CHAPTER 12

Data Access Manager

This chapter describes how your application can use the Data Access Manager to gain
access to data in another application. It also tells you how to provide templates to be
used for data transactions.

The Data Access Manager is available in System 7 and later versions. Use the

Gestalt Manager to determine whether the Data Access Manager is present. To
determine whether the Data Access Manager is available, use the Gest al t function
with the gest al t DBAccessMyr At t r environmental selector. If the Data Access
Manager is not available, the Gest al t function returns an error. For more information
on the Gestalt Manager, see Inside Macintosh: Operating System Ultilities.

The Data Access Manager allows your application to communicate with a database or
other data source even if you do not know anything about databases in general or the
specific data source with which the users of your software will be communicating. All
your application needs are a few high-level Data Access Manager functions and access to
a file called a query document. The query document, provided by another application,
contains commands and data in the format appropriate for the database or other data
source. The string of commands and data sent to the data source are referred to as a
query. Note that a query does not necessarily extract data from a data source; it might
only send data or commands to a database or other application.

The Data Access Manager makes it easy for your application to communicate with data
sources. You need only add a menu item that opens a query document, using a few
standard Data Access Manager functions to implement the menu selection. Users of your
application can then access a database or other data source whenever they have the
appropriate query documents. A user of a word-processing program might use this
feature, for example, to obtain access to archived material, dictionaries in a variety of
languages, or a database of famous quotations. A user of a spreadsheet program might
use a query document to obtain tax records, actuarial tables, or other data. A user of an
art or computer-aided design program might download archived illustrations or
designs. And for the user of a database application for the Macintosh computer, the
Data Access Manager can provide the resources and power of a mainframe database.

The Data Access Manager also provides a low-level interface for use by applications that
are capable of creating their own queries and that therefore do not have to use query
documents.

If your application uses only the high-level interface and relies on query documents
created by other programs, then all the routines you need to know are described in this
chapter. However, if you want to create a query document or an application that uses the
low-level interface, then you must also be familiar with the command language used by
the data server.

12-3

Jabeuel SS90V BlRQ H

12-4

CHAPTER 12

Data Access Manager

You need the information in this chapter if you want your application to access data in
other applications or if you want to write a query document.

Note

The Data Access Manager makes it easy for your application to
communicate with a database running on a remote computer, and this
chapter generally assumes that you are using it for that purpose.
However, there is no reason why the database could not be local—that
is, running on the same computer as your application. To implement
such a system, you would have to have a database that runs on a
Macintosh computer and that has a command-language interface, plus a
database extension that can use that command language. In most cases,
it would be much simpler to run the database as a separate application
and use the Clipboard to transfer data into and out of the database. O

Note also that the program containing the data need not be a database. With the
appropriate database extension, your application could read data from a spreadsheet,
for example, or any other program that stores data.

Apple Computer, Inc. provides a database extension that uses Data Access Language
(DAL). A database extension provides an interface between the Data Access
Manager and the database or other program that contains the data. If you want

to write an application that uses the low-level interface to communicate with a

Data Access Language server, or if you want to create a query document that

uses Data Access Language, you must be familiar with that language. Data Access
Language Programmer’s Reference, available from APDA, fully describes this language.

CHAPTER 12

Data Access Manager

About the Data Access Manager

The Data Access Manager constitutes a standard interface that allows Macintosh
applications to communicate with any number of databases or other data sources
through a variety of data servers. As used in this chapter, a data server is the application
that acts as an interface between the database extension on the Macintosh computer and
the data source, which can be on the Macintosh computer or on a remote host computer.
A data server can be a database server program, such as a Data Access Language server,
which can provide an interface to a variety of different databases, or it can be the data
source itself, such as a Macintosh application.

The Data Access Manager has two application interfaces: the high-level interface and the
low-level interface. If the proper database extension and query documents are available
in the user’s system, you can use the high-level interface to communicate with a data
source without having any knowledge of the command language that the data server
uses. Even if you use the low-level interface, your application can isolate the user from
any specific knowledge of the data source or the data server’s command language.

This section presents an overview and description of the Data Access Manager, including
diagrams and conceptual descriptions of the components and processes involved in
using the high-level and low-level interfaces. Next, “Using the Data Access Manager”
beginning on page 12-12 includes descriptions, flowcharts, and program fragments that
provide a step-by-step guide to the use of the high-level and low-level interfaces.
“Creating a Query Document” beginning on page 12-47 describes the contents and
function of a query document. You do not have to read this section unless you are
writing an application that creates query documents, although if you are using the
high-level interface you might be interested to know just how a query document works.

Figure 12-1 illustrates connections between Macintosh applications and a database on a
remote computer. The arrows in Figure 12-1 show the flow of information, not the paths
of commands or control signals. See Figure 12-2 on page 12-8 and Figure 12-3 on

page 12-10 for the sequences involved in sending and retrieving data.

Jabeuel SS90V BlRQ H

About the Data Access Manager 12-5

CHAPTER 12

Data Access Manager

Figure 12-1

12-6

A connection with a database

Macintosh computer

document

Database- Database- N

aware naive
application application

rn

Commands; Query Commands Query Query
Query results results
] v
High-level interface
Data Access Manager
A4
Low-level interface

Query Query
results

AL

Database

Database

r—-r—-——>—=—"=—=——7= |
Data Access Language | Other database :
database extension : extensions |
L N

Query Query

results

Remote computer

T]
Data Access : Other data |
Language server | server |
L N

About the Data Access Manager

CHAPTER 12

Data Access Manager

The High-Level Interface

As Figure 12-1 on page 12-6 shows, a database-naive application—that is, one that
cannot prepare a query for a specific data server—uses the Data Access Manager’s
high-level routines to communicate with a data server. Because the application cannot
prepare a query, it must use a query document to provide one. A query document can
contain code, called a query definition function, that prompts the user for information
and modifies the query before the Data Access Manager sends it to the data server. The
exact format of a query definition function is described in “Writing a Query Definition
Function” on page 12-52.

Note

The term query refers to any string of commands (and associated data)
that can be executed by a data server. A query can send data to a data
source, retrieve data from a data source, or reorganize the data in a
data source. The Data Access Manager does not interpret or execute the
query; it only implements the interface (sometimes called the application
program interface, or API) that allows you to send the query to the

data server. O

When you want to use the high-level routines to execute a query on a data server, you
first select a query document or allow the user to select one. You use high-level
routines to

» get the query from the query document

= execute the query definition function to modify the query

» send the query to the data server

s retrieve the results from any query that asks for information from the data source

= convert to text the results returned by a query

For example, suppose a company that makes rubber ducks has a database on a
minicomputer that contains a mailing list of all its customers. The database has a

Data Access Language interface, and the company’s marketing manager has a
Macintosh computer with an application that uses high-level Data Access Manager
routines to communicate with the remote database server. As Figure 12-2 illustrates, the
marketing manager must also have a query document, created by another application,
that she can use to get an address from the mailing list on the remote minicomputer. The
query document can be as complex or as simple as its creator cares to make it; in this
example, the query document is designed specifically to obtain addresses from the
rubber duck mailing list. The marketing manager might have several other query
documents available as well: one to extract a mailing list for a specific zip code, one to
list all of the customers who have made a purchase within the last year, and so on.

H

Jabeuel SS90V BlRQ

About the Data Access Manager 12-7

CHAPTER 12

Data Access Manager

Notice that once the query document has sent the query to the data server, the Data
Access Manager handles the data retrieval. Although query documents and high-level
Data Access Manager routines make it very easy for you to request data from a data
source, there is no way for a query document to verify that data sent to a data source has
been successfully received. For that reason, it is recommended that you use the low-level
interface to send data to a data source or update data in a data source.

Figure 12-2 Using high-level Data Access Manager routines

2
U

User wants to obtain
a list of addresses
from mailing list

Query
document Sends [~~~ ————- -

Database-
naive
application

Y

Vs N
)
b _F
Alg(?éass ——-=<"J---7"7"1 Database server Mailing list
Mana Checks status of I database
ger s L]
server periodically -~+--——-——-—--—-—-—-—-—-——————
until data is available
Translates
data

 —

4

[

Displays
data

12-8

Sending a Query Through the High-Level Interface

To obtain a list of addresses from the mailing list, the marketing manager chooses the
Open Query menu command from the File menu in her application. From the list of
query documents displayed, she chooses one named Rubber Duck Address List.

About the Data Access Manager

CHAPTER 12

Data Access Manager

The application calls the Data Access Manager function DBGet NewQuer y, specifying the
resource ID of the query (' qr sc') resource in the Rubber Duck Address List query
document. The DBGet NewQuer y function creates a query record and a partial query
from the information in the query resource. The partial query specifies the type of data
(character strings) and the columns from which the data items should come (the name
and address columns). The partial query lacks some specific data (the rows that should
be searched) that is needed to complete the search criteria.

Next, the application calls the DBSt ar t Quer y function, which in turn calls the query
definition function in the query document. The query definition function displays a
dialog box that asks for the purchase dates to search. When the marketing manager
types in the requested information and clicks OK, the query definition function adds the
data to the partial query in memory. The query is now ready to be executed.

Next, the DBSt ar t Quer y function sends the query to the Data Access Language
database extension, and the database extension sends the query over a communications
network to the remote Data Access Language server. Finally, the DBSt art Query
function commands the Data Access Language server to execute the query.

Retrieving Data Through the High-Level Interface

When the application is ready to retrieve the data that it requested from the database, the
application calls the DBGet Quer yResul t s function. This function determines when the
data is available, retrieves it from the data server, and places the data in a record in
memory. The application can then call the DBResul t sToText function, which uses
routines called result handlers to convert each data item to a character string. The
DBResul t sToText function passes to the application a handle to the converted data.
The application then displays the list of customers for the marketing manager.

Data items and result handlers are described in “Processing Query Results” beginning
on page 12-37.

The Low-Level Interface

A database-aware application communicates through the low-level interface of the
Data Access Manager. You can use the low-level interface to

= initiate communication with the data server, sending the user name, password, and
other information to the data server

= send a query to the data server

= execute the query that you have sent to the data server
= halt execution of the query

= return status and errors from the data server

= send data to the data source

Jabeuel SS90V BlRQ H

» retrieve data from the data source

About the Data Access Manager 12-9

CHAPTER 12

Data Access Manager

For example, suppose once again that a company that makes rubber ducks has a mailing
list of all of its customers in a database on a minicomputer, and the database has a Data
Access Language interface. This time, suppose the Macintosh application the marketing
manager is using calls low-level Data Access Manager routines to communicate with the
remote database server. Figure 12-3 illustrates the use of the low-level interface. Notice
that if you use the high-level interface (Figure 12-2), the query document and the

Data Access Manager prepare the query, send the query, retrieve the query results, and
translate the data for you. If you use the low-level interface, however, you must perform
these functions yourself.

Figure 12-3 Using low-level Data Access Manager routines

p
g

User wants to obtain
a list of addresses
from mailing list

Database-
aware
application

(l/\ Database server Mailing list
T--__ o I database
- L _

Starts Starts
session session ———— ——— —— ——— -
> |
Data | =
Sends AcCess Sends | — -
query Manager query | _—
N N I _—

I J—
| e
L

Application checks status
of server periodically
until data is available

=~

Displays
data

12-10

Sending a Query Through the Low-Level Interface

To update the mailing list with a new address for customer Marvin M., the marketing
manager enters the new address into her application. The application prepares a Data
Access Language statement (a query) that specifies the type of data (a character string),
the column into which the data item should go (the address column), the row to be
modified (the Marvin M. row), plus the actual data the application wishes to send
(Marvin M.’s address). The application then passes this query to the Data Access

About the Data Access Manager

CHAPTER 12

Data Access Manager

Manager using the low-level interface. (The application can send the query in several
pieces or all at once.) The Data Access Manager sends the query to the Data Access
Language database extension in the Macintosh computer, and the database extension
sends the query to the remote Data Access Language server.

Retrieving Data Through the Low-Level Interface

Once the query begins executing, the application can periodically check with the data
server to determine whether the data is ready (Figure 12-3). When the data is available,
the application must retrieve it one data item at a time. An application that uses the
low-level interface must determine the data type of each data item, convert the data into
a format that is meaningful to the user, and store the data in memory allocated by the
application. Data types are described in “Getting Query Results” beginning on

page 12-37.

Note that neither the Data Access Manager nor the DAL database extension reads,
modifies, or acts on the query that an application sends to the data server. The

data server does execute the query, causing the data source to accept new data or
prepare data for the application. To use the low-level interface to communicate with a
data server, your application must be capable of preparing a query that can be executed
by the data server.

Comparison of the High-Level and Low-Level Interfaces

An application that uses the low-level interface to send a query to the data server must
prepare the query, initiate communication with the data server, send the query to the
data server, and execute the query. If it requested data to be returned, the application
must determine when the data is ready, and retrieve the data one item at a time. Each
step in this process requires calling one or more low-level routines.

The high-level interface between the Data Access Manager and the application, in
contrast, consists of only a few routines, each of which might call several low-level
routines to accomplish its tasks. For example, a single high-level function can call the
query definition function, initiate communication with the data server, send the query to
the data server, and execute the query.

Because the high-level interface is very easy to use and requires no specific knowledge of
the data source or database server, you can add high-level data access to your
application very easily. Then, whenever someone provides a query document for use
with a specific data server, the user can take advantage of the data access capability
included in your application. However, because there is no way for a query document to
verify that data sent to a data source has been successfully received, it is recommended
that you use the low-level interface to send data to a data source or update data in a data
source.

Although in concept the low-level routines and high-level routines serve separate
purposes, there is nothing to prevent you from using calls to both in a single application.
For example, you might use low-level routines to send a query to a data server and
high-level routines to read the results and convert them to text.

About the Data Access Manager 12-11

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

Using the Data Access Manager

12-12

There are at least three different ways in which you can use the Data Access Manager to
communicate with a data source. You can

» use low-level interface routines to send queries and retrieve data from the data source.
In this case, your application must be capable of preparing a query in a language
appropriate for the data server.

» use high-level interface routines to send queries and retrieve data from the data
source. In this case, you must have one or more query documents provided by
another application.

= create your own query documents and use high-level interface routines to send
queries and retrieve data from the data source. In this case, your application must be
capable of preparing a query, but it can use the same query repeatedly once it has
been prepared.

This section describes how to use the high-level and low-level interfaces to the Data
Access Manager to send queries to a data server. This section also describes how to call
Data Access Manager functions asynchronously, how to determine the status of the
high-level functions at various points in their execution (and cancel execution if you so
desire), how to obtain information about Data Access Manager sessions that are in
progress, and how to retrieve query results and convert them to text.

Executing Routines Asynchronously

All of the Data Access Manager low-level routines and some of the high-level routines
can execute asynchronously—that is, the routine returns control to your application
before the routine has completed execution. Your application must call the Event
Manager’s WAi t Next Event function periodically to allow an asynchronous routine to
complete execution.

Note

The database extension is responsible for implementing asynchronous
execution of Data Access Manager routines. For example, if you call the
DBSend function to send a query to a data server, and the database
extension calls a device driver, the database extension can return control
to your application as soon as the device driver has placed its routine in
the driver input/output (I/O) queue. If you attempt to execute a routine
asynchronously and the database extension that the user has selected
does not support asynchronous execution, the routine returns a result
code of r cDBAsyncNot Supp and terminates execution. O

All Data Access Manager routines that can execute asynchronously take as a parameter a
pointer to a parameter block known as the asynchronous parameter block. If the value of
this pointer is NI L, the function is executed synchronously—that is, the routine does not
return control to your application until execution is complete.

Using the Data Access Manager

CHAPTER 12

Data Access Manager

General Guidelines for the User Interface

When you use the Data Access Manager to provide data access, you should keep two
important principles in mind: keep the user in control, and provide feedback to the user.

Keep the User in Control

When designing a data access feature or application, keep in mind that the user should
have as much access to the Macintosh computer’s abilities as possible. Design your
application so that most of the data access process happens in the background. Call the
Data Access Manager asynchronously whenever the database extension you are using
supports asynchronous calls. Because data retrieval queries can take minutes or even
hours to complete, they should always run in the background.

After issuing a query, return control of the computer to users so that they may work on
other tasks or switch to other applications while the query runs. Whenever a background
task requires the user’s attention, follow the suggestions in Macintosh Human Interface
Guidelines regarding user notification. A background task should never take control from
the user by posting an alert box in front of the active application’s windows. Any
message that you post should identify the query that requires attention. For example, an
alert box might display the message “The query Get Employee Information was canceled
because the connection was unexpectedly broken.”

If your application allows more than one simultaneous connection to data sources or
allows more than one query document to run, provide a modeless window that lists the
open connections and queries, displays the status of each, and allows the user to cancel
them if necessary.

Allow the user to limit the amount of disk space that must remain free after any
transaction. For example, a user may wish to specify that 1 MB of space always be free.
Cancel any transaction that would exceed the user’s limit and notify the user.

Provide Feedback to the User

Keep the user informed about status, progress, and error conditions, and allow the user
to cancel an interaction whenever possible. Inform the user before the application
becomes modal and the computer becomes unavailable. Use the spinning beach ball
cursor or the animated wristwatch cursor to indicate a process that takes several seconds
to complete. Use a dialog box to indicate any process that lasts longer than a few
seconds. For example, connecting to a remote database could take a couple of minutes.
In this case include a Cancel button in the dialog box so that the user can cancel the
operation. When possible, display a progress indicator to show how long a process lasts.
Warn the user before doing anything potentially dangerous or irreversible, such as
deleting all of a user’s data files to replace them with data retrieved from a data source.

When a data retrieval query terminates prematurely, make the retrieved data available to
the user but warn the user that it is incomplete. The user can then evaluate the partial
data before deciding whether to run the query again.

Jabeuel SS90V BlRQ H

Using the Data Access Manager 12-13

12-14

CHAPTER 12

Data Access Manager

Using the High-Level Interface

Use the high-level interface to the Data Access Manager if you want to use a query
document to do the work of communicating with a data source. You can use the
high-level interface to open a query document, execute the query definition function in
the query document, establish communication (initiate a session) with a data server,
send the query to the data server, execute the query, retrieve any data requested by the
query, and convert the retrieved data to text. Although two or three high-level routines
accomplish most of these tasks, you may need to call a few low-level routines as well to
control a session with a data server.

Applications that implement this type of data access must provide user control and
feedback as described in “General Guidelines for the User Interface” on page 12-13. In
addition, you should include an Open Query command in the File menu. The Open
Query command is equivalent to the Open (file) command in meaning. When the user
chooses this command, display an open file dialog box filtered to show only query
documents (file type ' gery'). The user can then select the desired query document. The
query document contains the query to be sent to the data source. Depending on the type
of query, the data source could receive information, send back information, report the
status of the data source, or perform some other task.

Figure 12-4 is a flowchart of a typical session using the high-level interface.
As Figure 12-4 illustrates, you must follow this procedure to use the high-level interface:

1. Call the I ni t DBPack function to initialize the Data Access Manager.

2. Select the query document that you want to use and determine the resource ID of the
' grsc' resource in that query document. You can use any method you like to select
the query document. One possibility is to use the St andar dGet Fi | e procedure to let
the user select the query document. A query document should contain only one
' grsc' resource; you can then use the Resource Manager to determine the
resource ID of the ' gqr sc' resource in the document that the user selected. For
further information, see the description of the St andar dGet Fi | e procedure in
the chapter “Standard File Package” in Inside Macintosh: Files and the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

3. Call the DBGet NewQuer y function. The DBGet NewQuer y function creates in memory
a data structure called a query record from the ' qr sc' resource that you specify.

4. Call the DBSt ar t Quer y function specifying the handle to the query record that you
created with the DBGet NewQuer y function (step 3).
You should also provide the DBSt ar t Quer y function with a handle to your status
routine. A status routine is a routine that you provide to update windows, check the
results of the low-level calls made by the DBSt art Quer y and DBGet Quer yResul t s
functions, and cancel execution of these functions when you consider it appropriate to
do so.

Using the Data Access Manager

CHAPTER 12

Data Access Manager

Figure 12-4 A flowchart of a session using the high-level interface

InitDBPack I

Let Data

Access Manager No -
o — 11| -!| N E— DBInit |

communication

foryol? D
<

Yes

| DBGetNewQuery |

¢
/,:> | DBStartQuery I

g

Requested No
data? N

@Yes

| DBGetQueryResults I

g

Convert No
data to
text?

@Yes

| DBResultsToText I

g

[—

Yes Use sanie No
_____ 1 query record |:>| DBDisposeQuery I
again? @ S
v
Yes Use new No %
& \ query |:> DBENd I >
document? P2y
@ ®
[}
(%)
5
Yes Open No 5
) another » > Quit]
session? [}

Using the Data Access Manager 12-15

12-16

CHAPTER 12

Data Access Manager

The DBSt ar t Quer y function calls the query definition function (if any) referred to by
the query record. The query definition function can prompt the user for information
and modify the query record.

After the query definition function has completed execution, the DBSt art Query
function calls your status routine so that you can update your windows if necessary.
The DBSt ar t Quer y function then checks whether communication has been
established with the data server. If not, it calls your status routine so that you can
display a status dialog box and then calls the DBI ni t function to establish
communication (initiate a session) with the data server. The DBSt ar t Quer y function
obtains the values it needs for the DBI ni t function parameters from the query record.
When the DBI ni t function completes execution, the DBSt ar t Quer y function calls
your status routine again.

The DBl ni t function returns an identification number, called a session ID. This
session ID is unique; no other current session, for any database extension, has the
same session ID. You must specify the session ID any time you want to send data to or
retrieve data from this session. If you prefer, you can use the DBI ni t function to
establish communication before you call the DBSt ar t Quer y function. In that case,
you must specify the session ID as an input parameter to the DBSt art Query
function. See “Using the Low-Level Interface” beginning on page 12-28 for more
information on using the DBI ni t function.

Once communication has been established, the DBSt ar t Quer y function calls the
DBSend function to send the data server the query specified by the query record.
When the DBSend function has completed execution, the DBSt ar t Quer y function
calls your status routine. Finally, the DBSt ar t Quer y function uses the DBExec
function to execute the query. The DBSt ar t Query function calls your status routine
after the DBExec function has completed execution (that is, the query has started
executing and the DBExec function has returned control to the DBSt ar t Query
function) and again just before the DBSt ar t Quer y function completes execution.

. If you requested data and want to know when the data is available, but do not want

to retrieve the data immediately, you can call the DBSt at e function. This function
tells you when the data server has finished executing the query, but it does not
retrieve the data. If you requested data and want to retrieve it as soon as it is
available, you do not have to call the DBSt at e function; go to step 6 instead.

If you did not request data, you can use the DBSt at e function to determine the status
of the query. When the data server has finished executing the query, skip to step 8.

. Call the DBGet Quer yResul t s function. If the query has not finished executing, this

function returns the r cDBExec result code. If the query has finished executing, the
DBGet Quer yResul t s function calls the DBGet | t emfunction repeatedly until the
data server has returned all of the data available.

The DBGet Quer yResul t s function puts the returned data into a record that contains
handles to arrays that contain the data, the type of data in each column, and the
length of each data item. The Data Access Manager allocates the memory for this data
in the application heap.

Using the Data Access Manager

CHAPTER 12

Data Access Manager

The DBCet Quer yResul t s function calls your status routine after it retrieves each
data item. You can use this opportunity to display the data item for the user

and to give the user the opportunity to cancel execution of the function. The

DBCet Quer yResul t s function also calls your status routine just before completing
execution, so that you can dispose of any memory allocated by the status routine,
remove any dialog box that you displayed, and update your windows if necessary.
To convert the returned data to text, go to the next step. If you do not want to convert
the returned data to text, skip to step 9.

7. Call the DBResul t sToText function. This function calls a result handler function for
each data type. The result handler converts the data to text, places it in a buffer, and
returns a handle to the buffer. Some result handlers are provided with the Data Access
Manager; you can provide as many with your application as you wish. Result
handlers are discussed in “Converting Query Results to Text” beginning on
page 12-43.

8. If you are finished using the query record, call the DBDi sposeQuery function to
dispose of the query record and free all the memory associated with the query record.
If you want to reuse the same query, return to step 5. You should close the query
document when you are finished using it.

If you want to use a new query document, return to step 3.

9. When you are finished using the data source, you must use the DBEnd function to
terminate the session. You must call the DBEnd function after the DBI ni t function has
returned a nonzero session ID, even if it also returned an error.

Listing 12-1 illustrates the use of the high-level interface. This code initiates a session
with a remote database, lets the user select a query document to execute, opens the
selected file, finds a' qsrc' resource, and creates a query record. Next, it executes the
query, checks the status of the remote database server, retrieves the data when it’s
available, and converts this data to text. When the query has finished executing, the code
disposes of the query record, ends the session, and closes the user-selected query
document. In general, there’s no reason why there can’t be multiple sessions open at
once. You can identify each session by its session ID. Listing 12-1 shows just one session.

Listing 12-1 assumes that you are using a database extension that supports asynchronous
execution of Data Access Manager routines. This listing shows just one possible
approach to sending a query and retrieving data asynchronously.

Jabeuel SS90V BlRQ H

Using the Data Access Manager 12-17

CHAPTER 12

Data Access Manager

Listing 12-1 Using the high-level interface

12-18

PROCEDURE MyHi Level (VAR rr: Resul

t sRecord; nyTextHdl: Handl e;

VAR t hi sSessi on: Longlnt; VAR sessErr: OSErr);

TYPE

{define a record to include space for the current value in }
{ A5 so a conpletion routine can find it}

CRRec = RECORD
QPB: DBAsyncPar anBl ockRec;
appsA5: Longlnt;

END;
CRRecPtr = ~CRRec;

{the paraneter bl ock}
{append A5 to the }
{ paraneter bl ock}

VAR
Start PB, Get QRPB: CRRec;
SFR: St andar dFi | eRepl y;
packErr, startQerr, getQerr, disposeQErr: OSErr;
getnewQerr, gStartQerr, gCGet QRErr: OSErr;
endErr, fsopenErr, fscloseErr, resultsErr: OSErr;
gStart, gQueryResults: Bool ean;
gr scHandl e: Handl e;
rsrclD: I nt eger;
rsrcType: ResType;
rsrcName: Str 255;
myQHandl e: Quer yHandl e;
savedResFi | e: I nt eger;
typeli st: SFTypeli st ;
f sRef Num I nt eger;

FUNCTI ON Get QPB: CRRecPtr;

I NLI NE $2E88;

BEG N
gStart : = FALSE;
gQueryResults : = FALSE;
sessErr : = noFErr,;
packErr := InitDBPack;

{display a dialog box to let t
typeList[O] := "qery';
StandardGetFil e(NIL, 1, typelLi
| F SFR sf Good = TRUE THEN
fsopenErr := FSpOpenRF(SFR.

{MOVE.L A0, (SP)}

{assune everything went fine}
{initialize the Data Access Myr}
he user pick a query docunent}

st, SFR);

sfFile, fsCurPerm fsRefNum;

I F (fsopenErr <> noErr) OR (SFR sfGood = FALSE) THEN

Using the Data Access Manager

CHAPTER 12

Data Access Manager

BEG N
sesskErr : = fsopenErr O User Cancel ed;
EXI T(MyHi Level) ;
END;
savedResFil e : = CurResFil e; {save current resource file}
UseResFi | e(f sRef Num ; {get query info from here}

{a query docunent should have only one 'qrsc' resource}
grscHandl e : = Get 1l ndResource(' qrsc', 1);

IF ResError <> noErr THEN

BEA N
sessErr := ResError;
EXI T(MyHi Level) ;
END;

{get the resource ID of the 'qrsc' resource}

CGet ResInfo(qgrscHandl e, rsrclD, rsrcType,

rsrcName) ;

{create a query record using the resource |D}
get newQerr : = DBGet NewQuery(rsrclD, myQHandl e);

| F getnewQErr <> noErr THEN

BEG N
sessErr = getnew(QErr;
endErr := DBEnd(thisSession, NL);
EXI T(MyHi Level) ;

END;

Start PB. QPB. conpl eti onProc := @¥Start ConpRout i ne;
St art PB. appsA5 : = Set Current A5; {save this for the }
{ conpletion routine}

{MyStartStatus is a status routine that

handl es nessages sent }

{ by the DBStartQuery function when it calls a |lowlevel }

{ function}

start Qerr := DBStartQuery(thisSession, nmyQHandl e,
@WStartStatus, @tartPB);

IF start Qerr <> noErr THEN
BEG N
sessErr := start QErr;
| F thisSession <> 0 THEN
endErr := DBEnd(thisSession, NL);
EXI T(MyHi Level) ;
END;
VWHI LE NOT gStart DO {while waiting for

gStart to go TRUE, }

BEA N { MyGoDoSonet hi ng cal |l s Wit Next Event }
MyGoDoSomet hing; { to give other routines a chance to run}

END; {whil e}
{the DBStartQuery call has conpl eted}

Using the Data Access Manager

12-19

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

IF gStart Qerr <> noErr THEN
BEG N
sesskErr = gStart QErr;
| F thisSession <> 0 THEN
endErr : = DBEnd(thisSession, NL);
EXI T(MyHi Level) ;

END;
Cet QRPB. QPB. conpl eti onProc : = @& Get QRConmpRout i ne;
Get QRPB. appsA5 : = Set Current A5; {save this for the }

{ conpletion routine}
{MyGet QRStatus is a status routine that handl es nessages sent }
{ by the DBGet QueryResults function when it calls a lowlevel }
{ function.}
get Qerr : = DBGet QueryResul ts(thisSession, rr, kDBWitForever,
@W& Get QRSt at us, @t QRPB) ;
I F get QBrr <> noErr THEN
BEG N
sesskErr = get QErr;
endErr := DBEnd(thisSession, NL);
EXI T(MyHi Level) ;
END;
VWHI LE NOT gQueryResults DO
BEG N
My GoDoSonet hi ng;
END; {whil e}
{The DBGCGet QueryResults call has conpleted. Assuming the call }
{ conpl eted successfully, you nmay want to convert the }
{ retrieved data to text, return nmenory you have borrowed, }
{ and end the session.}
| F gGet QRErr <> noErr THEN
BEG N
sessErr = gGet QRErr;
endErr := DBEnd(thisSession, NL);
EXI T(MyHi Level) ;
END;
{the data has been retrieved; convert it to text}
resultskrr := DBResultsToText (rr, myTextHdl);
{The current query is finished. You can elect to execute }
{ the next 'qgrsc' resource of the file, or select another }
{ query document. This exanple just returns to the caller.}
di sposeQErr : = DBDi sposeQuery(myQandl e);
UseResFi |l e(savedResFil e);{restore current resource file}
fscloseErr := FSO ose(fsRef Num); {close the query docunent}

12-20 Using the Data Access Manager

CHAPTER 12

Data Access Manager

| F fscloseErr <> noErr THEN
DoError (fscl oseErr);
endErr := DBEnd(thisSession, NL);
| F endErr <> noErr THEN
DoError (endErr) ;
END;

Listing 12-2 shows the completion routines My St ar t ConpRout i ne and
My CGet QRConpRout i ne used in Listing 12-1.

Listing 12-2 Two completion routines

PROCEDURE My St art ConpRout i ne(aCRRecPtr: CRRecPtr);

VAR
cur A5: Longl nt;

BEG N
aCRRecPtr := Get QPB; {get the param bl ock}
curA5 : = Set A5(aCRRecPtr”. appsA5); {set A5 to the app's A5}
gStart := TRUE; {query has been started}

gStart Qerr := aCRRecPtr”~. @QPB.result;{send back result code}
{do whatever else you want to do}
curA5 : = Set A5(curA5);{restore original A5}

END; {MStart ConpRouti ne}

PROCEDURE My Get QRConmpRout i ne(aCRRecPtr: CRRecPtr);

VAR
cur A5: Longl nt;
BEG N
aCRRecPtr : = CGet QPB; {get the param bl ock}

curA5 : = Set A5(aCRRecPtr”. appsA5); {set A5 to the app's A5}
gQueryResults := TRUE; {query results are conpl ete}

gCGet QRErr : = aCRRecPtr”. QPB.result; {send back the result code}
{do whatever else you want to do}

cur A5 : = Set A5(curA5); {restore original A5}

END;, {M/Get QRConpRouti ne}

The next section provides information about status routines.

Using the Data Access Manager 12-21

Jabeuel SS90V BlRQ H

12-22

CHAPTER 12

Data Access Manager

Writing a Status Routine for High-Level Functions

Both of the two main high-level functions, DBSt ar t Quer y and DBGet Quer yResul ts,
call low-level functions repeatedly. After each time they call a low-level function, these
high-level functions call a routine that you provide, called a status routine. Your status
routine can check the result code returned by the low-level function and can cancel
execution of the high-level function before it calls the next low-level function. Your status
routine can also update your application’s windows after the DBSt ar t Query function
has displayed a dialog box.

You provide a pointer to your status routine in the st at usPr oc parameter to the
DBSt art Quer y and DBGet Quer yResul t s functions.

Here is a function declaration for a status routine:

FUNCTI ON MySt at usFunc (nessage: Integer; result: OSErr;
dat aLen: Integer; dataPl aces: |nteger;
dat aFl ags: I nteger; dataType: DBType;
dataPtr: Ptr): Bool ean;

Your status routine should return a value of TRUE if you want to continue execution of
the DBSt ar t Quer y or DBGet Quer yResul t s function, or a value of FALSE if you want
to cancel execution of the function. In the latter case, the high-level function returns the
user Cancel edEr r result code.

Note

If you call the DBSt ar t Quer y or DBGet Quer yResul t s function
asynchronously, you cannot depend on the A5 register containing a
pointer to your application’s global variables when the Data Access
Manager calls your status routine. O

The nessage parameter tells your status routine the current status of the high-level
function that called it. The possible values for the message parameter depend on
which function called your routine.

The value of the r esul t parameter depends on the value of the nessage parameter, as
summarized in the following list:

Message Result

kDBUpdat eW nd 0

kDBAbout Tol ni t 0

kDBI ni t Conpl et e Result of DBI ni t
kDBSendConpl et e Result of DBSend
kDBExecConpl et e Result of DBExec

kDBSt art Quer yConpl et e Result of DBSt ar t Query
kDBGet | t enConpl et e Result of DBGet | t em

kDBGet Quer yResul t sConpl et e Result of DBGet Quer yResul t's

Using the Data Access Manager

CHAPTER 12

Data Access Manager

The dat aLen, dat aPl aces, dat aFl ags, dat aType, and dat aPt r parameters are
returned only by the DBGet Quer yResul t s function, and only when the nessage
parameter equals kDBGet | t enConpl et e. When the DBGet Quer yResul t s function
calls your status routine with this message, the dat aLen, dat aPl aces, and dat aType
parameters contain the length, decimal places, and type of the data item retrieved,
respectively, and the dat aPt r parameter contains a pointer to the data item.

The least significant bit of the dat aFl ags parameter is set to 1 if the data item is in the
last column of the row. The third bit of the dat aFl ags parameter is set to 1 if the data
item is NULL. You can use this information, for example, to check whether the data meets
some criteria of interest to the user, or to display each data item as the DBGet | t em
function receives it. You can use the constants kDBLast Col Fl ag and kDBNul | FI ag to
test for these flag bits.

The DBGet Quer yResul t s function returns a results record, which contains a handle to
the retrieved data. The address in the dat aPt r parameter points inside the array
specified by this handle. Because the dat aPt r parameter is not a pointer to a block of
memory allocated by the Memory Manager, but just a pointer to a location inside such a
block, you cannot use this pointer in any Memory Manager routines (such as the

Cet Pt r Si ze function). Note also that you cannot rely on this pointer remaining valid
after you return control to the DBGet Quer yResul t s function.

The DBSt ar t Quer y function can send to your status routine the following constants in

the nessage parameter:

CONST {DBStart Query status nessages}
kDBUpdat eW nd = 0; {updat e wi ndows}

kDBAbout Tol ni t =1, {about to call DBInit}
kDBI ni t Conpl et e = 2; {DBInit has conpl et ed}
kDBSendConpl et e = 3; {DBSend has conpl et ed}
kDBExecConpl et e = 4, {DBExec has conpl et ed}
kDBSt art Quer yConpl et e = b; {DBStart Query is about to }
{ compl et e}

DBSt art Quer y message

constant Meaning

kDBUpdat eW nd The DBSt ar t Quer y function has just called a

query definition function. Your status routine
should process any update events that your
application has received for its windows.

kDBAbout Tol ni t The DBSt ar t Quer y function is about to call the
DBI ni t function to initiate a session with a data
server. Because initiating the session might involve
establishing communication over a network, and
because in some circumstances the execution of a
query can tie up the user’s computer for some
length of time, you might want to display a dialog
box giving the user the option of canceling
execution at this time.

Using the Data Access Manager 12-23

Jabeuel SS90V BlRQ H

12-24

CHAPTER 12

Data Access Manager

DBSt art Query message
constant

kDBI ni t Conpl et e

kDBSendConpl et e

kDBExecConpl et e

kDBSt art Quer yConpl et e

Using the Data Access Manager

Meaning (continued)

continued

The DBI ni t function has completed execution.
When the DBSt ar t Quer y function calls your
status routine with this message, the r esul t
parameter contains the result code returned by the
DBI ni t function. If the DBI ni t function returns
the noEr r result code, the DBSt art Query
function calls the DBSend function next. If the

DBI ni t function returns any other result code,
you can display a dialog box informing the user of
the problem before returning control to the

DBSt ar t Quer y function. The DBSt art Query
function then returns an error code and stops
execution.

The DBSend function has completed execution.
When the DBSt ar t Quer y function calls your
status routine with this message, the r esul t
parameter contains the result code returned by the
DBSend function. If the DBSend function returns
the noEr r result code, the DBSt ar t Query
function calls the DBExec function next. If the
DBSend function returns any other result code,
you can display a dialog box informing the user of
the problem before returning control to the

DBSt ar t Quer y function. The DBSt art Query
function then returns an error code and stops
execution.

The DBExec function has completed execution.
When the DBSt ar t Quer y function calls your
status routine with this message, the r esul t
parameter contains the result code returned by the
DBExec function. If the DBExec function returns
the noEr r result code, the DBSt art Query
function returns control to your application next. If
the DBExec function returns any other result code,
you can display a dialog box informing the user of
the problem before returning control to the

DBSt ar t Quer y function. The DBSt art Query
function then returns an error code and stops
execution.

The DBSt ar t Quer y function has completed
execution and is about to return control to your
application. The function result is in the r esul t
parameter passed to your status routine. Your
status routine can use this opportunity to perform
any final tasks, such as disposing of memory that it
allocated or removing from the screen any dialog
box that it displayed.

CHAPTER 12

Data Access Manager

The DBCet Quer yResul t s function can send to your status routine the following

constants in the message parameter:

CONST {DBGet QueryResults status
kDBGet | t enConpl et e
kDBGet Quer yResul t sConpl et e

DBCGet Quer yResul t s message
constant

kDBGet | t enConpl et e

kDBGet Quer yResul t sConpl et e

nessages}

6; {DBGetltem has conpl et ed}

7; {DBGet QueryResults has }
{ conpl et ed}

Meaning

The DBCGet | t emfunction has completed
execution. When the DBGet Quer yResul t s
function calls your status routine with this
message, the r esul t parameter contains the
result code returned by the DBGet | t em
function. The DBGet Quer yResul t s
function also returns values for the

dat aLen, dat aPl aces, dat aType,

dat aFl ags, anddat aPt r parameters, as
discussed earlier in this section.

For each data item that it retrieves, the
DBGet Quer yResul t s function calls

the DBGet | t emfunction twice: once to
obtain information about the next data item
and once to retrieve the data item. The
DBCet Quer yResul t s function calls your
status routine only after calling the

DBGet | t emfunction to retrieve a data item.

If your status routine returns a function
result of FALSE in response to the

kDBGet | t emConpl et e message, the results
record returned by the

DBCet Quer yResul t s function to your
application contains data through the last
full row retrieved.

Data types and results records are described
in “Getting Query Results” beginning on
page 12-37.

The DBGet Quer yResul t s function has
completed execution and is about to return
control to your application. The function
result is in the r esul t parameter passed to
your status routine. Your status routine can
use this opportunity to perform any final
tasks, such as disposing of memory that it
allocated or removing from the screen any
dialog box that it displayed.

Listing 12-3 shows a status routine for the DBSt ar t Quer y function. This routine
updates the application’s windows in response to the kDBUpdat eW nd message,

Using the Data Access Manager

12-25

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

displays a dialog box giving the user the option of canceling before the data access is
initiated, and checks the results of calls to the DBl ni t , DBSend, and DBExec functions.
If one of these functions returns an error, the status routine displays a dialog box
describing the error.

Listing 12-3 A sample status routine

12-26

FUNCTI ON MySt art St atus(nessage: |Integer; result: OSErr;
datalLen: Integer; dataPl aces: Integer;
dat aFl ags: | nteger; dataType: DBType;
dataPtr: Ptr): Bool ean;

VAR
nyString: Str 255;
conti nue: Bool ean;
BEG N
continue := TRUE, {assunme user wants to continue with query}
CASE nessage OF
kDBUpdat eW nd: {a gdef function has just been called; }
BEG N { handl e activate and update events}
MyDoActivate; {find and handl e activate events}
MyDoUpdat e; {find and handl e update events}
END;, {kDBUpdat eW nd}
kDBAbout Tol ni t: {about to initiate a session}

BEGA N { MyDi spl aybDi al og di spl ays a di al og box. The val ue }
{ returned in the continue variable indicates }
{ whether DBStartQery should continue.}
myString := 'The Data Access Manager is about to open a
session. This could take a while. Do you
want to continue?';
MyDi spl ayDi al og(@yString, continue);
END; {kDBAbout Tol nit}
kDBI ni t Conpl ete: {the DBInit function has conpl eted executi on}

BEG N
IF result <> noErr THEN {if there's an error, }
BEA N { let the user know what it is}
CASE result OF
rcDBError:
BEG N
myString :='The Data Access Manager was unable to

open the session. Please check your
connections and try again later."';
MyDi spl ayString(@yString);
END; {rcDBError}

Using the Data Access Manager

CHAPTER 12

Data Access Manager

r cDBBadDDev:
BEG N
nyString := 'The Data Access Manager cannot find
t he dat abase extension file it needs to
open a session. Check with your system
adm ni strator for a copy of the file.";
MyDi spl ayString(@yString);
END; {rcDBBadDDev}
OTHERW SE
BEG N
myString :='The Data Access Manager was unable to
open the session. The error code
returned was';
MyDi spl ayError (@ryString, result);
END; {of otherw se}
END;, {of CASE result}
END; {of result <> noErr}
END; {kDBI ni t Conpl et e}
kDBSendComnpl ete: {the DBSend function has conpl et ed executi on}
BEG N
{if there's an error, let the user know what it is}
IF result <> noErr THEN

BEG N
IF result = rcDBError THEN
BEG N
myString := "An error occurred while the Data
Access Manager was trying to send the
query. Please try again later."';
MyDi spl ayString(@yString);
END
ELSE
BEG N

nyString := "An error occurred while the Data
Access Manager was trying to send the
query. The error code returned was';

MyDi spl ayError (@ryString, result);

END;
END; {of result <> noErr}
END; {kDBSendConpl et e}
kDBExecConpl ete: {the DBExec function has conpl eted executi on}

BEG N
IF result <> noErr THEN {if there's an error, }
BEA N { let the user know what it is}

Using the Data Access Manager 12-27

Jabeuel SS90V BlRQ H

12-28

CHAPTER 12

Data Access Manager

IF result = rcDBError THEN
BEG N
nyString := 'The Data Access Manager was unable to
execute the query. There nay be a problem
with the query docunent or the database.
Check with your system administrator.';
MyDi spl ayString(@yString);
END
ELSE
BEG N
myString := "An error occurred while the Data
Access Manager was trying to execute the
query. The error code returned was';
MyDi spl ayError (@ryString, result);
END;
END, {of result <> noErr}
END; {kDBExecConpl et e}
kDBSt art Quer yConpl ete: {the DBStart Query function is about }
BEA N { to return control to your application}
{clean up nenory and any di al og boxes left on the screen}
My eanUpW ndows;
END;, {kDBStart QueryConpl et e}
END; {CASE nessage}
MyStartStatus : = continue;
END;

Using the Low-Level Interface

You can use the low-level interface to establish communication (initiate a session) with a
data server, send a query to the data server, execute the query, and retrieve any data
requested by the query. You call one or more low-level routines to accomplish each of
these tasks.

Applications that implement this type of data access must provide user control and
feedback, as described in “General Guidelines for the User Interface” on page 12-13.
When the data source is ready to return data, you can retrieve it all and then display it to
the user, or you can display the data as it arrives. If the data arrives slowly, it’s best to
display it one record at a time as it arrives. This way the user can preview the data,
decide if it’s the desired information, and cancel the query if not.

Figure 12-5 is a flowchart of a typical session using the low-level interface. As Figure 12-5
illustrates, you must follow this procedure to use the low-level interface:

1. Call the | ni t DBPack function to initialize the Data Access Manager.

2. Call the DBI ni t function to establish communication with the data server. The
DBl ni t function returns an identification number, called a session ID. This session ID

Using the Data Access Manager

CHAPTER 12

Data Access Manager

is unique; no other current session, for any database extension, has the same
session ID.

[EEY
N

Jabeuel SS90V BlRQ

Using the Data Access Manager 12-29

CHAPTER 12

Data Access Manager

Figure 12-5

A flowchart of a session using the low-level interface

InitDBPack I

_omni <
4

PG

Command stting
or
data item?

Data
item

Command
string

| DBSenditem |
¢
U

Query
complete?,

@Yes
DBExec I

%
DBState I

g

No _ Query finished
executing?

@Yes

Requested
data?

@Yes
DBGetltem I
g

Last data
item?

| obBSend |

)

No
| —

No

[—

No

Yes

Send
another
query?

AN

QYes

Nﬁ> DBEnd |
d

Open
another
session?

QYes

No
> Quit

12-30 Using the Data Access Manager

CHAPTER 12

Data Access Manager

You must specify the session ID any time you want to send data to or retrieve data
from this session.

The DBI ni t function requires as input parameters the name of the database extension
and character strings for the host system, user name, password, and connection string.
All of these parameters depend on the user and the user’s computer system,
including the specific database extension, host computer, data server, and database
management software in use. You will not know the user name and password when
you are writing an application, and you might not know the values of any of these
parameters. Therefore, you must display a dialog box that prompts the user for the
necessary information.

Depending on the database extension you are using, the DBI ni t function

might return a session ID of zero if it fails to initiate a session, or it might return

a nonzero session ID and a result code other than noEr r. In the latter case, you

can pass the session ID to the DBGet Er r function to determine the cause of the error.
If the DBI ni t function returns a nonzero session ID and a result code other than
NOEr r, you must call the DBEnd function before making another attempt to open

the session.

3. Prepare a query, and send it to the data server by calling the DBSend and
DBSendl t emfunctions one or more times.

An application that uses the low-level interface must be capable of creating a query
for the data server in the language and format required by that data server.

The DBSend function sends a query or a portion of a query to the data server. The
data server appends this portion of the query to any portion you sent previously.
Because the Data Access Manager and data server do not modify the string you send
in any way, they do not insert any delimiter between fragments of queries that you
send to the data server. If you want a blank or a semicolon to be included between
query fragments, or if you want to use return characters to divide the query into lines
of text, you must include them in the character string that you send with the DBSend
function. The data string that you send with the DBSend function can be any length
up to 64 KB.

The DBSendl t emfunction sends a single data item to the data server. Use the
DBSendl t emfunction to send data items to the data source in the same format as
they are retrieved from the data source by the DBGet | t emfunction. You must specify
the data type as an input parameter and, for any data type that does not have an
implied length, you must specify the length as well. The database extension or the
data server (depending on how the system is implemented) converts the data item to
a character string and appends it to the query, just as a query program fragment is
appended to the query by the DBSend function.

You can call the DBSend and DBSend| t emfunctions as many times as you wish to
send your query to the data server.

Listing 12-4 sends the Data Access Language query fragment “pri nt 451+222;” to
the Data Access Language server.

Jabeuel SS90V BlRQ H

Using the Data Access Manager 12-31

CHAPTER 12

Data Access Manager

Listing 12-4 Sending a query fragment

FUNCTI ON MySendFr agnent (sesslI D Longlnt): OSErr;

VAR
val uel: Longl nt;
val ue2: Longl nt ;
textl, text2, texta3: Str15;
text1Ptr, text2Ptr, text3Ptr: Ptr;
rc: OSErr;
BEG N
textl := "'print ';
val uel : = 451;
text2 := '"+';
val ue2 : = 222;
text3 :=";";

MySet Text Ptrs(textl, textl1Ptr, text2, text2Ptr,
text3, text3Ptr);
rc := DBSend (sesslID, textlPtr, LENGIH(textl), NL);
IFrc noErr THEN
rc := DBSendltem (sesslD, typelnteger, 0, 0, O,
Ptr(ORD(@al uel)), NL);

IF rc = noErr THEN
rc := DBSend (sesslD, text2Ptr, LENGTH(text2), NL);
IF rc = noErr THEN

rc := DBSendltem (sesslD, typelnteger, 0, 0, O,
Ptr(ORD @al ue2)), NL);

IF rc = noErr THEN
rc := DBSend (sessID, text3Ptr, LENGTH(text3), NL);
MySendFragnent : = rc;

END;

4. Use the DBExec function to initiate execution of the query.

Depending on the way the system you are using is implemented, the DBExec
function might return control to your application as soon as the query has begun
execution.

5. Use the DBSt at e function to determine the status of the data source.

The DBSt at e function tells you when the data server has finished executing the
query you just sent. If you have requested data, the data server stores the data you
requested but does not send it to your application until you request it explicitly. The
DBSt at e function tells you when the data is available; if data is available, go to step
6. If you wish to send another query, return to step 3. If you are finished using the
data source, skip to step 7.

12-32 Using the Data Access Manager

CHAPTER 12

Data Access Manager

6. Call the DBGet | t emfunction repeatedly to retrieve the data.

The DBGet | t emfunction retrieves the next data item from the data server. You can
also use this function to obtain information about the next data item without
retrieving the data. When you use the DBGet | t emfunction to retrieve a data item,
you must specify the location and size of the buffer into which the function is to place
that item. If you know beforehand what kind of data to expect, you can allocate a
buffer of the exact size you need. If you do not know what type of data to expect, you
can first call the DBGet | t emfunction with a NI L pointer to the data buffer. The
DBGet | t emfunction then returns information about the next data item without
actually retrieving it. You can then allocate the appropriate buffer and call

DBCet | t emagain.

Alternatively, to avoid calling DBCet | t emtwice for each data item, you can allocate

a buffer that you expect to be of sufficient size for any data item and call

the DBCet | t emfunction. If the buffer is not large enough for the data item, the

DBGet | t emfunction returns the r cDBEr r or result code, but still returns information
about the data item. You can then allocate the necessary buffer, call the DBUnGet | t em
function to go back one data item, and call the DBGet | t emfunction again to retrieve
the data item a second time.

The DBGet | t emfunction includes at i meout parameter that you can use to specify
the maximum amount of time that the database extension should wait to receive
results from the data server before canceling the command. If the database extension
you are using does not support asynchronous execution of routines, you can use the
ti meout parameter to return control to your application while a query is executing.
To use the t i meout parameter in this way, call the DBGet | t emfunction periodically,
specifying a brief period of time for the t i meout parameter. Your application can
then retrieve the next data item as soon as execution of the query is complete without
having to call the DBSt at e function to determine when data is available. The

DBGet | t emfunction ignores the t i Nneout parameter if you make an asynchronous
call to this function.

7. When you are finished using the data source, you must use the DBEnd function to
terminate the session. You must call the DBEnd function after the DBl ni t function has
returned a nonzero session ID, even if it also returned an error.

The procedure in Listing 12-5 uses the low-level interface to send a Data Access
Language routine to the Data Access Language server on a remote computer and then
retrieves the results. The procedure initiates a session with a remote database and calls
the MySendFr agnment routine (Listing 12-4) to send a query. Next, it executes the query,
checks the status of the remote database server, and retrieves the data when it’s
available. This example retrieves only one data item. To retrieve more than one data
item, put the data-retrieval code in a loop.

Listing 12-5 assumes that the database extension does not support asynchronous
execution of Data Access Manager routines. For an example of asynchronous execution
of routines, see Listing 12-1 beginning on page 12-18.

Using the Data Access Manager 12-33

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

Listing 12-5 Using the low-level interface

PROCEDURE MyLoLevel (VAR t hi sSession: Longlnt; VAR sessErr: OSErr);

VAR
t heDDevNane: Str63;
t heHost, theUser: Str 255;
t hePasswd, theConnStr: St r 255;
packErr, initErr, sendErr, execErr: OSErr;
stateErr, getErr, endErr: OSErr;
nyTi meout : Longl nt;
myType: DBType;
I en, places, flags: I nt eger;
nmyBuf f er : Ptr;
nyDat al nf o: Bool ean;
myDat aRet ur ned: Bool ean;

BEG N
sessErr := noErr; {assunme everything went fine}
packErr := InitDBPack; {init the Data Access Myr}

{Set up values for theDDevName, theHost, theUser, thePasswd, }
{ and theConnStr. You can display a dialog box pronpting }
{ the user to supply sone of these paraneters.}

t heDDevNanme := ' DAL';

t heHost := 'The Host System Nane';
theUser := "'Joe User';

t hePasswd := 'secret';

theConnStr := 'extra stuff as needed';

initErr := DBInit(thisSession, theDDevNane, theHost, theUser,
t hePasswd, theConnStr, N L);
IF initErr <> noErr THEN
BEG N
sesskErr = initErr;
| F thisSession <> 0 THEN endErr := DBEnd(thisSession, NL);
EXI T(MyLoLevel) ;

END;
{send a query or query fragnent to the renpte data server}
sendErr : = MySendFragnent (t hi sSessi on);

{If there's an error, then probably sonething went wong with }
{ DBSend or DBSendltem Don't forget to end the session.}
| F sendErr <> noErr THEN
BEG N
sessErr := sendErr;
endErr : = DBEnd(thisSession, NL);
EXI T(MyLoLevel) ;
END;

12-34 Using the Data Access Manager

CHAPTER 12

Data Access Manager

{The query has been sent. This exanple assunes that }
{ the query will return data.}

execErr := DBExec(thisSession, NL);

| F execErr = noErr THEN

BEG N
stateErr := rcDBExec;
WHI LE (stateErr = rcDBExec) DO
BEG N {while waiting for stateErr <> rcDBExec, }

MyGoDoSonet hing; { let other apps run}
stateErr := DBState(thisSession, NL);
END;
{DBState returned a result code other than rcDBExec. }
{ If it's rcDBValue, there are results to retrieve. }
{ Gherwise, it's probably an error.}
| F stateErr = rcDBVal ue THEN
BEG N
{call DBGetltemonce to get info on the data itemand }
{ call DBCetltema second tinme to get the data iten}
nyTi meout := 2*60; {2*60 ticks = 2 seconds}
nmyType : = DBType(typeAnyType);
nmyDat al nfo : = FALSE;
VWHI LE NOT nyDat al nfo DO
BEG N
getErr := DBGetlten(thisSession, nyTinmeout, mnmyType,
| en, places, flags, NIL, NL);
{1f you tined out, then give up control. \Wen }
{ control returns, continue getting the info.}
| F getErr = rcDBBreak THEN MyGoDoSonet hi ng
ELSE IF (getErr = noErr) OR (getErr = rcDBval ue) THEN
nyDat al nfo : = TRUE
ELSE
BEG N
sesskErr : = getErr;
endErr := DBEnd(thisSession, NL);
EXI T(MyLoLevel) ;
END;
END; {whil e}
{At this point, you nmay want to exanm ne the info }
{ about the data item before calling DBGetltema }
{ second tine to actually retrieve it.}
{M/G nMmeSpace returns a pointer to where you want }
{ the data itemto go.}
nyBuf fer := MyG mreSpace(l en);

Using the Data Access Manager 12-35

Jabeuel SS90V BlRQ H

12-36

CHAPTER 12

Data Access Manager

nyDat aRet urned : = FALSE;
VWH LE NOT nyDat aRet ur ned DO
BEG N
getErr := DBGetlten(thisSession, nyTinmeout, nmyType,
I en, places, flags, nyBuffer,
NIL);
{If you tinmed out, then give up control. \When }
{ control returns, continue getting the data.}
|F getErr = rcDBBreak THEN MyGoDoSonet hi ng
ELSE I F (getErr = noErr) OR
(getErr = rcDBVal ue) THEN nyDat aRet urned : = TRUE
ELSE
BEG N
sessErr := getErr;
endErr := DBEnd(thisSession, NL);
EXI T(MyLoLevel) ;
END;
END; {whil e}
END
ELSE sessErr := stateErr;
END
ELSE sessErr := execErr;
endErr : = DBEnd(thisSession, NL);
END;

Note that, even if you are using the low-level interface to send queries to the data server,
you might want to use the high-level functions to retrieve data and convert it to text.

Getting Information About Sessions in Progress

If your application is only one of several on a single Macintosh computer connected to
data servers, you can use the DBGet Connl nf 0 and DBGet Sessi onNumfunctions to
obtain information about the sessions in progress. If you know the session ID (which is
returned by the DBI ni t function when you open a session), you can use the

DBGet Connl nf o function to determine the database extension being used, the name of
the host system on which the session is running, the user name and connection string
used to initiate the session, the time at which the session started, and the status of the
session. The status of the session specifies whether the data server is executing a query
or waiting for another query fragment, whether there is output data available, and
whether execution of a query ended in an error.

Using the Data Access Manager

CHAPTER 12

Data Access Manager

If you do not know the session ID, or if you want to get information about all open
sessions, you can specify a database extension and a session number when you call the
DBGet Connl nf o function. Although there can be only one active session with a given
session ID, session numbers are unique only for a specific database extension. Because
the database extension assigns session numbers sequentially, starting with 1, you can
call the DBGet Connl nf o function repeatedly for a given database extension,
incrementing the session number each time, to obtain information about all

sessions open for that database extension. Your application need not have initiated

the session to obtain information about it in this fashion.

The DBGet Sessi onNumfunction returns the session number when you specify the
session ID. You can use this function to determine the session numbers for the sessions
opened by your own application. You might want this information, for example, so you
can distinguish your own sessions from those opened by other applications when you
use the DBGet Connl nf o function to get information about all open sessions.

Processing Query Results

You can use the low-level function DBGet | t emto retrieve a single data item returned by
a query, or you can use the high-level function DBGet Quer yResul t s to retrieve all of
the query results at once. If you use the DBGet Quer yResul t s function, you can then
use the DBResul t sToText function to convert the results to ASCII text. The

DBResul t sToText function calls routines called result handlers, which are installed in
memory by applications or by system extensions (files containing ' | NI T' resources).
This section discusses the use of the DBGet | t emand DBGet Quer yResul t s functions
and describes how to write and install a result handler.

Getting Query Results

The DBGet | t emfunction retrieves a single data item that was returned by a data source
in response to a query. When you call the DBGet | t emfunction, you specify the data
type to be retrieved. If you do not know what data type to expect, you can specify the

t ypeAnyType constant for the dat aType parameter, and the data server returns the
next data item regardless of data type. It also returns information about the data item,
including data type and length.

If you do not know the length of the next data item, you can specify NI L for the buf f er
parameter in the DBGet | t emfunction, and the data server returns the data type, length,
and number of decimal places without retrieving the data item. The next time you call
the DBGet | t emfunction with a nonzero value for the buffer parameter, the function
retrieves the data item.

Using the Data Access Manager 12-37

Jabeuel SS90V BlRQ H

12-38

CHAPTER 12

Data Access Manager

If you want to skip a data item, specify the t ypeDi scar d constant for the dat aType
parameter. Then the next time you call the DBGet | t emfunction, it retrieves the
following data item.

You should use the DBGet | t emfunction if you want complete control over the retrieval
of each item of data. If you want the Data Access Manager to retrieve the data for you,
use the DBGet Quer yResul t s function instead.

Table 12-1 shows the data types recognized by the Data Access Manager. You use a
constant to specify each data type, as follows:

CONST {data types}

t ypeAnyType = 0 {can be any data type}

t ypeNone = 'none'; {no nore data expected}

t ypeBool ean = 'bool '; { Bool ean}

t ypeSM nt = 'shor'; {short integer}

typel nt eger = 'long'; {i nteger}

t ypeSMFI oat = 'sing'; {short floating point}

t ypeFl oat = 'doub'; {floating point}

t ypeDat e = 'date'; {dat e}

typeTi ne ='time'; {time}

typeTineStanp = 'tins'; {date and tine}

t ypeChar = ' TEXT"; {character}

t ypeDeci mal = '"deci'; {deci mal nunber}

t ypeMoney = 'nmone'; {noney val ue}

t ypeVChar = 'vcha'; {vari abl e character}

typeVBin = 'vbin'; {variabl e binary}

t ypeLChar = 'lcha'; {long character}

typelLBi n ="'lbin'; {l ong bi nary}

typeDi scard = 'disc'; {discard next data iten}

t ypeUnknown = 'unkn'; {result handl er for unknown }
{ data type}

t ypeCol Br eak = 'col b"; {result handler for columm break}

t ypeRowBr eak = '"row’'; {result handler for end of |ine}

The writer of a database extension can define other data types to support specific data
sources or data servers.

Using the Data Access Manager

CHAPTER 12

Data Access Manager

Each data type has a standard definition, shown in Table 12-1. For example, if the
DBGet | t emfunction returns the t ypel nt eger constant for the dat aType parameter,
you know that the data item represents an integer value and that a 4-byte buffer is
necessary to hold it. Similarly, if you are using the DBSend| t emfunction to send to the
data server a data item that you identify as t ypeFl oat, the data server expects to
receive an 8-byte floating-point value.

Notice that some of these data types are defined to have a specific length (referred to as
an implied length), and some do not. The | en parameter of the DBSendl t emand

DBGet | t emfunctions indicates the length of an individual data item. The

DBGet Quer yResul t s function returns a handle to an array of lengths, decimal places,
and flags in the col | nf o field of the results record. The t ypeAny Type,

t ypeCol Br eak, and t ypeRowBr eak constants do not refer to specific data types, and
therefore the length specification is not applicable for these constants.

Table 12-1 Data types defined by the Data Access Manager

Constant Length Definition

typeAnyType NA Any data type (used as an input parameter to the
DBCet | t emfunction only; never returned by the
function).

t ypeNone 0 Empty.

t ypeBool ean 1 byte TRUE (1) or FALSE (0).

typeSM nt 2 bytes Signed integer value.

t ypel nt eger 4 bytes Signed long integer value.

t ypeSMFI oat 4 bytes Signed floating-point value.

t ypeFl oat 8 bytes Signed floating-point value.

typeDat e 4 bytes Date; a long integer value consisting of a year (most
significant 16 bits), month (8 bits), and day (least
significant 8 bits).

typeTi me 4 bytes Time; a long integer value consisting of an hour (0-23;

most significant 8 bits), minute (8 bits), second (8 bits),
and hundredths of a second (least significant 8 bits).

typeTi meSt anp 8 bytes Date and time. A long integer date value followed by a
long integer time value.

t ypeChar Any Fixed-length character string, not NULL terminated. The

length of the string is defined by the specific data
source.

Using the Data Access Manager 12-39

Jabeuel SS90V BlRQ H

12-40

CHAPTER 12

Data Access Manager

Table 12-1 Data types defined by the Data Access Manager (continued)

Constant Length
t ypeDeci mal Any
t ypeMoney Any
t ypeVChar Any

Using the Data Access Manager

Definition

Packed decimal string. A contiguous string of 4-bit
nibbles, each of which contains a decimal number,
except for the low nibble of the highest-addressed byte
(that is, the last nibble in the string), which contains a
sign. The value of the sign nibble can be 10, 12, 14, or 15
for a positive number or 11 or 13 for a negative number;
12 is recommended for a positive number and 13 is
recommended for a negative number. The most
significant digit is the high-order nibble of the
lowest-addressed byte (that is, the first nibble to appear
in the string).

The total number of nibbles (including the sign nibble)
must be even; therefore, the high nibble of the
highest-addressed byte of a number with an even
number of digits must be 0.

For example, the number +123 is represented as $123C.

Bits 7 4 3 0 Address
1 2 A
3 C A+l

The number —1234 is represented as $01234D.

Bits 7 4 3 0 Address
0 1 A
2 3 A+1
4 D A+2

The length of a packed decimal string is defined as the

number of bytes, including any extra leading 0 and the
sign nibble. A packed decimal string can have from 0 to
31 digits, not including the sign nibble.

In addition to the length of a packed decimal string,
each data item has an associated value that indicates
the number of digits that follow the decimal place. The
pl aces parameter in the DBGet | t emand

DBSendl t emfunctions indicates the number of
decimal places in an individual data item. The

DBCGet Quer yResul t s function returns the number of
decimal places.

Same ast ypeDeci nmal , but always has two decimal
places.

Variable-length character string, NULL terminated.

continued

CHAPTER 12

Data Access Manager

Table 12-1 Data types defined by the Data Access Manager (continued)

Constant
typeVBin

t ypeLChar
typeLBin
typeDi scard

t ypeUnknown

t ypeCol Br eak

t ypeRowBr eak

Length
Any

Any
Any
NA

NA

NA

NA

Definition

Not defined. Reserved for future use.
Not defined. Reserved for future use.
Not defined. Reserved for future use.

Do not retrieve the next data item (used as an input
parameter to the DBGet | t emfunction only; never
returned by the function).

A dummy data type for the result handler that
processes any data type for which no other result
handler is available (used as an input parameter to the
DBl nst al | Resul t Handl er,

DBRenpveResul t Handl er, and

DBCet Resul t Handl er functions only; never returned
by the DBCet | t emfunction).

A dummy data type for the result handler that the
DBGet Quer yResul t s function calls after each item
that is not the last item in a row (used as an input
parameter to the DBl nst al | Resul t Handl er,
DBRenpveResul t Handl er, and

DBCet Resul t Handl er functions only; never returned
by the DBGet | t emfunction).

A dummy data type for the result handler that the
DBGet Quer yResul t s function calls at the end of each
row (used as an input parameter to the

DBl nst al | Resul t Handl er,

DBRenpveResul t Handl er, and

DBCet Resul t Handl er functions only; never returned
by the DBGet | t emfunction).

The DBGet Quer yResul t s function retrieves all of the data that was returned by a data
source in response to a query, unless insufficient memory is available to hold the data, in
which case it retrieves as many complete rows of data as possible. The

DBGet Quer yResul t s function stores the data in a structure called a results record.

You must allocate the results record data structure and pass this record to the

DBGet Quer yResul t s function. The Data Access Manager allocates the handles inside
the results record. When your application is finished using the results record, you must
deallocate both the results record and the handles inside the results record.

Using the Data Access Manager

12-41

H

Jabeuel SS90V BlRQ

12-42

CHAPTER 12

Data Access Manager

The results record is defined by the Resul t sRecor d data type.

TYPE Resul t sRecord =

RECORD
nunRows: I nt eger; {nunber of rows retrieved}
nuntol s: I nt eger; {nunber of colums per row}
col Types: Col TypesHandl e; {type of data in each col umj}
col Dat a: Handl e; {array of data itens}
col I nfo: Col | nf oHandl e; {info about each data itent
END;

The nunRows field in the results record indicates the total number of rows retrieved. If
the DBGet Quer yResul t s function returns a result code other than r cDBVal ue, then
not all of the data actually returned by the data source was retrieved. This could happen,
for instance, if the user’s computer does not have sufficient memory space to hold all the
data. In this case, your application can make more space available (by writing the data in
the data record to disk, for example) and then call the DBGet Quer yResul t s function
again to complete retrieval of the data.

Note

The DBGet Quer yResul t s function retrieves whole rows only; if it runs
out of space in the middle of a row, it stores the partial row in a private
buffer so that the data in the results record ends with the last complete
row. Because the last partial row is no longer available from the data
server, you cannot start to retrieve data with the DBGet Quer yResul t s
function and then switch to the DBGet | t emfunction to complete the
data retrieval. O

The nuntCol s field indicates the number of columns in each row of data.

The col Types field is a handle to an array of data types, specifying the type of data in
each column. The number of elements in the array is equal to the value in the nunCol s
field. Table 12-1 beginning on page 12-39 shows the standard data types.

The col Dat a field is a handle to the data retrieved by the DBGet Quer yResul t s
function.

Using the Data Access Manager

CHAPTER 12

Data Access Manager

The col | nf o field is a handle to an array of records of type DBCol | nf oRecor d, each of
which specifies the length, places, and flags for a data item. There are as many records in
the array as there are data items retrieved by the DBGet Quer yResul t s function. Here
is the DBCol | nf oRecor d type definition:

TYPE DBCol | nfoRecord =

RECORD
| en: I nt eger; {length of data iten}
pl aces: I nt eger; {pl aces for decinal and }
{ nmoney data itens}
fl ags: I nt eger; {flags for data iten}
END;

The | en field indicates the length of the data item. The DBGet Quer yResul t s function
returns a value in this field only for those data types that do not have implied lengths;
see Table 12-1 beginning on page 12-39.

The pl aces field indicates the number of decimal places in data items of types
t ypeMoney and t ypeDeci nmal . For all other data types, the pl aces field returns 0.

The least significant bit of the f | ags field is set to 1 if the data item is in the last column
of the row. The third bit of the f | ags field is 1 if the data item is NULL. You can use the
constants kDBLast Col FI ag and kDBNul | FI ag to test for these flag bits.

Converting Query Results to Text

The DBResul t sToText function provided by the high-level interface converts the data
retrieved by the DBGet Quer yResul t s function into strings of ASCII text. This function
makes it easier for you to display retrieved data for the user.

For the DBResul t sToText function to convert data of a specific type to text, either the
application or the system software must have a routine called a result handler. With
System 7, Apple Computer, Inc., provides system result handlers for the data types listed
here. (These data types are described in Table 12-1 beginning on page 12-39.)

Data type Constant Data type Constant

Boolean t ypeBool ean Time typeTi me

Short integer t ypeSM nt Date and time t ypeTi meSt anp
Integer typel nt eger Character t ypeChar

Short floating t ypeSMFI oat Decimal number t ypeDeci mal
point

Floating point t ypeFl oat Money value t ypeMoney

Date typeDat e Variable character t ypeVChar

Note

Apple’s system result handler for the variable character (t ypeVChar)
data type strips trailing spaces from the character string. O

Using the Data Access Manager 12-43

Jabeuel SS90V BlRQ H

12-44

CHAPTER 12

Data Access Manager

In addition to the result handlers for these standard data types, Apple provides the
following three system result handlers, which correspond to no specific data type:

Data type Constant
Unknown t ypeUnknown

Column break t ypeCol Br eak
End of line t ypeRowBr eak

The t ypeUnknown result handler processes any data type for which no other result
handler is available. The DBResul t sToText function calls the t ypeCol Br eak

result handler after each item that is not the last item in a row. This result handler does
not correspond to any data type, but adds a delimiter character to separate columns of
text. The default t ypeCol Br eak result handler inserts a tab character. Similarly, the
DBResul t sToText function calls the t ypeRowBr eak result handler at the end of each
row of data to add a character that separates the rows of text. The default

t ypeRowBr eak result handler inserts a return character. Your application can install
your own t ypeCol Br eak and t ypeRowBr eak result handlers to insert whatever
characters you wish—or to insert no character at all, if you prefer.

You can install result handlers for any data types you know about. When you call the
DBl nst al | Resul t Handl er function, you can specify whether the result handler you
are installing is a system result handler. A system result handler is available to all
applications that use the system. All other result handlers (called application result
handlers) are associated with a particular application. The DBResul t sToText function
always uses a result handler for the current application in preference to a system result
handler for the same data type. When you install a system result handler for the same
data type as an already installed system result handler, the new result handler replaces
the old one. Similarly, when you install an application result handler for the same data
type as a result handler already installed for the same application, the new result handler
replaces the old one for that application.

Result handlers are stored in memory. The Data Access Manager installs its system result
handlers the first time the Macintosh Operating System loads the Data Access Manager
into memory. You must reinstall your own application result handlers each time your
application starts up. You can also install your own system result handlers each time
your application starts up, or you can provide a system extension (that is, a file with an
"INl T resource) that installs system result handlers each time the user starts up the
system.

Here is a function declaration for a result handler function:

FUNCTI ON MyResul t Handl er (dataType: DBType;
t heLen, thePl aces, theFlags: Integer;
theData: Ptr; theText: Handle): OSErr;

Using the Data Access Manager

CHAPTER 12

Data Access Manager

The dat aType parameter specifies the data type of the data item that the
DBResul t sToText function is passing to the result handler. Table 12-1 beginning on
page 12-39 describes the standard data types.

The parameters t heLen and t hePl aces specify the length and number of decimal
places of the data item that the DBResul t sToText function wants the result handler to
convert to text.

The parameter t heFl ags is the value returned for the f | ags parameter by the

DBGet | t emfunction. If the least significant bit of this parameter is set to 1, the data item
is in the last column of the row. If the third bit of this parameter is set to 1, the data

item is NULL. You can use the constants kDBLast Col FlI ag and kDBNul | FlI ag to test for
these flag bits.

The parameter t heDat a is a pointer to the data that the result handler is to convert
to text.

The parameter t heText is a handle to the buffer that is to hold the text version of the
data. The result handler should use the Memory Manager’s Set Handl eSi ze function
to increase the size of the buffer as necessary to hold the new text, and append the new
text to the end of the text already in the buffer. The Set Handl eSi ze function is
described in the chapter “Memory Manager” in Inside Macintosh: Memory.

If the result handler successfully converts the data to text, it should return a result code
of 0 (noErr).

You can use the DBI nst al | Resul t Handl er function to install a result handler and the
DBRenpveResul t Handl er function to remove an application result handler. You can
install and replace system result handlers, but you cannot remove them.

The following line of code installs an application result handler. The first parameter
(t ypel nt eger) specifies the data type that this result handler processes. The second
parameter (My Typel nt eger Handl er) is a pointer to the result handler routine. The
last parameter (FALSE) is a Boolean value specifying that this routine is not a system
result handler.

err := DBl nstal | Resul t Handl er
(typel nt eger, @& Typel nt eger Handl er, FALSE) ;

Using the Data Access Manager 12-45

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

Listing 12-6 shows a result handler that converts the integer data type to text.

Listing 12-6 A result handler

FUNCTI ON MyTypel nt eger Handl er (dat at ype: DBType; thelLen: |nteger;
theData: Ptr;
t heText: Handle): OSErr;

VAR
t hel nt: Longl nt ;
t heText Len: Longl nt;
t enp: St r 255;
at enpl: Ptr;
at enp2: Longl nt ;
at enp3: Longl nt ;
BEG N
Bl ockMove(t heData, @helnt, sizeof(thelnt));
NumToStri ng(thelnt, temp); {convert to text}
t heText Len : = Get Handl eSi ze(t heText); {get current size }

{ of theText}
{size text handl e}
Set Handl eSi ze(t heText, theTextLen + Longlnt (LENGTH(temnmp)));
IF (MenError <> noErr) THEN
MyTypel nt eger Handl er := MenError

ELSE

BEG N
atenpl := Ptr(ORD(@enp));
atenp2 := Longlnt(theText”) + theTextLen;
atenp3 : = Longlnt (LENGTH(temp));

{use Bl ockMbve to append text}
Bl ockMove(P2CStr (at enpl), Ptr(atenp2), atenp3);
My Typel nt eger Handl er : = MenError;
END;
END;

Using the Data Access Manager

CHAPTER 12

Data Access Manager

Creating a Query Document

A query document is a file of type ' gery' that containsa' qr sc' resource and one or
more' Wstr' resources, and may contain a' qdef' resource plus other resources.
Query documents make it possible for you to write applications that can communicate
with data servers without requiring familiarity with the command language used by the
data server. Because a query document is most useful if it can be used by many

different applications, no query document should depend on the presence of a particular
application in order to function.

An application can call the DBGet NewQuer y function to converta' qr sc' resource into
a query record in memory. A query record specifies connection information and also
contains a handle to an array of queries; each query can be either a complete query or a
template for a query. If the' wst r' resource is a template, it contains the commands and
data necessary to create a query, without any information that the user must add just
before the query is sent. The ' qdef ' resource contains a query definition function,
which can modify the query record and, if necessary, fill in the query template to create a
complete query. The DBSt ar t Quer y function sends the query pointed to by a query
record to a data server. The following sections describe the contents of a query
document, describe query records, and define the' qrsc',' wstr', and ' qdef"
resources.

User Interface Guidelines for Query Documents

All query documents should behave in fundamentally the same way. They should be
self-explanatory and should never execute a query without an explicit command from
the user. When your application opens a query document, the query document should
display a dialog box with enough information about the query so that the user can
decide if it’s the right query. The dialog box should describe the purpose of the query,
what kind of data it transfers and in which direction, the type of data source it accesses,
and any warnings or instructions. The dialog box can describe how the user interprets
the data, such as the name of each field in a record. Figure 12-6 shows an example of a
query document dialog box.

Creating a Query Document 12-47

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

Figure 12-6 A query document dialog box

12-48

Profit and Loss

This query document accesses the accounting
mainframe and retrieves a corporate profit and
loss statement that is current as of the latest
postings.

Your Name: | |

Your Password: | |

This dialog box should allow the user to cancel the request for data. In addition, it may
be useful to allow the user to set parameters with text boxes, checkboxes, or radio
buttons. For example, a query to a database of financial information could provide a list
of these options: a trial balance, profit-and-loss statements, or net worth reports. Save the
last set of user-specified parameters with the query document. This way the user can
review the parameters used to generate the data or use the same parameters the next
time.

Once a query starts running, it must be able to complete its task without user
intervention. If a query must run modally (that is, it must run to completion before
returning control to the user), display a dialog box that shows the query’s progress and
be sure to return control to the user as soon as possible. The philosophy of this process is
similar to that of receiving electronic mail—that is, inform the user when the information
arrives, but let the user decide when to read it.

Whenever possible, query documents should check that data is compatible before
transmitting it to a data source. Establish a connection with a data source only after you
have checked the data.

Creating a Query Document

CHAPTER 12

Data Access Manager

Contents of a Query Document

The query document must contain

= one' Qrsc' resource, as defined in the next section, “Query Records and Query
Resources”

s one' STR#' resource that contains the name of the database extension to be used,
plus any host, user name, password, and connection string needed for the DBI ni t
function

= oneormore' Wstr' resources containing queries—that is, strings of commands and
data that the DBSend function sends to the data server and that the DBExec function
executes

A’ wstr' resource consists of a 2-byte length field followed by a character string. (The
win' wstr' refers to the length word as opposed to the length byte used inan' STR '
resource.) Each ' wstr' resource contains one query (or one query template, to be
modified by the query definition function before it is sent to the data server). The

' grsc' resource includes an array that lists the resource ID numbers of all of the
"wstr' resources in the query document and an index into the array that specifies
which one of the ' wstr' resources should be sent to the data server.

In addition, the query document may contain
= a'gdef' resource that contains a query definition function

» any resources needed by the query definition function, such as' DLOG and ' DI TL'
resources (which support dialog boxes)

= resources to support an icon (to replace the default icon that the Finder uses for files of
type' gery'); see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for more information on icon resources and for guidelines on designing icons

Figure 12-7 illustrates the relationship between the resources in a query document and
the query record.

Jabeuel SS90V BlRQ H

Creating a Query Document 12-49

CHAPTER 12

Data Access Manager

Figure 12-7 The relationship between resources in a query document and the query record

Query document

Query record
''grsc' resource >

Resource ID of ' qdef’
Resource IDs of ' wstr's

Current query index
Resource ID of ' STR#'

gdef' resource

resource [:} Partial queries

wstr' resource

Info:
. ' Sam Surf
wstr' resource 34 Beach Ave.
Info: ByTheSea, CA
John Chapman
' STR#' resource 123 Main St.
Info: ThisTown, MO
Suzie Doe
456 East St.
Other resources MyTown, MA

The query document in Figure 12-7 contains a' qr sc' resource that specifies the
resource ID of a' qdef ' resource, the resource IDs of three' wst r' resources, and
the resource ID of an' STR#' resource. It also specifies which of the three ' wst "'
resources represents the current query.

12-50 Creating a Query Document

CHAPTER 12

Data Access Manager

The DBCGet NewQuer y function creates the query record and partial queries from this
information. Your application can use the DBSt ar t Quer y function to send a query to a
data server. The DBSt ar t Quer y function calls the query definition function referred to
by the query record (if any). The query definition function can prompt the user for
information and modify the query as needed. Figure 12-8 illustrates a query record that
contains a handle to an array of queries, a handle to a query definition function, and an
index that identifies the current query. The query definition function displays a dialog
box and modifies the current query according to the user’s input. Once the query
definition function modifies the current query and returns, the DBSt ar t Quer y function
sends the query to the data server.

Figure 12-8

The relationship between a query definition function and queries

Query record

Partial queries

. Info: e
Current query index :> Samsurf |-l
34 Beach Ave.
Handle to queries Info: ByTheSea, CA
John Chapman
, , 123 Main St. Info:
Handle to* qdef Info: ThisTown, MO Johnny Chapman

Suzie Doe 1 --.... 88 North Circle Drive

456 EastSt. | 0 Trteeell, ThatTown, CA

MyTown, MA

' qdef' modifies current query
Query definition
function
|:“> E0==- Customer Information =—"=—] :> E[I== Customer Information =—=—]
Name and address: Name and address:
Joh
125 Main St User 58 North Ciete Drive
ThisTown, M0 changes ThatTown, CA
or adds
Fance! information
Creating a Query Document 12-51

Jabeuel SS90V BlRQ H

12-52

CHAPTER 12

Data Access Manager

Query Records and Query Resources

The DBGet NewQuer y function converts the ' qr sc' resource in the query document
into a query record in memory. The query definition function can then modify

the query record before the application sends the query to the data server. See

“The Query Record” beginning on page 12-57 for a description of the query record.

See “The Query Resource” beginning on page 12-91 for the formatof a' grsc' resource.
The next section provides information about query definition functions.

Writing a Query Definition Function

Before the DBSt ar t Quer y function sends a query to a data server, it calls the query
definition function specified by the quer yPr oc field in the query record. The purpose of
the query definition function is to modify the query and the query record before the
query is sent to the data server. The query definition function can use dialog boxes to
request information from the user. Because a query document is most useful if it can be
used by many different applications, no query definition function should depend on the
presence of a particular application.

If you want to include a query definition function, you must make it the first piece of
code in a resource of type ' qdef ' in the query document.

Here is a function declaration for a query definition function.
FUNCTI ON MyQDef (VAR sessl D Longlnt; query: QueryHandl e): OSErr;

If the application has already initiated a session with the data server, the DBSt ar t Query
function passes the session ID for that session in the sess| D parameter to the query
definition function. If the query definition function receives a 0 in this parameter, then
the Data Access Manager has not initiated a session. In this case, the query definition
function can return a 0 in the sess| D parameter, or it can call the DBI ni t function to
initiate a session and then return the session ID in this parameter.

If the query definition function returns a 0 in the sess| D parameter, the DBSt ar t Query
function calls the DBI ni t function and then calls the DBSend function to send a query to
the data server. If the query definition function returns a session ID in this parameter, the
DBSt ar t Quer y function calls the DBSend function immediately.

The quer y parameter to the query definition function specifies a handle to the query
record. The query definition function can modify any of the fields in the query record,
including the cur r Query field that specifies which query is to be sent to the data server.
In addition, the query definition function can modify an existing query or create a new
query, adding the handle to the new query to the query list. Note that, because a query in
memory consists only of a 2-byte length value followed by a character string, the query
definition function has to know the exact contents and structure of a query in order to
modify it.

Creating a Query Document

CHAPTER 12

Data Access Manager

The query definition function must return the noEr r result code as the function result if
the function executed successfully. If it returns any other value, the DBSt art Query
function does not call the DBSend function. The query definition function can return any
result code, including noEr r, user Cancel edErr, orr cDBErr or.

When the DBSt ar t Quer y function calls the query definition function, the current
resource file is the file that contains the ' gr sc' resource from which the Data Access
Manager created the query record. When the query definition function returns control to
the Data Access Manager, the current resource file must be unchanged. See the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox for more information on
the current resource file.

The query definition function can allocate memory and use the dat aHandl e field in the
query record to store a handle to it. The query definition function must free any memory
it allocates before terminating.

Listing 12-7 shows a query definition function that uses a dialog box to prompt the user
for a user name and password and then modifies the query record accordingly.

Listing 12-7 A query definition function

FUNCTI ON MyQDef (VAR sessl D. Longlnt; query: QueryHandl e): OSErr;
CONST

myNanel t em = 7,
myPassWor dl t em = 8§;

VAR
myNunRes: I nt eger;
myResLi st : ResLi st Handl e;
myResLPtr: ResListbPtr;
nyl ndex: I nt eger;
myDi al og: Di al ogPtr;
nyDl ogl D: I nt eger;
i tenlype: I nt eger;
i t emHNane: Handl e;
i t emHPasswd: Handl e;
i t enBox: Rect ;
nySTR: ARRAY[1..2] OF Str255;
itemHit: I nt eger;
myQErr: GsErr;

BEG N

{If sessID = 0 no session has been initiated. Your qdef nay }
{ optionally initiate a session, or it can |let DBStartQuery }
{ take care of this. 1In this exanple, the qdef doesn't }

{ check the sessID paraneter.}

HLock(Handl e(query));

myNunRes : = quer y**. nunRes;

Creating a Query Document 12-53

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

nyResLi st : = query”*".reslList;
HLock(Handl e(nyResLi st));
nmyResLPtr : = nyResList”;
nyl ndex : = 0;
{l ook for a 'DLOG resource}
VWHI LE (nmyl ndex < nyNunRes) AND
(myResLPtr~[nyl ndex] .t heType <> 'DLOG) DO
BEG N
nyl ndex := nylndex + 1;
END;
I F (nylndex < myNumRes) THEN {found the 'DLOG resource}
nyDl ogl D : = nyResLPtr~[nyl ndex].id
ELSE
BEG N
{The 'DLOG wasn't found; exit with no error. This }
{ is probably OK; it just nmeans that the query }
{ and the query record don't get nodified.}
MyQDEF : = noErr;
HUnl ock(Handl e(query));
HUnl ock(Handl e(nyResLi st));
EXI T(My QDef) ;
END;
{found the 'DLOG and its ID; now display the dial og box}
nyDi al og : = Get NewDi al og(nmyDiogl D, Ptr(NL), WndowPtr(-1));
SetPort (Graf Ptr(nmyDi al og));
REPEAT
Modal Di al og(@& EventFilter, itenHit);
UNTIL ((itemHit = kOK) OR (itenmHit = kCancel));
IF itemHit = kOK THEN
BEG N
{The user clicked the OK button. Update the user }
{ and password fields of the query record.}
CGet Di al ogl ten(nyDi al og, nmyNaneltem itenflype, itenHNane,
i t enBox) ;
Cet Di al ogl temText (i temHName, nySTR[1]);
CGet Di al oglten{nyDi al og, nmyPassWrdltem itenType,
i temHPasswd, itenBox);
Cet D al ogl t enText (i temHPasswd, nySTR[2]);
{Now you can change the query record or the query itself. }
{ What you change is entirely up to you. In this exanmple, }
{ the qdef changes only the user and password fields }
{ of the query record.}
query”~™. user = nySTR1];

12-54 Creating a Query Document

CHAPTER 12

Data Access Manager

qguery~™. password : = nySTR[2] ;
MyQ@ef : = noErr;

END

ELSE
MyQ@ef : = userCancel edErr;

HUnl ock(Handl e(query));

HUnl ock(Handl e(nyResLi st));

Di sposDi al og(nyDi al 0og) ;

END;

Data Access Manager Reference

This section describes the data structures, routines, and resources that are specific to the
Data Access Manager. The “Data Structures” section shows the data structures for the
asynchronous parameter block, the results record, the query record, and the data item
record. The “Data Access Manager Routines” section beginning on page 12-60 describes
routines for using the high-level and low-level interfaces, including initializing the Data
Access Manager, handling query documents and results, controlling sessions, sending
and executing queries, retrieving results, and installing and removing result handlers.
The “Resources” section beginning on page 12-91 describes the query resource, the query
string resource, and the query definition function resource.

Data Structures

This section describes the data structures that you use to provide information to the
Data Access Manager or that the Data Access Manager uses to provide information to
your application.

You provide a pointer to an asynchronous parameter block as a parameter to

the DBSt art Quer y, DBGet Quer yResul t s, DBl ni t, DBEnd, DBGet Sessi onNum
DBKi | | , DBSend, DBSend!| t em DBExec, DBSt at e, DBGet Er r, DBBr eak, DBGet | t em
and DBUnCet | t emfunctions.

The query record specifies connection information and contains a handle to an array of
one or more complete queries or query templates. The DBGet NewQuer y function returns
a handle to a query record, and you provide a handle to a query record as a parameter to
the DBSt ar t Quer y and DBDi sposeQuer y functions.

You use the results record to store the data that was returned by a data source in
response to a query. The results record is a parameter to the DBGet Quer yResul t s and
DBResul t sToText functions.

Data Access Manager Reference 12-55

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

The Asynchronous Parameter Block

12-56

Each Data Access Manager routine that can be called asynchronously (that is, that can
return control to your application before it has completed execution) takes as a
parameter a pointer to a parameter block known as the asynchronous parameter block. If
you specify NI L for this parameter, the routine does not return control to your
application until it has completed execution.

Note

The asynchronous parameter block is passed on to the database
extension, which is responsible for implementing the asynchronous
routine. If the database extension does not support asynchronous
routines, the Data Access Manager returns the r cDBAsyncNot Supp
result code and terminates execution of the routine. O

The DBAsyncPar anBl ockRec data type defines the asynchronous parameter block.

TYPE DBAsyncPar anBl ockRec =

RECORD
conpl eti onProc: ProcPtr; {pointer to conpletion routine}
result: CSErr; {result of call}
user Ref : Longlnt; {reserved for use by application}
ddevRef : Longlnt; {reserved for use by database }
{ extension}
reserved: Longlnt; {reserved for use by Data }
{ Access Manager}
END;

DBAsyncPar nBl kPt r = ~DBAsyncPar anBl ockRec;

Field descriptions

conpl eti onProc
Points to a completion routine that the database extension calls
when it has completed executing the asynchronous function. Before
calling the completion routine, the Data Access Manager places a
pointer to the asynchronous parameter block in the A0 register. If

you do not want to use a completion routine, set this parameter
toNI L.

resul t Returns the result code for the called routine. The database
extension sets this field to 1 while the routine is executing and
places the result code in it when the routine completes. Your
application can poll this field to determine when an asynchronous
routine has completed execution.

user Ref Reserved for the application’s use. Because the Data Access
Manager passes a pointer to the parameter block to the completion
routine, you can use this field to pass information to the
completion routine.

Data Access Manager Reference

CHAPTER 12

Data Access Manager

ddevRef Reserved for use by the database extension.
reserved Reserved for use by the Data Access Manager.
The Query Record

The DBGet NewQuer y function converts a' qr sc' resource in a query document into a
query record in memory and returns a handle to the query record. The query record
specifies connection information and also contains a handle to an array of queries; each

query can be either a complete query or a template for a query. The DBGet NewQuer y
function creates the queries from the ' wst r' resources stored in the query document.

The Quer yRecor d data type defines a query record.

TYPE QueryRecord

RECORD
versi on: I nt eger; {query record fornat version}
id: I nt eger; {resource I D of 'grsc'}
qgueryProc: Handl e; {handl e to qdef}
ddevNane: Str63; {name of database extension}
host : Str 255; {nane of host conputer}
user: Str 255; {name of user}
passwor d: Str 255; {user's password}
connStr: Str 255; {connection string}
currQuery: Integer; {index of current query}
nunfQueri es: |nteger; {nunber of queries in list}
queryList: QueryListHandle; {handle to array of }
{ handles to text}
nunRes: I nt eger; {nunber of resources in list}
resList: ResLi st Handl e; {handl e to array of resource }
{ list elenments}
dat aHandl e: Handl e; {handl e to menory for qdef}
r ef Con: Longl nt; {reserved for use by app}
END;
QueryPtr = "QueryRecord; {pointer to query record}
QueryHandl e = "QueryPtr; {handl e to query record}

Field descriptions

version The version number of the query record format. For the Data Access
Manager released with System 7, the version number is 0.

id The resource ID of the ' gr sc' resource from which the Data
Access Manager created this query record.

quer yProc A handle to the query definition function that the DBSt ar t Query

function calls. This handle is NI L if there is no query definition

Jabeuel SS90V BlRQ H

function—that is, if the DBSt ar t Quer y function should send the
query specified by this query record to the data server without
modifications.

Data Access Manager Reference

12-57

12-58

CHAPTER 12

Data Access Manager

ddevNanme
host

user
passwor d
connsStr

currQuery

nunmQueri es
querylLi st

nunRes
resLi st

dat aHandl e

r ef Con

The database extension name used as a parameter to the DBI ni t
function.

The name of the host computer system used as a parameter to the
DBl ni t function.

The name of the user, used as a parameter to the DBI ni t function.
The user’s password, used as a parameter to the DBI ni t function.
The connection string used as a parameter to the DBI ni t function.

An index value from 1 through nunQuer i es, indicating which
element in the array of query handles represents the current query.
The current query is the one actually sent to the data server. If

the query document contains more than one' wstr' resource, the
query definition function can prompt the user to select a new
current query and modify this field in the query record
appropriately.

The number of queries referred to by the quer yLi st field.

Ahandle to an array of handles. Each handle in this array refers to a
query. Each query is created from a' wstr' resource in the query
document and is stored in memory as a 2-byte length field followed
by ASCII text. (The length does not include the 2 bytes of the length
field.) The query definition function can create a new query. To add
anew handle to the array of handles, use the Memory Manager’s
Set Handl eSi ze function to increase the size of the array. Don’t
forget to change the value of the nunQuer i es field as well.

The number of resources referred to by the r esLi st field.

Ahandle to an array of records of type ResLi st El em Each record
in the array contains the type and ID of a resource that is needed by
the query definition function.

TYPE ReslLi stEl em =

RECORD
t heType: ResType; {resource type}
id: I nt eger; {resource | D}
END;

A handle to memory for use by the query definition function. When
the Data Access Manager first creates the query record, it sets this
field to NI L. The query definition function can allocate memory and
place a handle to it in this field. The query definition function
should dispose of any memory it allocates before it returns control
to the Data Access Manager.

The query record’s reference value. The application can use this
field for any purpose.

Data Access Manager Reference

CHAPTER 12

Data Access Manager

The Results Record

The results record describes the data that was returned by a data source in response to a
query. To get the results of a query, allocate a results record and pass this record to the
DBGet Quer yResul t s function. The Data Access Manager allocates the handles inside
the results record. When your application is finished using the results record, you must
deallocate both the results record and the handles inside the results record.

The results record is defined by the Resul t sRecor d data type.

TYPE Resul tsRecord =

RECORD
numMRoOWs :
nuntol s:
col Types:
col Dat a:
col I nfo:

END;

Field descriptions
numRows

nuntol s
col Types

col Dat a

I nt eger; {nunber of rows retrieved}

I nt eger; {nunber of columms per row}
Col TypesHandl e; {type of data in each col um}
Handl e; {array of data itens}

Col | nf oHandl e; {info about each data itent

The total number of rows retrieved. If the DBGet Quer yResul t s
function returns a result code other than r cDBVal ue, then not all of
the data actually returned by the data source was retrieved. This
could happen, for instance, if the user’s computer does not have
sufficient memory space to hold all the data. In this case, your
application can make more space available (by writing the data in
the data record to disk, for example) and then call the

DBGet Quer yResul t s function again to complete retrieval of the
data.

Note

The DBCGet Quer yResul t s function retrieves whole rows only; if it
runs out of space in the middle of a row, it stores the partial row in a
private buffer so that the data in the results record ends with the
last complete row. Because the last partial row is no longer available
from the data server, you cannot start to retrieve data with the
DBGet Quer yResul t s function and then switch to the DBGet | t em
function to complete the data retrieval. O

The number of columns in each row of data.

Ahandle to an array of data types, specifying the type of data in
each column. The number of elements in the array is equal to the
value in the nunCol s field. Table 12-1 beginning on page 12-39
shows the standard data types.

Ahandle to the data retrieved by the DBGet Quer yResul t s
function.

Data Access Manager Reference 12-59

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

colInfo Ahandle to an array of records of type DBCol | nf oRecor d, each of
which specifies the length, places, and flags for a data item. There
are as many records in the array as there are data items retrieved by
the DBGet Quer yResul t s function. Here is the
DBCol I nf oRecor d type definition:

TYPE DBCol | nf oRecord =

RECORD
| en: I nt eger; {length of data item
pl aces: | nteger; {pl aces for deciml }
{ and noney data itens}
flags: I nt eger; {flags for data item
END;

The | en field indicates the length of the data item. The

DBGet Quer yResul t s function returns a value in this field only for
those data types that do not have implied lengths; see Table 12-1 on
page 12-39 for a list of these data types.

The pl aces field indicates the number of decimal places in data
items of types t ypeMoney and t ypeDeci mal . For all other data
types, the pl aces field returns 0.

The least significant bit of the f | ags field is set to 1 if the data item
is in the last column of the row. The third bit of the f | ags field is 1

if the data item is NULL. You can use the constants
kDBLast Col Fl ag and kDBNul | FI ag to test for these flag bits.

Data Access Manager Routines

12-60

The Data Access Manager has high-level routines, low-level routines, and routines that
manipulate result handlers. This section describes all of the Data Access Manager
routines.

All of the low-level routines and some of the high-level routines accept a pointer to

an asynchronous parameter block as a parameter. For these routines, see “The
Asynchronous Parameter Block” beginning on page 12-56 for a description of the fields
in the parameter block.

If you specify a nonzero value for the pointer to the asynchronous parameter block, the
database extension executes the function asynchronously—that is, it returns control to
the Data Access Manager before the routine has completed execution, and the Data
Access Manager returns control to your application. If you specify NI L for this
parameter, the database extension does not return control to your application until the
routine has finished execution. Your application must call the Event Manager’s

Wi t Next Event function periodically to allow an asynchronous routine to complete
execution. The Wai t Next Event function is described in the chapter “Event Manager”
in Inside Macintosh: Macintosh Toolbox Essentials.

Data Access Manager Reference

CHAPTER 12

Data Access Manager

You can tell when an asynchronous routine has completed execution and check the result
code by looking at values in the asynchronous parameter block. You can use the DBKi | |
function to cancel an asynchronous routine.

Note

AnoErr result code returned by a routine that has been called
asynchronously indicates only that the routine began execution
successfully. You must check the r esul t field of the asynchronous
parameter block for the final result of the routine. O

Assembly-Language Note

You can invoke each of the Data Access Manager routines with a macro
that has the same name as the routine, but preceded with an underscore;
for example, the macro for the DBI ni t function is named _DBl ni t .
Each of these macros places a routine selector in the DO register and calls
the trap _Pack13. The routine selectors are listed in each routine
description and in “Assembly-Language Summary” beginning on

page 12-104. O

Initializing the Data Access Manager

InitDBPack

You must initialize the Data Access Manager before you can use it.

DESCRIPTION

Use the | ni t DBPack function to initialize the Data Access Manager.

FUNCTI ON | ni t DBPack: OSErr;

The | ni t DBPack function initializes the Data Access Manager. You must call the

I ni t DBPack function before you call any other Data Access Manager routines. If the
Data Access Manager has already been initialized, the | ni t DBPack function returns the
noEr r result code but does nothing else.

The interface routine that implements the | ni t DBPack function includes a version
number for the Data Access Manager. If the Data Access Manager is a different version
from that specified by the interface routine, then the I ni t DBPack function returns the
r cDBW ongVer si on result code.

SPECIAL CONSIDERATIONS

The | ni t DBPack function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

Data Access Manager Reference 12-61

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the | ni t DBPack function are

Trap macro Selector
_I ni t DBPack $0100

nokErr 0 No error
r cDBW ongVer si on -812 Wrong version number

High-Level Interface: Handling Query Documents

The high-level interface to the Data Access Manager allows applications to manipulate
query documents and to get the results of the query provided by a query document. The
use and contents of query documents are discussed in “Creating a Query Document”
beginning on page 12-47. The routines described in this section create query records,
dispose of query records, and use query documents to establish communication with
and send queries to a data server. For a general discussion of the high-level interface, see
“The High-Level Interface” beginning on page 12-7 . For instructions on using the
high-level interface, refer to “Using the High-Level Interface” beginning on page 12-14.

DBGetNewQuery

DESCRIPTION

12-62

You can use the DBGet NewQuer y function to create a query record.

FUNCTI ON DBGet NewQuery (queryl D: |nteger;
VAR query: QueryHandle): OSErr;

queryl D The resource ID of a' qr sc' resource.
query Returns a handle to the query record.

The DBGet NewQuer y function creates a query record from the specified ' qr sc’
resource. The resource file that contains the ' qr sc' resource must remain open until
after the DBSt ar t Quer y function has completed execution. If you do not already know
the resource ID of the ' qr sc' resource (for example, if you call the St andar dGet Fi | e
procedure to let the user select the query document), you can use Resource Manager
routines to determine the resource ID.

Data Access Manager Reference

CHAPTER 12

Data Access Manager

SPECIAL CONSIDERATIONS

The DBGet NewQuer y function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the DBGet NewQuer y function are

Trap macro Selector
_ DBGet NewQuery $030F

nokErr 0 No error
r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

See Listing 12-1 beginning on page 12-18 for an example of the use of the
DBGet NewQuer y function. For a description of the query record, see page 12-57. For a

description of the ' grsc' resource, see “The Query Resource” beginning on page 12-91.

The St andar dGet Fi | e procedure is described in the chapter “Standard File Package”
in Inside Macintosh: Files, and Resource Manager routines are described in the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

DBDisposeQuery

DESCRIPTION

When you are finished using a query record, call DBDi sposeQuery to dispose of the
query record.

FUNCTI ON DBDi sposeQuery (query: QueryHandle): OSErr;

query A handle to the query record to dispose.

The DBDi sposeQuer y function disposes of a query record and frees all the memory
that the Data Access Manager allocated when it created the query record.

SPECIAL CONSIDERATIONS

The DBDi sposeQuer y function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

Data Access Manager Reference 12-63

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the DBDi sposeQuer y function are

Trap macro Selector
_DBDi sposeQuery $0210

nokErr 0 Noerror
rcDBPackNot Inited -813 Thel ni t DBPack function has not yet been called

SEE ALSO
See Listing 12-1 beginning on page 12-18 for an example of the use of the
DBDi sposeQuery function in the high-level interface. For a description of the query
record, see page 12-57.
DBStartQuery
Use the DBSt ar t Quer y function to initiate the process of sending a query to a data
server.
FUNCTI ON DBSt art Query (VAR sesslD: Longlnt; query: QueryHandl e;
statusProc: ProcPtr;
asyncPB: DBAsyncParnmBl kPtr): OSErr;
sessID A session ID that identifies a session with the data server. If you specify 0
for this parameter, then the DBSt ar t Quer y function initiates a session
and returns the session ID in the sess| D parameter.
query Ahandle to a query record.
st at usProc
A pointer to a status routine that your application can use to update its
windows after the query definition function has completed execution.
(The DBSt ar t Quer y function does not attempt to update your
application’s windows.) The DBSt ar t Quer y function also calls your
status routine before it initiates a session with a data server, after it calls
the DBI ni t function, after it calls the DBSend function, and after it
calls the DBExec function. Status routines are discussed in “Writing a
Status Routine for High-Level Functions” beginning on page 12-22.
asyncPB A pointer to an asynchronous parameter block. When specified, the
DBSt ar t Quer y function calls the DBI ni t, DBSend, and DBExec
functions asynchronously. As soon as the DBI ni t function has started
execution, it returns control to your application. Your application must
then call the Event Manager’s Wi t Next Event function periodically to
12-64 Data Access Manager Reference

CHAPTER 12

Data Access Manager

DESCRIPTION

allow these asynchronous routines to run, and it must check the r esul t
field of the asynchronous parameter block to determine when each
routine has completed execution.

The DBSt ar t Quer y function performs the following tasks, in the order specified:

1.

10.

SPECIAL CONSIDERATIONS
The DBSt ar t Quer y function may move or purge memory. You should not call this

It calls the query definition function (if any) pointed to by the query record. The query
definition function modifies the query record and the query, usually by asking the
user for input. The query definition function can display a dialog box that gives

the user the option of canceling the query; if the user does cancel the query, the

DBSt ar t Quer y function returns the user Cancel edEr r result code.

. If you specify a nonzero value for the st at usPr oc parameter, the DBSt art Query

function calls your status routine with the kDBUpdat eW nd constant in the message
parameter so that your application can update its windows.

. If you specify a nonzero value for the st at usPr oc parameter, the DBSt art Query

function calls your status routine with the kDBAbout Tol ni t constant in the
message parameter so that your application can display a dialog box informing the
user that a session is about to be initiated with a data server, and giving the user the
option of canceling execution of the function.

. If the sess| D parameter is 0, the DBSt ar t Quer y function calls the DBI ni t function

to initiate a session, and returns a session ID.

. If you specify a nonzero value for the st at usPr oc parameter and the

DBSt ar t Quer y function calls the DBI ni t function, the DBSt ar t Quer y function
calls your status routine with the kDBI ni t Conpl et e constant in the nessage
parameter and the result of the DBI ni t function in the function result.

. The DBSt ar t Quer y function calls the DBSend function to send the query to the data

server.

. If you specify a nonzero value for the st at usPr oc parameter, the DBSt ar t Query

function calls your status routine with the kDBSendConpl et e constant in the
message parameter and the result of the DBSend function in the r esul t parameter.

. The DBSt ar t Quer y function calls the DBExec function to execute the query.

. If you specify a nonzero value for the st at usPr oc parameter, the DBSt art Query

function calls your status routine with the kDBExec Conpl et e constant in the
message parameter and the result of the DBExec function in the r esul t parameter.

If you specify a nonzero value for the st at usPr oc parameter, the DBSt ar t Query
function calls your status routine with the kDBSt ar t Quer yConpl et e constant in the
message parameter and the result of the DBSt ar t Quer y function in the r esul t
parameter.

Jabeuel SS90V BlRQ H

routine from within an interrupt, such as in a completion routine or a VBL task.

Data Access Manager Reference 12-65

CHAPTER 12

Data Access Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the DBSt ar t Quer y function are

Trap macro Selector
_DBStart Query $0811

noErr 0 No error

user Cancel edErr -128 User canceled the query

r cDBEr r or -802 Error initiating session, sending text, or executing
query

r cDBBadSess| D -806 Session ID is invalid

r cDBBadDDev -808 Couldn't find the specified database extension, or
error occurred in opening database extension

r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls
r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

See “Using the High-Level Interface” beginning on page 12-14 for a general description
of how the DBSt ar t Quer y function works in conjunction with other Data Access
Manager routines. See Listing 12-1 beginning on page 12-18 for an example of the use of
the DBSt ar t Quer y function. For a description of the query record, see page 12-57. For
information on how to write a query definition function or status routine, see “Writing a
Query Definition Function” beginning on page 12-52 and “Writing a Status Routine for
High-Level Functions” beginning on page 12-22, respectively. Descriptions of the

DBI ni t, DBSend, and DBExec functions begin on page 12-69, page 12-77, and

page 12-79, respectively.

High-Level Interface: Handling Query Results

The high-level interface to the Data Access Manager allows applications to manipulate
query documents and to get the results of the query provided by a query document. The
high-level routines in this section retrieve query results and convert them to text.

DBGetQueryResults

12-66

You can use the DBGet Quer yResul t s function to retrieve the results of a query.

FUNCTI ON DBGet QueryResults (sesslD: Longlnt;
VAR results: Resul tsRecord;
ti meout: Longlnt; statusProc: ProcPtr;
asyncPB: DBAsyncParnBl kPtr): OSErr;

Data Access Manager Reference

DESCRIPTION

CHAPTER 12

Data Access Manager

sessID The session ID of the session from which you wish to retrieve results.
results The results record, which contains handles to the retrieved data.
ti meout The value that the DBGet Quer yResul t s function uses for the

t i meout parameter each time it calls the DBGet | t emfunction.

The t i neout parameter specifies the maximum amount of time that the
database extension should wait to receive results from the data server
before canceling the DBGet | t emfunction. Specify the t i neout
parameter in sixtieths of a second. To disable the timeout feature, set the
ti meout parameter to the kDBWAI t For ever constant. Some database
extensions ignore the t i meout parameter when you specify a nonzero
value for the asyncPB parameter.

stat usProc
A pointer to a status routine that you provide. The DBGet Quer yResul t s
function calls your status routine after it calls the DBCet | t emfunction to
retrieve a data item. When it calls the status routine, the
DBGet Quer yResul t s function provides the result of the DBGet | t em
function, the data type, the data length, the number of decimal places, the
flags associated with the data item, and a pointer to the data item.

asyncPB A pointer to an asynchronous parameter block. If specified, the
DBGet Quer yResul t s function calls the DBGet | t emfunction
asynchronously for each data item. As soon as the DBGet | t emfunction
has started execution, it returns control to your application. Your
application must then call the Event Manager’s Wi t Next Event
function periodically to allow this asynchronous routine to run, and it
must check the result field of the asynchronous parameter block to
determine when the routine has completed execution.

The DBCGet Quer yResul t s function retrieves the results returned by a query and places
them in memory. If there is sufficient memory available, this function retrieves all of the
results at once. If the DBGet Quer yResul t s function runs out of memory, it places as
much data as possible in memory, up to the last whole row. You can then make more
memory available and call the DBGet Quer yResul t s function again to retrieve more
data.

You must allocate the results record and pass this record to the DBGet Quer yResul t s
function. The Data Access Manager allocates the handles inside the results record. When
your application is finished using the results record, you must deallocate both the results
record and the handles inside the results record.

The DBGet Quer yResul t s function can be used to retrieve the results of any query, not
only queries sent and executed by the DBSt ar t Quer y function.

SPECIAL CONSIDERATIONS

The DBGet Quer yResul t s function may move or purge memory. You should not call
this routine from within an interrupt, such as in a completion routine or a VBL task.

Data Access Manager Reference 12-67

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the DBGet Quer yResul t s function are

Trap macro Selector

_DBGet QueryResul ts $0A12

noErr 0 No error

user Cancel edErr -128 Function canceled by status routine

r cDBvVal ue -801 Data available

r cDBEr r or -802 Query execution ended in an error

r cDBBr eak -804 Function timed out

r cDBExec -805 Query currently executing

r cDBBadSess| D -806 Session ID is invalid

r cDBAsyncNot Supp -809 The database extension does not support
asynchronous calls

r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

See Listing 12-1 beginning on page 12-18 for an example of the use of the

DBGet Quer yResul t s function. See page 12-56 for a description of the asynchronous
parameter block. Descriptions of the DBSt art Quer y and DBGet | t emfunctions begin
on page 12-64 and page 12-84, respectively. For more information on results records, see
“The Results Record” beginning on page 12-59 and “Getting Query Results” beginning
on page 12-37. For more information on status routines, see “Writing a Status Routine for
High-Level Functions” beginning on page 12-22.

DBResultsToText

DESCRIPTION

12-68

After retrieving a results record from DBCGet Quer yResul t s, you can use the
DBResul t sToText function to convert the returned data to text.

FUNCTI ON DBResul t sToText (results: ResultsRecord;
VAR t heText: Handl e): OSErr;

results The results record returned by the DBGet Quer yResul t s function.

t heText The DBResul t sToText function returns a handle to the converted text
in this parameter. This handle is allocated by the Data Access Manager.

The DBResul t sToText function calls result handlers to convert to text the data
retrieved by the DBGet Quer yResul t s function.

Data Access Manager Reference

CHAPTER 12

Data Access Manager

SPECIAL CONSIDERATIONS

The DBResul t sToText function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the DBResul t sToText function are

Trap macro Selector
_DBResul t sToText $0413

RESULT CODES

nokErr 0 No error
r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

SEE ALSO
See Listing 12-1 begining on page 12-18 for an example of the use of the
DBResul t sToText function. See “Converting Query Results to Text” beginning on
page 12-43 for a discussion of result handlers.

Low-Level Interface: Controlling the Session

The low-level interface to the Data Access Manager allows applications to open and
close sessions with a data server, send and execute queries, retrieve query results, and
obtain information about any current session.

DBInit

Use the DBI ni t function to initiate a session with a data server.

FUNCTION DBl nit (VAR sessID: Longlnt; ddevNane: Str63;
host: Str255; user: Str255; password: Str255;
connStr: Str255;
asyncPB: DBAsyncParnmBl kPtr): OSErr;

sessID The DBI ni t function returns the session ID in this parameter. This
session ID is unique; no other current session, for any database extension,
has the same session ID. You must specify the session ID any time you
want to send data to or retrieve data from this session. Depending on the
database extension you are using, the DBI ni t function might return a

Data Access Manager Reference 12-69

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

session ID of 0 if it fails to initiate a session, or it might return a

nonzero session ID and a result code other than noEr r. In the latter case,
you can pass the session ID to the DBGet Er r function to determine the
cause of the error.

ddevName A string of no more than 63 characters that specifies the name of the
database extension. The name of the database extension is contained in
the database extension file in a resource of type' STR ' with a
resource ID of 128. For the Data Access Language database extension
provided by Apple, for example, this string is “DAL”.

host The name of the host system on which the data server is located. This
name depends on the manner in which the database extension initiates
communication with the data server and how the system administrator
has set up the computer system.

user The name of the user.
password The password associated with the user name.

connStr A string that is passed to the data server, which might pass it on to the
database management software on the host computer. This string is
necessary in some systems to complete log-on procedures.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

DESCRIPTION

You must initiate a session before you call any Data Access Manager function that
requires a session ID as an input parameter. If the DBI ni t function returns a nonzero
session ID, you must call the DBEnd function to terminate the session, even if the

DBl ni t function also returns a result code other than noErr.

Because the high-level function DBSt ar t Quer y can call the DBI ni t function, you do
not have to call the DBI ni t function if you have called the DBSt ar t Quer y function.

SPECIAL CONSIDERATIONS

The DBI ni t function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the DBl ni t function are

Trap macro Selector
_DBI ni't $0E02

12-70 Data Access Manager Reference

RESULT CODES

SEE ALSO

DBEnd

CHAPTER 12

Data Access Manager

noErr 0 No error

r cDBEr r or -802 Error initiating session

r cDBBadDDev -808 Couldn’t find the specified database extension, or
error occurred in opening database extension

r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls
r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

For a description of the asynchronous parameter block, see page 12-56. See Listing 12-5
beginning on page 12-34 for an example of the use of the DBl ni t function. See

page 12-64 for a description of the DBSt ar t Quer y function. The DBEnd function is
described next.

DESCRIPTION

You must call the DBEnd function to terminate a session.

FUNCTI ON DBEnd (sesslD: Longlnt;
asyncPB: DBAsyncParnmBl kPtr): OSErr;

sessl D The session ID that was returned by the DBI ni t function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

The DBENnd function terminates a session with a data server and terminates the network
connection between the application and the host computer.

SPECIAL CONSIDERATIONS

The DBEnd function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBEnd function are

Trap macro Selector
_DBEnd $0403

Data Access Manager Reference 12-71

Jabeuel SS90V BlRQ H

RESULT CODES

CHAPTER 12

Data Access Manager

noErr 0 No error

r cDBEr r or -802 Error ending session

r cDBBadSess| D -806 Session ID is invalid

r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls
rcDBPackNot Inited -813 Thel ni t DBPack function has not yet been called

SEE ALSO
For a description of the asynchronous parameter block, see page 12-56.
DBGetConnlnfo
The DBCGet Connl nf o function returns information about the specified session,
including
= the version of the database extension
= the name of the host system on which the session is running
= the user name
= the connection string that was used to initiate communication
= the name of the network
» the time at which the session started, in ticks (sixtieths of a second)
» the status of the session
FUNCTI ON DBGet Connl nfo (sessID: Longlnt; sessNum Integer;
VAR returnedl D. Longlnt;
VAR version: Longlnt;
VAR ddevNane: Str63;
VAR host: Str255; VAR user: Str255;
VAR network: Str255; VAR connStr: Str255;
VAR start: Longlnt; VAR state: OSErr;
asyncPB: DBAsyncParnBl kPtr): OSErr;
sessl D The session ID that was returned by the DBI ni t function. If you include
a nonzero value for the sess| D parameter when you call the
DBGet Connl nf o function, the function returns the name of the database
extension in the ddevNane parameter. If you use 0 for the sess| D
parameter and specify the database extension and session number instead
(in the ddevNane and sessNumparameters), the function returns the
session ID in the r et ur nedl D parameter.
sessNum The session number of the session about which you want information. If
you specify a nonzero session number, you must also provide the
database extension in the ddevNane parameter.
12-72 Data Access Manager Reference

DESCRIPTION

CHAPTER 12

Data Access Manager

returnedl D

ver si on

ddevName

host
user

net wor k

connsStr
start

state

asynchPB

Returns the session ID if you specify the session number and the database
extension.

Returns the version number of the database extension that is currently in
use.

A string of no more than 63 characters that specifies the name of the
database extension. If you specify 0 for the session ID, you must include
the name of the database extension as well as a session number. If you
specify a valid session ID, then the DBGet Connl nf o function returns the
name of the database extension in the ddevName parameter. The name of
the database extension is contained in the database extension file in a
resource of type' STR ' with a resource ID of 128. For the Data Access
Language database extension provided by Apple, for example, this string
is “DAL".

Returns the host string used to initiate communication with the data
server.

Returns the user string used to initiate communication with the data
server.

Returns the name of the network through which the database extension is
communicating with the data server. This parameter is an empty string if
you are not communicating through a network.

Returns the connection string used to initiate communication with the
data server.

Returns the time, in ticks (sixtieths of a second), at which this session was
initiated.

Returns one of the following values to provide information about the
status of the session:

CONST noErr = 0; {no error--ready for nore }
{ text}
r cDBVal ue = -801; {output data avail abl e}

r cDBEr r or = -802; {execution ended in an }
{ error}

r cDBExec = —805; {busy--currently executing }
{ query}

A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

You can use the DBGet Connl nf o function to get information about a particular session,
or you can call the function repeatedly, incrementing the session number each time, to
get information about all of the sessions associated with a particular database extension.

Data Access Manager Reference 12-73

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

The sess| Dparameter is the session ID that was returned by the DBI ni t function. The
sessNumparameter is the session number of the session about which you want
information. You can specify either the session ID or the session number when you call
the DBGet Connl nf o function. If you specify the sess| D parameter, use 0 for the
sessNumparameter. If you specify the sessNumparameter, then use 0 for the sessl D
parameter. If you specify the sessNumparameter, you must specify a value for the
ddevNane parameter as well. If you specify the session number and the database
extension, then the DBGet Connl nf o function returns the session ID in the r et ur nedl D
parameter.

SPECIAL CONSIDERATIONS

The DBCet Connl nf o function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the DBGet Connl nf o function are
Trap macro Selector
_DBGet Connl nf o $1704

RESULT CODES
noErr 0 No error
r cDBBadSess| D -806 Session ID is invalid or database extension name is
invalid
r cDBBadSessNum -807 Invalid session number
r cDBBadDDev -808 Couldn't find the specified database extension, or
error occurred in opening database extension
r cDBAsyncNot Supp -809 The database extension does not support
asynchronous calls
r cDBPackNot I ni t ed -813 The | ni t DBPack function has not yet been called
SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. For more
information on the use of the DBGet Connl nf o function, see “Getting Information
About Sessions in Progress” on page 12-36.

12-74 Data Access Manager Reference

CHAPTER 12

Data Access Manager

DBGetSessionNum

DESCRIPTION

The DBCGet Sessi onNumfunction returns a session number when you specify the
session ID.

FUNCTI ON DBGet Sessi onNum (sessl D: Longlnt; VAR sessNum | nteger;
asyncPB: DBAsyncParnmBl kPtr): OSErr;

sessl D The session ID that was returned by the DBI ni t function.

sessNum Returns the session number of the session you specify with the sessl D
parameter. The session number is unique for a particular database
extension, but the same session number might be in use for different
database extensions at the same time.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

You can use the DBGet Sessi onNumfunction to determine the session numbers for the
sessions opened by your own application. You might want this information, for example,
so you can distinguish your own sessions from those opened by other applications when
you use the DBGet Connl nf o function to get information about all open sessions.

SPECIAL CONSIDERATIONS

The DBCet Sessi onNumfunction may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the DBGet Sessi onNumfunction are

Trap macro Selector
_DBGet Sessi onNum $0605

nokErr 0 No error
r cDBBadSessl| D -806 Session ID is invalid
r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls
r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

Data Access Manager Reference 12-75

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

SEE ALSO

A description of the asynchronous parameter block structure begins on page 12-56. The
DBl ni t function description begins on page 12-69. A description of the
DBGet Connl nf o function begins on page 12-72.

DBKill

Use the DBKi | | function to cancel the execution of an asynchronous routine.
FUNCTI ON DBKi || (asyncPB: DBAsyncParnBl kPtr): OSErr;

asyncPB A pointer to an asynchronous parameter block.

DESCRIPTION

The DBKi | | function cancels the execution of the asynchronous call specified by the
asyncPB parameter.

SPECIAL CONSIDERATIONS

The DBKi | | function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBKi | | function are
Trap macro Selector
_DBKi Il $020E
RESULT CODES
noErr 0 No error
r cDBEr r or -802 Error canceling routine
r cDBBadAsynchPB -810 Invalid parameter block specified

r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

12-76 Data Access Manager Reference

CHAPTER 12

Data Access Manager

Low-Level Interface: Sending and Executing Queries

DBSend

The functions in this section send queries or portions of queries to the data server,
execute queries that have been sent, return information about queries that have been
sent, and halt execution of queries that are executing.

DESCRIPTION

SPECIAL CONSIDERATIONS

ASSEMBLY-LANGUAGE INFORMATION

You can use the DBSend function to send a query or a portion of a query to a data server.

FUNCTI ON DBSend (sesslD: Longlnt; text: Ptr; len: Integer;
asyncPB: DBAsyncParnmBl kPtr): OSErr;

sess|ID The session ID that was returned by the DBI ni t function.

t ext A pointer to the query or query fragment that you want to send to
the data server. The query or query fragment must be a character string.

| en The length of the character string. If the | en parameter has a value of -1,
then the character string is assumed to be NULL terminated (that is, the
string ends with a NULL byte); otherwise, the | en parameter specifies the
number of bytes in the string.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

The DBSend function sends a query or a portion of a query to the data server. The data
server appends this portion of the query to any portion you sent previously. Because the
Data Access Manager does not modify the string you send in any way, it does not

insert any delimiter between fragments of queries that you send to the data server. If
you want a blank or a semicolon to be included between query fragments, or if you want
to use return characters to divide the query into lines of text, you must include them in
the character string that you send with this function.

The data server does not execute the query until you call the DBExec function.

The DBSend function may move or purge memory. You should not call this routine from
within an interrupt, such asin a completion routine or a VBL task.

Jabeuel SS90V BlRQ H

The trap macro and routine selector for the DBSend function are

Trap macro Selector
_DBSend $0706

Data Access Manager Reference 12-77

CHAPTER 12

Data Access Manager

RESULT CODES

noErr 0 No error

r cDBEr r or -802 Error trying to send text

r cDBBadSess| D -806 Session ID is invalid

r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls

rcDBPackNot Inited -813 Thel ni t DBPack function has not yet been called

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See Listing 12-4

beginning on page 12-32 for an example of the use of the DBSend function in sending a

query fragment. See page 12-79 for a description of the DBExec function.

DBSendItem

You can use the DBSend| t emfunction to send to the data server the data that you wish

to include in a query.

FUNCTI ON DBSendltem (sessID: Longlnt; dataType: DBType;

I en: Integer; places: |nteger;
flags: Integer; buffer: Ptr;
asyncPB: DBAsyncParnBl kPtr): OSErr;

sessl D The session ID that was returned by the DBI ni t function.

dat aType The data type for the data item that you are sending to the data server.

I en The length of the data item that you are sending to the data server. The
database extension and data server ignore the | en parameter if the data
type has an implied length.

pl aces The number of decimal places for the data item that you are sending
to the data server. The database extension and data server ignore the
pl aces parameter for all values of the dat aType parameter except
typeDeci mal andt ypeMoney.

flags Set the f | ags parameter to 0. There are no flags currently defined for the
DBSendI t emfunction.

buf f er A pointer to the memory location of the data item that you want to send.
When you use the DBSend| t emfunction to send an item of data to a data
server, the database extension and data server format the data according
to the data type, length, and decimal places you specify, convert it to a
character string, and append the data to the query.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

12-78 Data Access Manager Reference

DESCRIPTION

CHAPTER 12

Data Access Manager

The DBSendl t emfunction sends a single data item to the data server. The database
extension or the data server (depending on how the system is implemented) converts the
data item to a character string and appends it to the query, just as the DBSend function
appends a query program fragment to the query. The query is not executed until you call
the DBExec function.

SPECIAL CONSIDERATIONS

The DBSend| t emfunction may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

DBExec

The trap macro and routine selector for the DBSend| t emfunction are

Trap macro Selector
_DBSendltem $0B07

noErr 0 No error

r cDBEr r or -802 Error trying to send item

r cDBBadSess| D -806 Session ID is invalid

r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls
r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

For a discussion of data types, see “Getting Query Results” beginning on page 12-37. For
a description of the asynchronous parameter block, see page 12-56. See Listing 12-4
beginning on page 12-32 for an example of the use of the DBSend| t emfunction in
sending a query fragment. See page 12-77 for a description of the DBSend function. The
DBExec function is described next.

The DBExec function initiates execution of a query that you have sent to a data server.

FUNCTI ON DBExec (sesslD: Longlnt;
asyncPB: DBAsyncParnBl kPtr): OSErr;

sessl D The session ID that was returned by the DBI ni t function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

Data Access Manager Reference 12-79

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

DESCRIPTION

The DBExec function initiates execution of a query that you have sent to a data server.
You can use the DBSt at e function to determine the status of a query after you have
initiated execution.

SPECIAL CONSIDERATIONS

The DBExec function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBExec function are

Trap macro Selector
_DBExec $0408

RESULT CODES
noErr 0 No error
r cDBEr r or -802 Error trying to begin execution
r cDBBadSessl| D -806 Session ID is invalid
r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls
r cDBPackNot | ni t ed -813 Thel ni t DBPack function has not yet been called

SEE ALSO
For a description of the asynchronous parameter block, see page 12-56. See Listing 12-5
beginning on page 12-34 for an example of the use of the DBExec function. Descriptions
of the DBSend and DBSendl t emfunctions begin on page 12-77 and page 12-78,
respectively. The DBSt at e function is described next.

DBState

You can use the DBSt at e function to determine whether the data server has successfully
executed a query and whether it has data available for you to retrieve.

FUNCTI ON DBState (sesslD: Longlnt;
asyncPB: DBAsyncParnmBl kPtr): OSErr;

sess|I D The session ID that was returned by the DBI ni t function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

12-80 Data Access Manager Reference

CHAPTER 12

Data Access Manager

DESCRIPTION

The DBSt at e function returns a result code that indicates the status of the data server.

SPECIAL CONSIDERATIONS

The DBSt at e function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the DBSt at e function are
Trap macro Selector
_DBSt ate $0409

RESULT CODES
noErr 0 No error
r cDBVal ue -801 Output data available
r cDBEr r or -802 Error executing function
r cDBExec -805 Query currently executing
r cDBBadSess| D -806 Session ID is invalid
r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls
r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

SEE ALSO
For a description of the asynchronous parameter block, see page 12-56.

DBGetErr

The DBGet Er r function retrieves error codes and error messages from a data server. You
can use this function to obtain information when a low-level function returns the result
code r cDBError.

FUNCTI ON DBGet Err (sesslD: Longlnt; VAR errl: Longlnt;
VAR err2: Longlnt; VAR itenl: Str255;
VAR itenmR: Str255; VAR errorMsg: Str255;
asyncPB: DBAsyncParnmBl kPtr): OSErr;

sessID The session ID that was returned by the DBI ni t function.
errl Returns the primary error code.

err2 Returns the secondary error code.

itemd Returns a string that describes the object of the error message.

Data Access Manager Reference 12-81

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

iten? Returns a string that describes the object of the error message.
errorMsg Returns the error message.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

DESCRIPTION

If the DBSt at e function returns the r cDBEr r or result code, indicating that execution of
a query ended in an error, the error information retuned by DBGet Er r can help you
debug the query. The meaning of each error code and error message returned by this
function depends on the data server with which you are communicating; see the
documentation for that data server for more information.

SPECIAL CONSIDERATIONS

The DBCet Er r function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the DBGet Er r function are

Trap macro Selector
_DBGetErr $0EOA

RESULT CODES

noErr 0 No error

r cDBEr r or -802 Error retrieving error information

r cDBBadSess| D -806 Session ID is invalid

r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls

rcDBPackNot Inited -813 Thel ni t DBPack function has not yet been called

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

DBBreak

You can use the DBBr eak function to cancel a query—for example, if you determine that
it is taking too long to complete execution.

FUNCTI ON DBBreak (sesslD: Longlnt; abort: Bool ean;
asyncPB: DBAsyncParnBl kPtr): OSErr;

12-82 Data Access Manager Reference

CHAPTER 12

Data Access Manager

sessID The session ID that was returned by the DBI ni t function.

abort A Boolean value that indicates how DBBr eak should cancel the query.
Specify TRUE (nonzero) to cause the data server to halt any query that is
executing and terminate the current session. Specify FALSE (0) to cause
the data server to halt any query that is executing and reinitialize itself.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

DESCRIPTION

The DBBr eak function can halt execution of a query and reinitialize the data server, or it
can unconditionally terminate a session with a data server.

SPECIAL CONSIDERATIONS

The DBBr eak function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBBr eak function are

Trap macro Selector
_DBBr eak $050B

RESULT CODES
noErr 0
r cDBEr r or -802
r cDBBadSess| D -806
r cDBAsyncNot Supp -809

r cDBPackNot | ni t ed -813

SEE ALSO

No error

Error executing function

Session ID is invalid

The database extension does not support
asynchronous calls

The | ni t DBPack function has not yet been called

For a description of the asynchronous parameter block, see page 12-56.

Low-Level Interface: Retrieving Results

The functions in this section allow you to retrieve a data item from the data server, to
obtain information about the next data item, and to retrieve the same data item more

than once.

Data Access Manager Reference

12-83

Jabeuel SS90V BlRQ H

DBGetltem

CHAPTER 12

Data Access Manager

12-84

After you have executed a query and the DBSt at e function returns the r cDBVal ue
result code, indicating that data is available, you can use the DBGet | t emfunction to
retrieve the next data item. You can also use this function to obtain information about the
next data item without retrieving the data.

FUNCTI ON DBGet | tem (sessI D: Longlnt; tineout: Longlnt;
VAR dat aType: DBType; VAR | en: Integer;
VAR pl aces: Integer; VAR flags: Integer;
buffer: Ptr; asyncPB: DBAsyncParnBl kPtr)

OSErr;
sessID The session ID that was returned by the DBI ni t function.
ti meout The maximum amount of time that the database extension should wait to

receive results from the data server before canceling the function. Specify
the t i meout parameter in ticks (sixtieths of a second). To disable the
timeout feature, set the t i meout parameter to the kDBWAi t For ever
constant. If the timeout period expires, the DBGet | t emfunction returns
the r cDBBr eak result code. The DBGet | t emfunction ignores the

ti meout parameter if you call the function asynchronously.

One use for the t i meout parameter is to call the DBGet | t emfunction
periodically with a short value set for this parameter in order to return
control to your application while a query is executing. Your application
can then retrieve the next data item as soon as execution of the query is
complete without having to call the DBSt at e function to determine when
data is available.

dat aType The data type that you expect the next data item to be. If the item is not of
the expected data type, the database extension returns the r cDBBadType
result code. If you want to retrieve the next data item regardless of type,
set the dat aType parameter to the t ypeAnyType constant. To skip the
next data item, set the dat aType parameter to the t ypeDi scard
constant. The data server sets the dat aType parameter to the actual type
of the data item when it retrieves the data item or returns information
about the data item.

len The length of the data buffer pointed to by the buf f er parameter. If you
use the DBGet | t emfunction to obtain information only (by setting the
buf f er parameter to NI L), then the data server ignores the | en
parameter. The data server sets the | en parameter to the actual length of
the data item when it retrieves the data item or returns information
about the data item.

pl aces Returns the number of decimal places in data items of types t ypeMoney
and t ypeDeci mal . For all other data types, the data server returns 0 for
the pl aces parameter.

Data Access Manager Reference

DESCRIPTION

SPECIAL CONSIDERATIONS

CHAPTER 12

Data Access Manager

flags

buf f er

asyncPB

If the least significant bit of the f | ags parameter is set to 1, the data item
is in the last column of the row. If the third bit of this parameter is set to 1,
the data item is NULL. You can use the constants kDBLast Col Fl ag and
KDBNul | FI ag to test for these flag bits.

A pointer to the location where you want the retrieved data item to be
stored. You must ensure that the location you specify contains enough
space for the data item that will be returned. To determine the data type,
length, and number of decimal places of the next data item without
retrieving it, specify NI L for the buf f er parameter.

A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

The DBGet | t emfunction retrieves the next data item from the data server. You can
repeat the DBGet | t emfunction as many times as is necessary to retrieve all of the data
returned by the data source in response to a query.

The DBGet | t emfunction may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the DBGet | t emfunction are

Trap macro Selector

_DBGetltem $100C

noErr 0 No error

r cDBNul | -800 The data item was NULL

r cDBVal ue -801 Data available was successfully retrieved

r cDBEr r or -802 Error executing function

r cDBBadType -803 Next data item not of requested data type
r cDBBr eak -804 Function timed out

r cDBBadSess| D -806 Session ID is invalid

r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls

rcDBPackNot Inited -813 Thel ni t DBPack function has not yet been called

Data Access Manager Reference 12-85

Jabeuel SS90V BlRQ H

SEE ALSO

CHAPTER 12

Data Access Manager

For a discussion of data types, see “Getting Query Results” beginning on page 12-37.
To retrieve all of a query’s data items at once, use the high-level function

DBCet Quer yResul t s; a description of that function begins on page 12-66. For a
description of the asynchronous parameter block, see page 12-56. See Listing 12-5
beginning on page 12-34 for an example that illustrates the use of the DBCet | t em
function.

DBUnGetltem

DESCRIPTION

The DBUNnGet | t emfunction reverses the effect of the last call to the DBGet | t em
function, in the sense that the next time you call the DBGet | t emfunction it retrieves the
same item a second time.

FUNCTI ON DBUnGet I tem (sessl D: Longl nt;
asyncPB: DBAsyncParnmBl kPtr): OSErr;

sess|ID The session ID that was returned by the DBI ni t function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NI L.

The DBUnGet | t emfunction does not remove the just-retrieved data item from the input
buffer. This function can reverse the effect of only one call to the DBGet | t emfunction;
you cannot use it to step back through several previously retrieved data items.

SPECIAL CONSIDERATIONS

The DBUNGet | t emfunction may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

12-86

The trap macro and routine selector for the DBUnCet | t emfunction are

Trap macro Selector
_DBUnGetltem $040D

Data Access Manager Reference

CHAPTER 12

Data Access Manager

RESULT CODES

noErr 0 No error

r cDBEr r or -802 Error executing function

r cDBBadSess| D -806 Session ID is invalid

r cDBAsyncNot Supp -809 The database extension does not support

asynchronous calls

rcDBPackNot Inited -813 Thel ni t DBPack function has not yet been called

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See page 12-84
for a description of the DBCet | t emfunction.

Installing and Removing Result Handlers

The functions in this section install, remove, and return pointers to result handlers.

DBInstallResultHandler

The DBI nst al | Resul t Handl er function installs a result handler for the data type
specified by the dat aType parameter. The result handler is then used by the
DBResul t sToText function to convert data of the specified type into a character string.

FUNCTI ON DBI nst al | Resul t Handl er (dataType: DBType;
t heHandl er: ProcPtr;
i sSysHandl er: Bool ean): OSErr;

dat aType The type of result handler to install.

t heHandl er
A pointer to a result handler.

i sSysHandl er
A Boolean value that specifies whether the result handler is an
application result handler—to be used only when the
DBResul t sToText function is called by the application that installed the
result handler—or a system result handler—to be used by every
application running on the system. If the i sSysHandl er parameter is
TRUE, the result handler is a system result handler.

DESCRIPTION
When you install an application result handler, it replaces any result handler with the
same name previously installed by that application. Similarly, when you install a system
result handler, it replaces any existing system result handler with the same name. Before
you temporarily replace an existing result handler, use the DBGet Resul t Handl er

Data Access Manager Reference 12-87

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

function to obtain a pointer to the present handler, and save the present result handler in
your application’s private storage. Then you can reinstall the original result handler
when you are finished using the temporary one.

Because an application result handler is used in preference to a system result handler if
both are available, you can temporarily replace a system result handler for purposes of
your application by installing an application result handler for the same data type. You
can then use the DBRenpveResul t Handl er function to remove the application result
handler and return to using the system result handler whenever you wish.

SPECIAL CONSIDERATIONS

The DBI nst al | Resul t Handl er function may move or purge memory. You should not
call this routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the DBI nst al | Resul t Handl er function are

Trap macro Selector
_DBI nstal | Resul t Handl er $0514

noErr 0 No error
r cDBPackNot | ni t ed -813 Thel ni t DBPack function has not yet been called

See page 12-68 for a description of the DBResul t sToText function. For information
on application and system result handlers, see “Converting Query Results to Text”
beginning on page 12-43; that section also lists the data types for which Apple provides
system result handlers. Listing 12-6 on page 12-46 shows a sample result handler. The
DBRenpveResul t Handl er function is described on page 12-90, and the

DBGet Resul t Handl er function is described next.

DBGetResultHandler

12-88

The DBCet Resul t Handl er function returns a pointer to a result handler for a specified
data type.

FUNCTI ON DBGet Resul t Handl er (dat aType: DBType;
VAR t heHandl er: ProcPtr;
get SysHandl er: Bool ean): OSErr;

dat aType The data type for which to install a result handler.

Data Access Manager Reference

CHAPTER 12

Data Access Manager

t heHandl er
Returns a pointer to the result handler.

get SysHandl er
If you set the get SysHandl er parameter to FALSE (0), the function
returns a pointer to the current application result handler for the specified
data type, or it returns NI L if there is no application result handler for
that data type. If you set the get SysHandl er parameter to TRUE
(nonzero), the function returns a pointer to the current system result
handler for the specified data type, or it returns NI L if there is no system
result handler for that data type.

DESCRIPTION

You can use the DBGet Resul t Handl er function to obtain a pointer to a result handler
so that you can use it to convert to text an individual data item retrieved by the

DBCet | t emfunction. The DBGet Quer yResul t s function automatically converts to text
all of the data pointed to by the results record.

SPECIAL CONSIDERATIONS

The DBGet Resul t Handl er function may move or purge memory. You should not call
this routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the DBGet Resul t Handl er function are

Trap macro Selector
_DBGet Resul t Handl er $0516

RESULT CODES

noErr 0 No error

r cDBNoHand| er -811 There is no handler for this data type installed for
the current application

r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

SEE ALSO
The DBGet Quer yResul t s function is described on page 12-66, and the DBGet | t em
function is described on page 12-84. See “Converting Query Results to Text” beginning
on page 12-43 for a list of the data types for which Apple provides system result
handlers. Listing 12-6 on page 12-46 shows a sample result handler.

Data Access Manager Reference 12-89

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

DBRemoveResultHandler

You can use the DBRenpveResul t Handl er function to remove an application result
handler.

FUNCTI ON DBRenpveResul t Handl er (dat aType: DBType): OSErr;

dat aType The type of result handler to remove.

DESCRIPTION

The DBRenpveResul t Handl er function removes from memory the specified
application result handler. This function cannot remove a system result handler.

SPECIAL CONSIDERATIONS

The DBRenmpveResul t Handl er function may move or purge memory. You should not
call this routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the DBRenpveResul t Handl er function are

Trap macro Selector
_DBRenpveResul t Handl er $0215

RESULT CODES

NoErr 0 No error

r cDBNoHandl er -811 There is no handler for this data type installed for
the current application

r cDBPackNot I ni t ed -813 Thel ni t DBPack function has not yet been called

SEE ALSO

For a discussion of result handlers, see “Converting Query Results to Text” beginning on
page 12-43.

Application-Defined Routines

You can provide status functions, result handler functions, and query defintion functions
for use with the Data Access Manager. For information on status functions, see “Writing
a Status Routine for High-Level Functions” beginning on page 12-22. See “Processing
Query Results” beginning on page 12-37 for information on result handlers. See “Writing
a Query Definition Function” beginning on page 12-52 for information on query
definition functions.

12-90 Data Access Manager Reference

CHAPTER 12

Data Access Manager

Resources

This section describes the query resource, the query string resource, and the query
definition function resource. You use the query resource to provide information that the
Data Access Manager uses to create a query record in memory. You use the query string
resource to define individual queries. You use the query definition function to modify a
query and the query record before the query is sent to the data server.

The Query Resource

Each query document should contain a single ' qrsc' resource. Figure 12-9 shows the
format of the ' gr sc' resource.

Figure 12-9 Structure of a compiled query (' qr sc') resource

A query resource Bytes
Version 2
Resource ID of ' qdef ' 2

Resource ID of ' STR#'
(database extension name, host, user, 2
password, connection string)

Current query index 2

Number of ' wst r' resources 2

Z Resource IDs of ' wst ' resources / Variable

Number of other resources 2
in this query document

Resource types and resource Variable
IDs of other resources

A' grsc' resource contains these elements:

s The version number of the ' qr sc' format. For the Data Access Manager released
with System 7, the version number is 0.

s The resource ID of the ' qdef' resource containing the query definition function that
the Data Access Manager is to call when it opens this' qr sc' resource. Use an ID of 0
if there is no query definition function for this resource—that is, if the Data Access
Manager should send the query in this resource to the data server without
modifications.

Data Access Manager Reference 12-91

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

= The resource ID of an' STR#' resource that contains five Pascal strings corresponding
to some of the parameters used by the DBl ni t function. If the query definition
function is going to prompt the user for the values of these parameters before entering
them in the query record, they should be zero-length strings in the ' STR#' resource.

= Anindex value indicating which element in the array of ' wst r' IDs represents the
current query. The current query is the one actually sent to the data server.

s The number of ' wWstr' resources in the query document.

= An array of resource IDs of the ' wst r' resources in the query document. (The array
elements are numbered starting with 1.) If the query document contains more than
one' Wstr' resource, the query definition function can prompt the user to select the
query to use and modify the current query field in the query record appropriately.

s The number of other resources in this query document.

= An array listing the resource types and IDs of all the resources in the query document
other than the standard resources included in all query documents. The resources
listed in this final array are those used by the query definition function. This list
should include resources embedded in other resources, such asa' Pl CT' resource
thatis included ina ' DI TL' resource.

The Query String Resource

A query document must contain one or more query string resources of type ' wstr' .
These ' wst r' resources contain individual queries—that is, strings of commands and
data that the DBSend function sends to the data server and that the DBExec function
executes.

A’ wstr' resource consists of a 2-byte length field followed by a character string. (The
win' wstr' refers to the length word as opposed to the length byte used inan' STR '
resource.) Each ' wstr' resource contains one query (or one query template, to be
modified by the query definition function before it is sent to the data server). Figure
12-10 shows the structure of the' wst r' resource.

Figure 12-10 Structure of a compiled query string (" wstr') resource

A'wstr' resource Bytes
Length 2
{ Commands and data {o to 254

The ' grsc' resource includes an array that lists the resource ID numbers of all of the
"wstr' resources in the query document and an index into the array that specifies
which one of the ' wstr' resources should be sent to the data server.

12-92 Data Access Manager Reference

CHAPTER 12

Data Access Manager

The Query Definition Function Resource

A query document may contain a query definition function, which can modify the query
record and, if necessary, fill in the query template to create a complete query.

If you want to include a query definition function, you must make it the first piece of
code in a resource of type ' qdef ' in the query document.

Note that, because a query in memory consists only of a 2-byte length value followed by
a character string, the query definition function has to know the exact contents and
structure of a query in order to modify it. For a sample query definition function that
uses a dialog box to prompt the user for a user name and password, see Listing 12-7 on
page 12-53.

Data Access Manager Reference 12-93

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

Summary of the Data Access Manager

Pascal Summary

Constants

CONST

gest al t DBAccessMyr Attr ="' dbac’;

{Gestalt selector response}
gest al t DBAccessMyr Present = 0;

{DBSt art Query status nessages}
kDBUpdat eW nd =
kDBAbout Tol ni t =
kDBI ni t Conpl et e =
kDBSendComnpl et e =
kDBExecComnpl et e =
kDBSt art Quer yConpl et e =

agRONEO

{DBGet QueryResul ts status nessages}
kDBGet | t enConpl et e = 6;

kDBGet Quer yResul t sConpl ete = 7;
{data type codes}

t ypeNone = 'none';
t ypeDat e = 'date';
typeTi ne ="'tinme';
typeTi neSt anp ="'tinms';
t ypeDeci mal = 'deci'
t ypeMoney = 'none';
t ypeVChar = 'vcha';
typeVBin = 'vbin';
t ypeLChar = 'lcha';
typelLBin = '"lbin";
typeDi scard = "disc';
t ypeBool ean = ' bool"
t ypeChar = ' TEXT";

12-94 Summary of the Data Access Manager

{Gestalt selector for }
{ Data Access Manager}

{TRUE if Data Access Mnager }
{ is present}

{updat e wi ndows}

{about to call DBInit}
{DBInit has conpl et ed}
{DBSend has conpl et ed}

{ DBExec has conpl et ed}
{DBStart Query is about }
{ to compl ete}

{DBGet I tem has conpl et ed}
{DBGet QueryResul ts has }
{ conpl eted data types}

{no nore data expected}
{dat e}

{tine}

{date and tine}
{deci mal nunber}

{noney val ue}

{vari abl e character}
{variabl e binary}

{long character}

{long bi nary}

{discard next data iten}
{ Bool ean}

{character}

CHAPTER 12

Data Access Manager

t ypeSM nt = 'shor'; {short integer}
typel nt eger ="'long'; {i nteger}
t ypeSMFI oat = 'sing'; {short floating point}
t ypeFl oat = 'doub'; {floating point}
{dummy data types for DBResultsToText}
t ypeUnknown = 'unkn'; {result handler for unknown }
{ data type}
t ypeCol Br eak = '"colb'; {result handler for colum }
{ break}
t ypeRowBr eak = 'rown’'; {result handler for end of }
{ l'ine}
{any data type in DBGetlteni
t ypeAnyType = 0; {any data type}
{infinite tinmeout value for DBCetltemn
kDBWAi t For ever = -1 {infinite timeout value for }
{ DBGetltent
{flags for DBCetltemn
kDBLast Col Fl ag = $0001; {data itemis last colum }
{ of the row}
kDBNul | Fl ag = $0004; {data itemis NULL}
Data Types
TYPE DBType = CSType; {data type}
DBAsyncPar amBl ockRec = {asynchr onous paraneter bl ock}
RECORD
conpl eti onProc: ProcPtr; {pointer to conpletion routine}
result: OSErr; {result of call}
user Ref: Longl nt; {reserved for use by }
{ application}
ddevRef : Longl nt ; {reserved for use by database }
{ extension}
reserved: Longl nt; {reserved for use by }
{ Data Access Myr}
END;

DBAsyncPar nBl kPtr = ~"DBAsyncPar anBl ockRec;

ResLi stEl em = {resource list in QueryRecord}
RECORD

t heType: ResType; {resource type}

id: I nt eger; {resource | D}
END;

Summary of the Data Access Manager 12-95

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

ARRAY[0. . 255] OF ResLi stEl em
"ResLi st Array;

ResLi st Array
ResListPtr

ResLi stHandle = “ResListPtr
QueryRecord =
RECORD
versi on: I nt eger; {query record format version}
id: I nt eger; {resource I D of 'qgrsc'}
qguer yProc: Handl e; {handl e to query def proc}
ddevNane: Str63; {nane of database extension}
host : Str255; {name of host computer}
user: Str 255; {nane of user}
passwor d: Str 255; {user's password}
connStr: Str255; {connection string}
currQuery: I nt eger; {index of current query}
nunueri es: I nt eger; {nunber of queries in list}
guerylLi st: QuerylLi stHandl e; {handle to array of handles to text}
nunRes: I nt eger; {nunber of resources in list}
resList: ResLi st Handl e; {handl e to array of resource list }
{ el ements}
dat aHandl e: Handl e; {handl e to nenmory for query def proc}
r ef Con: Longl nt ; {reserved for use by application}
END;
QueryPtr = "QueryRecord; {pointer to query record}
QueryHandl e = "QueryPtr; {handl e to query record}
{query list in QueryRecord}
Quer yArray = ARRAY[0. . 255] OF Handl e;
QueryListPtr = "QueryArray;

QuerylLi st Handl e AQueryListPtr;

{colum types array in ResultsRecord}
Col TypesArray = ARRAY[O..255] OF DBType;
Col TypesPtr = ~Col TypesArray;

Col TypesHandl e = ~Col TypesPtr
DBCol | nf oRecord = {colum info in ResultsRecord}
RECORD
| en: I nt eger; {length of data iten}
pl aces: I nt eger; {pl aces for deci mal and noney }
{ data itens}
fl ags: I nt eger; {flags for data iten}
END;

12-96 Summary of the Data Access Manager

CHAPTER 12

Data Access Manager

ARRAY[0. . 255] OF DBCol I nf oRecor d;
ACol I nf 0Array;
ACol I nfoPtr;

Col | nf 0Array
Col I nfoPtr
Col | nf oHandl e

{structure of results returned by DBGet Results}
Resul t sRecord =

RECORD
nunRows: I nt eger; {nunber of rows retrieved}
nuntol s: I nt eger; {nunber of columms per row}
col Types: Col TypesHandl e; {type of data in each col umj}
col Dat a: Handl e; {array of data itens}
col I nfo: Col | nf oHandl e; {DBCol I nf oRecord array--info about }
{ each data itemn
END;

Data Access Manager Routines

Initializing the Data Access Manager
FUNCTI ON | ni t DBPack: CSErr;

High-Level Interface: Handling Query Documents

FUNCTI ON DBGet NewQuery (queryl D: Integer; VAR query: QueryHandl e)
. OSErr;

FUNCTI ON DBDi sposeQuery (query: QueryHandle): OSErr;

FUNCTI ON DBSt art Query (VAR sessI D: Longlnt; query: QueryHandl e;
statusProc: ProcPtr;
asyncPB: DBAsyncParnBl kPtr): OSErr;

High-Level Interface: Handling Query Results

FUNCTI ON DBGet QueryResults (sessID: Longlnt; VAR results:

Resul t sRecor d;

timeout: Longlnt; statusProc: ProcPtr;
asyncPB: DBAsyncParnBl kPtr): OSErr;
FUNCTI ON DBResul t sToText (results: ResultsRecord; VAR theText:
CSErr;
Low-Level Interface: Controlling the Session
FUNCTI ON DBI ni t (VAR sessl D: Longlnt; ddevNane: Str63;

Handl e)

host: Str255; user: Str255; password: Str255;

connStr: Str255; asyncPB: DBAsyncPar nBl kPt r)

CSEr r;

Summary of the Data Access Manager

12-97

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

FUNCTI ON DBENnd (sessl D Longlnt;
asyncPB: DBAsyncParnBl kPtr): OSErr;
FUNCTI ON DBCet Connl nf o (sesslI D Longlnt; sessNum I nteger;

VAR returnedl D. Longlnt; VAR version: Longlnt;

VAR ddevNane: Str63; VAR host: Str255;

VAR user: Str255; VAR network: Str255;

VAR connStr: Str255; VAR start: Longlnt;

VAR state: OSErr; asyncPB: DBAsyncParnBl kPtr)
CSErr;

FUNCTI ON DBGet Sessi onNum (sessI D Longlnt; VAR sessNum Integer;
asyncPB: DBAsyncParnBl kPtr): OSErr;

FUNCTI ON DBKi | | (asyncPB: DBAsyncPar nBl kPtr): OSErr;

Low-Level Interface: Sending and Executing Queries

FUNCTI ON DBSend (sessI D Longlnt; text: Ptr; len: Integer;
asyncPB: DBAsyncParnBl kPtr): OSErr;
FUNCTI ON DBSendl t em (sessl D Longlnt; dataType: DBType;

I en: Integer; places: Integer; flags: Integer;
buffer: Ptr; asyncPB: DBAsyncPar nmBl kPt r)

CSErr;

FUNCTI ON DBExec (sessl D Longlnt; asyncPB: DBAsyncPar nBl kPt r)
OSErr;

FUNCTI ON DBSt at e (sessl D Longlnt; asyncPB: DBAsyncPar nBl kPt r)
OSErr;

FUNCTI ON DBGet Err (sessl D Longlnt; VAR errl: Longlnt;

VAR err2: Longlnt; VAR itenl: Str255;
VAR itenR: Str255; VAR errorMsg: Str255;
asyncPB: DBAsyncParnBl kPtr): OSErr;

FUNCTI ON DBBr eak (sessl D Longlnt; abort: Bool ean;
asyncPB: DBAsyncParnBl kPtr): OSErr;

Low-Level Interface: Retrieving Results

FUNCTI ON DBGet | t em (sessl D Longlnt; tineout: Longlnt;
VAR dat aType: DBType;
VAR |l en: Integer; VAR places: Integer;
VAR flags: Integer; buffer: Ptr;
asyncPB: DBAsyncParnBl kPtr): OSErr;

FUNCTI ON DBUnGet | t em (sessl D Longlnt;
asyncPB: DBAsyncParnBl kPtr): OSErr;

12-98 Summary of the Data Access Manager

CHAPTER 12

Data Access Manager

Installing and Removing Result Handlers

FUNCTI ON DBI nst al | Resul t Handl er
(dat aType: DBType; theHandl er: ProcPtr;
i sSysHandl er: Bool ean): OSErr;

FUNCTI ON DBGet Resul t Handl er (dat aType: DBType; VAR theHandl er: ProcPtr;
get SysHandl er: Bool ean): OSErr;

FUNCTI ON DBRenpbveResul t Handl er
(dat aType: DBType): OSErr;

Application-Defined Routines

FUNCTI ON My St at usFunc (message: Integer; result: OSErr;
dataLen: |nteger; dataPlaces: Integer;
dat aFl ags: |nteger; dataType: DBType;
dataPtr: Ptr): Bool ean;

FUNCTI ON MyResul t Handl er (dat aType: DBType; thelLen: |nteger;

t hePl aces: Integer; theFlags: Integer;
theData: Ptr; theText: Handle): OCSErr;

FUNCTI ON My QDef (VAR sessl D: Longl nt;
query: QueryHandle): OSErr;

C Summary

Constants

enum {
#def i ne gestal t DBAccessMyr At tr " dbac' /*Cestalt selector for */
/* Data Access Manager*/
/*Cestalt selector response*/
gest al t DBAccessMyr Pr esent =0 /*TRUE i f Data Access Manager */
/* is present*/

1

enum { /*DBSt art Query status nessages*/
kDBUpdat eW nd = 0, /*updat e wi ndows*/
kDBAbout Tol ni t =1, /*about to call DBInit*/
kDBI ni t Conpl et e = 2, /*DBl nit has conpl et ed*/
kDBSendConpl et e = 3, / *DBSend has conpl et ed*/
kDBExecConpl et e = 4, / *DBExec has conpl et ed*/
kDBSt art Quer yConpl et e =5 /*DBStart Query is about */

/* to conpl ete*/
1

Summary of the Data Access Manager 12-99

Jabeuel SS90V BlRQ H

enum {

/ *DBGet Quer yResul ts status nessages*/

CHAPTER 12

Data Access Manager

kDBGet | t emConpl et e
kDBGet Quer yResul t sConpl et e

/*data type codes*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

[*dunmmy

#def i

#def i

#def i

ne

ne

ne

t ypeNone

t ypeDat e
typeTi ne
typeTi neSt anp
t ypeDeci nal
t ypeMoney

t ypeVChar
typeVBi n

t ypeLChar
typelLBin
typeDi scard

:6,
=7,

'none
"date
"tine
"tinms
' deci
none

vbi n

vcha'

"l cha'

"I bin
"di sc

/*DBCGet | t em has conpl et ed*/
/ *DBCGet QueryResults has */
/* conpleted data types*/

/*no nore data expected*/
/ *dat e*/

[*time*/

/*date and tine*/
/*deci mal nunber*/
/*money val ue*/

/*vari abl e character*/
/*vari abl e bi nary*/

/*1 ong character*/

/*1 ong binary*/

/*di scard next data itent/

data types for DBResul tsToText*/

t ypeUnknown
t ypeCol Br eak

t ypeRowBr eak

/*any data type in DBGetltent/
#defi ne typeAnyType
/[*infinite tinmeout value for
kDBWi t For ever

/[*flags for DBGetltent/
kDBLast Col Fl ag

kDBNul | FI ag

}s

enum {

/*more data type codes*/
t ypeBool ean

t ypeChar

t ypeSM nt
t ypel nt eger
t ypeSM-I oat
t ypeFl oat

12-100

"unkn' /*result handler for unknown */
/* data type*/

'col b' /*result handler for */
/* col um break*/

" rowb’ /*result handler for */
/* end of |ine*/

(DBType) 0 /*any data type*/
DBGet | t ent/
= -1, /*infinite tinmeout value for */

' bool '
" TEXT
"shor'
"l ong'
'sing'
' doub’

Summary of the Data Access Manager

[* DBGCetltent/

0x0001,/*data itemis last colum */

/* of the row/

0x0004 /*data itemis NULL*/

/ * Bool ean*/
/*character*/

/*short integer*/
/*integer*/

/*short floating point*/
[*floating point*/

Data Types

CHAPTER 12

Data Access Manager

typedef OSType DBType;

struct
ProcPtr
OSEr r
| ong
| ong

| ong

}s

typedef struct

DBAsyncPar amBl ockRec {

conpl eti onProc;

result;
user Ref ;
ddevRef ;

reserved;

/*data type*/

/ *asynchronous paraneter bl ock*/
/*pointer to conpletion routine*/
/[*result of call*/

/*reserved for use by application*/
/*reserved for use by database */
/* extension*/

/*reserved for use by */

/* Data Access Manager*/

DBAsyncPar anBl ockRec DBAsyncPar anBl ockRec

t ypedef DBAsyncPar anBl ockRec *DBAsyncPar nBl kPt r

struct
ResType
short

b

t ypedef struct

ResLi st El em {

t heType;
i d;

t ypedef ResLi st El em *ResLi sPtr

t ypedef Handl e **QueryLi st Handl e;
struct QueryRecord {

short
short
Handl e
Str63
Str255
Str 255
Str 255
Str 255
short
short

QuerylLi st Handl e

short

ResLi st Handl e

Handl e
| ong

b

versi on;

i d;

quer yProc;
ddevNane;
host ;
user;
passwor d;
connStr;
currQery;
numueri es;
querylLi st;
nunRes;
resLi st;

dat aHandl e;
r ef Con;

/*resource list in QueryRecord*/
/*resource type*/
/*resource | D*/

ResLi st El em ResLi st El em
**ResLi st Handl e;

/*query record*/

/*query record format version*/
/*resource ID of 'qrsc'*/

/*handl e to query def proc*/

/*name of database extension*/

/*name of host conputer*/

/*nane of user*/

/*user's password*/

/*connection string*/

/*index of current query*/

/*nunber of queries in list*/

/*handl e to array of handles to text*/
/ *nunber of resources in list*/
/*handl e to array of resource list */
/* el ement s*/

/*handl e to nenory for query def proc*/
/*reserved for use by application*/

t ypedef struct QueryRecord QueryRecord,;

Summary of the Data Access Manager

12-101

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

typedef QueryRecord *QueryPtr, **QueryHandl e;

/*colum types array in ResultsRecord*/
t ypedef Handl e Col TypesHandl e;

struct DBCol | nfoRecord { /*colum info in ResultsRecord*/
short |en; /*length of data itenr/
short places; /*pl aces for deci mal and noney */
/* data itens*/
short fl ags; /*flags for data itenr/
b

typedef struct DBCol | nfoRecord DBCol | nf oRecor d;
t ypedef Handl e Col | nf oHandl e;

struct Resul tsRecord { /[*results returned by DBCet Resul ts*/
short nUuMRows;; [*nunber of rows retrieved*/
short nunCol s; / *nunber of colums per row*/
Col TypesHandl e col Types; /*type of data in each col um*/
Handl e col Dat a; /*array of data itens*/
Col I nfoHandl e col I nfo; /*DBCol | nf oRecord array--info about */

/* each data itent/
}s

typedef struct ResultsRecord ResultsRecord;

Data Access Manager Routines

Initializing the Data Access Manager
pascal OSErr | nit DBPack (void);

High-Level Interface: Handling Query Documents
pascal OSErr DBGet NewQuery (short queryl D, QueryHandl e *query);
pascal OSErr DBDi sposeQuery (QueryHandl e query);

pascal OSErr DBStart Query (long *sessl D, QueryHandl e query,
ProcPtr statusProc, DBAsyncParnBl kPtr asyncPB);

High-Level Interface: Handling Query Results
pascal OSErr DBGet QueryResults
(long sessID, ResultsRecord *results,
I ong tineout, ProcPtr statusProc,
DBAsyncPar nBl kPt r asyncPB) ;
pascal OSErr DBResul t sToText
(Resul tsRecord *results, Handle *theText);

12-102 Summary of the Data Access Manager

CHAPTER 12

Data Access Manager

Low-Level Interface: Controlling the Session

pascal OSErr DBInit (long *sessl D, Const Str63Param ddevNane,
Const St r 255Par am host, Const Str255Par am user,
Const St r 255Par am passwd,
Const St r 255Par am connStr
DBAsyncPar nBl kPt r asyncPB);

pascal OSErr DBEnd (long sessl D, DBAsyncPar nBl kPtr asyncPB);

pascal OSErr DBGet Connlnfo (long sesslD, short sessNum |ong *returnedl D,
Il ong *version, Str63 ddevNanme, Str255 host,
Str255 user, Str255 network, Str255 connStr,
long *start, OSErr *state,
DBAsyncPar nBl kPt r asyncPB);

pascal OSErr DBGet Sessi onNum
(1 ong sessI D, short *sessNum
DBAsyncPar nBl kPt r asyncPB);

pascal OSErr DBKil | (DBAsyncPar mBl kPt r asyncPB);

Low-Level Interface: Sending and Executing Queries

pascal OSErr DBSend (long sessI D, char *text, short |en,
DBAsyncPar nBl kPt r asyncPB);
pascal OSErr DBSendltem (long sessl D, DBType dataType, short |en,

short places, short flags, void *buffer,
DBAsyncPar nBl kPt r asyncPB);

pascal OSErr DBExec (long sessl D, DBAsyncPar nBl kPtr asyncPB);
pascal OSErr DBState (long sessl D, DBAsyncPar nBl kPtr asyncPB);
pascal OSErr DBGCetErr (long sessID, long *errl, long *err2,

Str255 iteml, Str255 itenR, Str255 errorMsg,
DBAsyncPar nBl kPt r asyncPB);

pascal OSErr DBBreak (long sessl D, Bool ean abort,
DBAsyncPar nBl kPt r asyncPB);

Low-Level Interface: Retrieving Results

pascal OSErr DBCetltem (long sessID, long timeout, DBType *dataType,
short *len, short *places, short *fl ags,
voi d *buffer, DBAsyncParnBl kPtr asyncPB);

pascal OSErr DBUnCetltem (long sessl D, DBAsyncPar nBl kPtr asyncPB);

Installing and Removing Result Handlers

pascal OSErr DBInstall Resul t Handl er
(DBType dataType, ProcPtr theHandl er,
Bool ean i sSysHandl er);

Summary of the Data Access Manager 12-103

Jabeuel SS90V BlRQ H

CHAPTER 12

Data Access Manager

pascal OSErr DBGet Resul t Handl er
(DBType dataType, ProcPtr *theHandl er,
Bool ean get SysHandl er) ;

pascal OSErr DBRenpveResul t Handl er
(DBType dat aType);

Application-Defined Routines

pascal Bool ean MyStatusFunc (short nessage, OSErr result, short datalen,
short dataPl aces, short dataFl ags,
DBType dataType, Ptr dataPtr);

pascal OSErr MyResul t Handl er
(DBType dataType, short thelen,
short thePlaces, short theFlags, Ptr theData,
Handl e theText);

pascal OSErr My QDef (long *sessl D, QueryHandl e query);

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_Pack13

Selector Routine

$0100 | ni t DBPack

$020E DBKi | |

$0210 DBDi sposeQuery

$0215 DBRenoveResul t Handl er
$030F DBGet NewQuery

$0403 DBENd

$0408 DBExec

$0409 DBSt at e

$040D DBUnGet | t em

$0413 DBResul t sToText

$050B DBBr eak

$0514 DBI nst al | Resul t Handl er
$0516 DBCGet Resul t Handl er
$0605 DBGet Sessi onNum

12-104 Summary of the Data Access Manager

CHAPTER 12

Data Access Manager

Selector Routine

$0706 DBSend

$0811 DBSt art Query
$0A12 DBGet Quer yResul ts
$0B07 DBSendl t em

$0E02 DBI ni t

$0E0A DBGet Er r

$100C DBGet I t em

$1704 DBGet Connl nf o

Result Codes

noErr

user Cancel edErr
r cDBNul |

r cDBVal ue

r cDBEr r or

r cDBBadType

r cDBBr eak

r cDBExec

r cDBBadSess| D
r cDBBadSessNum
r cDBBadDDev

r cDBAsyncNot Supp
r cDBBadAsynchPB
r cDBNoHandlI er

r cDBW ongVer si on
r cDBPackNot | ni t ed

Summary of the Data Access Manager

-128
-800
-801
-802
-803
-804
—-805
-806
-807
-808

-809
-810
-811

-812
813

No error

User canceled the query

The data item was NULL

Data available or successfully retrieved

Error executing function

Next data item not of requested data type

Function timed out

Query currently executing

Session ID is invalid

Invalid session number

Couldn’t find the specified database extension, or error occurred in
opening database extension

The database extension does not support asynchronous calls
Invalid parameter block specified

There is no handler for this data type installed for the current
application

Wrong version number

The | ni t DBPack function has not yet been called

12-105

Jabeuel SS90V BlRQ H

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	Data Access Manager
	About the Data Access Manager
	The High-Level Interface
	Sending a Query Through the High-Level Interface
	Retrieving Data Through the High-Level Interface

	The Low-Level Interface
	Sending a Query Through the Low-Level Interface
	Retrieving Data Through the Low-Level Interface

	Comparison of the High-Level and Low-Level Interfa...

	Using the Data Access Manager
	Executing Routines Asynchronously
	General Guidelines for the User Interface
	Keep the User in Control
	Provide Feedback to the User

	Using the High-Level Interface
	Writing a Status Routine for High-Level Functions
	Using the Low-Level Interface
	Getting Information About Sessions in Progress
	Processing Query Results
	Getting Query Results
	Converting Query Results to Text

	Creating a Query Document
	User Interface Guidelines for Query Documents
	Contents of a Query Document
	Query Records and Query Resources
	Writing a Query Definition Function

	Data Access Manager Reference
	Data Structures
	The Asynchronous Parameter Block
	The Query Record
	The Results Record

	Data Access Manager Routines
	Initializing the Data Access Manager
	High-Level Interface: Handling Query Documents
	High-Level Interface: Handling Query Results
	Low-Level Interface: Controlling the Session
	Low-Level Interface: Sending and Executing Queries...
	Low-Level Interface: Retrieving Results
	Installing and Removing Result Handlers

	Application-Defined Routines
	Resources
	The Query Resource
	The Query String Resource
	The Query Definition Function Resource

	Summary of the Data Access Manager
	Pascal Summary
	Constants
	Data Types
	Data Access Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Data Access Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Glossary
	 Index
	 Colophon

