
NetWork Programmer´s Guide

8.91 4.90 11.89

NetWork Programmer's Guide

Programmer's guide to the NetWork model of
distributed computing.

This guide is based on the Macintosh implementation of
NetWork.

For use on other systems, see your system specific
documentation.

Copyright © 1989-1991 G. Sawitzki, Heidelberg. This
documentation and the NetWork software is copyright
© 1989-1991 The NetWork Project, StatLab
Heidelberg, along with other copyrights as noted where
appropriate. All rights reserved.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

For those in a hurry

Services and facilities provided by NetWork

• management of asynchronous distributed computing
• idle time computing
• inter-application communication
• remote launching
• transparent message transport
• low level log file support

System requirements and restrictions: The Macintosh version of NetWork runs on Macintosh Plus or higher,
MacOs 6.03 or better with Multifinder, or System 7, or A/UX 2.0.1 or better. The basic version of NetWork can
make use of any AppleTalk implementation, but only addresses in the local zone will be used.

Getting started: Move the file NetWork Processor and the folder NetWork Tools into your system folder, and
into that of any Macintosh on your AppleTalk network cooperating on NetWork experiments. Restart all
Macintoshes which are to cooperate. For computers other than the Macintosh, follow the installation instructions
specific to that machine to install a NetWork Processor. You can now run the sample program Spinning Brain.
See How to use Spinning Brain… for details.

For each machine, cooperation on the experiment can be restricted or disabled by using the NetWork Processor
control panel extension. To disable experimental use of a machine, remove the NetWork Processor from the
system folder.

Implementing NetWork software: To develop your own software to experiment with NetWork, use
unit NetWork from file NetWork.p,

unit NetWorkLookup from file NetWorkLookup.p,

and link with

NetWorkLib.o.

The default look-up system is already contained in NetWorkLib.o. Compile NetWorkLookup.p and link with NetWorkLookup.p.o only

if you want to override it

You can make use of the objects supplied in

unit SchedulerUnit.p from file SchedulerUnit.p

which provide high-level access to the NetWork message system. Look at the scheduler implementation model and modify it according

to your needs.

Comments are welcome, but we cannot guarantee a reply.

Internet network@statlab.uni-heidelberg.de

Bitnetj40@dhdurz1.bitnet

AppleLink: ger.xuu0003

Ordinary snail: G. Sawitzki, StatLab Heidelberg, Im Neuenheimer Feld 294, D 6900 Heidelberg, W. Germany.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Contents

For those in a hurry 2

Contents 3

What is NetWork ? 5
NetWork Terms and the NetWork Computation Model 6
Message Destinations and Processes (Alive and Dead) 7
NetWork Architecture..8
NetWork Messages...10
Message Handling in a Random Environment...12

Inside NetWork 14
Basic NetWork Data Types................................14
Message Handlers..16
Task Handlers...18
Task Generators..20
Scheduler..21
Utilities, Low Level Routines & Interfacing to the Message
System..29
Idle Monitor...32
Lookup Routines..33
NetWork Communication Interface...................36
Transport System Interface................................41

How to Implement a NetWork Program 42
Prerequisites...42
How to Implement a NetWork Program: Cookbook 42
Tips...44

Tricks and Recipes, Hints and Warnings 45
Caveats and Warnings..45
NetWork Processes and Multifinder, SIZE Resource 45
NetWork Processes and File Creators/Signatures46
NetWork Processes and Stack Requirements.....47
Hints: NetWork Processes Which are not Applications 47
Hints: Computing Contexts and Integrity..........48

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Hints: Expanding the Scheduler: Installing Cohandler 48

Examples 51
Ping: Just Pings..51
RemoteJob: Supports Distributed Use of MPW 51
Spinning Brain: a Neural Net Using Asynchronous
Iterations...52
ScreenSaver: Idle Time Launching....................52
Hello, UDPTransport: Startup Launching..........52
Mailer...53

Index 55

NetWork Programmer´s Guide

NetWork Programmer´s Guide

What is NetWork ?

NetWork is a collection of software for experimenting with distributed
computing in a network of personal workstations. Personal computing
offers the advantage of reliably guarantied (personalizable) computing
power for the user. In general, this advantage conflicts with the aim of
making effective use of collective computing resources. NetWork is an
approach to make shared use of the computing resources in a network
while respecting the absolute priority of any individual user on his/her
machine. NetWork tries to keep the advantage of personal computing, that
is the reliably guarantied (personalizable) computing power for the user.

The goal of NetWork is to optimize the net work output of a computing
system. With todays computing facilities, it is not the computing time
which is critical, it is the user's time, the effective wall-clock time to
completion of a task. Thus NetWork heads for short job turn-around times,
and ignores cumulative computing time.

Since a user may choose to leave or access his/her machine at any time,
absolute priority of individual users implies that no availability or
persistency of shareable computing resources can be considered guarantied
over the network. Moreover, since network access might be critical to
individual users, the network load due to distributed computing has to be
minimized. Hence the usual acknowledgement schemes cannot be
guarantied. The general ideas of NetWork are discussed in a separate
article1. We will often refer to this general introduction in the sequel and assume that it is known to you.

NetWork is based on networks of Macintosh computers, but it can be used in heterogeneous networks as well.

The NetWork software consists of

SchedulerUnit.p a PASCAL unit supporting high level access to the NetWork system

NetWork.p a PASCAL unit for low level access to the NetWork system

NetWorkLookup.p a PASCAL unit with AppleTalk-based look-up procedures for NetWork

NetWorkLib.o a library to link with your object code. It contains a compiled version of NetWork.p and NetWorkLookup.p, and

glue code

NetWork Processor a communication agent and idle monitor used for the NetWork

1G. Sawitzki: The NetWork Project. Universität Heidelberg 1991

NetWork Programmer´s Guide

NetWork Programmer´s Guide

NetWork Tools a collection of tools and sample programs to use or experiment with, including Spinning Brain, a sample program

demonstrating the use of asynchronous iterations applied to neural networks

For C programmers

NetWork.h a C header file, equivalent to NetWork.p

is provided.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

NetWork Terms and the NetWork Computation Model

A NetWork machine is an addressable computing facility. A NetWork machine in general will,
but need not correspond to a physical machine. Each machine has an owner (or home user). The
owner may, but need not correspond to a real user. For example, if the machine is a dedicated
server, the server process can be considered the owner. The owner is the source of events which
have absolute priority on the owner's machine.

A machine may be in one of two states, depending on the activity of the owner. It may be used.
A machine is used by its owner, if the owner directly accesses the machine, or if an owner
initiated process requires the resources of the machine. If a machine is not used, it is idle.

A machine is addressed by its NetWork node address. A machine may have more than one
address (for instance if it can be accessed with various transport systems using different address
conventions). NetWork does not address users.

A process is any activity (process, task, application…) running on a machine and visible to
NetWork. Processes reside on machines. A process has no identity for itself. Process classes are
identified by their signature. The signature denotes any instance of a particular process class
rather than a particular process. Processes are bound to a machine. We do not deal ith relocating
processes. For communication, a process is identified by its NetWork address.The NetWork
address of a process consists of its signature and the address of the NetWork node it is residing
on.

Any process will eventually generate tasks. A task is a lump of work which someone has to do.

Distributed computing is viewed by NetWork as involving three elementary agents:
• an originator defining the compute task(s),
• a task handler , or task handler processes, performing the core of the computation,
• a collector handling the results.

The originator is a task generator. It generates a task message and passes it to the task handler.
The task handler evaluates the message, performs the appropriate calculation, and eventually
returns a result to the collector. The collector has the job of assembling the (partial) results to
give a final solution (Figure 1). From an abstract point of view, the collector is just a special
case of a task handler. It is specialized in integrating results.

Originator Collector

Task message Result message

Task Handler
Task Handler

Task Handler
Task Handler

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Originator: Task Handler: Collector:

allocate co-workers
assign sub-tasks

take sub-tasks
evaluate sub-tasks
reply result

take results
evaluate them

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Figure 1: Conceptual processes and messages.

The separation into originator, task handler and collector is a conceptual one. For instance, originator and collector may be

implemented in the same program. This would give a master-slave scheme. Using a chain of task handlers with master and collector in

in the same program would give a circular scheme. NetWork is flexible enough to implement any other topology as well.

Processes will eventually communicate. NetWork communication goes by messages. A message originates in one process and is

transmitted to another process (messages are not shared). Typically a message either is a description of a task to do, or it contains the

result of a completed task.

Message Destinations and Processes (Alive and Dead)2

NetWork provides a distributed computing environment giving absolute priorities to the owner
of a machine. This is the basic design principle of NetWork: the priority of the owner must not
be questioned. This implies that NetWork must be prepared for a random environment without
guarantied availability. Moreover, NetWork has to economize on communication resources.
Consequently no session is maintained between processes. All required information must be
(either explicitly or inplicitely) passed in the messages. No computational state is maintained
across tasks. A message may contain knowledge references, however, and the corresponding
knowledge may be cached by processes.

A message comes from a source process and goes to a destination process. In a non guarantied
environment, the destination need not exist: since process persistence is not assumed in
NetWork, there is generally no guarantied process in NetWork. If the destination does not exist,
NetWork may try to find the corresponding program file and launch it (“launch on task”). The
original message is then forwarded to this new process.

Besides a destination, each message has a process to reply to.

• The destination is the process to perform the task.
• The reply-to process is the process to whom the result is delivered.

The reply-to process typically is the collector, or the next task handler in a chain of task
handlers. It may be the same process as the source. Reply-to addresses are also found in SMTP
headers. Compared to the SMTP header, or more specifically the RFC 821/822
recommendations used widely in electronic mail, the source process corresponds to the from-
address, the destination corresponds to the to-address, and the reply-to process corresponds to
the reply-to address.

2For detailed information, see the separate NetWork Technote "Message States".

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Processes occuring as destination process may be launched by NetWork as a task arrives.
Processes launched upon remote request are killed as soon as possible if the owner of the
machine does anything. This leads to three classes of process which have different termination
time rules.
• master processes, typically launched and terminated explicitly by the owner.
• local slave processes, typically launched to serve a (local) message and terminated using a
message or if all master processes are terminated.
• remote slave processes, typically launched to serve a (remote) message and terminated
using a message, or terminated by NetWork when the local owner accesses the machine.

(Macintosh only) When the state of the system changes to busy, NetWork Processor
terminates slave processes by faking command-Q during a call to WaitNextEvent,
GetNextEvent or EventAvail. However it additionally tests if less than a tenth of a
second passed since the systems state changed, or if the application does not respond
to command-Q (calling MenuKey), or if a modal dialog window is front-most. If any
of these condition holds, NetWork Processor calls ExitToShell instead of faking the
event.

Although there is no guarantied lifetime of a process over the net, an active originator process
should be guarantied until a complete task solution is guarantied. The originator process is only
a source of tasks. The lifetime of the collector process should be guarantied from the arrival of
the first partial result until the arrival of the last partial result to complete the task solution. The
collector process is a “sink” of information. It will be a general process to reply to.

NetWork Architecture

The general NetWork architecture consists of three levels: communication, scheduler, and
application. From the NetWork point of view, the application layer can handle two distinct
things: it can generate sub-tasks, and it can handle tasks (which may be results, or new tasks).

Application

Scheduler

Communication

Figure 2: NetWork layers

The application layer contains application specific functions, written in a partitionable way. The proper definition of the tasks and the

evaluation of the results are part of the application layer. The scheduler performs the administrative services. It is responsible for

allocating co-workers, assigning tasks to them, and/or collecting results. The scheduler interacts with the communication layer by

NetWork Programmer´s Guide

NetWork Programmer´s Guide

passing messages. The communication layer handles the details of identifying (and if necessary creating) the communication partners,

passing messages, and related tasks. The communication layer cooperates with the transport systems available to exchange these

messages with other processes.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

The NetWork design principles imply that neither a guarantied communication nor a persistence of processes can be supposed. Both

the communication layer and the scheduler layer try to shield the application from a non guarantied environment. Both layers try to

reduce communication load.

The core of the NetWork communication system, together with additional support and monitoring functions, is implemented as a

separate process. This agent is the proper NetWork processor. The complete scheduler and access functions for the communication

system are supplied as a library and linked to the application.

(Macintosh only) The time critical communication code is implemented as a driver which will be installed by the INIT

code attached to the NetWork Processor control panel extension. The scheduler interacts with the application layer by

calling application-supplied task handlers.

Since NetWork is a message passing system, the general picture is best understood in terms of message flow. In a completely

controlled system, there would be a simple message flow. The task generator defines a message (a task description) and sends it. A task

handler receives the task, performs the appropriate calculations. Then the task handler would define a message (the result) and return it

to the appropriate address. The recipient of this reply (which may, but need not be, the same as the first task generator) takes the result,

and integrates it into its current state.

From an abstract point of view, we need not worry about results. They can be considered as a special task, i.e. integrate the result

information in the current state. Everything which applies to a task holds for results as well. So we will ignore results for now.

As we have separated application specific code from general message control, and message control from transport, we have the

simplified picture given in figure 3:

Scheduler Scheduler

Application (Task Generator) Application (Task Handler)

Figure 3: NetWork message flow: a simplified picture. The task generating application defines a task message and
hands it to the scheduler. The scheduler does the necessary housekeeping and passes the message to the NetWork
processor which communicates it to the receiving NetWork processor. The receiving NetWork processor launches the
destination application (if necessary). The scheduler of the destination passes the message to the task handler of its
application.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

NetWork Messages3

Messages can only be created and destroyed by the communication system. All messages belong
to the communication system. NetWork messages are referenced by message identifications. The
identification is an internal identification controlled by the communication system. The
communication is free to perform housekeeping action on its messages4.

Messages are handled by the NetWork processor. An application sends a message via its NetWork Processor to the NetWork Processor of a remote

machine. The destination node NetWork Processor makes best efforts to forward messages to processes.

For NetWork, a message consists of header information and core information. The core information is the real information load. The header

information is a (in general short) description of the contents of the core information. In general, it will be accessed prior to using the core

information. In communication, "header" is a standard term for a part of the message which consists of administrative information in a fixed form.

Since "header" is a standard term in communication, we will reserve the name "header information" for the fixed (application independent) part and

use the term "priority information "for the application dependent part of the header. From now on, we will even reserve the term " header" for the

(application independent) part of the header. Header and priority information are used to identify the message and to decide whether it is usable in a

given context. The core information will only be accessed when the message is usable.

Priority Information Core Information

transported
if necessary

always transported

always transported or synthesized

Header

Figure: Separation into first/second class information. Header and priority information identify a message. The
core information need only be transported if the message is usable.

In a random environment, no session maintenance is guarantied. Hence messages can be outdated or out of context. The recipient of a

message, the task handler, has to check whether a message is usable. The header and priority information should contain all

information necessary to do this check. NetWork needs only transport the core information of a message is accepted as usable. Details

are implementation dependent and may depend on the communication system.

3An overview of the NetWork communciation model is given in the general introduction to the NetWork project. A detailed account is
given in J. Lindenberg: NetWork Communications. Universität Karlsruhe 1990

4There is a current limit set to 2 minutes for messages which are processed internally after which a timeout condition is set. Messages
must be removed explicitely using destroy.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

The NetWork Processor does a first check of the message header and discards any incoming message which are not usable because no

recipient can be identified or because the required capabilities are not given. If it does not discard the message, it will then try to find a

matching process. If it succeeds, it will forward the message to this process. If not, it will try to find and launch an application with a

signature matching the code identifier ("launch on task"). The original message is then forwarded to this new process.

The sending process defines a message and passes it to the communication system. If the message has been transmitted, the sending

process may release its all buffers associated with the message. It then tells the communication system to destroy the message.

When a new message arrives, the receiving process first evaluates the message header. If the header indicates that the message is

unusable, it tells the NetWork Processor to destroy the message. If the header is usable, it allocates buffers for the priority information

and asks the NetWork Processor to get it. When the priority information is available, it can be checked. If after checking the priority

information the message is not considered usable, the recipient tells the NetWork Processor to destroy the message. If the message is

considered usable, the recipient allocates buffers for the core information and asks the NetWork Processor to accept it. When the core

information is available, it is evaluated and the NetWork Processor is told to destroy the message.

Typical sequences of message/task handling are given in figure 5.

Application

Scheduler

Communication

generate task

send task

check execution

 destroy

bad ?: handle error

Figure 5a: Message sent: the message is passed to the communication system via the scheduler. On successful
delivery, the scheduler will automatically destroy the administrative message information. On error, it will try
handling the error condition, possibly by calling the application.

Application

Scheduler

Communication

check task

receive task

good:

accept &
pass

evaluate

 destroy

Figure 5b: Message received with success. A message is received via the scheduler layer. The scheduler will handle
the (possibly asynchronous) receipt and then release the administrative information.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Application

Scheduler

Communication

check task

receive task
destroy

reject

Figure 5c: Message received without success. The scheduler will try to prevent unnecessary transport and release the
administrative information.

Important: Depending on the communication system, any communication process may take considerable time.

NetWork does not make temporary copies of the information. Use MsgStatus to make sure that there is no message

transfer pending if you want to change the information associated with a message.

Important: Messages are created by the NetWork driver. You must call DestroyMsg to free the space allocated

internally in the NetWork system for a message. DestroyMsg does not affect the message information, or space you have

allocated directly. Messages are freed if your process terminates.

NetWork does not prevent forwarded messages circulating around. If you are writing a router or forwarder, it should take

appropriate measures, for example implement a hop count or a message history table

Message Handling in a Random Environment

In the previous section we discussed the general message handling in NetWork. The NetWork
Scheduler is an implementation model designed to handle messages in a random environment.
To allow for flexible handling of messages, the scheduler associates a message handler to every
message and invokes this message handler in the appropriate situations. Handling an outgoing
message and handling an incoming message are not symetric5. As a consequence, message handlers come in two

kinds: task generators, handling outgoing tasks, and task handlers, handling incoming tasks. The implementation of both is application specific. The

time of invocation can best be understood by a picture:

5They could be designed in a symetric way. But this would require acknowledgements schemes, hence additional network load. This is
against the design principles of NetWork.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Scheduler:
Check time

TaskGenerator:
NewTask

timeout

no timeout

Figure 4a: NetWork control flow: a simplified picture. The periodic scheduler task does its housekeeping. Based on a
timer, the TaskGenerator is asked for a new task.

The task generator is invoked periodically, based on a timer. Any application is free to invoke the task generator apart from the timing

condition whenever it seems appropriate. To honour the NetWork design principles, an inhibition time is respected after a task has been

generated and sent. This helps to avoid excessive network and computation load.

TaskHandler:
MsgUsable

if new priority information

TaskHandler:
MsgEvaluation

if core information available

Scheduler: Check
incoming messages

if new message

TaskHandler:
MsgHeaderUsable

Figure 4b: NetWork control flow: a simplified picture. The periodic scheduler task does its housekeeping. If new
messages are available, the TaskHandler is called to check or evaluate the new messages. Then, based on a timer, the
TaskGenerator is asked for a new task.

The task handler invocation is based on events. Events are: a new message has arrived; the priority information is ready for inspection;

the core is ready for inspection. Different actions can be applied in these three stages.

Neither picture shows an additional invocation: when a message is completed, it must be destroyed. Destroying a message implies

telling the communication system that the message is not needed any more. For the task generator, a message is completed when it is

sent successfully, or timed-out, or an error occurs. For the task handler, a message is typically completed immediately when the task

evaluation is performed. However, time-out or error conditions may occur as well. The application should release all its buffers

assiociated with a message after DestroyMsg has been called.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Inside NetWork 6

This part of the documentation is only of interest to you if you want to implement a program using NetWork. It starts with an introduction to

NetWork's data types. Next, the high level components of the NetWork software are presented: the NetWork Scheduler and NetWork message

handlers. You have to define your own message handlers and you have to know how to interface them to the scheduler to write your own programs.

NetWork utilities follow. You may make use of the additional NetWork services provided by these routines. You rarely have to go beyond this material

in ordinary applications. If you want to modify basic components of the NetWork system however, you will find these components next: the look-up

system, interface with the communication system, and transport system interface. The scheduler makes intensive use of these routines.

A cookbook and a collection of tricks and recipes are added.

Basic NetWork Data Types

Address Data Type

MsgAddr = record
a : longint;
p : longint;

end;

MsgAddr is used to hold NetWork addresses. The “a” component denotes the machine (or machine address), “p” denotes the process

(or process class). NetWork supports multiple concurrent transport systems. Since a universal addressing scheme does not exist, the

interpretation is specific to the transport system.

Fields and Methods Description

a network address - interpretation depends on transport system

p signature or program number - use longint , for example longint('NetE');

Message Data Type

MsgPtr = ^MsgRec;
MessagePtr = MsgPtr;

MsgRec = record
{ message information used by the communication system. This information is local }

MsgLink : MsgPtr; { used by NetWork }
Msg2Link : Ptr; { used by NetWork }
MsgResult : integer; { >0 busy, =0 done, <0 error }
MsgFlags : SignedByte; { reserved - lock & attn flags }
MsgCmd : SignedByte; { command (phase)}
MsgTicks : longint; { timeout (ticks) for this message}

6This documentation should be synchronized with your software version. Please consult the interface files in case of doubt.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

MsgUserRefCon : longint; {~used by NetWork Scheduler}

MsgReserved1 : longint; { reserved for NetWork processor }
MsgReserved2 : longint; { reserved for NetWork processor }
MsgReserved3 : longint; { reserved for NetWork processor }
MsgTrpPtr : TransportPtr; { transport system used by message }
MsgTrpRefCon : longint; { free for transport system use }

{ message header information This information is transported to the destination }
MsgSource : MsgAddr; { may be overridden by NetWork processor }
MsgDest : MsgAddr; { address the message is sent to }
MsgReply : MsgAddr; { address to return replies/results to }
MsgCapasVerb : longint; { capas : integer, verb : integer }
MsgReference : longint; { transported to other nodes }

MsgPrioSize : longint;
MsgCoreSize : longint;

{ message header information This information is local }
MsgPrioPtr : Ptr;
MsgCorePtr : Ptr;

end;

MsgRec is used as message header, and MsgPtr points to a header. All messages belong to the communication system. MessagePtr is

used as an alias for MsgPtr to point to application-controlled copies of message header which may be used as parameter blocks

Fields and Methods Description

MsgLink reserved for NetWork

Msg2Link reserved for NetWork

MsgResult >0 busy, =0 done, <0 error

MsgCmd command (phase). See command codes.

MsgTicks time in ticks until time out of message

MsgUserRefCon LOCAL(! !!!!) application use. Reserved for the scheduler.

MsgTrpPtr transport system used by message

MsgSource address of source process of the message

MsgDest address of destination process of the message

MsgReply address of the process to send results to

MsgCapasVerb capas : integer, verb : integer

MsgReference application specific message stamp

MsgPrioSize size of priority information

MsgCoreSize size of core information

MsgPrioPtr pointer to buffer for priority information

MsgCorePtr pointer to buffer for core information

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Message Handlers

Message Handler Definition

tMessageHandler=object(tObject)
ContextStamp:longint;
NrPendingMessages:longint;
procedure init;
procedure restart;

procedure Stamp(Msg:MsgPtr);

function Destroy(var Msg:MsgPtr):OsErr;
function DisposMsg(var Msg:MsgPtr):OsErr;

{Buffer handling}

function NewPrioPtr(var PrioSize:longint):ptr;
function NewCorePtr(var CoreSize:longint):ptr;

procedure DisposPrioPtr(var PrioPtr:Ptr);
procedure DisposCorePtr(var CorePtr:Ptr);
end;

What Message Handlers Do for You

They handle messages. Usually, the message handlers will be called by the scheduler; you need not call the
message handlers directly. Message handlers come in two kinds: task handlers, used to handle incoming
messages, and task generators, used to define new outgoing messages.

What You Have to Do for Message Handlers

You need not modify any of the general message handler methods. You should override the buffer handling
methods (NewXxxx, DisposXxxx) to implement a buffer strategy adapted to the problem at hand. Usually, you
will not modify the basic class tMessageHandler, but derived classes. For the derived classes (task handlers and
task generators) you have to define the application specific actions.

Where to Find Them

Message handler prototypes are provided in source form in file SchedulerUnit.p (interface) and
SchedulerUnit.inc (implementation).

Message Handler Fields

NetWork Programmer´s Guide

NetWork Programmer´s Guide

ContextStamp a user defined 32bit flag to verify context continuity. ContextStamp is compared
with the MsgReference field of a message record. If both match, the message is
assumed to fit in the current computation context. The ContextStamp is specific to
a message handler. Multiple concurrent message handlers may have differing
context stamps. A value of zero is recommended to denote an undefined (neutral)
ContextStamp.

NrPendingMessages number of pending messages for this message handler. Do not free the message
handler unless NrPendingMessages is zero.

Message Handler Methods

procedure tMessageHandler.Init

Init is called once to initialize the message handler. Sets NrPendingMessages to zero and calls restart.

procedure tMessageHandler.Restart

Restores the message handler to a well defined operational state. Restart is used for a first start of the message handler within a context.

For the sender, it sets ContextStamp to a new (locally unique) identifier. For the recipient, it sets ContextStamp to zero

(=undefined/neutral).

function tMessageHandler.Destroy(var Msg:MsgPtr):OsErr;

Destroys the message record, and sets Msg to nil. Decreases NrPendingMessages by one, but does not dispose buffers.

function tMessageHandler.DisposMsg(var Msg:MsgPtr):OsErr;

Releases all buffers associated with Msg, and calls Destroy.

function NewPrioPtr(var PrioSize:longint):ptr;

Allocates a new buffer for priority data. Entry: PrioSize=Requested size; Exit: PrioSize=Allocated size. Defaults to NewPtr.

function NewCorePtr(var CoreSize:longint):ptr;

Allocates a new buffer for core data. Entry: CoreSize=Requested size; Exit: CoreSize=Allocated size. Defaults to NewPtr.

procedure DisposPrioPtr(var PrioPtr:UNIV Ptr);

Disposes buffer for priority data. Defaults to DisposPtr.

procedure DisposCorePtr(var CorePtr:UNIV Ptr);

Disposes buffer for core data. Defaults to DisposPtr.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Task Handlers

Task Handler Definition

tTaskHandler=object(tMessageHandler)
PrivilegedInterval: longint;
PrivilegedTimeout: longint;
PrivilegedAddr: MsgAddr;
UsableCapas: longint;

procedure Init; override;
procedure Restart; override;

function MsgHeaderUsable(var msg:MsgPtr):boolean;
function MsgUsable(var msg:MsgPtr):boolean;
procedure MsgEvaluation(var msg:MsgPtr);

end;

What Task Handlers Do for You

They handle incoming messages, typically containing task descriptions or results (=tasks to update your state).
Usually, the task handlers will be called by the scheduler; you need not call the message handlers directly.

What You Have to Do for Task Handlers

You need to modify the MsgEvaluation method to perform application specific actions. You may want to modify
the MsgUsable to check the priority information of a message and tell whether the core information is usable at
all. You may want to modify the MsgHeaderUsable method to do a first check of the message, and delegate or
mark it for discard it if appropriate. If you want to use your own buffer handling scheme, you have to override
the buffer handling methods inherited from tMessageHandler.

Where to Find Them

A task handler prototype is provided in source form in file SchedulerUnit.p (interface) and SchedulerUnit.inc
(implementation).

Fields and Methods Description

PrivilegedAddress "Master" address. This is used to maintain a minimal session continuity. If
PrivilegedTimeout is not zero, and master is not timed out, only messages from
this origin should be accepted.

PrivilegedTimeout next timeout point
PrivilegedInterval timeout interval

NetWork Programmer´s Guide

NetWork Programmer´s Guide

PrivilegedInterval, PrivilegedTimeout and ContextStamp are dedicated fields to allow for a minimal session
maintenance. The default implementation of MsgHeaderUsable uses these fields. If the address part of the
DefaultMsg is not zero, and master is not timed out, only messages from this origin will be accepted.
PrivilegedInterval is used to hold a timeout interval for the approximate lifetime of faithfulness to the
privilegedOrigin: after a message from privilegedOrigin has arrived, only messages from privilegedOrigin are
accepted for the duration of PrivilegedInterval. If PrivilegedInterval is exceeded, the process corresponding to
privilegedOrigin is considered defunct and messages from other processes are accepted as well.
PrivilegedTimeout is used to hold the next timeout (next timeout point =last encounter + PrivilegedInterval).

The context stamp is reserved for application dependent identification of a context. Intended use: Only messages
matching this ContextStamp, or with context stamp zero may be usable.

function tTaskHandler.MsgHeaderUsable(var msg:MsgPtr):boolean;

MsgHeaderUsable will be called when the priority information of a message is available. Given the msg identification of an existing

message, MsgHeaderUsable should investigate the message header to determine whether the message indicated is compatible with the

current context, and if so return true, else it should return false. Whenever a task handler decides to accept a task for closer inspection,

it should allocate appropriate buffers for the priority information, and stamp the corresponding message by calling the Stamp method.

The default method does a preliminary check, based on the priority fields of tMessageHandler.

function tTaskHandler.MsgUsable(var msg:MsgPtr):boolean;
{in general, this must be customized}

MsgUsable will be called after the header information of a message has been checked. Given the msg identification of an existing

message, MsgUsable should investigate the priority information to determine whether the message indicated is useful. If it is,

MsgUsable should verify that buffer space for the core information is available, adjust the CorePtr and CoreSize entries of the message

header, and return true, else it should return false.

The default always returns true.

procedure tTaskHandler.MsgEvaluation(var msg:MsgPtr);
{in general, this must be customized}

MsgEvaluation will be called when the priority and the core information of a message are available. MsgEvaluation should initiate the

execution of the task indicated by the message if necessary (e.g. by setting appropriate flags etc.).

procedure tTaskHandler.Init;
{in general, this must be customized}

Once only initialization. Init should set all fields of tTaskHandler.

Init is called by the scheduler on installation of a TaskHandler.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Task Generators

Task Generator Definition

tTaskGenerator=object(tMessageHandler)
TickleInterval: longint;
WaitInterval: longint;

DefaultCapasVerb: longint;

procedure Init;override
procedure Restart;override;
procedure Stamp(msg:MsgPtr);override;
function NewTask(var msg:MsgPtr):boolean;

end;

What Task Generators Do for You

They handle outgoing messages, typically containing task descriptions or results (=tasks to update your state).
Usually, the task handlers will be called by the scheduler; you need not call the task generators directly.

What You Have to Do for Task Generators

You need to modify the NewTask method to perform application specific actions. If you want to use your own
buffer handling scheme, you have to override the buffer handling methods inherited from tMessageHandler.

Where to Find Them

A task generator prototype is provided in source form in file SchedulerUnit.p (interface) and SchedulerUnit.inc
(implementation).

Fields and Methods Description

TickleInterval approximate interval for trying for a new partner (in ticks).
WaitInterval: approximate interval to wait before new task.
DefaultCapasVerb default values to be used for MsgCapasVerb in NewTask

NetWork Programmer´s Guide

NetWork Programmer´s Guide

function tTaskGenerator.Stamp(msg:MsgPtr);

function tTaskGenerator.NewTask(var msg:MsgPtr):boolean;
{in general, this must be customized}

If a new task can be assigned, NewTask should compose the appropriate task information in the message header part of the message

record and pass a pointer to the record. It should return nil, if no task can be defined. The default enters the task generator default

values, but returns false.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Scheduler

NetWork Scheduler Definition

tScheduler=object(tObject)
MySelf: MsgAddr;
MyTransport: TransportPtr;

receiving: boolean;
sending: boolean;

CoHandler: tSchedulerCohandler;
TaskAddr: MsgAddr;
TaskId: longint;
TaskIterations: longint;

TaskHandler: tTaskHandler;

TaskGenerator: tTaskGenerator;
NextTickle: Longint;
NextWait: Longint;
PrevDest: MsgAddr;

Err: OsErr;
ErrQuiet: Boolean;
ErrFrom: tSchedulerPhase;

procedure handleError(from:tSchedulerPhase;which:OsErr);

procedure Init;
procedure Reset;
procedure Free; override;

Procedure SetSending(onOff:Boolean);
Procedure SetReceiving(onOff:Boolean);

Procedure InitTaskHandler(newTaskHandler:tTaskHandler);

Procedure InitTaskGenerator(newTaskGenerator:tTaskGenerator);

Procedure HandleMsg(Msg:MsgPtr);

procedure PeriodicTask;
function GetSleep:longint;

procedure KickOff(maxCount,maxticks:integer);

procedure DoNewTask(addr:MessageAddr;Transport:TransportPtr);

NetWork Programmer´s Guide

NetWork Programmer´s Guide

procedure sendMessage(msg:MessagePtr);
procedure replyMessage(msg:MesagePtr;flagToAdd:longint);

end;

var NetWorkScheduler:tScheduler;

What Scheduler Does for You

The scheduler manages task handling and NetWork control flow. In general, there will be only one instance of
the scheduler, the NetWorkScheduler. When a message is signaled by the NetWork communication system, the
scheduler delegates it to the appropriate task handler. When a new task may be created, the scheduler calls the
task generator, and submits a newly defined task if appropriate.

What You Have to Do for Scheduler

The scheduler is implemented as an object of class tScheduler. You have to generate an instance of this object
using new(NetWorkScheduler). You initialize the new scheduler once by calling NetWorkScheduler.Init.
PeriodicTask must be called frequently as indicated by NetWorkScheduler.GetSleep, and HandleMsg must be
called whenever a NetWork event occurs. If your program is event driven, place a call to
NetWorkScheduler.PeriodicTask and NetWorkScheduler.HandleMsg in your event loop. Use
NetWorkScheduler.GetSleep in you calculation of the sleep value for the main event loop. If PeriodicTask is
called regularly, the scheduler guaranties that the NetWork communication system is kept active. Call
NetWorkScheduler.Free once when you are about to leave your program.

PROCEDURE EventLoop:
VAR

cursorRgn: RgnHandle;
gotEvent: Boolean;
event: EventRecord;

BEGIN
cursorRgn := NewRgn; {pass an empty region the first time thru}
REPEAT

gotEvent:=WaitNextEvent(everyevent, event, GetSleep, cursorRgn);
AdjustCursor(event.where,cursorRgn);
IF gotEvent(event) THEN

DoEvent(event)
ELSE

BEGIN
NetWorkScheduler.PeriodicTask;
IF NLTask<>NoErr then ProgramBreak('Error in NlTask');
DoIdle;

END;
UNTIL FALSE; {loop forever}

END;

A Simple Event Loop, modified to use NetWork.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

PROCEDURE DoEvent(event: EventRecord);
BEGIN

CASE event.what OF
mouseDown:

DoMouseDown(event);
mouseUp:

DoMouseUp(event);
keyDown, autoKey:

DoKeyDown(event);
activateEvt:

DoActivate(event);
updateEvt:

DoUpdate(event);
osEvt:

DoOSEvent(event);
NetWorkEvent:

NetWorkScheduler.HandleMsg(event.message);
kHighLevelEvent:

DoHighLevelEvent(event);
END;

END; {DoEvent}

Processing Events, modified to use NetWork.

You should introduce two message handlers to the scheduler which will be used as defaults. You introduce a task generator by calling

InitTaskGenerator. Whenever a message is to be generated, the default task generator will be asked. You introduce a task handler by

calling InitTaskHandler. Whenever a message comes in which is not associated with a specific message handler, the default task

handler will be asked.

You need not modify the scheduler.

Where to Find It

The scheduler is provided in source form in file SchedulerUnit.p (interface) and SchedulerUnit.inc
(implementation).

Scheduler Message Handling

Messages come and go. The scheduler has no chance to know when a message has to go. You can determine the
time to send a message on the fly, and call NetWorkScheduler.DoNewTask if a new message should be defined.
Or you can call NetWorkScheduler.PeriodicTask periodically. PeriodicTask will check timing conditions, and
eventually will call DoNewTask.

If a message might be prepared, the scheduler creates a new message record. It fills in all fields known to the
scheduler, proposes a destination address, and calls the NewTask method of the default task generator. The task
generator may refuse to define a new task by returning false, or it may allocate and set up appropriate buffers
and fill out the appropriate fields defining a new task, or it may invoke another task generator to define the
message.

Whenever a task generator decides to define a task for transmission, it should stamp the corresponding message
by calling the Stamp method. If the scheduler recieves true as a result from a task generator, it passses the
message to the NetWork Processor for submission. When the message is transmitted completely, or when an
error occurs, the NetWork Processor will notify the scheduler. HandleMsg will pass the message to the
appropriate task generator by calling the DisposMsg method.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

The Scheduler does have a chance to know when a message comes in or when a message needs attention. With
version 1.1 or higher, the NetWork Processor will use events to signal a message. Scheduler selects

NetWork Programmer´s Guide

NetWork Programmer´s Guide

the event type NetWorkEvent7 in Scheduler.Init. You can select another type if necessary. Your main event loop should check for the

appropriate message type, and call Scheduler.HandleMsg.

The Scheduler checks the MsgResult and MsgCmd fields of the message to find out the state of the message. It uses the MsgUserRefCon to associate

a MessageHandler with the message - the MsgUserRefCon field is reserved if you are using the scheduler. The Scheduler uses MsgReference and

MsgCapasVerb for context checks.

If a new incoming message is signaled, the Scheduler passes it to the default task handler by calling the MsgHeaderUsable method. The default task

handler should inspect the message header. The task handler may discard the message by returning false, or it may accept it on first impression by

returning true, or it may invoke another task handler to inspect the message header. If a task header is accepted, the MsgUsable method of the task

handler now associated with this message will be invoked. If the message is accepted as usable, the Scheduler will get the bulk of the message, and

call the task handler's MsgEvaluation method.

Whenever a message is to be discarded - for whatever reason - the Scheduler will call the appropriate methods of the message handler associated with

this method to release buffers. If no message handler can be identified, the default handlers will be called.

At the obvious well defined moments, the Scheduler will inform the Cohandler to allow for adaptive variants.

Default actions

If a message provided by NewTask is not stamped, it will be considered an orphan. The default task generator
will be asked to handle this task further on.

If a message accepted by MsgHeaderUsable is not stamped, it will be considered an orphan and the default task
handler will be asked to handle this task further on.

If a message accepted by MsgHeaderUsable is not stamped, it will be considered an orphan. The default task
handler will be asked to handle this task further on.

If a message accepted by MsgHeaderUsable does not have a priority buffer associated, but positive buffer size,
the task handler will be asked to provide a buffer by calling NewPrioPtr. If NewPrioPtr does not return a pointer,
an error condition exists.

If a message accepted by MsgUsable does not have a core buffer associated, but positive buffer size, the task
handler will be asked to provide a buffer by calling NewStdPtr. If NewStdPtr does not return a pointer, an error
condition exists.

7NetWorkEvent is defined in the MPW interfaces. The current interfaces define NetWorkEvent =10.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Error conditions

If a message provided by NewTask has a positive size for priority information or core information but no buffer
can be allocated, an error condition exists. It will be signaled by the scheduler via the HandleError method.

Constants and Data Types

Masks defined to denote required/available capacities. The lower 16 bits are reserved for the NetWork scheduler.
The upper 16 bits are reserved for the transport system.

cAnyCapas = 0; {Scheduler reserved word. No known capabilities/no
special capabilities required}

cMsgReply = $8000; {Scheduler flag. Message is a reply.}
cMsgNAttention= $8000; {Scheduler flag. Message needs special

 attention/priority.}
UnknownFormat = $00010000;{Message system flag. Reserved to mark future

 extensions.}
cMustBeLaunched= $80000000;{Message system flag. Recipient must be already

 running. Don't launch.}

cNilError=MemFullErr; {Scheduler error code:Nil error. Could not allocate
 storage.}

MessagePtr=MsgPtr;

This is an alias for the communication system pointer type. Communication system message pointers and record date structures are

private to the communication system. We want to use the same data structure as a paramter block controlled by the application.

Fields and Methods Description

The fields of the scheduler can be read, but should not be modified by objects other than the scheduler (or a scheduler

cohandler, if installed).

MySelf the address and type this scheduler is installed at.

receiving receiving is supported if scheduler is running, and receiving is true. A TaskHandler must be

installed.

sending Task generation and sending is supported if scheduler is running and receiving is true. A

TaskGenerator must be installed. Note: ReplyMessage and SendMessage do not require the

scheduler sending to be active.

Cohandler hook for adaptive extensions of the scheduler. The following fields are communication fields for

the cohandler (if installed). The scheduler/cohandler may fill these entries with proposals. The task

generator's NewTask is free to change them

TaskAddr (proposed use:) address of the effective compute server for this task

TaskIterations (proposed use:) the number of elementary actions to perform. Can be used for adaptive extensions

of the scheduler.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

TaskId (proposed use:) a stamp to identify the task. The scheduler fills it with a time stamp upon

InitTaskGenerator. Can be used for adaptive extensions of the scheduler.

TaskHandler will be called whenever a message comes in.

TaskGenerator will be called whenever scheduler wants to send a message.

NextTickle used internally (next time to make a try call)

NextWait used internally (do not call before this time)

PrevDest previous destination of a task

Err Latch error code here to allow for silent implementations.

ErrQuiet Do not report error messages (used during init and exit)

ErrFrom Latch error source here to allow for silent implementations.

procedure tScheduler.handleError(from:tSchedulerPhase; which:OsErr);

Handle errors during scheduler activity. The default just calls the debugger. Should be customized.

procedure tScheduler.Init;

The once-only initialization. Call this after initializing the toolbox and creating a scheduler with New(NetWorkScheduler).

procedure tScheduler.Reset;

Reset to no error, not sending, not receiving.

procedure tScheduler.Free; override;

Call this before leaving your program to dispose of the scheduler and NetWork services.

Procedure tScheduler.SetSending(onOff:Boolean);

Set the scheduler sending state.

Procedure tScheduler.SetReceiving(onOff:Boolean);

Set the scheduler receiving state.

Procedure tScheduler.InitTaskHandler(NewTaskHandler:tTaskHandler);

Installs NewTaskHandler in the scheduler, initializes the TaskHandler by calling NewTaskHandler.init, and resets the receiving flag.

Call this after you have created a scheduler and a TaskHandler.

Procedure tScheduler.InitTaskGenerator(NewTaskGenerator:tTaskGenerator);

Installs NewTaskGenerator in the scheduler, initializes the task generator by calling NewTaskHandler.init, and resets the sending flag

and TaskId. Call this after you have created a scheduler and a task handler.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

procedure tScheduler.PeriodicTask;

The periodic task. Should be called from the main event loop.

function tScheduler.GetSleep:longint;

GetSleep returns the sleep value requested for the scheduler. The scheduler's PeriodicTask method would like to be called after

GetSleep ticks.

procedure tScheduler.kickOff(maxcount,maxticks:integer);

Initiates a round of at most maxcount scheduler tasks for a total time of maxticks (whatever comes first). The usual send interval

limitations do not apply during kick off. This can be used to have a quick start, for example to spray out an initial round of sub-tasks.

The following methods are for internal use of the scheduler only:

procedure DoNewTask(addr:MessageAddr;Transport:TransportPtr);

Call TaskGenerator.Newtask, with all support, for addr. Use this method to force the generation of a task.

procedure tScheduler.SendMessage(msg:MessagePtr);

Send the message indicated by msg. If msgowner is not nil, the msgowner's DisposMsg method will be called by the scheduler when

the message is done. The message record indicated by Msg is free for application use immediately. Use this method if you have

completely prepared a method and you want to transmit it immediately.

procedure tScheduler.ReplyMessage(msg:MessagePtr;flagsToAdd:longint);

Send the message indicated by msg, but to msg target (i.e. send a reply or result)If msgowner is not nil, the msgowner's DisposMsg

method will be called by the scheduler when the message is done. The message record indicated by msg is free for application use

immediately.

The Cohandler Object

The cohandler is provided to allow for flexible modifications of the scheduler, for example to implement
adaptive schedulers. Cohandlers are optional extensions to the scheduler. If there is an adaptive scheduler
installed, it should only take into account messages which are accepted by MsgHeaderUsable for its adaptive
scheme, and just discard any message which is out of context.

For adaptive extensions, additional fields are provided. If you plan to make use of adaptive schedulers,
TaskGenerator and TaskHandler should support these fields.

TaskAddr address of the effective compute server for this task
TaskId a unique identification of the sub-task corresponding to the current message

NetWork Programmer´s Guide

NetWork Programmer´s Guide

TaskIterations indicator of the complexity of a sub-task. For asynchronous iterations, this may
just be the requested/performed number of iterations.

The Cohandler should fill TaskId and TaskIterations with a proposal before NewTask is called. NewTask can
make use of these fields, or use its own algorithm to determine the necessary parameters. If a TaskGenerator
wants to make use of adaptive variants of the scheduler, it should notify the scheduler of any deviations from the
scheduler's proposals by updating these fields of the scheduler with the values actually used.

For adaptive variants, the TaskHandler should notify the scheduler of any messages it has identified in the
MsgUsable method (irrespective whether they are usable or not) by updating the scheduler's fields TaskId and
TaskIterations, if appropriate. (The Destination field should contain the Destination to which the job resulting in
the present message has been originally submitted, if any).

Type tSchedulerPhase=(pUndefined, pUsable, pUnUsable, pStartNewTask, pNewTaskDone,
pNoNewTask, pSendMessage, pHousekeepingDestroy, pInit, pFree,
pAcceptMsg);

tSchedulerCohandler=object(tObject)
procedure CoHandle(cmd:tSchedulerPhase;msg:MsgPtr);
procedure reset;
end;

procedure tSchedulerCohandler.CoHandle(cmd:tSchedulerPhase;msg:MsgPtr);

Inform the cohandler about the state of the scheduler

procedure tSchedulerCohandler.reset;

Reset the cohandler.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Utilities, Low Level Routines & Interfacing to the Message System

What the Utilities Do for You

They provide environment control and logging support.

What You Have to Do for the Utilities

Nothing, if you are using the scheduler.

If you are not using the scheduler, you have to call InitNetWork before using any utility routine.

Where to Find Them

The interface is part of NetWork.p. The object code is included in the file NetWorkLib.o – the implementation
part of NetWork.p is included for your information only.

NetWork Routines

function InitNetWork:OsErr;function UseEventNo(eventcode : integer) : OsErr;

Initialization. Call InitNetWork once before use of any NetWork routine. Returns notOpenErr if no NetWork Processor is active. Sets

event code for NetWork event. Then recommended value is eventcode=NetWorkEvent. If you use NullEvt, events are not signaled and

you must use SignalMsg to find any messages which need attention.

Utility Routines

Logging & Debug Support

procedure AddrToString (Addr: MsgAddr; var s: Str255);

Convert an address to a standard string, for dumping etc.

procedure MsgToString (Msg: MsgPtr; var s: Str255);

Convert a message to a standard string, for dumping etc.

procedure LogString (s : str255);

Writes s to the NetWork log file if logging is switched on.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

procedure LogStrTime (s : str255);

Writes s, followed by a time stamp, to the NetWork log file if logging is switched on.

procedure LogMsg (s : str255; Msg: MsgPtr);

Writes s , and the message, to the NetWork log file if logging is switched on. If logging is on and the next action is a call to destroy, it

will not be logged.

procedure CheckError (s : str255; e : OSErr);

Writes s as an error message to the NetWork log file if e <> 0 and if logging is switched on.

Usage of CheckError may lead to inadequate overhead. It is recommeded to use

If e<>noErr then…

function TimeStamp :longint;

Returns a randomized time stamp. This can be used for example as a context stamp.

procedure ProgramBreak (s: str63);

Drop into debugger, if a debugger is installed.

Environment Control & Investigation

function Visible : boolean;

Returns true, if the process is supposed to display a user interface. Returns false for faceless background processes. Visible checks the

“background only” bit in the SIZE resource, and the setting of the background entry of the NetWork control panel extension.

function Master : boolean;

Returns true if the process is considered a master process.

function Spare : boolean;

This returns the setting of the spare flag set with the NetWork processor control panel entry.

function GetProcessType(signature:longint;var ptyp:integer) : OsErr;

Given the signature of an active process, GetProcessType returns its process type.

function SetProcessType(signature:longint;ptyp:integer) : OsErr;

Sets the process type.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

function GetIndProcess(var signature:longint;index:integer) : OsErr;

Get the signature of the process indicated by index relative to the internal tables of NetWork. A null signature indicates an unused slot.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Idle Monitor

What Idle Monitor Does for You

It monitors the idle/busy state of a machine

What You Have to Do for Idle Monitor

You have to call InitNetWork before using any Idle Monitor routine. Idle Monitor is an integrated part of the
NetWork processor. Idle Monitor routines are only available after NetWork has been initialized.

Where to Find It

Idle Monitor is contained in the NetWork processor. The interface is contained in NetWork.p..

Idle Monitor Constants

imBusy = 0
imIdle = 1
imActive = 2
imLoaded = 3

Idle Monitor Routines

procedure PreventIdle;

Prevent NetWork from registering the machine as idle. This function may be used in applications which do not want to use "busy"

cursors during lengthy operations. PreventIdle makes sure that an application is not considered idle prematurely. PreventIdle is

honoured for master applications only. If needed, it should be called at least once every 15 seconds.

function Idle : boolean;

Returns true if the local machine is considered idle by the NetWork processor.

function IdleMonitorState : integer;

Returns the state of the idle monitor of the local machine.

function IdleTicks : longint;

Returns number of ticks the machine has been idle, if idle is true. Else it returns -1.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Lookup Routines

What NetWork Lookup Does for You

It looks up possible partners. Upon request, it will return NetWork addresses of possible partners. By default,
partners are identified by idle NetWork processors. Lookup can be used to register and look up other entities as
well.

What You Have to Do for NetWork Lookup

Nothing, if you accept the Lookup prototype as distributed, and if you are using the scheduler. If you have a
more efficient or economical look-up strategy, you can replace Lookup by a your own unit.

If you are not using the scheduler, you should call NLInit once to initialize it, call NLStart to start the look-up
process and call NLTask frequently. You can use NLGetSleep to get the current sleep value (in ticks) for interval
unitl the next call to NLTask.

Where to Find It

Lookup is provided in source form (interface and implementation) as file NetWorkLookup.p. The object code is
included in the file NetWorkLib.o -- the implementation part of NetWorkLookup.p is included for your
information only.

NetWork Lookup Routines

Constants Known by Addressing Routines

nlLocal = 0 {can be used instead of local to denote this machine }
nlBroadcast = -1; {broadcast address, all of this cable except myself }

These constants are defined in NetWork.p.

Error Codes Returned by the Lookup Routines

const
nlVersion = -31100; { -- no appletalk version 48 or higher, could be

removed }

nlTaskErr = -31103; { -- routines called in wrong order }
nlNotFound = -31104; { -- used internally }
nlDupReg = -31105; { -- called NlRegister twice }
nlNoReg = -31106; { -- called NlDeregister without NlRegister }

nlAtkOffErr = -31108; { -- appletalk off, cannot use function }

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Lookup Routines

function NLinit;

Initializes the look-up system.

function NlTask : osErr;

Periodic name look-up task. Used to maintain the internal buffers of the look-up system. This function should be called frequently. The

required maximum size is returned by NLGetSleep.

function NLGetSleep: longint;

Returns the preferred sleep value for the currently active look-up system. An optimal use of the look-up system would call NlTask

approximately everytime NlGetSleep ticks have expired. More frequent calls may be redundant, less frequent calls may lead to

outdated look-up tables.

function NlNode : longint;

Returns address of the local node. Returns zero if no remote transport system is active or if the driver is missing.

function NlStart : OSErr;

Start the look-up process.

function NlStop : OSErr;

Stop the look-up process. The settings of Lookup are preserved.

function NlCount : integer;

Returns the number of partners found (a positive number). Returns OSErr on error (a negative number).

function NLNext(after:longint) : longint;

Given the valid identification of a machine, NLNext returns the identification of the next machine based on the internal (circular) tables

of NetWork. If the identification is not valid or zero, NLNext returns a random identification of a machine encountered. If there is no

active machine encountered, NLNext returns zero.

function NLRandom:longint;

NLRandom returns a random machine based on the internal (circular) tables of NetWork. If there is no active machine encountered,

NLRandom returns zero.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

function NLActive(who:longint):boolean;

Given the valid identification of a machine, NLActive verifies whether this identification is still in the list of active machines. Whether

the machine is indeed still active or reachable is not checked .

function NlSetSearch (NlName, NlType, NlZone : Str32) : OSErr;

Configure the look–up system. If no configuration is set, the default is to search for any name, type 'NetWork Processor', in the local

zone (NlName '=', NlType 'NetWork Processor', NLZone '*').

function NlRegister (NlName, NlType : Str32) : OSErr;

Register current process as a compute server. To register under the name of the user as defined by the Chooser, pass an empty string as

NlName.

function NlDeregister : OSErr;

De-register current process as a server.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

NetWork Communication Interface

What It Does for You

The NetWork communication routines hide the underlying transport system from you. They take message
descriptions from you and translate them to the appropriate low level communication actions. The NetWork
library does not perform application specific buffer management for you - this rests with you.

What You Have to Do for It

Nothing, if you are using the scheduler.

If you are not using the scheduler, you should call InitNetWork once to initialize it, call the appropriate NetWork
routines to use it, and call ExitNetWork when you are done with the NetWork services. If you have caled the
communcation system to create a message record (using GetMsg or PostMsg), you have to destroy the message
record if you are done with it. Destroying unused messages as soon as possible helps to keep the system
efficient.

To create a message and mail it, you use PostMsg. To check whether a message is available - actually to get the
number of available messages - call MsgAvailable. To get the priority information, call GetMsg. Eventually, you
then will request the core information using AcceptMsg. You can check the current status of a message with
MsgStatus. Call DestroyMsg if you have either completely received a message, or if you have decided that you
will not use it, or if you have posted it and verified that it has been sent.

You can use the NetWork communication system based on events, if you have called UseEventNo. If you did
not call UseEventNo, you have to poll for messages which need attention by calling SignalMsg.

No assumptions about message sequence and transmission times should be made. The current status
of a message processed by the NetWork message system can be queried using MsgStatus.

Where to Find It

The NetWork Communication library is provided in source form (interface and implementation) as file
NetWork.p. The object code is included in the file NetWorkLib.o -- the implementation part of NetWork.p is
included for your information only.

Addressing in NetWork

The internal communication of NetWork sends messages to processes on machines. In general, the process is
identified by a system specific signature. The machines are identified by addresses.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

NetWork deliberately tries to prevent addressing fraud. Whenever possible, NetWork will try to guarantee the
proper originating address - to the best of its knowledge - as the source of a message.

Signatures have to be registered with Apple. To experiment with NetWork, you can use the
experimental signature 'NetE' (this spelling). This signature has been registered with Apple and is
reserved for experimental use.

Message System

Message System Constants

const
{ general error messages }

eQueEmpty = -31000; {no more messages available -- out of memory }
ePrio2Big = -31001; {priority information to big }
eNoSuchMsg = -31002; {invalid or NIL message reference, no message

 available (GET) }
eNotLaunched = -31003; {destination process does not exist - not used }
eAbortMsg = -31004; {message transfer aborted, e.g. timeout }
eProcTableFull = -31005; {process table full (Init/Exit) }
eNoSuchProcess = -31006; {specified process unknown }
eNoMoreDynamics= -31007; {maximum number of dynamic ids exceeded }
eLaunchFailed = -31008; {launch failed - not used }
eInvalid = -31009; {local message transfer aborted }
eSizeLimit = -31010; {message larger than supported by transport }
eVersion = -31011; {version of library/driver/transport/system }
eProtType = -31012; {no transport, invalid network address -

Dispatcher}
eLoopback = -31013; {discard of broadcasted message }
eTransportDown = -31014; {transport system not available }
eCmdSequence = -31015; {cmd sequencing error- bug of NetWork Processor

or Dispatcher}
eProtIndex = -31016; {protocol index out of range }
eProcessExists = -31017; {process with that creator already exists }
eProcessIndex = -31018; {invalid process index }
eProcessType = -31019; {process type illegal or does not match launch }
eRestartListen = -31020; {a listener handled a request for more data,

 and requires a restart therefore }
eMsgTimeout = -31021; {maximum message lifetime exceeded - AppleTalk }
eNoSignature = -31022; {couldn´t obtain signature of application file -

Library }
eMsgLockFailed = -31023; { couldn´t lock message - NOT USED }
eSigTableFull = -31024; { signature table full }
eSigRegistered = -31025; { signature already registered }
eSigNotRegistered = -31026; { signature not registered }
eProcMgmtError = -31027; { internal error }
eSourceSig = -31028; { source signature wrong in Send/Post }
eSourceAddr = -31029; { source address wrong in Send/Post }

NetWork Programmer´s Guide

NetWork Programmer´s Guide

process types - see NetWork Communications

pUnknown = 0;
pSlave = 1;
pLocal = 2;
pMaster = 3;

layer prefs for launching

NetWork Programmer´s Guide

NetWork Programmer´s Guide

LayerDefault = 0;
LayerFaceless = 1;
LayerBack = 2;
LayerFront = 3;

command codes

major command codes

tGeneral = $00;
tListen = $10;
tGet = $20;
tAccept = $30;
tPost = $40;

minor command codes

tStart = $00;
tTimeout = $0C;
tTimeout1 = $0D;
tAbort = $0E;
tAbort1 = $0F;

var

pDefault : integer; {set this variable to pDynamic if you want a dynamic id}
pFileSignature : longint; { this is the signature of the application file-

valid after InitNetWork }
pProcessSignature : longint; { this is the signature of the process. If the

process type is pDynamic, it may be different from
pFileSignature - valid after InitNetWork }

Except for MsgUserRefCon all of the components of the MsgRec structure are READ ONLY. If you are preparing messages to pass as

a parameter block to the communication system, you should set all undefined components to zero.

Message Routines

function EqAddr (a, b : MsgAddr) : boolean;

function EqNode (a, b : MsgAddr) : boolean;

function IsLocal (networkaddress: Longint) : boolean;

True, if networkaddress is local.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

function SetMsgAddr (a, p : longint) : MsgAddr;

function GetNetWorkAddr : MsgAddr;

Message Handling Functions

procedure DumpMessages;

Write a dump of all currently active messages to the log file.

function AvailableMsg : integer;

AvailableMsg returns the number of available messages.

function MsgStatus (Msg : MsgPtr) : OSErr;

Returns 0 if the Msg has been transferred completely, < 0 if there was an error, > 0 indicates that the Msg is still being transferred or

waiting.

function SignalMsg (var Msg : MsgPtr) : OSErr;

Returns a pointer to the next message which needs handling. SignalMsg checks both old and new messages.

function GetMsg (Msg : MsgPtr;
PrioData : Ptr;
MaxPrioSize : longint) : OSErr;

Given a pointer to a message indicated as returned by SignalMsg, GetMsg reads the priority information to the area indicated by

PrioData and MaxPrioSize.

function FlushMsg (DontFlushMask : longint) : OsErr;

Flushes pending messages. Only incoming messages corresponding to the current process signature will be flushed. Messages which

are already accepted by the application (band(MsgCmd, tMajorMask) <> tListen) are not flushed. DontFlushMask can be set by the

application. Messages will only be flushed if band(DontFlushMask,MsgCapasVerb) is zero.

function AcceptMsg (Msg : MsgPtr;
CoreData : Ptr; MaxCoreSize : longint) : OSErr;

Given a pointer to an existing message, AcceptMsg initiates the data transfer of the core data. CoreData is a pointer to a receive buffer

of size at least MaxCoreSize. If the core information is longer than MaxCoreSize, the rest is discarded.

function PostMsg (var Msg : MsgPtr;
Trp :TransportPtr;
Capas : longint;

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Stamp longint;
Destination, ReplyAddr : MsgAddr;
PrioData : Ptr; PrioSize : longint;
CoreData : Ptr; CoreSize : longint) : OSErr;

Given pointers and sizes of existing information buffers, PostMsg generates a new message and initiates sending. It does not make a

copy of the information that is referenced.

The efficiency of the network access depends on the communication system used. NetWork does not impose restrictions

on message sizes a priori. There are however constraints coming from transport systems.

For AppleTalk, efficiency is best if the total size of both priority data and core data does not exceed 538 byte (May

change in future implementations).

For communication to MCP using A/ROSE, efficiency is best if the priority part does not exceed 12 byte if the A/ROSE

user bytes should be used for the NetWork priority part.

function SendMsg (RefMsg : MsgPtr; var NewMsg : MsgPtr) : OSErr;

SendMsg uses the information in RefMsg to post a new message. All of the fields must be filled in. Undefined fields should be set to

zero. The message posted is returned in NewMsg.

You should set MsgTrpPtr:=nil unless you want to select a specific transport system, the availability of which you have

verified. If you are replying to a result for a message which you have received via NetWork, and the ReplyTo address is

the same address as the source, you can assume the transport system given in the message.

function ForwardMsg (Msg : MsgPtr; ForwardTo : longint) : OSErr;

ForwardMsg forwards a message to the same or another process on the same machine. Don´t call DestroyMsg for a message you

forwarded except if you forward to yourself. ForwardMsg may be called after a GetMsg, but all buffer references will be removed

function DestroyMsg (Msg : MsgPtr):OsErr;

Given a pointer to an existing message, DestroyMsg signals that this message is not used by the application any more and the

communication system is free to releases the data structures associated with the message. This possibly kills a transfer. DestroyMsg

does not affect the information buffers associated with the message.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Transport System Interface

NetWork Processor allows additional transport systems to be added. NetWork has three built-in
transport systems “Dispatcher”, “Local”, and “AppleTalk”. The “Dispatcher” is special: it is
used to select one of the other transport systems to send a message on, depending upon the
destination address.

Transport systems may be implemented as code resources of type 'NetT' (id range 0..3), which
are copied into NetWork Processor and loaded at system start-up, or they can be implemented as
applications, drivers, or any other piece of code and register themselves with the NetWork
Processor.

For more information about expanding the NetWork transport system, see the separate
documentation8.

8J. Lindenberg (1990) NetWork Transport Systems

NetWork Programmer´s Guide

NetWork Programmer´s Guide

How to Implement a NetWork Program

Prerequisites

To use NetWork, you have to be able to

• define sub-tasks (“slices”) to be assigned to co-workers for asynchronous solution
• integrate information from solutions of sub-tasks as they are available.

A recommended implementation strategy is to start with a partitionable (single host) solution of
the problem at hand. A first step is to separate task definition, task execution, and integration of
results. A second step is to verify correct handling of memory (buffers, variables), as this will be
critical in a distributed implementation. A final step is the distributed version, where the shared
memory situation encountered in a single host is replaced by a message based system.

The definition of sub tasks will be implemented in a task generator. Handling of tasks (or
results) will be implemented in task handlers.

How to Implement a NetWork Program: Cookbook

Remember that if you want to use a new signature, you have to register it with Apple.
To experiment with NetWork, you can use the experimental signature 'NetE' (this
spelling). This signature has been registered with Apple by the NetWork project and is
reserved for experimental use.

To start NetWork, you have to generate a scheduler by calling New(NetWorkScheduler) and to
activate it by calling NetWorkScheduler.Init. You have to give the scheduler a chance regularly
by calling NetWorkScheduler.PeriodicTask. The scheduler can be set back to inactive state by
calling NetWorkScheduler.Reset. The scheduler is released by calling NetWorkScheduler.Free.

If your program is event driven, you should place a call to
NetWorkScheduler.PeriodicTask in your main event loop to be called on null events.

If you have activated or used the scheduler, you should always call
NetWorkScheduler.free before leaving your program.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

If you are going to generate sub-tasks, you have to override the task generator. Take the
prototype definition tTaskGenerator and adapt it to your needs. Create a task generator object
and install it by calling NetWorkScheduler.initTaskGenerator. To customize a task generator, you
have to write a function NewTask. NewTask should return nil if no sub-task can be defined, or a
message pointer defining a new sub-task. The proper task definition is private to you. The
scheduler's task sending activity can be controlled by NetWorkScheduler.SetSending.

Programming for NetWork in general will consist of writing a master process (the later compute
client) and a compute server. The compute server has to be distributed to the co-workers9. To

guarantee a fail-safe behaviour, all functions should be implemented on the original generating machine.

These functions must be implemented in the master program (compute client). The compute server must be able to accept sub-tasks, and handle them.

Although it is possible to use the message handling system of NetWork directly, it is recommended to make use of the supplied scheduler model.

If you are going to accept sub-tasks, you have to customize the receive handler. Take the prototype definition tTaskHandler and adapt it to your needs.

Create a task handler object and install it by calling NetWorkScheduler.InitTaskHandler. To customize a task handler, you have to write a function

MsgUsable and a procedure MsgEvaluation. The scheduler will get the priority information of an incoming message to the PriorityBuffer indicated

by MsgPrioPtr. MsgUsable should check any incoming task on the basis of the header information and the available priority information. If

MsgUsable returns true, the scheduler will ask the message system to pass the bulk of the data describing the sub-task to the core buffer indicated by

MsgCorePtr. You have to write a procedure MsgEvaluation which should take the data from the buffer and initiate the proper task execution. To return

a result to the sender, you can make use of the ReplyMessage function.

With NetWork, programs can be launched automatically on remote request. Programs launched on remote request may be terminated by NetWork

when the owner accesses the machine. Do not assume that it is safe to continue processing at that time if you receive a command-Q. You must clean

up as soon as possible or you will not have another chance. Also note that you don´t have the time to report results, because all messages – including

those that are about to be transferred – are killed when your application dies. Remember that NetWork' s priority is with the owner, not with the

remotely launched application.

If it is necessary that you clean up, set your process type to "master" after program initialization, and call the function “Idle” regularly. However, users

may become annoyed by having an alien application around, and your application is likely to be cancelled from the list of welcome visitors.

Chapters "NetWork Scheduler Routines" and ""NetWork Communication Routines" can be consulted for more information.

9To avoid virus proliferation, worms and other things, NetWork does not do any active transportation of code. The code to be launched
has to reside on the destination machine and is under control of the destination home user.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Tips

Conceptually, NetWork distinguishes task definition, the proper handling of tasks, and collection
of results. However, to allow for a fail-safe implementation it is necessary to provide all three
functions on the machine of the initiating user, or to guarantee a minimal availability of the
network.

The instances involved in NetWork, the processes, communicate by message passing. The
absolute priority of owners implies a list of NoNos for NetWork communication:

• Do not assume that computing resources other than your home resources are available at all.
• Do not assume that a computing resource once accessed is available until completion of its
task.
• Do not assume that a communication resource known is stable or available.

You could overcome these restrictions by verifying that the conditions you suppose are
continuously met at the cost of putting additional load on the network. This however would
obstruct other users. Hence additionally:

• Do not access the network unnecessarily if not forced to by a user.

You should not assume that every sub-task which is assigned is effectively carried out. If sub-
tasks are being solved, you should not assume that the results are presented in the order the tasks
are assigned. A positive way of thinking about this environment is: assume that good faith is
presenting you with results to partial problems, free of charge, but at random. You should be
able to make use of these gifts. On the other hand, you can ask for the solution of a subproblem.
But this is only a request, not a guarantee of faith.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Tricks and Recipes, Hints and Warnings

Selection of Co-Workers

The NetWork communication system supports selection of co-workers by capabilities. See capabilities.

to come •

Authorization

The reply-to address can be used to implement a simple authorization scheme. Note that the reply-to address
need not be a public address.

Caveats and Warnings

On exit NetWork Lookup will try to re-install the traps it has patched. However,
interference with other patchers (e.g. MacApp) cannot be excluded..

NetWork Processes and Multifinder, SIZE Resource

Each NetWork Process should be capable of operating in the background. Therefore the “can-
background” bit in the SIZE resource should be set.

A slave application without the “can background” bit set may be launched in the background
without ever receiving any time slice, therefore never doing anything useful. Still worse, it is
possible that the process is not terminated automatically, and the user must call it to the front
before it is exited.

Another reason to require background capability is: the NetWork Processor depends on
SystemTask being called regularly, in order to keep message transfers alive, among other things.
The only way to ensure that SystemTask is called regularly – assuming Multifinder – is to call
WaitNextEvent or GetNextEvent periodically. But as a consequence it is always possible that
your application is switched to the background, and if the application is not able to operate in the
background, time-outs are very likely to occur and the application will lose messages.

A NetWork process can be written to operate both as a master and a slave. If you are separating
your applications into two separate images for master and slave processes, the recommended
implementation of a NetWork Process is a faceless background task with the “background-only”
bit set in the SIZE resource.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Note that implementing a "slave only, faceless background task" maximizes the likelihood of
taking advantage of available machines for of two reasons: It allows you to minimize memory
requirements, and NetWork Processor will be able to launch your application, even if the user
did not check “Background (invisible) processes” AND a modal dialog is frontmost. A faceless
background task can be launched at almost any time.

If you are implementing master and slave modes within the same application, you can use the
Master function to differentiate between the two modes. Master returns true if the user launched
the application and false if NetWork Processor launched the application. You can tell whether
you should display a user interface or windows showing progress by calling the function Visible.
Visible is always true for a Master process and always false for “background-only” processes.
For the remaining case, a slave process without the “background-only” bit set, it returns the
setting of the "background only" check box in the control panel.

NetWork Processes and File Creators/Signatures

You should register the signatures you are going to use with Apple. The signature, or file
creators, are used to associate files with icons. But beyond this, they are used to identify
applications to be launched on an open/print request. NetWork uses the signature of an
application to associate a message to a program file if there is no running application listening
for messages corresponding to the given creator. If there is already an application running with a
specific signature, NetWork Processor will never launch another application for that signature
even if there are multiple applications with the same signature in the various folders used by
NetWork Processor. An attempt of any application to register its signatures with NetWork
Processor will fail if there is already an application registered for that signature.

Moreover, the user cannot register multiple copies of the same program using NetWork for the
same signature, even if the program is launched manually. The attempt to register the signature
another time will fail. If you want the user to be able to launch multiple copies of your program,
then you´ll have to use a process type of dynamic, i.e. ask for a dynamically assigned creator.

The current NetWork implementation does not allow you to implement a slave and a
dynamic process identification using the same running process, except if you are sure
that you are not communicating to local processes of that family.

The library does not support multiple signatures for one process, but NetWork
Processor does. If you want to be able to use multiple signatures within one
application, you have to add calls to NetWork Processor yourself to register the
additional signatures with NetWork Processor. Of course it is possible to use dynamic
signatures as the additional signature. You´ll have to modify the library routines in
order to allow you to specify which signatures to use when calling PostMsg.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

NetWork Processor identifies processes internally using the signature. This may lead to
inconsistent results if you are trying to register a dynamic signature from within a slave or local
process. If you want to do this, be sure to change the process type associated with the dynamic
signature to a slave immediately after launching.

NetWork Processes and Stack Requirements

NetWork Processor requires some stack space – especially if logging is turned on. The
maximum that has been observed is about 2.5KB. Generally this does not present a problem to
an application, except if you are using NetWork from within nested procedures using large
arrays or within recursive procedures. If you are implementing a faceless background task
however, be warned.

By default, Multifinder allocates a stack of 8 KB – or 24 KB if Color Quickdraw is present – to
all applications launched. Faceless background tasks however are assigned a default stack of just
2 KB, which may be too small to call NetWork. Therefore you must include statements in your
program to adjust the stack size prior to calling MaxApplZone. The same is of course true if you
need more stack space for other reasons. In the case of a faceless background task using
NetWork, however, you cannot get by without it.

The following procedure illustrates how to test if there is sufficient stack space and increase the
size of the stack if necessary. This procedure should be called BEFORE any other statement in
your program, in particular before calling MaxApplZone.

procedure InitStack;

const MinStackSize = 4096;

type LongPtr = ^ longint;

begin

if LongPtr (CurStackBase)^ - LongInt (GetApplLimit) < MinStackSize then

SetApplLimit (Ptr (LongPtr (CurStackBase)^ - MinStackSize))

end;

Hints: NetWork Processes Which are not Applications

When NetWork Processor receives a message which does not correspond to a running process, it
will search for an application in the “:NetWork Tools:” folder. Hence only applications are
launched as slave processes. However it is possible to implement a master NetWork process as a
desk accessory, MPW tool, or HyperCard XCMD, or something similar. It is also possible to use
NetWork from an INIT or driver, but only if you register your creator before Multifinder is
loaded.

NetWork Processor uses a very simple strategy when cleaning up. Whenever a file is closed,

NetWork Programmer´s Guide

NetWork Programmer´s Guide

NetWork Processor tests if its file reference number is that of the current application. If it is,
Multifinder is asked for the current process id, and NetWork Processor de-registers all creators
known for that process id. Hence if a DA Handler, MPW or HyperCard is exited, the
corresponding NetWork process is no longer alive either.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Hints: Computing Contexts and Integrity

NetWork does not assume any sort of session maintenance. Hence the NetWork message system
cannot suppose or guarantee any session or context integrity.

If you need authorizations, you can use NetWork’s addressing scheme. You can use
the reply address to implement a simple authorization scheme if you use “private”
addresses as targets. Only a process which has received a task message will know this
address to reply to.

The minimum session maintenance, or context verification which in general will be required, is
supported by the scheduler. The context may be different for the receiving or sending branch.
The context is defined by:

• a ContextStamp.
• a privileged address
• a privileged timeout

For all, zero signifies a neutral or undefined state.

The ContextStamp is to be compared with the MsgRefernce of the message record. The
scheduler routine DoNewTask fills in the TaskGenerator's ContextStamp before sending. If a
context continuity is required, the MsgRefernce can be used to verify the context.

A message may signal that it is changing context, or else needs special attention by using
• a cMsgNAttention flag.
The TaskHandler's routine MsgHeaderUsable is responsible for verifying context continuity.

Hints: Expanding the Scheduler: Installing Cohandlers

Object Pascal does not allow overriding methods with varying parameters. As a kludge, various
hooks are implemented in the scheduler to allow free experimentation without completely
rewriting the scheduler. A user definable object, a cohandler, will be called at every critical step
of the scheduler.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

The formal definition is:

Type tSchedulerCohandler=object(tObject)
procedure CoHandle(cmd:tSchedulerPhase;msg:MsgPtr);
procedure reset;
end;

Cmd identifies the phase of the scheduler at which the cohandler is invoked. Msg contains a pointer to the current message (if any).

The intended use of cohandlers is to provide adaptive allocation of tasks. A cohandler should feel free to modify the following fields:

NetWork Programmer´s Guide

NetWork Programmer´s Guide

TaskIterations
TaskId
Destination

when called at pStartNewTask. All other calls to the cohandler should be considered only informative to provide the basis for

adaptation.

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Examples

Ping: Just Pings

Ping documents the basic possibilities of the NetWork system: look-up of remote partners,
message transport, and remote launching.

See the Ping source code for more information. Ping is the recommended first example if you
want to develop your own software using NetWork.

RemoteJob: Supports Distributed Use of MPW

RemoteJob is a simple example which illustrates most possibilities of the NetWork system:
going beyond the basic features it uses the scheduler for asynchronous distributed computing.

See the RemoteJob source code for more information. RemoteJob is the recommended starting
point if you want to develop your own software using NetWork.

RemoteJob illustrates how to use the NetWork system with pre-NetWork software which at least
supports start-up scripts, like MPW. RemotJob takes a task file Remote.Job, sends it to a target
machine, stores it there as a file Remote•Job, and then launches the proper target (defaults to
MPW). Instead of using a task file, commands can be sent on the fly using the New Task… item
in the New… menu.

To use RemoteJob with MPW, the target’s NetWork tools folder must contain RemoteJob along
with a copy of the MPW shell, and the special start-up file. You would then use an MPW script
to store the appropriate job files as Remote.Job, and keep track of successful execution of
remote tasks. Note that RemoteJob does not clean up the job files - modify it if you want this.

To use RemoteJob for a distributed make, you can either modify RemoteJob to keep track of
sub-tasks (thus introducing session oriented techniques), or you can run make repeatedly until it
tells you that there are no more tasks to assign (thus following the ideas of asynchronous
iterations).

see the “RemoteJob” example for details and implementation.

Warning: Never put MPW or any shell into the NetWork tools folder unless you are
in a completely trustworthy environment. If you allow a shell to be launched remotely,
the owner has no control over the type of shell commands which may be invoked. In
particular, if you allow remote launching of a shell, there is no safeguard against
worms..

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Spinning Brain: a Neural Net Using Asynchronous Iterations

Spinning Brain is a full example of asynchronous iterations using the NetWork system. Spinning
Brain uses the cohandler facilities of the scheduler for an adaptive version of the scheduler
which adjusts itself to the effective power and reliability of possible partners.

see separate documentation and source code for “Spinning Brain”

ScreenSaver: Idle Time Launching

If a folder “NetWork Idle Tools” is in the system folder, applications residing in “NetWork Idle
Tools” will be launched automatically on transition to idle state. ScreenSaver is an example
which uses this possibility. It is an ordinary application.

You can launch any application on idle time (for example MPW). Collect the things to do later
in “NetWork Idle Tools”.

see the “ScreenSaver” sample

Hello, UDPTransport: Startup Launching

If a folder “NetWork Startup Tools” is in the system folder, applications residing in “NetWork
Startup Tools” will be launched automatically at start-up time. Hello is an example which might
be used this way.

So far, it is a boring example. The start-up launching facility is necessary if you want to install
additional transport systems (like TCP/IP).

see the “UDPTransport” sample

see the “Hello” sample

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Mailer

to come •

NetWork Programmer´s Guide

NetWork Programmer´s Guide

Index

AcceptMsg 39
address

destination 7, 8, 15, 21, 40
NetWork 6, 14
NetWork node 6
privileged 48
reply-to 7, 15, 40, 48
source 7, 15, 37

AddrToString 29
AppleTalk 2, 40
asynchronous iterations 52
AvailableMsg 39
buffer

core 43
priority 43

capabilities 25, 45
CheckError 30
cMsgNAttention 48
CoHandle 28
CoHandler 21, 48
ContextStamp 48
control panel extension 9
destination 7, 49
DestroyMsg 36, 40
disable 2
distributed computing 5
DoNewTask 21, 27, 48
DumpMessages 39
EqAddr 38
EqNode 38
event

null events 42
task 22

FlushMsg 39
Free 21

Scheduler 26
GetIndProcess 31
GetMsg 39
GetNetWorkAddr 39
GetProcessType 30
GetSleep 21

look-up 34
Scheduler 21, 22, 27

handleError 21, 26
HandleMsg 21
handler

task 6, 9
header 10
Hello 52
home user 6
identification

machine 6
process 6
user 6

idle 6, 32
idle time launching 52
IdleTicks 32
information

core 10, 36
header 10
priority 10

INIT 9
MessageHandler 16
Scheduler 21, 26
TaskGenerator 20
TaskHandler 18, 19

InitNetWork 29
InitTaskGenerator 21, 23, 26
InitTaskHandler 21, 23, 26
IsLocal 38
iterations

asynchronous 52
KickOff 21, 27
launch 7

on idle time 52
on startup time 52
on task 8, 11

library 5
local 8
LogMsg 30
LogString 29
LogStrTime 30
machine 6
master 8, 30, 43
message 7, 8

MsgAddr 14
MsgAvailable 36
MsgCorePtr 43
MsgEvaluation 18, 19, 43
MsgHeaderUsable 18, 19
MsgPrioPtr 43
MsgStatus 36, 39
MsgToString 29
MsgUsable 18, 19, 43
NetWork

address 6
idle tools 52
processor 2, 5, 9, 30, 32
tools 2, 5

NewTask 20, 21, 43
NLActive 35
NlCount 34
NlDeregister 35
NLinit 34
NLNext 34
NlNode 34
NLRandom 34
NlRegister 35
NlSetSearch 35
NlStart 34
NlStop 34
NlTask 34
originator 6, 8
owner 6, 7, 8, 43
PeriodicTask 23, 27
Ping 51
PostMsg 36, 39, 40
PreventIdle 32
PriorityBuffer 43
privileged 19
privileged address 48
privileged timeout 48
process 6

collector 6
lifetime 8
local 8
master 8
slave 8
termination 8

NetWork Programmer´s Guide

NetWork Programmer´s Guide

type 30
ProgramBreak 30
remote slave 8
RemoteJob 51
reply-to 7
replyMessage 22, 25, 27, 43
Reset 21

Scheduler 26, 42

NetWork Programmer´s Guide

NetWork Programmer´s Guide

SchedulerCohandler 28
Restart

MessageHandler 16
TaskGenerator 20
TaskHandler 18

scheduler 8, 21, 22, 43
ScreenSaver 52
sendMessage 22, 25, 27
SendMsg 40
server 43
session maintenance 7
SetMsgAddr 39
SetProcessType 30
SetReceiving 21, 26
SetSending 21, 26, 43

SignalMsg 39
signature 6, 14, 42
source 7
Spare 30
Spinning Brain 2, 52
stamp

context 16, 19, 48
message 15, 48
task 26
TaskGenerator 20, 21

startup time launching 52
task 6

generator 6, 9, 13, 43
handler 6, 9, 13, 43

TaskGenerator 20, 21

TaskHandler 21
TaskId 49
TaskIterations 49
termination 8
timeout 19
TimeStamp 30
tScheduler 22
tTaskGenerator 43
used 6
UseEventNo 29
user

home 6
Visible 30

NetWork Programmer´s Guide

