
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#22: Proper Use of Dynamic Segments

Rewritten by: Eric Soldan & Andy Stadler
September 1990

Written by: Guillermo Ortiz
October 1987

This Technical Note discusses strategies that applications can use to deal
with dynamic segments.
Changes since November 1988: Rewrote from scratch to address current
problems.

When reading the documentation on dynamic segments, it initially appears
that they are even better than sliced bread. While they are incredibly
useful, there are two issues that make dealing with them somewhat tricky.
The first involves loading a dynamic segment; the second involves
unloading a dynamic segment. Everything else works fine.

Loading Dynamic Segments

Loading dynamic segments is supposed to happen automatically. You are supposed to be able
to call the code in the dynamic segment, and the system automatically loads it. As long as there
is enough RAM to load the segment, this is exactly what happens.

The problem arises when there isn’t enough memory. Immediately you have a number of
questions, such as “How do I know if it didn’t load?” and “How is the not-enough-memory
error returned?” Unfortunately, neither of these questions is applicable. Instead, you get a Fatal
System Error, which is not the most useful thing that could happen.

Developer Technical Support September 1990

Apple II Technical Notes

However, there are some reasons for this error. For example, in the Pascal or Toolbox stack
frame system, the called function is responsible for removing the parameters pushed onto the
stack. If the dynamic segment did not load, these parameters cannot be pulled from the stack,
and if they are not pulled from the stack, the operating system cannot return to the caller.

Due to this problem, the best thing to do is to try to load the dynamic segment with
LoadSegName. If it loads, then there is (obviously) enough RAM for it. If it does not load,
then there was not enough RAM; it’s that simple. So, to call a function named dynFN in a
dynamic segment called dynSeg, you would do the following:

 LoadSegName("\pDynSeg");
 if (!_toolErr) {
 dynFN(some, number, of, parameters);
 UnLoadSeg(dynFN);
 }
 else ErrorAlert("\pOut of RAM.");

Developer Technical Support September 1990

Apple II Technical Notes

Unloading Dynamic Segments

UnLoadSeg used to have a problem, so the above technique would not have worked. As of
System Software 5.0.3, this problem has been fixed. In the example, the code
UnLoadSeg(dynFN) does not pass the address of the dynFN that was loaded into RAM.
Instead, that address represents the entry in the dynamic segment jump table for that particular
function. The jump table is always in RAM. So, you are not actually passing an address of the
segment to be unloaded, but an address in the jump table.

The loader is responsible for figuring out that the address is actually an address in the jump
table, and it is supposed to unload the segment to which the jump table entry refers. The loader
did not handle this case properly until 5.0.3. So, for system disks prior to System Disk 5.0.3,
you can preserve the segment number returned by the LoadSegName call to issue an
UnLoadSegNum call to dispose of the dynamic segment. Due to UnLoadSeg not doing the
job prior to 5.0.3, you could use UnLoadSegNum. This also has problems. ExpressLoad
changes the segment numbers, so it is difficult to maintain the segment numbers if you change
the link script. For these reasons, the below technique should be used for system disks prior to
5.0.3:

void sample()
{
 struct LoadSegNameOut dynSegInfo;

 dynSegInfo = LoadSegName("\pDynSeg");
 if (!_toolErr) {
 dynFN(some, number, of, parameters);
 UnLoadSegNum(dynSegInfo.segNum);
 }
 else ErrorAlert("\pOut of RAM.");
}

Dynamic Segment Interdependencies: Just Say No

Dynamic Segments calling each other almost always lead to unloading conflicts, and more
importantly, they defeat the purpose (if they both have to be in simultaneously then they might
as well be static). Figure 1 is a sample program layout you may want to consider when
designing your application dynamic segment usage:

Main Program
Dispatcher & User Interface

Shared Utility Code

Mode 3
Code

Mode 2
Code

Mode 1
Code

static

dynamic

static

Developer Technical Support September 1990

Apple II Technical Notes

Figure 1–Sample Program Layout

Also, if one of the dynamic segments described is much more than, say, 32K or 40K, you may
wish to load a pair (or more) of dynamic segments. These dynamic segment pairs would always
be loaded and unloaded simultaneously. Why? Because loading two 25K segments is more
likely to succeed than loading one 50K segment.

Developer Technical Support September 1990

Apple II Technical Notes

A Final Warning:

Data in a dynamic segment is a tricky issue. When you call a dynamic segment, you are not
sure if it got loaded, or if it was already in RAM, and therefore you cannot be sure of the values
in your global data. For example, say that you have a global variable that represents the number
of times that you call the dynamic segment. Every time you call the segment, you would
increment this variable. This technique works great until the dynamic segment gets purged.
Once it is purged, the next time you call it, the variable area would be loaded from disk again,
with its original initial value. The count is no longer valid. To fix this, you can place the global
could variable in the static globals space for the main code. Then the variable would not get
purged, and your count would be valid. Of course, if you have global data that does not ever
change, then it is okay for the data to be in the global segment.

Further Reference
• GS/OS Reference
• Apple IIGS Programmer’s Workshop Assembler Reference

Developer Technical Support September 1990

