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Programming languages have traditionally divided the world into two parts—
data and operations on data. Data is static and immutable, except as the 
operations may change it. The procedures and functions that operate on data 
have no lasting state of their own; they’re useful only in their ability to affect 
data.

This division is, of course, grounded in the way computers work, so it’s not one 
that you can easily ignore or push aside. Like the equally pervasive distinctions 
between matter and energy and between nouns and verbs, it forms the 
background against which we work. At some point, all programmers—even 
object-oriented programmers—must lay out the data structures that their 
programs will use and define the functions that will act on the data.

With a procedural programming language like C, that’s about all there is to it. 
The language may offer various kinds of support for organizing data and 
functions, but it won’t divide the world any differently. Functions and data 
structures are the basic elements of design.

Object-oriented programming doesn’t so much dispute this view of the world as 
restructure it at a higher level. It groups operations and data into modular units 
called objects and lets you combine objects into structured networks to form a 
complete program. In an object-oriented programming language, objects and 
object interactions are the basic elements of design.

Every object has both state (data) and behavior (operations on data). In that, 
they’re not much different from ordinary physical objects. It’s easy to see how a 
mechanical device, such as a pocket watch or a piano, embodies both state and 
behavior. But almost anything that’s designed to do a job does too. Even simple 
things with no moving parts such as an ordinary bottle combine state (how full 
the bottle is, whether or not it’s open, how warm its contents are) with behavior 
(the ability to dispense its contents at various flow rates, to be opened or closed, 
to withstand high or low temperatures).

It’s this resemblance to real things that gives objects much of their power and 
appeal. They can not only model components of real systems, but equally as 
well fulfill assigned roles as components in software systems.

Interface and Implementation

As humans, we’re constantly faced with myriad facts and impressions that we 
must make sense of. To do so, we have to abstract underlying structure away 
from surface details and discover the fundamental relations at work. 
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Abstractions reveal causes and effects, expose patterns and frameworks, and 
separate what’s important from what’s not. They’re at the root of understanding.

To invent programs, you need to be able to capture the same kinds of 
abstractions and express them in the program design.

It’s the job of a programming language to help you do this. The language should 
facilitate the process of invention and design by letting you encode abstractions 
that reveal the way things work. It should let you make your ideas concrete in 
the code you write. Surface details shouldn’t obscure the architecture of your 
program.

All programming languages provide devices that help express abstractions. In 
essence, these devices are ways of grouping implementation details, hiding 
them, and giving them, at least to some extent, a common interface—much as a 
mechanical object separates its interface from its implementation.

Looking at such a unit from the inside, as the implementor, you’d be concerned 
with what it’s composed of and how it works. Looking at it from the outside, as 
the user, you’re concerned only with what it is and what it does. You can look 
past the details and think solely in terms of the role that the unit plays at a higher 
level.

The principal units of abstraction in the C language are structures and functions. 
Both, in different ways, hide elements of the implementation:

On the data side of the world, C structures group data elements into larger 
units which can then be handled as single entities. While some code must 
delve inside the structure and manipulate the fields separately, much of the 
program can regard it as a single thing—not as a collection of elements, but as 
what those elements taken together represent. One structure can include 

9

10
11

8
7 6

implementationinterface

■



13

others, so a complex arrangement of information can be built from simpler 
layers.

In modern C, the fields of a structure live in their own name space—that is, 
their names won’t conflict with identically-named data elements outside the 
structure. Partitioning the program name space is essential for keeping 
implementation details out of the interface. Imagine, for example, the 
enormous task of assigning a different name to every piece of data in a large 
program and of making sure new names don’t conflict with old ones.

On the procedural side of the world, functions encapsulate behaviors that can 
be used repeatedly without being reimplemented. Data elements local to a 
function, like the fields within a structure, are protected within their own 
name space. Functions can reference (call) other functions, so quite complex 
behaviors can be built from smaller pieces.

Functions are reusable. Once defined, they can be called any number of 
times without again considering the implementation. The most generally 
useful functions can be collected in libraries and reused in many different 
applications. All the user needs is the function interface, not the source code.

However, unlike data elements, functions aren’t partitioned into separate 
name spaces. Each function must have a unique name. Although the 
function may be reusable, its name is not.

C structures and functions are able to express significant abstractions, but they 
maintain the distinction between data and operations on data. In a procedural 
programming language, the highest units of abstraction still live on one side or 
the other of the data-versus-operations divide. The programs you design must 
always reflect, at the highest level, the way the computer works.

Object-oriented programming languages don’t lose any of the virtues of 
structures and functions. But they go a step further and add a unit capable of 
abstraction at a higher level, a unit that hides the interaction between a function 
and its data.

Suppose, for example, that you have a group of functions that all act on a 
particular data structure. You want to make those functions easier to use by, as 
far as possible, taking the structure out of the interface. So you supply a few 
additional functions to manage the data. All the work of manipulating the data 
structure—allocating it, initializing it, getting information from it, modifying 
values within it, keeping it up to date, and freeing it—is done through the 
functions. All the user does is call the functions and pass the structure to them.

■
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With these changes, the structure has become an opaque token that other 
programmers never need to look inside. They can concentrate on what the 
functions do, not how the data is organized. You’ve taken the first step toward 
creating an object.

The next step is to give this idea support in the programming language and 
completely hide the data structure so that it doesn’t even have to be passed 
between the functions. The data becomes an internal implementation detail; all 
that’s exported to users is a functional interface. Because objects completely 
encapsulate their data (hide it), users can think of them solely in terms of their 
behavior.

With this step, the interface to the functions has become much simpler. Callers 
don’t need to know how they’re implemented (what data they use). It’s fair now 
to call this an “object.”

The hidden data structure unites all of the functions that share it. So an object 
is more than a collection of random functions; it’s a bundle of related behaviors 
that are supported by shared data. To use a function that belongs to an object, 
you first create the object (thus giving it its internal data structure), then tell the 
object which function it should invoke. You begin to think in terms of what the 
object does, rather than in terms of the individual functions.

This progression from thinking about functions and data structures to thinking 
about object behaviors is the essence of object-oriented programming. It may 
seem unfamiliar at first, but as you gain experience with object-oriented 
programming, you’ll find it’s a more natural way to think about things. Everyday 
programming terminology is replete with analogies to real-world objects of 
various kinds—lists, containers, tables, controllers, even managers. 
Implementing such things as programming objects merely extends the analogy 
in a natural way.

A programming language can be judged by the kinds of abstractions that it 
enables you to encode. You shouldn’t be distracted by extraneous matters or 
forced to express yourself using a vocabulary that doesn’t match the reality 
you’re trying to capture.

If, for example, you must always tend to the business of keeping the right data 
matched with the right procedure, you’re forced at all times to be aware of the 
entire program at a low level of implementation. While you might still invent 
programs at a high level of abstraction, the path from imagination to 
implementation can become quite tenuous—and more and more difficult as 
programs become bigger and more complicated.
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By providing another, higher level of abstraction, object-oriented programming 
languages give you a larger vocabulary and a richer model to program in.

The Object Model

The insight of object-oriented programming is to combine state and behavior—
data and operations on data—in a high-level unit, an object, and to give it 
language support. An object is a group of related functions and a data structure 
that serves those functions. The functions are known as the object’s methods, and 
the fields of its data structure are its instance variables. The methods wrap around 
the instance variables and hide them from the rest of the program:

Likely, if you’ve ever tackled any kind of difficult programming problem, your 
design has included groups of functions that work on a particular kind of data—
implicit “objects” without the language support. Object-oriented programming 
makes these function groups explicit and permits you to think in terms of the 
group, rather than its components. The only way to an object’s data, the only 
interface, is through its methods.

By combining both state and behavior in a single unit, an object becomes more 
than either alone; the whole really is greater than the sum of its parts. An object 
is a kind of self-sufficient “subprogram” with jurisdiction over a specific 
functional area. It can play a full-fledged modular role within a larger program 
design.
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Terminology

Object-oriented terminology varies from 
language to language. For example, in C++ 
methods are called “member functions” and 

instance variables are “data members.” This 
manual uses the terminology of Objective-C, 
which has its basis in Smalltalk.
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For example, if you were to write a program that modeled home water usage, 
you might invent objects to represent the various components of the water-
delivery system. One might be a Faucet object that would have methods to start 
and stop the flow of water, set the rate of flow, return the amount of water 
consumed in a given period, and so on. To do this work, a Faucet object would 
need instance variables to keep track of whether the tap is open or shut, how 
much water is being used, and where the water is coming from.

Clearly, a programmatic Faucet can be smarter than a real one (it’s analogous to 
a mechanical faucet with lots of gauges and instruments attached). But even a 
real faucet, like any system component, exhibits both state and behavior. To 
effectively model a system, you need programming units, like objects, that also 
combine state and behavior.

A program consists of a network of interconnected objects that call upon each 
other to solve a part of the puzzle. Each object has a specific role to play in the 
overall design of the program and is able to communicate with other objects. 
Objects communicate through messages, requests to perform a method.

The objects in the network won’t all be the same. For example, in addition to 
Faucets, the program that models water usage might also have WaterPipe 
objects that can deliver water to the Faucets and Valve objects to regulate the 
flow among WaterPipes. There could be a Building object to coordinate a set of 
WaterPipes, Valves, and Faucets, some Appliance objects—corresponding to 
dishwashers, toilets, and washing machines—that can turn Valves on and off, 
and maybe some Users to work the Appliances and Faucets. When a Building 
object is asked how much water is being used, it might call upon each Faucet 
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and Valve to report its current state. When a User starts up an Appliance, the 
Appliance will need to turn on a Valve to get the water it requires.

The Messaging Metaphor
Every programming paradigm comes with its own terminology and metaphors. 
None more so than object-oriented programming. Its jargon invites you to think 
about what goes on in a program from a particular perspective.

There’s a tendency, for example, to think of objects as “actors” and to endow 
them with human-like intentions and abilities. It’s tempting sometimes to talk 
about an object “deciding” what to do about a situation, “asking” other objects 
for information, “introspecting” about itself to get requested information, 
“delegating” responsibility to another object, or “managing” a process.

Rather than think in terms of functions or methods doing the work, as you would 
in a procedural programming language, this metaphor asks you to think of 
objects as “performing” their methods. Objects are not passive containers for 
state and behavior, but are said to be the agents of the program’s activity.

This is actually a useful metaphor. An object is like an actor in a couple of 
respects: It has a particular role to play within the overall design of the program, 
and within that role it can act fairly independently of the other parts of the 
program. It interacts with other objects as they play their own roles, but is self-
contained and to a certain extent can act on its own. Like an actor on stage, it 
can’t stray from the script, but the role it plays it can be multi-faceted and quite 
complex.

The idea of objects as actors fits nicely with the principal metaphor of object-
oriented programming—the idea that objects communicate through 
“messages.” Instead of calling a method as you would a function, you send a 
message to an object requesting it to perform one of its methods.

Although it can take some getting used to, this metaphor leads to a useful way 
of looking at methods and objects. It abstracts methods away from the particular 
data they act on and concentrates on behavior instead. For example, in an 
object-oriented programming interface, a start method might initiate an 
operation, an archive method might archive information, and a draw method 
might produce an image. Exactly which operation is initiated, which 
information is archived, and which image is drawn isn’t revealed by the method 
name. Different objects might perform these methods in different ways.

Thus, methods are a vocabulary of abstract behaviors. To invoke one of those 
behaviors, you have to make it concrete by associating the method with an 
object. This is done by naming the object as the “receiver” of a message. The 
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object you choose as receiver will determine the exact operation that’s initiated, 
the data that’s archived, or the image that’s drawn.

Since methods belong to objects, they can be invoked only through a particular 
receiver (the owner of the method and of the data structure the method will act 
on). Different receivers can have different implementations of the same 
method, so different receivers can do different things in response to the same 
message. The result of a message can’t be calculated from the message or 
method name alone; it also depends on the object that receives the message.

By separating the message (the requested behavior) from the receiver (the 
owner of a method that can respond to the request), the messaging metaphor 
perfectly captures the idea that behaviors can be abstracted away from their 
particular implementations. 

Classes
A program can have more than one object of the same kind. The program that 
models water usage, for example, might have several Faucets and WaterPipes 
and perhaps a handful of Appliances and Users. Objects of the same kind are 
said to belong to the same class. All members of a class are able to perform the 
same methods and have matching sets of instance variables. They also share a 
common definition; each kind of object is defined just once.

In this, objects are similar to C structures. Declaring a structure defines a type. 
For example, this declaration

defines the struct key type. Once defined, the structure name can be used to 
produce any number of instances of the type:

The declaration is a template for a kind of structure, but it doesn’t create a 
structure that the program can use. It takes another step to allocate memory for 
an actual structure of that type, a step that can be repeated any number of times.

struct key {
    char *word;
    int count;
};

struct key  a, b, c, d;
struct key *p = malloc(sizeof(struct key) * MAXITEMS);
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Similarly, defining an object creates a template for a kind of object. It defines a 
class of objects. The template can be used to produce any number of similar 
objects—instances of the class. For example, there would be a single definition 
of the Faucet class. Using this definition, a program could allocate as many 
Faucet instances as it needed.

A class definition is like a structure definition in that it lays out an arrangement 
of data elements (instance variables) that become part of every instance. Each 
instance has memory allocated for its own set of instance variables, which store 
values peculiar to the instance.

However, a class definition differs from a structure declaration in that it also 
includes methods that specify the behavior of class members. Every instance is 
characterized by its access to the methods defined for the class. Two objects with 
equivalent data structures but different methods would not belong to the same 
class.

Modularity
To a C programmer, a “module” is nothing more than a file containing source 
code. Breaking a large (or even not-so-large) program into different files is a 
convenient way of splitting it into manageable pieces. Each piece can be 
worked on independently and compiled alone, then integrated with other 
pieces when the program is linked. Using the static storage class designator to 
limit the scope of names to just the files where they’re declared enhances the 
independence of source modules.

This kind of module is a unit defined by the file system. It’s a container for 
source code, not a logical unit of the language. What goes into the container is 
up to each programmer. You can use them to group logically related parts of the 
code, but you don’t have to. Files are like the drawers of a dresser; you can put 
your socks in one drawer, underwear in another, and so on, or you can use 
another organizing scheme or simply choose to mix everything up.

Access To Methods

It’s convenient to think of methods as being 
part of an object, just as instance variables 
are. As in the previous figure, methods can 
be diagrammed as surrounding the object’s 
instance variables.

But, of course, methods aren’t grouped with 
instance variables in memory. Memory is 
allocated for the instance variables of each 

new object, but there’s no need to allocate 
memory for methods. All an instance needs 
is access to its methods, and all instances of 
the same class share access to the same set 
of methods. There’s only one copy of the 
methods in memory, no matter how many 
instances of the class are created.
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Object-oriented programming languages support the use of file containers for 
source code, but they also add a logical module to the language—class 
definitions. As you’d expect, it’s often the case that each class is defined in its 
own source file—logical modules are matched to container modules.

In Objective-C, for example, it would be possible to define the part of the Valve 
class that interacts with WaterPipes in the same file that defines the WaterPipe 
class, thus creating a container module for WaterPipe-related code and splitting 
Valve class into more than one file. The Valve class definition would still act as a 
modular unit within the construction of the program—it would still be a logical 
module—no matter how many files the source code was located in.

The mechanisms that make class definitions logical units of the language are 
discussed in some detail under “Mechanisms Of Abstraction” below.

Reusability
A principal goal of object-oriented programming is to make the code you write 
as reusable as possible—to have it serve many different situations and 
applications—so that you can avoid reimplementing, even if in only slightly 
different form, something that’s already been done.

Reusability is influenced by a variety of different factors, including:

How reliable and bug-free the code is
How clear the documentation is
How simple and straightforward the programming interface is
How efficiently the code performs its tasks
How full the feature set is

Clearly, these factors don’t apply just to the object model. They can be used to 
judge the reusability of any code—standard C functions as well as class 
definitions. Efficient and well documented functions, for example, would be 
more reusable than undocumented and unreliable ones.

Nevertheless, a general comparison would show that class definitions lend 
themselves to reusable code in ways that functions do not. There are various 
things you can do to make functions more reusable—passing data as arguments 
rather than assuming specifically-named global variables, for example. Even 
so, it turns out that only a small subset of functions can be generalized beyond 
the applications they were originally designed for. Their reusability is inherently 
limited in at least three ways:

Function names are global variables; each function must have a unique name 
(except for those declared static). This makes it difficult to rely heavily on 
library code when building a complex system. The programming interface 
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would be hard to learn and so extensive that it couldn’t easily capture 
significant generalizations.

Classes, on the other hand, can share programming interfaces. When the 
same naming conventions are used over and over again, a great deal of 
functionality can be packaged with a relatively small and easy-to-understand 
interface.

Functions are selected from a library one at a time. It’s up to programmers to 
pick and choose the individual functions they need.

In contrast, objects come as packages of functionality, not as individual 
methods and instance variables. They provide integrated services, so users 
of an object-oriented library won’t get bogged down piecing together their 
own solutions to a problem.

Functions are typically tied to particular kinds of data structures devised for a 
specific program. The interaction between data and function is an 
unavoidable part of the interface. A function is useful only to those who agree 
to use the same kind of data structures it accepts as arguments.

Because it hides its data, an object doesn’t have this problem. This is one of 
the principal reasons why classes can be reused more easily than functions.

An object’s data is protected and won’t be touched by any other part of the 
program. Methods can therefore trust its integrity. They can be sure that 
external access hasn’t put it in an illogical or untenable state. This makes an 
object data structure more reliable than one passed to a function, so methods can 
depend on it more. Reusable methods are consequently easier to write.

Moreover, because an object’s data is hidden, a class can be reimplemented to 
use a different data structure without affecting its interface. All programs that 
use the class can pick up the new version without changing any source code; no 
reprogramming is required.

Mechanisms Of Abstraction
To this point, objects have been introduced as units that embody higher-level 
abstractions and as coherent role-players within an application. However, they 
couldn’t be used this way without the support of various language mechanisms. 
Two of the most important mechanisms are:

Encapsulation, and
Polymorphism.
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Encapsulation keeps the implementation of an object out of its interface, and 
polymorphism results from giving each class its own name space. The following 
sections discuss each of these mechanisms in turn.

Encapsulation
To design effectively at any level of abstraction, you need to be able to leave 
details of implementation behind and think in terms of units that group those 
details under a common interface. For a programming unit to be truly effective, 
the barrier between interface and implementation must be absolute. The 
interface must encapsulate the implementation—hide it from other parts of the 
program. Encapsulation protects an implementation from unintended actions 
and inadvertent access.

In C, a function is clearly encapsulated; its implementation is inaccessible to 
other parts of the program and protected from whatever actions might be taken 
outside the body of the function. Method implementations are similarly 
encapsulated, but, more importantly, so are an object’s instance variables. 
They’re hidden inside the object and invisible outside it. The encapsulation of 
instance variables is sometimes also called information hiding.

It might seem, at first, that hiding the information in instance variables would 
constrain your freedom as a programmer. Actually, it gives you more room to act 
and frees you from constraints that might otherwise be imposed. If any part of 
an object’s implementation could leak out and become accessible or a concern 
to other parts of the program, it would tie the hands both of the object’s 
implementor and of those who would use the object. Neither could make 
modifications without first checking with the other.

Suppose, for example, that you’re interested in the Faucet object being 
developed for the program that models water use and you want to incorporate it 
in another program you’re writing. Once the interface to the object is decided, 
you don’t have to be concerned as others work on it, fix bugs, and find better 
ways to implement it. You’ll get the benefit of these improvements, but none of 
them will affect what you do in your program. Because you’re depending solely 
on the interface, nothing they do can break your code. Your program is insulated 
from the object’s implementation.

Moreover, although those implementing the Faucet object would be interested 
in how you’re using the class and might try to make sure that it meet your needs, 
they don’t have to be concerned with the way you’re writing your code. Nothing 
you do can touch the implementation of the object or limit their freedom to 
make changes in future releases. The implementation is insulated from 
anything that you or other users of the object might do.
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Polymorphism
This ability of different objects to respond, each in its own way, to identical 
messages is called polymorphism.

Polymorphism results from the fact that every class lives in its own name space. 
The names assigned within a class definition won’t conflict with names assigned 
anywhere outside it. This is true both of the instance variables in an object’s data 
structure and of the object’s methods:

Just as the fields of a C structure are in a protected name space, so are an 
object’s instance variables.

Method names are also protected. Unlike the names of C functions, method 
names aren’t global symbols. The name of a method in one class can’t conflict 
with method names in other classes; two very different classes could 
implement identically named methods.

Method names are part of an object’s interface. When a message is sent 
requesting an object to do something, the message names the method the object 
should perform. Because different objects can have different methods with the 
same name, the meaning of a message must be understood relative to the 
particular object that receives the message. The same message sent to two 
different objects could invoke two different methods.

The main benefit of polymorphism is that it simplifies the programming 
interface. It permits conventions to be established that can be reused in class 
after class. Instead of inventing a new name for each new function you add to a 
program, the same names can be reused. The programming interface can be 
described as a set of abstract behaviors, quite apart from the classes that 
implement them.
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Overloading

The terms “polymorphism” and “argument 
overloading” refer basically to the same 
thing, but from slightly different points of 
view. Polymorphism takes a pluralistic point 
of view and notes that several classes can 
each have a method with the same name. 
Argument overloading takes the point of the 
view of the method name and notes that it 
can have different effects depending on 

what kind of object it applies to.

Operator overloading is similar. It refers to 
the ability to turn operators of the language 
(such as ‘==’ and ‘+’ in C) into methods that 
can be assigned particular meanings for 
particular kinds of objects. Objective-C 
implements polymorphism of method names, 
but not operator overloading.
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For example, instead of defining an amountConsumed method for an Appliance 
object to report the amount of water it uses over a given period of time, an 
amountDispensedAtFaucet method for a Faucet to report virtually the same thing, 
and a cumulativeUsage method for the Building object to report the cumulative 
total for the whole building—requiring programmers to learn three different 
names for what is conceptually the same operation—each class can simply have 
a waterUsed method.

Polymorphism also permits code to be isolated in the methods of different 
objects rather than be gathered in a single function that enumerates all the 
possible cases. This makes the code you write more extensible and reusable. 
When a new case comes along, you don’t have to reimplement existing code, but 
only add a new class with a new method, leaving the code that’s already written 
alone.

For example, suppose you have code that sends a draw message to an object. 
Depending on the receiver, the message might produce one of two possible 
images. When you want to add a third case, you don’t have to change the 
message or alter existing code, but merely allow another object to be assigned as 
the message receiver.

Inheritance
The easiest way to explain something new is to start with something old. If you 
want to describe what a “schooner” is, it helps if your listeners already know 
what “sailboat” means. If you want to explain how a harpsichord works, it’s best 
if you can assume your audience has already looked inside a piano, or has seen 
a guitar played, or at least is familiar with the idea of a “musical instrument.”

The same is true if want to define a new kind of object; the description is 
simpler if it can start from the definition of an existing object.

With this in mind, object-oriented programming languages permit you to base a 
new class definition on a class already defined. The base class is called a 
superclass; the new class is its subclass. The subclass definition specifies only how 
it differs from the superclass; everything else is taken to be the same.

Nothing is copied from superclass to subclass. Instead, the two classes are 
connected so that the subclass inherits all the methods and instance variables of 
its superclass, much as you want your listener’s understanding of “schooner” to 
inherit what they already know about sailboats. If the subclass definition were 
empty (if it didn’t define any instance variables or methods of its own), the two 
classes would be identical (except for their names) and share the same 
definition. It would be like explaining what a “fiddle” is by saying that it’s 
exactly the same as a “violin.” However, the reason for declaring a subclass isn’t 
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to generate synonyms, but to create something at least a little different from its 
superclass. You’d want to let the fiddle play bluegrass in addition to classical 
music.

Class Hierarchies
Any class can be used as a superclass for a new class definition. A class can 
simultaneously be a subclass of another class and a superclass for its own 
subclasses. Any number of classes can thus be linked in a hierarchy of 
inheritance.

As the above figure shows, every inheritance hierarchy begins with a root class 
that has no superclass. From the root class, the hierarchy branches downward. 
Each class inherits from its superclass, and through its superclass, from all the 
classes above it in the hierarchy. Every class inherits from the root class.

Each new class is the accumulation of all the class definitions in its inheritance 
chain. In the example above, class D inherits both from C, its superclass, and the 
root class. Members of the D class will have methods and instance variables 
defined in all three classes—D, C, and root.

Typically, every class has just one superclass and can have an unlimited number 
of subclasses. However, in some object-oriented programming languages 
(though not in Objective-C), a class can have more than one superclass; it can 
inherit through multiple sources. Instead of a single hierarchy that branches 
downward as shown in the above figure, multiple inheritance lets some branches 
of the hierarchy (or of different hierarchies) merge.

Subclass Definitions
A subclass can make three kinds of changes to the definition it inherits through 
its superclass:

It can expand the class definition it inherits by adding new methods and 
instance variables. This is the most common reason for defining a subclass. 
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Subclasses always add new methods, and new instance variables if the 
methods require it.

It can modify the behavior it inherits by replacing an existing method with a 
new version. This is done by simply implementing a new method with the 
same name as one that’s inherited. The new version overrides the inherited 
version. (The inherited method doesn’t disappear; it’s still valid for the class 
that defined it and other classes that inherit it.)

It can refine or extend the behavior it inherits by replacing an existing method 
with a new version, but still retain the old version by incorporating it in the 
new method. This is done by sending a message to perform the old version in 
the body of the new method. Each class in an inheritance chain can 
contribute part of a method’s behavior. In the previous figure, for example, 
class D might override a method defined in class C and incorporate C’s 
version, while C’s version incorporates a version defined in the root class.

Subclasses thus tend to fill out a superclass definition, making it more specific 
and specialized. They add, and sometimes replace, code rather than subtract it. 
Note that methods generally can’t be disinherited and instance variables can’t 
be removed or overridden.

Uses of Inheritance
The classic examples of an inheritance hierarchy are borrowed from animal and 
plant taxonomies. For example, there could a class corresponding to the 
Pinaceae (pine) family of trees. Its subclasses could be Fir, Spruce, Pine, 
Hemlock, Tamarack, DouglasFir, and TrueCedar, corresponding to the various 
genera that make up the family. The Pine class might have SoftPine and 
HardPine subclasses, with WhitePine, SugarPine, and BristleconePine as 
subclasses of SoftPine, and PonderosaPine, JackPine, MontereyPine, and 
RedPine as subclasses of HardPine.

There’s rarely a reason to program a taxonomy like this, but the analogy is a good 
one. Subclasses tend to specialize a superclass or adapt it to a special purpose, 
much as a species specializes a genus.

Here are some typical uses of inheritance:

Reusing code. If two or more classes have some things in common but also 
differ in some ways, the common elements can be put in an a single class 
definition that the other classes inherit. The common code is shared and need 
only be implemented once.

For example, Faucet, Valve, and WaterPipe objects, defined for the program 
that models water use, all need a connection to a water source and they all 
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should be able to record the rate of flow. These commonalities can be 
encoded once, in a class that the Faucet, Valve, and WaterPipe classes inherit 
from. A Faucet can be said to be a kind of Valve, so perhaps the Faucet class 
would inherit most of what it is from Valve, and add very little of its own.

Setting up a protocol. A class can declare a number of methods that its 
subclasses are expected to implement. The class might have empty versions 
of the methods, or it might implement partial versions that are to be 
incorporated into the subclass methods. In either case, its declarations 
establish a protocol that all its subclasses must follow.

When different classes implement similarly named methods, a program is 
better able to make use of polymorphism in its design. Setting up a protocol 
that subclasses must implement helps enforce these naming conventions.

Delivering generic functionality. One implementor can define a class that 
contains a lot of basic, general code to solve a problem, but doesn’t fill in all 
the details. Other implementors can then create subclasses to adapt the 
generic class to their specific needs. For example, the Appliance class in the 
program that models water use might define a generic water-using device that 
subclasses would turn into specific kinds of appliances.

Inheritance is thus both a way to make someone else’s programming task 
easier and a way to separate levels of implementation.

Making slight modifications. When inheritance is used to deliver generic 
functionality, set up a protocol, or reuse code, a class is devised that other 
classes are expected to inherit from. But you can also use inheritance to 
modify classes that aren’t intended as superclasses. Suppose, for example, 
that there’s an object that would work well in your program, but you’d like to 
change one or two things that it does. You can make the changes in a subclass.

Previewing possibilities. Subclasses can also be used to factor out alternatives 
for testing purposes. For example, if a class is to be encoded with a particular 
user interface, alternative interfaces can be factored into subclasses during 
the design phase of the project. Each alternative can then be demonstrated to 
potential users to see which they prefer. When the choice is made, the 
selected subclass can be reintegrated into its superclass.

Dynamism
At one time in programming history, the question of how much memory a 
program would use was settled when the source code was compiled and linked. 
All the memory the program would ever need was set aside for it as it was 
launched. This memory was fixed; it could neither grow nor shrink.
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In hindsight, it’s evident what a serious constraint this was. It limited not only 
how programs were constructed, but what you could imagine a program doing. 
It constrained design, not just programming technique. Functions (like malloc()) 
that dynamically allocate memory as a program runs opened possibilities that 
didn’t exist before.

Compile-time and link-time constraints are limiting because they force issues to 
be decided from information found in the programmer’s source code, rather than 
from information obtained from the user as the program runs.

Although dynamic allocation removes one such constraint, many others, equally 
as limiting as static memory allocation, remain. For example, the elements that 
make up an application must be matched to data types at compile time. And the 
boundaries of an application are typically set at link time. Every part of the 
application must be united in a single executable file. New modules and new 
types can’t be introduced as the program runs.

Object-oriented programming seeks to overcome these limitations and to make 
programs as dynamic and fluid as possible. It shifts much of the burden of 
decision making from compile time and link time to run time. The goal is to let 
program users decide what will happen, rather than constrain their actions 
artificially by the demands of the language and the needs of the compiler and 
linker.

Three kinds of dynamism are especially important for object-oriented design:

Dynamic typing, waiting until run time to determine the class of an object
Dynamic binding, determining at run time what method to invoke
Dynamic loading, adding new components to a program as it runs

Dynamic Typing
The compiler typically complains if the code you write assigns a value to a type 
that can’t accommodate it. You might see warnings like these:

Type checking is useful, but there are times when it can interfere with the 
benefits you get from polymorphism, especially if the type of every object must 
be known to the compiler.

Suppose, for example, that you want to send an object a message to perform the 
start method. Like other data elements, the object is represented by a variable. 
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If the variable’s type (its class) must be known at compile time, it would be 
impossible to let run-time factors influence the decision about what kind of 
object should be assigned to the variable. If the class of the variable is fixed in 
source code, so is the version of start that the message invokes.

If, on the other hand, it’s possible to wait until run time to discover the class of 
the variable, any kind of object could be assigned to it. Depending on the class 
of the receiver, the start message might invoke different versions of the method 
and produce very different results.

Dynamic typing thus gives substance to dynamic binding (discussed next). But 
it does more than that. It permits associations between objects to be determined 
at run time, rather than forcing them to be encoded in a static design. For 
example, a message could pass an object as an argument without declaring 
exactly what kind of object it is—that is, without declaring its class. The 
message receiver might then send its own messages to the object, again without 
ever caring about what kind of object it is. Because the receiver uses the object 
it’s passed to do some of its work, it is in a sense customized by an object of 
indeterminate type (indeterminate in source code, that is, not at run time).

Dynamic Binding
In standard C, you can declare a set of alternative functions, like the standard 
string-comparison functions,

and declare a pointer to a function that has the same return and argument types:

You can then wait until run time to determine which function to assign to the 
pointer,

int strcmp(const char *, const char *); /* case sensitive */

int strcasecmp(const char *, const char *); /*case insensitive*/

int (* compare)(const char *, const char *);

if ( **argv == ’i’ )

    compare = strcasecmp;

else

    compare = strcmp;
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and call the function through the pointer:

This is akin to what in object-oriented programming is called dynamic binding, 
delaying the decision of exactly which method to perform until the program is 
running.

Although not all object-oriented languages support it, dynamic binding can be 
routinely and transparently accomplished through messaging. You don’t have to 
go through the indirection of declaring a pointer and assigning values to it as 
shown in the example above. You also don’t have to assign each alternative 
procedure a different name.

Messages invoke methods indirectly. Every message expression must find a 
method implementation to “call.” To find that method, the messaging 
machinery must check the class of the receiver and locate its implementation of 
the method named in the message. When this is done at run time, the method 
is dynamically bound to the message. When it’s done by the compiler, the 
method is statically bound.

if ( compare(s1, s2) )

    . . .

Late Binding

Some object-oriented programming 
languages (notably C++) require a message 
receiver to be statically typed in source 
code, but don’t require the type to be exact. 
An object can be typed to its own class or to 
any class that it inherits from.

The compiler therefore can’t tell whether the 
message receiver is an instance of the class 
specified in the type declaration, an instance 
of a subclass, or an instance of some more 
distantly derived class. Since it doesn’t know 
the exact class of the receiver, it can’t know 
which version of the method named in the 
message to invoke.

In this circumstance, the choice is between 
treating the receiver as if it were an instance 
of the specified class and simply bind the 
method defined for that class to the 
message, or waiting until some later time to 
resolve the situation. In C++, the decision is 
postponed to link time for methods (member 
functions) that are declared virtual.

This is sometimes referred to as “late 
binding” rather than “dynamic binding.” 
While “dynamic” in the sense that it happens 
at run time, it carries with it strict compile-
time type constraints. As discussed here 
(and implemented in Objective-C), “dynamic 
binding” is unconstrained.
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Dynamic binding is possible even in the absence of dynamic typing, but it’s not 
very interesting. There’s little benefit in waiting until run time to match a 
method to a message when the class of the receiver is fixed and known to the 
compiler. The compiler could just as well find the method itself; the run-time 
result won’t be any different.

However, if the class of the receiver is dynamically typed, there’s no way for the 
compiler to determine which method to invoke. The method can be found only 
after the class of the receiver is resolved at run time. Dynamic typing thus entails 
dynamic binding.

Dynamic typing also makes dynamic binding interesting, for it opens the 
possibility that a message might have very different results depending on the 
class of the receiver. Run-time factors can influence the choice of receiver and 
the outcome of the message.

Dynamic typing and binding also open the possibility that the code you write 
can send messages to objects not yet invented. If object types don’t have to be 
decided until run time, you can give others the freedom to design their own 
classes and name their own data types, and still have your code send messages 
to their objects. All you need to agree on are the messages, not the data types.

Note: Dynamic binding is routine in Objective-C. You don’t need to arrange for 
it specially, so your design never needs to bother with what’s being done when.

Dynamic Loading
The usual rule has been that, before a program can run, all its parts must be 
linked together in one file. When it’s launched, the entire program is loaded into 
memory at once.

Some object-oriented programming environments overcome this constraint and 
allow different parts of an executable program to be kept in different files. The 
program can be launched in bits and pieces as they’re needed. Each piece is 
dynamically loaded and linked with the rest of program as it’s launched. User 
actions can determine which parts of the program are in memory and which 
aren’t.

Only the core of a large program needs to be loaded at the start. Other modules 
can be added as the user requests their services. Modules the user doesn’t 
request make no memory demands on the system.

Dynamic loading raises interesting possibilities. For example, an entire program 
wouldn’t have to be developed at once. You could deliver your software in pieces 
and update one part of it at a time. You could devise a program that groups many 
different tools under a single interface, and load just the tools the user wants. 
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The program could even offer sets of alternative tools to do the same job. The 
user would select one tool from the set and only that tool would be loaded. It’s 
not hard to imagine the possibilities. But because dynamic loading is relatively 
new, it’s harder to predict its eventual benefits.

Perhaps the most important current benefit of dynamic loading is that it makes 
applications extensible. You can allow others to add to and customize a program 
you’ve designed. All your program needs to do is provide a framework that 
others can fill in, then at run time find the pieces that they’ve implemented and 
load them dynamically.

For example, in the OPENSTEP for Mach environment, Interface Builder 
dynamically loads custom palettes and inspectors, and the Workspace Manager 
dynamically loads inspectors for particular file formats. Anyone can design their 
own custom palettes and inspectors that these applications will load and 
incorporate into themselves.

The main challenge that dynamic loading faces is getting a newly loaded part of 
a program to work with parts already running, especially when the different 
parts were written by different people. However, much of this problem 
disappears in an object-oriented environment because code is organized into 
logical modules with a clear division between implementation and interface. 
When classes are dynamically loaded, nothing in the newly loaded code can 
clash with the code already in place. Each class encapsulates its implementation 
and has an independent name space.

In addition, dynamic typing and dynamic binding let classes designed by others 
fit effortlessly into the program you’ve designed. Once a class is dynamically 
loaded, it’s treated no differently than any other class. Your code can send 
messages to their objects and theirs to yours. Neither of you has to know what 
classes the other has implemented. You need only agree on a communications 
protocol.

Loading and Linking

Although it’s the term commonly used, 
“dynamic loading” could just as well be 
called. “dynamic linking.” Programs are 
linked when their various parts are joined so 
that they can work together; they’re loaded 
when they’re read into volatile memory at 

launch time. Linking usually precedes 
loading. Dynamic loading refers to the 
process of separately loading new or 
additional parts of a program and linking 
them dynamically to the parts already 
running.
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Structuring Programs

Object-oriented programs have two kinds of structure. One can be seen in the 
inheritance hierarchy of class definitions. The other is evident in the pattern of 
message passing as the program runs. These messages reveal a network of 
object connections.

The inheritance hierarchy explains how objects are related by type. For 
example, in the program that models water use, it might turn out that Faucets 
and WaterPipes are the same kind of object, except that Faucets can be 
turned on and off and WaterPipes can have multiple connections to other 
WaterPipes. This similarity would be captured in the program design if the 
Faucet and WaterPipe classes inherit from a common antecedent.

The network of object connections explains how the program works. For 
example, Appliance objects might send messages requesting water to Valves, 
and Valves to WaterPipes. WaterPipes might communicate with the Building 
object, and the Building object with all the Valves, Faucets, and WaterPipes, 
but not directly with Appliances. To communicate with each other in this way, 
objects must know about each other. An Appliance would need a connection 
to a Valve, and a Valve to a WaterPipe, and so on. These connection define a 
program structure.

Object-oriented programs are designed by laying out the network of objects 
with their behaviors and patterns of interaction, and by arranging the hierarchy 
of classes. There’s structure both in the program’s activity and in its definition.

Outlet Connections
Part of the task of designing an object-oriented program is to arrange the object 
network. The network doesn’t have to be static; it can change dynamically as the 
program runs. Relationships between objects can be improvised as needed, and 
the cast of objects that play assigned roles can change from time to time. But 
there has to be a script.

Some connections can be entirely transitory. A message might contain an 
argument identifying an object, perhaps the sender of the message, that the 
receiver can communicate with. As it responds to the message, the receiver can 
send messages to that object, perhaps identifying itself or still another object 
that that object can in turn communicate with. Such connections are fleeting; 
they last only as long as the chain of messages.

But not all connections between objects can be handled on the fly. Some need 
to be recorded in program data structures. There are various ways to do this. A 
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table might be kept of object connections, or there might be a service that 
identifies objects by name. However, the simplest way is for each object to have 
instance variables that keep track of the other objects it must communicate 
with. These instance variables—termed outlets because they record the outlets 
for messages—define the principal connections between objects in the program 
network.

Although the names of outlet instance variables are arbitrary, they generally 
reflect the roles that outlet objects play. The figure below illustrates an object 
with four outlets—an “agent,” a “friend,” a “neighbor,” and a “boss.” The 
objects that play these parts may change every now and then, but the roles 
remain the same.

Some outlets are set when the object is first initialized and may never change. 
Others might be set automatically as the consequence of other actions. Still 
others can be set freely, using methods provided just for that purpose.

However they’re set, outlet instance variables reveal the structure of the 
application. They link objects into a communicating network, much as the 
components of a water system are linked by their physical connections or as 
individuals are linked by their patterns of social relations.

Extrinsic and Intrinsic Connections
Outlet connections can capture many different kinds of relationships between 
objects. Sometimes the connection is between objects that communicate more 
or less as equal partners in an application, each with its own role to play and 

agent
friend

neighbor
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neither dominating the other. For example, an Appliance object might have an 
outlet instance variable to keep track of the Valve it’s connected to.

Sometimes one object should be seen as being part of another. For example, a 
Faucet might use a Meter object to measure the amount of water being released. 
The Meter would serve no other object and would act only under orders from 
the Faucet. It would be an intrinsic part of the Faucet, in contrast to an 
Appliance’s extrinsic connection to a Valve.

Similarly, an object that oversees other objects might keep a list of its charges. A 
Building object, for example, might have a list of all the WaterPipes in the 
program. The WaterPipes would be considered an intrinsic part of the Building 
and belong to it. WaterPipes, on the other hand, would maintain extrinsic 
connections to each other.

Intrinsic outlets behave differently than extrinsic ones. When an object is freed 
or archived in a file on disk, the objects that its intrinsic outlets point to must be 
freed or archived with it. For example, when a Faucet is freed, its Meter is 
rendered useless and therefore should be freed as well. A Faucet that was 
archived without its Meter would be of little use when it was unarchived again 
(unless it could create a new Meter for itself).

Extrinsic outlets, on the other hand, capture the organization of the program at 
a higher level. They record connections between relatively independent 
program subcomponents. When an Appliance is freed, the Valve it was 
connected to still is of use and remains in place. When an Appliance is 
unarchived, it can be connected to another Valve and resume playing the same 
sort of role it played before.

Activating the Object Network
The object network is set into motion by an external stimulus. If you’re writing 
an interactive application with a user interface, it will respond to user actions on 
the keyboard and mouse. A program that tries to factor very large numbers 
might start when you pass it a target number on the command line. Other 
programs might respond to data received over a phone line, information 
obtained from a database, or information about the state of a mechanical process 
the program monitors.

Object-oriented programs often are activated by a flow of events, reports of 
external activity of some sort. Applications that display a user interface are 
driven by events from the keyboard and mouse. Every touch of a key or click of 
the mouse generates events that the application receives and responds to. An 
object-oriented program structure (a network of objects that’s prepared to 
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respond to an external stimulus) is ideally suited for this kind of user-driven 
application.

Aggregation and Decomposition
Another part of the design task is deciding the arrangement of classes—when to 
add functionality to an existing class by defining a subclass and when to define 
an independent class. The problem can be clarified by imagining what would 
happen in the extreme case:

It’s possible to conceive of a program consisting of just one object. Since it’s 
the only object, it can send messages only to itself. It therefore can’t take 
advantage of polymorphism, or the modularity of a variety of classes, or a 
program design conceived as a network of interconnected objects. The true 
structure of the program would be hidden inside the class definition. Despite 
being written in an object-oriented language, there would be very little that 
was object-oriented about it.

On the other hand, it’s also possible to imagine a program that consists of 
hundreds of different kinds of objects, each with very few methods and 
limited functionality. Here, too, the structure of the program would be lost, 
this time in a maze of object connections.

Obviously, it’s best to avoid either of these extremes, to keep objects large 
enough to take on a substantial role in the program but small enough to keep 
that role well-defined. The structure of the program should be easy to grasp in 
the pattern of object connections.

Nevertheless, the question often arises of whether to add more functionality to 
a class or to factor out the additional functionality and put it in an separate class 
definition. For example, a Faucet needs to keep track of how much water is 
being used over time. To do that, you could either implement the necessary 
methods in the Faucet class, or you could devise a generic Meter object to do 
the job, as suggested earlier. Each Faucet would have an outlet connecting it to 
a Meter, and the Meter would not interact with any object but the Faucet.

The choice often depends on your design goals. If the Meter object could be 
used in more than one situation, perhaps in another project entirely, it would 
increase the reusability of your code to factor the metering task into a separate 
class. If you have reason to make Faucet objects as self-contained as possible, 
the metering functionality could be added to the Faucet class.

It’s generally better to try to for reusable code and avoid having large classes that 
do so many things that they can’t be adapted to other situations. When objects 
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are designed as components, they become that much more reusable. What 
works in one system or configuration might well work in another.

Dividing functionality between different classes doesn’t necessarily complicate 
the programming interface. If the Faucet class keeps the Meter object private, 
the Meter interface wouldn’t have to be published for users of the Faucet class; 
the object would be as hidden as any other intrinsic Faucet instance variable.

Models and Frameworks
Objects combine state and behavior, and so resemble things in the real world. 
Because they resemble real things, designing an object-oriented program is very 
much like thinking about real things—what they do, how they work, and how 
one thing is connected to another.

When you design an object-oriented program, you are, in effect, putting 
together a computer simulation of how something works. Object networks look 
and behave like models of real systems. An object-oriented program can be 
thought of as a model, even if there’s no actual counterpart to it in the real world.

Each component of the model—each kind of object—is described in terms of 
its behavior and responsibilities and its interactions with other components. 
Because an object’s interface lies in its methods, not its data, you can begin the 
design process by thinking about what a system component will do, not how it’s 
represented in data. Once the behavior of an object is decided, the appropriate 
data structure can be chosen, but this is a matter of implementation, not the 
initial design.

For example, in the water-use program, you wouldn’t begin by deciding what 
the Faucet data structure looked like, but what you wanted a Faucet to do—
make a connection to a WaterPipe, be turned on and off, adjust the rate of flow, 
and so on. The design is therefore not bound from the outset by data choices. 
You can decide on the behavior first, and implement the data afterwards. Your 
choice of data structures can change over time without affecting the design.

Designing an object-oriented program doesn’t necessarily entail writing great 
amounts of code. The reusability of class definitions means that the opportunity 
is great for building a program largely out of classes devised by others. It might 
even be possible to construct interesting programs entirely out of classes 
someone else defined. As the suite of class definitions grows, you have more and 
more reusable parts to choose from.

Reusable classes come from many sources. Development projects often yield 
reusable class definitions, and some enterprising developers have begun 
marketing them. Object-oriented programming environments typically come 
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with class libraries. There are well over a hundred classes in the OPENSTEP 
libraries. Some of these classes offer basic services (hashing, data storage, remote 
messaging). Others are more specific (user interface devices, video displays, a 
sound editor).

Typically, a group of library classes work together to define a partial program 
structure. These classes constitute a software framework (or kit) that can be 
used to build a variety of different kinds of applications. When you use a 
framework, you accept the program model it provides and adapt your design to 
it. You use the framework by:

Initializing and arranging instances of framework classes,
Defining subclasses of framework classes, and 
Defining new classes of your own to work with classes defined in the 
framework.

In each of these ways, you not only adapt your program to the framework, but 
you also adapt the generic framework structure to the specialized purposes of 
your particular application.

The framework, in essence, sets up part of a object network for your program 
and provides part of its class hierarchy. Your own code completes the program 
model started by the framework.

Structuring the Programming Task

Object-oriented programming not only structures programs in a new way, it also 
helps structure the programming task.

As software tries to do more and more, and programs become bigger and more 
complicated, the problem of managing the task also grows. There are more 
pieces to fit together and more people working together to build them. The 
object-oriented approach offers ways of dealing with this complexity, not just in 
design, but also in the organization of the work.

Collaboration
Complex software requires an extraordinary collaborative effort among people 
who must be individually creative, yet still make what they do fit exactly with 
what others are doing.

The sheer size of the effort and the number of people working on the same 
project at the same time in the same place can get in the way of the group’s 
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ability to work cooperatively towards a common goal. In addition, collaboration 
is often impeded by barriers of time, space, and organization.

Code must be maintained, improved, and used long after it’s written. 
Programmers who collaborate on a project may not be working on it at the 
same time, so may not be in a position to talk things over and keep each other 
informed about details of the implementation.

Even if programmers work on the same project at the same time, they may 
not be located in the same place. This also inhibits how closely they can work 
together.

Programmers working in different groups with different priorities and 
different schedules often must collaborate on projects. Communication 
across organizational barriers isn’t always easy to achieve.

The answer to these difficulties must grow out of the way programs are designed 
and written. It can’t be imposed from the outside in the form of hierarchical 
management structures and strict levels of authority. These often get in the way 
of people’s creativity, and become burdens in and of themselves. Rather, 
collaboration must be built into the work itself.

That’s where object-oriented programming techniques can help. For example, 
the reusability of object-oriented code means that programmers can collaborate 
effectively even when they work on different projects at different times or are 
in different organizations, just by sharing their code in libraries. This kind of 
collaboration holds a great deal of promise, for it can conceivably lighten difficult 
tasks and bring impossible projects into the realm of possibility.

Organizing Object-Oriented Projects
Object-oriented programming helps restructure the programming task in ways 
that benefit collaboration. It helps eliminate the need to collaborate on low-level 
implementation details, while providing structures that facilitate collaboration 
at a higher level. Almost every feature of the object model, from the possibility 
of large-scale design to the increased reusability of code, has consequences for 
the way people work together.

Designing on a Large Scale
When programs are designed at a high level of abstraction, the division of labor 
is more easily conceived. It can match the division of the program on logical 
lines; the way a project is organized can grow out of its design.

With an object-oriented design, it’s easier to keep common goals in sight, 
instead of losing them in the implementation, and easier for everyone to see 
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how the piece they’re working on fits into the whole. Their collaborative efforts 
are therefore more likely to be on target.

Separating the Interface from the Implementation
The connections between the various components of an object-oriented 
program are worked out early in the design process. They can be well-defined, 
at least for the initial phase of development, before implementation begins.

During implementation, only this interface needs to be coordinated, and most 
of that falls naturally out of the design. Since each class encapsulates its 
implementation and has its own name space, there’s no need to coordinate 
implementation details. Collaboration is simpler when there are fewer 
coordination requirements. 

Modularizing the Work
The modularity of object-oriented programming means that the logical 
components of a large program can each be implemented separately. Different 
people can work on different classes. Each implementation task is isolated from 
the others.

This has benefits, not just for organizing the implementation, but for fixing 
problems later. Since implementations are contained within class boundaries, 
problems that come up are also likely to be isolated. It’s easier to track down 
bugs when they’re located in a well-defined part of the program.

Separating responsibilities by class also means that each part can be worked on 
by specialists. Classes can be updated periodically to optimize their 
performance and make the best use of new technologies. These updates don’t 
have to be coordinated with other parts of the program. As long as the interface 
to an object doesn’t change, improvements to its implementation can be 
scheduled at any time.

Keeping the Interface Simple
The polymorphism of object-oriented programs yields simpler programming 
interfaces, since the same names and conventions can be reused in any number 
of different classes. The result is less to learn, a greater shared understanding of 
how the whole system works, and a simpler path to cooperation and 
collaboration.

Making Decisions Dynamically
Because object-oriented programs make decisions dynamically at run time, less 
information needs to be supplied at compile time (in source code) to make two 
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pieces of code work together. Consequently, there’s less to coordinate and less 
to go wrong.

Inheriting Generic Code
Inheritance is a way of reusing code. If you can define your classes as 
specializations of more generic classes, your programming task is simplified. 
The design is simplified as well, since the inheritance hierarchy lays out the 
relationships between the different levels of implementation and makes them 
easier to understand.

Inheritance also increases the reusability and reliability of code. The code 
placed in a superclass is tested by all its subclasses. The generic class you find 
in a library will have been tested by other subclasses written by other developers 
for other applications.

Reusing Tested Code
The more software you can borrow from others and incorporate in your own 
programs, the less you have to do yourself. There’s more software to borrow in 
an object-oriented programming environment because the code is more 
reusable. Collaboration between programmers working in different places for 
different organizations is enhanced, while the burden of each project is eased.

Classes and frameworks from an object-oriented library can make substantial 
contributions to your program. When you program with the software 
frameworks provided by NeXT, for example, you’re effectively collaborating 
with the programmers at NeXT; you’re contracting a part of your program, often 
a substantial part, to them. You can concentrate on what you do best and leave 
other tasks to the library developer. Your projects can be prototyped faster, 
completed faster, with less of a collaborative challenge at your own site.

The increased reusability of object-oriented code also increases its reliability. A 
class taken from a library is likely to have found its way into a variety of different 
applications and situations. The more the code has been used, the more likely 
it is that problems will have been encountered and fixed. Bugs that would have 
seemed strange and hard to find in your program might already have been 
tracked down and eliminated.
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