
The NetWork Project

6.91 2.91 2.90

The NetWork Project:
Asynchronous Distributed Computing

on Personal Workstations

Günther Sawitzki
Institut für Angewandte Mathematik

Im Neuenheimer Feld 294
D 6900 Heidelberg

Abstract

NetWork is an experiment in distributed computing. The idea is to make use of idle time on personal workstations while retaining their

advantages of immediate and guarantied availability. NetWork wants to make use of otherwise idle resources only. The performance

criterion of NetWork is the net work done per unit time - not computing time or other measures of resource utilization. The NetWork

model provides corresponding programming primitives for distributed computing. An implementation of a distributed asynchronous

neural net serves as test application.

Computing in an Asynchronous Distributed Environment..1

An Example: Neural Nets.. 2

Design Goals..4

Principles of Operation and NetWork Layers..5

NetWork Scheduling Strategy..7

Components of the NetWork Model.. 8

The NetWork Project

The NetWork Project

Idle Time Distribution and Economy of Recruitments..9

NetWork Communications: Economy and Flexibility...11

Implementation Environment and Experiences with NetWork...13

Looking Ahead...14

Literature..15

How to Access NetWork..16

Biographical Note & Additional Information..16

The NetWork Project

The NetWork Project

The recent development of workstations gives the user considerable computing power for immediate access. On the other hand, when

the user does not access it, considerable computing power is left unused. There is a general desire to make use of this aggregate

computing power, but one does not want to lose the advantages of a personal workstation, its immediate and guarantied availability.

The NetWork project provides a general purpose model which tries to match both of the following aims: sharing computing resources

and respecting the absolute priority of the resource owner.

The domain we address is that of personal workstations. We are not addressing those team installations where the installed computing

power per working place exceeds what is required by the tasks to be achieved. In these installations, the UNIX nice mechanism may be

sufficient support. We are addressing the domain of dedicated personal workstations. Using UNIX on a personal workstation eventually

you grant access to other users, but the general experience is that sometimes the only solution to yet another nice process is to kill all of

them. We want to keep the individual availability of each station.

The approach we take is to allow other users to borrow the computing power if a machine is idle, but to impose a strict rule: if the

owner accesses the machine, the guest is given only minimal time to retreat. For example, if the owner touches the machine (if there is

any owner action on the machine), the machine has to be completely available to the owner without any noticeable delay. This imposes

a ‘time to leave’ of the order of 1/10th of a second - a time which might be too short for any proper notification or clean-up.

As a consequence, if you make use of an idle workstation in a network and still want to respect the absolute priority of the owner, you

can hope for an advantage, but you cannot rely on receiving any results. And you cannot rely on receiving results when you expect

them: computing will take place in a distributed asynchronous environment with random availability of remote resources. The

NetWork project gives a minimal communication and management model to operate in this environment for experimenting with

distributed computing.

Computing in an Asynchronous Distributed Environment

We want to use free computing power, while respecting the absolute
priority of the owner. Hence we cannot assume a guarantied environment.
This affects possible applications in various ways. There are tasks which
always benefit from additional computing power, in particular those
working on large data sets. Sorting with some appropriate merge/sort
algorithm gives a class of examples: the global sort can take advantage if a
subset is already sorted by another machine, but need not be affected if the
result of the pre-sorting is not available. The same applies to searching. All
major accounting tasks will give a class. Any statistical analysis based on
exponential families (like normal/ gaussian distributions) gives another
class of examples: in these analysis you can calculate global sufficient
statistics from those of partial data sets, if available. We will call the
problems of this type completely splittable.

The NetWork Project

The NetWork Project

The class of problems we are interested in are iterative and recursive
problems which have a stronger internal structure. For these, it is not clear,
a priori, that they can take advantage of additional computing power.
Moreover, it is unclear how to take advantage if the completion of a task is
not guarantied. To

The NetWork Project

The NetWork Project

have a formal example, take a mapping F:RN → RN to be iterated. By the restriction of F to a

subset S ⊂{1,...,N} we mean the mapping F:RN → RN with

F(X) i ={ X i i∉S

F(X) i i∈S

So F has the full input F has, but only operates on the coordinates defined by S. The idea of distributed iterations is to have restrictions
to different subsets S1,..., Sp allocated to different machines for a number of iterations. The (restricted) iterations are performed in

parallel. The results are collected as they come in and new tasks are redistributed again repeatedly. In simple cases, an incoming result

X (t) at time t replaces the most recent state X(t–1) of the collecting system and the new task will be to calculate a number of

(restricted) iterations based on X=X(t). In more general cases, an updating function c will be used to define an updated state

X(t)=c(X(t–1), X (t)) based on the achieved state X(t–1) and new information extracted from X (t).

The behaviour of the distributed system is not clear even in a guarantied computing environment. The outcome of iterations in one part

of the problem might critically depend on results from iterations in other parts. Moreover, in an asynchronous environment, the result

of a previous iteration may or may not be available for the next round: even if the iteration of F converges nicely, Fn(x) → xo for some

xo as n → ∞, the limiting behaviour of the asynchronous distributed system is not clear a priori.

There are iterative problems which still can take advantage of a distributed environment, even if the environment has no guarantied

performance. Baudet (1978) studies a special class of this kind, that of iterations of Lipschitz contractions. For a Lipschitz contraction,

any asynchronous iterate will converge to a limit (in general the same as original) under asynchronous iteration. Many numerical

methods can be formulated in a way which makes them fall into the class covered by iterates of Lipschitz contractions (see Bertsekas

and Tsitsiklis 1989, part 2). Studying asynchronous iterations in a non-guarantied (random) environment was suggested by the work of

Eddy and Schervish (1988).

An Example: Neural Nets

A lecture by W.F. Eddy on the work of Eddy and Schervish on
asynchronous iterations was one starting point for the current project.
Another root was provided by a joint work of Kühn and Sawitzki (1989)
on neural nets. We use an example from this work, a neural net applied to
picture reconstruction, to illustrate asynchronous iterations. The specific
variant of neural nets we are using is a Hopfield net (see Kühn and
Sawitzki (1989), or Arbib (1987) Ch.5).

For our simple demonstration example, the state X of this system
corresponds to a picture which is being processed, X∈{–1,+1}N, where N is the

number of pixels in the picture (the number of neurons in our net). The dynamics of this model can be seen as iterations: In a classical

environment, a transformation F is iterated, starting from an initial picture, until a stable state is reached. In a distributed environment,

The NetWork Project

The NetWork Project

we take a slice S, represented by a subset of the index set (1,...,N), and ask an idle workstation to perform a number of transformations

on this. The restriction to S means that only pixels in S may be changed, although the full picture is available as initial information.

While S is being processed on one station, we

The NetWork Project

The NetWork Project

are going to pass other slices as sub-tasks to other workstations. When we get a result, we will merge the processed slice with the rest

of the picture; i.e. our updating function uses the processed slice to replace the corresponding part of our original picture. This may

introduce an error because the processed slice may depend on the state in other slices which may have changed significantly in the

meantime. We repeat the assignment of tasks until we reach a stable state. This example is not covered by the convergence result of

Baudet (1978). However, under mild regularity conditions, convergence to the original limit still holds.

Neural nets are an interesting target for asynchronous distributed computing: if we accept that neural nets provide a useful model for

cognitive functions, we still must admit that in real biological systems there is no indication of global synchronization except on a very

large scale (e.g. daily rhythm). Information processing takes place in a distributed asynchronous environment. And we must admit that

this is not a guarantied environment - some results may be late or may never be reached. This is true for the individual, and this will be

even more important for collective, or social cognitive phenomena. So experiences with neural nets in our environment might shed a

light on critical aspects of neural network modelling.

Figure 1: Screen dump from "Spinning Brain", a neural net used for picture reconstruction. The neural net was
trained on a series of pictures, two of them visible in the bottom row. Starting from the initial picture (top left), the
neural net reconstructs the original. The current state of the system is shown in the top right frame. Formally, the state

space is {–1,+1}N, N=32*32.The iteration on the local machine is restricted to one slice of the picture. The slices
shaded in gray are allocated to other machines.

The NetWork Project

The NetWork Project

Design Goals

The goal of the NetWork project is to make use of the free resources of a
network to provide a better net outcome. If the resources would be
otherwise unused, or if the resources are free, measuring the resource
consumption is a needless effort. What counts is the net work done, as
measured in tasks per wall clock time. This is the performance criterion.
The model implementation runs in an unobtrusive way, making use of free
network resources, but interfering as little as possible with any user
request.

The central idea of NetWork is that every machine has an owner. The
owner is the source of events which have absolute priority on the
corresponding machine. If the owner touches or accesses his/her machine,
the machine has to be completely available without any noticeable delay.

An owner may, but need not, correspond to a real user. For example, if the
machine is a dedicated server, the server process can be considered the
owner. Moreover, a NetWork machine in general will, but need not,
correspond to a physical machine. For example, a cluster of CPUs may be
considered a machine for the purposes of NetWork.

Even if there is no immediate owner access, a machine may be busy
because an owner initiated process needs the resources of the machine. The
absolute priority of the owner must extend to owner initiated processes as
well. A machine is considered idle, or free for the purposes of NetWork, if
there is no owner access and no owner initiated activity. NetWork is only
allowed to take resources which are free in this sense.

The goal to run in an unobtrusive way, making use only of free network
resources, also affects communication. The effect for any “owner” other
than the one requesting network services should be barely noticeable, and
care must be taken not to compete for network bandwidth. Unfortunately
with current technology it is nearly impossible to avoid interfering with

The NetWork Project

The NetWork Project

other users. All that can be done reasonably is taking measures to minimize
the number of network accesses and the additional network load.

To allow for open environments, independence of the underlying
communication model and adaptability to heterogeneous hardware are
additional design goals of NetWork.

• immediate availability of any machine for its owner (e.g.
guarantied availability of any machine on any local request
within 1/10th of a second)

• minimal interference with “owner communication” (i.e.
“second class” communication where possible,…)

• independence of communication model (including
network/file/bus based communication; network
topology;…)

• adaptability to heterogeneous hardware.

Table 1: Network design goals

The NetWork Project

The NetWork Project

Finally, to invite experiments with our model, the implementation of an asynchronous iteration scheme should be as near to that of a

(standard) iteration scheme as possible.

In the next section, we present an outline of the current model implementation for NetWork and its principles of operation. Special

strategies are needed to cope with a non guarantied environment to cope for asynchronicity of results, and to random availability of

partners. These strategies are discussed in the following sections. Then we will discuss the low level components and services

necessary to meet the NetWork design goals. Measures to economize communication and to allow for flexibility of communication

technology are discussed next. We conclude by a discussion of the current NetWork implementation environment and experiences with

NetWork.

Principles of Operation and NetWork Layers

NetWork views the computing environment as a set of machines with
processes running on these machines. Each machine has an owner who
has absolute priority on this machine. Processes may be running on behalf
of the (local) owner or they may satisfy a remote request. If a process is
running on behalf of a remote request it should be terminated immediately
when the owner accesses the machine.

A process handles tasks and eventually it may generate tasks for remote
execution. A task may be delegated to another process, possibly on a
different machine, and results may, or may not, be returned.

The NetWork programming model has three layers. The top layer, the
application layer, contains the application specific code. Apart from
initialization and clean-up sections this code should be able to define sub-
tasks, and to handle results from sub-tasks if available. The specific details
of this layer are - of course - application dependent.

Application

Scheduler

Communication

Figure 2: NetWork layers. The scheduler layer contains support for dynamic load balancing and adaptive
scheduling. The communication layer has to provide transport shielding and communication in a non-reliable
environment.

The NetWork Project

The NetWork Project

The scheduler layer provides support for asynchronous iterations. The NetWork scheduler monitors and stimulates the generation,

assignment, and integration of sub-tasks. While the proper generation of sub-tasks is application dependent, the NetWork scheduler can

monitor the overall system behaviour and try for dynamic load balancing. Task assignment is an interaction between scheduler and

application.

The NetWork Project

The NetWork Project

The communication layer forms the basis of the NetWork design. It has to provide the basic communication services needed for the

network system. In particular, it has to cope with a non-reliable environment. If necessary (for example to implement diagnostic or

management tools) the services of the communication system may be accessed directly, avoiding the scheduler.

NetWork is implemented as a message passing system. A process may send task descriptions as messages and results are returned as

messages. If a process is set up for task generation, the scheduler will ask the application periodically for the definition of a new task. If

a new task definition is given, the scheduler will pass this information to the communication system for further transmission. If a

process is set up for result handling, the scheduler will inform the application of any result received by the communication system.

Scheduler Scheduler

Application (Task Generator) Application (Task Handler)

Figure 3: NetWork message flow: a simplified picture. The task generating application program defines a task
message and hands it to the scheduler. The scheduler does the necessary housekeeping and passes the message to the
NetWork Processor which communicates it to the receiving NetWork Processor. The receiving NetWork Processor
launches the destination application (if necessary). The scheduler of the destination passes the message to the task
handler of its application.

Since NetWork is designed to work in a non guarantied environment, no assumptions about the life time of a communication partner

should be made. Hence a process which is generating tasks does not have knowledge where to delegate a task to. The scheduler will

make a proposal where to delegate the next task to when asking for a new task definition. The application is free to accept this

proposal, or to select a different target using a look-up server or any other source of information.

Messages are addressed to processes, residing on machines. However, in a non guarantied environment, no assumption on the existence

of a communication partner can be made. The address refers to a process class (defined as any instantiation of the underlying program)

rather than to a particular process instant. On the recipient machine, NetWork checks whether the target is active, i.e. if there is a

corresponding process. If so, the message is made available. If the machine is idle but no corresponding process is active, NetWork

tries to locate the program and launch it first. If it fails, the message is discarded. There is no prolonged negotiation and no

acknowledgement. The task message is an implicit launch command, and the completed result is the only acknowledgement, if any. If

the state of a machine changes from idle to used, that is if the "owner" accesses the machine, NetWork will kill immediately any

application it has launched.

The NetWork Project

The NetWork Project

NetWork Scheduling Strategy

A scheduler for NetWork may be integrated in applications and makes use
of the services of the NetWork system. In the current NetWork
implementation, a scheduler prototype is provided, together with a library
which interfaces with the NetWork communication system. The scheduler
will ask the proper application code regularly whether a new task should
be defined, or informs about incoming messages. It also does a preliminary
check for the usefulness of incoming messages, filtering out messages
which can be identified as useless or outdated with respect to the
application context.

To guarantee a fail-safe behaviour, tasks should be allocated redundantly.
As a consequence, more than one result may be returned relating to a sub-
task. This poses a problem to the scheduler. Assume we have some
effective time scale (some measure of effective iterations done, for
example). Assume we have two incoming partial results Y, Y', where Y is
based on information available at effective time T, with K iterations done
on Y, and Y' based on T' with K' iterations. Let Y arrive at time t, Y' at time
t'>t. Should we replace the results of Y by those of Y' ? There are trivial
cases: If T'≤T and K'≤K, then Y' is clearly outdated . Else if T'≥T and K'≥K
and not both equalities hold, then Y' is better than Y, so Y should be
replaced. For the remaining cases, a decision must be taken.

T'-T

K'-K

accept Y'

reject Y'
??

?

The NetWork Project

The NetWork Project

Figure 4: Critical decision: Limit of the acceptance region for
conflicting results. Results based on better initial information (K'–K>0) and with better iteration
count (T'–T>0) can be accepted a priori. Results based on poorer initial information (K'–K<0) and with fewer
iteration counts (T'–T<0) can be rejected a priori.

Following a suggestion from W. Rheinboldt we adopted the strategy to only accept those packages which can be accepted a priori (see

Figure 4). Instead of putting computational power into the evaluation of the optimal acceptance decision, we try to keep the probability

of entering the critical region low by adapting our task allocation scheme. Since our criterion is the wall clock time to perform the task,

and both acceptance decision and task allocation will be done by the same machine, there is a trade off between those two, and we can

keep the expected loss due to a wrong decision small by keeping the probability of conflicts low.

The NetWork Project

The NetWork Project

The NetWork scheduler prototype uses an adaptive task assignment scheme to minimize the probability of these conflicts. An

application can override or augment the generic strategy as provided by the scheduler with a more application specific strategy.

Components of the NetWork Model

To meet the design goals, NetWork needs certain services.
• idle/busy state monitoring to keep track of owner activity
• process management to launch a process to serve a remote request
and to kill all processes launched by NetWork when the owner
accesses the machine

• communication to pass message descriptions and results

NetWork needs an idle monitor. The only task of the idle monitor is to
monitor whether the state of the machine is idle or whether the machine is
active on behalf of its owner. Since this is machine specific
information, each machine must be equipped with an idle monitor.

Second, NetWork needs a process manager which is capable of handling
all process management on remote request. If the machine is idle, the
process manager may launch processes to fulfil remote computing request,
and it has the task to clean up all remote processes immediately if the state
of the machine changes from idle to busy, that is if the owner accesses the
machine. The process manager is informed of any idle/busy transition by
the idle monitor. It is responsible for guarding the priority of the "owner".
The process manager keeps track of active processes on the local machine.

Third, NetWork needs a communciation system. The communication
system has to guarantee reliable services in a possibly unreliable
environment. Moreover, it should take special precautions to minimize
interference with “owner communication”, as required by the NetWork
design goals.

Idle monitor, process manager and communication system form the core of
the NetWork system. They must be present in any implementation of
NetWork. This core provides convenient primitives for distributed

The NetWork Project

The NetWork Project

computing while shielding the transport system. In this respect it resembles
other approaches (Gardner et al. 1986, Bernard et al. 1989). Going beyond
these approaches, NetWork tries to provide a minimal model suited even
for a non-guarantied environment.

A process requiring remote services will pass a task description to the
(local) communication system. The communication system will pass the
task description as a message to the communication system of the recipient
machine. The recipient communication system will ask its process
manager to find an appropriate process to handle the message. If it is
found, the message is delivered. If the process is not found but the machine
is idle, the recipient process manager will try to launch a corresponding
process ("launch on task") and if the launch is successful the message is
passed on.

If the owner accesses the machine, the idle monitor will give a signal to the
process manager, and the process manager will kill any guest processes it
has launched so far immediately.

If a (remote) process has completed a task it may return a result, or
generate a subsequent task as appropriate.

The NetWork Project

The NetWork Project

NetWork does not assume any session maintenance. If the owner has
absolute priority, session maintenance over the net is of little use. A
process handling a remote task may be killed instantaneously at any time
because the owner accesses the machine. Hence session maintenance
would give little if any information about the chance of successful
termination of a task. Moreover session maintenance is prone to produce
additional communication load. Since it is not necessary for distributed
computing, session maintenance is not required for NetWork.

However NetWork does not exclude session maintenance. The NetWork
system can be extended to include session maintenance or
acknowledgement schemes if required. A useful combination could be to
use NetWork's message passing system to establish the first contact with a
remote co-worker (launching the co-worker if necessary), with a session
oriented protocol being used after that.

NetWork does not assume that a communication partner exists - in a non
guarantied environment, no assumption on the existence of a
communication partner should be made. NetWork must be capable of
remote launching. Since a specific launch command would add to the
communication load, NetWork provides a "launch on task" facility as
described above.

There are situations where the "launch on task" feature might not be
useful. For instance, if NetWork is used in a master-slave setting, a certain
slave may be very late with its results. If the master has used a redundant
task assignment, the whole job may already be completed and the master
may have terminated. The messages support a "don't launch" flag, which is
honoured by NetWork. These messages will only be delivered it the
recipient does already exist. A recipient will not be launched automatically
if this bit is set.

Look-up is not listed among the required services. With the lack of a look-
up system, NetWork has only two initial possibilities: it can use fixed

The NetWork Project

The NetWork Project

addresses, or it can use random addresses. Both are useful, and the
communication system has to provide at least one of these possibilities. A
special case of fixed addresses it the use of broadcast addresses to ask for
possible partners. All well known look-up strategies either imply the use of
tables (hence fixed addresses) or use an implicit broadcast. So look-up is
not restricted to broadcast mechanisms in NetWork.

NetWork provides look-up facilities. But there may be application specific
information which would allow for better look-up strategies than could be
provided by a generic system. To allow for more efficient strategies, look-
up has been moved to the application level. In particular, this allows using
of look-up servers which are implemented as separate programs and may
be shared between several applications.

The services required by NetWork could be provided by the operating
system. In general for the current state of art however NetWork has to
augment the host operating system to provide these services.

Idle Time Distribution and Economy of Recruitments

The NetWork Project

The NetWork Project

We have to identify idle machines and must have a strategy how to allocate
them for cooperation. The idle state is determined by the Idle Monitor, and
idle machines can be registered as possible compute servers using a look-
up server. Of course we would prefer using those machines which will be
available for some time. We would like to avoid those machines which are
free for the moment, but will be used shortly. To do this, we would need
some method to tell promising machines from others.

Our first informal review of literature, and interviews with experts in that
field, gave little hope. The general idea we met was that usable idle time
would be controlled by a Poisson process. So the idle time would have an
exponential distribution. But since an exponential distribution is
memoryless, there would be no chance for optimizations based on waiting
times. Disregarding any recommendations, we implemented an allocation
scheme based on observed idle times, and then measured the availability. A
sample plot is given in figure 5. If the idle time distribution in fact would
be near to exponential, this plot should exhibit a line. Clearly this is not the
case. Statistical analysis shows that the distribution is more adequately
approximated by a Weibull distribution (figure 6). Whereas the exponential
distribution is memoryless, the Weibull distribution within the parameter
range indicated by our measurements has a decreasing hazard rate. This
implies that the frequency of useless (short time) allocation of machines
can be drastically reduced by waiting until a certain critical idle time has
been exceeded. This is the approach we take in the NetWork
implementation.

The NetWork Project

The NetWork Project

1.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

Check for Exponential

F[expected]

F[observed]

Figure 5: Diagnostic plot for exponential distribution of
available idle time. Observed distribution function versus expected. If the time of availability would
follow an exponential distribution, this plot would show approximately a straight line.

The NetWork Project

The NetWork Project

43210
-2

-1

0

1

Check for Weibull

Log IdleTime

log(-log(1-F[obs]))

Figure 6: Diagnostic plot for Weibull distribution of available idle time. This plot shows an approximate linear
behaviour, which is an indication for a Weibull distribution.

NetWork Communications: Economy and Flexibility

As stated above, the NetWork model has to minimize communication load
to avoid competing with "real" users. We already mentioned that NetWork
allows a process to be launched implicitly by sending a task addressed to
it, and that NetWork avoids negotiations and explicit launch sequences.
This is done to reduce additional communication load. Of course it is
possible to use explicit authentication and authorization schemes and direct
control over launching with NetWork, and in any environment where
security is required this will be necessary. But it is in no way required for a
minimal implementation of distributed computing, so it is not required in
the NetWork model.

The decision not to enforce any session maintenance techniques, nor even
any acknowledgement schemes, is another measure to minimize
communication load. NetWork can operate in a connectionless mode, so
session maintenance techniques or acknowledgement schemes are not
required. Again, if needed, both can be applied of course.

Since NetWork is designed to work in a noisy environment where no
guaranties for availability or performance are given, NetWork has to be

The NetWork Project

The NetWork Project

prepared for messages which are outdated or out of context. To minimize
communication load in these cases, NetWork encourages a separation of
descriptive information from bulk load. Conceptually, each NetWork
message consists of a priority part, which should be small and contain just
sufficient information to decide whether the message is usable in a given
context, and the message core which should contain the bulk of
information. When a message arrives, the priority part along with the usual
administrative information is presented to the recipient for inspection.
Only if the recipient accepts the message as usable, the bulk information
needs to be transported. The separation in priority information and
message core is only a conceptual one.

The NetWork Project

The NetWork Project

Priority Information Core Information

transported
if necessary

always transported

always transported or synthesized

Header

Figure 7: Separation into first/second class information. The core information need only be transported if
requested.

The Communication Manager may optimize for a transport system and will do packing/unpacking and transport in a transparent way as

seems optimal for the transport system. In particular for a packet oriented transport system, the Communication Manager will pack

header and priority information into a first transport system package, and fill it up with as much core information as fits reasonably into

this package. Subsequent packages with the remainder of the core information will only be sent if the recipient requires this

information. Thus unnecessary information load can be avoided.

NetWork does not assume a master-slave situation. Freedom of topology is achieved by using a triplet of addresses in the message

header. Each message has a source, indicating the process or program from which the message originated, a message target indicating

the process to which the message is to be delivered, and a destination (like a reply-to address) to which a possibly resulting message is

to be sent to. This allows easy implementation of hierarchical compute servers, forwarders, or genetic computation schemes (figures 8

and 9).

Originator
=Collector Task

Handler

Task messages

Result messages

Task
HandlerTask

HandlerTask Handler

Figure 8: Arrangement for asynchronous iterations. The results are passed back to the originator to be used in the
next round of iterations. Asynchronous iterations are a special case of the NetWork setting. The originator assigns
sub-tasks to (anonymous) co-workers which handle them. The results are passed to a recipient=initial process and
integrated there. If necessary, this cycle is iterated.

The NetWork Project

The NetWork Project

Originator
=Collector

Task Handler

Task messages

Task Handler

Task Handler

Task Handler

Result Result

Figure 9: Arrangement example for genetic algorithms. The results are passed back to the originator to be used on
a randomized selection basis in the next round of iterations. In this very special example, results may always be
passed back to the generator (to guarantee convergence), but are also passed to parallel processes. Genetic
optimization is another special case of the NetWork setting. In contrast to the asynchronous iterations, the results are
not (or not only) returned to the originator, but are passed to a neighbour selected at random, which may or may not
use parts of the information supplied ("random cross-over"). If necessary, this cycle is iterated.

Implementation Environment and Experiences with NetWork

The original implementation of NetWork uses the Macintosh as a target
machine. The Macintosh Operating System is essentially a user driven
system, with an event queue monitoring user action as the heart of the
system. Hence there is a single, well defined point on the Macintosh where
it is possible to monitor all user actions. Communication, in the form of
the AppleTalk protocol, is another core part of the Macintosh OS. This
makes the Macintosh a prime target for NetWork, although the NetWork
implementation model is not restricted to the Macintosh. But defining and
guaranteeing user based constraints is more complicated in a UNIX
environment.

The Macintosh is designed as a single user machine. The usual memory
and process protection schemes are not available on the Macintosh, and
have to be substituted. On the other hand, the continuous unique address
space under Macintosh OS allows for efficient communication between all
processes on one machine. Memory and process protection of course are
readily available on UNIX systems. A NetWork implementation for UNIX
has to respect these mechanisms and UNIX' separated address spaces. This
affects in particular the transport system for messages which stay on one
machine.

The NetWork Project

The NetWork Project

A UNIX system tuned for rapid launch and optimized for inter-process
communication would be a very interesting target for NetWork. The Mach
kernel - as far as we know - has extraordinary capabilities in this direction.
However we have not been able to work with a Mach kernel so far.

The NetWork Project

The NetWork Project

The current implementation of NetWork for the Macintosh consists of the
NetWork Processor (a Control Panel extension), a library of low level
routines, and a scheduler prototype. On the user's side, the NetWork
Processor is copied into the directory containing the operating system, the
System Folder. That is all what is required to install NetWork. As with all
Macintosh Control Panel extensions, the NetWork Processor will be
activated automatically on the next start up. Once the NetWork processor
is installed, programs can make use of the NetWork system. For the
programmer, the NetWork library will be used as is. All necessary calls to
the library will be handled by the scheduler, unless direct access to the low
level routines is requested. Two function of the scheduler have to be
adapted: definition of new tasks, and handling of incoming messages.
Typically this will be done by overriding the dummy actions provided with
the prototype scheduler. To allow a typical Macintosh program to make use
of NetWork, the scheduler will be activated at two points in the main event
loop: in the case list handling new events, in case of NetWork events the
scheduler method handling messages has to be called. In the default clause
(the "idle" case), a call to the method which is defining new tasks has to
be added.

The NetWork implementation model has been in use now since November
'89. It is easy to give impressive figures showing the score as far as the
main goal is concerned, net work throughput: Of course it is possible to
design tasks that are limited in performance only by the minimal
communication and scheduling overhead, and will show arbitrarily good
performance. Without relying on this type of examples, the general
experience was that about 70 % of the free computing power could be used
effectively, with a reduction of free communication bandwith on an
Ethernet of less than 5 %. These are results on small to medium sized local
area networks (< 100 stations). NetWork is an experimental environment,
and more systematic measurements are underway.

For larger networks, looking up idle machines will become a critical issue.
In the present implementation, each station does its look-up. For larger

The NetWork Project

The NetWork Project

networks, a hierarchical scheme with specialized look-up processes will be
preferable (Theimer and Lantz, 1989). This is a field of current research.

We try to give absolute priority to "real" users. Second class
communication would be first choice. We have several communication
models allowing for priority communication. Second class communication,
communication only if there is free bandwidth, seems to be a neglected
area.

When we started the NetWork project, we wanted to provide a minimal
implementation. Asynchronous distributed computing, was our leading
example. However when we finished the alpha phase of our project, we
learned that there is more demand for distributed computing models than
we expected. It seems that models like RPC are far from satisfying the
needs for guarantied distributed computing. However we do not want to
go into this area, because for us distributed computing in a non-guarantied
environment is much more challenging.

There is a trade off between reliability and overhead. The model we are
using is a minimal acknowledgement scheme. A task assignment for us is
an implicit launch, and the only acknowledgement we are using is the
completion message of a task. We got the impression that launch on task
assignment would be a valuable feature in a more general context, and our
acknowledgement scheme is sufficient for a large class of applications.
However a basic implementation for a guarantied-completion
implementation has been asked for repeatedly. Using our model it is easy
to establish a session on first successful contact, satisfying the demand for
guarantied completion.

Looking Ahead

The NetWork Project

The NetWork Project

The availability, or affordability, of computing power is subject to change.
For many purposes getting the necesary computing power soon will be no
issue, at least in the richer economies. But another aspect of NetWork will
stay important. We are moving from installations with computers and
workstations to a computing environment: a massive use of only partially
coordinated or uncoordinated autonomous computing devices, with
multiple threads of communication between them. These environments
will not have a guarantied stability. They will change in time, and will have
varying availability. We should be prepared for the possibilites and
problems distributed computing environments bring with them. NetWork
allows to study some of the effects, and proposes a design strategy for
computing environments.

Literature

Arbib, M.A Brains, Machines and Mathematics. Springer, New York,
Berlin, Heidelberg 1987. ISBN 0-387-96539-4

Baudet, G.M. Asynchronous Iterative Methods for Multiprocessors.
Journal of the Association of Computing Machinery 25, 1978.2, 226-
244

Bernard, G., Duda, A., Haddad, Y., and Harrus, G. Primitives for
Distributed Computing in a Heterogeneous Local Area Network
Environment. IEEE Transactions on Software Engineering 15, 1
(December 1989) 1567-1578

Bertsekas, D.P., and Tsitsiklis, J.N. Parallel and Distributed Computation.
Prentice Hall, Englewood Cliffs, NJ., 1989. ISBN 0-13-648700-9

Eddy, W.F., and Schervish, M.J. Asynchronous Iteration. In Computing
Science and Statistics: Proceedings of the 20th Symposium on the
Interface 1987, 165-173. American Statistical Association, Alexandria,
VA. 1988.

The NetWork Project

The NetWork Project

Gardner, T.J., Gerard, I.M., Mowers, C.R., Nemeth, E. and Schnabel, R.B.
DPUP: A distributed Processing Utilities Package. ACM SIGNUM
Newsletters 21, 1986.4, 5-19

Kühn, R., and Sawitzki, G. Spinning Brain: an Interactive Program for the
Associative Recall of Visual Patterns. Wheels for the Mind (Europe)
1/1989.

Lindenberg, J. NetWork Communications. Universität Karlsruhe, Institut
für Betriebs- und Dialogsysteme, 1990.

Sawitzki, G. NetWork Programmer's Guide. Universität Heidelberg,
Institut für Angewandte Mathematik, 1990, 1991.

Theimer, M.T., and Lantz, K.A. Finding Idle Machines in a Workstation-
Based Distributed System. IEEE Transactions on Software
Engineering 15,1 (November 1989), 1444-1457

The NetWork Project

The NetWork Project

How to Access NetWork

NetWork is available upon request from the author. The NetWork
distribution disk contains additional documentation. The NetWork
Programmer' Guide (Sawitzki, 1990) is a first step if you want to
implement a NetWork program. It is recommended to start modifying the
examples which are provided on the NetWork distribution disk. The
NetWork communication system is documented in a separate paper
(Lindenberg, 1990) which is recommended for additional reading.

The NetWork software and documentation is available on electronic
media: anonymous ftp from

statlab.uni-heidelberg.de <129.206.113.100>

provides the recent version of the NetWork software. Other sources of
information are

sumex.aim-stanford.edu info-mac server
The Developer CD Series Vol. IV ff Path:

…:Programming&Utilities:…

A video demonstration of NetWork is available as "NetWork Developers
Conference" 1990 from Apple Advanced Technology Group (ATG), Apple
Cupertino 1990.

Biographical Note & Additional Information

Günther Sawitzki is at the Institute for Applied Mathematics, Heidelberg.
He is working in computational statistics and data analysis if he is not busy
with software engineering and development. The NetWork communication
system was designed and implemented by J. Lindenberg, Karlsruhe. The
other members of the NetWork project were R. Kühn, Heidelberg, and L.
van Hemmen, Munich, both members of the Heidelberg Neural Network
research group, and L. Taylor, Apple Computer R&D Europe, Paris.

The NetWork Project

The NetWork Project

The author thanks R. Beran, M. Hebgen, J. Lindenberg and L. Taylor for
helpful comments.

The NetWork Project

