Travel Advisor Tutorial

Travel Advizor

File Edit Record ‘Window Services Help

Cnuntry:lFrance - i‘ E
Countries %
England =]

Logistics

Chapter 3

STt Fodiel e 1

Fammaler

.ﬂ.irpnrts:l Oy [Paris) Furidlbve | Fngalive |
b9, e B ITETET) =]
Airlines:lAirFranu:e § 9, BB)
. R -k e
Transpnrtatmn:l 1o T
| Hotels:| H. Metropale L DI
1 rsk =%
Motes and Itinerary for France SR a L

Other

Currency:lfranc

EII T

Rate:|5.71
Pretive:| e s 0D

Languages:| French

[English widely spoken

Hagaive:| - #en 00

Pk

X

Travelfuvisor — Launch -- “Travelfdvisor.app’

R E eal

5

Conversions ——|

e

™ Magaivaini

; : Fahrenheitl
Reading symbols from loaded file. . .done.

Mextlibrary /Frameworks/Soundkit . framework Mersions/A/Soundkit at
Ax14006608 offoet BB
Reading symbols from loaded file. . .done.

Delete |

Clear |

Mextlibrary /Frameworks/Svstem. framework Mersions /A /System at BxEEE00EE
offzet G:A

Reading symbols from loaded file. . .done.

Apr 18 21:18:59 TravelAdvizor[8549] Could not connect the action
switchedChecked: to target of class TaAController

Breskpoint 1, -[TAController awskeFrombib] (self=@xid4848c,
_cnd=Ax626e 53y at TAController.m:2E5
{gdb}

=1 T 1

[Locaia

B Add 00 Saparsdore [L e-e

60

What You'll Learn

Using forms and table views

Grouping objects

Adding images to applications

Formatting and validating fields

Simple printing

Object allocation and initialization

Using collection objects and string
objects

Delegation and notification

Archiving and unarchiving objects

Object ownership, retention, and
disposal

Using the graphical debugger

Finding project information

Comntry | Eregland

Engiare
!:Iill'.i
el i)

Leipslics
Apons:| Lard o

Adifirei:| British &ir
Transpaaion:| Tisi

Hotwds:| Hiton
Fecrlizs @l sy Tor Esgpasl P
Cunency:| Frure Fexte: | perl
Liare] iagpas:|
Ll Englizh widely spiken

A T S
Elulu:.| Lm:i.l'l Converd
et Farmriveit [

Add | | Cemlpim | | Clear I

You can find the Travel Advisor project in the AppKit subdirectory of INextDeveloper/Examples.

Chapter 3
A Forms-Based Application

In this chapter you create Travel Advisor; a considerably more complex application than
Currency Converter. Travel Advisor is a forms-based application used for entering,
viewing, and deleting records on countries that the user travels to. Users enter a country
name and information associated with that country. When they click Add, the country
appears in the table below the country name. They can select countries in the table, and
the information on that country appears in the forms. The application also performs

lemperature dﬂd’ﬂﬂ’f’éﬂ@l CONVersions.

61

Chapter 3

A Forms-Based Application

62

Travel Advisor — An Overview

This chapter presents a lot of information on OpenStep programming.
Among other things, you'll learn how to:

» Use several new objects on Interface Builder’s palettes.
= Assign an icon to an application.

= Print the contents of a view.

« Use collection objects (NSArray and NSDictionary) and NSString objects.

= Archive and unarchive object data.

= Format and validate field contents.

= Manage events through delegation.

e Quickly find information related to your project.
« Use Project Builder's graphical debugger.

Perhaps most interestingly, you will reuse the Converter class you
implemented in the previous tutorial.

Note: You can find the TravelAdvisor project in the AppKit subdirectory of
INextDeveloper/Examples.

The Design of Travel Advisor

Travel Advisor is much like Currency Converter in its basic design. Like Currency
Converter, it's based on the Model-View-Controller paradigm. A controller object
(TAController) manages a user interface comprised of Application Kit objects. Also
as before, the controller sends a message to the Converter object to get the result
of a computation. In other words, the Converter object is reused.

Travel Advisor’s view objects, in terms of Model-View-Controller, are all off-the-
palette Application Kit objects, so the following discussion concentrates on those
parts of the design distinctive to Travel Advisor.

Model Objects

Travel Advisor’s design is more interesting and dynamic than Currency Converter’s
because it must display a unique set of data depending on the country the user
selects. To make this possible, the data for each country is stored in a Country
object. These objects encapsulate data on a country (in a sense, they're like
records in a relational database). The application can manage potentially
hundreds of these objects, tracking each without recourse to a “hardwired”
connection.

Another model object in the application is the instance of the Converter class. This
instance does not hold any data, but does provide some specialized behavior.

Travelpdvisor =——————————

Country: | England

Countries

England
France

Logistics

Germany Airports: [London

Airlings: [British Air

TAController

t— | Transportation: [Taxi

Hotels: [Hitton

Notes and Itinerary for England Other

Currency: | Paund

Rate: pers1

Languages: |

Conversions

[English widely spoken

Daollars: ‘ Local |

Celsius: Farenheit

Convert

5[Add | [Delete

e

Key France Germany
AN /7 N /
Value
/ N\, / \
Country Country

AN /

Converter

N
; N /)
Country o
NSDictionary

Controller

The controller object for the application is TAController. Like all controller
objects, TAController is responsible for mediating the flow of data between
the user interface (the View part of the paradigm) and the model objects
that encapsulate that data: the Country objects. Based on user choices in
the interface, TAController can find and display the requested Country
object; it can also save changes made by users to the appropriate Country
object.

What makes this possible is an NSDictionary object (called a dictionary
from here on). A dictionary is a container that stores objects and permits
their retrieval through key-value associations. The key is some identifier
paired with an object in the dictionary (the object often holds the identifier
as one of its instance variables). To get the object, you send a message to

the dictionary using the key as an argument (objectForKey:). For example:

NSCol or *aCol or = [aDictionary object For Key:
@ Backgr oundCol or”];

A Country object holds the name of a country as an instance variable; this
country name also functions as the dictionary key. When you store a Country
object in the dictionary, you also store the country name (in the form of an
NSString) as the object’s key. Later you retrieve the object by sending the
dictionary the message objectForKey: with the country name as
argument.

Storing Data Source Information. TAController also manages the data
source for the table view on the interface. It stores the keys of the dictionary
in an array object (NSArray), sorted alphabetically. When the table view
requests data, the TAController “feeds” it the objects in the array.

England

France
Germany

Creation of Country Objects. Another important point of design is the
manner in which the Country objects are created. Instead of Interface
Builder creating them, the TAController object creates Country objects in
response to users clicking the Add button.

Delegation and Notification. An essential aspect of design not evident
from the diagram are the roles delegation and notification play. The
TAController object is the delegate of the application object and thereby
receives messages that enable it to manage the application, which
includes tracking the edited status of Country objects, initiating object
archival upon application termination, and setting up the application at
launch time.

How TAController Manages Data

The TAController class plays a central role in the Travel Advisor application.
As the application’s controller object, it transfers data from the model
objects (Country instances) to the fields of the interface and, when users
enter or modify data, back to the correct Country object. The TAController
must also coordinate the data displayed in the table view with the current
object, and it must do the right thing when users select an item in the table
view or click the Add or Delete button. All custom code specific to the user
interface resides in TAController.

The mechanics of this activity require an array (NSMutableArray) and a
dictionary (NSMutableDictionary) for storing and accessing Country data.
The diagram below illustrates the relationship among interface
components, TAController, and the sources of data.

The dictionary contains Country objects (values) that are identified by the
names of countries (keys). The dictionary is the source of data for the fields
of Travel Advisor. The array derives from the dictionary and is sorted. It is
the source of data for the table view.

Logistics
airports: [London

&irlines: [British Air

Transportation: | Taxi

Hatals: [Hiltan

N

TAController

_ France_|
. England |
_Germany |

Key Value

63

Chapter 3

A Forms-Based Application

Creating the Travel Advisor Interface

Create the application project.

Start Project Builder.
Choose New from the Project menu.

In the New Project panel, select the
Application project type.

Name the application “TravelAdvisor”
and click OK.

Open the application’s nib file.

Click Interfaces in the project browser.

Select NEXTSTEP_TravelAdvisor.nib,
and double-click its icon.

3 Customize the application’s window.

In Interface Builder:

Resize the window, using the example
at right as a guide.

In the Attributes display of the
Inspector panel, entitle the window
“Travel Advisor.”

Turn off the resize bar.

64

In creating the interface of Travel Advisor, you’ll be exercising the capabilities of
Interface Builder much more than you did with Currency Converter.

Getting Started

You should be familiar with many of the objects on the Travel Advisor interface
because you’ve encountered them in the Currency Converter tutorial. The
following illustration points out the objects that are new to you in this tutorial.

Traverd Adeizne B
Eomniry: | Erglard <
=_.=£=|_—F'{ :_ image view
Erejhafl
Franicsi Lmpstics
[T Apors:| Lamdon form
Adifiras:| Aritish A
—| | Transparalion:| Taxi
I - Hokedi:| Hiton
i lis &l sy o Eq.pL.I e
Cupency:| Poured Foie: | AEFE
Languagas:|
] Englizh widely spaken
T s
Coodlar: | Lacat | e
s Fpemrnet [Conwan,
| z | &dd | (o]0 | | Clear]
Scroll view (containing table view switch (button) groups (NSBox objects)

an NSText object)

The following pages describe the purpose of each new object found on Interface
Builder’s palettes and explain how to set these objects up for Travel Advisor.
Before getting to these new objects, start with the familiar ones: buttons and text
fields.

Creating the Travel Advisor Interface

Put the text fields, labels, and buttons
on the window.

Position, resize, and initialize the
objects as shown.

Set up the switch.

] Tl Al snr r
Ciisdny: |
fintes and |lserary For
Cumency:| Faaie: | perfl
Languiapas: |
L] Englizh widely spaken
1
oot | Locat | [Zonvan]
Celspg | Faranheit |
| Aid | | Celeie | | Clear l

Be sure this label
contains enough
“padding” for the
longest country name.

Drag the switch
object from the
views palette
and drop it here.

You might think the “English widely spoken” object is a new kind of object.
It’s actually a button, a special style of button called a switch.

I English widely spaken

Varieties of Buttons

If in Interface Builder you select the “English widely
spoken” switch and bring up the Attributes inspector,
you can see that the switch is a button set up in a
special way.

Buttons are two-state control objects. They are either
off or on, and this state can be set by the user or
programmatically (SetState:). For certain types of
buttons (especially standard buttons like Currency
Converter’s Convert button), when the state is
switched, the button sends an action message to a
target object. Toggle-type buttons—such as switches
and radio buttons— visually reflect their state.
Applications can learn of this state with the state
message. You can make your own buttons,
associating icons and titles with a button’s off and on
states, and positioning title and icon relative to each
other.

H5Button Inspector | %}

Attributes

Double-click to select text, then type new label.

Alt. Title:

Ican:| N5Switch

Alt lcon: | MEHighlighted Switch

Sound: |

Tag:lo Key:l
Type — alignment —;
Tagle S
Options - Icon Position —
Bordered ™ ololo
Transparent”
Continuous [~ i L
Disabled[” Fixels Inset —;
Selected [~ ’77\#0 R

65

Chapter 3

A Forms-Based Application

Place a form on the interface and
prepare it.

Drag the form object from the Views
palette.

Increase the size of the form’s fields by
dragging the middle resize handle
sideways.

Create two more form fields by
Alternate-dragging the bottom-middle
resize handle downward.

Rename the field labels.

66

New Objects: Forms, Groups, and Scroll Views

Construct the “Logistics” section of the interface using a form object.

Swm|

Fleda

[pargi

Fa[|

Fiakl 1]

Fakz[

O mwich 1—|

& Axdin Ii
(2 Asdia

Fisicz]]

I Drag to lengthen the fields.

As you alternate-drag, new form fields

Frald1]

appear underneath the cursor.

Fiakiz|

Fiak:|

Fiakt:|

a i Double-click to select label text.

Alrparts |

Arine: |

Type the new label text and click outside
i the form to set the text.

Traneporstiar |

Creating the Travel Advisor Interface

To make titled sections of the fields, forms, and buttons on the Travel Advisor
interface, group selected objects. By grouping them, you put them in a box.

6 Group the objects on the interface. ; ;

. om i . & To select the ob/ect§ asagroup, drgg a selection rectang{e
g Cupmy & ? itr:_!ﬂ-iﬂ ! around them or Shift-click each object. (To make a selection

Select the two Convert buttons and the 1 Lafuges i = rectangle, start dragging from an empty spot on the window,)

Dollars, Local, Celsius, Fahrenheit - L . ® - .

labels and text fields. i:lE"iI“h"‘-“"f"-' wickan &

> » i
(832)(()059 Format » Group » Group in n el = = Afteryou choose the Group in Box command, the objects are
' T Rt | e enclosed by a titled box.

Double-click “Title” to select it.

Choose Format » Font » Bold to
make the title bold face. -

¥ Lonpuages|

[Ergiish-aia ks spokan
u

Rename “Title” to “Conversions.”
, Boxes are a useful way to organize and name sections of an interface. In Interface
Repeat for the next two groups:

“Logistics” and “Other.” Builder you can move, copy, paste, and do other operations with the box as a unit.
For Travel Advisor, you don’t need to change the default box attributes.

Before You Go On

"The box, an instance of NSBox, is the superview of all of its grouped objects. (A
view, simply put, is any object visible on a window.) A superview encloses its
subviews and is the next in line to respond to user actions if its subviews cannot
handle them.

"T'he scroll view on the DataViews palette encloses a text object (an instance of
NSText). This object allows users to enter, edit, and format text with minimal
programmatic involvement on your part.

More About Forms

Forms are labelled fields bound vertically in a Form Attributes
matrix. The fields are the same size and each label
is to the left of its field. Forms are ideal objects for
applications that display and capture multiple rows
of data, as do many corporate client-server
applications.

In addition to the obvious controls in the Forms
inspector, there’s the “Cell tags = positions”
attribute. Switching this on assigns tags to each
NSFormCell that correspond to the cells’ indices. (A
tag is a number assigned to an object that is used
The editable fields in a form are actually cells that to identify and access that object. You'll use tags
you programmatically identify through zero-based extensively in the next tutorial.)

indexing; the first cell is at index 0 of the matrix, the
second cell at index 1, and so on. NSForm defines
the behavior of forms; individual cells are instances
of NSFormCell. Access these cells with NSForm’s
cellAtindex: method.

The Scrollable option, turned on by default, enables
the user to type long entries in fields, scrolling
contents to the left as characters are entered.

67

Chapter 3

A Forms-Based Application

Put the scroll view on the window and
resize it.

Drag the scroll view from the
DataViews palette and drop it on the

lower-left corner of the window.
Resize the scroll view.

68

ooentry:[

L

Ll W sy

You don’t need to change any of the default attributes of the scroll view (but you

et sl Mierary Far

P I

might want to look at the attributes that you can set, if you’re curious).

More About Table Views

Atable view is an object for displaying and editing tabular data. Often that
data consists of a set of related records, with rows for individual records
and columns for the common fields (attributes) of those records, Table
views are ideal for applications that have a database component, such as
Enterprise Objects Framework applications.

The table view on Interface Builder’s TabulationViews palette is actually
several objects, bound together in a scroll view. Inside the scroll view is an
instance of NSTableView in which data is displayed and edited. At the top
of the table view is an NSTableHeaderView object, which contains one or
more column headers (instance of NSTableColumn).

E NSTableColumn

Scroll view NSTableView

(NSScrollView)

[k

Later in this tutorial you will learn some basic techniques for accessing and
managing the data in a table view. Here’s a quick preview of the essential
pieces:

« Data source. The data source is any object in your application that
supplies the NSTableView with data. The elements of data (usually
records) must be identifiable through zero-based indexing. The data
source must implement some or all of the methods of the
NSTableDataSource informal protocol.

= Column identifier. Each column (NSTableColumn) of a table view has
an identifier associated with it, which can be either an NSString or a
number. You use the identifier as a key to obtain the value of a record
field.

= Delegate methods. NSTableView sends several messages to its
delegate, giving it the opportunity to control the appearance and
accessibility of individual cells, and to validate or deny editing in fields.

Creating the Travel Advisor Interface

8 Place and configure the table view.

Drag the table view object from the
TabulationViews palette.

Resize the table view.

Set the title of the first column to
“Countries.”

Make the table header only one
column.

More New Objects: Table Views, Image Views, and Menus

Next, add a table view for displaying the list of countries.

o _
Click to select the iy |—

Tabulation Views palette.

I ahlninasisg s \ |

2| M mel i ;

Fintes 2 llimerry For

| Double-click column twice (first to select the column,
second to insert the cursor). Type “Countries”, then click
anywhere outside the column.

Covanires 4
When this cursor appears over the line separating columns,
drag the line so that it’s flush with the right edge.
- You can also delete the unneeded column by selecting it and
= pressing the Delete key.

= 'S N EID

"T'he other object on the TabulationViews palette is a drowser. It is just as
suitable for the "Travel Advisor application as a table view. Browsers are ideal
for displaying hierarchically structured information (such as is found in typical
file systems) as well as single-level views of data such as the list of countries
in Travel Advisor. A table view can also handle single-column rows of data

casily.

69

Chapter 3 A Forms-Based Application

"To configure the table view, you must set attributes of two component objects: the
NSTableView object and the NSTableColumn object.

Select the NSTableView by double-

B Talle'shew rspecios
clicking the interior of the table view. = _
Abiritaries ¥
Set the attributes as shown at right.
Sk
B ks iy S kacikan B

Al braes i Eipka Saactian]
Alkras Colnn Salectian]

ok Since this is a single-column view and country names
vadralld Harmant [l are of limited length, you need only the vertical scroller in
case there’s more countries than can be shown at once.
R
Haigri:| 15
Cwiong Whether to show the grid is a matter of personal
Shiow iR preference, but turn off resizing and reordering.
Alows Rasing] The user shouldn’t be able to affect the contents
Allws Raprderng[] of the column diirectly.

The Attributes display for NSTableView is the same as that for NSScrollView.

Click the left column to select it. 5] S Tl Caberms ogaciar B
Set the NSTableColumn attributes as

shown at right.

Ttk okt
= |
Opfions
Eitabie]
Fasirabia]
Ikt
Couniies Type the name with which you want to identify the column
programmatically. For Travel Advisor, make this the same
as the column title.

The Travel Advisor window is nearly complete. For a decorative touch, you're
next going to add an image to the interface.

70

Creating the Travel Advisor Interface

9 Add an image to the interface.

Select the DataViews palette (see
example).

Drag the image view onto the window.
In Project Builder:

Double-click Images in the project
browser.

In the Open panel, select the file
Airline.eps in /NextDeveloper/
Examples/AppKit/TravelAdvisor.

In Interface Builder:

In the Attributes inspector for the
image view, type the name of the
image and set the NSImageView
attributes.

Make the image view (and the
enclosed image) small enough to fit
between the menu bar and the
Logistics group.

Add a “velocity” line behind the
airplane. (Tip: Make an untitled black
box with a vertical offset of zero and
run the top and bottom lines together.)

Lapstice

Alrpars |

S I

Trareporation |

Harak |

{Hihaar

Curmency:| Farla: |

pErgl

Largyuagas:|

Before You Go On

Dsala i ws

E»al O

‘ﬂ
(N

Sometimes buttons are the preferred objects for holding images—for instance
when you want a different image for either state of a button. But when
buttons are disabled, any image they display is dimmed. So for decorative
images, use image views (NSImageView) instead of buttons.

When you drop an image over a button or image view, Interface Builder
adds it to the both the nib file and the project (upon your approval). You can
add the image only to the nib file by dropping the image over the nib file
window. Resources in a nib file are accessible only when the nib file has
been loaded; an application’s project-wide resources are always accessible.

|

1]

(ALSAmags e specine

i

[Arpiane
Ei roip

-l:l|-|' =

Aignmant
[O°]O
1|

Sealing

P rop ot nal i ¥
Ta Fildh
MofE

Ly T 1
FH

Enter the name of the image file, minus the extension. The
image can be in any acceptable format, and must be a part
of the project.

You can also insert an image in an image view and add it to
the project by dragging it from the File Viewer and dropping
it over the image view.

The border of the image should not be visible.

Since the image is larger than the image view, have
it scale proportionally.

Uncheck if you don’t want users to affect the image
in any way.

71

Chapter 3

A Forms-Based Application

10 Add a menu and menu items to the

menu bar.

Select the Menus palette.

Drag the generic Submenu item and
drop it between the Edit and Window
submenus.

Double-click Submenu to select the
menu title; change the name to
“Records”.

Click the new Records menu to expose
the Item command.

Add three Items to the Records
submenu (making four altogether) by
dragging them from the Menus
palette.

Change the command names to those
shown at right.

Add Command-key equivalents to the
right of the Next Record and Prior
Record commands.

Drag an Item cell and drop it between
the Windows and Services submenus.

Change “Item” to “Print Notes...”.

Remove unnecessary menu items from
the File menu.

72

Travel Advisor’s menu contains default submenus and commands. You need a
submenu and menu commands that are not included in the default set and that
are not found on the Menus palette. Use the Submenu and the Item cells to create
customized menus and menu items, respectively.

O=——————nextstep =———————| |0 Menus
I Info Fdit Windpws Services Hide Quit I
Suk .anu I g |=| . e
- w| [)] fe
I IR T
File v | Edit k| Window »
Services » | Help ¥ | Eind 3
N Format 'I Font + | Text 3
\ubmenu 'I Item

S H R
Wafaars Seoparey

B Berord
Bedete Resord

Imfe Edif Eade il

To insert a menu item, drag it from the Menus palette
and drop it between or after the menu items currently
on the menu.

To add a Command-key equivalent, double-click

MeHY Hecged o

the area on the right side of a menu item and then
press the key you want assigned.

1 T L i

=l EdI1 Aecerd Wessfsars ferwsies Prad Mofer

Edr Bl

This Is translated into the Apple menu.

Put the print command here for now.

"To delete a menu item, select it and choose Delete from the Edit menu or press

Command-x.

You don’t need to add any menu items to the Services submenu. Applications can ofter their
services to other applications, based on the operations they can perform on types of selected
data. As part of advertising their services, these applications specify the menu items to be

used to access those services. At run time, these submenus and commands appear in the
Services menu. For more on services, see “Services” in the on-line Programming "lopics.

Creating the Travel Advisor Interface

11 Apply formatters to the rate and
currency fields.

Select the DataViews palette in the
Palette window.

Drag a number-formatter object and
drop it over the Rate field.

In the Formatter display of the
inspector, specify a rate format by
selecting the table-view row with the
“09.99” format.

Type a zero in the field to initialize it.

Repeat for the Dollar and Local fields,
but apply a suitable format.

Finishing Touches: Formatters, Printing, and the Application lcon

One way to make your application’s user interface more attractive is to format
the contents of fields that display currencies and other numeric data. Fields
can have fixed decimal digits, can limit numbers to specific ranges, can have
currency symbols, and can show negative values in a special color. Interface
Builder provides two formatter objects on its standard palettes, one for
formatting dates and the other for formatting numbers. You’ll use the second

of these.

“ed

]

Ml frers

= #

m

) il
! E
=

When a text field (or other control) has a formatter
applied to it, Interface Builder's inspector includes a
Formatter display when that field is selected!.

Click a predefined format in the table view to apply it to
the field, or specify a custom format in the Positive and

Negative fields.

For the Dollar and Local fields, specify the first predefined

format ($9,999.99).

Click to select DataViews palette.

|-aerae e
{=i00

21 i LRI
1ire =100
0 15 -6 5% “d
Appaprance Saples
Pasti Hagatva
[122a88 70 |-1E345R7a
Prsifiva:| oo
T v |- 0.0
Pl i i L I
Ihi=d i I
Optine
[Heqgatree in Rad E Localce
[1 & 1000 Separaian [] |, =-=

Formatters are objects that “translate” the values of certain objects to specific
on-screen representations; formatters also convert a formatted string on a user
interface into the represented object.

You can create, set, and modify formatter objects programmatically as well as by using
Interface Builder. And you can create your own special formatter objects (such as ones,
for example, that format phone numbers) and “palettize” them. For more on formatters,
see “Behind ‘Click Here’: Controls, Cells, and Formatters” on page 107.

73

Chapter 3

A Forms-Based Application

12 Connect Application Kit outlets for

inter-field tabbing and printing.

Make a connection from the window
icon in the nib file window to the
Country field.

Select initialFirstResponder in the
Connections display of the inspector
and click Connect.

In top-to-bottom sequence, connect
the fields and the form through their
nextKeyView outlets.

When you reach the Languages field,
connect it with the Country field,
making a loop.

Connect the Print Notes menu
command to the text object in the
scroll view.

Select the print: action method in the
Connections display of the Inspector
panel.

Click the Connect button in the
Inspector’s Connection display.

74

You can now connect many of the objects on the Travel Advisor interface through
outlets and actions defined by the Application Kit. As you might recall, windows
have an initialFirstResponder outlet for the object in the window that should be the
initial focus of events. "Text fields have a nextkeyView outlet that you connect so that
users can tab from field to field. Forms also have a nextkeyView outlet for tabbing.
(The fields within a form are already interconnected, so you don’t need to connect
them.)

O=——————— Travel Advisor

[l

Country: | &
| Countries

Airparts: |

Ailines: |

Transportation: |
Hatels: |

MHotes and linerarv For - ither

When a line borders the form inside the box, the form is selected.
Release the mouse button and set the nextKeyView outlet
connection in the Connections inspector.

The Application Kit also has “preset” actions that you can connect your
application to. The NSText object in the scroll view can print its contents as can
all objects that inherit from NSView. To take advantage of this capability, “hook
up” the menu command with the NSText action method for printing.

0 st Lsilings
Isfe EdIf Aecesd
) Tirsuidl Pl vicesr
Make sure the text object
ot f (the white rectangle) is
R e selectod and ot the ol
view that encloses it.
Lgisirs
Aiports |
Al |
- Trensparaion:|
= Hiotsds:|
lintes and Hismrary For Oilver
LA | Ra
Languages |
A Ereyianadkaky 5
Carmversisn
Dl | Losa|
Cakidir | Farinsai |

Creating the Travel Advisor Interface

T'he final step in crafting the Travel Advisor interface has nothing to do with the
main window, but with what users see of your application when they encounter it
in the File Viewer: the application’s icon.

13 Add the application icon. OE|[O rawmadver . Fomcs mepecior
In Project Builder:

Open the Project Inspector. FrajackHame: | Travel Advisor

. . . L English

Go to the Project Attributes display of . TIF anguage:|Eng|

the inspector. Applicatian Cloes |5 Appication

Click in the Application Icon field. narm-wmmr\.. | DPEMSTEP for Wach (1|
In File Viewer: — T rda ik [HEXTSTER_Travals teimrni

Helpi File

Locate TravelAdvisor.eps in |
INextDeveloper/Examples/
AppKit/TravelAdvisor. R ST Tt

| Tra e L& o a1 A

Drag the image file into the icon well in PO

the Project Attributes display. m

&

E!

14 Test the interface. You’re finished with the Travel Advisor interface. Test it by choosing Test
Interface from Interface Builder’s File menu. Ity the following:

¢ Press the Tab key repeatedly. Notice how the cursor jumps between the
fields of the form, and how it loops from the Languages field to the Country
field. Press Shift-Tab to make the cursor go in the reverse direction.

¢ Enter some text in the scroll view, then click the Print Notes menu item. The
Print dialog box is displayed. Print the text object’s contents.

¢ Also in the scroll view, press the Return key repeatedly until a scroll box
appears in the scroll bar.

75

Chapter 3

A Forms-Based Application

Defining the Classes of Travel Advisor

Specify the Country and TAController
classes.

In Interface Builder, bring up the
Classes display of the nib file window.
Select NSObject as the superclass.

Choose Subclass from the Classes
menu.

Type “Country” in place of
“MyNSObject.”

Repeat for class TAController.

Specify TAController’s outlets and
actions.

Add the outlets shown in the nib file
window at right.

76

"Travel Advisor has three classes: Country, Converter, and "TAController. Only
"TAController has outlets and actions. And, rather than defining the Converter
class, you are simply going to add it to the project from the CurrencyConverter
project and reuse it.

[_ B MEXTETER Travelidvisorsls — sapry BE

S lrtancas Y Classes W Bounds Y Imagan)
@ HEChpect
FireRasparsier
B g pa i
IBP B et
TAC orraler
B NEAray
o W ushlafray
a NLCal
@ HESchonCel|

] __.IIE!TE'I'EF Travalfdvisorsis — _shigre) FIE

firciancas Y Classis Y Bpurds Y Imagas)
o TATombriler 1410 L]
[0
celslug
commenisF ek
correnislabel

converar

coyninFied
cumancyOollarsF ik
e o il ol Fia i
curanc v an eFieid
curman; yFalaFisid
mraglis ko ok iiswich
Fahrenbait
len sy eFidd
Vg i 5 F o
Ikl ¥ ey

Anons

Through this outlet the TAController object
establishes a connection with the instance
of the Converter class. You will reuse this
class later in this section.

Creating the Travel Advisor Interface

Define the action methods shown in
the nib file window at right.

3 Reuse the Converter class.

In Project Builder:

Double-click Classes in the project
browser.

In the Add Classes panel, navigate to
the CurrencyConverter project directory
in /NextDeveloper/Examples/AppKit.

Select Converter.m and click OK.

When asked if you want to include the
header file, click OK.

In Interface Builder:

Select the superclass of Converter
(NSObject) in the Classes display of
the TravelAdvisor nib file window.

Choose Classes ™ Read File.

In the Open panel, select Converter.h
in the TravelAdvisor project directory.

Click OK.

Im _.HE!TE'I'E Travelidvtsorsis — _sivgre) T1E
J Irclancas Y Classes Y Gpurds Y inagas §

A
Ak A o
hlankFieids

convanzecur
ConyEriC Ty

deleteRacand

handsTWCick
nesdAes ord
priarAesond

In OpenStep there are many ways to reuse objects. For example, subclassing
an existing class to obtain slightly different behavior is one way to reuse the
functionality of the superclass. Another way is to integrate an existing class—
like the Converter class—into your project.

| sepkn | CerecyCanvertor |
CarpresiaLah F converarn

o e £ Cod s gk i o v v o nkrod ba
Crawy F T G v
Lirsas r Eripl kb 1praj r
Aulprs F

ErnipleimagaFilar r

anpleEamice F

TasdExdk r

[TeetSi rnpE:campla

T Csa r e
ITravalady iz F bl
2= —— 0

bhawsa:| Carrgrter. n

i E e

When you're finished with this procedure, the Converter classis copied both to the
Travel Advisor project and to the Travel Advisor main nib file.

77

Chapter 3

A Forms-Based Application

4 Generate instances of the
TAController and Converter classes.

78

[= [B) HEXTSTEP_Traveladvisornib — ..shiproj = HE

[Instances Y Classes Y Sounds Y Images \,

Soundkdeter
Soundiiew
0 MEWindow
MEFanel
M5TableColumn
METahViewltem
Sound
TaCantroller
@ Ohject

i@ 4@
i@ 1z@
@ 0@
@ 0@
1@ sS5@& =
4@ =@ [
[+]
| <] v [

You don’t need to instantiate the Country class in the nib file because it is not
involved in any outlet or action connections. However, you must create an
instance of TAController for making connections. TAController interacts behind
the scenes with users as they manipulate the application’s interface and mediates
the data coming from and going to Country objects. It therefore needs access to
interface objects and should be made the target of action messages.

Checking and Making Connections in Outline Mode

The nib file window of Interface Builder gives you two modes in which to
view the objects in a nib file and to make connections between those
objects. So far you've been working in the icon mode of the Instances
display, which pictorially represents objects such as windows and custom

objects.

A connection is identified by name and icon
for type (electrical outlet for outlet, cross-
hairs for action).

To see connections from the object, click a
right-pointing triangle; click a left-pointing
triangle for connections to the abject.

Move the vertical line left or right to See
details (this is a vertical split view).

OE NEXT§1 EP_TravelAdvisor.nib — ..ish.Iproj

Outline mode, as the phrase suggests, represents objects in a hierarchical

list: an outline. The advantages of outline mode are that it represents all
objects and graphically indicates the connections between them. You can

connect objects through their outlets and actions in outline mode, as well

as disconnect them by Control-clicking a connection line.

f Instances Y CT)Q;ES Y Sounds Y Images \

o NSWindo

w0 initialFirstResponder
-

METextH
MSBUtto
IS Butto

H3Text)

AN

MSButta

J MISBox(
o MSBox(
STl

RIS D

<

A sl m)y fim

D]

Click here for icon mode.
Click here for outline mode.

Connect objects in outline
mode just as you do in icon
mode: Control-drag a
connection line between
objects.

Creating the Travel Advisor Interface

5 Connect the TAController instance to

its outlets and actions.

Connect TAController to the outlets

listed in this table.

Outlet Make Connection To

celsius Text field labeled “Celsius”

commentsLabel Label that reads “Notes and Itinerary for”
commentsField Text object within scroll view

converter Instance of Converter class (cube in Instances display)
countryField Text field labeled “Country”

currencyDollarsField

Text field labeled “Dollars”

currencyLocalField Text field labeled “Local”
currencyNameField Text field labeled “Currency”
currencyRateField Text field labeled “Rate”

englishSpokenSwitch

Switch (button) labeled “English widely spoken

”

fahrenheit Text field labeled “Fahrenheit”

languagesField

Text field labeled “Languages”

logisticsForm Form in group (box) labeled “Logistics”; the form is selected when a gray
line borders it.
tableView The area underneath the “Countries” column

File’s Owner

Every nib file has one owner, represented by the
File’s Owner icon in a nib file window. The owner is
an object, external to the nib file, that relays
messages between the objects unarchived from the
nib file and the other objects in your application.

You specify a file’s owner programmatically, in the
second argument of NSBundle’s
loadNibNamed:owner:. The File’s Owner icon in
Interface Builder is a “proxy” object for that owner.
Although you can assign owners to this object in
Interface Builder, this doesn’t necessarily
guarantee anything about the file’s real owner.

In the main nib file File’s Owner always represents
NSApp, the global NSApplication constant. The

main nib file is automatically created when you
create an application project; it is loaded in main()
when an application is launched.

Nib files other than the main nib file— auxiliary nib
files—contain objects and resources that an
application may load only when it needs them (for
example, an Info panel). You must specify the owner
of auxiliary nib files.

You can determine or set the class of the current nib
file’s owner in Interface Builder by selecting the
File’s Owner icon in the nib file window and then
displaying the Custom Class inspector view. You'll
get to practice this technique when you learn how to
create multi-document applications in the next
tutorial.

79

Chapter 3 A Forms-Based Application

Connect the TAController instance to Action Make Connection From

control objects in the interface via its

actions. addRecord: “Add” button
blankFields: “Clear” button
convertCelsius: “Convert” button to the right of the “Fahrenheit” field
convertCurrency: “Convert” button to the right of the “Local” field
deleteRecord: “Delete” button
handleTVClick: The table view (the area beneath the “Countries” column header)
nextRecord: The “Next Record” menu command on the Records submenu
prevRecord: The “Prior Record” menu command on the Records submenu
switchChecked: The “English widely spoken” switch
Before You Go On

You’re next going to connect objects through an outlet defined by several
OpenStep classes. This outlet, named delegate, is assigned the id value of a custom
object. As the delegate of NSApp (the NSApplication object), TAController will
receive messages from it as certain events happen.

Every application has a global NSApplication object (called NSApp) that
coordinates events specific to the application. Among many other messages,
NSApp sends a message to its delegate notifying it that the application is about to
terminate. Later, you will implement TAController so that, when it receives this
message, it archives (saves) the dictionary containing the Country objects.

80

Creating the Travel Advisor Interface

Compiled and Dynamic Palettes

A palette is an area on Interface Builder’s Palettes window that holds one
or more reusable objects. You can add these objects to your application’s
interface using the drag-and-drop technique. There are two types of
palettes: dynamic and compiled (also called “static palettes”). To the user
they seem identical, but the differences are many.

Static palettes are built as a project and have code defining their objects;
dynamic palettes include no special code—they’re unique configurations
of objects found on static palettes. Consequently, static palettes must be
compiled, but you can create dynamic palettes on the fly, without writing
and compiling code. Objects on static palettes can have their own
inspectors and editors, which dynamic-palette objects cannot have.

You usually create a static palette as a way to distribute your objects—and
the logic informing these objects’ behavior—to potential users. Many
developers of commercial OpenStep objects make use of static palettes as
a distribution medium. Creating static palettes (and their inspectors and
editors) is a more complex process than creating dynamic palettes, but the
resulting product has more value added to it.

Using Dynamic Palettes

Dynamic palettes are a great convenience. You can save groups of objects,
with or without their interconnections, to a dynamic palette at any time. You
can save dynamic palettes and store them in the file system, just as you do
with the traditional compiled palette. You can remove the palette from the
Palette viewer and, when you need it again, load it back into Interface
Builder.

To store objects on a dynamic palette:
* Choose Tools » Palettes ™ New to create a blank palette.

= Select objects singly or in groups on the interface or in the nib file
window (either icon or outline mode).

« Alternate-drag these objects and drop them on the blank palette.

Alternate-drag objects
to move them onto
palettes, to move them
around palettes, and to
take them off of
palettes.

—shiprol ERE|[E T unn

=h:

rainkdenu

raContraller

You can use dynamic palettes to:

= Store collections of often-used View objects configured with specific
sizes and other attributes. For instance, you could have a “standard”
text field of a certain length, font, and background color stored on a
dynamic palette.

« Hold windows and panels that are replicated in your projects (such as
Info panels).

« Store versions of interfaces.

« Keep interconnected objects as a template that you can later use as-is
or modify for particular circumstances. For instance, you could store a
group of text fields and their delegate, or a set of controls and their
connections to a controller object.

 Assist in prototyping and group work. For example, you could mail a
palette file containing an interface to interested parties.

81

Chapter 3

A Forms-Based Application

Connect the delegate outlet.
Drag a connection line from File’s
Owner to the TAController object.

In the Connections display of the
Inspector panel select delegate and
click OK.

Generate source code files for the
TAController and Country classes.

Save TravelAdvisor.nib.

Select the class in the Classes display

of the nib file window.
Choose Classes » Create Files.

Respond Yes to the confirmation
messages.

82

O £ [} NEXTSTEP_TravelAdvisor.nib — ..ish.lproj

_/ Instances Y Classes Y Sounds Y Images \

L, =

File’s Priner First Respond... rainkdenu

Canverter My indow TACantraller

Notice that the diirection of the connection is
from the File’s Owner (which is the application
object) to the TAController object.

When you generate the header and implementation files for all classes of
Currency Converter, you are finished with the Interface Builder portion of
development. Be sure you save the nib file before you switch over to Project

Builder.

You can assign delegates programmatically or by using Interface Builder. For more
information, see “Getting in on the Action: Delegation and Notification” on page 100.

Creating the Travel Advisor Interface

Implementing the Country Class

Declare instance variables.

In Project Builder, click Headers in the

project browser, then select Country.h.

Add the declarations shown between
the braces at right.

Although it has no outlets, the Country class defines a number of instance
variables that correspond to the fields of "Travel Advisor.

@nterface Country : NSObj ect <NSCodi ng> 0
{
NSString *nane; (B)
NSString *airports;
NSString *airlines;
NSString *transportation;
NSString *hotel s;
NSString *l anguages;
BOOL engl i shSpoken;
NSString *currencyNane;
f1 oat currencyRat e; ()
NSStri ng *comments;

}
@ Declares that the Country class adopts the NSCoding protocol.

@ Explicitly types the instance variable as “a pointer to class NSString”—or
an NSString object. See below for more about the NSString class.

© Declare non-object instance variables the same way you declare them in C
programs. In this case, currencyRate is of type float.

NSString: A String for All Countries

NSString objects represent character strings. They're behind almost all text internationalization. String objects contain Unicode characters rather than
in an application, from labels to spreadsheet entries to word-processing the narrow range of characters afforded by the ASCII character set. Hence
documents. NSStrings (or string objects) supplant that familiar C they can represent words in Chinese, Arabic, and many other languages.

programming data type, char *.

The NSString and NSMutableString classes provide API to create static and

“But why?” you might be saying. “Why not stick with the tried and true?” By dynamic strings, respectively, and to perform string operations such as
representing strings as objects, you confer on them all the advantages that substring searching, string comparison, and concatenation.
belong to objects, such as persistency and the capability for distribution.

Moreover, thanks to data encapsulation, string objects can use whatever None of this prevents you from using char * strings, and there are
encoding is needed and can choose the most efficient storage for occasions where for performance or other reasons you should. However, the

themselves.

public interfaces of OpenStep classes now use string objects almost
exclusively. A number of NSString methods enable you to convert string

The most important rationale for string objects is the role they play in objects to char * strings and back again.

83

Chapter 3

A Forms-Based Application

84

The Foundation Framework: Capabilities, Concepts, and Paradigms

The Foundation framework consists of a base layer of classes that specify
fundamental object behavior plus a number of utility classes. It also
introduces several paradigms that define functionality not covered by the
Objective-C language. Notably, the Foundation framework:

= Makes software development easier by introducing consistent
conventions for things such as object deallocation

= Supports Unicode strings, object persistence, and object distribution

= Provides a level of operating-system independence, enhancing
application portability

Root Class

NSObject, the principal root class, provides the fundamental behavior and
interface for objects. It includes methods for creating, initializing,
deallocating, copying, comparing, and querying objects (introspection).
Almost all OpenStep objects inherit ultimately from NSObject.

Deallocation of Objects

The Foundation framework introduces a mechanism for ensuring that
objects are properly deallocated when they’re no longer needed. This
mechanism, which depends on general conformance to a policy of object
ownership, automatically tracks objects that are marked for release within
aloop and deallocates them at the close of the loop. See “Object Ownership,
Retention, and Disposal” on page 88 for more information.

Data Storage and Access

The Foundation framework provides object-oriented storage for
= Arrays of raw bytes (NSData) and characters (NSString)

« Simple C data values (NSValue and NSNumber)

« Objective-C objects of any class (NSArray, NSDictionary, NSSet, and
NSPPL)

NSArray, NSDictionary, and NSSet (and related mutable classes) are
collection classes that also allow you to organize and access objects in
certain ways (see “The Collection Classes” on page 86).

Text and Internationalization

NSString internally represents text in various encodings, most importantly
Unicode, making applications inherently capable of expressing a variety of
written languages. NSString also provides methods for searching,
combining, and comparing strings. NSCharacterSet represents various
groupings of characters which are used by NSString. An NSScanner object
scans numbers and words from an NSString object. For more information,
see “NSString: A String for All Countries” on page 83.

You use NSBundle objects to load code and localized resources dynamically
(see “Only When Needed: Dynamically Loading Resources and Code” on
page 130). The NSUserDefaults class enables you to store and access
default values based on locale as well as user preferences.

Object Persistence and Distribution

NSSerializer makes it possible to represent the data that an object contains
in an architecture-dependent way. NSCoder and its subclasses take this
process a step further by storing class information along with the data,
thereby enabling archiving and distribution. Archiving (NSArchiver) stores
encoded objects and other data in files. Distribution denotes the
transmission of encoded object data between different processes and
threads (NSPortCoder, NSConnection, NSDistantObject, and others).

Other Functionality

Date and time. The NSDate, NSCalendarDate, and NSTimeZone classes
generate objects that represent dates and times. They offer methods for
calculating temporal differences, for displaying dates and times in any
desired format, and for adjusting times and dates based on location in the
world.

Application coordination. NSNotification, NSNotificationCenter, and
NSNotificationQueue implement a system for broadcasting notifications of
changes within an application. Any object can specify and post a
notification, and any other object can register itself as an observer of that
notification. You can use an NSTimer object to send a message to another
object at specific intervals.

Operating system services. Many Foundation classes help to insulate
your code from the peculiarities of disparate operating systems.

= NSFileManager provides a consistent interface for file-system
operations such as creating files and directories, enumerating directory
contents, and moving, copying, and deleting files.

« NSThread lets you create multi-threaded applications.

= NSProcessInfo enables you to learn about the environment in which an
application runs.

= NSUserDefaults allows applications to query, update, and manipulate a
user’s default settings across several domains: globally, per application,
and per language.

Creating the Travel Advisor Interface

2 Declare methods.

After the instance variables, add the
declarations listed here.

Country.h also declares a dozen or more methods. Most of these are accessor
methods. A ccessor methodsfetch and set thevalues of instancevariables. They are
acritical part of an object’s interface.

/* initializtion and de-allocation */
(id)init; [A)

- (void)deal |l oc;

/* archiving and unarchiving */

- (voi d)encodeW t hCoder : (NSCoder *)coder; @

- (id)initWthCoder: (NSCoder *)coder;

/* accessor nethods */

- (NSString *)naneg;

- (void)set Name: (NSString *)str;

- (NSString *)airports;

- (void)setAirports: (NSString *)str;

- (NSString *)airlines;

- (void)setAirlines: (NSString *)str;

- (NSString *)transportation;

- (void)setTransportation: (NSString *)str;

- (NSString *)hotels;

- (void)setHotel s: (NSString *)str;

- (Nsstring *)I anguages;

- (void)setLanguages: (NSString *)str;

- (BOQL) engl i shSpoken;

- (void)set Engl i shSpoken: (BOCL) f | ag;

- (NSString *)currencyNane;

- (void)set CurrencyNanme: (NSString *)str;

- (float)currencyRate;

- (void)setCurrencyRate: (float)val;

- (NSString *)coments;

- (voi d)set Comrents: (NSString *)str;

O Object initialization and deallocation. In OpenStep you usually create an object by
allocating it (alloc) and then initializing it (init or init... variant):

Country *aCountry = [[Country alloc] init];

When Country’s init method is invoked, it initializes its instance variables
to known values and completes other start-up tasks. Similarly, when an
object is deallocated, its dealloc method is invoked, giving it the
opportunity to release objects it’s created, free malloc’d memory, and so on.

© Object archiving and unarchiving. The encodeWithCoder: declaration indicates that
objects of this class are to be archived. Archiving encodes an object’s class
and state (typically instance variables) and stores it in a file. Unarchiving,
through initWithCoder:, reads the encoded class and state data from the file

85

Chapter 3 A Forms-Based Application

86

and restores the object to its previous state. There’s more on this topic in the

following pages.

@ Accessor methods. 'The declaration for accessor methods that rezurn values is, by
convention, the name of the instance variable preceded by the type of the
returned value in parentheses. Accessor methods that sez the value of instance
variables begin with “set” prepended to the name of the instance variable
(initial letter capitalized). The “set” method’s argument takes the type of the
instance variable and the method itself returns void.

When a class adopts a protocol, it asserts that it implements the methods the protocol
declares. Classes that archive or serialize their data must adopt the NSCoding protocol. See
“Objective-C Extensions” in the on-line Programming Languages for more on protocols.

Before You Go On

If you don’t want to allow an instance variable’s value to be changed by any object
other than one of your class, do#’f provide a set method for the instance variable.
If you do provide a set method, make sure objects of your own class use it when
specifying a value for the instance variables. This has important implications for

subclasses of your class.

Exercise: The previous example shows the declarations for only a few accessor
methods. Every instance variable of the Country class should have an accessor
method that returns a value and one that sets a value. Complete the remaining

declarations.

The Collection Classes

Several classes in OpenStep’s Foundation framework create objects whose
purpose is to hold other objects. These collection classes are very useful.
Instances of them can store and locate their contents through a number of
mechanisms.

= Arrays (NSArray) store and retrieve objects in an ordered fashion through
zero-based indexing.

= Dictionaries (NSDictionary) store and quickly retrieve objects using
key/value pairs. For example, the key “red” might be associated with an
NSColor object representing red.

* Sets (NSSet) are unordered collections of distinct elements. Counted
sets (NSCountedSet) are sets that can contain duplicate (non-distinct)
elements; these duplicates are tracked through a counter. Use sets when
the speed of membership-testing is important.

The mutable versions of these classes allow you to add and remove objects
programmatically after the collection object is created.

Collection objects also provide a valuable way to store data. When you store
(or archive) a collection object in the file system, its constituent objects are
also stored.

NSObject
NSArray | NSDictionary I NSSet |
| | |
NSMutableArray | NSMutableDictionary | NSMutableSet I

NSCountedSet |

Creating the Travel Advisor Interface

3

Implement the accessor methods.
Select Country.m in the project
browser.

Write the code that obtains and sets
the values of instance variables.

Before You Go On

Exercise: The example above shows the implementation of the accessor
methods for the name instance variable. Implement the remaining accessor
methods.

Now that you’ve declared the Country class’s accessor methods, implement

them.
- (NSString *)nane @
{
return nane;
}
- (void)set Nane: (NSString *)str 9
{
[name aut orel ease] ;
name = [str copy];
}

OFor “get” accessor methods (at least when the instance variables, like

"Travel Advisor’s, hold immutable objects) simply return the instance
variable.

@ For accessor methods that set object values, first send autorelease to the

current instance variable, then copy (or retain) the passed-in value to the
variable. The autorelease message causes the previously assigned object to
be released at the end of the current event loop, keeping current
references to the object valid until then.

If the instance variable has a non-object value (such as an integer or float
value), you don’t need to autorelease and copy; just assign the new value.

In many situations you can send retain instead of copy to keep an object around. But for
“value” type objects, such as NSStrings and our Country objects, copy is better. For the
reason why, and for more on autorelease, retain, copy, and related messages for object

disposal and object retention, see “Object Ownership, Retention, and Disposal” on page

88.

87

Chapter 3

A Forms-Based Application

88

Object Ownership, Retention, and Disposal

The problem of object ownership and disposal is a natural concern in
object-oriented programming. When an object is created and passed
around various “consumer” objects in an application, which object is
responsible for disposing of it? And when? If the object is not deallocated
when itis no longer needed, memory “leaks.” If the object is deallocated too
soon, problems may occur in other objects that assume its existence, and
the application may crash.

The Foundation framework introduces a mechanism and a policy that helps
to ensure that objects are deallocated when—and only when—they are no
longer needed.

Who Owns Which Object?

The policy is quite simple: You are responsible for disposing of all objects

How Autorelease Pools Work: An Example

that you own. You own objects that you create, either by allocating or
copying them. You also own (or share ownership in) objects that you retain,
since retaining an object increments its reference count (see facing page).
The flip side of this rule is: If you don’t own an object, you need not worry
about releasing it.

But now anather question arises. If the owner of an object must release the
object within its programmatic scope, how can it give that object to other
objects? The short answer is: the autorelease method, which marks the
receiver for later release, enabling it to live beyond the scope of the owning
object so that other objects can use it.

The autorelease method must be understood in a larger context of the
autorelease mechanismfor object deallocation. Through this programmatic
mechanism, you implement the policy of object ownership and disposal.

myObj yourObj
. . B
A. myObj creates an object: P
anj = [[M/Class alloc] init]; \
.]] anObj [1
B. myObj returns the object to yourObj, autoreleased:
return [anCbj autorel ease]; .
o _ _ reference yourobj
The object is “put” in the autorelease pool; that is, the autorelease pool starts count

tracking the object.
C. yourObj retains the object:

[anObj retain];

{

The retain message increments the reference count.(If the object wasn’t
retained it would be deallocated at the end of the current event cycle.)

. At the end of the event cycle, the autorelease pool sends release to all of its

objects, thereby decrementing their reference counts. Objects with reference
counts of zero are deallocated. Since anObj now has a reference count of one,
it is not deallocated.

yourObj sends autorelease to anObyj, putting it into an autorelease pool
again. At the end of the event cycle, the autorelease pool sends release to its
objects; since anObj’s reference count is now zero, it’s deallocated.

For a fuller description of object ownership and disposal, see the introduction to
the Foundation framework reference documentation.

yourObj

yourObj

i

Autorelease pool

9,

Autorelease pool

<

Autorelease pool

Autorelease pool

Creating the Travel Advisor Interface

Reference Counts, Autorelease Pools, and Deallocation

Each object in the Foundation framework has an associated reference
count. When you allocate or copy an object, its reference count is set at 1.
You send release to an object to decrement its reference count. When the
reference count reaches zero, NSObject invokes the object’s dealloc
method, after which the object is destroyed. However, successive
consumers of the object can delay its destruction by sending it retain,
which increments the reference count. You retain objects to ensure that they
won't be deallocated until you're done with them.

Each application puts in place at least one autorelease pool (for the event
cycle) and can have many more. An autorelease pool tracks objects marked
for eventual release and releases them at the appropriate time. You put an
object in the pool by sending the object an autorelease message. In the
case of an application’s event cycle, when code finishes executing and
control returns to the application object (typically at the end of the cycle),
the application object sends release to the autorelease pool, and the pool
releases each object it contains. If afterwards the reference count of an
object in the pool is zero, the object is deallocated.

Putting the Policy Into Practice

When an object is used solely within the scape of the method that creates
it, you can deallocate it immediately by sending it release. Otherwise, send
autorelease to all created objects that you no longer need but will return
or pass to other objects.

You shouldn’t release objects that you receive from other objects (unless you
precede the release or autorelease with a retain). You don’t own these
objects, and can assume that their owner has seen to their eventual
deallocation. You can also assume that (with some exceptions, described
below) a received object remains valid within the method it was received in.
That method can also safely return the object to its invoker.

You should send release or autorelease to an object only as many times
as are allowed by its creation (one) plus the number of retain messages you
have sent it. You should never send free or dealloc to an OpenStep object.

Implications of Retained Objects

When you retain an object, you're sharing it with its owner and other objects
that have retained it. While this might be what you want, it can lead to some
undesirable consequences. If the owner is released, any object you received
from it and retained can be invalid. If you had retained an instance variable
of the owning object, and that instance variable is reassigned, your code
could be referencing something it does not expect.

owning object

instance variable

A possible side effect of retain: An abject that owns an instance variable assigns
a new object to it after releasing the previously assigned object. Another object
that had retained the prior instance variable is now referencing an invalid object.

copy Versus retain

When deciding whether to retain or copy objects, it helps to categorize them
as value objects or entity objects. Value objects are objects such as
NSNumbers or NSStrings that encapsulate a discrete, limited set of data.
Entity objects, such as NSViews and NSWindows, tend to be larger objects
that manage and coordinate subordinate objects. For value objects, use
copy when you want your own “snapshot” of the object (the object must
conform to the NSCopying protocol); use retain when you intend to share
the object. Always retain entity objects.

In accessor methods that set value-object instance variables, you usually
(but not always) want to make your own copy of the object and not share it.
(Otherwise it might change without your knowing.) Send autorelease to
the old object and then send copy—not retain—to the new one:

- (void)setTitle:(NSString *)newTitle

[title autorel ease];
title [newTitl e copy];

}

OpenStep framework classes can, for reasons of efficiency, return objects
cast as immutable when to the owner (the framework class) they are
mutable. Thus there is no guarantee that a vended framework object won’t
change, even if it is of an immutable type. The precaution you should take
is evident: copy objects obtained from framework classes if it’s important
the object shouldn’t change from under you.

89

Chapter 3

A Forms-Based Application

Write the object-initialization and
object-deallocation code.

Implement the init method, as shown
here.

Implement the dealloc method,
following the suggestions in the Before
You Go On section below.

90

- (id)init
{
[super init]; Q

nane = @"; (B
airports = @"

airlines = @";

transportation = @";

hotels = @";

| anguages = @";

currencyNane = @";

coments = @"

return self; 0

O Invokes super’s (the superclass’s) init method to have inherited instance
variables initialized. Always do this first in an init method.

@ Initializes an NSString instance variable to an empty string. @ is a compiler-
supported construction that creates an immutable NSString object from the
text enclosed by the quotes.

You don’t need to initialize instance variables to null values (nil, zero, NULL,
and so on) because the run-time system does it for you. But you should
initialize instance variables that take other starting values. Also, don’t
substitute nil when empty objects are expected, and vice versa. The Objective-
C keyword nil represents a null “object” with an id (value) of zero. An empty
object (such as @“”) is a true object; it just has no “real” content.

@ By returning self you’re returning a true instance of your object; up until this
point, the instance is considered undefined.

Before You Go On

Implement the dealloc method. In this method you release (that is, send release or
autorelease to) objects that you’ve created, copied, or retained (which don’t have
an impending autorelease). For the Country class, release all objects held as
instance variables. If you had other retained objects, you would release them,
and if you had dynamically allocated data, you would free it. When this method
completes, the Country object is deallocated. The dealloc method should send
dealloc to super as the /asz thing it does, so that the Country object isn’t released by
its superclass before it’s had the chance to release all objects it owns.

Note that release itself doesn’t deallocate objects, but it leads to their deallocation. For more
on release and autorelease, see “Object Ownership, Retention, and Disposal” on page 88.

Creating the Travel Advisor Interface

5

Implement the methods that archive
and unarchive the object.

Implement the encodeWithCoder:
method as shown at right.

Implement the initWithCoder: method
as shown at right.

You want the Country objects created by the Travel Advisor application to be
persistent. That is, you want them to “remember” their state between sessions.
Archiving lets you do this by encoding the state of application objects in a file
along with their class memberships. The NSCoding protocol defines two
methods that enable archiving for a class: encodeWithCoder: and initwithCoder:.

- (voi d)encodeW t hCoder : (NSCoder *)coder
{
[coder encodeObj ect : nane] ;
[coder encodeObj ect: airports];
[coder encodeObject:airlines];
[coder encodeObj ect:transportation];
[coder encodeObj ect: hotel s];
[coder encodeObj ect : | anguages] ;
[coder encodeVal ueOr Obj CType: "s" at: &engl i shSpoken] ;
[coder encodeObj ect: currencyNane] ;
[coder encodeVal ueOf Obj CType: "f" at: &urrencyRate] ;
[coder encodeObj ect: comment s] ;

}

"The encodeObject: method encodes a single object in the archive file. For both
object and non-object types, you can use encodeValueOfObjCType:at: (shown in this
example encoding a string and a float). NSCoder provides other encoding
methods.

- (id)initWthCoder: (NSCoder *)coder

{
name = [[coder decodeCbject] copy]; Q
airports = [[coder decodeOhject] copy];
airlines = [[coder decodeObject] copy];
transportation = [[coder decodeOnject] copy];
hotels = [[coder decodeObject] copy];
| anguages = [[coder decodeOnhj ect] copy];
[coder decodeVal ueOr Obj CType: "s" at: &ngl i shSpoken] ;
currencyNane = [[coder decodeCbject] copy];
[coder decodeVal ueCrf Obj CType: "f" at: &urrencyRat e] ;
comments = [[coder decodeOhj ect] copy];
return self; @

}

O The order of decoding should be the same as the order of encoding; since
name is encoded first it should be decoded first. Use copy when you assign
value-type objects to instance variables (see “Object Ownership,
Retention, and Disposal” on page 88). NSCoder defines decode... methods
that correspond to the encode... methods, which you should use.

® As in any init.. method, end by returning self—an initialized instance.

91

Chapter 3 A Forms-Based Application

Implementing the TAController Class

After describing what other instance variables you must add to TAController, this
section covers the following implementation tasks:

¢ Getting the data from Country objects to the interface and back

¢ Getting the table view to work, including updating Country records
Adding and deleting “records” (Country objects)

¢ Formatting and validating field values

“Housekeeping” tasks (application management)

1 Update TAController.h. o _
NSMut abl eDi cti onary *countrybDict;

Import Country.h. NSMut abl eAr r ay *count r yKeys;

. . BOOL recor dNeedsSavi ng;
Add the instance-variable

declarations shown at right.
"T'he variables countryDict and countrykeys identify the array and the dictionary
discussed on “/Iravel Advisor — An Overview” on page 62. The boolean
recordNeedsSaving flags that record if the user modifies the information in any field.

Add the enum declaration shown at

right between the last #import enum Logi sti csFornirags {

directive and the @interface '-Ga! rport s=0,

directive. LGairlines, .
LG ransportati on,
LCGhot el s

b

This declaration is not essential, but the enum constants provide a clear and
convenient way to identify the cells in the Logistics form. Methods such as
cellatindex: identify the editable cells in a form through zero-based indexing. This
declaration gives each cell in the Logistics form a meaningful designation.

92

Creating the Travel Advisor Interface

Turbo Coding With Project Builder

When you write code with Project Builder you have a set of “workbench”
tools at your disposal, among them:

Indentation

In Preferences you can set the characters at which indentation
automatically occurs, the number of spaces per indentation, and other
global indentation characteristics. The Edit menu includes the Indentation
submenu, which allows you to indent lines or blocks of code on a case-by-
case basis.

Delimiter Checking

Double-click a brace (left or right, it doesn’t matter) to locate the matching
brace; the code between the braces is highlighted. In a similar fashion,
double-click a square bracket in a message expression to locate the
matching bracket and double-click a parenthesis character to highlight the
code enclosed by the parentheses. If there is no matching delimiter, Project
Builder emits a warning beep.

Name Completion

Name completion is a facility that, given a partial name, completes it from
all symbols known by the project. You activate it by pressing Escape. You
can use name completion in the code editor andin all panels where you are
finding information or searching for files to open.

As an example: you know there's a certain constant to use with fonts, but
you cannot remember it. In your code, type NSFont. Then press the Escape
key several times. These symbols appear in succession (the found portion
is underlined):

NSFont | dentityMatri x
NSFont Manager
NSFont Panel

Emacs Bindings

You can use the most common Emacs commands in Project Builder’s code
editor. (Emacs is a popular editor for writing code.) For example, there are
the commands page-forward (Control-v), word-forward (Meta-f), delete-

word (Meta-d), kill-forward (Control-k), and yank from kill ring (Control-y).

Some Emacs commands may conflict with some of the standard Windows
key bindings. You can modify the key bindings the code editor uses to
substitute other “command” keys—such as the Alternate key or Shift-
Control— for Emacs’ Control or Meta keys. For instructions on custom key
bindings, see “Text Defaults and Key Bindings” in the Programming
Topics section of
INextLibrary/Documentation/NextDev/TasksAndConcepts.

93

2

Chapter 3

A Forms-Based Application

Implement the methods that transfer
data to and from the application’s
fields.

Implement the populateFields:
method as shown at right.

94

Data Mediation

TAController acts as the mediator of data exchanged between a source of data and
the display of that data. Data mediation involves taking data from fields, storing it
somewhere, and putting it back into the fields later. TAController has two
methods related to data mediation: populateFields: puts Country instance data into
the fields of Travel Advisor and extractFields: updates a Country object with the
information in the fields.

- (voi d) popul at eFi el ds: (Country *)aRec

{
[countryField setStringVal ue: [aRec nane]]; Q

[[logisticsForm cell Atl ndex: LGai rports] setStringVal ue:
[aRec airports]];

[[logisticsFormcell Atlndex: LGairlines] setStringVal ue:
[aRec airlines]];

[[1 ogisticsFormcell Atlndex: LGiransportation] setStringVal ue:
[aRec transportation]];

[[logisticsForm cel |l Atl ndex: LGhot el s] set Stri ngVal ue:
[aRec hotel s]];

[currencyNaneFi el d set StringVal ue: [aRec currencyNane]];
[currencyRat eFi el d set Fl oat Val ue: [aRec currencyRate]];
[anguagesFi el d set Stri ngVal ue: [aRec | anguages]];

[engl i shSpokenSwi t ch set St at e: [aRec engl i shSpoken]];

[coment sField setString:[aRec comrents]];

[countryField sel ect Text:self]; 0

O Causes the Country field to display the value of the name instance variable of
the Country record (aRec) passed into the method. Since [aRec name] is nested,
the object it returns is used as the argument of setStringvalue:, which sets the
textual content of the receiver (in this case, an NSFormCell).

@ T'he cellAtindex: message is sent to the form and returns the cell identified by the
enum constant L.Gairports.

@ Sets the state of the switch according to the boolean value held by the Country
instance variable; if the state is YES, the X appears in the switch box.

@ Sclects the text in the Country field or, if there is no text, inserts the cursor.

Creating the Travel Advisor Interface

Although it doesn’t do anything with data, the blankFields: method is similar in
structure to populateFields:. The blankFields: method clears whatever appearsin Travel
Advisor'sfields by inserting empty string objects and zeros.

Implement the blankFields: method as - (voi d) bl ankFi el ds: (i d) sender
shown at right. {
[countryField setStringValue: @"];
[[1ogisticsFormcell Atlndex: LGairports] setStringValue: @"];
[[1ogisticsFormcell Atlndex: LGairlines] setStringValue: @"];
[[1ogisticsFormcell Atlndex: L& ransportation] setStringValue: @"];
[[1ogisticsForm cell Atl ndex: LGhotel s] setStringValue: @"];
[currencyNaneFi el d set StringValue: @"];
[currencyRat eFi el d set Fl oat Val ue: 0. 000] ;
[l anguagesFi el d set StringVal ue: @"];
[engl i shSpokenSwi t ch set St ate: NO ; @
[currencyDol | arsFi el d set Fl oat Val ue: 0. 00] ;
[currencylLocal Fi el d set Fl oat Val ue: 0. 00] ;
[cel sius setlntVal ue:0];
[comentsField setString: @"]; @
[countryField sel ect Text:self];
}

O The setstate: message affects the appearance of two-state toggled controls,
such as a switch button. With an argument of YES, the checkmark
appears; with an argument of NO, the checkmark is removed.

@ The setString: message sets the textual contents of NSText objects (such as
the one enclosed by the scroll view).

Before You Go On

Exercise: Implement the extractFields: method. In this method set the values of the
passed-in Country record’s instance variables with the contents of the
associated fields.

Here’s a little tip for you: This implementation is extractFields: in reverse. Use
the stringvalue method to get field contents and use Country’s accessor
methods to set the values of instance variables.

95

Chapter 3

A Forms-Based Application

96

Finding Information Within Your Project

The Project Find Panel

The Project Find panel lets you find any symbol defined or referenced in your
project. It also allows you to look up related reference documentation,
search for text project-wide using regular expressions, and replace symbols

or strings of text. To use the full power of Project Find, your project must be
indexed; once it is, you have access to all symbols that the project
references, including symbols defined in the frameworks and libraries
linked into the project.

Search for: symbol definition,
Symbol reference, textual strings

[0 EE———== TravelAdvisor - Project Find é =
|

p— 7 (with or without regular
Find: |-initWithFrame | Definitions - I q o expressions).
Replace: | [Previous VI 'l s
Lists the targets of recent \
find ope,:aﬂgns" selecting 3 found [lgnare Caze [Whole Words [CurreN Fil Find and replace buttors.
one re-displays the results Instance Methods
in the browser, @ NEControl: - (it Wit Aame NSRectframeRect; _
@ NEMattix: - (id)dtWiRmer N5 Rect frameRect; -
@ NSTextView: - (iduimitWithAamelNSRectirameRect; Search results.
@ NSView: - (iddtWitiaamer NsRect frameRect; [. . .
Click a book icon to see the L1 NEMatri: - (i) amtwittFame NSRectrameRect made injahod — Click an item to dlisplay
related reference ||| @ NSMatrix: - (id)miHizeaame NS RectiraneRect smodefintiabMog < the relevant code.
documentation.

Symbol Definition Search Syntax

You can narrow your search for definitions of symbols by indicating type in
the Find field of the Project Find panel along with the symbol name. Once
the symbol items are listed in the browser, you can click an item to navigate
to the definition in the header file, or click a book icon to display the relevant
reference documentation.

The following table lists examples of searching for symbol definitions by
type:

Example Finds Definition For
@NSArray NSArray class
<NSCoding> NSCoding protocol
-objectAtindex: Instance method
+stringWithFormat: Class method

[NSBox controlView] Method specific to class
NSRunAlertPanel() Function

NSApp Type or constant

Other Ways of Finding Information
Project Builder includes other facilities for finding information:

« Incremental search. Control-s brings up the incremental-search
panel for the currently edited file. As you type, the cursor advances to the
next sequence of characters in the file that match what you type. Click
Next (or press Control-s) to go to the next occurrence; click Prev (or press
Control-r) to go to the previous occurrence.

Note thatControl-s might not invoke incremental search on all systems
because of different native key bindings on those systems. However, you
can customize your key bindings, both generally and specific to Project
Builder, and thus get the incremental-search (and other) functionality.
See “Turbo Coding With Project Builder” on page 93 for more
information.

 Help. Project Builder and Interface Builder also feature tool tips,
context-sensitive help, and task-related help. See page 56 for details.

Creating the Travel Advisor Interface

Getting the Table View to Work

"Table views are objects that display data as records (rows) with attributes
(columns). The table view in Travel Advisor displays the simplest kind of
record, with each record having only one attribute: a country name.

Table views get the data they display from a data source. A data source is an
object that implements the informal NS TableDataSource protocol to respond
to NSTableView requests for data. Since the NSTableView organizes records
by zero-based indexing, it is essential that the data source organizes the data
it provides to the NSTableView similarly: in an array.

3 Implement the behavior of the table
P - (voi d) awakeFromNi b

view's data source. :
In TAController's awakeFromNib NSArray *tnpArray = [[countryDict allKeys]
method, create and sort the array of sort edArrayUsi ngSel ect or: @el ect or (conpare:)];
country names. countryKeys = [[NSMut abl eArray alloc] initWthArray:tnpArray];
ltﬂgljeaign;gurpcith()d' designate self as [tabl eVi ew set Dat aSour ce: sel f]; @
' [tabl eVi ew si zeLast Col umToFi t];
}

O T'he [countryDict allkeys] message returns an array of keys (country names)
from countryDict, the unarchived dictionary that contains Country objects as
values. The sortedArrayUsingSelector: message sorts the items in this “raw”
array using the compare: method defined by the class of the objects in the
array, in this case NSString (this is an example of polymorphism and
dynamic binding). The sorted names go into a temporary NSArray—since
that is the type of the returned value—and this temporary array is used to
create a mutable array, which is then assigned to countrykeys. A mutable
array is necessary because users may add or delete countries.

O The [tableView setDataSource:self] message identifies the TAController object as
the table view’s data source. The table view will commence sending
NSTableDataSource messages to TAController. (You can effect the same
thing by setting the NSTableView’s dataSource outlet in Interface Builder.)

If users are supposed to edit the cells of the table view, you could make TAController
the delegate of the table view at this point (with setDelegate:). The delegate receives
messages relating to the editing and validation of cell contents. For details, see the
specification on NSTableView in the Application Kit reference documentation.

Chapter 3

A Forms-Based Application

Implement two methods of the

NSTableDataSource informal protocol:

— numberOfRowsInTableView:
— tableView:

98

objectValueForTableColumn:
row;

"To fulfill its role as data source, TAController must implement two methods of the
NSTableDataSource informal protocol.

- (int)nunber O Rowsl nTabl eVi ew: (NSTabl eVi ew *) t heTabl eVi ew 0

{
return [countryKeys count];
}
- (id)tabl eVi ew (NSTabl eVi ew *)t heTabl eVi ew @
obj ect Val ueFor Tabl eCol umm: (NSTabl eCol utm *) t heCol urm
row: (i nt)row ndex
{
if ([[theColumm identifier] isEqual ToString: @Countries"])
return [countryKeys object At | ndex: rowl ndex] ;
el se
return nil;
}

O Returns the number of country names in the countrykeys array. The table view
uses this information to determine how many rows to create.

If you had an application with multiple table views, each table view would
invoke this NSTableView delegation method (as well as the others). By
evaluating the theTableView argument, you could distinguish which table view
was involved.

@ This method first evaluates the column identifier to determine if it’s the right
column (it should always be “Countries”). If it is, the method returns the
country name from the countrykeys array that is associated with rowindex. This
name is then displayed at rowindex of the column. (Remember, the array and the
cells of the column are synchronized in terms of their indices.)

The NSTableDataSource informal protocol has another method,
tableView:setObjectvalue:forTableColumn:row;, that you won’t implement in this tutorial. This
method allows the data source to extract data entered by users into table-view
cells; since Travel Advisor’s table view is read-only, there is no need to implement
it.

Creating the Travel Advisor Interface

Finally, you have to have the table view respond to mouse clicks in it, which
indicate a request that a new record be displayed. As you recall, you defined
in Interface Builder the handleTVClick: action for this purpose. This method must
do a number of things:

e Save the current Country object or create a new one.
o [f there’s a new record, re-sort the array providing data to the table view.
® Display the selected record.

4 Update records. - (voi d) handl eTVd i ck: (i d) sender

Implement the method that responds {
to user selections in the table view. Country *aRec, *newRec, *newerRec;
i nt index;
/* does current obj need to be saved? */
i f (recordNeedsSaving) { 0
/* is current object already in dictionary? */
i f (aRec=[countryDi ct objectForKey:[countryField stringValue]]) {
/* remove if it's been changed */
if (aRec) {
NSString *country = [aRec nane];
[countryDi ct renmpveObj ect For Key: country];
[countryKeys renmoveObj ect: country];
}
}
/* Create Country obj, add to dict, add name to keys array */
newRec = [[Country alloc] init];
[sel f extractFi el ds: newRec] ;
[countryDi ct set Object: newRec forKey:[countryField stringVal ue]];
[newRec rel ease];
[countryKeys addObj ect:[countryField stringVal ue]];
/* sort array here */
[countryKeys sort Usi ngSel ect or: @el ect or (conpare:)];
[tabl eVi ew rel oadDat a] ;
}
i ndex = [sender sel ectedRow] ;
if (index >= 0 && index < [countryKeys count]) { @
newer Rec = [countryDi ct object For Key:
[countryKeys obj ect At | ndex: i ndex]];
[sel f popul at eFi el ds: newer Rec] ;
[comment sLabel set StringVal ue: [NSString stringWthFormat:
@Notes and Itinerary for %@, [countryField stringValue]]];
recor dNeedsSavi ng=NG,
}
}

This method has two major sections, each introduced by an if statement.

99

Chapter 3

A Forms-Based Application

100

Getting in on the Action: Delegation and Notification

Alot goes on in a running application: events are being interpreted, files are
being read, views are being drawn. Because your custom objects might be
interested in any of these activities, OpenStep offers two mechanisms
through which your objects can participate in or be kept informed of events
going on in the application: delegation and notification.

Delegation

Many OpenStep framework objects hold a delegate as an instance variable.
A delegate is an object that receives messages from the framework object
when specific events occur. Delegation messages are of several types,
depending on the expected role of the delegate:

* Some messages are purely informational, occurring after an event has
happened. They allow a delegate to coordinate its actions with the other
object.

* Some messages are sent before an action will occur, allowing the
delegate to veto or permit the action.

= (Other delegation messages assign a specific task to a delegate, like
filling a browser with cells.

o
delegate
=C

You can set your custom object to be the delegate of a framework object
programmatically or in Interface Builder. Your custom classes can also
define their own delegate variables and delegation protocols for client
objects.

Notification

A notification is a message that is broadcast to all objects in an application
that are interested in the event the notification represents. As does the
informational delegation message, the notification informs these observers
that this event took place. It can also pass along relevant data about the event.

oddball

o
delegate
=C

OddBallDidActSillyNotification

©

Here's the way the notification process works:

= Objects interested in an event that happens elsewhere in the application
— say the addition of a record to a database — register themselves
with a notification center (an instance of NSNotificationCenter) as
observers of that event. Delegates of an object that posts notifications
are automatically registered as observers of those notifications.

« The object that adds the object to the database (or some such event)
posts a notification (an instance of NSNotification) to a notification
center. The notification contains a tag identifying the notification, the
id of the associated object, and, optionally, a dictionary of supplemental
data.

= The notification center then sends a message to each observer, invoking
the method specified by each, and passing in the notification.

Notifications hold some advantages over delegation messages as a means
of inter-application communication. They allow an object to synchronize its
behavior and state with muitiple objects in an application, and without
having to know the identity of those objects. With notification queues, it
is also possible to post notifications asynchronously and coalesce similar
notifications.

Creating the Travel Advisor Interface

@ When any Country-object data is added or altered, ‘Travel Advisor sets the
recordNeedsSaving flag to YES (you’ll learn how to do this later on). If
recordNeedsSaving is YES, the code first deletes any existing Country record
for that country from the dictionary and also removes the country name
from the table view’s array. (Upon removal, the objects are automatically
released by the array.) Then it creates a new Country instance, initializes it
with the values currently on the screen, adds the instance to the
dictionary, and releases the instance (the dictionary has retained it). For
the table view’s array, it adds the country name to it, sorts it, and invokes
the reload method, which causes the table view to request data from its data
source.

O The selectedRow message queries the table view for the row index of the cell
that was clicked. If this index is within the array’s bounds, the code uses it
to get the country name from the array, and then uses the country name as
the key to get the associated Country instance. It writes the instance-
variable values of this instance to the fields of the application, updates the
“Notes and Itinerary for” label, and resets the recordNeedsSaving flag.

Optional Exercise

Users often like to have key alternatives to mouse actions such as clicking a
table view. One way of acquiring a key alternative is to add a menu command
in Interface Builder, specify a key as an attribute of the command, define an
action method that the command will invoke, and then implement that
method.

The methods nextRecord: and prevRecord: should be invoked when users choose
Next Record and Prev Record or type the key equivalents Command-n and
Command-r. In TAControllerm, implement these methods, keeping the following
hints in mind:

1. Get the index of the selected row (selectedRow).

2. Increment or decrement this index, according to which key is pressed (or
which command is clicked).

3. If the start or end of the table view is encountered, “wrap” the selection.
(Hint: Use the index of the last object in the countryKeys array.)

4. Using the index, select the new row, but don’t extend the selection.

5. Simulate a mouse click on the new row by sending handleTVClick: to self.

101

Chapter 3

A Forms-Based Application

102

Breaktime: Build the Project

Now is a good time to take a break and build Travel Advisor. See if there are any
errors in your code or in the nib file you’ve created with Interface Builder.

Remember, if you unsure about any of the code discussed so far, especially code
that you’re encouraged to write on your own as part of an “exercise,” refer to the
example project in /NextDeveloper/Examples/AppKit. You may also want to take this time
to test drive Project Builder’s graphical debugger, discussed on the following two

pages.

Creating the Travel Advisor Interface

Adding and Deleting Records

When users click Add Record to enter a Country “record,” the addRecord:
method is invoked. You want this method to do a few things besides adding a
Country object to the application’s dictionary:

¢ Ensure that a country name has been entered.
e Make the table view reflect the new record.
o [f the record already exists, update it (but only if it’s been modified).

5 Implement the method that adds a
Country object to the NSDictionary
“database.”

- (voi d)addRecord: (id)sender
{
Country *aCountry;
NSString *countryNane = [countryField stringVal ue];

if (countryName && (![countryNane isEqual ToString: @"])) { @
aCountry = [countryDi ct obj ect For Key: countryNane] ;
if (aCountry && recordNeedsSavi ng) {
/* renmove old Country object fromdictionary */
[countryDi ct renpveObj ect For Key: count ryNane] ;
[countryKeys renpveObj ect: countryNane] ;
aCountry = nil;
}
if (!aCountry) /* record is new or has been renoved */
aCountry = [[Country alloc] init];
else /* record already exists and hasn't changed */
return;

[sel f extractFiel ds: aCountry]; @
[countryDi ct set bject:aCountry forKey:[aCountry nane]];
[countryKeys addQbj ect:[aCountry nane]];

[countryKeys sort Usi ngSel ect or: @el ect or (conpare:)];

recor dNeedsSavi ng=NG, 0

[comment sLabel setStringVal ue: [NSString stringWthFormat:
@Notes and Itinerary for %@, [countryField stringValue]]];

[countryField sel ect Text:self];

[tabl eVi ew rel oadDat a] ; Q
[tabl eVi ew sel ect Row: [count ryKeys i ndexOF Qbj ect :
[aCountry nane]] byExt endi ngSel ecti on: NJ ;

O This section of code verifies that a country name has been entered and
sees if there is a Country object in the dictionary. If there’s no object for
the key, objectForkey: returns nil. If the object exists and it’s flagged as
modified, the code removes it from the dictionary and removes the

103

Chapter 3 A Forms-Based Application

country name from the countrykeys array. Note that removing an object from a
dictionary or array also releases it, so the code sets aCountry to nil. It then tests
aCountry and, if it’s nil, creates a new object; otherwise it just returns, because an
object already exists for this country and it hasn’t been modified.

@ After updating the new Country object with the information on the
application’s fields (extractFields:), this code adds the Country object to the
dictionary and the country name to the countrykeys array.

@ This section of code performs some things that have to be done, such as
resetting the recordNeedsSaving flag and updating the label over the scroll view to
reflect the just-added country.

@ The reloadbata message forces the table view to update its contents. The
selectRow:byExtendingSelection: message highlights the new record in the table view.

Note: In the code example on the previous page, note the expression “if
(!aCountry)”. For objects, this is shorthand for “if (aCountry == nil)”; in the same
vein, “if (aCountry)” is equivalent to “if (aCountry != nil)”.

Before You Go On

Exercise: Implement the deleteRecord: method. Although similar in structure to
addrecord: this method is much simpler, because you don’t need to worry about
whether a Country record has been modified. Once you’ve deleted the record,
remember to update the table view and clear the fields of the application.

Flattening the Object Network: Coding and Archiving

104

Coding, as implemented by NSCoder, takes

a network of objects such as exist in an application
and serializes that data, capturing the state,
structure, relationships, and class memberships of
the objects. As a subclass of NSCoder, NSArchiver
extends this behavior by storing the serialized data
in afile.

When you archive a root object, you archive not only
that object but all other objects the root object
references, all objects those second-level objects
reference, and so on. To be archived, however,
objects must conform to the NSCoding protocol.
This conformance requires that they implement the
encodeWithCoder: and initWithCoder: methods.

Thus sending archiveRootObject:toFile: to
NSArchiver leads to the invocation of
encodeWithCoder: in the root object and in all
referenced objects that implement it. Similarly,
sending unarchiveObjectWithFile: to
NSUnarchiver results in initWithCoder: being
invoked in those objects referenced in the archive
file. These objects reconstitute themselves from the
instance data in the file. In this way, the network of
objects, three-dimensional in abstraction, is
converted to

a two-dimensional stream of data and

back again.

Creating the Travel Advisor Interface

Field Validation

The NSControl class gives you an API for validating the contents of cells.
Validation verifies that the values of cells fall within certain limits or meet
certain criteria. In Travel Advisor, we want to make sure that the user does not
enter a negative value in the Rate field.

"The request for validation is a message—control:isvalidObject—that a control
sends to its delegate. The control, in this case, is the Rate field.

6 Validate the values entered in a field. [currencyRat eFi el d set Del egat e: sel f] ;

In awakeFromNib, make TAController

2 delegate of the field to be validated: - (BOOQL)control: (NSControl *)control isValidQObject: (id)obj

the Rate field. (
Implement the control:isValidObject: if (control == currencyRateField) { (A)
method to validate the value of the if ([obj floatValue] < 0.0) {
field. NSRunAl ert Panel (@ Tr avel Advi sor", @
@ Rate cannot be negative.", nil, nil, nil);
return NO
}
}
return YES;
}

O Because you might have more than one field’s value to validate, this
example first determines which field is sending the message. It then
checks the field’s value (passed in as the second object); if it is negative, it
displays a message box and returns NO, blocking the entry of the value.
Otherwise, it returns YES and the field accepts the value.

© T'he NSRunAlertPanel() function allows you to display an attention panel from
any point in your code. The above example calls this function simply to
inform the user why the value cannot be accepted.

Travel Advisor

Fate cannot be negative.

Although Travel Advisor doesn’t evaluate it, the NSRunAlertPanel() function
returns a constant indicating which button the user clicks on the message
box. The logic of your code could therefore branch according to user
input. In addition, the function allows you to insert variable information
(using printf()-style conversion specifiers) into the body of the message.

105

Chapter 3 A Forms-Based Application

Application Management

By now you’ve finished the major coding tasks for Travel Advisor. All that remains
to implement are a half dozen or so methods. Some of these methods perform
tasks that every application should do. Others provide bits of functionality that
"Travel Advisor requires. In this section you’ll:

Archive and unarchive the "TAController object.
Implement TAController’s init and dealloc methods.
Save data when the application terminates.

Mark the current record when users make a change.
Obtain and display converted currency values.

The data that users enter into Travel Advisor should be saved in the file system,
or archived. The best time to initiate archiving in "Travel Advisor is when the
application is about to terminate. Earlier you made TAController the delegate of
the application object (NSApp). Now respond to the delegate message
applicationShouldTerminate:, which is sent just before the application terminates.

Archive the application’s objects

when it terminates. - (BOQL) appl i cati onShoul dTer m nat e: (i d) sender

{ 0
Implement the delegate method NSString *storePath = [[[NSBundl e mai nBundl e] resourcePat h]
applicationShouldTerminate:, as stringByAppendi ngPat hConponent : @ Travel Data"] ;
shown at right. /* save current record if it is new or changed */

[sel f addRecord: sel f];

if (countryDict && [countryDict count])
[NSAr chi ver ar chi veRoot Cbj ect: countryDi ct toFil e: storePath];

return YES;

O Constructs a pathname for the archive file, “TravelData.” This file is stored in
the resource directory of the application’s main bundle. The application
wrapper—the directory holding the application executable and the resource
directory—is a bundle (the main bundle), so NSBundle methods are used to get
the path to this directory.

"T'his technique of storing application data in the main bundle is for the purposes of
demonstrating NSBundle APIs and is not recommended for most applications. See the
following chapter, “To Do Tutorial—The Basics,” for examples and explanations of storing
user-specific document data in the file system.

O If the countrybict dictionary holds Country objects, TAController archives it with
the NSArchiver class method archiveRootObject:toFile:. Since the dictionary is
designated as the root object for archiving, all objects that the dictionary
references (that is, the Country objects it contains) will be archived too.

106

Creating the Travel Advisor Interface

Behind ‘Click Here’: Controls, Cells, and Formatters

Controls and cells lie behind the appearance and behavior of most user-
interface objects in OpenStep, including buttons, text fields, sliders, and
browsers. Although they are quite different types of objects—controls
inherit from NSControl while cells inherit from NSCell—they interact
closely.

Controls enable users to signal their intentions to an application, and thus
to controlwhat is happening. By interpreting mouse and keyboard events
and asking another object to respond to them, controls implement the
target/action paradigm described in “Paths for Object Communication:
Outlets, Targets, and Actions” on page 40. Controls themselves can hold
targets and actions as instance variables, but usually they get this data
from the affected cell (which must inherit from NSActionCell).

Cells are rectangular areas “embedded” within a control. A control can hold
multiple cells as a way to partition its surface into active areas. Cells can
draw their own contents either as text or image (and sometimes as both),
and they can respond individually to user actions. Since cells are typically
more frugal consumers of memory than controls, they help applications be
more efficient.

tracking messages
Control

Free _|
Cash Cell

NS

drawing messages

Controls act as managers of their cells, telling them when and where to
draw, and notifying them when a user event (mouse clicks, keystrokes)
occurs in their areas. This division of labor, given the relative “weight” of
cells and controls, provides a great boost to application performance.

[Don reec hadbe
3 Nt day

) Weaek Yon naow
L] Marth ¥on naw
[Speditc dan

cell (NSButtonCell)

control (NSMatrix)

| | vy

; control (NSTextField)

cell(NSTextFieldcell)

A control does not have to have a cell associated with it, but most user-
interface objects available on Interface Builder’s standard palettes are cell-
control combinations. Even a simple button—from Interface Builder or
programmatically created—is a control (an NSButton instance) associated
with an NSButtonCell. The cells in a control such as a matrix must be the
same size, but they can be of different classes. More complex controls, such
as table views and browsers, can incorporate various types of cells.

Cells and Formatters

When one thinks of the contents of cells, it’s natural to consider only text
(NSString) and images (NSImage). The content seems to be whatever is
displayed. However, cells can hold other kinds of objects, such as dates
(NSDate), numbers (NSNumber), and custom objects (say, phone-number
objects).

Formatter objects handle the textual representation of the objects
associated with cells and translate what is typed into a cell into the
underlying object. Using NSCell’s setFormatter:, you must
programmatically associate a formatter with a cell to get this behavior.

translates the NSDateFormatter

textual
contents...

I.Jan 11997

...into the
underlying
object...

NSDate

...and vice
versa

The Foundation framework provides the NSDateFormatter and
NSNumberFormatter classes to generate date formatters and currency and
number formatters. You can make a custom subclass of NSFormatter to
derive your own formatters.

107

Chapter 3

A Forms-Based Application

Implement TAController's methods

for initializing and deallocating itself.

Implement the init method, as shown
at right.

Implement the dealloc method to
release object instance variables.

108

- (id)init
{
NSString *storePath = [[NSBundl e nmi nBundl €] @
pat hFor Resour ce: @ Tr avel Dat a" of Type: nil];
[super init];
countryDict =
[NSUnar chi ver unar chi veCbj ect Wt hFi | e: st orePat h] ; @
if (!countryDict) { 0
countryDict = [[NSMut abl eDi ctionary alloc] init];
count ryKeys = [[NSMut abl eArray alloc] initWthCapacity: 10];
} else
countryDict = [countryDict retain];
recor dNeedsSavi ng=NG,
return self;
}

O Using NSBundle methods, locates the archive file “TravelData” in the
application wrapper and returns the path to it.

© The unarchiveObjectWithFile: message unarchives (that is, restores) the object whose
attributes are encoded in the specified file. The object that is unarchived and
returned is the NSDictionary of Country objects (countryDict).

@ If no NSDictionary is unarchived, the countrybict instance variable remains nil. If
this is the case, TAController creates an empty countryDict dictionary and an
empty countryKeys array. Otherwise, it retains the instance variable.

When users modify data in fields of Travel Advisor, you want to mark the current
record as modified so later you’ll know to save it. The Application Kit broadcasts
a notification whenever text in the application is altered. To receive this
notification, add TAController to the list of the notification’s observers.

Creating the Travel Advisor Interface

9 Write the code that marks records as
modified.

In the awakeFromNib method, make
TAController an observer of
NSControlTextDidChangeNotification.

Implement textDidChange: to set the
recordNeedsSaving flag.

10 Implement the method that responds
to a request for a currency
conversion.

[[NSNotificationCenter defaultCenter] addQbserver:self
sel ector: @el ect or (t ext Di dChange:)
nane: NSCont r ol Text Di dChangeNoti fi cati on object:nil];

Next, implement the method that you indicated would respond to the
notification; this method sets a flag, thereby marking the record as changed.

- (void)textD dChange: (NSNotification *)notification
{
if ([notification object] == currencyDollarsField ||
[notification object] == celsius) return;

r ecor dNeedsSavi ng=YES;

You post notifications and add objects as observers of notifications with methods defined
in the NSNotificationCenter class. NSNotification defines methods for creating
notification objects and for accessing their attributes. See the specifications of these
classes in the Foundation framework reference documentation.

"Two of the editable fields of 'Travel Advisor hold temporary values used in

conversions and so are not saved. This statement checks if these fields are the
ones originating the notification and, if they are, returns without setting the
flag. (‘T'he object message obtains the object associated with the notification.)

The final method to implement is almost identical to the one you wrote for
Currency Converter to display the results of a currency conversion when the
user clicks the Convert button for currency conversion.

- (void)convertCurrency: (id)sender

{
[currencylLocal Fi el d set Fl oat Val ue:
[converter convertAnpunt:[currencyDol | arsField fl oatVal ue]
byRat e: [currencyRateFi el d fl oatVal ue]]];
}
Optional Exercise

Convert Celsius to Fahrenheit: Implement the convertCelsius: method. You’ve already
specified and connected the necessary outlets (celsius, fahrenheit) and action
(convertCelsius:), so all that remains is the method implementation. The formula
you’ll need is:

F°=9/5C° + 32

109

Chapter 3 A Forms-Based Application

110

Using the Graphical Debugger

To smooth the task of debugging, Project Builder puts a graphical user
interface over the GNU debugger, gdb. To access the Launch panel that
serves as this graphical debugger, click the button outlined at right.

1. Run the debugger.

The Launch panel allows you to run programs or debug them. If you want to
debug a program, start up gdb by clicking this button:

Al

Before you run gdb you should first build your project with a target of
“debug” to get an executable with full debugging information. You should
also verify that the proper executable is being debugged. To select the
“debug” executable for debugging, click the checkmark button and, in the
Executables display of the Launch Options panel, choose the file with an
extension of debug.

2. Set a breakpoint.

When you start the debugger, a narrow gray band appears along the left
margin of the code editor. You set a breakpoint by double-clicking in the
gray band next to a line of code.

You can see which breakpoints are set in the Breakpoints display of the Task
Inspector, which you access by clicking this button:

i

In this inspector, you can disable and re-enable breakpoints by double-
clicking under the “Use?” column.

3. Start debugging the application.

To begin debugging an application click the right-triangle button:

>

The application starts up. If necessary, use the application until the first
breakpoint is encountered. When that happens, the “(gdb)” prompt appears
in the command-line section of the panel.

You can type gdb commands at this prompt. There are many gdb
commands not represented in the user interface. For on-line information on
these commands, enter “help” at the prompt. You can also find more about
commands in the on-line gdb reference.

el GE

O TravelAdvisor - Launch - "TravelAdvisor.debug *

gll | |$ Yils glf“fﬁ | E

N\

Set options: executable to run or debug,
diirectories to search, commana-fine
arguments, and so on.

\ Start gab.

Launch program (instead of debugging it).

ey
Context Help -
Supporting F - [«

B TAController.
el Reset the breakpoint by

/(id)init dragging it.
{

NSString *storePath = Disable the breakpoint by

offype:nill: double-clicking it.
[super init];

Delete the breakpoint by
dragging it into the code

if {lcountryDict) { 2 o
countiybict - [N editor until it disappears.
countrykeys = [[NS

1 plae

countryDict = [MSUnarc

O TravelAdvisor - Launch - "TravelAdvisor.debug *

==

0

0| @ |4 W] > | |0F W)

l
Inferior process loaded.

GDB is free software and wou are welcome to distribute copies of it
under certain conditions: type "show copying” to see the conditions
There is absolutely no warranty for GDB; type “show warranty” for
details.

GDE 4.14 (MEXTSTER 4.8 --target i386), Copyright 1995 Free Software
Foundation. Inc

Reading symbols from

fMet /szaport /hones/delavare Atdono /Pro jects/Travelddvisor /Travelddvisor . de
bug/Travelddvisor . . . done.

(gdb)

[0

Creating the Travel Advisor Interface

4. Inspect the stack trace.

When a program running under the debugger hits a breakpoint, the
graphical debugger displays a trace of the call stack. You can see the
sequence of calls leading up to the breakpoint as well as the values of
arguments of methods or functions implemented by your project.

The Stack display is part of the Task Inspector, which you open by clicking
the following button on the Launch panel:

2|

5. Step through code.

When the program you're debugging hits a breakpoint, you usually want to
step through a section of the code and see what happens (in terms of the
stack and the values of variables). The Launch panel gives you two buttons
for stepping through code.

> |)| B RS
yd

Step past

Step into

You can step intocode (going from a call site to an invoked method or called
function) only with code that your project implements.

6. Examine data values.

With the graphical debugger, you can inspect the values of variables,
pointers, and objects as you step through code. First select a symbol in the
code afterthe statement in which it appears has been executed. Then click
one of the “print” buttons to learn about its present value:

- | |l’|ﬂ=‘ [¥}||E|E—Printobject

) description
Print value

IPrint reference

The gdb command-line section of the Launch panel then displays the
requested value. When you click the rightmost button and an object is
selected, that object’s description method is invoked. If you are debugging
your own objects, it might be worthwhile to implement the description
method to yield information as precise and detailed as is required (see page
128 for an example of this).

5] T Wiparhar - Travalae Hor Sdy
= 1
0 |-[TAC viaier ind) {BEiie N4 4SE, _Cd=Iasra |
1 |-[HECusknIG @t i slaniaa) fl
2 |-pEEChEba iremdeobact] |7
1 |-HEEC00 pciDaia n kA sl in s O
4 | Wedkib]
8 | +fHEBund s SN BLOmd g _IcadMBFE)
G | [P ek RESP i L i gy MG R EF K)
7| ofPEEER bt hESH L0 i gy Waaed A DR)
B | MEApolcal ke I
3 |man {ar Cn |, Gy = el VR4
0 | mlarl 1)

s »
Context Help 1
Supporing Files =

2 TAController.m # TAControl

- {idyinit
{

{3 MNSString #*storePath = [

[super init]:

The arrow shows the program
counter as you step through
code.

Countrylbict = [MSUnarch

B if {lcountryDict) {
countrybict = [[MNSM
countrykeys = [[MSF

1 else
countrylbict = [cour

(| Trivil s - L imos - “Tratwahilvissr ool

a|@ v | r|Fd|BEE

o procEn riappesd

Pesndire) syl rrom Losdsd riles oo

AL LT F immaTho8 e | sk SMTALONS M AT AT EaSHaiaE
aftert G

Pesgdireg srmbsals rrom Losdsd rile. dons

Py @3 151893 T Lidwisor [pa2] Bsd deptn Lisit Elghidioialar

Breaperirt 1. -[TaCominaller Lrit] (el e
TaCorvtyal ey w242

[y st

[pEis Pt

[} Pt

[pEy oo ooevErerLot

[Fraed = -Dmgriry: SoSmidde, (e = Casiry Salnos- |
Lok -

_Omd=iSHoELa) ot

For more information on debugging, see the on-line Help for Project Builder.

11

Chapter 3 A Forms-Based Application

Building and Running Travel Advisor

When Travel Advisor is built, start it up by double-clicking the icon in the File

112

Manager. Then put the application through the following tests:

¢ Enter a few records. Make up geographical information if you have to—
you'’re not trusting your future travels to this application. Not yet, anyway.

¢ (lick the items in the table view and notice how the selected records are
displayed. Press Command-n and Command-r and observe what happens.

¢ Enter values in the conversion fields to see how they’re automatically
formatted. Try to enter a negative value in the Rate field.

® Quit the application and then start it up again. Notice how the application
displays the same records that you entered.

Tips for Eliminating Deallocation Bugs

Problems in object deallocation are not unusual in OpenStep applications
under development. You might release an object too many times or you
might not release an object as many times as is needed to deallocate it.
Both situations lead to nasty problems —in the first case, to run-time
errors when your code references non-existent objects; the second case
leads to memory leaks.

If you're releasing an object too many times, you'll get run-time error
messages telling you that a message was sent to a freed object. To find

which methods were releasing the object, in gdb or the graphical debugger:

1 Set a breakpoint on main() and run the program.

2 When you hit the breakpoint, send enableFreedObjectCheck: to
NSAutoreleasePool with an argument of YES.

3 Set a breakpoint on _NSAutoreleaseFreedObject.
4 Continue running the program.

5 When the program hits the breakpoint, do a backtrace and check the
stack to find the method releasing the object.

Avoiding Deallocation Errors

Here’s a few things to remember that might help you avoid deallocation
bugs in OpenStep code:

= Make sure there’s an alloc, copy, mutableCopy, or retain message
sent to an object for each release or autorelease sent to it.

= When you release a collection object (such as an NSArray), you release
all objects stored in it as well. When you add an object to a collection,
it’s retained; when you remove an object from a collection, it's released.

* Superviews retain subviews as you add them to the view hierarchy and
release subviews as you release them. If you want to keep swapped-out
views, you should retain them. Similarly, when you replace a window’s or
box’s content view, the old view is released and the new view is retained.

= To avoid retain cycles, objects should not retain their delegates. Objects
also should not retain their outlets, since they do not own them.

