
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support


Apple II Miscellaneous
#10: 80-Column GetChar Routine

Revised by: Dave Lyons
September 1989

Written by: Cameron Birse
December 1986

This Technical Note presents an 80-column GetChar routine.
Changes since November 1988: Added discussion of single-character
input on the unenhanced Apple IIe.

The following is an example of how to display a string on the 80-column
screen, reposition the cursor at the beginning of the string, and use the
right arrow to get characters which are already there or accept new
characters in their place. The routine is a simple BASIC program which
displays the string and repositions the cursor before getting incoming
characters. If the character input is a right arrow, the program calls the
assembly-language routine to get the character from screen memory at the
current cursor location.

10 PRINT CHR$ (4);"bload getchar.0": REM first install assembly routine
20 B$ = "hello"
30 PRINT CHR$ (4);"pr#3"
40 PRINT B$;:B$ = ""
50 A = PEEK (1403): REM get horiz location
60 A = A - 5: REM move cursor to beginning of string
70 POKE 1403,A
80 GET A$: REM get a character
90 IF A$ = CHR$ (21) THEN GOSUB 130: REM if char is forward arrow,
 handle with assembly routine (GETCHAR)
100 IF A$ = CHR$ (27) THEN 170: REM if esc key then we’re done
110 PRINT A$;:B$ = B$ + A$
120 GOTO 80
130 CALL 768: REM GETCHAR

Developer Technical Support September 1989

Apple II Technical Notes

140 A = PEEK (6)
150 A$ = CHR$ (A)
160 RETURN
170 PRINT : PRINT : PRINT B$: REM and we’re done

An assembled listing of the assembly language GetChar routine follows. It works on the Apple IIe and later.

Developer Technical Support September 1989

Apple II Technical Notes

SOURCE FILE #01 =>GETCHAR
----- NEXT OBJECT FILE NAME IS GETCHAR.0
0300: 0300 1 ORG $300
0300: C01F 2 RD80VID EQU $C01F ;80 COLUMN STATE
0300: C054 3 TXTPAGE1 EQU $C054 ;TURN OFF PAGE 2 (READ)
0300: C055 4 TXTPAGE2 EQU $C055 ;TURN ON PAGE 2 (READ)
0300: C000 5 CLR80COL EQU $C000 ;TURN OFF 80 STORE (WRITE)
0300: C001 6 SET80COL EQU $C001 ;TURN ON 80 STORE (WRITE)
0300: 0028 7 BASL EQU $28 ;BASE ADDRESS OF SCREEN LOCATION
0300: 0029 8 BASH EQU $29
0300: 057B 9 OURCH EQU $57B ;80 COLUMNS HORIZ. POSITION
0300: 05FB 10 OURCV equ $5fb ;80 col vertical pos
0300: 0006 11 char equ 6 ;place to hand character back to basic
0300: 12 *
0300: 13 ***
0300: 14 * GETCHAR - This routine gets an ascii character from the *
0300: 15 * 80 column display memory of the Apple IIe. It assumes *
0300: 16 * that main memory is switched in and that the base addrs *
0300: 17 * of the line has already been calculated and resides *
0300: 18 * in BASL and BASH. It is meant to be called from BASIC *
0300: 19 * as follows: *
0300: 20 * CALL 768 *
0300: 21 * A = PEEK (6) *
0300: 22 * A$ = CHR$(A) *
0300: 23 * As you can see, the character is returned in location *
0300: 24 * $6 in zero page. This routine is offered as an example. *
0300: 25 * No guaranties are made regarding its fitness for any *
0300: 26 * purpose. By Cameron Birse 6/10/86 *
0300: 27 ***
0300: 28 *
0300: 0300 29 getchr equ * ;get the char at the current cursor loc.
0300:A9 01 30 lda #$01 ;mask for horiz test
0302:2C 7B 05 31 bit OURCH ;are we in main or aux mem?
0305:D0 17 031E 32 bne main ;if bit 0 of OURCH is set, then main mem
0307: 0307 33 aux equ *
0307:AD 7B 05 34 lda OURCH ;get horiz pos.
030A:18 35 clc ;clear the carry for divide
030B:6A 36 ror a ;divide by two
030C:A8 37 tay ;put the result in y
030D:8D 01 C0 38 sta SET80COL ;turn on 80 store
0310:AD 55 C0 39 lda TXTPAGE2 ;flip to aux text page
0313:B1 28 40 lda (basl),y ;get the character
0315:85 06 41 sta char
0317:AE 54 C0 42 ldx TXTPAGE1 ;turn off aux text page
031A:8D 00 C0 43 sta CLR80COL ;turn off 80 store
031D:60 44 rts
031E: 031E 45 main equ *
031E:AD 7B 05 46 lda OURCH ;get horiz pos.
0321:18 47 clc ;clear the carry for divide
0322:6A 48 ror a ;divide by two
0323:A8 49 tay ;put the result in y
0324:B1 28 50 lda (basl),y ;get the character
0326:85 06 51 sta char
0328:60 52 rts

Developer Technical Support September 1989

Apple II Technical Notes

Reading a Single Character

While the 80-column firmware is active (whether in 40- or 80-column mode), the RDKEY
routine on the unenhanced Apple IIe unexpectedly allows the user to press ESC and move the
cursor around the screen the same way RDCHAR does.

AppleSoft’s GET statement uses RDKEY, so it behaves the same way. The ESC keypress is
never returned, so users have problems if you use GET and expect them, for example, to press
ESC to return to the previous menu. At this point, the cursor turns into an inverse plus sign (+)
and your program is still waiting for a keypress. The user presses ESC a few more times,
watching the cursor alternate between an inverse plus sign and an inverse blank, and then turns
off the computer in search of a more exciting activity, like throwing darts at your disk.

If your program can run on the unenhanced IIe, either leave the 80-column firmware turned off
(PRINT CHR$(21) to make sure it’s off), or read keypresses by polling the keyboard register
directly:

1000 IF PEEK(-16384)<128 THEN 1000 : REM Wait for a keypress
1010 A$ = CHR$(PEEK(-16384)-128) : REM Read the key
1020 POKE -16368,0 : REM Clear the keyboard strobe

or

0300: LDA $C000 ; check for a keypress
0303: BPL $0300 ; keep waiting
0306: AND #$7F ; turn off bit 7
0308: STA $C010 ; clear the keyboard strobe

Note that these code fragments don’t display a cursor while waiting for a key.

Further Reference
• Apple IIGS Firmware Reference
• Apple IIe Technical Reference Manual
• Apple IIc Technical Reference Manual, Second Edition

Developer Technical Support September 1989

