
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#21: Identifying ProDOS Devices

Revised by: Dave Lyons & Matt Deatherage March 
1990

Written by: Matt  Deatherage  &  Dan  Strnad
November 1988

This Technical Note describes how to identify ProDOS devices and their 
characteristics given the ProDOS unit number.  This scheme should only 
be used under ProDOS 8.
Changes  since  January  1990:  Modified  AppleTalk  call  code  for 
compatibility with ProDOS 8 versions earlier than 1.5 and network-booted 
version 1.4.

There  are  various  reasons  why  an  application  would  want  to  identify 
ProDOS devices.  Although ProDOS itself takes great pains to treat all 
devices equally, it has internal drivers for two types of devices:  Disk II 
drives  and  the  /RAM  drive  provided  on  128K  or  greater  machines. 
Because all devices really are not equal (i.e., some cannot format while 
others are read-only, etc.), a developer may need to know how to identify a 
ProDOS device.

Although the question of how much identification is subjective for each 
developer, ProDOS 8 offers a fair level of identification; the only devices 
which  cannot  be  conclusively  identified  are  those  devices  with  RAM-
based drivers, and they could be anything.  The vast majority of ProDOS 
devices can be identified, however, so you could prompt the user to insert 
Developer Technical Support March 1990



Apple II Technical Notes

a  disk  in  UniDisk  3.5  #2,  instead  of  Slot  2,  Drive  2,  which  could  be 
confusing if the user has a IIc or IIGS.

Note that for the majority of applications, this level of identification is 
unnecessary.  Most applications simply prompt the user to insert a disk by 
its  name,  and  the  user  can  place  it  in  any  drive  which  is  capable  of 
working with the media of the disk.  You should avoid requiring a certain 
disk to be in a specific drive since doing so defeats much of the device-
independence which gives ProDOS 8 its strength.

When you do need to identify a device (i.e., if you need to format media in 
a Disk II or /RAM device), however, the process is fairly straightforward. 
This process consists of a series of tests, any one of which could end with 
a conclusive device identification.  It is not possible to look at a single ID 
byte  to  determine a  particular  device  type.   You may determine rather 
quickly that a device is a SmartPort device, or you may go all the way 
through the procedure to identify a third-party network device.  For those 
developers  who  absolutely  must  identify  devices,  DTS  presents  the 
following discussion.

Isn’t There Some Kind of “ID Nibble?”

ProDOS 8 does not support an “ID nibble.”  Section 5.2.4 of the ProDOS 8 Technical Reference 
Manual states  that  the  low  nibble  of  each  unit  number  in  the  device  list  “is  a  device 
identification:  0 = Disk II, 4 = Profile, $F = /RAM.”

Developer Technical Support March 1990



Apple II Technical Notes

When ProDOS 8 finds a “smart” ProDOS block device while doing its search of the slots and 
ports, it copies the high nibble of $CnFE (where n is the slot number) into the low nibble of the  
unit number in the global page.  The low nibble then has the following definition:

Bit 3: Medium is removable
Bit 2: Device is interruptible
Bit 1-0: Number of volumes on the device (minus one)

As you can see, it is quite easy for the second definition to produce one of the original values 
(e.g., 0, 4, or $F) in the same nibble for completely different reasons.  You should ignore the 
low nibble  in  the  unit  number  in  the  global  page  when identifying  devices  since  the  first 
definition is  insufficient  to  uniquely identify devices  and the  second definition contains  no 
information to specifically identify devices.  Once you do identify a ProDOS block device, 
however, you may look at $CnFE to obtain the information in the second definition above, as 
well as information on reading, writing, formatting, and status availability.

When identifying ProDOS devices, start with a list of unit numbers for all currently installed 
disk devices.  As you progress through the identification process, you identify some devices 
immediately, while others must wait until the end of the process for identification.

Starting with the Unit Number

ProDOS unit numbers (unit_number) are bytes where the bits are arranged in the pattern 
DSSS0000, where D = 0 for drive one and D = 1 for drive two, SSS is a three-bit integer with  
values  from one  through seven indicating  the  device  slot  number  (zero  is  not  a  valid  slot 
number), and the low nibble is ignored.

To obtain a list of the unit numbers for all currently installed ProDOS disk devices, you can 
perform a ProDOS MLI  ON_LINE call with a unit number of $00.  This call returns a unit 
number and a volume name for every device in the device list.  ProDOS stores the length of the 
volume name in the low nibble of the unit number which ON_LINE returns; if an error occurs, 
the low nibble contains $0 and the byte immediately following the unit number contains an 
error code.  For more information on the  ON_LINE call, see section 4.4.6 of the  ProDOS 8 
Technical Reference Manual.  A more detailed discussion of the error codes follows later in this 
Note.

To identify the devices in the device list, you need to know in which physical slot the hardware 
resides, so you can look at the slot I/O ROM space and check the device’s identification bytes. 
Note that the slot-number portion of the unit number does not always represent the physical slot 
of the device, rather, it sometimes represents the logical slot where you can find the address of  
the device’s driver entry point in the ProDOS global page.  For example, if a SmartPort device 

Developer Technical Support March 1990



Apple II Technical Notes

interface in slot 5 has more than two connected devices, the third and fourth devices are mapped 
to slot 2; this mapping gives these two devices unit numbers of $20 and $A0 respectively, but 
the device’s driver entry point is still in the $C5xx address space.

ProDOS 8 Technical Note #20, Mirrored Devices and SmartPort, discusses this kind of mapping 
in detail.  It also presents a code example which gives you the correct device-driver entry point 
(from the global page) given the unit number as input.  Here is the code example from that Note 
for your benefit.  It assumes the unit_number is in the accumulator.

Developer Technical Support March 1990



Apple II Technical Notes

devcnt equ $BF31
devlst equ $BF32
devadr equ $BF10
devget sta unitno ; store for later compare instruction

ldx devcnt ; get count-1 from $BF31
devloop lda devlst,x ; get entry in list

and #$F0 ; mask off low nibble
devcomp cmp unitno ; compare to the unit_number we filled in

beq goodnum ;
dex
bpl devloop ; loop again if still less than $80
bmi badunitno ; error: bad unit number

goodnum lda unitno ; get good copy of unit_number
lsr a ; divide it by 8
lsr a ; (not sixteen because devadr entries are
lsr a ; two bytes wide)
tax
lda devadr,x ; low byte of device driver address
sta addr
lda devadr+1,x ; high byte of device driver address
sta addr+1
rts

addr dw 0 ; address will be filled in here by goodnum
unitno dfb 0 ; unit number storage

Warning: Attempting  to  construct  the  device-driver  entry  point  from the  unit  number  is  very  dangerous.   Always use  the 
technique presented above.

Network Volumes

AppleTalk  volumes  present  a  special  problem  to  some  developers  since  they  appear  as 
“phantom devices,”  or  devices  which  do  not  always  have  a  device  driver  installed  in  the 
ProDOS global page.  Fortunately, the ProDOS Filing Interface (PFI) to AppleTalk provides a 
way to  identify  network volumes through an  MLI call.   The ProDOS Filing  Interface call 
FIListSessions is used to retrieve a list of the current sessions being maintained through 
PFI and any volumes mounted for those sessions.

In  the  following  example,  note  the  check  for  ProDOS  8  version  1.5  or  higher,  and  the 
simulation of  a  bad command error  under  older  versions  (the  $42 call  under  ProDOS 8 
version 1.4 always crashes if ProDOS was launched from a local disk):

Network LDA #$04 ;require at least ProDOS 8 1.4
CMP $BFFF ;KVERSION (ProDOS 8 version)
BEQ MoreNetwork ;have to check further
LDA #$01 ;simulate bad command error
BCS ERROR ;if 3 or less, no possibility of network
BCC NetCall ;otherwise, try the network call

MoreNetwork LDA $BF02 ;high byte of the MLI entry point
AND #$F0 ;strip off the low nibble
CMP #$C0 ;is the entry into the $Cn00 space?
BEQ    NetCall ;yes, so try AppleTalk
LDA #$01
SEC
BCS ERROR ;simulate bad command error

NetCall JSR $BF00 ;ProDOS MLI
DFB $42 ;AppleTalk command number

Developer Technical Support March 1990



Apple II Technical Notes

DW ParamAddr ;Address of Parameter Table
BCS ERROR ;error occurred

Developer Technical Support March 1990



Apple II Technical Notes

ParamAddr DFB $00 ;Async Flag (0 means synchronous only)
;note there is no parameter count

DFB $2F ;command for FIListSessions
DW $0000 ;AppleTalk Result Code returned here
DW BufLength ;length of the buffer supplied
DW BufPointer ;low word of pointer to buffer
DW $0000 ;high word of pointer to buffer

;(THIS WILL NOT BE ZERO IF THE BUFFER IS
;NOT IN BANK ZERO!)

DFB $00 ;Number of entries returned here

If the FIListSessions call fails with a bad command error ($01), then AppleShare is not installed; therefore, there are no networks volumes  
mounted.  If there is a network error, the accumulator contains $88 (Network Error), and the result code in the parameter block contains the specific  
error code.  The list of current sessions is placed into the buffer (at the address BufPointer in the example above), but if the buffer is not large 
enough to hold the list, it retains the maximum number of current sessions possible and returns an error with a result code of $0A0B ( Buffer Too 
Small).  The buffer format is as follows:

SesnRef DFB $00 ;Sessions Reference number (result)
UnitNum DFB $00 ;Unit Number (result)
VolName DS 28 ;28 byte space for Volume Name

;(starts with a length byte)
VolumeID DW $0000 ;Volume ID (result)

This list is repeated for every volume mounted for each session (the number is placed into the last byte of the parameter list you passed to the 
ProDOS MLI).  For example, if there are two volumes mounted for session one, then session one is listed two times.  The UnitNum field contains 
the slot and drive number in unit-number format, and note that bit zero of this byte is set if the volume is a user volume (i.e., it contains a special  
“users” folder).  This distinction is unimportant for identifying a ProDOS device as a network pseudo-device, but it is necessary for applications 
which need to know the location of the user volume.  Note that if you mount two servers or more with each having its own user volume, the user  
volume found first in the list (scanned top to bottom) returned by FIListSessions specifies the user volume that an application should use.  See 
the AppleShare Programmer’s Guide for the Apple IIGS for more information on programming for network volumes.

If you keep a list of all unit numbers returned by the ON_LINE call and mark each one “identified” as you identify it, keep in mind that the unit  
numbers returned by FIListSessions and ON_LINE have different low nibbles which should be masked off before you make any comparisons.

Note: You should mark the network volumes as identified and not try to identify them further with the following methods.

What Slot is it Really In?

Once you have the address of the device driver’s entry point and know that the device is not a 
network pseudo-device, you can determine in what physical slot the device resides.  If the high 
byte of the device driver’s entry point is of the form $Cn, then n is the physical slot number of 
the device.  A SmartPort device mirrored to slot 2 has a device driver address of $C5xx, giving 
5 as the physical slot number.

Developer Technical Support March 1990



Apple II Technical Notes

If the high byte of the device driver entry point is not of the form $Cn, then there are three other 
possibilities:

• The device is a Disk II with driver code inside ProDOS.
• The  device  is  either  /RAM  with  driver  code  inside  ProDOS  or  a  third-party 

auxiliary-slot RAM disk device with driver code installed somewhere in memory.
• The device is not a RAM disk but has a RAM-based device driver, like a third-

party network device.

Auxiliary-slot RAM disks are identified by convention.  Any device in slot 3, drive 2 (unit 
number $B0) is assumed to be an auxiliary-slot RAM disk since ProDOS 8 does not recognize 
any card which is not an 80-column card in slot 3 (see ProDOS 8 Technical Note #15, How 
ProDOS 8 Treats Slot 3).  There is a chance that some other kind of device could be installed 
with unit number $B0, but it is not likely.

To identify various kinds of auxiliary-slot RAM disks, you must obtain the unit number from 
the ProDOS global page.  The list of unit numbers starts at $BF32 (DEVLST) and is preceded 
by the number of unit numbers minus one (DEVCNT, at $BF31).  You should search through this 
list until you find a unit number in the form $Bx; if the unit number is $B3, $B7, $BB, or $BF, 
you can assume the device to be an auxiliary-slot RAM disk which uses the auxiliary 64K bank 
of memory present in a 128K Apple IIe or IIc, or a IIGS.  If the unit number is one of the four 
listed above, you must remove this device to safely access memory in the auxiliary 64K bank, 
but if the unit number is not one of the four listed above, you can assume the device to be an 
auxiliary-slot RAM disk which does  not use the normal bank of auxiliary memory.  (Some 
third-party auxiliary-slot cards contain more than one 64K auxiliary bank; the normal use of this 
memory is as a RAM disk.  If the RAM-based driver for this kind of card does not use the 
normal auxiliary 64K bank for storage, it should have a unit number other than one of the four 
listed above.)  If the unit number is not one of the four listed above, you may safely access the 
auxiliary bank of memory without first removing this device.

Section  5.2.2.3  of  the  ProDOS  8  Technical  Reference  Manual contains  a  routine  which 
disconnects the appropriate RAM disk devices in slot 3, drive 2, without removing those drivers 
which do not use that bank, to allow use of the auxiliary 64K bank.

Note: Previous information from Apple indicated that /RAM could be distinguished from 
third-party RAM disks by a driver address of $FF00.  Although the address has not 
changed, some third-party drivers may have addresses of $FF00 as well, although 
this  is  not supported.   /RAM always  has  a  driver  address  of  $FF00  and  unit 
number $BF, although any third-party RAM disk could install itself with similar 
attributes.

For Disk II devices, the three-bit  slot number portion of the  unit_number is  always the 

Developer Technical Support March 1990



Apple II Technical Notes

physical slot number.  Disk II devices can never be mirrored to another slot (the Disk II driver 
does not support it); therefore, it is in the physical slot represented in the unit number which 
ProDOS assigns when it boots.

If the high byte of the device driver’s entry point is not of the form $Cn, then you should 
assume that the slot number is the value SSS in the unit number (this is equivalent to assuming 
the device is a Disk II) for the next step, which is checking the I/O space for identification 
bytes.

Developer Technical Support March 1990



Apple II Technical Notes

What to Do With the Slot Number

Once you have the slot number, you can look at the slot I/O ROM space to determine the kind 
of device it is.  As described in the ProDOS 8 Technical Reference Manual, ProDOS looks for 
the following ID bytes in ROM to determine if a ProDOS device is in a slot:

$Cn01 = $20
$Cn03 = $00
$Cn05 = $03

If you use the slot number, n, you obtained above, and the three values listed above are  not 
present, then the device has a RAM-based driver and cannot further be identified.

If the three values previously discussed are present, then examination of $CnFF gives more 
information.  If $CnFF = $00, the device is a Disk II.  If $CnFF is any value other than $00 or 
$FF ($FF signifies  a  13-sector  Disk  II,  which  ProDOS does  not  support),  the  device  is  a 
ProDOS block device.

For ProDOS block devices, the byte at $CnFE contains several flags which further identify the 
device; these flags are discussed in section 6.3.1 of the ProDOS 8 Technical Reference Manual.

SmartPort Devices

Many of Apple’s ProDOS block devices follow the SmartPort firmware interface.  Through 
SmartPort,  you can further identify devices.  Existing SmartPort devices include SCSI hard 
disks, 3.5” disk drives and CD-ROM drives, with many more possible device types.

If $Cn07 = $00, then the device is a SmartPort device, and you can then make a SmartPort call  
to get more information about the device, including a device type and subtype.  The SmartPort  
entry point is  three bytes beyond the ProDOS block device entry point,  which you already 
determined.  The method for making SmartPort calls is outlined in the  Apple IIc Technical  
Reference Manual, Second Edition and the Apple IIGS Firmware Reference.

The most  useful  SmartPort  call  to  make for  device  identification is  the  STATUS call  with 
statcode = 3 for Return Device Information Block (DIB).  This call returns the ASCII name 
of the device, a device type and subtype, as well as the size of the device.  Some SmartPort  
device  types  and  subtypes  are  listed  in  the  referenced manuals,  with  a  more  complete  list 
located in the Apple IIGS Firmware Reference.  A list containing SmartPort device types only is 
provided in SmartPort Technical Note #4, SmartPort Device Types.

Developer Technical Support March 1990



Apple II Technical Notes

RAM-Based Drivers

One fork of the identification tree comes to an end at this point.  If the high byte of the device 
driver entry point was not $Cn and the device was not /RAM, you assumed it was a Disk II and 
used the slot number portion of the unit number to examine the slot ROM space.  If the ROM 
space for that slot number does not match the three ProDOS block device ID bytes, it cannot be 
a Disk II.   Having ruled out other possibilities,  it  must be a device installed after ProDOS 
finished building its device table.  Perhaps it is a third-party RAM disk driver or maybe a driver 
for an older card which does not match the ProDOS block device ID bytes.

Whatever the function of the driver, you can identify it no further.  It quite literally could be any 
kind of device at all, and with neither slot ROM space to identify nor a standard location to 
compare the device driver entry point against, the best you can do is consider it a “generic 
device” and go on.

But Is It Connected and Can I Read From It?

Just because a ProDOS device is in the table does not mean it is ready to be used.  There is 
always the possibility that the drive has no media in it.  Back in the beginning, you made an  
ON_LINE call with a unit number of $00.  If the volume name of a disk in that device could not  
be read, or another error occurred, ProDOS 8 would return the error code in the  ON_LINE 
buffer immediately following the unit number.  Those errors possible include:

$27 I/O error
$28 No Device Connected
$2B Write Protected
$2F Device off-line
$45 Volume directory not found
$52 Not a ProDOS disk
$55 Volume Control Block full
$56 Bad buffer address
$57 Duplicate volume on-line

Note that error $2F is not listed in the ProDOS 8 Technical Reference Manual.

By convention, you interpret I/O error to mean the disk in the drive is either damaged or blank 
(not formatted).  You interpret Device off-line to mean that there is no disk in the drive.  You 
interpret No Device Connected to mean the drive really does not exist (for example, asking for 
status on a second Disk II when only one is connected).

If no error occurred for a unit number in the ON_LINE call (the low nibble of the unit number 

Developer Technical Support March 1990



Apple II Technical Notes

is not zero), the volume name of the disk in the drive follows the unit number.

Developer Technical Support March 1990



Apple II Technical Notes

Things To Avoid

The ProDOS device-level  STATUS call generally returns the number of blocks on a device. 
Applications should not try to identify 3.5” drives by doing a ProDOS or SmartPort STATUS 
call and comparing the number of blocks to 800 or 1,600.  The correct way to identify a 3.5” 
drive is by the Type field in a SmartPort STATUS call.

Don’t assume the characteristics of a device just because it is in a certain slot.  For example, be 
prepared to deal  with 5.25” disk drives  in slots  other  than 6.   Don’t  assume that  slot  6 is 
associated with block devices at all—there could be a printer card installed.

Avoid reinstalling /RAM when your application finds it removed.  If you remove /RAM, you 
should  reinstall  it  when  you’re  done  with  the  extra  memory;  however,  if  your  application 
finds /RAM already gone, you do not have the right to just reinstall it.  A driver of some kind 
may be installed in auxiliary memory,  and arbitrary reinstallation of /RAM could bring the 
system down.

Further Reference
• ProDOS 8 Technical Reference Manual
• AppleShare Programmer’s Guide for the Apple IIGS (APDA)
• ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3
• ProDOS 8 Technical Note #20, Mirrored Devices and SmartPort
• ProDOS 8 Technical Note #23, ProDOS 8 Changes and Minutia
• ProDOS 8 Technical Note #26, Polite Use of Auxiliary Memory

Developer Technical Support March 1990


