
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support


Apple II Miscellaneous
#14: Guidelines for Telecommunication Programs

Written by: Matt Deatherage July
1989

This Technical Note discusses recommended guidelines to ensure future
compatibility and maintain workable standards for telecommunication
programs.

Telecommunication programs have always been a particularly
troublesome area on the Apple II as far as standards are concerned.
Exiting from terminal programs often leaves the system in an unbalanced
state or leaves strange and unknown things upon the user’s disks. Yet
complying with standards would not only make life easier for the users,
it’s not that hard for developers to do. This Note lists the primary
guidelines Apple II telecommunication program developers should keep
foremost in their minds.

Talking to the Hardware

Communicating with the modem through the interface provided by the user isn’t always the
easiest task in the world. It often just can’t be done at acceptable speeds when using high-level
software routines, and sometimes it can’t even be done at the firmware level. It’s widely known
that the Super Serial Card can’t keep up with 9600 bps communication unless a low-level driver
uses the 6551 chip on the card directly—the firmware just can’t do it. The Apple IIGS serial
port firmware can easily keep up with 9600 bps, but the GS/OS generated character drivers for
those ports can’t do single character I/O at that speed.

Developer Technical Support July 1989

Apple II Technical Notes

In general, programs must use the highest level interface available to them that functions to
specifications. If dealing with speeds of less than 9600 baud in 16-bit mode, on the Apple IIGS,
use the GS/OS drivers. Remember that any GS/OS driver owns the slot or port it controls, and
going around the drivers causes problems. High-speed, highly-configurable loaded drivers for
the serial ports may ship with the System Software in the future, and it would be unfortunate if
your terminal program was the one that caused the driver to break.

For speeds of 9600 bps or higher with System Software 5.0, the driver can’t help you. It is
necessary to go directly to the firmware or hardware and risk of future incompatibility.
Remember that the firmware must be called from bank zero emulation mode. If single
character I/O isn’t necessary, the driver can handle speeds of 9600 bps when used in
multicharacter input or output.

Note: In the future, System Software may include loaded drivers for the serial ports. An
application can tell whether a driver is generated or loaded by examining bit 14 of
the characteristics word returned by the GS/OS DInfo call—a generated
driver has this bit set. A loaded driver may be able to handle 9600 bps single–
character I/O, but a generated one may not.

File Transfer Considerations

Transferring files is probably the most important function of a telecommunication program.
However, transferring the file’s data itself is not always adequate. Telecommunication
programs must find a way to transfer a file’s attributes as well as a file’s contents to keep
things running smoothly.

File attributes include the file’s type and auxiliary type (necessary fields for most applications to
identify their data files), the size of the file, creation and modification dates and times, as well
as information about how many forks the file has, what file system it came from, and how the
file is stored on disk. In addition, when asked, GS/OS returns in its option_list
information about the file that the native file system uses but GS/OS does not (information such
as access privileges, native file types and creator types, parent directory IDs, extended attribute
records and other information as important to the native file system as file type and auxiliary
type are to GS/OS).

Any telecommunication program can devise a way to keep such attributes with a file when the
file is transferred between two machines that are both running the program in question. It is a
much trickier task to address the issue of keeping all file attributes with files regardless of the
programs involved in the transfer. An industry-wide standard is necessary for such integration.

The Binary II standard, devised by Gary B. Little (and documented in the Apple II File Type

Developer Technical Support July 1989

Apple II Technical Notes

Note for File Type $E0, Auxiliary Type $8000), has been accepted as a standard for maintaining
these attributes for a number of years. Many major telecommunication programs already
incorporate support for this standard; Apple urges those that don’t to consider doing so at their
earliest convenience.

Binary II is designed to keep attributes with files on the fly—it is not an archival standard and
should not be used as such. A standard like Binary II should always be used to keep attributes
with a file; confusing it with an archival standard can result in files being transferred without
their own attributes. Even archival files must be transferred with their attributes. It is never
acceptable to transfer a file without it’s attributes.

Archival considerations are a completely separate issue. An archival format and program must
be carefully designed with archiving considerations in mind, such as manipulating files within
the archive, preserving the attributes of the files archived, and allowing for a myriad of
compression schemes. The NuFX standard (documented in the Apple II File Type Note for File
Type $E0, Auxiliary Type $8002) is such an archival format, which Apple recommends be used
for those purposes. The program ShrinkIt is an example of a NuFX archival utility.

In an ideal world, all files would be transferred with their attributes sent transparently by the
telecommunication program. The user would select the file to send, and the program would
automatically send the attributes. When the program receives a file, it would already have the
attributes with the file, so no postprocessing by the user would be necessary to use the file.

Even archival files such as NuFX should be transferred with all attributes intact. Although the
archival utility may allow the user to select any file for processing (in case the file’s attributes
were lost), assuming that this will happen implies that it’s acceptable. It is not. No file should
ever be transferred without all its attributes, down to, and including the GS/OS
option_list, if present.
Apple IIGS Considerations

A few more guidelines for Apple IIGS-specific telecommunication applications follow:

• Don’t ignore slot configurations. Attempting to use a serial port through
hardware while an interface card for that slot is switched in will break dynamic slot
arbitration if, and when, it becomes available, unless the application does not use
the firmware.

• Be a good neighbor to interrupt handlers. Interrupts will be coming through
that you did not enable. (This is also true for Apple IIe computers with
Workstation Cards, but is true for IIGS computers even when AppleTalk is not
involved.) Programs not prepared for this could bring the system down. Stealing
main interrupt vectors is not a good idea.

Developer Technical Support July 1989

Apple II Technical Notes

• Don’t go stepping on things you don’t own. It is better to alert the user that a
certain resource (like a slot or a port) is not available than to blindly switch it in
and crash the system. Never switch slots without using the Slot Arbiter.

• Behave yourself. Don’t make wild assumptions or do things differently just
because you’re a terminal program and you think you have to do it for speed. Most
users won’t be impressed by a terminal program that’s fast and robust if it breaks
every time they activate a desk accessory or if they have to reboot the system when
they’re done with it. Don’t compromise system integrity for superficial
functionality.

Further Reference
• Apple IIGS Firmware Reference
• Apple IIGS Hardware Reference
• Apple II File Type Notes, File Type $E0, Auxiliary Type $8000
• Apple II File Type Notes, File Type $E0, Auxiliary Type $8002

Developer Technical Support July 1989

