To Do Tutorial - The Basics

¥ Inspector Views

=l

L

June 1996

>

Sun Mon Tues Wed Thu Fn Sat
1
2 3 4 = G 7 T
9 10 11 12 13 14 15
16 17 15 149 20 21 2e
23 24 25 2E 27 28 29
30

[Task Complete

v Don't reschedule
[hext day

[Inone week

[" In one manth

[C On specific date:

I mmdddy

Chapter 4

Edit J ... Cirl+0
Inzpector... Ctrl+l Ctrl+5
Wind oy » Cirl+'H
SRMYICES » Cirl+ 0

Help 3
Time:| | & am o opw

When to notify ——
¥ Do not notify
[C 15 minutes before
™ 1 hour befare
[1 day before

—— When to reschedule ——

Inspector x|
Date: Fri, May 31 1996

Item: |unch with Senator F.

MHotification = |

Time:|12 a0 O AM SRR

When to notify ——
¥ Do not notify
[" 15 minutes hefore
[1 hour hefare
[" 1 day before

[Cther; I_ hours

118

What You'll Learn

Designing a multi-document
application

Managing documents

Extending an Application Kit class

Loading code and resources
dynamically

Opening and saving files

Manipulating times and dates

Reading and setting user defaults

The core program framework

O MyLisiid — - iraiem E
- e 1997 []
Hun Mpn Tus Wed Thi Fri 5ol
i e|a|a ElE :||

B] i | B dE] x| W

1B | 1B 7| 1B | 18 20| 21

2| 2% | 24 | 2 | 28| 27 | 2B

28 | an

StaheTase To Do on Tise . e 5 1587
10D A |||:-:m-:mﬁ|r-;

i2:0FM |[wanchesh SanamrF
= -z |||:l|||:l|||? [T
I
I
I

You can find the To Do project in the AppKit subdiirectory of /NextDeveloper/Examples.

Chapter 4
A Multi-Document Application

Many kinds of applications—aword processors and spreadsheets, to name a couple—
are designed with the notion of a document iz mind. A document is a body of
information, usually contained by a window, that is self-contained and repeatable.
Users can create, modify, store, and access a document as a discrete unit. Multi-
document applications (as these programs are called) can generate an almost unlimited

number of documents.

The 1o Do application presented in this chapter is a multi-document application. It is
a fairly simple personal information manager. F.ach 1o Do document captures the
daily “must-do’ items for a particular purpose. For instance, one could have a 1o Do

list for work and another one for home.

TVs chapter guides you through the steps needed to make 1o Do a multi-document
application. When you finish this tutorial, the completed application will allow users to
g0 1o specific dates on a calendar and enter a list appointments or tasks for a particular

aays.

119

Chapter 4

A Multi-Document Application

The Design of To Do

The To Do application vaults past Travel Advisor in terms of complexity.
Instead of Travel Advisor’s one nib file, To Do has three nib files. Instead of
three custom classes, To Do has seven. The diagram at the bottom of this
page shows the interrelationships among instances of some of those
classes and the nib files that they load.

Some of the objects in this diagram are familiar, fitting as they do into the
Model-View-Controller paradigm. The ToDoltem class provides the model
objects for the application; instances of this class encapsulate the data
associated with the items appearing in documents. They also offer
functions for computing subsets of that data. And then there’s the
controller object—actually, there is more than one controller object.

To Do’s Multi-Document Design

Two types of controller objects are at the heart of multi-document
application design. They claim different areas of responsibility within an
application. ToDoController is the application controller, it manages events
that affect the application as a whole. Each ToDoDoc object is a document
controller, and manages a single document, including all the ToDoltems
that belong to the document. Naturally, it's essential that the application
controller be able to communicate with its (potentially) numerous
document controllers, and they with it.

The ToDolnspector instance in this diagram
takes on some of the work that the application
controller, ToDoController, could do. By :
breaking down a problem domain into distinct -
areas of responsibility, and assigning certain —
types of objects to each area, you increase the EiE
modularity and reusability of the object, and
make maintenance and troubleshooting
easier. See “Object-Oriented Programming”
in the appendix for more on this.

ToDolnspector
(Controller)

ToDolnspector.nib

The File menu, which Interface Builder includes by default on the menu bar,
contains the commands that multi-document applications typically need.
When users choose New from the File menu, the application controller
allocates and initializes an instance of the ToDoDoc class. When the
ToDoDoc instance initializes itself, it loads the ToDoDoc.nib file. When the
user has finished entering items into the document and chooses Save from
the File menu, a Save dialog box appears and the user saves the document
in the file system under an assigned name. Later, the user can open the
document using the Open menu command, which causes the Open dialog
box to be displayed.

The controller objects of To Do respond to a variety of delegation messages
sent when certain events occur—primarily from windows and the
application object (NSApp)—in order to save and store object state. One
example of such an event is when the user closes a document window;
another is when data is entered into a document. Often when these events
happen, one controller sends a message or notification to the other
controller to keep it informed.

ToDoDoc.nib

Loads

— Creates/Manages

ToDoController
(Controller)

ToDoDoc
(Controller)

ToDoltem
(Model)

ToDo.nib
(menu template)

How To Do Stores and Accesses its Data
NSMutableDictionary

The data elements of a To Do document (ToDoDac) are ToDoltems. When a
user enters an item in a document’s list, the ToDoDac creates a ToDoltem Key 15 Nov 1995 16 Nov 1995 17 Nov 1995
and inserts that object into a mutable array (NSMutableArray); the

ToDoltem occupies the same position in the array as the item in the matrix’s
text field. This positional correspondence of objects in the array and items
in the matrix is an essential part of the design. For instance, when users
delete the first entry in the document’s list, the document removes the
corresponding ToDoltem (at index 0) from the array.

ToDoltem ToDoltem ToDoltem

ToDoltem ToDoltem

ToDoltem ToDoltem ToDoltem

Value

ToDoltem

The array of ToDoltems is associated with a particular day. Thus the data
for a document consists of a (mutable) dictionary with arrays of ToDoltems
for values and dates for keys.

ToDoltem

When users select a day in the calendar, the application computes the date,
which it then uses as the key to locate an array of ToDoltems in the

dictionary For further discussion of the architecture of multi-document applications,

See page 143.
To Do’s Custom Views
The discussion so far has touched on model objects and controller objects,
but has said nothing about the second member of the Model-View-
Controller triad: view objects. Unlike Travel Advisor, which uses only “off-
the-shelf” views, To Do’s final interface features objects from three custom
Application Kit subclasses. (You'll create only CalendarMatrix in this
chapter.)
P e =
- Juew 1987 |
Ean blon Tew ®ad Twy P Ead
H 3 L] H [T
] L] L1 1 I [+] La
CalendarMatrix (SUDCIASS Of e | | o | e | | oee |
NSMatrix): A dynamic calenaar = Y P e e T
that notifies its delegate about 2% [
Selected dates. :
irusThe TeDo on Tue Jure 83 597
e [frawn wesy / SelectionNotif\iatrix (subclass of
- || i T T o s - -
ToDoCell (sublass of __JII___ e E / NSMatrix): NOltIfIE? obserwqg objects
. ! n |[painn v when a selection in a text field occurs.
NSButtonCell): A tri-state I
control with different images for I
each state. It also displays the I
times when items are due. I

Chapter 4 A Multi-Document Application

Setting Up the To Do Project

Create the application project. Create the To Do project almost in the same way you created the Travel Advisor
application. There are a few differences; each, of course, has a different name and

Start Project Builder.
) icon. But the most important difference is that "To Do has its own document type.

Choose New from the Project menu.

Set the project type to Application. O === ToDo - Project Inspector =———
Name the application “ToDo.” Project +
Click OK. ProjectMame: [ToDo
Language: | English
Add the application icon Application Class: | ME&pplication
I the Proiect Attibutes disolay of COPENSTEP for Mach B You Zan hafve g/iffer;nt i:;ons anz ot//77er proljj'ect y
ttribut /{ Mach (R
ot inkpectar, g the appcation || ¥ 98P [T Qs
icon (ToDo.iff) into the icon well. Help File:
Confirm that you want the image L ication lcon:
added to the project. pRication Teon y
[ToDotif
(Tr}il |c0r[1) is Iolcate(i én the IoD/oApro}igct Document Icons: \
in /NextDeveloper/Examples/AppKit) Extension |Ilcon Hame I— Instead of dragging the image file into the well, you can
add the image file to the project and then just type the
name of the file here.
Remove |
Specify the To Do document type.] = ToDo - Project Inspector ——
Click Add. Project L
Double-click the new cell under the Project Narme: | ToDo
Extension column. Language: [English
Type the extension of To Do documents: Application Class: [NSapplication
“td”. [B Document types specify the kinds of files the
. .) OPENSTEP for Mach hd application can open and “understand.” Documents
Drag into the icon well the file Main NIE File: [ToDo.nib appear in the desktop with the assigned icon. Double-
/C’\?éi?gz\:-;:g;é?/“;;g;;‘igg/ﬂgg E(i:tt in Help File: clicking the icon apens the document.
' |
Application lzon: I As with the application icon, when you drag the
[ToDo i document icon into the image well (with the document
Document lcons: row selected in Document Icons), the image file is
. added to the project.
Extension |lcon Hame |— pro
o calendartiff Before Project Builder accepts the document icon, you
add must assign the extension (if the type is new) and
select the row.
Remove | i
If the document type is well-known (for example, “.c”)

Just drag a document of that type into the well.

122

Creating the Model Class (ToDoltem)

Creating the Model Class (ToDoltem)

The ToDoltem class provides the model objects for the To Do application.
Its instance variables hold the data that defines tasks that should be done or
appointments that have to be kept. Its methods allow access to this data. In
addition, it provides functions that perform helpful calculations with that
data. ToDoltem thus encapsulates both data and behavior that goes beyond
accessing data.

Since ToDoltem is a model class, it has no user-interface duties and so the
expedient course is to create the class without using Interface Builder. We
first add the class to the project; Project Builder helps out by generating
template source-code files.

1 Add the ToDoltem class to the

project.
)) New File

Select Classes in the project browser. ad In ToDo
Choose New In Project from the File =
e S000
In the New File In ToDo panel, type Other Supporting
“ToDoltem” in the Name field. Class Healfl saurce Fie Help
Make sure the “Create header” switch MName: [ToDalten|
is checked. M Create header
Click the OK button.

Setting Up the Programmatic Interface

As you’ve done before with "Travel Advisor, start by declaring instance
variables and methods in the header file, ToDoltem.h.

2 Declare ToDoltem’s instance

: nt erface ToDol t em NSObj ect <NSCodi ng, NSCopyi ng>
variables and methods. @ | g pyi ng

{

Type the instance variables as shown NSCal endar Dat e *day;
atright. NSString *itenNane;

NSString *notes;

NSTi mer *itenii ner;

| ong secsUnti | Due;

| ong secsUntil Noti f;

ToDol t enSt at us i t enBt at us;

Indicate the protocols adopted by this
class.

You are adopting the NSCopying protocol in addition to the NSCoding
protocol because you are going to implement a method that makes
“snapshot” copies of ToDoltem instances.

123

Chapter 4

A Multi-Document Application

Type the method declarations shown at
right.

124

Instance Variable What it Holds

day The day (a date resolved to 12:00 AM) of the to-do item

itemName The name of the to-do item (the content’s of a document text field)

notes The contents of the inspector’s Notes display; this could be any information
related to the to-do item, such as an agenda to discuss at a meeting

itemTimer A timer for notification messages

secsUntilDue

The seconds after day at which the item comes due

secsUntilNotif

The seconds after day at which a notification is sent (before secsUntilDue)

itemStatus

Either “incomplete,” “complete,” or “deferToNextDay”

(id)initWthNanme: (NSString *)nane andDat e: (NSCal endar Dat e *) dat e;

- (void)deall oc;

- (BOQL)i sEqual : (i d)anObj ect ;

- (id)copyWthzZone: (NSZone *)zone;

- (id)initWthCoder: (NSCoder *)coder;

- (voi d) encodeW t hCoder : (NSCoder *)coder;
- (voi d)set Day: (NSCal endar Dat e *) newDay;
- (NSCal endar Dat e *) day;

- (void)setltemNanme: (NSString *)newNane;
- (NSstring *)itenNane;

- (void)setNotes: (NSString *)notes;

- (NSString *)notes;

- (void)setltenimer: (NSTi mer *)aTi ner;
- (NSTimer *)itenimer;
- (void)set Secsuntil Due: (| ong) secs;

- (long)secsunti | Due;

- (void)setSecsUntil Notif:(long)secs;

- (long)secsUntil Notif;

- (void)setltenttatus: (ToDoltenSt at us) newst at us;
- (ToDol t entst at us) i t enfst at us;

Creating the Model Class (ToDoltem)

3 Define enum constants for use in
ToDoltem’s methods.

Define these constants before the
@interface directive.

4 Declare two time-conversion
functions.

typedef enum ToDol t enSt at us {
i nconpl et e=0,
conpl et e,
def er ToNext Day

} ToDol t enfst at us;

enum {
m nl nSecs = 60,
hrlnSecs = (m nlnSecs * 60),
dayl nSecs = (hrlnSecs * 24),
weekl nSecs = (dayl nSecs * 7)

b

The first set of constants are values for the itemStatus instance variable. The
second set of constants are for convenience and clarity in the methods that
deal with temporal values.

BOOL Convert SecondsToTi me(l ong secs, int *hour, int *mnute);
| ong Convert Ti meToSeconds(int hr, int mn, BOOL flag);

These functions provide computational services to clients of this class,
converting time in seconds to hours and minutes (as required by the user
interface), and back again to seconds (as stored by ToDoltem).

Before You Go On

Remember, build the project frequently to catch any errors quickly, to get a
sense of how the application is developing, and (just as important) to give
yourself a break from coding.

125

Chapter 4

A Multi-Document Application

Implement accessor methods.

Open ToDoltem.m in the code editor.

Implement methods that get and set
the values of ToDoltem’s instance
variables.

Implement the setltemTimer: method
as shown at right.

Specifying Basic Object Behavior
Most of the method declarations of this class are for accessor methods. You know
from past experience what you must do to implement them.

- (void)setlteniinmer: (NSTi mer *)aTi mer

{
if (iteniliner) {
[itenTi mer invalidate];
[itenTi mer autorel ease];
}
itenTi mer = [aTimer retain];
}

"The setltemTimer: method is slightly different from the other “set” accessor
methods. It sends invalidate to itemTimer to disable the timer before it autoreleases
it.

Timers (instances of NSTimer) are always associated with a run loop (an instance of
NSRunLoop). See “Tick Tock Brrrring: Run Loops and Timers” on page 202 for more on
timers and run loops.

In this application, you want client objects to be able to copy your ToDoltem
objects and test them for equality. You must define this behavior yourself.

Starting Up — What Happens in NSApplicationMain()

Every OpenStep application project created through Project Builder has the NSApplication, which is stored in the global variable, NSApp. Creating
same main() function (in the file ApplicationNarme_main.m). When users the NSApplication object connects the application to the window system

double-click an application or document icon in the File Manager or
Explorer, main() (the entry point) is called first; main(), in turn, calls

and the Display PostScript server, and initializes its PostScript

NSApplicationMain()—and that’s all it does. environment.

The NSApplicationMain() function does what’s necessary to get an 3 Loads the main nib file, specifying NSApp as the owner. Loading
OpenStep application up and running—responding to events, coordinating unarchives and re-creates application objects and restores the
the activity of its objects, and so on. The function starts the network of connections between objects.

objects in the application sending messages to each other. Specifically,

NSApplicationMain():

4 Runs the application by starting the main event loop. Each time through

1 Gets the application’s attributes, which are stored in the application the loop, the application object gets the next available event and
wrapper as a property list. From this property list, dispatches it to the most appropriate object in the application. The loop
it gets the names of the main nib file and the principal class (for continues until the application object receives a stop: or terminate:

applications, this is NSApplication or a custom subclass of

NSApplication).

message, after which the application is released and the program exits.

2 Gets the Class object for NSApplication and invokes its You can add your own code to main() to customize application start-up or
sharedApplication class method, creating an instance of termination behavior.

126

Creating the Model Class (ToDoltem)

2 Implement copying and comparing (BOOL) i sEqual : (i d) anChj

object behavior. {
Implement the isEqual: method. L
[itemNane i sEqual ToString: [anCbj itemNane]] &&
[day i sEqual ToDat e: [anCoj day]])
return YES;
el se
return NG
}

The default implementation of isEqual: (in NSObject) is based on pointer
equality. However, ToDoltem has a different basis for equality; any two
"ToDoltem objects for the same calendar day and having the same item name
are considered equal. The implementation of isEqual: overrides NSObject to
make these tests. (Note thatit invokes NSString’s and NSDate’s own isEqual...
methods for the specific tests.)

Before You Go On

There is a specific as well as a general need for the isEqual: override. In the
"To Do application, an NSArray contains a day’s ToDoltems. To access
them, other objects in the application invoke several NSArray methods that,
in turn, invoke the isEqual: method of each object in the array.

Implement the copyWithZone: 2 (il d) oy t hzone: (NSzone =) zone

method. (
ToDol t em *newobj = [[ToDoltem al | ocWt hZone: zone]
initWthNane:itemName andDat e: day] ;
[newobj set Not es: not es] ;
[newobj setltenttatus:itenftatus];
[newobj set SecsUntil Due: secsUnti | Due] ;
[newobj set SecsUntil Notif:secsUntil Notif];
return newobj ;
}

"This implementation of the copyWithZone: protocol method makes a copy of a
ToDoltem instance that is an independent replicate of the original (self). It
does this by allocating a new ToDoltem and initializing it with instance
variables held by self. Copying is often implemented for va/ue objects—
objects that represent attributes such as numbers, dates, and to-do items.

Copies of objects can be either deep or shallow. In deep copies (like ToDoltem’s) every
copied instance variable is an independent replicate, including the values referenced by
pointers. In shallow copies, pointers are copied but the referenced objects are the same.
For more on this topic, see the description of the NSCopying protocol in the Foundation
reference documentation.

3 Havethe object describe itself during

4

5

Chapter 4

A Multi-Document Application

debugging.

Implement the description method.

Implement ToDoltem’s initialization
and deallocation methods.

Implement ToDoltem'’s archiving and
unarchiving methods.

128

The next method you’ll implement—description—assists you and other
developers in debugging the To Do application with gdb. When you enter the po
(print object) command in gdb with a ToDoltem as the argument, this description
method 1s invoked and essential debugging information is printed.

- (NSString *)description

{
NSString *desc = [NSString stringWthFormat: @ % n\t Nane:
Y@n\tDate: %@n\tNotes: %@n\tConpleted: %@n\tSecs Until Due:
%I\ n\t Secs Until Notif: %",
[super descri ption],
[sel f itemNane],
[sel f day],
[sel f notes],
(([sel f itenftatus]==conplete)?@ Yes": @No"),
[sel f secsUntil Due],
[sel f secsUntilNotif]];
return (desc);
}

Here are some things to remember as you implement initWithName:andDate: and
dealloc:

e [f the first argument of initWithName:andDate: (the item name) is not a valid
string, return nil. If the second argument (the date) is nil, set the related
instance variable to some reasonable value (such as today’s date). Also, be sure
to invoke super’s init method.

¢ The instance variables to initialize are day, itemName, notes, and itemStatus (to
“incomplete”).

¢ In dealloc, release those object instance variables initialized in
initWithName:andDate: plus any object instance variables that were initialized
later. Also invalidate any timer before you release it.

When you implement encodeWithCoder: and initWithCoder:, keep the following in
mind:

¢ Encode and decode instance variables in the same order.
¢ Copy the object instance variables after you decode them.

¢ You don’t need to archive the itemTimer instance variable since timers are re-
set when a document is opened.

Creating the Model Class (ToDoltem)

The final step in creating the ToDoltem class is to implement the functions that

furnish “value-added” behavior.

Implement ToDoltem’s time-

- h | ong Convert Ti neToSeconds(int hr, int mn, BOOL flag)
conversion functions.

{
if (flag) { /* PM*/
if (hr > 1 & hr < 12)
hr += 12;
} else {
if (hr == 12)
hr = 0;
}
return ((hr * hrinSecs) + (mn * mnlnSecs));

}

BOOL Convert SecondsToTi ne(l ong secs, int *hour, int *mnute)
{

int hr=0;

BOOL pm=NO,

if (secs) {
hr = secs / hrlnSecs;
if (hr > 12) {
*hour = (hr -= 12);
pm = YES;
} else {
pm = NO
if (hr == 0)
hr = 12;
*hour = hr;
}
*mnute = ((secs%rlnSecs) / mnlnSecs);

}

return pm

© This expression, as well as others in these two methods, uses the enum

constants for time-values-as seconds that you defined earlier.

© The ConvertSecondsToTime() function uses indirection as a means for returning

multiple values and directly returns a Boolean to indicate AM or PM.

Breaktime!

"Take a break from coding and build the project as it now stands. Go get a coffee,
soda, or other beverage while the project is building. When you return, fix any
errors that have insinuated themselves into the code. You can stop and build at
anytime— a good thing to do because it will help you locate mistakes more easily.

129

Chapter 4

A Multi-Document Application

130

Only When Needed: Dynamically Loading Resources and Code

As any developer knows well, performance is a key consideration in program
design. One factor is the timing of resource allocation. If an application
loads all code and resources that it might use when it starts up, it will
probably be a sluggish, bloated application—and one that takes awhile to
launch.

You can strategically store the resources of an application (including user-
interface objects) in several nib files. You can also put code that might be
used among one or more loadable bundles. When the application needs a
resource or piece of code, it loads the nib file or loadable bundle that
contains it. This technique of deferred allocation benefits an application
greatly. By conserving memory, it improves program efficiency. It also
speeds up the time it takes to launch the application.

Auxiliary Nib Files

When more sophisticated applications start up, they load only a minimum
of resources in the main nib file—the application’s menus and perhaps a
window. They display other windows (and load other nib files) only when
users request it or when conditions warrant it.

Nib files other than an application’s main nib file are sometimes called
auxiliary nib files. There are two general types of auxiliary nib files: special-
use and document.

Special-use nib files contain objects (and other resources)

that might be used in the normal operation of the application. Examples of
special-use nib files are those containing inspector panels and Info (or
About) panels.

Document nib files contain objects that represent some repeatable entity,
such as a word-processor document. A document nib file is a template for
documents: it contains the Ul objects and other resources needed to make
a document.

The Owner of an Auxiliary Nib File

The object that loads a nib file is usually the object that owns

it. A nib file’s owner must be external to the file. Objects unarchived from
the nib file communicate with other objects in the application only through
the owner.

In Interface Builder, the File’s Owner icon represents this external object.
The File’s Owner is typically the application controller for special-use nib
files, and the document controller for document nib files. The File’s Owner
object is not really appearing twice; it's created in your application and
referenced in your nib file.

The File’s Owner object dynamically loads a nib file and makes itself the
owner of that file by sending loadNibNamed:owner: to NSBundle,
specifying self as the second argument.

NSBundle and Bundles

Abundle is a location in the file system (a folder) that stores code and the
resources that go with that code, including images and archived objects. A
bundle is also identified as an instance of NSBundle; this object makes the
contents of the bundle available to other objects that request it.

The generic notion of bundles is pervasive throughout OpenStep.
Applications are bundles, as are frameworks and palettes. Every
application has at least one bundle—its main bundle—uwhich is the
“.app” directory (or application wrapper) where its executable file is
located. This file is loaded into memory when the application is launched.

Loadable Bundles

You can organize an application into any number of other bundles in
addition to the main bundle and the bundles of linked-in frameworks.
Although these loadable bundles usually reside inside the application
wrapper, they can be anywhere in the file system. Project Builder allows you
to build Loadable Bundle projects.

Loadable bundles differ from nib files in that they don’t require you to use
Interface Builder to build them. Instead of containing mostly archived
objects, they usually contain mostly code. Loadable bundles are especially
useful for incorporating extra behavior into an application upon demand.
An economic-forecast application, for example, might load a bundle
containing the code defining an economic model, but only when users
request that model. You could also use loadable bundles to integrate “plug
and play” components into an existing framework.

Loadable bundles usually have an extension of “.bundle” (although that’s
a convention, not a requirement). Each loadable bundle must have a
principal class that mediates between bundle objects and external objects.

Making Plants.bundle

N /7

v Light
Heaven
Earth

Flants .
Animals
Humans

Extending an Application Kit Class: An Example

Extending an Application Kit Class: An Example

T'he calendar on "To Do’s interface is an instance of a custom subclass of
NSMatrix. CalendarMatrix dynamically updates itself as users select new
months, notifies a delegate when users select a day, and reflects the current
day (today) and the current selection by setting button-cell attributes.

« June 1997 >
Sun Mon Tue ‘Wed Thu Fri Sat

1 =4 3 4 g B 7

g 9 10 11 1z 13 14

15 16 17 18 19 | 20 | 21

ce | 23 | 24 | 25 | 26 | 2F | 28

29 30

Creating a subclass of a class that is farther down the inheritance tree poses
more of a challenge for a developer than a simple subclass of NSObject. A
class such as NSMatrix is more specialized than NSObject and carries with it
more baggage: It inherits from NSResponder, NSView, and NSControl, all
fairly complex Application Kit classes. And since CalendarMatrix inherits
from NSView, it appears on the user interface; it is an example of a view object
in the Model-View-Controller paradigm, and as such it is highly reusable.

Why NSMatrix as Superclass?

When you select a specialized superclass as the basis for your subclass, it~ NSMatrix is a class used for creating groups of NSCells that work together

is important to consider what your requirements are and to understand in various ways. It includes methods for arranging NSCells in rows and

what the superclass has to offer. To Do’s dynamic calendar should: columns.... An NSMatrix adds to NSControl's target/action paradigm by
allowing a separate target and action for each of its NSCells in adadlition to

= Arrange numbers (days) sequentially in rows and columns. its own target and action.

- gl AT GG SHEIae 6 e So NSMatrix has an inherent capability for the first of the requirements

« Understand dates. listed above, and part of the second (responding to selections). Our

o CalendarMatrix subclass thus does not need to alter anything in its
= Enable navigation between months. superclass. It just needs to supplement NSMatrix with additional data and
If you then started to peruse the reference documentation on Application kit~ Pehavior so it can understand dates (and update itself appropriately),
classes, and looked at the section on NSMatrix, you'd read this: navigate between months, and notify a delegate that a selection was made.

131

Chapter 4 A Multi-Document Application

Composing the Interface

Define the CalendarMatrix class in =] = B ToDoDoc.nib — ..jects/ToDo/Englishproj = H15
Interface Builder. f Instances Y Classes Y Sounds Y Images \,
From Project Builder, apen ToDo.nib. o MsResponder '
MSApplication 2@ 12
In Interface Builder, choose File® New w NSYiew @ 29 | |
Module » New Empty to create a new NEBox R 29 |
nib file o WS Control 2@ &g (=
MSBrowser @ ¢ |
Save the nib file as ToDoDoc.nib. J MSButtan @ 7o
. MSCalarwell 2@ T
Reqund_ Yes when asked if you want NSImageiew @ 6o
the nib file added to the project. o NSMatrix e Locate NSMatrix several levels down in the class
In the Classes display of the nib file o enaarat e hierarchy.
window, select NSMatrix.]
Choose Subclass from the Classes
menu. [=] = B ToDoDoc.nibh — ..jects/ToDo/English.iproj = F185
Name the new class “CalendarMatrix”. f Instances Y Classes Y Sounds \(Images \
FIRESEGE T B @ [|
Select the new class. v CalendarMatrix E@ 10
Clutiets i "

; ; Outlets and actions already defined by the superclass
fuld the oufets e_md actions shown in fenButon u (or by its superclasses) a year in raytext AZd the
the example at right. monthMare ﬂ IJ’ dp > op b/ I!(] y text.

fightBution outlets and actions shown in black text.
delegate
menu
nextkey View
Actions
choseDay: = |
manthChanged: Ed

When you created subclasses of NSObject in the previous two tutorids, the next step wasto
instantiate the subclass. Because CalendarMatrix isaview (that is, it inheritsfrom NSView), the
procedure for generating an instance for making connectionsis different.

132

Extending an Application Kit Class: An Example

2 Puta custom NSView object O To Do or
(CalendarMatrix) on the user The CustomView object is a “proxy” object that
interface. / represents any custom NSView on the interface.
- L] -
Drzligtta window from the Windows = Assign a class to the CustomView by selecting a class
palette. listed here. Custom classes must be defined in the nib.
Resize the window, using the example file.
at right as a guide. . .
Turn off the window’s resize bar. L] E5= Custom View Inspector == H]
- -
Drag a CustomView from the Views
palette onto the window.
Resize and position the CustomView, . . . F
using the example at right as a guide. CaE oA
. . NSE
In the Attributes display of the Meput!
inspector, select CalendarMatrix from NSCStringTexd
the list of available classes. M Coloryel <
NS ComhoBox =
NS Contral
MNSForm
M3ImageView
IS M atrix
MEOutlineView
M3PopUpButton
M3Progressindicator
MNSRulerfiew
MEScrollView
MEScroller
MNESecureTextField
NS Slider =
NS Splityiew =

The selection of the class for the CustomView creates an instance of it that
you can connect to other objects in the nib file. Now put the controls and
fields associated with CalendarMatrix on the window.

133

Chapter 4

A Multi-Document Application

Put the objects related to
CalendarMatrix on the window.

Drag a label object for the month-year
from the Views palette and put it over
the CalendarMatrix.

Make a small label for each day of the
week.

Drag a button onto the interface and
set its attributes to unbordered and
image only.

Drag left_arrow.tiff from
/NextDeveloper
/Examples/AppKit/ToDo and drop it
over the button.

To the attention panel that asks “Insert

image left_arrow in project?” click Yes.

Repeat the same button procedure for
right_arrow.tiff.

Connect CalendarMatrix to its outlet
and to the controls sending action
messages.

Finish up in Interface Builder.

Save ToDoDoc.nib.

Select CalendarMatrix and in the
Classes display and choose Create
Files from the Operations pull-down
menu.

Confirm that you want the source-code
files added to the project.

134

IE===———Tono 2114

>

d Thu Fri Sat]—\

«

Sun Maon Tue

This empty label will display the month and year.
Initialize it by typing “September 9999” (the longest
possible string). Set the text to Helvetica 18 points,
\center it, and then delete the text.

Type the days of the week as individual labels, arrange
them as a row, and then center the labels over the

columns of days. (This latter task could take some trial
and error,)

\ To have the button surround the image as tightly as
possible, select the button and choose
Format ® Size ™ Size To Fit.

Next connect CalendarMatrix to its satellite objects.

Name Connection Type

monthName From CalendarMatrix to the label field above it outlet
leftButton From CalendarMatrix to the left-pointing arrow outlet
rightButton From CalendarMatrix to the right-pointing arrow outlet
monthChanged: From both arrows to CalendarMatrix action

You might have noticed that there’s an action message left unconnected:
choseDay:. Because it is impossible in Interface Builder to connect an object with
itself, you will make this connection programmatically.

Extending an Application Kit Class: An Example

6

Add declarations to the header file @nterface Cal endarMatrix : NSMatrix
CalendarMatrix.h. {
I ...
(Existing declarations are indicated by NSCal endar Dat e *sel ect edDay:
ellipsis.) short startOff set; ﬂ
}
[* ... %

(voi d) ref reshCal endar;

- (id)initWthFrame: (NSRect) franmeRect ;

(voi d) deal | oc;

- (voi d)set Sel ect edDay: (NSCal endar Dat e *) newDay;
- (NSCal endar Dat e *) sel ect edDay;

@nd

@nt erface NSObj ect (Cal endar Mat ri xDel egat e) @
- (void)cal endar Matri x: (Cal endar Matri x *)obj ect
di dChangeToDat e: (NSDat e *) dat e;
- (void)cal endar Matri x: (Cal endar Matri x *)obj ect
di dChangeToMnt h: (i nt) month year: (i nt)year;
@nd

There are a couple of interesting things to note about these declarations:

© The cells in CalendarMatrix are sequentially ordered by tag number, left
to right, going downward. startOffset marks the cell (by its tag) on which
the first day of the month falls.

© CalendarMatrixDelegate is a category on NSObject that declares the
methods to be implemented by the delegate. This technique creates what
is called an informal protocol, which is commonly used for delegation
methods.

135

Chapter 4 A Multi-Document Application
Defining the New Behavior
Implement CalendarMatrix’s - (id)initWthFrame: (NSRect) franmeRect

initialization methods.
Select CalendarMatrix.min the project
browser.

Write the implementation of
initWithFrame: (at right).

Implement dealloc.

136

{
int i, j, cnt=0;
idcell = [[NSButtonCell alloc] initTextCell:@"];
NSCal endar Dat e *now = [NSCal endar Dat e dat €] ; @
[super initWthFrane:franeRect @
node: NSRadi oMbdeMat ri x
pr ot ot ype: cel |
nunmber O Rows: 6
nurber & Col umms: 7] ;

Il set cell tags 0
for (i=0; i<6; i++) {

for (j=0; j<7; j++) {

[[self cell AtRow. i colum:j] setTag: cnt++];

}
}
[cell rel ease];
sel ect edDay = [[NSCal endar Dat e dat eWt hYear: [now year Of ConmonEr a]

nont h: [now nont hCf Year]

day: [now dayOf Mont h]
hour: 0 m nute: 0 second: 0
ti meZone: [NSTi neZone | ocal Ti neZone]] copy];
return self;
}

The initWithFrame: method is an initializer of NSMatrix, NSControl and NSView.

@ This invocation of date, a class method declared by NSDate, returns the
current date (“today”) as an NSCalendarDate. (NSCalendarDate is a subclass
of NSDate.)

© This message to super (NSMatrix) sets the physical and cell dimensions of the
matrix, identifies the type of cell using a prototype (an NSButtonCell), and
specifies the general behavior of the matrix: radio mode, which means that
only one button can be selected at any time.

© Set the tag number of each cell sequentially left to right and down. Tags are
the mechanism by which CalendarMatrix sets and retrieves the day numbers
of cells.

© This NSCalendarDate class method initializes the selectedDay instance
variable to midnight of the current day, using the year, month, and day
elements of the current date. The localTimeZone message obtains an
NSTimeZone object with a suitable offset from Greenwich Mean Time.

Extending an Application Kit Class: An Example

Implement awakeFromNib as shown - (voi d) awakeFrom\i b

at right. {
[mont hName set Al i gnnment : NSCent er Text Al i gnrent] ;
[sel f setTarget:self];
[sel f setAction: @el ector(choseDay:)];
[sel f set Aut osi zesCel | s: YES] ;
[sel f refreshCal endar];
}

"The awakeFromNib method performs additional initializations (some of which
could just have easily been done in initWithFrame:). Most importantly, it sets self

as its own target object and specifies an action method for this target,
choseDay:, something that couldn’t be done in Interface Builder. Other

methods to note:

o setAutosizesCells: causes the matrix to resize its cells on every redraw.
e refreshCalendar (which you’ll write next) updates the calendar.

"The refreshCalendar method is fairly long and complex—it is the workhorse of

the class—so you’ll approach it in sections.

Dates and Times in OpenStep

In OpenStep you represent dates and times as objects that inherit from
NSDate. The major advantage of dates and times as objects is common to
all objects that represent basic values: they yield functionality that,
although commonly found in most operating systems, is not tied to the
internals of any particular operating-system.

NSDates hold dates and times as values of type NSTimelnterval and express
these values as seconds. The NSTimelnterval type makes possible a wide
and fine-grained range of date and time values, giving accuracy within
milliseconds for dates 10,000 years apart.

NSDate and its subclasses compute time as seconds relative to an absolute
reference date (the first instant of January 1, 2001). NSDate converts all
date and time representations to and from NSTimelnterval values that are
relative to this reference date.

NSDate provides methods for obtaining NSDate objects (including date,
which returns the current date and time as an NSDate), for comparing
dates, for computing relative time values, and for representing dates as
strings.

The NSCalendarDate class, which inherits from NSDate, generates objects
that represent dates conforming to western calendrical systems.
NSCalendarDate objects also adjust the representations of dates to reflect
their associated time zones. Because of this, you can track an
NSCalendarDate object across different time zones. You can also present
date information from time-zone viewpoints other than the one for the
current locale.

Each NSCalendarDate object also has a calendar format string bound to it.
This format string contains date-conversion specifiers that are very similar
to those used in the standard C library function strftime(). NSCalendarDate
can interpret user-entered dates that conform to this format string.

NSCalendarDate has methods for creating NSCalendarDate objects from
formatted strings and from component time values (such as minutes,
hours, day of week, and year). It also supplements NSDate with methods for
accessing component time values and for representing dates in various
formats, locales, and time zones.

137

Chapter 4

A Multi-Document Application

Implement the code that updates the
calendar.

Initialize the MonthDays|[] array and
write the isLeap() macro.

Determine the day of the week at the
start of the month and the number of
days in the month.

138

static short MonthDays[] =

{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

#define isLeap(year) (((((year) %4) == 0 & & (((year) % 100) != 0))

{

Il ((year) % 400) == 0))

(voi d) refreshCal endar

NSCal endarDate *firstOfMonth, *sel Date = [sel f sel ect edDay],
*now = [NSCal endar Dat e date];

int i, j, currentMnth = [sel Date nont hOf Year] ;

unsigned int current Year = [sel Date year O CormonEr a] ;

short daysl nMont h;

idcell;

firstOf Month = [NSCal endar Dat e dat eWt hYear: current Year @
nont h: current Mont h
day: 1 hour:0 minute: 0 second: 0
ti meZone: [NSTi neZone | ocal Ti meZone] | ;

[mont hNanme set StringVal ue: [first Of Month @
descri pti onWt hCal endar Format: @98 %™]];
daysl nMont h = Mont hDays[cur r ent Mont h- 1] +1; 0

/* correct Feb for |eap year */
if ((currentMonth == 2) && (isLeap(currentYear))) daysl nMont h++;
start O fset = [firstO Month dayO Week] ;

Before it can start writing day numbers to the calendar for a given month,
CalendarMatrix must know what cell to start with and how many cells to fill with
numbers. The refreshCalendar method begins by calculating these values.

© Creates an NSCalendarDate for the first day of the currently selected month

and year (computed from the selectedDay instance variable).

© Writes the month and year (for example, “February 1997”) to the label above

the calendar.

© Gets from the MonthDays static array the number of days for that month; if the

month is February and it is a leap year, this number is adjusted.

© Gets the day of the week for the first day of the month and stores this in the

startOffset instance variable.

Extending an Application Kit Class: An Example

Write the refreshCalendar code that for (i=0; i<startOffset; i++) {
writes day nl_meers to the cells and cell = [self cellWthTag:i]:
sets cell attributes. [cel| setBordered: N ;
[cel | setEnabl ed: NJ ;
[cell setTitle:@"];
[cell setCellAttribute: NSCel | Hi ghlighted to: NJ ;

}
for (j=1; j < dayslnMnth; i++, j++) {
cell =[self cell WthTag:i];
[cel | setBordered: YES];
[cel | set Enabl ed: YES];
[cell setFont:[NSFont systenfont OfSize: 12]];
[cell setTitle:[NSString stringWthFormat: @ %", j1];
[cell setCell Attribute: NSCel | Hi ghlighted to: NJ ;
}
for (;i<42;i++) {
cell =[self cellWthTag:i];
[cell setBordered: NJO ;
[cel | setEnabl ed: NJ ;
[cell setTitle:@"];
[cell setCellAttribute: NSCel | Hi ghlighted to: NJ ;
}

"The first and third for-loops in this section of code clear the leading and
trailing cells that aren’t part of the month’s days. Because the current day is
indicated by highlighting, they also turn off the highlighted attribute. The
second for-loop writes the day numbers of the month, starting at startOffset and
continuing until daysinMonth, and resets the font (since the selected day is in
bold face) and other cell attributes.

Complete the refreshCalendar
method implementation by resetting
the “today” cell attribute.

if ((currentYear == [now year O ConmonEr a])
&& (currentMonth == [now nmont hOf Year])) {

[[self cell WthTag: ([now dayCf Mont h] +start Of f set) - 1]
set Cel | Attribute: NSCel | Hi ghl i ghted to: YES];
[[self cell WthTag: ([now dayCf Mont h] +start Of f set) - 1]

set Hi ghl i ght sBy: NSMonent ar yChangeBut t on] ;

"This final section of refreshCalendar determines if the newly selected month
and year are the same as today’s, and if so highlights the cell corresponding to
today.

139

Chapter 4

A Multi-Document Application

Specify the behavior that occurs
when users select a new month.

Implement the monthChanged: action
method.

140

- (voi d) nont hChanged: sender

{
NSCal endar Date *thi sDate = [sel f sel ect edDay] ;
int currentYear = [thisDate year O CormonEr a] ;
unsi gned int current Month = [thisDate nont hCOf Year];
i f (sender == rightButton) { ”
if (currentMnth == 12) {
currentMonth = 1;
current Year ++;
} else {
current Mont h++;
}
} else {
if (currentMonth == 1) {
current Month = 12;
current Year - -;
} else {
current Mont h- - ;
}
} e
[sel f set Sel ect edDay: [NSCal endar Dat e dat eW t hYear : curr ent Year
nont h: current Mont h
day: 1 hour:0 minute: 0 second: 0
ti meZone: [NSTi neZone | ocal Ti neZone]]];
[sel f refreshCal endar];
[[sel f del egate] cal endar Matri x: sel f G
di dChangeToMont h: current Mont h year: current Year] ;
}

The arrow buttons above CalendarMatrix send it the monthChanged: message when
they are clicked. This method causes the calendar to go forward or backward a
month.

© Determines which button is sending the message, then increments or
decrements the month accordingly. If it goes past the end or beginning of the
year, it increments or decrements the year and adjusts the month.

© Resets the selectedDay instance variable with the new month (and perhaps
year) numbers and invokes refreshCalendar to display the new month.

© Sends the calendarMatrix:didChangeToMonth:year: message to its delegate (which
in this application, as you’ll soon see, is a ToDoDoc controller object).

Extending an Application Kit Class: An Example

5

Specify the behavior that occurs
when users select a day on the
calendar.

Implement the choseDay: action
method.

Implement accessor methods for the
selectedDay instance variable.

- (voi d)choseDay: sender

{
NSCal endar Dat e *sel Date, *thisDate = [sel f sel ect edDay];
unsigned int selDay = [[self selectedCell] tag]-startOfset+1; ﬂ
sel Dat e = [NSCal endar Dat e dat eWthYear:[thi sDate year Of CommonEr a] @
nmont h: [t hi sDat e nont hOf Year]
day: sel Day
hour: 0
m nute: 0
second: 0
ti meZone: [NSTi neZone | ocal Ti neZone]] ;
[[self cel| WthTag: [thisDate dayOf Mont h] +start Of f set - 1]
set Font : [NSFont syst enfont Of Si ze: 12]] ;
[[self cell WthTag: sel Day+start O f set-1] set Font:
[NSFont bol dSyst enfont O Si ze: 12]] ;
[sel f set Sel ect edDay: sel Dat €] ; @
[[sel f del egate] cal endar Matri x: sel f di dChangeToDat e: sel Dat €] ;
}

"T'his method is invoked when users click a day of the calendar.

© Gets the tag number of the selected cell and subtracts the offset from it (plus
one to adjust for zero-based indexing) to find the number of the selected day.

© Derives an NSCalendarDate that represents the selected date.

© Scts the font of the previously selected cell to the normal system font
(removing the bold attribute) and puts the number of the currently selected
cell in bold face.

© Sets the selectedDay instance variable to the new date and sends the
calendarMatrix.didChangeToDate: message to the delegate.

You are finished with CalendarMatrix. If you loaded ToDoDoc.nib right now, the
calendar would work, up to a point. If you clicked the arrow buttons,
CalendarMatrix would display the next or previous months. The days of the

month would be properly set out on the window, and the current day would be
highlighted.

But not much else would happen. That’s because CalendarMatrix has not yet
been hooked up to its delegate.

141

Chapter 4 A Multi-Document Application

The Basics of a Multi-Document Application

A multi-document application, as described on page 143, has at least one
application controller and a document controller for each document opened. The
application controller also responds to user commands relating to documents and
either creates, opens, closes, or saves a document.

1 Customize the application's menu.] nextstep Remove all document-related commands from the File
In Interface Builder- | info EY edit windows Services Hide Quit | menu except for the ones shown here.
. Open... %0 The default menu commands between the separators
Open ToDo.nib. ::I:'; 3;: are Page Setup and Print. Delete the former and change
Drag a Submenu item from the Menus Close - the latter to Preferences (unless you plan to implement
palette and drop it between the Info Inspector) the printing of documents.
and Edit menus. The three dots after Inspector and Preferences indlicate
Name the new menu “Document”. Exnit %0 that the commands display modal panels.

Put four generic menu items (“Item”)
in the Document menu and rename

them Open, New, Save, and Close Interface Builder gives each new OpenStep application the following default

menus: Info, Edit, Window, and Services. The Windows menu lists windows of
the application that are open and allows you to bring them to the top window tier.
The Services menu lists other OpenStep applications on a system and allows you
to pass data to, or get data from, those applications.

Put a separator line at the end of the
Document menu.

Create a new menu command after
this separator with a name of
“Inspector”.

o Note: The Preferences command and the About command (in the Info menu) are
Give it this command the key

equivalent of Command-i. disabled because this tutorial does not specifically cover Preferences panels and
About message boxes. But the tutorial does give you enough information so that
you can implement these things on your own.

142

The Basics of a Multi-Document Application

The Structure of Multi-Document Applications

From a user’s perspective, a document is a unique body of information
usually contained by its own window. Users can create an unlimited number
of documents and save each to a file. Common documents are word-
processing documents and spreadsheets.

From a programming perspective, a document comprises the objects and
resources unarchived from an auxiliary nib file and the controller object that
loads and manages these things. This document controller is the owner of
the auxiliary nib file containing the document interface and related
resources.To manage a document, the document controller makes itself the
delegate of its window and its ““content” objects. It tracks edited status,
handles window-close events, and responds to other conditions.

When users choose the New (or equivalent) command, a method is invoked
in the application’s controller object. In this method, the application
controller creates a document-controller object, which loads the document
nib file in the course of initializing itself. A document thus remains
independent of the application’s “core” objects, storing state data in the
document controller. If the application needs information about a
document’s state, it can query the document controller.

When users choose the Save command, the application displays a Save
panel and enables users to save the document in the file system. When
users choose the Open command, the application displays an Open panel,
allowing users to select a document file and open it.

Document Management Technigques

When you make the application controller the delegate of the application
(NSApp) and the document controller the delegate of each document
window, they can receive messages sent at critical moments of a running
application.

Document Creation sequence

Inspector... i

AppController

creates

These moments include the closure of windows (windowShouldClose:),
window selection (windowDidResignMain:), application start-up
(applicationWillFinishLaunching:) and application termination
(applicationShouldTerminate:). In the methods handling these messages,
the controllers can then do the appropriate thing, such as saving a
document’s data or displaying an empty document.

Several NSViews also have delegation messages that facilitate document
management, particularly text fields, forms, and other controls with
editable text (controlText...) and NSText objects (text...). One important
such message is textDidChange: (or controlTextDidChange:), which
signals that the document’s textual content was modified. In responding to
this message, controllers can mark a document window as having unsaved
data with the setDocumentEdited: message (the close button of edited
documents is a “broken” X). Later, they can determine whether the

document needs to be saved by sending isDocumentEdited to the window.

Document controllers often need to communicate with the application
controller or other objects in the application. One way to do this is by posting
notifications. Another way is to use the key relationships within the core
program framework (See page 156) to find the other object (assuming it's a
delegate of an Application Kit object). For example, the application
controller can send the following message to locate the current document
controller:

[[NSApp mai nW ndow] del egat €]

The document controller can find the application controller with:

[NSApp del egat €]

Doc.nib

DocController

+ new

I ...
[[DocControll er

al | oc]

- init

T
[NSBundl e | oadN bNaned: @ Doc. ni b"

init];
] owner: sel f];

143

Chapter 4 A Multi-Document Application

Defining the Controller and User Interfaces
Begin by defining in Interface Builder the object controlling the To Do

application.
2 Define the application-controller 00 =) ToDonib — ..pProjects/ToDo/Englishproj = D15
class.
! Instances y Classes \(Sounds \(Images \
Create ToDoController as a subclass of v ToDoController e e
NSObject. Qutiets
inspectar
Add the outlet and actions shown in Actions
the example. closeDoc:
. . newDoc:
Make the action connections from the openDoc:
appropriate File menu commands. saveDoc:
showdhout: ;
showlnspector: _
showPreferences: sl
Now that you’ve defined the application-controller class, define the document-
controller class, ToDoDoc. Remember, since the ToDoDoc controller must own
the nib file containing the document, it must be external to it; although it is
referenced in the main nib file (ToDo.nib) and in ToDoDoc.nib, it’s instantiated before
its nib file is loaded.
3 Dleflne the document-controller = = P ToDoDoc.nib — ..jects/ToDo/Englishproj = B 5
class.
/ Instances Y Classes Y Sounds Y Images \
Create ToDoDoc as a subclass of 2 N3TahViewitem o 8
NSObject 2 Sound 1@ s34
) o ToDoDoc 40 1
Add to the class the outlets and action Chitiets
listed at right. calendar
. daylLabel
Instantiate ToDoController and itemM atrix
ToDoDoc. markhdatrix | |
. Actiors =
Save ToDo.nib. itemChecked: —
J Object @ & [+

Now add the remaining objects to the document interface.

144

The Basics of a Multi-Document Application

4 Complete the document interface.

Open ToDoDac.nib.
Add the matrices of text fields.
Add the labels above the matrices.

Make the labels 14 points in the user's
application font.

Make the item text 12 points in the
user’s application font.

Save ToDoDoc.nib.

5 Connect the outlets and actions of
ToDoDoc.

Select File’s Owner in the Instances
display of ToDoDoc.nib.

Choose ToDoDoc from the list of
classes in the Attributes display of the
inspector.

Make the connections described in the
table at right.

O To Do =14
« >
sun Mon Tue ‘Wed Thu Fri Sat
Make the text of this label
Oark gray.
To Do On Pad the right side of the label
| [with spaces so it extends
| | across the column.
1o assist alignment, make |,7 | Bofore creating a matrix, make
these cells the same height as | .tJf;e initial fiel 5 scrollab /é
the cells of the other matrix. At | | '
rur;) tl[r?;e,[hav;leve; you'll | | | Remember, create a matrix by
substitute celis or your I Alternate-dragging a handle of
custom class, ToDoCell. & | II asuitable ob/ggt J
Name Connection Type
calendar From File’s Owner to the CalendarMatrix object outlet
dayLabel From File’s Owner to label “To Do on” outlet
itemMatrix From File’s Owner (ToDoDoc) to matrix of long text fields outlet
markMatrix From File’s Owner to matrix of short text fields outlet
itemChecked: From matrix of short text fields to File’s Owner action

Text fields in a matrix, just like a form’s cells, are connected for inter-field
tabbing when you create the matrix. But you must also connect "ToDoDoc
and ToDoController to the delegate outlets of other objects in the
application—this step is critical to the multi-document design.

145

Chapter 4

A Multi-Document Application

Connect ToDoDoc and ToDoController to
other objects as their delegates.

6 Create source-code files for
ToDoDoc and ToDoController.

In Project Builder:

7 Add declarations of methods and
instance variables to the ToDoDoc
class.

Select ToDoDoc.h in the project
browser.
Add the declarations at right.

(Ellipses indicate existing
declarations.)

146

Name Connection

textDelegate From the CalendarMatrix object to File’s Owner (ToDoDoc)

delegate From the document window’s title bar (or the window icon in the nib file window)
to File’s Owner (ToDoDac)

delegate In ToDo.nib, from File’s Owner (NSApp) to the ToDoController instance

The ToDoDoc class needs supplemental data and behavior to get the multi-
document mechanism working right.

@nterface ToDoDoc: NSObj ect

{
[* o0

NSMut abl eDi cti onary *acti veDays;
NSMut abl eArray *currentltens;

Y |

- (NSMut abl eArray *)currentltens;

- (void)setCurrent!tens: (NSMut abl eArray *)new t ens;
- (NSMatrix *)itemvatri x;

- (NSMatrix *)markMatri x;

- (NSMut abl eDi ctionary *)activeDays;

- (voi d)saveDoc;

- (id)initWthFile: (NSString *)aFile;

- (void)deal |l oc;

- (void)activateDoc;

- (void)selectltem (int)item

@nd

"The activeDays and currentltems instance variables hold the collection objects that
store and organize the data of the application. (You’ll deal with these instance
variables much more in the next section of this tutorial.) Many of the methods
declared are accessor methods that set or return these instance variables or one of
the matrices of the document.

The Basics of a Multi-Document Application

1 Write the code that creates
documents.

Select ToDoController.m in the project
browser.

Implement ToDoController’s newDoc:
method.

Creating, Opening, Saving, and Closing Documents

You’ll be switching between ToDoDoc.m and ToDoController.m in the next few
tasks. The intent is not to confuse, but to show the close interaction between
these two classes.

- (voi d) newbDoc: (i d) sender

{
id currentDoc = [[ToDoDoc alloc] initWthFile:nil];
[current Doc activateDoc];

"T'he newDoc: method is invoked when the user chooses New from the
Document menu. The method allocates and initializes an instance of the
document controller, ToDoDoc, thereby creating a document. (See the
implementation of initWithFile: on the following page to see what happens in

this process.) It then updates the document interface by invoking activateDoc.

147

Chapter 4

A Multi-Document Application

Select ToDoDoc.m in the project
browser.

Implement ToDoDoc’s initWithFile:

method.

148

- initWthFile:(NSString *)aFile

{

NSEnuner at or *dayenum

NSDat e *it enDat e;

[super init];

if (aFile) { [A)
activeDays = [NSUnar chi ver unarchi veCbject WthFile:aFile];
if (activeDays)

activeDays = [activeDays retain];
el se
NSRunAl ert Panel (@ To Do", @Couldn't unarchive file %@,
nil, nil, nil, aFile);

} else { @
activeDays = [[NSMut abl eDi ctionary alloc] init];
[self setCurrentltens:nil];

}

if (![NSBundl e | oadNi bNaned: @ ToDoDoc. ni b" owner:sel f]) 0

return nil;

it (aFile) [D)
[[itemVatri x wi ndow] setTitleWthRepresentedFil enane: aFil e];

el se
[[itemVatri x window] setTitle: @UNTI TLED'];

[[itemVatri x wi ndow] makeKeyAndOrder Front:sel f];

return self;

}

This method, which initializes and loads the document, has the following steps:

© Restores the document’s archived objects if the aFile argument is the
pathname of a file containing the archived objects (that is, the document is
opened). If objects are unarchived, it retains the activeDays dictionary;
otherwise it displays an attention panel.

© Initializes the activeDays and currentltems instance variables. An aFile argument
with a nil value indicates that the user is requesting a new document.

© 1.oads the nib file containing the document interface, specifying self as owner.

© Sets the title of the window; this is either the file name on the left of the title
bar and the pathname on the right, or “UNTITLED?” if the document is new.

Note the [itemMatrix window] message nested in the last message. Every object that
inherits from NSView “knows” its window and will return that NSWindow object
if you send it a window message.

The Basics of a Multi-Document Application

2

Implement the document-opening
method.

Select ToDoController.min the project
browser.

Write the code for openDoc:.

- (voi d)openDoc: (i d)sender
{

int result;

NSString *sel ected, *startDir;

NSArray *fileTypes = [NSArray arrayWthObject: @td"];
NSOpenPanel *oPanel = [NSOpenPanel openPanel];

[oPanel setAll owsMultipl eSel ection: YES];
if ([[[NSApp keyW ndow] del egate] isKi ndOFCl ass: [ToDoDoc cl ass]])
startDir = [[[NSApp keyW ndow] representedFil enane]
stringByDel eti ngLast Pat hConponent] ;
el se
startDir = NSHonmeDirectory();
result = [oPanel runMdal ForDirectory:startDir file:nil 0
types: fil eTypes];
if (result == NSOKButton) {
NSArray *fil esToOpen = [oPanel filenanes];
int i, count = [fil esToOpen count];
for (i=0; i<count; i++) { @
NSString *aFile = [fil esToOpen object Atlndex:i];
id currentDoc = [[ToDoDoc alloc] initWthFile:aFile];
[current Doc acti vat eDoc];

}

"The openDoc: method displays the modal Open panel, gets the user’s response
(which can be multiple selections) and opens the file (or files) selected.

@ Creates or gets the NSOpenPanel instance (an instance shared among
objects of an application). The previous message specifies the file types
(that is, the extensions) of the files that will appear in the Open panel
browser. The next message enables selection of multiple files in the
panel’s browser.

© Scts the directory at which the NSOpenPanel starts displaying files either
to the directory of any document window that is currently key or, if there
is none, to the user’s home directory.

© Runs the NSOpenPanel and obtains the key clicked.

@ If the key is NSOKButton, cycles through the selected files and, for each,
creates a document by allocating and initializing a ToDoDoc instance,
passing in a file name.

The methods invoked by the Document menu’s Close and Save commands
both simply send a message to another object. How they locate these objects
exemplify important techniques using the core program framework.

149

4

Chapter 4

A Multi-Document Application

Write the code that closes
documents.

In ToDoController.m, implement the
closeDoc: method.

Write the code that saves
documents.

In ToDoController.m, implement the
saveDoc: method.

150

- (void)cl osebDoc: (id)sender

{
[[NSApp mai nW ndow] perfornCl ose: sel f];

}

NSApp, the global NSApplication instance, keeps track of the application’s
windows, including their status. Because only one window can have main status,
the mainWindow message returns that NSWindow object— which is, of course, the
one the user chose the Close command for. The closeDoc: method sends
performClose: to that window to simulate a mouse click in the window’s close
button. (See the following section, “Managing Documents Through Delegation,”
to learn how the document handles this user event.)

- (void)saveDoc: (id)sender

{
id currentDoc = [[NSApp nai nW ndow] del egate];
if (currentDoc)
[current Doc saveDoc];
}

As did closeDoc:, this method sends mainWindow to NSApp to get the main window,
but then it sends delegate to the returned window to get its delegate, the
ToDoDoc instance that is managing the document. It then sends the ToDoDoc-
defined message saveDoc to this instance.

Note: You could implement closeDoc: and saveDoc: in the ToDoDoc class, but the
"ToDoController approach was chosen to make the division of responsibility
clearer.

The Basics of a Multi-Document Application

Select ToDoDoc.m in the project
browser.

Implement the saveDoc: method.

- (voi d)saveDoc

{
NSString *fn;

if (![[[itemVatrix wi ndow] title] hasPrefix: @UNTI TLED'])
fn =[[itemVatri x wi ndow] representedFilenane];
} else {
int result; @
NSSavePanel *sPanel = [NSSavePanel savePanel];
[sPanel set RequiredFil eType: @td"];
result = [sPanel runModal ForDirectory: NSHoneDi rect ory()
file:nil];
if (result == NSOKButton) {
fn = [sPanel filenane];

[[itemVatrix wi ndow] setTitl eWthRepresentedFil enane: fn];

} else
return;

}

if (![NSArchiver archiveRoot Object:activeDays toFile:fn]) G
NSRunAl ert Panel (@ To Do", @Couldn't archive file %@,
nil, nil, nil, fn);
el se
[[ItemVatrix wi ndow] setDocunent Edited: NJ ;

}

"ToDoDoc’s saveDoc method complements ToDoController’s openDoc: method
in that it runs the modal Save panel for users.

© The title method returns the text that appears in the window’s title bar. If
the title doesn’t begin with “UNTITLED” (what new document
windows are initialized with), then a file name and directory location has
already been chosen, and is stored as the representedFilename.

© If the window title begins with “UNTITLED” then the document needs
to be saved under a user-specified file name and directory location. This
part of the code creates or gets the shared NSSavePanel instance and sets
the file type, which is the extension that’s automatically appended. Then
it runs the Save panel, specifying the user’s home directory as the starting
location.

© Archives the document under the chosen directory path and file name
and, with the setDocumentEdited: message, puts an asterisk next to the
window’s title (more on this in the next section).

151

Chapter 4 A Multi-Document Application

Don’t implement setCurrentltems: yet. This method does something special for the
application that will be covered in “Managing ToDo’s Data and Coordinating its

5 Implement the accessor methods for
ToDoController and ToDoDoc.

152

Display” on page 162.

Coordinate Systems in OpenStep

The screen’s coordinate system is the basis for all other coordinate systems
used for positioning, sizing, drawing, and event handling. You can think of
the entire screen as occupying the upper-right quadrant of a two-
dimensional coordinate grid. The other three quadrants, which are invisible
to users, take negative values along their x-axis, their y-axis, or both axes.
The screen’s quadrant has its origin in the lower left corner; the positive x-
axis extends horizontally to the right and the positive y-axis extends
vertically upward. A unit along either axis is expressed as a pixel.

The screen coordinate system has just one function: to position windows on
the screen. When your application creates a new window, it must specify the
window's initial size and location in screen coordinates.You can “hide”
windows by specifying their origin points well within one of the invisible
quadrants. This technique is often used in off-screen rendering in buffered
windows.

The reference coordinate system for a window is known as the base
coordinate system. It differs from the screen coordinate system in only two
ways:

2
8
>
p
.(500.0, 200.0)
(0.0,0.0) X-axis
. — T T T J
(-200.0, / \
-200.0) ﬂ/ h

= [tapplies only to a particular window; each window has its own base
coordinate system.

= |tsorigin is at the lower left corner of the window, rather than the lower
left corner of the screen. If the window moves, the origin and the entire
coordinate system move with it.

For drawing, each NSView uses a coordinate system transformed from the
base coordinate system or from the coordinate system of its superview. This
coordinate system also has it origin point at the lower-left corner of the
NSView, making it more convenient for drawing operations. NSView has
several methods for converting between base and local coordinate systems.
When you draw, coordinates are expressed in the application's current
coordinate system, the system reflecting the last coordinate
transformations to have taken place within the current window.

These coordinate systems are the inverse of several other operating
systems, which put the origin point at the upper left of the window or screen
and extend dimensions downward and to the right. NSView provides means
for “flipping” coordinate systems to conform to those other systems.

Aview’s location is specified relative t
the coordinate system of its window or
Superview. The coordinate origin for
drawing begins at this point.

My Window

The location of the window is
expressed relative to the screen’s
origin, and its coordinate system
begins here too.

[[[
axis|

a
U

>

The origins and dimensions of 75,31
windows and panels are basedon the -\ | 160 150" T =l
00

D

screen origin.

Managing Documents Through Delegation

1

Managing Documents Through Delegation

Mark a document as edited.

Open ToDoDoc.m.

Implement the controlTextDidChange:
method to mark the document.

At certain points while an application is running you want to ensure that a
document’s data is preserved, that a document’s edited status is tracked, or
that the application otherwise does “the right thing” for a given circumstance.
These events occur when users:

Edit a document.

Close a window.

Launch the application.

Quit the application by choosing the Exit command.
Quit the application by closing the last window.
Switch to another application or window.

Several classes of the Application Kit send messages to their delegates when
these events occur, giving the delegate the opportunity to do the appropriate
thing, whether that be saving a document to the file system or marking a
document as edited.

- (void)control Text Di dChange: (NSNoti fi cati on *)noti f

{
[[ItemVatri x wi ndow] set Docunent Edit ed: YES];

}

When a control that contains editable text—such as a text field or a matrix of
text fields—detects editing in a field, it posts the controlTextDidChange:
notification which, like all notifications, is sent to the control’s delegate as well
as to all observers. The setDocumentEdited: message (with an argument of YES)
inserts an asterisk to the right of the window’s title, thereby marking it as
“dirty” (containing modified, unsaved data).

||:| = ToDonibh — [w ndow set Docunent Edi t ed: NJ ;

|E| = E ToDo.nibh — [wi ndow set Docunent Edi t ed: YES] ;

Note: The object that, by notification, invokes the controlTextDidChange:
method is itemMatrix, the matrix of to-do items (text fields). You will
programmatically set ToDoDoc to be the delegate of this object later in this
tutorial.

153

Chapter 4

A Multi-Document Application

2 Customize the launch behavior for
your multi-document application.

Initialize the ToDoController class.

154

Assuming that you’ve completed certain steps (see “Opening Documents by
Double-Clicking,” below), when users select or double-click a To Do document
icon in the Start menu, in Explorer, or elsewhere on the desktop, To Do will
launch itself and open the document. But what happens when users simply
launch the application, without specifying a document? OpenStep applications
have several alternatives (see side bar on page 159). To Do lends itself well to the
user-defaults technique:

¢ At first, open an “UNTITLED” document.
¢ When the user saves a document, save the document path in user defaults.
¢ Thereafter open the last-saved document when the user launches "To Do.

+ (void)initialize

{
NSUser Def aul ts *defaul ts = [NSUser Def aul ts st andar dUser Def aul t s] ;
NSDi cti onary *regdom = [NSDi ctionary dictionaryWthObject: @ UNTI TLED"
f or Key: @ ToDoDocunent Last Saved"] ;
[defaul ts registerDefaults:regdoni;
}

The initialize message is sent to each class before it receives any other message,
giving it an opportunity to do something having global effect on all future
instances. In ToDoController’s case, the initialize method specifies a “catch-all”
default in the registration domain of user defaults. To Do applications that are
launched the first time on a system will take this default.

Opening Documents by Double-Clicking

To let users of your application open documents by given in the second argument. If you succeed,
double-clicking the document icon in the file return YES; otherwise, return NO.

system, you must complete the following steps: - L .
Y 4 P g step 3 After building the application, install it in the

1 Specify an icon and a type (file extension) for conventional file-system locations for
your document in the Project Attributes display applications, such as /LocalApps and ~/Apps.
of Project Builder’s Project Inspector (see page
122 for an example).

2 Implement the NSApplication delegation method
application:openFile:. This method is invoked
when users double-click or select a document in
the file system (for instance, using File Manager
or Explorer). In your implementation, you should
attempt to create your document using the path

Managing Documents Through Delegation

In ToDoController.m, implement the

delegation method
applicationOpenUntitledFile:.

(BOQL) appl i cati onOpenUntitl edFil e: (NSApplication *)sender

NSUser Def aul ts *defaul ts = [NSUser Def aul ts st andar dUser Def aul t s] ;

(]

[[NSFi | eManager def aul t Manager] fil eExi st sAt Pat h: docToOpen] &&

i sEqual ToString: @td"]) {

ToDoDoc *thisDoc = [[ToDoDoc alloc] initWthFile:docToOpen];

{
NSString *docToOpen = [defaul ts stringForKey:
@ ToDoDocunent Last Saved"] ;
if (![docToOpen isEqual ToString: @UNTI TLED'] &&
[[docToOpen pat hExt ensi on]
[thi sDoc acti vat eDoc] ;
return YES;
}
[sel f newDoc: sel f];
return YES;
}

An NSApp’s delegate can implement the applicationOpenUntitledFile; method to
display an appropriate starting document when an OpenStep for Windows
application is launched. This specific implementation does the following:

© The class method standardUserDefaults returns the NSUserDefaults
representing the current user’s defaults. From this object, it gets the path of
the To Do document that was last saved (more soon on how this was done).

© If the default is not the registration-domain one and the path references a real
To Do document, it re-creates and activates the document.

[C) Otherwise, it creates a new document, which has a title of “UNTITLED.”

User Defaults and the Defaults System

User defaults denotes information about a user's
preferences that an OpenStep program keeps
between sessions. Also recorded in user defaults are
initial values for applications (such as the position of
windows), default values that apply globally, and
defaults specific to a language (for example, the way
in which time is expressed). An application typically
allows its users to enter their choices into users
defaults through a Preferences panel.

User defaults belong to domains. The most common
domain consists of individual applications, but there
are other domains. For example, NSGlobalDomain
holds values common to all applications; there is also
a language-specific domain and
NSRegistrationDomain (temporary default values).

Each domain has a dictionary of keys and values
representing its defaults. Keys are always strings,
but values can be property lists: complex data
structures comprising arrays, dictionaries, strings,
and binary data. Searches for a default proceed
through a search list, in which the application's
domain typically comes before the global, language-
specific, and registration domains.

The defaults system, which implements user
defaults, includes a framework component and a
command-line component. You can specify, read,
and manage user defaults with the methods of
NSUserDefaults and with the defaults utility.

155

Chapter 4

A Multi-Document Application

The Application Quartet: NSResponder, NSApplication, NSWindow, and NSView

Many classes of the Application Kit stand out in terms of relative
importance. NSControl, for example, is the superclass of all user-interface
devices, NSText underlies all text operations, and NSMenu has obvious
significance. But four classes are at the core of a running application:
NSResponder, NSApplication, NSWindow, and NSView. Each of these
classes plays a critical role in the two primary activities of an application:
drawing the user interface and responding to events. The structure of their
interaction is sometimes called the core program framework.

NSWindow

An NSWindow object manages each physical window on the screen. It draws
the window’s content area and responds to user actions that close, move,
resize, and otherwise manipulate the window.

The main purpose of an NSWindow is to display an application’s user
interface (or part of it) in its content area: that space below the title bar and
menu bar and within the window frame. A window’s content is the NSViews
it encloses, and at the root of this view hierarchyis the content view, which
fills the content area. Based on the location of a user event, NSWindows
assigns an NSView in its content area to act as first responder.

An NSWindow allows you to assign a custom object as its delegate and so
participate in its activities.

NSObject

———

NSResponder

P

NSWindow NSApplication NSView

NSResponder

NSResponder is an abstract class, but it enables event handling in all
classes that inherit from it. It defines the set of messages invoked when
different mouse and keyboard events occur. It also defines the mechanics

of event processing among objects in an application, especially the passing
of events up the responder chain to each next responder until the event is
handled. See the “First Responder and the Responder Chain” on page 173
for more on the responder chain and a description of first responder.

NSApplication

Every application must have one NSApplication object to supervise and
coordinate the overall behavior of the application. This object dispatches
events to the appropriate NSWindows (which, in turn, distribute them to
their NSViews). The NSApplication object manages its windows and detects
and handles changes in their status as well as in its own active and
inactive status. The NSApplication object is represented in each application
by the global variable NSApp. To coordinate your own code with NSApp, you
can assign your own custom object as its delegate.

NSView

Any object you see in a window’s content area is an NSView. (Actually, since
NSView is an abstract class, these objects are instances of NSView
subclasses.) NSView objects are responsible for drawing and for
responding to mouse and keyhoard events. Each NSView owns a
rectangular region associated with a particular window; it produces images
within this region and responds to events occurring within the rectangle.

NSViews in a window are logically arranged in a view hierarchy, with the
content viewat the top of the hierarchy (see next page for more information).
An NSView references its window, its superview, and its subviews. It can be
the first responder for events or the next responder in the responder chain.
An NSView’s frame and bounds are rectangles that define its location on the
screen, its dimension, and its coordinate system for drawing.

‘The NSEvent class is also involved in event processing. For more about NSEvent and
the event cycle, see “Events and the Event Cycle” on page 172.

Managing Documents Through Delegation

The View Hierarchy

Just inside each window’s content area—the area enclosed by the title
bar and the other three sides of the frame—lies the content view. The
content view is the root (or top) NSView in the window’s view hierarchy.

Conceptually like a tree, one or more NSViews may branch from the content

view, one or more other NSViews may branch from these subordinate

NSViews, and so on. Except for the content view, each NSView has one (and
only one) NSView above it in the hierarchy. An NSView’s subordinate views

are called its subviews; its superior view is known as the superview.

On the screen enclosure determines the relationship between superview
and subview: a superview encloses its subviews. This relationship has
several implications for drawing:

= |t permits construction of a superview simply by arrangement of
subviews. (An NSBrowser is an instance of a compound NSView.)

= Subviews are positioned in the coordinates of their superview, so when
you move an NSView or transform its coordinate system, all subviews are

moved and transformed in concert.

* Because an NSView has its own coordinate system for drawing, its
drawing instructions remain constant regardless of any change in
position in itself or of its superview.

NSApp

"NEN

Fitting Your Application In

The core program framework provides ways for your application to access
the participating objects and so to enter into the action.

= The global variable NSApp identifies the NSApplication object. By
sending the appropriate message to NSApp, you can obtain the
application’s NSWindow objects (windows), the key and main windows
(keyWindow and mainWindow), the current event (currentEvent), the
main menu (mainMenu), and the application’s delegate (delegate).

« Once you've identified an NSWindow object, you can get its content view
(by sending it contentView) and from that you can get all subviews of
the window. By sending messages to the NSWindow object you can also
get the current event (currentEvent), the current first responder
(firstResponder), and the delegate (delegate).

« You can obtain from an NSView most objects it references. You can
discover its window, its superview, and its subviews. Some NSView
subclasses can also have delegates, which you can access with
delegate.

By making your custom objects delegates of the NSApplication object, your
application’s NSWindows, and NSViews that have delegates, you can
integrate your application into the core program framework and participate
in what’s going on.

NSApplication

windows
delegate

ContentView

delegate

A

ContentView
delegate

windows
| superview
subviews
windows
superview (nil)
subviews

windows
superview
subviews

157

Chapter 4

A Multi-Document Application

In ToDoDoc.m’s saveDoc method, add
code to write the path of the saved
document to user defaults.

(See comments in example for code to
add.)

Save edited documents when
windows are closed.

Implement the delegation method
windowShouldClose:.

158

For To Do, we want the last-saved document to be opened when the user
launches the application. Accordingly, in the method that saves documents,
we store the document’s path in user defaults.

/*

/*

*/

if (result == NSOKButton) {

*/

fn = [sPanel filenane];
[[itemVatri x wi ndow] setTitleWthRepresentedFilenane:fn];
/* add the code bel ow ==========> */
if (fn & !'[fn isEqual ToString: @"]) {
NSUser Defaul ts *defaults =
[NSUser Def aul t s st andar dUser Def aul t s] ;

[defaults setObject:fn forKey: @ ToDoDocunent Last Saved"] ;
[defaul ts synchroni ze] ;

| * <========== add the code above */

The new section of code gets the NSUserDefaults object for the current user and
stores the document path (fn) in user defaults for that user under the key
ToDoDocumentLastSaved. The synchronize method saves this default to disk.

- (BOOL) wi ndowshoul dCl ose: (i d) sender

{
int result; @
if (![[itemVatrix wi ndow] isDocunentEdited]) return YES;
[[itemVatri x wi ndow] makeFirst Responder:[itenmVatrix w ndowj];
result = NSRunAl ert Panel (@C ose", @ Docunent has been edited.
Save changes before cl osing?", @ Save", @Don't Save",
@ Cancel "); 0
switch(result) {
case NSAl ertDefaul t Return: {
[sel f saveDocltens];
[sel f saveDoc] ;
return YES;
case NSAl ertAlternateReturn: {
return YES;
}
case NSAl ert O herReturn: {
return NG
}
}
return NG
}

Managing Documents Through Delegation

When an OpenStep Application Is Launched

When the user launches an application, the default behavior is to display
the contents of the main nib file. This initial presentation could be one or
more windows, but often it is just the application’s menu. Often with
document-centric applications, this behavior is what you want. But you
aren't restricted to this behavior.

With OpenStep applications you have a number of alternatives. The
alternative that is best for an application depends on that application's
nature and purpose.

Put up an untitled document. The application displays a content-less
document with a window title of “UNTITLED” (or something similar). The
user can start adding content immediately or can open an existing
document. This is the course adopted by the TextEdit application. A
variation of this approach always displays an initial window with some
standard content, such as a product logo (see the Preview application).

How: The application's delegate must implement the
applicationOpenUntitledFile: method and, in that method, create a new
document or open a standard document.

Display the document that the user last saved. The first time a user
launches an application, the application creates and displays an untitled
document. When the user saves that document, the application stores the
full path of the saved file in user defaults. The next time the user launches
the application the application restores the document from the file. This is
the approach taken by the To Do application.

How. Implement applicationOpenUntitledFile:, as before, but this time first
check user defaults to see if it contains a path for a document file. If it does,
verify that the file exists (it could have been moved or deleted since the last
session) before opening and displaying it. Otherwise, display an untitled

document. When the user closes a document or terminates the application,

store the full path of the last-saved document file in user defaults.

Display an opened-document window. The opened-document window
(typically small) contains a list of documents that the user currently has
created or opened. Users can get a document to appear by clicking an item
in the list. When users choose the Exit command, the application can
terminate after closing (and, if necessary, saving) all listed documents. As
a variation, the application can, when it's next launched, restore to the
project window (via user defaults) the documents opened when the last
session was terminated.

How:. In the application's main nib file create a small window that contains
a table view or browser. The project window's menu bar can contain the
complete set of menus or an appropriate subset. When the application is
launched, the project window is automatically displayed. When users open
or create a document, create and insert an appropriate entry in the table
view or browser. When users click (or double-click) on an entry, display the
document.

159

Chapter 4 A Multi-Document Application

When users click a window’s close button, the window sends windowShouldClose: to
the window’s delegate. The window expects a response directing it either to close
the window or leave it open. This implementation does the following:

© Returns YES (close the window) if the document hasn’t been edited.

© Makes the window its own first responder. This has the effect of forcing the
validation of cells, flushing currently entered text to the method that handles
it (more on this in the next section).

© Identifies the clicked button by evaluating the constant returned from
NSRunAlertPanel() and returns the appropriate boolean value. If the user clicks
the Save button, this method also updates internal storage with the currently
displayed items (saveDocltems, described in the following section) and then
sends saveDoc to itself to archive application data to a file.

Note: Do you recall the performClose: method that ToDoController sends the
document window when the user chooses the Close command? This method
simulates a mouse click on the window’s close button, causing windowShouldClose:
to be invoked.

The NSApplication object sends applicationShouldTerminate: to its delegate to give
it notice that the application is about to terminate. In this method you should first
let the user save any edited document.

160

Managing Documents Through Delegation

4 Save edited documents when the ,
user quits the application. {

In ToDoController.m, implement the
delegation method
applicationShouldTerminate:.

(BOOL) appl i cati onShoul dTer mi nat e: (i d) sender

NSString *repfile = nil;

NSArray *appW ndows = [NSApp wi ndows] ; @
NSEnuner at or *enunerator = [appW ndows obj ect Enunerator];
id object;
whil e (object = [enunerator nextCbject]) { @
int result;
id doc;

if ((doc = [object delegate]) &&
[doc isKindOf C ass: [ToDoDoc cl ass]] &&
[obj ect isDocunmentEdited]) {
repfile = [[NSApp keyW ndow] representedFil enane];
result = NSRunAl ert Panel (@ To Do", @ Save %@", @ Save",
@Don't Save", @ Cancel",
([repfile isEqual ToString: @"]?@ UNTI TLED': repfile));
switch(result) {
case NSAl ert Def aul t Ret ur n:
[doc saveDocltens];
[doc saveDoc];
br eak;
case NSAl ert Al t er nat eRet ur n:
[[NSApp keyW ndow] cl ose]; G
br eak;
case NSAl ert O her Ret ur n:
return NG

}

}
return YES;

Much of the code in this method is similar to that for windowShouldClose:; if a
window is managed by ToDoDoc, the applicationShouldTerminate: method puts
up an attention panel and responds according to the user’s choice. However,
there are some significant differences:

© Returns all open windows of the application in an NSArray. Remember,

one of the jobs of an NSApplication is to track and manage all windows.

© Enumerates and processes the NSWindow objects in this NSArray, as

noted.

© It the user clicks “Don’t Save,” the close message forces the window to

close (without sending the windowShouldClose: delegate message).

161

Chapter 4 A Multi-Document Application

Managing ToDo’s Data and Coordinating its Display

If you recall the discussion on "To Do’s design earlier in this chapter (“How To Do
Stores and Accesses its Data” on page 121), you’ll remember that the application’s
real data consists of instances of the model class, ToDoltem. To Do stores these
objects in arrays and stores the arrays in a dictionary; it uses dates as the keys for
accessing specific arrays. (Both the dictionary and its arrays are mutable, of
course.) You might also recall that this design depends on a positional
correspondence between the text fields of the document interface and the “slots”
of the arrays.

"To lend clarity to this design’s implementation, this section follows the process
from start to finish through which the ToDoDoc class handles entered data, and
organizes, displays, and stores it. It also shows how the display and manipulation
of data is driven by the selections made in the CalendarMatrix object.

Start by revisiting a portion of code you wrote earlier for ToDoDoc’s initWithFile:
method.

- initWthFile:(NSString *)aFile

{
[* .00 %/
if (aFile) {
acti veDays = [NSUnar chi ver unarchi veCbject WthFile:aFile];
if (activeDays)
activeDays = [activeDays retain];
el se
NSRunAl ert Panel (@ To Do", @ Coul dn't unarchive file %@,
nil, nil, nil, aFile);
} else {
activeDays = [[NSMut abl eDi ctionary alloc] init];
[self setCurrentltens:nil];
}
[|
}

Assume the user has chosen the New command from the Document menu. Since
there is no archive file (aFile is nil), the activeDays dictionary is created but is left
empty. Then initWithFile: invokes its own setCurrentltems: method, passing in nil.

162

Managing ToDo’s Data and Coordinating its Display

1

Setthe currentitems or, if necessary,
create and prepare the array that
holds them.

Implement setCurrentltems..

- (void)setCurrentltens: (NSMut abl eArray *)newl tens

{
if (currentltens) [currentltens autorel ease];
if (newtens)
currentltens = [newl tens nut abl eCopy] ;
el se {
int nunmRows, nunCol s;
[itemvatri x get Nunber Of Rows: &unRows col umrms: &nunCol s] ;
currentltens = [[NSMut abl eArray al | oc]
ini t WthCapacity: nunRows] ;
whil e (--nunRows >= 0)
[currentltens addCbject: @"];
}
}

"This “set” accessor method is like other such methods, except in how it
handles a nil argument. In this case, nil signifies that the array does not exist,
and so it must be created. Not only does setCurrentltems: create the array, but
it “initializes” it with empty string objects. It does this because
NSMutableArray’s methods cannot tolerate nil within the bounds of the array.

So there’s now a currentltems array ready to accept ToDoltems. Imagine
yourself using the application. What are the user events that cause a
"ToDoltem to be added to the currentltems array? 'To Do allows entry of items
“on the fly,” and thus does not require the user to click a button to add a
ToDoltem to the array. Specifically, items are added when users type
something and then:

e Press the Tab key.
e Press the Enter key.
e Click outside the text field.

"The controlTextDidEndEditing: delegation method makes these scenarios
possible. The matrix of editable text fields (itemMatrix) invokes this method
when the cursor leaves a text field that has been edited.

163

Chapter 4

A Multi-Document Application

As items are entered in the interface,
add ToDoltems to internal storage,
delete them, or modify them, as
appropriate.

ImplementcontrolTextDidEndEditing:.

as shown.

164

- (void)control Text Di dEndEdi ting: (NSNotification *)notif
{
id curltem newtem
int row = [itenVatrix sel ect edRowj ;
NSString *sel Name = [[itenmVatri x sel ectedCel] stringVal ue];

if (![[itemvatrix wi ndow] isDocunentEdited] ||
(row >= [currentltens count])) return;

if (lcurrentltens)
[self setCurrentltens:nil];

if ([sel Nane i sEqual ToString: @"] &&
([[currentltens objectAtlndex:row isKindOC ass:
[ToDoltem cl ass]]) &&

('"[[[currentltens objectAtlndex:row] itenmNane]
i sEqual ToString: @"]))
[currentltens repl aceChj ect Atl ndex:row withCbject: @"];

else if ([[currentltens objectAtlndex:row] isKindOd ass:
[ToDoltem cl ass]] &&

(!'[[[currentltenms objectAtlndex:row] itemNane]
i sEqual ToStri ng: sel Nane]))
[[currentltens objectAtlndex:row setltenNane: sel Nane] ;

else if (![sel Nane isEqual ToString: @"]) {
newltem = [[ToDoltem al | oc] initWthNane: sel Name
andDat e: [cal endar sel ect edDay]] ;
[currentltens replacehj ect At |l ndex: row wit hObject: new teni;
[newltem rel ease];

}
e

[sel f updateMatri x];

A control sends controlTextDidEndEditing: to its delegate when the insertion point
leaves a text field. In addition to creating new ToDoltems, this implementation of
controlTextDidEndEditing: removes ToDoltems from arrays and modifies item text.
What it does is appropriate to what the user does.

@ 1f the document hasn’t been edited (see controlTextDidChange:) or if the selected
row exceeds the array bounds, the code returns because there’s no reason to
proceed. Otherwise, it initializes a currentltems array if one doesn’t exist.

© If the user deletes the text of an existing item, the code removes the
ToDoltem that positionally corresponds to the row of that deleted text.

© 1t changes the name of an item if the text entered in a field doesn’t match the
name of the corresponding item in the currentltems array.

Managing ToDo’s Data and Coordinating its Display

@ f cither of the two previous conditions don’t apply, and text has been
entered, it creates a new ToDoltem and inserts it in the currentltems array.

© Updates the list of items in the document interface.

3 Update the document interface with

the current items. (voi d) updat eMat ri x

set Stri ngVal ue:

set Ti meDue: due] ;

©

setStringValue: @"];

Implement updateMatrix.. int i, cnt = [currentltens count],
rows = [[itemVatrix cells] count];
ToDoltem *t hi sltem
for (i=0; i<cnt, i<rows; i++) {
NSDat e *due;
thisltem = [currentltens objectAtlndex:i];
if ([thisltemisKindOfC ass: [ToDoltem class]]) { ”
if ([thisltem secsUntil Due])
due = [[thisltem day] addTi nel nterval:
[thisltem secsUntil Due]];
el se
due = nil;
[[itemVatrix cell AtRow. i col um: 0]
[thisltemitenNane]];
[[markMatrix cel |l At Row:. i col um: 0]
[[markMatrix cell AtRow. i columm: 0] setTri State:
[thisltemitenttatus]];
}
else {
[[itemVatrix cell At Row:i col um: 0]
[[markMatrix cell AtRow.i colum:0] setTitle:@"];
[[markMatrix cell AtRow. i colum: 0] setlnmage:nil];
}
}
}

"The updateMatrix method writes the names of the items (ToDoltems) in the
currentitems array to the text fields of itemMatrix. It also updates the visual
appearance of the cells in the matrix (markMatrix) next to itemMatrix. These cells
are instances of a custom subclass of NSButtonCell that you will create later
in this tutorial. For now, just type all the code above; later, when you create
the cell class (ToDoCell) you can refer back to this example.

Basically, this method cycles through the array of items, doing the following:

@ 1t an object in the array is a ToDoltem, it writes the item name to the text
field pegged to the array slot and updates the button cell next to the field.

© If an object isn’t a ToDoltem, it blanks the corresponding text field and

cell.

165

Chapter 4 A Multi-Document Application

Respond to user actions in the - (void)cal endar Matri x: (Cal endarMatrix *)matrix ['A)
calendar. di dChangeToDat e: (NSDat e *) dat e
Implement CalendarMatrix’s {

delegation methods. [[itemVatri x wi ndow] nakeFirstResponder:[itenmVatri x wi ndowj];

[sel f saveDocltens];

[self setCurrentltens:[activeDays objectForKey: date]];

[dayLabel set StringVal ue:[date descripti onWthCal endar For mat :
@To Do on Ya 9B %d %" ti meZone: [NSTi meZone def aul t Ti meZone]
locale:nil]];

[sel f updateMatrix];

}
- (void)cal endarMatri x: (Cal endarMatrix *)matrix @
di dChangeToMont h: (i nt)no year: (int)yr
{
[sel f saveDocltens];
[self setCurrentltens:nil];
[sel f updateMatrix];
}

As you might recall, CalendarMatrix declared two methods to allow delegates to
“hook into” its behavior. Its delegate for this application is ToDoDoc.

@ The calendar sends calendarMatrix:didChangeToDate: when users click a new day
of the month. This implementation saves the current items to the activeDays
dictionary. It then sets the current items to be those corresponding to the
selected date (if there are no items for that date, the objectForKey: message
returns Nil and the currentltems array is initialized with empty strings). Finally it
updates the matrix with the new data.

© The calendar sends calendarMatrix:didChangeToMonth:year: when users go to a new
month and (possibly) a new year. This implementation responds by saving the
current items to internal storage and presenting a blank list of items.

166

Managing ToDo’s Data and Coordinating its Display

5

6

Save the data to internal storage.
Implement saveDocltems:.

Archive and unarchive the
document’s data.

Implement encodeWithCoder: and
initWithCoder: to archive and
unarchive the dictionary holding the
arrays of ToDoltems.

- (voi d)saveDocltens

{
ToDol tem *anl t em
int i, cnt = [currentltens count];
/'l save day's current itens (array) to docunent dictionary
for (i=0; i<cnt; i++) {
if ((anltem= [currentltens objectAtlndex:i]) &&
([anltem i sKi ndOf Cl ass: [ToDoltem cl ass]])) {
[activeDays setQbject:currentltens forKey:
[anltem day]];
br eak;
}
}
}

"This method inspects the currentltems array and, if it contains at least one
ToDoltem, puts the array in the activeDays dictionary with a key
corresponding to the date.

Now that you’ve completed the methods for saving and archiving the
collection objects holding ToDoltems, assume that the user has saved his or
her document and then opens it.

167

Chapter 4 A Multi-Document Application

Perform set-up tasks when the - (voi d) awakeFr omNi b
document’s nib file is unarchived. {
int i;

Implement awakeFromNib as shown NSDat e *dat e:

at right.

date = [cal endar sel ect edDay];

[self setCurrentltens:[activeDays objectForKey: date]];
/* set up self as del egates */

[[itemVatri x wi ndow] setDel egate:sel f];

[itemVatrix setDel egate: self];

[[itemVatri x wi ndow] makeKeyAndOrder Front:sel f];

When the ToDoDoc.nib file is completely unarchived, awakeFromNib is invoked. It
sets the current items for today, sets a couple of delegates, and puts the document
window in front of all other windows.

Note: T'his method sets some delegates programmatically, which is redundant
since you set these delegates in Interface Builder. However, this code
demonstrates the programmatic route—and no harm done.

Set up the document once it's

- (void)activat eDoc
created or opened.

{

Implement activateDoc as shown at if ([currentltens count]) [self updateMatrix];
right. [dayLabel set StringVal ue:[[cal endar sel ect edDay]

descripti onWthCal endar Format : @ To Do on Y%a %8 %d %"
ti meZone: [NSTi neZone def aul t Ti meZone] | ocale:nil]];

The activateDoc method is invoked right after a To Do document is created or
opened. It starts the ball rolling by updating the list matrices of the document and
writing the current date to the “To Do on <dafe>” label.

168

