CHAPTER 6

Resolving and Creating Object Specifier Records

This chapter describes how your application can use the Apple Event Manager and
application-defined functions to resolve object specifier records. Your application must
be able to resolve object specifier records to respond to core and functional-area Apple
events defined in the Apple Event Registry: Standard Suites.

For example, after receiving a Get Data event that requests a table in a document, your
application can use the Apple Event Manager and application-defined functions to parse
the object specifier record in the direct parameter, locate the requested table, and send a
reply Apple event containing the table’s data back to the application that requested it.

This chapter also describes how your application can use the Apple Event Manager to
create object specifier records. If you want to factor your application for Apple event
recording, or if you want to send Apple events directly to other applications, you need to
know how to create object specifier records.

To use this chapter, you should be familiar with the chapters “Introduction to Apple
Events” and “Responding to Apple Events” in this book. The section “Working With
Object Specifier Records,” which begins on page 3-32, provides a general introduction to
the subject.

If you plan to create object specifier records, you should also be familiar with the chapter
“Creating and Sending Apple Events.” If you are factoring your application, you should
read the chapter “Recording Apple Events” before you write code for resolving or
creating object specifier records.

This chapter begins with an overview of the way your application works with the
Apple Event Manager to resolve object specifier records. It then describes

» how the data in an object specifier record is organized
= how to install entries in the object accessor tables
= how to write object accessor and object callback functions

= how to create an object specifier record

IMPORTANT

Versions 1.0 and 1.01 of the Apple Event Manager do not include the
routines for resolving and creating object specifier records described in
this chapter. To use these routines with those versions of the Apple
Event Manager, you must link the Object Support Library (OSL) with
your application when you build it, and call the AECbj ect | ni t
function before calling any of the routines. a

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Resolving Object Specifier Records

If an Apple event parameter consists of an object specifier record, your handler for the
Apple event should resolve the object specifier record: that is, locate the Apple event
objects it describes. The first step is to call the AEResol ve function with the object
specifier record as a parameter.

The AEResol ve function performs tasks that are required to resolve any object specifier
record, such as parsing its contents, keeping track of the results of tests, and handling
memory management. When necessary, AEResol ve calls application-defined functions
to perform tasks that are unique to the application, such as locating a specific Apple
event object in the application’s data structures or counting the number of Apple event
objects in a container.

Note

Object specifier records are only valid while the Apple event that
contains them is being handled. For example, if an application receives
an Apple event asking it to cut row 5 of a table, what was row 6 then
becomes row 5, and the original object specifier record that referred to
row 5 no longer refers to the same row. O

The AEResol ve function can call two kinds of application-defined functions. Object
accessor functions locate Apple event objects. Object callback functions perform other
tasks that only an application can perform, such as counting, comparing, or marking
Apple event objects. This section provides an overview of the way AEResol ve calls
object accessor and object callback functions when it resolves object specifier records.

Each time AEResol ve calls one of your application’s object accessor functions
successfully, the object accessor function should return a special descriptor record
created by your application, called a token, that identifies either an element in a
specified container or a property of a specified Apple event object. The Apple Event
Manager examines the token’s descriptor type but does nothing with the token’s data.
When it needs to refer to the object the token identifies, the Apple Event Manager simply
passes the token back to your application.

Each object accessor function provided by your application should either find elements
of a given object class in a container identified by a token of a given descriptor type, or
find properties of an Apple event object identified by a token of a specified descriptor
type. The Apple Event Manager uses the object class ID and the descriptor type of the
token that identifies the object’s container to determine which object accessor function
to call.

Resolving Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

It is up to you to decide how many object accessor functions you need to write for your
application. You can write one object accessor function that locates Apple event objects of
several different object classes, or you can write separate object accessor functions for
certain object classes. Similarly, you may want to use only one descriptor type for all the
tokens returned by your object accessor functions, or you may want to use several
descriptor types. The way you define your tokens depends on the needs of your
application.

You can use the AEI nst al | Obj ect Accessor function to create an object accessor
dispatch table that the Apple Event Manager uses to map requests for Apple event
objects to the appropriate object accessor function in your application. The Apple Event
Manager uses the object class of each requested object and the descriptor type of the
token that identifies the object’s container to determine which object accessor function to
call. Depending on the container hierarchy for a given object specifier record and the
way your application defines its object accessor functions, the Apple Event Manager
may need to call a series of object accessor functions to resolve the nested object specifier
records that describe an Apple event object’s container. For information about creating
and using the object accessor dispatch table, see “Installing Entries in the Object Accessor
Dispatch Tables,” which begins on page 6-21.

Figure 6-1 illustrates the major steps involved in resolving an object specifier record. The
SurfWriter application shown in Figure 6-1 receives a Get Data event whose direct
parameter is an object specifier record for a table named “Summary of Sales” in a
document named “Sales Report.” The SurfWriter application’s handler for the Get Data
event calls the AEResol ve function with the object specifier record as a parameter. The
AEResol ve function begins to parse the object specifier record. The first object accessor
function that AEResol ve calls is usually the function that can identify the Apple event
object in the application’s default container— the outermost container in the container
hierarchy. In Figure 6-1, the object specifier record for the document “Sales Report”
specifies the default container, so the Apple Event Manager calls the object accessor
function in the SurfWriter application that can locate a document in a container
identified by a descriptor record of descriptor typet ypeNul | .

Resolving Object Specifier Records 6-5

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Figure 6-1

Resolving an object specifier record for a table in a document

Apple event

Get Data

Object specifier record

Class ID:

cTabl e

Container:

Object specifier record

Class ID: cDocunent

Container: | Default container

Key form: | f or mNane

Key data: | "Sal es Report”

Key form:

f or mMNane

Key data:

"Summary of Sal es”

SurfWriter

=

Server
application

Apple Event Manager

Apple event dispatch table

| AEPr ocessAppl eEvent (event)

B

AEPr ocessAppl eEvent

MyHandl eCet Dat a(anAppl eEvent)

AEResol ve(anObj ect SpecRec)

AEDi sposeToken(t oken)

1 * Call handler for Get Data event

[

Object accessor dispatch table

Object class Token type Handler

cTabl e t ypeMyDocToken | @¥ Get Tabl e

cDocunent | t ypeNul | @ CGet Doc

cDocunent |typeFil e @4 Cet DocFi | e
AEResol ve

My Get Doc(obj SpecRec, t oken)

(—

« Return token for document

« Locate document named “Sales Report”

—

My Get Tabl e(obj SpecRec, t oken)

in “Sales Report”
« Return token for table

« Locate table named “Summary of Sales”

E—

My/Di sposeToken(t oken)

« Dispose of token for document

[(C—
[—

(—

1 * Call object accessor function
for object class cDocunent
and token type t ypeNul |

* Call object accessor function

for object class c Tabl e and
token type t ypeMyDoc Token

7 * Call token disposal function

* Return token for table
as result of AEResol ve

Resolving Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

After locating the document named “Sales Report,” the SurfWriter application returns a
token to the Apple Event Manager—that is, a descriptor record that SurfWriter uses to
identify the document. The Apple Event Manager examines the descriptor type of the
token but does not need to know anything about the token’s data to continue parsing the
object specifier record. Next, the Apple Event Manager calls the object accessor function
that can identify a table in a container identified by a token of descriptor type

t ypeMyDocToken. When the Apple Event Manager calls this object accessor function, it
uses the token that describes the document to identify the table’s container. After the
SurfWriter application has located the table named “Summary of Sales” in the document
named “Sales Report,” it returns a token describing that table to the Apple Event
Manager.

After your application has successfully located an Apple event object, the Apple Event
Manager disposes of all previous tokens returned during resolution of the object
specifier record for the object. The Apple Event Manager disposes of tokens by calling
either the AEDI sposeDesc function or your application’s token disposal function, if
you have provided one, which is an object callback function that disposes of a token. In
Figure 6-1, the AEResol ve function calls the SurfWriter application’s token disposal
function to dispose of the token for the document after AEResol ve receives the token
for the table. After the SurfWriter application has disposed of the token for the
document, the AEResol ve function returns the result of the resolution—that is, the
token for the requested table—to the handler in the SurfWriter application that originally
called AEResol ve.

The Apple Event Manager can complete the cycle of parsing the object specifier record
and calling the appropriate object accessor function to obtain a token as many times as
necessary to identify every container in the container hierarchy and finish resolving an
object specifier record, including disposing of the tokens for the containers. However,
one token will always be left over—the token that identifies the requested Apple event
object. After AEResol ve returns this final token and your application performs the
action requested by the Apple event, it is up to your application to dispose of the token.
Your application can do so by calling the AEDi sposeToken function, which in turn calls
either AEDI sposeDesc or your application’s token disposal function.

You need to provide a token disposal function only if a call to AEDI sposeDesc is not
sufficient by itself to dispose of a token or if you provide marking callback functions,
which are three object callback functions that allow your application to use its own
marking scheme rather than tokens when identifying large groups of Apple event
objects. Your application is not required to provide marking callback functions.

To handle object specifier records that specify a test, your application must provide two
object callback functions: (a) an object-counting function, which counts the number of
elements of a given object class in a given container so that the Apple Event Manager can
determine how many elements it must test to find the element or elements that meet a
specified condition, and (b) an object-comparison function, which compares one
element to another element or to a descriptor record and returns TRUE or FALSE.

Resolving Object Specifier Records 6-7

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Your application may also provide an error callback function that can identify which
descriptor record caused the resolution of an object specifier record to fail. Your
application is not required to provide an error callback function.

If your application resolves object specifier records without the help of the Apple Event
Manager, it must extract the equivalent descriptor records and coerce them as necessary
to get access to their data. The Apple Event Manager includes coercion handlers for these
coercions; for information about this default coercion handling, see Table 4-1 on

page 4-43.

For more information about object accessor functions, see “Writing Object Accessor
Functions,” which begins on page 6-28. For more information about object
callback functions, see “Writing Object Callback Functions,” which begins on page 6-45.

The next section, “Descriptor Records Used in Object Specifier Records,” describes how
the data in an object specifier record is interpreted by the Apple Event Manager.

Descriptor Records Used in Object Specifier Records

6-8

An object specifier record is a coerced AE record of descriptor type
t ypeQbj ect Speci fi er. The data to which its data handle refers consists of four
keyword-specified descriptor records:

Keyword Value Description of data
keyAEDesi r edd ass "want ' A four-character code for the object class
keyAECont ai ner “from An object specifier record (or in some cases a

descriptor record with a handle whose value is
NI L) that identifies the container for the
requested objects

key AEKeyFor m "form A four-character code for the key form

keyAEKeyDat a ‘sel d' Data or nested descriptor records that specify a
property, name, position, range, or test,
depending on the key form

This section describes the descriptor types and data associated with each of these
keywords. You need this information if your application resolves or creates object
specifier records.

For a summary of the descriptor types and key forms discussed in this section, see
Table 6-11 on page 6-76. For an overview of object specifier records, see “Working With
Object Specifier Records,” which begins on page 3-32.

Descriptor Records Used in Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Object Class

The object class of the requested objects is identified by an object class ID. The
corresponding keyword-specified descriptor record takes this form:

Keyword Descriptor type Data
keyAEDesi r edCl ass typeType Object class ID

The Apple Event Registry: Standard Suites defines constants for the standard object
class IDs.

Container

The container for the requested objects is usually the object in which they are located. It
can be identified in one of four ways:

Keyword Descriptor type Data
keyAECont ai ner t ypeQbj ect Speci fi er Object specifier record.
typeNul | Value of data handle is NI L.
Specifies the default

container at the top of the
container hierarchy.

t ypeObj ect Bei ngExami ned Value of data handle is NI L.
Specifies the container for
elements that are tested one
at a time; used only within
key data for key form
fornest.

t ypeCur r ent Cont ai ner Value of data handle is NI L.
Specifies a container for an
element that demarcates one
boundary in a range. Used
only within key data for key
form f or rRange.

The data that describes a container usually consists of another object specifier record.
The ability to nest one object specifier record within another in this way makes it
possible to identify a chain of containers that fully describes the location of one or more
Apple event objects.

Descriptor Records Used in Object Specifier Records 6-9

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

For example, Figure 6-2 shows nested object specifier records that specify the first row of
a table named “Summary of Sales” in a document named “Sales Report.” The container
specified by the object specifier record at the bottom of the figure describes the outermost
container in the container hierarchy—the container for the document “Sales Report.”

Because a container must be specified for each Apple event object in a container
hierarchy, a null descriptor record (that is, a descriptor record whose descriptor type is

t ypeNul I and whose data handle has the value NI L) is used to specify the application’s
default container—the outermost container for any container hierarchy in that
application.

Figure 6-2 Nested object specifier records that specify a container hierarchy

Object specifier data for row

keyAEDesi r edCl ass ||keyAECont ai ner keyAEKeyFor m keyAEKeyDat a
typeType typeQbj ect Speci fi er ||t ypeEnuner at ed t ypeLongl nt eger
cRow Data shown below f or mbsol ut ePosi tionf|1

Object specifier data for table

keyAEDesi r edd ass ||keyAECont ai ner keyAEKeyForm | keyAEKeyDat a

typeType

typeQbj ect Speci fi er ||t ypeEnuner at ed ||t ypeChar

cTabl e

Data shown below f or mNane Name of table (“Summary of Sales”)

Object specifier data for document

keyAEDesi r edd ass ||keyAECont ai ner keyAEKeyForm | keyAEKeyDat a

typeType typeNul | t ypeEnuner at ed ||t ypeChar

cDocunent Data handle is NI L f or mMName Name of document (“Sales Report”)

6-10

Note

The format used in Figure 6-2 and similar figures throughout this
chapter does not show the structure of the nested object specifier records
as they exist within an Apple event. Instead, these figures show what
you would obtain after calling AEGet KeyDesc repeatedly to extract the
object specifier records from an Apple event record.

When you call AEGet KeyDesc to extract a null descriptor record, the
function returns a descriptor record of type AEDesc with a descriptor
type of t ypeNul | and a data handle whose value is 0. O

Descriptor Records Used in Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

The object specifier data at the bottom of Figure 6-2 uses a null descriptor record to
specify the document’s container—that is, the default container for the application. The
object specifier record for the document identifies the document named “Sales Report”;
the object specifier record for the table identifies the table named “Summary of Sales” in
the document “Sales Report”; and the object specifier record for the row identifies the
first row of the table named “Summary of Sales” in the document “Sales Report.”

An object specifier record in an Apple event parameter almost always includes
nested object specifier records that specify the container hierarchy for the requested
Apple event object. For the nested object specifier records shown in Figure 6-2, the
relationship between each Apple event object and its container is always simple
containment: it is located inside its container.

In other cases, the specified container may not actually contain the requested Apple
event object. Instead, the relationship between a “container” and a specified object can be
defined differently, depending on the key form. For example, the key form

fornRel ati vePosi ti on indicates that the requested object is before or after its
container.

Object specifier records that specify the key form f or nilest or f or tRange require key
data that consists of several nested descriptor records, including additional object
specifier records that identify either a group of elements to be tested or the boundary
elements that demarcate a range. These object specifier records use two special
descriptor types to specify containers: t ypeCbj ect Bei ngExam ned (see page 6-19),
which specifies a container that changes as a group of elements are tested one at a time,
and t ypeCur r ent Cont ai ner (see page 6-20), which specifies the container for a
boundary element in a range. Both of these descriptor types require a data handle whose
value is NI L, since they act much like variables whose value is supplied by the Apple
Event Manager according to other information provided in the container hierarchy.

Key Form

The key form indicates how the key data should be interpreted. It can be specified by
one of eight constants:

Keyword Descriptor type Data
keyAEKeyForm typeEnunerated fornPropertyl D
f or mMNanme

f or muni quel D

f or mMAbsol ut ePosi ti on
fornRel ati vePosi tion
f or nirest

f or MMhose

f or nRange

The next section describes the key data that corresponds to each key form.

Descriptor Records Used in Object Specifier Records 6-11

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Key Data

The nature of the information provided by the key data depends both on the specified
key form and on the descriptor type of the descriptor record for the key data. Table 6-1
summarizes these relationships for the standard key forms.

Table 6-1 Standard descriptor types used with key AEKeyDat a

Key form Descriptor type Data
fornPropertyl D typeType Property ID for an element’s property
f or mNane t ypeChar or other text type Element’s name
f or mUni quel D Any appropriate type A value that uniquely identifies an
object within its container or across an
application
f or mAbsol ut ePosi tion t ypeLongl nt eger Offset from beginning (positive) or end
(negative) of container
t ypeAbsol ut eOr di nal KAEFi r st
KAEM ddl e
KAELast
kAEANny
KAEA! |
fornRel ati vePosition t ypeEnurmer at ed k AENext
KAEPr evi ous
f or niTest t ypeConpDescri pt or (see Table 6-2 on page 6-16)
t ypeLogi cal Descri ptor (see Table 6-3 on page 6-17)
f or MRange t ypeRangeDescri pt or (see Table 6-4 on page 6-20)
f or Mhhose t ypeWhoseDescri pt or (see Table 6-5 on page 6-42)
Most applications that resolve object specifier records need to support only the key
forms f or nPr opertyl D, f or mNare, f or nni quel D, f or mAbsol ut ePosi ti on,
fornmRel ati vePosi ti on, and f or mRange explicitly. You do not need to support these
key forms for all object classes; for example, words usually do not have names, so most
applications should return er r AEEvent Not Handl ed if they receive a request for a
word by name.
If your application provides an object-counting function and an object-comparison
function in addition to the appropriate object accessor functions, the Apple Event
Manager can handle f or nifest automatically.
6-12 Descriptor Records Used in Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

The Apple Event Manager uses the key form f or mMAhose internally to optimize
resolution of object specifier records that specify f or niTest . Applications that translate
tests into their own query languages need to support f or mMhose explicitly. “Handling
Whose Tests,” which begins on page 6-41, describes f or Mhose in detail.

You can define custom key forms and the format for corresponding data for use by
your own application if necessary. If you think you need to do this, check with the
Apple Event Registrar first to find out whether existing key forms or others still under
development can be adapted to the needs of your application.

One simple kind of key form involves identifying an object on the basis of a specified
property. For example, the corresponding data for key form f or muni quel D (defined in
the Apple Event Registry: Standard Suites) always consists of a unique ID for the requested
object. This ID is stored as a property identified by the constant pl D. The four-character
code that corresponds to both f or mni quel Dand pl Dis' I D '

If you discover that you do need to define a custom key form based on a property, use
the same four-character code for both the key form and the associated property.

The rest of this section describes how the key data for the other key forms shown in
Table 6-1 identifies Apple event objects.

Key Data for a Property ID

The key data for f or nPr oper t yl Dis specified by a descriptor record of descriptor type
t ypeType. The Apple Event Registry: Standard Suites defines constants for the standard
property IDs.

An object specifier record for a property specifies CPr operty as the object class ID, an
object specifier record for the object that contains the property as the container,

f or mPr opert yl Das the key form, and a constant such as pFont as the key data. For
example, if you were sending a Set Data event to change the font of a word to Palatino®,
you could specify the data for the object specifier record in the direct parameter as

follows:

Keyword Descriptor type Data

keyAEDesi redd ass typeType cProperty

keyAECont ai ner t ypeQbj ect Speci fi er Object specifier record for
word to which property
belongs

key AEKeyFor m t ypeEnuner at ed fornPropertyl D

keyAEKeyDat a typeType pFont

In this example, the Set Data Apple event parameter identified by the keyword
keyAETheDat a would specify Pal at i no as the value to which to set the specified
property. The reply Apple event for a subsequent Get Data event that included an object
specifier record for the same property would return Pal at i no in the parameter
identified by the keyword keyAEResul t .

Descriptor Records Used in Object Specifier Records 6-13

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Key Data for an Object’'s Name

The key data for f or mNane is specified by a descriptor record whose data consists of
text, with a descriptor type such ast ypeChar ortypel nt| Text.

Figure 6-2 on page 6-10 includes two object specifier records that specify f or mNare.

Key Data for a Unique ID

The key data for f or mni quel D consists of a value that identifies an object. This ID
must be unique either within the container, at a minimum, or unique across the
application. A unique ID can be specified by a descriptor record of any appropriate type;
for example, type t ypel nt eger.

Key Data for Absolute Position

The key data for f or mAbsol ut ePosi ti on consists of an integer that specifies either an
offset or an ordinal position. For descriptor type t ypeLongl nt eger, the data is either a
positive integer, indicating the offset of the requested element from the beginning of the
container, or a negative integer, indicating its offset from the end of the container.

The first object specifier record shown in Figure 6-2 on page 6-10 specifies

f or mMAbsol ut ePosi ti on with key data that consists of the positive integer 1.

For descriptor type t ypeAbsol ut eOr di nal , the data consists of one of these constants:

Constant Meaning

KAEFi r st The first element in the specified container

KAEM ddl e The element in the middle of the specified container

KAELast The last element in the specified container

KAEAny A single element chosen at random from the specified container
KAEA! | All the elements in the specified container

If an object specifier record specifies KAEM ddl e and the number of elements in the
container is even, the Apple Event Manager rounds down; for example, the second word
would be the “middle” word in a range of four words.

6-14 Descriptor Records Used in Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Key Data for Relative Position

The key data for f or nRel ati vePosi ti on is specified by a descriptor record of type
t ypeEnuner at ed whose data consists of one of these constants:

Constant Meaning
KAENext The Apple event object after the specified container
KAEPr evi ous The Apple event object before the specified container

The “container” can be a single Apple event object or a group of Apple event objects; the
requested elements are located immediately before or immediately after it, not inside it.

If your application can locate objects of the same class by absolute position, it can easily
locate the same objects by relative position. For example, all applications that support

f or mMAbsol ut ePosi ti on can easily locate the table immediately after a container
specified as another table named “Summary of Sales.”

Some applications may also be able to locate an object of one class before or after an
object of another class. For example, a word processor might be able to locate the
paragraph immediately after a container specified as a table named “Summary of Sales.”

Key Data for a Test

The key data for f or nTest is specified by either a comparison descriptor record or a
logical descriptor record. If your application provides an object-counting function and an
object-comparison function in addition to the appropriate object accessor functions, the
Apple Event Manager can handle f or niTest for you. Some applications may perform
tests more efficiently by translating them into the application’s own query language. For
information about handling tests yourself, see “Handling Whose Tests,” which begins on
page 6-41.

The container for objects that pass a test can be one or more Apple event objects. The
objects specified are those in the container that pass the test specified by the key data.
For example, an object specifier record can describe “the first row in which the First
Name column equals ‘John” and the Last Name column equals ‘Chapman’ in the table
‘MyAddresses’ of the database ‘SurfDB.”” To resolve such an object specifier record, the
Apple Event Manager must evaluate a logical expression that applies the logical
operator AND to two separate comparisons for each row: a comparison of the First Name
column to the word “John” and a comparison of the Last Name column to the word
“Chapman.”

Descriptor Records Used in Object Specifier Records 6-15

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

The Apple Event Manager evaluates comparisons and logical expressions on the

basis of the information in comparison descriptor records and logical descriptor records.
A comparison descriptor record is a coerced AE record of type t ypeConpDescri pt or
that specifies an Apple event object and either another Apple event object or data for the
Apple Event Manager to compare to the first object. The Apple Event Manager can also
use the information in a comparison descriptor record to compare elements in a
container, one at a time, either to an Apple event object or to data. The data for a
comparison descriptor record consists of three keyword-specified descriptor records
with the descriptor types and data shown in Table 6-2.

Table 6-2 Keyword-specified descriptor records for t ypeConpDescr i pt or

Keyword Descriptor type Data

key AEConpQper at or typeType kKAEG eat er Than
kAEG eat er ThanEqual s
kAEEqual s
kAELessThan

kAELessThanEqual s
kAEBegi nsWth
kAEEndsW t h

kAECont ai ns
keyAEObj ect 1 typeoj ect Speci fi er Object specifier data
t ype(Qbj ect Bei ngExam ned Value of data handle is NI L
keyAEOhj ect 2 typeoj ect Speci fi er Object specifier data for object to be
compared

t ypeObj ect Bei ngExani ned Value of data handle is NI L
any other type (AEDesc) Data to be compared

The keyword key AECHj ect 1 identifies a descriptor record for the element that is
currently being compared to the object or data specified by the descriptor record

for the keyword key AEChj ect 2. Either object can be described by a descriptor record of
typet ypeQbj ect Speci fi er ort ypeChj ect Bei ngExamni ned. A descriptor record

of t ypeCbj ect Bei ngExami ned acts as a placeholder for each of the successive
elements in a container when the Apple Event Manager tests those elements one at a
time. The keyword key AEQhj ect 2 can also be used with a descriptor record of any
other descriptor type whose data is to be compared to each element in a container.

You don’t have to support all the available comparison operators for all Apple event
objects; for example, the “begins with” operator probably doesn’t make sense for objects
of type cRect angl e. Itis up to you to decide which comparison operators are
appropriate for your application to support, and how to interpret them.

6-16 Descriptor Records Used in Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

If necessary, you can define your own custom comparison operators. If you think you
need to do this, check with the Apple Event Registrar first to find out whether existing
definitions of comparison operators or definitions still under development can be
adapted to the needs of your application.

A logical descriptor record is a coerced AE record of type t ypeLogi cal Descri pt or
that specifies a logical expression—that is, an expression that the Apple Event Manager
evaluates to either TRUE or FALSE. The logical expression is constructed from a logical
operator (one of the Boolean operators AND, OR, or NOT) and a list of logical terms to
which the operator is applied. Each logical term in the list can be either another logical
descriptor record or a comparison descriptor record. The Apple Event Manager
short-circuits its evaluation of a logical expression as soon as one part of the expression
fails a test. For example, if while testing a logical expression such as A ANDB AND C the
Apple Event Manager discovers that A AND B is not true, it will evaluate the expression
to FALSE without testing C.

The data for a logical descriptor record consists of two keyword-specified descriptor
records with the descriptor types and data shown in Table 6-3.

Table 6-3 Keyword-specified descriptor records for t ypelLogi cal Descri pt or

Keyword Descriptor type Data
keyAELogi cal Oper at or t ypeEnuner at ed k AEAND
k AECR
k AENOT
keyAELogi cal Ter ns t ypeAELi st One or more comparison or

logical descriptor records

If the logical operator is AND or OR the list can contain any number of logical terms, and
the logical operator is applied to all the terms in the list. For example, the logical
descriptor data shown in Figure 6-4 on page 6-19 consists of the logical operator AND and
a list of logical terms that contains two comparison descriptor records. The entire logical
descriptor record corresponds to the logical expression “the First Name column equals
‘John” AND the Last Name column equals ‘Chapman.’” If the logical operator is NOT, the
list must contain a single term.

Figure 6-3 shows four object specifier records that specify the container hierarchy for the
first row in the table “MyAddresses” of the database “SurfDB” that meets a test. The
object specifier record at the top of Figure 6-3 specifies the first row contained in the set
of rows that form its container. The container for the first row is specified by an object
specifier record for a set of rows that meet a test. The two object specifier records at the
bottom of Figure 6-3 specify the table named “MyAddresses,” which contains the rows
to be tested, in the database named “SurfDB.”

Descriptor Records Used in Object Specifier Records 6-17

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Figure 6-3 The container hierarchy for the first row in a table that meets a test

Object specifier data for the first row in a container

keyAEDesi r edd ass || keyAECont ai ner keyAEKeyFor m keyAEKeyDat a
typeType t ypeCbj ect Speci fier ||t ypeEnuner at ed t ypeLongl nt eger
cRow Data shown below f or mMbsol ut ePosi tion||1
L Object specifier data for a set of rows that meet a test
keyAEDesi r edd ass ||keyAECont ai ner keyAEKeyForm ||keyAEKeyDat a
typeType typeObj ect Speci fi er ||t ypeEnuner at ed||t ypeLogi cal Descri pt or
cRow Data shown below f or niTest Data shown in Figure 6-4
. Object specifier data for a table
keyAEDesi r edd ass ||keyAECont ai ner keyAEKeyFor m keyAEKeyDat a
typeType typeQbj ect Speci fi er ||t ypeEnunerated||t ypeChar
cTabl e Data shown below f or mMNane Name of table (“MyAddresses”)

Object specifier data for a database

keyAEDesi r edCl ass ||keyAECont ai ner keyAEKeyFor m keyAEKeyDat a

typeType typeNul | t ypeEnurer at ed ||t ypeChar

cDat abase Data handle is NI L f or mMNane Name of database (“SurfDB")

The object specifier record in Figure 6-3 for a set of rows that meet a test specifies

f or nifest . The corresponding key data consists of the logical descriptor record shown
in Figure 6-4, which applies the logical operator AND to two logical terms: a comparison
descriptor record that specifies all the rows in the container (the table “MyAddresses”)
in which the column named “First Name” equals “John,” and another comparison
descriptor record that specifies all the rows in which the column named “Last Name”
equals “Chapman.” A row in the table “MyAddresses” passes the test only if both
comparison descriptor records evaluate as TRUE.

Descriptor Records Used in Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Figure 6-4

A logical descriptor record that specifies a test

Logical descriptor data
for Figure 6-3

keyAELogi cal Oper at or

t ypeEnuner at ed

kAEANd

keyAELogi cal Ter ms

t ypeAELi st

Data shown below

.'.Logical terms data

t ypeConpDescri pt or

Data shown to right

t ypeConmpDescri pt or

Data shown to right

Data for first
logical term

Object specifier data for
first logical term

:|keyAEDesi r edCl ass

"|typeType

cCol um

;|key AEConmpOper at or

“|typeType

keyAECont ai ner

kAEEqual s

t ypeObj ect Bei ngExami ned

Data handle is NI L

keyAEQhj ect 1

t ypeQbj ect Speci fier

keyAEKeyFor m

Data shown to right

t ypeEnurer at ed

f or mMNane

keyAEQhj ect 2

t ypeChar

keyAEKeyDat a

First name (“John”)

t ypeChar

Data for second
logical term

".| Name of column (“First Name”)

Object specifier data for
second logical term

. key AEConpQper at or

-|keyAEDesi redd ass

typeType

typeType

kAEEqual s

cCol um

keyAEQhj ect 1

keyAECont ai ner

t ypeCbj ect Speci fi er

t ypeObj ect Bei ngExami ned

Data shown to right

Data handle is NI L

keyAEhj ect 2

keyAEKeyFor m

t ypeChar

t ypEnuner at ed

‘| Last name (“Chapman”)

f or mName

keyAEKeyDat a

t ypeChar

".| Name of column (“Last Name”)

The keyword-specified descriptor records with the keyword key AEQhj ect 1 in
Figure 6-4 each consist of an object specifier record that identifies a column
by name. The row for each column is specified by a descriptor record of

t ypeQbj ect Bei ngExam ned, which acts as a placeholder for each row as the Apple
Event Manager tests successive rows in the table. The Apple event object specified by
each of these object specifier records consists of a column in the row. The Apple Event
Manager (with the help of an object-comparison function) compares the contents of the
column in successive rows to the string identified by the keyword key AEGhj ect 2 using
the comparison operator identified by the keyword key AEConpCper at or.

Descriptor Records Used in Object Specifier Records 6-19

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Key Data for a Range

The key data for f or mRange is specified by a range descriptor record, which is a
coerced AE record of type t ypeRangeDescr i pt or that identifies two Apple event
objects marking the beginning and end of a range of elements. The data for a range
descriptor record consists of two keyword-specified descriptor records with

the descriptor types and data shown in Table 6-4.

Table 6-4 Keyword-specified descriptor records in a descriptor record of type
t ypeRangeDescri pt or

Keyword Descriptor type Data

keyAERangeSt ar t t ypenoj ect Speci fi er An object specifier record for the
first Apple event object in the
desired range

keyAERangeSt op t ypeQhj ect Speci fi er An object specifier record for the
last Apple event object in the
desired range

The elements that identify the beginning and end of the range, which are known as
boundary objects, do not have to belong to the same object class as the elements in the
range itself. If the boundary objects belong to the same object class as the elements in
the range, the boundary objects are included in the range. For example, the range of
tables specified by boundary elements that are also tables would include the two
boundary tables.

The container for boundary objects is usually the same as the container for the entire
range, in which case the container for a boundary object can be specified by a
placeholder—that is, a descriptor record of type t ypeCur r ent Cont ai ner whose data
handle has the value NI L.

When AEResol ve calls an object accessor function to locate a range of objects, the
Apple Event Manager replaces the descriptor record of type t ypeCur r ent Cont ai ner
with a token for the container of each boundary object. When using AEResol ve to
resolve the object specifier record, your application doesn’t need to examine the contents
of this token, because the Apple Event Manager keeps track of it. If your application
attempts to resolve some or all of the object specifier record without calling AEResol ve,
the application may need to examine the token before it can locate the boundary objects.
The token provided by the Apple Event Manager for a boundary object’s container is a
descriptor record of type t ypeToken whose data handle refers to a structure of type
ccnt TokenRecor d.

6-20 Descriptor Records Used in Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

TYPE ccnt TokenRecord =

RECORD
t okend ass: DescType; {class I D of container }
{ represented by token}
t oken: AEDesc; {token for current container}
END;

This data type is of interest only if you attempt to resolve an object specifier record for a
range without calling AEResol ve. Otherwise, the Apple Event Manager keeps track of
the container.

Installing Entries in the Object Accessor Dispatch Tables

If the direct parameter for an Apple event consists of an object specifier record, your
handler for the event should call the AEResol ve function to resolve the object specifier
record: that is, to find the Apple event objects or properties it describes. The AEResol ve
function resolves the object specifier record with the help of object accessor functions
provided by your application. Your application installs entries for its object accessor
functions in an object accessor dispatch table, which is used by the Apple Event Manager
to map requests for Apple event objects or their properties to the appropriate object
accessor functions.

After being called by AEResol ve, an object accessor function should return a token that
identifies (in whatever manner is appropriate for your application) the specified

Apple event object or property. An object accessor function also returns a result code that
indicates whether it found the Apple event object or property. The token, which is

a descriptor record of data type AEDesc, can be of any descriptor type, including
descriptor types you define yourself. For an overview of the way AEResol ve works
with your application’s object accessor functions to locate Apple event objects, see
“Resolving Object Specifier Records,” which begins on page 6-4.

Each object accessor function provided by your application should either find elements
of a specified object class contained in an Apple event object identified by a token of a
specified descriptor type, or find properties of an Apple event object identified by a
token of a specified descriptor type. To determine which object accessor function to
dispatch, the Apple Event Manager uses the object class ID specified in an object
specifier record and the descriptor type of the token that identifies the requested object’s
container. For object accessor functions that find properties, you should specify the
object class ID as the constant cPr operty.

Installing Entries in the Object Accessor Dispatch Tables 6-21

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

To install entries in your application’s object accessor dispatch table, use the
AEl nst al | Obj ect Accessor function. For each object class and property your
application supports, you should install entries that specify

» the object class of the requested Apple event object or property

s the descriptor type of the token used to identify the container for the requested
Apple event object or property

» the address of the object accessor function that finds objects or properties of the
specified object class in containers described by tokens of the specified descriptor type

= areference constant

You provide this information in the first four parameters to the

AEl nst al | Obj ect Accessor function. The fifth parameter allows you to
indicate whether the entry should be added to your application’s object accessor
dispatch table or the system object accessor dispatch table.

The system object accessor dispatch table is a table in the system heap that contains
object accessor functions available to all processes running on the same computer.

The object accessor functions in your application’s object accessor dispatch table are
available only to your application. If AEResol ve cannot find an object accessor function
for the Apple event object class in your application’s object accessor dispatch table, it
looks in the system object accessor dispatch table. If it doesn’t find an object accessor
function there either, it returns the result code er r AEAccessor Not Found.

If AEResol ve successfully calls the appropriate object accessor function in either the
application object accessor dispatch table or the system object accessor dispatch table,
the object accessor function returns a token and result code. The AEResol ve function
uses the token and result code to continue resolving the object specifier record. If,
however, the token identifies the final Apple event object or property in the container
hierarchy, AEResol ve returns the token for the final resolution in the t heToken
parameter.

If the AEResol ve function calls an object accessor function in the system object accessor
dispatch table, your Apple event handler may not recognize the descriptor type of the
token returned by the function. If this happens, your handler should attempt to coerce
the token to an appropriate descriptor type. If coercion fails, return the result code

er r AEUnknownCbj ect Type. When your handler returns this result code, the

Apple Event Manager attempts to locate a system Apple event handler that can
recognize the token.

6-22 Installing Entries in the Object Accessor Dispatch Tables

CHAPTER 6

Resolving and Creating Object Specifier Records

It is up to you to decide how many object accessor functions you need to write and
install for your application. You can install one object accessor function that locates
Apple event objects of several different object classes, or you can write separate object
accessor functions for certain object classes. Similarly, you may want to use only one
descriptor type for all the tokens returned by your object accessor functions, or you may
want to use several descriptor types. The sections that follow provide examples of
alternative approaches.

For more information about object accessor functions, see “Writing Object Accessor
Functions,” which begins on page 6-28.

Installing Object Accessor Functions That Find Apple Event
Objects

Listing 6-1 demonstrates how to add entries to your application’s object accessor
dispatch table for the object class cText and three of its element classes: the object
classes cWor d, cl t em and cChar . In this example, the container for each of these
object classes is identified by a token that consists of a descriptor record of descriptor

typet ypeMyText .

Listing 6-1 Installing object accessor functions that find elements of different classes for

container tokens of the same type

nyErr := AElnstall Obj ect Accessor (cText, typeMyText,
@WFi ndText Ohj ect Accessor,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

nyErr := AElnstall Obj ect Accessor (cWrd, typeMyText,
@& Fi ndWbr dObj ect Accessor,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

myErr := AElInstall Cbject Accessor(cltem typeMText,
@WFi ndl t enObj ect Accessor,
0, FALSE);

I F nyErr <> noErr THEN DoError (nyErr);

nyErr := AElnstall Qbj ect Accessor (cChar, typeM/Text,
@WFi ndChar Ohj ect Accessor,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

Installing Entries in the Object Accessor Dispatch Tables 6-23

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

6-24

CHAPTER 6

Resolving and Creating Object Specifier Records

The first call to AEI nst al | Obj ect Accessor in Listing 6-1 adds an entry to the
application’s object accessor dispatch table. This entry indicates that the AEResol ve
function should call the MyFi ndText Cbj ect Accessor function when resolving any
Apple event object with the cText object class and a container identified by a token of
descriptor type t ypeMy Text . The other calls to AEIl nst al | Obj ect Accessor in
Listing 6-1 add entries for Apple event objects of object classes cWr d, cl t em and
cChar in a container identified by a token of descriptor type t ypeMyText . For example,
because all the entries created by the code in Listing 6-1 specify the descriptor type

t ypeMyText for the token that identifies the container, the AEResol ve function calls
the MyFi ndWor dQbj ect Accessor function to locate a requested word regardless of
whether the container for the word is a run of text, another word, a paragraph,

or an item.

The fourth parameter for the AEl nst al | Cbj ect Accessor function specifies a
reference constant passed to your handler by the Apple Event Manager each time
AEResol ve calls your object accessor function. Your application can use this reference
constant for any purpose. If your application doesn’t use the reference constant, you can
use 0 as the value, as shown in Listing 6-1.

The last parameter for the AEI nst al | Obj ect Accessor function is a Boolean value
that determines whether the entry is added to the system object accessor dispatch table
(TRUE) or to your application’s object accessor dispatch table (FALSE).

If you add an object accessor function to the system object accessor dispatch table, the
function that you specify must reside in the system heap. If there was already an entry in
the system object accessor dispatch table for the same object class and container
descriptor type, that entry is replaced unless you chain it to your system handler. You
can do this the same way you chain a previously installed system Apple event handler to
your own system handler. See the description of AEl nst al | Event Handl er on

page 4-62 for details.

WARNING

Before an application calls a system object accessor function, system
software has set up the A5 register for the calling application. For this
reason, if you provide a system object accessor function, it should never
use A5 global variables or anything that depends on a particular context;
otherwise, the application that calls the system object accessor function
may crash. a

The code shown in Listing 6-1 installs a separate object accessor function for each object
class, even though the code specifies the same descriptor type for tokens that identify the
containers for Apple event objects of each class. Most word-processing applications can
specify the same object accessor function as well as the same token descriptor type for
Apple event objects of these four classes, in which case the code shown in Listing 6-1 can
be altered as shown in Listing 6-2.

Installing Entries in the Object Accessor Dispatch Tables

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-2 Installing one object accessor function that finds elements of different classes for

container tokens of one type

nyErr := AElnstall Obj ect Accessor (cText, typeMyText,
@WFi ndText Ohj ect Accessor,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

nyErr := AElnstall Obj ect Accessor (cWrd, typeMyText,
@AW Fi ndText Obj ect Accessor,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

myErr := AElInstal |l Cbject Accessor(cltem typeMText,
@WFi ndText nj ect Accessor,
0, FALSE);

I F nyErr <> noErr THEN DoError (nyErr);

nyErr := AElInstall Cbject Accessor(cChar, typeMText,
@WFi ndText Ohj ect Accessor,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

In some situations you may want to write different object accessor functions to locate
Apple event objects of the same object class in containers identified by tokens of different
descriptor types. For example, the code in Listing 6-3 installs two different object
accessor functions: one that finds a word in a container identified by a token of type

t ypeMyText Token, and one that finds a word in a container identified by a token

of t ypeMyGr aphi cText Token.

Listing 6-3 Installing object accessor functions that find elements of the same class for

container tokens of different types

myErr : = AElInstall Cbj ect Accessor(cWrd, typeM/Text Token,
@WFi ndText nj ect Accessor,
0, FALSE);

I F nyErr <> noErr THEN DoError (nyErr);

nmyErr := AElnstall Obj ect Accessor (cWrd, typeMyG aphi cText Token,
@WFi ndG phcText Obj ect Accessor,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

Installing Entries in the Object Accessor Dispatch Tables 6-25

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Every application must provide one or more object accessor functions that can find
Apple event objects in the default container, which is always identified by a token of
descriptor type t ypeNul | . Listing 6-4 demonstrates how to add entries to your
application’s object accessor dispatch table for the object classes cW ndowand
cDocunent . The container for each of these classes is identified by a token of descriptor
type t ypeNul |, which specifies an application’s default container.

Listing 6-4 Installing object accessor functions that locate elements of different classes in the

default container

nyErr := AElInstall Cbject Accessor (cW ndow, typeNull,
@WFi ndW ndowObj ect Accessor,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

nyErr := AEl nstall Obj ect Accessor (cDocunent, typeNull,
@WFi ndDocunent Obj ect Accessor,
0, FALSE);

| F nyErr <> noErr THEN DoError (nyErr);

For any entry in your object accessor dispatch table, you can specify a wildcard value for
the object class, for the descriptor type of the token used to identify the container, or for
both. You specify a wildcard by supplying the t ypeW | dCar d constant when installing
an entry into the object accessor dispatch table. A wildcard value matches all possible
values.

If an object accessor dispatch table contains one entry for a specific object class and a
specific token descriptor type, and another entry that is identical except that it specifies a
wildcard value for either the object class or the token descriptor type, the Apple Event
Manager dispatches the more specific entry. For example, if an object accessor dispatch
table includes one entry that specifies the object class as cWor d and the token descriptor
type as t ypeMyText Token, and another entry that specifies the object class as cWor d
and the token descriptor type ast ypeW | dCar d, the Apple Event Manager dispatches
the object accessor function associated with the entry that specifies t ypeMy Text Token.

If you specify t ypeW | dCar d as the first parameter and t ypeMy Token as the second
parameter for the AEI nst al | Obj ect Accessor function and no other entry in the
dispatch table matches more exactly, the Apple Event Manager calls the object accessor
function that you specify in the third parameter when resolving Apple event objects of
any object class in containers identified by tokens of the t ypeMyToken descriptor type.

6-26 Installing Entries in the Object Accessor Dispatch Tables

CHAPTER 6

Resolving and Creating Object Specifier Records

If you specify cText as the first parameter and t ypeW | dCar d as the second parameter
for the AEI nst al | Obj ect Accessor function and no other entry in the dispatch table
matches more exactly, the Apple Event Manager calls the object accessor function that
you specify in the third parameter when resolving Apple event objects of the object class
cText in containers identified by tokens of any descriptor type.

If you specify t ypeW | dCar d for both the first and second parameters of the

AEIl nst al | Obj ect Accessor function and no other entry in the dispatch table matches
more exactly, the Apple Event Manager calls the object accessor function that you specify
in the third parameter when resolving Apple event objects of any object class in
containers identified by tokens of any descriptor type.

Once the Apple Event Manager finds a matching entry, whether exact or involving type
t ypeW | dCar d, that is the only object accessor function it calls for that object class and
token descriptor type. If that function fails, the Apple Event Manager won’t look for
another matching entry in the same table.

Installing Object Accessor Functions That Find Properties

The Apple event object to which a property belongs is that property’s container. You
should add entries to your application’s object accessor dispatch table that specify object
accessor functions for finding properties in containers identified by tokens of various
descriptor types. Object specifier records do not specify a property’s specific object class;
instead, they specify the constant cPr operty as the class ID for any property.

Similarly, you should specify the constant cPr operty as the object class for an object
accessor function that can find any property of a container identified by a token of a
given descriptor type. If you need to install different object accessor routines for finding
properties of Apple event objects that belong to different object classes, you must use
different descriptor types for the tokens that represent those Apple event objects.

For example, to specify an object accessor function that locates properties of Apple event
objects identified by tokens of descriptor type t ypeMyToken, you can add a single entry
to the object accessor dispatch table:

nmyErr := AElnstall Obj ect Accessor (cProperty, typeMyToken,
@WFi ndPr opert yObj ect Accessor,
0, FALSE);

| F nmyErr <> noErr THEN DoError (nyErr);

The code in this example adds an object accessor function to the application’s object
accessor dispatch table that can find any property of any container identified by a token
of descriptor type t ypeMyToken. If the second parameter were specified as

t ypeW | dCar d, the MyFi ndPr oper t yObj ect Accessor function would have to be
capable of finding any property of any Apple event object in your application except for
those found by handlers with more specific entries in the object accessor dispatch table.

Installing Entries in the Object Accessor Dispatch Tables 6-27

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Writing Object Accessor Functions

6-28

If the direct parameter for an Apple event consists of an object specifier record, your
handler for the event should call the AEResol ve function to resolve the object specifier
record: that is, to find the Apple event objects or properties it describe. The AEResol ve
function resolves object specifier records with the help of object accessor functions
provided by your application. For an overview of the way AEResol ve works with your
application’s object accessor functions to locate Apple event objects, see “Resolving
Object Specifier Records,” which begins on page 6-4.

This section describes how to write object accessor functions. You need to read this
section if your application supports the Core suite or any of the functional-area suites in
the Apple Event Registry: Standard Suites.

Your application should provide object accessor functions that can find Apple event
objects and their properties for all object classes supported by your application,
including their corresponding properties and element classes. Because the Apple Event
Manager dispatches object accessor functions according to the class ID of the requested
Apple event object and the descriptor type of the token that identifies its container, you
have a great deal of flexibility in deciding what object accessor functions you need to
write for your application. The installation and dispatching of object accessor functions
are described in “Installing Entries in the Object Accessor Dispatch Tables,” which begins
on page 6-21.

For example, if your application is a word processor, one object accessor function will
probably work equally well for Apple event objects of object classes cPar agr aph,

cl t em and cWbr d located in containers identified by tokens of descriptor type

nmy Text Token. If you use a single descriptor type for tokens that identify any containers
in which objects of these three object classes can be found, you can dispatch requests for
all such elements to the same object accessor function. However, the same word
processor might use one descriptor type for tokens identifying containers of class cCel |
and another descriptor type for tokens identifying containers of class ¢Col unm—in
which case it would need an object accessor function for each descriptor type.

For each object class that your application supports, your application should also
provide one object accessor function that can find all the properties of that object class, or
one object accessor function that can find all the properties of several object classes.

Here’s the declaration for a sample object accessor function:

FUNCTI ON MyQbj ect Accessor (desiredC ass: DescType;
cont ai ner Token: AEDesc;
cont ai nerd ass: DescType;
keyForm DescType; keyData: AEDesc;
VAR t heToken: AEDesc;
t heRef Con: Longlnt): OSErr;

Writing Object Accessor Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

The AEResol ve function passes the following information to your object accessor
function: the object class ID of the requested Apple event objects, the object class of their
container, a token that identifies the specific container in which to look for them, the key
form and key data that specify how to locate them, and the reference constant associated
with the object accessor function. Your object accessor function uses this information to
locate the requested objects.

Most applications that resolve object specifier records need to support only the

key forms f or nPr opertyl D, f or mNane, f or mni quelD, f or mAbsol ut ePosi ti on,
fornRel ati vePosi tion, and f or TRange explicitly. You do not need to support these
key forms for all object classes; for example, words usually do not have names, so most
applications should return er r AEEvent Not Handl ed if they receive a request for a
word by name.

If your application provides an object-counting function and an object-comparison
function in addition to the appropriate object accessor functions, the Apple Event
Manager can handle f or nTest automatically.

The Apple Event Manager uses the key form f or mihose internally to optimize
resolution of object specifier records that specify f or nTest . Only applications that
translate tests into their own query languages need to support f or mMAhose explicitly.
“Handling Whose Tests,” which begins on page 6-41, describes f or mMAhose in detail.

If your object accessor function successfully locates the requested Apple event objects,
your application should return the noEr r result code and a token that identifies them.
The token can be of any descriptor type, as long as it is a descriptor record. For example,
to identify a file, your application might use a descriptor record of descriptor type
typeAl i as ort ypeFSS. To identify an open document, your application might define
its own descriptor type, such as t ypeMyDocToken, for a descriptor record whose data
handle refers to a pointer to a document record. For more information about tokens, see
“Defining Tokens” on page 6-39.

IMPORTANT

Object accessor functions must not have side effects that change the
number or order of elements in a container while an object specifier
record is being resolved. If the number of elements in a container is
changed during the resolution of an object specifier record, the Apple
Event Manager may not be able to locate all the elements. a

Writing Object Accessor Functions That Find
Apple Event Objects

The first three listings in this section demonstrate how to write three object accessor
functions that might be called in the following situation: An application receives a

Get Data event with a direct parameter that consists of an object specifier record for the
first word in the third paragraph of a document. The application’s handler for the

Get Data event calls the AEResol ve function to resolve the object specifier record.

The AEResol ve function first calls the application’s object accessor function for objects
of class cDocument in containers identified by a token of descriptor type t ypeNul | .

Writing Object Accessor Functions 6-29

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

The AEResol ve function passes these values to the

MyFi ndDocurnent Obj ect Accessor function shown in Listing 6-5:

in the desi r edCl ass parameter, the constant cDocumnent ; in the cont ai ner Token
parameter, a descriptor record of descriptor type t ypeNul | with a data handle
whose value is NI L; in the cont ai ner O ass parameter, the constant t ypeNul | ;

in the keyFor mparameter, the constant f or mNane; in the keyDat a parameter, a
descriptor record of descriptor type t ypeText whose data consists of the string
"MyDoc"; and the reference constant specified in the application’s object accessor
dispatch table.

Listing 6-5 An object accessor function that locates Apple event objects of object class
cDocunent

FUNCTI ON MyFi ndDocunent Obj ect Accessor
(desiredd ass: DescType;
cont ai ner Token: AEDesc;
cont ai nerd ass: DescType;
keyForm DescType; keyData: AEDesc;
VAR t oken: AEDesc;
t heRef Con: Longlnt): OSErr;

VAR
docNare: St r 255;
act Si ze: Si ze;
f oundDoc: Bool ean;
f oundDocRecPtr: MyDocurnent Recor dPt r;
BEG N
| F keyform = fornNane THEN
BEG N
{get the nane of the docunent fromthe key data}
MyGet St ri ngFronmDesc(keyDat a, docNanme, actSi ze);
{look for a docunent with the given name by }
{ searching all docunment records}
MySear chDocRecs(docNane, foundDocRecPtr, foundDoc);
| F NOT foundDoc THEN
MyFi ndDocunent Cbj ect Accessor : = kObj ect Not Found
ELSE {create token that identifies the docunent}
MyFi ndDocunent Cbj ect Accessor : =
AECr eat eDesc(t ypeMyDocToken, @ oundDocRecPtr,
Si zeOF (f oundDocRecPtr), token);
END
{handl e the other key forns you support}
ELSE
MyFi ndDocunent Cbj ect Accessor : = kKeyFor nNot Support ed;
END;

6-30 Writing Object Accessor Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

The MyFi ndDocunent Obj ect Accessor function uses the information in the
keyFor mand keyDat a parameters to find the specified document. If it finds

the Apple event object, M/Fi ndDocumnent Obj ect Accessor returns a token of
descriptor type t ypeMyDocToken to AEResol ve. The data handle for this token
refers to a pointer to a document record (see Figure 6-5 on page 6-39). The

MyFi ndDocunent Cbj ect Accessor function returns this token and the noEr r
result code to the AEResol ve function.

In the Get Data example, the token returned to AEResol ve by the

MyFi ndDocurnent Obj ect Accessor function identifies the document “MyDoc.”

The AEResol ve function then calls the application’s object accessor function for objects
of class cPar agr aph in containers identified by a token of descriptor type

t ypeMyDocToken.

In this case, AEResol ve passes these values to the MyFi ndPar aCbj ect Accessor
function shown in Listing 6-6: in the desi r edCl ass parameter, the constant

cPar agr aph; in the cont ai ner Token parameter, the token returned by the

MyFi ndDocurnent Obj ect Accessor function; in the cont ai ner C ass parameter,

the constant cDocunent ; in the keyFor mparameter, the constant

f or mAbsol ut ePosi t i on; in the keyDat a parameter, a descriptor record with the

t ypeLongl nt eger descriptor type and data that consists of the value 3 (indicating the
third paragraph); and the reference constant specified in the application’s object accessor
dispatch table.

Writing Object Accessor Functions 6-31

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-6 An object accessor function that locates Apple event objects of object class
cPar agr aph

FUNCTI ON MyFi ndPar alhj ect Accessor (desiredC ass: DescType;
cont ai ner Token: AEDesc;
cont ai nerC ass: DescType;
keyForm DescType;
keyDat a: AEDesc;

VAR t oken: AEDesc;
t heRef Con: Longlnt): OSErr;

VAR

i ndex: Longl nt ;
{ MFoundText Record is an application-defined data type }
{ consisting of three fields: start, ending, and docPtr}

f oundPar aRec: MyFoundText Recor d;
foundParaStart : Longl nt;
f oundPar aEnd: Longl nt;
f oundDocRecPt r: MyDocunent Recor dPt r;
success: Bool ean;

BEG N
| F keyForm = formAbsol ut ePositi on THEN
BEG N

{get the index of the paragraph fromthe key data}

MyGet | ndexFr onDesc(keyDat a, index);

{get the desired paragraph by index}

success : = MyCGet Para(index, containerToken, foundParaStart,
f oundPar aéEnd, foundDocRecPtr);

I F NOT success THEN

MyFi ndPar aObj ect Accessor : = kObj ect Not Found
ELSE {create token that identifies the paragraph}

BEG N
foundPar aRec. start := foundParaStart;
f oundPar aRec. endi ng : = foundPar aknd,;

f oundPar aRec. docPtr : = foundDocRecPtr;
MyFi ndPar aCbj ect Accessor : =
AECr eat eDesc(t ypeMyText Token, @ oundPar aRec,
Si zeOr (f oundPar aRec) , token);
END;
END
{handl e the other key forms you support}
ELSE
MyFi ndPar aCbj ect Accessor : = kKeyFor mNot Support ed,;
END;

6-32 Writing Object Accessor Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

The MyFi ndPar aCbj ect Accessor function uses another application-defined function,
My Get Par a, to search the data structures associated with the document and find the
desired paragraph. If it finds the paragraph, MyGet Par a returns a value that identifies
the beginning of the paragraph, a value that identifies the end of the paragraph, and a
pointer to the document (which MyGet Par a gets from the cont ai ner Token
parameter). The MyFi ndPar aCbj ect Accessor function returns an
application-defined token that contains this information. This token is of descriptor type
t ypeMyText Token; it describes a range of characters that can be used to identify any
range of text, including a paragraph or a word. The MyFi ndPar aQbj ect Accessor
function returns this token and the noEr r result code to the AEResol ve function.

In the Get Data example, the token returned to AEResol ve by the

M/ Fi ndPar aCbj ect Accessor function identifies the third paragraph in the
document “MyDoc.” The AEResol ve function then calls the application’s
object accessor function for objects of class cWr d in containers identified by
a token of descriptor type t ypeMy Text Token.

In this case, the AEResol ve function passes these values to the

MyFi ndWor dCbj ect Accessor function shown in Listing 6-7: in the desi r edC ass
parameter, the constant cWor d; in the cont ai ner Token parameter, the token
returned by the MyFi ndPar aCbj ect Accessor function (a token of descriptor

type t ypeMyText Token that identifies a paragraph); in the cont ai ner G ass
parameter, the constant cPar agr aph; in the key For mparameter, the constant

f or mMbsol ut ePosi ti on; in the keyDat a parameter, a descriptor record with

the t ypeLongl nt eger descriptor type and data that consists of the value 1
(indicating the first word); and the reference constant specified in the application’s
object accessor dispatch table.

The MyFi ndWor dCbj ect Accessor function uses another application-defined
function, MyGet Wor d, to search the paragraph to find the desired word. If it finds the
word, MyGet Wr d returns a value that identifies the beginning of the word, a value that
identifies the end of the word, and a pointer to the document (which MyGet Wor d gets
from the cont ai ner Token parameter). The MyFi ndWor dCbj ect Accessor function
returns a token that contains this information. This token is also of descriptor type

t ypeMyText Token; in this case, the token identifies a specific word. The

MyFi ndWer dQbj ect Accessor function returns this token and the noEr r result code
to the AEResol ve function, which in turn returns the token to the Get Data event
handler that originally called AEResol ve.

Writing Object Accessor Functions 6-33

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-7 An object accessor function that locates Apple event objects of object class
cWord

FUNCTI ON MyFi ndWbr dObj ect Accessor
(desiredd ass: DescType;
cont ai ner Token: AEDesc;
cont ai nerC ass: DescType;
keyForm DescType; keyData: AEDesc;
VAR t oken: AEDesc;
t heRef Con: Longlnt): OSErr;
VAR
i ndex: Longl nt ;
f oundWor dRec: MyFoundText Recor d;
foundWordsStart : Longl nt;
f oundWor dEnd: Longl nt ;
f oundDocRecPtr: MyDocumnent RecPtr;
success: Bool ean;
BEG N
| F keyForm = formAbsol ut ePosi ti on THEN
BEG N
{get the index of the word fromthe key data}
MyGet | ndexFr onDesc(keyDat a, index);
{get the desired word by index}
success = MyGet Wrd(index, containerToken, foundWrdStart,
f oundWor dEnd, foundDocRecPtr);
I F NOT success THEN
MyFi ndWor dObj ect Accessor : = kObj ect Not Found
ELSE {create token that identifies the paragraph}
BEG N
foundWor dRec. start : = foundWrdStart;
f oundWor dRec. endi ng : = f oundWor dEnd,;
f oundWor dRec. docPtr : = foundDocRecPtr;
MyFi ndWor dObj ect Accessor : =
AECr eat eDesc(t ypeMyText Token, @ oundWr dRec,
Si zeOr (f oundWor dRec), token);
END;
END
{handl e the other key forns you support}
ELSE
MyFi ndWor dObj ect Accessor : = kKeyFor mNot Support ed;
END;

6-34 Writing Object Accessor Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-5 on page 6-30 shows an object accessor function that locates a document in the
default container. Every application must provide one or more object accessor functions
that can find Apple event objects in the default container, which is always identified by a
descriptor record of descriptor type t ypeNul | . Listing 6-8 provides another example of
an object accessor function that locates an Apple event object in the default container. If
the MyFi ndW ndowCbj ect Accessor function shown in Listing 6-8 were installed in
an application’s object accessor dispatch table, the AEResol ve function would call it as

necessary to locate an object of class (W ndowin a container identified by a token of

descriptor type t ypeNul | .
Listing 6-8 An object accessor function that locates Apple event objects of object class
cW ndow

FUNCTI ON MyFi ndW ndowObj ect Accessor (desiredC ass: DescType;
cont ai ner Token: AEDesc;
cont ai nerd ass: DescType;
keyForm DescType;
keyDat a: AEDesc;

VAR t oken: AEDesc;

t heRef Con: Longlnt): OSErr;

VAR

wi ndowNane: Str 255;

act Si ze: Si ze;

w ndTitl e: St r 255;

wi ndow. W ndowPt r;

i ndex, iLoop: Integer;

f ound: Bool ean;
BEG N

| F keyForm = fornNane THEN

BEG N

{get the nane of the windowto find fromthe keyData }
{ paraneter. MyGet StringFronDesc gets data out of an }
{ AEDesc and returns a string and the string' s size}
MyGet St ri ngFromDesc(keyDat a, wi ndowNane, actSi ze);
{look for a window with the gi ven nane}
wi ndow : = Front W ndow;,
found : = FALSE;
VWHI LE ((wi ndow <> NIL) AND (found = FALSE)) DO
BEG N

Get WIi tl e(wi ndow, wi ndTitle);

found : = Equal String(wi ndTitl e, wi ndowNane, FALSE, TRUE);

I F NOT found THEN

wi ndow : = W ndowPt r (W ndowPeek(wi ndow) . next W ndow) ;

END; {of while)

Writing Object Accessor Functions

6-35

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

6-36

CHAPTER 6

Resolving and Creating Object Specifier Records

END {of formNane}
ELSE
| F keyForm = for mAbsol ut ePositi on THEN
{find the wi ndow given an index in key data}
BEG N {get the index fromthe key data}
MyGet | ndexFr onDesc(keyDat a, index);
found : = FALSE;
i Loop := O;
wi ndow : = Front W ndow;,
WHI LE (wi ndow <> NIL) AND (found <> TRUE) DO
BEG N
i Loop := iLoop +1;
| F i Loop = index THEN
found : = TRUE
ELSE
Wi ndow : = W ndowPt r (W ndowPeek(wi ndow) . next W ndow) ;
END; {of while}
END {of formAbsol utePosition}
{handl e the other key fornms you support}
ELSE
BEG N
MyFi ndW ndowCbj ect Accessor : = kKeyFor mNot Support ed;
Exi t (MyFi ndW ndowObj ect Accessor) ;
END;
| F window = NIL THEN
MyFi ndW ndowCbj ect Accessor : = kOnbj ect Not Found
ELSE {create token that identifies the w ndow}
MyFi ndW ndowCbj ect Accessor : =
AECr eat eDesc(typeMyW ndow, @i ndow,
Si zeOF (wi ndow), token);
END;

Writing Object Accessor Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

The keyFor mparameter of the MyFi ndW ndowObj ect Accessor function describes
how the function should interpret the keyDat a parameter. If the key form is f or mNarre,
then the key data contains the name of the window to locate. If the key form is

f or mMbsol ut ePosi ti on, the key data contains the position of the window to locate
in the window list; for example, a value of 1 identifies the frontmost window.

The MyFi ndW ndowCbj ect Accessor function supports only the f or nNane and
f or mAbsol ut ePosi ti on key forms. Your object accessor functions should support all
key forms that make sense for the kinds of objects the functions can locate.

For the f or mNane keyword, the MyFi ndW ndowObj ect Accessor function starts with
the frontmost window and compares the window’s title to the name specified by the
keyDat a parameter. It continues this search until it reaches either the end of the
window list or finds a match. If the MyFi ndW ndowObj ect Accessor function finds a
match, it uses the AECr eat eDesc function to create a descriptor record for the token,
specifying the application-defined t ypeMyW ndow descriptor type and the data for

this descriptor type as a window pointer.

The MyFi ndW ndow(bj ect Accessor function then sets its function result
appropriately, and the AEResol ve function either returns this function result and token,
or uses the returned token to request the next Apple event object in the container
hierarchy, such as a document in the window.

Writing Object Accessor Functions That Find Properties

The Apple event object to which a property belongs is that property’s container. Your
application should provide an object accessor function for finding properties in
containers identified by tokens of various descriptor types. Your application does not
need to be given a property’s specific object class in order to find that property; instead,
you can specify the object class ID for any property with the constant cPr oper t y. Thus,
you can write a single object accessor function that can find any property of an object
identified by a token of a given descriptor type.

To install such an object accessor function, you can add a single entry to the object
accessor dispatch table that specifies the desired object class as cPr oper t 'y for a given
token descriptor type. For example, Listing 6-9 shows an object accessor function that
identifies any property of a window.

Writing Object Accessor Functions 6-37

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-9 An object accessor function that identifies any property of a window

6-38

FUNCTI ON MyFi ndPr opert yOf W ndowChj ect Accessor
(desiredd ass: DescType;
cont ai ner Token: AEDesc;
cont ai nerC ass: DescType;

keyForm DescType; keyData: AEDesc;

VAR t oken: AEDesc;
t heRef Con: Longlnt): OSErr;
VAR
t heProperty: DescType;
BEG N
MyFi ndPr oper t yOf W ndowCbj ect Accessor : = noFErr;
My Get Pr opFr onKeyDat a(keyDat a, theProperty);
I F keyForm = fornPropertyl D THEN
BEG N
| F theProperty = pName THEN
{create token that identifies name property of the }

{ wi ndow}
My Cr eat eToken(t ypeMyW ndowPr op, cont ai ner Token, pNaneg,
t oken)
ELSE

| F theProperty = pBounds THEN
{create token that identifies bounds property of the }
{ wi ndow}

My Cr eat eToken(t ypeMyW ndowPr op, cont ai ner Token, pBounds,

t oken)
{create tokens for other properties as appropriate}

ELSE
MyFi ndPr opert yOf W ndowChj ect Accessor : =
KEr r or Pr opNot Found;
END
ELSE
MyFi ndPr opert yOf W ndowObj ect Accessor : =
kKeyFor mNot Support ed;
END;

Writing Object Accessor Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

The MyFi ndPr oper t yOF W ndowObj ect Accessor function takes a token that
identifies a window and creates a token that identifies the requested property of that
window. See Figure 6-6 on page 6-40 for an illustration of the logical organization of a
token of descriptor type t ypeMyW ndowPr op.

This simplified example merely translates information about the requested property and
the window to which it belongs into the form of a token of type t ypeMyW ndowPr op.
This token can then be used by Apple event handlers to identify the corresponding
window and its property, so that a handler can either retrieve the value of the property
(for example, a Get Data handler) or change the value of the property (for example, a
Set Data handler). Like other tokens, a token that identifies a property should always
contain a reference to the corresponding property and the object to which it belongs—
not a copy of the data for that object’s property.

Defining Tokens

It is up to you to decide how many token descriptor types you need to define for your
application. In many cases you may be able to define one token that can identify

Apple event objects of several different object classes, such as a token of type

t ypeMyText Token that identifies Apple event objects of object classes c Text, c\Wr d,
cl t em and cChar. In other cases you may need to define specific token descriptor types
for specific object classes.

For example, the MyFi ndDocurrent Cbj ect Accessor routine shown in Listing 6-5 on
page 6-30 returns a token of descriptor type t ypeMyDoc Token, which identifies a
document record.

CONST {application-defined token}
t ypeMyDocToken = "docr'; {identifies a docunent record}

Figure 6-5 shows the logical arrangement of a descriptor record of descriptor type
t ypeMyDocToken whose data is specified by a pointer to a document record.

Figure 6-5 Descriptor record for an application-defined token that identifies a document
Data type AEDesc
Descriptor type: typeMyDocToken
Data: Pointer to a document record

Writing Object Accessor Functions 6-39

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

The MyFi ndPr oper t yOf W ndowObj ect Accessor routine shown in Listing 6-9
returns a token of descriptor type t ypeMyW ndowPr op for every property that it
can locate.

CONST {application-defined token}
t ypeMyW ndowPr op = "wprp'; {a window pointer and a }
{ property |D}

Figure 6-6 shows the logical arrangement of a descriptor record of descriptor type

t ypeMyW ndowPr op that identifies the bounds property of a window. Its data consists
of a window pointer and the constant pBounds. The application can use this token
either to return or to change the window’s bounds setting, depending on the Apple
event that specified the property. If the token specified pNane instead, the application
could use it either to return the window’s name as a string or to change the window’s
name.

Figure 6-6 Descriptor record for an application-defined token that identifies the pbounds

6-40

property of a window

Data type AEDesc
Descriptor type: t ypeMyW ndowPr op
Data: Window pointer
pBounds

A token'’s data should always contain a reference to the corresponding Apple event
objects—not a copy of the data for those objects. This allows the same token to be used
for both reading and writing tokens.

It’s often possible to use the same token type for objects of several object classes, or for
both an object of a given class and one of its properties. A token’s data is private to your
application and can be organized in any way that is convenient.

When an object accessor function that supports key form f or mRange locates a range of
Apple event objects, it should normally return a descriptor list (AEDescLi st) of tokens
for the individual objects. A typical exception is an object accessor function that returns a
range of objects of class cText , which should return a single token representing the
entire range. For example, an object accessor function that finds “all the characters from
char 1 to char 1024” should return a token that consists of a list of 1024 objects, each

of class cChar, whereas an object specifier function that finds “all the text from char 1

to char 1024” should return a single token for a single item of class cText that is

1024 characters long.

Writing Object Accessor Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

A token is valid only until the Apple Event Manager has located the requested element
in the container the token represents and returned another token for the element. The
Apple Event Manager disposes of intermediate tokens after it finishes resolving an object
specifier record, but one token is always left over—the token that identifies the specified
Apple event object or objects. Your application should dispose of this final token by
calling the AEDi sposeToken function, which in turn calls your application’s token
disposal function (if one exists), an optional object callback function that disposes of a
token. See page 6-99 for the declaration of a token disposal function.

If your application does not provide a token disposal function, the Apple Event Manager
uses the AEDi sposeDesc function to dispose of tokens. This function does the job as
long as disposing of tokens involves nothing more than simply disposing of a descriptor
record. Otherwise, you need to provide a custom token disposal function. For example,
suppose the data field of a token descriptor record contains a handle to a block that in
turn contains references to memory for the Apple event object referred to by the token. In
this case, the application should provide a token disposal function that performs the
tasks required to dispose of the token and any associated structures.

Handling Whose Tests

If your application provides an object-counting function and an object-comparison
function in addition to the appropriate object accessor functions, the Apple Event
Manager can resolve object specifier records that specify f or nifest without any other
assistance from your application. The Apple Event Manager translates object specifier
records of key form f or nTTest into object specifier records of key form f or mAhose.
This involves collapsing the key form and key data from two object specifier records in a
container hierarchy into one object specifier record with the key form f or mMAhose.

Some applications may find it more efficient to translate whose tests into their own
query languages rather than letting the Apple Event Manager handle the tests. This is
useful only for applications that can make use of a test combined with either an absolute
position or a range to locate objects. If you want the Apple Event Manager to let your
application handle whose tests, set the KAEI DoWhose flag in the cal | backFl ags
parameter of the AEResol ve function. If for any reason one of your application’s object
accessor functions chooses not to handle a particular whose descriptor record, it should
return er r AEEvent Not Handl ed as the result code, and the Apple Event Manager will
try again using the original object specifier records, just as if the KAEI DoWhose flag were
not set.

Writing Object Accessor Functions 6-41

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

6-42

CHAPTER 6

Resolving and Creating Object Specifier Records

The key data for f or mMMose is specified by a whose descriptor record, which is a
coerced AE record of descriptor type t ypeWhoseDescr i pt or. The data for a whose
descriptor record consists of the two keyword-specified descriptor records shown in
Table 6-5.

Table 6-5 Keyword-specified descriptor records for t ypeWhoseDescr i pt or

Keyword Descriptor type Data
keyAEl ndex t ypeLongl nt eger Offset of requested element in group
of elements that pass a test
t ypeAbsol ut eOr di nal KAEFi r st
kAEM ddl e
kAELast
kAEANy
KAEA! |
t ypeWhoseRange Whose range descriptor record
keyAETest t ypeConpDescri pt or Comparison descriptor record

t ypelLogi cal Descri pt or Logical descriptor record

A whose descriptor record is never created directly by an application. The Apple Event
Manager creates a whose descriptor record whenever an object specifier record of key
form f or niTest is used to describe the container for elements described by an object
specifier record of key form f or mAbsol ut ePosi ti on or f or nRange, with some
exceptions as noted in this section.

For example, Figure 6-3 on page 6-18 shows four object specifier records that show the
container hierarchy for the first row that meets a test in the table “MyAddresses” of the
database “SurfDB.” The top two object specifier records in that figure use the key forms
f or mAbsol ut ePosi ti on and f or nTest to describe elements in a container. When it
receives these two object specifier records, the Apple Event Manager collapses them into
one, as shown in Figure 6-7. It then calls the application’s object-counting function to
find out how many objects of class c Rowthe table contains and the object-comparison
function to test the rows in the table until it finds the first row that passes the test.

Writing Object Accessor Functions

CH

APTER 6

Resolving and Creating Object Specifier Records

Figure 6-7

descriptor record

A container hierarchy created by the Apple Event Manager using a whose

Object specifier data for a set of rows that meet a test

keyAEDesi r ed

Cl ass ||keyAECont ai ner

keyAEKeyFor m

keyAEKeyDat a

typeType

typeObj ect Speci fi er

t ypeEnuner at ed

t ypeWhoseDescri pt or

cRow

Data shown below

Data shown below

Object specifier data for a table

f or MMhose

Whose descriptor data

keyAEKey| ndex

keyAETest

t ypeLongl nt eger

typeLogi cal Descri pt or

1

Data shown in Figure 6-4

.keyAEDesi redd ass

keyAECont ai ner

keyAEKeyFor m

keyAEKeyDat a

typeType t ypeObj ect Speci fi er ||t ypeEnuner at ed ||t ypeChar

cTabl e Data shown below f or mMNane Name of table (“MyAddresses”)
. Object specifier data for a database
keyAEDesi r edd ass ||keyAECont ai ner keyAEKeyFor m keyAEKeyDat a
typeType typeNul | t ypeEnuner at ed ||t ypeChar
cDat abase Data handle is NI L f or mMNane Name of database (“SurfDB")

If the elements to be tested are described by an object specifier record of key form
f or mMAbsol ut ePosi ti on or f or mMRange but are not of the same object class as their
container, the Apple Event Manager cannot collapse the existing object specifier records
into a whose descriptor record. Instead, the Apple Event Manager creates a

whose descriptor record as if a third object specifier record of key form

f or mMbsol ut ePosi ti on and KAEAI | were inserted between the object specifier
record for the container and that for the tested elements. For example, the Apple Event

Manager would interpret a request for “character 1 of word whose first letter =
“character 1 of every word whose first letter =

Writing Object Accessor Functions

L1

a .

L1

a as

6-43

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

6-44

CHAPTER 6

Resolving and Creating Object Specifier Records

When an object specifier record of key form f or nTTest is used to describe the container
for elements described by an object specifier record of key form f or nRange, the

Apple Event Manager will, under certain conditions, coerce the corresponding range
descriptor record to a whose range descriptor record, which is a coerced AE record of

t ypeWhoseRange. The data for a whose range descriptor record consists of

two keyword-specified descriptor records with the descriptor types and data shown in
Table 6-6.

Table 6-6 Keyword-specified descriptor records for t ypeWhoseRange

Keyword Descriptor type Data

keyAEWhoseRangeSt ar t t ypeLongl nt eger Offset of beginning of
range

t ypeAbsol ut eOr di nal kAEFi r st
kAEM ddl e
kAELast
k AEAny
KAEA| |

keyAEVWhoseRangeSt op t ypeLongl nt eger Offset of end of range

t ypeAbsol ut eOr di nal KAEFi r st
kAEM ddl e
kAELast
k AEANny
kAEAI |

A whose range descriptor record describes the absolute position of the boundary
elements, within the set of all elements that pass a test, that identify the beginning and
end of the desired range.

The Apple Event Manager coerces a range descriptor record to a whose range descriptor
record if the specified container and its elements are of the same class, if the container for
the specified range of elements is a group of Apple event objects that pass a test, and if
the boundary objects in the original range descriptor record meet these conditions:

= Both boundary objects are of the same object class as the Apple event objects in the
range they specify.

= The object specifier record for each boundary object specifies its container with a
descriptor record of descriptor type t ypeCur r ent Cont ai ner.

= The object specifier record for each boundary object specifies a key form of
f or mAbsol ut ePosi ti on.

Writing Object Accessor Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

If these conditions are not met, the Apple Event Manager doesn’t create a whose range

descriptor record. Instead, as described earlier in this section, the Apple Event Manager
creates a whose descriptor record as if the original request specified every element that

passed the test.

If your application sets the KAEI DoWhose flag in the cal | backFl ags parameter

of AEResol ve, you should provide object accessor functions that can handle

f or Mhose. These functions should coerce the whose descriptor record specified as

key data for an object specifier record to an AE record and extract the data from the

AE record by calling the AEGet KeyPt r and AEGet KeyDesc functions. If the
keyword-specified descriptor record with the keyword keyAEl ndex specifies descriptor
type t ypeWhoseRange, your object accessor function must also coerce that descriptor
record to an AE record and extract the data. Your object accessor function should then
attempt to locate the requested objects and, if successful, return a token that identifies
them.

If your application sets the KAEI DoWhose flag and attempts to resolve every whose
descriptor record it receives, the Apple Event Manager does not attempt to resolve object
specifier records of any key form. The object-counting and object-comparison functions
are never called, and your application is solely responsible for determining the formats
and types of all tokens.

Writing Object Callback Functions

If an Apple event parameter consists of an object specifier record, your handler for

the Apple event typically calls AEResol ve to begin the process of locating the requested
Apple event object or objects. In turn, AEResol ve calls object accessor functions and,

if necessary, object callback functions provided by your application.

Every application that supports Apple event objects should provide object accessor
functions that can locate Apple event objects belonging to any of the supported object
classes. For an overview of the way AEResol ve calls object accessor functions to locate
Apple event objects described by object specifier records, see “Resolving Object Specifier
Records,” which begins on page 6-4.

In addition to object accessor functions, your application can provide up to seven object
callback functions:

= An object-counting function counts the number of elements of a specified class in a
specified container, so that the Apple Event Manager can determine how many
elements it must examine to find the element or elements that pass a test. Your
application must provide one object-counting function to handle object specifier
records that specify tests. (See “Writing an Object-Counting Function,” which begins
on page 6-48.)

Writing Object Callback Functions 6-45

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

= An object-comparison function compares one element either to another element or to a
descriptor record and returns either TRUE or FALSE. Your application must provide
one object-comparison function to handle object specifier records that specify tests.
(See “Writing an Object-Comparison Function” on page 6-50.)

= A token disposal function disposes of a token after your application calls the
AEDI sposeToken function. If your application doesn’t provide a token disposal
function, the Apple Event Manager uses the AEDIi sposeDesc function instead. Your
application must provide a token disposal function if it requires more than a call to
AEDI sposeDesc to dispose of one of its tokens. This is true, for example, if your
application supports marking by modifying its own data structures. (See page 6-99 for
the declaration of a token disposal function.)

= An error callback function gives the Apple Event Manager an address to which to write
the descriptor record it is currently working with if an error occurs while AEResol ve
is attempting to resolve an object specifier record. Your application is not required to
provide an error callback function. (See page 6-100 for the declaration of an error
callback function.)

s Three marking callback functions are used by the Apple Event Manager to get a mark
token from your application, to mark specific Apple event objects, and to pare down a
group of marked Apple event objects. Your application must provide all three
marking functions if it supports marking. (See “Writing Marking Callback Functions”
on page 6-53.)

To make your object callback functions available to the Apple Event Manager, use the

AESet Obj ect Cal | backs function:

nyErr : = AESet Obj ect Cal | backs (@WConpar e(bj ect s,
@WCount Ohj ects, @W¥Di sposeToken,
@WN Get Mar kToken, @wMar Kk,
@WAdj ust Mar ks, @WGet ErrDesc);

Each parameter to the AESet Cbj ect Cal | backs function consists of either a pointer
to the corresponding application-defined function or NI L if no function is provided.
The AESet Qbj ect Cal | backs function sets object callback functions that are available
only to your application. To set system object callback functions, which are available

to all applications and processes running on the same computer, use the

AEIl nst al | Speci al Handl er function as described on page 4-100.

To handle object specifier records that specify tests, your application must provide an
object-counting function and an object-comparison function. The Apple Event Manager
calls your application’s object-counting function to determine the number of Apple event
objects in a specified container that need to be tested. The Apple Event Manager calls
your application’s object-comparison function when it needs to compare one Apple
event object to either another Apple event object or to a value in a descriptor record.

6-46 Writing Object Callback Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

If your application does not provide a token disposal function, the Apple Event Manager
uses the AEDI sposeDesc function to dispose of tokens. This function does the job as
long as disposing of tokens involves nothing more than simply disposing of a descriptor
record. Otherwise, you need to provide custom token disposal function. For example,
suppose the data field of a token descriptor record contains a handle to a block that in
turn contains references to storage for the Apple event object referred to by the token. In
this case, the application can provide a token disposal function that performs the tasks
required to dispose of the token and any associated structures.

Whenever more than one Apple event object passes a test, AEResol ve can either return
a list of tokens or make use of a target application’s ability to mark its own objects.
Sometimes a list of tokens can become unmanageably large. For example, if a Get Data
event asks for the names and addresses of all customers with a specified zip code who
have purchased a specified product, the object accessor function that locates all the
customers with the specified zip code might return a list of many thousands of tokens;
the elements identified by those tokens would then have to be tested for the specified
product. However, if your application uses some method of marking objects, you can
choose simply to mark the requested objects rather than returning a list of tokens.
“Writing Marking Callback Functions” on page 6-53 describes how to do this. If your
application supports marking by modifying its own data structures, you must provide a
token disposal function.

When one of your application’s Apple event handlers calls the AEResol ve function, the
handler should pass a value in the cal | backFl ags parameter that specifies whether
your application supports whose descriptor records or provides marking callback
functions. You can add the following constants, as appropriate, to provide a value for the
cal | backFl ags parameter:

CONST KAEI DoM ni mum $0000; {does not handl e whose tests or }
{ provide nmarking call backs}
$0001; {supports key form formhose}

$0004; {provides nmarking functions}

kAEIl DoWwhose
k AEl DoMar ki ng

For example, this code instructs the Apple Event Manager to call any marking functions
previously set with the AESet Qbj ect Cal | backs function while resolving the object
specifier record in the obj ect Speci fi er parameter:

VAR
obj ect Speci fier: AEDesc;
resul t Token: AEDesc;
myErr: CSErr;

myErr := AEResol ve(obj ect Specifier, kAElI DoMarking, resultToken);

Writing Object Callback Functions 6-47

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

6-48

CHAPTER 6

Resolving and Creating Object Specifier Records

If any of the marking callback functions are not installed, AEResol ve returns the error
er r AEHandl er Not Found.

IMPORTANT

If your application doesn’t specify KAEI DoWhose, the Apple Event
Manager attempts to resolve all object specifier records of key form

f or nifest . To do so, the Apple Event Manager uses your application’s
object-counting and object-comparison functions, and returns a token of
type t ypeAELi st.

If your application does specify kAEI DoWhose, the Apple Event
Manager does not attempt to resolve object specifier records of any key
form. In this case, the object-counting and object-comparison functions
are never called; your application determines the formats and types of
all tokens; and your application must interpret whose descriptor records
created by the Apple Event Manager during the resolution of object
specifier records. For more information, see “Handling Whose Tests,”
which begins on page 6-41. a

Writing an Object-Counting Function

To handle object specifier records that specify tests, your application should provide

an object-counting function (unless it specifies k AEI DoWhose as just described).

Your object-counting function should be able to count the number of elements of a given
object class in a given container. For example, if your application supports Apple

event objects that belong to the object class c Text in the Text suite, your application
should provide an object-counting function that can count Apple event objects of each
element class listed in the definition of cText in the Apple Event Registry: Standard Suites.
In this case, your application should provide an object-counting function that can count
the number of words, items, or characters in a text object.

You specify your object-counting function with the AESet Cbj ect Cal | backs function.
Whenever it is resolving an object specifier record and it requires a count of the number
of elements in a given container, the Apple Event Manager calls your object-counting
function.

Here's the declaration for a sample object-counting function:

FUNCTI ON MyCount Qbj ects (desiredd ass: DescType;
cont ai ner d ass: DescType;
cont ai ner Token: AEDesc;
VAR result: Longlint): OSErr;

The Apple Event Manager passes the following information to your object-counting
function: the object class ID of the Apple event objects to count, the object class of their
container, and a token identifying their container. (The container class can be useful if
you want to use one token type for several object classes.) Your object-counting function
uses this information to count the number of Apple event objects of the specified object

Writing Object Callback Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

class in the specified container. After counting the Apple event objects, your application
should return the noEr r result code and, in the r esul t parameter, the number of Apple
event objects counted.

Listing 6-10 shows an application-defined function, MyCount Obj ect s, that counts the
number of objects for any object class supported by the application.

Listing 6-10 An object-counting function

FUNCTI ON MyCount Qbj ects (desiredd ass: DescType; containerd ass: DescType;
cont ai ner Token: AEDesc; VAR result: Longlnt): OSErr
VAR
wi ndow. W ndowPtr;
BEG N
result := 0;
| F desiredd ass = cW ndow THEN
BEG N
| F containerClass = typeNull THEN
BEG N
{count the numnber of w ndows}
wi ndow : = Front W ndow;,
VWHI LE wi ndow <> NIL DO
BEG N
resul t result + 1;
Wi ndow : = W ndowPt r (W ndowPeek(wi ndow) . next W ndow) ;
END; {of while}

END;
MyCount Obj ects : = noErr;
END {of cW ndow}
ELSE
| F desiredC ass = cWwrd THEN
{count the nunber of words in the container}
MyCount Obj ects : = MyCount Wr ds(cont ai ner G ass, cont ai ner Token,
result)
ELSE
| F desiredd ass = cParagraph THEN
{count the nunmber of paragraphs in the container}
MyCount Qbj ects : = MyCount Par as(cont ai ner Cl ass, cont ai ner Token,
result)
ELSE
{this app does not support any other object classes}
MyCount Obj ects : = kQbj ect A assNot Found;
END;

Writing Object Callback Functions 6-49

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

6-50

CHAPTER 6

Resolving and Creating Object Specifier Records

Writing an Object-Comparison Function

To handle object specifier records that specify tests, your application should provide an
object-comparison function (unless it specifies KAEI DoWhose as described on page 6-48).
Your object-comparison function should be able to compare one Apple event object to
another Apple event object or to another descriptor record.

You specify your object-comparison function with the AESet Cbj ect Cal | backs
function. Whenever it is resolving object specifier records and needs to compare the
value of an Apple event object with another object or with data, the Apple Event
Manager calls your object-comparison function.

Here’s the declaration for a sample object-comparison function:

FUNCTI ON MyConpar eQbj ect s (conpari sonQper at or: DescType;
obj ect: AEDesc;
obj ect Or DescToConpar e: AEDesc;
VAR result: Bool ean): OSErr;

The Apple Event Manager passes the following information to your object-comparison
function: a comparison operator that specifies how the two objects should be compared,
a token for the first Apple event object, and either a token that describes the Apple event
object to compare or a descriptor record.

It is up to your application to interpret the comparison operators it receives. The
meaning of comparison operators differs according to the Apple event objects being
compared, and not all comparison operators apply to all object classes. After successfully
comparing the Apple event objects, your object-comparison function should return the
NOEr r result code and, in the r esul t parameter, a Boolean value specifying TRUE if the
result of the comparison is true and FALSE otherwise. If for any reason your comparison
function is unable to compare the specified Apple event objects, it should return the
result code er r AEEvent Not Handl ed; then the Apple Event Manager will try an
alternative method of comparing the Apple event objects, such as calling the equivalent
system object-comparison function, if one exists.

Your object-comparison function should be able to compare an Apple event object
belonging to any object class with another Apple event object. Your function should also
be able to compare two Apple event objects with different object classes, if appropriate.
For example, an object-comparison function for a word-processing application might be
asked to compare the First Name column of a specified row in a table with the first word
on a specified page—that is, to compare an Apple event object of object class cCol umm
with an Apple event object of object class cWr d. You must decide what kinds of
comparisons make sense for your application.

Writing Object Callback Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

The Apple Event Registry: Standard Suites defines standard comparison operators. Here is

a list of the constants that correspond to these comparison operators:

CONST
kAEG eat er Than ="
kAEG eat er ThanEqual s '
kAEEqual s ="
kAELessThan ="
kAELessThanEqual s '
kAEBegi nsWth '
kKAEEndsW t h ="
kAECont ai ns ="

The comparison operators always relate the first operand to the second. For example,
the constant KAEG eat er Than means that the object-comparison function should

bgwt ' ;
ends' ;
cont';

determine whether or not the value of the first operand is greater than the value of the

second operand. For more information, see page 6-90.

Listing 6-11 shows an application-defined function, My Conpar ebj ect s, that compares

two Apple event objects of any object class supported by the application.

Writing Object Callback Functions

6-51

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-11 Object-comparison function that compares two Apple event objects

FUNCTI ON MyConpar eCbj ect s (conpari sonCperator: DescType;
t heObj ect: AEDesc;
obj ect Or DescToConpare: AEDesc;
VAR result: Bool ean): OSErr;
BEG N
result := FALSE;
{conmpare two objects for equival ence}
| F conpari sonOperator = kAEEqual s THEN
MyConpar ebj ects : = MyConpEqual s(t heObj ect,
obj ect Or DescToConpar e,
result)
ELSE
{conmpare two objects for greater than}
| F conpari sonOperator = KAEG eat er Than THEN
MyConpar eCbj ects : = MyConpGr eat er Than(t heObj ect
obj ect Or DescToConpar e,
result)
ELSE
{conmpare two objects for |ess than}
| F conpari sonOperator = kAELessThan THEN
MyConpar eCbj ects : = MyConpLessThan(t heObj ect,
obj ect Or DescToConpar e,
result)
ELSE
{this app does not support any other conparison operators}
MyConpar eCbj ects : = err AEEvent Not Handl ed;
END;

The MyConpar eCbj ect s function calls a separate application-defined routine for each
comparison operator. In each case, the application-defined routine that actually performs
the comparison can compare an Apple event object with either another Apple event
object or with a descriptor record’s data. If for any reason the comparison cannot be
performed, the MyConpar eCbj ect s function returns the result code

er r AEEvent Not Handl ed.

6-52 Writing Object Callback Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

Writing Marking Callback Functions

Marking callback functions allow applications such as databases that can mark their own
objects to take advantage of that capability when resolving object specifier records.
Instead of returning a list of tokens for a group of Apple event objects that pass a test,
your application can simply mark the Apple event objects and return a token that
identifies how they have been marked. In this way, you can speed the resolution of
complex object specifier records and reduce the amount of memory you need to allocate
for tokens.

The use of marking callback functions is optional and usually makes sense if (a) you can
reasonably expect that the tokens created in the process of resolving some object specifier
records might not all fit in memory at once or (b) your application already uses a
marking mechanism. If you want the Apple Event Manager to use marking callback
functions provided by your application, you must add the KAElI DoMar ki ng constant to
the value of the cal | backFl ags parameter for the AEResol ve function. If for any
reason your application cannot mark a requested set of Apple event objects, it should
return er r AEEvent Not Handl ed as the result code, and the Apple Event Manager will
attempt to continue resolving the object specifier record by some other method, such as
using a system marking function, if one exists.

If your application supports marking callback functions, it must provide three functions
with declarations that match these examples:

FUNCTI ON MyGet Mar kToken (cont ai ner Token: AEDesc;
cont ai ner d ass: DescType;
VAR Result: AEDesc): OSErr;

FUNCTI ON MyMar k (t heToken: AEDesc; markToken: AEDesc;
mar kCount: Longlint): OSErr;

FUNCTI ON MyAdj ust Marks (newStart, newStop: Longlnt;
mar kToken: AEDesc): OSErr;

For more detailed information about these sample declarations, see “Object Callback
Functions,” which begins on page 6-96.

To resolve a given object specifier record with the aid of the marking callback functions
provided by your application, the Apple Event Manager first calls your application’s
mark token function (MyCet Mar kToken), passing a token that identifies the container
of the elements to be marked in the cont ai ner Token parameter and the container’s
object class in the cont ai ner Cl ass parameter. The mark token function returns a mark
token. A mark token, like other tokens, can be a descriptor record of any type; however,
unlike other tokens, it identifies the way your application marks Apple event objects
during the current session while resolving a single test. A mark token does not identify a
specific Apple event object; rather, it allows your application to associate a group of
objects with a marked set.

Writing Object Callback Functions 6-53

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

6-54

CHAPTER 6

Resolving and Creating Object Specifier Records

After it receives the mark token, the Apple Event Manager can call your application’s
object-marking function (MyMar K) repeatedly to mark specific Apple event objects. The
Apple Event Manager passes the following information to your marking function: in the
t heToken parameter, a token for the object to be marked (obtained from the appropriate
object accessor function); in the mar kToken parameter, the current mark token; and in
the mar kCount parameter, the mark count. The mark count indicates the number of
times the Apple Event Manager has called the marking function for the current mark
token. Your application should associate the mark count with each Apple event object it
marks.

When the Apple Event Manager needs to identify either a range of elements or the
absolute position of an element in a group of Apple event objects that pass a test, it can
use your application’s mark-adjusting function (MyAdj ust Mar ks) to unmark objects
that it has previously marked. For example, suppose an object specifier record specifies
“any row in the table ‘MyCustomers’ for which the City column is ‘San Francisco.”” The
Apple Event Manager first uses the appropriate object accessor routine to locate all the
rows in the table for which the City column is “San Francisco” and calls the application’s
marking function repeatedly to mark them. It then generates a random number between
1 and the number of rows it found that passed the test and calls the application’s
mark-adjusting function to unmark all the rows whose mark count does not match the
randomly generated number. If the randomly chosen row has a mark count value of 5,
the Apple Event Manager passes the mark-adjusting function 5 in both the newSt ar t
parameter and the newSt op parameter, and the current mark token in the mar kToken
parameter. The newSt art and newSt op parameters identify the beginning and end of
the new set of marked objects that the mark-adjusting function will create by unmarking
those previously marked objects not included in the new set.

When the Apple Event Manager calls your mark-adjusting function, your application
must dispose of any data structures that it may have created to mark the previously
marked objects. The Apple Event Manager calls your mark-adjusting function only once
for a given mark token.

A mark token is valid until the Apple Event Manager either disposes of it (by calling
AEDi sposeToken) or returns it as the result of the AEResol ve function. If the final
result of a call to the AEResol ve function is a mark token, the Apple event objects
currently marked for that mark token are those specified by the object specifier record
passed to AEResol ve, and your application can proceed to do whatever the Apple event
has requested. Note that your application is responsible for disposing of a final mark
token with a call to AEDi sposeToken, just as for any other final token.

If your application supports marking, it should also provide a token disposal function.
When the Apple Event Manager calls AEDi sposeToken to dispose of a mark token that
is not the final result of a call to AEResol ve, the subsequent call to your token disposal
function lets you know that you can unmark the Apple event objects marked with that
mark token. A call to AEDi sposeDesc to dispose of a mark token (which would occur if
you did not provide a token disposal function) would leave the objects marked.

Writing Object Callback Functions

CHAPTER 6

Resolving and Creating Object Specifier Records

Creating Object Specifier Records

If your application creates and sends Apple events that require the target application to
locate Apple event objects, your application must create object specifier records for those
events. This section describes how to use the four keyword-specified descriptor records
described in “Descriptor Records Used in Object Specifier Records,” which begins on
page 6-8, to specify the object class ID, container, key form, and key data for an object
specifier record.

Because the internal structure of an object specifier record is nearly identical to the
internal structure of an AE record, it is possible to use AECr eat eLi st , AEPut Ptr,
and AEPut KeyDesc to add the four keyword-specified descriptor records to an

AE record, then use AECoer ceDesc to coerce the AE record to a descriptor record
of type t ypeQbj ect Speci f i er. However, it is usually preferable to use

the Cr eat ebj Speci fi er function to accomplish the same goal. The

Cr eat eObj Speci fi er function adds the keyword-specified descriptor records
directly to an object specifier record, thus eliminating several steps that are required
if you create an AE record first. The instructions that follow make use of

Cr eat eCbj Speci fi er.

To specify the class ID for an object specifier record, your application can specify

the appropriate class ID value as the desi r edCl ass parameter for the

Cr eat ebj Speci fi er function, which uses it to create a keyword-specified descriptor
record with the keyword keyAEDesi r edd ass as part of an object specifier record.

To specify the container for an object specifier record, your application must create a
keyword-specified descriptor record with the keyword key AECont ai ner that fully
describes the container of the Apple event object. Because this container is usually
another Apple event object, the container is usually specified by another object specifier
record.

To specify the complete container hierarchy of an Apple event object, your application
must create a series of nested object specifier records, starting with the object specifier
record for the Apple event object whose container is outermost. With the exception of
this first object specifier record, each object specifier record specifies another object
specifier record in the chain as a container.

Creating Object Specifier Records 6-55

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

For example, Figure 6-2 on page 6-10 shows a series of nested object specifier records
that specify the first row of a table named “Summary of Sales” in a document named
“Sales Report.” The logical organization of the same object specifier records is
summarized in Table 6-7.

Table 6-7 Nested object specifier records that describe a container hierarchy
Keyword Descriptor type Data
keyAEDesi redd ass typeType cRow
keyAECont ai ner t ypeQbj ect Speci fi er (see indented record)
keyAEDesi redd ass typeType cTabl e
keyAECont ai ner t ypehj ect Speci fi er (see indented record)
keyAEDesi redd ass typeType cDocunent
keyAECont ai ner typeNul | Data handle is NI L
keyAEKeyFor m t ypeEnuner at ed f or mNane
keyAEKeyDat a t ypeChar "Sal es Report™
keyAEKeyFor m t ypeEnuner at ed f or mNane
keyAEKeyDat a t ypeChar "Sumary of Sal es"
keyAEKeyFor m t ypeEnuner at ed f or mAbsol ut ePosi ti on
keyAEKeyDat a t ypeLongl nt eger 1
Note

The format used in Table 6-7 and similar tables throughout this chapter
does not show the structure of nested object specifier records as they
exist within an Apple event. Instead, this format shows what you would
obtain after calling AEGet KeyDesc repeatedly to extract the object
specifier records from an Apple event record.

When you call AEGet KeyDesc to extract a null descriptor record,
AEGet KeyDesc returns a descriptor record of type AEDesc with a
descriptor type of t ypeNul | and a data handle whose value is 0. O

To specify the default container for an object specifier record (such as the container for
the document in Table 6-7), you can use AECr eat eDesc to create a null descriptor
record, which you can then pass in the t heCont ai ner parameter of the

Cr eat eObj Speci fi er function. The Cr eat eCbj Speci fi er function uses the null
descriptor record to create a keyword-specified descriptor record with the keyword
keyAECont ai ner as part of an object specifier record.

6-56 Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

The object specifier record that specifies the default container is always the first record
you create in a series of nested object specifier records that specifies the complete
container hierarchy for an Apple event object. Each one in the series uses the previously
created object specifier record to specify its container. As with the null descriptor

record, you can pass an object specifier record as the second parameter to the

Cr eat ebj Speci fi er function, which uses it to create a keyword-specified descriptor
record with the keyword key AECont ai ner.

To specify the key form for an object specifier record, your application can specify a key
form constant as the third parameter to the Cr eat eCbj Speci fi er function,

which uses it to create a keyword-specified descriptor record with the keyword
keyAEKey For mas part of an object specifier record. The standard key forms for object
specifier records are summarized in Table 6-1 on page 6-12.

For example, the key form for the object specifier records in Table 6-7 that specify

the document and the table is f or mName. In other words, the key data identifies the
document and the table by their names. Similarly, the key form for the object specifier
record in Table 6-7 that specifies the first row in the table is f or mAbsol ut ePosi ti on.
In other words, the key data identifies the position of the row compared to other rows in
the same container.

To specify the key data for an object specifier record, your application must create a
keyword-specified descriptor record with the keyword key AEKeyDat a whose data
handle refers to the appropriate data for the specified key form. You can use

AECr eat eDesc, Cr eat eConpDescri pt or, Cr eat eLogi cal Descri pt or, and related
functions to create the descriptor record, which you can then pass in the fourth
parameter of the Cr eat eQbj Speci fi er function. The Cr eat eObj Speci fi er
function uses this descriptor record to create a keyword-specified descriptor record with
the keyword key AEKey Dat a as part of an object specifier record.

Creating a Simple Object Specifier Record

This section shows how to use the Cr eat eObj Speci fi er function to create the object
specifier record shown in Table 6-7. The Cr eat eQbj Speci fi er function creates the
necessary keyword-specified descriptor records for the class ID, container, key form, and
key data and returns the resulting object specifier record as a descriptor record of type

t ypeObj ect Speci fier.

Creating Object Specifier Records 6-57

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-12 shows how the Cr eat eObj Speci fi er function creates an object specifier
record from parameters that an application specifies.

Listing 6-12 Creating an object specifier record using Cr eat eObj Speci fi er

6-58

VAR
desiredd ass: DescType;
myoj ect Cont ai ner: AEDesc;
myKeyFor m DescType,;
my KeyDat aDesc: AEDesc;
di sposel nput s: Bool ean;
nmy Qbj SpecRec: AEDesc;
myErr: OSErr;
desiredC ass : = cRow,

nmy Qbj ect Cont ai ner : = MyGet Cont ai ner;

myKeyFor m : = f or mAbsol ut ePosi ti on;

nyKeyDat aDesc : = MyGet KeyDat a;

di sposel nputs : = TRUE;

{create an object specifier record}

nyErr := CreateCbj Specifier(desiredd ass, nmyQbject Cont ai ner,
myKeyForm nyKeyDat aDesc,
di sposel nputs, myCbj SpecRec) ;

The code shown in Listing 6-12 demonstrates how an application might use

the Cr eat eObj Speci fi er function to create four keyword-specified descriptor
records as part of a descriptor record of type t ypeQbj ect Speci fi er. The

Cr eat eObj Speci fi er function returns a result code of NnoEr r if the object
specifier record was successfully created. The object specifier record returned

in the myObj SpecRec parameter describes an Apple event object of the class
specified by the desi r edd ass parameter, located in the container specified by the
my Cbj ect Cont ai ner parameter, with the key form specified by the myKeyFor m
parameter and key data specified by the myKeyDat aDesc parameter.

You can specify TRUE in the di sposel nput s parameter if you want the

Cr eat ebj Speci fi er function to dispose of the descriptor records you created for the
my Qbj ect Cont ai ner and nmyKeyDat aDesc parameters. If you specify FALSE, then
your application is responsible for disposing of these leftover descriptor records.

Listing 6-13 shows an application-defined function that uses Cr eat eCbj Speci fi er to
create an object specifier record for the first row in the table named “Summary of Sales”
in the document “Sales Report,” then uses the object specifier record returned in the

my Cbj SpecRec parameter as the direct parameter for a Get Data event.

Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-13 Using Cr eat eObj Speci fi er in an application-defined function

FUNCTI ON MyRequest RowFr onTar get (t ar get Address: AEAddressDesc;
VAR reply: AppleEvent): OSErr;

VAR
desi redd ass: DescType;
myKeyFor m DescType;
nmy Qbj ect Cont ai ner: AEDesc;
mybj SpecRec: AEDesc;
nyKeyDat aDesc: AEDesc;
keyDat a: Longl nt;
t heAppl eEvent : Appl eEvent ;
myErr: CSErr;
i gnhor eErr: CSErr;
BEG N

{initialize (set to null descriptor records) the two descriptor records }
{ that must eventually be disposed of}
Myl ni t 2DescRecs(myObj SpecRec, theAppl eEvent);

desiredd ass : = cRow, {specify the cl ass}
{specify container for the row}
nyErr : = MyCreat eTabl eCont ai ner (myQbj ect Cont ai ner,

"Sunmary of Sales', 'Sales Report');
I F nyErr = noErr THEN
BEG N
myKeyFor m : = f or mAbsol ut ePosi ti on; {specify the key formn}
keyData : = 1; {specify the key data for row}
nyErr := AECreateDesc(typelLongl nteger, @eyData, Sizeof(keyData),

myKeyDat aDesc) ;
I F nyErr = noErr THEN
{create the object specifier record}
myErr := CreateObj Speci fi er(desiredd ass, mybj ect Cont ai ner,
nyKeyForm myKeyDat aDesc,
TRUE, nyQObj SpecRec);
IF nyErr = noErr THEN
{ nyObj SpecRec now descri bes an Apple event object, and will becone }
{ direct parameter of a Get Data event; first create Get Data event}
myErr : = AECr eat eAppl eEvent (KAECor eSui t e, kAEGet Data, target Address,
kAut oGener at eRet ur nl D,
kAnyTransacti onl D, theAppl eEvent);

Creating Object Specifier Records 6-59

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

IF nyErr = noErr THEN

{add myQbj SpecRec as the direct paranmeter of the Get Data event}
nyErr : = AEPut Par anDesc(t heAppl eEvent, keyDirect Qbject,

my Obj SpecRec) ;

IF nyErr = noErr THEN

nyErr := AESend(theAppl eEvent, reply, kAEWAitReply +

kAENever | nteract, KAENormal Priority, 120,
@41 dl eFunction, NL);

END;
i gnoreErr : = AEDi sposeDesc(myObj SpecRec);
i gnoreErr := AED sposeDesc(theAppl eEvent);
MyRequest RowFr onrarget : = nyErr;

END;

6-60

The MyRequest RowFr onilrar get function shown in Listing 6-13 specifies the class ID as
cRow indicating that the desired Apple event object is a row in a table. It uses the
application-defined function MyCr eat eTabl eCont ai ner to create an object specifier
record for the table that contains the row, passing “Summary of Sales” and “Sales
Report” as the second and third parameters to identify the name of the table and the
name of the document that contains the table. (The next section, “Specifying the
Container Hierarchy,” explains how to construct the MyCr eat eTabl eCont ai ner
function.) It then specifies the key form as the constant f or mAbsol ut ePosi ti on,
which indicates that the key data specifies the position of the row within its container;
sets the keyDat a variable to 1, indicating the first row, and uses AECr eat eDesc to
create a descriptor record for the key data; and uses Cr eat eChj Speci fi er to

create the object specifier record that describes the desired word.

The desired row is now fully described by the myQbj SpecRec variable, which contains
a descriptor record of type t ypeQbj ect Speci fi er that contains the three nested
object specifier records shown in Table 6-7 on page 6-56. After using

AECr eat eAppl eEvent to create a Get Data event, the MyRequest RowFr onTTar get
function uses the AEPut Par anDesc function to add the myQbj SpecRec variable to the
Get Data event as a direct parameter, then uses AESend to send the Get Data event.

Note that the MyRequest RowFr onTTar get function begins by using the
application-defined function Myl ni t 2DescRecs to set myQbj SpecRec and

t heAppl eEvent to null descriptor records. These two functions must be disposed of
whether the function is successful or not. By setting them to null descriptor records, the
function can dispose of them at the end regardless of where an error may have occurred.

Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Specifying the Container Hierarchy

Because the container for an object specifier record usually consists of a chain of other

object specifier records that specify the container hierarchy, your application must create

all the object specifier records in the chain, starting with the record for the
outermost container. Listing 6-14 and Listing 6-15 demonstrate how to use the

Cr eat eObj Speci fi er function to create the first two object specifier records in such

a chain: the records for a document and a table.

Listing 6-14 Specifying a document container

FUNCTI ON MyCr eat eDocCont ai ner (VAR myDocCont ai ner: AEDesc;
docNanme: Str255): OSErr;
VAR
myDocDescRec: AEDesc;
nul | DescRec: AEDesc;
nmyErr: OSErr;
BEG N
{create a descriptor record for the name of the docunent}
myErr := AECreat eDesc(typeChar, @ocNane[1],
Lengt h(docNane), myDocDescRec);
IF nyErr = noErr THEN
{create a null descriptor record}
nyErr := AECreateDesc(typeNull, NL, 0, nullDescRec);
IF nyErr = noErr THEN
{create an object specifier record to specify the }
{ docunent object}
nyErr := Creat eObj Specifier(cDocunment, null DescRec,
f ormNane, nyDocDescRec, TRUE,
nyDocCont ai ner) ;
MyCr eat eDocCont ai ner : = nyErr;
END;

Creating Object Specifier Records

6-61

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

The function MyCr eat eDocCont ai ner in Listing 6-14 creates an object specifier record
that identifies a document by name. It starts by using the AECr eat eDesc function to
create two descriptor records: one of type t ypeChar for the name of the document, and
one of typet ypeNul | for the null descriptor record that specifies the default container
(because the document is not contained in any other Apple event object). These two
descriptor records can then be used as parameters for the Cr eat eQbj Speci fi er
function, which returns an object specifier record (that is, a descriptor record of type

t ypeQbj ect Speci fi er)in the myDocCont ai ner variable. The object specifier record
specifies an Apple event object of the object class cDocument in the container specified
by the nul | DescRec variable with a key form of f or mName and the key data specified
by the myDocDescRec variable. This object specifier can be used by itself to specify a
document, or it can be used to specify the container for another Apple event object.

Listing 6-15 shows an application-defined function, MyCr eat eTabl eCont ai ner, that
creates an object specifier record describing a table contained in a document.

Listing 6-15 Specifying a table container

6-62

FUNCTI ON MyCr eat eTabl eCont ai ner (VAR myTabl eCont ai ner: AEDesc;
t abl eName: Str255;
docNanme: Str255): OSErr;

VAR
myDocDescRec: AEDesc;
nyTabl eDescRec: AEDesc;
myErr: OSErr;
BEG N

{create a container for the docunent}
nyErr : = MyCreat eDocCont ai ner (myDocDescRec, docNane);
IF nyErr = noErr THEN
BEG N
{create the table container, }
{ first specify the descriptor record for the key data}
nyErr := AECreateDesc(typeChar, @ ableNane[1],
Lengt h(t abl eNane), myTabl eDescRec);
IF nyErr = noErr THEN
nyErr := CreateQbj Specifier(cTabl e, nyDocDescRec,
f or mMNane, myTabl eDescRec,
TRUE, nyTabl eCont ai ner);
END;
My/Cr eat eTabl eCont ai ner : = nyErr;
END;

Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

The function MyCr eat eTabl eCont ai ner in Listing 6-15 starts by using the function
My Cr eat eDocCont ai ner from Listing 6-14 to create an object specifier record that
identifies the table’s container—the document in which the table is located. Then it uses
the AECr eat eDesc function to create a descriptor record for the key data—a name that,
when combined with the key form f or mNarre, will identify the table in the document.
The object specifier record for the document and the descriptor record specifying the
table’s name are passed to the function Cr eat eObj Speci fi er. It returns an object
specifier record in the my Tabl eCont ai ner parameter that specifies an Apple event
object of the object class cTabl e in the container specified by the MyDocDescRec
variable with a key form of f or mName and the key data specified by the

myTabl eDescRec variable. This object specifier record can be used by itself to specify a
table, or it can be used to specify the container for another Apple event object.

Listing 6-13 uses the MyCr eat eTabl eCont ai ner function shown in Listing 6-15 to
specify the container hierarchy illustrated in Table 6-7 on page 6-56. The nested
object specifier records shown in Table 6-7 use the key forms f or niNane

and f or nRel at i vePosi ti on. You can create key data for the key forms
formPropertyl D f or mni quel D, and f or nRel ati vePosi ti on using similar
techniques.

Specifying a Property

The key form f or nPr oper t yl Dallows your application to specify key data identifying
a property of the object specified as a container. For example, an object specifier record
that identifies the font property of a word specifies cPr oper t y as the class ID, an object
specifier record for the word as the property’s container, f or nPr oper t yl Das the key
form, and the constant pFont as the key data.

Note that an object specifier record that identifies a property does not include a value for
the property, such as Pal at i no. The value of a property is returned or set as a
parameter of an Apple event. For example, an application that sends a Get Data event to
get the pFont property of a word receives a value such as Pal at i no in the
keyAEResul t parameter of the reply event, and an application that sends a Set Data
event to change the pFont property of a word specifies a font in the key AEDat a
parameter of the Set Data event.

To specify the key data for a key form of f or nPr oper t yl D, your application must
create a descriptor record of t ypeType whose data consists of a constant specifying a
property. You can use AECr eat eDesc to create a descriptor record that specifies the
constant for a property, then use Cr eat eObj Speci fi er to add the descriptor record to
an object specifier record as a keyword-specified descriptor record with the keyword
keyAEKeyDat a.

For more information about object specifier records that specify a property, see “Key
Data for a Property ID” on page 6-13.

Creating Object Specifier Records 6-63

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

6-64

CHAPTER 6

Resolving and Creating Object Specifier Records

Specifying a Relative Position

The key form f or nRel at i vePosi t i on allows your application to specify key data
identifying an element or a set of elements that are immediately before or after the
specified container. For example, if the container is a table, you could use a key form of
formRel ati vePosi t i on to specify the paragraph before or after the table.

To specify the key data for a key form of f or nRel at i vePosi t i on, your application
must create a descriptor record of t ypeEnuner at ed whose data consists of a constant
specifying either the element after (K AENext) or the element before (KAEPr evi ous)
the specified container.

You can use AECr eat eDesc to create a descriptor record that specifies one of these
constants, then use Cr eat eObj ect Speci fi er to add it to an object specifier record as
a keyword-specified descriptor record with the keyword key AEKey Dat a.

For more information about object specifier records that specify a relative position, see
“Key Data for Relative Position” on page 6-15.

Creating a Complex Object Specifier Record

This section describes how to create object specifier records that specify a test or a range.
You can specify the object class ID for these object specifier records the same way you
would for any other object specifier record. When you create the other three
keyword-specified descriptor records, however, you can use additional Apple Event
Manager routines and descriptor types to specify any combination of Apple event
objects.

Specifying a Test

The key form f or niTest allows your application to specify key data that identifies one
or more elements in the specified container that pass a test. To do so, your application
must construct several interconnected descriptor records that specify comparisons and, if
necessary, logical expressions.

For example, to specify “the first row in which the First Name column equals ‘John” and
the Last Name column equals ‘Chapman’ in the table ‘MyAddresses’ of the database
‘SurfDB,”” your application must construct an object specifier record whose key data
describes a logical expression that applies the logical operator AND to two separate
comparisons for each row: a comparison of the First Name column to the word “John”
and a comparison of the Last Name column to the word “Chapman.”

Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

The logical organization of the data for the object specifier record that specifies this test is
summarized in Table 6-8 and Table 6-9. (It is also illustrated in Figure 6-3 and Figure 6-4,
beginning on page 6-18.) The listings in the remainder of this section demonstrate how to
create this object specifier record. For general information about the organization of key
data for a test, see “Key Data for a Test,” which begins on page 6-15.

Table 6-8

“MyAddresses”

Obiject specifier record for the first row that meets a test in the table named

Keyword
keyAEDesi r edC ass

keyAECont ai ner
keyAEDesi r edCl ass
keyAECont ai ner
keyAEDesi r edCl ass
keyAECont ai ner
keyAEDesi r edC ass
keyAECont ai ner
keyAEKeyFor m
keyAEKeyDat a
key AEKeyFor m
keyAEKeyDat a
keyAEKeyFor m
keyAEKeyDat a
keyAEKeyFor m
keyAEKeyDat a

Descriptor type
typeType
t ypeoj ect Speci fi er
typeType
t ypeQbj ect Speci fi er
typeType
typehj ect Speci fier
typeType
typeNul |
t ypeEnuner at ed
t ypeChar
t ypeEnuner at ed
t ypeChar
t ypeEnuner at ed
t ypelLogi cal Descri ptor
t ypeEnuner at ed

t ypeLongl nt eger

Creating Object Specifier Records

Data
cRow

(see indented record)
cRow
(see indented record)
cTabl e
(see indented record)
cDat abase
Data handle is NI L
f or mNare
" Sur f DB"
f or mNarre
"MyAddr esses”
f or nTest
(see Table 6-9)
f or mAbsol ut ePosi ti on
1

6-65

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Table 6-9

Logical descriptor record that specifies a test

Keyword
keyAELogi cal Oper at or

keyAELogi cal Ter ns

key AEConpOper at or

keyAEQbj ect 1
keyAEDesi r edd ass
keyAECont ai ner
keyAEKeyFor m
keyAEKeyDat a

keyAEQhj ect 2

key AEConpOper at or

keyAEQbj ect 1
keyAEDesi r edd ass
keyAECont ai ner
keyAEKeyFor m
keyAEKeyDat a

keyAEQhj ect 2

Descriptor type
t ypeEnurmer at ed

t ypeAELi st
t ypeConpDescri pt or
typeType
typehj ect Speci fier
typeType
t ypehj ect Bei ngExam ned
t ypeEnumer at ed
t ypeChar
typeChar
t ypeConpDescri pt or
typeType
typehj ect Speci fier
typeType
t ypehj ect Bei ngExam ned
t ypeEnumer at ed
t ypeChar
typeChar

Data
kAEANd

(see indented records)
(see indented record)
kAEEqual s
(see indented record)
cCol um
Data handle is NI L
f or mMName
"First Name"
"John"
(see indented record)
kAEEqual s
(see indented record)
cCol um
Data handle is NI L
f or mMName
"Last Name"

" Chapman"

Because both the database and the table shown in Table 6-8 are specified by name,

it would be convenient to have an application-defined routine that creates

an object specifier record that uses the key form f or mNane. The

My Cr eat eFor mMNaneCbj Speci fi er function shown in Listing 6-16 can be used for

this purpose.

6-66 Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-16 Creating an object specifier record with the key form f or nNane

FUNCTI ON MyCr eat eFor mNaneQbj Speci fi er
(cl ass: DescType; container: AEDesc;
keyDat aNane: str 255;
VAR resul t Obj SpecRec: AEDesc): OSErr;

VAR
keyDat aDescRec: AEDesc;
nmyErr: OSErr;
BEG N

nyErr : = AECreateDesc(typeChar, @eyDataName[1],
Lengt h(keyDat aNanme), keyDat aDescRec) ;
I F nyErr = noErr THEN
nyErr := CreateQbj Specifier(class, container, fornNane,

keyDat aDescRec, TRUE,
resul t j SpecRec) ;

My Cr eat eFor mMNaneObj Speci fier := nyErr;

END;

The MyCr eat eFor mNameObj Speci fi er function shown in Listing 6-16 returns, in the

resul t Obj SpecRec parameter, an object specifier record that describes an Apple event
object of the class specified by the cl ass parameter, located in the container specified by
the cont ai ner parameter, with the key form f or nNanme and key data specified by

the keyDat aNane parameter. This function is used in Listing 6-19 on page 6-70 to create
object specifier records that use the key form f or nNane for the database and the table.

The nested object specifier records shown in Table 6-9 specify “the rows in which the
First Name column equals ‘John” and the Last Name column equals ‘Chapman.”” To
identify the rows that pass this test, the Apple Event Manager needs to evaluate two
comparisons: the comparison of each row of the First Name column to the word “John,”
and the comparison of each row of the Last Name column to the word “Chapman.”

The Apple Event Manager uses the information in comparison descriptor records to
compare the specified elements in a container, one at a time, either to another Apple
event object or to the data associated with a descriptor record. The two comparison
descriptor records you need to create for this example are summarized in Table 6-9 on
page 6-66.

Creating Object Specifier Records 6-67

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

You can use the Cr eat eConpDescri pt or function to create a comparison descriptor
record, or you can create an AE record and use AECoer ceDesc to coerce it to a
comparison descriptor record. Listing 6-17 shows an example of an application-defined
routine that creates an object specifier record and a descriptor record of t ypeChar, then
uses the Cr eat eConpDescr i pt or function to add them to a comparison descriptor
record.

Listing 6-17 Creating a comparison descriptor record

FUNCTI ON MyCr eat eConpari sonDescRec (VAR conpDesc: AEDesc;
col Name: str255;
nane: str255): OSErr;

VAR
| ogi cal Cont ai ner, col NaneDesc, nameDesc: AEDesc;
nmy Qbj ect Exani nedCont ai ner: AEDesc;
nmyErr: OSErr;
BEG N

{create the object specifier record for keyAEOhjectl; }
{ first create container}
nyErr := AECreateDesc(typeCbject Bei ngExani ned, NL, O,
my Qbj ect Exani nedCont ai ner) ;
{create key data}
I F nyErr = noErr THEN
nyErr := AECreateDesc(typeChar, @ol Nane[1],
Lengt h(col Nane), col NaneDesc);
{now create the object specifier record}
IF nyErr = noErr THEN
myErr := CreateCbj Speci fier(cCol um,
nmy Qbj ect Exani nedCont ai ner,
f or mMNane, col NanmeDesc, TRUE,
| ogi cal Cont ai ner) ;
{create the descriptor record for keyAEMj ect 2}
IF nyErr = noErr THEN
myErr := AECreat eDesc(typeChar, @ane[1l], Length(nane),
naneDesc) ;
{create the first logical term (conp descriptor record)}
IF nyErr = noErr THEN
nyErr := CreateConmpDescri ptor (kAEEqual s, | ogi cal Cont ai ner,
naneDesc, TRUE, conpDesc);
MyCr eat eConpar i sonDescRec : = nyErr;
END;

6-68 Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

The MyCr eat eConpar i sonDescRec function takes two strings and uses them to create
a comparison descriptor record. The string passed in the second parameter specifies the
name of the column whose contents should be compared to the string passed in the third
parameter. First, the MyCr eat eConpar i sonDescRec function uses AECr eat eDesc to
create a descriptor record of t ypeChbj ect Bei ngExam ned, which is returned in the
variable my Cbj ect Exani nedCont ai ner. Next, AECr eat eDesc creates a descriptor
record of descriptor type t ypeChar, whose data consists of the string in the variable

col Nane, and which is returned in the variable col NaneDesc. The code then

passes the variables mybj ect Exani nedCont ai ner and col NameDesc to the

Cr eat ebj Speci fi er function, which uses them to create an object specifier record,
returned in the | ogi cal Cont ai ner variable, that becomes the keyword-specified
descriptor record with the keyword key AEChj ect 1.

Next, the MyCr eat eConpar i sonDescRec function uses AECr eat eDesc and the nane
parameter to create the descriptor record for key AEChj ect 2, which AECr eat eDesc
returns in the nameDesc variable. Finally, the code passes the constant KAEEqual s, the
variable | ogi cal Cont ai ner, and the variable naneDesc to the

Cr eat eConpDescri pt or function, which creates a comparison descriptor record that
allows the Apple Event Manager (with the help of object-comparison functions provided
by the server application) to determine whether the specified column in the row
currently being checked equals the specified string.

You can use the MyCr eat eConpar i sonDescRec function to create both the
descriptor records of type t ypeConpDescri pt or shown in Table 6-9 on page 6-66.
These descriptor records provide two logical terms for a logical descriptor record.
The entire logical descriptor record corresponds to the logical expression “the First
Name column equals ‘John” AND the Last Name column equals ‘Chapman.”

You can use the Cr eat eLogi cal Descri pt or function to create a logical descriptor
record, or you can create an AE record and use the AECoer ceDesc function to coerce it
to a comparison descriptor record. Listing 6-18 shows an application-defined function
that adds two comparison descriptor records to a descriptor list, then uses the

Cr eat eLogi cal Descri pt or function to create a logical descriptor record whose
logical terms are the two comparison descriptor records.

Creating Object Specifier Records 6-69

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-18 Creating a logical descriptor record

FUNCTI ON MyCr eat eLogi cal DescRec (VAR conmpDescl, conpDesc2: AEDesc;
| ogi cal Operator: DescType;
VAR | ogi cal Desc: AEDesc): OSErr;

VAR
| ogi cal TernsLi st: AEDesclLi st;
myErr: OSErr;

BEA N

{create a |l ogical descriptor record that contains two }
{ conparison descriptor records}
{first create a list}
nyErr := AECreatelList(N L, O, FALSE, |ogical TernsList);
IF nyErr = noErr THEN
myErr := AEPut Desc(! ogi cal TernsLi st, 1, conpDescl);
I F nyErr = noErr THEN
nyErr := AEPut Desc(| ogi cal TernsLi st, 2, conpDesc2);
IF nyErr = noErr THEN
nyErr := AED sposeDesc(conpDescl);
IF nyErr = noErr THEN
myErr := AED sposeDesc(conpDesc?2);
I F nyErr = noErr THEN
nyErr := Createlogical Descriptor(logical TernslLi st,
| ogi cal Operator, TRUE,
| ogi cal Desc);
MyCr eat eLogi cal DescRec : = nyErr;
END;

Listing 6-19 uses the application-defined functions shown in Listing 6-16, Listing 6-17,
and Listing 6-18 to build the object specifier record illustrated in Table 6-8 and Table 6-9.

Listing 6-19 Creating a complex object specifier record

FUNCTI ON MyCr eat eCbj SpecRec (VAR theResul t Obj: AEDesc): OSErr;
VAR
nul | Cont ai ner, dat abaseContai ner, tabl eContainer: AEDesc;

conpDescl, conpDesc2: AEDesc;
| ogi cal Test Desc, rowTest Contai ner, rowXfset: AEDesc;
myErr: CSErr;

6-70 Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

BEG N
{create a null container}
nyErr := AECreateDesc(typeNull, NL, 0, nullContainer);
{create a container for the database}
IF nyErr = noErr THEN
nyErr : = MyCreat eFor mMNaneCbj Speci fi er (cDat abase, nul | Cont ai ner,
"Surf DB, databaseContainer);
{create a container for the table}
I F nyErr = noErr THEN
nyErr : = MyCreat eFor mMNaneCbj Speci fi er(cTabl e, dat abaseCont ai ner,
' MyAddr esses', tabl eContai ner);
{create a container for the row-an object specifier record that }
{ specifies a test (the row whose First Nanme columm = 'John' and }
{ Last Name columm = ' Chapman')}

{create the first conparison descriptor record}
IF nyErr = noErr THEN
nyErr := MyCreat eConpari sonDescRec(conmpDescl, 'First Nanme', 'John');
{create the second conparison descriptor record}
IF nyErr = noErr THEN
nyErr : = MyCreat eConpari sonDescRec(conpDesc2, 'Last Nane', 'Chapman');

{create the | ogical descriptor record}
I F nyErr = noErr THEN
nyErr := MyCreatelLogi cal DescRec(conpDescl, conpDesc2, KAEAND,
| ogi cal Test Desc);

{now create the object specifier record that specifies the test}
IF nyErr = noErr THEN
nyErr := CreateCbj Specifier(cRow, tableContainer, fornilest,
| ogi cal Test Desc, TRUE, rowTest Contai ner);

{create the object specifier record for the Apple event object}
{first, create the descriptor record for the key data}
IF nyErr = noErr THEN
nyErr := CreateOffsetDescriptor (1, rowOfset);
{now create the object specifier record}
IF nyErr = noErr THEN
nyErr := CreateCbj Specifier (cRow, rowTest Contai ner,
f or mMAbsol ut ePosi tion, rowdfset,
TRUE, theResultbj);
My Cr eat eObj SpecRec : = nyErr;
END;

Creating Object Specifier Records 6-71

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

6-72

CHAPTER 6

Resolving and Creating Object Specifier Records

The MyCr eat eObj SpecRec function shown in Listing 6-19 begins by

using AECr eat eDesc to create a null descriptor record, then uses the

My Cr eat eFor mNaneCbj Speci fi er function (shown in Listing 6-16) to specify

the default container for the database named “SurfDB.” The code then calls the

M/ Cr eat eFor mNameCbj Speci fi er function again, this time passing the object
specifier record for SurfDB to specify the container for the table “MyAddresses.” The
next two calls are both to the MyCr eat eConpar i sonDescRec function (shown in
Listing 6-17), which creates the comparison descriptor records that allow the Apple
Event Manager to compare the First Name column and Last Name column to the names
“John” and “Chapman,” respectively. The next call passes these two comparison
descriptor records to the MyCr eat eLogi cal DescRec function (shown in Listing 6-18)
in the conpDesc1 and conpDesc?2 variables.

Now all the components of the logical descriptor record are ready to assemble. The
next call, to Cr eat eQbj Speci fi er, specifies the logical descriptor record in

the | ogi cal Test Desc variable as the key data for the object specifier record

that specifies the test. A call to the Apple Event Manager routine

Creat ef f set Descri pt or then creates an offset descriptor record that contains
the integer 1. Finally, the code passes the offset descriptor record to the

Cr eat ebj Speci fi er function in the r owCf f set variable to create the final object
specifier record, which describes the requested row as the first row that passes the test.

The Cr eat eOX f set Descri pt or function creates a descriptor record of type

t ypeLongl nt eger that can be used as the key data with a key form of

f or mMAbsol ut ePosi ti on to indicate an element’s offset within its container. A positive
integer indicates an offset from the beginning of the container (the first element has an
offset of 1), and a negative integer indicates an offset from the end of the container (the
last element has an offset of —1). Using Cr eat e f set Descri pt or accomplishes the
same thing as setting a variable to an integer and passing the variable to AECr eat eDesc
to create a descriptor record of type t ypeLongl nt eger.

Specifying a Range

The key form f or nRange allows your application to specify key data that identifies a
range of elements in the specified container. To do so, your application must first create a
range descriptor record. The Apple Event Manager uses a range descriptor record to
identify the two Apple event objects that specify the beginning and end of a range of
elements.

For example, an object specifier record for a range of text in a document could specify
the table named “Summary of Sales” as the first boundary object and the figure named
“Best-Selling Widgets for 1991” as the second boundary object for a range that consists of
all the text between the table and the figure. Any word processor that keeps track of the
relative positions of text, tables, and figures should be capable of supporting such a
request.

Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Table 6-10 summarizes the logical organization of the data for the object specifier record
that specifies this range. For general information about the organization of data within a
range descriptor record, see “Key Data for a Range” on page 6-20.

Table 6-10 A range descriptor record

Keyword Descriptor type Data

keyAERangeSt ar t t ypeQhj ect Speci fi er (see indented record)
keyAEDesi redd ass typeType cTabl e
keyAECont ai ner t ypeCur r ent Cont ai ner Data handle is NI L
keyAEKeyFor m t ypeEnuner at ed f or mMName
keyAEKeyDat a t ypeChar "Sunmmary of Sal es”

keyAERangeSt op t ypeObj ect Speci fi er (see indented record)
keyAEDesi redd ass typeType cFigure
keyAECont ai ner t ypeCur r ent Cont ai ner Data handle is NI L
keyAEKeyFor m t ypeEnuner at ed f or mMName
keyAEKeyDat a t ypeChar "Best-Selling Wdgets

for 1991"

You can use the Cr eat eRangeDescr i pt or function to create a range descriptor record,
or you can create an AE record and use AECoer ceDesc to coerce it to a range descriptor
record. Listing 6-20 provides an example of an application-defined routine that creates
two object specifier records, then uses the Cr eat eRangeDescr i pt or function to add
them to a range descriptor record.

The container for the boundary objects in the range descriptor record created by

Listing 6-20 is the same as the container for the range itself. The object specifier record
for the range’s container is added to an object specifier record of key form f or rRange at
the same time that the range descriptor record is added as key data. The container for the
two boundary objects can therefore be specified in the range descriptor record by a
descriptor record of type t ypeCur r ent Cont ai ner whose data handle has the value

NI L. The Apple Event Manager interprets this as a placeholder for the range’s container
when it is resolving the range descriptor record.

Creating Object Specifier Records 6-73

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Listing 6-20 Creating a range descriptor record

FUNCTI ON MyCr eat eRangeDescri ptor (VAR rangeDescRec: AEDesc): OSErr;
VAR

rangeStart: AEDesc;

r angeknd: AEDesc;

current Cont ai ner: AEDesc;

t abl eNaneDescRec: AEDesc;

fi gureNaneDescRec: AEDesc;

myErr: CSErr;
BEA N

{create the object specifier record for the start of the range }
{ (the table named ' Sunmary of Sales' in 'MDoc' docunent)}

{create a descriptor record of type typeCurrentContainer}
nyErr := AECreateDesc(typeCurrent Container, NL, O, currentContainer);

{create the object specifier record}
| F nyErr noErr THEN
nyErr : = MyCreat eNaneDescRec(t abl eNaneDescRec,
"Sunmary of Sal es');

I F nyErr = noErr THEN
nyErr Creat eCbj Speci fi er(cTabl e, current Contai ner, fornNane,
t abl eNanmeDescRec, FALSE, rangeStart);

nyErr := AED sposeDesc(tabl eNameDescRec);
{create the object specifier record for the end of the range }
{ (the figure naned 'Best-Selling Wdgets...' in 'MbDoc') }
IF nyErr = noErr THEN
myErr := MyCreat eNaneDescRec(fi gur eNanmeDescRec,
'Best-Selling Wdgets for 1991');

I F nyErr noErr THEN
nyErr : = CreateCbj Specifier(cFigure, currentContainer, fornm\ane,
fi gureNaneDescRec, TRUE, rangeEnd);

{now create the range descriptor record}
IF nyErr = noErr THEN
myErr := CreateRangeDescriptor(rangeStart, rangekEnd, TRUE,
rangeDescRec) ;
My Cr eat eRangeDescri ptor := nyErr;
END;

6-74 Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

After creating a descriptor record of type t ypeCur r ent Cont ai ner and a descriptor
record for the first table’s name, Listing 6-20 uses the Cr eat eObj Speci fi er function
to create an object specifier record that identifies the beginning of the range. The
parameters to Cr eat eCbj Speci fi er specify that the beginning of the range is an
Apple event object of the object class cTabl e in the current container, with a key form of
f or mMNane and key data that identifies the table by name. A second call to

Cr eat eObj Speci fi er creates the object specifier record that identifies the end of the
range—an Apple event object of the cFi gur e object class in the current container, with a
key form of f or mNanme and key data that identifies the figure by name. Finally, the code
in Listing 6-20 uses the Cr eat eRangeDescr i pt or function to create the range
descriptor record, using the two previously created object specifier records to specify the
beginning and end of the range.

Reference to Resolving and Creating Object Specifier Records

This section describes the Apple Event Manager routines your application can use to
resolve and create object specifier records. It also describes application-defined object
accessor functions and object callback functions that your application can provide for use
by the Apple Event Manager in resolving object specifier records.

The first section, “Data Structures Used in Object Specifier Records,” summarizes the
descriptor types and associated data that can be used in an object specifier record.
“Routines for Resolving and Creating Object Specifier Records,” which begins on
page 6-77, describes the Apple Event Manager routines you use to initialize the
Object Support Library, resolve object specifier records, set and manipulate object
accessor functions, deallocate memory for tokens, and create object specifier records.
“Application-Defined Routines,” which begins on page 6-94, describes the object
accessor functions and object callback functions that a server application can provide.

Data Structures Used in Object Specifier Records

The data for object specifier records can be specified using a variety of descriptor records
and descriptor types. These are described in detail in “Descriptor Records Used in Object
Specifier Records,” which begins on page 6-8, and summarized in Table 6-11.

Reference to Resolving and Creating Object Specifier Records 6-75

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Table 6-11

Keyword-specified descriptor records for t ypeChj ect Speci fi er

Keyword
keyAEDesi r edd ass

keyAECont ai ner

key AEKeyFor m

keyAEKeyDat a
for f or nPr opertyl D

for f or mMNane
for f or mni quel D

for f or mMbsol ut ePosi ti on

for f ormRel ati vePosi ti on

for f or mlest

for f or nRange
for f or mMhose

6-76 Reference to Resolving and Creating Object Specifier Records

Descriptor type
typeType

typeoj ect Speci fier
typeNul |

t ypehj ect Bei ngExami ned

t ypeCur r ent Cont ai ner

t ypeEnuner at ed

typeType

t ypeChar or other text type

Any appropriate type
t ypeLongl nt eger

t ypeAbsol ut eOr di nal

t ypeEnurmer at ed

t ypeConpDescri pt or
typelLogi cal Descri pt or
t ypeRangeDescri pt or

t ypeWhoseDescri pt or

Data
Object class ID

Object specifier record

Data handle is NI L. Specifies
the default container at the top
of the container hierarchy.

Data handle is NI L. Specifies
the container for elements that
are tested one at a time; used
only with f or nfest .

Data handle is NI L. Specifies a
container for an element that
demarcates one boundary in a
range. Used only with

f or nTRange.

fornPropertyl D

f or mNane

f or mni quel D

f or mMAbsol ut ePosi ti on
fornRel ati vePosi tion
f or nirest

f or mRange

f or mMMhose

(See indented key forms)

Property ID for an element’s
property
Element’s name

Element’s unique ID

Oftset from beginning
(positive) or end (negative) of
container

kAEFi r st
kAEM ddl| e
kAELast

k AEANny
kAEA| |

k AENext
kAEPr evi ous

(See Table 6-2 on page 6-16)
(See Table 6-3 on page 6-17)
(See Table 6-4 on page 6-20)
(See Table 6-5 on page 6-42)

CHAPTER 6

Resolving and Creating Object Specifier Records

Routines for Resolving and Creating Object Specifier Records

This section describes routines for initializing the Object Support Library, resolving
object specifier records, setting and manipulating object accessor functions, deallocating
memory for tokens, and creating object specifier records.

Initializing the Object Support Library

You should call the AEObj ect | ni t function to initialize the Apple Event Manager
routines that handle object specifier records and Apple event objects. To make

these routines available to your application with version 1.01 and earlier versions of the
Apple Event Manager, you must also link the Apple Event Object Support Library with
your application when you build it.

AEObjectInit

You use the AEQDj ect | ni t function to initialize the Object Support Library.

FUNCTI ON AEQoj ectlnit: OSErr;

DESCRIPTION

You must call this function before calling any of the Apple Event Manager routines that
describe or manipulate Apple event objects.

RESULT CODES

noErr 0 No error occurred
menful | Err -108 Not enough room in heap zone
er r AENewer Ver si on -1706 Need a newer version of the Apple Event Manager

Setting Object Accessor Functions and Object Callback Functions

The Apple Event Manager provides two routines that allow you to specify the object
accessor functions and object callback functions provided by your application. The

AEl nst al | Cbj ect Accessor function adds an entry for an object accessor function
to either the application’s object accessor dispatch table or the system object accessor
dispatch table. The AESet Obj ect Cal | backs function allows you to specify the object
callback functions to be called for your application.

Reference to Resolving and Creating Object Specifier Records 6-77

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

AEInstallObjectAccessor

You can use the AEIl nst al | Obj ect Accessor function to add an entry for an object
accessor function to either the application’s object accessor dispatch table or the system
object accessor dispatch table.

FUNCTI ON AEIl nst al | Obj ect Accessor (desiredd ass: DescType;
cont ai ner Type: DescType;
t heAccessor: AccessorProcPtr;
accessor Ref con: Longl nt;
i sSysHandl er: Bool ean): OSErr

desiredd ass
The object class of the Apple event objects to be located by the object
accessor function for this table entry.

cont ai ner Type
The descriptor type of the token used to specify the container for the
desired objects. The object accessor function finds objects in containers
specified by tokens of this type.

t heAccessor
A pointer to the object accessor function for this table entry. Note that an
object accessor function listed in the system dispatch table must reside in
the system heap; thus, if the value of the i sSysHandl er parameter is
TRUE, the t heAccessor parameter should point to a location in the
system heap. Otherwise, if you put your system object accessor function
in your application heap, you must call AERenpveChj ect Accessor to
remove the function before your application terminates.

accessor Ref con
A reference constant passed by the Apple Event Manager to the object
accessor function whenever the function is called. If your object accessor
function doesn’t use a reference constant, use 0 as the value of this
parameter. To change the value of the reference constant, you must call
AEl nst al | Qoj ect Accessor again.

i sSysHandl er
A value that specifies the object accessor dispatch table to which the entry
is added. If the value of i sSysHandl er is TRUE, the Apple Event
Manager adds the entry to the system object accessor dispatch table.
Entries in the system object accessor dispatch table are available to all
applications running on the same computer. If the value is FALSE, the
Apple Event Manager adds the entry to your application’s object accessor
table. When searching for object accessor functions, the Apple Event
Manager searches the application’s object accessor dispatch table first; it
searches the system object accessor dispatch table only if the necessary
function is not found in your application’s object accessor dispatch table.

6-78 Reference to Resolving and Creating Object Specifier Records

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 6

Resolving and Creating Object Specifier Records

The AEI nst al | Obj ect Accessor function adds an entry to either the application or
system object accessor dispatch table. You must supply parameters that specify the object
class of the Apple event objects that the object accessor function can locate, the descriptor
type of tokens for containers in which the object accessor function can locate objects, the
addpress of the object accessor function for which you are adding an entry, and whether
the entry is to be added to the system object accessor dispatch table or your application’s
object accessor dispatch table. You can also specify a reference constant that the Apple
Event Manager passes to your object accessor function each time the Apple Event
Manager calls the function.

noErr 0 No error occurred
par antrr -50 The handler pointer is NI L or odd, or AECbj ect | ni t was not
called before this function

For more information about installing object accessor functions, see “Installing Entries in
the Object Accessor Dispatch Tables,” which begins on page 6-21.

For a description of the AERenpveCbj ect Accessor function, see page 6-84.

AESetObjectCallbacks

You can use the AESet Cbj ect Cal | backs function to specify the object callback
functions to be called for your application.

FUNCTI ON AESet Ohj ect Cal | backs (nyConpar eProc, myCount Proc,
nyDi sposeTokenPr oc,
nmy Get Mar kTokenPr oc, myMar kPr oc,
nmy Adj ust Mar ksPr oc,
nmyGet Err DescProc: ProcPtr): OSErr;

my Conpar ePr oc
Either a pointer to the object-comparison function provided by your
application or NI L if no function is provided.

my Count Pr oc
Either a pointer to the object-counting function provided by your
application or NI L if no function is provided.

nyDi sposeTokenPr oc
Either a pointer to the token disposal function provided by your
application or NI L if no function is provided.

Reference to Resolving and Creating Object Specifier Records 6-79

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

DESCRIPTION

RESULT CODES

SEE ALSO

6-80

CHAPTER 6

Resolving and Creating Object Specifier Records

my Get Mar kTokenPr oc
Either a pointer to the function for returning a mark token provided by
your application or NI L if no function is provided.

myMar kProc Either a pointer to the object-marking function provided by your
application or NI L if no function is provided.

myAdj ust Mar ksPr oc
Either a pointer to the mark-adjusting function provided by your
application or NI L if no function is provided.

myGet Er r DescPr oc
Either a pointer to the error callback function provided by your
application or NI L if no function is provided.

Your application can provide only one each of the object callback functions specified by
AESet Qbj ect Cal | backs: one object-comparison function, one object-counting
function, and so on. As a result, each of these callback functions must perform the
requested task (comparing, counting, and so on) for all the object classes that your
application supports. In contrast, your application may provide many different object
accessor functions if necessary, depending on the object classes and token types your
application supports.

To replace object callback routines that have been previously installed, you can

make another call to AESet Obj ect Cal | backs. Each additional call to

AESet (bj ect Cal | backs replaces any object callback functions installed by previous
calls to AESet Obj ect Cal | backs. You cannot use AESet Chj ect Cal | backs to replace
system object callback routines or object accessor functions. Only those routines you
specify are replaced; to avoid replacing existing callback functions, specify a value of

NI L for the functions you don’t want to replace.

noErr 0 No error occurred

par ankrr -50 The handler pointer is NI L or odd, or
AEbj ect | ni t was not called before
this function

menful | Err -108 There is not enough room in heap zone
er r AENot ASpeci al Functi on -1714 The keyword is not valid for a special
function

For information about writing object callback functions, see “Application-Defined
Routines,” which begins on page 6-94.

To install system object callback functions, use the AEI nst al | Speci al Handl er
function described on page 4-100.

Reference to Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Getting, Calling, and Removing Object Accessor Functions

The Apple Event Manager provides three functions that allow you to get, call, and
remove object accessor functions that you have installed in either the system or
application object accessor dispatch table with the AEI nst al | Obj ect Accessor
function. The AEGet Qbj ect Accessor and AECal | Cbj ect Accessor functions get
and call object accessor functions installed in the dispatch table you specify, and
AERenpoveObj ect Accessor removes an installed function.

AEGetObjectAccessor

You can use the AEGet Cbj ect Accessor function to get a pointer to an object accessor
function and the value of its reference constant.

FUNCTI ON AEGet Obj ect Accessor (desiredd ass: DescType;
cont ai ner Type: DescType;
VAR t heAccessor: AccessorProcPtr;
VAR accessor Ref con: Longl nt;
i sSysHandl er: Bool ean): OSErr;

desiredd ass
The object class of the Apple event objects located by the requested object
accessor function. This parameter can also contain the constant
t ypeW | dCar d or the constant cPr operty.

cont ai ner Type
The descriptor type of the token that identifies the container for the
objects located by the requested object accessor function. This parameter
can also contain the constantt ypeW | dCar d.

t heAccessor
The AEGet Obj ect Accessor function returns a pointer to the requested
object accessor function in this parameter.

accessor Ref con
The AEGet Obj ect Accessor function returns the reference constant
from the object accessor dispatch table entry for the specified object
accessor function in this parameter.

i sSysHandl er
A value that specifies the object accessor table from which to get the
object accessor function and its reference constant. If the value of
i sSysHandl er is TRUE, AECet Obj ect Accessor gets the function from
the system object accessor dispatch table. If the value of i sSysHandl er
is FALSE, AEGet Cbj ect Accessor gets the function from the
application’s object accessor dispatch table.

Reference to Resolving and Creating Object Specifier Records 6-81

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

DESCRIPTION

The AEGet Obj ect Accessor function returns a pointer to the object accessor function
installed for the object class specified in the desi r edCl ass parameter and the
descriptor type specified in the cont ai ner Type parameter. It also returns the reference
constant associated with the specified function. You must supply a value in the

i sSysHandl er parameter that specifies which object accessor dispatch table you want
to get the function from.

Calling AEGet Ohj ect Accessor does not remove the object accessor function from an
object accessor dispatch table.

To get an object accessor function whose entry in an object accessor dispatch table
specifies t ypeW | dCar d as the object class, you must specify t ypeW | dCar d as the
value of the desi r edd ass parameter. Similarly, to get an object accessor function
whose entry in an object accessor dispatch table specifies t ypeW | dCar d as the
descriptor type of the token used to specify the container, you must specify

t ypeW | dCar d as the value of the cont ai ner Type parameter.

To get an object accessor function whose entry in an object accessor dispatch table
specifies cPr oper ty (a constant used to specify a property of any object class), you
must specify cProperty as the desi redC ass parameter.

RESULT CODES
noErr 0 No error occurred
par anerr =50 AEQbj ect | ni t was not called before this
function was called
er r AEAccessor Not Found -1723 There is no object accessor function for the
specified object class and container type
AECallObjectAccessor

You can use the AECal | Cbj ect Accessor function to invoke one of your application’s
object accessor functions.

FUNCTI ON AECal | Obj ect Accessor (desiredd ass: DescType;
cont ai ner Token: AEDesc;
cont ai ner C ass: DescType;
keyForm DescType;
keyDat a: AEDesc;
VAR t heToken: AEDesc): OSErr;

desiredd ass
The object class of the desired Apple event objects.

6-82 Reference to Resolving and Creating Object Specifier Records

DESCRIPTION

RESULT CODES

CHAPTER 6

Resolving and Creating Object Specifier Records

cont ai ner Token
The token that identifies the container for the desired objects.

cont ai nerd ass
The object class of the container for the desired objects.

keyFor m The key form specified by the object specifier record for the object or
objects to be located.

keyDat a The key data specified by the object specifier record for the object or
objects to be located.

t heToken The object accessor function that is invoked returns a token specifying the
desired object or objects in this parameter.

If you want your application to do some of the Apple event object resolution normally
performed by the AEResol ve function, you can use AECal | Cbj ect Accessor to
invoke an object accessor function. This might be useful, for example, if you

have installed an object accessor function using t ypeW | dCar d for the

AEIl nst al | Cbj ect Accessor function’s desi r edC ass parameter and t ypeAELi st
for the cont ai ner Type parameter. To return a list of tokens for a request like “every
line that ends in a period,” the object accessor function can create an empty list, then call
AECal | Obj ect Accessor for each requested element, adding tokens for each element
to the list one at a time.

The parameters of AECal | Obj ect Accessor are identical to the parameters of an object
accessor function, with one exception: the parameter that specifies the reference constant
passed to the object accessor function whenever it is called is added by the Apple Event
Manager when it calls the object accessor function.

To call an object accessor function whose entry in an object accessor dispatch table
specifies t ypeW | dCar d as the object class, you must specify t ypeW | dCar d as the
value of the desi r eddl ass parameter.

To call an object accessor function whose entry in an object accessor dispatch table
specifies cPr operty, you must specify CPr operty as the desi r edd ass parameter.

In addition to the following result codes, AECal | Cbj ect Accessor returns any other
result codes returned by the object accessor function that is called.

nokErr 0 No error occurred

par antrr -50 AEQDHj ect | ni t was not called before this
function was called

er r AEAccessor Not Found -1723 No object accessor was found

Reference to Resolving and Creating Object Specifier Records 6-83

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

AERemoveObjectAccessor

DESCRIPTION

6-84

You can use the AERenpve(hj ect Accessor function to remove an object accessor
function from an object accessor dispatch table.

FUNCTI ON AERenpve(Obj ect Accessor (desiredd ass: DescType;
cont ai ner Type: DescType;
t heAccessor: AccessorProcPtr;
i sSysHandl er: Bool ean): OSErr;

desi redd ass
The object class of the Apple event objects located by the object accessor
function. The desi r edCl ass parameter can also contain the constant
t ypeW | dCar d or the constant cPr operty.

cont ai ner Type
The descriptor type of the token that identifies the container for the
objects located by the object accessor function. The cont ai ner Type
parameter can also contain the constant t ypeW | dCar d.

t heAccessor
A pointer to the object accessor function you want to remove. Although
the parameters desi r edd ass and cont ai ner Type would be
sufficient to identify the function to be removed, providing the parameter
t heAccessor guarantees that you remove the correct function. If this
parameter does not contain a pointer to the object accessor function you
want to remove, its value should be NI L.

i sSysHandl er
A value that specifies the object accessor dispatch table from which to
remove the object accessor function. If the value of i sSysHandl er is
TRUE, AEGet Obj ect Accessor removes the routine from the system
object accessor dispatch table. If the value is FALSE,
AEGCet Obj ect Accessor removes the routine from the application object
accessor dispatch table.

The AERenmpveObj ect Accessor function removes the object accessor function you
have installed for the object class specified in the desi r edCl ass parameter and the
descriptor type specified in the cont ai ner Type parameter.

To remove an object accessor function whose entry in an object accessor dispatch table
specifies t ypeW | dCar d as the object class, you must specify t ypeW | dCar d as the
value of the desi r eddl ass parameter. Similarly, to remove an object accessor function
whose entry in an object accessor dispatch table specifies t ypeW | dCar d as the
descriptor type of the token used to specify the container for the desired objects, you
must specify t ypeW | dCar d as the value of the cont ai ner Type parameter.

Reference to Resolving and Creating Object Specifier Records

RESULT CODES

CHAPTER 6

Resolving and Creating Object Specifier Records

To remove an object accessor function whose entry in an object accessor dispatch table
specifies CPr oper ty (a constant used to specify a property of any object class), you
must specify cPr operty as the desi redd ass parameter.

nokErr 0 No error occurred

par antrr —50 AEQoj ect | ni t was not called before this
function was called

err AEAccessor Not Found ~ -1723 There is no object accessor function for the

specified object class and container type

Resolving Object Specifier Records

AEResolve

If an Apple event parameter consists of an object specifier record, your handler for the
event typically calls the AEResol ve function to begin the process of resolving the object
specifier record.

You can use the AEResol ve function to resolve an object specifier record in an Apple
event parameter.

FUNCTI ON AEResol ve (obj ect Specifier: AEDesc
cal | backFl ags: Integer;
VAR t heToken: AEDesc): OSErr;

obj ect Speci fi er
The object specifier record to be resolved.

cal | backFl ags
A value that determines what additional assistance, if any, your
application can give the Apple Event Manager when it parses the object
specifier record. The value is specified by adding the following constants,
as appropriate:

CONST kAEI DoM ni rum = $0000; {supports m ni num }
{ call backs only}

kAEl DoWwhose = $0001; {supports formhose}

kAEI DoMar ki ng = $0004; {provides marking }

{ functions}

Reference to Resolving and Creating Object Specifier Records 6-85

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

DESCRIPTION

RESULT CODES

6-86

CHAPTER 6

Resolving and Creating Object Specifier Records

t heToken

The AEResol ve function returns, in this parameter, a token that identifies

the Apple event objects specified by the obj ect Speci fi er parameter.
Your object accessor functions may need to create many tokens to resolve
a single object specifier record; this parameter contains only the final
token that identifies the requested Apple event object. If an error occurs,
AEResol ve returns a null descriptor record.

The AEResol ve function resolves the object specifier record passed in the
obj ect Speci fi er parameter with the help of the object accessor functions and object
callback functions provided by your application.

noErr 0
parantrr =50
er r AEHandl er Not Found -1717
er r AEl npossi bl eRange -1720
er r AEW ongNunber Ar gs -1721
er r AEAccessor Not Found -1723
err AENoSuchLogi cal -1725
err AEBadTest Key -1726
er r AENot AnCbj ect Spec -1727
er r AENegat i veCount -1729
er r AEEnpt yLi st Cont ai ner -1730

No error occurred

AEQhj ect | ni t was not called before
this function was called

The necessary object callback function was
not found (this result is returned only for
object callback functions;

err AEAccessor Not Found [-1723] is
returned when an object accessor function
is not found)

The range is not valid because it is
impossible for a range to include the first
and last objects that were specified; an
example is a range in which the offset of
the first object is greater than the offset of
the last object

The number of operands provided for the
KAENOT logical operator is not 1

There is no object accessor function for the
specified object class and token descriptor
type

The logical operator in a logical descriptor
record is not KAEAND, KAECOR, or KAENOT
The descriptor record in a test key is
neither a comparison descriptor record nor
a logical descriptor record

The obj Speci fi er parameter of
AEResol ve is not an object specifier record
An object-counting function returned a
negative result

The container for an Apple event object is
specified by an empty list

In addition to the result codes listed here, AEResol ve also returns any result code
returned by one of your application’s object accessor functions or object callback
functions. For example, an object accessor function can return er r AENoSuchCbj ect
(-1728) when it can’t find an Apple event object, or it can return more specific result

codes.

Reference to Resolving and Creating Object Specifier Records

SEE ALSO

CHAPTER 6

Resolving and Creating Object Specifier Records

If any object accessor function or object callback function returns a result code other than
noEr r or er r AEEvent Not Handl ed, AEResol ve immediately disposes of any existing
tokens and returns. The result code it returns in this case is the result code returned by
the object accessor function or the object callback function.

For an overview of the way AEResol ve works with object accessor functions, see
“Resolving Object Specifier Records,” which begins on page 6-4.

Deallocating Memory for Tokens

Whenever the AEResol ve function returns a final token to your event handler as the
result of the resolution of an object specifier record passed to AEResol ve, your
application can call the AEDi sposeToken function to deallocate the memory used by
the token.

AEDisposeToken

DESCRIPTION

RESULT CODES

You can use the AEDi sposeToken function to deallocate the memory used by a token.
FUNCTI ON AEDi sposeToken (VAR theToken: AEDesc): OSErr;

t heToken The token to be disposed of.

When your application calls the AEDi sposeToken function, the Apple Event Manager
first calls your application’s token disposal function, if you have provided one. If you
haven’t provided a token disposal function, or if your application’s token disposal
function returns er r AEEvent Not Handl ed as the function result, the Apple Event
Manager calls the system token disposal function if one is available. If there is no system
token disposal function or the function returns er r AEEvent Not Handl ed as the
function result, the Apple Event Manager calls the AEDi sposeDesc function to dispose
of the token.

In addition to the following result codes, AEDi sposeToken also returns result codes
returned by the token disposal function that disposed of the token.

noErr 0 No error occurred

par anerr =50 AEQbj ect | ni t was not called before this
function was called

not ASpeci al Functi on -1714 The keyword is not valid for a special function

Reference to Resolving and Creating Object Specifier Records 6-87

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

SEE ALSO

CHAPTER 6

Resolving and Creating Object Specifier Records

For information about writing a token disposal function, see page 6-99.

Creating Object Specifier Records

The Apple Event Manager provides five functions that you can use to create some of the
components of an object specifier record or to assemble an object specifier record:

s The CreateOf f set Descri pt or function creates an offset descriptor record, which
specifies the position of an element in relation to the beginning or end of its container.

= The Cr eat eConpDescri pt or function creates a comparison descriptor record,
which specifies how to compare one or more Apple event objects with either another
Apple event object or a descriptor record.

= The Creat eLogi cal Descri pt or function creates a logical descriptor record, which
specifies a logical operator and one or more logical terms for the Apple Event
Manager to evaluate.

= The Cr eat eRangeDescri pt or function creates a range descriptor record, which
specifies a series of consecutive elements in the same container.

= The Cr eat eCbj Speci fi er function assembles an object specifier record, which
identifies one or more Apple event objects, from other descriptor records.

Instead of using these functions, you can create the corresponding descriptor records
yourself using the AECr eat eDesc function, add them to an AE record using other
Apple Event Manager routines, and coerce the AE record to a descriptor record of type
t ypehj ect Speci fi er. However, in most cases it is easier to use the functions listed
in this section.

All of these functions except for Cr eat eCf f set Descri pt or include a

di sposel nput s parameter. If the value of this parameter is TRUE, the function
automatically disposes of any descriptor records you have provided as parameters to the
function. If the value is FALSE, the application must dispose of the records itself. A value
of FALSE may be more efficient for some applications because it allows them to reuse
descriptor records.

For more information about these functions and examples of their use, see “Creating
Object Specifier Records,” which begins on page 6-55.

CreateOffsetDescriptor

6-88

You can use the Cr eat ef f set Descri pt or function to create an offset descriptor
record.

FUNCTI ON Creat eOf set Descri ptor (theOfset: Longlnt;
VAR t heDescri ptor: AEDesc)
OSErr;

Reference to Resolving and Creating Object Specifier Records

DESCRIPTION

RESULT CODES

CHAPTER 6

Resolving and Creating Object Specifier Records

theOf f set A positive integer that specifies the offset from the beginning of the
container (the first element has an offset of 1), or a negative integer that
specifies the offset from the end (the last element has an offset of -1).

t heDescri pt or
The offset descriptor record created by Cr eat eCf f set Descri ptor.

The Cr eat eOX f set Descr i pt or function creates an offset descriptor record that
specifies the position of an element in relation to the beginning or end of its container.

NoErr 0 No error occurred
menful | Err -108 Not enough room in heap zone

CreateCompDescriptor

You can use the Cr eat eConpDescri pt or function to create a comparison descriptor
record.

FUNCTI ON Cr eat eConpDescri ptor (conpari sonOperator: DescType;
VAR oper andl: AEDesc;
VAR operand2: AEDesc;
di sposel nputs: Bool ean;
VAR t heDescri ptor: AEDesc)
CSErr;

conpar i sonQper at or
The comparison operator for comparing the descriptor records in the
oper and1 and oper and2 parameters. The operator is specified by the
constants listed in the description that follows.

operandl An object specifier record.

operand2 A descriptor record (which can be an object specifier record or any other
descriptor record) whose value is to be compared to the value of
operandl.

di sposel nput s
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records for the two
operands.

t heDescri pt or
The comparison descriptor record created by Cr eat eConpDescri pt or.

Reference to Resolving and Creating Object Specifier Records 6-89

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

DESCRIPTION

RESULT CODES

SEE ALSO

6-90

CHAPTER 6

Resolving and Creating Object Specifier Records

The Cr eat eConpDescri pt or function creates a comparison descriptor record, which
specifies how to compare one or more Apple event objects with either another Apple
event object or a descriptor record.

The actual comparison of the two operands is performed by the object-comparison
function provided by the client application. The way a comparison operator is
interpreted is up to each application.

These are the currently defined standard comparison operators:

Constant Meaning
KAEG eat er Than The value of oper and1 is greater than the value of
oper and2.

KAEG eat er ThanEqual s The value of oper and1l is greater than or equal to the
value of oper and2.

kAEEqual s The value of oper and1l is equal to the value of
oper and2.
kAELessThan The value of oper andl is less than the value of
oper and2.
kAELessThanEqual s The value of oper and1l is less than or equal to the value

of oper and2.

kAEBegi nsWth The value of oper and1 begins with the value of
oper and2 (for example, the string " oper and" begins
with the string " oper a").

kAEEndsW't h The value of oper and1 ends with the value of
oper and2 (for example, the string " oper and" ends
with the string " and").

kAECont ai ns The value of oper and1 contains the value of oper and2
(for example, the string " oper and" contains the string
"era").

nokErr 0 No error occurred

par antrr -50 Error in parameter list

menful | Err -108 Not enough room in heap zone

er r AECoer ci onFai | -1700 Data could not be coerced to the requested Apple

event data type
er r AEW ongDat aType -1703 Wrong Apple event data type
er r AENot AEDesc -1704 Not a valid descriptor record
err AEBadLi stltem -1705 Operation involving a list item failed

For an example of how to use the Cr eat eConpDescri pt or function to create a
comparison descriptor record, see “Specifying a Test,” which begins on page 6-64.

Reference to Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

CreateLogicalDescriptor

DESCRIPTION

You can use the Cr eat eLogi cal Descri pt or function to create a logical descriptor
record.

FUNCTI ON Cr eat eLogi cal Descri pt or
(VAR t helLogi cal Ternms: AEDesclLi st;
t heLogi cOperator: DescType;
di sposel nputs: Bool ean;
VAR t heDescriptor: AEDesc): OSErr;

t heLogi cal Ter s
A list containing comparison descriptor records, logical descriptor
records, or both. If the value of the parameter t heLogi cOper at or is
KAEAND or KAEOR the list can contain any number of descriptors. If the
value of the parameter t heLogi cOper at or is KAENOT, logically this list
should contain a single descriptor record. However, the function will not
return an error if the list contains more than one descriptor record for a
logical operator of KAENOT.

t heLogi cOper at or
Alogical operator represented by one of the following constants:

CONST KAEAND = ' AND ' ;
KAEOR ="'OR ';
KAENOT = ' NOT ';

di sposel nput s
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records in the other
parameters.

t heDescri pt or
The logical descriptor record created by Cr eat eLogi cal Descri ptor.

The Cr eat eLogi cal Descri pt or function creates a logical descriptor record, which
specifies a logical operator and one or more logical terms for the Apple Event Manager
to evaluate.

Reference to Resolving and Creating Object Specifier Records 6-91

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

RESULT CODES

SEE ALSO

CHAPTER 6

Resolving and Creating Object Specifier Records

noErr 0 No error occurred

par antrr -50 Error in parameter list

menful | Err -108 Not enough room in heap zone

er r AECoer ci onFai | -1700 Data could not be coerced to requested Apple

event data type
err AEW ongDat aType -1703 Wrong Apple event data type
er r AENot AEDesc -1704 Not a valid descriptor record
err AEBadLi st 1tem -1705 Operation involving a list item failed

For an example of how to use the Cr eat eLogi cal Descri pt or function to create a
logical descriptor record, see “Specifying a Test,” which begins on page 6-64.

CreateRangeDescriptor

DESCRIPTION

6-92

You can use the Cr eat eRangeDescri pt or function to create a range descriptor record.

FUNCTI ON Cr eat eRangeDescri ptor (VAR rangeStart: AEDesc;
VAR rangeSt op: AEDesc
di sposel nputs: Bool ean
VAR t heDescriptor: AEDesc): OSErr;

rangeSt art
An object specifier record that identifies the first Apple event object in the
range.

rangeSt op An object specifier record that identifies the last Apple event object in the
range.

di sposel nput s
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records for the
rangeSt art and r angeSt op parameters.

t heDescri pt or
The range descriptor record created by Cr eat eRangeDescri pt or.

The Cr eat eRangeDescr i pt or function creates a range descriptor record, which
specifies a series of consecutive elements in the same container. Although the

rangeSt art and r angeSt op parameters can be any object specifier records—including
object specifier records that specify more than one Apple event object—most applications
expect these parameters to specify single Apple event objects.

Reference to Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

RESULT CODES
noErr 0 No error occurred
par antrr -50 Error in parameter list
menful | Err -108 Not enough room in heap zone
er r AECoer ci onFai | -1700 Data could not be coerced to the requested Apple
event data type
err AEW ongDat aType -1703 Wrong Apple event data type
er r AENot AEDesc -1704 Not a valid descriptor record
err AEBadLi st 1t em -1705 Operation involving a list item failed
SEE ALSO
For an example of how to use the Cr eat eRangeDescri pt or function to create a range
descriptor record, see “Specifying a Range” on page 6-72.
CreateObjSpecifier

You can use the Cr eat eCbj Speci fi er function to create an object specifier record.

FUNCTI ON Creat eObj Speci fi er (desiredd ass: DescType;
VAR t heCont ai ner: AEDesc;
keyForm DescType;
VAR keyDat a: AEDesc
di sposel nputs: Bool ean
VAR obj Specifier: AEDesc): OSErr;

desiredd ass
The object class of the desired Apple event objects.

t heCont ai ner
A description of the container for the requested object, usually in the form
of another object specifier record.

keyFor m The key form for the object specifier record.
keyDat a The key data for the object specifier record.

di sposel nput s
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records for the other
parameters.

obj Speci fi er
The object specifier record created by the Cr eat eQbj Speci fi er
function.

Reference to Resolving and Creating Object Specifier Records 6-93

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

DESCRIPTION
The Cr eat eObj Speci fi er function assembles an object specifier record from the
specified constants and other descriptor records.
RESULT CODES
noErr 0 No error occurred
parantrr -50 Error in parameter list
menful | Err -108 Not enough room in heap zone
er r AECoer ci onFai | -1700 Data could not be coerced to the requested Apple
event data type
er r AEW ongDat aType -1703 Wrong Apple event data type
er r AENot AEDesc -1704 Not a valid descriptor record
err AEBadLi stltem -1705 Operation involving a list item failed
SEE ALSO

For information about how to assemble the components of an object specifier record with
the Cr eat eObj Speci fi er function, see “Creating Object Specifier Records,” which
begins on page 6-55.

Application-Defined Routines

The AEResol ve function performs tasks that are required to resolve any object specifier
record, such as parsing its contents, keeping track of the results of tests, and handling
memory management. When necessary, AEResol ve calls application-defined functions
to perform tasks that are unique to the application, such as locating a specific Apple
event object in the application’s data structures or counting the number of Apple event
objects in a container.

AEResol ve can call two kinds of application-defined functions:

» Object accessor functions locate Apple event objects. Every application that supports
simple object specifier records must provide one or more object accessor functions.

» Object callback functions perform other tasks that only an application can perform, such
as counting, comparing, or marking Apple event objects. You can provide up to seven
object callback functions, depending on the needs of your application.

This section provides model declarations for the object accessor functions and object
callback functions that your application can provide.

Object Accessor Functions

You must provide one or more object accessor functions that can locate all the
element classes and properties listed in the Apple Event Registry: Standard Suites for the
object classes supported by your application. This section provides the routine
declaration for an object accessor function.

6-94 Reference to Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

MyObjectAccessor

DESCRIPTION

Object accessor functions locate Apple event objects of a specified object class in a
container identified by a token of a specified descriptor type.

FUNCTI ON Mynj ect Accessor (desiredC ass: DescType;
cont ai ner Token: AEDesc;
cont ai nerd ass: DescType;
keyForm DescType; keyData: AEDesc;
VAR t heToken: AEDesc;
t heRef con: Longlnt): OSErr;

desiredd ass
The object class of the desired Apple event objects.

cont ai ner Token
A token that specifies the container of the desired Apple event objects.

cont ai ner Cl ass
The object class of the container.

keyForm The key form specified by the object specifier record being resolved.
keyDat a The key data specified by the object specifier record being resolved.
t heToken The token returned by the MyCbj ect Accessor function.

t heRef con A reference constant that the Apple Event Manager passes to the object
accessor function each time it is called.

Each object accessor function provided by your application should either find elements
of a specified object class or find properties of an Apple event object. The AEResol ve
function uses the object class ID of the specified Apple event object and the descriptor
type of the token that identifies the object’s container to determine which object accessor
function to call. To install an object accessor function either in your application’s object
accessor dispatch table or in the system object accessor dispatch table, use the

AEIl nst al | Obj ect Accessor function, which is described on page 6-78.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code er r AEEvent Not Handl ed after
calling an object accessor function, it attempts to use other methods of locating the
requested objects, such as calling an equivalent system object accessor function. Thus, an
object accessor function that can’t locate a requested object should return

er r AEEvent Not Handl ed. This allows the Apple Event Manager to try other object
accessor functions that may be available.

Reference to Resolving and Creating Object Specifier Records 6-95

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

RESULT CODES

SEE ALSO

CHAPTER 6

Resolving and Creating Object Specifier Records

noErr 0 No error occurred
er r AEEvent Not Handl ed -1708 The object accessor function is unable to locate
the requested Apple event object or objects

For information about installing object accessor functions, see “Installing Entries in the
Object Accessor Dispatch Tables,” which begins on page 6-21.

For information about writing object accessor functions, see “Writing Object Accessor
Functions,” which begins on page 6-28.

Object Callback Functions

If an Apple event parameter consists of an object specifier record, your handler for

the Apple event typically calls AEResol ve to begin the process of locating the requested
Apple event objects. The AEResol ve function in turn calls object accessor functions and,
if necessary, object callback functions provided by your application when it needs the
information they can provide.

This section provides declarations for the seven object callback functions that your
application can provide: the object-counting function (MyCount Obj ect s),
object-comparison function (My Conpar eObj ect s), token disposal function

(MyDi sposeToken), error callback function (MyGet Er r or Desc), mark token
function (MyGet Mar kToken), object-marking function (MyMar k), and
mark-adjusting function (MyAdj ust Mar ks).

For information about writing and installing object callback functions, see “Writing
Object Callback Functions,” which begins on page 6-45.

MyCountObjects

6-96

If you want the Apple Event Manager to help your application resolve object specifier
records of key form f or nTest (and if your application doesn’t specify kAEI DoWhose
as described on page 6-48), you should provide an object-counting function and

an object-comparison function. An object-counting function counts the number of
Apple event objects of a specified class in a specified container.

FUNCTI ON MyCount Qbj ects (desiredd ass: DescType;
cont ai ner d ass: DescType;
t heCont ai ner: AEDesc;
VAR result: Longlnt): OSErr;

desiredd ass
The object class of the Apple event objects to be counted.

Reference to Resolving and Creating Object Specifier Records

DESCRIPTION

CHAPTER 6

Resolving and Creating Object Specifier Records

cont ai ner d ass
The object class of the container for the Apple event objects to be counted.

t heCont ai ner
A token that identifies the container for the Apple event objects to be
counted.

resul t Your object-counting function should return in this parameter the number
of Apple objects of the specified class in the specified container.

The Apple Event Manager calls your object-counting function when, in the course of
resolving an object specifier record, the manager requires a count of the number of Apple
event objects of a given class in a given container.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

If the Apple Event Manager receives the result code er r AEEvent Not Handl ed after
calling an object-counting function, it attempts to use other methods of counting the
specified objects, such as calling an equivalent system object-counting function. Thus, an
object-counting function that can’t count the specified objects should return

er r AEEvent Not Handl ed. This allows the Apple Event Manager to try other
object-counting functions that may be available.

noErr 0 No error occurred
er r AEEvent Not Handl ed -1708 The object-counting function is unable to
count the specified Apple event objects

For more information, see “Writing an Object-Counting Function” on page 6-48.

MyCompareObjects

If you want the Apple Event Manager to help your application resolve object specifier
records of key form f or niTest (and if your application doesn’t specify K AEI DoWhose as
described on page 6-48), you should provide an object-counting function and an
object-comparison function. After comparing one Apple event object to another or to the
data for a descriptor record, an object-comparison function should return TRUE or
FALSE in the r esul t parameter.

Reference to Resolving and Creating Object Specifier Records 6-97

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

FUNCTI ON MyConpar eQbj ects (conpari sonQper at or: DescType;
obj ect: AEDesc;
obj ect Or DescToConpare: AEDesc;
VAR result: Bool ean): OSErr;

conpari sonQper at or
The comparison operator. See the description of
Cr eat eConpDescri pt or on page 6-89 for standard comparison
operators at the time of publication of this book. The current version of
the Apple Event Registry: Standard Suites lists all the constants for
comparison operators.

obj ect A token.

obj ect Or DescToConpar e
A token or some other descriptor record that specifies either an Apple
event object or a value to compare to the Apple event object specified by
the obj ect parameter.

resul t Your object-comparison function should return, in this parameter, a
Boolean value that indicates whether the values of the obj ect and
obj ect Or DescToConpar e parameters have the relationship specified
by the conpar i sonOper at or parameter (TRUE) or not (FALSE).

DESCRIPTION

The Apple Event Manager calls your object-comparison function when, in the course of
resolving an object specifier record, the manager needs to compare an Apple event object
with another or with a value.

It is up to your application to interpret the comparison operators it receives. The
meaning of comparison operators differs according to the Apple event objects being
compared, and not all comparison operators apply to all object classes.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code er r AEEvent Not Handl ed after
calling an object-comparison function, it attempts to use other methods of comparison,
such as calling an equivalent system object-comparison function. Thus, an
object-comparison function that can’t perform a requested comparison should

return er r AEEvent Not Handl ed. This allows the Apple Event Manager to try other
object-comparison functions that may be available.

RESULT CODES

noErr 0 No error occurred
er r AEEvent Not Handl ed -1708 The object-comparison function is unable to
compare the specified Apple event objects

6-98 Reference to Resolving and Creating Object Specifier Records

SEE ALSO

CHAPTER 6

Resolving and Creating Object Specifier Records

For more information, see “Writing an Object-Comparison Function” on page 6-50.

MyDisposeToken

DESCRIPTION

If your application requires more than a call to the AEDi sposeDesc function to dispose
of a token, or if it supports marking callback functions, you must provide one token
disposal function. A token disposal function disposes of a specified token.

FUNCTI ON MyDi sposeToken (VAR unneededToken: AEDesc): OSErr

unneededToken
The token to dispose of.

The Apple Event Manager calls your token disposal function whenever it needs to
dispose of a token. It also calls your disposal function when your application calls the
AEDi sposeToken function. If your application does not provide a token disposal
function, the Apple Event Manager calls AEDi sposeDesc instead.

Your token disposal function must be able to dispose of all of the token types used by
your application.

If your application supports marking, a call to MyDi sposeToken to dispose of a mark
token lets your application know that it can unmark the objects marked with that
mark token.

SPECIAL CONSIDERATIONS

RESULT CODES

If the Apple Event Manager receives the result code er r AEEvent Not Handl ed after
calling a token disposal function, it attempts to dispose of the token by some other
method, such as calling an equivalent system token disposal function if one is available
or, if that fails, by calling AEDi sposeDesc. Thus, a token disposal function that can’t
dispose of a token should return er r AEEvent Not Handl ed. This allows the Apple
Event Manager to try other token disposal functions that may be available.

noErr 0 No error occurred
er r AEEvent Not Hand! ed -1708 The token disposal function is unable to
dispose of the token

Reference to Resolving and Creating Object Specifier Records 6-99

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

MyGetErrorDesc

DESCRIPTION

RESULT CODE

6-100

If you want to find out which descriptor record is responsible for an error that occurs
during a call to the AEResol ve function, you can provide an error callback function. An
error callback function returns a pointer to an address. The Apple Event Manager uses
this address to store the descriptor record it is currently working with if an error occurs
during a call to AEResol ve.

FUNCTI ON MyGet Error Desc (VAR errDescPtr: DescPtr): OSErr;

errDeschPtr
A pointer to an address.

Your error callback function simply returns an address. Shortly after your application
calls AEResol ve, the Apple Event Manager calls your error callback function and writes
a null descriptor record to the address returned, overwriting whatever was there
previously. If an error occurs during the resolution of the object specifier record, the
Apple Event Manager calls your error callback function again and writes the descriptor
record—often an object specifier record—to the address returned. If AEResol ve returns
an error during the resolution of an object specifier record, this address contains the
descriptor record responsible for the error.

Normally you should maintain a single global variable of type AEDesc whose address
your error callback function returns no matter how many times it is called. Be careful

if you use any other method. When recovering from an error, the Apple Event Manager
never writes to the address you provide unless it already contains a null descriptor
record. Thus, if you don’t maintain a single global variable as just described, you should
write null descriptor records to any addresses passed by your error callback function
that are different from the addresses returned the first time your function is called after a
given call to AEResol ve.

If the result code returned by the MyGet Er r or Desc function has a nonzero value, the
Apple Event Manager continues to resolve the object specifier record as if it had never
called the error callback function.

noErr 0 No error occurred

Reference to Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

MyGetMarkToken

DESCRIPTION

RESULT CODES

If your application supports marking, you must provide one mark token function. A
mark token function returns a mark token.

FUNCTI ON MyGet Mar kToken (cont ai ner Token: AEDesc;
cont ai nerd ass: DescType;
VAR result: AEDesc): OSErr;

cont ai ner Token
The Apple event object that contains the elements to be marked with the
mark token.

cont ai ner d ass
The object class of the container that contains the objects to be marked.

resul t Your mark token function should return a mark token in this parameter.

To get a mark token, the Apple Event Manager calls your mark token function. Like
other tokens, the mark token returned can be a descriptor record of any type; however,
unlike other tokens, a mark token identifies the way your application will mark Apple
event objects during the current session while resolving a single object specifier record
that specifies the key form f or nilest .

A mark token is valid until the Apple Event Manager either disposes of it (by calling
AEDi sposeToken) or returns it as the result of the AEResol ve function. If the final
result of a call to AEResol ve is a mark token, the Apple event objects currently marked
for that mark token are those specified by the object specifier record passed to

AEResol ve, and your application can proceed to do whatever the Apple event has
requested. Note that your application is responsible for disposing of a final mark token
with a call to AEDi sposeToken, just as for any other final token.

If your application supports marking, it should also provide a token disposal function
modeled after the token disposal function described on page 6-99. When the Apple
Event Manager calls AEDi sposeToken to dispose of a mark token that is not the final
result of a call to AEResol ve, the subsequent call to your token disposal function lets
you know that you can unmark the Apple event objects marked with that mark token. A
call to AEDi sposeDesc to dispose of a mark token (which would occur if you did not
provide a token disposal function) would go unnoticed.

noErr 0 No error occurred

er r AEEvent Not Handl| ed -1708 The mark token function is unable to return a
mark token; if the Apple Event Manager gets
this result, it attempts to get a mark token by
calling the equivalent system marking callback
function

Reference to Resolving and Creating Object Specifier Records 6-101

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

SEE ALSO

MyMark

CHAPTER 6

Resolving and Creating Object Specifier Records

For more information, see “Writing Marking Callback Functions,” which begins on
page 6-53.

DESCRIPTION

RESULT CODES

SEE ALSO

6-102

If your application supports marking, you must provide one object-marking function.
An object-marking function marks a specific Apple event object.

FUNCTI ON MyMar k (t heToken: AEDesc; markToken: AEDesc;
mar kCount: Longlint): OSErr;

t heToken The token for the Apple event object to be marked.
mar kToken The mark token used to mark the Apple event object.

mar kCount The number of times MyMar k has been called for the current mark token
(that is, the number of Apple event objects that have so far passed the test,
including the element to be marked).

To mark an Apple event object using the current mark token, the Apple Event Manager
calls the object-marking function provided by your application. In addition to marking
the specified object, your MyMar k function should record the mark count for each object
that it marks. The mark count recorded for each marked object allows your application
to determine which of a set of marked tokens pass a test, as described in the next section
for the MyAdj ust Mar ks function.

noErr 0 No error occurred

er r AEEvent Not Handl ed -1708 The MyMar k function is unable to mark the
specified Apple event object; if the Apple Event
Manager gets this result, it attempts to mark
the object by calling the equivalent system
object-marking function

For more information, see “Writing Marking Callback Functions,” which begins on
page 6-53.

Reference to Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

MyAdjustMarks

DESCRIPTION

RESULT CODES

SEE ALSO

If your application supports marking, you must provide one mark-adjusting function. A
mark-adjusting function adjusts the marks made with the current mark token.

FUNCTI ON MyAdj ust Marks (newStart, newStop: Longlnt;
mar kToken: AEDesc): OSErr;

newst art The mark count value (provided when the MyMar k callback routine was
called to mark the object) for the first object in the new set of marked
objects.

newst op The mark count value (provided when the MyMar k callback routine was
called to mark the object) for the last object in the new set of marked
objects.

mar kToken The mark token for the marked objects.

When the Apple Event Manager needs to identify either a range of elements or the
absolute position of an element in a group of Apple event objects that pass a test, it can
use your application’s mark-adjusting function to unmark objects previously marked by
a call to your marking function. For example, suppose an object specifier record specifies
“any row in the table ‘MyCustomers’ for which the City column is ‘San Francisco.”” The
Apple Event Manager first uses the appropriate object accessor function to locate all the
rows in the table for which the City column is “San Francisco” and calls the application’s
marking function repeatedly to mark them. It then generates a random number between
1 and the number of rows it found that passed the test and calls the application’s
mark-adjusting function to unmark all the rows whose mark count does not match the
randomly generated number. If the randomly chosen row has a mark count value of 5,
the Apple Event Manager passes the value 5 to the mark-adjusting function in both the
newst art parameter and the newSt op parameter, and passes the current mark token in
the mar kToken parameter.

When the Apple Event Manager calls your MyAdj ust Mar ks function, your application
must dispose of any data structures that it created to mark the previously marked objects.

noErr 0 No error occurred

er r AEEvent Not Handl ed -1708 The MyAdj ust Mar ks function is unable to
adjust the marks as requested; if the Apple
Event Manager gets this result, it attempts to
adjust the marks by calling the equivalent
system mark-adjusting function

For more information, see “Writing Marking Callback Functions” on page 6-53.

Reference to Resolving and Creating Object Specifier Records 6-103

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Summary of Resolving and Creating Object Specifier Records

Pascal Summary

Constants

CONST
gest al t Appl eEvent sAttr = 'evnt'; {sel ector for Apple events}
gest al t Appl eEvent sPresent = 0; {if this bit is set, Apple }

{ Event Manager is avail abl e}

{l ogi cal operators for descriptor records with keyword }
{ keyAELogi cal Oper at or}

k AEAND = "AND ';
kAEOR = 'OR ',
k AENOT = '"NOT ';

{absol ute ordinals used as key data in an object specifier }
{ record with key form formAbsol ut ePosition}

kAEFi r st = firs';
kAELast = 'last';
kKAEM ddl e = 'mdd';
k AEAny = 'any ';
KAEAI | = 'all ';

{relative ordinals used as key data in an object specifier record }
{ with key formfornRel ati vePosition}

k AENext = 'next';

kAEPr evi ous = 'prev';

{keywords for object specifier records}

keyAEDesi r edd ass = 'want'; {object class ID}

keyAECont ai ner = ‘'from; {description of container}
keyAEKeyFor m = 'form; {key forn}

keyAEKeyDat a = 'seld; {key data for specified key forn}

{keywords for range descriptor records}
keyAERangeSt ar t = 'star'; {begi nni ng of range}

6-104 Summary of Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

keyAERangeSt op = 'stop'; {end of range}

{val ues for the keyAEKeyForm field of an object specifier record}

f or mAbsol ut ePosi tion = 'indx'; {for exanple, 1 = first }
{ element in container, -2 =}
{ second fromend of container}

fornRel ati vePosition = 'rele'; {key data specifies elenment }
{ before or after container}

f or nTest = 'test'; {key data specifies a test}

f or nRange = 'rang'; {key data specifies a range}

fornmPropertyl D = ‘'prop; {key data is property |D}

f or mMNane = 'nane'; {key data is elenent's nane}

{descriptor types used to identify Apple event objects}

t ypeObj ect Speci fi er = 'obj '; {obj ect specifier record, often }
{ used as keyAECont ai ner}
typeQbj ect Bei ngExani ned = 'exmm'; {used as keyAECont ai ner}
t ypeCur r ent Cont ai ner = 'ccnt'; {used as keyAECont ai ner}
t ypeToken = 'toke'; {substituted for 'ccnt' }
{ before accessor called}
t ypeAbsol ut eOr di nal = ‘'abso'; {f or mbsol ut ePosi ti on}
t ypeRangeDescri pt or = 'rang'; {for mRange}
t ypeLogi cal Descri pt or = 'logi'; {fornTest}
t ypeConpDescri pt or = ‘'cnpd'; {forniest}
{various rel evant keywords}
key AEConpQper at or = 'relo'; {operator for conparison: }
{ '=", '<=", etc.}
keyAELogi cal Ter ns = ‘'terni; {an AEList of terms to be }
{ related by 'logc' bel ow}
keyAELogi cal Oper at or = 'logc'; {KAEAND, KAEOR, or KAENOT}
keyAEQhj ect 1 = 'objl; {first of two objects being }

{ conpared; mnust be object }
{ specifier record}
'obj 2'; {the other object; my be }

keyAEQhj ect 2

{ sinple descriptor record } '%
{ or object specifier record} %
{speci al handl er selectors used with AESet Obj ect Cal | backs} g
keyDi sposeTokenProc = 'xtok'; g
keyAEConpar ePr oc = ‘cnpr';
key AECount Pr oc = 'cont';
keyAEMar kTokenPr oc = 'nkid'

Summary of Resolving and Creating Object Specifier Records 6-105

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

keyAEMar kPr oc "'mar k'
keyAEAd] ust Mar ksProc = ‘adjn;
keyAEGet Er r DescPr oc "indc';

{addi tive val ues for call backFlags paraneter to AEResol ve}
kAElI DoM ni mum $0000; {server does not support whose }
{ descriptor records or nmarking}

kAElI DoWwhose = $0001; {server supports whose }
{ descriptor records}
kAEIl DoMar ki ng = $0004; {server supports narking}

{constants for whose descriptor records}

t ypeWhoseDescri pt or = 'whos'; {whose descriptor record}
f or Mhose = 'whos'; {key formfor key data of descriptor }
{ type typeWhoseDescri ptor}
t ypeWhoseRange = 'wng'; {whose range descriptor record}
keyAEWhoseRangeSt art = ‘'wstr'; {beginning of range}
keyAEVWhoseRangeSt op = 'wstp'; {end of range}
keyAEl ndex = 'kidx'; {index for whose descriptor record}
keyAETest = ‘'ktst'; {test for whose descriptor record}
Data Types
TYPE
ccnt TokenRecord = {used for rewiting tokens in }

RECORD { place of 'ccnt' descriptor }
t okend ass: DescType; { records; only of interest to }
t oken: AEDesc; { those who, when they get ranges }
END; { as key data in their object }
{ accessor functions, resolve }
{ the object specifier records }
{

for the end points nmanual | y}

ccnt TokenRecPtr = ~ccnt TokenRecord;
ccnt TokenRecHandl e = ~ccnt TokenRecPtr

DescPtr = "“AEDesc
DescHandl e = "DescPtr

AccessorProcPtr = ProcPtr

Routines for Resolving and Creating Object Specifier Records

Initializing the Object Support Library
FUNCTI ON AEQoj ectlnit : OSErr;

6-106 Summary of Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Setting Object Accessor Functions and Object Callback Functions

FUNCTI ON AEIl nst al | Obj ect Accessor
(desiredd ass: DescType;
cont ai ner Type: DescType;
t heAccessor: AccessorProcPtr;
accessor Ref con: Longl nt;
i sSysHandl er: Bool ean): OSErr;

FUNCTI ON AESet (bj ect Cal | backs
(myConpar eProc, myCount Proc,
myDi sposeTokenPr oc,
my Get Mar kTokenPr oc, nyMar kPr oc,
myAdj ust Mar ksProc, myGet Err DescProc:
ProcPtr): OSErr;

Getting, Calling, and Removing Object Accessor Functions

FUNCTI ON AEGet Obj ect Accessor
(desiredd ass: DescType;
cont ai ner Type: DescType;
VAR t heAccessor: AccessorProcPtr;
VAR accessor Refcon: Longlnt;
i sSysHandl er: Bool ean): OSErr;

FUNCTI ON AECal | Obj ect Accessor
(desiredd ass: DescType;
cont ai ner Token: AEDesc;
cont ai ner C ass: DescType;
keyForm DescType;
keyDat a: AEDesc;
VAR t heToken: AEDesc): OSErr;

FUNCTI ON AERenpve(hj ect Accessor
(desiredd ass: DescType;
cont ai ner Type: DescType;
t heAccessor: AccessorProcPtr;
i sSysHandl er: Bool ean): OSErr;

Resolving Object Specifier Records

FUNCTI ON AEResol ve (obj ect Specifier: AEDesc;
cal | backFl ags: I nteger;
VAR t heToken: AEDesc): OSErr;

Deallocating Memory for Tokens
FUNCTI ON AEDi sposeToken (VAR t heToken: AEDesc): OSErr;

Summary of Resolving and Creating Object Specifier Records 6-107

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

Creating Object Specifier Records

FUNCTI ON Creat e f set Descri pt or
(theOfset: Longlnt;
VAR t heDescri ptor: AEDesc):
CSErr;

FUNCTI ON Cr eat eConpDescri pt or
(compari sonQperat or: DescType;
VAR oper andl: AEDesc;
VAR oper and2: AEDesc;
di sposel nputs: Bool ean;
VAR t heDescriptor: AEDesc): OSErr;

FUNCTI ON Cr eat eLogi cal Descri pt or
(VAR t heLogi cal Terns: AEDesclLi st;
t heLogi cOperator: DescType;
di sposel nputs: Bool ean;
VAR t heDescri ptor: AEDesc): OSErr;

FUNCTI ON Cr eat eRangeDescri pt or
(VAR rangeStart: AEDesc;
VAR rangeSt op: AEDesc;
di sposel nputs: Bool ean;
VAR t heDescriptor: AEDesc): OSErr;

FUNCTI ON Cr eat eQbj Speci fier (desiredC ass: DescType;
VAR t heCont ai ner: AEDesc;
keyForm DescType;
VAR keyDat a: AEDesc;
di sposel nputs: Bool ean;
VAR obj Speci fier: AEDesc): OSErr;

Application-Defined Routines

Object Accessor Functions

FUNCTI ON MyQnj ect Accessor (desiredd ass: DescType;
cont ai ner Token: AEDesc;
cont ai nerd ass: DescType;
keyForm DescType; keyData: AEDesc;
VAR t heToken: AEDesc;
t heRef con: Longlnt): OSErr;

Object Callback Functions

FUNCTI ON MyCount Obj ect s (desiredd ass: DescType;
cont ai ner C ass: DescType;
t heCont ai ner: AEDesc;
VAR result: Longlnt): OSErr;

6-108 Summary of Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

FUNCTI ON MyConpar eQbj ect s (conpari sonQperat or: DescType;
t heobj ect: AEDesc;
obj ect Or DescToConpar e: AEDesc;
VAR result: Bool ean): OSErr;

FUNCTI ON MyDi sposeToken (VAR unneededToken: AEDesc): CSErr;
FUNCTI ON MyGet Err or Desc (VAR errDescPtr: DescPtr): OSErr;
FUNCTI ON MyGet Mar kToken (cont ai ner Token: AEDesc;

cont ai nerd ass: DescType;
VAR result: AEDesc): OSErr;

FUNCTI ON My Mar k (theToken: AEDesc; markToken: AEDesc;
mar kCount : Longlnt): OSErr;
FUNCTI ON MyAdj ust Mar ks (newStart, newStop: Longlnt;

mar kToken: AEDesc): OSErr;

C Summary
Constants
enum {
#def i ne gestal t Appl eEventsAttr "evnt' /*selector for Apple events*/
gest al t Appl eEvent sPresent =0 /*if this bit is set, then */
/* Appl e Event Manager is */
}; /* avail abl e*/

/*1 ogi cal operators for descriptor records with keyword */
/* keyAELogi cal Oper at or */

#def i ne KAEAND " AND '
#defi ne KAEOR "OR
#def i ne kAENOT " NOT

/*absol ute ordinals used as key data in an object specifier */
/* record with key form formAbsol ut ePosition*/

#defi ne KAEFi r st "firs'
#def i ne kAELast "l ast'
#defi ne kKAEM ddl e "m dd'
#defi ne KAEAny "any '
#def i ne KAEAI | "all !

/*relative ordinals used as key data in an object specifier record */
/* with key formfornRel ati vePosition*/
#def i ne kAENext 'next'

Summary of Resolving and Creating Object Specifier Records 6-109

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

#def i ne KAEPr evi ous ' prev

/*keywords for object specifier records*/

#def i ne keyAEDesi redd ass "want' /*obj ect class | D/

#def i ne keyAECont ai ner "from /*description of container*/

#defi ne keyAEKeyForm "form [*key fornt/

#def i ne keyAEKeyDat a "sel d' /*key data for specified key */
[* form/

/*keywords for range descriptor records*/
#defi ne keyAERangeSt art "star' / *begi nni ng of range*/
#defi ne keyAERangeSt op ' stop’ /*end of range*/

/*val ues for the keyAEKeyForm field of an object specifier record*/

#def i ne formAbsol ut ePosition "indx' /*for exanmple, 1 = first */
/* element in container, -2 = */
/* second fromend of */
/* contai ner*/

#defi ne fornRel ati vePosition "rele' /*key data specifies elenment */
/* before or after container*/
#def i ne fornirest "test' /*key data specifies a test*/
#def i ne fornRange 'rang' /*key data specifies a range*/
#define fornPropertyl D " prop' /*key data is property |D*/
#def i ne for nNane ' name' /*key data is elenment's nane*/

/* descriptor types used to identify Apple event objects*/

#defi ne typeCbj ect Speci fier 'obj / *obj ect specifier record, */
/* often used as */
/* keyAECont ai ner */

#defi ne typeCbj ect Bei ngExani ned "exmm’ /*used as keyAECont ai ner */

#def i ne typeCurrent Cont ai ner 'cent! /*used as keyAECont ai ner*/

#defi ne typeToken 't oke' /*substituted for 'ccnt' */
/* before accessor called*/

#def i ne typeAbsol ut eOr di nal ' abso' / *f or mAbsol ut ePosi ti on*/

#defi ne typeRangeDescri ptor 'rang' / *f or mRange*/

#defi ne typelLogi cal Descri ptor "logi’ [*fornTest */

#def i ne typeConpDescri pt or " cnpd’ /*fornTest*/

/*various rel evant keywords*/

#defi ne keyAEConpOper at or "rel o [*operator for conparison: */
[* =", '<=", etc.*/

#defi ne keyAELogi cal Ter ns "term /*an AELi st of ternms to be */
/* related by 'logc' bel ow/

#def i ne keyAELogi cal Oper at or "l ogc' / *KAEAND, KAEOR, or KkAENOT*/

6-110 Summary of Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

#def i ne keyAEObj ect 1 " obj 1' /*first of two objects being */

/* conpared; nmust be object */
/* specifier record*/

#def i ne keyAEObj ect 2 ' obj 2' /*the other object; may be */

/* sinple descriptor record */
/* or object specifier record*/

/*speci al handl er selectors used with AESet Obj ect Cal | backs*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

keyDi sposeTokenProc ' Xt ok’
key AEConpar ePr oc "cnpr'
keyAECount Pr oc ' cont
keyAENMar k TokenPr oc "nkid
key AEMar kPr oc " mar k'
keyAEAdj ust Mar ksPr oc "adj n
keyAEGet Er r DescPr oc "indc

/*additive values for call backFl ags paraneter to AEResol ve*/
#def i ne kAElI DoM ni mum 0x0000 /*server does not support */

/* whose descriptor records */
/* or marking*/

#def i ne kAElI DoWwiose 0x0001 /*server supports whose */

/* descriptor records*/

#def i ne kAElI DoMar ki ng 0x0004 /*server supports marking*/

/*constants for whose descriptor records*/
#def i ne typeWioseDescri ptor " whos' / *whose descriptor record*/
#defi ne formhhose " whos' /*key formfor key data of */

/* descriptor type */
/* typeWhoseDescri pt or*/

#defi ne typeWioseRange Wr ng / *whose range descriptor */
[* record*/
#def i ne keyAEWhoseRangeSt art "wstr' / *begi nni ng of range*/
#defi ne keyAEWhoseRangeSt op "wst p' /*end of range*/
#defi ne keyAEl ndex ' ki dx' /*index for whose descriptor */
/* record*/
#defi ne keyAETest "ktst' /*test for whose descriptor */
[* record*/
Data Types
struct ccnt TokenRecord { /*used for rewiting tokens */
DescType tokend ass; /* in place of 'ccnt' */
AEDesc token; /* descriptor records; only */
}; /* of interest to those who, */

Summary of Resolving and Creating Object Specifier Records 6-111

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

/* when they get ranges as */
typedef struct ccnt TokenRecord ccnt TokenRecord, /* key data in their object
*ccnt TokenRecPt r, **ccnt TokenRecHandl e; /* accessor functions, */

/* resolve them nanual | y*/

typedef AEDesc *DescPtr, **DescHandl e;

/*typedefs providing type checking for procedure pointers*/
typedef pascal OSErr (*accessorProcPtr) (DescType desiredd ass,
const AEDesc *contai ner,
DescType cont ai nerd ass,
DescType form
const AEDesc *sel ecti onDat a,
AEDesc *val ue, |ong Longlnt);
t ypedef pascal OSErr (*conpareProcPtr) (DescType oper, const AEDesc *obj1,
const AEDesc *obj 2,
Bool ean *result);
typedef pascal OSErr (*countProcPtr)(DescType desiredd ass,
DescType contai nerd ass,
const AEDesc *contai ner,
long *result);
t ypedef pascal OSErr (*di sposeTokenProcPtr) (AEDesc *unneededToken);
typedef pascal OSErr (*get MarkTokenProcPtr) (const AEDesc *Contai ner Token,
DescType contai nerd ass,
AEDesc *result);

typedef pascal OSErr (*getErrDescProcPtr)(DescPtr *appDescPtr);

Routines for Resolving and Creating Object Specifier Records

Initializing the Object Support Library
pascal OSErr AEOQbj ectlnit 0);

Setting Object Accessor Functions and Object Callback Functions

pascal OSErr AEInstall Cbj ect Accessor
(DescType desiredd ass, DescType contai ner Type,
accessor ProcPtr theAccessor,
| ong accessor Ref con, Bool ean i sSysHandl er);
pascal OSErr AESet Obj ect Cal | backs
(conpar eProcPtr myConpar eProc,
count ProcPtr myCount Proc,
di sposeTokenProcPtr nyDi sposeTokenProc,

6-112 Summary of Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

get Mar kTokenPr ocPtr nyGet Mar kTokenPr oc,
mar kProcPtr nyMar kPr oc,

adj ust Mar ksProcPtr mnyAdj ust Mar ksPr oc,
get Err DescProcPtr myGet Err DescProc);

Getting, Calling, and Removing Object Accessor Functions

pascal OSErr AEGet Obj ect Accessor
(DescType desiredd ass, DescType contai ner Type,
accessor ProcPtr *theAccessor,
| ong *accessor Ref con, Bool ean i sSysHandl er);

pascal OSErr AECal | Obj ect Accessor
(DescType desiredd ass,
const AEDesc *contai ner Token,
DescType contai nerd ass, DescType keyForm
const AEDesc *keyData, AEDesc *theToken);
pascal OSErr AERenpbvebhj ect Accessor
(DescType desiredd ass, DescType contai ner Type,
accessorProcPtr theAccessor,
Bool ean i sSysHandl er);

Resolving Object Specifier Records

pascal OSErr AEResol ve (const AEDesc *obj ect Specifi er,
short cal |l backFl ags, AEDesc *theToken);

Deallocating Memory for Tokens
pascal OSErr AEDi sposeToken (AEDesc *theToken);

Creating Object Specifier Records

pascal OSErr CreateO fsetDescriptor
(long theOf fset, AEDesc *theDescriptor);

pascal OSErr CreateConpDescri ptor
(DescType conpari sonOperator, AEDesc* operandl,
AEDesc* operand2, Bool ean di sposel nputs,
AEDesc* t heDescriptor);
pascal OSErr CreatelLogical Descri ptor
(AEDesclLi st *t helLogi cal Ter ns,
DescType thelLogi cOperat or,
Bool ean di sposel nputs, AEDesc *theDescriptor);
pascal OSErr CreateRangeDescri ptor
(AEDesc *rangeStart, AEDesc *rangeStop,
Bool ean di sposel nputs, AEDesc *theDescriptor);

Summary of Resolving and Creating Object Specifier Records 6-113

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

pascal OSErr Createbj Specifier
(DescType desiredd ass, AEDesc *theContai ner,
DescType keyForm AEDesc *keyDat a,
Bool ean di sposel nputs, AEDesc *obj Specifier);

Application-Defined Routines

Object Accessor Functions

pascal OSErr MyQObj ect Accessor
(DescType desiredd ass,
const AEDesc *cont ai ner Token,
DescType cont ai ner d ass,
DescType keyForm const AEDesc *keyDat a,
AEDesc *theToken, |ong *theRefcon);

Object Callback Functions

pascal OSErr MyCount Obj ects (DescType desiredd ass, DescType containerd ass,
const AEDesc *theContainer, long *result);
pascal OSErr MyConpareCbj ects
(DescType conpari sonQper at or,
const AEDesc *theObject,
const AEDesc *object Or DescToConpar e,
Bool ean *result);

pascal OSErr MyDi sposeToken (AEDesc *unneededToken);
pascal OSErr MyGet ErrorDesc (DescPtr *errDescPtr);

pascal OSErr MyGet MarkToken (const AEDesc *cont ai ner Token,

DescType contai nerd ass, AEDesc *result);
pascal OSErr MyMark (const AEDesc *theToken,

const AEDesc *mar kToken, | ong markCount);

pascal OSErr MAdjustMarks (1l ong newStart, |ong newstop,
const AEDesc *nmarkToken);

6-114 Summary of Resolving and Creating Object Specifier Records

CHAPTER 6

Resolving and Creating Object Specifier Records

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_Pack8

Selector Routine

$023A AEDi sposeToken

$0536 AEResol ve

$0738 AERenmove(bj ect Accessor
$0937 AEl nst al | Gbj ect Accessor
$0939 AECet Obj ect Accessor
$0C3B AECal | Obj ect Accessor
$0E35 AESet Obj ect Cal | backs

Result Codes

nokErr
parantrr

eLenErr

menful | Err

user Cancel edErr
pr ocNot Found

buf ferl sSnal |

noQut st andi ngHLE
connectionlnvalid
noUser | nt eracti onAl | owed

noPort Err
dest PortErr

sessC osedErr

er r AECoer ci onFai |

er r AEDescNot Found
er r AECor r upt Dat a
err AEW ongDat aType
er r AENot AEDesc

err AEBadLi stltem

Summary of Resolving and Creating Object Specifier Records

=50

-92
-108
-128
-600

—-607
—608
-609
-610

-903

-906

-917

-1700

-1701
-1702
-1703
-1704
-1705

No error

Parameter error (for example, value of handler pointer
is NI L or odd)

Buffer too big to send

Not enough room in heap zone

User canceled an operation

No eligible process with specified process serial
number

Bulffer is too small

No outstanding high-level event

Nonexistent signature or session ID

Background application sends event requiring
authentication

Client hasn’t set' Sl ZE' resource to indicate
awareness of high-level events

Server hasn’t set' Sl ZE' resource to indicate
awareness of high-level events, or else is not present
The KAEDont Reconnect flag in the sendMbde
parameter was set, and the server quit and then
restarted

Data could not be coerced to the requested descriptor
type

Descriptor record was not found

Data in an Apple event could not be read

Wrong descriptor type

Not a valid descriptor record

Operation involving a list item failed

6-115

Sp102aYy Jayoads

103lgO Buneald pue Buinjosay

CHAPTER 6

Resolving and Creating Object Specifier Records

er r AENewer Ver si on

er r AENot Appl eEvent

er r AEEvent Not Handl ed

er r AERepl yNot Val i d

er r AEUnknownSendMbde

err AEWai t Cancel ed

err AETi neout

err AENoUser | nteracti on
er r AENot ASpeci al Functi on
er r AEPar anM ssed

er r AEUnknownAddr essType
er r AEHandl| er Not Found

err AERepl yNot Arri ved

err AEl | | egal | ndex
er r AEl npossi bl eRange

er r AEW ongNunber Ar gs
er r AEAccessor Not Found
er r AENoSuchLogi cal

err AEBadTest Key

er r AENot AnQbj ect Spec

er r AENoSuchbj ect

er r AENegat i veCount

er r AEEnpt yLi st Cont ai ner
er r AEUnknownQbj ect Type

err AERecor di ngl sAl r eadyOn

6-116

-1706
-1707
-1708
-1709
-1710
-1711
-1712
-1713
-1714
-1715

-1716
-1717

-1718

-1719
-1720

-1721

-1723

-1725

-1726

-1727

-1728

-1729

-1730

-1731

-1732

Need a newer version of the Apple Event Manager
Event is not an Apple event

Event wasn’t handled by an Apple event handler
AEReset Ti mer was passed an invalid reply

Invalid sending mode was passed

User canceled out of wait loop for reply or receipt
Apple event timed out

No user interaction allowed

The keyword is not valid for a special function
Handler cannot understand a parameter the client
considers required

Unknown Apple event address type

No handler found for an Apple event or a coercion, or
no object callback function found

Reply has not yet arrived

Not a valid list index

The range is not valid because it is impossible for a
range to include the first and last objects that were
specified; an example is a range in which the offset of
the first object is greater than the offset of the last object
The number of operands provided for the K AENOT
logical operator is not 1

There is no object accessor function for the specified
object class and token descriptor type

The logical operator in a logical descriptor record is
not KAEAND, kAECR, or KAENOT

The descriptor record in a test key is neither a
comparison descriptor record nor a logical descriptor
record

The obj Speci fi er parameter of AEResol ve is not
an object specifier record

A run-time resolution error, for example: object
specifier record asked for the third element, but there
are only 2.

Object-counting function returned negative value
The container for an Apple event object is specified by
an empty list

Descriptor type of token returned by AEResol ve is
not known to server application

Attempt to turn recording on when it is already on

Summary of Resolving and Creating Object Specifier Records

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	Resolving and Creating Object Specifier Records
	Resolving Object Specifier Records
	Descriptor Records Used in Object Specifier Record...
	Object Class
	Container
	Key Form
	Key Data
	Key Data for a Property ID
	Key Data for an Object’s Name

	Key Data for a Unique ID
	Key Data for Absolute Position
	Key Data for Relative Position
	Key Data for a Test
	Key Data for a Range

	Installing Entries in the Object Accessor Dispatch...
	Installing Object Accessor Functions That Find App...
	Installing Object Accessor Functions That Find Pro...

	Writing Object Accessor Functions
	Writing Object Accessor Functions That Find Apple�...
	Writing Object Accessor Functions That Find Proper...
	Defining Tokens
	Handling Whose Tests

	Writing Object Callback Functions
	Writing an Object-Counting Function
	Writing an Object-Comparison Function
	Writing Marking Callback Functions

	Creating Object Specifier Records
	Creating a Simple Object Specifier Record
	Specifying the Container Hierarchy
	Specifying a Property
	Specifying a Relative Position

	Creating a Complex Object Specifier Record
	Specifying a Test
	Specifying a Range

	Reference to Resolving and Creating Object Specifi...
	Data Structures Used in Object Specifier Records
	Routines for Resolving and Creating Object Specifi...
	Initializing the Object Support Library
	Setting Object Accessor Functions and Object Callb...
	Getting, Calling, and Removing Object Accessor Fun...
	Resolving Object Specifier Records
	Deallocating Memory for Tokens
	Creating Object Specifier Records

	Application-Defined Routines
	Object Accessor Functions
	Object Callback Functions

	Summary of Resolving and Creating Object Specifier...
	Pascal Summary
	Constants
	Data Types
	Routines for Resolving and Creating Object Specifi...
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Routines for Resolving and Creating Object Specifi...
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

