
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support


Apple IIGS

#37: Free-Form Synthesizer Tips

Revised by: Jim  Mensch
November 1988

Written by: Jim Mensch May 
1988

This Technical Note is intended to help a person who is unfamiliar with 
the Apple IIGS Sound Tool Set use the Free-Form Synthesizer effectively.

The  primary  function  of  the  Free-Form  Synthesizer  is  to  allow  an 
application program to start one or more complex digitized or computed 
waveforms playing on the Apple IIGS without further intervention from 
the application.  The waveform is a series of bytes, each representing the 
amplitude of your outgoing sound at a particular moment in time (defined 
by the sampling frequency you set).  After a call to FFStartSound, the 
Sound Tool  Set  takes  care  of  all  chores  involved in  loading the  DOC 
RAM,  setting  up  registers,  and  actually  playing  your  sound.   Once 
playing,  your  sound  will  continue  until  either  the  Sound  Tool  Set 
encounters  a  NIL pointer  in  the  waveform  list,  or  until  you  call 
FFStopSound.

FFStartSound Parameters

FFStartSound has only two parameters:  the first a Word containing channel, generator, and 
mode information, and the second a Pointer to a parameter block.

November 1988



Apple II Technical Notes

12345678 0101112131415 9

DOC channel number ($0-$1)
top 3 bits should be set to 0

Generator number ($0-$E)

Reserved must be set to 0

Free-Form Synthesizer=$01
Note Synthesizer=$02

Reserved =$03-$07
Application defined = $08-$0F

Figure 1 – Channel-Generator-Mode Word

The Channel-Generator-Mode  Word is  broken down into 4 nibbles.   The low-order  nibble 
specifies the particular synthesizer you are using.  (Because this Note is only about the Free-
Form Synthesizer, we will be using only a 1 in this nibble.)  The adjacent nibble must be set to 0 
for now.  The next nibble specifies which generator to use.  The IIGS has 15 generators from 
which to choose, and as the application designer, it is up to you to decide which one to use.  It  
might be 

November 1988



Apple II Technical Notes

appropriate,  however,  to  call  FFGeneratorStatus first  to  ensure  that  the  generator 
currently is available.  (It could be in use already by a desk accessory or previously started 
sound.)  The high-order nibble specifies which channel to use.  The IIGS supports two separate 
sound channels for output.  If you are using a stereo adapter, you could start up many sounds 
and route them to either channel 0 or channel 1 to get a full stereo effect.  (The channel is  
ignored if you are not using a special piece of multi-channel hardware.)

The parameter block contains parameters describing the sound and how it should be played. 
Here is a sample Pascal definition of that parameter block:

FFParmBlock = record
waveStart:Ptr;
waveSize:Integer;
freqOffset:Integer;
DOCBuffer:Integer; { High order byte significant }
bufferSize:Integer; { Low order byte significant }
nextWave:^FFParmBlock;
volSetting:Integer;

      end;

The first parameter is a 4-byte address telling the Free-Form Synthesizer where in memory it can locate your sample data.  The next parameter is a  
word specifying the number of 256-byte pages of sound you wish to play.  The waveform data should be a series of bytes, each representing one  
sample.  Wave tables must be exact multiples of 256 bytes.

Note: A zero value in the waveform can cause a sound to stop, so be sure to check your data to ensure that this does not happen.

The frequency offset parameter specifies the sampling frequency that the Free-Form Synthesizer should use during playback.  This number can be  
computed by the following formula:

freqOffset = ((32*Sample rate in Hertz)/1645)

The frequency offset parameter is the most often misunderstood parameter, so I will explain a little about sampling rates.  The sampling rate is how  
many samples (bytes) per second to play.  If you have a digitized wave that represents 2 seconds of sound, and it takes up 44K of memory, then it was 
sampled at 22 kHz (which, by the way, is good for full sound reproduction).  The sampling rate must be at least twice that of the maximum  
fundamental frequency you want to sample.  However, for good sound reproduction, you may want to sample at least eight times the fundamental  
frequency in order to capture the higher harmonics of musical instruments and the human voice.

The DOC starting address and buffer size tell the Free-Form Synthesizer which portion of the 64K sound RAM to use as a buffer during playback.  
The wave is taken from your waveform in chunks and placed in sound RAM for playback.  Each time the buffer nears empty, it will need to be 
reloaded with more sound.  The size of the buffer specified determines how often the Free-Form Synthesizer must interrupt the 65816 to reload the  
buffer.  The buffer size must be a power of two because of the way the sound General Logic Unit (GLU) specifies addresses.  (The value for this  
parameter must also be a power of two.)  A good length to use would be at least 1/10 second of sound.  For example, if you were using a sampling  
rate of 16 kHz (16,000 samples per second), you would want a buffer at least 2,048 bytes long, or about 8 pages.  It does not hurt to round this  
number up.  You manage the DOC RAM, so you should decide what memory to use.  It is usually a good idea to have multiple buffers if you have a  
chain of waves.  (I like leaving page zero free, as the Note Synthesizer uses the data in the first 256 bytes, and accidentally placing a zero in that page  
could cause it to fail.)

November 1988



Apple II Technical Notes

The next wave pointer is a 4-byte pointer to the next parameter block.  With this parameter you can string together many waveforms for more  
continuous sound, or you can make your sounds infinitely recursive by pointing back to the original wave form.

The volume setting is a word which represents the relative playback volume.  It can range from 0 to 255.

Other Tips

When you shut down the Sound Tool Set, it will stop all pending sounds, so be sure to leave 
ample time between starting and ending a sound.  If you have a series of wave forms strung 
together,  you can  change  their  parameters  on  the  fly.   Changes  take  effect  as  soon  as  the 
waveform is started.  (You could use this to find the correct sampling frequency of a wave, by 
having the next wave pointer point back to the start of your parameter block.  This would cause 
the sound to play indefinitely.  You then could change the freqOffset value, and the sound 
would change each time it is restarted.)

Here  is  a  sample  code segment  (in  APW Assembler  format)  that  creates  a  1-kHz wave in 
memory sampled at 16 kHz and plays it:

FFSound DATA

theSound ds $2000 ; FFSound wave...
MyFFRecord dc A4'theSound' ; address of wave

dc i'$20' ; size of wave in pages..
Rate dc i'311' ; 16-kHz sample rate

dc i'1' ; DOC starting address
dc i'$0800' ; DOC buffer size
dc a4'0' ; no next wave

Vol1 dc i'$007F' ; kinda medium..

; 1-kHz triangle wave sampled at 16 kHz one full segment
oneAngle dc i1'$40,$50,$60,$70,$80,$90,$A0,$B0'

dc i1'$C0,$B0,$A0,$90,$80,$70,$60,$50'
End

TestFF Start
Using FFSound

MakeWave ANop
ldx #$0000

MW0010 txa ; get index
and #$000F ; use just low nibble as index
tay ; into triangle wave table
lda oneAngle,y ;
sta theSound,X ; and store it into sound buf
inx
inx
cpx #$2000 ; we Done?
blt MW0010 ; nope better finish
PushWord     #$0001
PushLong     #MyFFRecord
_FFStartSound
rts
end

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

November 1988


