
Spinning Brain

Spinning brain

An interactive program for associative recall of visual 
patterns

R. Kühn1 and G. Sawitzki2 

Abstract

Recent work of Hopfield has revealed how many powerful techniques of condensed matter physics can be applied to problems 
arising in brain theory. One of the novel aspects is that brain functions such as recalling a memory (a visual pattern or a tune) can be  
modeled as collective phenomena. In these developments, the role of numerical simulations has been substantial both in confirming the 
analytical  work  and  in  testing  practice-oriented  algorithms.  Here  we  discuss  the  architecture  and  performance  of  an  interactive  
program, which has been devised to simulate storage and associative retrieval  of visual  patterns.  The paper also provides ample 
background  information  so  as  to  allow  the  reader  to  interpret  the  program  in  the  proper  context  of  these  fascinating  recent  
developments.

1. Introduction

No doubt, in many respects the brain is superior to a computer. Elementary tasks, such as the completion of fragmented visual patterns  

and the recollection of structured data, are performed by the brain with great ease and efficiency. This is partly due to a high degree of  

parallel operation, partly to a different organization of the "hardware". The brain can be considered a surprisingly efficient associative,  

or content-addressable, memory. If, for instance, you offer the brain a pattern which is (not too) distorted, then it is able to recognize  

and reconstruct the original without checking all the other ones it may have in memory. Thus, in contrast to what is done in present day  

computers, the information is not classified by label but by its content - whence the name. 

In this paper we describe an interactive program for the associative recall of visual patterns. In so doing we take the opportunity to  

sketch some underlying ideas from the theory of neural nets. The paper is organized as follows. In Section 2 we review some current  

ideas about biological memories and their formalization. Then we discuss a model due to Hopfield (1982), which has received a huge  

amount of interest, in particular among physicists. In Section 4, the program itself and its performance are analyzed. Finally, we 

indicate some extensions in Section 5. The conclusion (Section 6) is that there has been substantial progress in brain theory, certainly in  

the understanding of collective aspects, but that nevertheless the still remaining distance between modeling and reality should leave us 

rather modest.

Though we have, in what follows, refrained from including an extensive list of references, it goes without saying that the neural  

network theory as reviewed in the present paper is a joint achievement of various groups from all over the world. To give proper credits  

and to obtain further information, the interested reader may wish to consult recent review articles by Domany (1988) or those collected 

in the proceedings of the Heidelberg Colloquium on Glassy Dynamics (van Hemmen and Morgenstern, 1986).

1Sonderforschungsbereich 123, Im Neuenheimer Feld 294, D 6900 Heidelberg
22 StatLab, Im Neuenheimer Feld 294, D 6900 Heidelberg
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Part of the work on neural nets was done in the group of J.L. van Hemmen and H. Horner at the Universität Heidelberg (SFB 123). It is  

a pleasure to thank the participants, in particular B. Sulzer, for their help and advice. The program described in Section 4 is based on  

development tools of the StatLab Heidelberg.

2. What do we want to model?

Models of biological memories which are based on customary storage procedures for computers suffer from two major constraints.  

First, storage and retrieval algorithms usually employed for computer memories are inefficient and (orders of magnitude) too slow 

when applied to important tasks such as pattern recognition, which are of vital importance in daily life. Second, assuming individual  

neurons to be responsible for storing a single individual item results in the need for an unrealistically large number of neurons as soon  

as realistic problems are to be handled. Besides this, no conventional storing mechanism has been found up to now that enjoys enough  

flexibility and fault tolerance to serve as a plausible model for biological memories.

Further evidence disproving a strictly localized representation of knowledge in the brain arises from neurophysiological experiments.  

Injuries of the cortical area, which is responsible for information storage, do not lead to a total loss of the stored items, but only  

increase the number of retrieval errors and inaccuracies. Moreover, if the brain is offered sensorial stimuli and it has to decide whether 

or not the resulting perception corresponds to a stored item, it need not perform an extensive search through all the memories. Rather is  

the retrieval process controlled by attributes of the sensory input. Therefore, a biologically relevant type of memory has to be content-

addressable (cf § 1) and provided with a holistic, distributed representation of knowledge.

If, then, information is not stored in the neurons, what else can the system use to deposit the data? The widely accepted answer, which  

is surprisingly simple, was given by D. O. Hebb in his book "The organization of behavior" (1949). Information is transmitted between  

neurons via the synapses and according to Hebb, precisely the synapses carry the data presented to the system during the learning 

sessions. In simple terms, the Hebb rule states: When a neuron significantly often takes part in firing another neuron, this regularity is 

"detected" by the synapse connecting the two neurons, and as a consequence its efficacy increases. A very attractive feature of this  

learning rule is the locality of the storage mechanism. Any synapse only has to recognize the events in its immediate neighbourhood, 

the two neurons it connects. No information about the global state of the network is required for the synapse to do its job properly.

The Hopfield model, to which we turn shortly, employs the following two ingredients. The data are stored in the synapses according to  

the Hebb rule and the neurons are simplified, i. e., they are assumed to have only two states, quiescent and active. This kind of so-

called formal neuron was first hypothesized by McCulloch and Pitts (1943). They showed any computable task can be performed by a 

suitably designed system of formal neurons.

3. The Hopfield model

a. Structure and dynamics

In the Hopfield model each neuron Si is supposed to acquire only two states: either firing at maximum rate or being quiescent. The 

actual state of a network of N neurons can then be described as an N-dimensional vector whose components S i take the values +1 or -1 

(firing or non-firing). Because of their two-state nature, the neurons are formally equivalent to certain models of magnetic moments, 

known to physicists as Ising spins. The patterns to be stored are certain Ising spin configurations. In Hopfield's 
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modeling (1982)  the  learnt  patterns  are  actually  chosen in  such a  way that  the  components  are  generated by a  random-number  

generator, taking the values ± 1 with equal probability. This assumption is important for analytical work but can be dropped in practice 

-  as  shown in  Sec.  4,  where  we present  a  description of  our  program "Spinning brain".  To fully  appreciate  the  intentions (and 

restrictions) of this novel type of argument, we will first analyze the Hopfield model in some detail.

Fig.1: Schematic view of two interacting neurons. Circles represent cell bodies, thin lines dendritic trees, and bold lines the axons of  
neurons i and j, respectively. A synapse of efficacy Jij is shown where j's axon connects to i's dendritic tree. The contribution of neuron 

j to the postsynaptic potential of neuron i is JijSj.

The interaction of the neurons in the network is accomplished by the synapses whose efficacy in our context is described by the 
couplings Jij. In the initial state before learning, all couplings (bonds, synaptic efficacies) are set to zero. If a new pattern, say μ, is 

learned, the bonds change in the following way. 1/N is added to Jij, the synaptic efficacy for transmissions of signals from neuron j to 

neuron i, if in pattern μ neuron i is in the same state as neuron j; otherwise 1/N is subtracted. This instruction yields symmetric bonds. It 

is a particular formalization of the Hebb rule. The bonds are no longer modified when the learning session is over. Thus, in some way  

the network is to be told whether it is in a learning or in a retrieval mode.

Next we focus on the operational characteristics of the network during retrieval when a stimulus with components S j is presented. At 

any time, each neuron collects the information it receives from all the other neurons. This is the postsynaptic potential or local field,  
hi=∑j JijSj. The neuron determines its subsequent state according to the value of its postsynaptic potential hi. A possible prescription is 

that neuron i will fire, if hi exceeds some threshold Vi, and be quiescent otherwise. To take stochastic noise effects into account, the 

above deterministic rule may be generalized by requiring neuron i to fire with some probability depending on its local field. In analogy 

to thermodynamics, the first, deterministic rule can be considered as a Monte Carlo dynamics at zero temperature (T=0), the stochastic  

version operates at finite temperatures (T>0). One should keep in mind that the term "temperature" in our context always refers to the  

degree of disorder in the replies of the individual neurons; it should never be mixed up with the ordinary notion of temperature.

To describe the actual  state  of  the  system it  is  convenient  to  introduce another  type of  variable:  the  overlap mμ measuring the 

correlation between the actual state and the stored pattern μ. Expressed in a 
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slightly different way, mμ tells to what  extent pattern μ is matched by the actual state. If mμ=1, the system is in pattern μ. However, if 

mμ vanishes, there is no relation whatsoever between the actual state and pattern μ. So, this order parameter is the natural quantity 

which is needed to describe the behaviour of the network in terms of the stored patterns.

Now back to the action. For the moment we will restrict ourselves to the deterministic case of retrieval (T=0). Here the stored patterns  

are required to be stable fixed points of the network's dynamics. An external stimulus which sets the network to an initial configuration  

causes one of two typical behaviours. If the starting configuration is similar to one of the stored patterns, say μ, and the initial overlap 
mμ is large enough (>0.5), then the system quickly settles down to that pattern. Otherwise, it will wander significantly longer before  

some final state - not necessarily one of the stored patterns - is attained.

In less formal terms, the above setup may be visualized as the construction of  a landscape over the state space (the possible firing  

patterns) of the neural net. Each location in this landscape is associated with a firing pattern of the system and the dynamics described  

above corresponds to a downhill motion in this landscape.  By shaping the landscape (through learning) such that its valleys are  

associated with stored information, the system functions as an associative memory: An initial state which "somehow resembles" one of  

the stored prototypes corresponds to a location in the landscape which is close enough to the valley representing that prototype to lie in  

its basin of attraction. By spontaneously moving downhill, the network reconstructs the prototype.

The landscape  metaphor  constitutes  in  fact  more  than  just  a  convenient  visualization  of  the  processes  involved in  learning  and  

information retrieval. For networks with symmetric couplings, it can be shown to have a rigorous mathematical counterpart.
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Following its internal dynamics, 
a neural network may start with a 
new stimulus and gradually 
evolve to one of the pictures 
which were used to mould its 
memory.

For this illustration, the 
program "Spinning Brain"  
was first trained on the 
pictures of the album given 
around. Then the 
rudimentary pictures far 
outside were presented to the 
net. The rest shows what the 
dynamics of the program led 
to.

Picture reconstruction by a neural network

Fig. 2: Picture reconstruction by a neural network

To summarize the basic features: The external stimulus (e. g., a question) directly determines the final state (the answer) and the 

memory is content-addressable. The mechanism even allows retrieval of input data which do not match exactly any of the stored  
prototypes (0.5 < mμ < 1). One might compare this to recognizing a person on a blurred photograph.

b. Mixtures, spin-glass states, and storage capacity
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Alas, the stored patterns are not the only attractors of the retrieval dynamics. There are quite a few other ones, the so-called spurious  

states, which are not wanted. In the landscape picture, these are "side valleys" which are unavoidably created along with those which  

are desired. As long as the number q of stored patterns is not too large, the spurious states represent just mixtures of a relatively small 

number of patterns. The number of mixture states increases exponentially with q but, luckily, one can get rid of them by raising the 

temperature. The explanation is simple:  Mixtures are not as stable as a single pattern states - the corresponding valleys being rather  

shallow -  so that the system can escape from them through "thermal" agitation. As the temperature T is raised further, "thermal"  
agitation becoming more violent, eventually a well-defined critical temperature Tc is reached above which the system also escapes 

from deep valleys, so that even the retrieval of the patterns themselves becomes impossible.

As the number q of stored patterns becomes bigger and bigger, the mixture states, whose number also increases, begin to merge and 

intermingle in an increasingly complicated fashion until eventually they swamp the whole state space - including the retrieval states  

which correspond to the stored patterns - to form a highly complex landscape corresponding to a so-called spin-glass state. The name 

refers to spin glasses, substitutional alloys with magnetic moments (spins) whose complicated dynamic behaviour was only partially  

clarified  recently.  It  has  turned  out  that  the  methods  developed  for  the  spin-glass  problem apply  remarkably  well  to  collective  

phenomena occurring in the Hopfield model, such as recollection of patterns.

According to Hopfield, spurious states might have some importance to the development of creativity. Both mixtures and spin-glass 

states are derived from the existing patterns but the combinations - if you wish, associations - may be quite unusual. This implies that  

total suppression of spurious states might not be a desirable goal - except when you fear people's creativity. On the other hand, in case  

the spurious states are not suppressed at all, the creature might be unable to survive because of its hyper-creativity; the imaginations  

might  prevent  adequate  reactions  to  environmental  conditions.  The  reader  is  cautioned  that  the  foregoing  is,  of  course,  rather  

speculative.

The next question we want to investigate is: How many patterns as compared to the number N of neurons can eventually be stored?  
Analytical and numerical calculations show that the storage level increases linearly with N. The critical proportionality constant αc is 

called the storage capacity and is about 0.14 for Hopfield networks. Up to αcN patterns are stored and retrieved almost perfectly (the 

error is less than 1.5%). If the maximum storage is attained and additional patterns are stored, the memory gets to a state of total  

confusion.  No pattern can be recalled any more. This is  quite  an unattractive feature and should be repaired (see below: § 5.a, 

'Forgetful memories').

c. Idealizations and their justification

The Hopfield model embodies a number of idealizations, which stand in contrast to physiological data, but which were crucial in  

taking the first step to get systematic and analytical investigations off the ground - namely in discovering some of the simpler system  

theoretical questions that lay hidden in the gamut of neurophysiological data. The influence of these idealizations on the validity of the  

modeling is not clear a priori.  To estimate it, computer simulations have turned out to be instrumental.

The first presupposition a neurophysiologist would worry about is the employment of symmetric synaptic efficacies. In general, if some 

neuron transmits signals to another neuron with a certain intensity nothing guarantees that the transmission in the opposite direction - if  

it exists at all - happens with the same strength. Predominantly, in nature, it won't. If the bonds of a Hopfield network are removed  
randomly and asymmetrically (Jij is set to zero and Jji keeps its value), the new network behaves quite similarly to the original one, 

even at high degrees of dilution. The main change is a slight reduction of the storage capacity. A similar robustness occurs if we clip the 
Jij. Clipping means that instead of the full-blown Jij we only take their sign. This implies a considerable reduction of information that 

is actually imprinted in the network. Nevertheless, the storage capacity and retrieval quality are hardly reduced.

The next unrealistic feature, however, is the high mean activity of the network: On the average fifty percent of the neurons fire. In the 

brain, the fraction of firing neurons is about ten percent. It is possible to drop the simplifying assumption of high neuronal activity at  

the cost of getting large correlations between the patterns stored in a so-called low-activity network. Meanwhile one has succeeded to  

deal with these correlated patterns without leaving the framework of simple, local synaptic efficacies too far.
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The last point worth mentioning is the treatment of neurons as two-valued entities. The inner structure of action potentials (spikes) and 

spike trains is regarded to have no influence on the global operation of the network. This assumption is justified by two facts. First, 

spikes are almost equal in shape and intensity. Second, if one looks at recordings of an individual neuron's activity, one observes only  

two different types of behaviour.  Either low activity with a few spikes randomly fired over a period of tens of milliseconds, or  

maximum activity with a lot of equidistant spikes, separated by only a few milliseconds. We should however not fail to mention that,  

despite of this, eminent scientists do hold the opposite view, namely that individual spikes are relevant for the global dynamics of the 

network.

4. Spinning brain: Program architecture and performance

Up to now, patterns were assumed to be random. For analytic purposes this assumption is quite convenient but for practical work it is 

by no means necessary and, what is more important, not generally the case. Imagine, for instance, that you draw with your mouse  

several trees, animals, and other objects. These patterns then have to be stored in the synaptic efficacies in such a way that they do not 

get mixed up. In the Spinning Brain3  this is accomplished by using a quasi-inverse technique which in its simplest form dates back to  

work of Kohonen (1978) in the seventies.

In the Spinning Brain program, we use a neural networks algorithm to recover a picture from a collection kept in memory. To see what  

is happening, we keep an album of the stored pictures. The use of pictures is slightly misleading: actually our neural net has no  

geometrical knowledge. It does not know about directions or straight lines or distances - it is just modelled as a collection of neurons.  

For moulding the memory during learning, it only is noted whether two neurons, while the network represents an item, fire at the same  

time - be they adjacent or far apart. Each pixel of the picture is associated to one neuron. In this simplified model, it only matters  

whether two pictures overlap. For a more realistic model one would like to include other features which are so important to our visual  

system: we do not perceive the world as frozen pictures, but we see in a dynamic way. Our eyes constantly move, the focus is ever  

changing, adding to our geometric perception of the world. For illustrating neural network theories, we found the current reduced  

model sufficient. We are however aware that our model will not be able to detect the similarity of two lines of same length, one of them  

being only shifted to another position.

33 The name alludes to the Ising spins used to represent the data.
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Fig.3: Initial window of "Spinning Brain". With the mouse, you can enter a picture in the center frame as fat pixels, or you can read an  

album from disk. "Learn" will add the new picture to the album, "Search" will activate the neural net.

Fig.4: Entering a picture in "Spinning Brain". You can click or draw a picture with the mouse.

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••   In formal terms the Spinning Brain program is organized as follows:   ••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
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INPUT MODE:

Spinning Brain



Spinning Brain

• A pattern {ξiμ, 1 ≤ i ≤ N} is presented to the neural net, where ξiμ = ±1, if in pattern μ the i'th neuron is firing/quiescent.

LEARNING MODE: (called upon going from input mode to retrieval mode)

• Compute the correlation matrix C with elements

                       Cμν = N−1 ∑
N

i=1

 ξ iμ ξ i ν          ,  1 ≤ μ,ν ≤ q
 ,

where q denotes the total number of patterns in store.

• Invert C (e.g. by the Gauss Jordan algorithm) : 

                       C := C-1

• The synaptic efficacies Jij are then given by

                     Ji j  = N−1 ∑
μ,ν

 ξ iμ Cμν ξ j ν               ,  i ≠ j ,

                            Jii = 0 .

RETRIEVAL MODE:
• Starting from an initial firing pattern {Si} (a picture to be recognized), compute the postsynaptic potentials (PSP's)

                         hi  = ∑
N

j=1

 Ji j  Sj                , i = 1,...,N 
. 

• { Monte-Carlo Algorithm: }

Repeat until a stable state is reached                            

     Select i ∈ {1,…, N} at random

             Update
                         If   hiSi  ≥ 0 goto Select                             { do not change state of neuron i }

                  If hiSi  < 0 then

                             Si   →   -Si                                           { change state of neuron i }

                        hj  →     hj + 2 Jji Si   ,    j = 1,...,N.      { and update PSP's }

                     End {Update}

            End {Select}

      End {Repeat}

{A stable state is defined by the condition that hiSi ≥ 0 for all i. In Spinning Brain,the Monte-Carlo algorithm stops, if in a certain 

number (approximately 1.2 N) of successive attempts no neuron changes its state. Since in the Monte-Carlo dynamics the neurons are  

selected at random, true stability is thus only guaranteed with (sufficiently) high probability.}

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
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The program runs essentially in three phases: first, the album of the Spinning Brain is loaded with a series of pictures. The user can 

click these pictures with the mouse as fat pixels. Then we "give the brain a look at these pictures". In mathematical terms, we compute  
the synaptic efficacies Jij so that the pictures of the album become stable attractors of the neuro-dynamics. Once this is accomplished,  

the user can enter another picture using the mouse. The program will then try to fit the new picture into memory. That is, starting from 

the new picture and following the neuro-dynamics, it evolves through a sequence of network states (other pictures), until it eventually  

ends up in a stable state, (hopefully) showing one of the pictures which were used in forming the memory. But it can also be mislead,  

ending up in a chimera, corresponding to one of the spurious states mentioned above.

Fig.5: "Spinning Brain" in action. In the center frame, you can follow how the picture to the right is being fitted into memory.

Since  the  reconstruction  can  only  take  place  when  the  dynamics  has  been  fixed,  the  moulding  of  the  dynamics  takes  place  

automatically if the user asks to fit a new picture into memory and before the search actually starts. So to the user only two modes are  

visible: adding pictures to the memory, and retrieving a picture from memory.

To allow for quick program development, the program makes strong use of the facilities of the Macintosh operating system and leans  

heavily  on  a  programming  framework.  We  used  Random&Template,  the  programming  template  of  the  Heidelberg  StatLab4. 

Random&Template is an extensible Pascal program, written in "classical" Pascal, but introducing many concepts oriented towards  

Object Pascal and MacApp. Random&Template has been introduced to teach program design and to smooth the transition to Object 

Pascal. It provides all the generic event handling. Spinning Brain was build on top of Random&Template by overwriting the facility for 

handling modeless dialogs as provided by Random&Template.

4
Random&Template is in the public domain. The most recent version can be ordered at DM 29,- for disks and handling from StatLab, Im 

Neuenheimer Feld 294, D 6900 Heidelberg.
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5. Extensions: On forgetting, dreaming, hierarchies, and singing

a. Forgetful memories

We have seen that as soon as the number of stored patterns exceeds the maximum storage capacity, no pattern retrieval is possible any  

more. This does not seem very realistic. The point is that, as the storage level increases and approaches the critical value, one would  

like  the  memory to  forget  some of  the  old  patterns  in  order  to  preserve  room for  the  new ones.  This  can be  achieved by two 

mechanisms, which differ radically, and which are not generally agreed upon. One may forget because certain rather complicated 

molecules are degraded as time proceeds. This is chemistry and may be modeled by giving the patterns a weight which decreases with  

storage ancestry. Alternatively, forgetting is an intrinsic property of the network. This is modeled rather naturally by putting bounds on 

the synaptic efficacies as follows. When a new pattern is stored, one has to add or subtract 1/N (cf. above, §  3.a) to or from the former 

value of the couplings, provided it does not yield a result which exceeds in absolute value a certain bound. The recently learned  

patterns now remain retrievable - the memory forgets the old ones.

b. Dreams

According to Crick and Mitchison, dream (REM)5 sleep improves the performance of a neural network in that, after a bunch of dreams,  

it remembers the memorized patterns much better than before. To model this phenomenon, one starts with a Hopfield network which  

has stored a certain number of patterns. This number is fixed throughout what follows. Now, the retrieval process is started from a  

random initial configuration. Under its dynamics the system relaxes to some final state (cf. § 3.a). This procedure is called a "dream".  
Then the bonds are modified: A term d/N is subtracted from the previous Jij if in the dream's final configuration the neurons i and j are 

in the same state; otherwise d/N is added. d is a dream-factor, weighting the influence of a single dream. This procedure is repeated. 

After a number of dreams, one observes that the basins of attraction (i. e., the sets of configurations which tend to a particular stored  

pattern under the system's dynamics) are enlarged and the retrieval quality greatly improved. The underlying mechanism is not yet fully 

understood and still under investigation.

c.  Hierarchies

We are accustomed to use fundamental concepts which constitute categories in our way of thinking and less fundamental concepts 

which classify objects within a particular category. For example, talking about buildings in general and about a hut, a palace, or a 

skyscraper in particular. There are different approaches to the construction of neural networks which can handle their percepts with 

different degrees of generality. Some have a tree-like "hardware" structure, each branch being responsible for a particular degree of  

generality, some realize that task in an architecturally undifferentiated network with a tree-like "software" structure. Both types of  

model share the following operational feature. In a first step the percept is attached to a category on the fundamental stage by a coarse  

classification. Next, it is compared to the items within this category and attached to objects which are "similar" to it; and so on. Thus  

the perception is guided by a hierarchical organization which in turn is modified by the learning process. Retrieval on a particular  

hierarchical level in principle works as in an ordinary Hopfield network.

5REM refers to the rapid eye movements that accompany such phases of dream sleep.
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Fig.6: Two views on hierarchical data organization. One is in terms of a tree-like structure, the other utilizes a system of boxes within  

boxes. For Apple users, the latter view is familiar from the hierarchical file system (HFS).

d. Temporal sequences

Networks with symmetric synapses, as considered above, only allow for the storage of static, time independent patterns. But we wish  

(don't we?) to learn temporal sequences of patterns as well, e. g., singing a song, dancing, and other activities of that kind. Spin-glass-

like neural networks can be designed to do that job. A successful approach was to add an asymmetric term to the original symmetric 

Hopfield bonds which is designed to induce transitions from one pattern to some other, and to  introduce a delay for the transmission of 
the signals which are sampled via the transition term ( i.e., hi=hi

Hop+hi
T, where hi

T
 
= ∑j Ji j

T
 Sj

 is a transition term and
 Sj a retarded 

signal from neuron j). The delay is necessary to stabilize the network in a pattern before the transition to a next pattern occurs. It also  

determines how long the system remains in a specific pattern. If the delay is missing or too short the network soon gets mixed up and  

exhibits irregular behaviour.

At first sight, the introduction of asymmetry and time delays in the synaptic efficacies in order to create transitions seems to be fairly  

ad hoc. A refinement of the Hebb rule, however, has naturally lead us to conceive bonds of the above mentioned structure permitting  

the storage and retrieval of both static and dynamic objects within a single network.

The basic idea is inspired by the observation that signals in the brain travel at a finite speed so that between different pairs of neurons  

they are transmitted with different delays. The learning rule for Hopfield networks demands that the synaptic efficacy be enhanced, if  

the neurons connected by this synapse are in the same state simultaneously. Now, if one takes into consideration the existence of delays  
τij between neurons i and j, simultaneity at the synapse (i-j) means that neuron j was in the same state as neuron i a time τij earlier. If a 

broad distribution of delays is realized in the network, the various delay lines serve to record different aspects of the temporal structure 

of a pattern sequence presented to the network. If the sequence is such that any pattern is present for a period significantly longer than 

the longest delay, the sequence is perceived as a set of independent static patterns. If the duration of the patterns is within the range of  

delays the signal will be perceived as dynamic pattern sequence. As the range of delays grows, the variety of representable objects  

increases.

6. Discussion
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In the present context we have represented neurons as simple switches (flip-flops) embedded in a fully or highly interconnected 

network. Using this simplified setup we have seen that the recent input of physics in brain theory has provided two new elements: (a)  

the analysis and interpretation of certain brain functions as  collective phenomena and (b) the notion of temperature to take care of 

internal noise arising from the system's activity. In this way a satisfying explanation has been obtained of the brain's surprising fault  

tolerance with respect to both input data errors and internal failures. Furthermore, the discrepancy between the simplicity of the very  

many neurons and the richness of behaviour of the composite system has been resolved.

One has to realize, however, that the above modeling is only a crude approximation to reality. If the aim is to model higher brain  

functions, one has to take into account the inner structure of the brain, including preprocessing of the stimuli. Yet, if one cannot 

understand relatively simple structures which, as we have discovered, already exhibit a surprisingly intricate behaviour, any further  

modeling is moot.

We have also seen that one can dispense with theoretical simplifications and that sensible programming using "neural" principles even  

manage the storage and associative retrieval of visual patterns as they occur in everyday life. The authors do not think, though, that 

intelligent human reasoning will be replaced by the physics of neural networks within a fair amount of time - if ever.
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