struct PPCRejectPBRec PPCRejectPBRec;

typedef PPCRejectPBRec *PPCRejectPBPtr;

struct PPCWritePBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*session identifier*/

Size bufferLength; /*length of buffer to be written*/

Size actualLength; /*actual size of data written*/

Ptr bufferPtr; /*location of buffer to be */

/* written*/

Boolean more; /*additional data to be written*/

unsigned char filler2; /*space holder*/

unsigned long userData; /*application-specific*/

OSType blockCreator; /*creator of block to be written*/

OSType blockType; /*type of block to be written*/

};

typedef struct PPCWritePBRec PPCWritePBRec;

typedef PPCWritePBRec *PPCWritePBPtr;

struct PPCReadPBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*session identifier*/

Size bufferLength; /*length of buffer to be read*/

Size actualLength; /*actual size of the data read*/

Ptr bufferPtr; /*location of buffer to be read*/

Boolean more; /*additional data to be read*/

unsigned char filler2; /*space holder*/

unsigned long userData; /*application-specific*/

OSType blockCreator; /*creator of block to be read*/

OSType blockType; /*type of block to be read*/

};

typedef struct PPCReadPBRec PPCReadPBRec;

typdef PPCReadPBRec *PPCReadPBPtr;
Summary of the PPC Toolbox 11-93

C H A P T E R 1 1

Program-to-Program Communications Toolbox
struct PPCEndPBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*identifier of session to */

/* be terminated*/

};

typedef struct PPCEndPBRec PPCEndPBRec;

typedef PPCEndPBRec *PPCEndPBPtr;

struct PPCClosePBRec {

PPCHeader

PPCPortRefNum portRefNum; /*identifier of port to */

/* be closed*/

};

typedef struct PPCClosePBRec PPCClosePBRec;

typedef PPCClosePBRec *PPCClosePBPtr;

struct IPCListPortsPBRec {

PPCHeader

short filler1; /*space holder*/

unsigned short startIndex; /*index to the port entry list*/

unsigned short requestCount; /*number of entries to */

/* be returned*/

unsigned short actualCount; /*actual number of port names*/

PPCPortPtr portName; /*list of port names*/

LocationNamePtr locationName; /*location of port names*/

PortInfoArrayPtr bufferPtr; /*pointer to a buffer*/

};

typedef struct IPCListPortsPBRec IPCListPortsPBRec;

typedef IPCListPortsPBRec *IPCListPortsPBPtr;

union PPCParamBlockRec {

PPCOpenPBRec openParam; /*PPCOpen params*/

PPCInformPBRec informParam; /*PPCInform params*/

PPCStartPBRec startParam; /*PPCStart params*/

PPCAcceptPBRec acceptParam; /*PPCAccept params*/

PPCRejectPBRec rejectParam; /*PPCReject params*/

PPCWritePBRec writeParam; /*PPCWrite params*/

PPCReadPBRec readParam; /*PPCRead params*/

PPCEndPBRec endParam; /*PPCEnd params*/

PPCClosePBRec closeParam; /*PPCClose params*/
11-94 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
IPCListPortsPBRec listPortsParam; /*IPCListPorts params*/

};

typdef union PPCParamBlockRec PPCParamBlockRec;

typdef PPCParamBlockRec *PPCParamBlockPtr;

PPC Toolbox Routines 11

Initializing the PPC Toolbox

pascal OSErr PPCInit (void);

Using the Program Linking Dialog Box

pascal OSErr PPCBrowser (ConstStr255Param prompt,
ConstStr255Param applListLabel,
Boolean defaultSpecified,
LocationNameRec *theLocation,
PortInfoRec *thePortInfo,
PPCFilterProcPtr portFilter,
ConstStr32Param theLocNBPType);

Obtaining a List of Ports

pascal OSErr IPCListPorts (IPCListPortsPBPtr pb, Boolean async);

Opening and Closing a Port

pascal OSErr PPCOpen (PPCOpenPBPtr pb, Boolean async);

pascal OSErr PPCClose (PPCClosePBPtr pb, Boolean async);

Starting and Ending a Session

pascal OSErr PPCStart (PPCStartPBPtr pb, Boolean async);

pascal OSErr StartSecureSession
(PPCStartPBPtr pb, Str32 userName,
Boolean useDefault, Boolean allowGuest,
Boolean *guestSelected,
ConstStr255Param prompt);

pascal OSErr PPCEnd (PPCEndPBPtr pb, Boolean async);

Receiving, Accepting, and Rejecting a Session

pascal OSErr PPCInform (PPCInformPBPtr pb, Boolean async);

pascal OSErr PPCAccept (PPCAcceptPBPtr pb, Boolean async);

pascal OSErr PPCReject (PPCRejectPBPtr pb, Boolean async);
Summary of the PPC Toolbox 11-95

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Reading and Writing Data

pascal OSErr PPCRead (PPCReadPBPtr pb, Boolean async);

pascal OSErr PPCWrite (PPCWritePBPtr pb, Boolean async);

Locating a Default User and Invalidating a User

pascal OSErr GetDefaultUser (unsigned long *userRef, Str32 userName);

pascal OSErr DeleteUserIdentity
(unsigned long userRef);

Application-Defined Routines 11

void MyCompletionRoutine (PPCParamBlockPtr pb);

pascal Boolean MyPortFilter (LocationNameRec locationName,
PortInfoRec thePortInfo);

Assembly-Language Summary 11

Trap Macros 11

Trap Macros Requiring Routine Selectors

_Pack9

_PPC

Selector Routine

$0D00 PPCBrowser

Selector Routine

$0000 PPCInit

$0001 PPCOpen

$0002 PPCStart

$0003 PPCInform

$0004 PPCAccept

$0005 PPCReject

$0006 PPCWrite

$0007 PPCRead

$0008 PPCEnd

$0009 PPCClose
11-96 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Reading and Writing Data

pascal OSErr PPCRead (PPCReadPBPtr pb, Boolean async);

pascal OSErr PPCWrite (PPCWritePBPtr pb, Boolean async);

Locating a Default User and Invalidating a User

pascal OSErr GetDefaultUser (unsigned long *userRef, Str32 userName);

pascal OSErr DeleteUserIdentity
(unsigned long userRef);

Application-Defined Routines 11

void MyCompletionRoutine (PPCParamBlockPtr pb);

pascal Boolean MyPortFilter (LocationNameRec locationName,
PortInfoRec thePortInfo);

Assembly-Language Summary 11

Trap Macros 11

Trap Macros Requiring Routine Selectors

_Pack9

_PPC

Selecto
r Routine

$0D00 PPCBrowser

Selector Routine

$0000 PPCInit

$0001 PPCOpen

$0002 PPCStart

$0003 PPCInform

$0004 PPCAccept

$0005 PPCReject

$0006 PPCWrite

$0007 PPCRead

$0008 PPCEnd

$0009 PPCClose
Summary of the PPC Toolbox 11-97

Result Codes 11

$000A IPCListPorts

$000C DeleteUserIdentity

$000D GetDefaultUser

$000E StartSecureSession

noErr 0 No error
paramErr –50 Illegal parameter
memFullErr –108 Not enough memory to load PPCBrowser package
userCanceledErr –128 User decided not to conduct a session
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 Invalid or inappropriate locationKindSelector in location

name
noPortErr –903 Unable to open port or bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
localOnlyErr –905 Network activity is currently disabled
destPortErr –906 Port does not exist at destination
sessTableErr –907 PPC Toolbox is unable to create a session
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation
portNameExistsErr –910 Another port is already open with this name
noUserNameErr –911 User name unknown on destination machine
userRejectErr –912 Destination rejected the session request
noResponseErr –915 Unable to contact application
portClosedErr –916 The port was closed
sessClosedErr –917 The session has closed
badPortNameErr –919 PPC port record is invalid
noDefaultUserErr –922 User has not specified owner name in Sharing Setup control

panel
notLoggedInErr –923 Default user reference number does not yet exist
noUserRefErr –924 Unable to create a new user reference number
networkErr –925 An error has occurred in the network
noInformErr –926 PPCStart failed because target application did not have an

inform pending
authFailErr –927 User’s password is wrong
noUserRecErr –928 Invalid user reference number
badServiceMethodErr –930 Service method is other than ppcServiceRealTime
badLocNameErr –931 Location name is invalid
guestNotAllowedErr –932 Destination port requires authentication
nbpDuplicate –1027 Location name represents a duplicate on this computer

Selector Routine

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	Program-to-Program Communications Toolbox
	About the PPC Toolbox
	Ports, Sessions, and Message Blocks
	Setting Up Authenticated Sessions

	Using the PPC Toolbox
	PPC Toolbox Calling Conventions
	Specifying Port Names and Location Names
	Opening a Port
	Browsing for Ports Using the Program Linking Dialo...
	Obtaining a List of Available Ports

	Preparing for a Session
	Initiating a PPC Session
	Receiving Session Requests
	Accepting or Rejecting Session Requests

	Exchanging Data During a PPC Session
	Reading Data From an Application
	Sending Data to an Application

	Ending a Session and Closing a Port
	Invalidating Users

	PPC Toolbox Reference
	Data Structures
	The PPC Toolbox Parameter Block
	The PPC Port Record
	The Location Name Record
	The Port Information Record

	PPC Toolbox Routines
	Initializing the PPC Toolbox
	Using the Program Linking Dialog Box
	Obtaining a List of Ports
	Opening and Closing a Port
	Starting and Ending a Session
	Receiving, Accepting, and Rejecting a Session
	Reading and Writing Data
	Locating a Default User and Invalidating a User

	Application-Defined Routines
	Completion Routines for PPC Toolbox Routines
	Port Filter Functions

	Summary of the PPC Toolbox
	Pascal Summary
	Constants
	Data Types
	PPC Toolbox Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	PPC Toolbox Routines
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

