
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support


Pascal
#16: Driver to Have Two Volumes on One 3.5” Disk

Revised by: Guillermo Ortiz, Cheryl Ewy & Dan Strnad
November 1988

Written by: Guillermo Ortiz
October 1986

This Technical Note discusses how to install a driver to have more than
one volume on a 3.5” 800K disk under Apple II Pascal.

For the sake of simplicity,.we will limit the discussion to the following
case: we want to have two 400K volumes on the boot 3.5” disk. For such
a scenario, Unit #4 occupies the first 800 blocks and Unit #20 uses blocks
800 to 1599 as shown here:

Boot Blocks
(0 .. 1)

Directory Unit # 4
blocks (2 .. 5)

Directory Unit # 20
blocks (802 .. 805)

Pseudo Boot Blocks
(800 .. 801)

First Volume Unit #4 Second Volume Unit #20

Blocks (0 .. 799) Blocks (800 .. 1599)

Figure 1–Block Diagram for 3.5” Disk

November 1988

Apple II Technical Notes

There are four calls a device driver has to handle, UNITCLEAR,
UNITSTATUS, UNITREAD, and UNITWRITE. For the first one, our
driver will only return since the device is already on-line. For a blocked
device, UNITSTATUS returns the number of blocks available, in this case
UNITSTATUS (20) = 800.

In the case of UNITREAD and UNITWRITE, all the driver has to do is add
the offset of 800 to the number of the block requested then jump to the
BIOS routine with the unit number set to four. Our driver is basically a
dispatcher that directs the disk access to the proper blocks.

When this driver is present, the application must be very careful about
making sure the right disk is in the drive when accessing the second
volume; any access to Unit #20 could damage a normal volume present in
the drive.

November 1988

Apple II Technical Notes

Once the driver is ready, it is necessary to format a disk with the special
directories. With the listings for the driver we have included the source of
a sample formatting program.

Once the disk is ready we proceed to transfer all system files to it
including SYSTEM.ATTACH, ATTACH.DRIVERS (containing our
driver), and ATTACH.DATA. This last file reflects the following
information:

Driver Name - FAKEDISK - Not Aligned
Attached to #20 {Can change if desired}
Unit #s to be init at boot time - 20
This driver CAN be placed in the first HiRes screen {Change

if needed}
This driver CAN be placed in the second HiRes screen{Change if

needed}
This driver does not use interrupts
Driver does not have transient initialization code

The code has comments that explain it fairly well; for more information on
drivers in general and how to use the attach tools please refer to Apple II
Pascal Device and Interrupt Support Tools.

;
; Disk Driver
; by Guillermo Ortiz
; 03/25/86
;
; This driver will allow splitting a 3.5 disk in two pieces of 400K
; each, therefore permitting more than 77 files per disk. It
; is required to “format” the disk with two directories, one at
; block 0 .. 5 and the other at block 800 .. 805, each with a
; length of 800 blocks. Names must be different!

; The ancient admonition:
;
; This is a sample!
; No claims are made regarding the fitness of this code for
; any particular purpose.

ROUTINE .EQU 02 ; For indirect jumping
RETURN .EQU 04 ; Back to Pascal
BUFF .EQU 06 ; Where to put stuff

November 1988

Apple II Technical Notes

 .PROC FAKEDISK

; At this level we could have some code to differentiate
; between different pseudo volumes if we had more than
; two pseudo-volumes per disk.
; In this example we use Unit # 20 for the second part.
; Using units 13 and up let us keep the “standard” drives available
; In any UNIT call X Register contains the type of call
; as follows:

 CPX #04
 BEQ STATUS ; X = 4
 CPX #02
 BEQ INIT ; X = 2

 STA TEMP1
 STY TEMP1+1 ; Saving A, Y and X
 STX TEMP1+2 ; for future use

November 1988

Apple II Technical Notes

; We make the assumption that the disk split is the
; System Volume, so we get the logical volume number for
; Unit # 4 from the DISKNUM table;
; see Apple // Pascal Device and Interrupt
; Support Tools manual for details.

 TSX ; Gimmie the stack pointer
 LDA 0FEB6 ; Logical volume for boot disk
 STA 109,X ; so read from that disk

; Our fiddling is complete now let’s finish checking
; the call in order to make the jump

 LDA TEMP1+2 ; X contains the call code
 BEQ READ ; X = 0
 CMP #01
 BEQ WRITE ; X = 1

; Here we could have
; instructions to report some undefined control code.
; This driver will only CRASH!!!

 BRK ; Bumm!!!

; Now the real stuff

READ .EQU *
 JSR SETUP ; Modify the stack
 LDY #19. ; Index for Reading from disk
 BNE GET ; Nice way of jumping

WRITE .EQU *
 JSR SETUP ; Modify the stack
 LDY #16. ; Index for WRITE to CONSOLE

GET LDA @0E2,Y ; $E2 contains a pointer to the jump vector
 STA ROUTINE ; Set low byte of address
 INY
 LDA @0E2,Y ; Get high byte of address
 STA ROUTINE+1 ; and set it off

 LDX TEMP1+2 ; Restore
 LDY TEMP1+1 ; all registers
 LDA TEMP1 ; before jump

 JMP @ROUTINE ; and Go!

November 1988

Apple II Technical Notes

; INIT will only pass back the no_error IORESULT

INIT .EQU *
 LDX #00 ; No error
 RTS ; Go back

STATUS PLA ; Get
 STA RETURN ; return
 PLA ; address
 STA RETURN+1
 PLA ; Get
 STA BUFF ; Pascal
 PLA ; Buffer
 STA BUFF+1 ; address
 PLA ; Dump control
 PLA ; word
 LDY #00
 LDA #20 ; Set
 STA @BUFF,Y ; the number of blocks
 INY ; to
 LDA #03 ; 800
 STA @BUFF,Y
 LDX #00
 LDA RETURN+1 ; and
 PHA
 LDA RETURN
 PHA
 RTS ; Return!

; To any request for READ/WRITE we’ll add 800 to the
; number of the block needed.

SETUP .EQU *
 LDA 103,X ; Get Block number low
 CLC ; Set up for addition
 ADC #20 ; Offset block count by 800
 STA 103,X ; and restore
 LDA 104,X ; Get Block number high
 ADC #03 ; 800 = $320
 STA 104,X ; and restore
 RTS ; Go back

TEMP1 .BLOCK 3 ; Temporary storage area

 .END

The driver requires that the disk be formatted in a special way. Run the following program to create your volume.

program REFORMAT;

{By Guillermo Ortiz
 03/27/86
}

{This program takes a newly formatted 3.5 disk and lays down two
directories transforming the volume into two 400K pseudo-volumes to be
used with the driver FAKEDISK which assigns Unit # 20 to the second
part of the disk.
}

November 1988

Apple II Technical Notes

CONST MAXDIR = 77; {Max number of files per volume}
 VIDLENGTH = 7; {Max chars in volume name}
 TIDLENGTH = 15; {Max chars per file ID}
 FBLKSIZE = 512; {Number of bytes per block}
 DIRBLK = 2; {We are reading the directory}

type daterec = packed record
 month:0..12; {0 --> Meaningless date}
 day: 0..31; {Day of month}
 year:0..100 {100 --> dated volume is temp}
 end;

 vid = string [vidlength]; {Volume ID}
 dirrange = 0 .. maxdir; {Number of files on disk}
 tid = string[tidlength]; {File ID}
 filekind = (untypedfile,xdskfile,codefile,textfile,infofile,
 datafile,graffile,fotofile,securdir);

{Now the real directory layout}
 direntry =
 packed record
 dfirstblk:integer; {1st physical disk address}
 dlastblock:integer; {block after last used block}
 case dfkind:filekind of
 securdir,untypedfile: {Volume info only in dir[0]}
 (filler1: 0..2048; {Waste 13 bits}
 dvid: vid; {Name of volume}
 deovblk: integer; {Last block in volume}
 dnumfiles:dirrange; {Number of files in directory}
 dloadtime:integer; {Time of last access}
 dlastboot:daterec); {Most recent date setting}
 xdskfile,codefile,textfile,infofile,datafile,
 graffile,fotofile: {Regular file info}
 (filler2: 0..1024; {Waste 12 bits}
 status: boolean; {For filer wildcards}
 dtid: tid; {Name of file}
 dlastbyte:1..fblksize; {Bytes in last block of file}
 daccess: daterec) {Date of last modification}
 end; {Of the whole directory record}

 directory = array [dirrange] of direntry;

var dirinfo:directory; {The directory goes here}
 UNITNUM:INTEGER;
 CH:CHAR;

PROCEDURE DOSTUFF;
{Function CHECK will read the directory from a freshly formatted
3.5 disk, then DOSTUFF will make changes so it has only 800 blocks and
a name HALFONE: and will write it back to block 2; then we will
change the name to HALFTWO: and will write to block 802 as
the directory for our second pseudo-volume.
}

BEGIN
 with dirinfo[0] do
 begin
 deovblk:=800; {Cut it in half}
 dvid:=‘HALFONE’;
 end;
 unitwrite(UNITNUM,dirinfo,sizeof(dirinfo),dirblk); {Put back main directory}
 DIRINFO[0].DVID:=‘HALFTWO’;
 unitwrite(UNITNUM,dirinfo,sizeof(dirinfo),dirblk+800) {Write second dir.}
end; {Of DOSTUFF}

November 1988

Apple II Technical Notes

FUNCTION CHECK:BOOLEAN;

{Reads the directory from the target disk, if possible, warns the user
of the certain destruction of the current directory and checks the
size of the volume so that the program doesn’t use other than 3.5
disks.
}

BEGIN
 CHECK:=FALSE;
 DIRINFO[0].DLASTBLOCK:=-999; {Make sure we read from a disk}
 UNITREAD(UNITNUM,DIRINFO,SIZEOF(DIRINFO),DIRBLK);
 IF DIRINFO[0].DLASTBLOCK= 6 THEN {IS THIS A PASCAL DISK?}
 BEGIN
 IF DIRINFO[0].DEOVBLK <> 1600 THEN
 BEGIN
 WRITELN('SORRY THIS PROGRAM IS INTENDED FOR 3.5 DISKS ONLY');
 EXIT(CHECK)
 END;
 WRITE('WE ARE ABOUT TO PERMANENTLY DESTROY ');
 WRITELN(DIRINFO[0].DVID,':');
 WRITE('IS IT OK? --> ');
 REPEAT
 READ(KEYBOARD,CH)
 UNTIL CH IN ['Y','N','n','y'];
 WRITELN(CH);
 IF CH IN ['Y','y'] THEN
 CHECK:=TRUE
 END
 ELSE
 BEGIN
 WRITELN;
 WRITELN;
 WRITELN('CAN NOT READ DIRECTORY')
 END
END {OF CHECK};

PROCEDURE GETNUM;

{Prompts the user for the Unit Number of the target disk,
checks the validity of the input and returns when provided with
a reasonable value.
}

November 1988

Apple II Technical Notes

VAR I:INTEGER;

BEGIN
 WRITELN;
 WRITELN('PLEASE ENTER THE NUMBER OF THE UNIT CONTAINING THE DISK');
 WRITE('TO BE REFORMATTED (PRESS <ESCAPE> TO EXIT) --> ');
 UNITNUM:=0;
 REPEAT
 BEGIN
 WRITE(CHR(5)); {Cursor ON}
 READ(CH); {For the prompt}
 WRITE(CHR(6)); {and then OFF for speed and elegance(?)}
 IF EOLN THEN
 IF (UNITNUM IN [4,5,9..12]) THEN
 EXIT(GETNUM)
 ELSE
 FOR I:= 1 TO 32 - UNITNUM DO {Kind of crude but ...}
 WRITE(CHR(8)); {to go back to the same place}
 IF ORD(CH) = 27 THEN
 BEGIN
 WRITELN;
 WRITELN('YOU ASKED FOR IT!!!');
 WRITE(CHR(5)); {Turn cursor ON before we exit}
 EXIT(PROGRAM)
 END;
 IF (ORD(CH) = 8) AND (UNITNUM > 0) THEN
 BEGIN
 IF UNITNUM < 10 THEN
 UNITNUM:=0
 ELSE
 UNITNUM:=UNITNUM DIV 10;
 WRITE(CHR(8),' ',CHR(8)) {To delete previous entry}
 END
 ELSE
 BEGIN
 IF (UNITNUM = 0) AND (CH IN ['1','4','5','9']) THEN
 UNITNUM:=ORD(CH)-ORD('0')
 ELSE
 IF (UNITNUM=1) AND (CH IN ['0','1','2']) THEN
 UNITNUM:=10*UNITNUM+ORD(CH)-ORD('0')
 ELSE
 IF ORD(CH) > 31 THEN
 WRITE(CHR(8),' ',CHR(8)) {Unwanted stuff,so ...}
 END {get rid of it. }
 END
 UNTIL FALSE; {No Exit here.}
 WRITELN
END {OF GETNUM};

BEGIN {main}
 WRITELN;
 WRITELN;
 WRITELN('WE ARE ABOUT TO REFORMAT A VOLUME SO IT WILL CONTAIN TWO');
 WRITELN('400K PSEUDO-VOLUMES. MAKE SURE YOU MARK THE DISK CLEARLY');
 WRITELN('SO YOU DON''T FORGET');
 WRITELN;
 WRITELN;
 REPEAT
 GETNUM
 UNTIL CHECK;
 DOSTUFF;
 WRITE(CHR(5)); {Don’t forget to turn cursor ON}
 writeln;
 WRITELN('AWAAAAAY!!!')
end.

November 1988

Apple II Technical Notes

If two volumes are not enough, you can modify this example to support more than two per disk; the key is to keep in mind that when the call comes
to the driver, the accumulator contains the number of the Unit the for which the call is intended. After checking this number the driver could decide
what offset it has to add to access the correct volume.

Of course the formatter program would have to change accordingly, laying down the directories for the new volumes with the appropriate names and
sizes.

The same scheme can be applied to any device that Pascal can directly recognize (i.e., the Apple Memory Expansion Card, ProFile hard disk, etc.).

Further Reference
• Apple II Pascal Device and Interrupt Support Tools

November 1988

