

C H A P T E R 5

5

C
reating and S

ending A
pple E

vents

Creating and Sending Apple Events 5

This chapter describes how your application can use the Apple Event Manager to create
and send Apple events. If you want to factor your application for recording, or if you
want your application to send Apple events directly to other applications, you can use
Apple Event Manager routines to create and send Apple events.

Before you read this chapter, you should be familiar with the chapters “Introduction to
Interapplication Communication,” “Introduction to Apple Events,” and “Responding to
Apple Events” in this book. If you are factoring your application, you should also be
familiar with the chapter “Recording Apple Events” in this book.

This chapter provides the basic information you need to create and send Apple events
from your application. To send core and functional-area Apple events, your application
must also be able to create object specifier records. For information about object specifier
records, see the chapter “Resolving and Creating Object Specifier Records” in this book.

To allow your application to send Apple events to applications on other computers, you
may wish to use the PPCBrowser function, which is described in the chapter
“Program-to-Program Communications Toolbox” in this book.

The first section in this chapter, “Creating an Apple Event,” describes how to

■ create an Apple event

■ add parameters to an Apple event

■ specify optional Apple event parameters

■ specify a target address

The section “Sending an Apple Event” describes how to

■ send an Apple event

■ deal with timeouts

■ write an idle function

■ write a reply filter function

Creating an Apple Event 5

You create an Apple event by using the AECreateAppleEvent function. You supply
parameters that specify the event class and event ID, the target address, the return ID,
and the transaction ID, and a buffer for the returned Apple event. The
AECreateAppleEvent function creates and returns, in the buffer you specify, an Apple
event with the attributes set as your application requested. You should not directly
manipulate the contents of the Apple event; rather, use Apple Event Manager functions
to add additional attributes or parameters to it.
Creating an Apple Event 5-3

C H A P T E R 5

Creating and Sending Apple Events

The example that follows creates an imaginary Multiply event using the
AECreateAppleEvent function.

myErr := AECreateAppleEvent(kArithmeticClass, kMultEventID,

 targetAddress, kAutoGenerateReturnID,

 kAnyTransactionID, theAppleEvent);

The event class, specified by the kArithmeticClass constant, identifies this event as
belonging to a class of Apple events for arithmetic operations. The event ID specifies the
particular Apple event within the class—in this case, an Apple event that performs
multiplication.

You specify the target of the Apple event in the third parameter to
AECreateAppleEvent. The target address can identify an application on the local
computer or another computer on the network. You can specify the address using a
target ID record or session reference number. For processes on the local computer, you
can also use a process serial number or application signature to specify the address. See
“Specifying a Target Address” on page 5-10 for more information.

In the fourth parameter, you specify the return ID of the Apple event, which associates
this Apple event with the server’s reply. The AECreateAppleEvent function assigns
the specified return ID value to the keyReturnIDAttr attribute of the Apple event. If a
server returns a standard reply Apple event (that is, an event of event class 'aevt'
and event ID 'ansr') in response to this event, the Apple Event Manager assigns the
reply event the same return ID. When you receive a reply Apple event, you can check the
keyReturnIDAttr attribute to determine which outstanding Apple event the reply is
responding to. You can use the kAutoGenerateReturnID constant to request that the
Apple Event Manager generate a return ID that is unique to this session for the Apple
event. Otherwise, you are responsible for making it unique.

The fifth parameter specifies the transaction ID attribute of the Apple event. A
transaction is a sequence of Apple events that are sent back and forth between the client
and server applications, beginning with the client’s initial request for a service. All Apple
events that are part of one transaction must have the same transaction ID.

You can use a transaction ID to indicate that an Apple event is one of a sequence of
Apple events related to a single transaction. The kAnyTransactionID constant
indicates that the Apple event is not part of a transaction.

The AECreateAppleEvent function creates an Apple event with only the specified
attributes and no parameters. To add parameters or additional attributes, you can use
other Apple Event Manager functions.
5-4 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5

C
reating and S

ending A
pple E

vents

Adding Parameters to an Apple Event 5
You can use the AEPutParamPtr or AEPutParamDesc function to add parameters to
an Apple event. When you use either of these functions, the Apple Event Manager adds
the specified parameter to the Apple event.

Use the AEPutParamPtr function when you want to add data specified in a buffer as
the parameter of an Apple event. You specify the Apple event, the keyword of the
parameter to add, the descriptor type, a buffer that contains the data, and the size of this
buffer as parameters to the AEPutParamPtr function. The AEPutParamPtr function
adds the data to the Apple event as a parameter with the specified keyword.

For example, this code adds a parameter to the Multiply event using the
AEPutParamPtr function:

CONST keyOperand1 = 'OPN1';

VAR

number1: LongInt;

theAppleEvent: AppleEvent;

myErr: OSErr;

number1 := 10;

myErr := AEPutParamPtr(theAppleEvent, keyOperand1,

 typeLongInteger, @number1,

 SizeOf(number1));

In this example, the Apple Event Manager adds the parameter containing the first
number to the specified Apple event.

Use the AEPutParamDesc function to add a descriptor record to an Apple event. The
descriptor record you specify must already exist. To create or get a descriptor record, you
can use the AECreateDesc, AEDuplicateDesc, and other Apple Event Manager
functions that return a descriptor record.

When you create a descriptor record using the AECreateDesc function, you specify the
descriptor type, a buffer that contains the data, and the size of this buffer as parameters.
The AECreateDesc function returns the descriptor record that describes the data.
Creating an Apple Event 5-5

C H A P T E R 5

Creating and Sending Apple Events

This example creates a descriptor record for the second parameter of the Multiply event:

VAR

number2: LongInt;

multParam2Desc: AEDesc;

myErr: OSErr;

number2 := 8;

myErr := AECreateDesc(typeLongInteger, @number2, SizeOf(number2),

 multParam2Desc);

In this example, the AECreateDesc function creates a descriptor record with the
typeLongInteger descriptor type and the data identified in the number2 variable.

Once you have created a descriptor record, you can use AEPutParamDesc to add the
data to an Apple event parameter. You specify the Apple event to add the parameter to,
the keyword of the parameter, and the descriptor record of the parameter as parameters
to the AEPutParamDesc function.

This example adds a second parameter to the Multiply event using the
AEPutParamDesc function:

CONST keyOperand2 = 'OPN2';

myErr := AEPutParamDesc(theAppleEvent, keyOperand2,

multParam2Desc);

This example adds the keyOperand2 keyword and the descriptor record created in the
previous example as the second parameter to the specified Apple event.

You can also create a descriptor record without using Apple Event Manager routines. For
example, this example generates an alias descriptor record from an existing alias handle:

WITH myAliasDesc DO

BEGIN

descriptorType := typeAlias;

dataHandle := myAliasHandle;

END;
5-6 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5

C
reating and S

ending A
pple E

vents

Whatever method you use to create a descriptor record, you can add it to an Apple event
parameter by using AEPutParamDesc.

After adding parameters to an Apple event, you can send the Apple event using the
AESend function. See “Sending an Apple Event,” which begins on page 5-13, for
information about using this function.

Specifying Optional Parameters for an Apple Event 5
The parameters for a given Apple event are listed in the Apple Event Registry: Standard
Suites as either required or optional. Your application does not usually have to include
Apple event parameters that are listed as optional; the target application uses default
values for parameters that are listed as optional if your application does not provide
them. The Apple Event Registry: Standard Suites defines the default value a target
application should use for each optional parameter of a specific Apple event.

The guidelines listed in the Apple Event Registry: Standard Suites for which parameters
should be considered optional and which should be considered required are not
enforced by the Apple Event Manager. Instead, the source application indicates which
Apple event parameters it considers optional by listing the keywords for those
parameters in the keyOptionalKeywordAttr attribute.

The keyOptionalKeywordAttr attribute does not contain the optional parameters;
it simply lists the keywords of any parameters for the Apple event that the source
application wants to identify as optional. Although the source application is responsible
for providing this information in the keyOptionalKeywordAttr attribute of an Apple
event, it is not required to provide this attribute.

If a keyword for an Apple event parameter is not included in the
keyOptionalKeywordAttr attribute, the source application expects the target
application to understand the Apple event parameter identified by that keyword. If a
target application cannot understand the parameter, it should return the result code
errAEParamMissed and should not attempt to handle the event.

If a keyword for an Apple event parameter is included in the
keyOptionalKeywordAttr attribute, the source application does not
require the target application to understand the Apple event parameter identified
by that keyword. If the target application cannot understand a parameter whose
keyword is included in the keyOptionalKeywordAttr attribute, it should ignore
that parameter and attempt to handle the Apple event as it normally does.
Creating an Apple Event 5-7

C H A P T E R 5

Creating and Sending Apple Events

A source application can choose not to list the keyword for an Apple event parameter in
the keyOptionalKeywordAttr attribute even if that parameter is listed in the
Apple Event Registry: Standard Suites as an optional parameter. This has the effect of
forcing the target application to treat the parameter as required for a particular Apple
event. If the target application supports the parameter, it should handle the Apple event
as the client application expects. If the target application does not support the parameter
and calls an application-defined routine such as MyGotRequiredParams to check
whether it has received all the required parameters, it finds that there’s another
parameter that the client application considered required, and should return the result
code errAEParamMissed.

If a source application wants a target application to attempt to handle an Apple event
regardless of whether the target application supports a particular Apple event parameter
included in that Apple event, the source application should list the keyword for that
parameter in the keyOptionalKeywordAttr attribute.

It is up to the source application to decide whether to list a parameter that is described as
optional in the Apple Event Registry: Standard Suites in the keyOptionalKeywordAttr
attribute of an Apple event. For example, suppose a source application has extended the
definition of the Print event to include an optional keyColorOrGrayscale parameter
that specifies printing in color or gray scale rather than black and white. The source
application might decide whether or not to list the keyword keyColorOrGrayscale in
the keyOptionalKeywordAttr attribute according to the characteristics of the print
request. If the source application requires the target application to print a document
in color, the source application could choose not to add the keyword
keyColorOrGrayscale to the keyOptionalKeywordAttr attribute; in this case,
only target applications that supported the keyColorOrGrayscale parameter would
attempt to handle the event. If the source application does not require the document
printed in color, it could choose to add the keyword keyColorOrGrayscale to the
keyOptionalKeywordAttr attribute; in this case, the target application will attempt to
handle the event regardless of whether it supports the keyColorOrGrayscale
parameter.

Your application can add optional parameters to an Apple event the same way
it adds required parameters, using the AECreateDesc, AEPutParamPtr,
and AEPutParamDesc functions as described in the previous section, “Adding
Parameters to an Apple Event.” If your application chooses to provide the
keyOptionalKeywordAttr attribute for an Apple event, it should first create a
descriptor list that specifies the keywords of the optional parameters, then add it to
the Apple event as a keyOptionalKeywordAttr attribute.
5-8 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Listing 5-1 shows an application-defined routine, MyCreateOptionalKeyword, that
creates the keyOptionalKeywordAttr attribute for the Create Publisher event.

Listing 5-1 Creating the optional keyword for the Create Publisher event

FUNCTION MyCreateOptionalKeyword

(VAR createPubAppleEvent: AppleEvent)

 : OSErr;

VAR

optionalList: AEDescList;

myOptKeyword1: AEKeyword;

myOptKeyword2: AEKeyword;

myErr: OSErr;

ignoreErr: OSErr;

BEGIN

myOptKeyword1 := keyDirectObject;

{create an empty descriptor list}

myErr := AECreateList(NIL, 0, FALSE, optionalList);

IF myErr = noErr THEN

BEGIN

{add the keyword of the first optional parameter}

myErr := AEPutPtr(optionalList, 1, typeKeyword,

@myOptKeyword1, SizeOf(myOptKeyword1));

IF myErr = noErr THEN

BEGIN

{add the keyword of the next optional parameter}

myOptKeyword2 := keyAEEditionFileLoc;

myErr := AEPutPtr(optionalList, 2, typeKeyword,

@myOptKeyword2, SizeOf(myOptKeyword2));

END;

IF myErr = noErr THEN

{create the keyOptionalKeywordAttr attribute and add it }

{ to the Create Publisher event}

myErr := AEPutAttributeDesc(createPubAppleEvent,

 keyOptionalKeywordAttr,

 optionalList);

END;

ignoreErr := AEDisposeDesc(optionalList);

MyCreateOptionalKeyword := myErr;

END;
Creating an Apple Event 5-9

C H A P T E R 5

Creating and Sending Apple Events
The MyCreateOptionalKeyword function shown in Listing 5-1 adds to a descriptor
list the keyword of each parameter that the source application considers optional. Each
keyword is added as a descriptor record with the descriptor type typeKeyword. The
function specifies that the target application can handle the Create Publisher event
without supporting parameters identified by the keywords keyDirectObject and
keyAEEditionFileLoc. (These are the parameters that specify the Apple event object
to publish and the location of the edition container; if these parameters are missing, the
target application creates a publisher for the current selection using the application’s
default edition container.) After adding these keywords to the descriptor list, the
function creates the keyOptionalKeywordAttr attribute using the
AEPutAttributeDesc function.

Typically a target application does not examine the keyOptionalKeywordAttr
attribute directly. Instead, a target application that supports a parameter listed as
optional in the Apple Event Registry: Standard Suites attempts to extract it from the
Apple event (using AEGetParamDesc, for example). If it can’t extract the parameter, the
target application uses the default value, if any, listed in the Apple Event Registry. A target
application can use the keyMissedKeywordAttr attribute to return the first required
parameter (that is, considered required by the source application), if any, that it did not
retrieve from the Apple event. The keyMissedKeywordAttr attribute does not return
any parameters whose keywords are listed in the keyOptionalKeywordAttr attribute
of the Apple event.

Specifying a Target Address 5
When you create an Apple event, you must specify the address of the target. The
target address identifies the particular application or process to which you want to send
the Apple event. You can send Apple events to applications on the local computer or on
remote computers on the network.

These are the descriptor types that identify the four methods of addressing an
Apple event:

To address an Apple event to a target on a remote computer on the network, you must
use either the typeSessionID or typeTargetID descriptor type.

If your application sends an Apple event to itself, it should address the Apple event
using a process serial number of kCurrentProcess. This is the fastest way for your
application to send an Apple event to itself. For more information, see “Addressing an
Apple Event for Direct Dispatching” on page 5-13.

You can use any of the four address types when sending an Apple event to another
application on the local computer. The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials describes all four types of addresses. Your application can

typeApplSignature The application signature of the target

typeSessionID The session reference number of the target

typeTargetID The target ID record of the target

typeProcessSerialNumber The process serial number of the target
5-10 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
also use another address type if it provides a coercion handler that coerces the address
type into one of the four address types that the Apple Event Manager recognizes. See
“Writing and Installing Coercion Handlers,” which begins on page 4-41, for more
information.

To allow the user to choose the target of an Apple event, use the PPCBrowser function.
This function presents a standard user interface for choosing a target application, much
as the Standard File Package provides a standard user interface for opening and saving
files. The PPCBrowser function returns, in a target ID record, information about the
application the user chose. Listing 5-3 on page 5-12 shows how to use the PPCBrowser
function to let the user choose a target.

Creating an Address Descriptor Record 5

You specify the address using an address descriptor record (a descriptor record of data
type AEAddressDesc). You must create a descriptor record of this type and then add it
to the Apple event using the AECreateAppleEvent function.

You can use the AECreateDesc function to create address descriptor records for any of
the four types of target addresses. Listing 5-2 shows four possible ways to create an
address, each using a different address type.

Listing 5-2 Creating a target address

PROCEDURE MySetTargetAddresses(VAR targetAddress1,

 targetAddress2, targetAddress3,

 targetAddress4: AEAddressDesc;

 toTargetID: TargetID;

 thePSN: ProcessSerialNumber;

 theSignature: OSType;

 theSessionRef: PPCSessRefNum);

VAR

myErr: OSErr;

BEGIN

myErr := AECreateDesc(typeTargetID, @toTargetID,

 SizeOf(toTargetID), targetAddress1);

myErr := AECreateDesc(typeProcessSerialNumber, @thePSN,

 SizeOf(thePSN), targetAddress2);

myErr := AECreateDesc(typeApplSignature, @theSignature,

 SizeOf(theSignature), targetAddress3);

myErr := AECreateDesc(typeSessionID, @theSessionRef,

 SizeOf(theSessionRef), targetAddress4);

{add your own error checking}

END;
Creating an Apple Event 5-11

C H A P T E R 5

Creating and Sending Apple Events
To create an address descriptor record, specify the following as parameters to
AECreateDesc: the descriptor type for the address, a pointer to the buffer containing
the address, and the size of the buffer. The AECreateDesc function returns an address
descriptor record with the specified characteristics.

After creating an address, you can specify it as a parameter to the
AECreateAppleEvent function. See “Creating an Apple Event,” which begins on
page 5-3, for an example using the AECreateAppleEvent function.

When you specify an address to the AECreateAppleEvent function, the Apple Event
Manager stores the address in the keyAddressAttr attribute of the Apple event.

If you use the PPCBrowser function to allow the user to choose an Apple event’s target,
your application must create a target ID record based on the user’s choice. Listing 5-3
shows how to create a target ID record using the information returned from the
PPCBrowser function and create an address descriptor record using the
AECreateDesc function.

Listing 5-3 Specifying a target address in an Apple event by using the PPCBrowser function

FUNCTION MyGetTargetAddress (myPrompt: Str255; myAppStr: Str255;

VAR myPortInfo: PortInfoRec;

VAR targetAddress: AEAddressDesc;

VAR toTargetID: targetID): OSErr;

VAR

myErr: OSErr;

BEGIN

{use PPCBrowser to let user choose the target}

myErr := PPCBrowser(myPrompt, myAppStr, FALSE,

toTargetID.location,

myPortInfo, NIL, '');

MyGetTargetAddress := myErr;

IF myErr <> noErr THEN Exit(MyGetTargetAddress);

toTargetID.name := myPortInfo.name;

{create the descriptor record for the target address}

MyGetTargetAddress := AECreateDesc(typeTargetID, @toTargetID,

 SizeOf(toTargetID),

targetAddress);

END;

See the chapter “Program-to-Program Communications Toolbox” in this book for more
information on using the PPCBrowser function.
5-12 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Addressing an Apple Event for Direct Dispatching 5

As described in the chapter “Recording Apple Events” in this book, a recordable
application must send itself Apple events in response to user actions. Your application
can send itself Apple events by using an address descriptor record of descriptor type
typeProcessSerialNumber with the lowLongOfPSN field set to kCurrentProcess
and the highLongOfPSN set to 0. The Apple Event Manager processes such Apple
events immediately, executing the appropriate Apple event handler directly without
going through the normal event-processing sequence. For this reason, your application
will not appear to run more slowly when it sends Apple events to itself.

Apple events your application sends to itself this way do not appear in your
application’s high-level event queue. This not only speeds up delivery of the event but
also avoids situations in which an Apple event sent in response to a user action arrives in
the event queue after some other event that really occurred later than the user action. For
example, suppose a user chooses Cut from the Edit menu and then clicks in another
window. If the Cut event arrives in the queue after the window activate event, a selection
in the wrong window might be cut.

Your application can send events to itself using other forms of addressing, such as the
true process serial number returned by GetCurrentProcess. Because direct
dispatching avoids event sequence problems, applications should generally send events
to themselves by using an address descriptor record of descriptor type
typeProcessSerialNumber with the kCurrentProcess constant rather than using
a true process serial number or an application signature.

IMPORTANT

When Apple event recording has been turned on, the Apple Event
Manager records every event that your application sends to itself unless
you specify the kAEDontRecord flag in the sendMode parameter of the
AESend function. ▲

Sending an Apple Event 5

To send an Apple event, you first create an Apple event, add parameters and attributes
to it, and then use the AESend function to send it.

When you send an Apple event, you specify various options to indicate how the server
should handle the Apple event. You request a user interaction level from the server and
specify whether the server can switch directly to the foreground if user interaction is
needed, whether your application is willing to wait for a reply Apple event, whether
reconnection is allowed, and whether your application wants a return receipt for the
Apple event.
Sending an Apple Event 5-13

C H A P T E R 5

Creating and Sending Apple Events
You specify these options by setting flags in the sendMode parameter for AESend. Here
are the constants that represent these flags:

CONST kAENoReply = $00000001;{client doesn't want reply}

kAEQueueReply = $00000002;{client wants Apple Event }

{ Manager to return }

{ reply in event queue}

kAEWaitReply = $00000003;{client wants a reply and }

{ will give up processor}

kAENeverInteract = $00000010;{server application }

{ should not interact }

{ with user for this }

{ Apple event}

kAECanInteract = $00000020;{server may interact with }

{ user for this Apple }

{ event to supply }

{ information}

kAEAlwaysInteract = $00000030;{server may interact with }

{ user for this Apple }

{ event even if no }

{ information is required}

kAECanSwitchLayer = $00000040;{server should come }

{ directly to foreground }

{ when appropriate}

kAEDontReconnect = $00000080;{don't reconnect if there }

{ is a PPC session closed }

{ error}

kAEWantReceipt = nReturnReceipt;{client wants return }

 { receipt}

kAEDontRecord = $00001000;{don’t record this event}

kAEDontExecute = $00002000;{don’t execute this event}

If you want your application to receive a reply Apple event, specify the
kAEQueueReply or kAEWaitReply flag. If you want your application to receive
the reply Apple event in its event queue, use kAEQueueReply. If you want your
application to receive the reply Apple event in the reply parameter for AESend
and you are willing to give up the processor while it is waiting for the reply, use
kAEWaitReply. If you don’t want your application to receive a reply Apple event and
your application doesn’t need to wait for the server to handle the Apple event, specify
kAENoReply.
5-14 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Note
Before the Apple Event Manager sends a reply event back to the client
application, the keyAddressAttr attribute contains the address of the
client application. After the client receives the reply event, the
keyAddressAttr attribute contains the address of the server
application. ◆

If you specify kAENoReply or kAEQueueReply, the AESend function returns
immediately after using the Event Manager to send the event. In this case, a noErr
result code from AESend indicates that the Event Manager sent the Apple event; it does
not mean that the server accepted or handled the Apple event.

When AESend returns, the reply parameter does not contain valid data if your
application specifies kAENoReply or kAEQueueReply. The kAENoReply flag indicates
that the Apple Event Manager will not return the reply Apple event to your application.
The kAEQueueReply flag indicates that you want your application to receive the reply
via its event queue rather than the reply parameter of AESend. If you specify
kAEQueueReply, you must install a handler for the reply Apple event (event class
kCoreEventClass and event ID kAEAnswer).

If you specify kAEWaitReply, the Apple Event Manager uses the Event Manager to
send the event. The Apple Event Manager then calls the WaitNextEvent function on
behalf of your application, causing your application to yield the processor and giving the
server application a chance to receive and handle the Apple event. Your application
continues to yield the processor until the server handles the Apple event or the request
times out.

If you specify kAEWaitReply, you must provide an idle function. This function should
process any update events, null events, operating-system events, or activate events that
occur while your application is waiting for a reply. See “Writing an Idle Function,” which
begins on page 5-22, for sample code that shows an idle function.

You use one of the three flags—kAENeverInteract, kAECanInteract, and
kAEAlwaysInteract—to specify whether the server should interact with the user
when handling the Apple event. Specify kAENeverInteract if the server should not
interact with the user when handling the Apple event. You might specify this constant if
you don’t want the user to be interrupted while the server is handling the Apple event.

Use the kAECanInteract flag if the server should interact with the user when the user
needs to supply information to the server. Use the kAEAlwaysInteract flag if the
server should interact with the user whenever the server normally asks a user to confirm
a decision or interact in any other way, even if no additional information is needed from
the user. Note that it is the responsibility of the server and client applications to agree on
how to interpret the kAEAlwaysInteract flag.

If the client application does not set any one of the user interaction flags, the Apple Event
Manager sets a default, depending on the location of the target of the Apple event. If the
server application is on a remote computer, the Apple Event Manager sets the
kAENeverInteract flag as the default. If the target of the Apple event is on the local
computer, the Apple Event Manager sets the kAECanInteract flag as the default.
Sending an Apple Event 5-15

C H A P T E R 5

Creating and Sending Apple Events
The server application should call AEInteractWithUser if it needs to interact with the
user. If both the client and the server allow user interaction, the Apple Event Manager
attempts to bring the server to the foreground if it is not already the foreground process.
If both the kAECanSwitchLayer and the kAEWaitReply flags are set, and if the client
application is the active application on the local computer, the Apple Event Manager
brings the server application directly to the front. Otherwise, the Apple Event Manager
posts a notification request asking the user to bring the server application to the front,
regardless of whether the kAECanSwitchLayer flag is set. This ensures that the user
will not be interrupted by an unexpected application switch.

You should specify the kAECanSwitchLayer flag only when the client and server
applications reside on the same computer. In general, you should not set this flag if it
would be confusing or inconvenient to the user for the server application to come to the
front unexpectedly. This flag is ignored if you are sending an Apple event to a remote
computer.

Specify the kAEDontReconnect flag if the Apple Event Manager should not reconnect
if it receives a session closed error from the PPC Toolbox. If you don’t set this flag, the
Apple Event Manager automatically attempts to reconnect and reestablish the session.

Specify the kAEWantReceipt flag if your application wants notification that the server
application has accepted the Apple event. If you specify this flag, your application
receives a return receipt as a high-level event.

If you specify the kAEWantReceipt flag and the server application does not accept the
Apple event within the time specified by the timeOutInTicks parameter to AESend,
the AESend function returns a timeout error. Note that AESend also returns a timeout
error if your application sets the kAEWaitReply flag and does not receive the reply
Apple event within the time specified by the timeOutInTicks parameter.

Specify the kAEDontRecord flag if your application is sending an Apple event to itself
that you don’t want to be recorded. When Apple event recording has been turned on,
every event that your application sends to itself will be automatically recorded by the
Apple Event Manager except those sent with the kAEDontRecord flag set.

Specify the kAEDontExecute flag if your application is sending an Apple event to itself
for recording purposes only—that is, if you want the Apple Event Manager to send a
copy of the event to the recording process but you do not want your application actually
to receive the event. (For more information about when to use the kAEDontExecute
flag, see the chapter “Recording Apple Events” in this book.)

Listing 5-4 illustrates how to send a Multiply event (an imaginary Apple event for
multiplying two long integers). It first creates an Apple event, adds parameters
containing the numbers to multiply, then sends it, specifying various options. It also
illustrates how to handle the reply Apple event that contains the result.
5-16 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Note
If you want to send Apple events, your application must set flags in its
'SIZE' resource indicating that it can handle high-level events, and it
must provide handlers for the required Apple events. See “Accepting an
Apple Event” on page 4-5 for information on setting the appropriate
flags in the 'SIZE' resource and “Handling the Required Apple
Events” on page 4-11 for information on supporting the required
Apple events. ◆
Sending an Apple Event 5-17

C H A P T E R 5

Creating and Sending Apple Events
Listing 5-4 Sending an Apple event

FUNCTION MySendMultiplyEvent (serverAddress: AEAddressDesc;

firstOperand: LongInt; secondOperand: LongInt;

VAR replyResultLongInt: LongInt): OSErr;

CONST

kArithmeticClass = 'ARTH'; {event class for arithmetic }

{ Apple events}

kMultiplyEventID = 'MULT'; {event ID for Multiply event}

keyMultOperand1 = 'OPN1'; {keyword for first parameter}

keyMultOperand2 = 'OPN2'; {keyword for second parameter}

VAR

theAppleEvent: AppleEvent;

reply: AppleEvent;

returnedType: DescType;

actualSize: LongInt;

myErr: OSErr;

ignoreErr: OSErr;

errStr: Str255;

errNumber: LongInt;

BEGIN

myErr := AECreateAppleEvent(kArithmeticClass, kMultiplyEventID,

 serverAddress, kAutoGenerateReturnID,

 kAnyTransactionID, theAppleEvent);

IF myErr = noErr THEN

{add the first operand}

myErr := AEPutParamPtr(theAppleEvent, keyMultOperand1,

 typeLongInteger, @firstOperand,

 SizeOf(firstOperand));

{add the second operand with the proper keyword}

IF myErr = noErr THEN

myErr := AEPutParamPtr(theAppleEvent, keyMultOperand2,

 typeLongInteger, @secondOperand,

 SizeOf(secondOperand));

IF myErr = noErr THEN

myErr := AESend(theAppleEvent, reply, kAEWaitReply + kAENeverInteract,

 kAENormalPriority, 120, @MyIdleFunction, NIL);

IF myErr = noErr THEN {Apple event successfully sent}

BEGIN {Check whether it was successfully handled-- }

 { get result code returned by the server's handler}

myErr := AEGetParamPtr(reply, keyErrorNumber, typeLongInteger,

 returnedType, @errNumber, SizeOf(errNumber),

 actualSize);
5-18 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
IF (myErr = errAEDescNotFound) OR (errNumber = noErr) THEN

{if keyErrorNumber doesn't exist or server returned noErr }

{ then the Apple event was successfully handled--the reply Apple }

{ event contains the result in the direct parameter}

myErr := AEGetParamPtr(reply, keyDirectObject, typeLongInteger,

 returnedType, @replyResultLongInt,

 SizeOf(replyResultLongInt), actualSize)

ELSE

BEGIN {server returned an error, so get error string}

myErr := AEGetParamPtr(reply, keyErrorString, typeChar,

 returnedType, @errStr[1], SizeOf(errStr)-1,

 actualSize);

IF myErr = noErr THEN

BEGIN

IF actualSize > 255 THEN

actualSize := 255;

errStr[0] := chr(actualSize);

MyDisplayError(errStr);

END;

END;

ignoreErr := AEDisposeDesc(reply);

END

ELSE

BEGIN

{the Apple event wasn't successfully dispatched, }

{ the request timed out, the user canceled, or other error}

END;

ignoreErr := AEDisposeDesc(theAppleEvent);

MySendMultiplyEvent := myErr;

END;

The code in Listing 5-4 first creates an Apple event with kArithmeticClass as the
event class and kMultiplyEventID as the event ID. It also specifies the server of the
Apple event. See “Specifying a Target Address” on page 5-10 for information on
specifying a target address and “Creating an Apple Event,” which begins on page 5-3,
for more information on creating an Apple event.

The Multiply event shown in Listing 5-4 contains two parameters, each specifying a
number to multiply. See “Adding Parameters to an Apple Event” on page 5-5 for
examples of how to specify the parameters for the AEPutParamPtr function.

After adding the parameters to the event, the code uses AESend to send the event.
The first parameter to AESend specifies the Apple event to send—in this example, the
Multiply event. The next parameter specifies the reply Apple event.
Sending an Apple Event 5-19

C H A P T E R 5

Creating and Sending Apple Events
This example specifies kAEWaitReply in the third parameter, indicating that the client
is willing to yield the processor for the specified timeout value (120 ticks, or 2 seconds).
The kAENeverInteract flag indicates that the server should not interact with the user
when processing the Apple event. The fourth parameter specifies that the Multiply event
is to be sent using normal priority (that is, placed at the end of the event queue). You can
specify the kAEHighPriority flag to place the event in the front of the event queue,
but this is not usually recommended.

The next to last parameter specifies the address of an idle function. If you specify
kAEWaitReply, you must provide an idle function. This function should process any
update events, null events, operating-system events, or activate events that occur while
your application is waiting for a reply. See “Writing an Idle Function,” which begins on
page 5-22, for sample code that shows an idle function.

The last parameter to AESend specifies a filter function. You can supply a filter function
to filter high-level events that your application may receive while waiting for a reply
Apple event. You can specify NIL for this parameter if you do not need to filter
high-level events while waiting for a reply. See “Writing a Reply Filter Function” on
page 5-24 for more information.

If you specify kAEWaitReply, a noErr result code from AESend indicates that the
Apple event was sent successfully, not that the server has completed the requested action
successfully. Therefore, you should find out whether a result code was returned from the
handler by checking the reply Apple event for the existence of either the
keyErrorNumber or keyErrorString parameter. If the keyErrorNumber parameter
does not exist or contains the noErr result code, you can use AEGetParamPtr to get the
parameter you’re interested in from the reply Apple event.

The MySendMultiplyEvent function in Listing 5-4 checks the function result of
AESend. If it is noErr, MySendMultiplyEvent checks the keyErrorNumber
parameter of the reply Apple event to determine whether the server successfully
handled the Apple event. If this parameter exists and indicates that an error occurred,
MySendMultiplyEvent gets the error string out of the keyErrorString parameter.
Otherwise, the server performed the request, and the reply Apple event contains the
answer to the multiplication request.

When you have finished using the Apple event specified in the AESend function and no
longer need the reply Apple event, you must dispose of both the original event and the
reply by calling the AEDisposeDesc function.

IMPORTANT

If your application sends Apple events to itself using a
typeProcessSerialNumber address descriptor record with the
lowLongOfPSN field set to kCurrentProcess, the Apple Event
Manager jumps directly to the appropriate Apple event handler without
going through the normal event-processing sequence. For this reason,
your application will not appear to run more slowly when it sends
Apple events to itself. For more information, see “Addressing an Apple
Event for Direct Dispatching” on page 5-13. ▲
5-20 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Dealing With Timeouts 5
When your application calls AESend and chooses to wait for the server application to
handle the Apple event, it can also specify the maximum amount of time it is willing to
wait for a response. You can specify a timeout value in the timeOutInTicks parameter
to AESend. You can either specify a particular length of time, in ticks, that your
application is willing to wait, or you can specify the kNoTimeOut constant or the
kAEDefaultTimeout constant.

Use the kNoTimeOut constant to indicate that your application is willing to wait forever
for a response from the server. You should use this value only if you are sure that the
server will respond in a reasonable amount of time. You should also implement a
method of checking whether the user wants to cancel. The idle function that you specify
as a parameter to AESend should check the event queue for any instances of
Command-period and immediately return TRUE as its function result if it finds a
request to cancel in the event queue.

Use the kAEDefaultTimeout constant if you want the Apple Event Manager to use a
default timeout value. The Apple Event Manager uses a timeout value of about one
minute if you specify this constant.

If you set the kAEWaitReply flag and the server doesn’t have a handler for the Apple
event, the server immediately returns the errAEEventNotHandled result code. If the
server doesn’t respond within the length of time specified by the timeout value, AESend
returns the errAETimeout result code and a reply Apple event that contains no data.
This result code does not necessarily mean that the server failed to perform the
requested action; it means only that the server did not complete processing within the
specified time. The server might still be processing the Apple event, and it might still
send a reply.

If the server finishes processing the Apple event sometime after the time specified in the
keyTimeoutAttr attribute has expired, it returns a reply Apple event to
AEProcessAppleEvent. The Apple Event Manager then adds the actual data to the
reply. Thus, your application can continue to check the reply Apple event to see if the
server has responded, even after the time expires. If the server has not yet sent the reply
when the client attempts to extract data from the reply Apple event, the Apple Event
Manager functions return the errAEReplyNotArrived result code. After the reply
Apple event returns from the server, the client can extract the data in the reply.

Additionally, the server can examine the keyTimeoutAttr attribute of the Apple event
to determine the timeout value specified by the client. You can use the value of this
attribute as a rough estimate of how much time your handler has to respond. You can
assume that your handler has less time to respond than the timeout value, because
transmitting the Apple event uses some of the available time, as does transmitting the
reply Apple event back to the client, and the event may have been in the queue for a
while already.
Sending an Apple Event 5-21

C H A P T E R 5

Creating and Sending Apple Events
If you set the kAENoReply or kAEQueueReply flag, the Apple Event Manager ignores
any timeout value you specify, because your application is not waiting for the reply. An
attempt by the server to examine the keyTimeoutAttr attribute in this situation
generates the error errAEDescNotFound.

If your handler needs more time than is specified in the keyTimeoutAttr attribute, you
can reset the timer by using the AEResetTimer function. This function resets the
timeout value of an Apple event to its starting value.

Writing an Idle Function 5
This section describes how to write an idle function for use with the AESend or
AEInteractWithUser function.

When your application sends an Apple event, you can set one of three flags in the
sendMode parameter to AESend that specify how you want to deal with the reply:
kAENoReply if you don’t want your application to receive a reply, kAEQueueReply if
you want it to receive the reply in its event queue, or kAEWaitReply if you want the
reply returned in the reply parameter of AESend and you are willing to give up
the processor while your application is waiting for the reply.

If you specify kAENoReply or kAEQueueReply, the AESend function returns
immediately after using the Event Manager to send the event. If you specify
kAEWaitReply, the AESend function does not return until either the server application
finishes handling the Apple event or a specified amount of time expires. In this case the
AESend function calls WaitNextEvent on behalf of your application. This yields the
processor to other processes, so that the server has an opportunity to receive and process
the Apple event sent by your application. While your application is waiting for a reply, it
cannot receive events unless it provides an idle function.

If you provide a pointer to an idle function as a parameter to the AESend function,
AESend calls your idle function whenever an update event, null event, operating-system
event, or activate event is received for your application. To allow your application to
process high-level events that it receives while waiting for a reply, provide a reply filter
function. See the next section, “Writing a Reply Filter Function,” for more information.

Your application can yield the processor in a similar manner when it calls the
AEInteractWithUser function. If AEInteractWithUser needs to post a notification
request to bring your application to the front, your application yields the processor until
the user brings your application to the front. To receive events while waiting for the user
to bring your application to the front, you must provide an idle function.

If you provide a pointer to an idle function as a parameter to the
AEInteractWithUser function, AEInteractWithUser calls your idle function
whenever an update event, null event, operating-system event, or activate event is
received for your application.
5-22 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
An idle function must use this syntax:

FUNCTION MyIdleFunction (VAR event: EventRecord;

 VAR sleepTime: LongInt;

 VAR mouseRgn: RgnHandle): Boolean;

The event parameter is the event record of the event to process. The sleepTime
parameter and mouseRgn parameter are values that your idle function sets the first time
it is called; thereafter they contain the values your function set. Your idle function should
return a Boolean value that indicates whether your application wishes to continue
waiting. Set the function result to TRUE if your application is no longer willing to wait
for a reply from the server or for the user to bring the application to the front. Set the
function result to FALSE if your application is still willing to wait.

You use the sleepTime and mouseRgn parameters in the same way as the sleep and
mouseRgn parameters of the WaitNextEvent function. Specify in the sleepTime
parameter the amount of time (in ticks) during which your application agrees to
relinquish the processor if no events are pending for it.

In the mouseRgn parameter, you specify a screen region that determines the conditions
under which your application is to receive notice of mouse-moved events. Your idle
function receives mouse-moved events only if your application is the front application
and the cursor strays outside the region you specify.

Your idle function receives only update events, null events, operating-system events, and
activate events. When your idle function receives a null event, it can use the idle time to
update a status dialog box, animate cursors, or perform similar tasks. If your idle
function receives any of the other events, it should handle the event as it normally would
if received in its event loop.

Listing 5-5 shows an example of an idle function for use with AESend or
AEInteractWithUser. The idle function processes update events, null events,
operating-system events, and activate events. The first time the function is called it
receives a null event. At this time, it sets the sleepTime and mouseRgn parameters. The
function continues to process events until the server finishes handling the Apple event or
the user brings the application to the front.

Your application should implement a method of checking whether the user wants to
cancel. The MyCancelInQueue function in Listing 5-5 checks the event queue for any
instances of Command-period and immediately returns TRUE as its function result if it
finds a request to cancel in the event queue.

Listing 5-5 An idle function

FUNCTION MyIdleFunction (VAR event: EventRecord;

 VAR sleeptime: LongInt;

 VAR mouseRgn: RgnHandle): Boolean;

BEGIN

MyIdleFunction := FALSE;
Sending an Apple Event 5-23

C H A P T E R 5

Creating and Sending Apple Events
{the MyCancelInQueue function checks for Command-period}

IF MyCancelInQueue THEN

BEGIN

MyIdleFunction := TRUE;

Exit(MyIdleFunction);

END;

CASE event.what OF

updateEvt,

activateEvt, {every idle function should handle }

osEvt: { these kinds of events}

BEGIN

MyAdjustCursor(event.where, gCursorRgn);

DoEvent(event);

END;

nullEvent:

BEGIN

{set the sleepTime and mouseRgn parameters}

mouseRgn := gCursorRgn;

sleeptime := 10; {use the correct value for your }

{ app}

DoIdle; {the application's idle handling}

END;

END; {of CASE}

END;

Writing a Reply Filter Function 5
If your application calls AESend and chooses to yield the processor to other processes
while waiting for a reply, you can provide an idle function to process update, null,
operating-system, and activate events, and you can provide a reply filter function to
process high-level events. The previous section describes how an idle function processes
events.

Your reply filter function can process any high-level events that it is willing to handle
while waiting for a reply Apple event. For example, your application can choose to
handle Apple events from other processes while waiting. Note, however, that your
application must maintain any necessary state information. Your reply filter function
must not accept any Apple events that can change the state of your application and make
it impossible to return to its previous state.

A reply filter function must use this syntax:

FUNCTION MyReplyFilter (VAR event: EventRecord;

 returnID: LongInt;

transactionID: LongInt;

sender: AEAddressDesc): Boolean;
5-24 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
The event parameter is the event record for a high-level event. The next three
parameters contain valid information only if the event is an Apple event. The
returnID parameter is the return ID for the Apple event. The transactionID
parameter is the transaction ID for the Apple event. The sender parameter contains
the address of the application or process that sent the Apple event.

Your reply filter function should return TRUE as the function result if you want to accept
the Apple event; otherwise, it should return FALSE. If your filter function returns
TRUE, the Apple Event Manager calls the AEProcessAppleEvent function on behalf of
your application, and your handler routine is called to process the Apple event. In this
case, make sure your handler is not called while it is still being used by an earlier call.

Reference to Creating and Sending Apple Events 5

This section describes the basic Apple Event Manager routines that your application
can use to create and send Apple events. It also describes application-defined idle
functions and reply filter functions that your application can provide for use by the
Apple Event Manager.

For information about data structures used with the routines described in this chapter,
see the section “Data Structures Used by the Apple Event Manager,” which begins on
page 4-56.

Routines for Creating and Sending Apple Events 5
This section describes the Apple Event Manager routines you can use to create Apple
events, create and duplicate descriptor records, create and add items to descriptor lists
and AE records, add parameters and attributes to Apple events, and send Apple events.
The section “Routines for Responding to Apple Events,” which begins on page 4-61,
describes other Apple Event Manager routines used for both responding to and creating
Apple events.
Reference to Creating and Sending Apple Events 5-25

C H A P T E R 5

Creating and Sending Apple Events
Creating Apple Events 5

The AECreateAppleEvent function allows you to create an Apple event.

AECreateAppleEvent 5

You can use the AECreateAppleEvent function to create an Apple event with several
important attributes but no parameters. You add parameters to the Apple event after you
create it.

FUNCTION AECreateAppleEvent (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 target: AEAddressDesc;

 returnID: Integer;

 transactionID: LongInt;

 VAR result: AppleEvent): OSErr;

theAEEventClass
The event class of the Apple event to be created.

theAEEventID
The event ID of the Apple event to be created.

target The address of the server application.

returnID The return ID for the Apple event; if you specify
kAutoGenerateReturnID, the Apple Event Manager assigns
a return ID that is unique to the current session.

transactionID
The transaction ID for this Apple event. A transaction is a sequence of
Apple events that are sent back and forth between the client and server
applications, beginning with the client’s initial request for a service.
All Apple events that are part of a transaction must have the same
transaction ID.

result The AECreateAppleEvent function returns, in this parameter, the
Apple event that it creates.

DESCRIPTION

The AECreateAppleEvent function creates an Apple event.Your application is
responsible for using the AEDisposeDesc function to dispose of the Apple event when
you no longer need it.

If AECreateAppleEvent returns a nonzero result code, it returns a null descriptor
record unless the Apple Event Manager is not available because of limited memory.
5-26 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
RESULT CODES

SEE ALSO

See “Creating an Apple Event,” which begins on page 5-3, for more information on how
to create an Apple event.

See “Specifying a Target Address” on page 5-10 for information on how to address an
Apple event.

Creating and Duplicating Descriptor Records 5

The AECreateDesc function converts data into a descriptor record, and the
AEDuplicateDesc function makes a copy of a descriptor record.

AECreateDesc 5

You can use the AECreateDesc function to convert data into a descriptor record.

FUNCTION AECreateDesc (typeCode: DescType; dataPtr: Ptr;

 dataSize: Size; VAR result: AEDesc): OSErr;

typeCode The descriptor type for the descriptor record.

dataPtr A pointer to the data for the descriptor record.

dataSize The length, in bytes, of the data for the descriptor record.

result The descriptor record that the AECreateDesc function creates.

DESCRIPTION

The AECreateDesc function creates a new descriptor record that incorporates the
specified data. Your application is responsible for using the AEDisposeDesc function to
dispose of the resulting descriptor record when you no longer need it. You normally do
this after receiving a result code from the AESend function.

If AECreateDesc returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
Reference to Creating and Sending Apple Events 5-27

C H A P T E R 5

Creating and Sending Apple Events
RESULT CODES

SEE ALSO

For examples of the use of AECreateDesc, see “Adding Parameters to an Apple Event,”
which begins on page 5-5, and Listing 5-2 on page 5-11.

AEDuplicateDesc 5

You can use the AEDuplicateDesc function to make a copy of a descriptor record.

FUNCTION AEDuplicateDesc (theAEDesc: AEDesc;

 VAR result: AEDesc): OSErr;

theAEDesc The descriptor record to be duplicated.

result The duplicate descriptor record.

DESCRIPTION

The AEDuplicateDesc function creates a new descriptor record by copying the
descriptor record from the parameter theAEDesc. Your application is responsible for
using the AEDisposeDesc function to dispose of the resulting descriptor record when
you no longer need it. You normally do this after receiving a result code from the
AESend function.

If AEDuplicateDesc returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

It is common for applications to send Apple events that have one or more attributes or
parameters in common. For example, if you send a series of Apple events to the same
application, the address attribute is the same. In these cases, the most efficient way to
create the necessary Apple events is to make a template Apple event that you can then
copy—by calling the AEDuplicateDesc function—as needed. You then fill in or change
the remaining parameters and attributes of the copy, send the copy by calling AESend,
and dispose of the copy—by calling AEDisposeDesc—after AESend returns a result
code.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
5-28 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
RESULT CODES

Creating Descriptor Lists and AE Records 5

The AECreateList function allows you to create an empty descriptor list or AE record.

AECreateList 5

You can use the AECreateList function to create an empty descriptor list or AE record.

FUNCTION AECreateList (factoringPtr: Ptr; factoredSize: Size;

 isRecord: Boolean;

 VAR resultList: AEDescList): OSErr;

factoringPtr
A pointer to the data at the beginning of each descriptor that is the same
for all descriptor records in the list. If there is no common data, or if you
decide not to isolate the common data, specify NIL as the value of this
parameter.

factoredSize
The size of the common data. If there is no common data, or if you decide
not to isolate the common data, the value of factoredSize must be 0.
(See the description that follows for more information.)

isRecord A Boolean value that specifies the kind of list to create. If you set
it to TRUE, the Apple Event Manager creates an AE record. If you set it to
FALSE, the Apple Event Manager creates a descriptor list.

resultList
The descriptor list or AE record that the AECreateList function creates.

DESCRIPTION

The AECreateList function creates an empty descriptor list or AE record. Your
application is responsible for using the AEDisposeDesc function to dispose of the
resulting descriptor record when you no longer need it. You normally do this after
receiving a result code from the AESend function.

If you intend to use a descriptor list for a factored Apple event array, you must provide,
in the factoringPtr parameter, a pointer to the data shared by all items in the array
and, in the factoredSize parameter, the size of the common data. The common data
must be 4, 8, or more than 8 bytes in length because it always consists of (a) the
descriptor type (4 bytes); (b) the descriptor type (4 bytes) and the size of each item’s data
(4 bytes); or (c) the descriptor type (4 bytes), the size of each item’s data (4 bytes), and
some portion of the data itself (1 or more bytes).

noErr 0 No error
memFullErr –108 Not enough room in heap zone
Reference to Creating and Sending Apple Events 5-29

C H A P T E R 5

Creating and Sending Apple Events
If AECreateList returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

RESULT CODES

SEE ALSO

For an example of the use of AECreateList, see Listing 5-1 on page 5-9.

For information about data types used with Apple event arrays, see “Apple Event Array
Data Types” on page 4-60.

Adding Items to Descriptor Lists 5

The Apple Event Manager provides three routines that allow you to add descriptor
records to any descriptor list, including an Apple event record. The AEPutPtr function
converts data specified in a buffer to a descriptor record and adds the descriptor
record to a descriptor list. The AEPutDesc function adds a descriptor record to a
descriptor list. The AEPutArray function puts the data for an Apple event array
into a descriptor list.

AEPutPtr 5

You can use the AEPutPtr routine to add data specified in a buffer to any descriptor list
as a descriptor record.

FUNCTION AEPutPtr (theAEDescList: AEDescList; index: LongInt;

 typeCode: DescType; dataPtr: Ptr;

 dataSize: Size): OSErr;

theAEDescList
The descriptor list to which to add a descriptor record.

index The position of the descriptor record in the descriptor list. (For example,
the value 2 specifies the second descriptor record in the list.) If there is
already a descriptor record in the specified position, it is replaced. If the
value of index is 0, the descriptor record is added to the end of the list.

typeCode The descriptor type for the resulting descriptor record.

dataPtr A pointer to the data for the descriptor record.

dataSize The length, in bytes, of the data for the descriptor record.

noErr 0 No error
paramErr –50 Parameter error (value of handler pointer is NIL or odd)
memFullErr –108 Not enough room in heap zone
5-30 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
RESULT CODES

SEE ALSO

For an example of the use of AEPutPtr, see Listing 5-1 on page 5-9.

AEPutDesc 5

You can use the AEPutDesc function to add a descriptor record to any descriptor list.

FUNCTION AEPutDesc (theAEDescList: AEDescList; index: LongInt;

 theAEDesc: AEDesc): OSErr;

theAEDescList
The descriptor list to which to add a descriptor record.

index The position of the descriptor record in the descriptor list. (For example,
the value 2 specifies the second descriptor record in the list.) If there is
already a descriptor record in the specified position, it is replaced. If the
value of index is 0, the descriptor record is added to the end of the list.

theAEDesc The descriptor record to be added to the list.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
errAEIllegalIndex –1719 Not a valid list index

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
errAEIllegalIndex –1719 Not a valid list index
Reference to Creating and Sending Apple Events 5-31

C H A P T E R 5

Creating and Sending Apple Events
AEPutArray 5

You can use the AEPutArray function to put the data for an Apple event array into any
descriptor list.

FUNCTION AEPutArray (theAEDescList: AEDescList;

arrayType: AEArrayType;

 arrayPtr: AEArrayDataPointer;

itemType: DescType;

 itemSize: Size; itemCount: LongInt): OSErr;

theAEDescList
The descriptor list into which to put the Apple event array. If there are
any items already in the descriptor list, they are replaced.

arrayType The Apple event array type to be created. This is specified by one of the
following constants: kAEDataArray, kAEPackedArray,
kAEHandleArray, kAEDescArray, or kAEKeyDescArray.

arrayPtr A pointer to the buffer containing the array.

itemType For arrays of type kAEDataArray, kAEPackedArray, or
kAEHandleArray, the descriptor type of array items to be created.

itemSize For arrays of type kAEDataArray or kAEPackedArray, the size (in
bytes) of the array items to be created.

itemCount The number of elements in the array.

DESCRIPTION

When you use AEPutArray to put an array into a factored descriptor list, each array
item must include the data that is common to all the descriptor records in the list. The
Apple Event Manager automatically isolates the data you specified in the call to
AECreateList that is common to all the elements of the array.

RESULT CODES

SEE ALSO

For information about data types and constants used with AEPutArray, see “Apple
Event Array Data Types” on page 4-60.

For more information about creating descriptor lists for Apple event arrays, see the
description of AECreateList on page 5-29.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
5-32 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Adding Data and Descriptor Records to AE Records 5

The Apple Event Manager provides two routines that allow you to add data and
descriptor records to AE records. The AEPutKeyPtr function takes a pointer
to data, a descriptor type, and a keyword and converts them into a keyword-specified
descriptor record that it adds to an AE record. The AEPutKeyDesc function takes
a descriptor record and a keyword and converts them into a keyword-specified
descriptor record that it adds to an AE record.

AEPutKeyPtr 5

You can use the AEPutKeyPtr function to add a pointer to data, a descriptor type, and a
keyword to an AE record as a keyword-specified descriptor record.

FUNCTION AEPutKeyPtr (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 typeCode: DescType; dataPtr: Ptr;

 dataSize: Size): OSErr;

theAERecord
The AE record to which to add a keyword-specified
descriptor record.

theAEKeyword
The keyword that identifies the descriptor record. If the AE record already
includes a descriptor record with this keyword, it is replaced.

typeCode The descriptor type for the keyword-specified descriptor record.

dataPtr A pointer to the data for the keyword-specified descriptor record.

dataSize The length, in bytes, of the data for the keyword-specified descriptor
record.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Reference to Creating and Sending Apple Events 5-33

C H A P T E R 5

Creating and Sending Apple Events
AEPutKeyDesc 5

You can use the AEPutKeyDesc function to add a descriptor record and a keyword to an
AE record as a keyword-specified descriptor record.

FUNCTION AEPutKeyDesc (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 theAEDesc: AEDesc): OSErr;

theAERecord
The AE record to which to add the keyword-specified descriptor record.

theAEKeyword
The keyword specifying the descriptor record. If there was already a
keyword-specified descriptor record with this keyword, it is replaced.

theAEDesc The descriptor record for the keyword-specified descriptor record.

RESULT CODES

Adding Parameters and Attributes to Apple Events 5

The Apple Event Manager provides four functions that allow you to add Apple
event parameters and attributes to an Apple event. The AEPutParamPtr and
AEPutParamDesc functions add parameters to a specified Apple event.
The AEPutAttributePtr and AEPutAttributeDesc functions add attributes to a
specified Apple event.

AEPutParamPtr 5

You can use the AEPutParamPtr function to add a pointer to data, a descriptor type,
and a keyword to an Apple event as an Apple event parameter.

FUNCTION AEPutParamPtr (theAppleEvent: AppleEvent;

theAEKeyword: AEKeyword;

typeCode: DescType; dataPtr: Ptr;

dataSize: Size): OSErr;

theAppleEvent
The Apple event to which to add a parameter.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
5-34 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
theAEKeyword
The keyword for the parameter to be added. If the Apple event already
included a parameter with this keyword, the parameter is replaced.

typeCode The descriptor type for the parameter.

dataPtr A pointer to the data for the parameter.

dataSize The length, in bytes, of the data for the parameter.

RESULT CODES

SEE ALSO

For an example of the use of AEPutParamPtr, see “Adding Parameters to an Apple
Event,” which begins on page 5-5.

AEPutParamDesc 5

You can use the AEPutParamDesc function to add a descriptor record and a keyword to
an Apple event as an Apple event parameter.

FUNCTION AEPutParamDesc (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 theAEDesc: AEDesc): OSErr;

theAppleEvent
The Apple event to which to add a parameter.

theAEKeyword
The keyword for the parameter to be added. If the Apple event already
included a parameter with this keyword, the parameter is replaced.

theAEDesc The descriptor record for the parameter.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Reference to Creating and Sending Apple Events 5-35

C H A P T E R 5

Creating and Sending Apple Events
SEE ALSO

For an example of the use of AEPutParamDesc, see “Adding Parameters to an Apple
Event,” which begins on page 5-5.

AEPutAttributePtr 5

You can use the AEPutAttributePtr function to add a pointer to data, a descriptor
type, and a keyword to an Apple event as an attribute.

FUNCTION AEPutAttributePtr (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 typeCode: DescType;

 dataPtr: Ptr; dataSize: Size): OSErr;

theAppleEvent
The Apple event to which to add an attribute.

theAEKeyword
The keyword for the attribute to be added.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description that
follows. If the Apple event already included an attribute with this
keyword, the attribute is replaced.

typeCode The descriptor type for the attribute.

dataPtr A pointer to the buffer containing the data to be assigned to the attribute.

dataSize The length, in bytes, of the data to be assigned to the attribute.

DESCRIPTION

The AEPutAttributePtr function adds the specified pointer to data, descriptor type,
and keyword to the specified Apple event as an attribute. You can specify the parameter
theAEKeyWord using any of the following constants:

CONST

keyAddressAttr = 'addr'; {address of target }

 { application}

keyEventClassAttr = 'evcl'; {event class}

keyEventIDAttr = 'evid'; {event ID}

keyEventSourceAttr = 'esrc'; {source application}

keyInteractLevelAttr = 'inte'; {settings to allow the }

 { Apple Event Manager to }

 { bring server application }

 { to the foreground}
5-36 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
keyMissedKeywordAttr = 'miss'; {first required parameter }

 { remaining in Apple event}

keyOptionalKeywordAttr = 'optk'; {list of optional }

 { parameters for Apple }

 { event}

keyOriginalAddressAttr = 'from'; {address of original source }

 { of Apple event}

keyReturnIDAttr = 'rtid'; {return ID for reply Apple }

 { event}

keyTimeoutAttr = 'timo'; {length of time in ticks }

 { that client will wait }

 { for reply or result from }

 { the server}

keyTransactionIDAttr = 'tran'; {transaction ID identifying }

 { a series of Apple events}

RESULT CODES

AEPutAttributeDesc 5

You can use the AEPutAttributeDesc function to add a descriptor record and a
keyword to an Apple event as an attribute.

FUNCTION AEPutAttributeDesc (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 theAEDesc: AEDesc): OSErr;

theAppleEvent
The Apple event to which you are adding an attribute.

theAEKeyword
The keyword for the attribute to be added.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description of
AEPutAttributePtr on page 5-36. If the Apple event already included
an attribute with this keyword, the attribute is replaced.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
Reference to Creating and Sending Apple Events 5-37

C H A P T E R 5

Creating and Sending Apple Events
theAEDesc The descriptor record to be assigned to the attribute. The descriptor type
of the specified descriptor record should match the defined descriptor
type for that attribute. For example, the keyEventSourceAttr attribute
has the typeShortInteger descriptor type.

DESCRIPTION

The AEPutAttributeDesc function takes a descriptor record and a keyword and adds
them to an Apple event as an attribute. If the descriptor type required for the attribute is
different from the descriptor type of the descriptor record, the Apple Event Manager
attempts to coerce the descriptor record into the required type, with one exception: the
Apple Event Manager does not attempt to coerce the data for an address attribute,
thereby allowing applications to use their own address types.

RESULT CODES

SEE ALSO

For an example of the use of AEPutAttributeDesc, see Listing 5-1 on page 5-9.

Sending Apple Events 5

The AESend function allows you to send an Apple event that you have previously
created with the AECreateAppleEvent function.

AESend 5

You can use the AESend function to send an Apple event.

FUNCTION AESend (theAppleEvent: AppleEvent;

 VAR reply: AppleEvent; sendMode: AESendMode;

 sendPriority: AESendPriority;

 timeOutInTicks: LongInt; idleProc: IdleProcPtr;

 filterProc: EventFilterProcPtr): OSErr;

theAppleEvent
The Apple event to be sent.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
5-38 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
reply The reply Apple event returned by the AESend function if you specify
the kAEWaitReply flag in the sendMode parameter. (If you specify the
kAEQueueReply flag in the sendMode parameter, you receive the reply
Apple event in your event queue.) If you specify kAENoReply flag, the
reply Apple event returned by this function is a null descriptor record. If
you specify kAEWaitReply in the sendMode parameter, your
application is responsible for using the AEDisposeDesc function to
dispose of the descriptor record returned in the reply parameter.

sendMode Specifies the following: the reply mode for the Apple event (set with one
of the constants kAENoReply, kAEQueueReply, or kAEWaitReply);
the interaction level (set with one of the constants kAENeverInteract,
kAECanInteract, or kAEAlwaysInteract, which represent flags in
the keyInteractLevelAttr attribute); the application switch mode
(set with the kAECanSwitchLayer constant); the reconnection mode (set
with the kAEDontReconnect constant); and the return receipt
mode (set with the kAEWantReceipt constant). You obtain the value
for this parameter by adding the appropriate constants. (The description
that follows provides more details about the sendMode flags.)

sendPriority
An integer of data type AESendPriority that specifies whether the
Apple event is put at the back of the event queue (indicated by the
kAENormalPriority flag) or at the front of the queue (indicated by
the kAEHighPriority flag).

timeOutInTicks
If the reply mode specified in the sendMode parameter is
kAEWaitReply, or if a return receipt is requested, this parameter
specifies the length of time (in ticks) that the client application is willing
to wait for the reply or return receipt from the server application before
timing out. Most applications should use the kAEDefaultTimeout
constant, which tells the Apple Event Manager to provide an appropriate
timeout duration. If the value of this parameter is kNoTimeOut, the
Apple event never times out.

idleProc A pointer to a function that handles events (such as update,
operating-system, activate, and null events) that your application receives
while waiting for a reply. Your application can also perform other tasks
(such as displaying a wristwatch or spinning beachball cursor) while
waiting for a reply or a return receipt. Your application must provide an
idle function if it specifies the kAEWaitReply flag in the sendMode
parameter.

filterProc
A pointer to a function that accepts certain incoming Apple events that
are received while the handler waits for a reply or a return receipt and
filters out the rest.
Reference to Creating and Sending Apple Events 5-39

C H A P T E R 5

Creating and Sending Apple Events
DESCRIPTION

You can use one of the following flags in the sendMode parameter to specify the reply
mode for an Apple event. Only one of these flags may be set.

You can communicate your user interaction preferences to the server application by
specifying one of the following flags in the sendMode parameter. Only one of these flags
may be set.

Flag Description

kAENoReply Your application does not want a reply Apple event; the server
processes your Apple event as soon as it has the opportunity.

kAEQueueReply Your application wants a reply Apple event; the reply appears in
your event queue as soon as the server has the opportunity to
process and respond to your Apple event.

kAEWaitReply Your application wants a reply Apple event and is willing to give
up the processor while waiting for the reply; for example, if the
server application is on the same computer as your application,
your application yields the processor to allow the server to
respond to your Apple event. If you specify kAEWaitReply, you
should provide an idle function.

Flag Description

kAENeverInteract The server application should never interact with
the user in response to the Apple event. If this flag
is set, AEInteractWithUser returns the
errAENoUserInteraction result code. This flag is the
default when an Apple event is sent to a remote application.

kAECanInteract The server application can interact with the user in response
to the Apple event—by convention, if the user needs to
supply information to the server. If this flag is set and the
server allows interaction, AEInteractWithUser either
brings the server application to the foreground or posts a
notification request. This flag is the default when an Apple
event is sent to a local application.

kAEAlwaysInteract The server application can interact with the user in response
to the Apple event—by convention, whenever the server
application normally asks a user to confirm a decision or
interact in any other way, even if no additional information is
needed from the user. If this flag is set and the server allows
interaction, AEInteractWithUser either brings the server
application to the foreground or posts a notification request.
5-40 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
The flags in the following list specify the application switch mode, the reconnection
mode, and the return receipt mode. Any of these flags may be set.

If the Apple Event Manager cannot find a handler for an Apple event in either
the application or system Apple event dispatch table, it returns the result code
errAEEventNotHandled to the server application (as the result of the
AEProcessAppleEvent function). If the client application is waiting for a reply,
the Apple Event Manager also returns this result code to the client.

The AESend function returns noErr as its function result if the Apple event was
successfully sent by the Event Manager. A noErr result from AESend does not indicate
that the Apple event was handled successfully; it indicates only that the Apple event was
successfully sent by the Event Manager. If the handler returns a result code other than
noErr, and if the client is waiting for a reply, it is returned in the keyErrorNumber
parameter of the reply Apple event.

If your application is sending an event to itself, you can set one of these flags to prevent
the event from being recorded or to ask the Apple Event Manager to record the event
without your application actually receiving it. Only one of these flags may be set.

Flag Description

kAECanSwitchLayer If both the client and server allow interaction, and if the
client application is the active application on the local
computer and is waiting for a reply (that is, it has set the
kAEWaitReply flag), AEInteractWithUser brings
the server directly to the foreground. Otherwise,
AEInteractWithUser uses the Notification Manager to
request that the user bring the server application to the
foreground.

kAEDontReconnect The Apple Event Manager must not automatically try to
reconnect if it receives a sessClosedErr result code from
the PPC Toolbox.

kAEWantReceipt The sender wants to receive a return receipt for this Apple
event from the Event Manager. (A return receipt means only
that the receiving application accepted the Apple event; the
Apple event may or may not be handled successfully after it
is accepted.) If the receiving application does not send a
return receipt before the request times out, AESend returns
errAETimeout as its function result.

Flag Description

kAEDontRecord Your application is sending an event to itself but does not want
the event recorded. When Apple event recording is on, the Apple
Event Manager records a copy of every event your application
sends to itself except for those events for which this flag is set.

kAEDontExecute Your application is sending an Apple event to itself for recording
purposes only—that is, you want the Apple Event Manager to
send a copy of the event to the recording process but you do not
want your application actually to receive the event.
Reference to Creating and Sending Apple Events 5-41

C H A P T E R 5

Creating and Sending Apple Events
RESULT CODES

SEE ALSO

For more information on sending Apple events, see “Sending an Apple Event,” which
begins on page 5-13.

For information on writing an idle function, see “Writing an Idle Function,” which
begins on page 5-22.

For information on writing a reply filter function, see “Writing a Reply Filter Function,”
which begins on page 5-24.

For information on when to use the kAEDontExecute flag, see the chapter “Recording
Apple Events” in this book.

Application-Defined Routines 5
If your application sends an Apple event using AESend and is waiting for a reply, or if it
calls AEInteractWithUser, you can provide an idle function to handle update events,
null events, operating-system events, and activate events. You can also provide a reply
filter function that can handle any high-level events that you want your application to
handle while it is waiting for a reply or for user interaction.

noErr 0 No error
eLenErr –92 Buffer too big to send
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled an operation
procNotFound –600 No eligible process with specified process

serial number
connectionInvalid –609 Nonexistent signature or session ID
noUserInteractionAllowed –610 Background application sends event

requiring authentication
noPortErr –903 Client hasn’t set 'SIZE' resource to

indicate awareness of high-level events
destPortErr –906 Server hasn’t set 'SIZE' resource to

indicate awareness of high-level events,
or else is not present

sessClosedErr –917 The kAEDontReconnect flag in the
sendMode parameter was set and the
server quit, then restarted

errAEEventNotHandled –1708 Event wasn’t handled by an Apple event
handler

errAEUnknownSendMode –1710 Invalid sending mode was passed
errAEWaitCanceled –1711 User canceled out of wait loop for reply

or receipt
errAETimeout –1712 Apple event timed out
errAEUnknownAddressType –1716 Unknown Apple event address type
5-42 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
MyIdleFunction 5

An idle function has the following syntax:

FUNCTION MyIdleFunction (VAR event: EventRecord;

 VAR sleepTime: LongInt;

 VAR mouseRgn: RgnHandle): Boolean;

event The event record of the event to process.

sleepTime Amount of time (in ticks) during which your application agrees to
relinquish the processor if no events are pending.

mouseRgn A screen region that determines the conditions under which your
application is to receive notice of mouse-moved events.

DESCRIPTION

If your application provides a pointer to an idle function (MyIdleFunction) as a
parameter to AESend or AEInteractWithUser, the Apple Event Manager will call the
idle function to handle any update event, null event, operating-system event, or activate
event received for your application while it is waiting for a reply.

Set the function result to TRUE if your application is no longer willing to wait for a reply
from the server or for the user to bring the application to the front. Set the function result
to FALSE if your application is still willing to wait.

SEE ALSO

For more information, see “Writing an Idle Function,” which begins on page 5-22.

MyReplyFilter 5

A reply filter function has the following syntax:

FUNCTION MyReplyFilter (VAR event: EventRecord;

returnID: LongInt;

transactionID: LongInt;

sender: AEAddressDesc): Boolean;

event The event record for a high-level event. The next three parameters contain
valid information only if the event is an Apple event.

returnID Return ID for the Apple event.

transactionID
Transaction ID for the Apple event.

sender Address of process that sent the Apple event.
Reference to Creating and Sending Apple Events 5-43

C H A P T E R 5

Creating and Sending Apple Events
DESCRIPTION

If your application provides a pointer to a reply filter function as a parameter to the
AESend function, the reply filter function can process any high-level events that it is
willing to handle while your application is waiting for a reply.

Your reply filter function should return TRUE as the function result if you want to accept
the Apple event; otherwise, it should return FALSE.

SEE ALSO

For more information, see “Writing a Reply Filter Function” on page 5-24.
5-44 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Summary of Creating and Sending Apple Events 5

Pascal Summary 5

Constants 5

CONST

gestaltAppleEventsAttr = 'evnt'; {selector for Apple events}

gestaltAppleEventsPresent = 0; {if this bit is set, then Apple }

{ Event Manager is available}

{Apple event descriptor types}

typeBoolean = 'bool'; {1-byte Boolean value}

typeChar = 'TEXT'; {unterminated string}

typeSMInt = 'shor'; {16-bit integer}

typeInteger = 'long'; {32-bit integer}

typeSMFloat = 'sing'; {SANE single}

typeFloat = 'doub'; {SANE double}

typeLongInteger = 'long'; {32-bit integer}

typeShortInteger = 'shor'; {16-bit integer}

typeLongFloat = 'doub'; {SANE double}

typeShortFloat = 'sing'; {SANE single}

typeExtended = 'exte'; {SANE extended}

typeComp = 'comp'; {SANE comp}

typeMagnitude = 'magn'; {unsigned 32-bit integer}

typeAEList = 'list'; {list of descriptor records}

typeAERecord = 'reco'; {list of keyword-specified }

{ descriptor records}

typeAppleEvent = 'aevt'; {Apple event record}

typeTrue = 'true'; {TRUE Boolean value}

typeFalse = 'fals'; {FALSE Boolean value}

typeAlias = 'alis'; {alias record}

typeEnumerated = 'enum'; {enumerated data}

typeType = 'type'; {four-character code for }

{ event class or event ID}

typeAppParameters = 'appa'; {Process Manager launch parameters}

typeProperty = 'prop'; {Apple event property}

typeFSS = 'fss '; {file system specification}
Summary of Creating and Sending Apple Events 5-45

C H A P T E R 5

Creating and Sending Apple Events
typeKeyword = 'keyw'; {Apple event keyword}

typeSectionH = 'sect'; {handle to a section record}

typeWildCard = '****'; {matches any type}

typeApplSignature = 'sign'; {application signature}

typeSessionID = 'ssid'; {session reference number}

typeTargetID = 'targ'; {target ID record}

typeProcessSerialNumber = 'psn '; {process serial number}

typeNull = 'null'; {NULL or nonexistent data}

{keywords for Apple event parameters}

keyDirectObject = '----'; {direct parameter}

keyErrorNumber = 'errn'; {error number parameter}

keyErrorString = 'errs'; {error string parameter}

keyProcessSerialNumber = 'psn '; {process serial number param}

{keywords for Apple event attributes}

keyTransactionIDAttr = 'tran'; {transaction ID}

keyReturnIDAttr = 'rtid'; {return ID}

keyEventClassAttr = 'evcl'; {event class}

keyEventIDAttr = 'evid'; {event ID}

keyAddressAttr = 'addr'; {address of target or }

{ client application}

keyOptionalKeywordAttr = 'optk'; {list of optional parameters }

{ for the Apple event}

keyTimeoutAttr = 'timo'; {number of ticks the client }

{ will wait}

keyInteractLevelAttr = 'inte'; {settings to allow Apple Event }

{ Manager to bring server }

{ to foreground}

keyEventSourceAttr = 'esrc'; {nature of source }

{ application}

keyMissedKeywordAttr = 'miss'; {first required parameter }

{ remaining in an Apple event}

keyOriginalAddressAttr = 'from'; {address of original source; }

{ available only in version }

{ 1.01 and later versions of }

{ the Apple Event Manager}

{keywords for special handlers}

keyPreDispatch = 'phac'; {identifies a handler routine }

{ called immediately before the }

{ Apple Event Manager dispatches }

{ an Apple event}
5-46 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
keySelectProc = 'selh'; {selector used with }

{ AERemoveSpecialHandler to }

{ disable the OSL}

{keywords for use with AEManagerInfo; available only in version }

{ 1.0.1 and later versions of the Apple Event Manager}

keyAERecorderCount = 'recr'; {keyword for recording info}

keyAEVersion = 'vers'; {keyword for version info}

{event class}

kCoreEventClass = 'aevt'; {event class for required Apple }

{ events}

{event IDs for required Apple events}

kAEOpenApplication = 'oapp'; {event ID for Open }

{ Application event}

kAEOpenDocuments = 'odoc'; {event ID for Open Documents event}

kAEPrintDocuments = 'pdoc'; {event ID for Print Documents }

{ event}

kAEQuitApplication = 'quit'; {event ID for Quit Application }

{ event}

kAEAnswer = 'ansr'; {event ID for Apple event replies}

kAEApplicationDied = 'obit'; {event ID for Application Died }

{ event}

{constants for setting the sendMode parameter of AESend}

kAENoReply = $00000001; {client doesn't want reply}

kAEQueueReply = $00000002; {client wants server to }

{ reply in event queue}

kAEWaitReply = $00000003; {client wants a reply and }

{ will give up processor}

kAENeverInteract = $00000010; {server application should }

{ not interact with user }

{ for this Apple event}

kAECanInteract = $00000020; {server may interact with }

{ user for this Apple event }

{ to supply information}

kAEAlwaysInteract = $00000030; {server may interact with user }

{ for this Apple event even if }

{ no information is required}
Summary of Creating and Sending Apple Events 5-47

C H A P T E R 5

Creating and Sending Apple Events
kAECanSwitchLayer = $00000040; {server should come directly }

{ to foreground when appropriate}

kAEDontReconnect = $00000080; {don't reconnect if there }

{ is a PPC session closed error}

kAEWantReceipt = nReturnReceipt; {client wants return }

{ receipt}

kAEDontRecord = $00001000; {don't record this event}

kAEDontExecute = $00002000; {don't excecute this event}

{constants for setting the sendPriority parameter of AESend}

kAENormalPriority = $00000000; {put event at back of }

{ event queue}

kAEHighPriority = nAttnMsg; {put event at front of }

{ the event queue}

{event IDs for recording events; available only in version 1.01 and }

{ later versions of the Apple Event Manager}

kAEStartRecording = 'reca'; {event ID for Start Recording }

{ event}

kAEStopRecording = 'recc'; {event ID for Stop Recording }

{ event}

kAENotifyStartRecording = 'rec1'; {event ID for Recording On event}

kAENotifyStopRecording = 'rec0'; {event ID for Recording Off event}

kAENotifyRecording = 'recr'; {event ID for Receive Recordable }

{ Event event}

{constant for the returnID parameter of AECreateAppleEvent}

kAutoGenerateReturnID = -1; {tells Apple Event Manager to }

{ generate a unique return ID}

{constant for transaction IDs}

kAnyTransactionID = 0; {the Apple event is not }

{ part of a transaction}

{constants for timeout durations}

kAEDefaultTimeout = -1; {use default timeout value}

kNoTimeOut = -2; {never time out}

{constants for the dispatcher parameter of AEResumeTheCurrentEvent}

kAENoDispatch = 0; {don't redispatch the Apple event}

kAEUseStandardDispatch = -1; {redispatch the Apple event }

{ by using its entry in the }

{ Apple event dispatch table}
5-48 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Data Types 5

TYPE

AEEventClass =

PACKED ARRAY[1..4] OF Char; {event class for a high-level }

{ event}

AEEventID =

PACKED ARRAY[1..4] OF Char; {event ID for a high-level }

{ event}

AEKeyword =

PACKED ARRAY[1..4] OF Char; {keyword for a descriptor }

{ record}

DescType = ResType; {descriptor type}

AEDesc = {descriptor record}

RECORD

descriptorType: DescType; {type of data being passed}

dataHandle: Handle; {handle to data being passed}

END;

AEKeyDesc = {keyword-specified }

RECORD { descriptor record}

descKey: AEKeyword; {keyword}

descContent: AEDesc; {descriptor record}

END;

AEAddressDesc = AEDesc; {address descriptor record}

AEDescList = AEDesc; {list of descriptor records}

AERecord = AEDescList; {list of keyword-specified }

{ descriptor records}

AppleEvent = AERecord; {list of attributes and }

{ parameters necessary for }

{ an Apple event}

AESendMode = LongInt; {flags that determine how }

{ an Apple event is sent}

AESendPriority = Integer; {send priority of an Apple }

{ event}
Summary of Creating and Sending Apple Events 5-49

C H A P T E R 5

Creating and Sending Apple Events
AEInteractAllowed = (kAEInteractWithSelf, kAEInteractWithLocal,

 kAEInteractWithAll); {what processes may }

{ interact with the user}

AEEventSource = (kAEUnknownSource, kAEDirectCall, kAESameProcess,

 kAELocalProcess, kAERemoteProcess);

{the source of an Apple }

{ event}

AEArrayType = (kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray);

{type of an Apple event array}

AEArrayData =

RECORD {data for an Apple event array}

CASE AEArrayType OF

kAEDataArray:

(AEDataArray: ARRAY[0..0] OF Integer);

kAEPackedArray:

(AEPackedArray: Packed Array[0..0] OF Char);

kAEHandleArray:

(AEHandleArray: Array[0..0] OF Handle);

kAEDescArray:

(AEDescArray: Array[0..0] OF AEDesc);

kAEKeyDescArray:

(AEKeyDescArray: Array[0..0] OF AEKeyDesc);

END;

AEArrayDataPointer = ^AEArrayData;

EventHandlerProcPtr = ProcPtr; {pointer to an Apple event }

{ handler}

IdleProcPtr = ProcPtr; {pointer to an application's }

{ idle function}

EventFilterProcPtr = ProcPtr; {pointer to an application's }

{ filter function}
5-50 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Routines for Creating and Sending Apple Events 5

Creating Apple Events

FUNCTION AECreateAppleEvent (theAEEventClass: AEEventClass;
theAEEventID: AEEventID;
target: AEAddressDesc; returnID: Integer;
transactionID: LongInt;
VAR result: AppleEvent): OSErr;

Creating and Duplicating Descriptor Records

FUNCTION AECreateDesc (typeCode: DescType; dataPtr: Ptr;
dataSize: Size; VAR result: AEDesc): OSErr;

FUNCTION AEDuplicateDesc (theAEDesc: AEDesc; VAR result: AEDesc): OSErr;

Creating Descriptor Lists and AE Records

FUNCTION AECreateList (factoringPtr: Ptr; factoredSize: Size;
isRecord: Boolean;
VAR resultList: AEDescList): OSErr;

Adding Items to Descriptor Lists

FUNCTION AEPutPtr (theAEDescList: AEDescList; index: LongInt;
typeCode: DescType; dataPtr: Ptr;
dataSize: Size): OSErr;

FUNCTION AEPutDesc (theAEDescList: AEDescList; index: LongInt;
theAEDesc: AEDesc): OSErr;

FUNCTION AEPutArray (theAEDescList: AEDescList;
arrayType: AEArrayType;
arrayPtr: AEArrayDataPointer;
itemType: DescType; itemSize: Size;
itemCount: LongInt): OSErr;

Adding Data and Descriptor Records to AE Records

FUNCTION AEPutKeyPtr (theAERecord: AERecord;
theAEKeyword: AEKeyword; typeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

FUNCTION AEPutKeyDesc (theAERecord: AERecord;
theAEKeyword: AEKeyword;
theAEDesc: AEDesc): OSErr;
Summary of Creating and Sending Apple Events 5-51

C H A P T E R 5

Creating and Sending Apple Events
Adding Parameters and Attributes to Apple Events

FUNCTION AEPutParamPtr (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; typeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

FUNCTION AEPutParamDesc (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
theAEDesc: AEDesc): OSErr;

FUNCTION AEPutAttributePtr (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; typeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

FUNCTION AEPutAttributeDesc (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
theAEDesc: AEDesc): OSErr;

Sending Apple Events

FUNCTION AESend (theAppleEvent: AppleEvent;
VAR reply: AppleEvent; sendMode: AESendMode;
sendPriority: AESendPriority;
timeOutInTicks: LongInt;
idleProc: IdleProcPtr;
filterProc: EventFilterProcPtr): OSErr;

Application-Defined Routines 5

FUNCTION MyIdleFunction (VAR event: EventRecord;
VAR sleepTime: LongInt;
VAR mouseRgn: RgnHandle): Boolean;

FUNCTION MyReplyFilter (VAR event: EventRecord;
returnID: LongInt; transactionID: LongInt;
sender: AEAddressDesc): Boolean;

C Summary 5

Constants 5

enum {

#define gestaltAppleEventsAttr 'evnt' /*selector for Apple events*/

gestaltAppleEventsPresent = 0 /*if this bit is set, then */

/* Apple Event Manager is */

}; /* available*/
5-52 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
/*Apple event descriptor types*/

enum {

typeBoolean = 'bool', /*1-byte Boolean value*/

typeChar = 'TEXT', /*unterminated string*/

typeSMInt = 'shor', /*16-bit integer*/

typeInteger = 'long', /*32-bit integer*/

typeSMFloat = 'sing', /*SANE single*/

typeFloat = 'doub', /*SANE double*/

typeLongInteger = 'long', /*32-bit integer*/

typeShortInteger = 'shor', /*16-bit integer*/

typeLongFloat = 'doub', /*SANE double*/

typeShortFloat = 'sing', /*SANE single*/

typeExtended = 'exte', /*SANE extended*/

typeComp = 'comp', /*SANE comp*/

typeMagnitude = 'magn', /*unsigned 32-bit integer*/

typeAEList = 'list', /*list of descriptor records*/

typeAERecord = 'reco', /*list of keyword-specified */

/* descriptor records*/

typeAppleEvent = 'aevt', /*Apple event record*/

typeTrue = 'true', /*TRUE Boolean value*/

typeFalse = 'fals', /*FALSE Boolean value*/

typeAlias = 'alis', /*alias record*/

typeEnumerated = 'enum' /*enumerated data*/

};

enum {

typeType = 'type', /*four-character code for */

/* event class or event ID*/

typeAppParameters = 'appa', /*Process Manager launch */

/* parameters*/

typeProperty = 'prop', /*Apple event property*/

typeFSS = 'fss ', /*file system specification*/

typeKeyword = 'keyw', /*Apple event keyword*/

typeSectionH = 'sect', /*handle to a section record*/

typeWildCard = '****', /*matches any type*/

typeApplSignature = 'sign', /*application signature*/

typeSessionID = 'ssid', /*session ID*/

typeTargetID = 'targ', /*target ID record*/

typeProcessSerialNumber = 'psn ', /*process serial number*/

typeNull = 'null' /*NULL or nonexistent data*/

};
Summary of Creating and Sending Apple Events 5-53

C H A P T E R 5

Creating and Sending Apple Events
/*keywords for Apple event parameters*/

enum {

keyDirectObject = '----', /*direct parameter*/

keyErrorNumber = 'errn', /*error number parameter*/

keyErrorString = 'errs', /*error string parameter*/

keyProcessSerialNumber = 'psn ' /*process serial number param*/

};

/*keywords for Apple event attributes*/

enum {

keyTransactionIDAttr = 'tran', /*transaction ID*/

keyReturnIDAttr = 'rtid', /*return ID*/

keyEventClassAttr = 'evcl', /*event class*/

keyEventIDAttr = 'evid', /*event ID*/

keyAddressAttr = 'addr', /*address of target or */

/* client application*/

keyOptionalKeywordAttr = 'optk', /*list of optional parameters */

/* for the Apple event*/

keyTimeoutAttr = 'timo', /*number of ticks the client */

/* will wait*/

keyInteractLevelAttr = 'inte', /*settings to allow Apple */

/* Event Mgr to bring */

/* server to foreground*/

keyEventSourceAttr = 'esrc', /*nature of source */

/* application*/

keyMissedKeywordAttr = 'miss', /*first required parameter */

/* remaining in an Apple */

/* event*/

keyOriginalAddressAttr = 'from' /*address of original source; */

/* available only in version */

/* 1.01 and later versions of */

/* the Apple Event Manager*/

};

/*keywords for special handlers*/

enum {

keyPreDispatch = 'phac', /*identifies a handler */

/* routine that is called */

/* immediately before the */

/* Apple Event Manager */

/* dispatches an Apple event*/

keySelectProc = 'selh', /*selector used with */

/* AERemoveSpecialHandler to */

/* disable the OSL*/
5-54 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
/*keywords for use with AEManagerInfo, available only in version */

/* 1.0.1 and later versions of the Apple Event Manager*/

keyAERecorderCount = 'recr', /*keyword for recording info*/

keyAEVersion = 'vers', /*keyword for version info*/

/*event class*/

kCoreEventClass = 'aevt' /*event class for required */

/* Apple events*/

};

/*event IDs for required Apple events*/

enum {

kAEOpenApplication = 'oapp', /*event ID for Open */

/* Application event*/

kAEOpenDocuments = 'odoc', /*event ID for Open */

/* Documents event*/

kAEPrintDocuments = 'pdoc', /*event ID for Print */

/* Documents event*/

kAEQuitApplication = 'quit', /*event ID for Quit */

/* Application event*/

kAEAnswer = 'ansr', /*event ID for Apple event */

/* replies*/

kAEApplicationDied = 'obit' /*event ID for Application */

/* Died event*/

};

/*constants for setting the sendMode parameter of AESend*/

enum {

kAENoReply = 0x00000001, /*client doesn't want reply*/

kAEQueueReply = 0x00000002, /*client wants server to */

/* reply in event queue*/

kAEWaitReply = 0x00000003, /*client wants a reply and */

/* will give up processor*/

kAENeverInteract = 0x00000010, /*server application should */

/* not interact with user */

/* for this Apple event*/

kAECanInteract = 0x00000020, /*server may interact with */

/* user for this Apple event */

/* to supply information*/

kAEAlwaysInteract = 0x00000030, /*server may interact with */

/* user for this Apple event */

/* even if no information */

/* is required*/
Summary of Creating and Sending Apple Events 5-55

C H A P T E R 5

Creating and Sending Apple Events
kAECanSwitchLayer = 0x00000040, /*server should come */

/* directly to foreground */

/* when appropriate*/

kAEDontReconnect = 0x00000080, /*don't reconnect if there */

/* is a PPC session closed */

/* error*/

kAEWantReceipt = nReturnReceipt, /*client wants return */

/* receipt*/

kAEDontRecord = 0x00001000, /*don't record this event*/

kAEDontExecute = 0x00002000, /*don't excecute this event*/

/*constants for setting the sendPriority parameter of AESend*/

kAENormalPriority = 0x00000000, /*post message at end of */

/* event queue*/

kAEHighPriority = nAttnMsg /*post message at front of */

/* event queue*/

};

/*event IDs for recording events; available only in version 1.01 and */

/* later versions of the Apple Event Manager*/

enum {

kAEStartRecording = 'reca', /*event ID for Start */

/* Recording event*/

kAEStopRecording = 'recc', /*event ID for Stop */

/* Recording event*/

kAENotifyStartRecording = 'rec1', /*event ID for Recording On */

/* event*/

kAENotifyStopRecording = 'rec0', /*event ID for Recording Off */

/* event*/

kAENotifyRecording = 'recr' /*event ID for Receive */

/* Recordable Event event*/

};

enum {

/*constant for the returnID parameter of AECreateAppleEvent*/

kAutoGenerateReturnID = -1, /*tells Apple Event Manager */

/* to generate a unique */

/* return ID*/

/*constant for transaction IDs*/

kAnyTransactionID = 0, /*the Apple event is not */

/* part of a transaction*/

/*constants for timeout durations*/

kAEDefaultTimeout = -1, /*use default timeout value*/

kNoTimeOut = -2, /*never time out*/
5-56 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
/*constants for the dispatcher parameter of AEResumeTheCurrentEvent*/

kAENoDispatch = 0, /*don't redispatch the */

/* Apple event*/

kAEUseStandardDispatch = -1 /*redispatch the Apple event */

/* by using its entry in the */

/* Apple event dispatch table*/

};

Data Types 5

typedef unsigned long AEEventClass; /*event class for a */

/* high-level event*/

typedef unsigned long AEEventID; /*event ID for a high-level */

/* event*/

typedef unsigned long AEKeyword; /*keyword for a descriptor */

/* record*/

typedef ResType DescType; /*descriptor type*/

struct AEDesc { /*descriptor record*/

DescType descriptorType; /*type of data being passed*/

Handle dataHandle; /*handle to data being passed*/

};

typedef struct AEDesc AEDesc;

struct AEKeyDesc { /*keyword-specified */

/* descriptor record*/

AEKeyword descKey; /*keyword*/

AEDesc descContent; /*descriptor record*/

};

typedef struct AEKeyDesc AEKeyDesc;

typedef AEDesc AEAddressDesc; /*address descriptor record*/

typedef AEDesc AEDescList; /*list of descriptor records*/

typedef AEDescList AERecord; /*list of keyword-specified */

/* descriptor records*/

typedef AERecord AppleEvent; /*list of attributes and */

/* parameters necessary for */

/* an Apple event*/

typedef long AESendMode; /*flags that determine how */

/* an Apple event is sent*/
Summary of Creating and Sending Apple Events 5-57

C H A P T E R 5

Creating and Sending Apple Events
typedef short AESendPriority; /*send priority of an Apple */

/* event*/

enum { kAEInteractWithSelf, kAEInteractWithLocal,

 kAEInteractWithAll }; /*what processes may */

typedef unsigned char AEInteractAllowed; /* interact with the user*/

enum { kAEUnknownSource, kAEDirectCall, kAESameProcess, kAELocalProcess,

 kAERemoteProcess }; /*the source of an Apple */

typedef unsigned char AEEventSource; /* event*/

enum { kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray }; /*type of an Apple event */

typedef unsigned char AEArrayType; /* array*/

union AEArrayData { /*data for an Apple event */

short kAEDataArray[1]; /* array*/

char kAEPackedArray[1];

Handle kAEHandleArray[1];

AEDesc kAEDescArray[1];

AEKeyDesc kAEKeyDescArray[1];

};

typedef union AEArrayData AEArrayData;

typedef AEArrayData *AEArrayDataPointer;

typedef ProcPtr EventHandlerProcPtr; /*pointer to an Apple event */

/* handler*/

typedef ProcPtr IdleProcPtr; /*pointer to an application's */

/* idle function*/

typedef ProcPtr EventFilterProcPtr; /*pointer to an application's */

/* filter function*/

Routines for Creating and Sending Apple Events 5

Creating Apple Events

pascal OSErr AECreateAppleEvent
(AEEventClass theAEEventClass,
AEEventID theAEEventID,
const AEAddressDesc *target, short returnID,
long transactionID, AppleEvent *result);
5-58 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Creating and Duplicating Descriptor Records

pascal OSErr AECreateDesc (DescType typeCode, const void* dataPtr,
Size dataSize, AEDesc *result);

pascal OSErr AEDuplicateDesc
(const AEDesc *theAEDesc, AEDesc *result);

Creating Descriptor Lists and AE Records

pascal OSErr AECreateList (const void* factoringPtr, Size factoredSize,
Boolean isRecord, AEDescList *resultList);

Adding Items to Descriptor Lists

pascal OSErr AEPutPtr (const AEDescList *theAEDescList, long index,
DescType typeCode, const void* dataPtr,
Size dataSize);

pascal OSErr AEPutDesc (const AEDescList *theAEDescList, long index,
const AEDesc *theAEDesc);

pascal OSErr AEPutArray (const AEDescList *theAEDescList,
AEArrayType arrayType,
const AEArrayDataPointer *arrayPtr,
DescType itemType, Size itemSize,
long itemCount);

Adding Data and Descriptor Records to AE Records

pascal OSErr AEPutKeyPtr (const AERecord *theAERecord,
AEKeyword theAEKeyword, DescType typeCode,
const void* dataPtr, Size dataSize);

pascal OSErr AEPutKeyDesc (const AERecord *theAERecord,
AEKeyword theAEKeyword,
const AEDesc *theAEDesc);

Adding Parameters and Attributes to Apple Events

pascal OSErr AEPutParamPtr (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType typeCode,
const void* dataPtr, Size dataSize);

pascal OSErr AEPutParamDesc (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
const AEDesc *theAEDesc);

pascal OSErr AEPutAttributePtr
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType typeCode,
const void* dataPtr, Size dataSize);
Summary of Creating and Sending Apple Events 5-59

C H A P T E R 5

Creating and Sending Apple Events
pascal OSErr AEPutAttributeDesc
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
const AEDesc *theAEDesc);

Sending Apple Events

pascal OSErr AESend (const AppleEvent *theAppleEvent,
AppleEvent *reply, AESendMode sendMode,
AESendPriority sendPriority,
long timeOutInTicks, IdleProcPtr idleProc,
EventFilterProcPtr filterProc);

Application-Defined Routines 5

pascal Boolean MyIdleFunction
(const EventRecord *event,
long *sleepTime, RgnHandle *mouseRgn);

pascal Boolean MyReplyFilter
(const EventRecord *event,
long returnID, long transactionID,
AEAddressDesc sender);

Assembly-Language Summary 5

Trap Macros 5

Trap Macros Requiring Routine Selectors

_Pack8

Selector Routine

$0405 AEDuplicateDesc

$0609 AEPutDesc

$0610 AEPutKeyDesc

$0610 AEPutParamDesc

$0627 AEPutAttributeDesc

$0706 AECreateList

$0825 AECreateDesc

$0A08 AEPutPtr

$0A0F AEPutKeyPtr
5-60 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Result Codes 5

$0A0F AEPutParamPtr

$0A16 AEPutAttributePtr

$0B0D AEPutArray

$0B14 AECreateAppleEvent

$0D17 AESend

noErr 0 No error
paramErr –50 Parameter error (for example, value of handler pointer

is NIL or odd)
eLenErr –92 Buffer too big to send
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled an operation
procNotFound –600 No eligible process with specified process serial

number
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
connectionInvalid –609 Nonexistent signature or session ID
noUserInteractionAllowed –610 Background application sends event requiring

authentication
noPortErr –903 Client hasn’t set 'SIZE' resource to indicate

awareness of high-level events
destPortErr –906 Server hasn’t set 'SIZE' resource to indicate

awareness of high-level events, or else is not present
sessClosedErr –917 The kAEDontReconnect flag in the sendMode

parameter was set, and the server quit and then
restarted

errAECoercionFail –1700 Data could not be coerced to the requested descriptor
type

errAEDescNotFound –1701 Descriptor record was not found
errAECorruptData –1702 Data in an Apple event could not be read
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
errAENewerVersion –1706 Need a newer version of the Apple Event Manager
errAENotAppleEvent –1707 Event is not an Apple event
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event handler
errAEReplyNotValid –1709 AEResetTimer was passed an invalid reply
errAEUnknownSendMode –1710 Invalid sending mode was passed
errAEWaitCanceled –1711 User canceled out of wait loop for reply or receipt
errAETimeout –1712 Apple event timed out
errAENoUserInteraction –1713 No user interaction allowed
errAENotASpecialFunction –1714 The keyword is not valid for a special function
errAEParamMissed –1715 Handler cannot understand a parameter the client

considers required
errAEUnknownAddressType –1716 Unknown Apple event address type

Selector Routine
Summary of Creating and Sending Apple Events 5-61

errAEHandlerNotFound –1717 No handler found for an Apple event or a coercion, or
no object callback function found

errAEReplyNotArrived –1718 Reply has not yet arrived
errAEIllegalIndex –1719 Not a valid list index
errAEImpossibleRange –1720 The range is not valid because it is impossible for a

range to include the first and last objects that were
specified; an example is a range in which the offset of
the first object is greater than the offset of the last
object

errAEWrongNumberArgs –1721 The number of operands provided for the kAENot
logical operator is not 1

errAEAccessorNotFound –1723 There is no object accessor function for the specified
object class and token descriptor type

errAENoSuchLogical –1725 The logical operator in a logical descriptor record is
not kAEAnd, kAEOr, or kAENot

errAEBadTestKey –1726 The descriptor record in a test key is neither a
comparison descriptor record nor a logical descriptor
record

errAENotAnObjectSpec –1727 The objSpecifier parameter of AEResolve is not
an object specifier record

errAENoSuchObject –1728 A run-time resolution error, for example: object
specifier record asked for the third element, but there
are only two

errAENegativeCount –1729 Object-counting function returned negative value
errAEEmptyListContainer –1730 The container for an Apple event object is specified by

an empty list
errAEUnknownObjectType –1731 Descriptor type of token returned by AEResolve is

not known to server application
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when it is already on

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	Creating and Sending Apple Events
	Creating an Apple Event
	Adding Parameters to an Apple Event
	Specifying Optional Parameters for an Apple Event
	Specifying a Target Address
	Creating an Address Descriptor Record
	Addressing an Apple Event for Direct Dispatching

	Sending an Apple Event
	Dealing With Timeouts
	Writing an Idle Function
	Writing a Reply Filter Function

	Reference to Creating and Sending Apple Events
	Routines for Creating and Sending Apple Events
	Creating Apple Events
	Creating and Duplicating Descriptor Records
	Creating Descriptor Lists and AE Records
	Adding Items to Descriptor Lists
	Adding Data and Descriptor Records to AE Records
	Adding Parameters and Attributes to Apple Events
	Sending Apple Events

	Application-Defined Routines

	Summary of Creating and Sending Apple Events
	Pascal Summary
	Constants
	Data Types
	Routines for Creating and Sending Apple Events
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Routines for Creating and Sending Apple Events
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

