
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#94: Packing It In (and Out)

Written by: C.K. Haun <TR>
September 1990

This Technical Note discusses a potential problem with the Miscellaneous
Tools routine UnPackBytes.

PackBytes and UnPackBytes are handy data compression and
expansion routines built into the Apple IIGS System Software. Using them
can dramatically reduce the amount of space your application uses on disk
or in memory, but you need to understand how these calls work to avoid
problems in your applications.

Buffer Size, Buffer Size, Buff, Buff, Buffer Size

There are some situations where the Miscellaneous Tools call UnPackBytes does not
function as expected and can cause your application to loop infinitely while you’re waiting for
an unpacking process to finish.

The following packed data and code (in APW assembly) demonstrates the problem. It shows a
small routine that unpacks data in two steps, simulating the situation in many applications
where an arbitrary amount of data is unpacked in a variable amount of unpacking actions,
depending on the results of the last unpack pass.

UnPackBuffer ds 160 ; area to unpack the data to
UnPackBufferPtr dc i4’UnPackBuffer’ ; pointer to unpacking buffer
UnPackBufferSize ds 2
temp ds 2

PackedData dc h’FFFFFFFF’

Developer Technical Support September 1990

Apple II Technical Notes

EndPackData anop
PackLength dc i2’EndPackData-PackedData’ ; how many bytes of packed data

* In packbytes format $FFFF means ‘64 repeats of the next byte ($FF) taken as 4 bytes’ as
* described on page 14-39 of Toolbox Reference, so
* this data should unpack into 512 $FF bytes

Developer Technical Support September 1990

Apple II Technical Notes

* The following code loops infinitely

 lda #160 ; Unpack buffer size
 sta UnPackBufferSize
UnPackLoop pea 0 ; return space
 pushlong #PackedData ; pointer to packed data
 pea 2 ; size of the packed data, unpack two bytes
 ; at a time
 pushlong #UnPackBufferPtr ; pointer to pointer to unpacking buffer
 pushlong #UnPackBufferSize ; pointer to word with the size of the
 ; unpacking buffer
 _UnPackBytes
 pla ; returns 0 bytes unpacked
 sta temp
 lda PackLength
 sec
 sbc temp ; subtracting it from our known
 sta PackLength ; length of packed data
 bne UnPackLoop ; this is always be non-zero

The problem is in the data and the buffer size. UnPackBytes is being told to unpack two bytes ($FFFF), which generate 256 bytes of unpacked
data, into a 160-byte buffer. Instead of reporting an error with this condition, UnPackBytes instead just does nothing and passes back zero as the
returned number of bytes unpacked. If you are relying on the unpacked byte count returned to control your unpacking loop, then you may encounter
this problem.

UnPackBytes can be used to unpack in multiple steps, of course, but it cannot unpack a partial record. It cannot unpack 160 bytes of the 256 bytes
specified in this record because UnPackBytes does not maintain any state information, so it must unpack full records or do nothing. If the buffer
had been 256 bytes, this call would have succeeded.

The Fix

Fortunately, it’s easy to avoid this situation if you know that it can exist. Simply, always
supply UnPackBytes with a buffer that is big enough for it to unpack at least two bytes (a
flag or count byte and a data byte). The largest value of a flag or count word possible is $FF, 64
repeats of the next byte taken as four bytes, which generates 256 unpacked bytes. So always
give UnPackBytes a 256-byte long output buffer and you should never encounter this
problem.

Check Your Current Applications

Please check your current applications to see if you could encounter this problem. One of the
most likely places for this error to occur is in applications that process Apple Preferred (file type
$C0, auxiliary type $0002) pictures. While most pictures currently available are screen-width
or less (160 bytes or less per scan line), the Apple Preferred format and QuickDraw II both
support pictures that are wider than the current Apple IIGS screen. If someone has created a
picture with a PixelsPerScanLine value of 1,280 with a ModeWord of $0080, it would generate a scan line that
was 320 bytes long. If a scan line in this hypothetical picture were all white, for example, the first two bytes of the packed scan line
would be $FFFF, and applications that assume a standard maximum 160 bytes per scan line would not handle this correctly.

Developer Technical Support September 1990

Apple II Technical Notes

But That’s Not All…

UnPackBytes has some other buffering problems of which you need to be aware. The size
and location of the input buffer (the buffer containing your packed data) can also cause
problems.

Note: These problems only occur if you are doing multipass unpacks. If you always
unpack a packed data range in one pass (with one call to UnPackBytes for the
whole data set) then you are not affected by these problems, and the restrictions
described herein do not apply.

Multipass Restrictions

When performing a multipass unpack (as described on pp. 14-43..44 of the Apple IIGS Toolbox
Reference, Volume 1) the packed data needs to follow two rules.

Rule 1: Your packed data buffer cannot cross a bank boundary.
Rule 2: Your packed data buffer needs to be at least 65 bytes longer than the actual size

of the data.

These rules are required by a bug in UnPackBytes. When UnPackBytes begins to unpack
a record, it checks the record data to see if there are enough bytes in the current source buffer to
unpack the number of bytes requested in the record header (described on pg. 14-39 of the Apple
IIGS Toolbox Reference, Volume 1). If there are not enough bytes left for the current record (i.e.,
the header says to process 63 bytes, and there are only 30 left in the buffer), UnPackBytes
returns to the caller. The caller then adjusts the source buffer for the next pass based on the
amount of actual bytes unpacked, so the bytes left over from the last pass get processed the next
time.

The problem occurs when the partial record is close to the end of a bank. When
UnPackBytes checks to see if there is enough data left in the buffer, the check is flawed
when the real end of the buffer is near the end of a bank, and a complete copy of the partial
record would extend into the next bank. UnPackBytes erroneously thinks that the record is
complete, and happily unpacks the remaining actual packed data, plus random information from
the next bank. It continues to unpack nonsense data until it fills the unpacking buffer and the
number of bytes unpacked returned by the UnPackBytes call is greater than the
bufferSize parameter passed as input.

To prevent this bug from occurring, you need to make sure that the buffer for the packed data is
at least one record length away from the end of a memory bank. Since the largest packed data
record is one flag byte and 64 data bytes, adding 65 bytes to the end of your buffer does the
trick. This ensures that your packed data is 65 bytes away from the end.
Developer Technical Support September 1990

Apple II Technical Notes

Following is an example of a safe way to prepare your packed data buffer for multipass
unpacking, in APW assembly:

* Some data space
myCallBlock dc i2’2’ ; two parameters
fileRefNum ds 2 ; file reference number
EOFreturned ds 4 ; file length returned by this call
myIDNumber ds 2 ; your application memory manager ID number
* assume that a packed data file is open, and it’s a plain packed screen image, not over 32K
 jsl $E100A8 ; ask GS/OS for the length of the data
 dc i2‘$2019’ ; Get_EOF call
 dc i4‘myCallBlock’

Developer Technical Support September 1990

Apple II Technical Notes

* Now we need a handle to read it into
 pha
 pha ; return space
 pea 0 ; size, high word
 lda EOFreturned ; the actual size of the packed data
 sta actualPackDataSize
 clc
 adc #65 ; ask for a handle 65 bytes longer than the data
 pha
 lda myIDnumber ; Memory Manager ID for your application
 pha
 pea $8010 ; attrLocked and attrNoCross
 pea 0
 pea 0 ; anywhere
 _NewHandle ; get the handle

Now you have a handle 65 bytes longer than your data that does not cross a bank boundary. You are ready to read in the data and perform a multipass
unpack.

PackBytes Buffers Count Too

PackBytes can also cause you problems if you do not plan for the worst-case situation.
Unlike the other toolbox compression routine ACECompress, PackBytes is not guaranteed
to shrink the source data. In fact, your data size may actually grow after a PackBytes call.

If you pass a data stream of 64 bytes, all with different values, to PackBytes, PackBytes
puts 65 bytes in your output buffer—the 64 original data bytes and the flag byte of $3F,
indicating “64 bytes follow, all different.” Unless you preprocess or analyze your data before
packing to avoid this situation, make sure your output buffer is large enough to hold the worst
case situation, one additional byte generated for every 64 bytes passed to PackBytes for
compression.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1-3
• File Type Note for File Type $C0, Auxiliary Type $0002, Apple Preferred Format

Developer Technical Support September 1990

