
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#3: Window Information Bar Use

Revised by: Dave Lyons
January 1991

Written by: Dan Oliver
October 1986

This Technical Note details the use of a window’s information bar,
including a code sample which places a menu in an information bar.
Changes since November 1988: Added a note about the current
Resource Application when inside an InfoDefProc procedure, and
information about information bars and NewWindow2.

Apple IIGS window information bars are not as straightforward as other
window features, and one reason for this is the small amount of space
originally allocated for their processing. If you feel your application can
benefit from the use of information bars, you can implement them, and
this Technical Note explains how to do it and includes some suggestions
for their use. The code samples below demonstrate how to place a menu
bar in an information bar, but your use of information bars is not limited to
those described here.

Information Bar Initialization

You can create an information bar in a window when you create the window by setting the
following fields in the parameter list you pass to NewWindow:

Developer Technical Support January 1991

Apple II Technical Notes

wFrame Set bit 4.

wInfoHeight Set to the height of the information bar (should not exceed window height).

wInfoDefProc Set to the address of the information bar definition procedure (see below).

If you create a window as visible, the Window Manager will call your information bar
definition procedure (InfoDefProc) before returning from NewWindow. If you have to
create the contents of the information bar after the window, you will have a problem since the
Window Manager will expect your InfoDefProc to draw things which do not yet exist. You
can solve this problem by creating the window as invisible, creating the contents of the
information bar, then showing the window. Another solution would be to detect, in the
InfoDefProc, that the contents of the information bar do not yet exist.

NewWindow2, however, does not let you override the information bar drawing procedure in
the template. If you pass a window template in a resource, creating the window as visible
crashes (since the address of your information bar drawing procedure cannot possibly be in the
window template resource). Instead, create the window as invisible and call SetInfoDraw to
set the address of the information bar drawing procedure before calling ShowWindow.

Below is an example of initializing a window’s information bar to contain a menu bar. The
three key fields of the parameter list which you pass to NewWindow are as follows:

wFrame Set bit 4 = 1 and bit 5 = 0 for an invisible window; the other bits do not
affect the information bar, so you can set them as you wish.

wInfoHeight Assuming you are using a system menu bar and initializing it before the
window, set to the height FixMenuBar returned when you created the
system menu bar. If you would rather use an absolute value, which we do
not advise, you could use 14 which should be about right for the current
system font.

wInfoDefProc Set to the address of the InfoDefProc, in this case draw_info.

After you create the window, but before you show it, you can create the menu bar to place in the
information bar. The code to create the menu bar might look like the following:

window Direct page location that contains pointer to window's port.
;
; --- Create a menu bar --
;

pha Space for result.
pha
pea $FFFF Set "use current port" flag.

Developer Technical Support January 1991

Apple II Technical Notes

pea $FFFF
_NewMenuBar Create a menu bar.
pla Get returned menu bar handle.
sta <menuBar Remember menu bar handle.
pla
sta <menuBar+2

;
;
; --- Store menu bar's handle in the window's InfoRefCon -----------------------------------
;

pei <menuBar+2 Pass menu bar handle.
pei <menuBar
pei <window+2 Window to set refCon.
pei <window
_SetInfoRefCon Store menu bar handle in window's infoRefCon.

;
;
; --- Make the window's menu bar the current menu bar --------------------------------------
;

pei <menuBar+2 Pass menu bar handle.
pei <menuBar
_SetMenuBar Make new menu bar the current menu bar.

;
;
; --- Get the RECT of the window's information bar ---
;

pea tempRect|-16 Pass pointer of RECT.
pea tempRect
pei <window+2 Pass pointer of window.
pei <window
_GetRectInfo tempRect = interior RECT of window's Info Bar.

; --- Dereference menu bar handle --
;

ldy #2
lda [menuBar],y
tay
lda [menuBar]
sta <menuBar Now menuBar is the pointer to the Menu Bar.
sty <menuBar+2

;
;
; --- Set size of menu bar ---
;
;

lda <tempRect+y1
dec a Overlap top side.
ldy #CtlRect+y1
sta [menuBar],y

;
lda <tempRect+x1
dec a Overlap left side.
ldy #CtlRect+x1
sta [menuBar],y

;
lda <rect+y2
inc a Overlap bottom side.
ldy #CtlRect+y2
sta [menuBar],y

;
;
; --- Set flag to tell Menu Manager to draw menu in current port ---------------------------
;

ldy #CtlOwner+2 Set high bit in CtlOwner.
lda [menuBar],y

Developer Technical Support January 1991

Apple II Technical Notes

ora #$8000
sta [menuBar],y

;
;
; --- Create the menus and add them to the window's menu bar -------------------------------
;

lda #4
loop pha Save index into menu list.

tay Switch index to Y.
;

pha Space for return value.
pha
lda menu_list+2,y Pass address of menu/item lines.
pha
lda menu_list,y
pha
_NewMenu

; Menu handle already on stack.
pea 0 Insert menu list at front of list.
_InsertMenu Add my menus to the system menu bar.

;
pla
sec
sbc #4
bpl loop

;
;
; --- Initialize the size of the menu bar and menus --
;

pha Space for returned bar height.
_FixMenuBar Fix up positions in the menu bar.
pla Discard height of menu bar.

;
;
; --- Restore the system menu bar as the current menu --------------------------------------
;

pea 0 Pass flag for system menu bar.
pea 0
_SetMenuBar Make system menu bar current.

The window’s menu bar is now initialized, and you can make the window visible with a call to ShowWindow; the InfoDefProc will draw the
menu bar.

Information Bar Definition Procedure (InfoDefProc)

The InfoDefProc is slightly misleading; it is only responsible for drawing the interior, above
the background, of the information bar. The InfoDefProc is not responsible for defining the
information bar, drawing the frame and background, testing for hits, or tracking the user. The
InfoDefProc is located inside your application, and the Window Manager calls it whenever
it needs to draw the part of the window frame that contains the information bar. Each window
with an information bar can have its own InfoDefProc, or they can all share a common
InfoDefProc. When the Window Manager calls your InfoDefProc, it sets the proper
port, the Window Manager’s port, and the proper state, an origin local to the window frame and
clipped to any windows above it. The direct page and data bank are not defined and should be
considered unknown.

The Window Manager passes your InfoDefProc the following information:

Developer Technical Support January 1991

Apple II Technical Notes

• Pointer to the information bar’s interior rectangle (less frame), local coordinates.
• Value of the window’s wInfoRefCon, set and used only by your application.
• Pointer to the window’s port (do not switch to this port for drawing).

Note: When the Window Manager calls your InfoDefProc, there is no guarantee that
the current Resource Application is set to the value you expect. If your
InfoDefProc makes Resource Manager calls, directly or indirectly, be sure to
save, set, and restore the Resource Application using GetCurResourceApp and
SetCurResourceApp.

A window that has an information bar containing a menu bar (handle stored in the window’s
InfoRefCon) might have a InfoDefProc as follows:

draw_info START
;
theWindow equ 6 Offset to the information bar owner window.
infoRefCon equ theWindow+4 Offset to the window's information bar RefCon.
infoRect equ infoRefCon+4 Offset to the information bar's enclosing RECT.
;

phd Save original direct page.
tsc Switch to direct page in stack.
tcd

;
;
; --- Draw the window's menu bar in the window's information bar ---------------------------
;

pei infoRefCon+2 Pass handle of window's menu bar handle.
pei infoRefCon
_SetMenuBar Make the window's menu bar the current menu bar.

;
_DrawMenuBar Draw the window's menu bar, as requested.

;
lda #0 Zero is the flag for the system menu bar.
pha
pha
_SetMenuBar Make the system menu bar current again.

;
;
; --- Remove input parameters from the stack ---
; ldx #12

ply Pull original direct page off stack, save in Y.
;

tsc Move direct page point to stack.
tcd
lda 2,s Move return address down over input parameters.
sta 2,x
lda 0,s
sta 0,x

;
tsc Adjust stack for stripped input parameters.
phx Number of bytes of input parameters.
clc
adc 1,s Add number of input parameters to stack pointer.
tcs And reset stack.

;
tya Restore original direct page.
tcd

Developer Technical Support January 1991

Apple II Technical Notes

;
rtl Return to Window Manager.
END

Information Bar Environment

An information bar is part of a window’s frame, that is, not part of the window’s content region.
Because it is part of the frame, an information bar is in the Window Manager’s port, so before
an interaction (drawing or mouse selecting), the proper port (Window Manager’s) must be in the
proper state. The proper state means the origin must be at the window’s upper-left corner and
clipped to any windows above.

When the Window Manager calls the InfoDefProc it sets the proper port to the proper state;
however, to interact with the information bar outside the InfoDefProc, you must set the
proper port to the proper state. You can accomplish this with a call to StartInfoDrawing.
When the interaction is completed, you must allow the Window Manager to return its port to a
general state via a call to EndInfoDrawing. You are in a special state that requires some
constraints (discussed later) between the calls to StartInfoDrawing and
EndInfoDrawing.

Here is an example of interacting with our window’s menu bar.

;
poll pha Space for return value.

pea %0000111101101110 Pass event mask to use.
pea TaskRec|-16 Pass pointer to Task record.
pea TaskRec
_TaskMaster
pla Get returned value.
beq poll Does event need further processing?

;
;
; --- Handle button down in window's information bar ---------------------------------------
;

cmp #InInfo In Information bar?
bne poll

;
pha Space for result.
pha
lda TaskRec+TaskData+2 Pass pointer of window.
pha
lda TaskRec+TaskData
pha
_GetInfoRefCon Get menu bar handle from window's InfoRefCon.
pla
sta menuBar
pla
sta menuBar+2

;
;
; --- Switch to proper port in proper coordinate system ------------------------------------
;

pea tempRect|-16 Pass pointer to RECT to store info bar RECT.
pea tempRect
lda TaskRec+TaskData+2 Pass pointer of window.

Developer Technical Support January 1991

Apple II Technical Notes

pha
lda TaskRec+TaskData
pha
_StartInfoDrawing

;
;
; --- Handle menu selection from window's menu bar ---
;

pea TaskRec|-16 Pass pointer to Task record for MenuSelect.
pea TaskRec
pei menuBar+2 Pass handle of menu bar.
pei menuBar
_MenuSelect Let user make selection.

;
lda event+TaskData Get the item's ID number.
beq exit Was a selection made?

;
_EndInfoDrawing Switch back to original port.

;
; (Handle the menu selection.)
;
; The EndInfoDrawing followed by the StartInfoDrawing call is only
; needed when code between them calls the Window Manager.
;

pea tempRect|-16 Pass pointer to RECT to store info bar RECT.
pea tempRect
lda TaskRec+TaskData+2 Pass pointer of window.
pha
lda TaskRec+TaskData
pha
_StartInfoDrawing Switch to the proper port in the proper state.

;
pea 0 Pass unhilite flag.
lda TaskRec+TaskData+2 Pass menu's ID number.
pha
_HiliteMenu Unhilite menu's title.

;
;
; --- Clean up and return to polling ---
;
exit _EndInfoDrawing Switch back to original port.
;

pea 0 Make system menu bar current.
pea 0
_SetMenuBar

;
jmp poll Return to polling user.

;

Information Bar Shutdown

When the Window Manager closes the window, it is up to you to resolve any shutdown
necessities associated with the information bar. Using our window menu bar example, the close
window might look like the following:

;
pei menuBar+2 Pass handle of menu bar
pei menuBar
_SetMenuBar

;
pha Space for returned menu handle.
pha

Developer Technical Support January 1991

Apple II Technical Notes

pea 2 ID number of second menu.
_GetMHandle Get the menu's handle.
_DisposeMenu Free menu record and associated data.

;
pha Space for returned menu handle.
pha
pea 1 ID number of first menu.
_GetMHandle Get the menu's handle.
_DisposeMenu Free menu record and associated data.

;
pea 0 Make system menu bar current.
pea 0
_SetMenuBar

;
pha Space for menu bar's handle.
pha
pei <window+2 Pass pointer of window to close.
pei <window
_GetInfoRefCon Get the InfoRefCon from the window.
_DisposeHandle Free menu bar record.

;
pei <window+2 Pass pointer of window to close.
pei <window
_CloseWindow Now the window can be closed.

;

The type of shutdown you use depends upon the contents of the information bar.

Why didn’t I put a DisposeMenuBar call in the Menu Manager? I didn’t think of it until a week too late. Sorry.

Other Information Bar Uses

The following suggestions are only theories and have not been tested.

• Display text information, as in Finder windows.
• Split window. Like the content region, the information bar could be large enough to hold

data.
• Hold controls. You could scroll data in the content region while keeping the controls which

affect the display in place and within the user’s reach. (Note: The Control Manager does
not know about information bars. If you want to draw and track objects in information bars,
you have to do it yourself using QuickDraw II calls.)

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1-3
• Apple IIGS Technical Note #83, Resource Manager Stuff

Developer Technical Support January 1991

