
Macintosh
Sample Code Notes

Developer Technical Support

®

#14: CPlusTESample

Written by: Andrew Shebanow

Versions: 2.0 May 1990

Components: AppLib.h May 1, 1990
AppLib.r May 1, 1990
Application.cp May 1, 1990
Application.h May 1, 1990
Document.cp May 1, 1990
Document.h May 1, 1990
Exceptions.cp May 1, 1990
Exceptions.h May 1, 1990
List.h May 1, 1990
List.cp May 1, 1990
TECommon.h May 1, 1990
TEDocument.cp May 1, 1990
TEDocument.h May 1, 1990
TESample.cp May 1, 1990
TESample.make May 1, 1990
TESample.h May 1, 1990
TESample.r May 1, 1990
TESampleGlue.a May 1, 1990

From MacApp 2.0: UMAFailure.a May 1, 1990
UMAFailure.h May 1, 1990
UMAFailure.inc1.p May 1, 1990
UMAFailure.p May 1, 1990

__

This program requires C, C++, and Asm from MPW 3.1 or greater to build. It also uses the Failure

handling routines, provided here, from MacApp 2.0.

For use with MPW 3.2, follow the instructions in the “TESample.make” file.
__

This version of TESample has been substantially reworked in C++ to show how a “typical” object-
oriented program could be written. To this end, what was once a single source code file has been
restructured into a set of classes which demonstrate the advantages of object-oriented programming.

There are four main classes in this program. Each of these classes has a definition (.h) file and an
implementation (.cp) file.

The TApplication class does all of the basic event handling and initialization necessary for
Macintosh toolbox applications. It maintains a list of TDocument objects and passes events to the
correct TDocument class when appropriate.

#14: CPlusTESample of 21

The TDocument class does all of the basic document handling work. TDocument objects are objects
that are associated with a window. Methods are provided to deal with update, activate, mouse-click,
key down, and other events. Some additional classes which implement a linked list of TDocument
objects are provided.

The TApplication and TDocument classes together define a basic framework for Macintosh
applications, without having any specific knowledge about the type of data being displayed by the
application’s documents. They are a (very) crude implementation of the MacApp application model,
without the sophisticated view hierarchy.

The TESample class is a subclass of TApplication. It overrides several TApplication methods,
including those for handling menu commands and cursor adjustment, and it does some necessary
initialization. Note that we only need to override a few basic routines—the rest of the work is done in
a generic way by TApplication (isn’t OOP great?).

The TEDocument class is a subclass of TDocument. This class contains most of the special-purpose
code for text editing. In addition to overriding most of the TDocument methods, it defines a number of
additional methods which are used by the TESample class to get information on the document state.

The UMAFailure files are a hacked up version of MacApp 2.0’s UFailure unit. The Exceptions files
are a set of C++ macros that make recovering from errors easier.

Segmentation Strategy

This program has only one segment, since it isn’t really big enough to make multiple segments
worthwhile. We do unload the data initialization segment at start time, which frees up some memory.

_SetPort Strategy

Toolbox routines do not change the current port. In spite of this, in this program we use a strategy of
calling _SetPort whenever we want to draw or make calls which depend upon the current port. This
makes us less vulnerable to bugs in other software which might alter the current port (such as the bug
(feature?) in many desk accessories which change the port on _OpenDeskAcc). Hopefully, this also
makes the routines from this program more self-contained, since they don’t depend on the current port
setting.

Clipboard Strategy

This program does not maintain a private scrap. Whenever a Cut, Copy, or Paste occurs, we import or
export from the public scrap to TextEdit’s scrap immediately, using the TEToScrap and TEFromScrap
routines. If we did use a private scrap, the import or export would be in the activate or deactivate
event and suspend or resume event routines, respectively.

Version 2.0 Changes

Version 2.0 adds the ability to open and save documents. It also allows the user to open multiple
documents. For error checking, it uses the Failure unit now instead of the previous if-then-else
method.

#14: CPlusTESample of 22

