
To Do Tutorial - Extended Chapter 5

170

What You’ll Learn

Creating and managing an
inspector

Responding to user actions

Coordinating events within an
application

Overriding behavior of an
Application Kit class

Creating a custom NSView
subclass

Using timers

Drawing and compositing
essentials

5

You can find the Travel Advisor project in the

AppKit

 subdirectory of

NEXT_ROOT/NextDeveloper/Examples.

171

Chapter 5

Extending the To Do Application

In this tutorial you will add features and functionality to the To Do application you

created in the previous tutorial. The finished application will allow users to do much

more than entering to-do items into a daily list. In an inspector they will be able to:

•

 Specify the times those items are due.

•

 Request that they be notified at a specified interval before the due time.

•

 Associate notes with items.

•

 Mark items as complete or deferred.

•

 Reschedule uncompleted items.

Moreover, the document interface will have a custom button for each item. The button

will display the item’s due time. Users can also click the button to change an item’s

status. Changes users make in the document will be immediately reflected in the inspector,

and vice versa.

Chapter 5

Extending the To Do Application

172

Events and the Event Cycle

Conceptually, this chapter focuses primarily on

events

—especially events
originating from user actions—and how, as a programmer, you intercept,
handle, and coordinate them in OpenStep. Therefore, it’s best to begin with
a short overview of this topic.

You can depict the interaction between a user and an OpenStep application
as a cyclical process, with the Window Server playing an intermediary role
(see illustration below). This cycle—the

event cycle

—usually starts at
launch time when the application (which includes all the frameworks it’s
linked to) sends a stream of PostScript code to the Window Server to have
it draw the application interface.

Then the application begins its main event loop and begins accepting input
from the user (see next page). When users click or drag the mouse or type
on the keyboard, the Window Server detects these actions and processes
them, passing them to the application as events. Often the application, in
response to these events, returns another stream of PostScript code to the
Window Server to have it redraw the interface.

In addition to events, applications can respond to other kinds of input,
particularly timers, data received at a port, and data waiting at a file
descriptor. But events are the most important kind of input.

Events

The Window Server treats each user action as an event. It associates the
event with a window and reported to the application that created the
window. Events are objects: instances of NSEvent composed from
information derived from the user action.

All event methods defined in NSResponder (such as

mouseDown:

 and

keyDown:

) take an NSEvent as their argument. You can query an NSEvent
to discover its window, the location of the event within the window, and the
time the event occurred (relative to system start-up). You can also find out
which (if any) modifier keys were pressed, such as Command, Option
(Alternate), and Control), the codes that identify characters and keys, and
various other kinds of information.

An NSEvent also divulges the type of event it represents. There are many
event types (NSEventType); they fall into four categories:

•

Keyboard events

. Generated when a key is pressed down, a pressed key
is released, or a modifier key changes. Of these, key-down events are the
most useful. When you handle a key-down event, you often determine the
character or characters associated with the event by sending the
NSEvent a

characters

 message.

•

Mouse event

. Mouse events are generated by changes in the state of the
mouse buttons (that is, down and up) for both left and right mouse
buttons and during mouse dragging. Events are also generated when
the mouse simply moves, without any button pressed.

•

Tracking-rectangle events

. If the application has asked the window
system to set a tracking rectangle in a window, the window system
creates mouse-entered and mouse-exit events when the cursor enters
the rectangle or leaves it.

•

Periodic events

. A periodic event notifies an application that a certain
time interval has elapsed. An application can request that periodic
events be placed in its event queue at a certain frequency. They are
usually used during a tracking loop. (These events aren’t passed to an
NSWindow.)

173

Window

Server NSEvent

NSEvent

NSEvent

NSEvent NSApplication

NSWindow

NSView

The Event Queue and Event Dispatching

When an application starts up, the NSApplication object (NSApp) starts the
main event loop and begins receiving events from the Window Server. As
NSEvents arrive, they’re put in the

event queue

in the order they’re received.
On each cycle of the loop, NSApp gets the topmost event, analyzes it, and
sends an

event message

 to the appropriate object. (Event messages are
defined by NSResponder and correspond to particular events.) When NSApp
finishes processing the event, it gets the next event and repeats the process
again and again until the application terminates.

The object that is “appropriate” for an event depends on the type of event.
NSApp sends most event messages to the NSWindow in which the user
action occurred. If the event is a keyboard or mouse event, the NSWindow
forwards the message to one of the objects in its view hierarchy: the NSView
within which the mouse was clicked or the key was pressed. If the NSView
can respond to the event—that is, it accepts first responder status and
defines an NSResponder method corresponding to the event message—it
handles the event.

If the NSView cannot handle an event, it forwards the message to the next
responder in the responder chain (see next section for details). It travels up
the responder chain until an object handles it.

First Responder and the Responder Chain

Each NSWindow in an application keeps track of the object in its view
hierarchy that has

first responder

 status. This is the NSView that currently
receives keyboard events for the window. By default, an NSWindow is its
own first responder, but any NSView within the window can become first
responder when the user clicks it with the mouse.

You can also set the first responder programmatically with the NSWindow’s

makeFirstResponder:

 method. Moreover, the first-responder object can be
a target of an action message sent by an NSControl, such as a button or a
matrix. Programmatically, you do this by sending

setTarget:

 to the
NSControl (or its cell) with an argument of

nil

. You can do the same thing
in Interface Builder by making a target/action connection between the
NSControl and the First Responder icon in the Instances display of the nib
file window.

Recall that all NSViews of the application, as well as all NSWindows and the
application object itself, inherit from NSResponder, which defines the
default message-handling behavior: events are passed up the responder
chain. Many Application Kit objects, of course, override this behavior, so
events are passed up the chain until they reach an object that does
respond.

The series of next responders in the responder chain is determined by the
interrelationships between the application’s NSView, NSWindow, and
NSApplication objects (see page 156). For an NSView, the next responder is
usually its superview; the content view's next responder is the NSWindow.
From there, the event is passed to the NSApplication object.

For action messages sent to the first responder, the trail back through
possible respondents is even more detailed. The messages are first passed
up the responder chain to the NSWindow and then to the NSWindow’s
delegate. Then, if the previous sequence occurred in the key window, the
same path is followed for the main window. Then the NSApplication object
tries to respond, and failing that, it goes to NSApp’s delegate.

NSWindow handles some events itself, and doesn’t forward them to an
NSView, such as window-moved, window-resized, and window-exposed
events. (Since these are handled by NSWindow itself, they are not defined
in NSResponder.) NSApp also processes a few kinds of events itself, such
as application-activate and application-deactivate events.

Chapter 5

Extending the To Do Application

174

Overriding Behavior of an Application Kit Class: An Example

You can often achieve significant gains in object behavior by making a subclass
that adds only a small amount of code to its superclass. Such is the case with the
subclass you’ll create in this section: SelectionNotifMatrix.

The need for this class is this: An instance of NSMatrix is a control and thus can
send action messages to its cell’s targets; but when it contains NSTextFieldCells,
action messages are sent only when users press the Return key in a cell. You want
the inspector (which you’ll create in the next section) to synchronize its displays
when the user selects a new item by clicking a text field. To do this, you will

override

 the method in NSMatrix that is invoked when users click the matrix; in
your implementation, you’ll invoke the superclass method, detect the selected
row, and then post a notification to interested observers.

Declares a string constant identifying the notification that will be posted.

Declares

mouseDown:

, the method implemented by the superclass but
overridden by SelectionNotifMatrix.

Before You Go On

Remember, build the project frequently to catch any errors quickly, to get a
sense of how the application is developing, and (just as important) to give

yourself a break from coding.

1 Create template source-code files
and add to the project.

Choose File m New In Project.

In the New File In ToDo panel, select the
Class suitcase, turn on the Create
header switch, and type
“SelectionNotifMatrix” after Name.

2 Add declarations to the header file.

#import <AppKit/AppKit.h>

extern NSString *SelectionInMatrixNotification =
 @"SelectionInMatrixNotification";

@interface SelectionNotifMatrix : NSMatrix

{

}

- (void)mouseDown:(NSEvent *)theEvent;

@end

A

B

A

B

Overriding Behavior of an Application Kit Class: An Example

175

This override of

mouseDown:

 does the following:

Invokes NSMatrix’s implementation of

mouseDown:

 to allow the normal
processing of this event.

Gets the row of the cell clicked and, if it’s a valid row, creates a

userInfo

dictionary containing the index of the clicked row, and posts the
SelectionInMatrixNotification.

Now that you’ve created the SelectionNotifMatrix class, you must re-assign
the class membership of the object in the interface. You can do this easily in
Interface Builder.

- (void)mouseDown:(NSEvent *)theEvent

{

 int row;

 [super mouseDown:theEvent];

 row = [self selectedRow];

 if (row != -1) {

 [[NSNotificationCenter defaultCenter]

 postNotificationName:@"SelectionInMatrixNotification"

 object:self userInfo:[NSDictionary
 dictionaryWithObjectsAndKeys:

 [NSNumber numberWithInt:row], @"ItemIndex", nil]];

 }

}

A

B

3 Override mouseDown:

In SelectionNotifMatrix.m, implement
mouseDown: as shown here.

A

B

The Custom Classes browser lists the original class of
the selected object and all compatible custom
subclasses.

4 Assign the new class to the matrix of
text fields.

In Interface Builder:

In the Classes display of ToDoDoc.nib,
select NSMatrix as the superclass.

Choose Read File from the Classes
menu.

In the Read File browser, select
SelectionNotifMatrix and click OK.

Select the matrix of text cells.

Choose SelectionNotifMatrix in the
Custom display of the inspector.

Chapter 5

Extending the To Do Application

176

Creating and Managing an Inspector (ToDoInspector)

An inspector is a panel of fields and controls that enable users to examine and set
an object’s attributes. Because objects often have many attributes and because
you want to make it easy for users to set those attributes, inspectors usually have
more than one display; users typically access these multiple displays using a pop-
up list.

The ToDo application has an inspector panel that allows users to inspect and set
the attributes of the currently selected ToDoItem. The inspector panel has its
own controller: ToDoInspector. While showing you how to create the inspector
panel and ToDoInspector, this section focuses on four things:

• Managing displays according to user selections
• Getting the current ToDoItem
• Updating the currently selected display
• Updating the current ToDoItem as users make changes to it

Before You Go On

You might be wondering about the empty box object in the lower part of the
panel. This box by itself may not seem a promising thing for displaying object
attributes, but it is critical to the workings of the inspector panel. A box that you
drag from the Views palette contains one subview, called the

content view

.
NSBox’s content view fits entirely within the bounds of the box. NSBox
provides methods for obtaining and changing the content view of boxes. You’ll

use these methods to change what the inspector panel displays.

The text fields should have a gray background and
should not be editable nor scrollable. Enlarge the
lower field to accommodate long item entries.

Double-click to display in a floating window the three
default items (Item1, Item2, Item3)

In the floating window, double-click the title tof each
item to select it; type the new title.

Assign tags 0 to 2 to the cells in downward order.

Turn off the box's Title attribute and resize the object
so it fits just inside the lower part of the panel. To
provide a guide for resizing, this example shows the
box having a border; turn the border off after resizing.

In Interface Builder

1 Create a new nib file named
ToDoInspector.nib and add it to the
ToDo project.

2 Create the inspector panel.

Drag a panel object from the Windows
palette.

Make the title of the panel “Inspector.”

Turn on the panel’s sizing border and
resize it, using the example as a guide.

Turn off the panel’s sizing border.

Put labels and fields on the panel and
set their attributes (as shown).

Put a pop-up button on the panel and
set cell titles (as shown).

Assign tags to the pop-up button cells.

Create a separator line just below the
pop-up button.

Put an empty box object in the lower
part of the panel.

Creating and Managing an Inspector (ToDoInspector)

177

Before You Go On

You probably now see where the inspector panel gets its displays and how it puts
them in place. When the inspector panel is first opened (and

ToDoInspector.nib

 is
loaded) the inspector controller, ToDoInspector, replaces the content view of the
inspector’s empty box (

dummyView

) with the content view of the Notification box in
the off-screen panel. Thereafter, every time the user chooses a new pop-up button
in the inspector panel, ToDoInspector replaces the currently displayed content
view with the content view of the associated off-screen box.

The scroll view is in its own group (Notes).

Turn off the border attribute of each outer box.

3 Create an off-screen panel holding
the inspector’s displays.

Drag a panel object from the Windows
palette.

Resize the panel, using the example at
right as a guide.

Put the labels, text fields, scroll view,
and switch and radio-button matrices
on the panel shown in the example at
right.

Set the mode attributes of the switch
matrices to Radio.

Make the “When to reschedule” and
“When to notify” groupings (boxes).

Make three other groupings for the
three displays: Notes, Reschedule, and
Notification.

Make the resulting outer boxes the
same size as the “dummy” view in the
inspector panel.

When users choose a new inspector display,
ToDoInspector replaces the current content
view of dummy View with the appropriate
view on the offscreen window.

Screen

Chapter 5

Extending the To Do Application

178

Interface Builder provides a palette object that formats dates in addition to the
one that formats numbers. You can identify this object on the DataViews palette
through its calendar icon.

Select a simple integer format for the hour and minute
“Time” fields.

Users cannot enter values that are less than this into the
field; the cursor will not leave the field until they enter an
appropriate value.

4 Apply formatters to fields of the
inspector.

Drag a number-formatter object from
the DataViews palette and drop it on
the hours field of the Notification
display (the first field after “Time:”).

In the inspector’s Formatter display,
set the field to have a minimum value
of 1 and a maximum value of 12 (see
example).

Apply a number formatter to the
minutes field (the second field after
“Time:”) and set it to have a minimum
value of 0 and a maximum value of 59.

Select this format for the field.

The formatter rejects dates entered in any other format.
It also verifies that the individual fields contain proper
values (for instance, “13” is disallowed as a month).

Check if you want the formatter to interpret common
temporal expressions such as “tomorrow” or “next
month.”

Drag a date-formatter object from the
DataViews palette onto the date field in
the Rescheduling display (the
“mm/dd/yy” field).

In the inspector’s Formatter display,
select the “%m/%d/%y” format from
the table.

Creating and Managing an Inspector (ToDoInspector)

179

Outlet Connection From ToDoInspector To...

dummyView The empty box object in the inspector panel

inspectorViews The title bar of the off-screen panel

notesView The box in the off-screen panel containing the scroll view

notifView The box in the off-screen panel containing the fields and controls related

to notification of impending items

reschedView The box in the off-screen panel containing the fields and controls related

to rescheduling items

inspPopUp The pop-up button on the inspector panel

inspDate The uneditable text field next to the “Date” label

inspItem The uneditable text field next to the “Item” label

inspNotifHour The first field after the “Time” label

inspNotifMinute The second field after the “Time” label

inspNotifAMPM The matrix holding the “AM” and “PM” radio buttons

inspNotifOtherHours The text field in the “When to Notify” box

inspNotifSwitchMatrix The matrix of switches in the “When to Notify” box

inspSchedComplete The “Task Completed” switch

inspSchedDate The text field in the “When to Reschedule” box

inspSchedMatrix The matrix of switches in the “When to Reschedule” box

inspNotes The text object inside the scroll view

Action Connection To ToDoInspector From...

newInspectorView: The pop-up button on the inspector panel

switchChecked: The matrix of switches in the “When to Notify” box, the AM-PM matrix, the
“Task Completed” switch, and the matrix of switches in the “When to

Reschedule” switches

5 Define the ToDoInspector class.

Create a subclass of NSObject and
name it “ToDoInspector.”

Add the outlets and actions in the
tables at right to the new class.

Instantiate ToDoInspector.

Connect the ToDoInspector object to its
outlets and as the target of action
messages (see tables at right).

Connect ToDoInspector and the
inspector panel via the panel’s
delegate outlet.

Close both panels.

Save ToDoInspector.nib.

Create source-code files for
ToDoInspector and add them to the
project.

Chapter 5

Extending the To Do Application

180

The ToDoInspector class has a utility function for clearing switches set in a matrix
and defines constants for the tags assigned to the pop-up buttons.

Using tags to identify cells rather than cell titles is a better localization strategy.

ToDoInspector has two accessor methods, one that gives out the current item and
one that sets the current item.

The implementation of

setCurrentItem:

’s “set” accessor method probably seems
familiar to you—except for a couple of things:

Instead of copying the new value, this implementation retains it. By retaining,
it

shares

 the current ToDoItem with the document controller (ToDoDoc) that
has sent the

setCurrentItem:

 message, enabling both objects to update the same
ToDoItem simultaneously.

Later in this section, you’ll invoke ToDoInspector’s

setCurrentItem:

 method in
various places in

ToDoDoc.m

.

Updates the current display of the inspector with the appropriate values of the
new ToDoItem.

In Project Builder

6 Add declarations to ToDoInspector.h.

Open ToDoInspector.h.

Type the declarations shown at right
(ellipses indicate existing
declarations).

Import ToDoItem.h and ToDoDoc.h.

@interface ToDoInspector : NSObject

{

 ToDoItem *currentItem;

 /* ... */

}

/* ... */

- (void)setCurrentItem:(ToDoItem *)newItem;

- (ToDoItem *)currentItem;

- (void)updateInspector:(ToDoItem *)item;

@end

Open ToDoInspector.m.

Forward-declare clearButtonMatrix()
at the beginning of the file.

Define enum constants for the pop-up
button tags.

static void clearButtonMatrix(id matrix);

enum { notifTag = 0, reschedTag, notesTag };

7 Implement the accessor methods for
the class.

Implement currentItem to return the
instance variables it names.

Implement setCurrentItem: as shown
at right.

- (void)setCurrentItem:(ToDoItem *)newItem

{

 if (currentItem) [currentItem autorelease];

 if (newItem)

 currentItem = [newItem retain];

 else

 currentItem = nil;

 [self updateInspector:currentItem];

}

A

B

A

B

Creating and Managing an Inspector (ToDoInspector)

181

This method switches the current inspector display according to the pop-up
button users select; it does this switching by replacing the

dummyView

’s content
view. Toward this end, the method:

Gets the panel’s content view and the tag of the selected pop-up button.

Assigns to the

newView

 local variable the off-screen box object
corresponding to the tag of the selected pop-up button.

Returns if the selected display is already on the inspector panel. The

subviews

 message returns an array of all subviews of the inspector panel’s
control view, and the

containsObject:

 message determines if the chosen
display is among these subviews.

Replaces the content view of the inspector panel’s

dummyView

. In

awakeFromNib

(which you’ll soon implement) you’ll retain each original content view.
The

setContentView:

 method replaces the new view and releases the old one;
because it’s retained, the replaced view remains visible.

Updates the inspector with the current item; this item hasn’t changed, but
the display is new and so the set of instance variables to be displayed is
different. The

setNeedsDisplay:

message forces a re-draw of the inspector
panel’s views.

8 Switch inspector displays based on
user selections.

Implement newInspectorView:.

- (void)newInspectorView:(id)sender

{

 NSBox *newView=nil;

 NSView *cView = [[inspPopUp window] contentView];

 int selected = [[inspPopUp selectedItem] tag];

 switch(selected){

 case notifTag:

 newView = notifView;

 break;

 case reschedTag:

 newView = reschedView;

 break;

 case notesTag:

 newView = notesView;

 break;

 }

 if ([[cView subviews] containsObject:newView]) return;

 [dummyView setContentView:newView];

 if (newView == notifView) [inspNotifHour selectText:self];

 if (newView == notesView) [inspNotes

 setSelectedRange:NSMakeRange(0,0)];

 [self updateInspector:currentItem];

 [cView setNeedsDisplay:YES];

}

A
B

C
D

E

A

B

C

D

E

Chapter 5 Extending the To Do Application

182

- (void)updateInspector:(ToDoItem *)newItem

{

 int minute=0, hour=0, selected=0;

 selected = [[inspPopUp selectedItem] tag];

 [[inspPopUp window] orderFront:self];

 if (newItem && [newItem isKindOfClass:[ToDoItem class]]) {

 [inspItem setStringValue:[newItem itemName]];

 [inspDate setStringValue:[[newItem day]

 descriptionWithCalendarFormat:@"%a, %b %d %Y"

 timeZone:[NSTimeZone localTimeZone] locale:nil]];

 switch(selected) {

 case notifTag: {

 long notifSecs, dueSecs = [newItem secsUntilDue];

 BOOL ampm = ConvertSecondsToTime(dueSecs, &hour, &minute);

 [[inspNotifAMPM cellAtRow:0 column:0] setState:!ampm];

 [[inspNotifAMPM cellAtRow:0 column:1] setState:ampm];

 [inspNotifHour setIntValue:hour];

 [inspNotifMinute setIntValue:minute];

 notifSecs = dueSecs - [newItem secsUntilNotif];

 if (notifSecs == dueSecs) notifSecs = 0;

 clearButtonMatrix(inspNotifSwitchMatrix);

 switch(notifSecs) {

 case 0:

 [[inspNotifSwitchMatrix cellAtRow:0 column:0]

 setState:YES];

 break;

 case (hrInSecs/4):

 [[inspNotifSwitchMatrix cellAtRow:1 column:0]

 setState:YES];

 break;

 case (hrInSecs):

 [[inspNotifSwitchMatrix cellAtRow:2 column:0]

 setState:YES];

 break;

 case (dayInSecs):

 [[inspNotifSwitchMatrix cellAtRow:3 column:0]

 setState:YES];

 break;

 default: /* Other */

 [[inspNotifSwitchMatrix cellAtRow:4 column:0]

 setState:YES];

 [inspNotifOtherHours setIntValue:

 ((dueSecs-notifSecs)/hrInSecs)];

 break;

 }

 break;

 }

 case reschedTag:

 break;

A

B

C

D

9 Update the current inspector display
with the new ToDoItem.

Write the first part of the
updateInspector: method shown at
right.

Creating and Managing an Inspector (ToDoInspector)

183

The updateInspector: method is a long one, so we’ll approach it in stages. This
first part updates the common data elements (item name and date) and, if the
selected display is for notifications, updates that display.

Gets the tag assigned to the selected pop-up button.

Tests the argument newItem to see if it is a ToDoItem. This test is important
because if the argument is nil, the method clears the display of existing
data (next example).

If newItem is a ToDoItem, updateInspector: first updates the Item and Date
fields.

If the tag of the selected pop-up button is notifTag, updates the associated
inspector display. This task starts by converting the due time from
seconds to hour, minute, and PM boolean values and then setting the
appropriate fields and button matrix with these values.

Sets the appropriate switch in the “When to Notify” matrix. It starts with
the difference (in seconds) between the time the item is due and the time
the item notification is sent. It calls clearButtonMatrix() to turn all switches off
and then, in a switch statement, sets the switch corresponding to the
difference in value between seconds from midnight before due and before
notification.

Before You Go On

Update the Notes display. Add code to update the inspector’s Notes display from the
information in the ToDoItem passed into updateInspector:. (Check the
documentation on NSText to see what method is suitable for this.) The
selected pop-up button must have notesTag assigned to it. Also put the cursor at
the start of the text object by selecting a “null” range.

Note that this tutorial omits the rescheduling logic of the ToDo application,
including the code in this method that would update the “Reschedule”
display. Rescheduling of ToDoItems is reserved as an optional exercise for
you at the end of this tutorial.

A

B

C

D

Chapter 5 Extending the To Do Application

184

As you’ve most likely noticed, the updateInspector: method calls the function
clearButtonMatrix(), which resets the states of all button cells in a switch matrix to NO.

The getNumberOfRows:columns: message returns, by indirection in the first argument,
the number of cells in itemMatrix.

Finish the implementation of
updateInspector: by resetting all
displays if the argument is nil.

 }

 else if (!newItem) { /* newItem is nil */

 [inspItem setStringValue:@""];

 [inspDate setStringValue:@""];

 [inspNotifHour setStringValue:@""];

 [inspNotifMinute setStringValue:@""];

 [[inspNotifAMPM cellAtRow:0 column:0] setState:YES];

 [[inspNotifAMPM cellAtRow:0 column:1] setState:NO];

 clearButtonMatrix(inspNotifSwitchMatrix);

 [[inspNotifSwitchMatrix cellAtRow:0 column:0]

setState:YES];

 [inspNotifOtherHours setStringValue:@""];

 [inspNotes setString:@""];

 }

}

Implement the clearButtonMatrix()
utility function.

void clearButtonMatrix(id matrix)

{

 int i, rows, cols;

 [matrix getNumberOfRows:&rows columns:&cols];

 for(i=0; i<rows; i++)

 [[matrix cellAtRow:i column:0] setState:NO];

}

Creating and Managing an Inspector (ToDoInspector)

185

Making a Custom View

If you want an object that draws itself differently than any other Application
Kit object, or responds to events in a special way, you should make a custom
subclass of NSView. Your custom subclass should complete at least the
steps outlined below.

Note: If you make a custom subclass of any class that inherits from NSView,
and you want to do custom drawing or event handling, the basic procedure
presented here still applies.

Interface Builder

1 Define a subclass of NSView in Interface Builder. Then generate header
and implementation files.

2 Drag a CustomView object from the Views palette onto a window and
resize it. Then, with the CustomView object still selected, choose the
Custom Class display of the Inspector panel and select the custom
class. Connect any outlets and actions.

Initializing Instances

3 Override the designated initializer, initWithFrame: to return an
initialized instance of self. The argument of this method is the frame
rectangle of the NSView, usually as set in Interface Builder (see step 2).

Handling Events

In the next section, you’ll make a subclass of NSButtonCell that uniquely
responds to mouse clicks. The way custom NSViews handle events is
different. If you intend your custom NSView to respond to user actions you

must do a couple of things:

4 Override acceptsFirstResponder to return YES if the NSView is to handle
selections. (The default NSView behavior is to return NO.)

5 Override the desired NSResponder event methods (mouseDown:,
mouseDragged:, keyDown:, etc.).

- (void)mouseDown:(NSEvent *)event {

if (([event modifierFlags] &

NSControlKeyMask){

doSomething();

}

You can query the NSEvent argument for the location of the user action in
the window, modifier keys pressed, character and key codes, and other
information.

Drawing

When you send display to an NSView, its drawRect: method and each of its
subview’s drawRect: are invoked. This method is where an NSView renders
its appearance.

6 Override drawRect:. The argument is usually the frame rectangle in
which drawing is to occur. This tells the Window Server where the
NSView’s coordinate system is located. To draw the NSView, you can do
one or more of the following:

• Composite an NSImage.

• Call Application Kit functions such as NSRectFill() and NSFrameRect ()
(NSGraphics.h).

• Call C functions that correspond to single PostScript operations, such as
PSsetgray() and PSfill().

• Call custom drawing functions created with pswrap.

7 When state changes and you need to have the object redraw itself, invoke
setNeedsDisplay: with an argument of YES.

See ‘‘A Short Guide to Drawing and Compositing’’ on page 192 for more
information on drawing techniques and requirements.

Chapter 5 Extending the To Do Application

186

10 Update the current item with new
values entered in the inspector.

Implement switchChecked: to apply
changes made through switches and
other controls.

- (void)switchChecked:(id)sender

{

 long tmpSecs=0;

 int idx = 0;

 id doc = [[NSApp mainWindow] delegate];

 if (sender == inspNotifAMPM) {

 if ([inspNotifHour intValue]) {

 tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue],

 [inspNotifMinute intValue],

 [[sender cellAtRow:0 column:1] state]);

 [currentItem setSecsUntilDue:tmpSecs];

 [[NSApp mainWindow] setDocumentEdited:YES];

 [doc updateMatrix];

 }

 } else if (sender == inspNotifSwitchMatrix) {

 idx = [inspNotifSwitchMatrix selectedRow];

 tmpSecs = [currentItem secsUntilDue];

 switch(idx) {

 case 0:

 [currentItem setSecsUntilNotif:0];

 break;

 case 1:

 [currentItem setSecsUntilNotif:tmpSecs-(hrInSecs/4)];

 break;

 case 2:

 [currentItem setSecsUntilNotif:tmpSecs-hrInSecs];

 break;

 case 3:

 [currentItem setSecsUntilNotif:tmpSecs-dayInSecs];

 break;

 case 4: // Other

 [currentItem setSecsUntilNotif:([inspNotifOtherHours intValue]

 * hrInSecs)];

 break;

 default:

 NSLog(@"Error in selectedRow");

 break;

 }

 [[NSApp mainWindow] setDocumentEdited:YES];

 } else if (sender == inspSchedComplete) {

 [currentItem setItemStatus:complete];

 [[NSApp mainWindow] setDocumentEdited:YES];

 [doc updateMatrix];

 } else if (sender == inspSchedMatrix) {

 } /* left as an exercise */

}

A

B

C

D

Creating and Managing an Inspector (ToDoInspector)

187

When users click a switch button on any inspector display, or when they click
one of the AM-PM radio buttons, the switchChecked: method is invoked. This
method works by evaluating the sender argument: the sending object.

If sender is the radio-button matrix (AM-PM), gets the new time due by
calling the utility function ConvertTimeToSeconds(), sets the current item to have
this new value, marks the document as edited, and then sends updateMatrix
to the document controller to have it display this new time.

If sender is the “When to Notify” matrix, gets the index of the selected cell
and the seconds until the item is due. It evaluates the first value in a
switch statement and uses the second value to set the current item’s new
secsUntilNotif value. It also sets the window to indicate an edited document.

If sender is the “Task Completed” switch, sets the status of the current
item to “complete,” sets the window to indicate an edited document, and
has the document controller update its matrices.

As before, implementation of this rescheduling block is left as a final
exercise.

Since text fields are controls that send target/action messages, you could also
have switchChecked: respond when data is entered in the fields. However, users
might not press Return in a text field so you can’t assume the action message
will be sent. Therefore, it’s better to rely upon delegation messages.

A

B

C

D

Chapter 5 Extending the To Do Application

188

The textDidEndEditing: and controlTextDidEndEditing: notification messages are sent to the
delegate (and all other observers) when the cursor leaves a text object or text field
(respectively) after editing has occurred.

After editing takes place in the “Notes” text object, this method is invoked,
and it responds by resetting the notes instance variable of the ToDoItem with
the contents of the text object.

If the object behind the notification is the hour or minute field of the
“Notifications” display, controlTextDidEndEditing: computes the new due time, sets
the current item to have this new value, and then sends updateMatrix to the
document controller to have it display this new time. (This code is almost the
same as that for the AM-PM matrix in the switchChecked: method.)

If the object behind the notification is the “Other...hours” text field in the
“When to Notify” box, the method verifies that the “Other” switch is checked
and, if it is, sets the ToDoItem with the new value.

Here is another empty rescheduling block of code that you can fill out in a
later exercise.

- (void)textDidEndEditing:(NSNotification *)notif

{

 if ([notif object] == inspNotes)

 [currentItem setNotes:[inspNotes string]];

 [[NSApp mainWindow] setDocumentEdited:YES];

}

- (void)controlTextDidEndEditing:(NSNotification *)notif

{

 long tmpSecs=0;

 if ([notif object] == inspNotifHour ||

 [notif object] == inspNotifMinute) {

 tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue],

 [inspNotifMinute intValue],

 [[inspNotifAMPM cellAtRow:0 column:1] state]);

 [currentItem setSecsUntilDue:tmpSecs];

 [[[NSApp mainWindow] delegate] updateMatrix];

 [[NSApp mainWindow] setDocumentEdited:YES];

 } else if ([notif object] == inspNotifOtherHours) {

 if ([inspNotifSwitchMatrix selectedRow] == 4) {

 [currentItem setSecsUntilNotif:([inspNotifOtherHours

 intValue] * hrInSecs)];

 [[NSApp mainWindow] setDocumentEdited:YES];

}

 } else if ([notif object] == inspSchedDate) {

 } /* left as an exercise */

}

A

B

C

D

Update the current item if changes are
made to the contents of text fields or
the text object of the inspector panel.

A

B

C

D

Creating and Managing an Inspector (ToDoInspector)

189

Now it’s time to address two related problems in synchronizing displays of
data. The first is the requirement for the inspector to display the ToDoItem
currently selected in the document. In ToDoDoc.m write code that communicates
this object to ToDoInspector through notification.

The controlTextDidEndEditing: method is where ToDoItems are added, removed, or
modified, so it’s especially important here to let ToDoInspector know when
there’s a change in the current ToDoItem. The fragment of code above gets
the current item (row holds the index of the selected row); if the returned
object isn’t a ToDoItem, curItem is set to nil. Then the code posts a
ToDoItemChangedNotification, passing in curItem as the object related to the
notification.

Post an identical notification in other ToDoDoc methods that select a
ToDoItem or that require the removal of the currently displayed ToDoItem
from the inspector’s display. In methods of this second type, there is no need
to get the current item because the object argument of the notification should
always be nil. This argument is eventually passed to ToDoInspector’s
updateInspector:, to which nil means “clear the display.”

Other Methods Posting Notifications to ToDoInspector object: Argument

calendarMatrix:didChangeToDate: nil

calendarMatrix:didChangeToMonth:year: nil

windowShouldClose: (for both “Save” and “Close”) nil

selectionInMatrix: current item or nil

 id curItem;

/* ... */

 if (curItem = [currentItems objectAtIndex:row]) {

 if (![curItem isKindOfClass:[ToDoItem class]])

 curItem = nil;

 [[NSNotificationCenter defaultCenter] postNotificationName:

 ToDoItemChangedNotification object:curItem

 userInfo:nil];

 }

11 Synchronize the items displayed in
the document with the inspector.

Open ToDoDoc.m.

Import ToDoInspector.h.

Add the code at right to the end of the
controlTextDidEndEditing: method.

Post identical notifications in the other
ToDoDoc methods listed in the table
below.

In ToDoDoc.h declare as extern the
string constant
ToDoItemChangedNotification.

In ToDoDoc.m, declare and initialize
the same constant.

Chapter 5 Extending the To Do Application

190

The second data-synchronization problem involves the selection and display of initial
values in the document and the inspector when the user:

• Opens the inspector
• Opens a document
• Selects a new day from the calendar

You must return to ToDoDoc.m to write code that implements this behavior.

The selectItem: method selects the text field identified in the argument and posts a
notification to the inspector with the associated ToDoItem as argument (or nil if
the text field is empty). Next, invoke selectItem: in these methods:

Method Comment

calendarMatrix:didChangeToDate: Make it the final message, with an argument of 0 (ToDoDoc.m).

openDoc: Invoke after opening a document, with an argument of 0 (ToDoController.m)

showInspector: Invoke after opening the inspector panel, passing in the index of the selected row
in the document. (ToDoController.m). Hint: Get the current document by
querying for the delegate of the main window, then obtain the selected row from
this object.

Before You Go On

Exercise: Make ToDoInspector respond to the notification. Declare a notification
method named currentItemChanged: and implement it to set the current item with
the object value of the notification. Then, in init or awakeFromNib, add ToDoInspector
as an observer of the ToDoItemChangedNotification, identifying
currentItemChanged: as the method to be invoked.

- (void)selectItem:(int)item

{

 id thisItem = [currentItems objectAtIndex:item];

 [itemMatrix selectCellAtRow:item column:0];

 if (thisItem) {

 if (![thisItem isKindOfClass:[ToDoItem class]]) thisItem = nil;

 [[NSNotificationCenter defaultCenter]

 postNotificationName:ToDoItemChangedNotification

 object:thisItem

 userInfo:nil];

 }

}

12 Open the inspector panel when users
choose the Inspector command.

Implement ToDoController’s
showInspector: method to load
ToDoInspector.nib and make the
inspector panel the key window.

13 Update the document and inspector
to display initial values.

In ToDoDoc.m, implement selectItem:.

Invoke this method at the appropriate
places (see table below).

Creating and Managing an Inspector (ToDoInspector)

191

ToDoInspector’s awakeFromNib method performs some necessary “housekeeping”
tasks for the ToDoInspector instance of the application.

Makes the Notification pop-up display the start-up default, using the index of
the “Notification” cell rather than its title to improve localization. Then it sets
self to be the delegate of the text object.

Each of the three inspector displays in the off-screen panel (inspectorViews) is the
content view of an NSBox. This section of code extracts and retains each of
those content views, reassigning each to its original NSBox instance variable in
the process. This explicit retaining is necessary because, in newInspectorView:,
each current content view is released when it’s swapped out. Once all content
views are retained, the code releases the off-screen window and invokes
newInspectorView: to put up the default display.

The use of notifications to communicate changes in one object to another object in an
application is a good design strategy because it removes the need for the objects to have
specific knowledge of each other. It also makes the application more extensible, because any
number of objects can also become observers of the changes. However, there is a way for
ToDoDoc to locate ToDoInspector reliably using the various relationships established within
the program framework. See page 201 to see how this is done.

- (void)awakeFromNib

{

 [inspPopUp selectItemAtIndex:0];

 [inspNotes setDelegate:self];

 [[notifView contentView] removeFromSuperview];

 notifView = [[notifView contentView] retain];

 [[reschedView contentView] removeFromSuperview];

 reschedView = [[reschedView contentView] retain];

 [[notesView contentView] removeFromSuperview];

 notesView = [[notesView contentView] retain];

 [inspectorViews release];

 [self newInspectorView:self];

}

A

B

14 Set up the inspector when it is
unarchived.

In ToDoInspector.m, implement
awakeFromNib as shown at right.

A

B

Chapter 5

Extending the To Do Application

192

A Short Guide to Drawing and Compositing

Besides responding to events, all objects that inherit from NSView can
render themselves on the screen. They do this rendering through image
composition and PostScript drawing.

NSViews draw themselves as an indirect result of receiving the

display

message (or a variant of

display

); this message is sent explicitly or through
conditions that cause automatic display. The

display

 message leads to the
invocation of an NSView’s

drawRect:

 method and the

drawRect:

 methods
of all subviews of that NSView. The

drawRect:

 method should contain all
code needed to redraw the NSView completely.

An NSView can be automatically displayed when:

• Users scroll it (assuming it supports scrolling).

• Users resize or expose the NSView’s window.

• The window receives a

display

 message or is automatically updated.

• For some Application Kit objects, when an attribute changes.

An NSView represents a context within which PostScript drawing can take
place. This context has three components:

• A rectangular frame within a window to which drawing is clipped

• A coordinate system

• The current PostScript graphics state

Frame and Bounds

An NSView’s

frame

 specifies the location and dimensions of the NSView in
terms of the coordinate system of the NSView’s superview. It is a rectangle
that encloses the NSView. You can programmatically move, resize, and
rotate the NSView by reference to its frame (

setFrameOrigin:

,

setFrameSize:

, and so on).

To draw efficiently, the NSView must have its frame rectangle translated
into its own coordinate system. This translated rectangle, suitable for
drawing, is called the

bounds

. The bounds rectangle usually specifies
exactly the same area as the frame rectangle, but it specifies that area in
a different coordinate system. In the default coordinate system, an
NSView’s bounds is the same as its frame, except that the point locating the
frame becomes the origin of the bounds (x = 0.0, y = 0.0). The x- and y-axes
of the default coordinate system run parallel to the sides of the frame so,
for example, if you rotate the frame the default coordinate system rotates
with it.

This relationship between frame and bounds has several implications
important in drawing and compositing.

• Each NSView’s coordinate system is a transformation of its superview’s.

• Drawing instructions don’t have to account for an NSView’s location on
the screen or its orientation.

• Changes in a superview’s coordinate system are propagated to its
subviews.

NSView allows you to flip coordinate systems (so the positive y-axis runs
downward) and to otherwise alter coordinate systems.

Focusing

Before an NSView can draw it must

lock focus

 to ensure that it draws in the
correct window, place, and coordinate system. It locks focus by invoking
NSView’s

lockFocus

 method. Focusing modifies the PostScript graphics
state by:

• Making the NSView’s window the current device

• Creating a clipping path around the NSView’s frame

• Making the PostScript coordinate system match the NSView’s coordinate
system

After drawing, the NSView should unlock focus (

unlockFocus

).

(0.0, 0,0)

0.0, 0,0

Frame rotated within its
superview.

Flipped coordinate
system.

Location of frame
within its superview.
(200 300)

Creating and Managing an Inspector (ToDoInspector)

193

PostScript Drawing

In OpenStep, NSViews draw themselves by sending binary-encoded
PostScript code to the Window Server. The Application Kit and the Display
PostScript frameworks provide a number of C-language functions that send
PostScript code to perform common drawing tasks. You can use these
functions in combinations to accomplish fairly elaborate drawing.

The Application Kit has functions and constants, declared in

NSGraphics.h

,
for (among other things):

• Drawing, filling, highlighting, clipping and erasing rectangles

• Drawing buttons, bezels, and bitmaps

• Computing window depth and related display information

You also call OpenStep-compliant drawing routines defined in

dpsOpenStep.h

. These routines (such as

DPSDoUserPath()

) draw a
specified path. In addition, you can call the functions declared in psops.h.
These functions correspond to single PostScript operators, such as

PSsetgray()

 and

PSfill()

.

You can also write and send your own custom PostScript code. The

pswrap

program converts PostScript code into C-language functions that you can
call within your applications. It is an efficient way to send PostScript code
to the Window Server. The following

pswrap

 functions draw ovals.:

defines PDFramedOval(float x, y, w, h)

matrix currentmatrix

w h x y oval

setmatrix stroke

endps

defines PSFilledOval float x, y, w, h)

w h x y oval fill

endps

Compose the function in a file with a

.psw

 extension and add it to the Other
Source project “suitcase” in Project Builder. When you next build your
project, Project Builder runs the

pswrap

 program, generating an object file
and a header file (matching the file name of the

.psw

) file, and links these
into the application. To use the code, import the header file and call the
function when you want to do the drawing:

PSFilledOval(5.0, 5.0, 1.0, 1.0);

Compositing Images

The other technique NSViews use to render their appearance is image
compositing. By compositing (with the SOVER operator) NSViews can
simply display an image within their frame. You usually composite an
image using NSImage’s

compositeToPoint:operation:

 (or a related
method).

NSImage allows you to copy images into your user interface. It uses various
subclasses of NSImageRep to store the multiple representations of the
same image—color, grayscale, TIFF, EPS, and so on—and choosing the
representation appropriate for a given type or display. NSImage can read
image data from a bundle (including the application’s main bundle), from
the pasteboard, or from an NSData object.

Compositing allows you to do more than simply copy images. Compositing
builds a new image by overlaying images that were previously drawn. It's
like a photographer printing a picture from two negatives, one placed on top
of the other. Various compositing operators (NSCompositingOperation,
defined in

dpsOpenStep.h

) determine how the source and destination
images merge.

You can achieve interesting effects with compositing when the initial
images are drawn with partially transparent paint. (Transparency is
specified by

coverage

, a indicator of paint opacity.) In a typical compositing
operation, paint that's partially transparent won't completely cover the
image it's placed on top of; some of the other image will show through. The
more transparent the paint is, the more of the other image you'll see.

Source Image Destination Image

Operation Destination After

Copy

Source
Over

Destination
Out

Source image overlays

Source image wherever
it is opaque, and
destination image
elsewhere.

Destination image
wherever it is opaque but
source image is
transparent, and
transparent elsewhere.

Chapter 5 Extending the To Do Application

194

Overriding and Adding Behavior to a Class: An Example

Buttons in the Application Kit are two-state controls. They have two—and only
two—states: 1 and 0 (often expressed as Boolean YES and NO, or ON and OFF).
For the To Do application, a three-state button is preferable. You want the button
to indicate, with an image, three possible states: not done (no image), done (an
“X”), and deferred (a check mark). These states correspond to the possible states
of a ToDoItem.

The ToDoCell class, which you will implement in this section, generates cells
that behave as three-state buttons. These buttons also display the time an item is
due.

The superclass of ToDoCell is NSButtonCell. In creating ToDoCell you will add
data and behavior to NSButtonCell, and you will override some existing behavior.

Time item is due.Item status.
1 Add the cell images to the project to

the project.

Select the Images “suitcase.”

Choose Add Files from the Project
menu.

In the Add Images panel, navigate to
the ToDo project directory of
/NextDeveloper/Examples/AppKit and
select file X.tiff.

Click OK.

Repeat the same steps for file
checkMark.tiff, which is in the same
location.

Why Choose NSButtonCell as Superclass?

ToDoCell’s superclass is NSButtonCell. This choice
prompts two questions:

• Why a button cell and not the button itself?

• Why this particular superclass?

NSCell defines state as an instance variable, and
thus all cells inherit it. Cells instead of controls hold
state information for reasons of efficiency—one
control (a matrix) can manage a collection of cells,
each cell with its own state setting. NSButton does
provide methods for getting and setting state
values, but it accesses the state value of the cell
(usually NSButtonCell) that it contains.

NSButtonCell is ToDoCell’s superclass because
button cells already have much of the behavior you
want. By virtue of inheritance from NSActionCell,
button cells can hold target and action information.
Button cells also have the unique capability to
display an image and text simultaneously. These
are all aspects of behavior needed for ToDoCell.

When you think that you need a specialized
subclass of an OpenStep class, you should first
spend some time examining the header files and
reference documentation on not only that class, but
its superclasses and any “sibling” classes.

Overriding and Adding Behavior to a Class: An Example

195

The triState instance variable will be assigned ToDoButtonState constants as
values. The NSImage variables hold the “X” and check mark images that
represent statuses of completed and deferred (that is, rescheduled for the
next day). The timeDue instance variable carries the time the item is due as an
NSDate; for display, this object will be converted to a string.

Sets some superclass (NSButtonCell) attributes, such as button type,
image and text position, font of text, and border.

Through NSBundle’s pathForImageResource:, gets the pathname for the cell
images and creates and stores the images using the pathname.

enum ToDoButtonState {notDone=0, done, deferred} ToDoButtonState;

@interface ToDoCell : NSButtonCell

{

 ToDoButtonState triState;

 NSImage *doneImage, *deferredImage;

 NSDate *timeDue;

}

- (void)setTriState:(ToDoButtonState)newState;

- (ToDoButtonState)triState;

- (void)setTimeDue:(NSDate *)newTime;

- (NSDate *)timeDue;

@end

2 Add header and implementation files
to the project.

Choose New in Project from the File
menu.

In the New File In ToDo panel, select the
Class suitcase, click Create header,
type “ToDoCell” after Name, and click
OK.

3 Complete ToDoCell.h.

Make the superclass NSButtonCell.

Add the instance-variable and method
declarations shown at right.

Add the enum constants for state
values (as shown).

- (id)init

{

 NSString *path;

 [super initTextCell:@""];

 triState = notDone;

 [self setType:NSToggleButton];

 [self setImagePosition:NSImageLeft];

 [self setBezeled:YES];

 [self setFont:[NSFont userFontOfSize:12]];

 [self setAlignment:NSRightTextAlignment];

 path = [[NSBundle mainBundle] pathForImageResource:@"X.tiff"];

 doneImage = [[NSImage alloc] initByReferencingFile:path];

 path = [[NSBundle mainBundle]

 pathForImageResource:@"checkMark.tiff"];

 deferredImage = [[NSImage alloc] initByReferencingFile:path];

 return self;

}

A

B

4 Initialize the allocated ToDoCell
instance (and deallocate it).

Select ToDoCell.m in the project
browser.

Implement init as shown at right.

Implement dealloc.

A

B

Chapter 5 Extending the To Do Application

196

Accessing state information is a dual-path task in ToDoCell. It involves not only
setting and getting the new state instance variable, triState, but properly handling
the inherited instance variable by overriding the superclass accessor methods for
state.

If the new value for triState is one greater than the limit (deferred), reset it to zero
(notDone); otherwise, assign the value. The reason behind this logic is that (as
you’ll soon learn) when users click a ToDoCell, setTriState: is invoked with an
argument one more than the current value. This way users can cycle through
the three states of ToDoCell.

Overrides setState: to be a null method. The reason for this override is that
NSCell intervenes when a button is clicked, resetting state to zero (NO). This
override nullifies that effect.

Overrides state to return a reasonable value to client objects that invoke this
accessor method.

- (void)setTriState:(ToDoButtonState)newState

{

 if (newState == deferred+1)

 triState = notDone;

 else

 triState = newState;

 [self TD_setImage:triState];

 }

- (ToDoButtonState)triState {return triState;}

- (void)setState:(int)val

{

}

- (int)state

{

 if (triState == deferred)

 return (int)done;

 else

 return (int)triState;

}

A

B

C

5 Implement the accessor methods
related to state.

Write the methods that get and set the
triState instance variable.

Override the superclass methods that
get and set state.

A

B

C

Overriding and Adding Behavior to a Class: An Example

197

This portion of code handles the display of the cell’s image by doing the
following:

In a category of ToDoCell in ToDoCell.m, it declares the private method
TD_setImage:. Private methods are methods that you don’t want clients of
your object to invoke, and thus you don’t “publish” them by declaring
them in public header files. In this case, you don’t want the image to be
set independently from the cell’s triState value.

In a switch statement, evaluates the tri-state argument and sets the cell’s
image appropriately (setImage: is an NSButtonCell method).

Sends updateCell: to the control view of the cell’s control (a matrix) to force a
re-draw of the cell.

@interface ToDoCell (PrivateMethods)

- (void)TD_setImage:(ToDoButtonState)aState;

@end

/* ... */

- (void)TD_setImage:(ToDoButtonState)aState

{

 switch(aState) {

 case notDone: {

 [self setImage:nil];

 break;

 }

 case done: {

 [self setImage:doneImage];

 break;

 }

 case deferred: {

 [self setImage:deferredImage];

 break;

 }

 [(NSControl *)[self controlView] updateCell:self];

}

A

B

C

6 Set the cell image.

Declare the private method
TD_setImage:.

Implement the TD_setImage: method.

A

B

C

Chapter 5 Extending the To Do Application

198

When you create your own cell subclass, you might want to override some
methods that are intrinsic to the behavior of the cell. Mouse-tracking methods,
inherited from NSCell, are among these. You can override these methods to
incorporate specialized behavior when the mouse clicks the cell or drags over it.
ToDoCell overrides these methods to increment the value of triState.

Overrides startTrackingAt:inView: to return YES, thus signalling to the control that
the ToDoCell will track the mouse.

Overrides stopTracking:at:inView:mouseIsUp: to evaluate flag and, if it’s YES, to
increment the triState instance variable. The setTriState: method “wraps” the
incremented value to zero (notDone) if it is greater than 2 (deferred).

The setTimeDue: method is similar to other “set” accessor methods, except that it
handles interpretation and display of the NSDate instance variable it stores. If
newTime is a valid object, it uses descriptionWithCalendarFormat:timeZone:locale:,an NSDate
method, to interpret and format the date object before displaying the result with

- (BOOL)startTrackingAt:(NSPoint)startPoint inView:

 (NSView *)controlView

{

 return YES;

}

- (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint

 inView:(NSView *)controlView mouseIsUp:(BOOL)flag

{

 if (flag == YES) {

 [self setTriState:([self triState]+1)];

 }

}

A

B

7 Track mouse clicks on a ToDoCell and
reset state.

Override two NSCell mouse-tracking
methods as shown in this example.

A

B

- (void)setTimeDue:(NSDate *)newTime

{

 if (timeDue)

 [timeDue autorelease];

 if (newTime) {

 timeDue = [newTime copy];

 [self setTitle:[timeDue descriptionWithCalendarFormat:

 @"%I:%M %p" timeZone:[NSTimeZone localTimeZone]

 locale:nil]];

 }

 else {

 timeDue = nil;

 [self setTitle:@"-->"];

 }

}

8 Get and set the time due, displaying
the time in the process.

Implement setTimeDue: as shown in
this example.

Implement timeDue to return the
NSDate.

Overriding and Adding Behavior to a Class: An Example

199

setTitle:. If newTime is nil, no due time has been specified, and so the method sets
the title to “-->”.

You’ve now completed all code required for ToDoCell. However, you must
now “install” instances of this class in the To Do interface.

This block of code substitutes a ToDoCell for each cell in the left matrix
(markMatrix) you created for the To Do interface. It creates a ToDoCell, sets its
target and action message, then inserts it into the markMatrix by invoking
NSMatrix’s putCell:atRow:column: method.

Finally, you must implement the action message sent when the matrix of
ToDoCells is clicked. (This response to mouse-down is for objects external to
ToDoCell, while the mouse-tracking response sets state internally.)

This method gets the ToDoCell that was clicked and the object in the
corresponding text field. If that object is a ToDoItem, the method updates its
status to reflect the state of the ToDoCell. It then marks the window as
containing an edited document.

- (void)awakeFromNib

{

 int i;

/* ... */

 i = [[markMatrix cells] count];

 while (i--) {

 ToDoCell *aCell = [[ToDoCell alloc] init];

 [aCell setTarget:self];

 [aCell setAction:@selector(itemChecked:)];

 [markMatrix putCell:aCell atRow:i column:0];

 [aCell release];

 }

}

9 At launch time, create and install
your custom cells in the matrix.

Select ToDoDoc.m in the project
browser.

Insert the code at right in
awakeFromNib.

- (void)itemChecked:sender

{

 int row = [sender selectedRow];

 ToDoCell *cell = [sender cellAtRow:row column:0];

 if (cell && [currentItems count]) {

 id item = [currentItems objectAtIndex:row];

 if (item && [item isKindOfClass:[ToDoItem class]]) {

 [item setItemStatus:[cell triState]];

 [[sender window] setDocumentEdited:YES];

 }

 }

}

10 Respond to mouse clicks on the
matrix of ToDoCell’s.

In ToDoDoc.m, implement
itemChecked:.

Chapter 5 Extending the To Do Application

200

Setting Up Timers

One of To Do’s features is the capability for notifying users of items with
impending due times. Users can specify various intervals before the due time for
these notifications, which take the form of a message in an attention panel. In this
section you will implement the notification feature of To Do. In the process you’ll
learn the basics of creating, setting, and responding to timers.

Here’s how it works: Each ToDoItem with a “When to Notify” switch (other than
“Do not notify”) selected in the inspector panel—and hence has a positive
secsUntilNotif value—has a timer set for it. If a user cancels a notification by selecting
“Do not notify,” the document controller invalidates the timer. When a timer
fires, it invokes a method that displays the attention panel, selects the “Do not
notify” switch, and sets secsUntilNotif to zero.

Implementing the timer feature takes place entirely in Project Builder, but
extends across several classes.

This method sets or invalidates a timer, depending on whether the ToDoItem
passed in has a positive secsUntilNotif value.

Tests the ToDoItem to see if it has a positive secsUntilNotif value and, if it has,
composes the time the notification should be sent.

Creates a timer and schedules it to fire at the right time, directing it to invoke
itemTimerFired: when it fires. It also sets the timer in the ToDoItem.

If the secsUntilNotif variable is zero, invalidates the item’s timer.

- (void)setTimerForItem:(ToDoItem *)anItem

{

 NSDate *notifDate;

 NSTimer *aTimer;

 if ([anItem secsUntilNotif]) {

 notifDate = [[anItem day] addTimeInterval:[anItem

 secsUntilNotif]];

 aTimer = [NSTimer scheduledTimerWithTimeInterval:

 [notifDate timeIntervalSinceNow]

 target:self

 selector:@selector(itemTimerFired:)

 userInfo:anItem

 repeats:NO];

 [anItem setItemTimer:aTimer];

 } else

 [[anItem itemTimer] invalidate];

}

A

B

C

1 Add the timer as an instance variable
to ToDoItem.

Open ToDoItem.h.

Add the instance variable itemTimer of
class NSTimer.

Write accessor methods to get and set
this instance variable.

2 Create and set the timer, or
invalidate it.

Open ToDoDoc.m.

Implement the setTimerForItem:
method, which is shown at right.

A

B

C

Setting Up Timers

201

When a ToDoItem’s timer goes off, it invokes the itemTimerFired: method
(remember, you designated this method when you scheduled the timer).

This method communicates with ToDoInspector in a more direct manner
than notification. It gets the ToDoInspector object through this chain of
association: the delegate of the application object is ToDoController,
which holds the id of the inspector panel as an instance variable, and the
delegate of the inspector panel is ToDoInspector.

Composes the notification time (as an NSDate), beeps, and displays an
attention panel specifying the name of a ToDoItem and the time it is due.
It then sets the ToDoItem’s secsUntilNotif instance variable to zero, and sends
resetNotifSwitch to ToDoInspector to have it reset the “When to Notify”
switches to “Do not Notify.”

Before You Go On

Exercise: You haven’t written ToDoInspector’s resetNotifSwitch method yet, so do
it now as an exercise. It should select the “Do not Notify” switch after
turning off all switches in the matrix, and then force a redisplay of the switch
matrix.

- (void)itemTimerFired:(id)timer

{

 id anItem = [timer userInfo];

 ToDoInspector *inspController = [[[NSApp delegate]

 inspector] delegate];

 NSDate *dueDate = [[anItem day] addTimeInterval:

 [anItem secsUntilDue]];

 NSBeep();

 NSRunAlertPanel(@"To Do", @"%@ on %@", nil, nil, nil,

 [anItem itemName], [dueDate

 descriptionWithCalendarFormat:@"%b %d, %Y at %I:%M %p"

 timeZone:[NSTimeZone defaultTimeZone] locale:nil]);

 [anItem setSecsUntilNotif:0];

 [inspController resetNotifSwitch];

}

A

B

3 Respond to timers firing.

Implement itemTimerFired: as shown
at right.

A

B

Chapter 5 Extending the To Do Application

202

Next you must send setTimerForItem: at the right place and time, which is ToDoInspector,
when the user alters a “When to Notify” value.

Instead of archiving an item’s NSTimer, To Do re-creates and resets it when the
application is launched.

This block of code traverses the activeDays dictionary, evaluating each ToDoItem
within the dictionary. If the ToDoItem has a positive secsUntilNotif value, it invokes
setTimerForItem: to have a timer set for it.

[[[NSApp mainWindow] delegate] setTimerForItem:currentItem];
4 Send the message that sets the timer

at the right times.

Open ToDoInspector.m.

In switchChecked:, insert the
setTimerForItem: message at right
after the switch statement evaluating
which “When to Notify” switch was
checked.

In controlTextDidEndEditing:, insert
the same message at the end of the
block related to the
inspNotifOtherHours variable.

5 When the application is launched,
reset item timers.

Add the code shown at right to
ToDoDoc’s initWithFile: method.

 if ([self activeDays]) {

 dayenum = [[self activeDays] keyEnumerator];

 while (itemDate = [dayenum nextObject]) {

 NSEnumerator *itemenum;

 ToDoItem *anItem=nil;

 NSArray *itemArray = [[self activeDays]

 objectForKey:itemDate];

 itemenum = [itemArray objectEnumerator];

 while ((anItem = [itemenum nextObject]) &&

 [anItem isKindOfClass:[ToDoItem class]] &&

 [anItem secsUntilNotif]) {

 [self setTimerForItem:anItem];

 }

 }

 }

Tick Tock Brrrring: Run Loops and Timers

A run loop—an instance of NSRunLoop—manages
and processes sources of input. These sources
include mouse and keyboard events from the
window system, file descriptor, inter-thread
connections (NSConnection), and timers (NSTimer).

Applications typically won't need to either create or
explicitly manage NSRunLoop objects. When a
thread is created, an NSRunLoop object is
automatically created for it. The NSApplication
object creates a default thread and therefore
creates a default run loop.

NSTimer creates timer objects. A timer object waits
until a certain time interval has elapsed and then

fires, sending a specified message to a specified
object. For example, you could create an NSTimer
that periodically sends messages to an object,
asking it to respond if an attribute changes.

NSTimer objects work in conjunction with
NSRunLoop objects. NSRunLoops control loops that
wait for input, and they use NSTimers to help
determine the maximum amount of time they
should wait. When the NSTimer's time limit has
elapsed, the NSRunLoop fires the NSTimer (causing
its message to be sent), then checks for new input.

Build, Run, and Extend the Application

203

Build, Run, and Extend the Application

Although you probably have been building the ToDo project frequently now,
as it’s been taking shape, build it one more time and check out what you’ve
created. Go through the following sequence and observe To Do’s behavior.

1. When you choose New from the Document menu, the application
creates a new To Do document and selects the current day.

2. Enter a few items. Click a new day on the calendar and enter a few more
items. Click the previous day and notice how the items you entered
reappear.

3. Choose Inspector from the main menu. When the inspector appears,
click an item and notice how the name and date of the item appears in
the top part of the inspector. Enter due times for a couple items, and
some associated notes. Note how the times, as you enter them, appear in
the Status/Due column of the To Do document. Click among a few items
again and note how the Notifications and Notes displays change.

4. Click a Status/Due button; the image toggles among the three states.
Then, with an item that has a due time, select a notification time that has
already passed. The application immediately displays an attention panel
with a notification message. When you dismiss this panel, To Do sets the
notification option to “Do not notify.”

5. Click the document window and respond to the attention panel by
clicking Save. In the Save panel, give the document a location and name.
When the window has closed, chose Open from the Document menu and
open the same document. Observe how the items you entered are
redisplayed.

Optional Exercises
You should be able now to supplement the To Do application with other
features and behaviors. Try some of the following suggestions.

Make Your Own Info Panel
Make your own Info panel. Define a method that responds to a click on the
Info panel button by loading a nib file containing the panel. The owner of the
panel can be the application controller. You can customize this panel however
you wish. For instance, put the application icon in a toggled button (the main
image) and make the alternate image a photo (yourself, your significant other,
your dog). When users click the button, the image changes between the two.

Chapter 5 Extending the To Do Application

204

Implement Application Preferences
Make a Preferences panel for the application, with a new controller object (or the
application controller) as the owner of the nib file containing the panel. Follow
what you’ve done for ToDoInspector, especially if the panel has multiple
displays. Some ideas for Preferences: how long to keep expired ToDoItems
before logging and purging them (see below); the default document to open upon
launch; the default rescheduling interval (see below). Store and retrieve specified
preferences as user defaults; for more information, see the NSUserDefaults
specification.

Implement Rescheduling
ToDo’s Inspector panel has a Rescheduling display that does almost nothing now.
Implement the capability for rescheduling items by the period specified.

Implement Logging and Purging
After certain period (set via Preferences), append expired ToDoItems (as
formatted text) to a log, and expunge the ToDoItems from the application.

