
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#60: Menu Manager Memorabilia

Revised by: Matt Deatherage, Dave Lyons, & Tim Swihart
November 1990

Written by: Dave Lyons July
1989

This Technical Note discusses the Menu Manager, specifically a few
anomalies and some tips for making menus your friends.
Changes since May 1990: Noted that System Software 5.0.3 fixes a bug
in NewMenuBar2.

The Menu Manager Is Your Friend

In general, this is the truth. You can do all kinds of nifty things with menus, especially in
System Software 5.0 and later. However, there are a few things you should know unless you
generally are fond of pain in your life.

Disabling Menus Gracefully

As documented, SetMenuFlag can be used to disable and enable entire menus. When a
menu is disabled, the menu title and all items within the menu are disabled. You may pull down
a disabled menu, but you may not select any item within it (unless the routine MenuGlobal
has been used to allow inactive menu items to be selected).

Volume 1 of the Apple IIGS Toolbox Reference says you should call DrawMenuBar if you
change the appearance of a menu title with SetMenuFlag. You can do this; this is fine. It
may, however, induce dizziness if used often.

Developer Technical Support November 1990

Apple II Technical Notes

A more graceful way to dim menus is to follow SetMenuFlag with HiliteMenu. Calling
HiliteMenu causes the menu title to be redrawn to reflect the current (or new) highlighting
and menu flags. Using HiliteMenu instead of DrawMenuBar allows you to disable and
enable menus gracefully, without noticeable flicker or threat of nasty patent infringement
lawsuits from strobe light manufacturers.

Developer Technical Support November 1990

Apple II Technical Notes

“System” Bars Versus “Window” Bars

As far as the Menu Manager is concerned, there are only two kinds of menu bars. One kind is
in a window and the other kind is not. The former are called “window” menu bars and the latter
are generally referred to as “system” menu bars.

Most people think of the System bar as the big menu bar across the top of the screen. This is
encouraged by calls like SetSysBar, which takes a menu bar handle and sets the menu bar
across the top of the screen to that menu bar. Trying to rename one or the other of these two
concepts at this point is probably useless; instead, this Note refers to the bar across the top of
the screen as the “System” bar (with a capital S), and menu bars not in windows as “system”
bars (with a lowercase s).

When you start the Menu Manager, it creates an empty System bar for you. Before System
Software 5.0, most people simply called NewMenu and InsertMenu to insert menus into that
System bar. All was well in the world.

When 5.0 was released, it became very easy to create a new menu bar and all the menus within
it using the NewMenuBar2 call. This avoids a lot of code, and many new people use it. The
problem comes with DrawMenuBar. If you simply call NewMenuBar2 to obtain your menu
bar and menus from resources, then call DrawMenuBar to make them visible, you usually get
an empty menu bar. Why? The windowPtr parameter passed to NewMenuBar2 determines
whether or not the new menu bar created is a system bar or a window bar—it does not force the
new bar to be the System (note the capital ‘S’) bar. So when DrawMenuBar draws the current
System bar, it hasn’t changed from the empty default one created by MenuStartUp.

This is why Volume 3 of Apple IIGS Toolbox Reference recommends code similar to the
following:

 menuHandle := NewMenuBar2(refDesc,menuBarTRef,NIL);
 SetSysBar(menuHandle);
 SetMenuBar(NIL); {NIL makes the System bar the current menu bar}

if you want your menu bar to be the one across the top of the screen.

A Bug in NewMenuBar2

NewMenuBar2 is a handy thing to have around, but it does have a problem in 5.0.2 and earlier.
When the Menu Manager is done with resources, it tries to use the internal toolbox call
CMReleaseResource to free them in memory. However, it passes the wrong resource ID,
and CMReleaseResource calls SysFailMgr if it encounters any errors at all (such as
Specified resource not found).

Developer Technical Support November 1990

Apple II Technical Notes

What NewMenuBar2 does improperly is push the high word of the resource ID onto the stack
twice, instead of the high word followed by the low word. Because of the way the Resource
Manager operates, CMReleaseResource returns with no error if the ID passed is NIL, but
the resource is not released (another good reason not to try to use the illegal value NIL as a
resource ID).

Developer Technical Support November 1990

Apple II Technical Notes

If the high word of the menu bar resource is $0000, NewMenuBar2 passes a resource ID of
NIL to CMReleaseResource, which then doesn’t quite release the resource, but returns no
error. The menu bar resource hangs around in memory until ResourceShutDown. It’s
usually fairly small, so this is no loss. It still takes up less room than menu strings, which had
to stay in memory until MenuShutDown.

If the high word of the menu bar resource is not zero, the bug causes CMReleaseResource
to bring down the system. When using System Software 5.0.2 or earlier, make sure all menu
bar resource IDs have a high word of $0000. System Software 5.0.3 fixes this bug.

Menu and Menu Title ID Numbers

Table 13-4 in Volume 1 of Apple IIGS Toolbox Reference gives a listing of menu and menu item
ID numbers. In both lists, $0000 and $FFFF are “reserved for internal use” and noted that
$0000 usually indicates the first menu in the bar (or first item in the menu) and $FFFF usually
indicates the last menu in the bar (or last item in the menu). Some developers have taken this to
mean that they should give their first menu an ID of $0000 and their last one an ID of $FFFF.

This assumption is incorrect.. The Menu Manager may change these values internally to reflect
such IDs, but they must not be assigned that way by an application. Some applications that use
IDs of $0000 or $FFFF break under System Software 5.0 and later. Note that $0000 can be
used as the insertAfter parameter to InsertMenu to insert a menu at the left of a menu
bar, but $FFFF is not a valid insertAfter value.

Desk Accessories and Menus

Some desk accessory developers would like to have their NDAs insert a menu in the System
menu bar. While the menu itself can be inserted, the NDA cannot detect that a user has
selected an item within that menu. The application gets the event and does not know what to do
with it. NDAs that need a menu can put a menu bar in their own window. Since the
mouseDown event then happens within the NDA’s window, the NDA gets the event and can
handle it normally. Be sure to make the NDA’s menu bar the current menu bar before calling
MenuSelect from within your NDA (to avoid possible conflicts between NDA menu item
IDs and application menu item IDs). Restore the current menu bar to the application’s menu
bar before returning control to the application. Failure to do so prevents the application from
finding its menus. Apple IIGS Technical Note #3, Window Information Bar Use documents how
to put a menu in a window’s information bar.

Documentation Error in MenuSelect
Developer Technical Support November 1990

Apple II Technical Notes

Volume 1 of Apple IIGS Toolbox Reference states that MenuSelect returns the menu ID and
the item ID of the selected item in the when field of the event record. This is incorrect.
MenuSelect actually returns the information in the wmTaskData field of the task record
(and this, in fact, is why you pass a task record and not just an event record to MenuSelect).

Developer Technical Support November 1990

Apple II Technical Notes

Menu Strings and Bank Boundaries

NewMenu takes a pointer to a string; this string must not cross a bank boundary. If it does, a
menu containing random garbage may result.

If your NewMenu strings are contained in your code segments, everything is fine—code
segments cannot cross bank boundaries. Depending on your development environment, strings
that are not in a code segment may or may not be allowed to cross bank boundaries. If you can
find no other way to guarantee the strings do not cross a bank boundary, use NewHandle to
allocate blocks with attributes $4010 (fixed, no bank cross) and copy the strings to these blocks.

If you create menus from resources, be sure the resources have their noCrossBank attribute
bits set. Note that a memory block that can cross a bank boundary usually does not, so your
application may be working by accident.

Note that this restriction applies only to menu strings, not the menu templates that can be used
with NewMenu2.

Return Values From GetMenuTitle and GetMItem

Starting with System Software 5.0, GetMenuTitle and GetMItem can return handles and
resource IDs, not just pointers. The type of data returned depends on how the menu or item was
created, so existing applications are not affected. For more information, see Apple IIGS Toolbox
Reference, Volume 3, Chapter 37, “New Features of the Menu Manager.”

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1 & 3
• Apple IIGS Technical Note #3, Window Information Bar Use

Developer Technical Support November 1990

