
Apple II Technical Notes

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#51: How to Avoid Running Out of Memory

Revised by: Dave Lyons
September 1990

Written by: Eric Soldan
January 1989

This Technical Note discusses handling nearly-out-of-memory situations
when working with the IIGS tools.
Changes since January 1989: Retitled from “Reserving Memory for the
Toolbox.” Noted that many toolbox calls require 16K or 32K of memory
to be allocatable for reliable operation.

Introduction

Running out of memory is a concern for most every application. Working with the Toolbox
makes monitoring this situation a little more difficult since your application is not the only one
allocating memory.

Low-level toolbox functions (for example, QuickDraw II calls) require that a 16K block of
memory be allocatable, while high-level routines (for example, the Window Manager) require
that a 32K block of memory be allocatable. Apple does not guarantee that toolbox functions
behave reasonably if there is less memory available, and the tools are not stress-tested with less
than the minimum required memory available.

Since the toolbox assumes reasonable memory-allocation requests succeed, just waiting for an
out-of-memory error is not adequate memory management. To make your application work
reliably in low-memory situations, you need a method of ensuring that the toolbox gets memory
when it needs it. This Note describes two approaches.

Developer Technical Support September 1990

Apple II Technical Notes

How Much Memory Can Be Allocated

There’s no way to tell how much memory can be allocated without actually trying to allocate it.

MaxBlock tells you the size of the largest single free block, but this doesn’t take into account
purgeable blocks, compaction, and out-of-memory routines (see Apple IIGS Toolbox Reference,
volume 3). FreeMem and RealFreeMem cannot tell you how badly fragmented the memory
is, and they do not take into account out-of-memory routines.

Developer Technical Support September 1990

Apple II Technical Notes

A Suggested Method

A method of checking for a nearly-out-of-memory condition is to have your own purgeable
handle just for this task. If the handle has not been purged, then you have plenty of memory for
the toolbox, and in the worst case, the toolbox purges your handle if it needs the RAM.

The less often your purgeable handle gets purged, the better performance you get in nearly-out-
of-memory situations. Therefore, you should arrange for other purgeable memory, not
necessarily belonging to your application, to be purged before your handle. For example, you
want dormant applications to be purged, rather than having your handle get repeatedly purged
and reallocated. So the purge level of this handle should be one.

The check to see if a handle has been purged is very fast. If it has been purged, you have to try
to reallocate it. Reallocating a handle is not a fast process, so the fewer times the handle is
purged, the faster the check is and the better your performance. Unless you are in a nearly-out-
of-memory situation, the handle should not be purged at all, and you should have virtually no
overhead for this process.

This technique can be implemented as follows:

appStart
;
; Somewhere at start, create a purgeable handle of size N,
; called "loMemHndl", purge level 1.
;
 rts

;
; Here's an example of checking for nearly-out-of-memory:
;
 jsr preCheckLoMem
 bcc goForIt
 bcs HandleError ;Handle errors appropriately.
goForIt (_ToolboxCall[s]) ;Make as many as needed.
;
; Here you can make your toolbox calls. Since you prechecked
; for nearly-out-of-memory conditions, you should have no memory
; errors at this point.
;
; You could also check after calls, as shown here:
;
 (_ToolboxCall)
 jsr checkLoMem ;Call this to see if low.
 bcc noError
 bcs HandleError ;Take care of errors.

noError jsr lifeIsGood
 .
 .
 .
 rts

Developer Technical Support September 1990

Apple II Technical Notes

;
; Here are some sample routines to check for the nearly-out-of-
; memory condition.
;
checkLoMem bcs retErr
preCheckLoMem lda [loMemHndl]
 ldy #2
 ora [loMemHndl],y
 beq gotPurged
 lda #0
 clc
 rts
gotPurged (Try reallocating it into loMemHndl, purge level 1.)
 (If you can't, you will get a $0201 error. You may wish to
 return the $201 error, or you may wish to change it into
 your own error code.)
;
retErr rts ;This is a single exit point
 ;whether errors were present
 ;or not.

You can determine the size of this purgeable handle, but like determining what size stack is adequate for an application, there is no single “right”
answer. There are different considerations for size of the purgeable handle for each application, and these may change during the development
process. Use your best judgement, keeping in mind that high-level toolbox routines require a 32K block.

An Alternative

For better control over when your handle is purged or disposed, you can write an out-of-
memory routine as described in the Memory Manager chapter of Apple IIGS Toolbox Reference,
volume 3. Out-of-memory routines have the opportunity to free up memory before or after the
Memory Manager attempts to purge purgeable handles, and this manual contains a sample of
such a routine.

Further Reference:
• Apple IIGS Toolbox Reference, Volumes 1-3

Developer Technical Support September 1990

