
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support


®

Apple IIGS

#81: Extended Control Ecstasy

Revised by: Dave Lyons July
1991

Written by: C.K. Haun May
1990

This Technical Note discusses special features and concerns that should be
considered when using the extended controls introduced in System
Software 5.0.
Changes since November 1990: Added information on which fields the
Control Manager automatically copies from a custom control’s template to
its control record. Corrected NewControl2 parameter order. Added a
note about SetCtlTitle. Changed some “pea 0” instructions into
“pha” when pushing space for results.

Introduction

The extended controls introduced in System Software 5.0 allow the application programmer a
great deal more freedom in designing and controlling applications. The new features enhance
the functionality of the controls and TaskMaster, but can cause confusion and consternation
if you are careless with the new parameter block . This Note also includes a discussion of the
multipart nature of many of the extended controls and some pointers for writing extended
custom controls.

Counting The Costs

One of the major stumbling blocks seen when programming the new extended controls is bad

Developer Technical Support July 1991

Apple II Technical Notes

parameter counts. Extended controls introduce parameter blocks and parameter counts to the
Control Manager. You need to fully understand the parameters required and the resulting
parameter count for each control you create, or you can experience program problems that may
be very confusing and difficult to track down.

Remember also that the Control Manager does not understand “skipping parameters.” If you
are creating an extended radio button and you want key equivalents, but not a color table, you
cannot ignore the color table parameter field. There is no way to tell the Control Manager to
“skip” a field during control creation; make sure you initialize all the fields to values that are
meaningful—either a real pointer, handle, resource ID, or zeroes. In this case, if you try to
“skip” the color table and do not zero out the color table parameter field, the resulting radio
button wears ugly colors you do not expect.

As you can imagine, miscounting parameters in other extended controls can produce confusing
results, so the parameter count is the first place you should check when you’re having
difficulties creating extended controls.

For Rez users, the Types.Rez file contains extended control templates that automatically
generate the correct count value, so programmers creating all their controls with the Resource
Compiler should not have these problems.

Silly Little Bits

The other area of the new parameter block model that is giving folks trouble is the moreflags
field. This field hones the definition given by the reference fields and can cause you much
grief if misused. Make sure to set the reference bits to the values you require. The bit settings
have been standardized across all the extended controls, with %00 indicating a pointer, %01
indicating a handle, and %10 indicating a resource. Remember also to set the bits for all the
references you have—strings, color tables, or whatever else may be ambiguously referenced in
the control.

If you accidentally use the wrong bit pattern, you can experience strange bugs ranging from
garbled text to SysFailMgr caused by a nonexistent resource being referenced. Again, Rez
users can use the equates for all the reference specifiers in the Types.Rez file to avoid confusion
and evil bugs.

The Parts are Greater than the Whole

To create some new extended controls, like pop-up menu controls and LineEdit controls,
functions of different tool sets were combined. Pop-up menu controls are a combination of the
Control Manager and the Menu Manager, LineEdit controls are a blending of the Control
Manager and the LineEdit tool set, and other new control types follow the same pattern.
Developer Technical Support July 1991

Apple II Technical Notes

This means that, at times, you have to go further into the documentation to find information.
Getting the text out of an LineEdit extended control is a multistep process that is a good
example of this type of problem.

MyLineEdit dc i2'8' ; parameter count
 dc i4'1' ; id number 1
 dc i2'10,10,23,90' ; control rectangle
 dc i4'editLineControl' ; process reference
 dc i2'0' ; flags
 dc i2'fCtlCanBeTarget+fCtlWantEvents+fCtlProcRefNotPtr'
 ; moreflags
 dc i2'0' ; refcon
 dc i2'15' ; maximum characters allowed
 dc i4'0' ; no default text
MyLineEditHandle ds 4 ; handle for the created control

 pha
 pha
 pushlong mywindowgrafport ; window that control will reside in
 pea 0 ;verb, single Extended control
 pushlong #MyLineEdit
 _NewControl2
 pla
 sta MyLineEditHandle ; save the control handle
 pla
 sta MyLineEditHandle+2

When you want to get the text back out of that control later, you begin to experience what it means to have a control that is an amalgam of various
tools. You would start by using the control handle returned by NewControl2:

Scratch equ $0 ; some scratch space
Scratch2 equ $4

 lda MyLineEditHandle ; move the ControlHandle to
 sta Scratch ; some direct page space
 lda MyLineEditHandle+2
 sta Scratch+2
 lda [Scratch]
 tax
 ldy #2
 lda [Scratch],y ; and dereference it, putting it back in some dpage
 sta Scratch+2 ; space to use it.
 stx Scratch

That gives you the pointer to the control record. Stored in the control record is the handle of the LineEdit item that is actually controlling the text
processing:

 pha ; make space for the text handle to be returned
 pha
 ldy #octlData ; offset to the ctlData section
 ; of the ControlRecord
 lda [Scratch],y ; where the handle for the actual LineEdit
 tax ; item was stored
 iny
 iny
 lda [Scratch],y
 pha
 phx
 _LEGetTextHand ; ask for the handle for the text
 pla ; in this LineEdit control
 sta Scratch2 ; and now you have the handle to the text you want.
 pla
 sta Scratch2+2

Developer Technical Support July 1991

Apple II Technical Notes

The main point is that when you are using extended controls, you often cannot use the Control Manager to do everything that needs to be done. You
also need to understand and use the supplementary or “hidden” tool sets.

Here’s another example, using a pop-up menu extended control, and in this case we define a font pop-up that contains all the font names currently
available.

MyPopUpControl dc i2'9' ; parameter count of 9
 dc i4'1' ; control ID of 1
 dc i2'2,2,0,0' ; Position, upper left corner of the window, let
 ; Control Manager calculate full size
 dc i4'popUpControl' ; def proc for PopUp
 dc i2'0' ; flags
 dc i2'fCtlWantEvents+fCtlProcRefNotPtr'
 ; more flags
 dc i4'0' ; ref con
 dc i2'0' ; title width, will be calculated
 dc i4'mymenu' ; pointer to actual menu structure
 dc i2'500' ; initial value, item number of item
 ; to be displayed in popup at creation

mymenu dc i2'0' ; version number, should be 0
 dc i2'200' ; menu ID number
 dc i2'0' ; menu flags
 dc i4'mymenutitle' ; pointer to menu title
 dc i4'mymenuitem1' ; first menu item
 dc i4'mymenuitem2' ; second menu item
 dc i4'0' ; null terminator, end of menu
mymenutitle str 'Font'

mymenuitem1 dc i2'0' ; version number
 dc i2'500' ; item number
 dc i2'0' ; no hot keys
 dc i2'0' ; not checked
 dc i2'0' ; item flags, no special drawing
 dc i4'mymenuitem1title'
mymenuitem1title str 'Plain'

mymenuitem2 dc i2'0' ; version number
 dc i2'501' ; item number
 dc i2'0' ; no hot keys
 dc i2'0' ; not checked
 dc i2'1' ; item flags, bold face this one
 dc i4'mymenuitem2title'
mymenuitem2title str 'Bold'

Now create this control:

 pha
 pha
 pushlong mywindow ; target window grafptr
 pea 0 ; verb, single control pointer
 pushlong #MyPopUpMenu
 _NewControl2
 pulllong mypopuphandle ; save the handle

This pop-up menu control created is not associated with the menu bar across the top of the desktop. You can consider each of your pop-up menu
controls as separate menu bars, so if you want to perform Menu Manager calls on a pop-up menu control, you need to set the menu to point at your
pop-up menu control. In this example, to add all the fonts available to the pop-up menu you would:

 pha
 pha ; space to hold current bar
 _GetMenuBar ; get the handle to the current menu bar
 pushlong mypopuphandle
 _SetMenuBar
 pea 200 ; id number of this menu
 pea 502 ; first font family ID number to use

Developer Technical Support July 1991

Apple II Technical Notes

 pea 0 ; fontspecbits
 _FixFontMenu
 pea 0
 pea 0
 pea 200
 _CalcMenuSize ; re-size the popup menu
 _SetMenuBar ; restore the previous menu as the current menu

Controls That Are Not Controls

The new picture extended control is not a “full-fledged” control; it has been provided to simplify your programming tasks. The picture control does
not support normal mouse hit testing and highlighting. Think of it as a built-in extension to your content drawing routine, and not as a control. It is
provided to allow you to refresh your whole window with a single DrawControls call, instead of drawing the controls and then drawing pictures.
The icon button extended control has been provided as the graphic full-function control. If you need or want a fully functional control that uses a
picture, you should consider writing your own custom control procedure.

Custom Extended Controls

Custom controls can also benefit from all the advantages of extended controls. You can create a
custom control that uses a template, can be a resource, has a definition procedure that is a
resource, and responds to all the new control calls. If you write an extended custom control or
upgrade a previously-written custom control, there are new messages and changes to existing
messages of which you need to be aware. These changes are documented in volume 3 of the
Apple IIGS Toolbox Reference.

The Control Manager copies the following fields from the control template to the control record
before it sends your control the init message: ctlOwner, ctlID, ctlRect, ctlFlag,
ctlHilite, ctlMoreFlags, ctlVersion, ctlRefCon, and ctlProc. The
ctlNext field is owned by the Control Manager. If any additional fields need to be set up
based on the control template (such as ctlValue, ctlData, ctlColor, and any custom
fields), your init routine needs to take care of it.

Putting your custom control definition procedure in a resource can significantly enhance the
functionality of the custom control. You may find it easier to add to all of your programs and
you do not have to manage the code space required. If you do write a custom control definition
procedure and want to store it as a resource, here are some hints for success.

First, the code you store in your resource fork must be fully compiled and linked code. The
code resource converter uses the System Loader to load the code, so the code must be
executable code, not object code.

Second, set the convert and locked bits of the resource attributes for your code resource.
The convert bit must be set to tell the Resource Manager to call the code resource converter
when it loads this resource. The resource type for control definition procedures is
rCtlDefProc, $800C.

By setting locked but not fixed, memory fragmentation is reduced (because of how the

Developer Technical Support July 1991

Apple II Technical Notes

code resource converter and Memory Manager work). Setting the locked attribute is also
recommended for compatibility with future system software.

Third, keep in mind that this definition procedure may be purged and reloaded whenever the
Memory Manager needs the space. This means that you cannot store any information in your
definition procedure if you want to keep track of it between calls to the definition procedure. If
you do, and your definition procedure gets purged and reloaded, you lose that data.

If you need data space for your custom control, use the control record as your stash. You can
easily either use the fields already provided in the control record, or you can expand the control
record to as much space as you need (within sensible limits) and store your data there.
Warning: Control definition procedures are initially loaded with purge level zero.

When they are released, they are given purge level three. If they are then
reloaded, the Resource Manager does not change the purge level back to
zero—your definition procedure may then be purged (even while executing)
unless its handle is locked. The solution is to lock your definition procedure
handle within the procedure:

 myPosition pea 0 ; space for result
 pea 0
 pushLong #myPosition
 _FindHandle
 _HLock

and unlock your handle with HUnlock on exit. This keeps your procedure safe, while not creating “code islands,”
which clog up memory.

Changing a Control’s Title

If you call SetCtlTitle to give a control a new title, everything is great if the new title is referenced the same way as the current title (by pointer,
by handle, or by resource ID). If the new title is referenced differently, you must first call SetCtlMoreFlags on your control so that the
SetCtlTitle value can be interpreted correctly.

Conclusion

The extended controls provided in System Software 5.0 and later are a great leap forward for
programmers. They relieve the application of much of the tedious detail code that relates to
housekeeping, not the guts of application programming. Used in combination with the
enhanced TaskMaster, you can have an application’s visual interface up and running a lot
faster, leaving you more time to work on the heart of your application.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1 through 3.

Developer Technical Support July 1991

