
The Objective-C LanguageChapter 2





45

This chapter describes the Objective-C language and discusses the principles of 
object-oriented programming as they’re implemented in Objective-C. It covers 
all the basic features that the language adds to standard C. The next chapter 
continues the discussion by taking up more advanced and less commonly used 
language features.

Objective-C syntax is a superset of standard C syntax, and its compiler works for 
both C and Objective-C source code. The compiler recognizes Objective-C 
source files by a “.m” extension, just as it recognizes files containing only 
standard C syntax by a “.c” extension. The Objective-C language is fully 
compatible with ANSI standard C.

Objective-C can also be used as an extension to C++. At first glance, this may 
seem superfluous since C++ is itself an object-oriented extension of C. But C++ 
was designed primarily as “a better C,” and not necessarily as a full-featured 
object-oriented language. It lacks some of the possibilities for object-oriented 
design that dynamic typing and dynamic binding bring to Objective-C. At the 
same time, it has useful language features not found in Objective-C. When you 
use the two languages in combination, you can assign appropriate roles to the 
features found in each and take advantage of what’s best in both.

Because object-oriented programs postpone many decisions from compile time 
to run time, object-oriented languages depend on a run-time system for 
executing the compiled code. The run-time system for the Objective-C 
language is discussed in Chapter 4. This chapter and the next present the 
language, but touch on important elements of the run-time system as they’re 
important for understanding language features. NeXT has modified the GNU 
C compiler to compile Objective-C, and NeXT provides its own run-time 
system.

Objects

As the name implies, object-oriented programs are built around objects. An object 
associates data with the particular operations that can use or affect that data. In 
Objective-C, these operations are known as the object’s methods; the data they 
affect are its instance variables. In essence, an object bundles a data structure 
(instance variables) and a group of procedures (methods) into a self-contained 
programming unit.

For example, if you are writing a drawing program that allows a user to create 
images composed of lines, circles, rectangles, text, bit-mapped images, and so 
forth, you might create classes for many of the basic shapes that a user will be 



Chapter 2 The Objective-C Language

46

able to manipulate. A Rectangle object, for instance, might have instance 
variables that identify the position of the rectangle within the drawing along 
with its width and its height. Other instance variables could define the 
rectangle’s color, whether or not it is to be filled, and a line pattern that should 
be used to display the rectangle. A Rectangle would have methods to set the 
rectangle’s position, size, color, fill status, and line pattern, along with a method 
that causes the rectangle to display itself.

In Objective-C, an object’s instance variables are internal to the object; you get 
access to an object’s state only through the object’s methods. For others to find 
out something about an object, there has to be a method to supply the 
information. For example, a Rectangle would have methods that reveal its size 
and its position.

Moreover, an object sees only the methods that were designed for it; it can’t 
mistakenly perform methods intended for other types of objects. Just as a C 
function protects its local variables, hiding them from the rest of the program, an 
object hides both its instance variables and its method implementations.

id
In Objective-C, objects are identified by a distinct data type, id. This type is 
defined as a pointer to an object—in reality, a pointer to the object’s data (its 
instance variables). Like a C function or an array, an object is identified by its 
address. All objects, regardless of their instance variables or methods, are of type 
id.

For the object-oriented constructs of Objective-C, such as method return 
values, id replaces int as the default data type. (For strictly C constructs, such as 
function return values, int remains the default type.)

The keyword nil is defined as a null object, an id with a value of 0. id, nil, and the 
other basic types of Objective-C are defined in the header file objc.h, which is 
located in the objc subdirectory of /NextDeveloper/Headers.

Dynamic Typing
The id type is completely nonrestrictive. By itself, it yields no information about 
an object, except that it is an object.

But objects aren’t all the same. A Rectangle won’t have the same methods or 
instance variables as an object that represents a bit-mapped image. At some 

id anObject;



47

point, a program needs to find more specific information about the objects it 
contains—what the object’s instance variables are, what methods it can perform, 
and so on. Since the id type designator can’t supply this information to the 
compiler, each object has to be able to supply it at run time.

This is possible because every object carries with it an isa instance variable that 
identifies the object’s class—what kind of object it is. Every Rectangle object 
would be able to tell the run-time system that it is a Rectangle. Every Circle can 
say that it is a Circle. Objects with the same behavior (methods) and the same 
kinds of data (instance variables) are members of the same class.

Objects are thus dynamically typed at run time. Whenever it needs to, the run-
time system can find the exact class that an object belongs to, just by asking the 
object. Dynamic typing in Objective-C serves as the foundation for dynamic 
binding, discussed later.

The isa pointer also enables objects to introspect about themselves as objects. 
The compiler doesn’t discard much of the information it finds in source code; it 
arranges most of it in data structures for the run-time system to use. Through isa, 
objects can find this information and reveal it at run time. An object can, for 
example, say whether it has a particular method in its repertoire and what the 
name of its superclass is.

Object classes are discussed in more detail under “Classes” below.

It’s also possible to give the compiler information about the class of an object by 
statically typing it in source code using the class name. Classes are particular 
kinds of objects, and the class name can serve as a type name. See “Class Types” 
later in this chapter and “Static Options” in Chapter 3.

Messages

To get an object to do something, you send it a message telling it to apply a 
method. In Objective-C, message expressions are enclosed in square brackets:

The receiver is an object, and the message tells it what to do. In source code, the 
message is simply the name of a method and any arguments that are passed to 
it. When a message is sent, the run-time system selects the appropriate method 
from the receiver’s repertoire and invokes it.

[ receiver message ]



Chapter 2 The Objective-C Language

48

For example, this message tells the myRect object to perform its display method, 
which causes the rectangle to display itself:

Methods can also take arguments. The imaginary message below tells myRect to 
set its location within the window to coordinates (30.0, 50.0):

Here the method name, setOrigin::, has two colons, one for each of its arguments. 
The arguments are inserted after the colons, breaking the name apart. Colons 
don’t have to be grouped at the end of a method name, as they are here. Usually 
a keyword describing the argument precedes each colon. The setWidth:height: 
method, for example, takes two arguments:

Methods that take a variable number of arguments are also possible, though 
they’re somewhat rare. Extra arguments are separated by commas after the end 
of the method name. (Unlike colons, the commas aren’t considered part of the 
name.) In the following example, the imaginary makeGroup: method is passed one 
required argument (group) and three that are optional:

Like standard C functions, methods can return values. The following example 
sets the variable isFilled to YES if myRect is drawn as a solid rectangle, or NO if it’s 
drawn in outline form only.

Note that a variable and a method can have the same name.

One message can be nested inside another. Here one rectangle is set to the color 
of another:

[myRect display];

[myRect setOrigin:30.0 :50.0];

[myRect setWidth:10.0 height:15.0];

[receiver makeGroup:group, memberOne, memberTwo, memberThree];

BOOL isFilled; 
isFilled = [myRect isFilled];



49

A message to nil also is valid, as long as the message returns an object; if it does, 
a message sent to nil will return nil. If the message sent to nil returns anything 
other than an object, the return value is undefined.

The Receiver’s Instance Variables
A method has automatic access to the receiving object’s instance variables. You 
don’t need to pass them to the method as arguments. For example, the 
primaryColor method illustrated above takes no arguments, yet it can find the 
primary color for otherRect and return it. Every method assumes the receiver and 
its instance variables, without having to declare them as arguments.

This convention simplifies Objective-C source code. It also supports the way 
object-oriented programmers think about objects and messages. Messages are 
sent to receivers much as letters are delivered to your home. Message arguments 
bring information from the outside to the receiver; they don’t need to bring the 
receiver to itself.

A method has automatic access only to the receiver’s instance variables. If it 
requires information about a variable stored in another object, it must send a 
message to the object asking it to reveal the contents of the variable. The 
primaryColor and isFilled methods shown above are used for just this purpose.

See “Defining A Class” for more information on referring to instance variables.

Polymorphism
As the examples above illustrate, messages in Objective-C appear in the same 
syntactic positions as function calls in standard C. But, because methods 
“belong to” an object, messages behave differently than function calls.

In particular, an object has access only to the methods that were defined for it. 
It can’t confuse them with methods defined for other kinds of objects, even if 
another object has a method with the same name. This means that two objects 
can respond differently to the same message. For example, each kind of object 
sent a display message could display itself in a unique way. A Circle and a 
Rectangle would respond differently to identical instructions to track the cursor.

This feature, referred to as polymorphism, plays a significant role in the design of 
object-oriented programs. Together with dynamic binding, it permits you to 
write code that might apply to any number of different kinds of objects, without 
your having to choose at the time you write the code what kinds of objects they 

[myRect setPrimaryColor:[otherRect primaryColor]];



Chapter 2 The Objective-C Language

50

might be. They might even be objects that will be developed later, by other 
programmers working on other projects. If you write code that sends a display 
message to an id variable, any object that has a display method is a potential 
receiver.

Dynamic Binding
A crucial difference between function calls and messages is that a function and 
its arguments are joined together in the compiled code, but a message and a 
receiving object aren’t united until the program is running and the message is 
sent. Therefore, the exact method that will be invoked to respond to a message 
can only be determined at run time, not when the code is compiled.

The precise method that a message invokes depends on the receiver. Different 
receivers may have different method implementations for the same method 
name (polymorphism). For the compiler to find the right method 
implementation for a message, it would have to know what kind of object the 
receiver is—what class it belongs to. This is information the receiver is able to 
reveal at run time when it receives a message (dynamic typing), but it’s not 
available from the type declarations found in source code.

The selection of a method implementation happens at run time. When a 
message is sent, a run-time messaging routine looks at the receiver and at the 
method named in the message. It locates the receiver’s implementation of a 
method matching the name, “calls” the method, and passes it a pointer to the 
receiver’s instance variables. (For more on this routine, see “How Messaging 
Works” below.)

The method name in a message thus serves to “select” a method 
implementation. For this reason, method names in messages are often referred 
to as selectors.

This dynamic binding of methods to messages works hand-in-hand with 
polymorphism to give object-oriented programming much of its flexibility and 
power. Since each object can have its own version of a method, a program can 
achieve a variety of results, not by varying the message itself, but by varying just 
the object that receives the message. This can be done as the program runs; 
receivers can be decided “on the fly” and can be made dependent on external 
factors such as user actions.

When executing code based upon the Application Kit, for example, users 
determine which objects receive messages from menu commands like Cut, 
Copy, and Paste. The message goes to whatever object controls the current 
selection. An object that displays editable text would react to a copy message 
differently than an object that displays scanned images. An object that 



51

represents a set of shapes would respond differently than a Rectangle. Since 
messages don’t select methods (methods aren’t bound to messages) until run 
time, these differences are isolated in the methods that respond to the message. 
The code that sends the message doesn’t have to be concerned with them; it 
doesn’t even have to enumerate the possibilities. Each application can invent its 
own objects that respond in their own way to copy messages.

Objective-C takes dynamic binding one step further and allows even the 
message that’s sent (the method selector) to be a variable that’s determined at 
run time. This is discussed in the section on “How Messaging Works.”

Classes

An object-oriented program is typically built from a variety of objects. A program 
based on the OpenStep software frameworks might use NSMatrix objects, 
NSWindow objects, NSDictionary objects, NSFont objects, NSText objects, 
and many others. Programs often use more than one object of the same kind or 
class—several NSArrays or NSWindows, for example.

In Objective-C, you define objects by defining their class. The class definition 
is a prototype for a kind of object; it declares the instance variables that become 
part of every member of the class, and it defines a set of methods that all objects 
in the class can use.

The compiler creates just one accessible object for each class, a class object that 
knows how to build new objects belonging to the class. (For this reason it’s 
traditionally called a “factory object.”) The class object is the compiled version 
of the class; the objects it builds are instances of the class. The objects that will 
do the main work of your program are instances created by the class object at run 
time.

All instances of a class have access to the same set of methods, and they all have 
a set of instance variables cut from the same mold. Each object gets its own 
instance variables, but the methods are shared.

By convention, class names begin with an uppercase letter (such as 
“Rectangle”); the names of instances typically begin with a lowercase letter 
(such as “myRect”).

Inheritance
Class definitions are additive; each new class that you define is based on another 
class through which it inherits methods and instance variables. The new class 



Chapter 2 The Objective-C Language

52

simply adds to or modifies what it inherits. It doesn’t need to duplicate inherited 
code.

Inheritance links all classes together in a hierarchical tree with a single class at 
its root. When writing code that is based upon the Foundation framework, that 
root class is typically NSObject. Every class (except a root class) has a superclass 
one step nearer the root, and any class (including a root class) can be the 
superclass for any number of subclasses one step farther from the root. The figure 
below illustrates the hierarchy for a few of the classes used in the drawing 
program.

This figure shows that the Square class is a subclass of the Rectangle class, the 
Rectangle class is a subclass of Shape, Shape is a subclass of Graphic, and 
Graphic is a subclass of NSObject. Inheritance is cumulative. So a Square object 
has the methods and instance variables defined for Rectangle, Shape, Graphic, 
and NSObject, as well as those defined specifically for Square. This is simply to 
say that a Square object isn’t only a Square, it’s also a Rectangle, a Shape, a 
Graphic, and an NSObject.

Every class but NSObject can thus be seen as a specialization or an adaptation 
of another class. Each successive subclass further modifies the cumulative total 
of what’s inherited. The Square class defines only the minimum needed to turn 
a Rectangle into a Square.

When you define a class, you link it to the hierarchy by declaring its superclass; 
every class you create must be the subclass of another class (unless you define a 
new root class). Plenty of potential superclasses are available. OPENSTEP 
includes the NSObject class and several software frameworks containing 
definitions for more than 125 additional classes. Some are classes that you can 
use “off the shelf”—incorporate into your program as is. Others you might want 
to adapt to your own needs by defining a subclass.

Image Text

NSObject

Graphic

Shape

Line CircleRectangle

Square



53

Some framework classes define almost everything you need, but leave some 
specifics to be implemented in a subclass. You can thus create very sophisticated 
objects by writing only a small amount of code, and reusing work done by the 
programmers of the framework.

The NSObject Class
NSObject, being a root class, doesn’t have a superclass. In OpenStep, it’s in the 
inheritance path for every other class. That’s because it defines the basic 
framework for Objective-C objects and object interactions. It imparts to the 
classes and instances that inherit from it the ability to behave as objects and 
cooperate with the run-time system.

A class that doesn’t need to inherit any special behavior from another class is 
nevertheless made a subclass of the NSObject class. Instances of the class must 
at least have the ability to behave like Objective-C objects at run time. 
Inheriting this ability from the NSObject class is much simpler and much more 
reliable than reinventing it in a new class definition.

Note: Implementing a new root class is a delicate task and one with many hidden 
hazards. The class must duplicate much of what the NSObject class does, such 
as allocate instances, connect them to their class, and identify them to the run-
time system. It’s strongly recommended that you use the NSObject class 
provided with OpenStep as the root class. This manual doesn’t explain all the 
ins and outs that you would need to know to replace it.

Inheriting Instance Variables
When a class object creates a new instance, the new object contains not only the 
instance variables that were defined for its class, but also the instance variables 
defined for its superclass, and for its superclass’s superclass, all the way back to 
the root class. Thus, the isa instance variable defined in the NSObject class 
becomes part of every object. isa connects each object to its class.

The figure below shows some of the instance variables that could be defined for 
a particular implementation of Rectangle, and where they might come from. 
Note that the variables that make the object a Rectangle are added to the ones 
that make it a Shape, and the ones that make it a Shape are added to the ones 
that make it a Graphic, and so on.



Chapter 2 The Objective-C Language

54

A class doesn’t have to declare instance variables. It can simply define new 
methods and rely on the instance variables it inherits, if it needs any instance 
variables at all. For instance, Square might not declare any new instance 
variables of its own.

Inheriting Methods
An object has access not only to the methods that were defined for its class, but 
also to methods defined for its superclass, and for its superclass’s superclass, all 
the way back to the root of the hierarchy. For instance, a Square object can use 
methods defined in the Rectangle, Shape, Graphic, and NSObject classes as 
well as methods defined in its own class.

Any new class you define in your program can therefore make use of the code 
written for all the classes above it in the hierarchy. This type of inheritance is a 
major benefit of object-oriented programming. When you use one of the object-
oriented frameworks provided by OPENSTEP, your programs can take 
advantage of all the basic functionality coded into the framework classes. You 
have to add only the code that customizes the framework to your application.

Class objects also inherit from the classes above them in the hierarchy. But 
because they don’t have instance variables (only instances do), they inherit only 
methods.

Overriding One Method With Another
There’s one useful exception to inheritance: When you define a new class, you 
can implement a new method with the same name as one defined in a class 
farther up the hierarchy. The new method overrides the original; instances of 
the new class will perform it rather than the original, and subclasses of the new 
class will inherit it rather than the original.

For example, Graphic defines a display method that Rectangle overrides by 
defining its own version of display. The Graphic method is available to all kinds 

Class
NSPoint
NSColor
Pattern
. . .
float
float
BOOL
NSColor
. . .    

declared in Shape

declared in Rectangle

declared in NSObject
declared in Graphic

isa;
origin;
*primaryColor;
linePattern;

width;
height;
filled;
*fillColor;



55

of objects that inherit from the Graphic class—but not to Rectangle objects, 
which instead perform the Rectangle version of display.

Although overriding a method blocks the original version from being inherited, 
other methods defined in the new class can skip over the redefined method and 
find the original (see “Messages to self and super,” below, to learn how).

A redefined method can also incorporate the very method it overrides. When it 
does, the new method serves only to refine or modify the method it overrides, 
rather than replace it outright. When several classes in the hierarchy define the 
same method, but each new version incorporates the version it overrides, the 
implementation of the method is effectively spread over all the classes.

Although a subclass can override inherited methods, it can’t override inherited 
instance variables. Since an object has memory allocated for every instance 
variable it inherits, you can’t override an inherited variable by declaring a new 
one with the same name. If you try, the compiler will complain.

Abstract Classes
Some classes are designed only so that other classes can inherit from them. 
These abstract classes group methods and instance variables that will be used by 
a number of different subclasses into a common definition. The abstract class is 
incomplete by itself, but contains useful code that reduces the implementation 
burden of its subclasses.

The NSObject class is the prime example of an abstract class. Although 
programs often define NSObject subclasses and use instances belonging to the 
subclasses, they never use instances belonging directly to the NSObject class. 
An NSObject instance wouldn’t be good for anything; it would be a generic 
object with the ability to do nothing in particular.

Abstract classes often contain code that helps define the structure of an 
application. When you create subclasses of these classes, instances of your new 
classes fit effortlessly into the application structure and work automatically with 
other objects.

(Because abstract classes must have subclasses, they’re sometimes also called 
abstract superclasses.)

Class Types
A class definition is a specification for a kind of object. The class, in effect, 
defines a data type. The type is based not just on the data structure the class 
defines (instance variables), but also on the behavior included in the definition 
(methods).



Chapter 2 The Objective-C Language

56

A class name can appear in source code wherever a type specifier is permitted in 
C—for example, as an argument to the sizeof operator:

Static Typing
You can use a class name in place of id to designate an object’s type:

Because this way of declaring an object type gives the compiler information 
about what kind of object it is, it’s known as static typing. Just as id is defined as a 
pointer to an object, objects are statically typed as pointers to a class. Objects are 
always typed by a pointer. Static typing makes the pointer explicit; id hides it.

Static typing permits the compiler to do some type checking—for example, to 
warn if an object receives a message that it appears not to be able to respond to—
and to loosen some restrictions that apply to objects generically typed id. In 
addition, it can make your intentions clearer to others who read your source 
code. However, it doesn’t defeat dynamic binding or alter the dynamic 
determination of a receiver’s class at run time.

An object can be statically typed to its own class or to any class that it inherits 
from. For example, since inheritance makes a Rectangle a kind of Graphic, a 
Rectangle instance could be statically typed to the Graphic class:

This is possible because a Rectangle is a Graphic. It’s more than a Graphic since 
it also has the instance variables and method capabilities of a Shape and a 
Rectangle, but it’s a Graphic nonetheless. For purposes of type checking, the 
compiler will consider myRect to be an Graphic, but at run time it will be treated 
as a Rectangle.

See “Static Options” in the next chapter for more on static typing and its 
benefits.

int i = sizeof(Rectangle);

Rectangle *myRect;

Graphic *myRect;



57

Type Introspection
Instances can reveal their types at run time. The isMemberOfClass: method, 
defined in the NSObject class, checks whether the receiver is an instance of a 
particular class:

The isKindOfClass: method, also defined in the NSObject class, checks more 
generally whether the receiver inherits from or is a member of a particular class 
(whether it has the class in its inheritance path):

The set of classes for which isKindOfClass: returns YES is the same set to which 
the receiver can be statically typed.

Introspection isn’t limited to type information. Later sections of this chapter 
discuss methods that return the class object, report whether an object can 
respond to a message, and reveal other information.

See the NSObject class specification in the Foundation Framework Reference for 
more on isKindOfClass:, isMemberOfClass:, and related methods.

Class Objects
A class definition contains various kinds of information, much of it about 
instances of the class:

The name of the class and its superclass
A template describing a set of instance variables
The declaration of method names and their return and argument types
The method implementations

This information is compiled and recorded in data structures made available to 
the run-time system. The compiler creates just one object, a class object, to 
represent the class. The class object has access to all the information about the 
class, which means mainly information about what instances of the class are like. 
It’s able to produce new instances according to the plan put forward in the class 
definition.

if ( [anObject isMemberOfClass:someClass] )

    . . .

if ( [anObject isKindOfClass:someClass] )

    . . .

■

■

■

■



Chapter 2 The Objective-C Language

58

Although a class object keeps the prototype of a class instance, it’s not an 
instance itself. It has no instance variables of its own and it can’t perform 
methods intended for instances of the class. However, a class definition can 
include methods intended specifically for the class object—class methods as 
opposed to instance methods. A class object inherits class methods from the classes 
above it in the hierarchy, just as instances inherit instance methods.

In source code, the class object is represented by the class name. In the 
following example, the Rectangle class returns the class version number using a 
method inherited from the NSObject class:

However, the class name stands for the class object only as the receiver in a 
message expression. Elsewhere, you need to ask an instance or the class to 
return the class id. Both respond to a class message:

As these examples show, class objects can, like all other objects, be typed id. But 
class objects can also be more specifically typed to the Class data type:

All class objects are of type Class. Using this type name for a class is equivalent 
to using the class name to statically type an instance.

Class objects are thus full-fledged objects that can be dynamically typed, 
receive messages, and inherit methods from other classes. They’re special only 
in that they’re created by the compiler, lack data structures (instance variables) 
of their own other than those built from the class definition, and are the agents 
for producing instances at run time.

Note: The compiler also builds a “meta-class object” for each class. It describes 
the class object just as the class object describes instances of the class. But while 
you can send messages to instances and to the class object, the meta-class object 
is used only internally by the run-time system.

int versionNumber = [Rectangle version];

id aClass = [anObject class];

id rectClass = [Rectangle class];

Class aClass = [anObject class];

Class rectClass = [Rectangle class];



59

Creating Instances
A principal function of a class object is to create new instances. This code tells 
the Rectangle class to create a new Rectangle instance and assign it to the myRect 
variable:

The alloc method dynamically allocates memory for the new object’s instance 
variables and initializes them all to 0—all, that is, except the isa variable that 
connects the new instance to its class. For an object to be useful, it generally 
needs to be more completely initialized. That’s the function of an init method. 
Initialization typically follows immediately after allocation:

This line of code, or one like it, would be necessary before myRect could receive 
any of the messages that were illustrated in previous examples in this chapter. 
The alloc method returns a new instance and that instance performs an init 
method to set its initial state. Every class object has at least one method (like 
alloc) that enables it to produce new objects, and every instance has at least one 
method (like init) that prepares it for use. Initialization methods often take 
arguments to allow particular values to be passed and have keywords to label the 
arguments (initWithPosition:size:, for example, is a method that might initialize a 
new Rectangle instance), but they all begin with “init”.

Customization With Class Objects
It’s not just a whim of the Objective-C language that classes are treated as 
objects. It’s a choice that has intended, and sometimes surprising, benefits for 
design. It’s possible, for example, to customize an object with a class, where the 
class belongs to an open-ended set. In the Application Kit, for example, an 
NSMatrix object can be customized with a particular kind of NSCell.

An NSMatrix can take responsibility for creating the individual objects that 
represent its cells. It can do this when the NSMatrix is first initialized and later 
when new cells are needed. The visible matrix that an NSMatrix object draws 
on-screen can grow and shrink at run time, perhaps in response to user actions. 
When it grows, the NSMatrix needs to be able to produce new objects to fill the 
new slots that are added.

id  myRect; 
myRect = [Rectangle alloc];

myRect = [[Rectangle alloc] init];



Chapter 2 The Objective-C Language

60

But what kind of objects should they be? Each NSMatrix displays just one kind 
of NSCell, but there are many different kinds. The inheritance hierarchy in the 
following figure shows some of those provided by the Application Kit. All inherit 
from the generic NSCell class:

When an NSMatrix creates new NSCell objects, should they be NSButtonCells 
to display a bank of buttons or switches, NSTextFieldCells to display fields 
where the user can enter and edit text, or some other kind of NSCell? The 
NSMatrix must allow for any kind of NSCell, even types that haven’t been 
invented yet.

One solution to this problem would be to define the NSMatrix class as an 
abstract class and require everyone who uses it to declare a subclass and 
implement the methods that produce new cells. Because they would be 
implementing the methods, users of the class could be sure that the objects they 
created were of the right type.

But this requires others to do work that ought to be done in the NSMatrix class, 
and it unnecessarily proliferates the number of classes. Since an application 
might need more than one kind of NSMatrix, each with a different kind of 
NSCell, it could become cluttered with NSMatrix subclasses. Every time you 
invented a new kind of NSCell, you’d also have to define a new kind of 
NSMatrix. Moreover, programmers on different projects would be writing 
virtually identical code to do the same job, all to make up for NSMatrix’s failure 
to do it.

A better solution, the solution the NSMatrix class actually adopts, is to allow 
NSMatrix instances to be initialized with a kind of NSCell—with a class object. 
It defines a setCellClass: method that passes the class object for the kind of 
NSCell object an NSMatrix should use to fill empty slots:

NSObject

NSCell

NSActionCell

NSTextFieldCell NSSliderCellNSButtonCell NSFormCell

NSMenuCell

NSBrowserCell

[myMatrix setCellClass:[NSButtonCell class]];



61

The NSMatrix uses the class object to produce new cells when it’s first 
initialized and whenever it’s resized to contain more cells. This kind of 
customization would be impossible if classes weren’t objects that could be 
passed in messages and assigned to variables.

Variables and Class Objects
When you define a new class of objects, you can decide what instance variables 
they should have. Every instance of the class will have its own copy of all the 
variables you declare; each object controls its own data.

However, you can’t prescribe variables for the class object; there are no “class 
variable” counterparts to instance variables. Only internal data structures, 
initialized from the class definition, are provided for the class. The class object 
also has no access to the instance variables of any instances; it can’t initialize, 
read, or alter them.

Therefore, for all the instances of a class to share data, an external variable of 
some sort is required. Some classes declare static variables and provide class 
methods to manage them. (Declaring a variable static in the same file as the class 
definition limits its scope to just the class—and to just the part of the class that’s 
implemented in the file. Unlike instance variables, static variables can’t be 
inherited by subclasses.)

Static variables help give the class object more functionality than just that of a 
“factory” producing instances; it can approach being a complete and versatile 
object in its own right. A class object can be used to coordinate the instances it 
creates, dispense instances from lists of objects already created, or manage other 
processes essential to the application. In the limiting case, when you need only 
one object of a particular class, you can put all the object’s state into static 
variables and use only class methods. This saves the step of allocating and 
initializing an instance.

Note: It would also be possible to use external variables that weren’t declared 
static, but the limited scope of static variables better serves the purpose of 
encapsulating data into separate objects.

Initializing a Class Object
If a class object is to be used for anything besides allocating instances, it may 
need to be initialized just as an instance is. Although programs don’t allocate 
class objects, Objective-C does provide a way for programs to initialize them.

The run-time system sends an initialize message to every class object before the 
class receives any other messages. This gives the class a chance to set up its run-
time environment before it’s used. If no initialization is required, you don’t need 



Chapter 2 The Objective-C Language

62

to write an initialize method to respond to the message; the NSObject class 
defines an empty version that your class inherits.

If a class makes use of static or global variables, the initialize method is a good 
place to set their initial values. For example, if a class maintains an array of 
instances, the initialize method could set up the array and even allocate one or 
two default instances to have them ready.

Note that since initialize is inherited, it may be called multiple times on behalf of 
subclasses.

Methods of the Root Class
All objects, classes and instances alike, need an interface to the run-time system. 
Both class objects and instances should be able to introspect about their abilities 
and to report their place in the inheritance hierarchy. It’s the province of the 
NSObject class to provide this interface.

So that NSObject’s methods won’t all have to be implemented twice—once to 
provide a run-time interface for instances and again to duplicate that interface 
for class objects—class objects are given special dispensation to perform 
instance methods defined in the root class. When a class object receives a 
message that it can’t respond to with a class method, the run-time system will 
see if there’s a root instance method that can respond. The only instance 
methods that a class object can perform are those defined in the root class, and 
only if there’s no class method that can do the job.

For more on this peculiar ability of class objects to perform root instance 
methods, see the NSObject class specification in the Foundation Framework 
Reference.

Class Names in Source Code
In source code, class names can be used in only two very different contexts. 
These contexts reflect the dual role of a class as a data type and as an object:

The class name can be used as a type name for a kind of object. For example:

Here anObject is statically typed to be a Rectangle. The compiler will expect 
it to have the data structure of a Rectangle instance and the instance 
methods defined and inherited by the Rectangle class. Static typing enables 

■

Rectangle *anObject;
anObject = [[Rectangle alloc] init];



63

the compiler to do better type checking and makes source code more self-
documenting. See “Static Options” in the next chapter for details.

Only instances can be statically typed; class objects can’t be, since they aren’t 
members of a class, but rather belong to the Class data type.

As the receiver in a message expression, the class name refers to the class 
object. This usage was illustrated in several of the examples above. The class 
name can stand for the class object only as a message receiver. In any other 
context, you must ask the class object to reveal its id (by sending it a class 
message). The example below passes the Rectangle class as an argument in 
an isKindOf: message.

It would have been illegal to simply use the name “Rectangle” as the 
argument. The class name can only be a receiver.

If you don’t know the class name at compile time but have it as a string at 
run time, objc_lookUpClass() will return the class object:

This function returns nil if the string it’s passed is not a valid class name.

Class names compete in the same name space as variables and functions. A class 
and a global variable can’t have the same name. Class names are about the only 
names with global visibility in Objective-C.

Defining A Class

Much of object-oriented programming consists of writing the code for new 
objects—defining new classes. In Objective-C, classes are defined in two parts:

An interface that declares the methods and instance variables of the class and 
names its superclass

■

if ( [anObject isKindOf:[Rectangle class]] )
    . . .

char *aBuffer;

    . . .

if ( [anObject isKindOf:objc_lookUpClass(aBuffer)] )
    . . .

■



Chapter 2 The Objective-C Language

64

An implementation that actually defines the class (contains the code that 
implements its methods)

Although the compiler doesn’t require it, the interface and implementation are 
usually separated into two different files. The interface file must be made 
available to anyone who uses the class. You generally wouldn’t want to distribute 
the implementation file that widely; users don’t need source code for the 
implementation.

A single file can declare or implement more than one class. Nevertheless, it’s 
customary to have a separate interface file for each class, if not also a separate 
implementation file. Keeping class interfaces separate better reflects their status 
as independent entities.

Interface and implementation files typically are named after the class. The 
implementation file has a “.m” suffix, indicating that it contains Objective-C 
source code. The interface file can be assigned any other extension. Because it’s 
included in other source files, the interface file usually has the “.h” suffix typical 
of header files. For example, the Rectangle class would be declared in Rectangle.h 
and defined in Rectangle.m.

Separating an object’s interface from its implementation fits well with the 
design of object-oriented programs. An object is a self-contained entity that can 
be viewed from the outside almost as a “black box.” Once you’ve determined 
how an object will interact with other elements in your program—that is, once 
you’ve declared its interface—you can freely alter its implementation without 
affecting any other part of the application.

The Interface
The declaration of a class interface begins with the compiler directive @interface 
and ends with the directive @end. (All Objective-C directives to the compiler 
begin with “@”.)

The first line of the declaration presents the new class name and links it to its 
superclass. The superclass defines the position of the new class in the 
inheritance hierarchy, as discussed under “Inheritance” above. If the colon and 

■

@interface ClassName  :  ItsSuperclass
{

instance variable declarations
}
method declarations
@end



65

superclass name are omitted, the new class is declared as a root class, a rival to 
the NSObject class.

Following the class declaration, braces enclose declarations of instance variables, 
the data structures that will be part of each instance of the class. Here’s a partial 
list of instance variables that might be declared in the Rectangle class:

Methods for the class are declared next, after the braces enclosing instance 
variables and before the end of the class declaration. The names of methods that 
can be used by class objects, class methods, are preceded by a plus sign:

The methods that instances of a class can use, instance methods, are marked with 
a minus sign:

Although it’s not a common practice, you can define a class method and an 
instance method with the same name. A method can also have the same name 
as an instance variable. This is more common, especially if the method returns 
the value in the variable. For example, Circle has a radius method that could 
match a radius instance variable.

Method return types are declared using the standard C syntax for casting one 
type to another:

Argument types are declared in the same way:

    float width

    float height;

    BOOL filled;

    NSColor *fillColor;

+ alloc;

- (void)display;

- (float)radius;

- (void)setRadius:(float)aRadius;



Chapter 2 The Objective-C Language

66

If a return or argument type isn’t explicitly declared, it’s assumed to be the 
default type for methods and messages—an id. The alloc method illustrated 
above returns id.

When there’s more than one argument, they’re declared within the method 
name after the colons. Arguments break the name apart in the declaration, just 
as in a message. For example:

Methods that take a variable number of arguments declare them using a comma 
and an ellipsis, just as a function would:

Importing the Interface
The interface file must be included in any source module that depends on the 
class interface—that includes any module that creates an instance of the class, 
sends a message to invoke a method declared for the class, or mentions an 
instance variable declared in the class. The interface is usually included with the 
#import directive:

This directive is identical to #include, except that it makes sure that the same file 
is never included more than once. It’s therefore preferred and is used in place of 
#include in code examples throughout NeXT documentation.

To reflect the fact that a class definition builds on the definitions of inherited 
classes, an interface file begins by importing the interface for its superclass:

- (void)setWidth:(float)width height:(float)height;

- makeGroup:group, ...;

#import "Rectangle.h"

#import " ItsSuperclass .h"

@interface ClassName  : ItsSuperclass
{

instance variable declarations
}
method declarations
@end



67

This convention means that every interface file includes, indirectly, the 
interface files for all inherited classes. When a source module imports a class 
interface, it gets interfaces for the entire inheritance hierarchy that the class is 
built upon.

Note that if there is a “precomp”—a precompiled header—that supports the 
superclass, you may prefer to import the precomp instead.

Referring to Other Classes
An interface file declares a class and, by importing its superclass, implicitly 
contains declarations for all inherited classes, from NSObject on down through 
its superclass. If the interface mentions classes not in this hierarchy, it must 
import them explicitly or declare them with the @class directive:

This directive simply informs the compiler that “Rectangle” and “Circle” are 
class names. It doesn’t import their interface files.

An interface file mentions class names when it statically types instance variables, 
return values, and arguments. For example, this declaration

mentions the NSColor class.

Since declarations like this simply use the class name as a type and don’t depend 
on any details of the class interface (its methods and instance variables), the 
@class directive gives the compiler sufficient forewarning of what to expect. 
However, where the interface to a class is actually used (instances created, 
messages sent), the class interface must be imported. Typically, an interface file 
uses @class to declare classes, and the corresponding implementation file 
imports their interfaces (since it will need to create instances of those classes or 
send them messages).

The @class directive minimizes the amount of code seen by the compiler and 
linker, and is therefore the simplest way to give a forward declaration of a class 
name. Being simple, it avoids potential problems that may come with importing 
files that import still other files. For example, if one class declares a statically 
typed instance variable of another class, and their two interface files import each 
other, neither class may compile correctly.

@class Rectangle, Circle;

- (void)setPrimaryColor:(NSColor *)aColor;



Chapter 2 The Objective-C Language

68

The Role of the Interface
The purpose of the interface file is to declare the new class to other source 
modules (and to other programmers). It contains all the information they need 
to work with the class (programmers might also appreciate a little 
documentation).

The interface file tells users how the class is connected into the inheritance 
hierarchy and what other classes—inherited or simply referred to somewhere 
in the class—are needed.

The interface file also lets the compiler know what instance variables an 
object contains and programmers know what variables their subclasses will 
inherit. Although instance variables are most naturally viewed as a matter of 
the implementation of a class rather than its interface, they must nevertheless 
be declared in the interface file. This is because the compiler must be aware 
of the structure of an object where it’s used, not just where it’s defined. As a 
programmer, however, you can generally ignore the instance variables of the 
classes you use, except when defining a subclass.

Finally, through its list of method declarations, the interface file lets other 
modules know what messages can be sent to the class object and instances of 
the class. Every method that can be used outside the class definition is 
declared in the interface file; methods that are internal to the class 
implementation can be omitted.

The Implementation
The definition of a class is structured very much like its declaration. It begins 
with an @implementation directive and ends with @end:

However, every implementation file must import its own interface. For 
example, Rectangle.m imports Rectangle.h. Because the implementation doesn’t 
need to repeat any of the declarations it imports, it can safely omit:

The name of the superclass
The declarations of instance variables

■

■

■

@implementation ClassName  : ItsSuperclass
{

instance variable declarations
}
method definitions
@end

■

■



69

This simplifies the implementation and makes it mainly devoted to method 
definitions:

Methods for a class are defined, like C functions, within a pair of braces. Before 
the braces, they’re declared in the same manner as in the interface file, but 
without the semicolon. For example:

Methods that take a variable number of arguments handle them just as a 
function would:

Referring to Instance Variables
By default, the definition of an instance method has all the instance variables of 
the object within its scope. It can refer to them simply by name. Although the 

#import " ClassName .h"

@implementation ClassName  
method definitions  
@end

+ alloc
{
    . . .
}

- (BOOL)isfilled

{

    . . .

}

- (void)setFilled:(BOOL)flag
{
    . . .
}

#import <stdarg.h>

 . . .

- getGroup:group, ...
{
    va_list  ap;
    va_start(ap, group);
    . . .
}



Chapter 2 The Objective-C Language

70

compiler creates the equivalent of C structures to store instance variables, the 
exact nature of the structure is hidden. You don’t need either of the structure 
operators (‘.’ or ‘->’) to refer to an object’s data. For example, the following 
method definition refers to the receiver’s tag instance variable:

Neither the receiving object nor its filled instance variable is declared as an 
argument to this method, yet the instance variable falls within its scope. This 
simplification of method syntax is a significant shorthand in the writing of 
Objective-C code.

When the instance variable belongs to an object that’s not the receiver, the 
object’s type must be made explicit to the compiler through static typing. In 
referring to the instance variable of a statically typed object, the structure 
pointer operator (‘->’) is used.

Suppose, for example, that the Sibling class declares a statically typed object, 
twin, as an instance variable:

As long as the instance variables of the statically typed object are within the 
scope of the class (as they are here because twin is typed to the same class), a 
Sibling method can set them directly:

- (void)setFilled:(BOOL)flag
{
    filled = flag;
    . . .
}

@interface Sibling : NSObject
{
    Sibling *twin;
    int gender;
    struct features *appearance;
}



71

The Scope of Instance Variables
Although they’re declared in the class interface, instance variables are more a 
matter of the way a class is implemented than of the way it’s used. An object’s 
interface lies in its methods, not in its internal data structures.

Often there’s a one-to-one correspondence between a method and an instance 
variable, as in the following example:

But this need not be the case. Some methods might return information not 
stored in instance variables, and some instance variables might store information 
that an object is unwilling to reveal.

As a class is revised from time to time, the choice of instance variables may 
change, even though the methods it declares remain the same. As long as 
messages are the vehicle for interacting with instances of the class, these 
changes won’t really affect its interface.

To enforce the ability of an object to hide its data, the compiler limits the scope 
of instance variables—that is, limits their visibility within the program. But to 
provide flexibility, it also lets you explicitly set the scope at three different 
levels. Each level is marked by a compiler directive:

- makeIdenticalTwin
{
    if ( !twin ) {
        twin = [[Sibling alloc] init];
        twin->gender = gender;
        twin->appearance = appearance;
    }
    return twin;
}

- (BOOL)isFilled
{
    return filled;
}



Chapter 2 The Objective-C Language

72

Directive Meaning

@private The instance variable is accessible only within the class that declares 
it.

@protected The instance variable is accessible within the class that declares it 
and within classes that inherit it.

@public The instance variable is accessible everywhere.

This is illustrated in the following figure.

A directive applies to all the instance variables listed after it, up to the next 
directive or the end of the list. In the following example, the age and evaluation 
instance variables are private, name, job, and wage are protected, and boss is 
public.

Unrelated code

The class that 
declares the 

instance variable

A class that
inherits the 

instance variable

@private

@protected

@public



73

By default, all unmarked instance variables (like name above) are @protected.

All instance variables that a class declares, no matter how they’re marked, are 
within the scope of the class definition. For example, a class that declares a job 
instance variable, such as the Worker class shown above, can refer to it in a 
method definition: 

Obviously, if a class couldn’t access its own instance variables, the instance 
variables would be of no use whatsoever.

Normally, a class also has access to the instance variables it inherits. The ability 
to refer to an instance variable is usually inherited along with the variable. It 
makes sense for classes to have their entire data structures within their scope, 
especially if you think of a class definition as merely an elaboration of the classes 
it inherits from. The promoteTo: method illustrated above could just as well have 
been defined in any class that inherits the job instance variable from the Worker 
class.

However, there are reasons why you might want to restrict inheriting classes 
from accessing an instance variable:

Once a subclass accesses an inherited instance variable, the class that declares 
the variable is tied to that part of its implementation. In later versions, it can’t 
eliminate the variable or alter the role it plays without inadvertently breaking 
the subclass.

@interface Worker : NSObject
{
    char *name;
@private
    int age;
    char *evaluation;
@protected
    id job;
    float wage;
@public
    id boss;
}

- promoteTo:newPosition
{
    id old = job;
    job = newPosition;
    return old;
}

■



Chapter 2 The Objective-C Language

74

Moreover, if a subclass accesses an inherited instance variable and alters its 
value, it may inadvertently introduce bugs in the class that declares the 
variable, especially if the variable is involved in class-internal dependencies.

To limit an instance variable’s scope to just the class that declares it, you must 
mark it @private.

At the other extreme, marking a variable @public makes it generally available, 
even outside of class definitions that inherit or declare the variable. Normally, to 
get information stored in an instance variable, other objects must send a 
message requesting it. However, a public instance variable can be accessed 
anywhere as if it were a field in a C structure.

Note that the object must be statically typed.

Marking instance variables @public defeats the ability of an object to hide its 
data. It runs counter to a fundamental principle of object-oriented 
programming—the encapsulation of data within objects where it’s protected 
from view and inadvertent error. Public instance variables should therefore be 
avoided except in extraordinary cases.

How Messaging Works

In Objective-C, messages aren’t bound to method implementations until run 
time. The compiler converts a message expression,

into a call on a messaging function, objc_msgSend(). This function takes the 
receiver and the name of the method mentioned in the message—that is, the 
method selector—as its two principal arguments:

Any arguments passed in the message are also handed to objc_msgSend():

■

Worker *ceo = [[Worker alloc] init];
ceo->boss = nil;

[ receiver message ]

objc_msgSend( receiver , selector )



75

The messaging function does everything necessary for dynamic binding:

It first finds the procedure (method implementation) that the selector refers 
to. Since the same method can be implemented differently by different 
classes, the precise procedure that it finds depends on the class of the 
receiver.

It then calls the procedure, passing it the receiving object (a pointer to its 
data), along with any arguments that were specified for the method.

Finally, it passes on the return value of the procedure as its own return value.

Note: The compiler generates calls to the messaging function. You should never 
call it directly in the code you write.

The key to messaging lies in the structures that the compiler builds for each 
class and object. Every class structure includes these two essential elements:

A pointer to the superclass.

A class dispatch table. This table has entries that associate method selectors 
with the class-specific addresses of the methods they identify. The selector 
for the setOrigin:: method is associated with the address of (the procedure that 
implements) setOrigin::, the selector for the display method is associated with 
display’s address, and so on.

When a new object is created, memory for it is allocated, and its instance 
variables are initialized. First among the object’s variables is a pointer to its class 
structure. This pointer, called isa, gives the object access to its class and, through 
the class, to all the classes it inherits from.

Note: While not strictly a part of the language, the isa pointer is required for an 
object to work with NeXT’s run-time system. An object needs to be 
“equivalent” to a struct objc_object (defined in objc/objc.h) in whatever fields the 
structure defines. However, you will rarely if ever need to create your own root 
object, and objects that inherit from NSObject or NSProxy automatically have 
the isa variable.

These elements of class and object structure are illustrated in the following 
figure.

objc_msgSend( receiver , selector , arg1 , arg2 , . . .)

■

■

■

■

■



Chapter 2 The Objective-C Language

76

When a message is sent to an object, the messaging function follows the object’s 
isa pointer to the class structure where it looks up the method selector in the 
dispatch table. If it can’t find the selector there, objc_msgSend() follows the pointer 
to the superclass and tries to find the selector in its dispatch table. Successive 
failures cause objc_msgSend() to climb the class hierarchy until it reaches the 
NSObject class. Once it locates the selector, it calls the method entered in the 
table and passes it the receiving object’s data structure.

.  .  .

superclass

selector...address
selector...address
selector...address

.  .  .
superclass

selector...address
selector...address
selector...address

.  .  .

superclass

selector...address
selector...address
selector...address

isa
instance variable
instance variable

.  .  .

The object’s superclass

The root class (NSObject)

The object’s class



77

This is the way that method implementations are chosen at run time—or, in the 
jargon of object-oriented programming, that methods are dynamically bound to 
messages.

To speed the messaging process, the run-time system caches the selectors and 
addresses of methods as they are used. There’s a separate cache for each class, 
and it can contain selectors for inherited methods as well as for methods defined 
in the class. Before searching the dispatch tables, the messaging routine first 
checks the cache of the receiving object’s class (on the theory that a method that 
was used once may likely be used again). If the method selector is in the cache, 
messaging is only slightly slower than a function call. Once a program has been 
running long enough to “warm up” its caches, almost all the messages it sends 
will find a cached method. Caches grow dynamically to accommodate new 
messages as the program runs.

Selectors
For efficiency, full ASCII names are not used as method selectors in compiled 
code. Instead, the compiler writes each method name into a table, then pairs the 
name with a unique identifier that will represent the method at run time. The 
run-time system makes sure each identifier is unique: No two selectors are the 
same, and all methods with the same name have the same selector. Compiled 
selectors are assigned to a special type, SEL, to distinguish them from other 
data. Valid selectors are never 0.

A compiled selector contains fields of coded information that aid run-time 
messaging. You should therefore let the system assign SEL identifiers to 
methods; it won’t work to assign them arbitrarily yourself.

The @selector() directive lets Objective-C source code refer to the compiled 
selector, rather than to the full method name. Here the selector for 
setWidth:height: is assigned to the setWidthHeight variable:

It’s most efficient to assign values to SEL variables at compile time with the 
@selector() directive. However, in some cases, a program may need to convert a 
character string to a selector at run time. This can be done with the sel_getUid() 
function:

SEL  setWidthHeight; 
setWidthHeight = @selector(setWidth:height:);

setWidthHeight = sel_getUid(aBuffer);



Chapter 2 The Objective-C Language

78

Conversion in the opposite direction is also possible. The sel_getName() function 
returns a method name for a selector:

These and other run-time functions are described in the OPENSTEP 
framework reference documentation.

Methods and Selectors
Compiled selectors identify method names, not method implementations. 
Rectangle’s display method, for example, will have the same selector as display 
methods defined in other classes. This is essential for polymorphism and 
dynamic binding; it lets you send the same message to receivers belonging to 
different classes. If there were one selector per method implementation, a 
message would be no different than a function call.

A class method and an instance method with the same name are assigned the 
same selector. However, because of their different domains, there’s no confusion 
between the two. A class could define a display class method in addition to a 
display instance method.

Method Return and Argument Types
The messaging routine has access to method implementations only through 
selectors, so it treats all methods with the same selector alike. It discovers the 
return type of a method, and the data types of its arguments, from the selector. 
Therefore, except for messages sent to statically typed receivers, dynamic 
binding requires all implementations of identically named methods to have the 
same return type and the same argument types. (Statically typed receivers are 
an exception to this rule, since the compiler can learn about the method 
implementation from the class type.)

Although identically named class methods and instance methods are 
represented by the same selector, they can have different argument and return 
types. 

Varying the Message at Run Time
The performSelector:, performSelector:withObject:, and 
performSelector:withObject:withObject: methods, defined in the NSObject protocol, 
take SEL identifiers as their initial arguments. All three methods map directly 
into the messaging function. For example,

char *method;
method = sel_getName(setWidthHeight);



79

is equivalent to:

These methods make it possible to vary a message at run time, just as it’s 
possible to vary the object that receives the message. Variable names can be 
used in both halves of a message expression:

In this example, the receiver (helper) is chosen at run time (by the fictitious 
getTheReceiver() function), and the method the receiver is asked to perform 
(request) is also determined at run time (by the equally fictitious getTheSelector() 
function).

Note: performSelector: and its companion methods return an id. If the method that’s 
performed returns a different type, it should be cast to the proper type. 
(However, casting won’t work for all types; the method should return a pointer 
or a type compatible with a pointer.)

The Target-Action Paradigm
In its treatment of user-interface controls, the OpenStep Application Kit makes 
good use of the ability to vary both the receiver and the message.

NSControls are graphical devices that can be used to give instructions to an 
application. Most resemble real-world control devices such as buttons, switches, 
knobs, text fields, dials, menu items, and the like. In software, these devices 
stand between the application and the user. They interpret events coming from 
hardware devices like the keyboard and mouse and translate them into 
application-specific instructions. For example, a button labeled “Find” would 
translate a mouse click into an instruction for the application to start searching 
for something.

The Application Kit defines a template for creating control devices and defines 
a few “off-the-shelf” devices of its own. For example, the NSButtonCell class 

[friend performSelector:@selector(gossipAbout:) 
withObject:aNeighbor];

[friend gossipAbout:aNeighbor];

id   helper = getTheReceiver();
SEL  request = getTheSelector();
[helper performSelector:request];



Chapter 2 The Objective-C Language

80

defines an object that you can assign to an NSMatrix and initialize with a size, a 
label, a picture, a font, and a keyboard alternative. When the user clicks the 
button (or uses the keyboard alternative), the NSButtonCell sends a message 
instructing the application to do something. To do this, an NSButtonCell must 
be initialized not just with an image, a size, and a label, but with directions on 
what message to send and who to send it to. Accordingly, an NSButtonCell can 
be initialized for an action message, the method selector it should use in the 
message it sends, and a target, the object that should receive the message.

The NSButtonCell sends the message using NSObject’s 
performSelector:withObject: method. All action messages take a single argument, the 
id of the control device sending the message.

If Objective-C didn’t allow the message to be varied, all NSButtonCells would 
have to send the same message; the name of the method would be frozen in the 
NSButtonCell source code. Instead of simply implementing a mechanism for 
translating user actions into action messages, NSButtonCells and other controls 
would have to constrain the content of the message. This would make it difficult 
for any object to respond to more than one NSButtonCell. There would either 
have to be one target for each button, or the target object would have to discover 
which button the message came from and act accordingly. Each time you 
rearranged the user interface, you’d also have to re-implement the method that 
responds to the action message. This would be an unnecessary complication 
that Objective-C happily avoids.

Avoiding Messaging Errors
If an object receives a message to perform a method that isn’t in its repertoire, 
an error results. It’s the same sort of error as calling a nonexistent function. But 
because messaging occurs at run time, the error often won’t be evident until the 
program executes.

It’s relatively easy to avoid this error when the message selector is constant and 
the class of the receiving object is known. As you’re programming, you can 
check to be sure that the receiver is able to respond. If the receiver is statically 
typed, the compiler will check for you.

However, if the message selector or the class of the receiver varies, it may be 
necessary to postpone this check until run time. The respondsToSelector: method, 
defined in the NSObject class, determines whether a potential receiver can 

[myButtonCell setAction:@selector(reapTheWind:)];
[myButtonCell setTarget:anObject];



81

respond to a potential message. It takes the method selector as an argument and 
returns whether the receiver has access to a method matching the selector:

The respondsToSelector: test is especially important when sending messages to 
objects that you don’t have control over at compile time. For example, if you 
write code that sends a message to an object represented by a variable that 
others can set, you should check to be sure the receiver implements a method 
that can respond to the message.

Note: An object can also arrange to have the messages that it receives forwarded 
to other objects if it can’t respond to them directly itself. In that case, it will 
appear that the object can’t handle the message, even though it responds to it 
indirectly by assigning it to another object. Forwarding is discussed in Chapter 
4, “The Run-Time System.”

Hidden Arguments
When the messaging function finds the procedure that implements a method, it 
calls the procedure and passes it all the arguments in the message. It also passes 
the procedure two hidden arguments:

The receiving object
The selector for the method

These arguments give every method implementation explicit information 
about the two halves of the message expression that invoked it. They’re said to 
be “hidden” because they aren’t declared in the source code that defines the 
method. They’re inserted into the implementation when the code is compiled.

Although these arguments aren’t explicitly declared, source code can still refer 
to them (just as it can refer to the receiving object’s instance variables). A 
method refers to the receiving object as self, and to its own selector as _cmd. In 
the example below, _cmd refers to the selector for the strange method and self to 
the object that receives a strange message.

if ( [anObject respondsToSelector:@selector(setOrigin::)] ) 
    [anObject setOrigin:0.0 :0.0]; 
else 
    fprintf(stderr, "%s can’t be placed\n", 

[anObject [NSStringFromClass([anObject class]) cString]]) ;

■

■



Chapter 2 The Objective-C Language

82

self is the more useful of the two arguments. It is, in fact, the way the receiving 
object’s instance variables are made available to the method definition.

Although it can make your API more confusing, some methods that have no 
other meaningful return value return self, rather than void. This enables such 
messages to be nested in source code. For example, if setWidthHeight:, setFilled:, 
and setFillColor: all returned self, you could write code like the following:

self is discussed in more detail in the next section.

Messages to self and super
Objective-C provides two terms that can be used within a method definition to 
refer to the object that performs the method—self and super.

Suppose, for example, that you define a reposition method that needs to change 
the coordinates of whatever object it acts on. It can invoke the setOrigin:: method 
to make the change. All it needs to do is send a setOrigin:: message to the very 
same object that the reposition message itself was sent to. When you’re writing 
the reposition code, you can refer to that object as either self or super. The reposition 
method could read either:

or:

- strange
{
    id  target = getTheReceiver();
    SEL action = getTheMethod();

    if ( target == self || action == _cmd )
        return nil;
    return [target performSelector:action];
}

[[[myRect setWidth:10.0 height:5.0] setFilled:YES]
 setFillColor:Green];

- reposition
{
    . . .
    [self setOrigin:someX :someY]; 
    . . .  
}



83

Here self and super both refer to the object receiving a reposition message, 
whatever object that may happen to be. The two terms are quite different, 
however. self is one of the hidden arguments that the messaging routine passes 
to every method; it’s a local variable that can be used freely within a method 
implementation, just as the names of instance variables can be. super is a term 
that substitutes for self only as the receiver in a message expression. As receivers, 
the two terms differ principally in how they affect the messaging process:

self searches for the method implementation in the usual manner, starting in 
the dispatch table of the receiving object’s class. In the example above, it 
would begin with the class of the object receiving the reposition message.

super starts the search for the method implementation in a very different 
place. It begins in the superclass of the class that defines the method where 
super appears. In the example above, it would begin with the superclass of the 
class where reposition is defined.

Wherever super receives a message, the compiler substitutes another messaging 
routine for objc_msgSend(). The substitute routine looks directly to the superclass 
of the defining class—that is, to the superclass of the class sending the message 
to super—rather than to the class of the object receiving the message.

An Example
The difference between self and super becomes clear in a hierarchy of three 
classes. Suppose, for example, that we create an object belonging to a class 
called Low. Low’s superclass is Mid; Mid’s superclass is High. All three classes 
define a method called negotiate, which they use for a variety of purposes. In 
addition, Mid defines an ambitious method called makeLastingPeace, which also 
has need of the negotiate method. This is illustrated in the following figure:

- reposition
{
    . . .
    [super setOrigin:someX :someY]; 
    . . .  
}

■

■



Chapter 2 The Objective-C Language

84

We now send a message to our Low object to perform the makeLastingPeace 
method, and makeLastingPeace, in turn, sends a negotiate message to the same Low 
object. If source code calls this object self,

the messaging routine will find the version of negotiate defined in Low, self’s class. 
However, if source code calls this object super,

Mid

High

Low

superclass

– negotiate

superclass

– negotiate

superclass

– negotiate

– makeLastingPeace

- makeLastingPeace
{
    [self negotiate]; 
    . . .
}



85

the messaging routine will find the version of negotiate defined in High. It ignores 
the receiving object’s class (Low) and skips to the superclass of Mid, since Mid 
is where makeLastingPeace is defined. Neither message finds Mid’s version of 
negotiate.

As this example illustrates, super provides a way to bypass a method that 
overrides another method. Here it enabled makeLastingPeace to avoid the Mid 
version of negotiate that redefined the original High version.

Not being able to reach Mid’s version of negotiate may seem like a flaw, but, 
under the circumstances, it’s right to avoid it:

The author of the Low class intentionally overrode Mid’s version of negotiate 
so that instances of the Low class (and its subclasses) would invoke the 
redefined version of the method instead. The designer of Low didn’t want 
Low objects to perform the inherited method.

In sending the message to super, the author of Mid’s makeLastingPeace method 
intentionally skipped over Mid’s version of negotiate (and over any versions 
that might be defined in classes like Low that inherit from Mid) to perform 
the version defined in the High class. Mid’s designer wanted to use the High 
version of negotiate and no other.

Mid’s version of negotiate could still be used, but it would take a direct message 
to a Mid instance to do it.

Using super
Messages to super allow method implementations to be distributed over more 
than one class. You can override an existing method to modify or add to it, and 
still incorporate the original method in the modification:

- makeLastingPeace
{
    [super negotiate]; 
    . . .  
}

■

■

- negotiate
{
    . . .  
    return [super negotiate]; 
}



Chapter 2 The Objective-C Language

86

For some tasks, each class in the inheritance hierarchy can implement a method 
that does part of the job and pass the message on to super for the rest. The init 
method, which initializes a newly allocated instance, is designed to work like 
this. Each init method has responsibility for initializing the instance variables 
defined in its class. But before doing so, it sends an init message to super to have 
the classes it inherits from initialize their instance variables. Each version of init 
follows this same procedure, so classes initialize their instance variables in the 
order of inheritance:

It’s also possible to concentrate core functionality in one method defined in a 
superclass, and have subclasses incorporate the method through messages to 
super. For example, every class method that creates a new instance must allocate 
storage for the new object and initialize its isa pointer to the class structure. This 
is typically left to the alloc and allocWithZone: methods defined in the NSObject 
class. If another class overrides these methods for any reason (a rare case), it can 
still get the basic functionality by sending a message to super.

Redefining self
super is simply a flag to the compiler telling it where to begin searching for the 
method to perform; it’s used only as the receiver of a message. But self is a 
variable name that can be used in any number of ways, even assigned a new 
value.

There’s a tendency to do just that in definitions of class methods. Class methods 
are often concerned, not with the class object, but with instances of the class. For 
example, a method might combine allocation and initialization of an instance:

In such a method, it’s tempting to send messages to the instance and to call the 
instance self, just as in an instance method. But that would be an error.   self and 
super both refer to the receiving object—the object that gets a message telling it 

- (id)init
{
    [super init];
    . . .  
}

+ (id)newRect
{
    return [[self alloc] init];
}



87

to perform the method. Inside an instance method, self refers to the instance; 
but inside a class method, self refers to the class object.

Before a class method can send a message telling self to perform an instance 
method, it must redefine self to be the instance:

The method shown above is a class method, so, initially, self refers to the class 
object. It’s as the class object that self receives the alloc message. self is then 
redefined to be the instance that alloc returns and init initializes. It’s as the new 
instance that it receives the setPrimaryColor: message.

To avoid confusion, it’s usually better to use a variable other than self to refer to 
an instance inside a class method:

Note: In these examples, the class method sends messages (init and 
setPrimaryColor:) to initialize the instance. It doesn’t assign a new value directly to 
an instance variable as an instance method might have done:

Only instance variables of the receiver can be directly set this way. Because the 
receiver for a class method (the class object) has no instance variables, this 
syntax can’t be used. However, if newInstance had been statically typed, 
something similar would have been possible:

+ (id)newRectofColor:(NSColor *)aColor
{
    self = [[self alloc] init];
    [self setPrimaryColor:aColor];
    return self;
}

+ (id)newRectofColor:(NSColor *)aColor
{
    id newInstance = [[self alloc] init];
    [newInstance setPrimaryColor:aColor];
    return newInstance;
}

linePattern = aPattern;
primaryColor = aColor;

newInstance->linePattern = aPattern;



Chapter 2 The Objective-C Language

88

See “Referring to Instance Variables” earlier in this chapter for more on when 
this syntax is permitted.


