
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#80: QuickDraw II Clipping

Written by: Eric Soldan March
1990

This Technical Note explains a lot about QuickDraw II operation,
specifically clipping.

Before Beginning

Before beginning this Note, some statements, disclaimers, and definitions:

1. This is not a substitute for the QuickDraw II introduction in the Apple IIGS Toolbox
Reference, but rather a supplement.

2. A pixelmap is a series of bytes that hold pixel data whose rectangular shape is defined by a LocInfo structure.

This Note describes in great detail the way that QuickDraw II does things with pixelmaps. It begins with a description of the
LocInfo structure, which is the most important thing to understand in terms of QuickDraw II pixelmap management. Once this is
understood, this Note covers how it applies to using functions such as PPToPort, PaintPixels, and CopyPixels. And once
this is understood, it then describes how LocInfo structures are used to control drawing into a grafPort. (PPToPort is used in
this Note. PaintPixels and CopyPixels are very close in function to PaintPixels. The information and theory in this Note
also apply to these calls.)

Understanding the material in this Note should help you better understand the entire toolbox. It is surprising how much can be
accomplished with the toolbox without completely understanding these concepts; it is also surprising how much easier programming
with the toolbox gets when these concepts are fully understood.

Note: Structures are written with C syntax in this Note. In addition, this Note uses the screen address 0xE12000L. The
possibility of shadowing being active and the screen address being 0x12000L is ignored.

The Beginning

One must begin with the LocInfo structure, which is as follows:

struct LocInfo {

Developer Technical Support March 1990

Apple II Technical Notes

 Word portSCB; /* SCB in low byte */
 Pointer ptrToPixImage; /* ImageRef */
 Word width; /* Width */
 Rect boundsRect; /* BoundsRect */
};

Developer Technical Support March 1990

Apple II Technical Notes

For this Note, one can change this structure a little bit by calling the width element rowBytes. This convention is good because rowBytes is
more descriptive than width (it indicates that one is measuring the width in bytes) and it allows one to use the word “width” elsewhere in this Note
without confusion. So for the purposes of the Note, the new LocInfo structure definition is as follows:

struct LocInfo {
 Word portSCB; /* SCB in low byte */
 Pointer ptrToPixImage; /* ImageRef */
 Word rowBytes; /* Width in bytes*/
 Rect boundsRect; /* BoundsRect */
};

The ptrToPixImage field is a pointer to some block of bytes in memory. (This block of bytes is referred to as the pixImage from here on.) A
pixImage doesn’t have any inherent shape. QuickDraw II deals with it as a rectangle, and the LocInfo record defines the rectangularity of it.

When saving a 32,000 byte screen image, one doesn’t save the number of bytes of which each row consists. One assumes that each row is 160 bytes
by convention, and this is a safe assumption, since the IIGS video hardware expects 160 bytes. But the point is that in the 32,000 bytes of screen data,
there is no indicator as to the specific size of a row. One must just know that it is 160 bytes per row. This size is fine for screen shots, but it is not
fine when different pixelmaps can be different widths. If they can be different widths, then one also needs some information as to what those widths
are, hence the portSCB, rowBytes, and boundsRect fields in a LocInfo structure.

The boundsRect and portSCB fields tell the shape of the pixelmap in pixels, the boundsRect tells how many pixels wide and tall the pixelmap
is, and the portSCB tells how big those pixels are (320-mode pixels are four bits wide and 640-mode pixels are two bits wide). One would think
that this would be enough information to determine the size of the pixImage, but it isn’t. The rowBytes can be larger than the
boundsRect/portSCB would indicate (see Figure 1). This situation is legal; it means that some bytes are being wasted, but it is legal.

boundsRect
0,0

rowBytes

Block of bytes pointed to by ptrToPixImage.

313,97

Figure 1–Sample LocInfo Structure

Developer Technical Support March 1990

Apple II Technical Notes

One simply has to know the size of the pixImage, since it cannot be determined by the LocInfo information. If the pixImage is the screen,
then it is 32,000 bytes. If it is a fixed or locked handle, then one can do a FindHandle on the pointer followed by a GetHandleSize on the
found handle.

Figure 1 represents a sample LocInfo structure. The portSCB (although not pictured) is also relevant, as it determines the size of the pixels. If
the pixelmap is a 320-mode pixelmap, one could change it to a 640-mode pixelmap by changing the portSCB to 640 mode and doubling the width
of the boundsRect. In doing this conversion, note that rowBytes is not affected and that the pixImage does not change size.

In the example illustrated in Figure 1, the pixImage is bigger than the boundsRect, but again, this is okay. However, this is not the case for the
screen, where the rowBytes is 160 and the height of the boundsRect is 200 (the size of the screen is exactly equal to 160 * 200 = 32,000).

There are some rules to determining the rowBytes value. First, rowBytes must not be too small. This is obvious. Second, rowBytes must be
evenly divisible by eight. This is not at all obvious, but it is very important. QuickDraw II makes some assumptions for speed, and one of them is
that rowBytes is a multiple of eight.

So much for describing the LocInfo structure. Now for how to use it via PPToPort.

PPToPort accepts (among other things) a pointer to a source LocInfo record and a pointer to a source rectangle. PPToPort does not use the
source rectangle directly; it first intersects it with the boundsRect in the LocInfo record, and it uses this intersection rectangle instead. This
intersection rectangle guarantees that the area involved is completely enclosed by the boundsRect (and therefore within the pixImage). If the
source rectangle is entirely outside the boundsRect, then the intersection of the source rectangle and the boundsRect is empty, thus nothing is
drawn.

boundsRect
0,0

50,25

523,77

rowBytes

Block of bytes pointed to by ptrToPixImage.

313,97

intersection rectangle

313,77

sourceRect

Figure 2–Sample LocInfo Structure With sourceRect

Developer Technical Support March 1990

Apple II Technical Notes

Figure 2 contains a sourceRect which is not completely contained by the boundsRect; the sourceRect is so wide that it even goes beyond
the edge of the pixImage. If the entire contents of this rectangle were drawn, the result would be quite a mess, since it extends beyond the
boundary of the pixelmap. However, PPToPort first intersects the sourceRect and the boundsRect, and then uses the resulting intersection
rectangle (illustrated with a thicker border in the figure). PPToPort uses only the contents of the intersection rectangle.

Up until now, the boundsRect upper-left corner has always been 0,0. This is an easy way to think of it, but it is not necessary. The important thing to
remember about these rectangles is their relation to one another. If one were to offset both the boundsRect and sourceRect in this example, the
values for the corners of the rectangles would change, but the relationship between the two rectangles would stay the same. Figure 3 illustrates the
same example if one were to offset both rectangles by -60,-45.

-60,-45
boundsRect

-10,-20

463,32

rowBytes

Block of bytes pointed to by ptrToPixImage.

253,52

intersection rectangle

253,32

sourceRect

Figure 3–Sample LocInfo Structure Offset by -60,-45

Notice that the same area of the pixImage is involved, even though the boundsRect and sourceRect are offset. When one offsets both the
boundsRect and sourceRect by the same amount, the referenced part of the pixImage does not change—this is an important concept.

Time to ask a question that is answered shortly: “Why isn’t the upper-left corner of the boundsRect always 0,0?” Because the LocInfo record
isn’t always a source LocInfo record. It can also be a destination LocInfo record, and the most common pixelmap to which a destination
LocInfo record refers is the screen.

If you had not noticed, the discussion changes gears here—to discuss LocInfo records that indicate a destination pixelmap. Basically, everything is
the same as has been described with two exceptions. First, destination pixelmaps do not have a sourceRect. Instead there is a rectangle that
describes some portion of the destination pixelmap, and this rectangle is called the portRect. Second, the LocInfo record is part of a
grafPort, and each grafPort has a LocInfo record as part of the grafPort data structure.

Developer Technical Support March 1990

Apple II Technical Notes

It is important to remember that a LocInfo record can be used as either a source or destination LocInfo. All a LocInfo record does is define
some bytes in memory as a pixImage. Even the screen, which is usually used as a destination pixelmap, can be used as a source pixelmap. There
could be situations where one might want to take part of the screen and copy it into some off-screen pixelmap, and in this case, the screen would be a
source of pixel data, not a destination.

In the case of the screen pixelmap, there are no wasted bytes in the pixImage, as all of the screen bytes are enclosed by the boundsRect. The
screen width of 160 is evenly divisible by eight, so there is no slop at the right edge, and there are no extra rows hanging off the bottom of the
boundsRect.

Figure 4 shows a sample LocInfo and portRect (every grafPort has a LocInfo and a portRect).

portRect

boundsRect
0,0

98,54

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

640,200

640,143

intersection rectangle

Figure 4–Sample LocInfo and portRect

Following are two important points to remember:

1. Every grafPort works in local (not global) coordinates (local coordinates are defined soon).
2. The origin of the grafPort is the upper-left corner of the portRect. There is no GetOrigin call; there is a SetOrigin

call, but no GetOrigin. To get the origin of a grafPort, one needs to do a GetPortRect call, and then look at the upper-
left corner to determine the current origin of the grafPort. This is the way to get the origin.

In the case of Figure 4, local and global coordinate systems are the same, as is always the case when the boundsRect has an upper-left corner of
0,0 (which it seldom does). So, for this exceptional case, one doesn’t need a definition of local coordinates. In the global coordinate system, the
upper-left corner of the screen is 0,0. In local coordinates, the upper-left corner of the screen is whatever the boundsRect says it is. So when the
upper-left corner of the boundsRect is 0,0, the global and local coordinate systems are the same.

Developer Technical Support March 1990

Apple II Technical Notes

In Figure 4, if one tried to draw something to point 0,0, it would not draw—it would be clipped because it is outside the portRect. So even if one
tried to draw there, it would not change point 0,0. If a user moved a mouse to that location and an application performed a GetMouse (which
returns the mouse location in the local coordinates of the current grafPort), it would return 0,0 as the mouse location.

If one did a SetOrigin(0,0), then the boundsRect and portRect would be offset by the difference between the old and new origins. Both
rectangles would be offset, so the relationship between them would remain the same, as Figure 5 illustrates.

portRect

boundsRect
-98,-54

0,0

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

542,146

542,89
819,89

intersection rectangle

Figure 5–Sample LocInfo and portRect, Both Offset

Now if a user moves a mouse to the upper-left corner of the screen, a call to GetMouse returns a value of -98,-54, as expected, and if a user moves
the mouse to the upper-left corner of the portRect, a call to GetMouse returns 0,0, again as expected. This is how origins work and how the
conceptual drawing space relates to the grafPort. The boundsRect of the grafPort (in the LocInfo record of the grafPort) and the
portRect of the grafPort are offset when one calls SetOrigin. It is that simple.

Now that it is simple, time to complicate matters with one more player in the QuickDraw II clipping world: the visRgn.

The visRgn exists for one purpose: to cause more clipping. It never causes anything to be clipped less than the portRect does, and in the case of
a top window that is completely visible, the visRgn and the portRect are exactly the same size. Even more than that, the enclosing rectangle for
the visRgn (every region has an enclosing rectangle) is this case would be exactly the same as that of the portRect. This all makes sense when
one looks at the purpose of a visRgn. Again, the visRgn can only cause more clipping. If the entire window is visible, one does not want more
clipping, so a visRgn the same size as the portRect guarantees that it does not clip any more than the portRect, as it must clip the same
amount.

Developer Technical Support March 1990

Apple II Technical Notes

The visRgn is a different size than the portRect when the window is not the top window and part of it is overlapped (or if part of the window is
off the screen). The part that is overlapped is excluded from the visRgn, and this excluded part is clipped to protect the window above from being
drawn upon. This is how window clipping works. This is all there is to it.

Figure 6 enhances Figure 5 by adding an overlapping window to demonstrate the visRgn.

portRect of current grafPort

boundsRect of current grafPort
-98,-54

0,0

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

542,146

542,89

819,89

intersection rectangle

portRect of some overlapping window

visRgn of current grafPort

Figure 6–Sample LocInfo and portRect With Overlapping Window

What happens to the visRgn during a SetOrigin? Remember that the boundsRect and portRect get offset. The visRgn does too. Again,
if all of these elements are offset together, then the relationship between them remains the same; they stay the same, relative to one another. (For
more information, see Einstein’s theory of general relativity.)

The final component for clipping is the clipRgn, which is the application’s property and, therefore, the application’s responsibility. The system
sets the clipRgn about as big as it can get to start (much bigger than the portRect); this is often referred to as arbitrarily large, even though it
isn’t so arbitrary. The system creates all grafPort structures with a large clipRgn, and this can be a problem for certain types of QuickDraw II
operations. Since the clipRgn already reaches to the borders of the conceptual drawing space, it cannot be offset; it is effectively stuck, due to its
size. It is a good practice to make the clipRgn smaller than the system default.

SetOrigin does not offset the clipRgn. (This is why the size problem with a big clipRgn is not so apparent.) The clipRgn is the only
clipping component that is not offset by SetOrigin, and one should consider this when using clipRgn for clipping effects, since an application
must remember to offset it if it needs to be offset.

Now with all of the fundamentals out of the way, it is time to play some grafPort clipping games. As a refresher, there are four clipping
components in a grafPort: the boundsRect, the portRect, the visRgn, and the clipRgn.

Developer Technical Support March 1990

Apple II Technical Notes

If an application creates its own off-screen grafPort structures, then it can do as it wishes with all four clipping components. After all, if it has the
responsibility to set them up in the first place, it should have the right to change them. If, however, the Window Manager creates the grafPort
structures, then an application should keeps its figurative hands off certain clipping components, namely the boundsRect and the visRgn. The
clipRgn, by definition, is the application’s to do with as it sees fit, and if careful, an application can also change the portRect. Changing the
portRect can be very useful, but one needs to be careful and fully understand all of the ramifications.

So, why would one change the portRect, and how would one do it?

Another figure is in order.

portRect

boundsRect
-98,-54

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

542,146

542,89

819,89

intersection rectangle

100,00,0

Figure 7–Sample LocInfo and Modified portRect

One can use the GetPortRect call to get the portRect for the current grafPort. One can then modify it, and then use the SetPortRect
call to inform the grafPort about the change. Why do this? In Figure 7, the dotted line represents the new left edge of the portRect after the
modification (a simple modification of adding 100 to the old value of zero).

Note that changing the portRect in this way changes the relationship between the portRect and the boundsRect. Anything drawn from 0 to
99 (x coordinate) is clipped, since it is outside the new (modified) portRect. Before the modification, anything drawn from 0 to 99 would have
affected the screen.

This modification may cause the portRect to be smaller than the visRgn. This is okay, since the visRgn can only cause more clipping, not less.
So, all of this works just fine. Note that the origin changed when the left edge of the portRect changed. The upper-left corner of the portRect
is always the origin, and an application changed it. The origin changed without a SetOrigin call. (Scary, huh?)

Developer Technical Support March 1990

Apple II Technical Notes

One could have done exactly the same thing by making a clipRgn to exclude the x coordinates from 0 to 99. However, here is something cool.
After the modification, do a SetOrigin(0,0), which sets the upper-left corner of the shrunk portRect to 0,0. One cannot accomplish this sort
of thing as simply by making a clipRgn. One can effectively move where an origin of 0,0 is the screen, and just building a clipRgn to exclude
some part of the screen does not accomplish this.

Why would one want to change where 0,0 is on the screen? This sort of trick is very useful for adding rulers to a document window, for example.
One of the problems with rulers is that they should not scroll with the rest of a document. Unfortunately, TaskMaster, if allowed to handle
scrolling, doesn’t know about a ruler at the top of a window and scrolls it with the rest of the window’s content area. By changing the portRect so
that the ruler is not inside of it, one can keep TaskMaster from scrolling it. In a draw procedure, when it is necessary to draw the ruler, grow the
portRect, set the origin to 0,0, and then draw the ruler. Once it is drawn, set the portRect back to the smaller size to protect the ruler again.

Another reason one might want to do this is if an application uses a split window (where the top of the window may show a different part of the
document than the bottom). Changing the portRect has the advantage that the upper-left corner of the portRect is always the origin, so it
makes mapping document coordinates easier.

Another advantage to using the portRect in this way is that it keeps the clipRgn free for other purposes. Being able to separate types of
clipping to either the portRect or the clipRgn keeps the clipRgn from being overused.

As a final note, it should be observed that the only clipping that is done is on a destination pixelmap. There is no clipping on a source pixelmap.
There is no need. All the clipping needed is done at the destination end, so it would be wasteful to clip twice.

This finishes the discussion about QuickDraw II and how the boundsRect, portRect, visRgn, and clipRgn work together to accomplish
clipping. Hopefully this Note answers more questions than it creates.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2
• Relativity the Special and General Theory (1920)

Developer Technical Support March 1990

