
More Soup? – 1

More Soup?

DRAFT 5

Michael S. Engber
Apple Computer - PIE Developer Technical Support

Copyright © 1993 - Michael S. Engber

This article was (will be) published in the January 1994 issue of PIE Developers magazine. For
information about PIE Developers, contact Creative Digital Systems at
CDS.SEM@APPLELINK.APPLE.COM or 415.621.4252.

Introduction

Last month's issue had an article, "Soup's On," which covered the basic things
you should know about creating and using soups. This article focuses
optimizing soup usage. I assume that the reader is already familiar with the
chapter on using soups in the Newton Programmer's Guide and has some
experience writing Newton applications.

The Nature of Soups

Soups on the Newton store flattened versions of the entry-frames you work
with in NewtonScript. When you retrieve an entry from a soup, you get back a
frame which is a cache of the actual data in the soup. Calling EntryChange
causes the cache to be written out to the soup. Calling EntryUndoChanges
causes the cache to be refreshed from the soup.

Retrieving an entry from a soup allocates a frame in the NewtonScript heap.
This takes time and heap space. The current soup implementation optimizes
this operation by not creating a complete frame for the entry until you access
one of its slots. Once you access a slot, it brings the whole entry into memory.
An obvious area for future optimization would be to bring slots into memory on
an as-needed basis.

More Soup? – 2

The above information may not be new to you. If you didn't know it already,
after reading about soups in the Newton Programmer's Guide and a few
minutes of reflection, you probably would have guessed it. What you may not
have thought about, however, are some of the implications of the
implementation of soups.

Organizing Your Data Across Multiple Entries

One implication of the way soup data is retrieved is that as you loop through
your soup looking at all the entries, there is overhead (in both space and time)
for allocating entry-frames in the NewtonScript heap. The larger the entries, the
larger the overhead. If you've created a soup whose entries each contain a large
amount of data, you might have noticed this already.

One way you can speed things up is to store your data in multiple soups. The
built-in Calendar application uses five different soups to store its data. This is
probably more soups than most applications need. I think two soups should
suffice for most purposes. Call one soup the query-soup and the other the data-
soup. The basic strategy is to keep the entries in the query-soup small. They
hold just enough information for the queries you commonly make, plus a
reference (EntryUniqueId) to an entry in the data-soup which contains the bulk
of the information.

More Soup? – 3

This allows you to quickly access the query-soup and pay the overhead for
retrieving large amount of information only when you actually retrieve it from
the data-soup.

Actually, there is no reason you have to use two soups to take advantage of
this technique. You can keep both query-entries and data-entries in the same
soup. If only the query-entries have the slots used for indexing, then your
queries will ignore the data-entries.

The exact details of what slots go where will depend on your particular
application. It will probably take some experimentation on your part to come
up with an optimal organization. Another consideration is whether or not
you're planning to allow your users to edit their soup data using Newton
Connection. If you are, splitting your data across multiple entries may make
editing the data more difficult, perhaps impractical.

Bear in mind, this type of optimization is useful only when you need to access
a large number of soup entries to find relatively few entries that you are
actually interested in. Whenever possible, it's better to handle this problem by
using indexes. Often, proper use of indexes can allow you to construct queries
that only examine the entries of interest.

Use Your Indexes

Another point to keep in mind when using soups is: take advantage of your
indexes whenever possible. This seems obvious enough, but I've seen lots of
programmers carefully design their soups with indexes and then fail to take
advantage of them when writing queries.

StartKey vs ValidTest

A common error is to be seduced by the flexibility of using a validTest. The
temptation is to write a query that relies solely on a validTest to decide which
entries to return. For example, a validTest like the one below works – it returns
the desired entries. However, it totally negates the benefit of having an index on
slot x.

More Soup? – 4

validTest: func(e) e.x >= "C" AND e.x <= "D"

If you create a cursor using this valid test, and naively use a "while
cursor:Entry()" loop to traverse your soup, you'll end up visiting every
single element in you soup. If instead you had used a startKey and an endTest,
as show below, you would only have visited the entries of interest. You can't
hope to do any better than that.

startKey: "C",
endTest: func(e) e.x < "C" OR e.x > "D"

Of course, not all queries are going to be as simple as these, but you should
use a startKey and an endTest whenever possible. This makes the difference
between an O(N) search and an O(logN) search. You may recall from your
introductory data structures course how big a difference this can be – one
million versus six (log106 = 6).

GotoKey

A related point is using GotoKey instead of Move. Move lets you move the entries one at a time. The one at a time part is actually hidden
from you since Move accepts an arbitrary integer offset. Using GotoKey moves the cursor directly to the desired entry in one shot – a single
O(logN) search.

Consider the following two code fragments for advancing a string-index based cursor to the last entry in a soup:

More Soup? – 5
cursor:Move(0x1FFFFFFF);
while cursor:Next() do; //make sure we're off the end
cursor:Prev(); //back up one - to the last entry

cursor:GotoKey("ZZZZZZ"); //pick a "large" key
while cursor:Next() do; //make sure we're off the end
cursor:Prev(); //back up one - to the last entry

These code fragments may not look very different, but for a large soup, the second one will be significantly faster.

Avoiding Explicit Search Loops

You can often avoid writing an explicit search loop by using startKeys,
endTests, and validTests. This reduces the size of your code and is more
efficient since looping is handled by the soup implementation. There are two
examples of this in the section titled "Uniquely Identifying Entries." The
following code is from one of these examples.

Query(soup,{type: 'index,
 indexPath: '_uniqueId,
 startKey: entryId,
 endTest: func(e) EntryUniqueId(e) <>
entryId,
 validTest: func(e)
EntryStore(e):GetSignature() = storeSig,
 }):Entry();

This code evaluates to either nil or to the entry whose id is entryId and
whose store signature is storeSig. No explicit search loop is required – only
a single Entry message.

When using startKeys, endTests, and validTests be sure to think carefully
about your queries. Because the underlying search is handled by the soup
implementation, it's much easier to inadvertently do things inefficiently than if
you were writing the search loops yourself.

More Soup? – 6

As was pointed out in the previous section, a common error is omitting the
startKey and consequently ignoring the benefit of an index. A related error is
omitting the endTest. Forgetting an endTest can force a query to do unnecessary
work – continuing to search after all entries of interest have been returned. For
example, consider the above query without the endTest. If there was no entry
matching the criteria, the query would examine every entry in the soup whose
id was greater than or equal to entryId. By using the endTest, it examines
only entries whose id equals entryId – at most, two.

Simulating Joins by Using Multiple Indexes

Currently, you can only query soups using one index at a time. Sometimes you
want queries involving two or more indexes at time. In relational database
jargon, this is termed performing a join.

I will present a technique that is applicable only to two indexes and, even
then, is practical only if one of the indexes is over a small set of values. We will
call the two "conceptual" indexes of interest a director-index and a date-filmed-
index. The director-index only allows the values moe, larry, and curly,
indicating which stooge directed the episode. The date-filmed-index uses
integers to represent the date the episode was filmed. The kinds of queries we
will be interested in will be ones like: "retrieve all the episodes directed by moe
in the order they were filmed."

More Soup? – 7

The basic idea is to build an actual soup index for each of the distinct values
of director-index. Each entry in the soup will have either a moe-slot, a larry-
slot, or a curly-slot. The content of this slot will be the date the episode was
filmed. Our index specification will look something like:

[{structure: 'slot, path: 'moe, type: 'int},
 {structure: 'slot, path: 'larry, type: 'int},
 {structure: 'slot, path: 'curly, type: 'int},
]

To "retrieve all the episodes directed by moe in the order they were filmed,"
we simply create a cursor using the code shown below. Only entries with moe-
slots will be returned by this cursor. They will be returned ordered by the
contents of their moe-slot – the date on which they were filmed.

moeCurs := Query(stoogeSoup,'{type: index, indexPath:
moe});

You will note that we never actually built a unified date-filmed-index. Instead,
we distributed this information over three separate indexes. This means we
can't do a query to retrieve all episodes in date-filmed-index order without first
giving each entry another slot, call it dateFilmed, and then building an index on
the dateFilmed slot. There is nothing preventing us from doing this, it will just
require more space – an extra slot in each entry.

This is not the most general purpose technique. We might be able to use it for
"Snow White and the Seven Dwarves," but we'll run into problems with "101
Dalmations." It's something to keep in mind for use in suitable situations.

To give credit where credit is due, this section was inspired by a posting on
the Internet by Kent Borg. The posting specifically addressed implementing
filing (which categorizes user data in one of up to thirteen categories). As you
can see, the technique has some wider applicability.

Using Identical Frame Maps

More Soup? – 8

Storing entries in a soup requires storing the contents of their slots as well as
information about the structure of the slots themselves. The information
describing the structure of the slots in a frame is called the map. Soups save
space by reusing maps among entries with the same structure. The issue of
shared maps has implications for general NewtonScript programming. This
section will only discuss it with respect to minimizing soup size.

Obviously, in order for two entries to share the same map they must have the
same set of slots. However, the current of soup implementation also requires
entries that share a map to have their slots in the same internal order. This
means that even if your entries all use the same set of slots, it's possible to have
a different map stored for each permutation of slot ordering.

The internal ordering of slots in a frame is something that programmers
normally don't think about. NewtonScript purposely leaves the details of slot
ordering unspecified – open to changes in the future. Programmers are not
supposed to write code that relies on slot ordering and there are no functions
provided to manipulate slot ordering. So it may seem unreasonable to suggest
optimizations the rely on slot ordering. However, the way in which you create a
frame gives you some control in the area of slot ordering. If you create your
entry frames in an identical way, you can assume they use the same slot
ordering.

For example, if you use the following line of code to create all your entries
you can be sure that each entry will use the same slot ordering.

newEntry := {slot1: x, slot2: y, slot3: z};

You can achieve the same effect by cloning a dummy frame and then filling in the slots individually as show in the
following code:

More Soup? – 9
newEntry := Clone('{slot1: nil, slot2: nil, slot3: nil});
newEntry.slot1 := x;
newEntry.slot2 := y;
newEntry.slot3 := z;

If the set of slots needed varies from entry to entry, you might consider giving all entries the same set of slots and
filling in unused slots with nil. Indexed slots containing nil will be ignored by indexes. (Note that this last point is only
true for the last system update (1.05). Prior to that, using nil in an indexed slot would cause errors.) You have to weigh
the benefits of map sharing against the cost of the extra slots.

For instance, if you know that over time, all the entries in your soup will end up with the same set of slots, it's
probably better to give each entry this set of slots when it's initially created. On the other hand, if the entries in your
soup tend to fall into a few different categories, with a different set of slots for each category, then it's wasteful to force
every entry in the soup to use the same set of slots. You can still achieve space savings by ensuring that entries in the
same category share a map.

Generally speaking, most programs create their soup entries using the same few lines of code – much like the ones
shown above. You only need to worry about the issues in this section if you build up entries in a piecemeal fashion,
using a large number of different of slot sets or slot orderings.

Alternatives to Soups

Remember that soup data is stored as frames. Consequently, there is a certain
amount of overhead associated with each soup entry. For example, using a soup
to store a list of <zip-code, state> pairs (e.g. < 95051, CA >) would be a poor
choice. You may be better off storing large, read-only data sets in a slot in your
base view as a single array, frame, or binary object. Information stored this way
will be compressed along with your package and will not be brought into the
NewtonScript heap when it is accessed. The primary disadvantages of such a
scheme are that the data will be read-only and that you won't have any of the
nice conveniences that soup queries provide.

If your application uses a large initial data set and allows additions by the
user, you might consider a hybrid approach: Keep the initial data set in your
base view and use a soup only for the user's additions.

If you decide not to store your data in a soup, here are some points to think
about:

More Soup? – 10

• If you keep an array sorted, you can use binary search to find elements
quickly. Once again, this is the difference between an O(N) and O(logN)
search.

• Don't be too quick to discount frames as your data structure. Slot lookup is
fast. A binary search is used for large frames (as soon as there are enough
slots to make it faster than a linear search). Also, remember that slot names
(symbols) can consist of any characters if you use vertical bars to escape
them. For example, {|1|: "Reg"} is a legal syntax for a frame.

• If you're storing a lot of repeated strings, consider using symbols instead.
This way, only one copy of the actual string will be stored in your package –
all the symbols will reference it. Again, remember you can use vertical bars
to allow arbitrary characters in your symbols.

• Storing your data as a binary object can avoid some of the overhead of the
array and frame data structures. You'll have to use the various ExtractXXX
functions to retrieve your data. If strings are part of the data in your binary
object, extracting them with ExtractCString or ExtractPString will create a
string object in the NewtonScript heap. In general, binary objects may let
you store your data more compactly, but you'll pay more to access it.

More Soup? – 11

Uniquely Identifying Entries

Sometimes soup entries need to refer to each other. Consider a soup whose
entries represent people. One person may need to refer to another person in the
soup – for example, their father. You may recall that when a frame is added to a
soup, a deep copy is made. This means if the father slot contains a reference to
the father's frame, you would end up copying the father's entire frame into the
son's entry. This is undesirable. You want each person to be represented by a
single entry in the soup and for other entries only to reference that single entry.

If you knew, for example, that every person in the soup had a unique social
security number you could store the father's social security number and then be
able to retrieve the father's entry. Some soups you design will naturally have a
slot that uniquely identifies an entry. If the soup you're working with doesn't
have such a slot, there may not be a need to waste space by artificially creating
one.

Every soup entry has a unique id that uniquely identifies it within its soup.
This id is stored in a _uniqueId slot, but you should access it with the
EntryUniqueId entry function. Every soup has an index on the _uniqueId
slot. It's important to know that these id's are not unique across union-soups,
they are unique only within a single soup.

In the "Soup's On" article I said that "since applications normally use union-
soups, the _uniqueId slot isn't of much practical use." I should have said
"the _uniqueId slot, by itself, isn't of much practical use." You can uniquely
identify an entry in a union-soup using its id plus the signature of the store on
which it resides. Given an entry, you can obtain this information using the
EntryUniqueId and EntryStore entry-functions and the GetSignature store
method. The following code illustrates getting this information.

fatherStoreSig :=
EntryStore(fatherEntry):GetSignature();
fatherId := EntryUniqueId(fatherEntry);

More Soup? – 12

Given an id and store signature, you can retrieve the entry either by getting it
directly from its store (using GetSoup, bypassing union-soups) or by examining
the store signatures of all the entries in the union-soup with that id.

The following function retrieves an entry by getting it directly from its store.

func(storeSig,soupName,entryId)
begin
 pos := ArrayPos(GetStores(),storeSig,0,func(id,store) id = store:GetSignature());
 if pos then
 begin
 soup := GetStores()[pos]:GetSoup(soupName);
 if soup then
 Query(soup,{type: 'index,
 indexPath: '_uniqueId,
 startKey: entryId,
 endTest: func(e) EntryUniqueId(e) <> entryId,
 validTest: func(e) EntryUniqueId(e) = entryId,
 }):Entry();
 end;
end;

The following function retrieves an entry by examining all the entries a union soup with the specified id.

More Soup? – 13
func(storeSig,soupName,entryId)
begin
 local soup := GetUnionSoup(soupName);
 if soup then
 Query(soup,{type: 'index,
 indexPath: '_uniqueId,
 startKey: entryId,
 endTest: func(e) EntryUniqueId(e) <> entryId,
 validTest: func(e) EntryStore(e):GetSignature() = storeSig,
 }):Entry();
end;

Notice both of the above functions use endTests and validTests instead of explicit search loops. Therefore, a single Entry message is
sufficient to return the entry of interest or nil.

These functions are only meant to illustrate the technique I've been describing, not as code you should blindly paste into your application.
They are not efficient for retrieving large numbers of entries – they creates a cursor each time they're called. It would easy to generalize these
functions to accept arrays as arguments and return arrays of entries. Depending on your particular application, you can probably make other
optimizations.

Before you start adapting this technique to your application, you should consider its major drawback. Most applications let users move their
data between stores using the "Move to card" and "Move from card" items in the routing menu. If you plan to support this feature in your
application, and you probably should, then any saved store signatures and entry id values will be incorrect if the user moves data. (Note that
when an entry is moved to a new store, its unique id must be changed if it's already in use by an entry in the new store.) You could try to fix up
all the references to an entry when it is moved, but this may prove impractical unless you have a quick way to find all the references.

Indexing on Modification Time

To support date finds, you need to time stamp your soup entries. There is no
need to create a special slot for this purpose. Soups already maintain this
information.

In addition to the _uniqueId slots, entries that have been modified have a
_modTime slot. This slot contains the time the entry was last modified as the
number of minutes since January 1, 1904. Normally, you should access this
value with the EntryModTime entry-function.

To query your entries in the order of their modification dates you should build
an index on the _modTime slot. Remember, entries don't automatically have a
_modTime slot; only entries that have been modified have one. Entries
without _modTime slots will be skipped by a query on the _modTime index
so you have to ensure that every entry in your soup has one. You can do this by
creating the slot yourself in the frames you pass to AddToDefaultStore or you
can immediately call EntryChange on entries after you add them.

Summary

More Soup? – 14

Newton's soups provide a lot of functionality for free. The down side of this is
that people often fail to think about the nature of the underlying soup
implementation when they are designing their data structures and applications.
Understanding these issues and designing your code appropriately can make a
huge difference in the performance you realize from soups.

