

Contents

Table of Contents
Contents i

The GNU Source-Level Debugger 9

Summary of GDB 11

Compiling Your Program for Debugging 12

Running GDB 13
Specifying Files to Debug 14

-symbol 14
-exec 14
-se 15
-core 15
-c 15
-command 15
-directory 15
-readnow 15

Specifying GDB Modes 15

-nx | -n 15
-q 16
-batch 16
-cd 16
-fullname | -f 16
-tty 16

Editing GDB Commands 16

Expansion of Variable, Function, and Method Names 17

History Substitution in Commands 17

Emacs Command-Line Editing 17

Insertion-Point Motion Commands 18

Deletion and Restoration Commands 18

Search Commands 18

History Commands 19

Miscellaneous Commands 19

Running GDB in a GNU Emacs Buffer 20

Esc s 21
Esc n 21
Esc i 21
Esc x gdb-nexti 21
Esc u 21
Esc d 21
Control-C Control-F 22
Esc c 22
Control-h m 22
Control-x & 22

Startup Files 22

GDB Commands for Specifying and Examining Files 23
add-file 23
add-module 23
core-file 23
info files 23
kill 23
load 24
path 24
update-files 24

Running Your Program under GDB 24
Your Program’s Arguments 25

Your Program’s Environment 25

set environment 26
unset environment 26

Your Program’s Working Directory 26

cd 26
pwd 26

Your Program’s Input and Output 26

info terminal 27

Debugging an Already Running Process 27

attach 28
detach 28
target 28
target child 28

target core 29

kattach 29
kreboot 29

Stopping and Continuing 29
Signals 29

info signals 30
handle 30

Breakpoints 31

Setting Breakpoints 31

break 32
break if 33
iii

tbreak 33

rbreak regex 33

future-break 33
Watchpoints 33

watch 34
info watchpoints 34
Clearing Breakpoints 34

clear 35
delete [breakpoints] [bnum ...] 35

Disabling Breakpoints 35

enable 36
enable once 36

enable delete 36
disable 36
Break Conditions 36

condition 37
Ignoring breakpoints 37

ignore 38
continue 38
Executing Commands at a Breakpoint 38

commands 40
Breakpoint Menus 40

Continuing 40

continue 41

Stepping 41

step 41
next 41
finish 41
until 42
stepi 42
nexti 42

Examining the Stack 42
Stack Frames 43

Backtraces 44

backtrace [n] 44

Selecting a Frame 44

frame 45
up 45
up-silently n 45

down n 45

down-silently 45

Information about a Frame 46
iv
frame 46
info frame 46
info frame addr 46

info args 46
info locals 46

Examining Source Files 46
Viewing Files in Project Builder 47

view 47
unview 47

Printing Source Lines 47

list 47
set listsize 48
show listsize 48
info line 49

Searching Source Files 49

forward-search 49
reverse-search 49

Specifying Source Directories 50

directory 50

Examining Data 50
print 50
print-object 51
set 51

Expressions 51

Program Variables 52

Artificial Arrays 53

Output Formats 54

Examining Memory 55

Automatic Display 57

display 57
undisplay 57
info display 57
enable display 58
disable display 58

Value History 58

Convenience Variables 59

Registers 60

info registers 60
info all-registers 61

Miscellaneous Commands 61

call 61

disassemble 61

Examining the Symbol Table 61
whatis 62
info address 62
info functions 62
info source 62
info sources 62
info types 62
info variables 63
ptype 63

Setting Variables 63

set 63
set args 63
set autoload-breakpoints 64
set autoload-symbols 64
set catch-user-commands-errors 64
set complaints 64
set confirm 64
set demangle-style 64
set editing 64
set environment 64
set force_cpluplus 64
set history expansion 65
set history filename 65
set history ignoredups 65
set history save 65
set history size 65
set input-radix 65
set language 65
set lazy-read 65
set listsize 65
set output-radix 66
set print address 66
set print array 66
set print asm-demangle 66
set print demangle 66
set print elements 66
set print max-symbolic-offset 66
set print null-stop 66
set print object 66
set print pretty 66
set print repeats 67
set print sevenbit-strings 67
set print symbol-filename 67
set print union 67
set print vtbl 67
set prompt 67
set radix 67
set symbol-reloading 67
set verbose 67
set view-host 67
set view-program 68
set variable 68

Status Inquiries 68

info address 68
info all-registers 68
info args 68
info breakpoints 68
info classes 68
info copying 68
info display 69
info files 69
info float 69
info frame 69
info handle 69
info functions 69
info line 69
info locals 70
info program 70
info registers 70
info selectors 70
info set 70
info signals 70
info sources 70
info source 70
info stack 71
info target 71
info terminal 71
info types 71
info variables 71
info warranty 71
info watchpoints 71
show autoload-breakpoints 71
show autoload-symbols 71
show args 72
show catch-user-commands-errors 72
v

show commands 72
show complaints 72
show copying 72
show confirm 72
show convenience 72
show demangle-style 72
show directories 73
show editing 73
show environment 73
show force_cplusplus 73
show history expansion 73
show history filename 73
show history ignoredups 73
show history save 73
show history size 74
show input-radix 74
show language 74
show lazy-read 74
show listsize 74
show output-radix 74
show paths 74
show print address 74
show print array 74
show print asm-demangle 75
show print demangle 75
show print elements 75
show print max-symbolic-offset 75
show print null-stop 75
show print object 75
show print pretty 75
show print repeats 75
show print sevenbit-strings 75
show print symbol-filename 75
show print union 76
show print vtbl 76
show prompt 76
show radix 76
show symbol-reloading 76
show values 76
show verbose 76
show version 76
show view-host 76
show view-program 76
vi
show user 77
show warranty 77

Debugging PostScript Code 77
showps, shownops 77
flushps 77
traceevents 77
tracenoevents 78
waitps 78

Debugging Objective-C Code 78
Setting the Language 78

Method Names in Commands 79

Command Descriptions 80

The info Command 80

info classes 80
info selectors 80
The print Command 80

The set Command 82

The step Command 82

Debugging Mach Threads 82
thread-list 82
thread-select 82

Debugging Mach Core Files 83

Altering Execution 83
Assignment to Variables 83

Continuing at a Different Address 84

jump 84
jump * 84

Giving Your Program a Signal 84

signal 84

Returning from a Function 85

return 85

Defining and Executing Sequences of Commands 85
User-Defined Commands 85

define 86
document 86

Command Files 86

source 87

Commands for Controlled Output 87

echo 87
output 87

printf 88

Miscellaneous Commands 88
make 88
select-frame 88
shell 88

Legal Considerations 88
Distribution 89

GDB General Public License 90

Copying Policies 90

No Warranty 92

Index 93
vii

viii

The GNU Source-Level Debugger

1

This chapter describes how to debug a C program using the GNU debugger

from the Free Software Foundation (the GNU debugger has been

extended in OPENSTEP to support the use of Objective-C).

This chapter provides an overview of the GDB debugger and how to use it.

The chapter ends with a discussion of OPENSTEP-specific extensions to

GDB. These OPENSTEP extensions provide full compatibility with

standard GDB, while offering the following additional features useful for

developing programs within the OPENSTEP software environment:

• Additional debugger commands

• Extensions to existing debugger commands

• Support for debugging Objective-C code

This chapter is a modified version of documentation provided by the Free

Software Foundation; see the section “Legal Considerations” at the end of

the chapter for important related information.

This chapter Copyright  1988, 1989, 1990, 1991, 1992, 1993, 1994, and

1995 by Free Software Foundation, Inc. and Copyright  1990, 1991, 1992,

1993, 1994, 1995, 1996, and 1997 by Apple Software, Inc.

Summary of GDB

The purpose of a debugger such as GDB is to allow you to execute another

program while examining what’s going on inside it. We call the other

program “your program” or “the program being debugged.”

GDB can do four kinds of things (plus other things in support of these):

• Start the program, specifying anything that might affect its behavior.

• Make the program stop on specified conditions.

• Examine what has happened—when the program has stopped—so you

can see bugs happen.

• Change things in the program, so you can correct the effects of one bug

and go on to learn about another without having to recompile first.
3

1

The GNU Source-Level Debugger

Compiling Your Program for Debugging

To debug a program effectively, you need to ask for debugging information

when you compile it. This information in the object file describes the data type

of each variable or function and the correspondence between source line

numbers and addresses in the executable code.

To request debugging information, specify the -g option when you run the

compiler. We recommend that you always use -g when you compile a program.

You may think the program is correct, but there’s no sense in pushing your luck.

The GNU C compiler supports debugging with optimization (by using the -O

compiler option). Although GDB provides the capability to debug programs

compiled with optimization, the debugger may provide confusing or misleading

information when debugging optimized programs. The intention is to provide

some recourse in those situations where debugging optimized programs is

necessary. However, debugging optimized programs should not be done

routinely on some processors.

With these warnings in mind, it can still be useful to debug optimized programs,

provided that you’re aware of the limitations of the debugger in these

circumstances. Most importantly, the debugger should be able to provide

correct backtraces of your program’s function call stack. This is often all that is

needed to find the problem. Printing the values of variables, however, may give

incorrect results, since the debugger has insufficient information to be sure

where a variable resides at any given time. Variables declared volatile will always

have correct values, and global variables will almost always be correct; local

variables, however, are likely to be incorrectly reported.

Variables declared register are optimized by the compiler even when optimizing

is not requested with the -O compiler option—these may also give misleading

results. To ensure a completely predictable debugging environment, it’s best to

compile without the -O flag and with the compiler option “-Dregister=”. This

option causes the C preprocessor to effectively delete all register declarations

from your program for this compilation. (In fact, with the GNU C compiler,

there’s no need to declare any variables to be register variables. When optimizing,

the GNU C compiler may place any variable in a register whether it’s declared

register or not. On the other hand, declaring variables to be register variables may

make it more difficult to debug your program when not optimizing. Therefore,

the use of the register declaration is discouraged.)
4

Running GDB

Running GDB

In the OPENSTEP development environment, you’re likely to use GDB

by running it in the Project Builder Launch panel. In this panel, you enter

commands at the GDB prompt, and debugger output appears on

subsequent lines. (You can also run GDB as a subprocess in the GNU

Emacs editor, as described later in this chapter.) Although Project Builder

provides an interface and shortcuts to many common GDB commands, this

chapter describes only the GDB command-line interface. For more

information on Project Builder’s interface for the debugger, see the book

OPENSTEP Development: Tools and Techniques.

To start GDB from within a shell window, enter the following command:

gdb name [core | processID]

name is the name of your executable program. core, if specified, is the name

of the core dump file to be examined. processID is the ID of an already

running process that you want to debug. See the rest of this section for

information about optional command-line arguments and switches. Once

started, GDB reads commands from the terminal until you quit by giving

the quit command.

A GDB command is a single line of input. There’s no limit to how long it

can be. It starts with a command name, optionally followed by arguments

(some commands don’t allow arguments).

GDB command names may always be abbreviated if the abbreviation is

unambiguous. Sometimes even ambiguous abbreviations are allowed. For

example, s is equivalent to step even though there are other commands

whose names start with s. Possible command abbreviations are stated in the

documentation of the individual commands.

A blank line as input to GDB means to repeat the previous command

verbatim. Certain commands don’t allow themselves to be repeated this

way; these are commands for which unintentional repetition might cause

trouble and which you’re unlikely to want to repeat. Certain others (list and

x) act differently when repeated because that’s more useful.

A line of input starting with # is a comment; it does nothing. This is useful

mainly in command files (see the section “Command Files”).
5

1

The GNU Source-Level Debugger

GDB prompts for commands by displaying the (gdb) prompt. You can change the

prompt with the set prompt command (this is most useful when debugging GDB

itself):

set prompt newprompt

To exit GDB, use the quit command (abbreviated q) or type Control-D. Control-

C won’t exit from GDB, but rather will terminate the action of any GDB

command that is in progress and return to GDB command level. It’s safe to type

Control-C at any time because GDB doesn’t allow it to take effect until it’s safe.

If your program is running, typing Control-C will interrupt the program and

return you to the GDB prompt.

Specifying Files to Debug
GDB needs to know the file name of the program to be debugged. To debug a

core dump of a previous run, GDB must be told the file name of the core dump.

The simplest way to specify the executable and core dump file names is with

two command arguments given when you start GDB. The first argument is used

as the file for execution and symbols, and the second argument (if any) is used

as the core dump file name. Thus,

gdb progm core

specifies progm as the executable program and core as a core dump file to examine.

(You don’t need to have a core dump file if you plan to debug the program

interactively.)

If you need to specify more precisely the files to debugged, you can do so with

the following command-line options. All the options and command line

arguments given are processed in sequential order. The order makes a

difference when the -x command is used.

-symbol
-symbol file

-s file

Read symbol table from file.

-exec
-exec file

-e file

Use file as the executable file to execute when appropriate, and for examining

pure data in conjunction with a core dump.
6

Running GDB
-se
-se file

Read symbol table from file and use it as the executable file.

-core
-core file

-c file

Use file as a core dump file to examine.

-c
-c number

Connect to process ID number as with the attach command (unless there is a

file in core-dump format named number, in which case -c specifies that file

as a core dump to read.

-command
-command file

-x file

Execute GDB commands from file.

-directory
-directory directory

-d directory

Add directory to the path to search for source files.

-readnow
-readnow

-r

Read each symbol file’s entire symbol table immediately, rather than the

default, which is to read it incrementally as it’s needed. This makes startup

slower, but makes future operations faster.

Specifying GDB Modes
The following additional command-line options can be used to affect

certain aspects of the behavior of GDB:

-nx | -n
-nx

-n

Don’t execute commands from the .gdbinit init files. Normally, the commands

in these files are executed after all the command options and arguments
7

1 The GNU Source-Level Debugger
have been processed. (See the section “Command Files” for more information.)

-q
-q

Quiet. Don’t print the usual introductory messages. These messages are also

suppressed in batch mode.

-batch
-batch

Run in batch mode. Exit with status 0 after processing all the command files

specified with -x (and .gdbinit, if not inhibited). Exit with nonzero status if an error

occurs in executing the GDB commands in the command files.

Batch mode may be useful for running GDB as a filter, for example to download

and run a program on another computer; to make this more useful, the message

“Program exited normally” is not issued when running in batch mode.

-cd
-cd directory

Run GDB using directory as its working directory instead of the current

directory.

-fullname | -f
-fullname

-f

This option is used when Emacs runs GDB as a subprocess. It tells GDB to

produce the full file name and line number each time a stack frame is displayed

(which includes each time the program stops).

-tty
-tty device

Run using device for your program’s standard input and output.

Editing GDB Commands
GDB provides a history buffer that stores previously executed commands. You

can call any of these commands back to the command line for editing and

reexecution. For example, by pressing the up-arrow key repeatedly, you can

step back through each of the commands that were issued since the beginning

of the session; the down-arrow key steps forward through the history buffer.
8

Running GDB
Expansion of Variable, Function, and Method Names
GDB supports command-line expansion of variable, function and method

names. Type Esc-Esc or Tab to expand the current word on the command

line to a matching name. If there is more than one match, the unique part

is expanded and a beep occurs. To display all possible completions, type

Tab again or type Esc-l.

Sometimes the string you need, while logically a “word,” may contain

parentheses or other characters that GDB normally excludes from its notion

of a word. To allow word completion in this situation, you may enclose

words in single quote marks in GDB commands. Single quotes are

commonly needed in typing the name of a C++ function.

History Substitution in Commands
GDB supports the csh history substitution mechanism. For example, !foo

retrieves the last command you typed that begins with foo. History

substitution is supported across gdb sessions by writing the command history

to a .gdb_history file in the current directory. Automatic creation of this history

file can be disabled with the command:

set history save off

History substitution can be controlled with the set history filename, set history size,
set history save, and set history expansion commands. Also see the section on history

substitution in the csh(1) Rhapsody manual page for more information.

Emacs Command-Line Editing
You can use standard Emacs editing commands to edit the contents of the

command line. All the basic Emacs command sequences work, as well as

the arrow keys. The left and right arrow keys move the cursor along the

command line, and the up and down arrow keys take you backward and

forward through the command history.

The following list of Emacs commands shows the default key combination

associated with each command and a description of what that command

does.
9

1 The GNU Source-Level Debugger
Insertion-Point Motion Commands

Deletion and Restoration Commands

Search Commands

Command Description

Control-B Move back one character

Control-F Move forward one character

Esc b Move back one word

Esc f Move forward one word

Control-A Move to beginning of line

Control-E Move to end of line

Command Description

Control-D Delete current character

Delete or Control-H Delete previous character

Esc d Delete current word

Esc Delete Delete previous word

Control-K Kill forward to end of line

Control-W Kill region

Control-Y Restore previous kill from buffer

Esc Y Rotate the kill ring and yank the new top

Command Description

Control-S Search forward

Control-R Search backward

Esc Exit search mode
10

Running GDB
History Commands

Miscellaneous Commands

Most of these commands are self-explanatory; the ones requiring more

discussion are presented below.

Both delete commands and kill commands erase characters from the

command line. Text that’s erased by a kill key (Control-K or Control-W) is

placed in the “kill buffer.” If you want to restore this text, use the “yank”

command, Control-Y. The yank command inserts the restored text at the

current insertion point. In contrast, text that’s erased by one of the delete

commands (Control-D, Control-H, Esc d, and Esc h) isn’t placed in the kill

buffer, so it can’t be restored by the yank command.

To enter a character that would otherwise be interpreted as an editing

command, you must precede it with Control-Q. For example, to enter

Command Description

Esc < Move to beginning of history file

Esc > Move to end of history file

Control-N Go to next history file entry

Control-P Go to previous history file entry

Control-_ Undo the last edit.

Control-C Interrupt a program or cancel command

Control-L Clear screen

Control-Q Insert a literal character

Esc Tab Insert a Tab

Control-T Transpose characters

Esc T Transpose words

Control-Z Suspend debugger, return to shell

Control-@ Set mark
11

1 The GNU Source-Level Debugger
Control-D and have it interpreted as a literal rather than as the command to

delete the current character, type:

Control-Q Control-D

Editing commands can be repeated by typing Control-U followed by a number

and then the command to be repeated. For example, to delete the last 15

characters typed, enter:

Control-U 15 Control-H

If you want to suspend the operation of GDB temporarily and return to the

command-line prompt, type Control-Z. To return to GDB, type %gdb (a variant

of the shell fg command; for more information, see the Rhapsody manual page

for csh(1)).

Running GDB in a GNU Emacs Buffer
You can use GNU Emacs to run GDB, as well as to view (and edit) the source

files for the program you’re debugging with GDB.

To use the Emacs GDB interface, give the command Esc x gdb in Emacs. Specify

the executable file you want to debug as an argument. This command starts a

GDB process as a subprocess of Emacs, with input and output through a newly

created Emacs buffer. You can run more than one GDB subprocess by giving the

command Esc x gdb more than once.

Note: If your program resides in a directory other than the current directory, it can

be easy to confuse Emacs about the location of the source files, in which case

the auxiliary display buffer does not appear to show your source. To avoid this

problem, either start GDB from the directory where your program resides or

specify an absolute file name when prompted for the Esc x gdb argument.

Running GDB as an Emacs subprocess is just like using GDB in a Shell or

Terminal window, except for two things:

• All terminal input and output goes through the Emacs buffer. This applies

both to GDB commands and their output, and to the input and output done

by the program you’re debugging. You can copy the text of previous

commands and use them again; you can even use parts of the output in this

way (all the facilities of Emacs’s Shell mode are available for this purpose).

• GDB displays source code through Emacs. Each time GDB displays a stack

frame, Emacs automatically finds the source file for that frame and puts an

arrow (=>) at the left margin of the current line.
12

Running GDB
Explicit GDB list or search commands still produce output as usual, but

you’ll probably have no reason to use them.

If you accidentally delete the source-display buffer, an easy way to get it

back is to type the command f in the GDB buffer, to request a frame display;

when you run under Emacs, this recreates the source buffer if necessary to

show you the context of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which

are visiting the source files in the usual way. You can edit the files in these

buffers if you wish; but keep in mind that GDB communicates with Emacs

in terms of the line numbers as they were at compile time. If you add or

delete lines from the text, the line numbers that GDB knows will no longer

correspond properly to the code.

In any source file, the Emacs command Control-X space (gdb-break) tells

GDB to set a breakpoint at the source line the point is on.

You can use these special Emacs commands in the GDB buffer:

Esc s
Execute to another source line, like the GDB step command.

Esc n
Execute to the next source line in this function, skipping all function calls,

like the GDB next command.

Esc i

Execute one instruction, like the GDB stepi command.

Esc x gdb-nexti

Execute to next instruction, like the GDB nexti command.

Esc u

Move up one stack frame (and display that frame’s source file in Emacs),

like the GDB up command.

Esc d
Move down one stack frame (and display that frame’s source file in Emacs),

like the GDB down command. (You can’t use Esc d to delete words in the usual

fashion in the GDB buffer.)
13

1 The GNU Source-Level Debugger
Control-C Control-F

Execute until exit from the selected stack frame, like the GDB finish command.

Esc c

Continue execution of program, like the GDB continue command.

Control-h m

Describe the features of Emacs’s GDB mode.

Control-x &

Insert the number in which the cursor is positioned at the end of the GDB I/O

buffer. For example, if you wish to disassemble code around and address that

was displayed earlier, type disassemble, then move the cursor to the address display

and pick up the argument for disassemble by typing this command.

You can customize further by defining elements of the list gdb-print-command: once

it is defined, you can format or otherwise process numbers picked up by Control-
x & before they are inserted. A number argument to Control-x & indicates that you

wish special formatting and also acts as an index to pick an element of the list.

If the list element isa string, the number to be inserted is formatted using the

Emacs function format: otherwise the number is passed as an argument to the

corresponding list element.

Startup Files

At startup, GDB reads configuration information from startup files in the

following order:

1. /usr/lib/.gdbinit (a NeXT-provided startup file)

2. ~/.gdbinit (your home directory startup file)

3. ./.gdbinit (the current directory’s startup file)

To make your own customizations to GDB, put GDB commands in your home

directory’s .gdbinit startup file. To make further customizations required for any

specific project, put commands in a .gdbinit startup file within that project’s

directory. The startup files aren’t executed if you use the -nx option.

For more information about making customizations to GDB, see the section

“Defining and Executing Sequences of Commands” later in this chapter.
14

GDB Commands for Specifying and Examining Files
GDB Commands for Specifying and Examining Files

Usually you specify the files for GDB to work with by giving arguments

when you invoke GDB. But occasionally it’s necessary to change to a

different file during a GDB session. Or you may run GDB and forget to

specify the files you want to use. In these situations the GDB commands to

specify new files are useful.

While file-specifying commands allow both absolute and relative file names

as arguments, GDB always converts the file name to an absolute one and

remembers it that way.

add-file
add-file [file] [address]

Adds symbols from executable file file to the symbol table.

add-module
add-module address

Add the object file at address address.

core-file
core-file [file]

Specify a core dump file to be used as the contents of memory. Note that

the core dump contains only the writable parts of memory; the read-only

parts must come from the executable file. core-file with no argument specifies

that no core file is to be used.

This command has been superseded by the target core and detach commands.

info files
info files

Print the names of the executable and core dump files currently in use by

GDB, and the file from which symbols were loaded.

kill
kill

Cancel running the program under GDB. This could be used if you want to

debug a core dump instead. GDB ignores any core dump file if it’s actually

running the program, so the kill command is the only sure way to go back to

using the core dump file.
15

1 The GNU Source-Level Debugger
load
load file

Dynamically load file into the running program, and record its symbols for access

from GDB.

path
path path

Add one or more directories to the beginning of the search path for executable

files. $cwd in the path means the current working directory. This path is like the

$PATH shell variable; it is a list of directories, separated by colons. These

directories are searched to find fully linked executable files and separately

compiled object files as needed.

update-files
update-files [file]

Rereads symbols from file file. Use this if a symbol file has change since you

started executing your program.

Running Your Program under GDB

To start your program under GDB, use the run command. The program must

already have been specified with an argument to the gdb command (see the

section “Specifying Files to Debug”); what run does is create an inferior process,

load the program into it, and set it in motion.

The execution of a program is affected by certain types of information it

receives from its superior. GDB provides ways to specify these, which you must

do before starting the program. (You can change them after starting the program,

but such changes don’t affect the program unless you start it over again.) The

types of information are:

Information Description

The arguments You specify the arguments to give the program by passing them as arguments to the run command.
You can also use the set args command.

The environment The program normally inherits its environment from GDB, but you can use the GDB commands set
environment and unset environment to change parts of the environment that will be given to the
program.
16

Running Your Program under GDB
After the run command, the debugger does nothing but wait for your

program to stop. See the section “Stopping and Continuing” for more

information.

If the modification time of your symbol file has changed since the last time

GDB read its symbols, GDB discards its symbol table and reads it again.

When it does this, GDB tries to retain your current breakpoints.

Your Program’s Arguments
You specify the arguments to give the program by passing them as

arguments to the run command. They’re first passed to a shell, which

expands wildcard characters and performs redirection of I/O, and then

passed to the program.

The run command with no arguments uses the same arguments used by the

previous run.

With the set args command you can specify the arguments to be used the

next time the program is run. If set args has no arguments, it means to use no

arguments the next time the program is run. If you’ve run your program

with arguments and want to run it again with no arguments, this is the only

way to do so.

Your Program’s Environment
Your program’s environment consists of a set of environment variables and

their values. Environment variables conventionally record such things as

your user name, your home directory, your terminal type, and your search

path for programs to run. Usually you set up environment variables with the

shell and they’re inherited by all the other programs you run. When

debugging, it can be useful to try running the program with different

environments without having to start the debugger over again.

The working directory The program inherits its working directory from GDB. You can set GDB’s working directory with the
command in GDB.

The standard input and
output

Your program normally uses the same device for standard input and standard output as GDB is usi
You can redirect input and output in the run command line, or you can use the tty command to set
different device for your program.

Information Description
17

1 The GNU Source-Level Debugger
set environment
set environment varname value

Set the environment variable varname to value (for your program only, not for

GDB itself). value may be any string; any interpretation is supplied by your

program itself.

unset environment
unset environment varname

Cancel the variable varname from the environment passed to your program

(thereby making the variable not be defined at all, which is different from giving

the variable an empty value). This doesn’t affect the program until the next run

command.

Your Program’s Working Directory
Each time you start your program with run, the program inherits its working

directory from the current working directory of GDB. GDB’s working directory

is initially whatever it inherited from its superior, but you can specify the

working directory for GDB with the cd command.

The GDB working directory also serves as a default for the commands that

specify files for GDB to operate on. See the section “Specifying Files to

Debug.”

cd
cd dir

Set the working directory for GDB and the program being debugged to dir. The

change doesn’t take effect for the program being debugged until the next time

it is started.

pwd
pwd

Print GDB’s working directory.

Your Program’s Input and Output
By default, the program you run under GDB uses as its source of input and

output the same terminal that GDB uses. GDB switches to its own terminal

modes to interact with you, but it records the terminal modes your program was

using and switches back to them when you continue running your program.
18

Running Your Program under GDB
You can redirect the program’s input and/or output using standard

redirection commands with the run command. For example,

run > outfile

starts the program, diverting its output to the file outfile.

Another way to specify what the program should use as its source of input

and output is with the tty command. This command accepts a file name as

its argument, and causes that file to be the default for future run commands.

For example,

tty /dev/ttyb

causes processes started with subsequent run commands to default to using

the terminal /dev/ttyb as their source of input and output. An explicit

redirection in run overrides the tty command.

When you use the tty command or redirect input in the run command, the

input for your program comes from the specified file, but the input for GDB

still comes from your terminal. The program’s controlling terminal is your

terminal, not the terminal that the program is reading from; so if you want

to type Control-C to stop the program, you must type it on your (GDB’s)

terminal. Control-C typed on the program’s terminal is available to the

program as ordinary input.

info terminal
info terminal

Displays information recorded by GDB about the terminal modes your

program is using.

Debugging an Already Running Process
The Mach operating system allows GDB to begin debugging an already

running process that was started outside GDB. To do this you must use the

attach command instead of the run command.

The attach command requires one argument, which is the process ID of the

process you want to debug.

The first thing GDB does after arranging to debug the process is to stop it.

You can examine and modify an attached process with all the GDB

commands that are ordinarily available when you start processes with run.

You can insert breakpoints; you can step and continue; you can modify

storage. If you would rather the process continue running, use the cont
(continue) command after attaching.
19

1 The GNU Source-Level Debugger
When you’re finished debugging the attached process, you can use the detach

command to detach the debugger from the attached process and resume

execution of the process (or you can use Control-C to interrupt the process).

After you give the detach command, that process and GDB become completely

independent, and you’re ready to attach another process or start one with run.

If you exit GDB or use the run command while you have an attached process, you

kill that process. You’ll be asked for confirmation if you try to do either of these

things.

attach
attach [arg]

Attach to a process or file outside of GDB. This command attaches to another

target, of the same type as your last target command (info files will show your target

stack). The command may take as argument a process id or a device file. (The

usual way to find out the process ID of the process is with the ps utility.) For a

process ID, you must have permission to send the process a signal, and it must

have the same effective uid as the debugger. When using attach, you should use

the file command to specify the program running in the process, and to load its

symbol table.

detach
detach

Detach a process or file previously attached. If a process, it is no longer traced,

and it continues its execution. If you were debugging a file, the file is closed and

GDB no longer accesses it.

The following commands are for connecting to a target machine or process.

target
target [args]

Connect to a target machine or process. The first argument is the type or

protocol of the target machine. Remaining arguments are interpreted by the

target protocol. For more information on the arguments for a particular protocol,

type help target followed by the protocol name.

target child
target child

Child process (started by the run command).
20

Stopping and Continuing
target core
target core file

Use a core file as a target. Specify the file name of the core file.

The following commands are for kernel debugging.

kattach
kattach hostname

Attach to a kernel on a remote host.

kreboot
kreboot args

Reboot an attached kernel.

Stopping and Continuing

When you run a program normally, it runs until exiting. The purpose of

using a debugger is so that you can stop it before that point, or so that if the

program runs into trouble you can find out why.

Signals
A signal is an asynchronous event that can happen in a program. The

operating system defines the possible kinds of signals, and gives each kind

a name and a number. For example, SIGINT is the signal a program gets

when you type Control-C; SIGSEGV is the signal a program gets from

referencing a place in memory far away from all the areas in use; SIGALRM

occurs when the alarm clock timer goes off (which happens only if the

program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of

the program. Others, such as SIGSEGV, indicate errors; these signals are

fatal (that is, they kill the program immediately) if the program hasn’t

specified in advance some other way to handle the signal. SIGINT doesn’t

indicate an error in the program, but it’s normally fatal, so it can carry out the

purpose of Control-C: to kill the program.

GDB can detect any occurrence of a signal in the program running under

GDB’s control. You can tell GDB in advance what to do for each kind of

signal.
21

1 The GNU Source-Level Debugger
Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as

not to interfere with their role in the functioning of the program) but to stop the

program immediately whenever an error signal happens. You can change these

settings with the handle command. You must specify which signal you’re talking

about with its number.

When a signal has been set to stop the program, the program can’t see the signal

until you continue. It will see the signal then, if pass is in effect for the signal in

question at that time. In other words, after GDB reports a signal, you can use the

handle command with pass or nopass to control whether that signal will be seen by

the program when you later continue it.

You can also use the signal command to prevent the program from seeing a signal,

to cause it to see a signal it normally wouldn’t see, or to give it any signal at any

time. See the section “Continuing” below.

info signals
info signals [signalnum]

Print a table of all the kinds of signals and how GDB has been told to handle

each one. You can use this to see the signal numbers of all the defined types

of signals. Specify a signal number in order to print information about that signal

only.

handle
handle signalnum keywords

Change the way GDB handles signal signalnum. The keywords say what change

to make.

The keywords allowed by the handle command can be abbreviated. Their full

names are:

Keyword Description

stop GDB should stop the program when this signal happens. This implies the print keyword as well.

print GDB should print a message when this signal happens.

nostop GDB shouldn’t stop the program when this signal happens. It may still print a message telling
you that the signal has come in.

noprint GDB shouldn’t mention the occurrence of the signal at all. This implies the nostop keyword as
well.

pass GDB should allow the program to see this signal; the program will be able to handle the signal,
or may be terminated if the signal is fatal and not handled.

nopass GDB shouldn’t allow the program to see this signal.
22

Stopping and Continuing
Breakpoints
A breakpoint makes your program stop whenever a certain point in the

program is reached. You set breakpoints explicitly with GDB commands,

specifying the place where the program should stop by line number,

function name, or exact address in the program. You can add various other

conditions to control whether the program will stop.

You can arrange to have values from your program displayed automatically

whenever GDB stops at a breakpoint.

Each breakpoint is assigned a number when it’s created; these numbers are

successive integers starting with 1. In many of the commands for controlling

various features of breakpoints, you use the breakpoint number to say

which breakpoint you want to change. Each breakpoint may be “enabled”

or “disabled;” if disabled, it has no effect on the program until you enable

it again.

The info breakpoints command prints a list of all breakpoints set and not

cleared, showing their numbers, their location in the program, and any

special features in use for them. Disabled breakpoints are included in the

list, but marked as disabled. info breakpoints with a breakpoint number as its

argument lists only that breakpoint. The convenience variable $_ and the

default address for the x command are set to the address of the last

breakpoint listed (see the section “Examining Memory”). The info breakpoints
command can be abbreviated as info break.

Breakpoints can’t be used in a program if any other process is running that

program. Attempting to run or continue the program with a breakpoint in

this case will cause GDB to stop it. When this happens, you must remove

or disable the breakpoints, and then continue.

Setting Breakpoints
Breakpoints are set with the break command (abbreviated b). There are

several ways to specify where the breakpoint should go:

GDB allows you to set any number of breakpoints at the same place in the

program. This can be useful when the breakpoints are conditional (see the

section “Break Conditions”).
23

1 The GNU Source-Level Debugger
break
break function

Set a breakpoint at entry to function. You can also set a breakpoint at the entry to

a method, as described in the section “Method Names in Commands.”

break linenum

Set a breakpoint at linenum in the current source file (the last file whose source

text was printed). This breakpoint will stop the program just before it executes

any of the code from that line.

break +offset

break -offset

Set a breakpoint some number of lines forward or back from the position at

which execution stopped in the currently selected frame.

break file :linenum

Set a breakpoint at linenum in file.

break file :function

Set a breakpoint at entry to function found in file. Specifying a file name as well

as a function name is superfluous except when multiple files contain identically

named functions. This doesn’t work for Objective-C methods; see the section

“Method Names in Commands” for information on setting breakpoints for

methods.

break *address

Set a breakpoint at address. You can use this to set breakpoints in parts of the

program that don’t have debugging information or source files.

break

Set a breakpoint at the next instruction to be executed in the selected stack

frame (see the section “Examining the Stack”). In any selected frame but the

innermost, this makes your program stop as soon as control returns to that frame.

This is similar to the effect of the finish command in the frame inside of the

selected frame—except that finish does not leave an active breakpoint. If you use

break without an argument in the innermost frame, GDB stops the next time it

reaches the current location; this may be useful inside loops.

GDB normally ignores breakpoints when it resumes execution, until at least one

instruction has been executed. If it did not do this, you would be unable to

proceed past a breakpoint without first disabling the breakpoint. This rule

applies whether or not the breakpoint already existed when your program

stopped.
24

Stopping and Continuing
break if
break [args] if cond

Set a breakpoint with condition cond; evaluate the expression cond each

time the breakpoint is reached, and stop only if the value is nonzero. args
stands for one of the possible arguments described above (or no argument)

specifying where to break. See the section “Break Conditions” for more

information.

tbreak
tbreak [args]

Set a breakpoint enabled only for one stop. args are the same as in the break

command, and the breakpoint is set in the same way, but the breakpoint is

automatically deleted the first time it’s hit.

rbreak regex
rbreak regex

Set breakpoints on all functions matching the regular expression regex. This

command sets an unconditional breakpoint on all matches, printing a list of

all breakpoints it set. Once these breakpoints are set, they are treated just

like the breakpoints set with the break command. You can delete them,

disable them, or make them conditional the same way as any other

breakpoint.

When debugging C++ programs, rbreak is useful for setting breakpoints on

overloaded functions that are not members of any special classes.

future-break
future-break function

Set a breakpoint at function, and defer the breakpoint if function’s address

can’t be resolved. Use this command to set breakpoints in code that has not

been loaded yet (for example, code in a bundle or dynamically shared

library). As files are loaded, GDB checks their symbols to see if any deferred

breakpoints can be resolved. If a breakpoint can be resolved, it becomes

enabled. If a future breakpoint can never be resolved, it stays in the

breakpoint list until you explicitly delete it. Note that if you spell the

function name wrong, the breakpoint will never be resolved and you will

receive no error message. This command only applies to the Mach version

of GDB.

Watchpoints
A watchpoint is a special breakpoint that stops your program when the value

of an expression changes. You must use a different command to set
25

1 The GNU Source-Level Debugger
watchpoints but aside from that, you can manage a watchpoint like any other

breakpoint: you enable, disable, and delete both breakpoints and watchpoints

using the same commands.

You can use a watchpoint to stop execution whenever the value of an expression

changes, without having to predict a particular place where this may happen.

Watchpoints currently execute two orders of magnitude more slowly that other

breakpoints, but this can be well worth it to catch errors where you have no clue

what part of your program is the culprit.

watch
watch expr

Set a watchpoint for this expression.

info watchpoints
info watchpoints

Print a list of watchpoints and breakpoints; it is the same as info break.

Warning: In multithreaded programs, watchpoints have only limited usefulness.

With the current watchpoint implementation, GDB can only watch the value of

an expression in a single thread. If you are confident that the expression can only

change due to the current thread’s activity (and if you are also confident that no

other thread can become current), then you can use watchpoints as usual.

However, GDB may not notice when a non-current thread’s activity changes the

expression.

Clearing Breakpoints
It’s often necessary to eliminate a breakpoint once it has done its job and you no

longer want the program to stop there. This is called clearing (or deleting) the

breakpoint. A breakpoint that has been cleared no longer exists in any sense.

With the clear command you can clear breakpoints according to where they are

in the program. With the delete command you can clear individual breakpoints by

specifying their breakpoint numbers.

It isn’t necessary to clear a breakpoint to proceed past it. GDB automatically

ignores breakpoints in the first instruction to be executed when you continue

execution at the same address where the program stopped.
26

Stopping and Continuing
clear
clear

Clear any breakpoints at the next instruction to be executed in the selected

stack frame (see the section “Selecting a Frame”). When the innermost

frame is selected, this is a good way to clear a breakpoint that the program

just stopped at.

clear function

clear file :function

Clear any breakpoints set at entry to the function.

clear linenum

clear file :linenum

Clear any breakpoints set at or within the code of the specified line.

delete [breakpoints] [bnum ...]
delete [breakpoints] [bnum ...]

Clear the breakpoints whose numbers are specified as arguments. If no

argument is specified, delete all breakpoints (GDB asks confirmation

unless you have set confirm off). A deleted breakpoint is forgotten completely.

Disabling Breakpoints
Rather than clearing a breakpoint, you might prefer to disable it. This

makes the breakpoint inoperative as if it had been cleared, but remembers

the information about the breakpoint so that you can enable it again later.

You enable and disable breakpoints with the enable and disable commands,

specifying one or more breakpoint numbers as arguments. Use info breakpoints
to print a list of breakpoints if you don’t know which breakpoint numbers

to use.

A breakpoint can have any of four states of enablement:

• Disabled. The breakpoint has no effect on the program.

• Enabled. The breakpoint will stop the program. A breakpoint made

with the break command starts out in this state.

• Enabled once. The breakpoint will stop the program, but when it does

so it will become disabled.

• Enabled for deletion. The breakpoint will stop the program, but

immediately afterward it is deleted permanently. A breakpoint made

with the tbreak command starts out in this state.
27

1 The GNU Source-Level Debugger
You can enable and disable breakpoints with the following commands:

enable
enable [breakpoints] bnum ...

Enable the specified breakpoints (or all defined breakpoints). They become

effective once again in stopping the program, until you specify otherwise.

enable once
enable [breakpoints] once bnum ...

Enable the specified breakpoints temporarily. Each will remain enabled only

until the next time it stops the program (unless you use one of these commands

to specify a different state before that time comes). Also see the tbreak command,

which sets a breakpoint and enables it once.

enable delete
enable [breakpoints] delete bnum ...

Enable the specified breakpoints to work once and then die. Each of the

breakpoints will be deleted the next time it stops the program (unless you use

one of these commands to specify a different state before that time comes).

disable
disable [breakpoints] bnum ...

Disable the specified breakpoints. A disabled breakpoint has no effect but isn’t

forgotten. All options such as ignore counts, conditions, and commands are

remembered in case the breakpoint is enabled again later.

Aside from the automatic disablement or deletion of a breakpoint when it stops

the program, which happens only in certain states, the state of enablement of a

breakpoint changes only when one of the above commands is used (except if the

breakpoint is set with tbreak).

Break Conditions
The simplest sort of breakpoint breaks every time the program reaches a

specified place. You can also specify a condition for a breakpoint. A condition is

simply a Boolean expression. A breakpoint with a condition evaluates the

expression each time the program reaches it, and the program stops only if the

condition is true.

This is the converse of using assertions for program validation; in that situation,

you want to stop when the assertion is violated—that is, when the condition is

false. In C, if you want to test an assertion expressed by the condition assert, you

should set the condition !assert on the appropriate breakpoint.
28

Stopping and Continuing
Break conditions may have side effects, and may even call functions in your

program. This can be useful, for example, to activate functions that log

program process or to use your own print functions to format special data

structure. The effects are completely predictable unless there’s another

enabled breakpoint at the same address. (In that case, GDB might see the

other breakpoint first and stop the program without checking the condition

of this one.) Note that breakpoint commands are usually more convenient

and flexible than break conditions for the purpose of performing side effects

when a breakpoint is reached (see the section “Executing Commands at a

Breakpoint”).

Break conditions can be specified when a breakpoint is set, by using if in the

arguments to the break command (see the section “Setting Breakpoints”).

They can also be changed at any time with the condition command:

condition
condition bnum expression

Specify expression as the break condition for breakpoint number bnum. From

now on, this breakpoint will stop the program only if the value of expression

is true (nonzero, in C). GDB checks expression immediately for syntactic

correctness and to determine whether symbols in it have referents in the

context of your breakpoint. GDB does not actually evaluate expression at

the time the condition command is given, however.

condition bnum

Remove the condition from breakpoint number bnum. It becomes an

ordinary unconditional breakpoint.

Ignoring breakpoints
A special feature is provided for one kind of condition: to prevent the

breakpoint from doing anything until it has been reached a certain number

of times. This is done with the “ignore count” of the breakpoint. When the

program reaches a breakpoint whose ignore count is positive, then instead

of stopping, it just decrements the ignore count by 1 and continues.

If a breakpoint has a positive ignore count and a condition, the condition

isn’t checked. Once the ignore count reaches 0, the condition will start to be

checked.

You could achieve the effect of the ignore count with a condition such as

$foo--<= 0 using a debugger convenience variable that’s decremented each

time. That’s why the ignore count is considered a special case of a condition.

See the section “Convenience Variables.”
29

1 The GNU Source-Level Debugger
ignore
ignore bnum count

Set the ignore count of breakpoint number bnum to count. The next count times

the breakpoint is reached, it won’t stop.

To make the breakpoint stop the next time it’s reached, specify a count of 0.

continue
continue n

Continue execution of the program, setting the ignore count of the breakpoint

that the program stopped at to n minus 1. Continuing through the breakpoint

doesn’t itself count as one of n. Thus, the program won’t stop at this breakpoint

until the nth time it’s hit.

This command is allowed only when the program stopped due to a breakpoint.

At other times, the argument to cont is ignored.

Executing Commands at a Breakpoint
With the commands bnum command, you can give the breakpoint bnum a series of

commands to execute when the program stops due to that breakpoint. For

example, you might want to print the values of certain expressions, or enable

other breakpoints. The commands themselves appear on the following lines. if
and while statements are allowed inside the commands list. Type a line containing

just end to terminate the commands.

Breakpoint commands can be used to start up the program again. Simply use the

continue command, or step, or any other command that resumes execution.

However, any remaining breakpoint commands are ignored. When the program

stops again, GDB will act according to why that stop took place.

If the first command specified is silent, the usual message about stopping at a

breakpoint isn’t printed. This may be desirable for breakpoints that are to print

a specific message and then continue. If the remaining commands also print

nothing, you’ll see no sign that the breakpoint was reached at all. silent isn’t really

a command; it’s meaningful only at the beginning of the commands for a

breakpoint.

The commands echo, output, and printf, which allow you to print precisely

controlled output, are often useful in silent breakpoints. See the section

“Commands for Controlled Output.”
30

Stopping and Continuing
Here’s how you could use breakpoint commands to print the value of x at

entry to foo whenever it’s positive. We assume that the newly created

breakpoint is number 4; break will print the number that’s assigned.

break foo if x>0
commands 4
silent
printf "x is %d\n",x
cont
end

or

break foo
commands 4
silent
if (x > 0)
 printf "x is %d\n",x
 end
cont
end

One application for breakpoint commands is to correct one bug so you can

test another. Put a breakpoint just after the erroneous line of code, give it a

condition to detect the case in which something erroneous has been done,

and give it commands to assign correct values to any variables that need

them. End with the cont command so that the program doesn’t stop, and

start with the silent command so that no output is produced. Here’s an

example:

break 403
commands 5
silent
set x = y + 4
cont
end

One deficiency in the operation of breakpoints that continue automatically

appears when your program uses raw mode for the terminal. GDB reverts

to its own terminal modes (not raw) before executing commands, and then

must switch back to raw mode when your program is continued. This causes

any pending terminal input to be lost.

You could get around this problem by putting the actions in the breakpoint

condition instead of in commands. For example,

condition 5 (x = y + 4), 0

is a condition expression that will change x as needed, then always have the

value 0 so the program won’t stop. Loss of input is avoided here because

break conditions are evaluated without changing the terminal modes.
31

1 The GNU Source-Level Debugger
When you want to have nontrivial conditions for performing the side effects, the

operators &&, ||, and ?: may be useful.

commands
commands bnum

Specify commands for breakpoint number bnum. The commands themselves

appear on the following lines. if and while statements are allowed inside the

commands list. Type a line containing just end to terminate the commands.

To remove all commands from a breakpoint, use the command commands and

follow it immediately by end; that is, give no commands.

Breakpoint Menus
In Objective-C and C++, classes can use the same names for their methods or

member functions. This is called overloading. When a function name or method

name is overloaded, break function is not enough to tell GDB where you want a

breakpoint. In this instance, GDB offers you a menu of numbered choices for

different possible breakpoints and waits for your selection.

Continuing
After your program stops, most likely you’ll want it to run some more if the bug

you’re looking for hasn’t happened yet. You can do this with the continue

command:

If the program stopped at a breakpoint, the place to continue running is the

address of the breakpoint. You might expect that continuing would just stop at

the same breakpoint immediately. In fact, continue takes special care to prevent

that from happening. You don’t need to clear the breakpoint to proceed through

it after stopping at it.

You can, however, specify an ignore count for the breakpoint that the program

stopped at, by means of an argument to the continue command. See the section

“Break Conditions” above.

If the program stopped because of a signal other than SIGINT or SIGTRAP,

continuing will cause the program to see that signal. You may not want this to

happen. For example, if the program stopped due to some sort of memory

reference error, you might store correct values into the erroneous variables and

continue, hoping to see more execution; but the program would probably

terminate immediately as a result of the fatal signal once it sees the signal. To

prevent this, you can continue with signal 0. You can also act in advance to prevent

the program from seeing certain kinds of signals, using the handle command (see

the section “Signals”).
32

Stopping and Continuing
You can use fg as a synonym for continue.

continue
continue

Continue running the program at the place where it stopped.

Stepping
Stepping means setting your program in motion for a limited time, so that

control will return automatically to the debugger after one line of code or

one machine instruction. Breakpoints are active during stepping and the

program will stop for them even if it hasn’t gone as far as the stepping

command specifies.

A typical technique for using stepping is to put a breakpoint at the

beginning of the function or the section of the program in which a problem

is believed to lie, and then step through the suspect area examining

interesting variables until the problem happens.

The cont command can be used after stepping to resume execution until the

next breakpoint or signal.

step
step [count]

Continue running the program until control reaches a different line, then

stop it and return to the debugger. If an argument is specified, proceed as in

step, but do so count times. If a breakpoint or a signal not related to stepping

is reached before count steps, stepping stops right away. You can abbreviate

this command as s.

next
next [count]

Similar to step, but any function calls appearing within the line of code are

executed without stopping. Execution stops when control reaches a

different line of code at the stack level which was executing when the next
command was given. An argument is a repeat count, as in step. You can

abbreviate this command as n.

finish
finish

Continue running until just after the selected stack frame returns (or until

there’s some other reason to stop, such as a fatal signal or a breakpoint).

Upon return, the value returned is printed and put in the value history.
33

1 The GNU Source-Level Debugger
Contrast this with the return command, described in the section “Returning from

a Function.”

until
until

Continue running until a source line past the current line in the current stack

frame is reached. This command is used to avoid single stepping through a loop

more than once. It is like the next command, except that when until encounters a

jump, it automatically continues execution until the program counter is greater

than the address of the jump. This means that when you reach the end of a loop

after single stepping through it, until makes your program continue execution

until it exits the loop. In contrast, a next command at the end of a loop simply

steps back to the beginning of the loop.

until linenum

Continue running until line number linenum is reached or the current stack

frame returns. This is equivalent to setting a breakpoint at linenum, executing a

finish command, and deleting the breakpoint. This form of the command uses

breakpoints and hence is quicker than until without an argument.

stepi
stepi [count]

Execute one machine instruction, then stop and return to the debugger. It’s

often useful to do display/i $pc when stepping by machine instructions. This will

cause the next instruction to be executed to be displayed automatically at each

stop (see the section “Automatic Display”). An argument is a repeat count, as in

step. You can abbreviate this command as si.

nexti
nexti [count]

Proceed one machine instruction, but if it’s a subroutine call, proceed until the

subroutine returns. An argument is a repeat count, as in next. You can abbreviate

this command as ni.

Examining the Stack

When your program has stopped, the first thing you need to know is where it

stopped and how it got there.

Each time your program performs a function call, the information about where

in the program the call was made from is saved in a block of data called a stack
34

Examining the Stack
frame. The frame also contains the arguments of the call and the local

variables of the function that was called. All the stack frames are allocated

in a region of memory called the call stack. When your program stops, the

GDB commands for examining the stack allow you to see all this

information.

Stack Frames
The call stack is divided into contiguous pieces called frames; each frame is

the data associated with one call to one function. The frame contains the

arguments given to the function, the function’s local variables, and the

address at which the function is executing.

When your program is started, the stack has only one frame, that of the

function main(). This is called the initial frame, or the outermost frame. Each

time a function is called, a new frame is made. Each time a function returns,

the frame for that function invocation is eliminated. If a function is

recursive, there can be many frames for the same function. The frame for

the function in which execution is actually occurring is called the innermost

frame. This is the most recently created of all the stack frames that still

exist.

Inside your program, stack frames are identified by their addresses. A stack

frame consists of many bytes, each of which has its own address; each kind

of computer has a convention for choosing the address of one of those bytes

to serve as the address of the frame. Usually this address is kept in a register

called the frame pointer register while execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with 0 for the

innermost frame, 1 for the frame that called it, and so on upward. These

numbers don’t really exist in your program; they simply give you a way of

talking about stack frames in GDB commands.

At any given time, one of the stack frames is selected by GDB; many GDB

commands refer implicitly to this selected frame. In particular, whenever

you ask GDB for the value of a variable in the program, the value is found

in the selected frame. You can select any frame using the frame, up, and down

commands; subsequent commands will operate on that frame.

When the program stops, GDB automatically selects the currently

executing frame and describes it briefly, as the frame command does (see the

section “Information about a Frame”).

Some compilers provide a way to compile functions so that they operate

without stack frames. (For example, the GCC option -fomit-frame-pointer
35

1 The GNU Source-Level Debugger
generates functions without a frame.) This is occasionally done with heavily

used library functions to save the frame setup time. GDB has limited facilities

for dealing with these function invocations. If the innermost function invocation

has no stack frame, GDB nevertheless regards it as though it had a separate

frame, which is numbered zero as usual, allowing correct tracing of the function

call chain. However, GDB has no provision for frameless functions elsewhere in

the stack.

Backtraces
A backtrace is a summary of how the program got where it is. It shows one line

per frame, for many frames, starting with the currently executing frame (frame

0) followed by its caller (frame 1), and on up the stack.

Each line in a backtrace shows the frame number, the program counter, the

function and its arguments, and the source file name and line number (if

known). For example:

(gdb) backtrace
#0 0x3eb6 in fflush ()
#1 0x24b0 in _fwalk ()
#2 0x2500 in _cleanup ()
#3 0x2312 in exit ()

backtrace [n]
Print a backtrace of the entire stack: one line per frame for all frames in the

stack. You can stop the backtrace at any time by typing the system interrupt

character, normally Control-C. With a positive argument, the command prints

the innermost n frames; with a negative argument, it prints the outermost n

frames. You can abbreviate this command as bt. Two aliases for this command are

where and info stack.

Selecting a Frame
Most commands for examining the stack and other data in the program work on

whichever stack frame is selected at the moment. Below are the commands for

selecting a stack frame.

All these commands (except up-silently and down-silently) end by printing some

information about the frame that has been selected: the frame number, the

function name, the arguments, the source file and line number of execution in

that frame, and the text of that source line. For example:

#3 main (argc=3, argv=??, env=??) at main.c, line 67
67 read_input_file (argv[i]);
36

Examining the Stack
After such a printout, the list command with no arguments will print ten

lines centered on the point of execution in the frame. See the section

“Printing Source Lines.”

frame
frame n

Select and print frame number n. Recall that frame 0 is the innermost

(currently executing) frame, frame 1 is the frame that called the innermost

one, and so on. The highest-numbered frame is main’s frame.

frame addr

Select and print the frame at address addr. This is useful mainly if the

chaining of stack frames has been damaged by a bug, making it impossible

for GDB to assign numbers properly to all frames. In addition, this can be

useful if the program has multiple stacks and switches between them.

up
up n

Select and print the frame n frames up from the frame previously selected.

For positive numbers n, this advances toward the outermost frame, to

higher frame numbers, to frames that have existed longer. n defaults to 1.

up-silently n
up-silently n

Same as the up command, but doesn’t print anything (this is useful in

command scripts).

down n
down n

Select and print the frame n frames down from the frame previously

selected. For positive numbers n, this advances toward the innermost

frame, to lower frame numbers, to frames that were created more recently.

n defaults to 1.

down-silently
down-silently n

Same as the down command, but doesn’t print anything (this is useful in

command scripts).
37

1 The GNU Source-Level Debugger
Information about a Frame
There are several other commands to print information about the selected stack

frame.

frame
frame [n]

This command prints a brief description of the selected stack frame. With an

argument, this command is used to select a stack frame (the argument can be a

stack frame number or the address of a frame); with no argument, it doesn’t

change which frame is selected, but still prints the same information. You can

abbreviate this command as f.

info frame
info frame

This command prints a verbose description of the selected stack frame,

including the address of the frame, the addresses of the next frame down (called

by this frame) and the next frame up (caller of this frame), the address of the

frame’s arguments, the program counter saved in it (the address of execution in

the caller frame), and which registers were saved in the frame. The verbose

description is useful when something has gone wrong that has made the stack

format fail to fit the usual conventions.

info frame addr
info frame addr

Print a verbose description of the frame at address addr, without selecting that

frame. The selected frame remains unchanged by this command.

info args
info args

Print the arguments of the selected frame, each on a separate line.

info locals
info locals

Print the local variables of the selected frame, each on a separate line.

Examining Source Files

GDB knows which source files your program was compiled from, and can print

parts of their text. When your program stops, GDB spontaneously prints the line
38

Examining Source Files
it stopped in. Likewise, when you select a stack frame (see the section

“Selecting a Frame”), GDB prints the line in which execution in that frame

has stopped. You can also print parts of source files by explicit command.

Viewing Files in Project Builder
To be able to dynamically open and view source files in Project Builder, use the view command.

view
view [host]

Cause source files to be viewed in Project Builder, either on the local

machine or on a remote host.

unview
unview

Cause source files not to be viewed in Project Builder.

Printing Source Lines
To print lines from a source file, use the list command (abbreviated l). There

are several ways to specify what part of the file you want to print.

Here are the most commonly used forms of the list command:

list
list linenum

Print lines centered around linenum in the current source file.

list function

Print lines centered around the beginning of function.

list

Print more lines. If the last lines printed were printed with a list command,

this prints lines following the last lines printed; however, if the last line

printed was a solitary line printed as part of displaying a stack frame (see the

section “Examining the Stack”), this prints lines centered around that line.

You can repeat a list command by pressing the Return key; however, any

argument that was used is discarded, so this is equivalent to typing simply

list. An exception is made for an argument of -; that argument is preserved in

repetition so that each repetition moves up in the file.

In general, the list command expects you to supply zero, one, or two

linespecs. Linespecs specify source lines; there are several ways of writing
39

1 The GNU Source-Level Debugger
them but the effect is always to specify some source line. The possible

arguments for list are as follows:

Here are the possible ways to specify a value for linespec:

By default, GDB prints ten source lines with any of these forms of the list
command. You can change this using set listsize:

set listsize
set listsize count

Make the list command display count source lines (unless the list argument

explicitly specifies some other number).

show listsize
show listsize

Display the number of lines that list prints.

Command Description

list ,last Print lines ending with last.

list first, Print lines starting with first.

list + Print lines just after the lines last printed.

list − Print lines just before the lines last printed.

list linespec Print lines centered around the line specified by linespec (described below).

list first,last Print lines from first to last. Both arguments are linespecs.

Value Description

linenum Specifies line linenum of the current source file. When a list command has two linespecs, this
refers to the same source file as the first linespec.

+offset Specifies the line offset lines after the last line printed. When used as the second linespec in a
list command, this specifies the line offset lines down from the first linespec.

−offset Specifies the line offset lines before the last line printed.

file:linenum Specifies line linenum in the source file file.

function Specifies the line of the left brace ({) that begins the body of function.

file:function Specifies the line of the left brace ({) that begins the body of function in file. The file name is
needed with a function name only for disambiguating identically named functions in different
source files.

*addr Specifies the line containing the program address addr. addr may be any expression.
40

Examining Source Files
The info line command is used to map source lines to program addresses:

info line
info line [line]

Print the starting and ending addresses of the compiled code for source line

line, which can be specified as:

With no argument, the command describes the last source line that was

listed.

The default address for the x command is changed to the starting address of

the line, so that x/i is sufficient to begin examining the machine code (see

the section “Examining Memory”). Also, this address is saved as the value

of the convenience variable $_ (see the section “Convenience Variables”).

Searching Source Files
The forward-search command (or its alias, search) and the reverse-search command

are useful when you want to locate text within the current source file.

forward-search
forward-search regexp

search regexp

This command checks each line, starting with the one following the last

line listed, for a match for regexp, which must be a regular expression (see

the Rhapsody manual page for ed). It lists the line that’s found. You can

abbreviate this command as fo.

reverse-search
reverse-search regexp

The command checks each line, starting with the one before the last line

listed and going backward, for a match for regexp. It lists the line that’s

found. You can abbreviate this command as rev.

Option Description

linenum list around that line in current file,

file:linenum, list around that line in that file,

function, list around beginning of that function, or

file:function, distinguish among like-named static functions.
41

1 The GNU Source-Level Debugger
Specifying Source Directories
Executable programs sometimes don’t record the directories of the source files

they were compiled from, just the names. Even when they do, the directories

could be moved between the compilation and your debugging session. GDB

remembers a list of pathnames of directories in which it will search for source

files; this list is called the source path (note that GDB doesn’t use the

environment variable PATH to search for source files). Each time GDB wants a

source file, it tries each directory in the list, starting from the beginning, until it

finds a file with the desired name.

When you start GDB, its source path is set to $cdir:$cwd (the current working

directory, and the directory in which the source file was compiled into object

code). To add other directories, use the directory command:

directory
directory dirname

Add directory with the pathname dirname to the beginning of the source path.

Several directory names may be given to this command separated by a colon or

whitespace. You may specify a directory that is already in the source path; this

move it forward so GDB searches it sooner.

directory

Reset the source path to $cdir:$cwd, the default.This requires confirmation.

Examining Data

The most common way to examine data in your program is with the print
command (abbreviated p) or its synonym inspect:

Another way to examine data is with the x command (see “Examining Memory”

below). It examines data in memory at a specified address and prints it in a

specified format.

If you are interested in information about types or about how the fields of a

struct or class are declared, use the ptype command rather than print.

print
print exp

This command evaluates and prints the value of any valid expression of the

language the program is written in (currently, C, C++, and Objective-C).
42

Examining Data
Variables accessible are those of the lexical environment of the selected

stack frame, plus all those whose scope is global or an entire file.

exp is any valid expression, and the value of exp is printed in a format

appropriate to its data type. To print data in another format, you can cast exp

to the desired type or use the x command.

$num gets previous value number num. $ and $$ are the last two values. $$num

refers to the num’th value back from the last one. Names starting with $ refer

to registers (with the values they would have if the program were to return

to the stack frame now selected, restoring all registers saved by frames

farther in) or else to debugger convenience variables (any such name that

isn’t a known register). Use assignment expressions to give values to

convenience variables.

{type}adrexp refers to a datum of data type type, located at address adrexp. @

is a binary operator for treating consecutive data objects anywhere in

memory as an array. foo@num gives an array whose first element is foo, whose

second element is stored in the space following where foo is stored, etc. foo

must be an expression whose value resides in memory.

exp may be preceded with /fmt, where fmt is a format letter but no count or

size letter (see the description of the x command).

print-object
print-object object

Print object by sending description to it. object must be an Objective-C object.

You can abbreviate this command as po.

set
set exp

The set command works like the print command, except that the expression’s

value isn’t displayed. This is useful for modifying the state of your program.

For example:

set x=3
set close_all_files()

Expressions
Many different GDB commands accept an expression and compute its

value. Any kind of constant, variable, or operator defined by the

programming language you’re using is legal in an expression in GDB. This

includes conditional expressions, function calls, casts, and string constants.
43

1 The GNU Source-Level Debugger
It unfortunately does not include symbols defined by preprocessor #define

constants.

GDB supports three kinds of operators in addition to those of programming

languages:

Program Variables
The most common kind of expression to use is the name of a variable in your

program.

Variables in expressions are understood in the selected stack frame (see the

section “Selecting a Frame”); they must be either global (or static) or visible

according to the scope rules of the programming language from the point of

execution in that frame. This means that in the function

foo (a)
 int a;
{
 bar (a);
 {
 int b = test ();
 bar (b);
 }
}

the variable a is usable whenever the program is executing within the function

foo(), but the variable b is usable only while the program is executing inside the

block in which b is declared.

There is an exception: you can refer to a variable or function whose scope is a

single source file even if the current execution point is not in this file. But it is

possible to have more than one such variable or function with the same name (in

different source files). If that happens, referring to that name has unpredictable

Operator Description

file-or-function::variable-
name

:: allows you to specify a variable in terms of the file or function it’s defined in.

@ @ is a binary operator for treating parts of memory as arrays. See the section “Artificial Arrays”
below for more information.

{type} addr Refers to an object of type type stored at address addr in memory. addr may be any expression
whose value is an integer or pointer (but parentheses are required around nonunary operators,
just as in a cast). This construct is allowed no matter what kind of data is officially supposed to
reside at addr.
44

Examining Data
effects. If you wish, you can specify a static variable in a particular function

or file, using the colon-colon notation:

file::variable
function::variable

Here file or function is the name of the context for the static variable. In the

case of file names, you can use quotes to make sure GDB parses the file

name as a single word—for example, to print a global value of x defined in

f2.c:

(gdb) p 'f2.c'::x

This use of colon-colon is very rarely in conflict with the very similar use of

the same notation in C++. GDB also supports use of the C++ scope

resolution operator in GDB expressions.

Warning: Occasionally, a local variable may appear to have the wrong value at

certain points in a function—just after entry to a new scope, and just before

exit. You may see this problem when you are stepping by machine

instructions. This is because on most machines it takes more than one

instruction to set up a stack frame (including local variable definitions); if

you are stepping by machine instructions, variables may appear to have the

wrong values until the stack frame is completely built. On exit, it usually

also takes more than one machine instruction to destroy a stack frame; after

you begin stepping through that group of instructions, local variable

definitions may be gone.

Artificial Arrays
It’s often useful to print out several successive objects of the same type in

memory (for example, a section of an array, or an array of dynamically

determined size for which only a pointer exists in the program).

This can be done by constructing an “artificial array” with the binary

operator @. The left operand of @ should be the first element of the desired

array, as an individual object. The right operand should be the length of the

array. The result is an array value whose elements are all of the type of the

left argument. The first element is actually the left argument; the second

element comes from bytes of memory immediately following those that

hold the first element, and so on. For example, if a program says

int *array = (int *) malloc (len * sizeof (int));
45

1 The GNU Source-Level Debugger
you can print the contents of array with

p *array@len

The left operand of @ must reside in memory. Array values made with @ in this

way behave just like other arrays in terms of subscripting, and are coerced to

pointers when used in expressions.

Sometimes the artificial array mechanism is not quite enough; in moderately

complex data structure, the elements of interest may not actually be adjacent—

for example, if you are interested in the values of pointers in an array. One useful

work-around in this situation is to use a convenience variable as a counter in an

expression that prints the first interesting value and then repeat that expression

using a carriage return. For instance, suppose you have an array dtab of pointers

to structures, and you are interested in the values of a field fv in each structure.

Here is an example of what you might type:

set $i=0

p dtab[$i++]->fv

<CR>

<CR>

Output Formats
GDB normally prints all values according to their data types. Sometimes this

isn’t what you want. For example, you might want to print a number in

hexadecimal, or a pointer in decimal. Or you might want to view data in memory

at a certain address as a character string or an instruction. These things can be

done with output formats.

The simplest use of output formats is to specify how to print a value already

computed. This is done by starting the arguments of the print command with a

slash and a format letter. The format letters supported are:

Letter Description

x Regard the bits of the value as an integer, and print the integer in hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t Print as integer in binary.

a Print as an address, both absolute in hexadecimal and then relative to a symbol defined at an
address below it.
46

Examining Data
For example, to print the program counter in hexadecimal (see the section

“Registers”), type

p/x $pc

No space is required before the slash because command names in GDB

can’t contain a slash.

To reprint the last value in the value history with a different format, you can

use the print command with just a format and no expression. For example, p/x
reprints the last value in hexadecimal.

Examining Memory
The command x (for “examine”) can be used to examine memory under

explicit control of formats, without reference to the program’s data types.

x is followed by a slash and an output format specification, followed by an

expression for an address:

x/nfu addr

The expression addr doesn’t need to have a pointer value (though it may);

it’s used as an integer, as the address of a byte of memory.

n, f, and u are all optional parameters that specify how much memory to

display and how to format it; addr is an expression giving the address where

you want to start displaying memory. If you use the defaults for nfu, you

need not type the slash. Several commands set convenient defaults for addr.

c Regard as an integer and print as a character constant.

f Regard the bits of the value as a floating-point number and print using typical floating-point
syntax.

Letter Description

n, The repeat count is a decimal integer; the default is 1. It specifies how much memory (counting by units u) to display.

f, The display format is one of the formats used by print, or s (null-terminated string) or i (machine instruction). The
default is x (hexadecimal) initially, or the format from the last time you used print or x.

u These letters specify the size of unit to examine:
b Examine individual bytes.
h Examine halfwords (two bytes each).
w Examine words (four bytes each).
g Examine giant words (eight bytes).

Letter Description
47

1 The GNU Source-Level Debugger
If neither the manner of printing nor the size of unit is specified, the default is

the same as was used last. If you don’t want to use any letters after the slash, you

can omit the slash as well.

You can also omit the address to examine. Then the address used is just after the

last unit examined. This is why string and instruction formats actually compute

a unit-size based on the data: so that the next string or instruction examined will

start in the right place. The print command sometimes sets the default address

for the x command; when the value printed resides in memory, the default is set

to examine the same location. info line also sets the default for x to the address of

the start of the machine code for the specified line and info breakpoints sets it to the

address of the last breakpoint listed.

When you repeat an x command by pressing the Return key, the address

specified previously (if any) is ignored; instead, the command examines

successive locations in memory rather than the same one.

You can examine several consecutive units of memory with one command by

writing a repeat count after the slash (before the format letters, if any). The

repeat count must be a decimal integer. It has the same effect as repeating the x
command that many times except that the output may be more compact with

several units per line.

x/10i $pc

Prints ten instructions starting with the one to be executed next in the selected

frame. After doing this, you could print another ten following instructions with

x/10

in which the format and address are allowed to default.

The addresses and contents printed by the x command aren’t put in the value

history because there’s often too much of them and they would get in the way.

Instead, GDB makes these values available for subsequent use in expressions

as values of the convenience variables $_ and $__ (that is, $ followed by one or

two underscores).

After an x command, the last address examined is available for use in expressions

in the convenience variable $_. The contents of that address, as examined, are

available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved are from

the last memory unit printed; this isn’t the same as the last address printed if

several units were printed on the last line of output.
48

Examining Data
Automatic Display
If you find that you want to print the value of an expression frequently (to

see how it changes), you might want to add it to the “automatic display list”

so that GDB will print its value each time the program stops. Each

expression added to the list is given a number to identify it; to remove an

expression from the list, you specify that number. The automatic display

looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

showing item numbers, expressions, and their current values.

display
display exp

Add the expression exp to the list of expressions to display each time the

program stops.

display/fmt exp

Add the expression exp to the automatic display list, and display it in the

format fmt. fmt should specify only a display format, not a size or count.

display/fmt addr

Add the expression addr as a memory address to be examined each time the

program stops. fmt should be either i or s, or it should include a unit size or

a number of units. See the section “Examining Memory.”

display

Display the current values of the expressions on the list, just as is done

when the program stops.

undisplay
undisplay [n ...]

delete display [arg ...]

Remove item number n from the list of expressions to display. With no

argument, cancels all automatic-display expressions.

info display
info display

Print the list of expressions to display automatically, each one with its item

number, but without showing the values.
49

1 The GNU Source-Level Debugger
enable display
enable display [arg ...]

Enable some expressions to be displayed when the program stops. Arguments

are the code numbers of the expressions to resume displaying. No argument

means enable all automatic-display expressions.

disable display
disable display [arg ...]

Disable some expressions to be displayed when the program stops. Arguments

are the code numbers of the expressions to stop displaying. No argument means

disable all automatic-display expressions.

Value History
Every value printed by the print command is saved for the entire session in

GDB’s “value history” so that you can refer to it in other expressions.

The values printed are given “history numbers” for you to refer to them by.

These are successive integers starting with 1. print shows you the history number

assigned to a value by printing $n = before the value, where n is the history

number.

To refer to any previous value, use $ followed by the value’s history number. The

output printed by print is designed to remind you of this. $ alone refers to the

most recent value in the history, and $$ refers to the value before that.

For example, suppose you have just printed a pointer to a structure and want to

see the contents of the structure. It’s enough to type

p *$

If you have a chain of structures where the component next points to the next

one, you can print the contents of the next one with

p *$.next

It might be useful to repeat this command many times by pressing the Return

key.

Note that the history records values, not expressions. If the value of x is 4 and

you type

print x
set x=5

then the value recorded in the value history by the print command remains 4

even though x’s value has changed.
50

Examining Data
Convenience Variables
GDB provides “convenience variables” that you can use within GDB to

hold a value for future reference. These variables exist entirely within

GDB; they aren’t part of your program, and setting a convenience variable

has no effect on further execution of your program. That’s why you can use

them freely.

Convenience variables have names starting with $. Any name starting with

$ can be used for a convenience variable, unless it’s one of the predefined

set of register names (see the section “Registers”).

You can save a value in a convenience variable with an assignment

expression, just as you would set a variable in your program. For example:

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by object_ptr.

Convenience variables don’t need to be explicitly declared; using a

convenience variable for the first time creates it. However, its value is void

until you assign it a value. You can alter the value with another assignment

at any time.

Convenience variables have no fixed types. You can assign a convenience

variable any type of value, even if it already has a value of a different type.

The convenience variable as an expression has whatever type its current

value has.

One way to use a convenience variable is as a counter to be incremented or

a pointer to be advanced. For example:

set $i = 0
print bar[$i++]->contents
 repeat that command by typing RET.

Some convenience variables are created automatically by GDB and given

values likely to be useful.

Variable Description

$_ The variable $_ (single underscore) is automatically set by the x command to the last address examined (see
the section “Examining Memory”). Other commands which provide a default address for x to examine also set
$_ to that address; these commands include info line and info breakpoint.

$__ The variable $__ (two underscores) is automatically set by the x command to the value found in the last
address examined.
51

1 The GNU Source-Level Debugger
Registers
Machine register contents can be referred to in expressions as variables with

names starting with $.

The names $pc and $sp are used for the program counter register and the stack

pointer. $fp is used for a register that contains a pointer to the current stack frame.

To see a list of all the registers, use the command info registers.

Some registers have distinct “raw” and “virtual” data formats. This means that

the data format in which the register contents are saved by the operating system

isn’t the same one that your program normally sees. For example, the registers

of the 68882 floating-point coprocessor are always saved in “extended” format,

but all C programs expect to work with “double” format. In such cases, GDB

normally works with the virtual format only (the format that makes sense for

your program), but the info registers command prints the data in both formats.

Register values are relative to the selected stack frame (see the section

“Selecting a Frame”). This means that you get the value that the register would

contain if all stack frames farther in were exited and their saved registers

restored. In order to see the real contents of all registers, you must select the

innermost frame (with frame 0).

Some registers are never saved (typically those numbered 0 or 1) because

they’re used for returning function values; for these registers, relativization

makes no difference.

For example, you could print the program counter in hexadecimal with

p/x $pc

or print the instruction to be executed next with

x/i $pc

or add 4 to the stack pointer with

set $sp += 4

The last is a way of removing one word from the stack. This assumes that the

innermost stack frame is selected. Setting $sp isn’t allowed when other stack

frames are selected.

info registers
info registers [regname]

With no argument, print the names and relativized values of all registers except

floating-point registers. With an argument, print the relativized value of register
52

Examining the Symbol Table
regname. regname may be any register name valid on the machine you’re

using, with or without the initial $.

info all-registers
info all-registers

Print the names and values of all registers, including floating-point registers.

Miscellaneous Commands

call
call arg

Call a function in the inferior process. The argument is the function name

and arguments, in standard C notation. The result is printed and saved in

the value history, if it isn’t void.

disassemble
disassemble [arg [arg]]

Disassemble a specified section of memory. The default is the function

surrounding the pc of the selected frame. With a single argument, the

function surrounding that address is dumped. Two arguments are taken as

a range of memory to dump.

Examining the Symbol Table

The commands described in this section allow you to make inquiries for

information about the symbols (names of variables, functions, and types)

defined in your program. GDB finds this information in the symbol table

contained in the executable file; it’s inherent in the text of your program and

doesn’t change as the program executes.

Occasionally, you may need to refer to symbols that contain unusual

characters, which GDB ordinarily treats as word delimiters. The most

frequent case is in referring to static variables in other source files. File

names are recorded in object files as debugging symbols, but GDB would

ordinarily parse a typical file name, like foo.c as three words “foo”, “.”, and

“c”. To allow GDB to recognize foo.c as a single symbol, enclose it in single

quotes; for example p 'foo.c'::x looks up the value of x in the scope of the file

foo.c.
53

1 The GNU Source-Level Debugger
whatis
whatis [exp]

With no argument, print the data type of $, the last value in the value history.

With an argument, print the data type of expression exp. exp isn’t actually

evaluated, and any operations inside it that have side effects (such as

assignments or function calls) don’t take place.

info address
info address symbol

Describe where the data for symbol is stored. For register variables, this says

which register. For other automatic variables, this prints the stack-frame offset

at which the variable is always stored. Note the contrast with print &symbol, which

doesn’t work at all for register variables, and which for automatic variables prints

the exact address of the current instantiation of the variable.

info functions
info functions [regexp]

With no argument, print the names and data types of all defined functions. With

an argument, print the names and data types of all defined functions whose

names contain a match for regular expression regexp (for information about

regular expressions, see the Rhapsody manual page for ed). For example, info fun
step finds all functions whose names include step; info fun ^step finds those whose

names start with step.

info source
info source

Show the name of the current source file—that is, the source file for the function

containing the current point of execution—and the language it was written in.

info sources
info sources

Print the names of all source files in the program for which there is debugging

information, organized into two lists: files whose symbols have already been

read, and files whose symbols will be read when needed.

info types
info types [regexp]

With no argument, print all data types that are defined in the program. With an

argument, print all data types that are defined in the program whose names

contain a match for regular expression regexp.
54

Examining the Symbol Table
This command differs from ptype in two ways: first, like whatis, it does not

print a detailed description; second, it lists all source files where a type is

defined.

info variables
info variables [regexp]

With no argument, print the names and data types of all top-level variables

that are declared outside functions. With an argument, print the names and

data types of all variables declared outside functions, whose names contain

a match for regular expression regexp.

ptype
ptype typename

Print a description of data type typename. typename may be the name of a

type, or for C code it may have the form class class-name struct struct-tag, union

union-tag or enum enum-tag. The selected stack frame’s lexical context is used

to look up the name.

ptype [exp]

Print a description of the type of expression exp. ptype differs from whatis by

printing a detailed description, instead of just the name of the type.

Setting Variables

set
set

Perform an assignment var = exp. You must type the =. var may be a

debugger convenience variable (a name starting with $), a register (one of a

few standard names starting with $), or an actual variable in the program

being debugged. exp is any expression. Use set variable for variables with

names identical to set subcommands.

With a subcommand listed below, the set command modifies parts of the

GDB environment (you can see these environment settings with show and

its subcommands). In general, use on (or no argument) to enable a feature,

and off to disable it.

set args
set args arg ...

Set arguments to give the program being debugged when it is started.

Follow this command with any number of arguments to be passed to the

program.
55

1 The GNU Source-Level Debugger
set autoload-breakpoints
set autoload-breakpoints on/off

Set automatic resetting of breakpoints in dynamic code.

set autoload-symbols
set autoload-symbols on/off

Set automatic loading of symbols of dynamic code.

set catch-user-commands-errors
set catch-user-commands-errors on/off

Set whether to ignore errors in user commands.

set complaints
set complaints num

Set the maximum number of complaints about incorrect symbols.

set confirm
set confirm on/off

Set whether to confirm potentially dangerous operations.

set demangle-style
set demangle-style on/off

Set the current C++ demangling style.

set editing
set editing on/off

Set command-line editing.

set environment
set environment var value

Set environment variable and value to give the program. Arguments are var

value where var is the variable name and value is the value. Values of

environment variables are uninterpreted strings. This command does not affect

the program until the next run command.

set force_cpluplus
set force_cpluplus on/off

Set if you know better than debugger about C++.
56

Examining the Symbol Table
set history expansion
set history expansion on/off

Set history expansion on command input.

set history filename
set history filename file

Set the filename in which to record the command history (the list of

previous commands of which a record is kept).

set history ignoredups
set history ignoredups on/off

Set whether history condenses sequences of identical commands.

set history save
set history save on/off

Set whether the history record is saved when you exit gdb.

set history size
set history size size

Set the size of the command history (the number of previous commands to

keep a record of).

set input-radix
set input-radix num

Set the default input radix for entering values.

set language
set language lang

Set the language to be used in debugging.

set lazy-read
set lazy-read on/off

Set whether inferior’s memory is read lazily.

set listsize
set listsize num

Set the number of source lines GDB will print by default with list.
57

1 The GNU Source-Level Debugger
set output-radix
set output-radix num

Set the default output radix for print values.

set print address
set print address on/off

Set printing of addresses.

set print array
set print array on/off

Set pretty printing of arrays.

set print asm-demangle
set print asm-demangle on/off

Set demangling of C++ names in disassembly listings.

set print demangle
set print demangle on/off

Set demangling of encoded C++ names when displaying symbols.

set print elements
set print elements size

Set limit on string chars or array elements to print. The value 0 causes there to

be no limit.

set print max-symbolic-offset
set print max-symbolic-offset max-offset

Set the largest offset that will be printed in symbol+1234 form.

set print null-stop
set print null-stop on/off

Set printing of character arrays to stop at first null character.

set print object
set print object on/off

Set printing of object’s derived type based on vtable info.

set print pretty
set print pretty on/off

Set pretty printing of structures.
58

Examining the Symbol Table
set print repeats
set print repeats size

Set threshold for repeated print elements.

set print sevenbit-strings
set print sevenbit-strings on/off

Set printing of 8-bit characters in strings as \nnn.

set print symbol-filename
set print symbol-filename on/off

Set printing of file name and line number with symbols.

set print union
set print union on/off

Set printing of unions interior to structures.

set print vtbl
set print vtbl on/off

Set printing of C++ virtual function tables.

set prompt
set prompt string

Set GDB’s prompt. The argument is an unquoted string.

set radix
set radix on/off

Set the default input and output number radix.

set symbol-reloading
set symbol-reloading on/off

Set dynamic symbol table reloading multiple times in one run.

set verbose
set verbose on/off

Set whether verbose printing of informational messages is enabled or

disabled.

set view-host
set view-host host

Set the host to connect to when viewing.
59

1 The GNU Source-Level Debugger
set view-program
set view-program name

Set the name of the program to connect to when viewing.

set variable
set variable var = exp

Same as set; use set variable in cases where var is identical to one of the set
subcommands.

Status Inquiries

info address
info address var

Describe where the specified variable is stored.

info all-registers
info all-registers

List of all registers, including floating-point registers, and their contents.

info args
info args

Provide information about the argument variables of the current stack frame.

info breakpoints
info breakpoints [num]

Provide information about the status of all breakpoints, or of breakpoint number

num. The second column displays y for enabled breakpoints, n for disabled, o for

enabled once (disable when hit), or d for enabled but delete when hit. The

address and the file/line number are also displayed.

The convenience variable $_ and the default examine address for x are set to the

address of the last breakpoint listed. The convenience variable $bpnum contains

the number of the last breakpoint set.

info classes
info classes

Show all Objective-C classes (Mach only).

info copying
info copying

Show conditions for redistributing copies of GDB.
60

Examining the Symbol Table
info display
info display

Show expressions to display when program stops, with code numbers.

info files
info files

Show the names of targets and files being debugged. Shows the entire stack

of targets currently in use (including the exec-file, core-file, and process, if

any), as well as the symbol file name.

info float
info float

Show the status of the floating point unit.

info frame
info frame [addr]

Provide information about the selected stack frame, or the frame at addr.

info handle
info handle

Show what debugger does when program gets various signals.

info functions
info functions [regexp]

Show all function names, or those matching regexp.

info line
info line [line_spec]

Core addresses of the code for a source line. line_spec can be specified as

The default is to describe the last source line that was listed.

Specifier Description

linenum list around that line in current file,

file:linenum list around that line in that file,

function list around beginning of that function, or

file:function distinguish among like-named static functions.
61

1 The GNU Source-Level Debugger
This sets the default address for x to the line’s first instruction so that x/i suffices

to start examining the machine code. The address is also stored as the value of

$_.

info locals
info locals

Provide information about the local variables of the current stack frame.

info program
info program

Show the execution status of the program.

info registers
info registers [register_name]

Show a list of registers and their contents for the selected stack frame. A register

name as argument means describe only that register.

info selectors
info selectors

Show all Objective-C selectors (Mach only).

info set
info set

Show all GDB settings.

info signals
info signals [sig_num]

Show what GDB does when the program gets various signals. Specify a signal

number to print information about that signal only.

info sources
info sources

Show the names of source files in the program.

info source
info source

Provide information about the current source file.
62

Examining the Symbol Table
info stack
info stack [count]

Provide a backtrace of the stack, or of the innermost count frames.

info target
info target

Same as info files.

info terminal
info terminal

Print inferior’s saved terminal status.

info types
info types [regexp]

Show all type names, or those matching regexp.

info variables
info variables [regexp]

Show all global and static variable names, or those matching regexp.

info warranty
info warranty

Show information pertaining to warranty.

info watchpoints
info watchpoints [num]

Provide information about the status of all watchpoints, or of watchpoint

number num. The second column displays y for enabled watchpoints or n for

disabled ones.

show autoload-breakpoints
show autoload-breakpoints

Show automatic resetting of breakpoints in dynamic code.

show autoload-symbols
show autoload-symbols

Show automatic loading of symbols of dynamic code.
63

1 The GNU Source-Level Debugger
show args
show args

Show arguments to give program being debugged when it is started.

show catch-user-commands-errors
show catch-user-commands-errors

Show whether to ignore errors in user commands.

show commands
show commands

Show the status of the command editor.

show complaints
show complaints

Show the maximum number of complaints about incorrect symbols.

show copying
show copying

Show conditions for redistributing copies of GDB.

show confirm
show confirm

Show whether to confirm potentially dangerous operations.

show convenience
show convenience

Show the debugger convenience variables. These variables are created when

you assign them values; thus, print $foo=1 gives $foo the value 1. Values may be of

any type.

A few convenience variables are given values automatically: $_ holds the last

address examined with x or info lines, and $__ holds the contents of the last address

examined with x.

show demangle-style
show demangle-style on/off

Show the current C++ demangling style.
64

Examining the Symbol Table
show directories
show directories

Current search path for finding source files. $cwd in the path means the

current working directory. $cdir in the path means the compilation directory

of the source file.

show editing
show editing

Show command-line editing.

show environment
show environment [var]

Show the environment to give the program, or one variable’s value. With an

argument var, prints the value of environment variable var to give the

program being debugged. With no arguments, prints the entire

environment to be given to the program.

show force_cplusplus
show force_cplusplus

Show if you know better than the debugger about C++.

show history expansion
show history expansion

Show history expansion on command input.

show history filename
show history filename

Show the filename in which to record the command history (the list of

previous commands of which a record is kept).

show history ignoredups
show history ignoredups

Show whether history condenses sequences of identical commands.

show history save
show history save

Show saving of the history record on exit.
65

1 The GNU Source-Level Debugger
show history size
show history size

Show the size of the command history (that is, the number of previous

commands to keep a record of).

show input-radix
show input-radix

Show the default input radix for entering values.

show language
show language

Show the programming language being used in debugging.

show lazy-read
show lazy-read

Show if inferior’s memory is read lazily.

show listsize
show listsize

Show the number of lines printed by list with no argument.

show output-radix
show output-radix num

Show the default output radix for print values.

show paths
show paths

Show the current search path for finding object files. $cwd in the path means the

current working directory. This path is like the $PATH shell variable; that is, a list

of directories separated by colons. These directories are searched to find fully

linked executable files and separately compiled object files as needed.

show print address
show print address

Show printing of addresses.

show print array
show print array

Show prettyprinting of arrays.
66

Examining the Symbol Table
show print asm-demangle
show print asm-demangle

Show demangling of C++ names in disassembly listings.

show print demangle
show print demangle

Show demangling of encoded C++ names when displaying symbols.

show print elements
show print elements

Show limit on string chars or array elements to print.

show print max-symbolic-offset
show print max-symbolic-offset

Show the largest offset that will be printed in symbol+1234 form.

show print null-stop
show print null-stop

Show printing of character arrays to stop at first null character.

show print object
show print object

Show printing of object’s derived type based on vtable info.

show print pretty
show print pretty

Show pretty printing of structures.

show print repeats
show print repeats

Show threshold for repeated print elements.

show print sevenbit-strings
show print sevenbit-strings

Show printing of 8-bit characters in strings as \nnn.

show print symbol-filename
show print symbol-filename

Show printing of file name and line number with symbols.
67

1 The GNU Source-Level Debugger
show print union
show print union

Show printing of unions interior to structures.

show print vtbl
show print vtbl

Show printing of C++ virtual function tables.

show prompt
show prompt

Show GDB’s prompt.

show radix
show radix

Show the default input and output number radix.

show symbol-reloading
show symbol-reloading

Show if dynamic symbol table reloads multiple times in one run.

show values
show values [idx]

Elements of value history around item number idx (or last ten).

show verbose
show verbose

Show whether verbosity is on or off.

show version
show version

Report what version of GDB this is.

show view-host
show view-host

Show host to connect to when viewing.

show view-program
show view-program

Show name of program to connect to when viewing.
68

Debugging PostScript Code
show user
show user

Show definitions of user-defined commands.

show warranty
show warranty

Show information pertaining to warranty.

Debugging PostScript Code

This section describes three commands that are useful when debugging

PostScript source files.

These commands aren’t built-in commands; rather, the OPENSTEP

environment defines them in a system .gdbinit file located in the directory

/usr/lib. This file is read when you start running GDB (the contents of this file

are shown later in this chapter).

showps, shownops
showps

shownops

The showps and shownops commands turn on and off (respectively) the display

of PostScript code being sent from your application to the Window Server.

Your application must be running before you can issue either of these

commands.

flushps
flushps

The flushps command sends pending PostScript code to the Window Server.

This command lets you flush the application’s output buffer, causing any

PostScript code waiting there to be interpreted immediately. Your

application must be running before you can issue this command.

traceevents
traceevents

Trace PostScript events. When an event is queued, it is logged to standard

error.
69

1 The GNU Source-Level Debugger
tracenoevents
tracenoevents

Turn off tracing of PostScript events.

waitps
waitps

Wait until the DPS context’s destination is ready to receive more input.

Debugging Objective-C Code

This section provides information about some commands and command options

that are useful for debugging Objective-C code.

Setting the Language
The syntax accepted by certain GDB commands, such as break, is determined by

the programming lanugage being debugged. By default, the language is set to

C, so you can always use C syntax in GDB commands. On Mach, when the

language is set to C, GDB also accepts Objective-C syntax (for example, the use

of colons in method names and the message-sending syntax) . In the PDO

version of GDB, the language must be set to Objective-C for the debugger to

be able to accept Objective-C syntax in commands.

GDB tries to set the language it accepts in its commands according to the

language that the program being debugged uses. If the program’s source files

have the extension .m or .M, then GDB assumes that the program is written in

Objective-C and sets the language it accepts accordingly. The show language
command displays what the language is currently set to. You can use the set
language command to override the value. To set the language to Objective-C,

enter this command:

set language objective c

The set language command is particularly useful if you’re debugging a mixed-

language program. For example, if you’re stopped in a C module and you want

to send a message to an Objective-C object, you won’t be able to because GDB

won’t recognize the square bracket syntax as an Objective-C message. You must

first set the language to Objective-C, then send the message.
70

Debugging Objective-C Code
Method Names in Commands
The following commands have been extended to accept Objective-C

method names as line specifications:

clear
break
info line
jump
list

For example, to set a breakpoint at the create instance method of class Fruit

in the program currently being debugged, enter:

break –[Fruit create]

To list ten program lines around the initialize class method, enter:

list +[NSText initialize]

In the PDO version of GDB, the plus or minus sign is required. On Mach,

the plus or minus sign is optional, but you can use it to narrow the search.

On Mach, it’s also possible to specify just a method name:

break create

You must specify the complete method name, including any colons. If your

program’s source files contain more than one create method, you’ll be

presented with a numbered list of classes that implement that method.

Indicate your choice by number, or type 0 to exit if none apply.

As another example, to clear a breakpoint established at the

makeKeyAndOrderFront: method of the NSWindow class, enter:

clear –[NSWindow makeKeyAndOrderFront:]

If you’re using the PDO version of GDB and you don’t know the exact

method name or you don’t know the name of the class to which it belongs,

you can use the info functions command to find out. (On Mach, you can use the

info selectors command instead.) Use info functions followed by a regular

expression to narrow the search. For example, to find out all the methods

and functions that contain the string “set,” enter:

info functions set

To find just the methods that contain “set,” include the bracket in the

regular expression. (You must escape the braket with a backslash because it

is part of the regular expression syntax.)

info functions \[.*set
71

1 The GNU Source-Level Debugger
To find just the methods that begin with the string “set,” include the space as

part of the name:

info functions \[.* set

Command Descriptions
This section describes commands and options that are useful in debugging

Objective-C code. Some of these are new commands that have been

implemented in OPENSTEP, and some are previously existing GDB

commands that have been extended in OPENSTEP.

The info Command
The info command takes two additional options on Mach:

info classes
info classes [regexp]

Display all Objective-C classes in your application, or those matching the

regular expression regexp.

info selectors
info selectors [regexp]

Display all Objective-C selector names (or those matching the regular

expression regexp), and also each selector’s unique number.

If you don’t limit the command’s scope by entering a regular expression, the

resulting listing can be quite long. To terminate a listing at any point and return

to the GDB prompt, type Control-C.

Two standard info command options have been extended. The info types command

recognizes and lists the Objective-C id type. The info line command recognizes

Objective-C method names as line specifications.

The print Command
The print command has been extended to allow the evaluation of Objective-C

objects and message expressions. Consider, for example, this program excerpt:

@implementation Fruit : NSObject
{
 char *color;
 int diameter;
}

72

Debugging Objective-C Code
+ create {
 id newInstance;
 newInstance = [super new]; // creates instance of Fruit
 [newInstance color:"green"]; // set the color
 [newInstance diameter:1]; // set the diameter
 return newInstance; // return the new instance
}
. . .
@end

Once this code has been executed, you can use GDB to examine newInstance
by entering:

print newInstance

The output looks something like this (of course, the address wouldn’t be

the same):

$1 = (id) 0x1a020

As declared, newInstance is a pointer to an Objective-C object. To see the

structure this variable points to, enter:

print *newInstance

GDB displays:

$3 = {
 isa = 0x120b4;
 color = 0x26bf "green";
 diameter = 1;
}

This structure contains the instance variables defined above for objects of

the Fruit class. It also contains a pointer, called isa, that points to its class

object. To see the identity of this class, enter:

print *newInstance->isa

GDB displays:

$4 = {
 isa = 0x12090;
 super_class = 0x124a4;
 name = 0x125a2 "Fruit";
 version = 0;
 info = 17;
 instance_size = 12;
 ivars = 0x1203c;
 methods = 0x120ec;
 cache = 0x22080;
}

The instance variable name verifies that this is an instance of the Fruit class.
73

1 The GNU Source-Level Debugger
You can also evaluate a message expression with the print command. As a by-

product of the evaluation, the message is sent to the receiving object. For

example, the following command sets the color of the Fruit object to red:

print [newInstance color: "red"]

The set Command
The set command can be used to evaluate and send a message expression. For

example, the following command sets the color of the Fruit object to red:

set [newInstance color: "red"]

The step Command
The step command has been extended to let you step through the execution of

an Objective-C message. By repeatedly executing the step command, you can

watch the chain of events that make up the execution of a message.

If you step into a message and don’t want to follow the details of its execution,

enter:

finish

This command completes the execution of the message and stops the program

at the next statement. To avoid stepping into the message in the first place, use

the next command rather than step. The next command instructs GDB to execute

the current command and stop only when control returns to the current stack

frame.

Debugging Mach Threads

The following commands have been provided in the Mach version of GDB to

support the debugging of Mach threads.

thread-list
thread-list thread

List all threads that exist in the program being debugged (abbreviated tl).

thread-select
thread-select thread

Select a thread (abbreviated ts). For example, ts 2 selects thread 2.
74

Debugging Mach Core Files
Debugging Mach Core Files

OPENSTEP GDB has been extended to allow debugging of core files in

the Mach-O file format. Core files are generated in the /cores directory, if it

exists; otherwise, they’re generated in the current working directory.

The info files command lists information about the contents of the core file.

This tells you what segments of address space exist in the core file, how

many threads exist in the core image, and what the program counter is for

each thread. Thread 0 is selected by default, so if you do a bt it will apply to

thread 0. The thread-list and thread-select commands, documented in the

section “Debugging Mach Threads” above, work with core files. All the

normal debugger commands can also be used while debugging the core

image.

Altering Execution

There are several ways to alter the execution of your program with GDB

commands.

Assignment to Variables
To alter the value of a variable, evaluate an assignment expression. For

example:

print x=4

would store the value 4 into the variable x, and then print the value of the

assignment expression (which is 4).

If you aren’t interested in seeing the value of the assignment, use the set
command instead of the print command. set is the same as print except that the

expression’s value isn’t printed and isn’t put in the value history. The

expression is evaluated only for side effects.

GDB allows more implicit conversions in assignments than C does; you can

freely store an integer value into a pointer variable or vice versa, and any

structure can be converted to any other structure that’s the same length or

shorter.

All the other C assignment operators such as += and ++ are supported as

well.
75

1 The GNU Source-Level Debugger
To store into arbitrary places in memory, use the {...} construct to generate a value

of specified type at a specified address. For example:

set {int}0x83040 = 4

Continuing at a Different Address

jump
jump linenum

Resume execution at line number linenum. Execution may stop immediately if

there’s a breakpoint there.

The jump command doesn’t change the current stack frame, or the stack pointer,

or the contents of any memory location or any register other than the program

counter. If linenum is in a different function from the one currently executing,

the results may be wild if the two functions expect different patterns of

arguments or of local variables. For this reason, the jump command requests

confirmation if the specified line isn’t in the function currently executing.

jump *
jump *address

Resume execution at the instruction at address address.

A somewhat similar effect can be obtained by storing a new value into the

register $pc. For example:

set $pc = 0x485

specifies the address at which execution will resume, but doesn’t resume

execution. That doesn’t happen until you use the cont command or a stepping

command.

Giving Your Program a Signal

signal
signal signal

Resume execution where your program stopped, but immediately give it the

signal signal. signal can be the name or the number of a signal. For example, on

many systems signal 2 and signal SIGINT are both ways of sending an interrupt signal.

Alternatively, if signal is 0, continue execution without giving a signal. This is

useful when your program stopped on account of a signal and would ordinarily

see the signal when resumed with the continue command; signal 0 causes it to

resume without a signal.
76

Defining and Executing Sequences of Commands
Invoking the signal command is not the same as invoking the kill utility from

the shell. Sending a signal with kill causes GDB to decide what to do with

the signal depending on the signal handling tables. The signal command

passes the signal directly to your program.

Returning from a Function

return
return [exp]

You can make any function call return immediately by using the return

command.

First select the stack frame that you want to return from (see the section

“Selecting a Frame”). Then type the return command. If you want to specify

the value to be returned, give that as an argument.

The selected stack frame (and any other frames inside it) is popped, leaving

its caller as the innermost remaining frame. That frame becomes selected.

The specified value is stored in the registers used for returning values of

functions.

The return command doesn’t resume execution; it leaves the program

stopped in the state that would exist if the function had just returned.

Contrast this with the finish command, which resumes execution until the

selected stack frame returns naturally.

Defining and Executing Sequences of Commands

GDB provides two ways to store sequences of commands for execution as a

unit: user-defined commands and command files.

User-Defined Commands
A “user-defined command” is a sequence of GDB commands to which you

assign a new name as a command. This is done with the define command.

User-defined commands may take up to 10 arguments. Within the

definition of the command, you refer to the arguments as $arg0, $arg1, and so

on up to $arg9. For example, if you defined a command that took two

arguments, you refer to the first one specified on the command line as $arg0

and the second one as $arg1.
77

1 The GNU Source-Level Debugger
When they’re executed, the commands of the definition aren’t printed. An error

in any command stops execution of the user-defined command.

Commands that would ask for confirmation if used interactively proceed

without asking when used inside a user-defined command. Many GDB

commands that normally print messages to say what they’re doing omit the

messages when used in a user-defined command.

define
define commandname

Define a command named commandname. If there’s already a command by that

name, you’re asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines, which

are given following the define command. if and while statements are allowed within

the definition. The end of the command definition is marked by a line

containing just the command end. For example:

define w

 where

end

document
document commandname

Create documentation for the user-defined command commandname. The

command commandname must already be defined. This command reads lines of

documentation just as define reads the lines of the command definition. After the

document command is finished, help on command commandname will print the

documentation you have specified.

You may use the document command again to change the documentation of a

command. Redefining the command with define doesn’t change the

documentation, so be sure to keep the documentation up to date.

Command Files
A command file for GDB is a file of lines that are GDB commands. Comments

(lines starting with #) may also be included. An empty line in a command file

does nothing; it doesn’t cause the last command to be repeated, as it would from

the terminal.

When GDB starts, it automatically executes its “init files” (command files

named .gdbinit). GDB first reads the init file (if any) in your home directory and

then the init file (if any) in the current working directory. (The init files aren’t
78

Defining and Executing Sequences of Commands
executed if the -nx option is given.) You can also request the execution of a

command file with the source command:

The lines in a command file are executed sequentially. They aren’t printed

as they’re executed. An error in any command terminates execution of the

command file.

Commands that would ask for confirmation if used interactively proceed

without asking when used in a command file. Many GDB commands that

normally print messages to say what they’re doing omit the messages when

used in a command file.

source
source file

Execute the command file file.

Commands for Controlled Output
During the execution of a command file or a user-defined command, the

only output that appears is what’s explicitly printed by the commands of the

definition. This section describes three additional commands useful for

generating exactly the output you want.

echo
echo text

Print text. Nonprinting characters can be included in text using C escape

sequences, such as \n to print a newline. No newline will be printed unless

you specify one. In addition to the standard C escape sequences, a

backslash followed by a space stands for a space. This is useful for display a

string with space at the beginning or the end, since leading and trailing

space are otherwise trimmed from all arguments.

A backslash at the end of text is ignored. It’s useful for producing a string

ending in spaces, since trailing spaces are trimmed from all arguments. A

backslash at the beginning preserves leading spaces in the same way,

because the escape sequence backslash-space stands for a space. Thus, to

print “ variable foo = ”, do

echo \ variable foo = \

output
output expression

Print just the value of expression. A newline character isn’t printed, and the

value isn’t entered in the value history.
79

1 The GNU Source-Level Debugger
output/fmt expression

Print the value of expression in format fmt. See “Output Formats” in the section

“Examining Data” for more information.

printf
printf format-string, arg [, arg] ...

Print the values of the arguments, under the control of format-string. This

command is identical in its operation to its C library equivalent (see the

Rhapsody manual page for printf() for format codes). The only backslash-escape

sequences that you can use in the format string are the simple ones that consist

of the backslash followed by a letter.

Miscellaneous Commands

make
make [args]

Run the make program using the rest of the line as arguments.

select-frame
select-frame

Select the frame at fp, pc.

shell
shell [command]

Execute the rest of the line as a shell command. With no arguments, run an

inferior shell.

Legal Considerations

Permission is granted to make and distribute verbatim copies of this chapter

provided its copyright notice and this permission notice are preserved on all

copies.

Permission is granted to copy and distribute modified versions of this chapter

under the conditions for verbatim copying, provided also that the section

entitled “GDB General Public License” (below) is included exactly as in the

original, and provided that the entire resulting derived work is distributed under

the terms of a permission notice identical to this one.
80

Legal Considerations
Permission is granted to copy and distribute translations of this chapter into

another language, under the above conditions for modified versions, except

that the section entitled “GDB General Public License” may be included

in a translation approved by the author instead of in the original English.

Distribution
GNU software is free; this means that everyone is free to use it and free to

redistribute it on a free basis. GNU software is not in the public domain; it

is copyrighted and there are restrictions on its distribution, but these

restrictions are designed to permit everything that a good cooperating

citizen would want to do. What is not allowed is to try to prevent others from

further sharing any version of GNU software that they might get from you.

The precise conditions are found in the GNU General Public License that

appears following this section.

You may obtain a complete machine-readable copy of any OPENSTEP-

modified source code for Free Software Foundation software under the

terms of Free Software Foundation’s general public licenses, without

charge except for the cost of media, shipping and handling, upon written

request to Technical Services at NeXT Software, Inc.

When making a request, please specify which GNU software programs

you’re interested in receiving. GNU programs released by NeXT currently

include:

gcc GNU compiler
gdb GNU debugger
gas GNU assembler
emacs GNU text editor

If you want an unmodified, verbatim copy of any GNU software (including

GNU software that’s not part of the OPENSTEP software release), you can

order it from the Free Software Foundation. Though GNU software itself

is free, the distribution service is not. For further information, write to:

Free Software Foundation

675 Mass. Ave.

Cambridge, MA 02139

Income that Free Software Foundation derives from distribution fees goes

to support the Foundation’s purpose: the development of more free

software to distribute.
81

1 The GNU Source-Level Debugger
GDB General Public License
The license agreements of most software companies keep you at the mercy of

those companies. By contrast, our general public license is intended to give

everyone the right to share GDB. To make sure that you get the rights we want

you to have, we need to make restrictions that forbid anyone to deny you these

rights or to ask you to surrender the rights. Hence this license agreement.

Specifically, we want to make sure that you have the right to give away copies of

GDB, that you receive source code or else can get it if you want it, that you can

change GDB or use pieces of it in new free programs, and that you know you

can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive

anyone else of these rights. For example, if you distribute copies of GDB, you

must give the recipients all the rights that you have. You must make sure that

they, too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that

there is no warranty for GDB. If GDB is modified by someone else and passed

on, we want its recipients to know that what they have is not what we

distributed, so that any problems introduced by others will not reflect on our

reputation.

Therefore we (Richard Stallman and the Free Software Foundation, Inc.) make

the following terms which say what you must do to be allowed to distribute or

change GDB.

Copying Policies

1. You may copy and distribute verbatim copies of GDB source code as you

receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy a valid copyright notice “Copyright (c)

1988 Free Software Foundation, Inc.” (or with whatever year is

appropriate); keep intact the notices on all files that refer to this License

Agreement and to the absence of any warranty; and give any other recipients

of the GDB program a copy of this License Agreement along with the

program. You may charge a distribution fee for the physical act of

transferring a copy.

2. You may modify your copy or copies of GDB or any portion of it, and copy

and distribute such modifications under the terms of Paragraph 1 above,

provided that you also do the following:
82

Legal Considerations
• cause the modified files to carry prominent notices stating that you

changed the files and the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole

or in part contains or is a derivative of GDB or any part thereof, to be

licensed at no charge to all third parties on terms identical to those

contained in this License Agreement (except that you may choose to

grant more extensive warranty protection to some or all third parties, at

your option).

• You may charge a distribution fee for the physical act of transferring a

copy, and you may at your option offer warranty protection in exchange

for a fee.

Mere aggregation of another unrelated program with this program (or

its derivative) on a volume of a storage or distribution medium does

not bring the other program under the scope of these terms.

3. You may copy and distribute GDB (or a portion or derivative of it, under

Paragraph 2) in object code or executable form under the terms of

Paragraphs 1 and 2 above provided that you also do one of the following:

• accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Paragraphs

1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give

any third party free (except for a nominal shipping charge) a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with the information you received as to where the

corresponding source code may be obtained. (This alternative is

allowed only for noncommercial distribution and only if you received

the program in object code or executable form alone.)

For an executable file, complete source code means all the source code

for all modules it contains; but, as a special exception, it need not

include source code for modules which are standard libraries that

accompany the operating system on which the executable file runs.

4. You may not copy, sublicense, distribute or transfer GDB except as

expressly provided under this License Agreement. Any attempt

otherwise to copy, sublicense, distribute or transfer GDB is void and

your rights to use the program under this License agreement shall be
83

1 The GNU Source-Level Debugger
automatically terminated. However, parties who have received computer

software programs from you with this License Agreement will not have their

licenses terminated so long as such parties remain in full compliance.

5. If you wish to incorporate parts of GDB into other free programs whose

distribution conditions are different, write to the Free Software Foundation

at 675 Mass. Ave., Cambridge, MA 02139. We have not yet worked out a

simple rule that can be stated here, but we will often permit this. We will be

guided by the two goals of preserving the free status of all derivatives of our

free software and of promoting the sharing and reuse of software.

Your comments and suggestions about our licensing policies and our software

are welcome! Please contact the Free Software Foundation, Inc., 675 Mass.

Ave., Cambridge, MA 02139, or call (617)876-3296.

No Warranty
BECAUSE GDB IS LICENSED FREE OF CHARGE, WE PROVIDE

ABSOLUTELY NO WARRANTY, TO THE EXTENT PERMITTED BY

APPLICABLE STATE LAW. EXCEPT WHEN OTHERWISE STATED IN

WRITING, FREE SOFTWARE FOUNDATION, INC, RICHARD M.

STALLMAN AND/OR OTHER PARTIES PROVIDE GDB “AS IS”

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY

AND PERFORMANCE OF GDB IS WITH YOU. SHOULD GDB PROVE

DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL

RICHARD M. STALLMAN, THE FREE SOFTWARE FOUNDATION,

INC., AND/OR ANY OTHER PARTY WHO MAY MODIFY AND

REDISTRIBUTE GDB AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES,

OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA

BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

WITH ANY OTHER PROGRAMS) GDB, EVEN IF YOU HAVE BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY

CLAIM BY ANY OTHER PARTY.
84

Index

Index
$ convenience variable indicator 59

$_ convenience variable 59

$__ convenience variable 59

@ binary operator 53

A

application

debugging 9

args GDB command 24, 25

artificial arrays in GDB 53

attach GDB command 27, 28

B

backtrace 44

backtrace GDB command 44

break GDB command 31

breakpoints in GDB

clearing 34

conditional 36

continuing program execution 40

disabling 35

executing commands at 38

setting 31

C

C compiler

compiling your program for
debugging 12

call GDB command 61

call stack See stack

cd GDB command 26

clear GDB command 34

commands GDB command 40

compiler See C compiler

condition GDB command 37

continue GDB command 38, 41

convenience variables in GDB 59

core-file GDB command 23

core files

debugging 83

specifying in GDB 23

D

debugging

an already running process 27

an application 9

core files 83

Mach threads 82

Objective-C 78

PostScript code 77

define GDB command 86

delete GDB command 35

delete display GDB command 57

detach GDB command 28

directory GDB command 50

disable GDB command 36

disable display GDB command 58

disassemble GDB command 61

display GDB command 57

document GDB command 86

down GDB command 45

down-silently GDB command 45

E

echo GDB command 87

Emacs

GDB interface 20

mode in GDB 17

enable display GDB command 58

enable GDB command 36

end GDB command 38, 40, 86

environment variables 25

expressions in GDB 51

F

finish GDB command 41

forward-search GDB command 49

frame GDB command 45, 46

G

GDB 9

breakpoints See breakpoints in GDB

convenience variables 59

customizing 22, 85

data display 50, 57

Emacs editing mode 17

files to debug, specifying 14, 23

legal considerations 88

memory, examining 55

output format 54

program execution 24, 40, 83

registers 60

signals 29

source files 46, 49, 50

stack See stack and stack frame

stepping 41

value history 58

variable assignment 83

See also debugging

gdb shell command 13

.gdbinit file 22

preventing execution of 15

GNU debugger See GDB

GNU Emacs See Emacs

H

handle GDB command 30

help GDB command 86

I

ignore GDB command 38

info GDB command

address 62, 68

args 46, 68

breakpoints 31, 68

classes 68, 80

copying 68

display 57, 69

files 23, 69, 83

float 69

frame 46, 69

functions 62, 69

line 49, 69, 80

locals 46, 70

program 70

registers 60, 70

selectors 70, 80

set 70

signals 30, 70

source 70

sources 62, 70

stack 71

target 71

terminal 71

types 62, 71, 80

variables 63, 71
95

Index
warranty 71

watchpoints 71

J

jump GDB command 84

K

kattach GDB command 29

kill GDB command 23

kreboot GDB command 29

L

list GDB command 47

load GDB command 24

M

Mach

debugging threads 82

make GDB command 88

memory

examining in GDB 55

N

next GDB command 41

nexti GDB command 42

O

Objective-C

debugging 78

output format in GDB 54

output GDB command 87

P

path GDB command 24

PostScript code

debugging 77

print GDB command 50

extended for Objective C 80

output formats 54

value history 58

printf GDB command 88

print-object GDB command 51

ptype GDB command 63

pwd GDB command 26

Q

quit GDB command 14

R

registers

in GDB 60

return GDB command 85

reverse-search GDB command 49

run GDB command 24

redirecting input and output 27

S

search GDB command 49

select-frame GDB command 88

set GDB command 51, 63, 82

args 63

autoload-breakpoints 64

autoload-symbols 64

catch-user-commands-errors 64

complaints 64

confirm 64

editing 64

environment 26, 64

history expansion 65

history filename 65

history save 65

history size 65

lazy-read 65

print address 66

print array 66

print asm-demangle 66

print demangle 66

print elements 66

print object 66

print pretty 66

print sevenbit-strings 67

print union 67

print vtbl 67

prompt 14, 67

radix 67

variable 68

verbose 67

view-host 67

view-program 68

shell GDB command 88

show GDB command

args 72

autoload-breakpoints 71

autoload-symbols 71

catch-user-commands-errors 72

commands 72

complaints 72

confirm 72

convenience 72

directories 73

editing 73

environment 73

history expansion 73

history filename 73

history save 73

history size 74

lazy-read 74

paths 74

print address 74

print array 74

print asm-demangle 75

print demangle 75

print elements 75

print object 75

print pretty 75

print sevenbit-strings 75

print union 76

print vtbl 76

prompt 76

radix 76

values 76

verbose 76

version 76

view-host 76

view-program 76

shownops GDB command 77

showps GDB command 77

signal GDB command 30

signals in GDB 29

silent GDB command 38

source files

examining in GDB 46

searching in GDB 49

specifying directories in GDB 50

source GDB command 87

stack

backtrace 44
96

Index
examining 42

selecting a frame 44

stack frame 42

information about 46

returning from 85

selecting 44

startup files for GDB 22

step GDB command 41

extended for Objective C 82

stepi GDB command 42

stepping in GDB 41

symbol table

examining in GDB 61

T

target GDB command 28

child 28

core 29

tbreak GDB command 33

thread-list GDB command 82

thread-select GDB command 82

tty GDB command 27

U

undisplay GDB command 57

unset environment GDB command 26

until GDB command 42

unview GDB command 47

up GDB command 45

up-silently GDB command 45

V

value history in GDB 58

variables in GDB

altering values 83

convenience variables 59

environment variables 25

program variables 52

view GDB command 47

W

whatis GDB command 62

where GDB command 44

X

x GDB command 55
97

Index
98

	Contents
	The GNU Source-Level Debugger
	Summary of GDB
	Compiling Your Program for Debugging
	Running GDB
	Specifying Files to Debug
	-symbol
	-exec
	-se
	-core
	-c
	-command
	-directory
	-readnow

	Specifying GDB Modes
	-nx | -n
	-q
	-batch
	-cd
	-fullname | -f
	-tty

	Editing GDB Commands
	Expansion of Variable, Function, and Method Names
	History Substitution in Commands
	Emacs Command-Line Editing
	Insertion-Point Motion Commands
	Deletion and Restoration Commands
	Search Commands
	History Commands
	Miscellaneous Commands

	Running GDB in a GNU Emacs Buffer
	Esc s
	Esc n
	Esc i
	Esc x gdb-nexti
	Esc u
	Esc d
	Control-C Control-F
	Esc c
	Control-h m
	Control-x &

	Startup Files
	GDB Commands for Specifying and Examining Files
	add-file
	add-module
	core-file
	info files
	kill
	load
	path
	update-files

	Running Your Program under GDB
	Your Program’s Arguments
	Your Program’s Environment
	set environment
	unset environment

	Your Program’s Working Directory
	cd
	pwd

	Your Program’s Input and Output
	info terminal

	Debugging an Already Running Process
	attach
	detach
	target
	target child
	target core
	kattach
	kreboot

	Stopping and Continuing
	Signals
	info signals
	handle

	Breakpoints
	Setting Breakpoints
	break
	break if
	tbreak
	rbreak regex
	future-break

	Watchpoints
	watch
	info watchpoints

	Clearing Breakpoints
	clear
	delete [breakpoints] [bnum ...]

	Disabling Breakpoints
	enable
	enable once
	enable delete
	disable

	Break Conditions
	condition

	Ignoring breakpoints
	ignore
	continue

	Executing Commands at a Breakpoint
	commands

	Breakpoint Menus

	Continuing
	continue

	Stepping
	step
	next
	finish
	until
	stepi
	nexti

	Examining the Stack
	Stack Frames
	Backtraces
	backtrace [n]

	Selecting a Frame
	frame
	up
	up-silently n
	down n
	down-silently

	Information about a�Frame
	frame
	info frame
	info frame addr
	info args
	info locals

	Examining Source Files
	Viewing Files in Project Builder
	view
	unview

	Printing Source Lines
	list
	set listsize
	show listsize
	info line

	Searching Source Files
	forward-search
	reverse-search

	Specifying Source Directories
	directory

	Examining Data
	print
	print-object
	set
	Expressions
	Program Variables
	Artificial Arrays
	Output Formats
	Examining Memory
	Automatic Display
	display
	undisplay
	info display
	enable display
	disable display

	Value History
	Convenience Variables
	Registers
	info registers
	info all-registers

	Miscellaneous Commands
	call
	disassemble

	Examining the Symbol Table
	whatis
	info address
	info functions
	info source
	info sources
	info types
	info variables
	ptype
	Setting Variables
	set
	set args
	set autoload-breakpoints
	set autoload-symbols
	set catch-user-commands-errors
	set complaints
	set confirm
	set demangle-style
	set editing
	set environment
	set force_cpluplus
	set history expansion
	set history filename
	set history ignoredups
	set history save
	set history size
	set input-radix
	set language
	set lazy-read
	set listsize
	set output-radix
	set print address
	set print array
	set print asm-demangle
	set print demangle
	set print elements
	set print max-symbolic-offset
	set print null-stop
	set print object
	set print pretty
	set print repeats
	set print sevenbit-strings
	set print symbol-filename
	set print union
	set print vtbl
	set prompt
	set radix
	set symbol-reloading
	set verbose
	set view-host
	set view-program
	set variable

	Status Inquiries
	info address
	info all-registers
	info args
	info breakpoints
	info classes
	info copying
	info display
	info files
	info float
	info frame
	info handle
	info functions
	info line
	info locals
	info program
	info registers
	info selectors
	info set
	info signals
	info sources
	info source
	info stack
	info target
	info terminal
	info types
	info variables
	info warranty
	info watchpoints
	show autoload-breakpoints
	show autoload-symbols
	show args
	show catch-user-commands-errors
	show commands
	show complaints
	show copying
	show confirm
	show convenience
	show demangle-style
	show directories
	show editing
	show environment
	show force_cplusplus
	show history expansion
	show history filename
	show history ignoredups
	show history save
	show history size
	show input-radix
	show language
	show lazy-read
	show listsize
	show output-radix
	show paths
	show print address
	show print array
	show print asm-demangle
	show print demangle
	show print elements
	show print max-symbolic-offset
	show print null-stop
	show print object
	show print pretty
	show print repeats
	show print sevenbit-strings
	show print symbol-filename
	show print union
	show print vtbl
	show prompt
	show radix
	show symbol-reloading
	show values
	show verbose
	show version
	show view-host
	show view-program
	show user
	show warranty

	Debugging PostScript Code
	showps, shownops
	flushps
	traceevents
	tracenoevents
	waitps

	Debugging Objective-C Code
	Setting the Language
	Method Names in Commands
	Command Descriptions
	The info Command
	info classes
	info selectors

	The print Command
	The set Command
	The step Command

	Debugging Mach Threads
	thread-list
	thread-select

	Debugging Mach Core Files
	Altering Execution
	Assignment to Variables
	Continuing at a Different Address
	jump
	jump *

	Giving Your Program a Signal
	signal

	Returning from a Function
	return

	Defining and Executing Sequences of Commands
	User-Defined Commands
	define
	document

	Command Files
	source

	Commands for Controlled Output
	echo
	output
	printf

	Miscellaneous Commands
	make
	select-frame
	shell

	Legal Considerations
	Distribution
	GDB General Public License
	Copying Policies
	No Warranty

	Index

