
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support


®

Apple IIGS

#86: Risking Resourceful Code

Revised by: Matt Deatherage March
1991

Written by: C.K. Haun <TR>
September 1990

This Technical Note covers considerations you need to keep in mind when
using code resources.
Changes since September 1990: Now lists XCMD and XFCN resources
as “Apple’s code” and notes that other restrictions apply to them as well.

Code resources are wonderful things that can make your life better than it
ever was before. Code resources are necessary when writing CDevs and
can be very useful for control definition procedures, code modules for
extensible programs like resource editors—in fact, almost anywhere where
you use regular compiled and linked code. But to do it right, you need to
keep some rules in mind.

Apple’s Code, Apple’s Rules

The first code resources covered are the ones defined as fully supported by the System
Software. These are rCtlDefProc ($800C), rCodeResource ($8017), rCDEVCode
($8018), rXCMD ($801E) and rXFCN ($801F). Before looking at the specifics, this Note
describes in general terms what happens when the Resource Manager loads a code resource.

When you call the Resource Manager with a request for a code resource (or when the system

Developer Technical Support March 1991

Apple II Technical Notes

does, as with rCtlDefProcs), it loads it like a normal resource. The Resource Manager
finds the resource in a resource map in the current search path, allocates a handle for the
resource using the attributes in the resource attribute bits, and loads the resource into memory.

Now the Resource Manager examines the resConverter bit in the resource header. If this
bit is set, indicating that this resource needs to be converted (as it should be for an
rCtlDefProc), the Resource Manager checks its tables to see if a resource converter has
been logged in (with the ResourceConverter call). For code resources, the correct
converter has been logged in by the manager associated with that resource type. For example,
the Control Manager logs in the code resource converter for rCtlDefProc resource type.

For code resources, InitialLoad2 is used to load the OMF from memory. Then the
Resource Manager returns a handle containing a pointer to the start of the loaded, relocated
code.

Rule 1: Code resources must be smaller than 64K

The code resource converter uses the InitialLoad2 function of the System Loader to load
and convert code resources. That means that code resources are restricted in the same way that
loading from memory is. One of these restrictions is that the code must be 64K or less.

Rule 2: Compiled and linked code only

Again, since InitialLoad2 is used to convert the code resource, the data must be in OMF
format since InitialLoad2 expects to relocate standard load segments. When you prepare
your code for inclusion in a code resource, compile and link the code as you normally would for
a stand-alone program. Use the file produced by the linker for inclusion in your resource fork.
You can use Rez to move the code from a data fork to your application’s resource fork with a
line in your resource description file similar to the following:

read rCodeResource (MyCodeIDNumber,locked,convert) "MyCompiledAndLinkedCode";

Rule 3: One segment please

Multiple segments are theoretically possible with code resources, but you have to manage memory IDs and the memory that the additional code
segments use yourself. Since the code resource converter calls InitialLoad2, it uses the Memory Manager ID for the current resource
application, and you cannot specify a different user ID directly. By changing your current resource application ID (by making an additional call to
ResourceStartUp with a modified master ID, for example) you could manage multisegment code resources.

Rule 4: No dynamic segments

The dynamic segment mechanism does not work with code resources. Of course, your application can still use dynamic segments, but not code
resource dynamic segments.

Rule 5: Set the right attributes

There are two sets of attributes you need to be concerned about for a code resource. The first set includes the standard resource attributes; the second
set covers the attributes that the code itself has in the OMF image.

Developer Technical Support March 1991

Apple II Technical Notes

You need both sets to get the functionality you want. The resource attributes determine how the Resource Manager handles the resource. The OMF
attributes control what InitialLoad2 does when it converts your code from OMF in a resource handle to relocated executable code.

Remember, you need to set both sets of attributes.

The resource attributes you need to set are locked and convert. The locked flag is necessary to prevent the resource from moving while
InitialLoad2 processes it, and the convert flag is needed to signal the Resource Manager to call the code resource converter.

You must set the static OMF attribute, the others (like no special memory) you set as appropriate for your code in your application.

Rule 6: Know where to go

The handle you get back from the Resource Manager when you load and convert a code resource points to the beginning of the relocated and ready-
to-execute code, not to the image of the code that is stored in the resource fork. So you can immediately jump to this code to execute it.

You can override this if you like—clear the resConverter bit in the resource attributes. If this bit is zero, the Resource Manager does not call any
resource converter (including the code resource converter).

Rule 7: Remember the Write

Keep in mind that any resource that uses a converter uses that converter both for reading and writing the resource. If you write out a code resource,
the Resource Manager calls the Write routine for the code resource converter, which currently writes without doing any conversion—it does not
reconvert the code in memory back to OMF format. However, some converters (perhaps one you write) could reconvert the resource before writing
it out.

Your Code, Your Rules

If you want to define your own code resource type (with a resource type of less than $8000
and greater than 0) you may want to follow the same rules as the system code resources use. In
fact, you can even use the same code resource converter, by using the ResourceConverter
call with your resource type, and log the code resource converter as the converter to use with
your resource type, like the following:

 pha
 pha ; return space
 _GetCodeResConverter ; Misc Tools call to return the loader relocation code pointer
* ; (leave it on the stack for the next call)
 pea $0678 ; resource type you want to convert with this converter, any
* ; Application type you wish
 pea %01 ; add this converter to the Application converter list,
* ; and log this routine in
 _ResourceConverter

or you can do whatever you like with the resource, including not having a converter and doing all the relocation and memory management of the
code yourself. This can give you the ability to add more functionality than the standard code resources provide—dynamic segmentation is one
feature you could implement if you want to handle all the details yourself.

Or, you can manage the code any way you want, but keep the built-in system functions in mind, and use as many of them as you can. Make your life
simpler.

One Final Note

If one of your resources is marked convert and preload the Resource Manager only
preloads that resource if the converter for that resource is logged in as a converter for that type.
If the Resource Manager cannot find the converter, it does not preload the resource.

Developer Technical Support March 1991

Apple II Technical Notes

Further Reference
• Apple IIGS Toolbox Reference, Volume 3
• GS/OS Reference
• HyperCard IIGS Script Language Guide
• HyperCard IIGS Technical Note #1, Corrections to the Script Language Guide
• Apple IIGS Sample Code #9, Lister

Developer Technical Support March 1991

