
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support


Apple IIGS

#42: Custom Windows

Written by: Dan Oliver & Keith Rollin
November 1988

This Technical Note describes custom windows which are now supported
with Window Manager version 2.2. This Note supersedes all prior
documentation on custom windows.

With Window Manager version 2.2 or later, which is available on Apple
IIGS System Disk 3.2 and later, you may now define your own type of
window or window shape, such as a round or hexagonal window. You
also may define a window which performs tasks that would normally be
handled by an application.

To define your own type of window, a custom window, you must write a
routine that performs some window functions. This routine is a window
definition procedure (defProc), and in this case it is a custom window
defProc. When the Window Manager needs to do something window
specific, it calls your defProc.

The window defProc is a good part of the Window Manager, and
writing one is not an easy task. A window defProc must perform
complicated tasks that are very dependent on the state of the machine, and
it must be very careful not to disturb the state of the machine. One of the
problems in writing a defProc is knowing when it can do something and

November 1988

Apple II Technical Notes

when it cannot. It is almost impossible to document all of the
combinations of calls that you can or cannot make from one part or
another of the defProc, and even if all cases were found, the resulting
document would read like something from an obscure government bureau
and probably be even harder to understand.

Now that you know writing a defProc is tough, here’s how to make
things as easy as possible. Try to understand how the system interacts
with the defProc and work with the system. For example, a defProc
is called to hit test window parts when the user presses the mouse button.
The Window Manager will pass that part back to the defProc to perform
drawing while the Window Manager is tracking the pressed button. The
defProc could keep control when asked to hit test and perform the
tracking itself, but since this is not how the system is designed to work,
your defProc will be hard to write, may not ever work correctly, and
may break in future versions of the Window Manager. Try to stay on the
path outlined in this Technical Note. Also understand that the interface to
definition procedures is as general as possible to allow them to perform
tasks which are as yet unknown. To allow for this future growth, the
outlined path is not always a clear path.

Another way to make things easier is to write conservative code. Do not
assume things like the data bank being set to something nice when the
defProc is called or the caller restoring the direct page pointer upon
return if you have changed it. Use caution. A defProc can be very
difficult to debug because it is not very linear and can be called when you
least expect.

November 1988

Apple II Technical Notes

Interaction Between the Window Manager and TaskMaster

The Window Manager and TaskMaster actually do much less than many people think since
window definition procedures perform most of the tasks. The definition procedures handle such
things as title bars, information bars, and scroll bars, while the Window Manager and
TaskMaster support these things by passing requests to the defProc in standard ways. The
Window Manager knows that windows have some shape, overlap, may contain parts, may be
invisible, and are created and deleted, but it does not know much else. TaskMaster knows to
call GetNextEvent and performs some tasks, but much of what many people consider
TaskMaster is contained in the standard document window defProc. In addition to the list
mentioned above, the defProc handles calling TrackGoAway and scrolling the content. The
remainder of this Note describes what is expected of a defProc and when.

Telling the Window Manager About Your Window

You tell the Window Manager about your custom window when NewWindow creates it.
Instead of passing the parameter list defined in NewWindow, you pass a pointer to a custom
window parameter list. A custom window parameter list is defined as follows:

paramID WORD ID of parameter list, zero for custom.
newDefProc LONG Address of your custom defProc.
newData BYTE[n] Additional data defined by your defProc.

NewWindow checks the paramID field and calls your defProc with the pointer to the parameter list. See the wNew operation under Calling the
Custom DefProc for more information.

Once NewWindow creates the window, the Window Manager will always know that it is defined by your defProc.

Calling the Custom defProc

A window defProc is called with the following items on the stack:

param

WORD - operation number to be performed.

LONG - pointer to window's record.

LONG - pointer to additional parameter defined by each operation.

BYTE[3] - long return address.

windGlobals LONG - pointer to Window Globals (defined below).

Stack Pointer

1

4

8

12

14

RTL address

OperationCode

theWindow

result LONG - result returned to Window Manager, defined by each operation.16

Figure 1 – Stack Prior to Calling a Window defProc
November 1988

Apple II Technical Notes

The defProc must return with the carry flag clear if there was no error or with the carry flag set
and the y register set with an error code if there was an error.

November 1988

Apple II Technical Notes

Window globals (windGlobals) is a pointer to a table of variables which the Window
Manager maintains for use by the defProc. The table is defined as follows:

lineW WORD Width of vertical lines (size depends on video mode).
titleHeight WORD Height of a standard title bar.
titleYPos WORD Y offset for the title (in system font) to center in a standard title bar.
closeHeight WORD Height of the close box icon.
closeWidth WORD Width of the close box icon.
defWindClr LONG Pointer to the default window color table.
windIconFont LONG Handle of the current window icon font.
screenMode WORD TRUE if 640 mode, FALSE if 320 mode.
pattern BYTE[32] Temporary pattern buffer.
callerDpage WORD Direct page pointer of the last caller to TaskMaster.
callerDataB WORD Data bank of the last caller to TaskMaster (bank in both bytes).

Operation numbers are as follows (each operation is described later in its own section):

wDraw 0 Draw the window’s frame.
wHit 1 Tell in what region the mouse button was pressed.
wCalcRgns 2 Calculate wStrucRgn and wContRgn.
wNew 3 Complete the creation of a window.
wDispose 4 Complete the disposal of a window.
wGetDrag 5 Return address that will draw the outline of the window while dragging.
wGrowFrame 6 Draw the outline of a window being resized.
wRecSize 7 Return size of the additional space needed in the window record.
wPosition 8 Return RECT that is the window’s portRect.
wBehind 9 Return where the window should be placed in the window list.
wCallDefProc 10 Generic call to a defProc, defined by the defProc.

wDraw, Operation 0

The wDraw operation draws the window’s frame and is only called for visible windows. This
operation draws in local coordinates in the current GrafPort, which is the Window
Manager’s GrafPort. When the drawing is finished, the only states of the GrafPort that
may have changed are the pen pattern, the fill pattern, and the pen size, as all other states must
be the same as when the defProc was called. This means that if you change the font to print
some text, you must save and restore the original font. For the pen, PenNormal will restore
the pen to an acceptable state.

Param is defined as follows:

Bit 31 1 to highlight the indicated part, 0 to unhighlight.
Bits 0-30 The part to draw (either highlighted or unhighlighted):
0 Draw the window’s entire frame, including any frame controls and the

items listed below. Note that you should check the window’s
fHilited flag to determine how to draw the frame.

1 Draw the go-away region.
2 Draw the zoom region.
3 Draw the information bar.

November 1988

Apple II Technical Notes

Result returned must be zero and the carry flag must be clear.

The Window Manager will draw the content.

November 1988

Apple II Technical Notes

Need to Redraw Your Window?

If your custom window defProc gets called to change some item in its window record (see
wCallDefProc below), you may want to redraw your window. For instance, if your
application makes a SetWTitle call, you would want to draw the name of the new title on the
screen.

The routine wCallDefProc can call the wDraw routine to do this drawing. However, it
should bracket the calls to wDraw with two Window Manager calls that save and restore some
internal variables:

StartFrameDrawing$5A0E
PUSH:LONG Pointer to the window record (not the GrafPort)

This call does the setup for drawing a window frame and is only called by a window definition
procedure before drawing the frame. You should call EndFrameDrawing when finished
drawing.

EndFrameDrawing $5B0E
No input or output

This call restores the Window Manager variables after a call to StartFrameDrawing and is only
called by a window definition procedure after drawing a window frame.

wHit, Operation 1

The wHit operation is called to hit test the window’s frame. Given a set of screen coordinates,
this operation should return what part, if any, of the window is at that coordinate. This
operation is only called for visible windows. The current port will be that of the Window
Manager and the window frame will be in local coordinates.

Param is defined as:

Bits 0-15 Vertical (Y) coordinate in local coordinates.
Bits 16-31 Horizontal (X) coordinate in local coordinates.

Result returned must be one of the following values and the carry flag must be clear:

wNoHit 0 Not on the window at all.

November 1988

Apple II Technical Notes

wInDrag 20 Coordinates are in the window’s drag region (title
bar).
wInGrow 21 Coordinates are in the window’s grow region (size
box).
wInGoAway 22 Coordinates are in the window’s go-away
region (close box).
wInZoom 23 Coordinates are in the window’s zoom region
(zoom box).
wInInfo 24 Coordinates are in the window’s information bar.
wInFrame 27 Coordinates are in the window, but not in any of
the other areas.

xx Any code the application can handle (bit 15 is reserved
for theWindow Manager)

November 1988

Apple II Technical Notes

wCalcRgns, Operation 2

The wCalcRgns operation, which is called only for visible windows, is used to calculate the
window’s entire region (frame plus content called StrucRgn) and just its content region
(called ContRgn). Both regions must be set to global coordinates, and both will already be
allocated with their handles stored in the window record’s wStrucRgn and wContRgn fields.

Use the portRect and the boundsRect of the window’s GrafPort to calculate these two
regions. The port will have been set from the information passed to NewWindow along with
any size changes. A method for obtaining the global RECT of the content is given below. Refer
to the QuickDraw II chapter in the Apple IIGS Toolbox Reference for a full description of ports.
When calculating the regions, do not change the clip region (ClipRgn) or the visible region
(VisRgn) of the GrafPort.

Param is not defined and should not be used.

Result returned must be zero and the carry flag must be clear.

IN: window = pointer to window record.
OUT: rect = global RECT of window’s content.

ldy #wPort+portRect+y1
lda [<window],y
ldy #wPort+portInfo+boundsRect+y1
sec
sbc [<window],y
sta <rect+y1

;
ldy #wPort+portRect+x1
lda [<window],y
ldy #wPort+portInfo+boundsRect+x1
sec
sbc [<window],y
sta <rect+x1

;
ldy #wPort+portRect+y2
lda [<window],y
ldy #wPort+portInfo+boundsRect+y1
sec
sbc [<window],y
sta <rect+y2

;
ldy #wPort+portRect+x2
lda [<window],y
ldy #wPort+portInfo+boundsRect+x1
sec
sbc [<window],y
sta <rect+x2

Although there are other ways to obtain the global RECT of the content, this example gives the correct method. You should never rely on the top and
left side of the portRect being zero.

November 1988

Apple II Technical Notes

wNew, Operation 3

The wNew operation is called to perform any additional initialization that may be required for a
custom window. The following items are already done for the window:

• If a window record is supposed to be allocated, it is. All fields, other than those fields listed
below, are set to zero

• A port opens in the window record’s wPort field.
• The window is added to the Window Manager’s window list, and the wNext field is set.
• The wDefProc, wStrucRgn, wContRgn and wUpdate regions are set with the handles

of the allocated regions. It is the responsibility of the defProc to define the shape of the
wStrucRgn and wContRgn regions.

• The fAllocated and fHilited bits in the wFrame field of the window record are set
(see the window record definition for a definition of these bits) and should not be disturbed;
all other bits in wFrame are set to zero. The defProc should set the fCtlTie, fVis and
fQContent bits, and it can set and use other bits in the wFrame field as it wishes.

• It is the responsibility of the defProc to set the wRefCon, wContDraw, and
wFrameCtls fields, the bits already mentioned in the wFrame field, and any other fields
which it defines in the wCustom part of the window record.

Param is a pointer to the parameter list pointer which was passed to NewWindow.

Result returned must be zero and the carry flag must be clear.

wDispose, Operation 4

The wDispose operation is called to perform any additional disposal that may be required of a
custom window. This operation is called before the Window Manager performs any disposal
actions on the window.

Param is not defined and should not be used.

Result should be FALSE to continue disposal or TRUE to abort the disposal. In either case,
the carry flag should be clear. Returning TRUE would be very unusual and should be carefully
thought out. After returning FALSE, the Window Manager will erase the window, remove the
window from the Window Manager’s window list, free any controls in the window’s
wControls and wFrameCtl lists, free the handles in the wStrucRgn, wContRgn and
wUpdateRgn fields, close the window’s GrafPort, and free its record if it is allocated (see
the wFrame field).

November 1988

Apple II Technical Notes

wGetDrag, Operation 5

The wGetDrag operation is called to get the address of a routine that will draw an outline of
the window.

Param is not defined and should not be used.

Result returned must be the address of a frame outline routine or zero for a default frame; the
default frame is the bounds RECT of the strucRgn. The frame outline routine is called from

November 1988

Apple II Technical Notes

DragRect with dragRectPtr set to the bounds RECT of the strucRgn. Your routine is
called with the following parameters:

PUSH:WORD - delta X
PUSH:WORD - delta Y
PUSH:BYTE[3] - return address

Your routine should draw or erase the outline of the object in its new position using the passed
deltas. You have several different methods of determining whether to erase or draw and how to
compute the position of the object, the easiest method being to draw the outline using XOR
mode. The first time your routine is called, you draw. The next time your routine is called, you
erase. Your routine should draw in the current port. The current pen pattern will be the pattern
pointed to by dragPatternPtr from DragRect and the pen mode is XOR.

You also need to know where to draw the outline. One way is to offset the starting RECT
(dragRectPtr) by the given deltas. You should make a copy of the bounds RECT of the
strucRgn when wGetDrag is called. Modify that rectangle with the deltas to obtain the
rectangle to frame.

wGrowFrame, Operation 6

The wGrowFrame operation is called to draw an outline of the window when the window is
being resized.

This operation should use the current port, pen pattern, and pen mode. The frame should be
drawn with only the following QuickDraw II calls: Line, LineTo, FrameRect,
FrameRgn, FramePoly, FrameOval, FrameRRect, and FrameArc (the Invert
equivalents to Frame could also be used). You want to use the current GrafPort setting with
only certain QuickDraw II calls since this routine will be called an even number of times; the
first time it is called to draw the frame and the next time to erase that which it drew the first
time. If it needs to use QuickDraw II calls other than those listed above, this operation handler
could keep track of odd and even calls to know whether to draw or erase the frame.

Param is a pointer to the following parameter list:

newSize RECT Rectangle that defines the new size.
drawFlag WORD TRUE to draw the frame, FALSE to erase.
startRect RECT Bounds of wStrucRgn when dragging started.
deltaY WORD Vertical movement since starting to drag (signed).
deltaX WORD Horizontal movement since starting to drag (signed).

Result should be:

November 1988

Apple II Technical Notes

TRUE if frame drawn, FALSE to draw default frame.

TRUE if newSize RECT has been recomputed, FALSE if newSize RECT OK.

30 29 6 5 4 3 2 1 031

The Window Manager assumes that the frame of the grow outline is the same as the bounds of the window’s wStrucRgn. This RECT is stored in
the startRect of the parameter list and does not change through out the dragging. The next assumption is that the window grows from the lower
right corner. As the cursor moves, the lower right corner of the RECT in newSize

November 1988

Apple II Technical Notes

changes. However, if these assumptions are not correct for a custom window they can be overridden by changing the RECT in newSize (by using
startRect or the window’s record and the deltas) and returning TRUE for bit 1 in Result. The carry flag should return clear.

wRecSize, Operation 7

The wRecSize operation is called to ask how large a window record should be allocated.

Note: The window pointer passed in theWindow is not valid for this call.

Param is the parameter list pointer that is passed to NewWindow.

Result is the number of additional bytes required in the window record. The standard
window record header will always be allocated.

Example:

If your custom window needs a one word field in the window record for your own use you
would return 2 in Result. The Window Manager takes Result and adds to it the size of the
standard record header of 212 bytes and allocates a window record that is 214 bytes long in this
case. Your one word field is at the end of the standard window record header with an offset of
212 bytes.

If there is some error, return the carry flag set with an error code in the y register, which will
cause NewWindow to abort and return the error code to the application which called it. If there
is no error, return the carry flag clear.

Window Record Already Allocated?

If the window record is already allocated then Result should be the pointer to the window
record with bit 31 of the pointer set to TRUE. Generally, window records are allocated (refer to
Window Record Definition at the end of this Note for more information about window records).

wPosition, Operation 8

Param is the parameter list pointer that is passed to NewWindow.

Result is a pointer to the RECT that will be the window’s portRect, and you should return
the carry flag clear.

wBehind, Operation 9

November 1988

Apple II Technical Notes

Param is the parameter list pointer that is passed to NewWindow.

Result is where the window should be placed in the window list. A long $FFFFFFFF means
insert the window as the top window while a long $00000000 means to insert it as the bottom
window. Any other value is a pointer to the window behind which this window should be
placed. You should return the carry flag clear.

November 1988

Apple II Technical Notes

wCallDefProc, Operation 10

WCallDefProc is a generic call to the defProc that is defined by the defProc. With this
call a window defProc can define many special functions.

The input to the defProc is:

param = pointer to the following parameter table:

dRequest WORD Requested operation number.
paramID WORD Parameter block type:

$0000-$7FFF reserved by system ($0000 defined below).
$8000-$FFFF reserved for custom defProcs.

newParam BYTE[n] New parameter field used by some operations.

The paramID field defines dRequest, which in turn defines newParam and the result of the wCallDefProc call. You can think of
dRequest as the operation number passed to the defProc. Here is an example of how the paramID defines dRequest: if paramID is zero,
dRequest 3 is defined as wSetPage (defined below); but if paramID is $8345 (or any number other than zero), dRequest 3 could be defined
as something entirely different.

The following dRequest values are defined for wCallDefProc operations with a paramID of zero. Your defProc should check for handling
only these codes. In the future, codes 34 and greater may be defined, and your defProc should know not to handle them.

wSetOrgMask 0 wGetInfoDraw 17
wSetMaxGrow 1 wGetOrigin 18
wSetScroll 2 wGetDataSize 19
wSetPage 3 wGetZoomRect 20
wSetInfoRefCon 4 wGetTitle 21
wSetInfoDraw 5 wGetColorTable 22
wSetOrigin 6 wGetFrameFlag 23
wSetDataSize 7 wGetInfoRect 24
wSetZoomRect 8 wGetDrawInfo 25
wSetTitle 9 wGetStartInfoDraw 26
wSetColorTable 10 wGetEndInfoDraw 27
wSetFrameFlag 11 wZoomWindow 28
wGetOrgMask 12 wStartDrawing 29
wGetMaxGrow 13 wStartMove 30
wGetScroll 14 wStartGrow 31
wGetPage 15 wNewSize 32
wGetInfoRefCon 16 wTask 33

wSetOrgMask 0
newParam = WORD - window’s origin mask.
result = None.

Called when SetOriginMask is called.

wSetMaxGrow 1
newParam = WORD - maximum window height.

WORD - maximum window width.
result = None.

Called when SetMaxGrow is called.

November 1988

Apple II Technical Notes

wSetScroll 2
newParam = WORD - number of pixels to scroll when arrow is

selected.
result = None.

Called when SetScroll is called.

wSetPage 3
newParam = WORD - pixels to scroll when page region is selected.
result = None.

Called when SetPage is called.

wSetInfoRefCon 4
newParam = LONG - value passed to info bar draw routine

(app’s use only).
result = None.

Called when SetInfoRefCon is called.

wSetInfoDraw 5
newParam = LONG - address of info bar draw routine.
result = None.

Called when SetInfoDraw is called.

wSetOrigin 6
newParam = WORD - flag, TRUE to scroll content.

WORD - window’s Y origin.
WORD - window’s X origin.

result = None.

Called when SetContentOrigin is called.

wSetDataSize 7
newParam = WORD - height of window’s data area.

WORD - width of window’s data area.
result = None.

Called when SetDataSize is called.

wSetZoomRect 8
newParam = LONG - pointer to new zoom RECT.
result = None.

Called when SetZoomRect is called.

wSetTitle 9
newParam = LONG - pointer to new title.
result = None.

Called when SetWTitle is called.

November 1988

Apple II Technical Notes

wSetColorTable 10
newParam = LONG - pointer to new color table.
result = None.

Called when SetFrameColor is called.

wSetFrameFlag 11
newParam = LONG - pointer to new zoom RECT.
result = None.

Called when SetWFrame is called.

wGetOrgMask 12
newParam = None.
result = WORD - window’s origin mask.

wGetMaxGrow 13
newParam = None.
result = Low word is window’s maximum height when grown.

High word is window’s maximum width when grown.

Called when GetMaxGrow is called.

wGetScroll 14
newParam = None.
result = Low word is number of pixels to scroll when arrow is selected.

Called when GetScroll is called.

wGetPage 15
newParam = None.
result = Low word is pixels to scroll when page region is selected.

Called when GetPage is called.

wGetInfoRefCon 16
newParam = None.
result = Value passed to info bar draw routine.

Called when GetInfoRefCon is called.

wGetInfoDraw 17
newParam = None.
result = Address of info bar draw routine.

Called when GetInfoDraw is called.

wGetOrigin 18
newParam = None.
result = Low word is content’s Y origin.

High word is content’s X origin.

Called when GetContentOrigin is called.

November 1988

Apple II Technical Notes

wGetDataSize 19
newParam = None.
result = Low word is window’s data height.

High word is window’s data width.

Called when GetDataSize is called.

wGetZoomRect 20
newParam = None
result = Pointer to window’s current zoom RECT.

Called when GetZoomRect is called.

wGetTitle 21
newParam = None
result = Pointer to window’s title.

Called when SetWTitle is called.

wGetColorTable 22
newParam = None.
result = Pointer to window’s color table.

Called when SetFrameColor is called.

wGetFrameFlag 23
newParam = None.
result = Low word is window’s wFrame field.

Called when SetWFrame is called.

wGetInfoRect 24
newParam = LONG - pointer to place to store info bar’s enclosing RECT.
result = None.

Called when GetRectInfo is called.

wGetDrawInfo 25
newParam = None.
result = None.

Called when DrawInfoBar is called.

wGetStartInfoDraw 26
newParam = LONG - pointer to place to store info bar’s enclosing

RECT.
result = None.

Called when StartInfoDrawing is called.

wGetEndInfoDraw 27
newParam = None.
result = None.

Called when EndInfoDrawing is called.

November 1988

Apple II Technical Notes

wZoomWindow 28
newParam = None.
result = None.

Called when ZoomWindow is called.

wStartDrawing 29
newParam = None.
result = None.

Called when StartDrawing is called.

wStartMove 30
newParam = WORD - new y position (global).

WORD - x position (global).
result = Low word is new y position (global).

High word is x position (global).

Called before MoveWindow moves a window.

wStartGrow 31
newParam = None.
result = None.

Called before GrowWindow tracks the growing of a window.

wNewSize 32
newParam = LONG - pointer to:

WORD - proposed new height.
WORD - proposed new width.
These two values can be changed.

result = Low word TRUE if only uncovered content should be drawn.
FALSE if entire content should be redrawn.

Called by SizeWindow before it resizes a window. The new height and width can be changed by modifying the words pointed to by the
pointer in newParam.

wTask 33
newParam = LONG - pointer to task record.

WORD - result from FindWindow.
result = Low word is code returned by TaskMaster (zero if handled).

High word is task performed. Returned in TaskData if code is 0.

Called from TaskMaster when it cannot handle a task. If the user presses the mouse button over a window, TaskMaster will call
FindWindow to find out what part of the window. TaskMaster will then handle the task if FindWindow returns wInMenuBar or bit
15 of the window pointer is set (system window). Otherwise, the result of FindWindow is passed to wTask to be handled or not.

If the defProc can handle the task it should do so and return zero in the low word of the result (which will be the result to the application
returned from TaskMaster) and a code of the task performed in the high word of the result (which is returned to the application in its
task record TaskData field). Fields in the task record may also be modified to return parameters to the application as this is the same
record passed to TaskMaster.

November 1988

Apple II Technical Notes

If the defProc cannot handle the task, it should return the result from FindWindow (the second field in newParam) in the low word of
the result. The high word of the result is not used.

For example, the standard document window defProc handles the following results from FindWindow if the taskMask record
allows.

wInContent Brings the window to the top.
wInDrag Calls DragWindow.
wInGrow Brings the window to the top. If it is already on the top, it calls GrowWindow and
SizeWindow.
wInGoAway Calls TrackGoAway.
wInZoom Calls TrackZoom and ZoomWindow.
wInInfo Brings the window to the top.
wInFrame Brings the window to the top. If it is already on the top, checks if it is on one of the
window’s scroll bars, tracks it, and scrolls the window’s content as needed.

A custom window defProc can return any code (bit 15 is used for system windows) it wants when it is called to do a hit test. This code
would be that returned by FindWindow, and the application would have to know about the code if it called FindWindow instead of
TaskMaster. If TaskMaster is used, the code that FindWindow returns is passed back to your defProc with a wCallDefProc
and wTask. The defProc could perform any task it wanted: change colors, eject a disk, run a spelling checker, or anything else.

Window Record Definition

wNext LONG - Pointer to next window record, zero is end of list.

182

4

178

174

0

wPort BYTE[170] - Window's grafPort.

LONG - Address of window's definition procedure.

LONG - Reserved for application's use.

LONG - Address of routine that will draw window's content.

186

LONG - Handle of window's structure region.

202

198

194

190

LONG - Handle of window's content region.

LONG - Handle of window's update region.

wCtls LONG - Handle of first control in window's content.

LONG - Handle of first control in window's frame.206

210 WORD - Flags that define window.

LONG - Reserved by Window Manager, do not use.

wCustom BYTE[n] - Additional data space defined by window's defProc.

wFrame

wFrameCtls

wUpdateRgn

wDefProc

wRefCon

wContDraw

wStrucRgn

wContRgn

212

wReserved

The changes use some vacant space under the window port and add the wReserved field to
the record for future expansion.

November 1988

Apple II Technical Notes

In addition to defining the window record, the wFrame field needs to be further defined. In the
diagram below the shaded bits are reserved for use by each window defProc (the values
shown are those used by the standard document window defProc). Bits not shaded are
reserved by the Window Manager and are applicable to all windows.

0123456789101112131415

wFrame

F_HILITED
F_ZOOMED
F_ALLOCATED
F_CTL_TIE
F_INFO
F_VIS
F_QCONTENT
F_MOVE
F_ZOOM
F_FLEX
F_GROW
F_BSCRL
F_RSCRL
F_ALERT
F_CLOSE
F_TITLE

Further Reference
• Apple IIGS Toolbox Reference, Volume 1
• System Disk 4.0 Release Notes

November 1988

