
NetWork Transport Systems

NetWork Processor allows to  add additional  transport  systems,  up to  a  total  number  of  four transport  systems 
simultaneously.  The  maximum  of  four  is  a  compile  time  constant  of  NetWork  Processor  –  if  you  want  to  
use/implement more than four, drop us a note. This document is intended to give you the necessary information to 
write new transport systems. It also provides some background information about the built-in transport systems 
“Dispatcher”, “Local”, and “AppleTalk”. The “Dispatcher” is special: it is used to select one of the other transport 
systems to send a message on, depending upon the destination address.

Transport systems may be implemented as code resources of type 'NetT' (id range 0..3), which are copied into  
NetWork Processor and loaded at system startup, or they can be implemented as applications, drivers, or any other  
piece of code and register themselves with the NetWork Processor. There is a slight difference between these two 
techniques which is documented below. It  is  probably best,  to implement new transport  systems by writing an  
application which implements the protocol, and move this application to the “:NetWork Startup Tools:” folder.

Transport System Interface

NetWork Processor uses the following record to keep information about transport systems. The record declaration is  
available in NetWork.p:

TransportRecord = record

TransportProc : Ptr; { pointer to definition proc }

TransportID : longint; { transport (unique) signature }

TransportAddr : longint; { local address of this transport system }

TransportBCAddr : longint; { this transports broadcast address }

TransportStart : longint; { first valid address }

TransportEnd : longint; { last valid address }

TransportMsgSize : integer; { size of MsgRecord for this transport system }

TransportNumListens : integer; { Number of listeners that should be active }

TransportName: StringHandle; { name of resource }

TransportMsgQHead : ^MsgPtr; { pointer to head of queue }

TransportVars : Ptr; { private vars, may be longint, ptr, or handle }

end;

TransportPtr = ^TransportRecord;



TransportProc is  the  entry  of  the  procedure  implementing the  transport  system.  The procedure  must  be 
declared as follows (pascal calling conventions apply) :

procedure Transport (cmd: integer; Msg: MsgPtr; control: TransportPtr);

A single procedure is used to implement the entire transport system. The parameter cmd is used to tell the transport 
system which function to perform, see below. Msg is the message to operate on – if any –, and control points to 
this transport´s TransportRecord.

TransportID is your unique signature that you register with Apple. The use of a signature allows applications 
to differentiate among transport systems if necessary. E.g. the library on the NetWork distribution disk looks for the 
“AppleTalk” transport system. Other applications might want to communicate with some unix server, and therefore 
want to verify that a TCP/IP transport system is available.

TransportAddr is the node´s local address. Because NetWork Processor supports multiple transport systems, it  
does not assume a single local address, but matches against all the local addresses in all transport records. The  
“Dispatcher” is responsible to replace references to the local machine with the transport address of the transport  
system it selects to send a message.

TransportBCAddr –  if  not  zero  –  is  the  broadcast  or  multicast  address  of  this  transport  system.  If 
TransportBCAddr is zero, then this transport system is not assumed to support broadcasts.

TransportStart and  TransportEnd define the range of legal addresses for this transport system. The 
two numbers are interpreted as unsigned longs. All addresses that are valid for this transport system (including the  
local address) are assumed to be within this range, except for the broadcast address, which may be separate. The two  
numbers are used by “Dispatcher” (see below) to select a transport system.

TransportMsgSize is the size of a message. Transport systems that are implemented as 'NetT' resources and  
loaded  at  system  startup  can  set  TransportMsgSize to  a  value  larger  than  the  default  sizeof 
(MsgRec),  in order  to allocate additional  space for  private variables.  Transport  systems loaded after system 
startup cannot ask NetWork Processor to enlarge the size of a message. Instead, they can allocate their own memory  
(preferably from a private heap zone) and store a pointer  to it  in  MsgXFerID (which is  never looked at  by 
NetWork itself). 

NetWork Processor will try to allocate TransportNumListens listeners dedicated to this transport system. A 
listener is a  MsgRec,  that NetWork Processor allocates and passes to the transport system to store a received 
message in. The value of  TransportNumListens can be changed at any time, though NetWork Processor 
will never abort listeners in excess of this value. E.g., the “AppleTalk” transport clears this value and aborts all  



listeners, if AppleTalk is turned off. It sets TransportNumListens to 3, if AppleTalk is turned on again. The 
“Local” transport system sets this value to 1 if a message has been posted locally, and resets it to 0 if no more  
messages are pending.

TransportName is a StringHandle to the name of the transport system. If the transport system has been  
loaded at system startup, NetWork Processor takes care of storing the name of the resource. If you implement a new 
transport system, you should store a StringHandle in this field.

TransportMsgQHead contains a pointer to the head of the queue of active messages. This may be necessary if  
you want to look for a specific message in the queue. In general you will have to match the MsgProtIndex (the 
queue contains all active messages regardless of the transport system which is processing them). E.g., the “Local”  
transport uses this to match a listen with a post.

TransportVars is  for  use  of  the  transport  system.  With  the  exception  of  transport  system  0,  NetWork 
Processor does never access this field. You can store a handle or a pointer in this field. You can even store the 
information directly into the field if it does not exceed four bytes. If you implement a new transport system within 
an application, it is probably best to store a reference to your global data (your A5) in this field.

Startup Operation

At system startup, NetWork Processor looks in its own resource file for resources of type 'NetT' with the ids 0 
through  3.  If  it  locates  them,  it  initializes  a  TransportRecord by  storing  a  pointer  to  the  resource  in 
TransportProc and copying the bytes 4 through 27 of the resource to the fields  TransportID through 
TransportNumListens. After that it calls the transport system with the command tInit (see below for a 
complete reference of the commands). The transport system can change any field of the record it wants. After the 
call, NetWork Processor initializes the field TransportMsgQHead.

Note that your resource is assumed to start with a long branch, because NetWork Processor expects bytes 4..27 to  
contain data. See below for a sample transport resource.

NetWork Processor – as distributed – contains three built in transport systems. “Local” ('NetT' 1) and “AppleTalk” 
('NetT' 2) are used to transfer messages locally or using AppleTalk, respectively. “Dispatcher” ('NetT' 0) is special. It  
is used to select a transport system to send a message on (unless the programmer specified otherwise). Its operation  
is detailed below.

In order to support “Dispatcher”, NetWork Processor does two special things after it has loaded all transport systems 



that are part of its resource file. It sets the “Dispatcher´s” TransportMsgSize to the maximum that has been 
requested by any transport system loaded at that time, and it sets  TransportVars to the maximum transport 
system index that is supported by NetWork Processor.

The following table lists the initial values of the built-in transport systems:

TransportName “Dispatcher” “Local” “AppleTalk”

TransportID 'NetD' 'NetX' 'NetA'

TransportAddr 0 0 net,node,socket (40)

TransportBCAddr 0 0 $FFFFFFFF

TransportStart 0 0 $00000101

TransportEnd 0 0 $FFFEFEFE

TransportNumListens 0 0 3

Note: A transport system (except “Dispatcher”) should not assume anything about other transport systems or the 
total number of transport systems. A transport system may however compare the value of MsgProtIndex of one 
message to the value stored in other messages, in order to find out which messages are also handled by this transport  
system.

“Dispatcher” Operation

If a message is posted, the library allocates a new    MsgRec by calling NetWork Processor (see the library source 
for details). NetWork Processor clears the entire MsgRec before returning a pointer to it. Unless the programmer 
changes the value stored in  MsgProtIndex,  the “Dispatcher” (transport system 0) will be called during the 
actual post operation. “Dispatcher” supports exactly one command: tPost, all other commands are either ignored 
or cause an error condition. 

“Dispatcher” looks at the destination address (actually  MsgDest.a) and searches for a transport system that 
supports this address, either as the braodcast address or as a node address in the range defined by the transport 
system. If there is a transport system supporting the destination address, “Dispatcher” changes MsgProtIndex 
and also updates all references to the local node (MsgSource.a, MsgDest.a, and MsgReply.a) to be the 
local address of this transport system. If no transport system can be located, an error is returned.

Note that NetWork Processor saved the current cmd in MsgCmd and set the MsgResult to 1, indicating busy. 
“Dispatcher” does not change them, which causes NetWork Processor to restart the operation, this time calling a  



different transport system.

Transport System Commands

NetWork Processor uses the following command codes to tell the transport systems, which operation to perform. All  
commands consist of a major and a minor command code. A list follows:

{ major command codes }

tGeneral = $00;

tListen = $10;

tGet = $20;

tAccept = $30;

tNew = $40; { used internally }

tPost = $50;

{ minor command codes }

tStart = $00;

tAbort = $0F;

{ misc command codes }

tInit = $00;

tTickle = $01;

tRegister = $04;

tDeRegister = $05;

{ useful values }

tMajorMask = $F0;

tMinorMask = $0F;

Commands are of two categories: general or message oriented. Let us first consider message transfer commands,  
which are in the range $10 through $5F.

Message Transfer Commands



The use of major and minor command codes provides an easy way to sequence through a series of steps, in order to  
perform one operation. If NetWork Processor wants to start a message transfer, say a post, it uses the command 
tPost+tStart, if it wants to abort a posted message, it calls  tPost+tAbort. All other minor command 
values,  range  1..14  (decimal),  can  be  used  for  sequencing  purposes.  E.g.,  the  “AppleTalk”  transport  system 
increments MsgCmd by one after it has started the operation. The next time it gets called with the same message, it  
knows that it must test, if the transfer has been completed.

Another feature of NetWork Processor also supports this type of sequencing: The transport system will be called 
repeatedly with the same message (regardless of the major command code) by calling it with the command stored in  
MsgCmd, as long as  MsgResult is greater than zero. Note that a zero implies sucessful completion, whereas 
negative values are error indications. Btw, NetWork Processor considers it an error to start a new operation on a  
message as long as MsgResult is greater than zero.

 

The  command  tListen is  used  after  a  listener  has  been  allocated  (up  to  the  number  given  by 
TransportNumListens, see above). A transport system should prepare to receive a new message, possibly  
allocating the memory required to do that. Note that you cannot use the memory pointed to by sgPrioPtr and 
MsgStdPtr, because this is application supplied memory after a get or accept has been performed. In fact, these 
fields are nil.

Listen (note that this can be any time after the initial call) should set  MsgResult to zero, if a new message 
arrived. Also you must fill in the following fields of the message record: MsgSource, MsgDest, MsgReply, 
MsgCapas, MsgIDStamp, MsgPrioSize, and MsgStdSize. If an error is detected or if it is impossible 
to receive messages, return an error. Note that you should clear TransportNumListens if it is (temporarily) 
impossible to receive messages.

The command tGet is used during a GetMsg operation. It should be used to copy the priority information from  
your private memory to the memory pointed to by MsgPrioPtr. Note that you must never transfer more than 
MsgPrioSize bytes. Warning: though it is possible to sequence through a series of steps, NetWork Processor 
will block until the Get has completed.

The command tAccept is used during a AcceptMsg operation. It should be used to copy the standard information 
from  anywhere  to  the  memory  pointed  to  by  MsgStdPtr.  Note  that  you  must  never  transfer  more  than 
MsgStdSize bytes. NetWork does not require this command to complete immediately – it may take some time  
e.g. to transfer the information through a network connection.

The command tNew is used internally to mark a newly allocated message. A transport system will never receive  
this command code.

The command tPost is used to start a message transfer. All information required has already been filled into the 



message record.

Any of the command codes above incremented by tAbort, implies that you should abort any transfer in progress 
and deallocate any additional memory you allocated. This command is used by NetWork Processor in one of two 
cases: It is used when the user program calls DestroyMsg and whenever a message reaches the timeout (usually two  
minutes). In the latter case, the command is actually called twice.

Note: It is probably best not to allocate memory in the system or application heaps in order to avoid fragmentation.  
Also, applications might not be prepared to handle moving blocks as a result of calling NetWork Processor.

General Commands

The following command codes do not operate on a message. NetWork Processor uses these command codes to  
perform special  actions.  All  of  them have  a  major  command code  of  tGeneral,  therefore  only  the  minor 
command code is given. Also, none of these command can return an error.

The command  tInit is called only once at system startup as documented above. The command  tTickle is 
called  periodically  (somewhere  between  10  and  20  times/second)  and  allows  the  transport  system to  perform 
housekeeping.  E.g.  “AppleTalk”  uses  this  command  to  test  if  AppleTalk  has  been  reopened  and  updates 
TransportNumListens accordingly.

The commands tRegister and tDeRegister are called if the system´s state changes from busy to idle or 
vice versa, respectively. “AppleTalk” uses this to change the NBP type from “NetWork Processor” to “NetWork 
User” or vice versa. If no such action is required, the command is to be ignored.

Sample Transport System

The following section lists the “Local” transport system. The assembly portion is listed first, followed by the pascal  
code.



; Copyright 1990 The NetWork Project, StatLab Heidelberg

;  Copyright  1990  Joachim  Lindenberg, 
Karlsruhe

;

; this file implements the header of 
the local transport procedure

;

main

import Local

bra Local

string asis

dc.l 'NetX' ; transport signature 

dc.l 0 ;  local  address  of  this 
transport system 

dc.l 0 ;  this  transports 
broadcast address 

dc.l 0 ; first valid address 

dc.l 0 ; last valid address 

dc.w 0 ;  size  of  MsgRecord  for 
this transport system 

dc.w 0 ; Number of listeners that 
should be active 

end



{ Copyright 1990 The NetWork Project, 
StatLab Heidelberg,

  Copyright  1990  Joachim  Lindenberg, 
Karlsruhe. All rights reserved. }

unit LocalTransport;

interface

uses Types, Memory, NetWork;

procedure Local (cmd : integer; Msg : 
MsgPtr; control : TransportPtr);

implementation

const tPostMatched  =  tPost+1;
{ listen matched post }

tPostDone = tPost+2;
{ accepted }

function  Min  (a,  b  :  longint)  : 
longint;

begin

if a < b then Min := a

else Min := b;

end;

procedure MatchPost (var q : MsgPtr);



var p : MsgPtr;

begin

p := q;

while  (p  <>  nil)  and  not 
( { complex matching.. }

(p^.MsgProtIndex  = 
protindex) & (p^.MsgCmd = tPost)

& (p^.MsgResult > 0) ) do

p := p^.MsgLink;

q := p;

end;

procedure Local (cmd : integer; Msg : 
MsgPtr; control : TransportPtr);

var result : integer; p : MsgPtr;

begin

with Msg^ do begin

if (Msg <> nil) & (BAnd (cmd, 
tAbort) = tAbort) then begin

result := eAbortMsg;

if  MsgXFerID  <>  0  then 
begin

MsgPtr 
(MsgXFerID)^.MsgResult := eInvalid;

end;

end

else  result  :=  0;  {  catches 
all undefined cmds }

case cmd of



tGeneral  : 
control^.TransportMsgSize :=

sizeof (MsgRec);

tListen : begin

p  := 
control^.TransportMsgQHead^;  MatchPost 
(p);

if  p  =  nil  then 
result := eAbortMsg

else begin

MsgSource  := 
p^.MsgSource;

MsgDest  := 
p^.MsgDest;

MsgReply  := 
p^.MsgReply;

MsgCapas  := 
p^.MsgCapas;

MsgStamp  := 
p^.MsgStamp;

MsgPrioSize  := 
p^.MsgPrioSize;

MsgStdSize  := 
p^.MsgStdSize;

MsgXFerID  := 
longint (p);

MsgPtr 
(p)^.MsgXFerID := longint (Msg);

MsgPtr 
(p)^.MsgCmd := tPostMatched;

{ returns 0 }

MatchPost  (p, 
Msg^.MsgProtIndex);

{  search  for 



additional local messages }

end;

control^.TransportNumListens := ord 
(p <> nil);

end;

tGet : begin

BlockMove  (MsgPtr 
(MsgXFerID)^.MsgPrioPtr,

MsgPrioPtr,  Min 
(MsgPrioSize, 

MsgPtr 
(MsgXFerID)^.MsgPrioSize));

end;

tAccept : begin

BlockMove  (MsgPtr 
(MsgXFerID)^.MsgStdPtr, 

MsgStdPtr,  Min 
(MsgStdSize, 

MsgPtr 
(MsgXFerID)^.MsgStdSize));

MsgPtr 
(MsgXFerID)^.MsgResult := 0;

MsgPtr 
(MsgXFerID)^.MsgXFerID := 0;

MsgXFerID := 0;

end;

tPost : begin



MsgXFerID  :=  0; 
result := 1;  { always 1 }

control^.TransportNumListens := 1;

{  allocate  a 
listener }

end;

tPostMatched  :  result  := 
1; 

{ tPostDone  :  ;  {  returns 
0 }

end; { case }

if Msg <> nil then begin

MsgResult := result;

end;

end;

end;

end.





1 a zero implies not supported.

2 that´s why “NetWork Communications” documents -1 as the 
broadcast  address.  If  you  wants  to  broadcast  on  all 
transport  systems,  you  will  have  to  index  through  all 
transport systems and post a message for each    transport 
system separately unless the broadcast address is zero.


