
3-1 Developer Notes

Chapter 3 Firmware

This chapter describes the firmware portion of
the total software environment for the
Macintosh Portable computer. Software will
include both ROM-stored code (firmware)
and disk-stored code (system software). The
Macintosh Portable firmware is an outgrowth
of that for the Macintosh SE. This chapter
describes the changes from the Macintosh SE
firmware (the ROM image). The ROM to
which we refer is that on the 68HC000 I/O
bus. Chapter 4 describes the changes in the
contents of the system tools disk. Also, see
“Software Developer Guidelines,” Chapter 2.
■

CHAPTER 3 Firmware 3-1

3-2 Developer Notes

This page is a blank

CHAPTER 3 Firmware 3-2

3-3 Developer Notes

3.1 Overview

The Macintosh SE software is extensively documented in Inside
Macintosh, Volume V. The contents of Volume V that apply to the
Macintosh SE describe its software in terms of changes from the
Macintosh Plus, documented in Inside Macintosh, Volume IV.
Volume IV, in turn, describes changes from the classic Macintosh as
documented in Inside Macintosh, Volumes I, II, and III.

Terminology

The Macintosh Portable software comes in two components:

■ Firmware—contents of the three ROMs, one for each of the three processors (68000 CPU, power manager processor, and the keyboard processor).

■ System software—contents of an 800 KB, 3.5" disk, Version 6.0.3. System software includes the system file, ROM patches, cdevs (control devices), and

more.

Reference to Macintosh Portable ROM will mean the 68000 processor ROM; discussion of ROM firmware for either of the peripheral processors will be

explicitly labeled as such.

The Macintosh Portable ROM is fundamentally the same ROM as for the Macintosh SE; however, there are some important changes and additions. See

section 3.3, “Changes to ROM,” for more detail.

See Chapter 4, “Software,” for information on updates to the system tools disk.

3.2 Address map

Figure 3-1 shows the address map of the Macintosh Portable. For
comparison, Figure 3-2 shows the address map of the Macintosh SE.

CHAPTER 3 Firmware 3-3

3-4 Developer Notes

■ Figure 3-1 The Macintosh Portable Address Map

$10 0000

$90 0000

$20 0000

$30 0000

$40 0000

$50 0000

$00 0000

$80 0000

$70 0000

$60 0000

$C0 0000

$D0 0000

$E0 0000

$F0 0000

$100 0000

$A0 0000

$B0 0000

High
Memory

256 KB ROM
Aliased x4

RAM
Expansion

ROM (overlay=1)
RAM (overlay=0)

$F1 0000

$F9 0000

$F2 0000

$F3 0000

$F4 0000

$F5 0000

$F0 0000

$F8 0000

$F7 0000

$F6 0000

$FC 0000

$FD 0000

$FE 0000

$FF 0000

$100 0000

$FA 0000

$FB 0000

Auto-Vector Read:
VIA/68000 VPA

Normal/Idle Mode;
Test

SCC

Sound

Video

SCSI

ROM
Diagnostics

VIA

SWIM

Reserved

ROM
Expansion

PDS ROM

Slot
Configure

CHAPTER 3 Firmware 3-4

3-5 Developer Notes

■ Figure 3-2 The Macintosh SE Address Map

$100 0000

0000

VIA
0000

0000

IWM
$ D0 0000

C0 0000

SCC Write
$ B0 0000

Exp.EN/ 0000

SCC Read
$ 90 0000

0000

$ 60 0000

$ 58 0000
SCSI

$ 50 0000

ROM
$ 40 0000

$ 00 0000

RAM

$

$

$

$

$

$

A0

AA

E0

E8

F0

CHAPTER 3 Firmware 3-5

3-6 Developer Notes

3.3 Changes to ROM

The Macintosh Portable ROM software is based on the 256 KB
Macintosh SE ROM; all patches to the Macintosh SE ROM that are
contained in disk-stored system software have been incorporated in
the ROM image of the Macintosh Portable and no longer need reside
in RAM. The Macintosh Portable ROM image is 256 KB in size. It
is stored in either masked ROM on the main logic board or (during
development) in two 1 megabit ROMs on the ROM expansion board.

Power manager processor

The hardware interface to the power manager processor is through a port on the VIA
(see Chapter 6, “The Power Manager,” for details); the software interface is through
the A trap mechanism (see Inside Macintosh Volume I, page I-88). Drivers have
been modified to call the power manager to turn on and off their respective
peripheral chips.

■ Table 3-1 Power Manager Processor

Replaces Provides

■ Real time clock -

■ Apple Desktop Bus transceiver -

- ■ Power and clock control for peripheral subsystems

- ■ A computer wake-up timer facility

- ■ LCD screen contrast control

- ■ Control of internal modem connection to serial ports

- ■ Parameter RAM

- ■ Monitoring and control of the battery and charger

system

CHAPTER 3 Firmware 3-6

3-7 Developer Notes

Apple Desktop Bus

Some changes have been made to the code for the ADB state machine to use the
power manager as a smart transceiver. Externally, there is no visible change, the
same functionality has been provided.

CHAPTER 3 Firmware 3-7

3-8 Developer Notes

Real-time clock (RTC) and Parameter RAM

As the RTC and parameter RAM functions have been taken over by the power
manager, a new interface to the clock is provided. A one-second timer, based on the
60 Hz oscillator used by the power manager processor, is used to generate the real-
time clock.

There are two real-time clock functions: one to set and one to read the clock. The
clock data is stored as a count of the number of seconds since midnight, 1 January
1904.

Parameter RAM is the storage location for various settings (such as those specified
by the user on the Control Panel desk accessory) that need to be preserved during
sleep or power off. Only 128 bytes of extended parameter RAM are supported by
the power manager. See Chapter 6, “The Power Manager,” for further details.

Applications should not use parameter RAM assuming it to be the same as earlier
Macintosh models, because it is not. The Macintosh Plus, Macintosh SE, and
Macintosh II have 256 bytes as compared to 128 bytes for the Macintosh Portable.

Serial Driver

This driver software is modified for switching power to the SCC chip and the serial
driver chips before accessing them.

FDHD, the high-density floppy disk drive

The FDHD™ disk drive is a new 3.5-inch floppy disk drive for the Macintosh II,
Macintosh IIx, Macintosh SE/30, and Macintosh Portable computers. FDHD
provides the ability to read and write data in both group code recording (GCR) and
modified frequency modulation (MFM) formats. This new MFM capability allows
Macintosh users to read and write MS-DOS files and, potentially, other files that use
the MFM disk formats.

FDHD provides 1400 KB (1.4 MB) of MFM storage. It also continues to support the
standard storage capacities in GCR mode: single-sided 400 KB storage capacity, and
double-sided 800 KB storage capacity disks.

CHAPTER 3 Firmware 3-8

3-9 Developer Notes

The FDHD disk drive provides the high-density read/write hardware and read/write
circuitry. The new ROM set incorporates the new disk driver. The SWIM chip
provides Macintosh Portable with MFM disk read/write capability while maintaining
HFS compatibility. The following information is needed to develop application
programs that use the new FDHD 1.4 MB floppy disk drive. Also described are the
data encoding techniques used in the drive, the disk driver firmware, and how to use
both.

Data storage

The theory behind disk drive technology is relatively easy to understand. By making
calls to the disk driver, you are causing the disk controller chip (the SWIM chip) to
send control signals and data to the disk drive.

Data is recorded on a disk very much as a voice or music is recorded on magnetic
tape: Current flow is varied through a read/write head that is placed close to the
medium (the disk or tape). Changing the current flow in the read/write head results
in a magnetic transition on the disk. It is these magnetic transitions that interest us.

Several techniques are used by computer designers to write data to disk media. All
of these techniques share a common technology: encoding data as magnetic
transitions on a disk. To represent individual bits, a pattern of ones and zeros is
expressed as a series of magnetic transitions. The data format is the combination of
magnetic transitions that represents a particular series of bits. FDHD uses two data
formats: group code recording (GCR) and modified frequency modulation (MFM).
Table 3-2 shows the four possible combinations of file systems and disk formats.

■ Table 3-2 Possible disk format

Disk formats File systems

400 KB GCR † MFS

800 KB GCR † HFS

720 KB MFM† MS-DOS

1440 KB MFM * HFS or MS-DOS

† requires a standard 3.5-inch disk
* requires a high density 3.5-inch disk

CHAPTER 3 Firmware 3-9

3-10 Developer Notes

GCR format

The GCR data format has been used in all Apple floppy disk drives to date, including
the Macintosh single-sided and double-sided disk drives.

Data bits are represented by magnetic transitions in the following manner:

■ A transition always occurs when a 1 is encountered.

■ No transitions occur when a 0 is encountered.

Figure 3-3 shows the relationship between the data bits and the magnetic transitions written to the disk when using the GCR data format.

■ Figure 3-3 GCR data format

1 11 0 0 1 0 1 0 0 1 1 10 0 0 0 1 0 0 1 0 1Data bits

Magnetic
transitions
written
to disk

MFM format

Another standard data format is the MFM format, which is used by MS-DOS computers to store data. Data bits are

represented by magnetic transitions in the following manner:

■ A transition always occurs when a 1 is encountered.

■ A transition always occurs when two adjacent 0’s are encountered.

Figure 3-4 shows the relationship of data bits and magnetic transitions when using the MFM data format.

CHAPTER 3 Firmware 3-10

3-11 Developer Notes

■ Figure 3-4 MFM data format

1 11 0 0 1 0 1 0 0 1 1 10 0 0 0 1 0 0 1 0 1Data bits

Magnetic
transitions
written
to disk

The disk media

The FDHD disk drive uses a special 3.5-inch 1440 KB disk. The disk has a hole cut in the upper-left corner that identifies

it as high-density media. Do not format this disk as a 400 KB or 800 KB GCR disk in any Macintosh disk drive. Doing so

will place your data at risk. Use only standard Macintosh single-sided and double-sided disks in single-sided (400 KB)

and double-sided (800 KB) drives. When a GCR formatted 400K or 800K HD disk is inserted in a FDHD drive, an eject

or initialize dialog box will be displayed.

Figure 3–5 shows media compatibility for different disk drives.

CHAPTER 3 Firmware 3-11

3-12 Developer Notes

■ Figure 3-5 Disk media compatibility

Media

Disk drive
FDHD

Single-
sided

Double-
sided

High-
density
1.44MB

Disk is recognized as a
standard 3.5-inch disk.
Only single-sided (400K)
format is possible.

Disk is recognized as a
standard 3.5-inch disk.
Either single- or double-
sided format is possible.

Disk is recognized
as a standard 3.5-
inch disk.

Incompatible.

Do not use high-density media in single-sided
or double-sided disk drives. Use high-density
disks only in the FDHD disk drive.

Data written to a high-density disk in 400K or
800K disk drives places that data at risk.

Disk is recognized as a
high-density 3.5-inch
disk.

Use high-density disks
only in the FDHD disk
drive.

Single-
sided
400K

Double-
sided
800K

Disk is recognized as a
standard 3.5-inch disk.
Only single-sided (400K)
format is possible.

Disk is recognized as a
standard 3.5-inch disk.
Format this disk only as
a single-sided disk.
Formatting this disk as
a double-sided disk and
saving data on it places
that data at risk.

Disk is recognized
as a standard 3.5-
inch disk.

Use only double-
sided disks when
formatting in 800K
mode.

The File System

Apple is working on full support in the file system for the FDHD disk drive in both MFM and GCR modes. Today,

support for the FDHD is provided in the current version of the Apple File Exchange (version 1.1). Apple File Exchange is

a Macintosh application program that allows users to transfer files from MS-DOS disks to the Macintosh, with the option

of translating proprietary file formats. For more information on Apple File Exchange, refer to Chapter 7, “Using Apple

File Exchange,” in the Macintosh Utilities User’s Guide.

CHAPTER 3 Firmware 3-12

3-13 Developer Notes

High Density Floppy Disk Driver

The Macintosh Portable ROM includes a new disk driver. This driver supports the MFM data format and several other

new features. This is a new driver to interface with the SWIM chip and support MFM, as well as GCR, data encoding; the

driver also provides power control. The calls to this driver are described in the following several pages.

Control calls perform all of the disk operations except reading data and writing data. The control opcode is passed to the

driver in the csCode field (byte 26) of the I/O parameter block. Refer to the Device Manager chapter in Inside Macintosh,

Volume II. Control calls that return information pass it back in the I/O parameter block, beginning with the csParam field

(byte 28).

Kill I/O (csCode=1)

Kill I/O is called to abort any current I/O request in progress. The driver does not support this control call and always

returns a result code of –1.

Verify Disk (csCode=5)

This control call reads every sector from the selected disk to verify that all sectors have been written correctly. If any

sector is found to be bad, the call aborts immediately and returns an error code.

Format Disk (csCode=6)

If the selected disk is a floppy disk, the driver writes address headers and data fields for every sector on the disk and (for

GCR disks only) does a limited verification of the format by checking that the address field of the first sector on each track

can be read. If the selected disk is a Hard Disk 20, the driver doesn’t format the media, but instead initializes the data of

each sector to be all 0's. If any error occurs (including write-protected media), the formatting is aborted and an error code

is returned.

The csParam field is used to specify the type of format to be done on floppy disks only. In the SWIM and later versions of

the driver, this value is an index into a list of possible formats for the given drive/media combination. (See the Return

Format List status call under “Status Calls,” later in this chapter, for values.)

◆ Note: In previous versions of the driver, setting csParam to $0001 creates a single-sided disk. Setting

csParam to a value other than $0001 creates a double-sided disk.

CHAPTER 3 Firmware 3-13

3-14 Developer Notes

Eject Disk (csCode=7)

This call ejects the disk in the selected drive if that drive supports removable media. Since hard disks are not

removable, if a hard disk is ejected, the driver posts a diskInserted event and remounts the drive.

Set Tag Buffer (csCode=8)

If csParam is zero, no separate tag buffer is used. If csParam is nonzero, it is assumed to contain a pointer to

a buffer into which tag bytes from each block are read or into which they are written on each Prime call.

Every time a block is read from the disk, the 12 tag bytes are copied into the file tag buffer at TagData+2

($2FC), and then are copied into the user’s tag buffer. When a block is written, tag bytes are copied into the

file tag buffer from the user’s tag buffer, and then written to the disk with the rest of the block. The position of

a particular block’s tag bytes in the user tag buffer is determined by that block’s position relative to the first

block read/written on the current Prime call. The file tags for GCR disks include information that a

scavenging utility can use to rebuild a disk if the directory structure gets trashed. Figure 3–6 shows the tag

format.

■ Figure 3-6 GCR file tag format

file number

fork type (bit 1=1 if resource fork)

file attributes (bit 0=1 if locked)

relative file block number

disk block number

0

4

5

6

8

MFM disks don’t support file tags, so instead of scrapping the whole idea, information about the sector itself is returned.

Most of it is read from the disk, but the error register bytes show any error conditions that exist after the address or data

field is read. Figure 3–7 shows the format of a sector information block.

CHAPTER 3 Firmware 3-14

3-15 Developer Notes

■ Figure 3-7 MFM sector information block

cylinder (track)

side

sector

format byte (should be $22)

CRC read from address field

SWIM error register after CRC read

SWIM handshake register

CRC read from data field

SWIM error register after CRC read

SWIM handshake register

0

1

2

3

4

6

7

8

10

11

Track Cache Control (csCode=9)

When the track cache is enabled, all of the sectors on the last track accessed during a read request, and those requested by

the user, are read into a RAM buffer. On future read requests, if the track is the same as the last track on the last read

request, the sector data is read from the cache rather than from disk. Write requests to the driver are passed directly to the

disk, and any of the sectors written that are in the cache are marked invalid. To control the cache, 2 bytes are passed at

csParam to control the cache, located at csParam and csParam+1. These codes are shown in Table 3–3 and Table 3–4.

■ Table 3-3 Cache enable codes

csParam Result

 0 Disable the cache.

≠0 Enable the cache.

CHAPTER 3 Firmware 3-15

3-16 Developer Notes

■ Table 3-4 Cache control codes

csParam+1 Result

<0 Remove the cache.

 0 Don’t remove or install the cache.

>0 Install the cache.

.Return Physical Drive Icon (csCode=21)

This call returns a pointer to an icon that shows the selected drive’s physical location. The supported icons are shown in

Figure 3–8. Note that only the icons for a particular machine are included in that machine’s disk driver.

■ Figure 3-8 Drive icons

Macintosh
internal

Macintosh SE
upper internal

Macintosh SE
lower internal

Macintosh II
left

Macintosh II
right

Macintosh or SE
external

Return Media Icon (csCode=22)

This call returns a pointer to an icon that shows the selected drive’s media type. The floppy disk icon is stored in the

driver. The Hard Disk 20 icon is stored in the disk drive’s ROM. Figure 3–9 shows the icons.

CHAPTER 3 Firmware 3-16

3-17 Developer Notes

■ Figure 3-9 Media icons

Internal RAM Disk Internal ROM DiskSony floppy disk Hard Disk 20

Return Drive Info (csCode=23)

This control call returns a 32-bit value in csParam that describes the location and attributes of the selected drive. Figure 3-

10 shows the format of the Return Drive Information

■ Figure 3-10 Return drive information format

0=internal
1=external

0=IWM
1=SCSI

0=removable media
1=fixed media

0=primary
1=secondary

0347811121516232431

type

= Reserved

The attributes field occupies bits 8 to 11 and describes the location (internal/external, primary/secondary), drive interface

(IWM/SCSI), and media type (fixed/removable).

Most of the bits are currently not used and are reserved for future expansion. The drive type field occupies bits 0 to 3 and

describes the kind of drive that is connected. Currently six different types are supported; they are listed in Table 3–5.

CHAPTER 3 Firmware 3-17

3-18 Developer Notes

■ Table 3-5 Drive types

Type Description

0 no such drive

1 unspecified drive

2 400 KB

3 800 KB

4 FDHD (400 KB/800 KB GCR, 720 KB/1440 KB MFM)

5 reserved

6 reserved

7 Hard Disk 20

8-15 reserved

Status calls

The disk driver currently supports three status calls, which are described below. As with the control calls, the

status opcode is passed to the driver in the csCode field of the I/O parameter block (byte 26). The returned

status information is passed back starting at the csParam field of the I/O parameter block (byte 28).

Return Format List (csCode=6)

This call is supported in the SWIM-compatible disk driver and will be supported in future versions of the disk

driver, whether or not MFM disks are supported. This call returns a list of all disk formats possible with the

current combination of disk controller, drive, and media. Upon entry, csParam contains a value specifying the

maximum number of formats to return, and csParam+2 contains a pointer to a table that will contain the list.

On exit, csParam will contain the number of formats returned (no more than specified), and the table will

contain the list of formats. If no disk is inserted in the drive, the call will return a noDriveErr code. The

format information is given in an 8-byte record as shown in Figure 3-11.

CHAPTER 3 Firmware 3-18

3-19 Developer Notes

■ Figure 3-11 Return format record

7 0 7 0 7 0 7 0

of sides # of sectors per track side # of tracks

0=single-density
reserved (0)

1=current disk has this format

1=number of tracks/sides/sectors is valid

disk capacity in blocks

0=fields can be user-defined

1=double-density

7 0 7 0 7 007 6 5 4 3

If a track, side, or sector field is zero when the valid bit is set to 1, the field is considered to be a “don’t care” as far as

describing the format of the disk. The formats supported by the driver are listed in Table 3–6.

■ Table 3-6 Combinations of drives and media

Format Capacity TSS valid1 SD/DD Sides Sectors2 Tracks

(in blocks)

400 KB GCR 800 yes SD 1 10 80

800 KB GCR 1600 yes SD 2 10 80

720 KB MFM3 1440 yes SD 2 9 80

1440 KB MFM3,4 2880 yes DD 2 18 80

Hard Disk 20 38965 no SD 0 0 0

Notes:

1 track, sector, and side information

2 average number of sectors

3 requires SWIM and FDHD

4 requires HD media

CHAPTER 3 Firmware 3-19

3-20 Developer Notes

Drive Status (csCode=8)

Drive Status returns information about a particular drive, starting at csParam; the values returned are listed in

Table 3–7.

■ Table 3-7 Drive status return values

Offset Description Parameters

0 current track value of current track

2 write protect bit 7 = 1, write-protected

bit 7 = 0, write-enabled

3 disk in place? <0 = disk is being ejected

0 = no disk is currently in the drive

1 = disk was just inserted but no read/write requests have been

made for this disk

2 = OS has tried to mount the disk (that is, read request to driver)

3 = same as “2” except that this is a high-density disk formatted as

400KB or 800KB GCR

8 = same as “2” except except that this is a Hard Disk 20 (8 means

disk is nonejectable)

4 drive installed? –1 = no drive installed

0 = don’t know

1 = drive installed

5 number of sides 0 = single-sided

–1 = double-sided

CHAPTER 3 Firmware 3-20

3-21 Developer Notes

■ Table 3-7 Drive status return values (Continued)

Offset Description Parameters

6 drive queue element 6 = qLink—pointer to next queue element

10 = qType—type of queue (drvQType)

12 = dqDrive—drive number

14 = dqRefNum—disk driver’s reference number

16 = dqFSID—file system ID

18 double-sided format? 0 = current disk has single-sided format

–1 = current disk has double-sided format

19 new interface 0 = old drive interface (400KB)

–1 = new interface (800KB and later)

20 soft error count (2 bytes) number of soft errors encountered

MFM Status (csCode=10)

This call is supported in the SWIM-compatible disk driver and will be supported in future versions of the disk driver. By

making this call and then checking the returned error code, it is possible to determine whether or not the version you are

using can read and write MFM disks. Also, the information returned is helpful in determining the installed hardware

configuration. The information is returned starting at csParam. Table 3-8 lists the values returned.

CHAPTER 3 Firmware 3-21

3-22 Developer Notes

■ Table 3-8 MFM status return values

Offset Description Parameters

0 drive type –1 = FDHD (MFM/GCR)

0 = 400KB or 800KB GCR

1 disk format –1 = MFM

0 = GCR (valid only when installed)

2 MFM format –1 = 1440KB disk

0 = 720KB disk

3 disk controller –1 = SWIM

0 = IWM

A sample program

As an example of how to use the new disk driver, a sample application program is included here.

{

FDHD™ Driver Demo Application

Copyright © 1988 by Apple Computer, Inc.

This is a short application to show off both the old and new control and status calls for the FDHD disk driver.

The application does this by presenting a list of information about each 3.5-inch floppy or original Hard Disk

20 drive connected to the Macintosh, and the format of any disks that are in those drives.

__

}

PROGRAM HDFDDriverDemo;

 USES MemTypes,QuickDraw,OsIntf,ToolIntf,PackIntf,PasLibIntf;

 CONST DemoMenu = 256; {menu's resource ID and item numbers}

 AboutItem = 1;

 QuitItem = 3;

CHAPTER 3 Firmware 3-22

3-23 Developer Notes

 DemoDLOG = 256;

{"demo" dialog's resource ID and item numbers we use:}

Eject1Btn= 1;

{disk eject buttons}

Eject2Btn= 2;

Eject3Btn= 3;

ChipTypTxt= 11; {disk controller type}

BaseDrvLoc= 12; {base drive location}

BaseDrvIcn= 15; {base drive icon item}

BaseDskIcn= 18; {base disk icon item}

BaseDrvNum= 21; {base drive number}

BaseDrvTyp= 24; {base drive type}

BaseDskFmt= 27; {base disk format}

 StrRsrcID = 256;

{descriptive

string list resource ID and string numbers:}

 IWMStr = 1; {chip types}

 SWIMStr= 2;

 Int1DrvStr = 3; {primary internal drive}

 Int2DrvStr = 4; {secondary internal drive}

 Ext1DrvStr = 5; {primary external drive}

 Ext2DrvStr = 6; {secondary external drive}

 Drive400K = 7; {drive types}

 Drive800K = 8;

 FDHD = 9;

 Hard Disk 20 = 12;

 DefDiskIcon = 256;

{default drive/disk

icon in case we have errors}

HDFDRefNum = -5; {FDHD driver's reference number}

FmtListCode = 6; {csCode for "format list" status call}

DrvStsCode = 8; {csCode for "drive status" status call}

MFMStsCode = 10; {csCode for "MFM status" status call}

DrvIconCode = 21; {csCode for "drive icon" control call}

DskIconCode = 22; {csCode for "disk icon" control call}

DrvInfoCode = 23; {csCode for "drive info" control call}

CHAPTER 3 Firmware 3-23

3-24 Developer Notes

TYPE DrvFmtRec = PACKED RECORD {disk format description:}

capacity: LONGINT; { number of blocks on the disk}

flagsNHeads: SignedByte; { [flags][number of heads]}

sectors: SignedByte; { number of sectors per track side}

cylinders: INTEGER; { number of tracks [cylinders]}

END;

FmtInfoRec = RECORD {format list:}

numFormats : INTEGER;

{ number of formats we want/are returned}

fmtBlock : Ptr; { where to put them}

END;

FmtInfoPtr = ^FmtInfoRec;

MFMSts = PACKED RECORD {info about chips, drives, disks:}

isHDFD: SignedByte;

{-1=HDFD, 0=400K/800K drive}

diskFormat : SignedByte; { -1=MFM, 0=GCR}

twoMegFmt : SignedByte;

{-1=1440K, 0=720K (if diskFormat=-1)}

isSWIM : SignedByte; {-1=SWIM, 0=IWM}

END;

MFMStsPtr = ^MFMSts;

DrvStsPtr= ^DrvSts;

VARtheEvent : EventRecord;

demoDialog : DialogPtr; {"the" window}

whichWindow : WindowPtr; {the window FindWindow is talking about}

pb: ParamBlockRec; {parameter block for control/status calls}

itemHit : INTEGER; {item number returned by DialogSelect}

driveIcon, {drive icon for each column}

diskIcon : ARRAY[0..2,0..31] OF LONGINT;

{disk icon for each column}

driveNum : ARRAY[0..2] OF INTEGER; {drive number for each column}

CHAPTER 3 Firmware 3-24

3-25 Developer Notes

{

__

D I A L O G R O U T I N E S

__

}

 { hides the specified dialog control }

PROCEDURE HideDControl(theItem:INTEGER);

VARtheType : INTEGER;

theControl : ControlHandle;

theRect : Rect;

BEGIN

 GetDItem(demoDialog,theItem,theType,Handle(theControl),theRect);

 HideControl(theControl);

END;

 { sets the highlighting of the specified dialog control }

PROCEDURE HiliteDControl(theItem,theHilite:INTEGER);

VARtheType : INTEGER;

theControl : ControlHandle;

theRect : Rect;

BEGIN

GetDItem(demoDialog,theItem,theType,Handle(theControl),theRect);

HiliteControl(theControl,theHilite);

END;

 { changes the text of a staticText item to theText }

PROCEDURE SetDText(theItem:INTEGER; theText:Str255);

VARtheType : INTEGER;

theHandle : Handle;

theRect : Rect;

BEGIN

GetDItem(demoDialog,theItem,theType,theHandle,theRect);

SetIText(theHandle,theText);

END;

CHAPTER 3 Firmware 3-25

3-26 Developer Notes

CHAPTER 3 Firmware 3-26

3-27 Developer Notes

 { draws a drive icon for the given drive }

PROCEDURE DrawDriveIcon(theDialog:DialogPtr; theItem:INTEGER);

VARtheBits : BitMap;

theType : INTEGER;

theHandle : Handle;

BEGIN

IF driveNum[theItem-BaseDrvIcn]<>0 THEN BEGIN

theBits.baseAddr:=@driveIcon[theItem-BaseDrvIcn];

theBits.rowBytes:=4;

GetDItem(theDialog,theItem,theType,theHandle,theBits.bounds);

CopyBits(theBits, theDialog^.portBits, theBits.bounds, theBits.bounds,srcCopy,NIL);

END;

END;

 { draws a disk icon for the given drive }

PROCEDURE DrawDiskIcon(theDialog:DialogPtr; theItem:INTEGER);

VARtheBits : BitMap;

theType : INTEGER;

theHandle : Handle;

BEGIN

IF driveNum[theItem-BaseDskIcn]<>0 THEN BEGIN

theBits.baseAddr:=@diskIcon[theItem-BaseDskIcn];

theBits.rowBytes:=4;

GetDItem(theDialog,theItem,theType,theHandle,theBits.bounds);

CopyBits(theBits,theDialog^.portBits,theBits.bounds, theBits.bounds,srcCopy,NIL);

END;

END;

CHAPTER 3 Firmware 3-27

3-28 Developer Notes

{

__

M I S C E L L A N E O U S D I S K S T U F F

__

}

 { Pascal doesn't support a SWAP operation, and since the Hard Disk 20's }

 { drive size fields are in the opposite order from what we need, we'll }

 { have to swap them ourselves. The hex code following the function }

 { translates to: }

 { $205F MOVEA.L (SP)+,A0; Get the pointer to "driveSize" }

 { $2010 MOVE.L (A0),D0; D0.L=[driveSize][driveS1] (backwards) }

 { $4840 SWAP D0; D0.L=[driveS1][driveSize] (how we want it) }

 { $2E80 MOVE.L D0,(SP); Put the result on the stack }

FUNCTION GetHD20Size(rawSize:Ptr):LONGINT; INLINE $205F, $2010, $4840, $2E80;

 { check what format this disk has and enable the Eject button }

PROCEDURE NewDisk(theDrive:INTEGER);

VARtheFormat : LONGINT;

I : INTEGER;

formatList : FmtInfoPtr;

formatInfo : ARRAY[0..3] OF DrvFmtRec;

driveStatus : DrvStsPtr;

theString : Str255;

CHAPTER 3 Firmware 3-28

3-29 Developer Notes

BEGIN

IF theDrive IN [1..3] THEN {it might be one of ours}

IF driveNum[theDrive-1]<>0 THEN BEGIN {it is, so continue}

theFormat:=0; {no format yet}

{ First, assume we're working with a recent enough }

{ version of the driver to support the Format List call. If }

{ so, we can determine how big this disk is… }

formatList:=FmtInfoPtr(@pb.csParam);

{type coercion (hazard of Pascal)…}

formatList^.numFormats:=4;

{we want up to 4 entries}

formatList^.fmtBlock:=@formatInfo;

{and here's where to put them}

pb.ioCompletion:=NIL;

{no completion routine}

pb.ioRefNum:=HDFDRefNum;

{FDHD driver's reference number}

pb.ioVRefNum:=theDrive;

{drive number}

pb.csCode:=FmtListCode;

{go get the list}

IF PBStatus(@pb,FALSE)=NoErr THEN

BEGIN

{got something back}

I:=formatList^.numFormats;

WHILE (I>0) AND

(theFormat=0) DO BEGIN

{scan the list for this disk's format}

I:=I-1;

CHAPTER 3 Firmware 3-29

3-30 Developer Notes

IF

BTST(formatInfo[I].flagsNHeads,6) THEN

{bit 6=1 means this is the current format}

theFormat:=formatInfo[I].capacity DIV 2;

{ save the disk's size in K-bytes}

END;

END;

{ If theFormat=0 then the Format List call }

{ isn't supported (because it's an old driver version)… }

IF theFormat=0 THEN BEGIN {haven't figured it out yet}

pb.csCode:=DrvStsCode; {get drive status}

IF PBStatus(@pb,FALSE)=NoErr THEN BEGIN

driveStatus:=DrvStsPtr(@pb.csParam);

{type coercion…}

IF driveStatus^.diskInPlace=8 THEN {Hard Disk 20}

theFormat:=GetHD20Size(@driveStatus^.driveSize) DIV 2 {blocks-

> K-bytes}

ELSE

IF driveStatus^.twoSideFmt=0 THEN

theFormat:=400 { 400K}

ELSE theFormat:=800; { 800K}

END;

END;

CHAPTER 3 Firmware 3-30

3-31 Developer Notes

NumToString(theFormat,theString);

{convert the

disk size to a string,}

theString:=CONCAT(theString,'K');

{append a special K to the size,}

SetDText((BaseDskFmt-1)+theDrive,theString);

{ and display it}

HiliteDControl((Eject1Btn-1)+theDrive,0);

{enable the Eject

button}

END;

END;

{

__

I N I T I A L I Z A T I O N

__

}

PROCEDURE Initialize;

CONST ControlErr = -17;

VAR column,I,driveType : INTEGER;

theHandle,defIcon : Handle;

theString : Str255;

mfmStatus : MFMStsPtr;

driveStatus : DrvStsPtr;

{ sets a dialog userItem's draw procedure to theProc }

PROCEDURE SetUserProc(theItem:INTEGER; theProc:ProcPtr);

VAR theType : INTEGER;

theHandle : Handle;

theRect : Rect;

BEGIN

GetDItem(demoDialog,theItem,theType,theHandle,theRect);

CHAPTER 3 Firmware 3-31

3-32 Developer Notes

SetDItem(demoDialog,theItem,theType,Handle(theProc),theRe

ct);

END;

CHAPTER 3 Firmware 3-32

3-33 Developer Notes

BEGIN

InitGraf(@thePort);

{initialize the managers}

InitFonts;

FlushEvents(everyEvent,0);

InitWindows;

InitMenus;

TEInit;

InitDialogs(NIL);

InitCursor;

demoDialog:=GetNewDialog(DemoDLOG,NIL,WindowPtr(-1)

); {load in the demo dialog window}

{ find out what kind of disk controller chip we're using }

pb.ioCompletion:=NIL;

{no

completion routine}

pb.ioRefNum:=HDFDRefNum;

{FDHD

driver's reference number}

pb.ioVRefNum:=1;

{any drive

number will do}

I:=IWMStr;

{assume we're working with an IWM}

pb.csCode:=MFMStsCode;

{get MFM

status}

IF PBStatus(@pb,FALSE)=NoErr THEN BEGIN

mfmStatus:=MFMStsPtr(@pb.csParam);

{type coercion…}

IF mfmStatus^.isSWIM<0 THEN I:=SWIMStr;

{we've got a SWIM chip}

END;

CHAPTER 3 Firmware 3-33

3-34 Developer Notes

GetIndString(theString,StrRsrcID,I);

{get the chip type string}

SetDText(ChipTypTxt,theString);

{ and display it}

 { set the icon draw procedures and fill in all drive information }

defIcon:=GetResource('ICON',DefDiskIcon);

{get the default disk icon}

{ in

case we get errors}

theHandle:=Handle(@pb.csParam);

{a little type

coercion…}

driveStatus:=DrvStsPtr(@pb.csParam);

{here too…}

FOR column:=0 TO 2 DO BEGIN

SetUserProc(BaseDrvIcn+column,@DrawDriveIcon);

{set the drive icon's draw proc}

SetUserProc(BaseDskIcn+column,@DrawDiskIcon);

{set the disk icon's draw proc}

CHAPTER 3 Firmware 3-34

3-35 Developer Notes

{ find out if the drive is installed or not, and if it belongs to the

FDHDdriver }

driveStatus^.installed:=-1;

{make sure

this one is inited}

pb.ioVRefNum:=column+1;

{drive number}

pb.csCode:=DrvStsCode;

{find out

about this drive}

IF (PBStatus(@pb,FALSE)=NoErr)

AND(driveStatus^.installed>=0)

THEN BEGIN {if the drive is installed

then:}

driveNum[column]:=pb.ioVRefNum;

{ save its number,}

NumToString(pb.ioVRefNum,theString);

{ convert it to a string,}

SetDText(BaseDrvNum+column,theString);

{ and display it}

IF driveStatus^.diskInPlace<2 THEN

{the disk isn't quite mounted,}

HiliteDControl(Eject1Btn+column,255)

{ so disable its Eject button}

ELSE

NewDisk(column+1);

{ otherwise find out

about it}

{ Check the drive type here in case the "get drive info" }

{ call isn't supported on this particular machine… }

IF driveStatus^.diskInPlace=8 THEN BEGIN

{only Hard Disk 20 is not ejectable}

driveType:=HD20;

{save its drive type}

HideDControl(Eject1Btn+column);

{ and get rid of its Eject button--}

END

CHAPTER 3 Firmware 3-35

3-36 Developer Notes

{ it's not ejectable, remember?}

ELSE

IF driveStatus^.sides=0 THEN

{otherwise go by number of sides}

driveType:=Drive400K

ELSE driveType:=Drive800K;

{ Get the drive's icon or use our generic one if we can't get it }

pb.csCode:=DrvIconCode;

IF PBControl(@pb,FALSE)=NoErr THEN

BlockMove(theHandle^,@driveIcon[column],128)

ELSE

BlockMove(defIcon^,@driveIcon[column],128);

CHAPTER 3 Firmware 3-36

3-37 Developer Notes

{ Get the disk's icon or use our generic one if we can't get it }

pb.csCode:=DskIconCode;

IF PBControl(@pb,FALSE)=NoErr THEN

BlockMove(theHandle^,@diskIcon[column],128)

ELSE

BlockMove(defIcon^,@diskIcon[column],128);

{ Find out the drive's type and location }

pb.csCode:=DrvInfoCode;

IF PBControl(@pb,FALSE)=NoErr THEN

BEGIN

 driveType:=LOWRD(BAND(LONGINT(theHandle^),

$0000000F))+

(Drive400K-2);

IF

BTST(LONGINT(theHandle^),8)

THEN {internal

or external drive}

I:=Ext1DrvStr

ELSE

I:=Int1DrvStr;

IF BTST(LONGINT(theHandle^),11)

THEN

I:=I+1;{secondary drive}

END

ELSE

IF column=0 THEN

I:=Int1DrvStr

{older drivers may not

support this}

ELSE

I:=(Ext1DrvStr-1)+column;

{ call, so just go by drive

number}

GetIndString(theString,StrRsrcID,driveType);

CHAPTER 3 Firmware 3-37

3-38 Developer Notes

{ get the type's name}

SetDText(BaseDrvTyp+column,theString);

{ and display it}

GetIndString(theString,StrRsrcID,I);

{ get the drive location string}

SetDText(BaseDrvLoc+column,theString);

{ and display it}

END

ELSE BEGIN

{if no drive is

installed}

driveNum[column]:=0;

{ then set the drive# to

zero}

HideDControl(Eject1Btn+column);

{and make the control invisible}

END;

END;

ShowWindow(demoDialog);

{let 'em see the window

now}

END;

CHAPTER 3 Firmware 3-38

3-39 Developer Notes

{

__

M A I N

__

}

BEGIN

Initialize; { initialize everything }

REPEAT

IF GetNextEvent(everyEvent,theEvent) THEN BEGIN { handle an event}

IF theEvent.what=diskEvt THEN { a

disk was just inserted, so…}

NewDisk(LOWRD(theEvent.message));

{ find out about it}

IF theEvent.what=mouseDown THEN

{ mouse click in the goAway box?}

IF FindWindow(theEvent.where,whichWindow)=inGoAway THEN

IF TrackGoAway(demoDialog,theEvent.where) THEN BEGIN

DisposDialog(demoDialog); { get rid of our window}

EXIT(HDFDDriverDemo); { and return to the Finder}

END;

IF IsDialogEvent(theEvent) THEN {it's in

our dialog window}

IF DialogSelect(theEvent,whichWindow,itemHit) THEN

IF itemHit IN

[Eject1Btn..Eject3Btn]

THEN BEGIN {it's

an Eject button, so…}

IF

Eject(NIL,itemHit-

(Eject1Btn-1))=0 THEN ;

{ eject the

disk,}

CHAPTER 3 Firmware 3-39

3-40 Developer Notes

SetDText((BaseDskFmt-

Eject1Btn)+itemHit,'');

{ erase the disk format

entry,}

HiliteDControl(itemHit,255); { and disable the eject button}

END;

END;

UNTIL FALSE;

END.

CHAPTER 3 Firmware 3-40

3-41 Developer Notes

FDHD Driver Demo resources

Here are the resources required by the sample application program FDHD Driver Demo.

/*

Driver Demo Resource Source File

25-Apr-88

Copyright © 1988 by Apple Computer, Inc.

*/

#include "Types.r";

/* "demo" dialog window containing drive and disk info */

resource 'DLOG' (256, preload) {

{ 40, 30,295,475}, documentProc, invisible, goAway, 0, 256, "Driver Demo"

};

/* "demo" dialog's item list */

resource 'DITL' (256, preload) {

{

{180,120,210,205}, button {enabled, "Eject"}; /* drive 1's eject button */

{180,230,210,315}, button {enabled, "Eject"}; /* drive 2's eject button */

{180,340,210,425}, button {enabled, "Eject"}; /* drive 3's eject button */

{ 10, 10, 26,110}, staticText {disabled, "Drive Location"};

{ 38, 10, 54,100}, staticText {disabled, "Drive Icon"};

{ 78, 10, 94,100}, staticText {disabled, "Disk Icon"};

{110, 10,126,100}, staticText {disabled, "Drive #"};

{130, 10,146,100}, staticText {disabled, "Drive Type"};

{150, 10,166,100}, staticText {disabled, "Disk Format"};

{230, 10,246,145}, staticText {disabled, "Disk Controller Chip:"};

{230,150,246,190}, staticText {disabled, ""}; /* disk controller type */

{ 10,125, 26,200}, staticText {disabled, ""}; /* drive locations */

{ 10,235, 26,310}, staticText {disabled, ""};

{ 10,345, 26,420}, staticText {disabled, ""};

CHAPTER 3 Firmware 3-41

3-42 Developer Notes

{ 30,145, 62,177}, userItem {disabled}; /* drive icons */

{ 30,255, 62,287}, userItem {disabled};

{ 30,365, 62,397}, userItem {disabled};

{ 70,145,102,177}, userItem {disabled}; /* disk icons */

{ 70,255,102,287}, userItem {disabled};

{ 70,365,102,397}, userItem {disabled};

{110,155,126,167}, staticText {disabled, ""}; /* drive numbers */

{110,265,126,277}, staticText {disabled, ""};

{110,375,126,387}, staticText {disabled, ""};

{130,120,146,210}, staticText {disabled, ""}; /* drive types */

{130,230,146,320}, staticText {disabled, ""};

{130,340,146,430}, staticText {disabled, ""};

{150,135,166,190}, staticText {disabled, ""}; /* disk formats */

{150,245,166,300}, staticText {disabled, ""};

{150,355,166,410}, staticText {disabled, ""}

}

};

CHAPTER 3 Firmware 3-42

3-43 Developer Notes

/* descriptive strings */

resource 'STR#' (256, preload) {

{

"IWM"; /* disk controller types */

"SWIM";

"Internal 1"; /* primary internal drive */

"Internal 2"; /* secondary internal drive */

"External 1"; /* primary external drive */

"External 2"; /* secondary external drive */

"Single-Sided"; /* drive types */

"Double-Sided";

"SuperDrive";

""; /* (fillers) */

"";

"Hard Disk 20"

}

};

/* default drive and/or disk icon to use if we get an error trying to get an */

/* icon from the driver (probably because it's a REALLY old driver version) */

resource 'ICON' (256, preload) {

$"7FFFFF78" /* xxxxxxxxxxxxxxxxxxxxxxx xxxx */

$"98FFFF84" /* x xx xxxxxxxxxxxxxxxxx x */

$"80FFC702" /* x xxxxxxxxxx xxx x */

$"90FFC702" /* x x xxxxxxxxxx xxx x */

$"80FFC702" /* x xxxxxxxxxx xxx x */

$"90FFC702" /* x x xxxxxxxxxx xxx x */

$"80FFC702" /* x xxxxxxxxxx xxx x */

$"90FFC702" /* x x xxxxxxxxxx xxx x */

$"80FFC702" /* x xxxxxxxxxx xxx x */

$"90FFFF02" /* x x xxxxxxxxxxxxxxxx x */

$"8B7FFE02" /* x x xx xxxxxxxxxxxxxx x */

$"80000002" /* x x */

$"80000002" /* x x */

$"8AAAAAA2" /* x x x x x x x x x x x x x x */

$"90000012" /* x x x x */

$"80000002" /* x x */

$"90000012" /* x x x x */

CHAPTER 3 Firmware 3-43

3-44 Developer Notes

$"80000002" /* x x */

$"90000012" /* x x x x */

$"80000002" /* x x */

$"90000012" /* x x x x */

$"80000002" /* x x */

$"90000012" /* x x x x */

$"80000002" /* x x */

$"90000012" /* x x x x */

$"80000002" /* x x */

$"90000012" /* x x x x */

$"E0000002" /* xxx x */

$"F0000012" /* xxxx x x */

$"80000002" /* x x */

$"90000012" /* x x x x */

$"7FFFFFFC" /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxx */

};

CHAPTER 3 Firmware 3-44

3-45 Developer Notes

Sound Manager

The Sound Manager for Macintosh Portable is the same as that documented for the
Macintosh II in Inside Macintosh, Volume V, and supplemented by any applicable
Technical Notes. The Sound Manager has incorporated the functions of the Sound
Driver.

Modem

Support for an internal modem is provided. See Chapter 6, “The Power Manager,”
and Chapter 9, “Options.”

Sleep State and Operating State

The Macintosh Portable ROM software supports the ability to put the computer into
the sleep state (clock to DC, all RAM and registers retained) and to bring it back to
the operating state. These functions are implemented in the power manager
firmware and the power manager processor. The OS requests the sleep state through
a time-out scheme or direct user action. Return to the operating state (waking) is due
to an event such as a keystroke or wake-up timer going off. See Chapter 6, “The
Power Manager.”

RAM and ROM Expansion

Memory expansion is done using internal RAM expansion cards in the machine and
is supported by the ROM. ROM expansion/replacement is likewise available by
using an internal expansion connector (slot) to which are brought the necessary
signals (see Chapter 5, “Hardware”, for an explanation). The 4 MB of ROM address
space between $A0 0000 and $DF FFFF is available to you See the address map,
Figure 3-1. Refer to Macintosh Technical Note #255, “Macintosh Portable ROM
Expansion,” for additional information.

CHAPTER 3 Firmware 3-45

3-46 Developer Notes

Diagnostics—The “sad Macintosh” icon

The bootup code in the Macintosh contains a series of startup tests that are run to
insure that the fundamental operations of the machine are working properly. If any
of those tests fail, a “sad Macintosh” icon appears on the screen with a code below
that describes what failure occurred. Here is a typical example of a “sad Macintosh”
display with an error code below it:

The two codes are actually the contents of the two CPU data registers D6 and D7.
The upper word (upper 4 hex digits, in this case 0546) of D7 contains miscellaneous
flags that are used by the start-up test routines and are unimportant to just about
everybody except a few test engineers within Apple. The lower word of D7 is the
major error code. The major error code identifies the general area the test routines
were in when a failure occurred. D6 is the minor error and usually contains
additional information about the failure, something like a failed bit mask.

The major error is further broken into the upper byte that contains the number of any
68000 exception that occurred ($00 meaning that no exception occurred), and the
lower byte that usually contains the test that was being run at the time of failure. If
an unexpected exception occurred during a particular test, then the exception number
is logically ORed into the major error code. This way both the exception that
occurred as well as the test that was running can be decoded from the major error
code:

CHAPTER 3 Firmware 3-46

3-47 Developer Notes

In this example, the code says that an address error exception ($0200) occurred
during the RAM test for Bank A ($03); $0200 ORed with $03 = $0203.

Major error codes

Below is a brief description of the various test codes that might appear in the major
error code:

▲ Warning Some of these codes may mean slightly different
things in Macintosh models other than the Macintosh Portable.
These descriptions describe specifically how they are used in the
Macintosh Portable. ▲

$01 - ROM test failed. Minor error code is $FFFF, means nothing.

$02 - RAM test failed. Minor error code indicates which RAM bits failed.

$05 - RAM external addressing test failed. Minor error code indicates a failed address line.

$06 - Unable to properly access the VIA 1 chip during VIA initialization. Minor error code not applicable.

$08 - Data bus test at location 8 bytes off of top of memory failed. Minor error code indicates the bad bits as a 16–bit mask for bits 15–00. This may

indicate either a bad RAM chip or data bus failure.

$0B - Unable to properly access the SCSI chip. Minor error code not applicable.

$0C - Unable to properly access the IWM (or SWIM) chip. Minor error code not applicable.

$0D - Not applicable to Macintosh Portable. Unable to properly access the SCC chip. Minor error code not applicable.

$0E - Data bus test at location $0 failed. Minor error code indicates the bad bits as a 16–bit mask for bits 15–00. This may indicate either a bad RAM

chip or data bus failure.

CHAPTER 3 Firmware 3-47

3-48 Developer Notes

$10 - Macintosh Portable only. Video RAM test failed. Minor error code indicates which RAM bits failed.

$11 - Macintosh Portable only. Video RAM addressing test failed. Minor error code contains the following:

upper word = failed address (16-bit)

msb of lower word = data written

lsb of lower word = data read

Data value written also indicates which address line is being actively tested.

$12 - Macintosh Portable only. Deleted

$13 - Macintosh Portable only. Deleted

$14 - Macintosh Portable only. Power manager processor was unable to turn on all the power to the board. This may have been due to a

communication problem with the power manager. If so, the minor error code will contain a power manager error code, explained in the next section.

$15 - Macintosh Portable only. Power manager failed its self-test. Minor error code contains the following:

msw = error status of transmission to power manager (see “Power manager processor failures (Macintosh Portable only)”.

lsw = power manager self-test results (0 means it passed, non-zero means it failed)

$16 - Macintosh Portable only. A failure occurred while trying to size and configure the RAM. Minor error code not applicable.

Minor error codes—Power manager processor failures (Macintosh Portable only)

If a communication problem occurs during communication with the power manager, the following error codes will appear somewhere in the minor error code

(usually in the lower half of the code, but not always):

$CD38 Power manager was never ready to start handshake.

$CD37 Timed out waiting for reply to initial handshake.

$CD36 During a send, power manager did not start a handshake.

$CD35 During a send, power manager did not finish a handshake.

$CD34 During a receive, power manager did not start a handshake.

$CD33 During a receive, power manager did not finish a handshake.

CHAPTER 3 Firmware 3-48

3-49 Developer Notes

Diagnostic Code Summary

Below is a summarized version of the sad Macintosh error codes:

Test Codes

$01 ROM checksum test.

$02 RAM test.

$05 RAM addressing test.

$06 VIA 1 chip access.

$08 Data bus test at top of memory.

$0B SCSI chip access.

$0C IWM (or SWIM) chip access.

$0D Not applicable to Macintosh Portable. SCC chip access.

$0E Data bus test at location $0.

$10 Macintosh Portable only. Video RAM test.

$11 Macintosh Portable only. Video RAM addressing test.

$14 Macintosh Portable only. Power manager board power on.

$15 Macintosh Portable only. Power manager self-test.

$16 Macintosh Portable only. RAM sizing.

Power manager communication error codes

$CD38 Initial handshake.

$CD37 No reply to initial handshake.

$CD36 During send, no start of a handshake.

$CD35 During a send, no finish of a handshake.

$CD34 During a receive, no start of a handshake.

$CD33 During a receive, no finish of a handshake.

CHAPTER 3 Firmware 3-49

3-50 Developer Notes

CPU exception codes (as used by the startup tests)

$0100 Bus error exception code

$0200 Address error exception code

$0300 Illegal error exception code

$0400 Zero divide error exception code

$0500 Check inst error exception code

$0600 cpTrapcc,Trapcc,TrapV exception code

$0700 Privilege violation exception code

$0800 Trace exception code

$0900 Line A exception code

$0A00 Line F exception code

$0B00 Unassigned exception code

$0C00 CP protocol violation

$0D00 Format exception

$0E00 Spurious interrrupt exception code

$0F00 Trap inst exception code

$1000 Interrupt level 1

$1100 Interrupt level 2

$1200 Interrupt level 3

$1300 Interrupt level 4

$1400 Interrupt level 5

$1500 Interrupt level 6

$1600 Interrupt level 7

Script Manager

The Script Manager is part of the ROM image.

CHAPTER 3 Firmware 3-50

3-51 Developer Notes

Notification Manager

The Notification Manager is part of the ROM image. See Macintosh Technical Note
#184, April 2, 1988.

CHAPTER 3 Firmware 3-51

