
The Run-Time SystemChapter 4

125

The Objective-C language defers as many decisions as it can from compile time
and link time to run time. Whenever possible, it does things dynamically. This
means that the language requires not just a compiler, but also a run-time system
to execute the compiled code. The run-time system acts as a kind of operating
system for the Objective-C language; it’s what makes the language work.

Objective-C programs interact with the run-time system at three distinct levels:

Through Objective-C source code. For the most part, the run-time system
works automatically and behind the scenes. You use it just by writing and
compiling Objective-C source code.

It’s up to the compiler to produce the data structures that the run-time
system requires and to arrange the run-time function calls that carry out
language instructions. The data structures capture information found in class
and category definitions and in protocol declarations; they include the class
and protocol objects discussed earlier, as well as method selectors, instance
variable templates, and other information distilled from source code. The
principal run-time function is the one that sends messages, as described
under “How Messaging Works” in Chapter 2. It’s invoked by source-code
message expressions.

Through a method interface defined in the NSObject class. Every object
inherits from the NSObject class, so every object has access to the methods it
defines. Most NSObject methods interact with the run-time system.

Some of these methods simply query the system for information. The
preceding chapters, for example, mentioned the class method, which asks an
object to identify its class, isKindOfClass: and isMemberOfClass:, which test an
object’s position in the inheritance hierarchy, respondsToSelector:, which
checks whether an object can accept a particular message, conformsToProtocol:,
which checks whether it conforms to a protocol, and methodForSelector:, which
asks for the address of a method implementation. Methods like these give an
object the ability to introspect about itself.

Other methods set the run-time system in motion. For example,
performSelector: and its companions initiate messages, and alloc produces a new
object properly connected to its class.

All these methods were mentioned in previous chapters and are described in
detail in the NSObject class specification in the Foundation Framework
Reference.

Through direct calls to run-time functions. The run-time system has a public
interface, consisting mainly of a set of functions. Many are functions that

■

■

■

Chapter 4 The Run-Time System

126

duplicate what you get automatically by writing Objective-C code or what the
NSObject class provides with a method interface. Others manipulate low-
level run-time processes and data structures. These functions make it
possible to develop other interfaces to the run-time system and produce tools
that augment the development environment; they’re not needed when
programming in Objective-C.

However, a few of the run-time functions might on occasion be useful when
writing an Objective-C program. These functions—such as sel_getUid(), which
returns a method selector for a method name, and objc_msgSend(), which
sends a message to an object—are defined in the Objective-C run time
system described at various places in the text of this manual.

Because the NSObject class is at the root of all inheritance hierarchies, the
methods it defines are inherited by all classes. Its methods therefore establish
behaviors that are inherent to every instance and every class object. However, in
a few cases, the NSObject class merely defines a framework for how something
should be done; it doesn’t provide all the necessary code itself.

For example, the NSObject class defines a description method that should return
an NSString associated with the receiver. If you define a class of named objects,
you must implement a description method to return the specific character string
associated with the receiver. NSObject’s version of the method can’t know what
that name will be, so it merely returns the class name as a default.

This chapter looks at three areas where the NSObject class provides a
framework and defines conventions, but where you may need to write code to
fill in the details:

Allocating and initializing new instances of a class, and deallocating instances
when they’re no longer needed
Forwarding messages to another object
Dynamically loading new modules into a running program

Other conventions of the NSObject class are described in the NSObject class
specification in the Foundation Framework Reference.

Allocation and Initialization

It takes two steps to create an object in Objective-C. You must both:

Dynamically allocate memory for the new object, and
Initialize the newly allocated memory to appropriate values.

■

■

■

■

■

127

An object isn’t fully functional until both steps have been completed. As
discussed in Chapter 2, each step is accomplished by a separate method, but
typically in a single line of code:

Separating allocation from initialization gives you individual control over each
step so that each can be modified independently of the other. The following
sections look first at allocation and then at initialization, and discuss how they
are in fact controlled and modified.

Allocating Memory For Objects
In Objective-C, memory for new objects is allocated using class methods
defined in the NSObject class. NSObject defines two principal methods for this
purpose, alloc and allocWithZone:.

These methods allocate enough memory to hold all the instance variables for an
object belonging to the receiving class. They don’t need to be overridden and
modified in subclasses.

Initializing New Objects
The alloc and allocWithZone: methods initialize a new object’s isa instance variable
so that it points to the object’s class (the class object). All other instance variables
are set to 0. Usually, an object needs to be more specifically initialized before it
can be safely used.

This initialization is the responsibility of class-specific instance methods that, by
convention, begin with the abbreviation “init”. If the method takes no
arguments, the method name is just those four letters, init. If it takes arguments,
labels for the arguments follow the “init” prefix. For example, an NSView can
be initialized with an initWithFrame: method.

Every class that declares instance variables must provide an init... method to
initialize them. The NSObject class declares the isa variable and defines an init
method. However, since isa is initialized when memory for a new object is
allocated, all NSObject’s init method does is return self. NSObject declares the
method mainly to establish the naming convention described above.

id anObject = [[Rectangle alloc] init];

+ (id)alloc;
+ (id)allocWithZone:(NSZone *)zone;

Chapter 4 The Run-Time System

128

The Returned Object
An init... method normally initializes the instance variables of the receiver, then
returns it. It’s the responsibility of the method to return an object that can be
used without error.

However, in some cases, this responsibility can mean returning a different
object than the receiver. For example, if a class keeps a list of named objects, it
might provide an initWithName: method to initialize new instances. If there can be
no more than one object per name, initWithName: might refuse to assign the same
name to two objects. When asked to assign a new instance a name that’s already
being used by another object, it might free the newly allocated instance and
return the other object—thus ensuring the uniqueness of the name while at the
same time providing what was asked for, an instance with the requested name.

In a few cases, it might be impossible for an init... method to do what it’s asked to
do. For example, an initFromFile: method might get the data it needs from a file
passed as an argument. If the file name it’s passed doesn’t correspond to an
actual file, it won’t be able to complete the initialization. In such a case, the init...
method could free the receiver and return nil, indicating that the requested
object can’t be created.

Because an init... method might return an object other than the newly allocated
receiver, or even return nil, it’s important that programs use the value returned
by the initialization method, not just that returned by alloc or allocWithZone:. The
following code is very dangerous, since it ignores the return of init.

It’s recommended that you combine allocation and initialization messages:

If there’s a chance that the init... method might return nil, the return value should
be checked before proceeding:

id anObject = [SomeClass alloc];
[anObject init];
[anObject someOtherMessage];

id anObject = [[SomeClass alloc] init];
[anObject someOtherMessage];

129

Arguments
An init... method must ensure that all of an object’s instance variables have
reasonable values. This doesn’t mean that it needs to provide an argument for
each variable. It can set some to default values or depend on the fact that (except
for isa) all bits of memory allocated for a new object are set to 0. For example, if
a class requires its instances to have a name and a data source, it might provide
an initWithName:fromFile: method, but set nonessential instance variables to
arbitrary values or allow them to have the null values set by default. It could
then rely on methods like setEnabled:, setFriend:, and setDimensions: to modify
default values after the initialization phase had been completed.

Any init... method that takes arguments must be prepared to handle cases where
an inappropriate value is passed. One option is to substitute a default value, and
to let a null argument explicitly evoke the default.

Coordinating Classes
Every class that declares instance variables must provide an init... method to
initialize them (unless the variables require no initialization). The init... methods
the class defines initialize only those variables declared in the class. Inherited
instance variables are initialized by sending a message to super to perform an
initialization method defined somewhere farther up the inheritance hierarchy:

The message to super chains together initialization methods in all inherited
classes. Because it comes first, it ensures that superclass variables are initialized
before those declared in subclasses. For example, a Rectangle object must be
initialized as an NSObject, a Graphic, and a Shape before it’s initialized as a

id anObject = [[SomeClass alloc] init];
if (anObject)
 [anObject someOtherMessage];
else
 . . .

- initWithName:(char *)string
{
 if (self = [super init]) {
 name = (char *)NSZoneMalloc([self zone],

strlen(string) + 1);
 strcpy(name, string);
 return self;
 }
 return nil;
}

Chapter 4 The Run-Time System

130

Rectangle. (See Chapter 2 for a figure illustrating the Rectangle inheritance
hierarchy.)

The connection between the initWithName: method illustrated above and the
inherited init method it incorporates is diagrammed in the figure below:

A class must also make sure that all inherited initialization methods work. For
example, if class A defines an init method and its subclass B defines an
initWithName: method, as shown in the figure above, B must also make sure that
an init message will successfully initialize B instances. The easiest way to do that
is to replace the inherited init method with a version that invokes initWithName:.

The initWithName: method would, in turn, invoke the inherited method, as was
shown in the example and figure above. That figure can be modified to include
B’s version of init, as shown below:

Class B

Class A

– initWithName:

– init

- init
{
 return [self initWithName:"default"];
}

131

Covering inherited initialization methods makes the class you define more
portable to other applications. If you leave an inherited method uncovered,
someone else may use it to produce incorrectly initialized instances of your class.

The Designated Initializer
In the example above, initWithName: would be the designated initializer for its class
(class B). The designated initializer is the method in each class that guarantees
inherited instance variables are initialized (by sending a message to super to
perform an inherited method). It’s also the method that does most of the work,
and the one that other initialization methods in the same class invoke. It’s an
OPENSTEP convention that the designated initializer is always the method
that allows the most freedom to determine the character of a new instance (the
one with the most arguments).

It’s important to know the designated initializer when defining a subclass. For
example, suppose we define class C, a subclass of B, and implement an
initWithName:fromFile: method. In addition to this method, we have to make sure
that the inherited init and initWithName: methods also work for instances of C.
This can be done just by covering B’s initWithName: with a version that invokes
initWithName:fromFile:.

Class B

Class A

– init

– init

– initWithName:

Chapter 4 The Run-Time System

132

For an instance of the C class, the inherited init method will invoke this new
version of initWithName: which will invoke initWithName:fromFile:. The relationship
between these methods is diagrammed below.

This figure omits an important detail. The initWithName:fromFile: method, being
the designated initializer for the C class, will send a message to super to invoke
an inherited initialization method. But which of B’s methods should it invoke,
init or initWithName:? It can’t invoke init, for two reasons:

Circularity would result (init invokes C’s initWithName:, which invokes
initWithName:fromFile:, which invokes init again).

It won’t be able to take advantage of the initialization code in B’s version of
initWithName:.

Therefore, initWithName:fromFile: must invoke initWithName:.

- initWithName:(char *)string
{
 return [self initWithName:string fromFile:NULL];
}

– initWithName:fromFile:

– initWithName:

Class B – initWithName:

– init

Class C

■

■

133

The general principle is this:

The designated initializer in one class must, through a message to super, invoke the
designated initializer in an inherited class.

Designated initializers are chained to each other through messages to super,
while other initialization methods are chained to designated initializers through
messages to self.

The figure below shows how all the initialization methods in classes A, B, and C
are linked. Messages to self are shown on the left and messages to super are
shown on the right.

- initWithName:(char *)string fromFile:(char *)pathname
{
 if (self = [super initWithName:string])
 . . .
}

Chapter 4 The Run-Time System

134

Note that B’s version of init sends a message to self to invoke the initWithName:
method. Therefore, when the receiver is an instance of the B class, it will invoke
B’s version of initWithName:, and when the receiver is an instance of the C class, it
will invoke C’s version.

Combining Allocation and Initialization
By convention, in OPENSTEP classes define creation methods that combine
the two steps of allocating and initializing to return new, initialized instances of
the class. These methods typically take the form + className... where className
is the name of the class. For instance, NSString has the following methods
(among others):

– initWithName:fromFile:

– initWithName:

Class B

Class A

– init

– init

Class C

– initWithName:

135

Similarly, NSArray defines the following class methods that combine allocation
and initialization:

Instances created with any of these methods will be deallocated automatically,
so you don’t have to release them unless you first retain them.

Methods that combine allocation and initialization are particularly valuable if
the allocation must somehow be informed by the initialization. For example, if
the data for the initialization is taken from a file, and the file might contain
enough data to initialize more than one object, it would be impossible to know
how many objects to allocate until the file is opened. In this case, you might
implement a listFromFile: method that takes the name of the file as an argument.
It would open the file, see how many objects to allocate, and create a List object
large enough to hold all the new objects. It would then allocate and initialize the
objects from data in the file, put them in the List, and finally return the List.

It also makes sense to combine allocation and initialization in a single method if
you want to avoid the step of blindly allocating memory for a new object that you
might not use. As mentioned under “The Returned Object” above, an init...
method might sometimes substitute another object for the receiver. For
example, when initWithName: is passed a name that’s already taken, it might free
the receiver and in its place return the object that was previously assigned the
name. This means, of course, that an object is allocated and freed immediately
without ever being used.

If the code that checks whether the receiver should be initialized is placed
inside the method that does the allocation instead of inside init..., you can avoid
the step of allocating a new instance when one isn’t needed.

In the following example, the soloist method ensures that there’s no more than
one instance of the Soloist class. It allocates and initializes an instance only once:

+ (NSString *)stringWithCString:(const char *)bytes;

+ (NSString *)stringWithFormat:(NSString *)format, ...;

+ (id)array;

+ (id)arrayWithObject:(id)anObject;

+ (id)arrayWithObjects:(id)firstObj, ...;

Chapter 4 The Run-Time System

136

Deallocation
The NSObject class defines a dealloc method that relinquishes the memory that
was originally allocated for an object. You rarely invoke dealloc directly, however,
because OPENSTEP provides a mechanism for the automatic disposal of
objects (which makes use of dealloc). For more information on this automatic
object disposal mechanism, see the introduction to the Foundation Framework
Reference.

The purpose of a dealloc message is to deallocate all the memory occupied by the
receiver. NSObject’s version of the method deallocates the receiver’s instance
variables, but doesn’t follow any variable that points to other memory. If the
receiver allocated any additional memory—to store a character string or an array
of structures, for example—that memory must also be deallocated (unless it’s
shared by other objects). Similarly, if the receiver is served by another object
that would be rendered useless in its absence, that object must also be
deallocated.

Therefore, it’s necessary for subclasses to override NSObject’s version of dealloc
and implement a version that deallocates all of the other memory the object
occupies. Every class that has its objects allocate additional memory must have
its own dealloc method. Each version of dealloc ends with a message to super to
perform an inherited version of the method, as illustrated in the following
example:

By working its way up the inheritance hierarchy, every dealloc message
eventually invokes NSObject’s version of the of the method.

+ soloist
{
 static Soloist *instance = nil;

 if (instance == nil)
 instance = [[self alloc] init];
 return instance;
}

- dealloc {

 [companion release];

 free(privateMemory);

 vm_deallocate(task_self(), sharedMemory, memorySize);

 [super dealloc];

}

137

Forwarding

It’s an error to send a message to an object that can’t respond to it. However,
before announcing the error, the run-time system gives the receiving object a
second chance to handle the message. It sends the object a forwardInvocation:
message with an NSInvocation object as its sole argument—the NSInvocation
object encapsulates the original message and the arguments that were passed
with it.

You can implement a forwardInvocation: method to give a default response to the
message, or to avoid the error in some other way. As its name implies,
forwardInvocation: is commonly used to forward the message to another object.

To see the scope and intent of forwarding, imagine the following scenarios:
Suppose, first, that you’re designing an object that can respond to a negotiate
message, and you want its response to include the response of another kind of
object. You could accomplish this easily by passing a negotiate message to the
other object somewhere in the body of the negotiate method you implement.

Take this a step further, and suppose that you want your object’s response to a
negotiate message to be exactly the response implemented in another class. One
way to accomplish this would be to make your class inherit the method from the
other class. However, it might not be possible to arrange things this way. There
may be good reasons why your class and the class that implements negotiate are
in different branches of the inheritance hierarchy.

Even if your class can’t inherit the negotiate method, you can still “borrow” it by
implementing a version of the method that simply passes the message on to an
instance of the other class:

This way of doing things could get a little cumbersome, especially if there were
a number of messages you wanted your object to pass on to the other object.
You’d have to implement one method to cover each method you wanted to
borrow from the other class. Moreover, it would be impossible to handle cases
where you didn’t know, at the time you wrote the code, the full set of messages
that you might want to forward. That set might depend on events at run time,
and it might change as new methods and classes are implemented in the future.

- negotiate
{
 if ([someOtherObject respondsTo:@selector(negotiate)])
 return [someOtherObject negotiate];
 return self;
}

Chapter 4 The Run-Time System

138

The second chance offered by a forwardInvocation: message provides a less ad hoc
solution to this problem, and one that’s dynamic rather than static. It works like
this: When an object can’t respond to a message because it doesn’t have a
method matching the selector in the message, the run-time system informs the
object by sending it a forwardInvocation: message. Every object inherits a
forwardInvocation: method from the NSObject class. However, NSObject’s version
of the method simply invokes doesNotRecognizeSelector: due to the unrecognized
message. By overriding NSObject’s version and implementing your own, you
can take advantage of the opportunity that the forwardInvocation: message
provides to forward messages to other objects.

To forward a message, all a forwardInvocation: method needs to do is:

Determine where the message should go, and
Send it there with its original arguments.

The message can be sent with the invokeWithTarget: method:

The return value of the message that’s forwarded is returned to the original
sender. All types of return values can be delivered to the sender, including ids,
structures, and double-precision floating point numbers.

A forwardInvocation: method can act as a distribution center for unrecognized
messages, parceling them out to different receivers. Or it can be a transfer
station, sending all messages to the same destination. It can translate one
message into another, or simply “swallow” some messages so there’s no
response and no error. A forwardInvocation: method can also consolidate several
messages into a single response. What forwardInvocation: does is up to the
implementor. However, the opportunity it provides for linking objects in a
forwarding chain opens up possibilities for program design.

Note: The forwardInvocation: method gets to handle messages only if they don’t
invoke an existing method in the nominal receiver. If, for example, you want
your object to forward negotiate messages to another object, it can’t have a
negotiate method of its own. If it does, the message will never reach
forwardInvocation:.

■

■

- (void)forwardInvocation:(NSInvocation *)anInvocation
{
 if ([someOtherObject respondsToSelector:

[anInvocation selector]])
[anInvocation invokeWithTarget:someOtherObject];

 else
 [self doesNotRecognizeSelector:[anInvocation selector]];
}

139

For more information on forwarding and invocations, see the NSInvocation class
specification in the Foundation Framework Reference.

Forwarding and Multiple Inheritance
Forwarding mimics inheritance, and can be used to lend some of the effects of
multiple inheritance to Objective-C programs. As shown in the figure below, an
object that responds to a message by forwarding it appears to borrow or “inherit”
a method implementation defined in another class.

In this illustration, an instance of the Warrior class forwards a negotiate message
to an instance of the Diplomat class. The Warrior will appear to negotiate like a
Diplomat. It will seem to respond to the negotiate message, and for all practical
purposes it does respond (although it’s really a Diplomat that’s doing the work).

The object that forwards a message thus “inherits” methods from two branches
of the inheritance hierarchy—its own branch and that of the object that
responds to the message. In the example above, it will appear as if the Warrior
class inherits from Diplomat as well as its own superclass.

Forwarding addresses most needs that lead programmers to value multiple
inheritance. However, there’s an important difference between the two:
Multiple inheritance combines different capabilities in a single object. It tends
toward large, multifaceted objects. Forwarding, on the other hand, assigns
separate responsibilities to separate objects. It decomposes problems into
smaller objects, but associates those objects in a way that’s transparent to the
message sender.

isa isa

– forwardInvocation: – negotiate

negotiate . . .

. . .

DiplomatWarrior

Chapter 4 The Run-Time System

140

Surrogate Objects
Forwarding not only mimics multiple inheritance, it also makes it possible to
develop lightweight objects that represent or “cover” more substantial objects.
The surrogate stands in for the other object and funnels messages to it.

The proxy discussed under “Remote Messaging” in Chapter 3 is such an object.
A proxy takes care of the administrative details of forwarding messages to a
remote receiver, making sure argument values are copied and retrieved across
the connection, and so on. But it doesn’t attempt to do much else; it doesn’t
duplicate the functionality of the remote object but simply gives the remote
object a local address, a place where it can receive messages in another
application.

Other kinds of surrogate objects are also possible. Suppose, for example, that
you have an object that manipulates a lot of data—perhaps it creates a
complicated image or reads the contents of a file on disk. Setting this object up
could be time-consuming, so you prefer to do it lazily—when it’s really needed
or when system resources are temporarily idle. At the same time, you need at
least a placeholder for this object in order for the other objects in the application
to function properly.

In this circumstance, you could initially create, not the full-fledged object, but a
lightweight surrogate for it. This object could do some things on its own, such
as answer questions about the data, but mostly it would just hold a place for the
larger object and, when the time came, forward messages to it. When the
surrogate’s forwardInvocation: method first receives a message destined for the
other object, it would check to be sure that the object existed and would create
it if it didn’t All messages for the larger object go through the surrogate, so as far
as the rest of the program is concerned, the surrogate and the larger object would
be the same.

Making Forwarding Transparent
Although forwarding mimics inheritance, the NSObject class never confuses
the two. Methods like respondsToSelector: and isKindOfClass: look only at the
inheritance hierarchy, never at the forwarding chain. If, for example, a Warrior
object is asked whether it responds to a negotiate message,

if ([aWarrior respondsToSelector:@selector(negotiate)])
 . . .

141

the answer will be NO, even though it can receive negotiate messages without
error and respond to them, in a sense, by forwarding them to a Diplomat. (See
the previous figure.)

In many cases, NO is the right answer. But it may not be. If you use forwarding
to set up a surrogate object or to extend the capabilities of a class, the forwarding
mechanism should probably be as transparent as inheritance. If you want your
objects to act as if they truly inherited the behavior of the objects they forward
messages to, you’ll need to re-implement the respondsToSelector: and isKindOfClass:
methods to include your forwarding algorithm:

In addition to respondsToSelector: and isKindOfClass:, the instancesRespondToSelector:
method should also mirror the forwarding algorithm. This method rounds out
the set. If protocols are used, the conformsToProtocol: method should likewise be
added to the list. Similarly, if an object forwards any remote messages it receives,
it should have a version of methodSignatureForSelector: that can return accurate
descriptions of the methods that ultimately respond to the forwarded messages.

You might consider putting the forwarding algorithm somewhere in private code
and have all these methods, forwardInvocation: included, call it.

Note: The methods mentioned above are described in the NSObject class
specification in the Foundation Framework Reference. For information on
invokeWithTarget:, see the NSInvocation class specification in the Foundation
Framework Reference.

Dynamic Loading

An Objective-C program can load and link new classes and categories while it’s
running. The new code is incorporated into the program and treated identically
to classes and categories loaded at the start.

- (BOOL)respondsToSelector:(SEL)aSelector
{
 if ([super respondsToSelector:aSelector])
 return YES;
 else {
 /* Here, test whether the aSelector message can *
 * be forwarded to another object and whether that *
 * object can respond to it. Return YES if it can. */
 }
 return NO;
}

Chapter 4 The Run-Time System

142

Dynamic loading can be used to do a lot of different things. For example, device
drivers are dynamically loaded into the kernel. Adaptors for database servers are
dynamically loaded by the Enterprise Objects Framework.

In the OpenStep environment, dynamic loading is commonly used to allow
applications to be customized. Others can write modules that your program will
load at run time—much as Interface Builder loads custom palettes,
OPENSTEP for Mach’s Preferences application loads custom displays, and its
Workspace Manager loads data inspectors. The loadable modules extend what
your application can do. They contribute to it in ways that you permit, but could
not have anticipated or defined yourself. You provide the framework, but others
provide the code.

Although there are run-time functions that enable dynamic loading
(objc_loadModules() and objc_unloadModules(), defined in objc/objc-load.h),
OPENSTEP’s NSBundle class provides a significantly more convenient
interface for dynamic loading—one that’s object-oriented and integrated with
related services. See the NSBundle class specification in the Foundation
Framework Reference for information on the NSBundle class and its use.

