
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#83: Resource Manager Stuff

Revised by: Dave “No Middle Name” Lyons
December 1991

Written by: Dave Lyons May
1990

This Technical Note answers your miscellaneous Resource Manager
questions.
Changes since March 1991: Added a warning about
UniqueResourceID in System 5.0.4 and earlier.

UniqueResourceID

In System Software 5.0.4 and earlier, calling UniqueResourceID with an IDRange value
of $FFFF does not work reliably. It sometimes returns a system-range ID ($07FFxxxx) if there
are already system-range resources of the specified type present in the current search path.

If you are using a development utility that generates resource IDs using
UniqueResourceID, check the results to make sure no system-range resource IDs are being
used by accident.

What SetCurResourceFile Does

SetCurResourceFile is documented in Chapter 45 of the Apple IIGS Toolbox Reference,
Volume 3 (see especially “Resource File Search Sequence” near the beginning of the chapter).

This explanation might make you think SetCurResourceFile rearranges the search path,
but it does not; instead, it just makes searches start at a different place in the path.
SetCurResourceFile is useful for controlling what resource files are searched, not for
Developer Technical Support December 1991

Apple II Technical Notes

changing the search order.

How the Toolbox Uses Resources as Templates

The toolbox uses several types of resources as templates for creating other objects. Examples
include rControlList, rControlTemplate, and rWindParam1. The toolbox
automatically releases these resources from memory as soon as it is through with them, so there
is no need to create your template resources with special purge levels in an effort to free more
memory. It is not a problem.

Using Resources From Window Update Routines

In System Software 5.0.4 and earlier there is no special code to set the current resource
application when the system calls an application window update routine (See Apple IIGS
Technical Note #71 for notes on NDAs and the current resource application).

To avoid a situation where a window update routine cannot get needed resources, obey the
following rules:

1. Application window update routines must either (a) assume that the resource
application has the same value it had when the window was created, or (b) save,
set, and restore the current resource application, using GetCurResourceApp
and SetCurResourceApp.

2. NDAs that start the Resource Manager must not call application window update
routines, and they must not cause application window update routines to be called
(for example, if an NDA calls TaskMaster to handle a modal dialog or movable
modal dialog, the tmUpdate bit in wmTaskMask must be off).

CurResourceApp in InfoDefProcs and Custom Windows

The current resource application has no guaranteed value when an information bar definition
procedure or custom window definition procedure gets control. These must always save, set,
and restore the current resource application using GetCurResourceApp and
SetCurResourceApp.

StartUpTools Opens Resource Forks Read-Only

When StartUpTools opens your application’s resource fork, it opens it with read-only
Developer Technical Support December 1991

Apple II Technical Notes

access. If your application needs to make changes to the resources on disk, you need to close
the fork and reopen it with read and write access. To close it, use GetCurResourceFile
and CloseResourceFile; to reopen it, use LGetPathname2 and
OpenResourceFile.

Note: You must update the resFileID field in the StartStop record if you close
and reopen your resource fork. CloseResourceFile disposes the handles of
any resources in memory from the file you’re closing, so you must call
DetachResource on any resources you need to keep. (If you pass an
rToolSTartup resource to StartUpTools, the system detaches it for you
automatically.)

Calling StartUpTools From a Shell Application (File Type $B5, EXE)

StartUpTools tries to open the current application’s resource fork. It determines the
pathname of the “current application” by examining prefix 9: and making a GET_NAME
GS/OS call, but do not assume it will always construct the pathname this way. If you call
StartUpTools from a shell application and expect it to open your EXE file’s resource fork,
you will be disappointed.

If GS/OS has launched your application, life is good—usually, though, a shell has loaded your
shell application directly, so GET_NAME returns the name of the shell instead of the name of
your application file.

To open your shell file’s resource fork, call ResourceStartUp, get the pathname by calling
LGetPathname2 on your user ID, and pass the pathname to OpenResourceFile.

What’s NIL in a Resource Map?

The resource maps for open resource files are kept in memory, and the structure is defined in
chapter 45 of Apple IIGS Toolbox Reference, Volume 3.

The resHandle field of a resource reference record (ResRefRec) is defined as “Handle of
resource in memory. A NIL value indicates that the resource has not been loaded into
memory.” In this case, NIL means that the middle two bytes of the four-byte field are zero. In
other words, a NIL entry in the resource map may have a non-zero value in the low-order byte.

LoadResource and SetResLoad(FALSE)

Developer Technical Support December 1991

Apple II Technical Notes

When you call LoadResource on a locked or fixed resource and SetResLoad is set to
FALSE, you may get Memory Manager error $0204 (lockErr), because the Resource
Manager tries to allocate a locked or fixed zero-length handle, which the Memory Manager
does not permit.

Adjusting the Search Depth

If you wish to add some resource files to the beginning of a resource search path and adjust the
depth so that the end point of the search is unchanged, it’s tempting to use
SetResourceFileDepth(0) to get the current depth, add one, and set this new depth with
SetResourceFileDepth.

The problem is that the search depth is often -1 ($FFFF), meaning “search until the end of the
chain.” If you add your adjustment to -1, you do not usually get the intended effect. A solution
is just to check for $FFFF and not adjust the depth in that case.

CurResourceApp after ResourceShutDown

After a ResourceShutDown call, the current resource application is always $401E. (The
Resource Manager starts itself up at boot time with its own memory ID, $401E. Do not ever
call ResourceShutDown while the current resource application is $401E.)

Restoring the CurResourceApp

If you need to start up and shut down the Resource Manager without disturbing the current
resource application, call GetCurResourceApp before ResourceStartUp, and call
SetCurResourceApp to restore the old value after ResourceShutDown.

It does not help to call GetCurResourceApp after ResourceStartUp, since the
application just started up is always the current resource application.

Shell programs which start the Resource Manager need to call SetCurResourceApp after
regaining control from a subprogram (for example, an EXE file) which may have started and
shut down the Resource Manager, leaving the current resource application set to $401E instead
of the shell’s ID.

Shell programs that do not start the Resource Manager have nothing to worry about. In this
case the current resource application is normally $401E, so when a subprogram calls
ResourceShutDown life is still wonderful.
Developer Technical Support December 1991

Apple II Technical Notes

What Information is Kept For Each Resource Application?

When you switch resource applications with SetCurResourceApp, that takes care of all the
application-specific information the Resource Manager has.

There is no need to separately preserve the current resource file, the search depth, the
SetResourceLoad setting, or any application resource converters that are logged in. All of
this information is already recorded separately for each resource application.

Debugging Information

The following information is provided for your convenience during program development. It
allows you to check exactly what user IDs are using the Resource Manager, what files are in
their search paths, and what resource converters are logged in.

Do not depend on this information in your program; it is subject to change in future versions of
the Resource Manager.

All the Resource Manager’s data structures are rooted in the Resource Manager tool set’s Work
Area Pointer (WAP). To get the Resource Manager’s WAP, call GetWAP (in the Tool Locator)
with userOrSystem = $0000 and tsNum = $001E.

The WAP value is a handle to the Resource Manager’s block of global data. Several interesting
areas in this block are listed below.

+$0A2 curApp Word Offset into the globals block of the current resource
application’s Application Record.

+$2B0 sysFile Long Handle of system file map, or NIL if none.
+$2B4 sysConvertList Long Handle of system converter list, or NIL if none.
+$2B8 appList 20*n bytes List of Application Records (20 bytes each).

Each Application Record has this format:

+000 appFlag Word 0=entry available, 1=entry used, $FFFF = end of array.
+002 appID Word User ID of application.
+004 appFiles Long Handle of application’s first resource map, NIL=none.
+008 appCur Long Handle of application’s current resource map, NIL=none.
+012 appConverters Long Handle of application’s converter list, NIL=none.
+016 appReadFlag Word 1=read resources, 0=don’t read

(SetResourceLoad).
+018 appFileDepth Word Number of files to search in this path.

Converter lists have this format:

+000 n Word Number of entries in the table (entries can be unused).

Developer Technical Support December 1991

Apple II Technical Notes

+002 theConverters 6*n bytes List of converter entries (6 bytes each).
Each Converter entry has this format:

+000 resType Word Resource type for this converter ($0000 for unused entry).
+002 convAddress Long Address of resource converter.

The format for a resource map is described starting on page 45-17 of Apple IIGS Toolbox Reference, Volume 3.

Remember, don’t depend on this information in your application; use it during debugging, and use it to write debugging utilities.

Further Reference
• Apple IIGS Toolbox Reference, Volume 3
• Apple IIGS Technical Note #71, DA Tips and Techniques

Developer Technical Support December 1991

