
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support


ProDOS 8
#9: Buffer Management Using BASIC.SYSTEM

Revised by: Matt Deatherage
November 1988

Revised by: Pete McDonald
October 1985

This Technical Note discusses methods for allocating buffers which will
not be arbitrarily deallocated in BASIC.SYSTEM.

Section A.2.1 of the ProDOS 8 Technical Reference Manual describes in
detail how an application may obtain a buffer from BASIC.SYSTEM for
its own use. The buffer will be respected by BASIC.SYSTEM, so if you
choose to put a program or other executable code in there, it will be safe.

However, BASIC.SYSTEM does not provide a way to selectively
deallocate the buffers it has allocated. Although it is quite easy to allocate
space by calling GETBUFR ($BEF5) and also quite easy to deallocate by
calling FREEBUFR ($BEF8), it is not so easy to use FREEBUFR to
deallocate a particular buffer.

In fact, FREEBUFR always deallocates all buffers allocated by GETBUFR.
This is fine for transient applications, but a method is needed to protect a
static code buffer from being deallocated by FREEBUFR for a static
application.

November 1988

Apple II Technical Notes

Location RSHIMEM ($BEFB) contains the high byte of the highest
available memory location for buffers, normally $96. FREEBUFR uses it
to determine the beginning page of the highest (or first) buffer. By
lowering the value of RSHIMEM immediately after the first call to
GETBUFR, and before any call to FREEBUFR, we can fool FREEBUFR
into not reclaiming all the space. So although it is not possible to
selectively deallocate buffers, it is still possible to reserve space that
FREEBUFR will not reclaim.

Physically, we place the code buffer between BASIC.SYSTEM and its
buffers, in the space from $99FF down.

After creating the protected static code buffer, we can call GETBUFR and
FREEBUFR to maintain temporary buffers as needed by our protected
module. FREEBUFR will not reclaim the protected buffer until after
RSHIMEM is restored to its original value.

November 1988

Apple II Technical Notes

The following is a skeleton example which allocates a two-page buffer for
a static code module, protects it from FREEBUFR, then deprotects it and
restores it to its original state.

START LDA #$02 ;get 2 pages
JSR GETBUFR
LDA RSHIMEM ;get current RSHIMEM
SEC ;ready for sub
SBC #$02 ;minus 2 pages
STA RSHIMEM ;save new val to fool FREEBUFR
JSR FREEBUFR ;CALL FREEBUFR to deallocate.

At this point, the value of RSHIMEM is the page number of the beginning of our protected buffer. The static code may now use GETBUFR and
FREEBUFR for transient file buffers without fear of freeing its own space from RSHIMEM to $99FF.

To release the protected space, simply restore RSHIMEM to its original value and perform a JSR FREEBUFR.

END LDA RSHIMEM ;get current val
CLC ;ready for ADD
ADC #2 ;give back 2 pages
STA RSHIMEM ;tell FREEBUFR about it
JSR FREEBUFR ;DO FREEBUFR
RTS

You can reserve any number of pages using this method, as long as the amount you reserve is within available memory limits.

Further Reference
• ProDOS 8 Technical Reference Manual

November 1988

