
Objective-C ExtensionsChapter 3

91

The preceding chapter has all you need to know about Objective-C to define
classes and design programs in the language. It covers basic Objective-C syntax
and explains the messaging process in detail.

Class definitions are at the heart of object-oriented programming, but they’re
not the only mechanism for structuring object definitions in Objective-C. This
chapter discusses two other ways of declaring methods and associating them
with a class:

Categories can compartmentalize a class definition or extend an existing one.
Protocols declare methods that can be implemented by any class.

The chapter also explains how static typing works and takes up some lesser used
features of Objective-C, including ways to temporarily overcome its inherent
dynamism.

Categories

You can add methods to a class by declaring them in an interface file under a
category name and defining them in an implementation file under the same
name. The category name indicates that the methods are additions to a class
declared elsewhere, not a new class.

A category can be an alternative to a subclass. Rather than define a subclass to
extend an existing class, through a category you can add methods to the class
directly. For example, you could add categories to NSArray and other OpenStep
classes. As in the case of a subclass, you don’t need source code for the class
you’re extending.

The methods the category adds become part of the class type. For example,
methods added to the NSArray class in a category will be among the methods
the compiler will expect an NSArray instance to have in its repertoire. Methods
added to the NSArray class in a subclass would not be included in the NSArray
type. (This matters only for statically typed objects, since static typing is the
only way the compiler can know an object’s class.)

Category methods can do anything that methods defined in the class proper can
do. At run time, there’s no difference. The methods the category adds to the
class are inherited by all the class’s subclasses, just like other methods.

■

■

Chapter 3 Objective-C Extensions

92

Adding to a Class
The declaration of a category interface looks very much like a class interface
declaration—except the category name is listed within parentheses after the
class name and the superclass isn’t mentioned. Unless its methods don’t access
any instance variables of the class, the category must import the interface file for
the class it extends:

The implementation, as usual, imports its own interface. Assuming that
interface and implementation files are named after the category, a category
implementation looks like this:

Note that a category can’t declare any new instance variables for the class; it
includes only methods. However, all instance variables within the scope of the
class are also within the scope of the category. That includes all instance
variables declared by the class, even ones declared @private.

There’s no limit to the number of categories that you can add to a class, but each
category name must be different, and each should declare and define a different
set of methods.

The methods added in a category can be used to extend the functionality of the
class or override methods the class inherits. A category can also override
methods declared in the class interface. However, it cannot reliably override
methods declared in another category of the same class. A category is not a
substitute for a subclass. It’s best if categories don’t attempt to redefine methods
that aren’t explicitly declared in the class’s @interface section. Also note that a
class shouldn’t define the same method more than once.

Note: When a category overrides an inherited method, the new version can, as
usual, incorporate the inherited version through a message to super. But there’s

#import " ClassName .h"

@interface ClassName (CategoryName)
method declarations
@end

#import " CategoryName .h"

@implementation ClassName (CategoryName)
method definitions
@end

93

no way for a category method to incorporate a method with the same name
defined for the same class.

How Categories Are Used
Categories can be used to extend classes defined by other implementors—for
example, you can add methods to the classes defined in the OpenStep
frameworks. The added methods will be inherited by subclasses and will be
indistinguishable at run time from the original methods of the class.

Categories can also be used to distribute the implementation of a new class into
separate source files—for example, you could group the methods of a large class
into several categories and put each category in a different file. When used like
this, categories can benefit the development process in a number of ways:

They provide a simple way of grouping related methods. Similar methods
defined in different classes can be kept together in the same source file.

They simplify the management of a large class when more than one
developer is contributing to the class definition.

They let you achieve some of the benefits of incremental compilation for a
very large class.

They can help improve locality of reference for commonly used methods.

They enable you to configure a class differently for different applications,
without having to maintain different versions of the same source code.

Categories are also used to declare informal protocols, as discussed under
“Protocols” below.

Categories of the Root Class
A category can add methods to any class, including the root class. Methods
added to NSObject become available to all classes that are linked to your code.
While this can be useful at times, it can also be quite dangerous. Although it may
seem that the modifications the category makes are well understood and of
limited impact, inheritance gives them a wide scope. You may be making
unintended changes to unseen classes; you may not know all the consequences
of what you’re doing. Moreover, others who are unaware of your changes won’t
understand what they’re doing.

In addition, there are two other considerations to keep in mind when
implementing methods for the root class:

■

■

■

■

■

Chapter 3 Objective-C Extensions

94

Messages to super are invalid (there is no superclass).
Class objects can perform instance methods defined in the root class.

Normally, class objects can perform only class methods. But instance methods
defined in the root class are a special case. They define an interface to the run-
time system that all objects inherit. Class objects are full-fledged objects and
need to share the same interface.

This feature means that you need to take into account the possibility that an
instance method you define in a category of the NSObject class might be
performed not only by instances but by class objects as well. For example,
within the body of the method, self might mean a class object as well as an
instance. See the NSObject class specification in the Foundation Framework
Reference for more information on class access to root instance methods.

Protocols

Class and category interfaces declare methods that are associated with a
particular class—mainly methods that the class implements. Informal and
formal protocols, on the other hand, declare methods not associated with a class,
but which any class, and perhaps many classes, might implement.

A protocol is simply a list of method declarations, unattached to a class
definition. For example, these methods that report user actions on the mouse
could be gathered into a protocol:

Any class that wanted to respond to mouse events could adopt the protocol and
implement its methods.

Protocols free method declarations from dependency on the class hierarchy, so
they can be used in ways that classes and categories cannot. Protocols list
methods that are (or may be) implemented somewhere, but the identity of the
class that implements them is not of interest. What is of interest is whether or
not a particular class conforms to the protocol—whether it has implementations
of the methods the protocol declares. Thus objects can be grouped into types
not just on the basis of similarities due to the fact that they inherit from the same
class, but also on the basis of their similarity in conforming to the same protocol.

■

■

- (void)mouseDown:(NSEvent *)theEvent;
- (void)mouseDragged:(NSEvent *)theEvent;
- (void)mouseUp:(NSEvent *)theEvent;

95

Classes in unrelated branches of the inheritance hierarchy might be typed alike
because they conform to the same protocol.

Protocols can play a significant role in object-oriented design, especially where
a project is divided among many implementors or it incorporates objects
developed in other projects. OPENSTEP software uses them heavily to support
interprocess communication through Objective-C messages.

However, an Objective-C program doesn’t need to use protocols. Unlike class
definitions and message expressions, they’re optional. Some OPENSTEP
frameworks use them; some don’t. It all depends on the task at hand.

How Protocols Are Used
Protocols are useful in at least three different situations:

To declare methods that others are expected to implement
To declare the interface to an object while concealing its class
To capture similarities among classes that are not hierarchically related

The following sections discuss these situations and the roles protocols can play.

Methods for Others to Implement
If you know the class of an object, you can look at its interface declaration (and
the interface declarations of the classes it inherits from) to find what messages it
responds to. These declarations advertise the messages it can receive. Protocols
provide a way for it to also advertise the messages it sends.

Communication works both ways; objects send messages as well as receive
them. For example, an object might delegate responsibility for a certain
operation to another object, or it may on occasion simply need to ask another
object for information. In some cases, an object might be willing to notify other
objects of its actions so that they can take whatever collateral measures might be
required.

If you develop the class of the sender and the class of the receiver as part of the
same project (or if someone else has supplied you with the receiver and its
interface file), this communication is easily coordinated. The sender simply
imports the interface file of the receiver. The imported file declares the method
selectors the sender uses in the messages it sends.

However, if you develop an object that sends messages to objects that aren’t yet
defined—objects that you’re leaving for others to implement—you won’t have
the receiver’s interface file. You need another way to declare the methods you
use in messages but don’t implement. A protocol serves this purpose. It informs

■

■

■

Chapter 3 Objective-C Extensions

96

the compiler about methods the class uses and also informs other implementors
of the methods they need to define to have their objects work with yours.

Suppose, for example, that you develop an object that asks for the assistance of
another object by sending it helpOut: and other messages. You provide an assistant
instance variable to record the outlet for these messages and define a companion
method to set the instance variable. This method lets other objects register
themselves as potential recipients of your object’s messages:

Then, whenever a message is to be sent to the assistant, a check is made to be
sure that the receiver implements a method that can respond:

Since, at the time you write this code, you can’t know what kind of object might
register itself as the assistant, you can only declare a protocol for the helpOut:
method; you can’t import the interface file of the class that implements it.

Anonymous Objects
A protocol can also be used to declare the methods of an anonymous object, an
object of unknown class. An anonymous object may represent a service or
handle a limited set of functions, especially where only one object of its kind is
needed. (Objects that play a fundamental role in defining an application’s
architecture and objects that you must initialize before using are not good
candidates for anonymity.)

Objects can’t be anonymous to their developers, of course, but they can be
anonymous when the developer supplies them to someone else. For example,
an anonymous object might be part of a framework or be located in a remote
process:

- setAssistant:anObject
{
 assistant = anObject;
 return self;
}

- (BOOL)doWork
{
 . . .

 if ([assistant respondsTo:@selector(helpOut:)]) {
 [assistant helpOut:self];
 return YES;
 }
 return NO;
}

97

Someone who supplies a framework or a suite of objects for others to use can
include objects that are not identified by a class name or an interface file.
Lacking the name and class interface, users have no way of creating instances
of the class. Instead, the supplier must provide a ready-made instance.
Typically, a method in another class returns a usable object:

The object returned by the method is an object without a class identity, at
least not one the supplier is willing to reveal. For it to be of any use at all, the
supplier must be willing to identify at least some of the messages that it can
respond to. This is done by associating the object with a list of methods
declared in a protocol.

It’s possible to send Objective-C messages to remote objects—objects in other
applications. (The next section, “Remote Messaging,” discusses this
possibility in more detail.)

Each application has its own structure, classes, and internal logic. But you
don’t need to know how another application works or what its components
are to communicate with it. As an outsider, all you need to know is what
messages you can send (the protocol) and where to send them (the receiver).

An application that publishes one of its objects as a potential receiver of
remote messages must also publish a protocol declaring the methods the
object will use to respond to those messages. It doesn’t have to disclose
anything else about the object. The sending application doesn’t need to
know the class of the object or use the class in its own design. All it needs is
the protocol.

Protocols make anonymous objects possible. Without a protocol, there would be
no way to declare an interface to an object without identifying its class.

Note: Even though the supplier of an anonymous object won’t reveal its class, the
object itself will reveal it at run time. A class message will return the anonymous
object’s class. However, there’s usually little point in discovering this extra
information; the information in the protocol is sufficient.

Non-Hierarchical Similarities
If more than one class implements a set of methods, those classes are often
grouped under an abstract class that declares the methods they have in common.
Each subclass may reimplement the methods in its own way, but the inheritance

■

id formatter = [receiver formattingService];

■

Chapter 3 Objective-C Extensions

98

hierarchy and the common declaration in the abstract class captures the essential
similarity between the subclasses.

However, sometimes it’s not possible to group common methods in an abstract
class. Classes that are unrelated in most respects might nevertheless need to
implement some similar methods. This limited similarity may not justify a
hierarchical relationship. For example, many different kinds of classes might
implement methods to facilitate reference counting (this is just an example,
since the Foundation Framework already implements reference counting for
you):

These methods could be grouped into a protocol and the similarity between
implementing classes accounted for by noting that they all conform to the same
protocol.

Objects can be typed by this similarity (the protocols they conform to), rather
than by their class. For example, an NSMatrix must communicate with the
objects that represent its cells. The NSMatrix could require each of these
objects to be a kind of NSCell (a type based on class) and rely on the fact that
all objects that inherit from the NSCell class will have the methods needed to
respond to NSMatrix messages. Alternatively, the NSMatrix could require
objects representing cells to have methods that can respond to a particular set of
messages (a type based on protocol). In this case, the NSMatrix wouldn’t care
what class a cell object belonged to, just that it implemented the methods.

Informal Protocols
The simplest way of declaring a protocol is to group the methods in a category
declaration:

Informal protocols are typically declared as categories of the NSObject class,
since that broadly associates the method names with any class that inherits from

- setRefCount:(int)count;
- (int)refCount;
- incrementCount;
- decrementCount;

@interface NSObject (RefCounting)
- setRefCount:(int)count;
- (int)refCount;
- incrementCount;
- decrementCount;
@end

99

NSObject. Because all classes inherit from the root class, the methods aren’t
restricted to any part of the inheritance hierarchy. (It would also be possible to
declare an informal protocol as a category of another class to limit it to a certain
branch of the inheritance hierarchy, but there is little reason to do so.)

When used to declare a protocol, a category interface doesn’t have a
corresponding implementation. Instead, classes that implement the protocol
declare the methods again in their own interface files and define them along
with other methods in their implementation files.

An informal protocol bends the rules of category declarations to list a group of
methods but not associate them with any particular class or implementation.

Being informal, protocols declared in categories don’t receive much language
support. There’s no type checking at compile time nor a check at run time to see
whether an object conforms to the protocol. To get these benefits, you must use
a formal protocol.

Formal Protocols
The Objective-C language provides a way to formally declare a list of methods
as a protocol. Formal protocols are supported by the language and the run-time
system. For example, the compiler can check for types based on protocols, and
objects can introspect at run time to report whether or not they conform to a
protocol.

Formal protocols are declared with the @protocol directive:

For example, the reference-counting protocol could be declared like this:

Unlike class names, protocol names don’t have global visibility. They live in
their own name space.

@protocol ProtocolName
method declarations
@end

@protocol ReferenceCounting
- setRefCount:(int)count;
- (int)refCount;
- incrementCount;
- decrementCount;
@end

Chapter 3 Objective-C Extensions

100

A class is said to adopt a formal protocol if it agrees to implement the methods
the protocol declares. Class declarations list the names of adopted protocols
within angle brackets after the superclass name:

Categories adopt protocols in much the same way:

Names in the protocol list are separated by commas.

A class or category that adopts a protocol must import the header file where the
protocol is declared. The methods declared in the adopted protocol are not
declared elsewhere in the class or category interface.

It’s possible for a class to simply adopt protocols and declare no other methods.
For example, this class declaration,

adopts the Formatting and Prettifying protocols, but declares no instance
variables or methods of its own.

A class or category that adopts a protocol is obligated to implement all the
methods the protocol declares. The compiler will issue a warning if it does not.
The Formatter class above would define all the methods declared in the two
protocols it adopts, in addition to any it might have declared itself.

Adopting a protocol is similar in some ways to declaring a superclass. Both assign
methods to the new class. The superclass declaration assigns it inherited
methods; the protocol assigns it methods declared in the protocol list.

Protocol Objects
Just as classes are represented at run time by class objects and methods by
selector codes, formal protocols are represented by a special data type—
instances of the Protocol class. Source code that deals with a protocol (other than
to use it in a type specification) must refer to the Protocol object.

@interface ClassName : ItsSuperclass < protocol list >

@interface ClassName (CategoryName) < protocol list >

@interface Formatter : NSObject < Formatting, Prettifying >
@end

101

In many ways, protocols are similar to class definitions. They both declare
methods, and at run time they’re both represented by objects—classes by class
objects and protocols by Protocol objects. Like class objects, Protocol objects are
created automatically from the definitions and declarations found in source code
and are used by the run-time system. They’re not allocated and initialized in
program source code.

Source code can refer to a Protocol object using the @protocol() directive—the
same directive that declares a protocol, except that here it has a set of trailing
parentheses. The parentheses enclose the protocol name:

This is the only way that source code can conjure up a Protocol object. Unlike a
class name, a protocol name doesn’t designate the object—except inside
@protocol().

The compiler creates a Protocol object for each protocol declaration it
encounters, but only if the protocol is also:

Adopted by a class, or
Referred to somewhere in source code (using @protocol()).

Protocols that are declared but not used (except for type checking as described
below) aren’t represented by Protocol objects at run-time.

Conforming to a Protocol
A class is said to conform to a formal protocol if it adopts the protocol or inherits
from a class that adopts it. An instance of a class is said to conform to the same
set of protocols its class conforms to.

Since a class must implement all the methods declared in the protocols it adopts,
and those methods are inherited by its subclasses, saying that a class or an
instance conforms to a protocol is tantamount to saying that it has in its
repertoire all the methods that the protocol declares.

It’s possible to check whether an object conforms to a protocol by sending it a
conformsTo: message.

Protocol *counter = @protocol(ReferenceCounting);

■

■

if ([receiver conformsTo:@protocol(ReferenceCounting)])

 [receiver incrementCount];

Chapter 3 Objective-C Extensions

102

The conformsTo: test is very much like the respondsTo: test for a single method,
except that it tests whether a protocol has been adopted (and presumably all the
methods it declares implemented) rather than just whether one particular
method has been implemented. Because it checks for a whole list of methods,
conformsTo: can be more efficient than respondsTo:.

The conformsTo: test is also very much like the isKindOf: test, except that it tests for
a type based on a protocol rather than a type based on the inheritance hierarchy.

Type Checking
Type declarations for objects can be extended to include formal protocols.
Protocols thus offer the possibility of another level of type checking by the
compiler, one that’s more abstract since it’s not tied to particular
implementations.

In a type declaration, protocol names are listed between angle brackets after the
type name:

Just as static typing permits the compiler to test for a type based on the class
hierarchy, this syntax permits the compiler to test for a type based on
conformance to a protocol.

For example, if Formatter is an abstract class, this declaration

groups all objects that inherit from Formatter into a type and permits the
compiler to check assignments against that type.

Similarly, this declaration,

groups all objects that conform to the Formatting protocol into a type, regardless
of their positions in the class hierarchy. The compiler can check to be sure that
only objects that conform to the protocol are assigned to the type.

- (id <Formatting>)formattingService;
id <ReferenceCounting, AutoFreeing> anObject;

Formatter *anObject;

id <Formatting> anObject;

103

In each case, the type groups similar objects—either because they share a
common inheritance, or because they converge on a common set of methods.

The two types can be combined in a single declaration:

Protocols can’t be used to type class objects. Only instances can be statically
typed to a protocol, just as only instances can be statically typed to a class.
(However, at run time, both classes and instances will respond to a conformsTo:
message.)

Protocols within Protocols
One protocol can incorporate others using the same syntax that classes use to
adopt a protocol:

All the protocols listed between angle brackets are considered part of the
ProtocolName protocol. For example, if the Paging protocol incorporates the
Formatting protocol,

any object that conforms to the Paging protocol will also conform to Formatting.
Type declarations

and conformsTo: messages

need mention only the Paging protocol to test for conformance to Formatting as
well.

Formatter <Formatting> *anObject;

@protocol ProtocolName < protocol list >

@protocol Paging < Formatting >

id <Paging> someObject;

if ([anotherObject conformsTo:@protocol(Paging)])
 . . .

Chapter 3 Objective-C Extensions

104

When a class adopts a protocol, it must implement the methods the protocol
declares, as mentioned earlier. In addition, it must conform to any protocols the
adopted protocol incorporates. If an incorporated protocol incorporates still
other protocols, the class must also conform to them. A class can conform to an
incorporated protocol by either:

Implementing the methods the protocol declares, or
Inheriting from a class that adopts the protocol and implements the methods.

Suppose, for example, that the Pager class adopts the Paging protocol. If Pager
is a subclass of NSObject,

it must implement all the Paging methods, including those declared in the
incorporated Formatting protocol. It adopts the Formatting protocol along with
Paging.

On the other hand, if Pager is a subclass of Formatter (a class that independently
adopts the Formatting protocol),

it must implement all the methods declared in the Paging protocol proper, but
not those declared in Formatting. Pager inherits conformance to the Formatting
protocol from Formatter.

Note that a class can conform to a protocol without formally adopting it simply
by implementing the methods declared in the protocol.

Referring to Other Protocols
When working on complex applications, you occasionally find yourself writing
code that looks like this:

■

■

@interface Pager : NSObject < Paging >

@interface Pager : Formatter < Paging >

#import "B.h"

@protocol A

- foo:(id)anObject;

@end

105

where protocol B is declared like this:

In such a situation, circularity results and neither file will compile correctly. To
break this recursive cycle, you must use the @protocol directive to make a forward
reference to the needed protocol instead of importing the interface file where
the protocol is defined. The following code excerpt illustrates how you would
do this:

Note that using the @protocol directive in this manner simply informs the
compiler that “B” is a protocol to be defined later. It doesn’t import the interface
file where protocol B is defined.

Remote Messaging

Like most other programming languages, Objective-C was initially designed for
programs that are executed as a single process in a single address space.

Nevertheless, the object-oriented model, where communication takes place
between relatively self-contained units through messages that are resolved at
run-time, would seem well suited for interprocess communication as well. It’s
not hard to imagine Objective-C messages between objects that reside in
different address spaces (that is, in different tasks) or in different threads of
execution of the same task.

For example, in a typical server-client interaction, the client task might send its
requests to a designated object in the server, and the server might target specific
client objects for the notifications and other information it sends.

#import "A.h"

@protocol B

- bar:(id <A>)anObject;

@end

@protocol B;

@protocol A

- foo:(id)anObject;

@end

Chapter 3 Objective-C Extensions

106

Or imagine an interactive application that needs to do a good deal of
computation to carry out a user command. It could simply put up an attention
panel telling the user to wait while it was busy, or it could isolate the processing
work in a subordinate task, leaving the main part of the application free to accept
user input. Objects in the two tasks would communicate through Objective-C
messages.

Similarly, several separate processes could cooperate on the editing of a single
document. There could be a different editing tool for each type of data in the
document. One task might be in charge of presenting a unified user interface on-
screen and of sorting out which user instructions were the responsibility of
which editing tool. Each cooperating task could be written in Objective-C, with
Objective-C messages being the vehicle of communication between the user
interface and the tools and between one tool and another.

Distributed Objects
Remote messaging in Objective-C requires a run-time system that can establish
connections between objects in different address spaces, recognize when a
message is intended for a remote address, and transfer data from one address
space to another. It must also mediate between the separate schedules of the
two tasks; it has to hold messages until their remote receivers are free to respond
to them.

OpenStep includes a distributed objects architecture that is essentially this kind of
extension to the run-time system. Using distributed objects, you can send
Objective-C messages to objects in other tasks or have messages executed in
other threads of the same task. (When remote messages are sent between two
threads of the same task, the threads are treated exactly like threads in different
tasks.) Note that OpenStep’s distributed objects system is built on top of the
run-time system; it doesn’t alter the fundamental behavior of your OpenStep
objects.

To send a remote message, an application must first establish a connection with
the remote receiver. Establishing the connection gives the application a proxy
for the remote object in its own address space. It then communicates with the
remote object through the proxy. The proxy assumes the identity of the remote
object; it has no identity of its own. The application is able to regard the proxy
as if it were the remote object; for most purposes, it is the remote object.

Remote messaging is diagrammed below, where object A communicates
with object B through a proxy, and messages for B wait in a queue until B is
ready to respond to them:

107

The sender and receiver are in different tasks and are scheduled independently
of each other. So there’s no guarantee that the receiver will be free to accept a
message when the sender is ready to send it. Therefore, arriving messages are
placed in a queue and retrieved at the convenience of the receiving application.

A proxy doesn’t act on behalf of the remote object or need access to its class. It
isn’t a copy of the object, but a lightweight substitute for it. In a sense, it’s
transparent; it simply passes the messages it receives on to the remote receiver
and manages the interprocess communication. Its main function is to provide a
local address for an object that wouldn’t otherwise have one. A proxy isn’t fully
transparent, however. For instance, a proxy doesn’t allow you to directly set and
get an object’s instance variables.

A remote receiver is typically anonymous. Its class is hidden inside the remote
application. The sending application doesn’t need to know how that application
is designed or what classes it uses. It doesn’t need to use the same classes itself.
All it needs to know is what messages the remote object responds to.

Because of this, an object that’s designated to receive remote messages typically
advertises its interface in a formal protocol. Both the sending and the receiving
application declare the protocol—they both import the same protocol
declaration. The receiving application declares it because the remote object
must conform to the protocol. The sending application declares it to inform the
compiler about the messages it sends and because it may use the conformsTo:
method and the @protocol() directive to test the remote receiver. The sending
application doesn’t have to implement any of the methods in the protocol; it
declares the protocol only because it initiates messages to the remote receiver.

The distributed objects architecture, including the NSProxy and
NSConnection classes, is documented in the Foundation Framework Reference.

Language Support
Remote messaging raises not only a number of intriguing possibilities for
program design, it also raises some interesting issues for the Objective-C
language. Most of the issues are related to the efficiency of remote messaging

BA
Proxy

for
B

Chapter 3 Objective-C Extensions

108

and the degree of separation that the two tasks should maintain while they’re
communicating with each other.

So that programmers can give explicit instructions about the intent of a remote
message, Objective-C defines six type qualifiers that can be used when
declaring methods inside a formal protocol:

oneway
in
out
inout
bycopy
byref

These modifiers are restricted to formal protocols; they can’t be used inside class
and category declarations. However, if a class or category adopts a protocol, its
implementation of the protocol methods can use the same modifiers that are
used to declare the methods.

The following sections explain how these modifiers are used.

Synchronous and Asynchronous Messages
Consider first a method with just a simple return value:

When a canDance message is sent to a receiver in the same application, the
method is invoked and the return value provided directly to the sender. But
when the receiver is in a remote application, two underlying messages are
required—one message to get the remote object to invoke the method, and the
other message to send back the result of the remote calculation. This is
illustrated in the figure below:

Most remote messages will be, at bottom, two-way (or “round trip”) remote
procedure calls (RPCs) like this one. The sending application waits for the

- (BOOL)canDance;

Proxy
for
B

B

initial message

return information

A

109

receiving application to invoke the method, complete its processing, and send
back an indication that it has finished, along with any return information
requested. Waiting for the receiver to finish, even if no information is returned,
has the advantage of coordinating the two communicating applications, of
keeping them both “in sync.” For this reason, round-trip messages are often
called synchronous. Synchronous messages are the default.

However, it’s not always necessary or a good idea to wait for a reply. Sometimes
it’s sufficient simply to dispatch the remote message and return, allowing the
receiver to get to the task when it will. In the meantime, the sender can go on to
other things. Objective-C provides a return type modifier, oneway, to indicate
that a method is used only for asynchronous messages:

Although oneway is a type qualifier (like const) and can be used in combination
with a specific type name, such as oneway float or oneway id, the only such
combination that makes any sense is oneway void. An asynchronous message can’t
have a valid return value.

Pointer Arguments
Next, consider methods that take pointer arguments. A pointer can be used to
pass information to the receiver by reference. When invoked, the method looks
at what’s stored in the address it’s passed.

The same sort of argument can also be used to return information by reference.
The method uses the pointer to find where it should place information
requested in the message.

- (oneway void)waltzAtWill;

- setTune:(struct tune *)aSong
{
 tune = *aSong;
 . . .
}

- getTune:(struct tune *)theSong
{
 . . .
 *theSong = tune;
}

Chapter 3 Objective-C Extensions

110

The way the pointer is used makes a difference in how the remote message is
carried out. In neither case can the pointer simply be passed to the remote
object unchanged; it points to a memory location in the sender’s address space
and would not be meaningful in the address space of the remote receiver. The
run-time system for remote messaging must make some adjustments behind
the scenes.

If the argument is used to pass information by reference, the run-time system
must dereference the pointer, ship the value it points to over to the remote
application, store the value in an address local to that application, and pass that
address to the remote receiver.

If, on the other hand, the pointer is used to return information by reference, the
value it points to doesn’t have to be sent to the other application. Instead, a value
from the other application must be sent back and written into the location
indicated by the pointer.

In the one case, information is passed on the first leg of the round trip. In the
other case, information is returned on the second leg of the round trip. Because
these cases result in very different actions on the part of the run-time system for
remote messaging, Objective-C provides type modifiers that can clarify the
programmer’s intention:

The type modifier in indicates that information is being passed in a message:

The modifier out indicates that an argument is being used to return
information by reference:

A third modifier, inout, indicates that an argument is used both to provide
information and to get information back:

The OpenStep distributed objects system takes inout to be the default modifier
for all pointer arguments except those declared const, for which in is the default.
inout is the safest assumption but also the most time-consuming since it requires
passing information in both directions. The only modifier that makes sense for

■

- setTune:(in struct tune *)aSong;

■

- getTune:(out struct tune *)theSong;

■

- adjustTune:(inout struct tune *)aSong;

111

arguments passed by value (non-pointers) is in. While in can be used with any
kind of argument, out and inout make sense only for pointers.

In C, pointers are sometimes used to represent composite values. For example,
a string is represented as a character pointer (char *). Although in notation and
implementation there’s a level of indirection here, in concept there’s not.
Conceptually, a string is an entity in and of itself, not a pointer to something else.

In cases like this, the distributed objects system automatically dereferences the
pointer and passes whatever it points to as if by value. Therefore, the out and
inout modifiers make no sense with simple character pointers. It takes an
additional level of indirection in a remote message to pass or return a string by
reference:

The same is true of objects:

These conventions are enforced at run time, not by the compiler.

Proxies and Copies
Finally, consider a method that takes an object as an argument:

A danceWith: message passes an object id to the receiver. If the sender and
receiver are in the same application, they would both be able to refer to the same
aPartner object.

This is true even if the receiver is in a remote application, except that the
receiver will need to refer to the object through a proxy (since the object isn’t in
its address space). The pointer that danceWith: delivers to a remote receiver is
actually a pointer to the proxy. Messages sent to the proxy would be passed
across the connection to the real object and any return information would be
passed back to the remote application.

- getTuneTitle:(out char **)theTitle;

- adjustRectangle:(inout Rectangle **)theRect;

- danceWith:(id)aPartner;

Chapter 3 Objective-C Extensions

112

There are times when proxies may be unnecessarily inefficient, when it’s better
to send a copy of the object to the remote process so that it can interact with it
directly in its own address space. To give programmers a way to indicate that this
is intended, Objective-C provides a bycopy type modifier:

bycopy can also be used for return values:

It can similarly be used with out to indicate that an object returned by reference
should be copied rather than delivered in the form of a proxy:

Note: When a copy of an object is passed to another application, it cannot be
anonymous. The application that receives the object must have the class of the
object loaded in its address space.

bycopy makes so much sense for certain classes—classes that are intended to
contain a collection of other objects, for instance—that often these classes are
written so that a copy is sent to a remote receiver, instead of the usual reference.
You can override this behavior with byref, however, thereby specifying that
objects passed into or out of a method should all be passed by reference. Since
passing by reference is the default behavior for the vast majority of Objective-C
objects, you will rarely, if ever, make use of the byref keyword.

The only type that it makes sense for bycopy or byref to modify is an object,
whether dynamically typed id or statically typed by a class name.

Although bycopy and byref can’t be used inside class and category declarations,
they can be used within formal protocols. For instance, you could write a formal
protocol foo as follows:

- danceWith:(bycopy id)aClone;

- (bycopy)dancer;

- getDancer:(bycopy out id *)theDancer;

@Protocol foo

- (bycopy)array;
@end

113

A class or category can then adopt your protocol foo. This allows you to construct
protocols so that they provide “hints” as to how objects should be passed and
returned by the methods described by the protocol.

Static Options

Objective-C objects are dynamic entities. As many decisions about them as
possible are pushed from compile time to run time:

The memory for objects is dynamically allocated at run time by class methods
that create new instances.

Objects are dynamically typed. In source code (at compile time), any object can
be of type id no matter what its class. The exact class of an id variable (and
therefore its particular methods and data structure) isn’t determined until the
program is running.

Messages and methods are dynamically bound, as described under “How
Messaging Works” in the previous chapter. A run-time procedure matches
the method selector in the message to a method implementation that
“belongs to” the receiver.

These features give object-oriented programs a great deal of flexibility and
power, but there’s a price to pay. Messages are somewhat slower than function
calls, for example, (though not much slower due to the efficiency of the run-time
system) and the compiler can’t check the exact types (classes) of id variables.

To permit better compile-time type checking, and to make code more self-
documenting, Objective-C allows objects to be statically typed with a class
name rather than generically typed as id. It also lets you turn some of its object-
oriented features off in order to shift operations from run time back to compile
time.

Static Typing
If a pointer to a class name is used in place of id in an object declaration,

■

■

■

Rectangle *thisObject;

Chapter 3 Objective-C Extensions

114

the compiler restricts the declared variable to be either an instance of the class
named in the declaration or an instance of a class that inherits from the named
class. In the example above, thisObject can only be a Rectangle of some kind.

Statically typed objects have the same internal data structures as objects
declared to be ids. The type doesn’t affect the object; it affects only the amount
of information given to the compiler about the object and the amount of
information available to those reading the source code.

Static typing also doesn’t affect how the object is treated at run time. Statically
typed objects are dynamically allocated by the same class methods that create
instances of type id. If Square is a subclass of Rectangle, the following code
would still produce an object with all the instance variables of a Square, not just
those of a Rectangle:

Messages sent to statically typed objects are dynamically bound, just as objects
typed id are. The exact type of a statically typed receiver is still determined at
run time as part of the messaging process. A display message sent to thisObject

will perform the version of the method defined in the Square class, not its
Rectangle superclass.

By giving the compiler more information about an object, static typing opens up
possibilities that are absent for objects typed id:

In certain situations, it allows for compile-time type checking.

It can free objects from the restriction that identically named methods must
have identical return and argument types.

It permits you to use the structure pointer operator to directly access an
object’s instance variables.

The first two topics are discussed in the sections below. The third was covered
in the previous chapter under “Defining A Class.”

Rectangle *thisObject = [[Square alloc] init];

[thisObject display];

■

■

■

115

Type Checking
With the additional information provided by static typing, the compiler can
deliver better type-checking services in two situations:

When a message is sent to a statically typed receiver, the compiler can check
to be sure that the receiver can respond. A warning is issued if the receiver
doesn’t have access to the method named in the message.

When a statically typed object is assigned to a statically typed variable, the
compiler can check to be sure that the types are compatible. A warning is
issued if they’re not.

An assignment can be made without warning provided the class of the object
being assigned is identical to, or inherits from, the class of the variable receiving
the assignment. This is illustrated in the example below.

Here aRect can be assigned to aShape because a Rectangle is a kind of Shape—
the Rectangle class inherits from Shape. However, if the roles of the two
variables are reversed and aShape is assigned to aRect, the compiler will generate
a warning; not every Shape is a Rectangle. (For reference, see the figure in the
previous chapter that shows the class hierarchy including Shape and Rectangle.)

There’s no check when the expression on either side of the assignment operator
is an id. A statically typed object can be freely assigned to an id, or an id to a
statically typed object. Because methods like alloc and init return ids, the
compiler doesn’t check to be sure that a compatible object is returned to a
statically typed variable. The following code is error-prone, but is allowed
nonetheless:

Note: This is consistent with the semantics of void * (pointer to void) in ANSI C.
Just as void * is a generic pointer that eliminates the need for coercion in
assignments between pointers, id is a generic pointer to objects that eliminates
the need for coercion to a particular class in assignments between objects.

■

■

Shape *aShape;
Rectangle *aRect;

aRect = [[Rectangle alloc] init];
aShape = aRect;

Rectangle *aRect;
aRect = [[Shape alloc] init];

Chapter 3 Objective-C Extensions

116

Return and Argument Types
In general, methods that share the same selector (the same name) must also
share the same return and argument types. This constraint is imposed by
dynamic binding. Because the class of a message receiver, and therefore class-
specific details about the method it’s asked to perform, can’t be known at
compile time, the compiler must treat all methods with the same name alike.
When it prepares information on method return and argument types for the run-
time system, it creates just one method description for each method selector.

However, when a message is sent to a statically typed object, the class of the
receiver is known by the compiler. The compiler has access to class-specific
information about the methods. Therefore, the message is freed from the
restrictions on its return and argument types.

Static Typing to an Inherited Class
An instance can be statically typed to its own class or to any class that it inherits
from. All instances, for example, can be statically typed as NSObjects.

However, the compiler understands the class of a statically typed object only
from the class name in the type designation, and it does its type checking
accordingly. Typing an instance to an inherited class can therefore result in
discrepancies between what the compiler thinks would happen at run time and
what will actually happen.

For example, if you statically type a Rectangle instance as a Shape,

the compiler will treat it as a Shape. If you send the object a message to perform
a Rectangle method,

the compiler will complain. The isFilled method is defined in the Rectangle class,
not in Shape.

However, if you send it a message to perform a method that the Shape class
knows about,

Shape *myRect = [[Rectangle alloc] init];

BOOL solid = [myRect isFilled];

117

the compiler won’t complain, even though Rectangle overrides the method. At
run time, Rectangle’s version of the method will be performed.

Similarly, suppose that the Upper class declares a worry method that returns a
double,

and the Middle subclass of Upper overrides the method and declares a new
return type:

If an instance is statically typed to the Upper class, the compiler will think that
its worry method returns a double, and if an instance is typed to the Middle class,
it will think that worry returns an int. Errors will obviously result if a Middle
instance is typed to the Upper class. The compiler will inform the run-time
system that a worry message sent to the object will return a double, but at run time
it will actually return an int and generate an error.

Static typing can free identically named methods from the restriction that they
must have identical return and argument types, but it can do so reliably only if
the methods are declared in different branches of the class hierarchy.

Getting a Method Address
The only way to circumvent dynamic binding is to get the address of a method
and call it directly as if it were a function. This might be appropriate on the rare
occasions when a particular method will be performed many times in succession
and you want to avoid the overhead of messaging each time the method is
performed.

With a method defined in the NSObject class, methodForSelector:, you can ask for
a pointer to the procedure that implements a method, then use the pointer to
call the procedure. The pointer that methodForSelector: returns must be carefully
cast to the proper function type. Both return and argument types should be
included in the cast.

[myRect display];

- (double)worry;

- (int)worry;

Chapter 3 Objective-C Extensions

118

The example below shows how the procedure that implements the setFilled :
method might be called:

The first two arguments passed to the procedure are the receiving object (self)
and the method selector (_cmd). These arguments are hidden in method syntax
but must be made explicit when the method is called as a function.

Using methodForSelector: to circumvent dynamic binding saves most of the time
required by messaging. However, the savings will be significant only where a
particular message will be repeated many times, as in the for loop shown above.

Note that methodForSelector: is provided by the run-time system; it’s not a feature
of the Objective-C language itself.

Getting an Object Data Structure
A fundamental tenet of object-oriented programming is that the data structure
of an object is private to the object. Information stored there can be accessed
only through messages sent to the object. Although it is generally considered a
poor programming practice, there is a way to strip an object data structure of its
“objectness” and treat it like any other C structure. This makes all the object’s
instance variables publicly available.

When given a class name as an argument, the @defs() directive produces the
declaration list for an instance of the class. This list is useful only in declaring
structures, so @defs() can appear only in the body of a structure declaration. This
code, for example, declares a structure that would be identical to the template
for an instance of the Worker class:

Here public is declared as a pointer to a structure that’s essentially
indistinguishable from a Worker instance. With a little help from a type cast, a

void (*setter)(id, SEL, BOOL);
int i;

setter = (void (*)(id, SEL, BOOL))[target
 methodForSelector:@selector(setFilled:)];

for (i = 0; i < 1000, i++)
 setter(targetList[i], @selector(setFilled:), True);

struct workerDef {
 @defs(Worker)
} *public;

119

Worker id can be assigned to the pointer. The object’s instance variables can
then be accessed publicly through the pointer:

This technique of turning an object into a structure makes all of its instance
variables public, no matter whether they were declared @private, @protected, or
@public.

Objects generally aren’t designed with the expectation that they’ll be turned
into C structures. You may want to use @defs() for classes you define entirely
yourself, but it should not be applied to classes found in a framework or to
classes you define that inherit from framework classes.

Type Encoding

To assist the run-time system, the compiler encodes the return and argument
types for each method in a character string and associates the string with the
method selector. The coding scheme it uses might also be of use in other
contexts and so is made publicly available with the @encode() directive. When
given a type specification, @encode() returns a string encoding that type. The
type can be a basic type such as an int, a pointer, a tagged structure or union, or
a class name—anything, in fact, that can be used as an argument to the C sizeof()
operator.

The table below lists the type codes. Note that many of them overlap with the
codes you use when encoding an object for purposes of archiving or distribution.
However, there are codes listed here that you can’t use when writing a coder,
and there are codes that you may want to use when writing a coder that aren’t
generated by @encode(). (See the NSCoder class specification in the Foundation
Framework Reference for more information on encoding objects for archiving or
distribution.)

id aWorker;
aWorker = [[Worker alloc] init];

public = (struct workerDef *)aWorker;
public->boss = nil;

char *buf1 = @encode(int **);
char *buf2 = @encode(struct key);
char *buf3 = @encode(Rectangle);

Chapter 3 Objective-C Extensions

120

Code Meaning

c A char

i An int

s A short

l A long

q A long long

C An unsigned char

I An unsigned int

S An unsigned short

L An unsigned long

Q An unsigned long long

f A float

d A double

v A void

* A character string (char *)

@ An object (whether statically typed or typed id)

A class object (Class)

: A method selector (SEL)

[arity type] An array

{name=type...} A structure

(type...) A union

bnum A bit field of num bits

^type A pointer to type

? An unknown type (among other things, this code is used for function
pointers)

The type code for an array is enclosed within square brackets; the number of
elements in the array is specified immediately after the open bracket, before the
array type. For example, an array of 12 pointers to floats would be encoded as:

121

Structures are specified within braces, and unions within parentheses. The
structure tag is listed first, followed by an equal sign and the codes for the fields
of the structure listed in sequence. For example, this structure,

would be encoded like this:

The same encoding results whether the defined type name (Example) or the
structure tag (example) is passed to @encode(). The encoding for a structure
pointer carries the same amount of information about the structure’s fields:

However, another level of indirection removes the internal type specification:

Objects are treated like structures. For example, passing the NSObject class
name to @encode() yields this encoding:

The NSObject class declares just one instance variable, isa, of type Class.

[12^f]

typedef struct example {

 id anObject;

 char *aString;

 int anInt;

} Example;

{example=@*i}

^{example=@*i}

^^{example}

{NSObject=#}

Chapter 3 Objective-C Extensions

122

Note: Although the @encode() directive doesn’t return them, the run-time system
uses these additional encodings for type qualifiers when they’re used to declare
methods in a protocol:

Code Meaning

r const

n in

N inout

o out

O bycopy

R byref

V oneway

